NATIONAL INDEX

OF
 AGRICULTURAL

FIELD

EXPERIMENTS

VOL. 15 PART 1

CENTRAL INSTITUTES

1948-53

PUBLISHED BY
INDIAN COUNCIL OF AGRICULTURAL RESEARCH NEW DELHI

FOREWORD

It is a well recognized fact that the level of agricultural production in India is one of the lowest in the world and it is only by the exploitation of scientific methods of agriculture that we can hope to increase our agricultural production to the level necessary for providing a reasonable standard of living to the country's population. Properly planned and conducted field experiments provide a reliable basis for propagating improved agricultural techniques among farmers. A number of research institutes and other experimental centres are functioning under the Central Ministry of Agriculture, the Commodity Committees and the State Governments, in which research on agricultural problems is going on. The need for an integrated account of the researches done in these organisations and institutions in the country has been felt for a long time, particularly in the context of planning. The absence of such a unified account has often led to duplication of work and delay in the utilisation of the results for practical farming. The Institute of Agricultural Research Statistics of the Indian Council of Agricultural Research has, therefore, rendered a most timely service by preparing a compendium of all agricultural field experiments conducted in India upto 1953 and similar compendia are under preparation by the Institute for subsequent years.

The present compendium contains critical summaries of results of experiments bearing on important agronomic factors such as the responses of crops to fertilizers and manures, inter-relationship of fertilizers, varieties and cultivation practices and other information of value for giving sound advice to farmers in different regions. I am sure that these results will be fully utilised by agricultural institutions, research workers, planners and extension organisations. The chief merit of the present publication is that it brings together in one place the results of experimentation carried out under diverse soil, climatic and agricultural conditions obtaining in India. Workers in one State can thus supplement data for their own area by results from other regions where conditions may be similar and thereby re-inforce their own conclusions. For the same reason I hope that this publication will be of use to workers in other countries also.

A Standing Committee consisting of the Agricultural Commissioner with the Government of India, the Director, Indian Agricultural Research Institute and the Statistical Adviser, Indian Council of Agricultural Research, has been set up to provide general guidance to the work under this scheme. I congratulate the members of this Committee and ir. particular the Statistical Adviser and his associates at the Institute of Agricultural Research Statistics for bringing out this compendium. The preparation of this compendium has been made possible only by the whole hearted co-operation of the States and other organisations in making available the results of their experimental researches for this purpose. My thanks are due to the officers of the State Departments of Agriculture and other institutions for participating in this work. I hope that the present series will be followed by periodical publication of similar compendia for later years, in order that the availability, in a consolidated form, of results of scientific experiments in agriculture in India may be maintained up-to date.

New Delht,
August 20, 1962.

> A.D. Pandit
> Vice-President, Indian Council of Agricultural Research.

PREFACE

A large number of agricultural field experiments on different problems is being conducted in the country by Central and State Governments, Research Institutes, Commodity Committees and other organisations engaged in agricultural research. In addition, a number of schemes involving field experimentation is sponsored by the Indian Council of Agricultural Research in different States. The absence of a unified record of the results of these various experiments has considerably handicapped planning of further research and development and has often led to duplication of efforts.

Vaidyanathan brought out in 1933 a useful catalogue of manurial experiments conducted in India till then. Considering that Vaidyanathan's work was confined to manurial experiments and the fact that an enormous increase has taken place in the number and scope of agronomic experiments in recent years in India, the Indian Council of Agricultural Research launched the scheme of National Index of Field Experiments in 1954. The object of the scheme was two-fold :
(i) the preparation of compendium of all the field experiments for the period 1935-53 and
(ii) the preparation of index cards for individual experiments from 1954 onwards.

Under the scheme, results of all agricultural field experiments other than purely varietal trials were to be consolidated. Subsequently at the time of the extension of the scheme in 1959 it was decided that the compendium would be prepared in the first instance for the period 1948-53 and a similar compendium would be prepared for the period 195459. The present series for the period $1948-53$ has been prepared in pursuance of this decision.

The compendium is divided into 15 volumes one each for (1) Andhra Pradesh (2) Assam, Manipur and Tripura (3) Bihar (4) Gujarat (5) Kerala (6) Madhya Pradesh (7) Madras (8) Maharashtra (9) Mysore (10) Orissa (11) Punjab, Jammu \& Kashmir and Himachal Pradesh (12) Rajasthan (13) Uttar Pradesh (14) West Bengal and (15) all Central Institutes. In each volume back-ground information of the respective Stàte regarding its physical features, soils, rainfall and climate, agricultural production and area under different crops is given. A map showing different regions of the State, soils and agricultural research farms is also included. The experiments reported in each volume have been arranged cropwise for each State. All the experiments belonging to a particular crop at various research stations are grouped together. For a particular crop, experiments. are arranged according to the following classification:

Manurial (M), Cultural (C), Irrigational (I), Diseases, Pests and Chemicals other than fertilizers (D), Rotational (R), Mixed Cropping (X) and combinations of these wherever they occur (e.g., CM as Cultural-cum-Manurial). Experiments in which crop varieties also form a factor are denoted by adding V to their symbol and are given together (e.g., MV as Manurial-cum-Varietal). The results of an experiment are given along with. other basic information such as rotation of crops followed, cultural practices adopted, etc.

For making maximum use of the experimental data all the important tables giving the average yields of various treatments along with the appropriate standard errors have been presented. No attempt has, however, been made to summarise the data of groups of experiments on any particular item and to draw any general conclusions. This will be done for the period 1948-59 while publishing the compendium for the period 1954-59.

This publication is the result of the co-operative endeavour of a large number of persons both at the Centre and in the States. I should particularly mention in this connection, guidance and help rendered in the formulation of the scheme by Dr. D.J. Finney F.R.S. of Aberdeen University, Scotland, during his stay at the Institute of Agricultural: Research Statistics as an F.A.O. Statistical Expert in 1952-53.

(ii)

At the Institute of Agricultural Research Statistics, the work under the scheme was carried out under the supervision and guidance of Shri T.P. Abraham, Assistant Statistical Adviser. Shri G.A. Kulkarni, Statistician, looked after the detailed working of the scheme. These officers have been largely responsible for the preparation of the manuscript of the compendium and it is a pleasure to thank them for the hard work they have put in for getting this compendium ready. Messrs O.P. Kathuria, B.V. Srikantiah, M.L. Sahni, B.P. Dyundi, S.D. Bal and P.K. Jain of the statistical staff of the Institute deserve special mention for their careful scratiny of the data and preparation of the material for the compendium. Thanks are also due to Dr. Uttam Chand, Professor of Statistics, now with the Central Statistical Orgainsation, Shri K.S. Avadhany, Assistant Statistician, also now with the Central Statistical Organisation, and Shri K.C. Raut, Statistician in this office who were associated with the scheme in its initial stages.

The burden of collecting data from original records by visiting different research stations and the analysis of a large number of experiments, only the primary data for which had been recorded in the files, fell on the regional staff appointed by the Indian Council of Agricultural Research in different States. They cleserve to be congratulated for the patient work they have put in. The State Departments of Agriculture, Central Institutes and Commodity Committees made data for the experiments conducted within their jurisdiction readily available. The Indian Council of Agricultural Research acknowledges this willing co-operation without which the consolidation of the results would not have been possible. Various State officers who helped the project by making the data accessible to the satistical staff of the project and worked as the regional supervisors for the scheme also deserve thanks by the Council for their active help. The list of names of the regional supervisors is given on the following page.

New Delhi,
August 16, 1962.
V.G. Panse

Statistical Aduiser,
Institute of Agricultural Research Statistics. (I.C.A R.)

REGIONAL SUPERVISORS FOR THE SCHEME OF THE NATIONAL INDEX OF FIELD EXPERIMENTS

	Region and headquaters	Regional Supervisors:
1.	Andhra Pradesh (Hyderabad)	Shri D.V.G. Krishnamoorthy, Deputy Director of Food Production, Andhra Pradesh. Shri Jagannath Rao, Joint Director of Agriculture (Research), Andhra Pradesh. Dr. Khadruddin Khan, Joint Director of Agriculture (Research), Andhra Pradesh. Dr. Wahiuddin, Headquarters Deputy Director of Agriculture (Research), Andhra Pradesh.
	Assam, Manipur and Tripura (Shillong)	Shri L.K. Handique, Director of Agriculture, Assam. Shri S. Majid, Director of Agriculture, Assam. Dr. S.R. Barooha, Director of Agriculture, Assam.
3	Bimar (Sabour)	Dr. R. Richaria, Principal, Agriculture College, Sabour. Shri R.S. Roy, Principal, Agriculture College, Sabour.
	Kerala (Trivandrum)	Shri N. Shankara Menon, Director of Agriculture, Kerala. Shri P.D. Nair, Director of Agriculture, Kerala.
5.	Madhya Pradesh (Gwalior)	Dr. T.R. Mehta, Principal, Agriculture College, Gwalior.
6.	Madras (Combatore)	Shri C.R. Sheshadri, Vice-Principal \& Secretary, Research Council, Agriculture College, Coimbatore. Shri P.A. Venkateswaran, Vice-Principal \& Secretary, Research Council, Agriculture College, Coimbatore. Late Shri M. Bhavani Sankara Rao, Vice-Principal \& Secretary, Research Council, Agriculture College, Coimbatore. Shri T. Natarajan, Agronomist \& Secretary, Research Council, Agriculture College, Coimbatore. Shri A.H. Sarma, Extension Specialist \& Secretary, Research Council, Agriculture College, Coimbatore.
	Maharashtra \& Gujarat (Former Bombay State)	Shri D.S. Ranga Rao, Statistician, Department of Agriculture, Poona.

Owing to transfers and other changes more than one Regional Supervisors have been shown against several states as these officers have acted as Regionai Supervisor during different periods from 1955 to

(iv)

8. Mysore
(Bangalore)
9. Orissa
(Bhubaneshivar)
10. Punjab, Jammu \&

Kashmir and Himaghal
Pradesh(Chandigarh)
11. Rajasthan
(Jaipur)
12. Uttar Pradesh
(Lucknow)

Shri A. Anant Padmanabha Rau. State Statistican, Mysore State.

Dr. U.N. Mohanty.
Dy. Director of Agriculture (H.Q.), Orissa.
Shri P.S. Sahota,
Satistician, Department of Agriculture, Punjab.

Shri. H.C. Kothari,
Satistician, Department of Agriculture, Rajastan.

Dr. K. Kishen,
Chief Statistician to Govt. of U.P.
Department of Agriculture, U.P.
Shri S.N. Mukherjee,
Statistical Officer,
Directorate of Agriculture, West Bengal.
Dr. S. Basu, Statistical Officer, Directorate of Agriculture, West Bengal.

ABBREVIATIONS COMMON TO EXPERIMENTS ON ANNUAL AND PERENNIAL CROPS AND EXPERIMENTS ON CULTIVATORS' FIELDS

Crop :- In the top left corner is given the name of the crop on which the experiment is conducted. Within brackets along side the crop is mentioned the season wherever the information is available.

Ref :- Against the sub-title 'reference' is mentioned the name of the State, the year in which the experiment is conducted and the serial number of the experiment for that year given in brackets.

Abbreviations adopted for States are as follows :-

A.P.	Andhra Pradesh	Mn.	Manipur
As.	Assam	Mh.	Maharashtra
Bh.	Bihar	Ms.	Mysore
Dl.	Delhi	M.P.	Madhya Pradesh
Gj.	Gujarat	Or.	Orissa
H.P.	Himachal Pradesh	Pb.	Punjab
J.K.	Jammu \& Kashmir	Rj.	Rajasthan
K.	Kerala	Tr.	Tripura
M.	Madras	U.P.	Uttar Pradesh
		W.B.	West Bengal

Repetition of the experiment in other years is indicated in the same line against 'reference' by stating the year and serial number for each repetition side by side e.g. U.P. $53(19) / 52(42) / 51(20)$ etc.

Site :- Name of the Research Station is mentioned along with the place where it is located, e.g. Agri. Res. Stn. for Agricultural Research Station.

For Central Institutes, the corresponding standard abbreviations have been adopted e.g. I.A.R.I. for Indian Agricultural Research Institute.

Type :- Abbreviations used against this item are one or more than one of the following :-

C-Cultural ; D-Control of Diseases and Pests; I-Irrigational ; M-Manurial; R -Rotational ; V-Varietal and X-Mixed cropping e.g. CM is to be read as Cultural-cum-Manurial.

Results :- Information under this heading should be read against the foliowing items:-
(i) General mean. (ii) S.E. per plot. (iii) Result of test of significance. (iv) Summary table (s) with S.E. of comparison (s).

Abbreviations used in the text of the experiments:-

ac.-acre.
Ammo. Phos.-Ammonium Phosphate.
A/N-Ammonium Nitrate.
A/S-Ammonium Sulphate.
B.D.-Basal Dressing.
B.M.-Bone Meal.
C.L.-Cart load.
C.M.-Cattle Manure.

C/N-Chilean Nitrate.
C/S-Copper Sulphate.
F.M.-Fish Meal or Fish Manure.
F.W.C.-Farm Waste Compost.
F.Y.M.-Farm Yard Manure.
G.M.-Green Manure.
G.N.C.-Groundnut cake.

K-Potash.
lb. - Pounds.
M.C.-Municipal Compost.

Mur. Pot.-Muriate of Potash.
N.-Nitrogen.

Nitro phos-Nitro phosphate.
P.-Phosphate.

Pot. Sul.-Potassium Sulphate.
Super-Super Phosphate.
T.C.-Town compost.

Zn. Sul.-Zinc Sulphate.

BASAL CONDITIONS

Information under the above heading to be read against the following items:

A. For annual crops :

(i) (a) Crop rotation, if any. (b) Previous crop. (c) Manuring of previous crop. (State amount and kind). (ii) (a) Soil type. (b) Soil analysis. (iii) Date of sowing/ planting. (iv) Cultural practices. (a) Preparatory cultivation. (b) Method of sowing/planting. (c) Seed-rate. (d) Spacing. (e) No. of seedlings per hole. (v) Basal manuring with time and method of application. (vi) Variety. (vii) Irrigated or Unirrigated. (viii) Post-sowing/planting cultural operations. (ix) Rainfall during crop season (State name of the season along with the month). (x) Date of harvest.

B. For perennial crops :

(i) History of site including manuring and other operations. (ii) (a) Soil type. (b) Soil analysis. (iii) Method of propagation of plants. (iv) Variety. (v) Date and method of sowing/planting. (vi) Age of seedling at the time of planting. (vii) Basal dressing with time and method of application. (viii) Cultural operations during the year. (ix) Inter cropping, if any. (x) Irrigated or Unirrigated. (xi) Rainfall during crop season. (xii) Date of harvest.

C. For experiments on cultivator's fields :

(i) (a) Crop rotation, if any- (b) Previous crop. (c) Manuring of previous crop. (ii) Soil type in general. (iii) Basal manuring with time and method of application. (iv) Variety. (v) Cultural practices. (a) Preparatory cultivation. (b) Method of sowing. (c) Seed-rate. (d) Spacing. (e) No. of seedings per hole. (vi) Period of sowing/planting per hold. (vii) Irrigated or Unirrigated. (viii) Post-sowing/planting cultural operations. (ix) Rainfall during crop season. (x) Peroid of harvesting.

DESIGN

Information under this heading to be read against the following items :
A. For annual crops :
(i) Abbreviations for designs : C.R.D.-Completely Randomised Design ; R.B.D.Randomised Block Design ; L. Sq.-Latin Square ; Confd.-Confounded ; Fact.-Factorial. (other designs and modifications of the above to be indicated in full). (ii) (a) No. of plots per block. (b) Block dimensions (iii) No. of replications. (iv) Plot size. (a) Gross. (b) Net. (v) Border or guard rows kept. (vi) Whether treatments are randomised (separately in each block).

B. For perennial crops :

(i) Abbreviations for designs : C.R.D.-Completely Randomised Design ; R.B.DRandomised Block Design; L. Sq.-Latin Square ; Confd.-Confounded. (other designs and modifications of the above indicated in full). (ii) (a) No. of plots per block. (b) Block dimensions. (iii) No. of replications. (iv) No. of trees/plot. (v) Border or guard rows kept. (vi) Are treatments randomised.
C. For experiments on cultivators' fields :
(i) Method of selection of experimental sites. (ii) No. and distribution of experiments.
(iii) Plot size. (a) Gross. (b) Net. (iv) Whether treatments are randomised.

(vii)

GENERAL

Information under this heading to be read against the following items :-

A. For annual crops :

(i) Crop conditions during growth with date of lodging, if any. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations taken (iv) In case of repetition in successive years-(a) from what year to what year, (b) whether treatments were assigned to the same plots in the same manner every year, (c) reference to combined analysis, if any. (v) In case of repetition in other places, (a) names of the places along with reference. (b) reference to combined analysis, if any. (vi) Abnormal occurrences like heavy rains, frost, storm etc., if any. (vii) Any other important information.
B. For perennial crops :
(i) Crop condition during the year. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations taken. (iv) In case of repetition in successive years-(a) from what year to what year, (b) reference to combined analysis, if any. (v) Abnormal occurrences like heavy rains, frost, storm etc., if any. (vi) Any other important information.

C. For experiments on cultivators' fields :

(i) Crop condition during growth. (ii) Incidence of pests fand diseases with control measures taken. (iii) Quantitative observations taken. (iv) In case of repetition in successive years, (a) from what year to what year, (b) whether treatments were assigned to the same plots in the same manner every year, (c) reference to combined analysis, if any. (v) In case of repetition in other places names of places along with reference. (vi) Abnormal occurrences, like heavy rains, frost, storm etc., if any. (vii) Any other important information.
glossary of vernacular names of crops

SI. No.	Name of crop	Botanical name	Assamese	Bengali	Oriya	Telugu	Tamil	Malayalam	Kannada	Marathi	Gujarati	Hindi	Punjabi
1.	Paddy	Oryza sativa L.	Dhan	Dhan	Dhano	Vadlu, Biyyamu	Nel	Nellu	Bhatta	Bhat	Dangar	Dhan ; Chawal	Chaul ; Dhan
2.	Wheat	Tritictum Sativum Lamk; Triticum	Gaum ; Ghehu	Gam	Gaham	Godumalu	Kothumai	Gothambu	Godhi	Gahu	Ghahu	Gehon	Kanak
3.	Maiz*	Zea mays L.	Gomdhan	Bhutta	Macca	Mokkajonna	Makkacholam	Cholam	Musukina jola	Makiza	Makkai	Makka	Makki ; Makayee
4.	Jowar	Andropogon sorghum Brot. Sorghum vulgare Pers.	--	Jowar	Juara	Jonna	Cholam	Cholam	Jola	Jowari ; Jondhla	Jowari ; Juar	Jowar Jaur	Jowar
5.	Barley	Hordeum vulgare L.	Ja'dhan	Joba ${ }^{\text {a }}$	Jaba Barlhi	Barley	Baarli arisi	Barley	Barley akki	$\begin{aligned} & \text { Satu ; } \\ & \text { Jav } \end{aligned}$	Jav	Jau	Jaun
6.	Baja	Pennisetum typhoides stapf Ex Hubbard.	-	Bajra	Bajra	Sajja	Kambu	Kambu	Sajje	Bajri	Bajri	Bajra	Bajra
7.	Oats	Avena sativa L.	Oats	Jai	Jaie ; Oat	Yavalu	Oat arisi	Oat	Thoke godhi	Jai	Jav	Jaie	Jaur ; Jaee
8.	Potato	Solanum tuberosum L.	Alooguti	Alu	Bilati Alu	Bangala dumpa	Uruzhai kilangu	Urala kizangu	Alu gedde	Batata	Aloo ; Batata	Aaloo	Alu
9.	Carrot	Daucus carota L.	Gajor	Gajar	Gajar	Gajara gadda	Kaaret	Carrot	Kempu mulangi	Gajar	Gajar	Gajar	Gajjar
10.	Sweet potato	Ipomoea batatas Lam.	Mitha Aloo	Mishti Alu	Kandamula	Chiaga dadumpa	Seeni kilangu	Cheeni kizangu	Genasu	Ratalu	Shakaria	Shakarkandi	Shakarkandi
11.	Gram	Cicer arietinum L.	Butmah	Chola	Boot	Sanagalu	Kadalai ; Sundal Kadalai	Kadala	Kadale	Harbara	Chana	Chana	Chhole ; Chana
12.	Peas	Pisum ariense L.	Motor	Chota; Pyramatar	Bada chana	Desavali Batani	Pattaani	-	Holada bataani	Vatana; Matar	Vatana	Muttar	Mattri
13.	Cowpeas	Vigna catiang Walp ; Vigna sinensis Savi	--	Barbati	-	-	Thata payaru	Mambayar	Alasande	Chavil	Chola ; Choli	--	Lobia
14.	Sugarcane	Saccharum officinarum L.	Kuhiar	Akh	-	Cheruku	Karumbu	Karimbu	Kabbu	Oos	Sherdi	Ganna; Kamad;	Kamad ; Ganna;
15.	Cotton	Gossypium spp.	Kapah	Karpas ; Tula	Kapa	Pratti	Paruthi	Paruthi	Hatti	Kapus	Kapas	Naishakar Kapas	Eakh Kapah

glossary of vernacular names of crops

S1. No.	Name of Crop	Botanical name	Assamese	Bengali	Oriya	Telugu	Tamil	Malayalam	Kannada	Marathi	Gujarati	Hindi	Punjabi
16.	Tobacco	Nicotiana tabacum L.	Dhopat	Tamak	Uanpatra	Pogaku	Pugayilai	Pukayila	Hoge soppa	Tambaku	Tamaku	Tambaku	Tamaku; Tambaku
17.	Toria (Indian rape)	Brassica competsris var. toria Duthie	Sariah	Tori sarisha	--	Ava	Kadugu	-	--	Saras	Sarsav	Tória	Toria
18.	Sesamum	Sesamum indicum L.	Til	Til	Rasi	Nuvvulu	Ellu	Ellu	Yellu	Til, Tili	Tal	Til	Til
19.	Linseed	Linum usitatissimum L.	Tisi	Tishi	Peshi	Avise	Alivithai	Cherucha navithu	Agase	Javas; Alsi	Alsi	Alsi	Alsi
20.	Cluster bean (Field Vetch; guar)	Cyamopsis psoraloides D.C. cyamopsis tetragonaloba Taub	Thupi urahi	Guar	Gunar chhuin	Goruchikkudu	Kotha varkai ; Seeniavaraikai	Kothavara	Gori Kayi	Guwar	Gavar	Guar	Guara
21.	Hubam Clover	Melilotus alba var. annua	-	Swet banmethi	Nitkrar	--	-	-	--	-	-	Hubam Clover	- -
22.	Berseem	Trifolium alexandrinum L.	--	Barseem	Gini ghasa	-	\cdots	-	-	Barsim gavat	Barsim	Berseem	Berseem
23.	Vicia Sativa (Common Vetch)	Vicia sativa L.	--	Ankari	Ankari	-	-	-	Kaadu hurli	-	ー-	Bakla	--
24.	Senji (Indian clover)	Melilotus parui fora Desv.	-	Banmethi	Barsim	--	-	-	-	-	--	Senji	Senji
25.	Panicum antidotale (Blue Panic)	Panicum Antidotale Retz.	-	- -	Not known	Australia Dubbugaddi	Australia pul	-	Holada pundrike	Ambadi	Ambadi	Patsan	Sanukra; Sankukra
26.	Jute	Corchorus spp.	Marapat	Shada pat Tosha pat	Jhota	Janumu	Chanapai	Chanambu	Sanabu	Toot	Moti Chhunchh	Jute ${ }^{\text {d }}$	Patsan
27.	Roselle (Mesta)	Hibiscus sabdarifa L.	Tenga Mora	Mesta	Khata Kaunriạ	Erragogu	Sivappu Kashamkai	-	Kempupundrike	Tambdi ambadi	Lal sheria	Patua	\cdots

CONTENTS

Page
FOREWORD
PREFACE (i)
LIST OF ABBREVIATIONS (v)
GLOSSARY OF VERNACULAR NAMES OF GROPS (viii)
Central Rice Research Institute, Cuttack:
Proforma giving the details of experimental station 1
Experimental Results (Paddy crop) 2
Juté Agricultural Research Institute, Barrackpore (Calcutta):
Proforma giving the details of experimental station 99
Experimental results (Jute, roselle and mesta) 100
Central Tobacco Research Institute, Rajahmundry:
Proforma giving the details of experimental station 107
Experimental results (Tobacco) 109
Indian Agricultural Research Institute, New Delhi :
Proforma giving the details of experimental station 143Experimental results (crop-wise)

| Paddy | \ldots | 145 |
| :--- | :--- | :--- | :--- |
| Wheat | \ldots | 148 |
| Maize | \ldots | |
| Jowar | \ldots | 224 |

266
Bajra 269
Oats 273
Vegetables (Potato, carrot and sweet potato) 282
Pulses (Gram, peas and cowpeas) 293
Sugarcane 300.
Cotton 307
Tobacco 315
Jute 316.
Oilseeds (Rape, sesamum and linseed) 317
Fodder crops (Jowar, guar, berseem, etc.) 323
Mixed crops 338
Rotational c. 341

CENTRAL RICE RESEARCH INSTITUTE

CUTTACK

CENTRAL RICE RESEARCH INSTITUTE, CUTTACK

1. Name of the experimental station. Central Rice Research Institute,
2. Tehsil or Taluka. Cuttack.
3. District.
4. Address.
5. Year of establishment
6. Distance from nearest railway station with the name of nearest railway station.
7. Programme of Research.
8. Normal cropping pattern.
9. Type of tract it represents. Main rice growing tract.
10. General description of topography Uniform. (Plain). of the experimental area.
11. Soils.
(a) Broad soil types
(i) Depth.
(ii) Colour.
(iii) Structure.
(b) Chemical analysis if available with pH value. (Indicate the percentage of various constituents analysed for).

Alluvial (deposits of the river Mahanadi).
Very deep. (no parent rock obtained even at a depth of 10 to $12 . \mathrm{m}$.)
Surface soil-ash grey.
Friable.
$\mathrm{pH}-5.3$ to 6.9.
Total N-0.04 to 0.09 percent.
Total $\mathrm{P}-0.03$ to 0.06 percent.
NaH CO 3 . extractable $\mathrm{P}-7$ to 30 ppm .
Organic carbon-0.5 to 1.1 percent (Walkley Black Value)
K-well supplied with potassium.
(c) Mechanical analysis (if The soil can be classified as follows available).
(Indicate the \% of various constituents analysed for).

Sandy loam Sandy clay loam
Clay loam-medium lands Clay and heavy clay-Lowlands.
12. Normal aserage rainfall in mms. (month-wise).

June 181.3	July 258.0	Aug. 338.0	Sept. 320.1	Oct. 254.1	Nov. 41.5	Dec. 1.5	Jan. 14.7	Feb. 28,8	March. 16.1	April. 19.6	May. 64.7	Total 1538.4
	ify th verage ed.	period of eac	which month	Average for 10 years 1952-53 to 1961-62.								

13. Irrigation facilities available; year from which the facilities were made available.
14. Whether any proper drainage system exists.
15. Any other information regar- Location: $20^{\circ} \mathrm{N}, 86^{\circ} \mathrm{E}$ ding the farm.

Yes.

77 feet above sea level.

Irrigation facilities are available, from the inception of the Institute.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 52(4). Type :- 'M'.

Object : - To find the res!dual effect of nitrogeneous fertilizers.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 23.6.1952./7.8.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -- (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand-wceding. (ix) 56.03". (x) 27, 28.11.1952.
2. TREATMENTS:

All combinations of (1) and (2)+a control
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
(2) 4 sources of $N: S_{1}=A / S, S_{2}=A / N, S_{3}=A m m o$. Phos. and $S_{4}=$ Urea.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9 .
(b) N.A.
(iii) 12 .
(iv) (a) $20^{\prime} \times 12^{\prime}$.
(b) $18^{\prime} \times 10^{\prime}$.
(v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1952-contd. (b) -. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1921 \mathrm{lb} . / \mathrm{ac}$.
(ii) $379.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) $\mathrm{A} v$. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Control $\quad=1883 \mathrm{lb} . / \mathrm{ac}$.

	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	Mean
$\mathbf{N}_{\mathbf{1}}$	1907	1832	1969	1907	1904
\mathbf{N}_{2}	1948	1917	2103	1827	1949
Mean	1927	1874	2036	1867	1926

$\begin{array}{ll}\text { S.E. of } N \text { marginal mean } & =54.8 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of } S \text { marginal mean } & =77.5 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =109.6 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop :- Paddy (Kharif), Ref:- C.R.R.I. 53(19). Type :- 'M'.
Object:-To find the residual effect of nitrogeneous fertilizers.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) As per treatments. (ii) (a) Clayey loam. (b) Refer item 11 on page 1. (iii), 23.6.1953/21.7.1953. (iv) (a) to (e) N.A. (v) Nil. (vi) T-141 (medium). (vii) Irrigated. (viii) N.A. (ix) $46.02^{\prime \prime}$. (x) 30.11 .1953.
2. TREATMENTS :

All combinations of (1) and (2) + a control
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 5 sources of $N: S_{1}=A / S, S_{2}=A / N, S_{3}=$ Ammo. Phos., $S_{4}=$ Ammo. Chloride and $S_{5}=$ Urea.
3. DESIGN :
(i) R.B.D.
(ii) (a) 11 .
(b) N.A. (iii) 8 .
(iv) (a) $1 / 174.24 \mathrm{ac}$.
(b) $1 / 236.74 \mathrm{ac}$.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952 -contd. (b) N.A. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2723 \mathrm{Ib} . / \mathrm{ac}$.
(ii) $459.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	Control					$=2682 \mathrm{lb}$ /ac.		
	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{3}}$	$\mathrm{S}_{\mathbf{4}}$	$\mathrm{S}_{\mathbf{5}}$	Mean		
$\mathrm{N}_{\mathbf{1}}$	2774	2601	2940	2755	2679	2750		
$\mathrm{~N}_{\mathbf{2}}$	2698	2623	2604	2705	2892	2704		
Mean	2736	2612	2772	2730	2785	2727		

S.E. of N marginal mean	$=72.6 \mathrm{lb} / \mathrm{ac}$.
S.E. of S marginal mean	$=114.8 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of table	$=162.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 48(5). Type :- 'M'.
Object :-To study the effect of continuous application of A/S with and without lime on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) $1.7 \cdot 1948 / 14.8 .1948$. (iv)
(a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) N.A. (v) Nil. (vi) T-812 (medium). (vii) Irrigated. (viii) Weeding on 4.10.1948. (ix) 54.35". (x) 14.12.1948.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb}$./ac.
(2) 3 levels of lime: $\mathbf{L}_{0}=0, L_{1}=4$ and $L_{2}=8 \mathrm{cwt}$./ac.

3. DESIGN :

(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) $61.5^{\circ} \times 12^{\prime}$. (b) $59.5^{\prime} \times 10^{\prime}$. (v) 1 ft . all round. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1948-contd. (b) -. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2296 \mathrm{lb} . / \mathrm{ac}$.
(ii) $113.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) N effect is highly significant, L effect is significant while interaction $\mathrm{N} \times \mathrm{L}$ is not significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$.
\mathbf{L}_{0}	1918	2306	2471	Mean
$\mathbf{L}_{\mathbf{1}}$	2110	2348	2430	2232
$\mathbf{L}_{\mathbf{2}}$	2152	2425	2503	2296
Mean	2060	2360	2468	2296

S.E. of any marginal mean
$=32.7 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of table
$=56.7 \mathrm{lb} / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Ref:- C.R.R.I. 49 (9). Type :- 'M'.

Object:-To study the effect of continuous application of A/S with and without lime on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on pagr 1. (iii) 5.7.19.49/4.8.1949. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) $2-3$ weedings with Japanese weeder and hand weeding. (ix) $46.00^{\prime \prime}$. (x) N.A.
2. TREATMENTS :

All combinations of (1) and (2).
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / \mathrm{ac}$
(2) 3 levels of lime : $L_{0}=0, L_{1}=4$ and $L_{2}=8 \mathrm{cwt}$./ac.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $61.5^{\prime} \times 12^{\prime}$. (b) $59.5^{\prime} \times 10^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Height and ear-length measurements., no. of tillers, straw and grain yield. (iv) (a) 1948-contd. (b) Yes. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1975 \mathrm{lb} . / \mathrm{ac}$.
(ii) $240.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only \mathbf{N} effect is highly significant.
(iv) Av. yield of grain in lb./ac.

Crop:- Paddy (Kharif). \quad Ref:- C.R.R.I. 50(3). Type :- 'M'.
Object :-To study the effect of continuous application of A / S with and without lime on Paddy crop.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) N.A. (b) Refer item 11 on page 1. (iii) 5.7.1949/ 3.8.1950. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk planting. (c) - . (d) and (e) N.A. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) 3 weedings. (ix) 64.47°. (x) N.A.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of lime : $\mathrm{L}_{0}=0, \mathrm{~L}_{1}=4$ and $\mathrm{L}_{2}=8 \mathrm{cwt}$./ac.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $61.5^{\prime} \times 12^{\prime}$. (b) $59.5^{\prime} \times 10^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Blast incidence observed on 9.9.1950. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1948-contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $2331 \mathrm{lb} / \mathrm{ac}$.
(ii) $119.2 \mathrm{lb} / \mathrm{ac}$.
(iii) L effect alone is highly significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{2}	Mean
L_{0}	2051	2023	1976	2017
L_{1}	2393	2338	2299	2343
\mathbf{L}_{2}	2648	2690	2557	2632
Mean	2364	2350	2277	2331
S.E. of any marginal mean				$\begin{aligned} & =35.1 \mathrm{lb} . / \mathrm{ac} \\ & =59.6 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 51(3). Type :- 'M'.
Object :- To study the effect of continuous application of A/S with and without lime on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1.
(iii) $17.6 .1951 / 1.8 .1951$. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk planting. (c) -. (d) Nil.
(e) Nil. (v) As per treatments. (vi) T-1145 (medium). (vii) Irrigated. (viii) Weeding on 5.9.1951.
(ix) $65.32^{\prime \prime}$. (x) 21.11.1951.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb}$./ac.
(2) 3 levels of lime : $L_{0}=0, L_{1}=4$ and $L_{2}=8$ cwt./ac.

Fertilizers applied on 9.8.1951.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $61.5^{\prime} \times 12^{\prime}$. (b) $59.5^{\prime} \times 10^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1948-contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2544 \mathrm{lb} / \mathrm{ac}$.
(ii) $140.8 \mathrm{lb} / \mathrm{ac}$.
(iii) Only N effect is highly signiffcant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{2}	Mean
L_{0}	2435	2582	2779	2599
L_{1}	2376	2440	2664	2493
L_{2}	2348	2560	2708	2539
Mean	2386	2527	717	2544
S.E. of any marginal miean			$=40.6 \mathrm{lb} . / \mathrm{ac}$.	
S.E. of body of table			$=70.4 \mathrm{lb}$ /ac.	

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 52(2). Type :- 'M'.

Object :-To study the effect of continuous application of A / S with and without lime and compost on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 18.6.1952/ 29.7.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk planting. (c) 一. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) $2-3$ seedling/hole. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2-3 weedings with Japanese weeder and hand weeder. (ix) 56.03". (x) 2.12.1952.

2. TREATMENTS :

2 strips in one direction :
2 levels of compost : $C_{0}=0$ and $C_{1}=100 \mathrm{md} . / \mathrm{ac}$.
9 strips in perpendicular direction to the first direction :
All combinations of (1) and (2)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb}$./ac.
(2) 3 levels of lime: $L_{0}=0, L_{1}=4$ and $L_{2}=8 \mathrm{cwt}$./ac.

