GOVERNMENT OF MAHARASHTRA.


```
    ENGINEERINGPERSONNEL'
```

```
Manpower Wing,
Planning Division,
Finance Department,
Government of Maharashtra,
Sachivalaya, Bombay-32..
```

 May, 1966

Report of the Study Group for

Engineering Personnel

OONTENTS

Introduction
Chapter 1 ... Constitution of the Study Group,its composition
Chapter 2 ... Determination of norms and relationships for asseasing requirements of Engineering Personnel.

Chapter 3 ... Assessment of requirements and availability of engineering personnel.

Chapter 4 ... Suggestions for increasing availability and improving the quality of engineering personnel.

Chapter 5 ... Surmary of conclusions and recommendations.
Appendices.
Ifst of Tables.
$-000000000-$

H/176(200)-2

INTRODUCTION

Abstract

Difficulties experienced in the imolementation of developuranersumbenne? during the first three Plans high-lighted the need for manower planning an fintegral part of the olanning process. The shortage of engineering manoower in particular resulted in the slowing down of the tempo of development; affecting practically all sectors of the economy. One of the essential pre-requisites, therefore, for achievement of economic advancement is the timely availability of trained manpower and the creation of factifties for ensuring an adequate inflow of trained workers to the labour force.' This calls for examination on a systematic basis of the problems of assessing manpower requirements of the economy and measures for producing the requisite trained manpower. Reorientation of training programmes and expansion of existing training institutions, establishment of new training institutions, special measures for training teachers and instructors and the introduction of new techniques for intensive training with a view to shortening training periods are some of the ingredients in the 'recipe' for manpower planning.

Efforts made so far to assess manpower requirements at the State level have been generally confined to the segmental approach in which information regarding future requirements were obtained from the various Departments by issue of questionnaires. Such an assessment had a limited value as only the State sector requirements could be known by this method. In this study, an attempt has been made to assess the requirements of engineering personnel on a global basis covering both public and private sectors. The approach is one based on norms and on certain assumptions derived from past trends.

For categories of skilled technical manpower, whose mobility is not restricted to the ifits of a State and whose requirements and availability are also dependent to a great extent on decision at National level, manpower projections must be made on a national basis in the first instance. Estimates of such manpower requirements and availability at the State level have necessarily to be based on certain assumptions of a projected growth rate of the economy and zero migration into or outside the State. On the degree of validity of such assumptions depends the value of the estimates: With all Howeven the report is presented in the hope that it will be a useful guide for decisions at the State level and that certain deficiencies pointed out in respect of training programnes and utilisation in the engineering sector will lead to a planned human resources development programme consistent with the develonment needs of the State.

G. H. LALVANI, Deputy Secretary (Planning), Finance Department, Government of Maharashtra.'

Sachivalaya,
Bombay,
May 1966.

CHAPTER 1 : PRELIHINARY

Constitution of the Study Group : Its Composition and Terms of Reference:

1.1 A Study Group consisting of the under-mentioned official and nonofficial members was constituted to assess the requirements and availability of Engineering Personnel by the Government of Maharashtra under Finance Department Resolution, No. MPil-2363/XXVIII, dated 24th December 1963.

Nembers of the Study Group.

1. The Secretary to Govermment,
Irrigation and Pover Department.
2. The Chief Engineer (Irrigation Projects I)
and Joint Secretary to Government,
Irrigation and Power Department.
3. The Chief Engineer (Buildings and
Communications) and Joint Secretary
to Government, Buildings and
Communications Department.
4. The Deputy. Director of Industries Member. (Development), Directorate of Industries.
5. The Commissioner of Labour and. . Member. Director of Employment.
6. The Director of Technical Education. . Member:
7. The Director, Bureau of Economics . Member. and Statistics.
8. The Principal, V.J.T.I., Bornbay.

Nember.
9. The Principal, College of Engineering, Poona.

Member.
10. Shri Bahubali Gulabchand, Member. Chairman, The Engineering Association of India.
11. Shri Prabhu V. Mehさa, Member. Chairman,
All India Manufacturers' Organisation (Shri Pranlal Patel, Altemate Member).
12. Shri G. R. Jolly, President,
The Builders': Association of India.
13. The Deputy Secretary (Flanning),
Government of Maharashtra,
Finance Department.

Shri D. S. Malla represented the All India Manufacturers' Organisation in the Study Group meetings in place of Shri Prabhu V. Mehta.

1.2 The terms of reference of the Study Group are:

"(1) To determine the requirements of trained Ingineering personnel both in the public and private sectors, for the remaining period of the Third Five Year Plan and for the Fourth Five Year Plan;
(ii) To assess the output of such personnel both within the industry and from technical institutions;
(iii) To establish certain norms and relationships for assessing requirements of such trained persomel in industries;
(iv) To suggest special measures, if necessary, such as expansion of training facilities and/or apprenticeship, placements, provision of additional seats, re-orientation of the existing training schemes and programmes with a viev to accelerating and augnenting the output of engineering personnel, etc."

Scope and Coverage:

1.3 Engineering employment comprises several sectors of industrial activity such as (i) manufacturing, (ii) construction,(iii) transport and communications, and (iv) mining. In order to malie as comprehensive an estimate as possible it was considered desirable to cover all these sectors.
1.4 The term "engineering personnel". includes not only engineers but also supervisory personnel and craftsmen. The expression "engineers" comprises graduates, post-graduates and diploma holders in civil engineering, mechanical engineering, electrical engineering, chemical engineering, metallurgical engineering, and mining engineering but excludes architectural engineering. The term craftsmen comprises 24 selected occupations, nost of which are basic engineering trades generally considered to ke comon to a number of industries. The choice of these occunations has been based on (i) "Studies in Occupational patterns of Engineering personnel" prepared by the iannower fing of the Finance Denartment: (ii) occupations for which training facilities exist under the Craftsmen Training Scheme of the State Govemment and (iii) "cesignated trades" under the Apprentices Act, 1261. A list of occupations selected for the study is given in appendix " A ".
1.5 In connection with the assessment of requirements of engineering personnel at the craftsmen level it may be pertinent to mention that, studies were carried out in the past to assess the requirements of craftismen, wut various Study Groups and Working Groups set up by the Government of India and State Governments stressed the difficulties experienced in the assessment of requirements and supply of craftsmen and have admitted their inability to arrive at even a reasonable estinate. The Report of the Vorking Group on Technical Education and Vocational Training states that:
"It would, however, be evident that the problem of assessment of demand for craftsmen is very difficult as there are no standard norms laid dow regarding training or staffing. Since the data on the subject is scanty, no precise and accurate estimates can be made. It would, hovever, be useful if some other methods are also used to calculate the requirements of craftsmen so that the results obtained are checked". (vide Page 49 of the report). The Engineering Personnel Committee set up by the Governnent of India in 1956 has also come to the same conclusion in its report (vice Page 31, Chapter VII of the report).

Approach to the problem
1.6 The Study Group held four meetings in all. The first meeting determined the scope and coverafe and discussed the various approaches and methodologies which could be utilized to arrive at a fair estimate of requirements of encineering personnel. The Study Group also decided to attempt an investment-employment survey on a sample basis at the State level. The task of devising a cruestionnaire for the survey was entrusted to a sub-Group consisting of the representative of All India Manufacturers' Organisation, Director of Technical Education and Director of Bureau of Economics and Statistics. The questionnaire designed by the Sub-Group was examined and finalised in the Second meeting of the Study Group in the light of a pilot survey conducted by the Manpower Wing. It was found from experience during the test survey that response from employers was likely to be inadequate and incomplete in the absence of long term planning by industrial units in general in regard to their developmental and expansion programmes, lack of data regarding requirements of engineering personnel and the reluctance of establishments to disclose information pertaining to capital structure, output, employment patterns etc. It was, therefore, considered advisable to restrict the actual survey to cover major industries only with a view to avoid unnecessary time and labour which would otherwise be entailed in earrying out a full scale survey.
$1.7^{\text {º }}$ The Study Group considered it desirable to assess the requirements of engineering personnel for the Fifth Plan also as any expansion of training programes, even if it could be under-taken immediately would, on account of the gestation period entailed, materially increase the outturn of engineering graduates and diploma holders only at the end of the Fourth Plan.

DEIERMITARION OF NORAS AND RELKIONSHIDS FOR AESESSING THE REqUIREMENTS
2.1. The determination of norms assumes particular significance if the requirements of personnel are to be estimated on a global basis: Past studies in assessment of engineering manpower requirements tendmed to adopt a segmental approach wilich generally restricted the estinates to tine reeds of the public secton* orily It was felt that global-estimates based on normative studies vould extend the scope of assessment to cover both the public and private sectors and that the overall picture vould be sufficiently compehensive to make longterm planning of engineering manpover - more meaningful.
2.2 Since one of the terms of reference of the Stucy Groun ts "to establish certain norm and relationships for assessing requirements of engineering persennel in industries"; the sample survey of investment employment proposed turing the first meeting was conducted. As it was dedided to restrict the actual survey to cover major industries, 9 such industries in liaharashtra State covering apmoxinately 70 per cent. of the totar factory employment were brought under the scope of the survey. . It was felt that representative establishments froh each of the major industrial sectors taken up for the survey, covering - 0 per cent. of employnent in that particular group would be a sufficiently represeniative cross section of the major sectors of industry in haharashtra. The industries selected for the survey vere:

1) Cotton Textile.
2) Manufacture of Chemicals and Cnemical products.
3) Basic Metal industries.
4) Manufacture of metal products except machinery and' transport equipment.
5) Manufacture of machinery except electrical machinery.
6) Manufacture of electrical machinery, apparatus, appliances and supplies
-7) Manufacture of transport equipment.
7) Manufacture of professional, scientific, measuring and controlling instruments.
8) Electric light and pover (generation, transmission and distrinution of electric energy).
2.3 According to the Census of 法nufacturing Industries, 1962, there were about $1,40 C$ factories in the above industries employing 5.26 lakh worleers. Of these, 195 factory establishments engaging about lv96 lakh vorkers were selected for the survey. In addition, about 100 construction undertalings representing a cross section of the building trade vere alsc chosen in consultation with the Seciretary, Builders' Association of India, Bombay.
2.4 The questionnaire approved by the Study Group at fppendix "B" vas circulated among selected factories and undertakings. The concerned Associations such as the All India Manufacturers' Organisation, the Engineering Association of India (llestern Region), the Bombay Mill Owners' Association, the Indian Chemical Lianufacturers' Association and the Builders' Association of India were requested to assist in obtaining information from their respective constituent units as expeditiously as possible. Reininders were sent directly to theAconcermed Assoctations, with a view to hastening the replies. In addition, the staff of the danpover iving vas detailed for personal follown and collection of schedules wherever possi ble. On receipt of questionnaires duly filled in, the information recorded was scrutinized and clarifications obtained from suct undertakings as had given incomplete or obviously inconsistent data.

Inspite of these efforts, only 45 industrial establishments and two construction undertakings responded to the survey.
2.5 It was insended to establish industrywise norms relating to various aspects of manpower planning. such as invest:nent employment, output-employment, sectomvise employment of engineering persomel according to educational level such as graduates and diploma holders, ensineer - craftsmen ratio etc. In view of the indifferent responseif from individual establishments, however it was felt that it would not be realistic to attempt to establish any meaningifur industrywise norms. The inited data made avallable from the survey has, therefore, restrictcd the scope to determination of such over-all norms ass, relate to totai employment, employment of engineers. Investment output etc.

Norms eyolved from ad-hoc surcey

2.6 Norms evolved as a result of the local survey which may be helpful in estimating the requirements of engineering manpower are briefly described below:

(i) Ratio of graduate engineers to dinloma holders

2.7. The ratio varies from 1 graduate $: 1.27$ dinlona, holders in 1956-57 to 2 graduate $: 1.59$ diploma holders in 1961-62. The ratio of $1: 1.40$ as worked out from the data fo: 1003-64 may be accented for planning purmoses. In ally 45 establishments vere employing 035 rracuate engineers and 1021 diploma holicir, yieldins the above ratio. (Table No.1). The Education Division of the Plaming Comission has atso utilized the same ratio. According to the Education Divistion, "the ratio of diploma holders to graduates to be trained is a function of rationelized utilization of encineering mannower and needs to bo funther examined. For the time being the extisting practice, rationalised to the extent data is availifie, whicl rouil give the ratio of 1 : 1.5 may be used".

> (ii) Ratio of graduate enguneers to crartsmen ana percentage or
2.8. According to the data obtal net, the ratio of, engineering graduates to engineering craptsmen works out at 1 graduate engineer : 13 to 20 craftsmen. The Directorate of Lianpower, Governinent of India, has estimated the requirements of craftsmen by utilizing a ratio of 1 cracuate engineer: 15 craftsinen. Thé percentage of engineering craftinen to total employnent works out at 10 per cent. for the year 1963-64. (Table Nō.2).

> (iii) katio of investment to toval employment.
2.9 Total employment per crore of investrent is estimated at 713 during 1963-64. In that year, 42 establishments invested 3 .134.06 crores and employed a total complement of 90,700 vorkers. The data reveal a falling trend in employment per crore of investinent from 956 in 1966-57 to 856 in 1961-62 and 713 in 1063-64. (Table No.3). The Director General of employment and Training estinated that a net investment of Rs, 10,000 crores In the Third Plan would generate an additional employment for 1.01 crore nersons giving a ratio of additional employment of 1,010 per crore of investment.

(iv) Patio of output to cmoloyment

2.10 During 1983-64, 31 establishments reported, production of goods and services valued at Rs. 31.66 crores and employment of about 62,700 worleers.

This cives a ratio of 763 workers per crore of output. Employment per crore worth of output falls from about 1,000 in 1956-57 to 504 in 1961-62 and 763 in 1963-64. A falling trend in employment per crore of output is forecast for 1966-67 as well as for 1871-72. (Table No.4).

(v) Ratio of engineers to tiotal employment

2.11 amployment of worlers per engineer durins 1856-57 was estinated at 90:7. The figure declined to 70 in 1961-62 and 65 in 1963-64. During 1963-64, 41 establishments reported employment of about 1,500 engineers and about 06,000 workers, giving a ratio of 65 yorlers ner engineer. According to the estimates of the Engineering Personnel Comnittee (1956), the ratio of total employment to engineers comes to $100: 1$. In the ifcht of tinis, the ratio arrived at in the course of the present survey appears to be rather on the lover side. Tils may, perhaps, be atrributed to inadequate response from the non-engineering industry such as Textiles. (Table No.5).

(vi) Trends in cantal investinent total emoloyment and employment of encineers

2.12 Although capital is expected to increase during the perind 1950-57 to 1970-71 by 5.5 times, total employment is estimated to increase by 2.0 times and the employment of encincers lys about 3 times diring that neriod. (Table No. G) .

(vii) Ratio oi employ:nent of encincers to Investments

2.13 Information received from 45 establishments indicates a total investment of Rs. 142.45 crores and employment of about 1,700 engincers between them during the year 1963-64. This worls out to a norm of 12 engineers per crore of investinent. The ratio. for the year 1061-62 151 so yorles out; at 12 engineers ner crore of invectment. Thus the State level investiont-omploynent ratio in regard to engineers stands substantiated in the ligit of similar ratios namely, 11 engineers per crore of investment and 12 encincers ner crore of investment respectively established by the Perspective Division of the Plarning Commission and the rorking group on, Technical Education and Vocational Training.
2.14 It would be pertinent to add a note of caution in regard to arititrary acceptance or hasty utilization of norms for purposes of manpover planning. The acceptance of norms as sufficiently stable and realistic for practical application must be the result of a series of studies, of research and evaluation carried out continuously over a period of time and refined periodically in the light of technological development, changes in the industrial structure, changes in occupatinnal patterns etc. .

Various approaches for estimating requirements of encineers

2-15 Requirements of engineerinis manpower nay be estimated by adopting a number of approaches. Estimates can be related to investment, sectoral growih, the ratio of envioyment of engineerine personnel to total employment in the non-agricultural sector and the overall engineering manpover growth rate. Estimation by a number of methods is desirable in that it would not only enable a comparison and crossmecheck of the resulis but would be helpful in evaluating the reliability of the various methodologies at a future dato.

(i) Investment-Employment Ratio Method

2.16 The Perspective Planning Division has estimated that "for the Third Plan period with a net investment of Rs. 10,000 crores, the nrojected emoloyment opportunities would be between 93 lakhs to 107 lakhs of oersons and out of these, the personnel with engineering qualifications at, the degree and diploma level together may be roughly estimated at 1.10 lakhs"! The above assumption leads to a norm of 11 engineers per crore of investment.
2.17 The working group on Technical Education and Vocational Training, 1960, has established a ratio of 12 engineers to Rs.l crore of investment. The Working Group observes, "On this basis a ratio nay be established that with an average annual net investment of Rs. 2,000 crores per year during the Third Plan, the annual requirements of engineering nersonnel would be about $24,000^{1+2}$. This ratio substantiates the one established during an ad-hoc survey of investment-employment at the State level undertaken by. the Manower Wing at the direction of the Study Group (vide para.2.13).
2.18 If the investment-employment approach is utilized for assessing requirements of engineering jersonnel, necessary adjustments will have te be made in the estimate in regard to civil engineering personnel since experience shows that 80 per cent. of the total employment of civil engineers on construction works would cease to exist as soon as construction works are over. Thus 80 per cent. of the civil engineering component of the estimated requirements of engineers during each plan period would be avallable for utilization in the next Plan period.

(ii) Sectoral Method

2.19 The Education Division of the Planning Comrission has utilized "growth rates" for estimating the growth in engineering manpower in the various sectors of the economy. In the Mining and Manufacturing sector it is estimated that in terms of net value of production, the annual nercentage increase would be 10.3 per cent. that is to say that 10.3 per cent. would be the annual growth rate in this sector of economy. Assuming that requirements of engineering personnel for this sector would increase in the same provortion as its growth rate, the number of engineers would increase at the rate of $10-3$ oer cent. ner annum. A similar assumption has been made by the Committee on Scientific Manpower of Great Britain which states-
"It was reasonable to base projections of the likely need for scientific manpower on the assumption that demand within each industry would on the average, increase in direct proportion to increase in industrial output. ${ }^{4}$

1. Report of the working group on Technical Education and Vocational Training. Page 44.
2. Report of the Fiorking Group on Tachnical Education and Vocational Training. Page 53.
3. Engineering Manoower Requirements: 1961-81 Certain question regarding Forecasts. Page 3 to 7.
4. The Long Term Demand for Scientific Manpower, Government of U_{A} K. October 1961 (Page 8).
2.20 The develomment of Transport and Communications being closely related to the expansion of industries, it is assumed that the number of engineers in Transport and Communications would continue to bear the same proportion to the number employed in Industry and Mining at a given time. Accordingly, the proportion of engineers in Transoort and Communications Sector to the number of engineers in Jadustry and Mining in Maharashtra State, which was 27.5 per cent. in 1961, is assumed to be censtant during the Third, Fourth and Fifth Plan periods.
2.21 As regards the Construction Sector, the Perspective Planning Division of the Planning Commission holds that the net investment in this sector would increase by an average rate of 10.7 per cent. per annum during the next fifteen years. Accordingly, this rate is assumed to be the rate of increase in the number of engineers in Construction; though it would perhaps be more correct to adopt a higher rate for Maharashtra, since investment in this Sector has been comparatively higher in the State.
2.22 In the case of "Other Services" such as public sector administrative debartments, consultancy services, trade and commerce, and research and educational institutions, it would be reasonable to assume that the engineering emoloyment in this sector, which is ancillary to other sectors, would progressively increase so as to maintain its over-all proportion to the total engineering emoloyment. In 1961- the overall proportion of engineers in the "services" sector in Maharashtra State constituted 48.77 per cent. of the total engineering employment. This percentage is assumed to be constant during the Third, Fourth and Fifth Plan periods. The difference between the total requirements at the beginning and end of each nlan would constitute the additional requirement during that period.