3. DESIGN :

(i) Strip-plot. (ii) (a) 2 strips in one direction and 9 strips in its perpendicular direction. (b) N.A. (iii) 4. (iv) (a) $30^{\prime} \times 12^{\prime}$. (b) $28^{\prime} \times 10^{\prime}$. (v) 1 ft . alround. (vi) Yes.
4. GENERAL:
(i) Good. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1948-contd. (modified this year). (b) Yes. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $2087 \mathrm{lb} . / \mathrm{ac}$.
(ii) (Compost) $=341.9 \mathrm{lb} . / \mathrm{ac}$.
(Lime and N) $=224.0 \mathrm{lb} . / \mathrm{ac}$.
(Interaction) $=194.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) N effect is highly significant, interaction $\mathrm{C} \times \mathrm{N}$ is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	N_{0}	\mathbf{N}_{1}	N_{2}	Mean	\mathbf{L}_{0}	L_{1}	L_{2}
C_{0}	1629	1974	2314	1972	2039	1921	1957
C_{1}	1961	2267	2373	2203	2273	2135	2197
Mean	1795	2121	2343	2087	2156	2028	2077
L_{0}	1855	2171	2441				
L_{1}	1784	1995	2304				
L_{2}	1745	2196	2286				

S.E. of difference of two

1. C marginal means $\quad=80.6 \mathrm{lb} . / \mathrm{ac}$.
2. N or L marginal means $\quad=64.7 \mathrm{lb} . / \mathrm{ac}$.
3. N or L means at the same level of $C=83.5 \mathrm{lb} . / \mathrm{ac}$.
4. C means at the same level of N or $\mathrm{L} .=113.5 \mathrm{lb} . / \mathrm{ac}$.

5 . means in body of N and L table $\quad=112.0 \mathrm{lb} . / \mathrm{ac}$.

Object :-To study the effect of continuous application of A / S with and without compost and lime on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1.
(iii) 22.6.1953/28.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) $2-3$ seedlings per hole. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) Weeding on 5.9.53. (ix) 46.02" (x) 23, 24.11.1953.

2. TREATMENTS :

2 strips in one direction :
2 levels of compost: $\mathrm{C}_{0}=0$ and $\mathrm{C}_{1}=100 \mathrm{md} . / \mathrm{ac}$.
9 strips in perpendicular direction to the first direction :
All combinations of (1) and (2)
(1) 3 levels af N as $A / S: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / a c$.
(2) 3 levels of lime: $L_{0}=0, L_{1}=4$ and $L_{2}=8 \mathrm{cwt}$./ac.
3. DESIGN :
(i) Strip-plot. (ii) (a) 2 strips in one direction and 9 strips in the perpendicular direction. (b) N.A. (iii) 4 . (iv) (a) $30^{\prime} \times 12^{\prime}$. (b) $28^{\prime} \times 10^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1948-contd. (b) Yes. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2984 \mathrm{lb} . / \mathrm{ac}$.
(ii) (Compost) $=181.4 \mathrm{lb} . / \mathrm{ac}$.
(Lime and N) $=303.2 \mathrm{lb}$./ac.
(Interaction) $=305.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) C and N effects and interaction $\mathrm{C} \times \mathrm{N}$ are significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	N_{1}	N_{2}	Mean	L_{0}	L_{1}	L_{2}
C_{0}	2297	2969	3262	2843	2817	2818	2894
C_{1}	3007	3202	3163	3124	3144	3030	3198
Mean	2652	3085	3213	2984	2980	2758	3046
L_{0}	2626	3081	3233				
L_{1}	2632	3001	2640				
L_{2}	27C0	3174	3264				

S.E. of difference of two

1. C marginal means $=42.76 \mathrm{lb} / \mathrm{ac}$.
2. L or N marginal means $\quad=87.53 \mathrm{lb} . / \mathrm{ac}$.
3. L or N means at the same level of $C=124.3 \mathrm{lb} . / \mathrm{ac}$.
4. C means at the same level of L or $N=102.5 \mathrm{lb} . / \mathrm{ac}$.

5 . means in the body of $N \times L$ table $=151.6 \mathrm{lb} / / \mathrm{ac}$.

Crop :- Paddy (Kharif.)
Ref : C.R.R.I. 53 (18). Type:-‘M'.
Object:-To study the effect of growing and incorporating dhaincha on Paddy yield.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 22.6.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Broadcast. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) -. (v) INil. (vi) T-124 (late). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand needing. (ix) 46.2°. (x) 22.11.1953.

2. TREATMENTS :

$T_{1}=$ Control (no manure).
$\mathrm{T}_{2}=20 \mathrm{lb}$./ac. of N as dhaincha.
$\mathrm{T}_{3}=$ Dhainchat $20 \mathrm{lb} . / \mathrm{ac}$. of N as A/S.
$\mathrm{T}_{4}=$ Dhaincha $+50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{T}_{5}=$ Dhaincha +50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
6 to 8 weeks old dhaincha ploughed in situ at the time of bushening.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) $16^{\prime} \times 64^{\prime}$, (b) $14^{\prime} \times 62^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Height, tillers and ear-length measurements, straw and grain yield. (iv) (a) 1950-contd. (b) N.A. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2644 \mathrm{lb} . / \mathrm{ac}$.
(ii) $254.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
T_{1}	2423
$\mathrm{~T}_{2}$	2724
$\mathrm{~T}_{3}$	2636
$\mathrm{~T}_{4}$	2591
$\mathrm{~T}_{5}$	2847
S.E./mean	$=127.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 53(17). Type :- 'M'.
Object :- To find the manurial value of different G.M. and leguminous crops grown in situ or brought from outside.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on\{page 1. (iii) 22.6.1953/30.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - (d) $10^{\circ} \times 6^{\circ}$. (e) 2 to 3 seedlings (v) Nil. (vi) T-141 (medium). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) $46.02^{\prime \prime}$. (x) 912.1953.
2. TREATMENTS:
3. Dhaincha grown in situ.
4. Sesbania Speciosa grown in situ.
5. Sannhemp grown in situ.
6. Guar grown in situ.
7. C. Streata grown in situ.
8. Pillipesara grown in situ.
9. Jowar grown in situ.
10. Compost.
11. Cassia leaf brought from outside.
12. Dhaincha leaf brought from outside.
13. A/S at 20 lb ./ac of N .
14. Control.
15. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 15^{\prime}$. (b) $18^{\prime}-4^{\prime \prime} \times 13^{\prime} . \quad$ (v) $10^{\circ} \times 12^{\prime \prime}$. (vi) Yes.
16. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Height, tiller and ear-length measurements and straw and grain yield (iv) (a) 1953 -N.A. (b) N.A. (c) N.A. (v) (a), (b) Nil. (vi), (vii) Nil.
17. RESULTS :
(i) $3446 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $168.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	3716	7.	3438
2.	3206	8.	3285
3.	3586	9.	3482
4.	3526	10,	3508
5.	3353	11.	3738
6.	3232	12.	3279
	S.E. $/$ mean		$=84.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref :- C.R.R.I. 53(16).
Type :- ' M '.

Object :-To compare the effect of burying dhaincha on different dates.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 22.6.1953/17.7.1953.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplantef. (c)-. (d) N.A. (e) 2 to 3. (v)

Nil. (vi) T-141 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) $46.02^{\prime \prime}$. (x) 21.11.1953.
2. TREATMENTS: :
$\mathrm{T}_{1}=$ Burying dhaincha on 1.5.1953.
$\mathrm{T}_{2}=$ Burying dhaincha on 1.6.1953.
$\mathrm{T}_{3}=$ Burying dhaincha on 1.7.1953.
$\mathrm{T}_{4}=$ Burying dhaincha on 15.7.1953.
$\mathrm{T}_{5}=$ Burying compost on 15.7.1953 prepared from green matter on 1.5.1953.
$\mathrm{T}_{6}=$ Burying compost on 15.7.1953 prepared from green matter from on 1.6.1953.
3 DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) N.A. (iii) 4. (iv)
(a) $31^{\prime} \times 20^{\prime}$.
(b) $29^{\prime} 4^{\prime \prime} \times 18^{\prime} 6^{\prime \prime}$.
(v) $10^{\prime \prime} \times 9^{\prime \prime}$. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Height, tiller and ear-length measurement, straw and grain yield. (iv) (a) to (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $3730 \mathrm{lb} / \mathrm{ac}$.
(ii) $121.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
$\mathbf{T}_{\mathbf{1}}$	3615
$\mathbf{T}_{\mathbf{2}}$	3815
$\mathbf{T}_{\mathbf{3}}$	3734
$\mathbf{T}_{\mathbf{4}}$	3826
$\mathbf{T}_{\mathbf{5}}$	3845
$\mathbf{T}_{\mathbf{6}}$	3514
S.E./mean	$=60.5 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif). Ref :- C.R.R.I. 53(21). Type :- 'M'.
Object :-To compare different methods of application of A / S.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) N.A. (iv) (a) 4 floughings, laddering and levelling. (b) Transplanted. (c)-. (d) Nil. (e) 2 to 3. (v) Nil. (vi) PTB 10 (late). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 46.02'. (x) 20.4.1954.

2. TREATMENTS:

1. Control.
2. 20 lb ./ac. of N as A / S applied before planting and puddled in.
3. Treatment $2+10 \mathrm{lb}$./ac. of N as A / S applied as pillets 3 weeks afterwards.
4. $20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S applied as pillets 3 weeks after planting.
5. $20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S broadcast 3 weeks after transplanting.
6. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) N.A. (iii) 6.
(iv) (a) $24^{\prime} \times 5^{\prime}$.
(b) $14.5^{\prime} \times 4^{\prime}$. (v) $4^{\prime} 9^{\circ} \times 6^{\prime \prime}$. (vi) Yes.
7. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Height and tiller measurements and straw and grain yield. (iv) (a) 1953contd. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
8. RESULTS :
(i) $1995 \mathrm{lb} . / \mathrm{ac}$.
(ii) $166.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1697
2.	2125
3.	2148
4.	2110
5.	1896
S.E./mean	$=67.77 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy. (Kharif). Ref :- C.R.R.I. 53(20). Type :- 'M'.

Object :-To compare different methods of application of A / S.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 28.7.1953.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - . (d) $10^{\circ} \times 6^{\circ}$. (e) 2 to 3 . (v) Nil. (vi)

T-141 (medium). (vii) Irrigated. (viii) 1-3 intercultures with Japanese weeder and one hand weeding.
(ix) $46.02^{\prime \prime}$. (x) 1.12.1953.

2. TREATMENTS :

1. Control.
2. $20 \mathrm{lb} . / \mathrm{ac}$. of N applied before planting and puddled in.
3. $20 \mathrm{lb} . / \mathrm{ac}$. of N smeared on roots.
4. $20 \mathrm{lb} . / \mathrm{ac}$. of N applied as pillets one month after planting.
5. 20 lb ./ac. of N broadcast one month after planting. N applied as A / S on 2.8.1953.
6. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 6 . (iv) (a) $15^{\prime} \times 5.83^{\prime}$. (b) $14.5^{\prime} \times 4.17^{\prime} \cdot$ (v) $9^{\prime \prime}$ alround. (vi) Yes.
7. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Height and tiller measurement, straw and grain sield. (iv) (a) 1953-contd. (b) -. (c) -. (v) (a) and (b) Nil. (vi) and (vii) Nil.
8. RESULTS :
(i) $2840 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $295.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield
9. 2579
10. 3011
11. 2622
12. 3191
13. 2795
S.E. $/$ mean $=120.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. E0(16). Type :- 'M'.

Object:-To study the effect cf deep layering of A/S.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 20.7.1950. (iv)
(a) 3 to 4 ploughings, laddering and levelling. (b) Transplanted. (c) —. (d) $9^{\prime \prime} \times 6^{\circ}$. (e) 2 to 3 . (v) Nil. (vi) CO. 13 (early). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder. (ix) 64.47". (x) 14.10.1950.

2. TREATMENTS :

1. Control (no manure).
2. 20 lb ./ac. of N as A / S broadcasted on 28.7.1950.
3. 40 lb ./ac. of N as A / S broadcasted on 28.7.1950.
4. 20 lb ./ac. of N as A / S deep layered on 28.7.1950.
5. $40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S deep layered on 28.7.1950.
6. DESIGN :
(i) R.B.D. (ii) (a) 5.
(b) $35^{\prime} \times 20^{\prime}$.
(iii) 9.
(iv) (a) $20^{\prime} \times 6^{\prime}$.
(b) $19^{\prime} \times 5^{\prime} 3^{\prime \prime}$.
(v) $6^{\circ} \times 4.5^{\prime \prime}$. (vi) Yes.
7. GENERAL :
(i) Satisfactory. (ii) Helminthosporium attack was observed on seeds. 2-3 seeds are attacked in most of the panicles. (iii) Height measurement and number of tillers, effective tillers per plant at time of harvest, straw and grain yield. (iv) (a) No. (b) -. (c) —. (v) (a) and (b) Nil. (vi) and (vii) Nil.
8. RESULTS:
(i) 1955 lb./ac.
(ii) $145.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1747
2.	1882
3.	2035
4.	2009
5.	2101
S.E./mean	$=48.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 51(14). Type :- 'M'.

Object :-To compare the efficiency of deep layer application of A / S with that of surface application.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) N.A. (b) Refer item 11 on page 1. (iii) 13.6.1951/2.8.1951. (iv) (a) 2-3 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) Bulk planting. (e) 2 -3. (v) Nil. (vi) T-90 (late) (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand-weeding. (ix) 65.32°. (x) 21.12.1951.
2. TREATMENTS :
3. Control (no manure).
4. Deep layer application of manure on 7.9.1951.
5. Surface application of manure on 7.9.1951.
6. DESIGN:
(i) R.B.D. (ii) (a) 3. (b) $66^{\prime} \times 66^{\prime}$. (iii) 6 . (iv) (a) $66^{\prime} \times 22^{\prime}$. (b) $64^{\prime} \times 20^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
7. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Grain and straw yield. (iv) (a) No. (b) -. (c) -. (v) (a) Fakirpada and Nimeisapur (intensive cultivation centres). (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $2662 \mathrm{lb} . / \mathrm{ac}$.
(ii) $78.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	2541
2.	2768
3.	2676
S.E $/$ mean	$=31.92 \mathrm{lb} . / \mathrm{ac}$.

> Crop :- Paddy (Kharif). Ref :- C.R.R.I. 51(3). Type :- 'M'.

Object:-To study the response of Paddy to organic and inorganic manures.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 17.6.1951/27.7.1951.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi)

T 1242 (late). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 65.32'. (x) 6.12.1951.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as compost: $C_{0}=0, C_{1}=30, C_{2}=60$ and $C_{3}=90 \mathrm{Jb} . / \mathrm{ac}$.
(2) 3 levels of N as $A / S: A_{0}=0, A_{1}=15$ and $A_{2}=30 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN:
(i) 4×3 Fact. in R.B.D.
(ii) (a) 12 .
(b) N.A. (iii) 4 .
(iv) (a) $19^{\prime} \times 30^{\prime}$.
(b) $17^{\prime} \times 28^{\prime}$. (v) 1^{\prime} alround.
(vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Height and ear-length measurements, no. of tillers, straw and grain yicld. (iv) (a) 1951-contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $3221 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $210.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Interaction $\mathbf{C} \times \dot{\mathrm{A}}$ is highly significant. C effect is significant. A effect is not significant.
(iv) Av. yield of grain in lb ./ac.

	$\mathbf{C}_{\mathbf{0}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}}$
$\mathbf{A}_{\mathbf{0}}$	3136	3311	3278	3008
$\mathbf{A}_{\mathbf{1}}$	3100	3180	3286	3348
$\mathbf{A}_{\mathbf{2}}$	3252	3355	3113	3282
Mean	3163	3282	3226	3213

S.E. of C marginal means	$=60.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of A marginal means	$=52.6 \mathrm{lb} . / \mathrm{a} 2$.
S.E. of body cf table	$=105.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 52(9). Type :- 'M'.

Object :-To study the response of Paddy to organic and inorganic manures.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 18.6.1952/6.8.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T 1242 (late). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 56.03*. (x) 12.12.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as compost: $C_{0}=0, C_{1}=30, C_{2}=60$ and $C_{3}=90 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of N as $A / S: N_{0}=0$, and $N_{1}=15$ and $N_{2}=30 \mathrm{lb}$./ac.
3. DESIGN :
(i) 4×3 Fact. in R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4 . (iv) (a) $19^{\prime} \times 30^{\prime}$. (b) $17^{\prime} \times 28^{\prime}$. (v) 1^{\prime} border alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Height and ear-length measurements. No. of tillers, straw and grain yield.
(iv) (a) 1951-contd.
(b) No.
(c) N.A.
(v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3019 \mathrm{lb} . / \mathrm{ac}$.
(ii) $317.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb ./ac.

	C_{0}	C_{1}	C_{8}	C_{3}	Mean
N_{0}	2987	3073	3218	2816	3023
N_{1}	2929	3045	2973	3083	3007
N_{2}	3097	2964	3083	2969	3028
Mean	3004	3027	3091	2956	3019
S.E. of C marginal means $=9$					
S.E. of N marginal means $\quad=79.2$					
S.E. of body of table				$=158.5 \mathrm{lb} . / \mathrm{ac}$.	

Cróp :- Paddy (Kharif). Ref:- C.R.R.I. 53(13). Type:- 'M'.
Object .-To study the response of Paddy to organic and inorganic manures.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 22.6.1953/31.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c)-. (d) N.A. (e) 2 to 3 . (v) Nil. (vi) T-1242 (late). (vii) Irrigated. (viii) 2 and 3 intercultures with Japanese weeder and one hand weeding.. (ix) 46.02°. (x) 21.12 .1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as compost : $\mathrm{C}_{0}=0, \mathrm{C}_{1}=30, \mathrm{C}_{2}=60$ and $\mathrm{C}_{3}=90 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of N as $A / S: N_{0}=0, N_{1}=15$ and $N_{2}=30 \mathrm{lb}$./ac.
3. DESIGN:
(i) 4×3 Fact. in R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4 . (iv) (a) $19^{\prime} \times 30^{\prime}$. (b) $17.3^{\prime} \times 28.3^{\prime}$. (v) 1 row all round. (vi) Yes.

4. GENERAL :

(i) Good. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1951-contd. (b) No. (c) N.A. (v) (a) and (b) Nıl. (vi) and (vii) Nil.

5. RESULTS:

(i) $3639 \mathrm{lb} . / \mathrm{ac}$.
(ii) $290.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) N alone is highly significant.
(iv) Àv, yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref:- C.R.R.I. 48(2). Type :- 'M'.
Object:-To find out the effects of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in different ways on Paddy yield.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 24.6.19+8/3.8.1948. (iv) (a) 4 ploughings, laddering and levelling. (b) Nil. (c) and (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-812 (early). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 53.45*. (x) 8.121948.

2. TREATMENTS:

$\mathrm{T}_{1}=$ Super at $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ broadcast on surface of the puddled and levelled land and transpianting done. $\mathrm{T}_{2}=$ Puddling, draining of water, making furrows with country plough and then applying 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in furrows.
3. DESIGN :
(i) R.B.D. (ii) (a) 2 . (b) N.A. (iii) 6 . (iv) (a) $60^{\prime} \times 8^{\prime}$. (b) $55^{\prime} \times 6^{\circ}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1948 to 1951. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2587 \mathrm{lb} . / \mathrm{ac}$.
(ii) $62.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment difference is not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment Av. yield
$\mathrm{T}_{1} \quad 2592$
$\mathrm{T}_{2} \quad 2582$
S.E. $/$ mean $\quad=25.68 \mathrm{lb} . / \mathrm{ac}$.

Object :-To study the best time and method of application of $\mathrm{P}_{2} \mathrm{O}_{5}$ to Paddy crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Biri. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 1.7.1949/5.6.1949.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil.
(i) N-136. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) $46.00^{\prime \prime}$.
(x) $25,26.10 .1949$.
2. TREATMENTS :
$\mathrm{T}_{1}=$ Biri crop $+30 \mathrm{lb} . \mathrm{P}_{2} \mathrm{O}_{5}$ applied to Biri. $\mathrm{T}_{2}=$ Biri crop+no $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Biri. $\mathrm{T}_{\mathrm{g}}=$ Biri crop+ 30 lb . $\mathrm{P}_{2} \mathrm{O}_{5}$ just before transplanting paddy. $\mathrm{T}_{4}=$ Fallow $+30 \mathrm{lb} . \mathrm{P}_{2} \mathrm{O}_{5}$ at the time of sowing Biri. $\mathrm{T}_{5}=$ Fallow+no $\dot{\mathrm{P}}_{2} \mathrm{O}_{5} . \mathrm{T}_{6}=$ Fallow $+30 \mathrm{lb} . \mathrm{P}_{2} \mathrm{O}_{5}$ just before transplanting paddy.
3. DESIGN :
(i) R.B.D. (ii) (a) 6 . (b) N.A. (iii) 4 . (iv) $62^{\prime} \times 19.5^{\prime}$. (b) $56^{\prime} \times 17.5^{\prime}$. (v) $3^{\prime} \times 1^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1948 to 1951 . (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $6 \in 8.7 \mathrm{lb} . / \mathrm{ac}$.
(ii) N.A.
(iii) Treatments are not significantly different.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
T_{1}	708.1
$\mathrm{~T}_{2}$	593.4
$\mathrm{~T}_{3}$	790.3
$\mathrm{~T}_{4}$	513.4
$\mathrm{~T}_{5}$	551.2
$\mathrm{~T}_{8}$	855.6

C.rop :-Paddy (Kharif) Ref:- C.R.R.I. 50(6). Type :- 'M'.

Object :-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$, applied directly and through moong, on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c; N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 17.6.1950/12.7.1950. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) Beni bhog (early). (vii) Irrigated, (viii) 2-3 intercultures with Japanese weeder and one hand weeding (ix) 64.47°. (x) 13.10.1950.

2. TREATMENTS:

$\mathrm{T}_{1}=$ Moong $+50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super at sowing of moong. $\mathrm{T}_{2}=$ Moong alone. $\mathrm{T}_{3}=$ Moong +50 lb ./ac. of $\mathrm{P}_{3} \mathrm{O}_{5}$ as Super at transplanting of Paddy. $\mathrm{T}_{4}=$ Fallow +50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super at the time when moong was sown in other plots. $\mathrm{T}_{5}=$ Fallow. $\mathrm{T}_{6}=$ Fallow +50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super at transplanting of Paddy.
3. DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $62^{\prime} \times 14^{\prime}$. (b) $60^{\prime} \times 12^{\prime}$ (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1948 to 1951. (b) No. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $1194 \mathrm{lb} / \mathrm{ac}$.
(ii) $175.3 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Av. yield of grain in	
Treatment	Av. yield
\mathbf{T}_{1}	1289
$\mathbf{T}_{\mathbf{2}}$	1125
$\mathrm{~T}_{3}$	1107
\mathbf{T}_{4}	1240
$\mathrm{~T}_{5}$	1119
$\mathrm{~T}_{\mathbf{6}}$	1283
S.E./mean	$=87.65 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 51(5). Type :- 'M'.

Object :-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$, applied directly and through moong, on the yield of Paddy.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 13.6.1951/22.7.1951. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2-3. (v) Nil. (vi) Benibhog (early). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) $65.32^{\prime \prime}$. (x) $24,25.10 .1951$.

2. TREATMENTS:

$\mathrm{T}_{1}=$ Moong +50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super at sowing of moong, $\mathrm{T}_{2}=$ Moong alone, $\mathrm{T}_{3}=$ Moong $+50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{\mathbf{3}}$ as Super at transplanting of Paddy, $\mathrm{T}_{4}=$ Fallow +50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super at the time when moong was sown in other plots, $\mathrm{T}_{5}=$ Fallow, $\mathrm{T}_{6}=$ Fallow +50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super at transplanting of Paddy.
3. DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $62^{\prime} \times 14^{\prime}$. (b) $60^{\prime} \times 12^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Free from disease. (iii) Height and ear-length measurements, no. of tillers and straw and grain yield. (iv) (a) 1948-1951. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1772 \mathrm{lb} / \mathrm{ac}$.
(ii) $164.6 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
$\mathbf{T}_{\mathbf{1}}$	1760
$\mathbf{T}_{\mathbf{2}}$	1760
\mathbf{T}_{3}	1821
\mathbf{T}_{4}	1900
\mathbf{T}_{5}	1585
\mathbf{T}_{6}	1808
S.E./mean	$=82.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Fharif) Ref:- C.R.R.I. 49(11). Type:- 'M'.

Object :-To study the effect of continuous application of A / S with and without compost on the yield of Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 5.7.1949/2.8.1949. (iv) 'a) 4 ploughings, laddering and levelling. (b) Transplanted and bulk planted. (c) -. (d) -. (e) 2-3. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 46°. (x) 7.12.1949.
2. TREATMENTS :

Main-plot treatments :

2 levels of compost : $\mathrm{C}_{0}=0$ and $\mathrm{C}_{1}=100 \mathrm{md} . / \mathrm{ac}$
Sub-plot treatments:
5 levels of N as A / S : $N_{0}=0, N_{1}=20, N_{2}=40, N_{3}=60$ and $N_{4}=80 \mathrm{lb}$./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $60^{\prime} \times 10.5^{\circ}$.
(b) $58^{\prime} \times 8.5^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Blast incidence in heavily manured plots. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) -. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1773 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $242.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $198.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) N effect is highly significant. Interaction $\mathrm{C} \times \mathrm{N}$ is significant. C effect is not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	N_{0}	N_{1}	N_{2}	N_{3}	N_{4}	Mean
C_{0}	1532	1624	1987	1906	1683	1746
C_{1}	1743	1896	2102	1889	2374	1801
Mean	1637	1760	2044	1897	1528	1773

S.E. of difference of two

1. \mathbf{C} marginal means	$=76.7 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means	$=99.2 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of C	$=140.3 \mathrm{lb} . / \mathrm{ac}$.
4. C means at the same level of $\mathrm{N}!$	$=147.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 50(1). Type :- 'M'.
Object :-To study the effect of continuous application of A / S with and without compost on the yield of Paddy.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 30.7.1950. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk transplanting. (c) -. (d) and (c) N.A. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and hand weeder. (ix) 64.47 . (x) N.A.
2. TREATMENTS :

Main-plot treatments:
2 levels of compost : $\mathrm{C}_{0}=0$ and $\mathrm{C}_{\mathbf{1}}=100 \mathrm{md} . / \mathrm{ac}$.
Sub-plot treatments:
5 levels of N as $A / S: N_{0}=0, N_{1}=20, N_{2}=40, N_{3}=60$ and $N_{4}=80 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $60^{\prime} \times 10.5^{\prime}$. (b) $58^{\prime} \times 8.5^{\circ}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Blast incidence in heavily manured plots. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1949 -contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2421 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $454.0 \mathrm{lb} . / \mathrm{ac}$.
(b) $368.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) N effect alone is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	\mathbf{N}_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	\mathbf{N}_{3}	\mathbf{N}_{4}	Mean
C_{0}	2152	2524	2746	2547	2463	2486
C_{1}	2264	2778	2624	2087	2024	2355
Mean	2208	2651	2685	2317	2243	2421

S.E. of difference of two
$\begin{array}{ll}\text { 1. } \mathrm{C} \text { marginal means } & =143.6 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } N \text { marginal means } & =184.4 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } N \text { means at the same level of } \mathrm{C} & \\ \text { 4. } C \text { means at the same level of } \mathrm{N} & \\ & =260.9 \mathrm{lb} . / \mathrm{ac} . \\ \end{array}$

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 51(1). Type :~'M'.
Object :-To study the effect of continuous application of A / S with and without compost on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1.
(iii) $17.6 .1951 / 30.7 .1951$. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk planting. (c) - . (d) and
(e) N.A. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) $65.32^{\prime \prime}$. (x) 29.11.1951.

2. TREATMENTS:

Main-plot treatments:
2 levels of compost: $\mathrm{C}_{0}=0$ and $\mathrm{C}_{1}=100 \mathrm{md} . / \mathrm{ac}$.
Sub-plot treatments :
5 levels of N as $A / S: N_{0}=0, N_{1}=20, N_{2}=40, N_{3}=60$ and $N_{4}=80 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $60^{\prime} \times 10.5^{\prime}$. (b) $58^{\prime} \times 8.5^{\circ}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Blast incidence in heavily manured plots. (iii) Height and ear-length measurements, No. of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
$\begin{array}{lll}\text { (i) } 2135 & \mathrm{lb} . / \mathrm{ac} .\end{array}$
(ii) (a) $351.2 \mathrm{lb} . / \mathrm{ac}$.
(b) $217.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) N and $\mathrm{N} \times \mathrm{C}$ effects are highly significant. C effect is not significant.
(iv) Av. yieid of grain in $\mathrm{lb} . / \mathrm{ac}$.

	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$	$\mathrm{~N}_{\mathbf{4}}$	Mean
C_{0}	1988	2339	2395	2355	1999	2215
C_{1}	2319	2361	2155	2077	1364	2055
Mean	2154	2350	2275	2216	1682	2135

S.E. of difference of two

1. C marginal means $\quad=111.1 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means
$=108.7 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of C
$=153.7 \mathrm{lb} . / \mathrm{ac}$.
4. C means at the same level of N
$=176.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 52(1). Type :- 'M'.
Object :-To study the effect of continuous application of A / S with and without compost on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 18.6.1952/31.7.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk planting. (c)-. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2 and 3 intercultures with Japanese weeder and hand weeder. (ix) $56.03^{\prime \prime}$. (x) 25.11.1952.

2. TREATMENTS :

Main-plot treatments :
2 levels of compost : $\mathrm{C}_{0}=0$ and $\mathrm{C}_{1}=100 \mathrm{md} . / \mathrm{ac}$.
Sub-plot treatments :
5 levels of N as $A / S: N_{0}=0, N_{1}=20, N_{2}=40, N_{3}=60$ and $N_{4}=80 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Sp it-plot. (ii) (a) 2 main-plots/block and 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $60^{\prime} \times 10.5^{\prime}$. (b) $58^{\prime} \times 8.5^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2100 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $164.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $217.4 \mathrm{lb} / \mathrm{ac}$.
(iii) Interaction $\mathrm{C} \times \mathrm{N}$ is highly significant. N effect is highly significant. C is not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	\mathbf{N}_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	\mathbf{N}_{3}	\mathbf{N}_{4}	Mean
C_{0}	1864 1919 2099 2287 2110 2052 2419 2328 2222 1702	2055 2145				
1958	2169	2214	2254	1906	2100	

S.E. of difference of two

1. C marginal means $\quad=52.0 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means $\quad=108.7 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of $\mathrm{C} \quad=153.7 \mathrm{lb} . / \mathrm{ac}$.
4. C means at the same level of $N \quad=146.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 53(1). Type :- 'M'.
Object :-To study the effect of continuous application of A / S with and without compost on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 22.6.1953/24.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c)-. (d) $10^{\circ} \times 6^{\prime \prime}$.
(e) 2 to 3. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2 weedings with Japanese double weeder and 1 weeding with hand weeder. (ix) $46.02^{\prime \prime}$. (x) $1,2.12 .1953$.
2. TREATMENTS :

Main-plot treatments :
2 levels of compost : $\mathrm{C}_{\mathbf{0}}=0$ and $\mathrm{C}_{\mathbf{1}}=100 \mathrm{md} . / \mathrm{ac}$.
Sub-plot treatments :
5 levels of N as A/S : $\mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40, \mathrm{~N}_{3}=60$ and $\mathrm{N}_{4}=80 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block and 5 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $60^{\prime} \times 10.5^{\prime}$. (b) $58.33^{\prime} \times 8.83^{\prime}$. (v) 1 row all round. (vi) Yes.
4. GENERAL :
(i) Good. Serious lodging in heavily manured plots on 20.10.1953. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $2921 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $244.2 \mathrm{lb} . / \mathrm{ac}$.
(b) $299.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) N effect and interaction $\mathrm{C} \times \mathrm{N}$ are highly significant. C effect is not significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{8}	N_{3}	N_{4}	Mean
C_{0}	2162	2729	3232	3272	3013	2882
C_{1}	2854	3288	3245	3056	2362	2961
Mean	2508	3009	3239	3164	2688	2921

S.E. of difference of two

1. C maginal means $\quad=77.2 \mathrm{lb} . / \mathrm{ac}$.
2. N margina! means
$=149.5 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of C
$=211.4 \mathrm{lb} . / \mathrm{ac}$.
4. \mathbf{C} means at the same level of \mathbf{N}
$=204.2 \mathrm{lb} / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 50(5). Type :- 'M'.

Object :-To study the response of Paddy to dhaincha and A/S.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1 . (iii) 【21.6.1950/28.7.1950. (iv)
(a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (c) 2 to 3. (v) Nil. (vi) T-90. (late) (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 64.47°. (x) 20.12.1950.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of N as $A / S: N_{0}=0, N_{1}=10, N_{2}=20$ and $N_{3}=30 \mathrm{lb} . / a c$.
(2) 4 levels of N as dhaincha: $D_{0}=0, D_{1}=10, D_{2}=20$ and $D_{2}=30 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $14^{\prime} \times 31.5^{\prime}$. (b) $12^{\prime} \times 29.5^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) No. (b), (c) No. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2577 \mathrm{lb} . / \mathrm{ac}$.
(ii) $198.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Effects of N and D are highly significant while interaction is not significant.
(iv) Av. yield of grain in lb./ac.

	D_{0}	D_{1}	D_{2}	D_{3}	Mean
N_{0}	2181	2376	2763	2694	2503
N_{1}	2220	2604	2473	2636	2483
N_{2}	2429	2745	2655	2733	2640
N_{3}	2480	2675	2781	2791	2682
Mean	2327	2600	2668	2713	2577
S.E. of any marginal mean				$=49.5 \mathrm{lb} . / \mathrm{ac}$.	
S.E. of body of the table				$=99.1 \mathrm{lb} . / \mathrm{ac}$.	

Crop :-Paddy (Kharif). Ref :- C.R.R.I. 51(4). Type :- 'M'.

Object :-To study the response of Paddy to dhaincha and A/S.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) $17.6 .1951 / 3.8 .1951$. (iv) (a) 4 ploughings. laddering and levelling. (b) Transplanting. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-90. (late) (vii) Irrigated. (viii) $2-3$ intercultures with Japanese weeder and one hand weeding. (ix) 65.32^{*}. (x) 15, 16.12.1951.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as $A / S: N_{0}=0, N_{1}=10, N_{2}=20$ and $N_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of N as dhaincha: $D_{0}=0, D_{1}=10, D_{2}=20$ and $D_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $14 \times 31.5^{\prime}$. (b) $12^{\prime} \times 29.5^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL:
(i) Very satisfactory. (ii) Nil. (iii) Straw, height, tillers, ear-length and yiels. (iv) (a) 1950 -contd. (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2725 \mathrm{lb} . / \mathrm{ac}$.
(ii) $120.6 \mathrm{lb} . \mathrm{ac}$.
(iii) Effects of N and D are highly significant while interaction is rut significant.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ca}$.

	D_{0}	D_{1}	D_{2}	D_{3}	Mean
N_{0}	2327	2844	2701	2693	2641
N_{1}	2515	2783	2756	2756	2704
N_{2}	2752	2744	2844	2780	2780
N_{3}	2708	2806	2890	2697	2775
Mean	2575	2795	2798	2731?	2725
S.E. of any marginal mean S.E. of body of table				$\begin{aligned} & =30.2 \mathrm{lb} . / \mathrm{ac.} \\ & =60.3 \mathrm{lb} . / \mathrm{ac.} \end{aligned}$	

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 52(3). Type :- 'M'.
Object :-To study the response of Paddy to dhanicha and A/S.

1. B \leqq SAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) $16.6 .1952 / 31.7 .1952$. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (ej 2-3. (v) Nil. (vi) T-90 (late). (vii) Irrigated. (viii) $2-3$ intercultures with Japanese weeder and one hand .weeding. (ix) $56.03^{\prime \prime}$. (x) 18.12.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as $\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20$ and $\mathrm{N}_{3}=30 \mathrm{lb}$./ac.
(2) 4 levels of N as dhaincha: $\mathrm{D}_{0}=0, \mathrm{D}_{1}=10, \mathrm{D}_{2}=20$ and $\mathrm{D}_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $14^{\prime} \times 21 \frac{1}{2}^{\prime}$. (b) $10^{\prime} \times 19 \frac{1}{2}^{\prime}$. (v) $2^{\prime} \times 1^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Hight and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 19:0-contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) 2431 lb ./ac.
(ii) $255.1 \mathrm{lb} / \mathrm{ac}$.
(iii) Effects of N and D are highly significant while interaction is not significant.
(iv) Av. yield of grain in lb./ac.