(1ii) Ratio of Engineers to Employment in Non-Agricultural Sector

2.23 The Working Group on Technical Bducation and Vocational Training has evolved a ratio between employment of engineering personnel to total employment in the non-agricultural sector based on past trends. According to the Working Group, the ratio has been rising from 0.12 per cent. in 1950-51 to $0+16$ in 1955-56 and to 0.24 in 1960-61. The trends of economic development reveal that the percentage is likely to reach 0.11 by $1965-66,0.55$ by 1970ヶ71 and 0.66 by 1975-76. The total requirements of engineers are estimated by applying these percentages to the projected emoloyment in the non-agricultural sector. The additional requirements during the Plan period would be the difference between the requirements at the beginning and at the end of the Plan period.

(iv) Growth Rate Method

2.24 A rough but ready method of estimating the requirements of engineers may be found in projecting the overall growth rate in the stock of engineering manpower. According to the I.A.M.R., the total outturn of engineering graduates and diploma holders in India upto 1951, 1956 and 1961 isteod at 55,429, 90,036 and 152,430 respectively. These ifgures indicate a growth rate of about 11 per cent. per annum in the stock of enginering personnel.

Inter-se ratios among Engineers according to speciality
2.25 Once the over-all requirements of engineers have been assessed, it is necessary to determine their sneciality-wise needs based on inter-se ratios

[^0]among the different specialities such as civil, mechanical, electrical, chemical, metallurgicai and mining. The inter-se ratios amons estimated employment of engineers as obtaining in 1963 processed from State Employment Market Information data may be accented, assuming that these ratios would remain failly constant over the next 10. years.

Inter-se Ratios

Civil			47.16
Mechanical		. \cdot.	16.36
Electrical	. \cdot.	32.72
Chemical		3.05
Metallurgical		-...	0.40
Mnning	-	0.31
			100.00

2.26 The State Employment. Market Information data has been further processed to obtair the employment pattern of engineers according to sectors of employment. The proportion of employment of engineers in the public and private sectors based on such data for 1963 is given below:-

2.27 Similarly the State Employment Market Information data provide inter-se ratios.in regard to engineering craftsmen. These ratios are given in Table number 7.

Replacement Needs

2.28 Since the stock of engineering personnel tends to decrease on account of deaths, retirements etc., provision has been made for replacements at the rate of 1.5% per annum, the EJucation Division of the Planning * Commission having assumed the same rate.
2.29 An analysis of the data regarding turnover of workers compiled from the Census of danufacturing Industries; 1961, for Maharashtra reveals that the replacement ratio on account of death and retirements etc. for the working class population comes to 0.5% per annum. Accordingly, this rate has been utilized for assessing replacements for engineering craftsmen.

Conclusion

2.30 After careful consideration of the various methods of estimating entineering manpower requirements, the Study Group decided that the sectoral growth method was most likely to yield a realistic estimate of engineering manpower needs.

H-176(200-5-66)-15,16

ASSESSAENT OF REOUIRETENSS AY AVAILABILITY OF ENGINEERIYG PERGONNEL

Total Requirements of Engineers

3.1 The overall requirements of engineers during the Third, Fourth and Fifth Plan periods estimated on the basis of Sectcial growth tabled below have been calculated on the growth rates. in the various sectors as assumed in paras. 2.7-2. to 20.19 to 2.22 .

TABLE "A"

Requirements of Engineers according to Sectoral approach.

3. 2 In addition to these requirements, it is necescary to provide for replacement needs (on a.sount of deaths; retirements, etc.) calculated at a rate of 1.5 per cent. per annuin as indicated in para. 2.28. Accordingly,1,474 additional engtineers rould be required during the Third Plan, an additional 2,260 during the Fourth Plan and 3,450 during the Fifth Plan.
3.3 A comparative picture of the requirements of engineers (incJuding replacements needs) for the period $1961-71$ estimated according to the different methods is given below:

TABLE "B"

Additional Requirements of engineers (including replacement needs). according to differcist approaches.

Method	Third Plan	Fourth Plan	Fifth Plan
1. Investiment-employment Ratio. Investment ascumed (Crores of is.)	1,200	2,200	3,500
(a) 3.1 crore : 11 Ingineers	11,313	21,213	33,613
(b) $3_{50} 1$ crore : 12 Engineers	12,203	23,174	36,922
2. Sectoral Method	11,760	19,100	31,000
$\because 3$. Eugineers to Employment in Nondigricultural Sector.	11,675	20,400	1,000
4. Growth Rate Wethod 11\% per annum.	12,435	20,778	34,600

[^1]It is observed that the requirements on engineers, as assessea according to different methods, show small variations furing the Fourth Plan, wheas they indicate vide fluctuations during the Fifth Dlan. Requirements Fary between 19,100 and 23,174 for the Fourth Plan and between 27,500 and 33,022. for the Fiftir Plan. The Sectoral method forecasts.tend to give a conservative estimate of the requirements of encineers, whereas the Investmeat-miployment approach indicates a more substantial requirements of engineering personnel.
3.4 For engineering manpower assessment to be meaningful, it is necessary to further process the over-all estimates so as to indicate the requirements, by specialities and levels of professional qualifications. Accordingly, the over-all estimates have been first broken up into requirements by professional qualifications on the basis of a ratio of 1 graduate encineer: 1.5 diploma holder and subsequently split up according to specialities on the strength of inter-se ratios of specialities based on State Employnent Larket Information Unit: data.

Aveitibility of Engineers

3.5 At the beginning of the Third Plan, there were nine engineering degree colleges in the State and two colleges were added during the period 1961-66. Of the 11 colleges in the State, 4 are managed by State Governnent, 2 by the Govermment of India, 2 by Universities and the remaining 3 are in the private sector. The intalre capacity of encineering personnel which stood at 1,248 at the beginning of the Third Plan has been stepned up to 2,030 during the Plan period as a result of expansion of existing institutions and the addition of two new colleges. The progranme for expansion of engineering training in the Fourth Plan envisages establishment of one Regional Engincering College and one Govèrnment College with an intake capacity of 480 seats between them. In addition, it is proposed to introduce 100 seats for part-time degree courses in the existing colleges. The intake capacity of engineering colleges. according to specialities during the period 1958-71 is given in Table No.3.
3.6 The extent of actual outturn of engineering graduates is available upto 1964. Beyond this period, the outturn has been projected upto the end of the Fifth Plan having regard to the wastage ratios in engineering education and the proposed expansion in training facilities during the Fourth Plan: Table No. 9 indicates the outturn of enfineering graduates according. to specialities for the period 1961-76. It is observed from the table that by the end of the Third Plan about 3,300 engineers would be the outturn from the engineering colleges in the State. The outturn during the Fourth and Fifth Plans is estimated at about 5,700 and 3,400 respectively. The outturn figures indicate a shift towards increasing outturn of Electrical and Mechanical Engineers during the Fifth Plan from the preponderence of Civil Engineers during the Third Plan.
3.7. At the beginning of the Third Plan there were 14 polytechnics in the State and 3 additional polytechnics were added during the period 1961-66 bringing their number to 22. Of these, 16 are managed by State Government and the remaining 6 are in the private sector. The intake capacity of polytechnics which stood at 1690 at the beginning of the Thircl Plan has been increased to 3,360 by the end of the Third Plan. During the Fourth Plan, nine additional polytechnics are proposed to be opened with a total intake capacity of 1,620 seats and 100 seats provided for part-time diploma courses. The intalse capacity of polytechnics according to specialities during 1953-71 are given in Table No. 10.
3.3 The annual outturn of diploma holders in the State was about 600 at the beginning of the Third. Plan which is estimated to increase to 1,330 by

1466
the end of 1965 as a result of expansion of the trainins facilities during the plan period. On projection of the outturn with due regard to the wastage ratio as obtaining in engineering education at the dioloma level and expansion in tralning programmes, the availability from polytechnics has been estimated at about 3,755 by 1,975 . Table No. 11 gives the outtum of diploma holders according to specialitics for the period i961-75. It is expected that during the Third Plan about 4,350 engineering diploma holders would be available from polytechnics in the State. The outturn is likely to reach uearly 11,300 and 17,500 during the Fourth and Fifth Plans on the basis of trai ning programmes during the Third and Fourth Plans. It would appear that there is yet considerable wastage in engineeing education institutions, both at the degree as well as diploma level. Various measures recommended in 1. I.A.M.R. Paper $13 / 1965$ are being taken to reduce the wastage factor with a view to increase availability and reduce the per capita cost of training.
3.9 The additional outturn of engineers as a result of the net increase in intake cancitty during 1966-71 would be about 100 only during the Fourth Plan and 600 during the Fifth Plan. Thus the increase in intake canacity during the Fourth Plan would have little impact durint that Plan period because of long gestation period for engineers.