	D_{0}	D_{1}	D_{2}	D_{3}	Mean
N_{0}	1735	2357	2426	2506	2256
N_{1}	2041	2335	2243	2616	2309
N_{2}	2375	2760	2603	2725	2616
N_{3}	2387	2506	2748	2534	2544
Mean		2489	2505	2595	2431
	ny ma	mean		$=63$ $=127$	

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 53(4). Type :- ' M '.
Object :-To study the response of Paddy to dhanicha and A/S.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 23.6.1953/5.8.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) 一. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-90 (late). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 46.02°. (x) 16.12.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as $A / S: A_{0}=0, A_{1}=10, A_{2}=20$ and $A_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of N as dhaincha: $\mathrm{D}_{0}=0, \mathrm{D}_{1}=10, \mathrm{D}_{2}=20$ and $\mathrm{D}_{3}=30 \mathrm{lb}$./ac.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $14^{\prime} \times 21 \frac{1}{2}^{\prime}$. (b) $12^{\prime} \times 19 \frac{1^{\prime}}{}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Height and ear length measurements, no. of tillers, straw and grain yield.
(iv) (a) 1950-contd.
(b) No.
(c) N.A.
(v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3033 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $229.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Effect of A and D is highly significant while interaction is not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	$\mathbf{D}_{\mathbf{0}}$	$\mathbf{D}_{\mathbf{1}}$	\mathbf{D}_{2}	\mathbf{D}_{3}	Mean
$\mathbf{A}_{\mathbf{0}}$	2429	2782	\therefore	2984	3118
$\mathbf{A}_{\mathbf{1}}$	2658	2965	3123	3244	2831
$\mathbf{A}_{\mathbf{2}}$	2939	3103	3254	3146	2997
$\mathbf{A}_{\mathbf{3}}$	3016	3228	3313	3220	3110
Mean	2760	3022	3168	3182	303

$\begin{array}{ll}\text { S.E. of any marginal mean } & =57.3 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =114.5 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop :- Paddy (Kharif). Ref:-C.R.R.I. 50(15). Type :- 'M'.
Object :-To study the effects of deep layering and surface application of A / S at different levels on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 2.1.1951/8.2.1951.
(iv) (a) 2 to 3 ploughings, laddering and levelling. (b) Transplanted. (c)-. (d) N.A. (e) 2 to 3. (v) Nil.
(vi) CO. 13 (early). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) N.A. (x) 27.4.1951.
2. TREATMENTS :

Main-plot treatments :
3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30 \mathrm{lb}$./ac. -surface application and $\mathrm{P}_{2}=30 \mathrm{lb}$./ac.-deep layering. Sub-plot treatments :

7 levels of N as $A / S: N_{0}=0, N_{1}=10 \mathrm{lb}$./ac.-surface application, $N_{2}=20 \mathrm{lb}$./ac.-surface application, $\mathrm{N}_{3}=40 \mathrm{lb} . / \mathrm{ac}$.-surface application, $\mathrm{N}_{4}=10 \mathrm{lb} . / \mathrm{ac}$.-deep layering, $\mathrm{N}_{5}=$ 20 lb ./ac.-deep layering and $\mathrm{N}_{6}=40 \mathrm{lb}$./ac.-deep layering.
Super and A/S applied on 22.2.1951.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block and 7 sub-plots/main-plot. (b) $40 \frac{1}{2}^{\prime} \times 20^{\prime}$. (iii) 6 . (iv) (a) $4 \frac{1}{2}^{\prime} \times 20^{\circ}$. (b) $4^{\prime} \times 191^{\prime}$. (v) $3^{\prime \prime}$ alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Stem borer attack observed on 5.3.1951. (iii) Height measurement, no. of tillers, straw and grain yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1582 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $487.8 \mathrm{lb}_{1} / \mathrm{ac}$.
(b) $139.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) N effect and interaction $\mathrm{N} \times \mathrm{P}$ is highly significant. N vs no N and deep vs surface application is highly significant. P effect is not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	${ }^{1} N_{0}$	N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	Mean
P_{0}	1402	1340	1497	1508	1458	1871	1798	1553
P_{1}	1346	1441	1469	1491	1575	1709	1781	1545
P_{2}	1458	1592	1580	1698	1620	1765	1821	1648
Mean	1402	1458	1515	1566	1551	1782	1800	1582

S.E. of difference of two

1. P marginal means
$=106.4 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal mean
$=46.4 \mathrm{lb} . / \mathrm{ac}$.
3. N means.at the same level of P
$=80.4 \mathrm{lb} . / \mathrm{ac}$.
4. P means at the same level of $\mathrm{N} \quad=129.9 \mathrm{lb} \cdot / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 51(16). Type:- 'M'.
Object :-To study the effect of deep layering and surface application of P along with N on Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer ltem 11 on 「page 1. (iii) 28.7.1951. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 65.32^{\prime}. (x) 24.11 .1951 .

2. TREATMENTS :

Main-plot treatments :
3 levels of N as $\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$.-surface application and $\mathrm{N}_{2}=20 \mathrm{lb}$./ac.-deep layered.
Sub-plot treatments :
4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=40, \mathrm{P}_{2}=80$ and $\mathrm{P}_{3}=120 \mathrm{lb} . / \mathrm{ac}$.
A/S applied on 20.8.1951 and Super on 28.7.1951.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block and 4 sub-plots/main-plot. (b) $40.5^{\prime} \times 15^{\prime}$. (iii) 6. (iv) (a) N.A. (b) $15^{\prime} \times 9^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Height measurements, no. of tillers, straw and grain yield. (iv) (a) No. (b)一. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2564 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $340.8 \mathrm{lb} . / \mathrm{ac}$.
(b) $274.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	Mean
$-\mathrm{P}_{0}$	2582	2550	2675	2602
P_{1}	2525	2592	2511	2543
P_{2}	2736	2490	2436	2554
P_{3}	2533	2617	2524	2558
Mean	2594	2562	2537	2564

S.E. of difference of two
$\begin{array}{ll}\text { 1. } \mathrm{N} \text { marginal means } & =98.4 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } P \text { marginal means } & =91.6 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } P \text { means at the same level of } \mathrm{N} & =158.7 \mathrm{lb} . / \mathrm{ac} . \\ \text { 4. } \mathrm{N} \text { means at the same level of } \mathrm{P} & =169.0 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 53(22). Type :- ‘M'.
Object :-To study the effect of deep placement of N in combination with P on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 23.6.1953. (iv)
(a) 4 ploughings, laddering and levelling. (b) Broadcast. (c) $60 \mathrm{lb} / \mathrm{ac}$. (d) and (e) -. (v) Nil.
(vi) PTB 10 (late). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. 2 bushening. (ix) $46.02^{\prime \prime}$. (x) $11,12.10 .1953$.

2. TREATMENTS :

Main-plot treatments :
3 levels of N as $\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
Sub-plot treatments :
3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=50$ and $\mathrm{P}_{2}=100 \mathrm{lb}$./ac.
A / S applied on 29.7.1953 and $\mathrm{P}_{2} \mathrm{O}_{5}$ on 27.6.1953.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication; 3 sub-plots/main-plot. (b) $99^{\prime} \times 63^{\prime}$. (iii) 4. (iv) (a) $31^{\prime} \times 20^{\prime}$. (b) $28^{\prime} \times 17^{\prime}$. (v) $1 \frac{1}{2}^{\prime}$ border all round the sub-plots. (vi) Yes.

4. GENERAL :

(i) Good. (ii) N.A. (iii) Height measurements, no. of tillers, straw and grain yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $2335 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $121.3 \mathrm{lb} . / \mathrm{ac}$.
(b) $93.3 \mathrm{lb} / \mathrm{ac}$.
(iii) Only N effect is significant.
(ii) Av. yield of grain in lb ./ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	$\mathbf{N}_{\mathbf{2}}$	Mean
\mathbf{P}_{0}	2181	2156	2187	2175
\mathbf{P}_{1}	2449	2393	2372	2405
2446	2420	2407	2424	
Mean	2359	2323	2322	2335

S.E. of difference of two

1. N marginal means
$=49.5 \mathrm{lb} . / \mathrm{ac}$.
2. P marginal means
$=38.1 \mathrm{lb} . / \mathrm{ac}$.
3. P means at the same level of N
$=66.0 \mathrm{lb} . / \mathrm{ac}$.
4. \mathbf{N} means at the same level of \mathbf{P}
$=73.2 \mathrm{lb} / \mathrm{ac}$.

Crop:- Paddy (Kharif). Ref:- C.R.RI. 51(22). Type :- 'M'.
Object :-To study the effect of different minor elements on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 27.6.1951. (iv) (a) 4 ploughings, laddering and levelling. (b) Sown in puddled land. (c) 一. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 1 to 2 . (v) N.A. (vi) CO. 13. (medium). (vii) Irrigated. (viii) 2. weedings. (ix) N.A. (x) 23.10.1951.
2. TREATMENTS:

Main-plot treatments :
2 doses of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$.
Sub. plot treatments :
5 minor elements: $\mathrm{M}_{0}=0, \mathrm{M}_{1}=$ Borax at $20 \mathrm{lb} . / \mathrm{ac} ., \mathrm{M}_{2}=$ Borax at $40 \mathrm{lb} . / \mathrm{ac}$., $\mathrm{M}_{3}=\mathrm{CuSO}_{4}$ at $10 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{M}_{4}=\mathrm{CuSO}_{4}$, at $20 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/block; 5 sub-plots/main-plot. (b) $473^{\prime} \times 411^{\prime \prime}$. (iii) 6 . (iv) (a) $8^{\prime} 3^{\prime \prime} \times 20^{\prime \prime}$.
(b) $6^{\prime} 9^{\prime \prime} \times 17^{\prime}$. (v) 2 lines north and 1 line south and lengthwise 3^{\prime} on both sides east and west. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Germination count and earhead count. (iv) (a) 1951 -continuing. (b) No. (c) Yes. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $811 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $305.6 \mathrm{lb} . / \mathrm{ac}$.
(b) $238.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only N effect is highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	Mo	M_{1}	M_{2}	M_{3}	M_{4}	Mean
N_{0}	493	490	626	706	569	577
N_{1}	846	979	1078	1063	1253	1044
Mean	670	735	852	885	911	811

S.E. of difference of two

1. N marginal means $\quad=78.9 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means $\quad=97.3 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of $N \quad=137.6 \mathrm{lb} . / \mathrm{ac}$.
4. N means at the same level of $\mathrm{M} \quad=146.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 52(23). Type :- 'M'.

Object :-To study the effect of different minor elements on the yield of upland Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loamy. (b) Refer item 11 on page 1. (iii) N.A. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanting. (c) -. (d) N.A. (e) 1 to 2 . (v) 20 lb . /ac. of N as A/S on 21,22.8.1952. (vi) CO. 13 (early). (vii) Irrigated. (viii) 2 hand weedings. (ix) N.A. (x) 23.10.1952.

2. TREATMENTS :

1. Control (no manner).
2. CuSO_{4} at 20 lb ./ac. dissolved in water $100 \mathrm{gls} . / \mathrm{ac}$.
3. MnSO_{4} at $20 \mathrm{lb} . / \mathrm{ac}$. dissolved in water 100 gls ./ac.
4. ZnSO_{4} at $20 \mathrm{lb} . / \mathrm{ac}$. dissolved in water $100 \mathrm{gls} . / \mathrm{ac}$.
5. Borax at $20 \mathrm{lb} . / \mathrm{ac}$. dissolved in water $100 \mathrm{gls} . / \mathrm{ac}$.
6. MgSO_{4} at $50 \mathrm{lb} . / \mathrm{ac}$. dissolved in water 100 gls ./ac.
7. Ammonium Molybdate 10 lb ./ac. dissolved in water $100 \mathrm{gls} . / \mathrm{ac}$.
8. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) $61^{\prime} \times 30^{\prime}$. (iii) 6. (iv) (a) $30^{\prime} \times 7^{\prime}$.((b) $28^{\prime} \times 5^{\prime}$. (v) One row alround. (vi) Yes.
9. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw and grain yield. (iv) (a) 1952-53. (b) No. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $1083 \mathrm{lb} / \mathrm{ac}$.
(ii) $121.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. sield of grain in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	1067	5.	1052
2.	1207	6.	992
3.	1042	7.	1067
4.	1157	S.E. $/$ mean	$=49.7 \mathrm{lb} . / \mathrm{ac}$.

> Crop :- Paddy (Kharif). Ref :- C.R.R.I. 49(17). Type :- ‘M'.

Object :-To study the effect of Boron application on yield and growth of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay Loamy. (b) Refer item 11 on page 1. (iii) N.A./12.8 1949. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c)一. (d) $9^{\circ} \times 6^{\circ}$. (e) 1 to 2 . (v) 20 lb ./ac. of N applied at the time of transplanting. (vi) T-1242 (late). (vii) Irrigated. (viii) 2 hand weedings. (ix) N.A. (x) 20.12.1949.
2. TREATMENTS :

Main-plot treatments:
2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments:
6 doses of Boron: $B_{0}=0, B_{1}=5 \frac{1}{2}, B_{2}=11, B_{3}=22, B_{4}=44$ and $B_{5}=88 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/blocic, 6 sub-plots/main-plot. (b) $60^{\prime} \times 29^{\prime}$. (iii) 5. (iv) (a) $14^{\prime} \times 9^{\prime}$. (b) $13^{\prime} 6^{\prime \prime} \times 8^{\prime} 3^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw yield and ear-head count. (iv) (a) 1949-Continuing. (b) No. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2562 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $285.7 \mathrm{lb} . / \mathrm{ac}$.
(b) $235.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Only Neffect is significant.
(iv) Av. yield of grain in lb./ac.

	B_{0}	B_{1}	$\mathbf{B}_{\mathbf{2}}$	B_{3}	B_{4}	B_{5}	Niean
N_{0}	2326	2305	2416	2496	2556	2276	2395
N_{1}	2532	2753	2828	2794	2682	2771	2728
Mean	2429	2529	2625	2645	2619	2529	2562

S.E. of difference of two

1. N marginal means
$=73.8 \mathrm{lb} / \mathrm{ac}$
$=105.2 \mathrm{lb} / \mathrm{ac}$
$=148.8 \mathrm{lb} . / \mathrm{ac}$
$=154.9 \mathrm{lb} . \mathrm{ac}$
2. B marginal means
3. B means at the same level of N
4. \mathbf{N} means at the same level of B

Crop : Paddy (Kharif).

Ref:-C.R.R.I. $50(19)$. Type :- 'M'.
Object :-To study the effect of application of Borax on growth and yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loamy soil. (b) Refer item 11 on page 1. (iii) 31.7.1950.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - (d) N.A. (e) 1 to 2 . (v) N.A.
(vi) T-1145 (medium). (vii) Irrigated. (viii) 2 hand weedings. (ix) N.A. (x) 29.11.1950.
2. TREATMENTS :

6 doses of Borax : $\mathrm{B}_{0}=0, \mathrm{~B}_{1}=5.5, \mathrm{~B}_{2}=11, \mathrm{~B}_{3}=22, \mathrm{~B}_{4}=44$ and $\mathrm{B}_{5}=88 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D
(ii) (a) 6 .
(b) $61 \frac{1}{2} \times 129$
(iii) 8
8. (iv)
(a) $30^{\prime} \times 9$
(b) $23^{\prime} \times i^{\prime}$. (v) 1^{\prime} alround. (vij Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Earhead count, grain and straw yield. (iv) (a) 1949 -contd. (b) Nio. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2544 \mathrm{lb} . / \mathrm{ac}$.
(ii) $131.57 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are not s:gnificant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
\mathbf{B}_{0}	2538
$\mathrm{~B}_{1}$	2525
$\mathrm{~B}_{2}$	2526
$\mathrm{~B}_{3}$	2537
$\mathrm{~B}_{4}$	2575
$\mathrm{~B}_{5}$	2564
S.E./mean	$=46.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).

> Ref :- C.R.R.I. 52(21). Type :- 'M'.
,
Object:-To study the effect of application of phosphate on green manuring crops and subsequent effect of both on yield and growth of Paddy.

1. BASAL CONDITIONS:

(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loamy. (b) Refer item 11 on page 1. (iii) N.A./31.7.1952.
(iv) (a) 4 ploughings, laddering and levelling. (j) Transpianting. (c) - . (d) N.A. (o) 1 to 2 . (v) Nil.
(vi) T-1145 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 17.11.19§2.

2. TREATMENTS :

Main-plot treatments :

3 green manures : $G_{0}=$ No green manure, $G_{1}=$ Dhaincha and $G_{2}=$ Pillipesera.
Sub-plot treatments:
2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=20 \mathrm{lb}$./ac.
Sub-sub-plot treatments :
2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=50 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-split-plot. (ii) (a) 3 main-plots/replication, 2 sub-plots/main-plot; 2 sub-sub-plots/sub-plot. (b) $127^{\prime} \times 66^{\prime}$ (iii) 4. (iv) (a) $32^{\prime} \times 20^{\prime}$. (b) $30^{\prime} \times 18^{\prime}$. (v) 1 row alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain and straw yield, height and number of tillers observations. (iv) (a) No; (b) and (c) -. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2555 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $133.6 \mathrm{lb} . / \mathrm{ac}$.
(b) $157.7 \mathrm{lb} . / \mathrm{ac}$.
(c) $132.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Interaction $\mathrm{N} \times \mathrm{G}$ alone is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	G_{0}	G_{1}	G_{2}	Mean	P_{0}	P_{1}
N_{0}	2451	2621	2506	2526	2519	2534
\mathbf{N}_{1}	2586	2492	2674	2584	2622	2546
Mean	2519	2557	2590	2555	2571	2540
P_{0}	2544	2605	2564			
P_{1}	2494	2509	2616			

S.E. of difference of two

1. G marginal means

$$
=47.23 \mathrm{lb} . / \mathrm{ac}
$$

2. N marginal means
$=45.52 \mathrm{lb} . / \mathrm{ac}$.
3. \mathbf{P} marginal means
$=38.21 \mathrm{lb}$./ac.
4. N means at the same level of \mathbf{G}
$=78.90 \mathrm{lb} . / \mathrm{ac}$.
5. G means at the same level of N $=73.07 \mathrm{lb} . / \mathrm{ac}$.
6. P means at the same level of G
$=66.20 \mathrm{lb} . / \mathrm{ac}$.
7. G means at the same level of P
$=66.50 \mathrm{lb} . / \mathrm{ac}$.
8. P means at the same level of N
$=54.05 \mathrm{lb} . / \mathrm{ac}$.
9. N means at the same level of P

Crop :- Paddy (Kharif).
Ref :- C.R.R.I. 52(22). Type :- 'M'.

Object .-To study the effect of different minor elements alone and in combination with N .

1. BASAL CONDITIONS :
(i) (a) and (b) Paddy.
(c) N.A.
(ii) (a) Clay loam.
(b) Refer item 11 on page 1.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -
(vi) T-1145 (medium). (vii) Irrigated. (viii) 2 hand weedings. (ix) and (x) N.A.

2. TREATMENTS :

Main-plot treatments:
2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments :
7 trace elements : $\mathrm{M}_{0}=$ Control, $\mathrm{M}_{1}=\mathrm{CuSO}_{4}$ at $20 \mathrm{lb} . / \mathrm{ac} ., \mathrm{M}_{2}=\mathrm{MnSO}_{4}$ at $20 \mathrm{lb} . / \mathrm{ac}, \mathrm{M}_{3}=\mathrm{ZnSO}_{4}$ at 20 $\mathrm{lb} . / \mathrm{ac} ., \mathrm{M}_{4}=$ Borax at $20 \mathrm{lb} . / \mathrm{ac} ., \quad \mathrm{M}_{5}=\mathrm{MgSO}_{4}$ at $50 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{M}_{5}=$ Ammonium Nolybdate at $10 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication and 7 sub-plots/main-plot. (b) $63^{\prime} \times 311^{\prime}$. (iii) 6. (iv) (a) N.A. (b) $6^{\prime} 9^{\circ} \times 15^{\prime}$. (v) N.A. (vi) Yes.

4. GENERAL :

(i) Satisfactory.
(ii) N.A.
(iii) Grain yield.
(iv) (a) and (b) No.
(c) Nil.
(v) (a) and
(b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1974 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $331.8 \mathrm{lb} . / \mathrm{ac}$.
(b) $183.3 \mathrm{Ib} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

	M_{0}	M_{1}	M_{8}	M_{3}	M_{4}	M_{5}	M_{6}	Mean
N_{0}	2044	1859	2003	2008	2089	1865	2033	1986
N_{1}	1977	1825	2008	1855	1997	2022	2051	1962
Mean	2011	1842	2006	1931	2043	1943	2042	1974

S.E. of difference of two

1, N marginal means	$=73.51 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means	$=74.84 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of N	
4. N means at the same level of M	
	$=105.83 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 52(24). Type :- 'M'.

Object :-To study the effect of minor elements on the yield and growth of Paddy.

1. BASAL CONDITIONS :

(i) (a) and (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 19.6.1952/N.A. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanting. (c) -. (d) Bulk. (e) 2 to 3 . (v) Nil.
(vi) CO. 13 (early). (vii) Irrigated. (viii) 2 hand weedings. (ix) N.A. (x) 21.10.1952.

2. TREATMENTS :

Main-plot treatments :

2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments :
7 minor elements : $M_{0}=$ Control, $M_{1}=20 \mathrm{lb}$./ac. of Boron, $\mathrm{M}_{2}=40 \mathrm{lb}$./ac. of Boron, $\mathrm{M}_{3}=60 \mathrm{lb} . / \mathrm{ac}$. of Boron, $\mathrm{M}_{4}=10 \mathrm{lb} . / \mathrm{ac}$. of Copper, $\mathrm{M}_{5}=20 \mathrm{lb} . / \mathrm{ac}$. of Copper and $\mathrm{M}_{6}=30 \mathrm{lb} . / \mathrm{ac}$. of Copper.

3. DESIGN:

(i) Split-plot. (ii) (a) 2 main-plots/replication, 7 sub-plots/main-plot. (b) $63 \frac{1}{2}^{\prime} \times 47 \frac{1}{2}^{\prime}$. (iii) 4 . (iv) (a) $7^{\prime} 6^{\circ} \times 23^{\prime \prime}$. (b) $6^{\prime} \times 21^{\prime}$. (v) 1 row alround. (vi) No.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Earhead count and grain/panicle count and \|straw yield. (iv) (a) 1950-N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $841 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $311.0 \mathrm{lb} . / \mathrm{ac}$.
(b) $176.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Only N effect is highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	M_{0}	\mathbf{M}_{1}	M_{2}	M_{3}	M_{4}	$\begin{aligned} & \mathbf{M}_{5} \end{aligned}$	M_{6}	Mean
N_{0}	638	526	657	595	685	528	727	622
N_{1}	1040	1130	1041	1221	1092	940	967	1062
Mean	839	828	849	908	888	734	847	841

S.E. of difference of two

1. N marginal means	$=83.11 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means	$=88.00 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of N	$=124.45 \mathrm{lb} . / \mathrm{ac}$.
4. N means at the same level of M	

Crop :- Paddy (Second Crop). Ref :- C.R.R.I. 51(23). Type :- 'M'.

Object :-To study the effect of different trace elements.

1. BASAL CONDITIONS :
(i) (a) and (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 27.11.1951/8.1.1952.
(iv) (a) 4 ploughings, laddering and levelling. (b) |Transplanted. (c)-. (d) N.A. (e) 1 to 2. (v) N.A.
(vi) Ch. 47 (early). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding were given to the whole experiment. (ix) N.A. (x) 24.4.1952.
2. TREATMENTS̃ :

Main-plot treatments :
3 applications of $\mathrm{N}: \mathrm{N}_{0}=$ no $\mathrm{N}, \mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as surface application and $\mathrm{N}_{2}=20 \mathrm{lb} . / \mathrm{ac}$. of N as deep application.
Sub-plot treatments :
2 minor elements: $\mathrm{M}_{1}=$ copper and $\mathrm{M}_{2}=$ boron.
Sub-sub-plot treatments :
4 levels of copper and boron : For coppor $C_{0}=0, C_{1}=10, C_{2}=20$, and $C_{3}=30 \mathrm{lb}$./ac. while for boron: $B_{0}=0, B_{1}=20, B_{2}=43$ and $B_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-split-plot. (ii) (a) 3 main-plots/block; 2 sub-plots/main-plot and 4 sub-sub-plots/sub-plot. (b) $63.75^{\prime} \times 41.50^{\prime}$. (iii) 6 . (iv) (a) $20^{\prime} \times 4 \frac{1}{2}^{\prime}$. (b) and $18^{\prime} \times 3^{\prime}$. (v) 1 border row alround. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Ear-head count per unit of area, grain and straw yield. (iv) (a) 1951-continuing. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1365 \mathrm{lb} .{ }^{\prime} \mathrm{a}=$.
(ii) N.A.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{2}	Mean		N_{0}	N_{1}	N_{2}	Mean	
C_{0}	1310	1260	1643	1404		B_{0}	1463	1269	1295	1342
C_{1}	1283	1113	1591	1229		B_{1}	1339	1521	1483	1448
C_{2}	1279	1238	1310	1276		B_{2}	1185	1518	1361	1355
C_{3}	1257	1301	1425	1328		B_{3}	1267	1513	1541	1440
Mean	$12 \$ 2$	1223	1492	1334	Mean	1313	1455	1420	1396	

```
Crop :- Paddy (Kharif). Ref:- C.R.R.I. 51(8). Type :- 'M'.
```

Object :-To compare the effect of deep and dry application of A / S with wet and surface application in low lands.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 16.6.1951/13.7.1951.
(iv) (a) 4 plougbings, laddering and levelling. (b) Transplanted. (c)-. (d) N.A. (e) 2 to 3 . (v) Nil.
(vi) T-1224 (late). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding.
(ix) 65.32°. (x) $18,19.12 .1951$.

2. TREATMENTS :

$\mathrm{M}_{\mathbf{0}}=$ control, $\mathrm{M}_{1}=$ dry application of 20 lb ./ac. of $\mathrm{N}, \mathrm{M}_{2}=$ dry application of 40 lb ./ac. of $\mathrm{N}, \mathrm{M}_{3}=$ wet application of $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{4}=$ wet application of $40 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{5}=$ application of $20 \mathrm{lb} / \mathrm{ac}$. of N , one month after transplanting, $\mathrm{M}_{6}=$ application of $40 \mathrm{lb} / \mathrm{ac}$. of N one month after transplanting, $\mathrm{M}_{7}=\mathrm{dry}+$ one month after transplanting application of $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{8}=\mathrm{dry}$ +one month after transplanting application of 40 lb ./ac. of $\mathrm{N}, \mathrm{M}_{\mathrm{g}}=$ wet + one month after transplanting application of $20 \mathrm{lb} . / \mathrm{ac}$. of N , $\mathrm{M}_{10}=$ wet+one month after transplanting application of 40 lb ./ac. of $\mathrm{N}, \mathrm{M}_{11}=$ one month after transplanting+at flowering application of $40 \mathrm{lb} . / \mathrm{ac}$. 【of $\mathrm{N}, \mathrm{M}_{12}=\mathrm{dry}+\mathrm{one}$ month after transplanting+at flowering application of $40 \mathrm{lb} . / \mathrm{ac}$. of N and $\mathrm{M}_{13}=$ wet + one month after transplanting+at flowering application of $40 \mathrm{lb} . / \mathrm{ac}$. of N .
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4 . (iv) (a) $22.5^{\prime} \times 18.5^{\prime}$. (b) $20.5^{\prime} \times 16.5^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory.' Lodging on 27.11.1951. (ii) N.A. (iii) Height and ear length measurements, no. of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS .
(i) $2909 \mathrm{lb} . / \mathrm{ac}$.
(ii) $158 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield	Treatment	Av. yield
$\mathbf{M}_{\mathbf{0}}$	2655	\mathbf{M}_{7}	2752
\mathbf{M}_{1}	3009	\mathbf{M}_{8}	3062
$\mathbf{M}_{\mathbf{2}}$	3054	\mathbf{M}_{9}	$\mathbf{2 7 9 2}$
\mathbf{M}_{3}	2776	\mathbf{M}_{10}	2990
$\mathbf{M}_{\mathbf{4}}$	2995	\mathbf{M}_{11}	3100
\mathbf{M}_{5}	2881	\mathbf{M}_{12}	2898
$\mathbf{M}_{\mathbf{6}}$	2746	\mathbf{M}_{13}	3014

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 51(7). Type :- 'M'.
Object :-To compare the effert of deep and dry application of A/S with wet and surface application in medium lands.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 13.6.1951/ 21.7.51. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) Benibhog (early). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) $65.32^{\prime \prime}$. (x) 16.10.1951.
2. TREATMENTS:

Please refer to C.R.R.I. 51(8) on page 32.
3. DESIGN :
(i) R.B.D. (ii) (a) 14 . (b) N.A. (iii) 4 . (iv) (a) $30.5^{\prime} \times 11.5^{\prime}$. (b) $28.5^{\prime} \times 9.5^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL:
(i) Satisfactary. Lodging on 17.10 .1951 . (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $1883 \mathrm{lb} . / \mathrm{ac}$.
(ii) $216.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield	Treatment	Av. yield
M_{0}	1634	M_{7}	1840
M_{1}	1779	M_{8}	2153
M_{2}	2029	M_{9}	1852
M_{3}	1679	M_{10}	1850
M_{4}	1703	M_{11}	2064
M_{5}	1898	M_{12}	1884
M_{6}	1969	M_{13}	2028
	S.E/mean	lb./ac.	

Crop :- Paddy (Kharif).
Ref :~ C.R.R.I. 52(6).
Type :~ ' M '.
Object :-To compare the efficiencies of dry, deep and wet application of A / S in low lands.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) $16.6 .1952 / 15.7 .1952$. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) 一. (d) N.A. (e) 2 to 3 . (v) Nil. (vi) T-1242 (late). (vii) Irrigated. (viii) Weeding on 14.8.1952. (ix) 56.33". (x) 23.12.1952.
2. TREATMENTS:
3. Surface application of 20 lb ./ac. of N at planting.
4. Surface application of $40 \mathrm{lb} . / \mathrm{ac}$. of N at planting.
5. Surface application of $20 \mathrm{lb} . / \mathrm{ac}$. of N one month after planting.
6. Surface application of $40 \mathrm{lb} . / \mathrm{ac}$. of N one month after planting.
7. Sub-surface dry application of $20 \mathrm{lb} . / \mathrm{ac}$. of \mathbf{N}.
8. Sub-surface dry application of 40 lb ./ac. of N .
9. Sub-surface pellet application at planting of 20 lb ./ac. of N .
10. Sub-surface pellet application at planting of 40 lb ./ac. of N .
11. Sub-surface pellet application one month after planting of $20 \mathrm{lb} . / \mathrm{ac}$. of N .
12. Sub-surface pellet application one month after planting of 40 lb ./ac. of N .
13. Sub-surface dry application of $10 \mathrm{lb} . / a c$. of $\mathrm{I}+$ surface application one month after planting of 10 lb./ac. of N .
14. Sub-surface dry application of 20 lb ./ac. of $\mathbf{N}+$ surface application one month after planting of 20 lb./ac. of N.
15. Sub-surface dry application of 10 lb ./ac. of $N+$ sub-surface pellet application one month after planting of $10 \mathrm{lb} / \mathrm{ac}$. of N .
16. Sub-surface dry application of 20 lb ./ac. of + sub-surface pellet application one month after planting. of 20 lb ./ac. of N .
17. Surface application of 10 lb ./ac. of $\mathbf{N}+$ surface application one month after planting of $10 \mathrm{lb} . / \mathrm{ac}$. of N .
18. Surface application of $20 \mathrm{lb} . / \mathrm{ac}$. of N +surface application one month after planting of 20 lb ./ac. of N .
19. Surface application of $10 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+$ sub-surface pellet application one month after planting of 10 lb./ac. of N.
20. Surface application of 20 lb ./ac. of $\mathrm{N}+$ sub-surface pellet application one month after planting of 20 lb./ac. of N .
21. Surface application of 20 lb ./ac. of $\mathrm{N}+$ surface application one month after planting of $10 \mathrm{lb} . / \mathrm{ac}$. of N +10 lb ./ac. of N one month before flowering.
22. Sub-surface dry application of 20 lb ./ac. of $N+$ surface application one month after planting of $10 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+10 \mathrm{lb} . / \mathrm{ac}$. of N at flowering.
23. Sub-surface dry application of 20 lb ./ac. of $\mathrm{N}+$ pellet application one month after planting of $10 \mathrm{lb} . / \mathrm{ac}$. of $N+$ pellet application at flowering of 10 lb ./ac. of N .
24. Control-no manure.

Dry application was on 1.7.1952, wet application was on 25.7 .1952 and application at flowering on 6 10.1952.
3. DESIGN:
(i) R.B.D. (ii) (a) 22 . (b) N.A. (iii) 4 . (iv) (a) $22.5^{\prime} \times 11^{\prime}$. (b) $20.5^{\prime} \times 9^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. Lodging on 29.10 .1952 in heavily manured plots. (ii) N.A. (iii) Height and ear-length measurements, bo. of tillers, straw and grain yield. (iv) (a) 1999 -contd. (b) Yes. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2281 \mathrm{lb} . / \mathrm{ac}$.
(ii) $206.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield	Treatment	Av. yield	Treatment	Av. yield
1.	2073	9.	2273	17.	2325
2.	2259	10.	2325	18.	2116
3.	2395	11.	2148	19.	2310
4.	2226	12.	2355	20.	2507
5.	2266	13.	2289	21.	2337
6.	2592	14.	2242	22.	1895
7.	2266	15.	2198		
8.	2393		S.E $/$ mean	$=106.2 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 52(7). Type :- 'M'.
Object :-To compare the efficiencies of dry, deep and wet application of A / S in medium lands.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1.
(iii) 17.6.1952/18.7.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A.
(e) 2-3. (v) Nil. (vi) Ch. -47 (medium). (vii) Irrigated. (viii) Weedings on 28.7.1952 and 16.8.1952.
(ix) $56.03^{\prime \prime}$. (x) 23.10.1952.
2. TREATMENTS :

Please refer to C.R.R.I. 52(6) on page 33.
Dry application on 30.6.1952. at planting and wet application on 18.7.1952. at one month after planting on 20.8.1952. Before flowering application on 2.9.1952.
3. DESIGN :
(i) R.B.D.
(a) 12 .
(b) N.A. (iii) 4
4. (iv) (a) $39.5^{\prime} \times 6.75^{\prime}$.
(b) $28.5^{\prime} \times 4.75^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. Lodging on $\mathbf{1 5 . 1 0 . 1 9 5 2 . ~ (i i) ~ N . A . ~ (i i i) ~ H e i g h t ~ a n d ~ e a r - l e n g t h ~ m e a s u r e m e n t s , ~ n o . ~ o f ~ t i l l e r s , ~}$ straw and grain yield. (iv) (a) 1949-contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1245 \mathrm{lb} . / \mathrm{ac}$.
(ii) $173.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in Ib./ac.

Treatment	Av. yield	Treatment	Av. yield	Treatment	Av. yield
1.	1316	9.	1039	17.	1242
2.	1470	1267	10.	11.	1171
3.	1284	12.	1309	18.	1135
4.	1165	13.	1277	19.	1348
5.	1033	14.	1274	20.	1380
6.	1477	15.	1229	21.	1216
7.	S.E./mean	$=86.85 \mathrm{lb} . / \mathrm{ac}$.	1387	943	
8.					

$$
\text { Crop :- Paddy (Kharif). } \quad \text { Ref :- C.R.R.I. 53(5). Type :- 'M'. }
$$

Object :-To compare the efficiencies of sub-surface, surface and dry application of A / S at different levels and their combinations.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 20.6.1953/14.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-1242 (late). (vii) Irrigated. (viii) 2 weedings. (ix) 46.02*. (x) 18.12.1953.

2. TREATMENTS:

$\mathrm{M}_{0}=$ control, $\mathrm{M}_{1}=$ dry application of $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{2}=$ dry application of $40 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{\mathbf{3}}=$ wet app'ication of 20 ib ./ac. of $\mathrm{N}, \mathrm{M}_{4}=$ wet application of $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{5}=$ deep application at planting of 20 lb ./ac. of $\mathrm{N}, \mathrm{M}_{\mathbf{8}}=$ deep application at planting of $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{7}=$ wet 'application one month after planting of 20 lb ./ac. of $\mathrm{N}, \mathrm{M}_{8}=$ wet application one month after planting of $40 \mathrm{lb} / \mathrm{ac}$ of $\mathrm{N}, \mathrm{M}_{9}=$ deep application one montis after planting of 20 lb ./ac. of $\mathrm{N}, \mathrm{M}_{10}=$ deep application one month after planting of $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{11}=$ dry application of $10 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+10 \mathrm{lb} . / \mathrm{ac}$. of N one month after planting, $\mathrm{M}_{12}=\mathrm{dry}$ application of 20 lb ./ac. of $\mathrm{N}+20 \mathrm{lb}$./ac. of N one month after planting, $\mathrm{M}_{13}=\mathrm{dry}$ application of $10 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}+$ deep application of $10 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{14}=$ dry application of $20 \mathrm{lb} . / \mathrm{ac}$. of N +Deep application of 20 lb ./ac. of $\mathrm{N}, \mathrm{M}_{15}=$ wet application of $10 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}+$ wet application of 10 $\mathrm{lb} . / \mathrm{ac}$. of N one month after planting $\mathrm{M}_{16}=$ wet application of $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+$ wet application of $20 \mathrm{lb} . / \mathrm{ac}$. one month after planting of $\mathrm{N}_{1} \cdot \mathrm{M}_{17}=$ wet application of $10 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}+$ deep application of $10 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N} . \mathrm{M}_{18}=$ wet application of $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+$ deep application of $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{19}=$ dry application of $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+10 \mathrm{lb} . / \mathrm{ac}$. of N one month after planting $+10 \mathrm{lb} . / \mathrm{ac}$. of N one mouth before fiowering, $\mathrm{M}_{20}=$ wet application of $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+10 \mathrm{lb}$./ac. of N one month after planting $+10 \mathrm{lb} / / \mathrm{ac}$. of N one month before flowering, $\mathrm{M}_{21}=$ dry application of 20 lb ./ac. of $\mathrm{N}+$ deep application of 10 lb ./ac. of N one month after planting + deep application of $10 \mathrm{lb} / \mathrm{ac}$. of N one month before flowering.
3. DESIGN:

4. GENERAL :

(i) Good. Lodging on 14.111953 . (ii) N.A. (iil) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $3247 \mathrm{lb} . / \mathrm{ac}$.
(ii) $231.8 \mathrm{lb} . / \mathrm{cc}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield	Treatment	Av. yield	Treatment	Av. yield
M_{0}	2573	M_{8}	3176	M_{16}	3474
M_{1}	2862	M_{9}	3039	M_{17}	3095
M_{2}	3494	M_{10}	3407	M_{18}	3434
M_{3}	3189	M_{11}	3001	M_{19}	3375
M_{4}	3230	M_{12}	3422	M_{20}	3496
M_{5}	3355	M_{13}	3308	M_{21}	3635
M_{6}	3315	M_{14}	3315		
M_{7}	2978	M_{15}	3254		
		S.E./mean	$115.9 \mathrm{lb} . /$ ac.		

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 53(2). Type:- 'M'.
Object :-To compare the effects of nitrogeneous fertilizers at different N levels on the yield of Paddy.

1. BASAL CONDItIONS:

(i) (a) Nil. (b) Padjy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 26.6.1953/29.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T 1145 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 46.02°. (x) $16,17.11 .1953$.

2. TREATMENTS:

All combinations of (1) and (2) + a control (no \mathbf{N}).
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} / \mathrm{ac}$.
(2) 8 sources of $N: S_{1}=A / S / N, S_{2}=A / N, S_{3}=A / S, S_{4}=A m m o$. Phos., $S_{5}=$ Ammo. Chloride, $S_{d}=C / N$, $S_{7}=$ Cal. cynamide and $S_{s}=$ Urea.
3. DESIGN:
(i) R.B.D. (ii) (a) 17 . (b) N.A. (iii) 4. (iv) (a) $30^{\prime} \times 9^{\prime}$. (b) $28^{\prime} \times 7^{\prime} 8^{\prime \prime}$. (v) 1 row alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2701 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $252.6 \mathrm{lb} / / \mathrm{ac}$.
(ili) S effect alone is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\text { Control } \quad=2799 \mathrm{lb} . / \mathrm{ac} .
$$

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	\mathbf{S}_{8}	Mean
N_{1}	3102	2932	2844	2839	2562	2834	2508	2291	2739
N_{2}	3021	2627	2600	2466	2367	2982	2707	2440	2651
Mean	3061	2779	2722	2652	2464	2908	2607	2365	2695

S.E. of N marginal mean	$=44.7 \mathrm{lb} / \mathrm{ac}$.
S.E. of S marginal mean	$=89.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=126.3 \mathrm{lb} / \mathrm{ac}$.

Crop :- Paddy (Kharif). \quad Ref :- C.R.R.I. 53(9). Type :- 'M'.

Object :-To study the efficiency of dhanicha and sannhemp grown in situ and brought from outside applied alone and in combination with inorganic fertilizers like lime, Super phosphate and A/S.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 20.6.1953/25, 26.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - . (d) $10^{\circ} \times 6^{\prime \prime}$. (e) $2-3$ seedlings per hole. (v) Nil. (vi) T-141 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) $46.02^{\prime \prime}$. (x) 3 to 5.12.1953.

2. TREATMENTS :

All combinations of (1), (2), (3), (4), (5) and (6)
(1) 2 types of manure : $\left(\mathrm{A}_{0}\right)$ sannhemp and $\left(\mathrm{A}_{1}\right)$ dhaincha.
(2) 2 methods of application: $\left(\mathrm{B}_{0}\right)$ brought from out side and (B_{1}) in situ.
(3) 2 levels of lime : $\left(C_{0}\right)$ no lime and $\left(C_{1}\right) \frac{1}{2}$ ton/ac. of lime.
(4) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}:\left(\mathrm{D}_{0}\right)$ no $\mathrm{P}_{2} \mathrm{O}_{5}$ and ($\left.\mathrm{D}_{1}\right) 50 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(5) 2 levels of $\mathrm{N}:\left(\mathrm{E}_{0}\right) 0$ and (E_{1}) 30 lb ./ac. of N .
(6) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ to Paddy: $\left(\mathrm{F}_{0}\right)$ No $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ac}$. and $\left(\mathrm{F}_{1}\right) 50 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{~F}$.
3. DESIGN :
(i) 2^{6} confounded design with $\mathrm{ABC}, \mathrm{CDE}, \mathrm{ADF}, \mathrm{BEF}, \mathrm{ABDE}, \mathrm{BCDF}, \mathrm{ACEF}$ interactions confounded. (ii) (a) 8 plots/block; 8 blocks/replication. (b) N.A. (iii) 1 . (iv) (a) $32^{\prime} \times 14^{\prime}$. (b) $30^{\prime} 4^{\prime \prime} \times 12^{\prime}$. (v) 1 row length-wise and 2 rows breadth-wise. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw and grain, height, tiller and ear-length. (iv) (a) N.A. (b) N.A
(c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $3703 \mathrm{lb} . / \mathrm{ac}$.
(ii) $306.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only B effect is highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.
(Figs in lb./ac.)

Resporse with	Introduce	A	B	C	D	E	F	
$\begin{gathered} \text { Type of Manures }\{ \\ (\mathrm{A}) \end{gathered}$	Mean response	-72.50	349.24	7.18	5.12	4.94	86.62	
	Sunhemp	-	310.18	91.56	115.56	3.32	88.56	
	Dhaincha	-	388.30	-77.18	-105.32	6.56	84.68	
$\begin{aligned} & \text { Method of } \\ & \text { application } \\ & (\mathrm{B}) \end{aligned} \quad\{$	in Situ	-111.56	-	76.82	3668	-83.18	19232	
	Brought from outside	-33.44	-	-62.44	-26.44	93.06	-19.06	
Lime (C)	Absencc	11.98	418.88	-	31.50	-43.50	73.24	
	Presence	-156.88	+279.62	-	-21.26	53.38	100.00	
$\begin{gathered} \mathrm{P}_{2} \mathrm{O}_{\mathbf{5}} \\ (\mathrm{D}) \end{gathered}$	Absence	+37.94	380.82	33.56	-	-86.32	120.56	
	Presence	-182.94	317.68	-19.18	-	96.18	52.68	
$\stackrel{N}{\mathbf{N}}$	Absence	-74.12	261.12	-41.24	-86.12	-	189.24	
	Presence	-70.88	437.38	55.62	96.38	一	-16.00	
$\begin{gathered} \mathbf{P}_{2} \mathrm{O}_{5} \text { to Paddy } \\ (\mathrm{F}) \end{gathered}$	Absence	-70.56	454.94	-6.18	39.06	107.56	-	
	Presence	-74.44	243.56	20.56	-28.82	-97.68	-	
	S.E. of mean response S.E. of differential response			$\begin{aligned} & =54.17 \\ & =76.6 \end{aligned}$	b./ac.			

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 49(14). Type :- 'M'.
Object:- To study the effect of different phosphatic manures in presence or absence of N and lime along with different methods of application on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Loam. (b) Refer item 11 on page 1. (iii) 16.5.1949/20.6.1949.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) 一. (d) N.A. (e) 2 to 3. (v) Nil.
(vi) T-90 (late) (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding.
(ix) $46.00^{\prime \prime}$. (x) 10,12 and 13.12.1949.
2. TREATMENTS :

Main-plot treatments :
4 manures : $\mathrm{M}_{0}=$ control, $\mathrm{M}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}, \mathrm{M}_{2}=$ lime and $\mathrm{M}_{3}=20 \mathrm{lb}$./ac. of $\mathrm{N}+$ lime.
Sub-plot treatments :
5 applications of $\mathrm{P}_{2} \mathrm{O}_{5}$ at 30 lb ./ac.: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=$ surface application of Super, $\mathrm{P}_{2}=$ surface application of Agrophos, $P_{3}=$ placement of Super and $P_{4}=$ placement of Agrophos.
A / S applied on 1.9.1949 and lime and $\mathrm{P}_{2} \mathrm{O}_{5}$ from 22 to 24.8.1949,
3. DESIGN :
(i) Sp'it-plot. (ii) (a) 4 main-plots'block and 5 sub-plots/main-plot. (b) $137^{\prime} \times 124^{\prime}$. (iii) 6. (iv) (a) N.A.
(b) $21.5^{\prime} \times 7.5^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Height measurement, no. of tillers, straw and grain yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2738 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $321.3 \mathrm{lb} / / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{P}_{\mathbf{4}}$	Mean
$\mathrm{M}_{\mathbf{0}}$	2747	2626	2650	2520	2745	2558
$\mathrm{M}_{\mathbf{1}}$	2736	2691	2791	2788	2710	2743
$\mathrm{M}_{\mathbf{2}}$	2693	2764	2815	2782	2812	2773
$\mathrm{M}_{\mathbf{3}}$	2823	2774	2580	2834	2866	2775
Mean	2751	2714	2709	2731	2783	2738

S.E. of difference of two

1. N marginal means $\quad=82.9 \mathrm{lb} . / \mathrm{ac}$.
2. P marginal means $\quad=53.1 \mathrm{lb} / \mathrm{ac}$.
3. P means at the same level of $\mathbf{N} \quad=106.2 \mathrm{lb} . / \mathrm{ac}$.
4. N means at the same level of $\mathrm{P} \quad=126.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 52(15). Type :- 'M'.

Object :-To study the effect of lime on N and P availability to Paddy plant, in water-logged low-lands.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) N.A. (b) pH. is about 5.6. (iii) 18.6.1952/23.7.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c)一. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-1242 (late). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 56.03°. (x) N.A.
2. TREATMENTS:

Main-plot treatments .
2 levels of lime : $\mathrm{L}_{0}=0$ and $\mathrm{L}_{1}=2300 \mathrm{lb}$./ac. of Cao.
Sub-plot treatments :
3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=50$ and $\mathrm{P}_{2}=100 \mathrm{lb} . / \mathrm{ac}$.
Sub-sub-plot treatments :
3 applications of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. applied at surface and $\mathrm{N}_{2}=20 \mathrm{lb}$./ac. applied deep.
Lime applied on 23.7.1952 and $\mathrm{N}, 15$ to 20 days afterwards. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied on 20/21.6.1952.
3. DESIGN :
(i) Split-split-plot. (ii) (a) 2 main-plots/replication, 3 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) $69.5^{\prime} \times 47.25^{\prime}$. (iii) 3. (iv) (a) $22^{\prime} \times 15.75^{\prime}$. (b) $20^{\prime} \times 13^{\prime}$. (v) 1 row all round. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Height measurements, no. of tillers, straw and grain yield. (iv) (a) 1952continued. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (yii) Nil.
5. RESULTS:
(i) $2873 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $16.8 \mathrm{lb} . / \mathrm{ac}$.
(b) $167.3 \mathrm{lb} / \mathrm{ac}$.
(c) $137.6 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects of L and N alone are highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	P_{0}	P_{1}	P_{2}	Mean	N_{0}	N_{1}	N_{2}
L_{0}	2784	2786	2764	2778	2540	2805	2988
L_{1}	2902	3050	2955	2969	2837	2965	3105
Mean	2843	2918	2859	2873	2688	2885	3047
N_{0}	2657	2725	2683				
N_{1}	2860	2942	2854				
N_{2}	3012	3087	3041				

S.E. of difference of two

1. L marginal means
$=4.6 \mathrm{lb} . / \mathrm{ac}$.
$=55.8 \mathrm{lb} . / \mathrm{ac}$.
$=45.9 \mathrm{lb} . / \mathrm{ac}$.
$=78.9 \mathrm{lb} . / \mathrm{ac}$.
$=64.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of difference of two
2. N means at the same level of $\mathbf{P}=795 \mathrm{lb}$./ac.
3. P means at the same level of $\mathbf{N}=85.6 \mathrm{lb} . / \mathrm{ac}$.
4. N means at the same level of $\mathrm{L}=64.9 \mathrm{lb}$./ac.
5. L means at the same level of $\mathrm{N}=53.2 \mathrm{lb}$./ac.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 53 (23). Type :- 'M'.

Object :-To study the effect of deep placement of A / S in combination with $\mathrm{P}_{2} \mathrm{O}_{5}$ on the yield of Paddy in low lands.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1 . (iii) 25,6.1953/24.7.1953.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplated. (c) 一. (d) $10^{\circ} \times 10^{\prime \prime}$. (e) 2 to 3 . (v) Nil.
(vi) T-1242 (late). (vii) Irrigated. (viii) $2-3$ intercultures with Japanese weeder and one hand weediig. (ix) 46.02 ${ }^{\circ}$. (x) 15.12.1953.

2. TREATMENTS ;

Main-plot treatments

2 levels of lime : $\mathrm{L}_{0}=0$ and $\mathrm{L}_{1}=30 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments:
3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=50$ and $\mathrm{P}_{2}=100 \mathrm{lb} . / \mathrm{ac}$.
Sub-sub-plot treatments :
3 levels of N as $A / S: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / a c$.
Lime applied last year and Residual effect is studied this.
3. DESIGN :
(i) Split-split plot. (ii) (a) 2 main-plots/block; 3 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) $140.75^{\prime} \times 47.25^{\prime}$. (iii) 4 . (iv) (a) N.A. (b) $13.33^{\prime} \times 20.83^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Height measurements, no. of tillers, stra:s and grain yield. (iv) (a) 1952contd. (b) Yes. (c) Nil. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3015 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) 57.0. lb./ac.
(b) N.A.
(c) $225.3 \mathrm{lb} . / \mathrm{ac}$
(iii) L and N effects are highly significant while other effects are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	P_{0}	P_{1}	P_{2}	Mean	N_{0}	N_{1}	N_{2}
L_{0}	3005	2967	2941	2971	2384	3105	3424
L_{1}	2956	3068	3150	3058	2558	3237	3379
Mean	2981	3018	3045	3015	2471	3171	3402
N_{0}	2388	2434	2591				
N_{1}	3180	3184	3150				
N_{2}	3374	3434	3396				

S.E. of difference of two

1. L marginal means

$$
\begin{aligned}
& =13.4 \mathrm{lb} . / \mathrm{ac} . \\
& =65.0 \mathrm{lb} . / \mathrm{ac} . \\
& =92.0 \mathrm{lb} . / \mathrm{ac} \\
& =76.3 \mathrm{l} . \mathrm{b} / \mathrm{ac} .
\end{aligned}
$$

2. N marginal means
3. N means at the same level of L
4. L means at the same level of N

Object : - To study the effect of phosphate manuring on Paddy in presence or absence of nitrogen.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 27.11.1951/8.1.1952. (iv)
(a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) $9^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 and 3. (v) Nil. (vi) Ch-47 (early). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and , one hand weeding. Date of flowering 20.3.1952. (ix) 65.32*. (x) 26.4.1952.
2. TREATMENTS :

Main-plot treatments :
2 methods of application: $\mathrm{M}_{1}=$ surface application and $\mathrm{M}_{2}=$ deep application.
Sub-plot treatments :
3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
Sub-sub-plot treatments :
4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40, \mathrm{P}_{2}=80$ and $\mathrm{P}_{3}=120 \mathrm{lb} . / \mathrm{ac}$.
Application of $\mathrm{P}_{2} \mathrm{O}_{5}$ alone deep on 19.1.1952 and application of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ combined (surface) on 20.1.1952.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/replication; 3 sub-plots/main-plot; and 4 sub-sub-plots/sub-plot.
(b) $63^{\prime} 9^{\prime \prime} \times 20^{\prime}$. Sub block : $20^{\prime} 3^{\prime \prime} \times 20^{\prime}$. (iii) 6 . (iv) (a) $4^{\prime} 6^{\prime \prime} \times 20^{\prime}$. (b) $3^{\prime} \times 18^{\prime}$. (v) $1^{\prime} \times 9^{\prime \prime}$. (vi) Yes.

4. GENERAL :

(i) Deep application has given better crop than surface application. (ii) N.A. (iii) Grain and straw yield, height and tiller count. (iv) (a) No. (b) No. (c) Nil. (v) (a), (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $1398 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $456.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $259.0 \mathrm{lb} . / \mathrm{ac}$.
(c) $220.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) N effect is highly significant, interaction $\mathrm{N} \times \mathrm{M}$ is significant. Other effects are not significant.
(iv) Av. yield of grain in lb./ac.

	P_{0}	P_{1}	P_{2}	P_{3}	Mean	M_{1}	M_{2}
N_{0}	1256	1300	1215	1116	1222	1248	1195
N_{1}	1388	1376	1373	1437	1394	1288	1499
N_{2}	1568	1568	1549	1625	1578	1591	1564
Mean	1404	1415	1379	1393	1398		
M_{1}	1376	1397	1383	1347	1376		
M_{2}	1432	1432	1374	1439	1419		

S.E. of difference of two

1. M marginal means $=76.1 \mathrm{lb} . / \mathrm{ac}$.
2. P means at the same level of $M=73.5 \mathrm{Jb} . / \mathrm{ac}$.
3. N marginal means
$=52.9 \mathrm{lb} . / \mathrm{ac}$.
$=520 \mathrm{lb} . / \mathrm{ac}$.
4. N means at the same level of $\mathrm{M}=74.8 \mathrm{lb} . / \mathrm{ac}$.
5. \mathbf{M} means at the same level of $\mathrm{N}=97.5 \mathrm{lb} . / \mathrm{ac}$.
6. M means at the same level of $P=99.2 \mathrm{lb} . / \mathrm{ac}$.
7. \mathbf{P} means at the same level of $\mathrm{N}=90.1 \mathrm{lb} . / \mathrm{ac}$.
8. N means at the same level of $\mathrm{P}=94.2 \mathrm{lb} . / \mathrm{ac}$.

Object :-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$, G.M. and A/S on the yield and growth of Paddy.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 cn page 1. (iii) $28.6 .1948 / 4,5.8 .1948$. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) Nil. (c) 2-3 seedlings/hill. (v) Nil. (vi) AKP-10. (vii) Irrigated. (viii) N.A. (ix) 54.35". (x) N.A.

2. TREATMENTS :

Main-plot treatments :

3 applications of manure : $\mathrm{M}_{0}=$ control, $\mathrm{M}_{1}=\mathrm{G} . \mathrm{M}$. at $4000 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{M}_{2}=\mathrm{A} / \mathrm{S}$.
Sub-plot treatments:
8 sources to give 30 lb ./ac of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{0}=$ Control, $\mathrm{S}_{1}=$ Super $18 \%, \mathrm{~S}_{2}=$ Agrophos. $25 \%, \mathrm{~S}_{3}=$ Selectophos. $24.5 \%, S_{4}=$ Hyper phosphate $25-26 \%, S_{5}$ =Hyperphosphate $26-27 \%, S_{6}=$ Hyper-phosphate $28-29 \%$. and $S_{7}=$ B.M. 23\%.
G.M. applied on $4,5.8 .1948, \mathrm{~A} / \mathrm{S}$ on 7.9.1948 and $\mathrm{P}_{2} \mathrm{O}_{5}$ on 4, 5.8.1948.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 8 sub-plots/main-plot. (b) $138^{\circ} \times 127^{\prime}$. (iii) 4 . (iv) (a) $44^{\prime} \times 15^{\prime}$.
(b) $42^{\prime} \times 13^{\prime}$. (v) 1 border all round. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Hispa attacked in centre. Tops of the crop cut in two fields on 4, 5.9.1948. (iii) Height measurements, no. of tillers, straw and grain yield. (iv) (a) 1948-contd. (b) -. (c) Nil. (v) (a) and (b) Nıl. (vi) and (vii) Nil.
5. RESULTS :
(i) $1915 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $181.6 \mathrm{lb} . \mathrm{ac}$.
(b) $138.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) M and S effects are highly significant while interaction is not significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{5}}$	$\mathbf{S}_{\mathbf{6}}$	$\mathbf{S}_{\mathbf{7}}$	Mean
M_{0}	1555	1891	1829	1788	1951	1757	1810	1960	1818
M_{1}	1975	2009	2018	1904	2030	2105	1927	1940	1988
M_{2}	1956	1962	1870	1894	1903	1977	2012	1945	1940
Mean	1829	1954	1906	1862	1961	1946	1916	1948	1915

S.E. of difference of two

1. M marginal means	$=45.4 \mathrm{lb} . / \mathrm{ac}$.
2. S marginal means	$=56.4 \mathrm{lb} . / \mathrm{ac}$.
3. S means at the same level of M	$=97.7 \mathrm{lb} . / \mathrm{ac}$.
4. M means at the same level of S	$=102.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 49(15). Type :- 'M'.
Object : - To determine the residual effect of phosphatic fertilizers.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) N.A. (ivi ai 4 ploughings laddering end levelling. (b) Trąnsplanted. (c) -. (d) Bulk planting. (e) 2-3 seedlings hill. (v) Nil (vi) T-90 (late). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 46.00°. (x) N.A.
2. TREATMEVTS:

Main-plot treatments:
3 app!ications of manure : $M_{0}=$ Control, $M_{1}=G . M$. at $4000 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{M}_{2}=A / S$.
Sub-plot treat ments:
8 sources to give $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{0}=$ Control, $\mathrm{S}_{1}=$ Super $18 \%, \mathrm{~S}_{2}=$ Agrophos. $25 \%, \mathrm{~S}_{3}=$ Selectophos. $24.5 \%, \mathrm{~S}_{4}=$ Hyper phosphate $25-26 \%, \mathrm{~S}_{5}=$ Hyper phosphate $26-27 \%, S_{6}=$ Hyper phesphate $28-29 \%$ and $S_{7}=$ B.M. $\mathbf{2 3} \%$.
3. DESIGN:
(i) Split-plot.
(ii) (a) 3 main-plots/block, 8 sub-plots'main-plot.
(b) $138^{\prime} \times 127^{\prime}$. (iii) 4 . (iv) (a) $44^{\prime} \times 15^{\prime}$. (b) $42^{\prime} \times 13^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.

4. GENERAL :

(i) Satisfactory. (ii) N.A. (iii) Height measurements, no. of tillers, straw and grain yield. (iv) (a) 1943contd. (b) -. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1998 \mathrm{lb} . \mathrm{ac}$.
(ii) (a) $2692 \mathrm{lb} . / \mathrm{ac}$.
(b) $138.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effets is significant.
(iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

	$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{3}}$	$\mathrm{S}_{\mathbf{4}}$	$\mathrm{S}_{\mathbf{5}}$	S_{6}	$\mathrm{~S}_{\mathbf{7}}$	Mean
$\mathbf{M}_{\mathbf{0}}$	2088	2091	1986	2094	1932	2031	1993	2002	2027
\mathbf{M}_{1}	1944	1930	2091	1987	2031	2069	1986	1959	2000
$\mathbf{M}_{\mathbf{2}}$	1941	2048	1913	1870	1996	2006	2026	1941	1963
Mean	1991	2023	1997	1984	1986	2035	2002	1967.	1998

S.E. of difference of two

1. M marginal means	$=67.3 \mathrm{lb} . / \mathrm{ac}$.
2. S marginal means	$=56.6 \mathrm{lb} . / \mathrm{ac}$.
3. S means at the same level of M	$=98.1 \mathrm{lb} . / \mathrm{ac}$.
4. M means at the same level of S	$=113.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 51(10). Type :- 'M'.
Object:-To study the effect of manuring on the inzidence of blast.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 10.7.1951/17.8.1951. (iv) (a) 2 ploughings, laddering and levelling. (b) Transplanted. (c)-. (d) N.A. (e) 2 to 3. (v) Nil.
(vi) T-1145 (late). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding.
(ix) 65.32". (x) 5.12.1951.
2. TREATMENTS :

All combinations of (1) and (2) + a contiol.
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{0}=20$ and $\mathrm{N}_{1}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 sources of $N: S_{1}=$ Dhaincha, $S_{2}=G . N . C ., S_{3}=$ Compost and $S_{4}=A / S$.
3. DESIGN :
(i) R.B.D. (i)
(ii) (a) 9 .
(b) N.A.
(iii) 8. (iv) (a) $19^{\prime} \times\left[9^{\prime}\right.$. (b)
(b) $17^{\prime} \times 17^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yieid. (iv) (a) 1950 -contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2448 \mathrm{lb} . / \mathrm{ac}$.
(ii) $252.9 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is signjficant. *
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	Control $=2151 \mathrm{lb} . / \mathrm{ac}$.				Mean
	S_{1}	S_{2}	S_{3}	S_{4}	
N_{0}	2490	2504	2317	2299	2402
N_{1}	2773	2483	2492	2526	2568
Mean	2631	2493	2404	2412	2485