Additional Requirenents of Engineers

3.10 Correqlating the estimated requirements and availability of engineers, It would appear that there would be a shortage of about 3,600 engineers at the end of the Third Plan and about 2,100 and 5,000 at the end of the Fourth and Fifth Plans respectively $d s$ indjcated below:-

TABLE "C"

Requirements and Availability of Ingineers.

	Third Plan			Fourth Plan			Fifth Plan		
	Degree	$\begin{aligned} & \text { Dip- } \\ & \text { Ioma } \end{aligned}$	TOtal	Degree	Diploma	Total	Degree	Diploma	Total
Requirements	4,926	6,349	11,775	7,939	11,111	19,100	12,967	13,033	31,000
Availability	3,837	4,350	3,187	5,695	11,277	16,972	3,412	17,470	25,382
Shortage	7.039	2,499	3,588	2,294	+166	2,128	4,555	563	5,118

3.11 The requirements and availability of engineers according to speciality and level of education for the Third, Fourth and Fifth Plan periods may be seen at Table No.12. It is evident from the table that shortages are mainly confined to civil and mechanical engineers. Projections indicate that the availability of Electifical engineers would more or less meet the requirements by the end of the Fourth Plan. The requirements of engineers in other branches such as Chemical, metallurgical and mining would appear to be met by the existing training programmes, However, in view of the effatish of the petro-chemical industry in the region and the expected growth of ancillaries, it may be necessary to make a separate study of the requirements of chemical engineers.

Requirements and Availability of Craftsmen

Reguirements

3.12 Utilizing the norm of 1 graduate encineer to 15 craftsmen as evolved by the Director, of Nanpower (vide para. 2. B) the requirements of engineering

H-176(200-5-66)-19,20,21
craftsmen work out at about 73,900 during the Third Plan and 1,19,900 and 1,94,500 for the Fourth and Fifth Plans respectively.
:3.13 Replacement needs of craftsmen on account of death, retirement etc. at the rate of 0.5 per cent per annum, (vide para. 2.29) works out at about 4,100, 5,000 and 6,700 respectively for the Third, Fourth and Fifth Plans. Thus the total craftsmen requirements would be:-

TABLE NO.D

	Third Plan	Fourth Plan	Fifth Plan
Requirement of graduate Engineers	4,926	7,989	12,967
Requirements of Craftsmen (1 : 15)	73,890	1,19,835	1,94,505
Replacement needs (0.5\%)	4,034	4,981	6,702
Total requirements of Craftsmen.	77,974	1,24,816	2,01,207

3.14. The requirements of craftsmen according to actual occupations have been based on the Internse proportion of workers evolved from primary data collected under the $E_{0} M_{0} I_{0}$ Schemes yide Table No. 13. The occupationwise requirements of craftsmen is shown in Table No, 14.

Avazilability

3.15 There are at present 31 Industrial Trdining Institutes in the State of Miaharashtra for craftsmen training with an intale capacity of 11,038. The admisision of craftsmen to training courses is effected every 9 months and the outturn is available every 18 months. Accordingly, the availability of craftsmen during the Fourth and Fifth Plan periods has been based on the Intake capacities of those batches, the outturn from which would become available during the Fourth and Fifth Plan periods. The intake for the batches for the Fourth and Fifth Plans are Indicated in Table No. 15 and No. 16.
3.16 Outturn has been estimated on the basis of the average percentage of 'passes' in the various occupations during the Third Plan period vide Table No.17.: Accordingly, the total availability of engineering craftsmen from. I.T.Is. (inclusive of expansion of craftsmen training programes envisaged during the Fourth Plan period) is estimated at $1,01,253$ during the Fourth Plan period and $1,73,080$ during the Fifth Plan period. To this may be added the outturn under the Apprenticeship training progranmes estimated at 2,722 in the Third Plan, about 6,000 during the Fourth Plan and 10,000 in the Fifth Plan period.

The
This overall availability of craftsmen would ! therefore, be:-

	Third Plan	Fourth Plan	Fifth Plan
Outturn from I.T.Is.	17,285	1,01,283	1,73,080
Outturn from Apprenticeship scheme	2,722	5,994	$10,000$
Total availability of craftsmen	20,007	1,07,277	1,33,080

H-176(200-5-66)-21, 22
3.17. The overall requirements and avaliability of craftsmen by "trades" during the Third, Fourth and Fifth Plan periods is shown in Table No.18. Briefly, the position is as under:-

		Third Plan	Fourth Plan
	Fifth Plan		
Requirements	77,974	$1,24,816$	$2,01,207$
Availability	20,007	$1,07,277$	$1,73,080$
Shortage	57,967	17,539	13,127

It is thus estimated that there would be an overall shortage of 57,967 craftsmen during the Third Plan period, 17,539 in the Forth Plan period and 13,127 in Ethe Fifth Plan period. The shortase of craftsmen is expected to be made good to a substantial extent by training arrangements within industry.

SUGGESTIONS FOR INCREASING AVAILABILITY AND IMPROVING THE QUALITY OF ENGINEERING PERSONNEL.

4.1. The Cormittee discussed during the last meeting certain important aspects of training programmes which would result in improving the engineering manpower position. Among the items discussed were measures for increasing the outturn of engineering personnel by means other than expansion of training programnes, more effective utilization and deployment of available personnel, improving the quality of technical education and fostering collaboration between industry and technical training institutions. The committee also discussed problems experienced in the public sector in securing suitable candidates to man posts requiring technical and scientific qualifications.

Wastage in Engineering Education

4.2. The rapid expansion in technical training programmes during the last two plan periods has resulted in lowering of the standard of technical education
 stage, both in degree institutions as well as polytechnics. It is essential. therefore, to:find ways and means of remedying the situation in the shortest possible time. Since technical manpower is a scarce resource and the capacity of colleges and polytechnics inadequate for turning out the requisite number of qualified eagineers to meet the needs of a developing economy, wastage even in limited quantities retards the 'timely availability of skilled manpower. Guantitative studies of wastages occurigg in technical training institutions cariied out by competent bodies such as the Planning Commission and the Institute of Applied Nanpower Research has revealed that the percentage of wastage in the degree courses range upto 15.6%, while wastage in polytechnics for diploma courses range upto 33.5% in certain specialities. A wastage factor in excess of $\mathbf{1 0 \%}$ in degree institutions and 20% in polytechnics must be regarded as a serious matter callins for inmediate remedial measures which would increase the outturn of engineers within the existing training resources and at the same time reduce the per capita cost of technical training. Some of the factors considered responsible for the high rate of wastage are:
(i) Inadequacy of teachers and-instructors; both quantitative and qualitative.
(ii) Inability of students to follow lectures and instructions on account of medium of instruction at the polytechnic level being different from the medium of instruction at the high school stage.
(iii) faulty system of admissions.
(iv) outmoded systen of examination.
(v) lack of adequate equilpment and appliances.
(vi) jack of hostel accomodation for students.
(vii) poor 童inancial condition of students.
(viii)
over-loading of curriculum vis-a-vis the period of time allotted.
In the light of the causative factors enumerated above, the Study Group suggests that the authorities concerned with the formulation and implementation of training programmes should take necessary corrective measures to bring about-
a reduction in student wastage in engineering institutions and recommends in particular that:
(i) steps should be taken to staff engineering educational institutions with qualified teachers in adequate numbers so as to maintain the proper pupil-teacher ratio.
special classes in Inglish should be held to enable students to better understand the medium in which training is imparted.

The semester system of examination should be introduced.
(iv) adequate hostel accomodation should be provided.
(v) the curriculum of tedhnical education institutions be reviewed in consultation between the technical training authorities and representatives of industry.

Utilisation of Engineering Personnel:
4.3. Since the development of human resources takes time, economies in trained manpower that could be achieved by judicious deyplofiment and optimum utilization of the existing stock would substantially help in easing the strain in a developing economy. In order to achieve maximum utilization of personnel, it is desirable to rationalize the allotment and division of responsibilities at various levels of engineering manpower such as between graduate engineers, diplom holders and the professionally unqualified but practically experienced engineering personnel generally known as "practicals". Such a policy of optimum utilization could result in proportionate growth in output per engineering man-hour at the professional level.
4.4. The Paper on "Manpower Utilization" presented at the Seminar on Employment Information and kanpower Utilization at New Delhi in October 1964 organized by the representatives of industry and Government, laid stress on economising in trained manpower by its more effective utilization. It was argued that such utilization of existing personnel, apart from relieving the strain on an economy with ilmited resources, would also react favourably on the profession by offering employment commensurate with the level of training. This would make for greater job satisfaction making the profession more attractive to the better type of personnel.
4.5. It was pointed out in the Paper that the extent to which trained engineering technicians are available to relleve professional engineers from routine duties and repetitive tasks, professional engineers would have the opportunity to concentrate their knowledge and abilities to tasks more appropriate to their higher level of competence. The implementation of a policy of optimum utilization calls for intensive study, research and evaluation of the level of responsibilities assumed, duties allotted and the work performed as between diploma holders(engineering technicians) and engineering graduates. Graduate engineers shouid be exclusively engaged in functions which utilize to the fullest extent possible their professional knowledge and competency. Unfortunately, there has been no such study or evaluation in the country of the responsibilities of engineering technicians vis-a-vis engineering graduates, either in terms of areas of employment, levels of professional responsibility or nature of duties. This should be attempted appropriately by industry in collaboration with professional bodies and educational authorities.
4.6. The opinion of the Study Group is that in many cases graduates are in fact utilized in Jobs which could satisfactorily be performed by technicians or diploma holders. The graduate is often employed on such routine duties as
supervision, production, construction and maintenance for the performance of which a well trained diploma holder should prove adequate. The degree holder should be expected to concentrate mainly on research, design, development, planning and organizational work for phich he is better suited by virtue of his training at a higher level, while the diploma holder must be used more extensively on supervisory, production and maintenance jobs.
4.B. Other measures for effective manpower utilization policies that the group would recommend for implementation are:
(i) reduction in turn-over of engineering personnel;
availability of opportunities for further professional tràining;
(iii) incentives for better terms and conditions of employment, opportunities for advancement etc.

Quality of Engineering Graduates.
4.8. The quality of engineering education undoubtedly affects the progress of developmental programes. It is essential, therefore, that engineering education imparted in technical training institutions is qualitatively sueh as would ensure a high level of competence. It can not be denied that the concern voiced in some quarters of a lowering of standards in the turn out of engineers is not entirely without justification. The falling standard of engineering education may be attributed to a number of factors, and in particular to the dearth of teachers and instructors of the right type. A syllabus having a theoretical bias and lack of adequate liaison between industry and training institutions are alsó contributory factors.
4.9. That there is a dearth of lecturess and teachers of the right calibre, there is no doubt. The main cause for this may be linked to the emoluments and prospects offered by training institutions as compared to those offered in the 'services' and by industry. Fresh engineering graduates who take up. the teaching profession, generally do so as an expedient measure with the intention of leaving the profession as and when better opportunities appear. The resultant 'flight' of personnel and the frequent turn over in the teaching profession is bound to have an adverse effect on educational standards and morale of students. It was felt that the training syllabus for engineering education needs to be reviewed and reoriented with a viev to meet the basic requirements of industry. The present syllabus appeared over-burdened and the practical work content of the curriculum for both graduates and diploma holders is not fully completed resulting in lack of fundamental knowledge of workshop practice supposed to have been acquired according to the syllabus. Opinions were voiced that it would, perhaps be advisable to haye a restricted curriculum rather than one loaded with superflous coverage; a syllabus having a practical bias and one which would encourage students to study on their own and create a sense of initiative. The present system of engineering education kas resulted in a gap between training imparted and the know-how industry needs. The result is that employers have perforce to fill in the gap in professional knowledge by in-plant training programmes and by generally reorienting skills and capabilities towards a more practical application. This inevitably resultgd in a certain amount of time-lag before a freshly turned out engineer ϕ could be utillzed for gainful production. There appears, therefore, an urgent need to bridge the gap between theoritical training and its practical application to industry. This could be best achieved by planned collaboration and cooperation between training institutions and employing establishments. It is desirable that educational institutions and industry come together in order to complete the full process of engineering education. Measures for achieving these objectives, e.g. organizing of sumer vacation training programmes in consultation with indusiry, introduction of sandwich
courses by interprefsing institutional training with practical work in industrial establishments, introducing post-graduate diploma courses, and exchange of personnel between educational institutions and industry should be initiated by Government.
4.10. With a view to tone up the calibre of engineering education the Study Group recommends that :
(i) the terms and conditions of service of teachers and instructors should be favourably reviewed to attract better talent to the profession;
(ii) care should be taken to select as teachers, persons having a flair for imparting theoretical knowledge combined with practical knowledge of workshop practice;
(iii) teaching staff should be encouraged to undertake research and advanced work as one of the means of improving teaching staddards;
(iv) reciprocal arrangements should be made for exchange of personnel between industry, design and research organizations and educationa: institutions on a planned basis, as such a measure would be of mutual benefit to all concerned;
(v) technical educational authorities may review the"syllabus in consultation with representatives of industry from tine to time, avoiding, however, too frequent a reorientation of the curriculum,

Recruitment problem in the public sector:
4.11. It is a fact that difficulty is experienced in securing suitable personnel to fill posts in the public sector requiring technical and scientific qualifications. Bmployment statistics of the State Directorate of the National moployment Service reveal that of the vacancies of engineers remaining unfilled with Enployment Exchanges in the State for want of suitable personnel, about 70% to 80% pertainz to the puilic sector.
4.12. By and large, problems and difficulties in the matter of recruitment experienced in the public sector can be attributed to the comparatively unattractive scale of emoluments offered in this sector vis-a-vis more attractive terms and conditions of service obtaining in industry and other private sector establishments. The payment of bonus and fringe benefits crifered by the private sector are irresistable incentives which syphon off the better type of candidates for employment.
4.13. Other contributory factors which adversely affect recruitment may be traced to certain conditions peculiar to employment in the public sector :

These are:
(i) liability of incumbents to be posted in far off and remote areas such as project sites. Such postings impose hardship by way of separation from family, lack of suitable residential accommodation, lack of facilities for education, health, recreation, etc;
(ii) procedural delays in recruitment, particularly through the public Service Comnission;
(iii) unfavourable terms and conditions in regard to the probationary period;
(6) a rigid promotional policy based chiefly on length of service, . irrespective of factors such as merit and ability.
4.14. Recruitment is only a part of the staffing problem in puiblic sector establishments. The retention of professional personnel is also a persistent problem on account of "flight" of such personnel towards the private sector. In' this comection, a quick survey of the various Bepartinents carried out sometime back indicated that of the officers of various categories desirous of leaving Goverment service, engineers constituted 30.70% of the total number applying for outside employment.
4.15. Apart from such basic factors as salary differential, promotional prospects etc. there are certain aspects of personnel policy which have a direct bearing on the morale and attitude of employees towards the employing organization. These are "jobs saifisfaction", awareness of a sense of fairness and justice, human relations, and the "image" of the organization in which they serve. The fostering of a personnel policy based on factors affecting morale would, therefore, go a long way not only in attracting suitable talent but also in retaining trained and experienced persomel. In the final analysis, however; the problem of recruitment and "flight" of persomnel is tied up with the larger. question of derand and supplyd with the need and availability of trained manpower in the context of a cievelóping and expanding economy during waich the demand for trained manpower out-paces its avallability. The problem, therefore, is one for which there is no inmediate solution, but which in time would aase with progressive eapansior in training programes and increasing availability of engineering manpower.

SUMMARY OR CONCLUSIONS AND RECOMMIENDATIONS

5.1 After careful consideration of the various methods of estimating engineering manpower requirements, the Study Group is of the view that the "sectoral growth" approach is most likely to yield a fairly realistic estimate of engineering manpower needs. The manpower estimates arrived at by this method are, of course, subject to the validity of the assumptions made in paras 2.19 to 2.22 , the important assumption being that the grorth rates in the sining, and inanufacturing and Construction sectors would be 10.3% 610.7然; per annum reppectively. On this assumption, the overall requirements of eirineers duiling tis courth and Fifth Plan periods have been assessed at 19,100 and 31,000 respectively and their availability estimated at 17,000 and 26,000 during the respective plan periods. The shortages anticipated as a result are mostly confined to the civil and mechanical engineering faculties.
5.2 The requirements of craftsmen are estimated at about $73,000,1,25,000$ and 2,02,000 for the Third, Fourth and Fifth Plans respectively, whereas their availability on the basis of institutional outturn ofily is assessed at 20,000 , 1,07,000 and 1,73,000 for the respective Plan periods. Although the shoríage of ciraftsmen appears to be substantial in the Third Plan(about 53,000), the expansion in training programes proposed during the Fourth Plan is expected to reduce the shortage to about 13,000 by 1971 dinthe residuai shortage is expected to be made good in a large measure by on-the-job training facilities within industry, for which no statistics are available.
5.3 The Study Group also examined certain important aspects of manpower planning such as wastage in engineering education, optimum utilization of engineering personnel and the quality of technical training. A summary of the recomendatious made in this respect is given below:-

1) Reduction in westage in engineering education:

The authorities concerned with the formulation and implementation of training progranmes should take remecial measures to bring about a reduction in student wastage in engineering institutions and to that end recommends that:
(i) steps should be taken to staff engineering educational institutions with qualified teachers in adequate numbers so as to maintain the proper pupil-teacher ratio;
(ii), classes in English should be held to enable students to understand bettex: the medium in which training is imparted;
(iii) The semester system of examination should be introduced;
(iv) adequate hostel-accomodation should be provided;
(v) the curriculum of engineering education should be reviewed in consultation with the technical training authorities and representatives of industry.
II) Maximum utilisation of engineering personnel:

With a view to achieve maximum utilization of engineering personnel, it is desirable to rationalise the allotment and division of responsibilities at various levels of engineering manpower such as among the graduate
engineers, diploma holders and professionally unqualified but practically experienced engineering personnel generally known as "practicals". The degree holder should be expected to concentrate mainly on research, design, development, planning and organisational work for which he is better suited by virtue of his training at a higher level. . The diploma oholder must be used more extensively on routine duties such as supervision, production and maintenance jobs.