S.E. of N marginal mean
S.E. of S marginal mean
S.E. of body of table
$=44.71 \mathrm{lb} . / 2 \mathrm{c}$.
$=63.23 \mathrm{lb} . / \mathrm{ac}$.
$=89.42 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Kharif).
Ref :- C.R.R.I. 49(4). Type :- ' \(M\) '.
```

Object: - To find out the response of Paddy to $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$, and $\mathrm{K}_{2} \mathrm{O}$ with and without basal dressing.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 27.6.1949/2.8.1949. (iv) (a) 3-4 ploughings, laddering and levelling. (b) Bulk planting. (c) ... (d) $6^{\prime \prime}-8^{\circ}$. (e) 2-3. (v) As per treatments (vi) T-1145 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 46.00°. (x) $28,29.11 .1949 . \quad$ i

2. TREATMENTS:

Main-plot treatments :
4 organic manures as basal :dressing: $\mathrm{M}_{0}=$ No manure, $\mathrm{M}_{1}=$ Compost, $\mathrm{M}_{2}=$ Dhaincha as G.M. and $\mathrm{M}_{3}=$ G.N.C.

Sub-plot treatments :

All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(3) 3 leve s of $K_{2} O: K_{0}=0, K_{1}=20$ and $K_{2}=40 \mathrm{lb}$./ac.

27 NPK treatments divided into 3-sub-blocks confounding 2 d.f. of NPK interaction between sub-blocks of 9 treatment combinations and each main-plot consisting of these sub-blocks.
3. DESIGN :
(i) 4×3^{3} split-plot confounding. (ii) (a) 4 majn-plots/replication, 3 sub-blocks/main-plot each sub-block consisting of 9 different combinations of NPK treatments confounding 2 d.f. of NPK interaction between sub-blocks; 9 sub-plots/sub-blocks. (iii) 2. (iv) (a) $12^{\prime} \times 31^{\prime}$. (b) $10^{\prime} \times 29^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. Lodging on 20.11.1949. (ii) Silver shoot blast appeared on 12.9.1949. (iii) Height measurements, no. of tillers, straw and grain yield. (iv) (a) 1949—contd. (b) -. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2227 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $471.3 \mathrm{lb} . / \mathrm{ac}$.
(b) $306.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Interaction $N \times M$ highly significant. Interaction $N \times P \times K$ is significant. Others are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	M_{0}	M_{1}	\mathbf{M}_{2}	\mathbf{M}_{3}	Mean	K_{0}	K_{1}	K_{2}	\mathbf{P}_{0}	P_{1}	P_{2}
N_{0}	1993	1991	2289	2466	2185	2132	2192	2229	2215	2142	2198
N_{1}	22:6	2207	2256	2338	2269	2327	2255	2227	2209	2368	2232
N_{2}	2376	2296	2246	1985	2226	2170	2222	2286	2174	2241	2262
Mean	2215	2165	2264	2263	2227	2210	2223	2247			
P_{0}	2192	2118	2233	2253	2199	2264	2147	2186			
P_{1}	2207	2230	2282	2281	2250	2179	2278	2293			
P_{i}	2245	2146	2277	2255	2231	2186	2244	2262			
K	2199	2184	2231	2225							
K_{1}	2184	2154	2324	2229							
\mathbf{K}_{2}	2262	2157	2237	2334							

S.E. of difference of two

1. M marginal means	$=90.7 \mathrm{lb} . / \mathrm{ac}$
2. N, P or K marginal means	$=51.1 \mathrm{lb} . / \mathrm{ac}$.
3. N, P or K means at the same level of M	
4. M means at the same level of N, P or K	$=102.2 \mathrm{lb} . / \mathrm{ac}$.
5. means of the body of $\mathrm{N} \times \mathrm{P}, \mathrm{P} \times \mathrm{K}$ or $\mathrm{N} \times \mathrm{K}$ tables	
	$=123.3 \mathrm{lb} . / \mathrm{ac}$.
	$=177.1 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).

Ref:-C.R.R.I. 50(7). Type :- ' M^{\prime} '
Object :-To find out the response of Paddy to $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ with and without basal dressing.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 18,21.6.1950/31.7.1950 to 5.8.1950. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk planting. (c) -. (d) $6^{\prime \prime}-8^{\circ}$. (e) 2-3. (v) As per treatments. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 64.47 . (x) N.A.

2. TREATMENTS :

Main-plot treatments :
4 organic manures as basal dressing : $\mathrm{M}_{0}=$ No manure, $\mathrm{M}_{1}=$ Compost, $\mathrm{M}_{2}=$ Dhaincha as G.M. and $\mathrm{M}_{3}=$ G.N.C.

Sub-plot treatments :

All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb} / \mathrm{ac}$.
(3) 3 levels of K_{2}^{\prime}): $K_{0}=0, K_{1}=20$ and $K_{2}=40 \mathrm{lb} / \mathrm{ac}$.

27 NPK treatments divided into 3 sub-blocks confounding 2 d.f. of NPK interaction between sub-blocks of 9 treatment combinations and each main-plot consists of these sub-blocks.

3. DESIGN:

(i) 4×3^{3} split-plot confounding. (ii) (a) 4 main-plots/replication, 3 sub-blocks/main-plot, each sub-block consis ing of 9 different combinations of NPK tieatments confounding 2 d.f. of NPK interaction between sub-blocks; 9 sub-plots/sub-blo:k. (b) N.A. (iii) 2. (iv) (a) $12^{\prime} \times 31^{\prime}$. (b) $10^{\prime} \times 29^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. Lodging on 17.10 .1950 . (ii) N.A. (iii) Height measurements, 10 . of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) Y.s. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2222 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $956.9 \mathrm{lb} . / \mathrm{ac}$.
(b) $293.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only N effect is highly significant.
(iv) Av. yield of grain in lb./ac.

	M_{0}	M_{1}	M_{2}	M_{3}	K_{0}	K_{1}	K_{2}	P_{0}	P_{1}	P_{2}	Mean
N_{0}	$19: 8$	2124	2175	2293	2088	2123	2179	2125	2164	2102	2130
N_{1}	2332	2266	2243	2362	2227	2198	2252	2266	2179	2233	2226
N_{2}	2241	2358	2323	2323	2370	2314	2250	2327	2259	2349	2311
Mean	2067	2249	2247	2326	2228	2212	2227	2239	2200	2238	2222
P_{0}	2037	2258	2248	2414	2207	2231	2221				
P_{1}	2061	2229	2241	2270	2221	2182	2198				
\mathbf{P}_{2}	2104	2261	2251	2294	2197	2223	2263				
K_{0}	$20: 8$	2241	2282	2353							
K_{1}	2068	2233	2196	2301							
K_{3}	2096	2225	2263	2325							

S.E. of difference of two

1. M marginal means $\quad=184.2 \mathrm{lb} . / \mathrm{ac}$.
2. N, P or K marginal means
$=49.0 \mathrm{lb} . / \mathrm{ac}$.
3. N, P or K means at the same level of $\mathrm{M} \quad=98.0 \mathrm{lb} . / \mathrm{ac}$.
4. M means at the same level of N, P or $K \quad=200.5 \mathrm{lb} . / \mathrm{ac}$.
5. means of body of $N \times P, N \times K$ or $P \times K$ table $=\delta 4.8 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref :- C.R.R.I. 51(6). Type :- ' M '.
Object :-To find out the response of Paddy to $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ with and without basal dressing.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 13.6.1951/20.7.1951. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk planting. (c) -. (d) About $6^{\prime \prime}-8^{\prime \prime}$. (e) 2 to3. (v) As per treatments. (vi) T-1145 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) $65.32^{\prime \prime}$. (x) $16,17.11 .1951$.

2. TREATMENTS :

Main-plot treatments :
4 organic manures as basal dressing: $\mathrm{M}_{0}=$ No manure, $\mathrm{M}_{1}=$ Compost, $\mathrm{M}_{2}=$ Dhaincha as G.M. and $\mathrm{M}_{3}=$ G.N.C.

Sub-plot treatments :

All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$. ac.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=20$ and $\mathrm{K}_{2}=40 \mathrm{lb}$./ac.

27 NPK treatments divided into 3 sub-blocks confounding 2 d.f. of NPK interaction between sub-blocks of 9 treatment $c<m b i n a t i o n s$ and each main-plot consists of these sub-blocks.

3, DESIGN :
(i) 4×3^{3} split-plot confounding. (ii) (a) 4 main-plots/replication, 3 sub-blocks/main-plot, each sub-block consisting of 9 different combinations of NPK treatments confounding 2 d.f. of NPK interaction between sub-blocks, 9 sub-plots/sub-block. (b) N.A. (iii) 2. (iv) (a) $12^{\prime} \times 31^{\prime}$. (b) $10^{\prime} \times 29^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. Lodging on 12 to 14.11 .1951 . (ii) N.A. (iii) Height measurements, no. of tillers, straw and grain yield. (iv) (a) 1949-contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2448 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $497.8 \mathrm{lb} . / \mathrm{ac}$.
(b) $234.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb ./ac.

	M_{0}	M_{1}	M_{2}	M_{3}	K_{0}	K_{1}	K_{2}	P_{0}	P_{1}	P_{2}	Mean
N_{0}	2301	2358	2528	2483	2411	2367	2474	2430	2420	2402	2417
N_{1}	2431	2491	2401	2427	2457	2448	2407	2376	2430	2506	2437
N_{3}	2370	2533	2550	2506	2451	2529	2489	2550	2477	2442	2490
Mean	2357	2461	2493	2472	2440	2448	2457	2452	2442	2450	2448
P_{0}	2380	2441	2506	2482	2435	2442	2480				
P_{1}	2379	2474	2475	$2+42$	2464	2421	2442				
P_{2}	2343	2467	2498	2493	2420	2481	2450				
K_{3}	2410	2483	2436	2430							
K_{1}	23.6	2448	2530	2439							
K_{2}	2316	2451	2513	2557							

S.E. of difference of two

1. M marginal means
$=95.9 \mathrm{lb} . / \mathrm{ac}$.
2. N, P or K marginal means
$=39.1 \mathrm{lb} . / \mathrm{ac}$.
3. N, P or K means at the same level of M
$=78.2 \mathrm{lb} . / \mathrm{ac}$.
4. M means at the same lerel of N, P or $\mathrm{K} \quad=115.2 \mathrm{lb} . / \mathrm{ac}$.
5. means of the body of $N \times P, N \times K$ or $P \times K$ table $=67.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
 Ref :- C.R.R.I. 52(5). Type :- ' M '.

Object :-To find out the response of Paddy to $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ with and without basal dressing.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) I rep. 16 6.1952, II rep. 17.6.1952, I rep. 26.7.1952. II rep. 20.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk planting. (c) -. (d) About $6^{\circ}-\mathrm{S}^{\circ}$. (e) 2 to 3. (v) As per treatments. (vi) T-1145 (medium) (vii) Irrigated. (viii) Weeding on 24.8.1952 and 29.8.1952. (ix) 56.03°. (x) 18 to 20.11.1952.
2. TREATMENTS :

Main-plot treatments :
4 organic manures as basal dressing: $\mathrm{M}_{0}=$ No manure, $\mathrm{M}_{1}=$ Compost, $\mathrm{M}_{2}=$ Dhaincha as G.M. and $\mathrm{M}_{3}=$ G.N.C.
Sub-plot treatments :
All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./as.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb} . / \mathrm{ac}$,
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=20$ and $\mathrm{K}_{2}=40 \mathrm{lb}$./ac.

27 NPK treatments divided into 3 sub-blocks confounding 2 d.f. of NPK interaction between suj-blocks of 9 treatnent combinetions and each main-plot consists of these sub-blocks.
3. DESIGN :
(i) 4×3^{3} split-plot confounding. (ii) (a) 4 main-plots'replication, 3 sub-blocks/main-plot, each sub-block consisting of 9 different combinations of NPK treatments confounding 2 d.f. of NPK interaction between sub-blocks, 9 sub-plots/sub-block. (b) N.A. (iii) 2. (iv) (a) $12^{\prime} \times 31^{\prime}$. (b) $10^{\prime} \times 29^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory in plots where N_{2} is applied. Lodging on 25.10.1952. (ii) N.A. (iii) S raw, height and tillers. (iv) (a) 1949 -contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $20 \$ 4 \mathrm{ib} . / \mathrm{ac}$.
(ii) (a) $615.5 \mathrm{lb} . / \mathrm{ac}$.
(b) $322.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Interaction $\mathrm{M} \times \mathrm{N}$ is highly significant. Other effects are not signî̂cant.
(iv) Av. yield of grain in lb./ac.

	M_{0}	M_{1}	M_{2}	M_{3}	K_{0}	K_{1}	K_{2}		P_{1}	P_{2}	Mean
N_{0}	1922	2046	2055	1985	2004	1965	2037	1959	2016	2032	2002
\mathbf{N}_{1}	2134	2328	1924	2170	2052	2159	2096	2169	$21 ; 3$	2108	2139
N_{2}	2303	2253	1811	2066	2122	2043	2154	2127	2151	2051	2110
Mean	2120	2211	1930	2074	2093	2059	2099	2085	2102	2064	2084

$\mathbf{P}_{\mathbf{0}}$	2103	2187	1950	2100	2124	2074	2057
$\mathbf{P}_{\mathbf{1}}$	2185	2207	1960	2059	2101	2085	2121
$\mathbf{P}_{\mathbf{2}}$	2072	2238	1881	2063	2053	2018	2120
$\mathbf{K}_{\mathbf{0}}$	2062	2253	2037	2019			
$\mathbf{K}_{\mathbf{1}}$	2165	2189	1529	2054			
$\mathbf{K}_{\mathbf{2}}$	2132	2191	1925	2149			

S.E. of difference of two

1. M marginal means $\quad=118.5 \mathrm{lb} . / \mathrm{ac}$.
2. N, P or K marginal means
$=53.8 \mathrm{lb} . / \mathrm{ac}$.
3. N, P or K means at the same level of M
$=107.6 \mathrm{Ib} . / \mathrm{ac}$.
4. M means at the same level of N, P or $K \quad=147.4 \mathrm{lb} . / \mathrm{ac}$.
5. means of the bedy of $N \times P, N \times K$ or $P \times K$ table $=93.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 53(6). Type :- 'M'.
Object :-To find out the response of Paddy to $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ with and without basal dressing.

1. BASAL CONDITION :
(i) (a) Nil. (b) Pädy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 20, 22.6.1953;27, 23.7.1953 for first and second replications. (iv) (a) 4 ploughings, laddering and levelling. (b) Bulk planting. (c)-. (d) About $6^{\prime \prime}-\delta^{\prime \prime}$. (e) 2 to 3. (v) As per treatments. (vi) T-1145. (medium). (vii) Irrigated. (viii: Hand weedings on 27.8 .1953 and 30.8 .1953 . (ix) $46.02^{\prime \prime}$. (x) I replication on $5,612.1953$ and II replication on 23 and 24.11.1953.
2. TREATMENTS:

Main-plot treatments :

4 organic manures as basal dressing: $\mathrm{M}_{0}=$ No manure, $\mathrm{M}_{1}=$ Compost, $\mathrm{M}_{2}=$ Dhaincha as G.M. and $\mathbf{M}_{3}=$ G.N.C
Sub-plot treatments:
All combinations of (1), (2) and (3)
(1) 3 levels of $N: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=20$ and $\mathrm{K}_{2}=40 \mathrm{lb}$./ac.

27 NPK treatments divided into 3 sub-blocks confounding 2 d.f. of NPK interaction between sub-blocks of 9 treatment combinations and each main-plot consists of these sut-blocks.
3. DESIGN :
(i) 4×3^{3} split-plot confounding. (ii) (a) 4 main-plots/replication, 3 sub-blocks/main-plot each sub-block consisting of 9 different combinations of NPK treatments confounding 2 d.f. of NPK interaction between sub-tlocks; 9 sub-plots/sub-block. (b) N.A. (iii) 2. (iv) (a) $12^{\prime} \times 31^{\prime}$. (b) $10^{\prime} \times 29^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Good. Yellowing in unmanured plots. (ii) N.A. (iii) Straw height and tiller. (iv) (a) 1949-continued. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2247 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $866.5 \mathrm{lb} . / \mathrm{ac}$.
(b) $290.5 \mathrm{lb} / \mathrm{ac}$.
(iii) Interaction $\mathbf{N} \times \mathrm{P}$ is significant, interaction $\mathrm{M} \times \mathrm{N}$ is highly significant. Other effects are not significant.
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

	\mathbf{M}_{0}	M_{1}	M_{2}	\mathbf{M}_{3}	K_{0}	K_{1}	K_{2}	P_{0}	\mathbf{P}_{1}	P_{2}	Mean
N_{0}	2091	2282	2442	2121	2321	2178	2203	2288	2343	2071	2234
N_{1}	2108	2339	2439	2109	2179	2312	2255	2317	2180	2249	2249
N_{2}	2270	2511	2439	1820	2280	2240	2261	2167	2291	2323	2260
Mean	2133	2377	2440	2017	2260	2243	2240	2257	2271	22.4	2247
P_{0}	2184	2444	2335	2065	2345	2248	2178				
P_{1}	2215	2276	2545	2050	2260	2267	2287				
$\mathbf{P}_{\mathbf{z}}$	2070	2412	2440	1935	2174	2215	2254				
\mathbf{K}_{0}	2152	2385	2491	2009							
K_{1}	2174	2359	2429	2012							
K_{2}	2143	2387	2400	2029							

S.E. of difference of two

1. M marginal means	$=166.8 \mathrm{lb} . / \mathrm{ac}$.	
2. N, P or K marginal means	$=48.4 \mathrm{lb} . / \mathrm{ac}$.	
3. N, P or K means at the same level of M		$=96.8 \mathrm{lb} / \mathrm{ac}$.
4. M means at the same level of N, P or K		$=184.5 \mathrm{lb} / \mathrm{ac}$.
5. means of the body of $\mathrm{N} \times \mathrm{P}, \mathrm{N} \times \mathrm{K}$ or $\mathrm{P} \times \mathrm{K}$ table	$=83.9 \mathrm{lb} . / \mathrm{ac}$.	

> Crop :- Paddy (Kharif). Ref :- C.R.R.I. 48(12). Type :- 'MV'.

Object :-To find out the effect of G.N.C. and A/S on transplanted Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay Ioam. (b) Refer item 11 on page 1. (iii) V_{1} on 25.6 .1948 and Y_{2} on 24.6.1948;21.7.1943. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3 . (v) 100 md./ac. of compost. (vi) As per treatments. (vii) Irrigated. ${ }^{*}$ (viii) 2 to 3 interculturings with Japanese weeder and one hand weeding. (ix) 54.35°. (x) V_{1} on 29.10.1948 and V_{2} on 23.11.1948.

2. TREATMENTS :

Main-plot treatments :
2 varieties: $\mathrm{V}_{1}=\mathrm{T}-608$ (medium) and $\mathrm{V}_{2}=\mathrm{T}-312$ (late).
Sub-plot treatments:
3 manures : $M_{0}=0, M_{1}=40 \mathrm{lb} / \mathrm{ac}$. of N as G.N.C. and $\mathrm{M}_{2}=40$.b. $/ \mathrm{ac}$. of N as A / S.

3. DESIGN :

(i) Split-plot. (ii) (a) 2 main-plots/replication and 3 sub-plots/main-plot. (b) $62^{\prime} \times 64^{\prime}$. (iii) 8 . (iv) (a) $30^{\prime} \times 20^{\prime}$. (b) $28^{\prime} \times 18^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw weight, height of plant and number of tillers. (iv) (a) No. (b) No.
(c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2184 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $163.6 \mathrm{lt} . / \mathrm{ac}$.
(b) $102.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) V and M effects are significant. Interaction is not significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{M}_{\mathbf{0}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	Mean
$\mathbf{V}_{\mathbf{1}}$	1508	1840	1867	1738
$\mathbf{V}_{\mathbf{2}}$	2449	2715	2726	2630
Mean	1979	2278	2297	$2 \mathrm{iS4}$

S.E. of difference of two

1. V marginal means
$=48.7 \mathrm{lb} . / \mathrm{ac}$.
2. \mathbf{M} marginal means
$=36.1 \mathrm{lb}$. ac .
3. M means at the same level of V
$=51.1 \mathrm{lb}$. $/ \mathrm{ac}$.
4. V means at the same level of M

$$
=64.1 \mathrm{lb} . \mathrm{ac} .
$$

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 50(21). Type:- 'MV'.
Object :-To compare the effect of A / S on different Paddy varieties.

1. BASAL CONDITIONS :
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 21.5.1950,8.7.1950. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) $3^{\prime \prime}-4^{\prime \prime}$ apart. (e) 1 to 2. (v) 100 md./ac. of compost. (vi) As per treatments. (vii) Irrigated (viii) 2 to 3 intercultures w'th Japanese weeder and one hand weeding. (ix) N.A. (x) V_{1} to V_{4} on 29.9.1950, V_{5} and V_{6} on 6.10.1950 and the rest on 9.10.1950.

2. TREATMENTS:

Main-plot treatments :
3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30$ and $\mathrm{N}_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments :
8 varieties: $\mathrm{V}_{1}=\mathrm{CH}-2, \mathrm{~V}_{\mathbf{2}}=\mathrm{R} 9, \mathrm{~V}_{3}=$ Omachi, $\mathrm{V}_{4}=A \operatorname{sha} h i, \mathrm{~V}_{5}=$ Benibheg, $\mathrm{V}_{6}=\mathrm{CH}-45, \mathrm{~V}_{7}=\mathrm{Adt} 4$ and $V_{8}=$ Adt 20.

3. DESIGN :

(i) Split-plot. (ii) (a) 3 main-plots'block and 8 sub-plots main-plot. (b) $64^{\prime} \times 64^{\prime}$. (iii) 4. (iv) (a) $8^{\prime} \times 20^{\circ}$. (b) $6^{\prime} \times 18^{\prime}$. (v) 1^{\prime} alrou d. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw yield, height of plant and number of tillers. (iv) (a) No. (b) No.
(c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1086 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $289.6 \mathrm{lb} / \mathrm{ac}$.
(b) $294.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) M and V effects are significant. Other effects are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 50(12). Type :- 'MV'.

Object :-To find the effect of manured and unmanured conditions on Paddy varieties .

1. BASAL CONDITIONS
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1 . (iii) 29.12.1950/1.2.1951. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) As per treatments. (vi) As per treatments. (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) $3.65^{\prime \prime}$. (x) 14.5.1951.
2. TREATMENTS:

All combinations of (1) and (2)
(1) Two levels of manures : $M_{0}=$ No manure and $M_{1}=$ Organic manure at $1 C 0 \mathrm{mds}$. of compost/ac. as basal and A / S at $20 \mathrm{lb} . / \mathrm{ac}$. of N as top dressing.
(2) 5 varieties: $\mathrm{V}_{1}=\mathrm{DI}-4, \mathrm{~V}_{2}=\mathrm{PTB}-10, \mathrm{~V}_{3}=\mathrm{CO}-13, \mathrm{~V}_{4}=\mathrm{Ch}-45$ and $\mathrm{V}_{5}=\mathrm{Ch}-47$.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) (a) $30^{\prime} \times 16^{\prime}$. (b) $28^{\prime} \times 14^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii)!Straw, height, tillers, ear-length and grain yield. (iv) (a) 1947-contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESUSTS :
(i) $1022 \mathrm{lb} . / \mathrm{ac}$.
(ii) $190.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) M and V effects are highly significant while their interaction is not significant.
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.


```
Crop :- Paddy (Kharif). Ref:= C.R.R.I. 50(11). Type :~ 'MV'.
```

Object :-To find the effect of five varieties of Paddy in manured, and unmanured conditions.

1. BASAL CONDITIONS :
(i) a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 29.12.1950. (iv) (a) 4 ploughings, laddering and levelling. (b) Broadcast. (c) N.A. (d) -. (e) -. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) $2-3$ intercultures with Japanese weeder and one hand weeding. (ix) 3.65". (x) 3.5.1951.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 manures: $\mathrm{M}_{0}=$ unmanured and $\mathrm{M}_{1}=$ manured.
(2) 5 varieties: $\mathrm{V}_{1}=\mathrm{Ch}-47, \mathrm{~V}_{2}=\mathrm{Ch}-45, \mathrm{~V}_{3}=\mathrm{CO}-13, \mathrm{~V}_{4}=\mathrm{DI}-4$ and $\mathrm{V}_{5}=\mathrm{PTB}-10$.
3. DESIGN :
(i) 2×5 Fact. in R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) (a) $30^{\prime} \times 16^{\prime}$. (b) $28^{\prime} \times 14^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw, height, tillers, ear-length 【and grain §yield. (iv) (a) 1947—contd. (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1517 \mathrm{lb} . / \mathrm{ac}$.
(ii) $178.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) M and V effects are higly significant while interaction $\mathrm{M} \times \mathrm{V}$ is not significant.
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 50(13). Type :- 'MV'.
Object :-To compare the effect of A/S on dwarf Japanese type with Chinese and other types.

1. BASAL CONDITIONS :
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 21.6.1950/8.7.1950.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) $3^{\prime \prime}$ to $4^{\prime \prime}$. (e) 1 to 2 . (v) Nil.
(vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 64.47". (x) 29.9.1950.
2. TREATMENTS:

Main-plot treatments :
3 doses of N as $A / S: N_{0}=0, N_{1}=30$ and $N_{2}=60 \mathrm{lb}$./ac.
Sub-plot treatments :
8 varieties: $\mathrm{V}_{1}=\mathrm{Ch}-2, \mathrm{~V}_{8}=\mathrm{R}-9, \mathrm{~V}_{3}=$ Omachi, $\mathrm{V}_{4}=$ Bhatri, $\mathrm{V}_{5}=$ Benibhog, $\mathrm{V}_{8}=\mathrm{Ch}-45, \mathrm{~V}_{7}=$ Adt 4 and $\mathrm{V}_{8}=$ Adt 20.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication; 8 sub-plots/main-plot. (b) $64^{\prime} \times 64^{\prime}$. (iii) 4 . (iv) (a) $20^{\prime} \times 8^{\prime}$. (b) $18^{\prime} \times 6^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) N A. (iii) Straw, height, tiller count and grain yield. (iv) (a) 1950—contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1086 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $291.7 \mathrm{lb} . / \mathrm{ac}$.
(b) $179.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) N effect is significant, V effect is highly significant whle interaction is not significant.
(iv) Av. yield of grain in lb ./ac.

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	V_{7}	V_{8}	Mean
N_{0}	815	560	713	614	863	991	1266	1516	917
N_{1}	1048	749	642	677	1077	1365	1416	1791	1096
N_{2}	594	906	966	739	1410	1407	1746	1791	1245
Mean	952	738	774	677	1117	1254	1476	1699	1086

S.E. of difference of two

1. N marginal means	$=72.9 \mathrm{lb} . / \mathrm{ac}$.
2. V marginal means	$=73.1 \mathrm{lb} . / \mathrm{ac}$.
3. V means at the same level of N	
4. N means at the same level of V	$=126.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 52(12). Type :- 'MV'.
Object :-To study the effect of manuring on the incidence of blast disease of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1.(iii) 24.7.1952/20, 23.8.1952.
(iv) (a) 2 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2.3 intercultures with Japanese weeder and one hand weeding. (ix) $56.03^{\prime \prime}$ (s) CO-13, 10.11.1952 and others-N.A.
2. TREATMENTS :

Main-plot treatments :
6 vareties: $\mathrm{V}_{1}=\mathrm{CO}-13$ (early), $\mathrm{V}_{2}=$ ASD-1 (medium), $\mathrm{V}_{3}=\mathrm{B} 76-116$ (early), $\mathrm{V}_{4}=\mathrm{T}-608$ (medium), $\mathrm{V}_{5}=\mathrm{T}-1145$ (late) and $\mathrm{V}_{6}=\mathrm{T}-141$ (late'.

Sub-plot treatments :

10 manures: $\mathrm{M}_{1}=\mathrm{A} / \mathrm{S}$ at $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{2}=\mathrm{G} . \mathrm{N} . C$. at $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{3}=$ Compost at $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{4}=\mathrm{A} / \mathrm{S}$ at $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{5}=\mathrm{G} . \mathrm{N} . C$. at $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}, \mathrm{M}_{6}=$ Compost at $40 \mathrm{lb} . / \mathrm{ac}$. of $N, M_{7}=M_{1}+M_{3}, M_{8}=M_{1}+M_{2}, M_{9}=M_{2}+M_{3}$ and $M_{10}=$ Control.
3. DESIGN:
(i) Split-plot. (ii) (a) 6 main-plots/block; 10 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) and (b) $18^{\prime} \times 10.5^{\prime}$. (v) N.A. (vi) Y'es.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Straw yield, neck infection percentage and grain yield. (iv) (a) 1950—contd.
(b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1177 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $383.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $178.6 \mathrm{lb} / \mathrm{ac}$.
(iii) V and M effects are highly significant while their interaction is not significant.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

	M_{1}	$\mathrm{Ma}_{\mathbf{2}}$	Ma_{3}	M_{4}	M	M_{6}	M_{7}	M_{8}	M_{9}	$\mathrm{M}_{10}{ }^{\text {l }}$	Mean
V_{1}	732	842	662	564	648	876	662	862	763	660	727
V_{2}	1051	1205	756	797	1032	1183	922	1250	917	696	981
V_{s}	667	593	509	687	677	761	648	660	627	478	631
v_{4}	850	929	612	655	878	1001	859	1044	8.7	775	845
v_{5}	1800	2033	1495	1826	1946	2083	1867	1978	2088	1567	1868
V_{6}	2194	2282	1546	1790	2073	2203	2057	2102	2162	1714	2012
Mean	1216	1314	930	1053	1209	1351	1169	1316	1234	987	1177

S.E. of difference of two

1. V marginal means $\quad=99.0 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means $\quad=59.6 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of $\mathrm{V} \quad=145.8 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of $\mathrm{M} \quad=170.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 48(6). Type:- 'MV'.
Object:-To find the effect of G.N.C. and A/S on Paddy on N basis.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1 . (iii) V_{1} on 20.6 .1948 and V_{2} on 27.6.1948. (iv) (a) 4 ploughings, laddering and levelling. (b) Broadcast. (c) N.A. (d) and (e) -. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 54.35°. (x) V_{1} on 27.10.1948 and V_{2} on 19.11.1948.
2. TREATMENTS:

Main-plot treatments :
2 varieties: $\mathrm{V}_{1}=\mathrm{T}-608$ (early) and $\mathrm{V}_{2}=\mathrm{T}-812$ (medium).
Sub-plot treatments :
3 applications of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=40 \mathrm{lb}$./ac. of N as $\mathrm{G} . \mathrm{N} . C$. and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 8. (iv) (a) $30^{\circ} \times 20^{\prime}$. (b) $28^{\circ} \times 18^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) 1947-contd. (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1659 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $338.3 \mathrm{lb} . / \mathrm{ac}$.
(b) $161.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) N effect is highly significant and interaction $\mathrm{N} \times \mathrm{V}$ is significant. V effect is not significant.
(iv) Av. yield of grain in lb ./ac.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$			
$\mathrm{V}_{\mathbf{1}}$	1299	1685	1684			
$\mathrm{~V}_{\mathbf{2}}$	1308	1939	2038	$	$	Mean
:---:						
Mean						

S.E. of difference of two

1. V marginal means
$=98.0 \mathrm{lb} . / \mathrm{ac}$.
2. \mathbf{N} marginal means
$=57.2 \mathrm{lb} . / \mathrm{ac}$.
3. \mathbf{N} means at the same level of \mathbf{V}
$=80.9 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of N
$=117.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 48(7). Type :- 'MV'.

Object :-To find the effect of G.N.C. and A/S on transplanted Paddy on N basis.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on dpage 1. (iii) $\mathrm{V}_{\mathbf{1}}$ on $25.6 .1948, \mathrm{~V}_{\mathbf{2}}$ on 24.6.1948/V V_{1} on 21.7.1948. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) 一. (d) N.A. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 54.35". (x) V_{1} on 29.10 .1948 and V_{2} on 23.11.1948.

2. TREATMENTS :

Main-plot treatments :

2 varieties: $\mathrm{V}_{1}=\mathrm{T}-608$ (early) and $\mathrm{V}_{2}=\mathrm{T}-812$ (medium).
Sub-plot treatments :
3 applications of $\mathrm{N}: \mathrm{N}_{0}=0, \mathbf{N}_{1}=40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathbf{G} . \mathrm{N} . C$. and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac. of N as A / S.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 8. (iv) (a) $30^{\prime} \times 20^{\prime}$. (b) $26^{\circ} \times 18^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) 1947-contd. (b) No. (c) N.A (v) (a), (b) Nil. (vi) and (vii) Nil. 1
5. RESULTS:
(i) $2184 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $168.6 \mathrm{lb} / \mathrm{ac}$.
(b) $102.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) V and N effects are highly significant. Interaction is not significant.
(iv) Av. yield of grain in lb ./ac.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{1}}$			
$\mathbf{V}_{\mathbf{2}}$	1508	1840	1867
2449	2715	2726	Mean 1738 2630
1978	2277	2296	

S.E. of difference of two

1. V marginal means
$=48.7 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means
$=36.1 \mathrm{lb} . / \mathrm{ac}$.
3. \mathbf{N} means at the same level of \mathbf{V}
$=51.1 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of N
$=64.1 \mathrm{lb} . / \mathrm{ac}$.

Object :-To study the effect of deep layering and surface application of A/S at different levels.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 27.7.1 51 . (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted (c)-. (d) N.A. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) $65.32^{\prime \prime}$. (x) N.A.
2. TREATMENTS:

Main-plot treatments :

2 varieties: $\mathrm{V}_{1}=\mathrm{CO}-13$ (early) and $\mathrm{V}_{2}=\mathrm{T}-1145$ (medium).
Sub-plot treatments :
7 manures : $\mathrm{M}_{0}=0, \mathrm{M}_{1}=20 \mathrm{lb}$./ac. of N as A / S (surface), $\mathrm{M}_{2}=20 \mathrm{lb}$./ac. of N as A / S (deep), $\mathrm{M}_{3}=40$ lb ./ac. of N as A / S (surface) in single dose, $\mathrm{M}_{4}=40 \mathrm{lb}$./ac. of N as A / S (deep) in single dose, $\mathrm{M}_{5}=40 \mathrm{lb}$./ac. of N as A / S (surface) in double dose and $\mathrm{M}_{6}=40 \mathrm{lb}$./ac. of N as A / S (deep) in double dose.
Fertilizers applied on 17.8.1951 for single dose, while double dose applied on 17.8.1951 (first dose) and 2nd dose on 4.9.1951 (CO-13) and on 27.9.1951 (T-1145).
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/block and 7 sub-plots/main-plot. (b) $61^{\prime}-6^{\prime \prime} \times 21^{\prime}-6^{\prime \prime}$. (iii) 4. (iv) (a) N.A. (b) $21.5^{\prime} \times 7.5^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw yield, height measurement, tiller count and grain yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1112 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $532.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $234.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only V effect is highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	M_{0}	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	Mean
V_{1}	697	716	559	562	529	675	586	618
V_{2}	2026	1640	1626	1524	1518	1426	1488	1607
Mean	1361	1178	1092	1043	1023	1050	1037	1112

S.E. of difference of two

1. V marginal means $\quad=142.3 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means $\quad=117.2 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of $V \quad=165.7 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of $M \quad=209.2 \mathrm{lb}$./ac.

> Crop :- Paddy (Kharif). Ref :- C.R.R.I. 49(3). Type :- ‘MV’.

Object :-To find the effect of applying A / S in dry and wet conditions in medium soils.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 18.6.1949/26.7.1949. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c)-. (d) N.A. (c) 2 to 3. (v) NiI. (vi) As per treatments. (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 46.00°. (x) V_{1} on 20.11.1949 and V_{2} on 9.12.1949.

2. TREATMENTS :

Main-plot treatments :

2 varieties: $\mathrm{V}_{1}=\mathrm{T}-1145$ (medium) and $\mathrm{V}_{2}=\mathrm{BAM}-6$ (late).

Sub-plot treatments :

3 applications of $\mathrm{N}: \mathrm{N}_{\mathbf{0}}=0, \mathrm{~N}_{1}=20 \mathrm{lb}$. of N as A / S in dry condition at ploughing time on 9.7.1949 and $\mathrm{N}_{2}=20 \mathrm{lb}$. of N as A / S in wet condition at puddling time on 30.7.1949.

3. DESIGN :

(i) Split-plot. (ii) (a) 2 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $34^{\prime} \times 32^{\prime}$. (b) $32^{\prime} \times 30^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) 1949 to 1950. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESÚLTS:
(i) $1708 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $178.2 \mathrm{lb} . / \mathrm{ac}$.
(b) $141.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) V effect and interaction $\mathrm{N} \times \mathrm{V}$ are highly significant. N effect is not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{1}}$	1519	1456	1487
$\mathbf{V}_{\mathbf{2}}$	1755	2100	1928
1637	1778	1708	Mean 1487 1928
1708			

S.E. of difference of two

1. V marginal means $\quad=72.7 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means $\quad=70.6 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of $\mathrm{V} \quad=99.8 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of $\mathbf{N} \quad=109.3 \mathrm{lb} . / \mathrm{ac}$.
Crop :- Paddy (Kharif). Ref :- C.R.R.I. 50(9). Type :- ‘MV'.

Object :-To compare the effect of applying A / S in dry and wet conditions in medium lands.

1. B.ASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 16.6 1950/13 14.7.1950. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 weedings with Japanese weeder and one hand weeding. (ix) $64.47^{\prime \prime}$. (x) V_{1} on 14.10 .1950 and V_{2} on 26.11.1950.
2. TREATMENTS :

Main-plot treatments :
2 varieties: $\mathrm{V}_{1}=$ Benibhog (early) and $\mathrm{V}_{2}=\mathrm{T} 1145$ (medium).
Sub-plot treatments:
3 applications of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S in dry condition at ploughing time on 22.6.1950. and $\mathrm{N}_{2}=20 \mathrm{lb}$./ac. of N as A / S in wet condition at puddling time on 18.7.1950.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $32^{\prime} \times 41^{\prime}$. (b) $30^{\prime} \times 39^{\circ}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Very good. (ii) N.A. (iii) Straw, height, ftillers, 'ear-length and grain yield. (iv) (a) 1949-contd.
(b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1841 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $142.1 \mathrm{lb} . / \mathrm{ac}$.
(b) $125.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) V effect is highly significant, N efect is significant while interaction is not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$	Mean
$\mathbf{V}_{\mathbf{1}}$	-1152	1109	1065	
$\mathbf{V}_{\mathbf{2}}$	2335	2688	2784	2668

S.E. of difference of two

| 1. V marginal means | | $=58.0 \mathrm{lb} . / \mathrm{ac}$. |
| ---: | :--- | ---: | :--- |
| 2. N marginal means | | $=62.7 \mathrm{lb} . / \mathrm{ac}$. |
| 3. N means at the same level of V | | $=88.6 \mathrm{lb} . / \mathrm{ac}$. |
| 4. V means at the same level of N | | $=92.7 \mathrm{lb} . / \mathrm{ac}$. |

Crop .- Paddy (Kharif). Ref :- C.R.R.I. 49(2). Type :- 'MV'.
Object:-To find the effect of applying A/S in dry and wet conditions in low soils.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 18.6.1949/28.7.1949. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 weedings with Japanese weeder and one hand weeding. (ix) 46.00'. (x) V_{1} on 31.10.1949 and V_{2} on 14.11.1949.
2. TREATMENTS:

Main-plot treatments :
2 varieties: $\mathrm{V}_{1}=$ Benibhog (early) and $\mathrm{V}_{\mathbf{2}}=\mathrm{T}-1145$ (medium).
Sub-plot treatments:
3 applications of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20 \mathrm{lb}$./ac. of N as A / S in dry condition at ploughing time on 9.7.1949 and $N_{2}=20 \mathrm{lb}$./ac. of N as A / S in wet condition at puddling time on 30.7.1949.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $32^{\prime} \times 41^{\prime}$.
(b) $30^{\prime} \times 39^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) 1949-contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $1691 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $178.1 \mathrm{lb} . / \mathrm{ac}$.
(b) $155.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) V effect is highly significant. N effect is significant while their interaction is not significant.
(iv) Av. yield of grain in lb ./ac.

	N_{0}	N_{1}	N_{2}	Mean
V_{1}	912	1162	1042	1039
V_{2}	2182	2480	2368	2343
Mean	1547	1821	1705	1691

S.E. of difference of two

1. V marginal means $=72.7 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means $=77.8 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of $V \quad=110.1 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of $N \quad \Rightarrow 115.6 \mathrm{lb} . / \mathrm{ac}$.

Object：－To compare the effects of applying A／S in dry and wet conditions in low lands．
1．BASAL CONDITIONS ：
（i）（a）Nil．（b）Paddy．（c）As per treatments．（ii）（a）Clay loam．（b）Refer item 11 on page 1．（iii） 21．6．1950／24．7．1950．（iv）（a） 4 ploughings，laddering and levelling．（b）Transplanted．（c）－．（d）N．A． （e） 2 to 3．（v）Nil．（vi）As per treatments．（vii）Irrigated．（viii）2－3 intercultures with Japanese weeder and one hand weeding．（ix） 64.47° ．（ x ）V_{1} on 29．11．1950 and V_{2} on 27．12．1950．

2．TREATMENTS：
Main－plot treatments ：
2 varieties． $\mathrm{V}_{1}=\mathrm{T}-1145$（medium）and $\mathrm{V}_{2}=\mathrm{T}-1242$（late）．
Sub－plot treatments：
3 applications of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20 \mathrm{lb}$ ．／ac．of N as A / S in dry condition at ploughing time on 28．6．1950 and $N_{2}=20 \mathrm{lb}$ ．／ac．of N as A / S in wet condition at puddling time on 19．7．1950．

3．DESIGN ：
（i）Split－plot．（ii）（a） 2 main－plots／replication； 3 sub－plots／main－plot．（b）N．A．（iii）4．（iv）（a） $34^{\prime} \times 32^{\prime}$ ．（b） $32^{\prime} \times 30^{\prime}$ ．（v） 1^{\prime} alround．（vi）Yes．

4．GENERAL ：
（i）Good．（ii）N．A．（iii）Straw，height，tillers，ear－length and grain yield．（iv）（a） 1948 －contd．（b）Yes． （c）N．A．（v）（a），（b）Nil．（vi）and（vii）Nil．

5．RESULTS：
（i） $2174 \quad \mathrm{lb} . / \mathrm{ac}$ ．
（ii）（a） $172.3 \mathrm{lb} . / \mathrm{ac}$ ．
（b） $130.9 \mathrm{lb} . / \mathrm{ac}$ ．
（iii）V effect is significant， N effect is highly significant while their interaction is not significant．
（iv）Av．yield of grain in $\mathrm{lb} . / \mathrm{ac}$ ．

	N_{0}	N_{1}	N_{2}	Mean
V_{1}	1787	2093	2038	1973
V_{2}	2151	2507	2468	2375
Mean	1969	2300	2253	2174

S．E．of difference of two
1．V marginal means
$=70.3 \mathrm{lb} . / \mathrm{ac}$ ．
2． N marginal means $\quad=65.5 \mathrm{lb} . / \mathrm{ac}$ ．
3． N means at the same level of $\mathrm{V} \quad=92.6 \mathrm{lb} . / \mathrm{ac}$ ．
4．V means at the same level of $\mathrm{N} \quad=103.2 \mathrm{lb} . / \mathrm{ac}$ ．

Crop ：－Paddy（Kharif）．Ref：－C．R．R．I．53（28）．Type ：－＇MV＇．
こうぶこ：－To test the performance of 24 late duration varieties under normal and high fertility conditions．
1．BASAL CONDITIO\S：
（i）（a）Paddy．（b）PPaddy．（c）N．A．（ii）（a）Clay loamy．（b）Refer item 11 on page 1．（iii）27．6．1953／ 31．7．19：3．（iv）（a） 3 ploughings，laddering and levelling．（b）Transplanted．（c）一．（d） $9^{\circ} \times 9^{\circ}$ ．（c） $1-2$ seedlings per hill．（v）N．A．（vi）As per treatments．（vii）Irrigated．（viii） 2 hand weedings．（ix）N．A．（x）N．A．

2．TREATMENTS：

2 manurings ： $\mathrm{M}_{1}=$ Normal manuring： 4000 lb ．of $\mathrm{G} . \mathrm{M}$ ．or compost +100 Ib ．of $\mathrm{A} / \mathrm{S}+100 \mathrm{lb}$ ．of Super and $\mathrm{M}_{2}=$ Heavy manuring viz． 8600 lb ．of G．M．or compost +400 lb ．of A / S and 300 lb．of Super．

Sub-plot treatments:

24 varieties : $V_{1}=A C 106, V_{2}=A C 120, V_{3}=A C 122, V_{4}=A C 164, V_{5}=A C 290, V_{6}=A C 232, V_{7}=A C$ 293, $\mathrm{V}_{8}=\mathrm{AC} 296, \mathrm{~V}_{9}=\mathrm{AC} 300, \mathrm{~V}_{10}=\mathrm{AC} 341, \mathrm{~V}_{11}=\mathrm{AC} 345, \mathrm{~V}_{12}=\mathrm{AC} 350, \mathrm{~V}_{13}=\mathrm{A}$ こ 391 , $V_{14}=A C 393, V_{15}=A C 399, V_{18}=A C 416, V_{17}=A C 421, V_{18}=A C 427, V_{19}=A C 435$, $\left.V_{20}=A C 448, V_{21}=A C 44\right), V_{22}=A C 450, V_{23}=453$ and $V_{24}=T-1212$ (stanjard).
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main plots/replication and 24 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $13 \frac{1}{2}^{\prime} \times 2 \frac{1^{\prime}}{}{ }^{\prime}$ (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Straw and grain yield, length of panicle, 1000 grains weight. (iv) (a) No. (b) No. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2052 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $794.4 \mathrm{lb} / \mathrm{ac}$.
(b) $616.5 \mathrm{lb} . / \mathrm{ac}$.
(ii) Only V effect is highly significant.
(iv) Av. yield of grain in lb./ac.

	M_{1}	M_{2}	Mean		H_{1}	M_{2}	Mean
V_{1}	1361	1562	1461	V_{13}	2067	1849	1958
V_{2}	1456	2269	1862	V_{14}	997	1792	1354
V_{9}	2351	2476	2663	V_{15}	2431	2510	2470
V_{4}	1188	2168	1678	V_{16}	2392	2218	2305
V_{5}	2095	3221	2658	V_{17}	1725	2773	2249
V_{6}	1787	2005	1896	V_{18}	2324	2543	2433
V_{7}	2067	1591	1829	V_{19}	896	2179	1537
V_{8}	924	1445	1184	V_{20}	2851	3266	3058
V_{8}	1372	1983	1678	V_{21}	1949	2678	2313
V_{10}	1581	2665	2173	V_{22}	1955	2550	2302
V_{13}	2549	2650	2600	V_{23}	1148	2431	1789
V_{12}	1602	1933	1768	V_{24}	1389	2577	1983
				Mean	1794	2310	2052

S.E. of difference of two

1. \mathbf{M} marginal means
$=114.7 \mathrm{lb} / \mathrm{ac}$.
2. V marginal means
3. V means at the same level of M
$=308.2 \mathrm{lb} . / \mathrm{ac}$.
4. M means at the same level of V
$=435.9 \mathrm{lb} . / \mathrm{ac}$.
$=441.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Ref :- C.R.R.I. 53(29). Type :- 'MV'.

Object :-To test the performance of certain genetic stocks which were tested under high fertility conditions under different levels of fertility.

1. BASAL CONDITIONS :
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 16.6.1953/14.7.1953. (iv) (a) 3 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) $6^{\circ} \times 9^{\circ}$. (e) 2 seedling in case of all varieties except AC 250 for which 1 seedling/hill. (v) Green manure dhaincha was buried and puddled. (vi) As per treatments. V_{1} to V_{19} are early while $\mathrm{V}_{20}=$ standard. (vii) Irrigated. (viii) Weeding seed bed on 2.7.1953. Gap filling on 31.7.1953 and 1.8.1953. (ix) N.A. (x) N.A.
2. TREATMENTS :

Main-plot treatments :

2 manurings: $\mathrm{M}_{1}=$ Normal manuring viz., 4000 lb . of compost or G.M., 100 lb . of A / S in two doses and 100 lb . of Super in one dose and $\mathrm{M}_{2}=$ Heavy manuring viz., 8000 lb . of compost or G.M., 400 lb . of A/S in two doses and 300 lb . of Super in 1 dose.

Sub-plot treatments :

20 varieties : $V_{1}=A C 113, V_{2}=A C 212, V_{3}=A C 250, V_{4}=A C 460, V_{5}=A C 464, V_{6}=A C 474, V_{7}=A C$ $475, V_{8}=A C 514, V_{9}=A C 349, V_{10}=A C 364, V_{11}=A C 484, V_{18}=A C 486, V_{13}=A C 487$, $V_{14}=A C 472, V_{15}=A C 181, V_{16}=A C 469, V_{17}=A C 467, V_{18}=A C 499, V_{19}=A C 512$ and $\mathrm{V}_{20}=\mathrm{B} 76$ (standard).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication and 20 sub-plots/main-plot. (b) $64^{\circ} \times 30^{\prime}$. (iii) 4. (iv) (a) $14^{\prime} \times 3^{\prime}$. (b) $12 \frac{1}{2}^{\prime} \times 2^{\prime}$. (v) 1 row alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Height of plants, number of effective tillers and grain yield. (iv) (a) No.
(b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3032 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $448.8 \mathrm{lb} / \mathrm{ac}$.
(b) $743.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) M effect is significant, V effect is highly significant while interaction is not significant.
(iv) Av. yield of grain in lb./ac.

	M_{1}	M_{2}	Mean
V_{1}	1764	2662	2213
$\mathrm{~V}_{2}$	3097	3149	3123
$\mathrm{~V}_{3}$	2509	2609	2559
$\mathrm{~V}_{4}$	1638	1686	1662
$\mathrm{~V}_{5}$	3781	4278	4029
$\mathrm{~V}_{8}$	3058	3193	3125
$\mathrm{~V}_{7}$	3554	3716	3635
$\mathrm{~V}_{8}$	2675	2836	2755
$\mathrm{~V}_{9}$	2940	1882	2411
$\mathrm{~V}_{10}$	4304	2888	3596

S.E. of difference of two

1. M marsinal means

	M_{1}	M_{2}	Meau
V_{11}	3001	2596	2798
V_{12}	4761	4561	4661
V_{13}	3642	2 C 43	2842
V_{14}	3955	3376	3665
V_{15}	3293	1934	2614
V_{16}	2631	2296	2464
V_{17}	2352	2426	2389
V_{18}	2344	2753	2549
V_{19}	3315	2296	2805
V_{20}	4892	4583	4738
Mean	3175	2888	3032

2. V marginal means
3. V means at the same level of M
4. M means at the same level of V
$=71.0 \mathrm{lb} / \mathrm{ac}$.
$=371.6 \mathrm{lb}$. $/ \mathrm{ac}$.
$=525.5 \mathrm{lb} . / \mathrm{ac}$.
$=517.0 \mathrm{lb} / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 49(10). Type :- 'MV'.
Object : - To compare the effect of three nitrozensous fertilizers at different levels of \mathbf{N} on 3 varieties of different durations.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam pH. 6.2. (b) Refer item 11 on page 1. (iii) $25.6 .1949 /$ 24.7.1949. (iv (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) As fer treatments. (vii) Irrigated. (viii) Weeding on 9.9.1949. (ix) 46.00'. (x) V_{1} on 3, 4.11.1949, V_{2} on 17.11.1949 and V_{3} on 9.12.1949.
2. TREATMENTS:

Main plot treatments :

3 varieties: $\mathrm{V}_{1}=\mathrm{T}-608$ (eariy), $\mathrm{V}_{2}=\mathrm{T}-1145$ (medium) and $\mathrm{V}_{3}=\mathrm{T}-90$ (late).

Sub-plot treatments:

All combinations of (1) and (2)+a control (N_{0})
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=20 \mathrm{lb}$./ac. and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$,
(2) 3 sources of $N: S_{1}=A / S, S_{2}=A / N$, and $S_{3}=$ Urea.

Fertilizers afplied cn 25.7.1949 just after planting.

3. DESIGN :

(i) Split-plot. (ii) (a) 3 main-plots/block; 7 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 16^{\prime}$. (b) $18^{\prime} \times 14^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.

4. GENERAL :

(i) Good. (ii) N.A. (iii) Straw and grain yield, height, tillers and ear-length. (iv) (a) 1949—contd. (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $2118 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $369.9 \mathrm{lb} . / \mathrm{ac}$.
(b) $213.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) V, S and control $\nu \mathrm{s}$ other effects are highly significant. Others are not significant.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

$$
\mathbf{V}_{1} N_{0}=1056 \mathrm{lb} / \mathrm{ac} . \quad \mathrm{V}_{2} \mathrm{~N}_{0}=1736 \mathrm{lb} . / \mathrm{ac} . \text { and } \quad \mathrm{V}_{3} \mathrm{~N}_{0}=2096 \mathrm{lb} . / \mathrm{ac}
$$

	\mathbf{S}_{1}	S_{2}	S_{3}	Mean	N_{1}	N_{2}
V_{1}	1505	1465	1474	1481	1508	1455
V_{2}	2425	2283	2461	2390	2341	2438
V_{3}	2807	2449	2820	2692	2686	2698
Mean	2246	2066	2252	2188	2178	2197
N_{1}	2276	2011	2248			
N_{2}	2215	2120	2255			

S.E. of difference of two

1. V marginal means $\quad=106.8 \mathrm{lb} . / \mathrm{ac}$. 6. S means at the same level of $\mathrm{V}=106.6 \mathrm{lb} / \mathrm{ac}$.
2. S marginal means $\quad=61.5 \mathrm{lb} . / \mathrm{ac} .7$. V means at the same level of $S=137.7 \mathrm{lb} . / \mathrm{ac}$.
3. N marginal means $\quad=50.2 \mathrm{lb} . / \mathrm{ac}$. 8. means of the body of $N \times S$ table $=87.0 \mathrm{lb} . / \mathrm{ac}$.
4. N_{1}, N_{2} means at the same level of $V=87.0 \mathrm{lb} . / \mathrm{ac}$. 9. V means at the level of $\mathrm{N}_{0}=17 \mathrm{I} .0 \mathrm{lb} . / \mathrm{ac}$.
5. V means at the same level of $N_{1}, N_{2}=123.2 \mathrm{lb} . / \mathrm{ac}$.
Crop :- Paddy (Kharif). Ref :- C.R.R.I., 50(2). Type :- 'MV'.

Object :-To compare the effects of four nitrogeneous fertilizers at two levels of nitrogen on three varieties of different durations.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) N.A. (b) Refer item 11 on page 1. (iii) 21.6.1950.22 7.50. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanting. (c) -. (d) N.A. (e) 2 to 3. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) Weeding on 18, 19.8.1950. (ix) 64.47". (x) V_{1} on $5,6.11 .1950, \mathrm{~V}_{2}$ on 26.11 .1950 and V_{3} on 15.12.1950.
2. TREATMENTS :

Main-plot treatments :
3 varieties: $\mathrm{V}_{1}=\mathrm{T}-608$ (early), $\mathrm{V}_{2}=\mathrm{T}-1145$ (medium) and $\mathrm{V}_{3}=\mathrm{T}-90$ (late).
Sub-plot treatments:
All combinations of (1) and (2) + a control (N_{0}).
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2. 4 sources of $N: S_{1}=A / S, S_{2}=A / N, S_{3}=A m m$. Phos. and $S_{4}=$ Urea.

Fertilizers applied on 27.7 .1750 just after transplanting.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main plots/blosk; 9 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 12^{\prime}$. (b) $18^{\prime} \times 10^{\circ}$. (v) 1^{\prime} alround. (vi) Yes.

4. GENERAL:

(i) Satisfactory; lodging on 27.10.1950 for V_{1}. (ii) N.A. (iii) Straw and grain yield, height, tillers and ear. length. (iv) (a) 1949 -contd. (b) No. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1869 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $522.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $271.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) V, N and control vs treated effects and interaction $\mathrm{S} \times \mathrm{V}$ are highly significant. S effezt is signifcant. Other effects are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\mathrm{V}_{1} \mathrm{~N}_{0}=1188 \mathrm{lb} . / \mathrm{ac} . \quad \mathrm{V}_{2} \mathrm{~N}_{0}=1793 \mathrm{lb} . / \mathrm{ac} . \text { and } \mathrm{V}_{3} \mathrm{~N}_{0}=1578 \mathrm{lb} . / \mathrm{ac}
$$

	S_{1}	S_{2}	S_{3}	S_{4}	Mean	N_{1}	N_{2}
V_{1}	1389	1358	1464	1386	1399	1335	1463
V_{2}	2322	2252	19.40	2196	2177	2081	2273
V_{3}	2499	1869	2227	2053	2162	12048	2276
Mean	2070	1826	1877	1879	1913	1821	2004
N_{1}	1972	1700	1781	1833			
N_{2}	2168	1952	1973	19.4			

S.E. of difference of two

1. V marginal means $\quad=130.6 \mathrm{lb} . / \mathrm{ac}$. 6. S means at the same level of $\mathrm{V}=135.9 \mathrm{lb}$./ac.
2. S marginal means
$=78.5 \mathrm{lb} . / \mathrm{ac}$.
3. \mathbf{N} marginal means
$=55.5 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of $S=175.8 \mathrm{lb}$./ac.
5. $\mathrm{N}_{1}, \mathrm{~N}_{2}$ means at the same level of $\mathrm{V}=96.1 \mathrm{lb} . / \mathrm{ac}$.
6. means in $\mathrm{N} \times \mathrm{S}$ table $\quad=111.0 \mathrm{lb}$./ac.
7. V means at the level of $\mathrm{N}_{0}=219.1 \mathrm{lb} . / \mathrm{ac}$.
8. $V_{m=a n s ~ a t ~ t h e ~ s a m e ~ l e v e l ~ o f ~} N_{1}, N_{2}=147.2 \mathrm{\jmath} \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 51(2). Type :- 'MV'.
Object :-To compare the effects of four nitrogeneous fertiiizers at two levels of nitrogen on three varieties of different durations.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 17.6.1951/24.7.1951. (iv) (a) 4 ploughings, laddering and levelling. (b) Balk planting. (c) - (d) N.A. (e) Nil. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) Wesding on 17.8.51. (ix) $65.32^{\prime \prime}$. (x) \mathbf{V}_{1} on 7.11.1951, V_{2} on 20.11 .1951 and V_{3} on 12.12.1951.
2. TREATMENTS :

Main-plot treatments :
3 varieties: $\mathrm{V}_{1}=\mathrm{T}-608$ (early), $\mathrm{V}_{2}=\mathrm{T}-1145$ (medium) and $\mathrm{V}_{3}=\mathrm{T}-90$ (late).
Sub-plot treatments:
All combinations of (1) and (2)+a control (N_{0})
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
(2) 4 sources of $N: S_{1}=A / S, S_{2}=A / N, S_{3}=A m m o$. Phos. and $S_{6}=$ Urea.
3. DESIGN:
(i) Sp!it-plot. (ii) (a) 3 main-plots/block; 9 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 12^{\prime}$. (b) $13^{\prime} \times 10^{\circ}$. v) 1^{\prime} all round. (vi) Yes.
4. GENER AL :
(i) Satisfactory. Lodgirg on 27.11.1951 in manured plots (T-90) and on 29.10.1951 (T-1145). (ii) N.A. (iii) Siraw and paddy yield, height, tillers and ear-length. (iv) (a) Yes; 1949-contd. (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $2019 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $439.7 \mathrm{lb} . / \mathrm{ac}$.
(b) $175.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) V, S and control is manured effects are highly sign'ficant. Other effects are not signifcant.
(iv) Av. yield of paddy in lb./ac.
$\mathrm{V}_{1} \mathrm{~N}_{0}=1246 \mathrm{lb} . / \mathrm{ac} . \mathrm{V}_{2} \mathrm{~N}_{0}=2093 \mathrm{lb} / \mathrm{ac}$. and $\mathrm{V}_{8} \mathrm{~N}_{0}=2243 \mathrm{lb} . / \mathrm{ac}$.

	S_{1}	S_{2}	\mathbf{S}_{3}	S_{4}	Mean	N_{1}	N_{2}
V_{1}	1553	1443	1505	1515	1504	1441	1568
V_{2}	2414	2357	2325	2355	2338	2328	2347
V_{3}	2512	2572	2595	2393	2518	2385	2652
Mean	2159	2124	2142	2052	2119	2051	2187
N_{1}	2090	2032	2084	1998			
N_{2}	2229	2217	2391	2110			

S.E. of the difference of two

Crop :- Paddy (Kharif). Ref:- C.R.R.I. E2(8). Type :- 'MV'.
Object :-To compare the effects of five nitrogeneous fertilizers of different nitrogen levels on two varieties of different durations.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (i) Clay loam. (b) Refer item 11 on page 1. (iii) 16:6.1952/29.7.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Transpianted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding, (ix) 56.03". (x) V_{1} on 27.11.1952 and V_{2} on 8.12.1952.

2. TREATMENTS :

Main-plot treatments :
2 varieties: $\mathrm{V}_{1}=\mathrm{T}-1145$ (medium) and $\mathrm{V}_{2}=\mathrm{T}-90$ (late).
Sub-plot treatments :
All combinations of (1) and (2)+a control (N_{0})
(1) 2 levels of $N: N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 5 sources of $N: S_{1}=A / S, S_{2}=A / N, S_{3}=$ Ammo. Phos., $S_{4}=$ Ammo. chloride and $S_{5}=$ Urea.
'Fertilizers app'ied on 11.8.1952 after transplanting.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/block; 11 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $25^{\prime} \times 10^{\prime}$. (b) $23^{\prime} \times 8^{\prime}$. (v) 1^{\prime} in each side. (vi) Yes.
4. GENEPAL:
(i) Not very satisfactory. (ii) N.A. (iii) Straw. and grain yield, height, tillers and ear-length. (iv) (a) 1949contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) anj (vii) Nil.

5. RESULTS :

(i) $1736 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $108.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $182.6 \mathrm{lb} / \mathrm{ac}$.
(iii) S and control vs. manured effects, and interactions $N \times S, N \times V$ and $N \times S \times V$ are significant. Other effec:s are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\mathrm{V}_{1} \mathrm{~N}_{0}=1013 \mathrm{lb} . / \mathrm{ac} . \quad \mathrm{V}_{2} \mathrm{~N}_{0}=1541 \mathrm{lb} . / \mathrm{ac} .
$$

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	Mean	N_{1}	N_{2}
V_{1}	1759	1589	1797	1681	1544	1674	1447	1901
V_{2}	1902	1500	2042	1842	1866	1890	1757	2023
Mean	1830	1695	1919	1762	1705	1782	1602	1962
N_{1}	1626	1548	1725	1604	1508			
N_{2}	2034	1841	2114	1919	1903			

S.E. of the difference of two

1. V marginal means $\quad=24.24 \mathrm{lb} . / \mathrm{ac}$. 6. S means at the same level of $\mathrm{V}=91.30 \mathrm{lb} . / \mathrm{ac}$.
2. S marginal means $\quad=64.56 \mathrm{lb} / \mathrm{ac} .7 . \mathrm{V}$ means at the same level of $\mathrm{S}=85.18 \mathrm{lb} . / \mathrm{ac}$.
3. N marginal means $\quad=40.83 \mathrm{lb} . / \mathrm{ac} .8$. means of the toc y of $N \times S$ table $=91.30 \mathrm{lb} . / \mathrm{ac}$.
4. $\mathrm{N}_{1}, \mathrm{~N}_{2}$ means at the same level of $\mathrm{V}=57.74 \mathrm{lb} . / \mathrm{ac}$. 9. V means at the level of $\mathrm{N}_{\mathrm{o}}=125.26 \mathrm{lb} . / \mathrm{ac}$.
5. V means at the same level of $N_{1}, N_{2}=47.48 \mathrm{lb} / \mathrm{ac}$.

$$
\text { Crop :- Paddy (Kharif). } \quad \text { Ref :- C.R.R.I. 48(8). Type :- 'MV'. }
$$

Object:-To compare the effect of the time of application of manures and mixtures of manures at different levels of N on different varieties.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 25.6.1948/22.7.1948. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanting. (c) -. (d) N.A. (e) 2-3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) $2-3$ intercultures with Japanese weeder and one hand weeding. (ix) 54.35". (x) V_{1} on 9.11.1948 and V_{2} on 21.12.1948.

2. TREATMENTS:

Main-plot treatments:
2 varieties: $\mathrm{V}_{1}=\mathrm{T}-608$ (early) and $\mathrm{V}_{2}=\mathrm{T}-1242$ (late).

Sub-plot treatments :

All combinations of (1), (2) and (3)
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
(2) 3 sources of $\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\mathrm{A} / \mathrm{N}$ and $\mathrm{S}_{3}=\mathrm{A} / \mathrm{S}+\mathrm{A} / \mathrm{N}$ in cqual ratio of N .
(3) 3 times of application: $\mathrm{T}_{1}=$ Full at planting, $\mathrm{T}_{2}=$ Full at one month after planting and $\mathrm{T}_{3}=$ Half at planting and half at one month after planting.

3. DESIGN:

(i) Split-plot. (ii) 2 ma 'n-plots/block; 18 sub-plots/main-plot. (iii) 4 . (iv) (a) $5^{\prime} \times 32^{\prime}$. (b) $3^{\prime} \times 30^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.

4. GENERAL :

(i) Satisfactory. (ii) Nil. (iii) Straw and grain yield, height, tillers and ear-length. (iv) (a) 1948 to 1950. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) Nil. (vii) Results are presented as available.

5. RESULTS :

(i) $2326 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $659.5 \mathrm{lb} . / \mathrm{ac}$.
(b) $237.2 \mathrm{lb} / \mathrm{ac}$.
(iii) V effect is highly significant. T effect is significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.

Crop:- Paddy (Kharif). Ref :- C.R.R.I. 49(12). Type :- 'MV'.
Object:-To compare the effect of the time of application of manures and mixture of manures at different N levels on different varieties.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 18.6.19+9/28, 29.7.1949. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3 (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) (ix) 46.00°. (x) V_{1} on 29.9.1949 and V_{2} on 1.11.1949.
2. TREATMENTS :

Main-plot treatments:
2 varieties: $\mathrm{V}_{1}=\mathrm{T}-608$ (early) and $\mathrm{V}_{2}=\mathrm{T}-1242$ (late).

Sub-plot treatments :

All comblnations of (1), (2) and (3) +a control $\left(\mathrm{N}_{0}\right)$
(1) 2 le els of $\mathrm{N}: \mathrm{N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 sources of $\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\mathrm{A} / \mathrm{N}$ and $\mathrm{S}_{3}=\mathrm{A} / \mathrm{S}+\mathrm{A} / \mathrm{N}$ in equal ratio of N .
(3) 3 times of application of $\mathrm{N}: \mathrm{T}_{1}=$ Full at planting, $\mathrm{T}_{2}=$ Full at one month after planting and $\mathrm{T}_{3}=$ Half at planting and half at one month after planting.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block and 19 sub-plots/main-plot. (iii) 4 . (iv) (a) $5^{\prime} \times 32^{\prime}$. (b) $3^{\prime} \times 30^{\prime}$. (v) One foot all round. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Straw and grain yield, height, tillers and ear-length. (iv) (a) 1948 to 1950. (b) No. (c) NA. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $1799 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $1134.6 \mathrm{lb} / \mathrm{ac}$.
(b) $280.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) V, N, T aad S effects are significant.
(iv) Av. yield of grain in lb./ac.
$\mathrm{V}_{1} \mathrm{~N}_{0}=862 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{V}_{\mathbf{2}} \mathrm{N}_{0}=1946 \mathrm{lb} . / \mathrm{ac}$.

	T	T_{2}	T3	N_{1}	N_{2}	V_{1}	V_{2}	Mean
S_{1}	1752	2045	1941	1752	2076	1205	2623	1914
S_{2}	1592	1892	1834	1699	1847	1113	2433	1873
S_{3}	1571	1899	1859	1704	1849	1128	2425	1776
Mean	1638	1945	1878	1718	1924	1149	2494	1821
V_{1}	1070	1200	1171					
Va	2207	2691	2585					

S.E. of the difference of two

1. V marginal means
2. \mathbf{N} marginal means
3. \mathbf{S} or \mathbf{T} marginal means
4. V means at the level of N_{0}

S.E. of the difference of two

$=189.1 \mathrm{lb} / \mathrm{ac} .5$. S or T means at the same level of $\mathbf{P}=80.9 \mathrm{lb} . / \mathrm{ac}$.
$=46.7 \mathrm{lb} . / \mathrm{ac}$. 6. V means at the same level of S or $T=200.3 \mathrm{lb} . / \mathrm{ac}$.
$=57.2 \mathrm{lb} . / \mathrm{ac} .7$. means of the body of $S \times \mathbf{T}$ table $=99.1 \mathrm{lb} . / \mathrm{ac}$.
$=266.6 \mathrm{lb} . / \mathrm{ac} .8$. means of the body of $\mathrm{S} \times \mathrm{N}$ table $=80.9 \mathrm{lb} . / \mathrm{ac}$.

> Crop :- Paddy (Kharif). Ref :- C.R.R.I. 50(10). Type :- 'MV'.

Object :-To compare the effect of time of application of manures and mixture of manures at different N levels on different varieties.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 23, 24.7.1950. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c)-. (d) N.A. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 64.47°. (x) V_{1} on 6.11.1950 and V_{2} on 20.12.1950.
2. TREATMENTS :

Main-plot treatments :
2 varieties: $\mathrm{V}_{1}=\mathrm{T}-608$ (early) and $\mathrm{V}_{2}=\mathrm{T}-1242$ (late).
Sub-plot treatments:
All combinations of (1), (2) and (3)+a control (N_{0})
(1) 2 levels of $N: N_{1}=20$ and $N_{2}=40 \mathrm{lb}$./ac.
(2) 3 sources of $N: S_{1}=A / S, S_{2}=A / N$ and $S_{3}=A / S+A / N$ in equal ratio of N.
(3) 3 times of applications of : $T_{1}=$ Full at planting, $T_{2}=$ Full at one month after planting and $T_{3}=$ Half at planting and half at one month after planting.

3. DESIGN :

(i) Split-plot. (ii) (a) 2 main-plots/block and 19 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $5^{\prime} \times 32^{\prime}$. (b) $3^{\prime} \times 30^{\prime}$. (v) 1 foot all round. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Straw and grain yield, height, tillers and ear-length. (iv) (a) 1948 to 1950. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) Nil. (vi) Results are presented as available.
5. RESULTS :
(i) $2056 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $4+0.8 \mathrm{lb} . / \mathrm{ac}$.
(b) $221.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) $\mathrm{V}, \mathrm{S}, \mathrm{T}$ and N effects are significant.
(iv) Av. yield of grain in lb./ac.

$$
\mathrm{N}_{0} \mathrm{~V}_{1}=1133 \mathrm{lb} / \mathrm{ac} . \quad \mathrm{N}_{0} \mathrm{~V}_{2}=2420 \mathrm{lb} . / \mathrm{ac} .
$$

	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	$\mathbf{T}_{\mathbf{3}}$	Mean	$\mathbf{N}_{\mathbf{1}}$
$\mathbf{S}_{\mathbf{1}}$	1997	2271	2056	$\mathbf{N}_{\mathbf{2}}$	
$\mathbf{S}_{\mathbf{2}}$	1918	2042	2006	1989	1987
\mathbf{S}_{3}	2018	2158	2171	2116	2228
Mean	1979	2157	2078	2071	1953
$\mathbf{V}_{\mathbf{1}}$	1341	1527	1438	1435	2120
$\mathbf{V}_{\mathbf{2}}$	2614	2787	2718	2706	

S.E. of the difference of two

1. V marginal means
2. N marginal means
3. S or T marginal means
4. V means at the level of N_{0}
S.E. of the difference of two

$$
\begin{aligned}
& =73.5 \mathrm{lb} . / \mathrm{ac} \\
& =36.9 \mathrm{lb} . / \mathrm{ac} \\
& =45.2 \mathrm{lb} . / \mathrm{ac} \\
& =168.5 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
$$

$$
\text { 5. T means at the same level of } V=64.0 \mathrm{lb} . / \mathrm{ac}
$$

$$
\begin{aligned}
& \text { 6. V means at the same level of } T \quad=90.1 \mathrm{lb} . / \mathrm{ac} . \\
& \text { 7. means of the body of } S \times T \text { table } \\
& =78.4 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
$$

$$
\text { 7. means of the body of } S \times T \text { table }=78.4 \mathrm{lb} . / \mathrm{ac}
$$

8. means of the body of $S \times N$ table $=64.0 \mathrm{lb} . / \mathrm{ac}$.
Crop :- Paddy (Kharif). Ref :- C.R.R.I. 51(11). Type :- 'C'.

Object :-To study the effect of crop sequence and work out its economic value.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 13.6.1951/17.7.1951. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3 . (v) Nil.
(vi) Benibhog (early). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding on 30.8.1951. (ix) $65.32^{\prime \prime}$. (x) 22.10.1951.

2. TREATMENTS:

1. Paddy-paddy.
2. Paddy-groundnut sown on 25.6 .1951 .
3. Groundnut sown on 25.6.1951-paddy.
4. DESIGN :
(i) R.B.D.
(ii) (a) 3.
(b) N.A.
(iii) 8. (iv) (a) $30^{\prime} \times 20^{\prime}$.(b) $28^{\prime} \times 18^{\prime}$.
(v) 1'alround. (vi) Yes.
5. GENERAL :
(i) Satisfactory. Lodging on 29.9.1951. (ii) Nil. (iii) Straw, height, tillers and ear-length and grain yield. (iv)
(a) and (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) Nil. (vii) Treatment no. 2 omitted from analysis.
6. RESULTS :
(i) $1288 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $195.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1299
2.	No yield
3.	1277
S.E./mean	$=68.5 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref:- C.R.R.I. 50(17). Type :- 'C'.
Object :-To determine the crop sequence in double cropped land.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) N.A. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) Bulk planting. (e) 2 to 3. (v) Nil. (vi) Ch-47 (early). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 64.47°. (x) N.A.

2. TREATMENTS :

1. Jute followed by G.M. and followed by 2 nd crop of paddy.
2. Benibhog + Fallow followed by 2 nd crop of paddy.
3. Benibhog followed by G.M. and then followed by 2 nd crop of paddy.
4. Fallow followed by a crop of T-1242, followed by 2 nd crop of paddy.
5. G.M. followed by T-1242, followed by a 2 nd crop of paddy.
6. Fallow followed by a crop of T-1145, followed by 2 ad crop of paddy.
7. G.M. followed by $T=1145$ followed by 2 nd crop of paddy.
8. DESIGN :
(i) R.B.D.
(ii) (a) 7 .
(b) N.A.
(iii) 4. (iv) (a) and (b) N.A.
(v) N.A. (vi) Yes.
9. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) Yes; 1950-contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
10. RESULTS:
(i) 2977 lb./ac.
(ii) 328.3 lb ./ac.
(iii) Treatments are highly significantly different.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield	Treatment	Av. yield
1.	1550	5.	3889
2.	2390	6.	3717
3.	2703	7.	2949
4.	3638		
	S.E./mean		$=164.2 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref : - C.R.R.I. 51(19). Type : ' C '.
Object :-To determine the crop sequence in double cropped lands.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) N.A. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c)一. (d) Bulk planting. (e) 2 to 3. (v) Nil. (vi) Ch-47 (early). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 65.32°. (x) N.A.

2. TREATMENTS :

1. Jute followed by G.M. and followed by 2nd crop of paddy.
2. $\mathrm{Ch}-47$ followed by fallow, followed by 2 nd crop of paddy.
3. Ch-47 followed by G M., followed by 2 nd crop of paddy.
4. Fallow followed ty T-1242, followed by 2 nd crop of paddy.
5. G.M. followed by T-1242, followed by 2 nd crop of paddy.
6. Fallow followed by T-1145, follow:d by 2 nd crop of paddy.
7. G.M. followed by T-1145, followed by 2 nd crop of paddy.
8. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $15^{\prime} \times 64^{\prime}$. (v) N.A. (vi) Yes.
9. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) Yes, 1950-contd. (c) Nil. (v) (a) and (b) No.
(vi) and (vii) Nil.
10. RESULTS :
(i) 2067 lb./ac.
(ii) $228.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments are highly significantly different.
(iv) Av. yield of grain in lb ./ac.

Treatinent	Av. yield	Treatment	Av. yield
1.	1466	5.	2557
2.	1213	6.	2321
3.	1316	7.	2757
4.	2839		
	S.E./mean $=114.0 \mathrm{lb} . / \mathrm{ac}$.		

Crop :- Paddy.
Ref :-C.R.R.I. 52(18).
Type :- 'C'.
Object :-To determine the crop sequence in double cropped land.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) N.A. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c)-. (d) Bulk planting. (e) 2 to 3. (v) Nil. (vi) T-1242 (late). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese rotary weeder and hand weeding. (ix) 56.03°. (x) N.A.
2. TREATMENTS :
3. Jute followed by G.M. and then 2nd crop of Paddy.
4. Benibhog followed by fallow and then 2nd crop of Paddy.
5. Benibhog followed by G.M. and then 2nd crop of Paddy.
6. Fall 1 w followed by T-1242 and then 2nd crop of Paddy.
7. G.M. followed by T-1242 and then 2nd crop of Paddy.
8. Fallow followed by T-1145 and then 2nd crop of Paddy.
9. G.M. followed by T-1145 and then 2 nd crop of Paddy.
10. DESIGN :
(i) R.B.D.
(ii) (a) 7.
(b) N.A.
(iii) 4.
(iv) (a) $64^{\prime} \times 15^{\prime}$.
(b) N.A.
(v) N.A.
(vi) Yes.
11. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Grain yield, (iv) (a) Yes, 1950-contd. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
12. RESULTS:

$$
\text { Crop :- Paddy (Kharif). } \quad \text { Ref :- C.R.R.I. 48(11). Type :- ‘C'. }
$$

Object : - To find the effect of transplanting Paddy on ridges as practised in Korea.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 24.6.1948/1.8.1948. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil.
(vi) T 812. (vii) Irrigated. (viii) $2-3$ intercultures with Japanese weeder and one hand weeding.
(ix) $54.35^{\prime \prime}$. (x) 28.11 .1948.
2. TREATMENTS:

1. Korean method of plant ${ }^{\circ} \mathrm{ng}$ i.e. transplanting on 2^{\prime} ridges alternate with $6^{\prime \prime}$ channels.
2. Ordinary method of transplanting.
3. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 16 . (iv) (a) $8^{\prime} \times 24^{\prime}$. (b) $7.5^{\prime} \times 19.5^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Straw, height, tillers, length of the ear head and grain yield. (iv) (a) No. (b) and (c) -. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3452 \mathrm{lb} . / \mathrm{ac}$.
(ii) $174.7 \mathrm{lb} . / \mathrm{ac}$.
(ii i 'Treatment difference is highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	3258
2.	3646
S.E./mean	$=43.7 \mathrm{lb} . / \mathrm{ac}$.

Crop : Paddy (Kharif).
 Ref :- C.R.R.I. 48(1). Type :~'C'.

Object :-To find the the effect of summer ploughing on Paddy crop in medium soil.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. ((iii) 21.6.1948/6.8.1948. (iv) (a) 6 ploughings, (b) Transplanting. (c) -. (d) and (e) N.A. (v) Nil. (vi) T-1242 (late). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding on 16.5.1948. (ix) $54.35^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. Summer ploughing.
4. Summer fallow.
5. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 12. (iv) (a) $12^{\prime} \times 104^{\prime}$. (b) $10^{\prime} \times 102^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
6. GENERAL :
(i) Good. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) 1948-contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
7. RESULTS :
(i) $2204 \mathrm{lb} . / \mathrm{ac}$.
(ii) $226.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment difference is not significant.
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

Treatment	Av. yield
1.	2168
2.	2240
S.E. $/$ mean	$=65.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 49(1). Type :- 'C'.
Object :-To find the effect of summer ploughing on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a), (b) Refer item 11 on page 1. (iii) 23.6.1949/29, 30.7.1949. (iv) (a) 7 ploughings, laddering and levelling. (b) Transplanting. (c) -. (d) and (e) N.A. (v) Nil. (vi) B.A.M. 6 (late) (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding on 22, 23.9.1949. (ix) 46.00°. (x) 3.1.1950.
2. TREATMENTS :
3. Summer ploughing.
4. Summer fallow.
5. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 12 . (iv) (a) $12^{\prime} \times 95^{\prime}$. (b) $10^{\prime} \times 93^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
6. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) 1948 -contd. (b) No.
(c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
7. RESULTS :
(i) $1936 \mathrm{lb} . / \mathrm{ac}$.
(ii) $186.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment difference is not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1890
2.	1983
S.E./mean	$=53.7 \mathrm{Ib} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 51(18). Type :- 'C'.
Object :-To find out the optimum seed rate for the Aman crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) N.A. (iv) (a) 4 ploughings, laddering andjlevelling. (b) Transplanted. (c) As per treatments. (d) N.A. (e) 2 to 3. (v) Nil. (vi) T-1242 (late). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 65.32°. (x) N.A.
2. TREATMENTS :

4 seed rates : $\mathrm{R}_{1}=40, \mathrm{R}_{2}=60, \mathrm{R}_{3}=80$ and $\mathrm{R}_{4}=100 \mathrm{lb}$./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 6 . (iv) (a) N.A. (b) $90^{\prime} \times 29^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) !Grain yield. (iv) (a) 1951-contd. (b) N.A. (c) -. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) $2073 \mathrm{lb} / \mathrm{ac}$.
(ii) $261.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments are significantly different.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
$\mathbf{R}_{\mathbf{1}}$	1836
$\mathbf{R}_{\mathbf{2}}$	1965
$\mathbf{R}_{\mathbf{3}}$	2290
$\mathbf{R}_{\mathbf{1}}$	2199
S.E./mean	$=106.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 48(4). Type :- 'C'.
Object :-To study the effect of single and double transplanting of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 30.6.1948/30.7.1948. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - . (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 1. (v) Nil. (vi) FR 43 B (late). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 54.35°. (x) N.A.

2. TREATMENTS :

1. Single transplanting of 30 days old seedlings.
2. Single transplanting of 60 days o!d seedlings.
3. Double transplanting, 1st when 30 days old and 2 nd when 60 days old.
4. DESIGN:
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) $10 \frac{1}{2}^{\prime} \times 50^{\prime}$. (b) $9^{\prime} \times 48 \frac{1^{\prime}}{}$. (v) 1 row alround. (vi) Yes.
5. GENERAL :
(i) Cood. (ii) N.A. (iii) Straw, height, tillers and ear-length and grain yield. (iv) (a) 1948 -contd. (b) No.
(c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(1) $1930 \mathrm{lb} . / \mathrm{ac}$.
(i) $144.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments are highly significantly different.
(iv) Av. yield of grain in lb ./ac.
Treatment- Av. yield

1. 2301
2. 1646
3. 1842
S.E./mean $\quad=51.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Ref :- C.R.R.I. 52(14). Type :- 'C’.
Object :-To find out the best preceding crop to get the maximum Paddy yield.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) As per treatments. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 17.6.1952/ 17.7.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) 一. (d) N.A. (e) 2 to 3. (v) Nil. (vi) Benibhog (early). (vii) Irrigated. (viii) 2 to 3 interculturing with Japanese weeder and one hand weeding. (ix) 56.03". (x) 22.10.1952.
2. TREATMENTS :

9 previous crops : $\mathrm{C}_{0}=$ Fallow, $\mathrm{C}_{1}=$ Paddy, $\mathrm{C}_{2}=$ Wheat, $\mathrm{C}_{3}=$ Groundnut, $\mathrm{C}_{4}=$ Cotton, $\mathrm{C}_{5}=$ Rye, $\mathrm{C}_{6}=$ Tori, $\mathrm{C}_{7}=$ Moong for seed and $\mathrm{C}_{8}=$ Moong as G.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 30^{\prime}$. (b) $18^{\prime} \times 28^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Height, ear-length measurements, no. of tillers, straw and grain yield. (iv)
(a) 1951-contd.
(b) No.
(c) N.A.
(v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1456 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $154.1 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
C $_{0}$	1483	C_{5}	1423
C_{1}	1377	C_{6}	1348
C_{2}	1465	C_{7}	1529
C_{3}	1479	C_{8}	1434
C_{1}	1564		
		S.E./mean	$=77.1 \mathrm{lb} . j \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 53(14). Type :- 'C'.
Object :-To find out the best preceding crop to get the maximum Paddy yield.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) As per treatments. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 22.6.1953/ 13.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - . (d) $9^{\prime \prime} \times 6^{\circ}$. (e) 2 tv 3. (v) Nil. (vi) P.T.B. 10 (early). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) $46.02^{\prime \prime}$. (x) $6,7.10 .53$.
2. TREATMENTS :

9 previous crops : $\mathrm{C}_{0}=$ Fallow, $\mathrm{C}_{1}=$ Paddy, $\mathrm{C}_{2}=$ Wheat, $\mathrm{C}_{3}=$ Groundnut, $\mathrm{C}_{4}=$ Cotton. $\mathrm{C}_{5}=$ Rye, $\mathrm{C}_{5}=$ Tori, $\mathrm{C}_{7}=$ Moong for seed and $\mathrm{C}_{8}=$ Moong as G.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) $20^{\prime} \times 30^{\prime}$. (b) $18^{\prime} \times 28^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Height, ear-length measurements, \{no. of tillers, straw and grain yield. (iv) (a) 1951-contd. (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2696 \mathrm{lb} . / \mathrm{ac}$.
(ii) $328.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in Jb./ac.

Treatment	Av. yield	Treatment	Av. yield
C_{0}	2823	C_{5}	2938
C_{1}	2358	C_{6}	2819
C_{2}	2449	C_{7}	2826
C_{3}	2634	C_{8}	2620
C_{4}	2794		
	S.E/mean	lb./ac.	

Crop :- Paddy (Kharif).
Ref :- C.R.R.I. 53(24). Type :- 'C'.
Object :-To determine the suitable time of transplanting and broadcasting.

1. BASAL CONDITIONS :
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 4.7 .1953 and 19.7.1953/8.8.1953 and 23.8.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) As per treatments. (c) -. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) 8000 lb ./ac. of dhaincha. (vi) T-90 and T-1242 (late). (vii) Irrigated. (viii) Gap filling on 16.8 .1953 and weeding on 3.9.1953. (ix) N.A. (x) N.A.
2. TREATMENTS :
$T_{1}=$ Sown on 4.7.1953 and transplanted on 8.8.1953,
$\mathrm{T}_{2}=$ Sown on 19.7.1953 and transplanted on 23.8.1953, $\mathrm{T}_{3}=$ Broadcast and puddled on 19.7.1953.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $31^{\prime} \times 14^{\prime}$. (v) 1 row alround. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Number of plants, number of ear-heads and weight of straw and grain. (iv) (a) No. (b), (c) -. (v) (a), (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

T-90
(i) $2515 \mathrm{lb} . / \mathrm{ac}$.
(i) $486.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) The treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	2642
2.	2381
3.	2521
S.E./mean	$=198.7 \mathrm{lb} . / \mathrm{ac}$.

T-1242
(i) $2699 \mathrm{lb} . / \mathrm{ac}$.
(ii) $389.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	3058
2.	2302
3.	2736
S.E. $/$ mean	$=159.0 \mathrm{lb} . / \mathrm{ac}$.

$$
\text { Crop :m Paddy (Kharif). } \quad \text { Ref :- C.R.R.I. 53(25). Type :- ‘C’. }
$$

Object :-To determine the suitable time of planting and troadcasting.

1. BASAL CONDITIONS :
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 23.6 .1953 and 10.7.1953/2.8.1953 and 19.8.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) As per treatments. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$.(e) 2 to 3. (v) 9000 lb ./ac. of dhaincha. (vi) T-1145 and T-141 (medium). (vii) Irrigated. (viii) Gap filling no 16.8.1953 and weeding on 3.9.1953. (ix) N.A. (x) 24.11.1953 for T-1145 and 4.12.1953 for T-141.

2. TREATMENTS :

$\mathrm{T}_{1}=$ Sown on 23.6.1953 and transplanted on 2.8.1953.
$\mathrm{T}_{2}=$ Sown on 10.7.1953 and transplanted on 19.8.1953.
$\mathrm{T}_{3}=$ Broadcast and puddled on 19.7.1953.
3. DESIGN :
(i) R.B.D. (ii) (a) 3 for each variety. (b). N.A. (iii) 6 . (iv) (a) N.A. (b) $31^{\prime} \times 14^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Number of plants. Total number of ears/plant, weight of straw and grain. (iv) (a) to (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS:

T-1145

T-141
(i) $3369 \mathrm{lb} . / \mathrm{ac}$.
(ii) $589.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{a} \mathrm{c}$.

Treatment	Av. yield
1.	3489
2.	3237
3.	3381
S.E./mean	$=240.8 \mathrm{lb} . / \mathrm{ac}$.

$$
\text { Crop :- Paddy (Kharif). } \quad \text { Ref :ـ C.R.R.I. } 49(16) . \quad \text { Type :- ‘C'. }
$$

Object :-To determ:ne the optimum time of planting and age of seedling.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Pałdy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) As per treatments. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) Bulk planting. (e) 2 to 3. (v) 3000-4000 lb. of G.M. in situ was applied to the whole experiment. (vi)T-1145 (medium) and T-90 (late). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) $46.00^{\prime \prime}$. (x) N.A.
2. TREATMENTS:

Treatment	Variety: T-1145 (medium) Age of seedlings in days	Date of planting	Treatment	Variety : T-90 (late) Age of seedlings in days	
Date of planting					

3. DESIGN:
(i) C.R.D. (ii), (iii) Each treatment replicated 7 times for each variety. (iv) (a), (b) N.A. (v) N.A. (vi) N A.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 -contd. (b) No. (c) Nil. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESCLTS :

Variety T-1 145
Variety T-90
(i) $2454 \mathrm{lb} . / \mathrm{ac}$.
(i) $2290 \mathrm{lb} . / \mathrm{ac}$.
(ii) $262.6 \mathrm{lb} . / \mathrm{ac}$.
(ii) $202.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highlv significant.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

Treatment	Av. yield						
1.	2048	5.	2681	1.	2700	6.	2100
2.	2529	6.	2737	2.	2590	7.	2185
3.	2033	7.	2274	3.	2590	8.	2138
4.	2725	8.	2604	4.	2435	9.	2123
				5.	2067	10.	1572
	S.E./mean	$=99.3$ lb./ac.		S.E./mean	$=76.6 \mathrm{lb} / / \mathrm{ac}$.		

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 51(20). Type :- 'C'.

Object :-To determine the optimum time of planting and age of seadling.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Ciay loam. (b) Refer item 11 on page 1. (iii) N.A. (iv! (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) Bulk planting. (e) 2 to 3. (v) Nil. (vi) T-1145 (medium) and T-90 (iate). (vii) Irrigated. (viii) 2 to 3 intercultures with Japanese weeder and one hand weeding. (ix) 65.32*. (x) N.A.
2. TREATMENTS

	Variety	T-1145		Variet	T-S0	
Treatment	Sowing date	Age of seedlings	Planting date	Sowing date	Age of seedings	Planticg date
1.	10.6.1951	40 days	20.7.1951	10.6.1951	. 45 days	25.7.1551
2.	20.6.1951	30 days	20.7.1951	20.6.1951	35 days	25.7.1951
3.	20.6.1951	40 days	30.7.1951	25.6.1951	45 days	9.8.1951
4.	30.6.1951	30 days	30.7.1951	4.7.1951	35 days	9.8 .1951
5.	30.6.1951	40 days	9.8.1951	9.7 .1951	45 days	24.8.1951
6.	9.7.1951	30 days	9.8.1951	19.7.1951	35 days	24.8.1951
7.	9.7.1951	40 days	19.8.1951	24.7.19 1	45 days	8.9 .1931
8.	19.7.1951	30 days	19.8.1951	3.8.1951	35 days	89.1951
9.	19.7.1951	40 days	29.8.1951	8.8.1951	45 days	23.9.1351
10.	29.7.1951	30 days	29.8.1951	18.8.1951	35 days	23.9.1951

Above treatments applied under manured and unmanured conditions for both the varieties separately.
3. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 8 . (iv) (a) $29^{\prime} \times 3^{\prime} .5^{\prime}$. (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A.
(iii) Grain yield.
(iv) (a) 1949-contd.
(b) No. (c) -.
v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) to (iv) Av. yield in $\mathrm{lb} . / \mathrm{ac}$.

	Variety T-1145		Variety T-90	
Treatment	Un-manured	Manured	Un-manured	Manured
1.	1712	2065	2092	2174
2.	1739	2092	2038	2039
3.	1793	2282	2092	2391
4.	1875	2228	2092	2416
5.	1902	2201	1956	2228
6.	1842	2201	2147	2255
7.	1739	2119	1902	2147
8.	1739	2065	1956	2092
9.	1630	1603	1712	1848
10.	1521	1848	1658	1712
Mean	1749	2070	1965	2133
C.D. $(.05)$	$140.7 \mathrm{lb} . / \mathrm{ac}$.	$140.5 \mathrm{lb} . / \mathrm{ac}$.	$212.4 \mathrm{lb} . / \mathrm{ac}$.	$232.2 \mathrm{lb} . / \mathrm{ac}$.

Treatment differences under manured and unmanured conditions are significant for both varieties.

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 52(17). 'Type :- 'C'.
Cbject :-To determine the optimum time of planting and age of seedling.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) As per treatments. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2-3. (v) $100 \mathrm{lb} . / \mathrm{ac}$. of A/S. (vi) T-1145 and T-90. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 56.03°. (x) N.A. (x) N.A.
2. TREATMENTS :

	Variety	T-1145		Variety	T-90	
Treatment	Sowing date	Age of seedlings	Planting date	Sowing date	Age of seedlings	Planting date
1.	10.6 .1952	40 days	20.7.1952	10.6.1952	45 days	25.7.1952
2.	20.6.1952	30 days	20.7.1952	20.6.1952	35 days	25.7.1952
3.	20.6.1952	40 days	30.7.1952	25.6.1952	45 days	9.8.1952
4.	30.6.1952	30 days	30.7.1952	4.7.1952	35 days	9.8.1952
5.	30.6.1952	40 days	9.8.1952	9.8 .1952	45 days	24.8.1952
6.	9.7.1952	30 days	9.8.1952	19.7.1952	35 days	24.8.1952
7.	9.7.1952	40 days	19.8.1952	24.7.1952	45 days	8.9.1952
8.	19.7.1952	30 days	19.8.1952	3.8.1952	35 days	8.9.1952
9.	19.7.1952	40 days	29.8.1952	8.8.1952	45 days	23.9.1952
10.	29.7.1952	30 days	20.8.1952	18.8.1952	35 days	23.9.1952

Above treatments applied under manured and unmanured conditions for both the varieties separately.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 8 . (iv) (a) $31^{\prime} \times 5.5^{\prime}$. (b) $29^{\prime} \times 3.5^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory, (ii) N.A. (iii) Grain yield. (iv) (a) 1949—contd. (c) No. (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :

(i) to (iv)			Variety	T-90
	Variety T	T-1145		
Treatment	manured	Unmanured	manured	Unmanured
1.	1746	1188	2683	1800
2.	1766	1257	2541	1807
3.	1576	1243	2296	1576
4.	1732	1167	2459	1637
5.	1685	1325	2031	1229
6.	1549	1379	1841	1229
7.	1665	985	1644	1236
8.	1596	1066	1542	1086
9.	1216	1087	1073	652
10.	1277	1060	1026	713
G.M.	1581	1176	1914	1297
S.E./mean	$7.39 \mathrm{lb} . / \mathrm{ac}$.	. $2.99 \mathrm{lb} . / \mathrm{ac}$.	$4.41 \mathrm{lb} . / \mathrm{ac}$.	$265 \mathrm{lb} . / \mathrm{ac}$.
Significance	H.S.	H.S.	H.S.	H.S.

Crop :- Paddy (Kharif). Ref :n C.R.R.I. 49(7). Type :- 'C'.
Qbject : -To find the possibilities of growing two crops of Paddy on the same land.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 24.6.1949/20.7.1949. (iv) (a) 4 ploughines, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) $\mathrm{V}_{\mathbf{1}}=$ Bcnibhog (early) and $\mathrm{V}_{\mathbf{2}}=\mathrm{T}-1145$ (medium). (vii) Irrigated. (viii) $2-3$ intercultures with Japanese weeder and cos hand weeding on 30.8.1949. (ix) 46.00°. (x) V_{1} on 1610.1949 and V_{2} on 16.11.1949.

2. TREATMENTS:

$T_{1}=$ G.M.-Long Paddy-St:ort Paddy, $\mathrm{T}_{2}=$ Short Paddy-G.M.-Short Paddy and $\mathrm{T}_{3}=$ Short Paddy-Short Paddy.

3. DESIGN :

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) $22^{\prime} \times 66^{\prime}$. (b) $20^{\prime} \times 64^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL:
(i) Good. (ii) N.A. (iii) Height, tiller, ear-length, grain and straw yield. (iv) (a) No. (b), (c) 一. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1573 \quad$ 1b./ac.
(ii) $74.32 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	\mathbf{T}_{1}	\mathbf{T}_{2}	\mathbf{T}_{3}	Mean
1st crop 2nd crop	1466	1487	1462	1472
Mean	1445	2025	1554	1675.
S.E. of T marginal means				
S.E. of body of table				

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 51(13). Type :- 'C'.
Object :-To observe the effect of planting early susceptible variety like CO-13 on different dates and incidence of blast disease.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 18 and 28.6 1951/ 9 and 21.7.1951. (iv) (a) 2 p!oughings, laddering and levelling. (b) Transplanted. (c) - (d) N.A. (e) 2 to 3. (v) Nil. (vi) CO-13 (early). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) $65.32^{\prime \prime}$. (x) 15.10 .1951 to 5.11 .1951 .
2. TREATMENTS :

Main-plot treatments:
2 levels of manuring: $M_{0}=0$ and $M_{1}=$ Manuring.
Sub-plot treatments :
4 planting dates: $D_{1}=19.2 .1951, D_{2}=28.7 .1951, D_{3}=8.8 .1951$ and $D_{4}=18.8 .1951$.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) $30^{\prime} \times 9 \frac{1}{}^{\prime}$. (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Straw, chaff, neck infected tillers. (iv) (a) $1950-1951$. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) Nil. (vii) Analysis appears to be done for sowing dates under manured and unmanured conditions separately as for R.B.D.

5. RESULTS :

Unmanured
Manured

(i) $441.3 \mathrm{lb} . / \mathrm{ac}$.
(ii) $120.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments are highly significantly different.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.
S.E. $/$ mean $\quad=48.99 \mathrm{lb} / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref :- C.R.R.I. 49(8). Type :- 'CV'.
Object :-To study the effect of single and double transplanting of Paddy.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 30.6.1949/30.7.1949 and 29.8.1949. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) 一. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) As per treatments. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 46.00°. (x) 17.12.1949.

2. TREATMENTS:

Main-plot treatments :
3 varieti $\mathrm{s}: \mathrm{V}_{1}=\mathrm{T}-90$ (late), $\mathrm{V}_{2}=\mathrm{T}-1242$ (late) and $\mathrm{V}_{3}=$ F.R. 43 (B) late.
Sub-plot treatments :
4 methods of sowing: $\mathrm{T}_{1}=$ single transplanting 30 days old seedlings, $\mathrm{T}_{2}=$ single transplanting 60 days old seedlings, $\mathrm{T}_{3}=$ double transplanting 1st of 30 days old and $[2 \mathrm{nd}$ of $\mathbf{6 0}$ days old seedlings and $\mathrm{T}_{1}=$ double transplanting 1st (date N.A.) and 2nd of 30 days old seedling.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) Sub-plot $15^{\prime} \times 21^{\prime}$. (b) $13 \frac{1}{2}^{\prime} \times 19 \frac{1}{2}^{\prime}$. (v) 1 row all round. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain weight. (iv) (a) 1948 to 1950 . (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $1902 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $221.6 \mathrm{lb} . / \mathrm{cc}$.
(b) $188.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) V and T effects are highly significant. 'Interaction is not significant.
(iv) Av. yield of grain in lb./ac.

	T_{1}	T_{2}	T_{3}	T_{4}	- Mean
V_{1}	2173	1679	2054	1475	1845
$\mathrm{~V}_{2}$	2578	1897	2342	1824	2160
$\mathrm{~V}_{3}$	2001	1472	1916	1419	1702
Mean	2251	1683	2104	1573	1902

S.E. of difference of two

1. V marginal means $\quad=78.3 \mathrm{lb} . / \mathrm{ac}$.
2. T marginal means $\quad=76.7 \mathrm{lb} . / \mathrm{ac}$.
3. T means at the same level of $V \quad=132.9 \mathrm{Jb} . / \mathrm{ac}$.
4. V neans at the same level of $T \quad=139.3 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 50(4). Type :- 'CV'.
Object :-To study the efect of single and double transplanting of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) Transplanting on 10.7.1950, 11.8.1950 and 16.8.1950. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) $9^{\circ} \times 9^{\circ}$. (e) As per treatments. (v) Nil. (vi) As per treatments (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 64.47". (x) N.A.

2. TREATMENTS :

Main-plof treatments:
3 varieties: $\mathrm{V}_{1}=\mathrm{T}-90$ (late), $\mathrm{V}_{2}=\mathrm{T}-1242$ (late).

Sub-plot treatments :

4 methods of sowing: $T_{1}=$ single transplanting 30 days old seedlings, $T_{2}=$ single transplanting 60 days old seedlings, $\mathrm{T}_{3}=$ double transplanting 1 st of 30 days old and $2 \mathrm{nd} \epsilon 0$ days old seedlings and $T_{4}=$ doutle transplanting 1 st (date N.A.) and 2 nd of 30 days old seedlings.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $15^{\prime} \times 21^{\prime}$. (b) $13.5^{\prime} \times 19.5^{\prime}$. (v) 1 row all round the Plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) 1948-1950. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $2382 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $415.9 \mathrm{lb} . / \mathrm{ac}$.
(b) $149.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only T effect is highly significant.
(iv) Av. yield of grain in lb ./ac.

	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{\mathbf{4}}$	Mean
$\mathbf{V}_{\mathbf{1}}$	2779	2378	2603	1882	2410
$\mathbf{V}_{\mathbf{2}}$	2812	2033	2550	2020	2354
Mean	2795	2205	2576	1951	2382

S.E. of difference of two

1. V marginal means	$=120.1 \mathrm{lb} . / \mathrm{ac}$.
2. T marginal means	$=61.1 \mathrm{lb} . / \mathrm{ac}$.
3. T means at the same level of V	$=86.5 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of T	

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 49(13). Type :- 'CV'.
Object :-To find the suitable second crop variety and the optimum date of planting.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) As per teatments, (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) $6^{\circ} \times 6^{\prime \prime}$. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 46.00°. (x) N.A.

2. TREATMENTS :

Main-plot treatments:
6 dates of planting : $D_{1}=6.10 .1949, D_{2}=22.10 .1949, D_{3}=7.11 .1949, D_{4}=22.11 .1949, D_{8}=8.12 .1949$ and $D_{8}=24.12 .1949$.
Sub-plot treatments :
6 varieties : $V_{1}=\operatorname{ASD} 1, V_{2}=\operatorname{DI} 4, V_{3}=P T B 10, V_{4}=C h-45, V_{5}=C h-5$ and $V_{8}=C O .13$.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block ; 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $9^{\prime} \times 10 \frac{1}{2}^{\prime}$. (b) $8^{\prime} \times 9 \frac{1}{2}$. (v) 1 row all round. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) No. (b) and (c) -. (v) (a) and (b) Nil. (vi) Nil. (vii) Results with 2 dates of planting are available. About others no information is available.
5. RESULTS :
(i) $901 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $239.3 \mathrm{lb} . / \mathrm{ac}$.
(b) $201.9 \mathrm{lb} / \mathrm{ac}$.
(iii) D effect is highly significant while V effect and interaction DV are significant.
(iv) Av. yield of grain in lb ./ac.

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	Mean
D_{1}	606	907	954	430	606	842	724
D_{2}	1095	907	1525	1054	1054	836	1078
Mean	850	907	1239	742	830	839	901

S.E. of difference of two

1. D marginal means	$=69.1 \mathrm{lb} / / \mathrm{ac}$.
2. V marginal means	$=105.7 \mathrm{lb} . / \mathrm{ac}$.
3. V means at the same level of D	$=142.8 \mathrm{lb} . / \mathrm{ac}$.
4. D means at the same level of V	$=147.4 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif). Ref :- C.R.R.I. 48(3). Type:~'CV'.
Object:-To find the effect of different spacings on different varieties of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) V_{1} on 24.6 .1948 and V_{2} on $25.6 .1948 / 4,5.8 .1948$. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) As per treatments. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) $54.35^{\prime \prime}$ (x) V_{1} on $1.12 .1948 ; \mathrm{V}_{2}$ on 17.12.1948.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 varieties: $\mathrm{V}_{1}=\mathrm{T}-812$ (medium) and $\mathrm{V}_{\mathbf{2}}=\mathrm{T}-1242$ (late).
(2) 3 spacings: $\mathrm{S}_{1}=3^{\prime \prime} \times 3^{\circ}, \mathrm{S}_{2}=6^{\circ} \times 6^{\prime \prime}$ and $\mathrm{S}_{3}=9^{\circ} \times 9^{\circ}$.
3. DESIGN:
(i) 2×3 Fact. in R.B.D. (ii) (a) 6. (b) N.A. (iii) 6 . (iv) (a) $15^{\prime} \times 15^{\prime}$. (b) $12^{\prime} \times 12^{\prime}$. (v) 1.5^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Maximum attack of hispa in S_{3} and in plots of closer spacings i.e. in order of S_{3}, S_{2}, S_{1}. Attack of thrips just in reverse order. (iii) Straw, height, tillers, ear-length and yield of grain. (iv) (a) 1945 contd. (b) No. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2934 \mathrm{lb} . / \mathrm{ac}$.
(ii) $118.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) V and S effects are highly significant while their interaction is not significant.
(iv) Av yield of grain in lb./ac.

	S_{1}	S_{2}	S_{3}	Mean
V_{1}	2662	2783	2904	2783
V_{2}	2904	3206	3146	3085
Mean	2783	2995	3025	2934
S.E. of S marginal mean S.E. of V marginal mean S.E. of body cf table		$=34.061 \mathrm{l} / \mathrm{ac}$.		