.III) Improving the quality of engineering graduates:

With a view to toning up the quality of engineering education, it is suggested that:
(i) the terms and conditions of service of teachers and instructions be favourably revicwed as an incentive to attract better talent to the profession;
(ii). care should be taken to selact as teachers, persons having a flair for imparting theoretical knowledge combined with practical knowledge of workshop practice;
(iii) teaching staff should be encouraged to undertake research and advanced work as one of the means of improving teaching standards;
(iv) reciprocal arrangements should be made for exchange of personnel between industry, design and research organisations and educational institutions on a planned basis, as sucin a measure would be of mutual benefit to all concerned;
(v) technical educational authorities may review the syllabys in consultation with representatives of industry from time to time. Too frequent a reorientation of the curriculum should, hovever, be avoided.
5.4 As stated earlier, the Study in Engineering Manpower has been undertaken with a view to facilitate decisions in regard to manpower planning at the State Level. It serves as a pointer to certain deficiencies in training programmes, both qualitative and quantitative, as also to the utilisation of manpover in the Engineering sector. It wound be desirable to evaluate, during mid-term appraisals, the validity of assumptions made, particularly those in regerd to growth rates in the sectors of economy utilising Engineering Manpower. The findings from such evaluation would serve as a guide; to a more precise assessment of requirements and availability of technical manpower during the Fifth and subsequent plan periods.

APPENDIXIA:

List of Selected Categories of Craftsmen.
CRAFTSMEN.

Code No.
Category.

730 . Turnaceman; Hetal.
731 Annealers, Tamperers and Related Ileat Treaters.
732 Rolling lill Operators, Netal.
733 Blacksmiths, Hammersmiths and Forgemen.
734 :Houlders and Coremakers.
735 Detal Drawers and Bitruders.
739. Furnacemen, Rollers, Drawers, Houlders and Eelated metal Laking and Treating Workers(n.e.c.)

740 Precision Instrument lakers, Vatch and Clock hakers and Repairmen.
750 Fitter-Nachinists, Toolmakers and Machine Tool Setters.
751 Nachine Tool Operators.
752. Fitter-Assemblers and hachine Erectors(except Electrical and Precision Instrument Fitter-Assemblers)

753 Mechanics-Repairmen (except Mlectrical and Precision Instrunent Repairmen)

754 Sheet iietal Torkers.
755 PIumbers and Pipe Fitters.
756 Welders and Flame Cutters.
757 Netal Plate and Structural INetal Fiorlsers.
758 Electro Platers, Dip-Platers and Related workers.
759 Toolinakers, Machinists,Plumbers, Helders, Platers and Related Workers ($n . e . c$.)(including hetal magravers other than Printing).

760 Electricians, Electrical Repaimen and Related Electrical Workers.
761 Electrical and Electronics Fitters.
762 Mechanics Repairmen, Radio and Television.
764 Linemen and Cable Jointers.
769. Blectricians and Related Electrical and Electronics Morkers(n.e.c.)

770 Carpenters, Joiners, Pattern Nakers (Hood).
370 Operators, Statfuary Ingravers and Related Equipment;

Boilermen and Firemen.

```
If-176(200-5m66)36.
```


Instructions for filling in the Guestionnaire.

Block I - Icentification Particular.
Under item 3 give detailed cescription of the type of industry to which the undertaking belongs. This should be according to the description given in the classification of indusiries appended herewith. Where the activities are such that more than one group is manufactured, the group winich commands the major share of production will be the industry in which the Undertaking i.3-engaged. Under item 4. indicate the year of establishment of the undertaking, irrespective of changes in managements.

Block II and III - Capital Investment - Isisting and anticipater.

Idformation on the various 'itens under these 'Blocks' should be in respect of establishment located in Mharashtra State only. If separate figures for Maharashtra State are not available, the data given should be computed on the basis of pro-rata business conducted in maharashtra State.

Indicate here the capital investment or anticipated investment in lakhs of rupees in full integer. Only gross value of the investment should be recorded. Investment recorded, should be as on 31st . Aarch of each of the specified years, namely 1956-57/1961-62, 1963-64, 1966-67 and 1971-72, For Undexidelings which close their accounts on dates other than 31st sarch, the years refer to the date on which the accounts were last closed prior to 31st Narch. For the purpose of this study, capital investment consist of fixed and working capital. Fixed,$~$ ppital comprises lands, buildings including those under construction; improvements to land and other construction; plant; machinery and tools(including un-installed); transport equipment; other fixed assets such as furniture, fixtures etc, and intangible assets. Workins capital consists or stock of materials, stores, fuel, semi-finished goocis including work-in-progress; and finished products and by-products', casin in hand and at bank and the algebraic sum of sundry creditors; as represented by (a)outstanding factor payments, e.g. rent, wages, interest and dividend, (b) purchases of goods and seryices, (c) short-term loans and advances and sundry debtors comprising amounts. due to the factory on account of sale of goods and services and advances towards purchase and tax payments.

Blocks IV and V: Tóal 2 pricyment and Anticipated total employnent.

Informiation given in slocks IV and V should indicate the actual total emolument (1.e. inclusive of all categories oi personnel such as Managerial, Administrative, Supervisory, Technical, Non-technical, Clerical, Skilled, Semiskilied, un-skilled etd.) in the undertaking as on 31st liarch of the respective years indicated in Block IV as also the estimates thereof for the years indicated under Block V.

Blocks VI and VII Employment and Anticipated Employment of Bngineers. Surveyors and Dreftswene

In Blocks VI and VII data in regard to only specified categories of personnel-viz. Engineers, Surveyors and Draftsmen, should be included.

For the purpose of this study "Ingineers" comprise Civil Engineers, Nisechanical Engineers, Electrical Engineers, (including Radio and Telecommonication),

Architects, Metallurgical Engimeers, Chemical Ingineers and Mining Engineers. Each of these categories of engineers should be further divided into degree and diploma holders.

While completing this item the personnel.required should be identified by the academic/proiessional qualifications such as Civil Engineers, Mechanical Bngineers and not by functional designations such as works hanater, Foreman, Supervisor and Overseer, etc.

The information regarding employment and anticipated requirements recorded should be ason 3lst march. of the respective years indicated in the blocks.

Block VIII. Rlysical output.

Information ragarding 'Physical output' should be given in terms of annual physical uits, produced or manufactured by the factory. The' unit of measurement used for indicating the annual output should be clearly stated such as tonnes, meters, etc. InPormation in regard to physical outputis sought under three heads; viz. capacity output, actual output and estimated output. Under the term 'capacity output' information should pertain to the 'notional' maximum output on the basis of two shift working. In cases, where the factory is not equipped for two shift working, information should relate to only the shift actually working. However, where tine plant is designed for or capable of working more than one shift, the data should relate to two shifts only, irrespective of the actual number of shifts worked by the establishment. Actual output should be indicated for the years 1956-57, 1961-62 and 1963-64 and anticipated output for the 1966-67 and 1971-E2.

Block IX - Bmployment and anticipated recuirements of Craftsman.
The information regarding Craftsmen relate to only 24 selected categories enumerated in colum 1 of the Block. The data should refer to the last working day of march of the respective years.

Block X - Training facilities.
Training facilities existing within the Undertaking may be either under the Apprentices Act or outside it on a voluntary basis. The information in respect of these two types of craining should be separately recorded under columas 3 to 6 and 7 to 10 respectively.

IX Employment and anticipated requirements of Craftsmen in selected

Code No.	Category.	No. of persons employed.			Anticipated requirements.	
		1956-57	1 1961-62	1963-64	1966-67	1971-72
1	2	3	4	5	6	7
730.	Furnacemen.					
731.	Annealers and Temperers.					
732.	Rolling Mill Operators.					
333.	Blacksmiths.					
734.	Moulders,					
735.	Metal Drawers.					
739.	Miscellaneous Metal Workers.					
740.	Precision Instrument pakers.				.	
750.	Fitter-dachinists					
751.	Pachine Tool Operators.					
752.	Fitter-Assemblers.					
753.	- Mechanics Repairmen,					
? 54.	Sheet Metal Workers.					
755.	Plumbers.					
756.	Welders.					
757.	Structural Metal Workers.					
758.	, Wlectro Plasters.					
759.	Misc. Tool makers and Mechinists.					
.760:	Electricians.					
762.	$\begin{aligned} & \text { Machanićs-Repair- } \\ & \text { men (Radio) } \end{aligned}$					
764.	Ineman and cable Jointers.	\cdot				
769.	Misc. Electrical - H orkers.					
770.	Carpenters and pattern naker.					
-	\% TOTAL					

X Training Facilities.

Taile	何tios of Craduate Eninineers to Craftsmen and percentage of ctratusien to cotal employment.
Table No. 3 :	Investment - Moloyment Ratios.
Table Ho. sit	Output - hamployment patios.
Table No. 5:	moginesr - maployment Ratios.
Table No. 6:	Trends in capital invesinent, Total Employment and Employment of Engineers:
-Table iNo -7x	Intornse Ratios ox matineering Craftsmen to total employment.
Table No. 8 :	Intake capacity of Degree courses according to Speciality 1958-71 (Including Fourth Planeproposals).
Table no. 9:	Outturn of Engineers (1961-75) (Degree holders) (inciuding Touth Plan proposals).
Table ${ }^{\text {No. }} 10$:	Intake canacity of Diplome courses according to Speciality -1953-71 (facłuding-Fourth plan proposals).
Table-No-11:	Oatturm of ingtneers - 1961-75 Diplomatholders (including Fourif Plan proposais).
- Table No.l2:	Requirments and arailaility of Zngineers according to Speciality and-level of Education:
Table Not13:	Inter-se proportion of Craftsmen (31.9.1963).
Table No.14:	Requiroments of Craftsmen by category during Third, Fourth. and Tifth Plans. $8:$
Table*NO. 15.4	-Intakeancoottum of Craftsien quing the Fourth Plan including Fourtin plan Proposels.
Table No.16:	Intake and outturn of Craftsmen during the Fifth Plan.
Table No.17:	Actual outtum of craftsmen in Third plan.
Table No.13:	Requirements and Availability of Craftsmen by Trades during Third, Fourtin and Fifth plans.

TABTE TO. I.

TABLE NO. 2
Ratios of Graduate Brineers to Craftsmen and perentage os craftsmen to total emplorment.

TABLE NO. " 3
Investment-imployment Fatios

H/176(200)-41-42

TABIE NO. 4
Output - Enployment Ratios.

Year.	ResponseValue of (Rs. in lakhs)	Ratio Rs.l crore Employment.		
$1956-57$	14	3228.90	32852	1017
$1961-62$	30	7004.90	56347	804
$1963-64$	31	8166.47	62719	768
$1966-67$	15	4677.07	32825	723
$1971-72$	12	4304.34	24666	573

TABLE NO. 5

Enginaer - Employment Ratios

Item	1956-57	1961-62	1963-64
		-	
1. Response	19	36	41
2. Total of Employment	-..38,182	84,552	96,556
3. Total of Engineers	... 424	1,208	1,499
4. Ratio	... 90:1	70:1	65:1
(Employment : Engineers)			

table No. 6

Trends in capital investment, Total Employment and Employment of Engineers.

TABLE ED. 72

Inter-se Ratios of Engineering Craftsmen to total employment.

Source:- State Employment Market Information Data, 1963.

Please see Appendix 'A,

H\&176(200)-45

TABLE NO. 8 .

Intake Capacity of Degree courses according to
Speciality 1958-71 (including Fourth Plan proposals).

Year	Degree				
	Civil.	Hechanical.	Electrical.	Chemical.	Metallur gical.
1958	240	115	157	65	22
1959	242	118	157	106	19
1960	432	194	236	127	41
1961	432	234	250	127	41
1962	463	269	312	129	41
1963	517	392	342	152	92
1964	577	482	495	152	92
1965	582	497	537	152	100
1966	582	497	537	152	100
1967	582	497	537	152	\$00
1968	582	497	537	152	100
1969	672	587	- 627	- 152	100
1970	74.2	657	697	152	100
1971	742	657	697	152	100

H/176(200)-46

TABLE NO. 9.

Outturn of Engineers (Degree) for the years 1961-76. (including Fourth Plan proposals)

Year	Degree				
	Civil.	Mechanical	Electrical.	Others	Total.
1961	209	119	124.	. 71	523
1962	118	131	143	105	497
1963	265	243	210	98	816
1964	336	325	265	134.	1,060
1965	, 343.	218	240	140	941
1961-65	1,271	1,035	982	548	3,837
1966	370	285	264	178	1,097
1967	408	359	343	192	1,302
1968	123	150	156	138	567
1969	342	322	329	206	1,199
1970	445	433	444	208	1;530
1966-70	1,688	1,549	1,536	922	5,695
1971	445	434	446	208	1,533.
1972	445	434.	.446:	. 209	1,534
1973	480	476	485	209	1,650
1974	526	528	555	209	1,818
1975	552	556	560	209	1,877
1971~75	2,448	2,428	2,492	1,044	8,412

H/176(200)-47

- Intake Capacity of Diploma courses according to Speciality - 1958-71.
(including Fourth Plan proposals)

Year ;	Diploma				
	Civil	Mechanical	- Electrical	Metallurgical	Mining.
1958	793	204	275	4	-
1959	766	219	288	10	-
1960	1050	310	320	10	-
1961	1230	310	320	10	-
1962	1250	375	385	10	-
1963	1250	990	660	30	40
1964	, 1420	1000	870	30	40
1965	1420	1060.	870	30	40
1966	1420	1060	870	30.	40
1967	1600	1240	1050	30	40
1968	1780	1420	1230	30	40
1969	1960	1600	1410	30	40
1970	1960	1600	1410	30	40
1971	1960	1600	1410	30	40
	-				

H/176(200)-48

TABLE NO. 11
Outturn of Engineers (Diploma) for the years 1961-76 (including Fourth Plan proposals).

Year	Diploma				Total.
	Civil	Mechenical	Electrical	Others	
1961	337	121	138	6	602
1962	257	144	150	12	563
1963	393	240	207	12	852
1964	494	247	200	12	953
1965	827	273	273	7	1,380
1961-65	2,308	1,028	968	49	4,350
1966	831	503	368	26	1,728
1967	890	558	503	40	1,996
1968	923	769	609	47	2,348
1969	941	839	670	49	2,499
1970	1,003	911	743	49	2,706
1966-70	4,588	3,580	2,898	211	11,277
1971	1,098	1,021	841	49	3,009
1972	1,212	1,150	965	49	3,376
1973	1,272	1,232	i,057	49	3,610
. 1974	1,297	1,272	1,102	49	3,720
1975	1,303	1,282	1,121	49	3,755
1971-75	6,182	5,957	5,086	245	17,470

$\mathrm{H} / 176(200)-49$

TABLE NO. 12
Requirements and Availability of Engineers according to Speciality and level of Education.

Speciality.	Requirements			Availability			
	Degree	Diploma	Total.	Degree		Diploma	Total.
THIRD PTAN							
Civil	2,221	3,332	5,553	1,272		2,308	3,579
Mechanical	1,541	2,312	3,853	1,036		1,025	2,061
Eiectrical	771	1,155	1,926	982		968	1,950
Others	393	50	443	548		49	597
Total	4,926	6,849	11,775	3,837		4,350	8,187
FOURTH PLANT							
Civil	3,603	5,405	9,008	1,588		4,588	6,276
Mechanical	2,500	3,750	6,250	1,549	9	3,580	5,129
Electrical	1,249	1,875	3,124	1,536		2,898	4,434
Others	637	81	718	922		211	1,133
Total	7,989	11,111	19,100	5,695		11,277	16,972

FIFIH PIAN

Civil.	5,848	8,772	14,620	2,448	6,182	8,630
Mechanical	4,057	6,085	10,142	2,428	5,957	8,385
Electrical	2,029	3,043	5,072	2,492	5,086	7,578
Others	1,033	133	1,166	1,044	245	1,289
Total 0.	12,967	18,033	31,000	8,412	17,470	25,882

TABLE NO: 13

Inter-se proportion of Craftsmen.(31-9-1963)

Source: -Percentage Average of the primary data collected under E.M.I. Scheme for September 1962 and September 1964 about pattern of employees in Public Sector and for Private Sector: in September 1963 data.

H/176(200)-51
Please see Appendix ' A,

TABIE NO. 14
Requirements of Craftsmen by category during Third, Fourth and Fifth Plans.

Occupational Code No.	Requirements		
	Third Plan	Fourth Plan	Fifth Plan.
730	1,380	2,209	3,561
731	156	250	402
732	164	262	423
733	2,183	3,495	5,634
734	2,175	3,482	5,614
735	289	462	744
739	437	699	1,127
740	226	362	584
750	11,493	18,398	29,658
751	12,663	20,270	32,676
752	5,294	8,475	13,662
753	6,908	11,059	17,827
754	936	1,498	2,414
755	554	886	1,429
756	1,981	3,170	5,111
757	1,793	2,871	4,628
758	842	1,348	2,173
759	9,185	14,703	23,702
760	2,261	3,620	5,835
761	936	1,498	2,414
762	312	499	805
764	3,704	5,928	9,557
769	2,222	3,557	5,734
770	5,419	8,675	13,984
870	1,840	2,946	4,748
871	2,620	4,194	6,761
Total ...	77,974	1,24,816	2,01,207

H/176(200)-52

	INTAKE - CAPACITY:							0 UT
	$\begin{aligned} & \text { February } \\ & \text { 1965. } \end{aligned}$	$\begin{aligned} & \text { November } \\ & 1965 . \end{aligned}$	$\begin{aligned} & \text { Auguist } \\ & \text { 1966: } \end{aligned}$	$\begin{aligned} & \sin y \\ & 1967 \end{aligned}$	$\begin{aligned} & \text { February } \\ & 1968 . \end{aligned}$	$\begin{gathered} \text { sovember. } \\ \text { I963. } \end{gathered}$	Total intake.	Outtu
-smith	352	365	384	384	448	448	2,331	
nter.	656.	704	704	$\bigcirc 704$	763	768	4,304	
(Civil)	304	336	336	- 336	400	400	2,112	
smen(ifechanical)	406	480	496	$\vdots 496$	560	560	2,993	
rician.	832	1,120	1,376	1,456	2,096	2,160	9,040	
roplater	43	43	96	\% 128	123	128	576	
r.	2,128	1,963	3,344	4,032	5,563	5,632	22,672	
er.	72	84	540°	924.	1,020	1,034	3,724	
an.	160.	176	430	364	1,152	1,216	4,049	
nist.	1,083	1,176	1,343	2,768	3,680	3.744	14,304	
(I.C.E.)	288	288	512	960	1,088	1,152	4,238	
(Instrument)	64	48	208	- 208	272	272	1,072	
(Refri.)	64	48	43	48	48	- 43	304	
(Miotor):	304	304	560	960	1,024	1,033	4,240	
(Radio).	96	30	so	30	30	30	496	
er.	352	318	382	453	778	788	3,066	
er and Decorator.	64	64	30	s0	30	80	443	
rn haker.	320	320	384	560	380	830	3,344	
metal worker.	160	160	192	192	- 253	\| 256	1,216	
yor.	200	160	160	176	203	208	1,112	
-	1,280	1,356	2,076	2,448	3,403	3,472	14,040	
and clock rer.	48	32	32	32	32	! 32	208	
-	864	916	1,204	1,312	1,792	1,356	7,944	
sss operator.	43	48	48	64	64	- 64	336	
r.	64	32	32	48	112	112	400	
TOTAL:	10,262	10,631	15;602	19,713	25,942	26,518	1,08,673	

```
August fly February November August . Kay February Total
    1969. 1970. 1971. 1971. 1972. 1973. 1974.
```


ber 1959, August 1960, May 1961, ary 1962, November 1962, t 1963, 社y 1964.