```
Crop:- Paddy (Kharif)

Object :-To compare 6 varieties sown on five different dates both in broadcast and transplanted conditions.

\section*{1. BASAL CONDITIONS:}
(i) (a) Paddy. (b) Paddy. (c) Nil. (ii) (a) Clay loam. (b) Refer item 11 on page 1 . (iii) As per treatments. (iv) (a) 4 ploughings, laddering and levelling. (b) As per treatments. (c) N.A. (d) N.A. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) \(64.47^{\circ}\). (x) N.A.

\section*{2. TREATMENTS :}

Main-plot treatments :
2 methods of sowing: \(M_{1}=\) Broadcast and \(M_{2}=\) Transplanted.
Sub-plot treatments:
3 sowing/transplanting dates: \(\mathrm{D}_{1}=11.12 .1950, \mathrm{D}_{2}=26.12 .1950\) and \(\mathrm{D}_{3}=11.1 .1951\).
Sub-sub-plot treatments:
6 varieties: \(V_{1}=\operatorname{Ch} 2, V_{2}=\operatorname{Ch} 45, V_{3}=\operatorname{Ch} 47, V_{4}=P T B 10, V_{5}=\) DI 4 and \(V_{6}=C O .13\).
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/block, 3 sub-plots/main-plot, 6 sub-sub-plots/sub-plot. (b) N.A. (iii) 4 . (iv) (a) \(11.5^{\circ} \times 9.5^{\prime}\). (b) \(9.5^{\prime} \times 7.5^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Straw, height, tiller count and grain yield. (iv) (a) NA. (b) N.A. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 2058 lb.'ac.
(ii) (a) \(319.6 \mathrm{lb} / \mathrm{ac}\).
(b) \(619.4 \mathrm{lb} . / \mathrm{ac}\).
(c) \(510.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(M\) and \(S\) effects, and interaction \(M V\) are highly significant. Interactions \(D \times M\) and \(D \times V\) are significant. Other effects are not significant.
(iv) Av. yield of grain in lb, /ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \(V_{4}\) & \(\mathrm{V}_{5}\) & \(V_{6}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
\hline \(\mathrm{D}_{1}\) & 834 & 960 & 1596 & 2035 & 1559 & 1315 & 1380 & 1179 & 1581 \\
\hline D 2 & 2604 & 2:28 & 2132 & 2588 & 2222 & 2884 & 2510 & 1923 & 3097 \\
\hline \(\mathrm{D}_{3}\) & 2154 & 2460 & 2269 & 2400 & 2215 & 2200 & 2283 & 2020 & 2546 \\
\hline Mean & 1864 & 1996 & 1999 & 2341 & 2012 & 2133 & 2058 & 1707 & 2408 \\
\hline \(\mathrm{M}_{1}\) & 1184 & 1242 & 1613 & 2228 & 1970 & 2005 & & & \\
\hline \(\mathrm{M}_{2}\) & 2544 & 2750 & 2385 & 2455 & 2053 & 2260 & & & \\
\hline
\end{tabular}
S.E. of the difference of two
1. M marginal means
\[
=53.3 \mathrm{lb} . / \mathrm{ac}
\]
6. V means at the same level of \(\mathrm{M}=208.5 \mathrm{lb}\)./ac.
2. D marginal means \(=126.4 \mathrm{lb} . / \mathrm{ac}\).
7. M means at the same level of \(V=197.7 \mathrm{lb}\)./ac.
3. V marginal means
\(=147.5 \mathrm{lb} . / \mathrm{ac}\).
8. V means at the same level of \(D=255.4 \mathrm{lb}\)./ac.
4. D means at the same level of \(M\)
5. M means at the same level of \(D\)
\(=178.8 \mathrm{lb} . / \mathrm{ac}\).
\(=155.4 \mathrm{lb} . / \mathrm{ac}\).

> Crop :- Paddy (Kharif). Ref:- C.R.R.I. 48(9). Type :- ‘CM'.

Object :-To study the effect of continuous application of \(A / S\) with and without compost on Paddy crop.
1. B \(\triangle S A L C O N D I T I O N S:\)
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 24.6.1948/29.7.1943. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) \(2-5\) seedlings per hill. (v) Basal manuring of 100 maunds of compost per asre was given to balf the experimental plots. (vi) T 812 . (vii) Irrigated. (viii) 2 to 3 iniercultures with Japanese weeder and one hand weeding (is) \(54.35^{\circ}\). (x) 5, 7.12.1948.

\section*{2. TREATMENTS :}

Main-plot treatments :
2 applications of compost : \(\mathrm{C}_{0}=\) No compost and \(\mathrm{C}_{1}=\) Compost.
Sub-plot treatments
5 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20, N_{2}=40, N_{3}=60\) and \(N_{4}=80 \mathrm{lb} . / \mathrm{ac}\).
Sub-sub-plot treatments :
2 toppings: \(\mathrm{T}_{0}=\) No topping and \(\mathrm{T}_{1}=\) Topping.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/block; 5 sub-plots/main-plot and 2 sub-sub-plots/sub-plot. (b) \(124^{\prime} \times 60^{\prime}\). (iii) 4. (iv) (a) \(30^{\prime} \times 10 \frac{1}{2}^{\prime}\). (b) \(28^{\circ} \times 8 \frac{1^{\prime \prime}}{}\) (v) \(1^{\prime}\) alround the plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Height measurements, no. of tillers, straw and grain yield. (iv) (a) 1948contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2349 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(635.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(518.3 \mathrm{lb} . / \mathrm{ac}\).
(c) \(368.9 \mathrm{lb} / \mathrm{ac}\).
(iii) Effect of \(\mathrm{C}, \mathrm{N}, \mathrm{T}\), interaction \(\mathrm{N} \times \mathrm{T}\) and \(\mathrm{C} \times \mathrm{T} \times \mathrm{N}\) are highly significant. Interactions \(\mathrm{C} \times \mathrm{T}\) and \(\mathrm{C} \times \mathrm{N}\) are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lllll|ll|l|l|} 
& \(N_{0}\) & \(N_{1}\) & \(N_{2}\) & \(N_{3}\) & \(N_{4}\) & Mean & \(T_{0}\) & \(T_{1}\) \\
\hline\(C_{0}\) & 2693 & 2618 & 2350 & 2222 & 1902 & 2357 & 2272 & 2442 \\
\(C_{1}\) & 2652 & 2484 & 2393 & 2074 & 2101 & 2341 & 2248 & 2433 \\
\hline Mean & 2672 & 2551 & 2371 & 2148 & 2001 & 2349 & 2260 & 2437 \\
\hline\(T_{0}\) & 2708 & 2458 & 2244 & 2026 & 1866 & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means
2. \(\mathbf{N}\) marginal means
3. T marginal means
4. N means at the same level of \(C\)
5. C means at the same level of N
\(=142.1 \mathrm{lb} . / \mathrm{ac}\).
\(=129.6 \mathrm{lb} / \mathrm{ac}\). 7 C
\(2.6 \mathrm{lb} / \mathrm{ac} . \quad\) 7. \(C\) means at the same level of \(T=164.3 \mathrm{lb} . / \mathrm{ac}\).
\(=58.3 \mathrm{lb} . / \mathrm{ac} . \quad\) 8. \(T\) means at the same level of \(\mathrm{N}=184.4 \mathrm{lb}\)./ac.
\(=259.2 \mathrm{lb}\)./ac.
\(=271.9 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 53(7). Type :- 'CM'.
Object: - To study the effect of cultural and manurial practices on Paddy yield.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 16.8.1953/9, 11.7.1953 and 3.3.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - . (d) \(10^{\circ} \times 10^{\circ}\). (e) 2-3 seedlings per hole. (v) 40 lb ./ac. of \(\mathrm{P}_{8} \mathrm{O}_{5}\). (vi) T-1242 (late). '(vii) Irrigated. (viii) 2-3 intercultu-es with Japanese weeder and one hand weeding. (ix) \(46.02^{\circ}\). (x) \(26,27.12 .1953\),
2. TREATMENTS:

Main-plot treatments :
4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30, \mathrm{~N}_{2}=60\) and \(\mathrm{N}_{3}=90 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments :
4 cuttings: \(\mathrm{C}_{0}=0, \mathrm{C}_{1}=1, \mathrm{C}_{2}=2\) and \(\mathrm{C}_{8}=3\) cuttings.

\section*{Sub-sub-plot treatments :}

3 methods of planting: \(\mathrm{M}_{1}=\) Single transplanting 30 days old seedlings, \(\mathrm{M}_{2}=\) Single transplanting 50 days ofd seedlings and \(\mathrm{M}_{3}=\) Double transplanting lst of 30 days old seedlings and 2nd of 20 days old seedlings.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/replication; 4 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 445.5\) ac. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Good. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers straw and grain yield. (iv)
(a) No. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(3475 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(772.6 \mathrm{lb} . / \mathrm{ac}\).
(b) \(586.4 \mathrm{lb} . / \mathrm{ac}\).
(c) \(295.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) C and M effects are highly significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & C0 & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
\hline \(\mathrm{N}_{0}\) & 3678 & 3570 & 3426 & 3078 & 3437 & 3503 & 3190 & 3619 \\
\hline \(\mathrm{N}_{1}\) & 3598 & 3673 & 3348 & 3284 & 3475 & ! 3573 & 3114 & 3737 \\
\hline \(\mathrm{N}_{2}\) & 3921 & 3540 & 3525 & 3265 & 3587 & 3670 & 3286 & 3805 \\
\hline \(\mathrm{N}_{3}\) & 3514 & 3349 & 3465 & 3282 & 3402 & 3461 & 3189 & 3556 \\
\hline Mean & 3677 & 3588 & 3441 & 3227 & 3475 & & & \\
\hline \(\mathrm{M}_{1}\) & 3740 & 3604 & 3539 & 3325 & 3552 & & & \\
\hline \(\mathrm{M}_{2}\) & 3367 & 3282 & 3168 & 2963 & 3195 & & & \\
\hline \(\mathrm{M}_{3}\) & 3925 & 3787 & 3615 & 3393 & 3680 & & & \\
\hline
\end{tabular}

\section*{S.E. of difference of two}
1. N marginal means
\(=157.7 \mathrm{lb} . / \mathrm{ac}\).
\(=119.7 \mathrm{lb} . / \mathrm{ac}\).
6. \(M\) means at the same level of \(N=104.4 \mathrm{lb} . / \mathrm{ac}\).
2. C marginal means
\(=52.3 \mathrm{lb} . / \mathrm{ac}\).
7. N means at the same leve! of \(\mathrm{M}=179.3 \mathrm{lb}\)./ac.
8. \(M\) means at the same level of \(C=104.4 \mathrm{lb}\)./ac.
\(=239.4 \mathrm{lb} . / \mathrm{ac}\).
9. C means at the sams level of \(M=147.0 \mathrm{lb} / \mathrm{ac}\).
4. \(\mathbf{C}\) means at the same level of N
5. N means at the same level of C
\(=260.5 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Paddy (Kharif) Ref :- C.R.R.I. 53(11) Type :- ‘CM’.}

Object :-To test the merits of the various treatment combinations under Japanese method of paddy cultivation.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) \(24.6 .1953 / 18\), 19.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b), (c) As per treatments. (d) \(10^{\prime \prime} \times 10^{\prime \prime}\). (e) As per treatments. (v) Nil. (vi) T-141 (medium). (vii) Irrigated. (viii) As per treatments. (ix) \(46.02^{\prime \prime}\). (x) 26 to 30.11.1953.