		i	
Blacksmith.	169	160	94.7
Carpenter.	540	507	93.8
Draftsmen (Civil).	900	830	92.2
Draftsmen (Mechanical)	1,209	1.153	95.3
Mectrician.	1,773	1,712	96.5
Electroplater.	103	102	99
Fitter.	4,010	3,644	90.8
Grinder.	114	107	93.8
Wireman.	435	409	94.0
Machinist.	1,467	1,362	92.8
Hachinist(I.C.E.)	467	443	94.8
Machinist (Instrument.)	70	49	70.0
Machinist ($\mathrm{Refrigerator)}$.	151	150	93.1
Sechindst (Motor)	832	790	91. 6
Bachinist (Radio).	224	195	87.0
Moulder.	706	687	97.3
Painter and Decorator.	92	92	100.0
Pattern maker.	627	593	94.5
Sheet metal worker.	298	291	97.6
Survejor.	362	347	35.8
Turner.	2,335	2,149	92.0
Watch and clock repairer.	25	23	92.0
Welder.	1,435	1,388	96.7
Wireless Operator.	106	90	84.7
Plumber.	13	12	92.3

```
    1969. 1970.
```


1962, November 1962,
Total.
Total.
outturn
963, 紋 1964.
\qquad

			.
acksmith.	169	160	94.73
rpenter.	540	507	93.38
aftsmen (Civil).	900	830	92.22
aftsmen (Mechanical)	1,209	1,153	95.36
ectrician.	1,773	1,712	96.55
ectroplater.	103	102	99.02
tter.	4,010	3,644	90.87
inder.	11.4	107	93.35
reman.	435	409	94.02
chinist.	1,467	1,362	92.84
chinist(I.C.E.)	467	443	94.86
chinist (Instrument.)	70	49	70.00
chinist (Refrigerator).	151	150	93.16
chanist (Motor)	832	790	91,64
chinist (Radio).	- 224	195	87.05
ruldeŕ.	706	687	97.30
inter and Decorator.	92	92	100.00
ttern maker.	627	593	94.57
eet metal worker.	298	291	97.65
Irveyor.	362	347	35.85
Irner.	2,335	2,149	92.03
tch and clock repairer.	25	23	92.00
Ider.	1,435	1,388	96.72
reless Operator.	106	90	84.70
umber.	13	12	92.30

TOTAL:
18,503
17,285

	INTAKE - CAPACITY,							$10 U T-T U N$
	$\begin{aligned} & \text { February } \\ & \text { 1e65. } \end{aligned}$	November 1965.	August 1966.	nay 1967	$\begin{aligned} & \text { February } \\ & 1963 . \end{aligned}$	November $\text { 1063. } \quad$	Total intake.	Outturn for the IVth Plan
(1) Black-smith	352	365	384	384	448	440	2,331	2,252
(2) Carpenter.	056	704	704	704	763	763	4,304	4,036
(3) D'men (Civil)	304	336	336	336	400	400	2,112	1,943
(4) Draftsmen(Hecianical)	406	480	496	496	560	560	2,993	2,353
(5) Electrician.	832	1,120	1,376	1,456	2,096	2,160	9,040	3,723
(6) Electroplater	43	43	96	123	123	123	576	571
(7) Fitter.	2,123	1,903	3,344	4,032	5,503	5,632.	22,672	20,602
(8) Grinder.	72	34	540	924	1,020	1,034	3,724	3,494
(0) Mix man.	160	176	430	864	1,152	1,210	4,043	3,805
(10) Machänist.	1.033	1,176	1,343	2,763	3,630	3,744	14,304	13,279
(11) Mech.(I.C.E.)	288	288	512	960	1,088	1,152	4,238	4,067
(12) Mech. (Instrument)	64	48	208	208	272	272	1,072	750
(13) Mech. (Refri.)	64	43	43	48	48	40	304	233
(14) Mech. (notor).	304	304	560	960	1,024	1,033	4,240	3,885
(15) Mech. (Radio).	96	30	S0	30	30	30	496	431
(16) Moulder.	352	313	332	453	778	738	3,060	2,933
(17) Painter and Decorator.	64	64	30	30	30	80	443	443
(13) Pattern Maker.	320	320	334	560	380	$8: 30$	3,344	3,162
(19) Sheet metal worker.	160	160	192	192	250	256	1,216	1,137
(20) Surveyor.	200	100	160	176	203	203	1,112	1,065
(21) Turner.	1,230	1,356	2,076	2,443	3,403	3,472	14,040	12,921
(22) Watch and clock repairer.	48	32	32	32	32	32	203	101
(23) Welder.	364	216	1,204	1,312	1,792	1,356	7,944	7,683
24) Wireless operator.	43	48	48	64	64	64	336	285
25) Plumber.	64	32	32	48	112	112	400	369
TOTAL:	10,262	10,631	15,602	12,713	25,9-12	26,518	1,08,673	1,01,283

Intake and cutturn of Craftsmen during the Vth Plan.

November 1959, August 1960, May 1961,	Actual appeared	Actual passed	
February 1962, November 1962,	Total.	Totail. Ratio of	
August 1963, May 1964.			outturn.

(1) Blacksmith.	169	160	94.73
(2) Carpenter.	540	507	93.38
(3), Draftsmen (Civil).	900	830	92.22
(4) Draftsmen (Mechanical)	1,209	1,153	95.36
(5) Mlectrician.	1,773	1.712	96.55
(6) Electroplater.	103	102	99.02
(7) Fitter.	4,010	3,644	90. 87
(8) Grinder.	114	107	93.35
(9) Wireman.	435	409	94.02
(10) machinist.	1,467	1,362	92.34
(11) Hachinist(I.C.E.)	467	443	94.86
(12) Machinist (Instrument.)	70	49	70.00
(13) dachinist (Refrigerator).	151	150	93.16
(14) mbchinist (Motor)	832	790	91,64
(15) Bachinist (Radio).	224	195	87.05
(16) Moulder.	706	687	97.30
(17) Painter and Decorator.	92	92	100.00
(13) Pattern maker.	627	593	94.57
(19) Sheet metal worker.	293	291	97.65
(20) Surveyor.	362	347	35.85
(21) Turner.	2,335	2,149	92.03
(22) Watch and clock repairer.	25	23	92.00
(23) Welder.	1,435	1,388	96.72
(24) Wireless Operator.	108	90	84.70
(25) Plumber.	13	12	92.30

TOTAL:
18,503
17,285

TABLE NO. 18
Requirements and Availebilityeop Craftsmen by Trades during Third, Fourth and Pifth Plans.

Occipational Coce No.	Mhird Plen		Fourth Plan		Fifth Plan	
	$\begin{aligned} & \text { दvail- } \\ & \text { ability } \end{aligned}$	Requiremerts.	$\begin{aligned} & \text { Avail- } \\ & \text { ability } \end{aligned}$	Requirements.	$\begin{aligned} & \text { Avail- } \\ & \text { ability } \end{aligned}$	Requirements.
730*	-	1380	-	2209	-	3561
731*	-	156	, -	250	-	402
732*	-	164	-	262	-	423
733	133	2183	2373	3495	2970	5634
734	772	2175	3245	3482	5298	5614
735*	-	289	-	462	-	744
739*	-	437	-	699	-	1157
ito	79	226	990	362	1538	584
750	4740	11493	22692	18398	35824	29658
751	3231	12663	18145	20270	2987	32676
752*	-	5294	-	8475	-	13662
753	2869	6908	21988	11059	39272	17827
754	344.	936	1377	1498	1749	2414
. 755	14	554	389	386	723	1429
756	1400	1981	7708	3170	12565	5111.
757*	-	1793	\bigcirc	2871	-	4628
758	102	842	571	1348	887	2173
759*	-	9185 *	-	. 14703	-	23702
760	1864	2261	9098	3620	14598	5835
761*	-	936	-	1498	-	2414
762	195	312	431	499	487	805
764	540	3704	4148	5928	- 8002	9557
769*	-	2222	- -	3557	-	5734
770^{*}	1162	5419	7518	8675	10871	13984
870*	- .	1840	-	2946	-	4748
871**	-	2620	-	4194	-	6761

(*) Inclusive of outturn under Apprentice training' Schemes.

* There are no trainine courses for these occupations at the I.T.I.S.at present.

4/176(200)56

[^0]: 5. Report of the Working Groun on Technical Education and Vocational Tfaining - Page 57.
 H-176(200-5~66)-13,14,15
[^1]: Source:- Engineertng inanpewor-Requivements, 1961-31-Certain-questions Regaxding Foreeates, p.2-
 H-176(200-5-66)-16,17.