\section*{2. TREATMENTS:}

All combinations of (1), (2), (3), (4), (5) and (6)
(1) 2 seed rates : \(P_{1}=\) Local method and \(P_{2}=\) Japanese method.
(2) 2 seed preparations: \(Q_{1}=\) Local method and \(Q_{2}=\) Japanese method.
(3) 2 no. of seedings/hole : \(\mathrm{R}_{1}=\) Local method and \(\mathrm{R}_{2}=\) Japanese method.
(4) 2 methods of transplanting: \(\mathrm{S}_{1}=\) Local method and \(\mathrm{S}_{2}=\) Japanese method.
(5) 2 field manuring: \(T_{1}=\) Local method and \(T_{2}=\) Japanese method.
(6) 2 interculturing and weeding: \(U_{1}=\) Local method and \(U_{2}=\) Japanese method.

\section*{3. DESIGN:}
(i) \(2^{\text { }}\) Confd. Fact. with PQR, PSU, RST, QTU, QRSU. PQST, PRTU interactions confounded. (ii) (a) 8 plots/block ; 8 blocks/replication. (b) N.A. (iii) 1. (iv) (a) \(60^{\prime} \times 15^{\prime}\). (b) \(58^{\prime} 4^{\prime \prime} \times 13^{\prime} 4^{\prime \prime}\). (v) 1 row alround. (vi) Yes.

\section*{4. GENERAL :}
(i) Satisfactory. (ii) N.A. Sprayed with perenox (1 oz. in 2 gallons of water). (iii) Straw, height, tillers and ear-length. (iv) (a) Yes; 1953-contd. (b) No. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 4025 lb ./ac.
(ii) \(363.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{T}\) is highly significant, while main effects of \(\mathbf{U}\) is significant. Other effects are not significant.
(iv) Av. response in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Response with & P & Q & R & S & T & U \\
\hline Mean response & \(-63.28\) & 18.34 & \(-26.10\) & 106.54 & -586.54 & 189.90 \\
\hline \(\mathrm{P}_{1}\) & - & 29.32 & -110.06 & 175.06 & 674.32 & 204.56 \\
\hline \(\mathrm{P}_{2}\) & - & - 7.38 & 57.88 & 38.00 & -498.76 & 175.24 \\
\hline Q \({ }_{1}\) & 52.32 & - & - 33.44 & 134.82 & -625.56 & 316.18 \\
\hline Q2 & \(-74.24\) & - & \(-18.76\) & 78.26 & -547.50 & 63.62 \\
\hline \(\mathrm{R}_{1}\) & -147.24 & 11.60 & - & 2.00 & -575.50 & 81.00 \\
\hline \(\mathbf{R}_{2}\) & 20.68 & 25.68 & - & 211.06 & -597.56 & 298.82 \\
\hline \(\mathrm{S}_{1}\) & 5.26 & 46.62 & -130.62 & - & -452.82 & 198.00 \\
\hline \(\mathrm{S}_{2}\) & -131.82 & 5.94 & 78.44 & - & 720.26 & 181.82 \\
\hline T1 & -151.06 & -20.68 & \(-15.06\) & \(-27.08\) & - & 71.56 \\
\hline \(\mathrm{T}_{2}\) & 24.50 & 57.38 & \(-37.12\) & 240.26 & - & 308.24 \\
\hline \(\mathrm{U}_{1}\) & - 48.62 & 144.62 & \(-135.03\) & 114.62 & 704.88 & - \\
\hline \(\mathrm{U}_{2}\) & - 77.94 & -107.94 & 82.82 & 98.44 & -468.18 & - \\
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
S.E. of mean response \\
S.E. of differential response
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =64.26 \mathrm{lb} . / \mathrm{ac} \\
& =90.88 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]} & \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

Crop:-Paddy (Kharif). Ref :-C.R R.I. 53(10). Type :- 'CM'.
Object:-To compare local and Japanese methods of cultivation.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 24.6.1953/ 227.1953 . (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) \(10^{\circ} \times 10^{\circ}\). (e) 2-3 seedlings per hole. (v) Nil. (vi) T-141 (medium). (vii) Irrigated. (viii) As per treatments. (ix) \(46.02^{\circ}\). (x) 7 to 9.12.1953.

\section*{2. TREATMENTS :}

All combinations of (1), (2), (3) and (4)
(1) 2 methods of nursery planting : \(\mathrm{A}_{1}=\) Japanese and \(\mathrm{A}_{2}=\) Local.
(2) 2 methods of transplanting: \(\mathrm{T}_{1}=\) Japanese and \(\mathrm{T}_{2}=\) Local.
(3) 2 methods of field manuring: \(\mathrm{M}_{1}=\) Japanese and \(\mathrm{M}_{2}=\) Local.
(4) 2 methods of intercultivation: \(\mathrm{C}_{1}=\) Japanese and \(\mathrm{C}_{2}=\) Local.
3. DESIGN:
(i) \(2^{4}\) confounding with \(\mathbf{A} \times \mathrm{T} \times \mathrm{M} \times \mathrm{C}\) interaction confounded. (ii) (a) 8 plots/block; 2 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(60^{\prime} \times 15^{\circ}\). (b) \(58^{\prime} 4^{\circ} \times 13^{\prime} 4^{\prime \prime}\). (v) 1 row all round. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Height and ear-length measurements, no. of tillers, straw and grain yie!e, (vi) (a) 1953-N.A. (b) N.A. (c) N.A. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(4169 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(312.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) M effect alone is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{A}_{1}\) & \(\mathrm{A}_{2}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{1}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) \\
\hline T1 & 4133 & 4085 & 4109 & 4437 & 3782 & 4117 & 4101 \\
\hline \(\mathrm{T}_{2}\) & 4093 & 4364 & 4229 & 4544 & 3913 & 4181 & 4277 \\
\hline Mean & 4113 & 4225 & 4169 & 4490 & 3848 & 4149 & 4189 \\
\hline \(\mathrm{C}_{1}\) & 4049 & 4249 & 4149 & 4513 & 3785 & & \\
\hline \(\mathrm{C}_{2}\) & 4177 & 4201 & 4189 & 4468 & 3910 & & \\
\hline \(\mathrm{M}_{1}\) & 4399 & 4581 & 4490 & & & & \\
\hline \(\mathrm{M}_{2}\) & 3827 & 3868 & 3848 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=78.15 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of any table & \(=110.52 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

\section*{Crop :-Paddy (Kharif). Ref :- C.R.R.I. 49(6)' Type :- 'CMV'.}

Object :-To determine the optimum spacing for planting various varieties of paddy of [different dates of planting under manured and unmanured conditions.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 17.6.1949 and 12.7.1949/As per treatments. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) As per treatments. (e) 2 to 3. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) \(46.00^{\circ}\). (x) N.A.

\section*{2. TREATMENTS :}

3 strips in one direction : times of planting: \(\mathrm{T}_{1}=24,25.7 .1949, \mathrm{~T}_{2}=12,13.8 .1949\) and \(\mathrm{T}_{3}=31.8 .1949\).
3 strips in perpendicular direction to the above 3 manures: \(N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac.
Sub-plot treatments (in each of the above)
All combinations of (1) and (2)
(1) 3 varieties : \(\mathrm{V}_{1}=\mathrm{T}-608\) (early), \(\mathrm{V}_{2}=\mathrm{T}-1145\) (medium) and \(\mathrm{V}_{3}=\mathrm{T}-1242\) (late).
(2) 3 spacing: \(\mathrm{S}_{1}=6^{\circ} \times 6^{\circ}, \mathrm{S}_{2}=12^{\circ} \times 12^{\prime \prime}\) and \(\mathrm{S}_{3}=18^{\circ} \times 18^{\circ}\).
3. DESIGN :
(i) Strip-cum-split plot. (ii) (a) 3 strips in one direction; 3 strips in perpendicular; 9 sub-plot/strip. (b) N.A. (iii) 2. (iv) (a) \(12^{\prime} \times 12^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Straw, height, tillers and ear-length. (iv) (a) Yes; 1947-contd. (b) No. (c) N A. (v) (a), (b) Nil. (vi) Nil. (vii) S.E.'s presented as available.

\section*{5. RESULTS:}
(i) \(1458 \mathrm{lb} . / \mathrm{ac}\).
(ii) N.A.
(iii) Main effects of \(T\), Mand \(V\) are highly significant, \(S\) effect is significant while other effects are not significant.
(iv) Av. yield of grain in lb,/ac.


Crop :- Rice (Kharif). Ref :- C.R.R.I. 50(20). Type :- 'D'.
Object:-To know the effect of spraying different fungicides in different doses on the incidence of blast disease and to estimate the loss caused by the disease.

\section*{1. BASAL CONDITIONS :}
(i) (a) and (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 15.7.1951./21.8.1951. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanting. (c) -. (d) N.A. (e) 1 to 2 . (v) Nil. (vi) CO-13 (medium). (vii) Irrigated. (viii) 2 hand weedings. (ix) and (x) N.A.
2. TREATMENTS :
1. Bordeaux mixture 5:5:50.
2. Bordeaux mixture \(2 \frac{1}{2}: 3 \frac{1}{2}: 50\).
3. Perenox, usual dose i.e. 1 oz in 2 gallons of water.
4. Control.
3. DESIGN:
(i) R.B.D.
(ii) (a) 4.
(b) N.A.
(iii) 12.
(iv) \(12 \frac{1}{2}^{\prime} \times 40^{\prime}\).
(b) \(10 \frac{1}{2}^{\prime} \times 38^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Pests : N.A. Disease : Blast disease was observed at the early stages of plant growth, but the incidence had gone down a little by 25.9.1951. (iii) Yield and incidence of blast. (iv) (a) 1950-1951, (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1170 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(81.74 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yi.ld \\
1. & 1365 \\
2. & 1235 \\
3. & 1194 \\
4. & 884 \\
S.E. meaa & \(=23.6 \mathrm{lb} . / \mathrm{ac}\)
\end{tabular}

Crop:- Paddy (Kharif). Ref :- C.R.R.I. 51(21). Type :- 'D'.
Object :-To find out the efficiecy of insecticide to control patchy diplosis.

\section*{1. BASAL CONDITIONS :}
(i) (a) and (b) Paddy. (c) N.A. (ii) (a) Clay loamy soil. (b) Refer item 11 on page 1. (iii) 27.6.1951/18.8.1951.
(iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) \(6^{*} \times 6^{*}\). (e) 1. (v) N.A. (vi) GEB 24 (late). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) and (x) N.A.
2. TREATMENTS :
1. Control. 5. Gammexane-P520 B.H.C.-0.3 oz.
2. Hexidole-950 B.H.C. -0.3 oz . 6. Hortex-WP 25 (Y-1 somen) -0.16 oz .
3. Benexide-WP50 B.H.C. -0.3 oz . 7. Guesarol-550 D.D.T-0.3 oz.
4. Hexiclan-DP50 B.H.C. -0.3 oz . 8. Sweet flag (distillate) \(50: 50\).

All insecticides are sprayed at \(1 \%\) strength. Insecticides 2 to 7 in one gallon of water.
3. DESIGN :
(i) R.B.D.
ii) (a) 8 .
(b) \(134^{\prime} \times 64^{\prime}\).
(iii) 4 .
(iv) (a) N.A.
(b) \(64^{\prime} \times 14^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) This experiment is meant for the control of pest population. (iii) Number of Grubs, pupae, parasite cocoon and silver shoots. (iv) (a) N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1915 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(294.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 2057 & 5. & 1861 \\
2. & 1894 & 6. & 1825 \\
3. & 1815 & 7. & 1800 \\
4. & 1835 & 8. & 2234 \\
& & S.E./mean & \(=147.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 52(11). Type :- 'D'.
Object :-To estimate the loss in yield due to blast disease of Paddy and effect of spraying on incidence of blast.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 2.7.1952/24, 25.8.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil. (vi) CO 13 (early), T-1145 (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) 56.03". (x) T-1145 on 18.12.1952. and CO-131 on 18.11.1952.
2. TREATMENTS :
1. Controlling all infection by spraying throughout at weekly intervals.
2. Controlling leaf infection by spraying upto boot leaf stage.
3. Controlling neck infection by spraying after boot leaf stage.
4. Control (no spraying).
3. DESIGN :
(i) R.B.D. (ii) (a) 4 for each variety. (b) N.A. (iii) 12 . (iv) (a) \(10^{\prime} \times 30^{\prime}\). (b) \(10^{\prime} \times 28.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) The disease incidence is not much. (iii) Straw, infected healthy tillers and grain yield. (iv) (a) to (c) N.A. (v) (a), (b) Nil. (vi) Nil. (vii) Analysis was done separately for each variety.
5. RESULTS :
\begin{tabular}{ll}
\multicolumn{2}{c}{ Variety CO-13 } \\
\begin{tabular}{ll} 
(i) \(1000 \mathrm{lb} . / \mathrm{ac}\) & Variety T- 1145 \\
(ii) \(162.1 \mathrm{lb} . / \mathrm{ac}\). & (i) \(1672 \mathrm{lb} . / \mathrm{ac}\). \\
(iii) Treatment differences are not significant. & (ii) \(315.1 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular} & (iii) Treatment differences are not significant.
\end{tabular}
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 949 \\
2. & 963 \\
3. & 1051 \\
4. & 1038 \\
S.E./mean & \(=46.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1809 \\
2. & 1796 \\
3. & 1485 \\
4. & 1598 \\
S.E./mean & \(=90.9 \mathrm{lo} . / \mathrm{ac}\).
\end{tabular}

Crop : Paddy (Kharif). Ref:- C.R.R.I. 52(18). Type:- ‘D'.
Object -To study the relative efficiency of various herbicides and to find out the better method of the two pre-sowing or post-sowing applications and interaction if any.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on Ipage 1. (iii) 19.6.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3 . (v) Nil. (vi) Ch. 47 (early). (vii) Irrigated. (viii) Weeding as per treatments. (ix) 56.03'. (x) 29, 30.10.1952.
2. TREATMENTS :

All combinations of (1) and (2) + a control
(1) Two times of application : \(\mathrm{T}_{1}=\) Pre-sowing and \(\mathrm{T}_{2}=\) Post-sowing.
(2) 5 herbicides: \(\quad D_{1}=\) Chloroxone, \(D_{2}=\) Phenoxylene, \(D_{3}=2.4 .5-T, D_{4}=\) Dowicide \(100 \mathrm{lb} . / \mathrm{ac}\). and \(\mathrm{D}_{5}=\) Hand weeding.
3. DESIGN:
(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) \(21^{\prime} \times 9^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) 1951 -contd. (b) No. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(274 \mathrm{lb} . / \mathrm{a}\).
(ii) \(75.1 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are highly sigaificant.
(iv) Av, yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(\quad=180 \mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{l|lllll|l} 
& \(D_{1}\) & \(D_{2}\) & \(D_{3}\) & \(D_{4}\) & \(D_{5}\) & Mean \\
\hline\(T_{1}\) & 112 & 185 & 156 & 157 & 504 & 223 \\
\(T_{2}\) & 270 & 331 & 368 & 317 & 530 & 363 \\
\hline Mean & 191 & 258 & 262 & 237 & 517 & 293
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal means of \(T\) & \(=16.79 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal means of \(D\) & \(=21.68 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of tatle & \(=37.60 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Faddy (Kharif). Ref:- C.R.R.I. 53(12). Type:- 'D'.
Object : - Tu find out the effect of spraying herbicides before and after transplanting in controlling weeds and increasing yield of Paddy.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 23.6.1953/18.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - . (d) \(9^{\circ} \times 6^{\circ}\). (e) 2 to 3. (v) Nil. (vi T-141 (medium). (vii) Irrigated. (viii) Weeding as per treatments. (ix) 46.02'. (x) 12.12.1953.

\section*{2. TREATMENTS:}
1. Control
6. \(300 \mathrm{lb} . / \mathrm{ac}\). of Calcium cyanamide.
2. Hand weeding.
7. Chloroxone applied 6 weeks after planting.
3. Chloroxone.
8. Phenoxylene applied 6 weeks after planting.
4. Phenoxylene.
9. 2,4,5-T applied 6 weeks after planting.
5. 2,4,5-T.
3. DESIGN:
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) \(30^{\prime} \times 9.5^{\prime}\). (b) \(28^{\prime} \times 7.5^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Straw, height, tiller, ear-length and grain yield. (iv) (a) 1951-52-contd. (b) No.
(c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(3796 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(244.56 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 3646 & 6. & 3285 \\
2. & 3843 & 7. & 4024 \\
3. & 3753 & 8. & 4199 \\
4. & 3789 & 9. & 3790 \\
5. & 3833 & & \\
S.E./mean & \(=122.3 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}

Crop:- Paddy (Kharif). Ref:- C.R.R.I. 53(15). Type :- 'D'.
Object :-To find the best suitable fungicide out of various commercial products for controlling blast.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 23.7.1953/29.8.1953. (iv)
(a) 4 ploughings, !laddering and levelling. (b) Transplanted. (c) 一. (d) \(9^{\prime \prime} \times 6^{\prime \prime}\). (e) 2-3. (v) Nil. (ii) CO-13
(early). (vii) Irrigated. (viii) \(2-3\) intercultures with Japanese weeder and one hand weeding. (ix) \(46.02^{\circ}\). (x) N.A.
2. TREATMENTS:

6 fungicides : \(F_{0}=0\) control (no spraying), \(F_{1}=\) Bordeaux mixture, \(F_{2}=\) Perenox, \(F_{3}=\) Coppesan, \(F_{4}=\) Diathane and \(F_{5}=\) Wetcol.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 8. (iv) (a) \(29^{\prime} \times 8^{\prime} 4^{\prime \prime}\). (b) \(27^{\prime} \times 5^{\prime} 8^{\prime \prime}\). (v) 2 rows alround. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) There was incidence of disease, spraying was done with above fungicides, as per treatments. (iii) Straw, height, tillers and ear-length. (iv) (a) No. (b) Nil. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(661.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(120.6 \mathrm{Ib} . / \mathrm{ac}\)
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\)
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathrm{F}_{0}\) & 478.6 \\
\(\mathrm{~F}_{1}\) & 719.7 \\
\(\mathrm{~F}_{2}\) & 704.1 \\
\(\mathrm{~F}_{3}\) & 831.9 \\
\(\mathrm{~F}_{4}\) & 584.0 \\
\(\mathrm{~F}_{5}\) & 647.5 \\
\(\mathrm{~S} . \mathrm{E}_{2} /\) mean & \(=60.3 \mathrm{lb} . / \mathrm{ac}\)
\end{tabular}

> Crop :- Paddy (Kharif). Ref :- C.R.R.I. 52(10). Type :- 'D'.

Object :-To study the relative effiziency of various herbicides and to find out the optimum dose and time of planting.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 17.6.1952/19.7.1952. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3 . (v) Nil. (vi) Ch-47 (early). (vii) Irrigated. (viii) N.A. (ix) \(56.03^{\prime \prime}\). (x) \(23,24.10 .1952\).

\section*{2. TREATMENTS :}
1. Control.
9. Phenoxylene \(\frac{2}{3}\) gallon/ac. (once)
2. Hand weeding.
10. Phenoxylene \(\frac{1}{3}\) gallon/ac. (twice)
3. T.C.A. at \(100 \mathrm{lb} . / \mathrm{ac}\).
11. Phenoxylene \(\frac{1}{2}\) gallon/ac. (twice)
4. Chloroxone \(1 \mathrm{lb} . / \mathrm{ac}\). of acid (once)
12. Phenoxylene \(\frac{2}{3}\) gallon/ac. (twice)
5. Chloroxcne 1 lb ./ac. of acid (twice)
13. 2, 4, 5-T \(1 \mathrm{lb} . / \mathrm{ac}\). (once)
6. Chloroxone 2 lb .jac. of acid (once)
14. 2, 4, 5-T \(2 \mathrm{lo} . / \mathrm{ac}\). (once)
7. Phenoxylene \(\frac{1}{3}\) gallon/ac. (once).
15. 2, 4, 5-T \(1 \mathrm{lb} . / \mathrm{ac}\). (twice)
8. Phenoxylene \(\frac{1}{2}\) gailon/ac. (once)
16. \(2,4,5-\mathrm{T} 2 \mathrm{lb}\)./ac. (twice)
3. DESIGN :
(i) R B.D. (ii) (a) 16 . (b) N.A. (iii) 4. (iv) (a) \(15^{\prime} \times 11^{\prime}\). (b) \(13^{\prime} \times 9^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL:
(i) Good. (ii) N.A. (iii) Straw, height, tillers, ear-length and grain yield. (iv) (a) /1951-contd. (b) No.
(c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1031 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(156.4 \mathrm{lb} / / \mathrm{a}=\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 850 & 9. & 1236 \\
2. & 1044 & 10. & 972 \\
3. & 924 & 11. & 1187 \\
4. & 895 & 12. & 1069 \\
5. & 960 & 13. & 1006 \\
6. & 1191 & 14. & 989 \\
7. & 1074 & 15. & 999 \\
8. & 1024 & 16. & 1069 \\
& & S.E./mean & \(=78.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Paddy (Kharif). Ref:- C.R.R.I. 53(8). Type:- 'D'.
Object:-To estimate the loss due to incidence of blast disease of Paddy and control it by spraying Bordeaux mixture 5-5-50.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam (b) Refer item 11 on page 1. (iii) 11.7.1953/20,21.8.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3 . (v) 60 lb /ac. of A 'S on 4.9.1953. (vi) \(\mathrm{CO}-13\) (early) and \(\mathrm{T}-1145\) (medium). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) \(46.02^{\prime \prime}\). (x) N.A.
2. TREATMENTS :
1. Dipping in B.M. (5-5-50) at the time of transplanting and spraying at \(45,60,90\) and 97 days after transplanting of CO-13, and at \(60,90,120\) and 135 days after transplantirg for T-1145.
2. Dipoing in B.M. at transplanting and spraying at 45 and 97 days for CO-13, 60 and 135 days for T-1145.
3. Dipping at the time of planting and spraying at 45 and 60 days for CO-13, 60 and 90 days for T-1145.
4. Spraying at 90 and 97 days for CO-13 and 120 and 115 days for T-1145.
5. Control (no dipping and no spraying).
3. DESIGN:
(i) R.B.D. (ii) (a) 5 for each variety. (b) N.A. (iii) 8 . (iv) (a) \(29^{\prime} \times 9^{\prime} 9^{\prime \prime}\). (b) \(26^{\prime} 9^{\circ} \times 7^{\prime} 3^{\prime \prime}\). (v) Two rows all round. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Leaf infection appeared 60 days after spraying (iii) Straw, height, tilles, ear-length and grafn yield. (iv) (a) \(1952-c o n t d\). (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :

Variety T-1145
(i) \(2561 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(216.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 2547 \\
2. & 2601 \\
3. & 2635 \\
4. & 2689 \\
5. & 2334 \\
S.E /mean & \(=76.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Mean infection percentage
\begin{tabular}{cr} 
Treatment & Angular values \\
1. & \(14.89(7.13)\) \\
2. & \(21.21(13.38)\) \\
3. & \(19.26(11.39)\) \\
4. & \(15.67(7.87)\) \\
5. & \(21.46(13.82)\) \\
Mean & \(=18.50\)
\end{tabular}

Crop :-Paddy (Kharif).
(i) \(980 \mathrm{lb} / \mathrm{ac}\).
(ii) \(147.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1089 \\
2. & 979 \\
3. & 926 \\
4. & 1013 \\
5. & 896 \\
S.E./mean & \(=52.0 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

Mean infection percentage
\begin{tabular}{cr} 
Treatment & Angular values \\
1. & \(27.37(21.90)\) \\
2. & \(31.73(28.32)\) \\
3. & \(35.85(34.95)\) \\
4. & \(27.29(25.19)\) \\
5. & \(35.47(32.67)\) \\
Mean & \(=31.54\)
\end{tabular}

Object :-To find out the efficiency of dipping the seedlings in B.H.C. for controlling gall fy.

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loamy. (b) Refer item 11 on page 1. (iii) \(25.6 .1953 / 25\), 26.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - . (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) 1 . (v) N.A. (vi) G.E.B. 24 (late). (vii) Irrigated. (viii) 2-3 weedings with Japanese weeder and one hand weeding. (ix) N.A. (x) N.A.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)
(1) 2 nursery treatments: \(\mathrm{N}_{1}=\) Nursery not dusted, seedling not dipped and \(\mathrm{N}_{2}=\) Nursery dusted and seedling dipped.
(2) 5 pre-planting treatments: \(\mathrm{T}_{0}=\) Control, \(\mathrm{T}_{1}=\) Early dusted, \(\mathrm{T}_{2}=\) Late dusted, \(\mathrm{T}_{3}=\) Early and late dusted and \(\mathrm{T}_{4}=\) Regularly dusted.

\section*{3. DESIGN :}
(i) \(2 \times 5\) Fact in R B.D. (ii) (a) 10. (b) N.A. (iii) 8. (iv) (a) N.A. (b) \(1 / 294.32 \mathrm{ac}\). for replications 1 to 4 and \(1 / 282,9\) ac. for replications 5 to 8 . (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Observations on pests were taken by sampling technique. Sample size of \(I^{\prime} \times 1^{\prime}\) were chosen and 6 samples were examined from each treatment. (iii) Population of insects at the peak period of incidence of gall fly. (iv) (a) N.A. (b) No. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(3111 \quad 1 \mathrm{~b} . / \mathrm{ac}\).
(ii) \(202.22 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yieid of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & T0 & Ti & T \({ }_{2}\) & T3 & \(\mathrm{T}_{4}\) & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Mean } \\
\hline 3125 \\
3097
\end{gathered}
\]} \\
\hline \(\mathrm{N}_{1}\) & 3120 & 3103 & 3175 & 3188 & 3038 & \\
\hline \(\mathrm{r}_{2}\) & 3697 & 3123 & 3124 & 3155 & 2988 & \\
\hline Mean & 3108 & 3113 & 3150 & 3171 & 3013 & 3111 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of T & \(=50.56 \mathrm{lb} / \mathrm{ac}\) \\
S.E. of marginal mean of N & \(=31.97 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of table & \(=63.95 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Paddy (Kharif). Ref:-C.R.R.I. 52(19). Type:- 'D'.
Object :-To find out the efficiency of different insecticides in controlling the incidence of gall fly.
1. BASAL CONDITIONS :
(i) (a) Paddy (b) Paddy. (c) N.A. (ii) (a) Clay loamy soil. (b) Refer item 11 on page 1. (iii) N.A. (iv) (a) 2 ploughings, laddering and levelling. (b) Transplanting. (c) 一. (d) \(6^{\circ} \times 6^{\prime \prime}\). (e) 1. (v) N.A. (vi) G.E.B. 24 (late). (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) N.A. (x) N.A.
2. TREATMENTS:

Main-plot treatments :
4 concentrations of sprayings and dusting : \(\mathrm{M}_{1}=0.1 \%\) spraying, \(\mathrm{M}_{2}=0.2 \%\) spraying, \(\mathrm{M}_{3}=5 \%\) dusting and \(\mathrm{M}_{4}=10 \%\) dusting.
Sub-plot treatments :
5 insecticides : \(\mathrm{D}_{0}=\) Control, \(\mathrm{D}_{1}=\) Sweet flag, \(\mathrm{D}_{2}=\) B.H.C, \(\mathrm{D}_{3}=\) D.D.T and \(\mathrm{D}_{4}=\) B.H.C + D.D.T.
3. DESIGN :
(i) Split-p:ot. (ii) (a) 4 main-plots/blocks; 5 sut-plots/main-plot. (b) \(134^{\prime} \times 63^{\prime}\). (iii) 4 . (iv) (a) N.A. (b) \(24^{\prime} \times 14^{\prime}\). (v) N.A. (vi) Yes.
4. GE\ERAL :
(i) Satisfactory. (ii) Periodical observations are taken at weekly intervals for incidence of stemborers. (iii) Silver shoots, gurbs, pupae etc. (iv) (a) N.A. (b) No. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1605 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(292.1 \mathrm{lb} / \mathrm{ac}\).
(b) \(196.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{l|llll|l} 
& \(\mathbf{M}_{1}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{3}\) & \(\mathbf{M}_{4}\) & \multicolumn{1}{c}{ Mean } \\
\hline \(\mathrm{D}_{0}\) & 1626 & 1522 & 1500 & 1470 & 1530 \\
\(\mathrm{D}_{1}\) & 1591 & 1583 & 1725 & 1728 & 1657 \\
\(\mathrm{D}_{2}\) & 1613 & 1495 & 1480 & 1717 & 1576 \\
\(\mathrm{D}_{3}\) & 1589 & 1491 & 1502 & 1659 & 1560 \\
\(\mathrm{D}_{4}\) & 1658 & 1883 & 1642 & 1626 & 1702 \\
\hline Mean & 1615 & 1595 & 1570 & 1640 & 1605
\end{tabular}

SE. of difference of two
1. M marginal means \(\quad=92.36 \mathrm{lb} \cdot / \mathrm{ac}\).
2. D marginal means \(\quad=69.55 \mathrm{lb} . / \mathrm{ac}\).
3. D means at the same level of \(M=139.1 \mathrm{lb} / \mathrm{ac}\).
4. M means at the same level of \(D=154.9 \mathrm{lb} . / \mathrm{ac}\).
```

Crop :- Paddy. Ref :- C.R.R.I. 52(20). Type :- 'D'.

```

Object : - To determine the comparative efficacy of different insecticides (inclding an indegenous one) in controlling stem-borer.

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on fage 1. (iii) 24.11.1952/10, 11.1.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplarting. (c) - (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) 1 . (v) N.A. (vi) MTU-15 (medium). (vii) Irrigated. (viii) \(2-3\) intercultures with Japanese weeder and one hand weeding. (ix) N.A. (x) 1, 2.5.1953.
2. TREATMENTS :

Main-plot treatments :
4 concentrations of sprayings and dusting : \(\mathrm{M}_{1}=0.1 \%\) spraying, \(\mathrm{M}_{2}=0.2 \%\) spraying, \(\mathrm{M}_{3}=5 \%\) dustirg and \(\mathrm{M}_{4}=10 \%\) dusting.
Sub-plot treatments :
5 insecticides : \(\mathrm{D}_{0}=\) Control, \(\mathrm{D}_{1}=\) Sweet flag, \(\mathrm{D}_{2}=\) B.H.C, \(\mathrm{D}_{3}=\) D.D.T and \(\mathrm{D}_{4}=\) B.H.C + D.D.T .
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 5 sub-plots/main-plot. (b) \(132^{\prime} \times 942^{\prime}\). (iii) 4. (iv) (a) N.A.
(b) \(24^{\prime} \times 10^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Periodical observations were taken for incidence of stem-borer and other pests. (iii) Silver shoot, grubs, pupae etc. (iv) (a) N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1367 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(373.1 \mathrm{lb} . / \mathrm{ac}\).
(b) \(251.9 \mathrm{Jb} . / \mathrm{ac}\).
(iii) No effect is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|llll|l} 
& \(\mathrm{M}_{\mathbf{1}}\) & \(\mathrm{M}_{\mathbf{2}}\) & & \(\mathrm{M}_{3}\) & \(\mathbf{M}_{\mathbf{4}}\) \\
\hline \(\mathrm{D}_{0}\) & 1446 & 1283 & 1098 & 1421 & Mean \\
\(\mathrm{D}_{1}\) & 1441 & 1313 & 1376 & 1340 & 1312 \\
\(\mathrm{D}_{\mathbf{2}}\) & 1436 & 1540 & 1386 & 1207 & 1368 \\
\(\mathrm{D}_{3}\) & 1422 & 1395 & 1014 & 1345 & 1392 \\
\(\mathrm{D}_{\mathbf{4}}\) & 1468 & 1569 & 1318 & 1512 & 1294 \\
\hline Mean & 1443 & 1420 & 1238 & 1365 & 1467 \\
\hline
\end{tabular}
S.E. of difference of two
1. \(M\) marginal means
\[
\begin{aligned}
& =117.9 \mathrm{lb} . / \mathrm{ac} \\
& =89.0 \mathrm{lb} . / \mathrm{ac} \\
& =178.0 \mathrm{lb} . / \mathrm{ac} \\
& =198.2 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]
2. D marginal means \(\quad=89.0 \mathrm{lb} . / \mathrm{ac}\).
3. D means at the same level of \(M\)
4. M means at the same level of \(D\)

Crop :- Paddy (Kharif). Ref :- C.R.R.I. 53(27). Type :- 'D'.
Object :-To find out the relative efficiency of different insecticides in controlling the incidence of gall fy.

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) \(256.1953 / 28\), 30.7.1953. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) - . (d) \(6^{\circ} \times 6^{\circ}\). (e) 1. (v) N.A. (vi) GEB-24 (late). (vii) Irrigated. (viii) 2-3 hand weedings. (ix) N.A. (x) N.A.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

4 concentrations of sprayings and dusting: \(M_{1}=0.1 \%\) spraying, \(M_{2}=0.2 \%\) spraying, \(M_{3}=5 \%\) and \(M_{4}=10 \%\) dusting.

\section*{Suh-plot treatments :}

5 insectivides : \(\mathrm{D}_{0}=\) Control, \(\mathrm{D}_{1}=\) Sweet flag, \(\mathrm{D}_{2}=\) B.H.C, \(\mathrm{D}_{3}=\) D.D.T and \(\mathrm{D}_{\mathbf{4}}=\) B.H.C + D.D.T.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block; 5 sub-plots/main-plot. '(b) \(126^{\prime} \times 66^{\prime}\). (iii) 4 . (iv) (a) \(22^{\prime} \times 14^{\prime}\). (b) \(21^{\prime} \times 13^{\prime}\). (v) 1 row alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Incidence of pests is given in the table of spraying and dusting. These were taken at the time of emergence of broods. (iii) 4 samnles in each sub-plot were examined for silver shoots, parasite, cocoons, grubs and pupae. (iv) (a) to (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2070 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(334.8 \mathrm{lb} . / \mathrm{ac}\).
(b) \(2638 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{l|llll|l} 
& \(\mathbf{M}_{1}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{D}_{0}\) & 1998 & 2199 & 1806 & 1975 & 1995 \\
\(\mathrm{D}_{1}\) & 2227 & 1894 & 2115 & 1908 & \(20: 6\) \\
\(\mathrm{D}_{2}\) & 1970 & 1809 & 2098 & 2050 & 1982 \\
\(\mathrm{D}_{3}\) & 2046 & 2374 & 2060 & 2226 & 2177 \\
\(\mathrm{D}_{4}\) & 2015 & 2160 & 2296 & 2182 & 2163 \\
\hline Mean & 2051 & 2087 & 2075 & 2068 & 2070
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(M\) marginal means & \(=105.9 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(D\) marginal means & \(=93.3 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(D\) means at the same level of \(M\) & \(=186.5 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(M\) means at the same level of \(D\) & \(=197.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Means \% values for incidence of silver shoots (Figs. in brackets are the angular values)
\begin{tabular}{l|ccccc} 
& \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) \\
\hline \(\mathrm{D}_{0}\) & \(39.07(37.89)\) & \(38.43(38.29)\) & \(43.82(41.44)\) & \(45.00(42.25)\) \\
\(\mathrm{D}_{1}\) & \(37.87(37.94)\) & \(39.61(39.00)\) & \(38.08(38.12)\) & \(37.00(37.47)\) \\
\(\mathrm{D}_{2}\) & \(44.79(42.02)\) & \(40.46(39.52)\) & \(43.13(41.09)\) & \(38.36(38.29)\) \\
\(\mathrm{D}_{3}\) & \(42.09(40.46)\) & \(42.54(40.69)\) & \(34.75(36.15)\) & \(34.09(35.73)\) \\
\(\mathrm{D}_{\mathbf{4}}\) & \(45.80(42.59)\) & \(41.33(39.99)\) & \(38.24(38.17)\) & \(36.63(37.23)\) \\
\hline
\end{tabular}

Crop :- Paddy (Kharif). Ref.-C.R.R.I. 51(12). Type: 'DV'.
Object :-To compare the yield of different varieties of Paddy treated with different solutions.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) PadJy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 30.6.51/1.8.51. (iv) (a) 2 ploughings, laddering and levelling. (b) Transplanted. (c) -. (d) N.A. (e) 2 to 3. (v) Nil.
(vi) As per treatments. (vii) Irrigated. (viii) 2-3 intercultures with Japanese weeder and one hand weeding. (ix) \(65.32^{\circ} .(x) 26.10 .1951\).

\section*{2. TREATMENTS:}

\section*{Main-plot treatments :}

7 varieties (early) : \(V_{1}=\) PTB 10, \(V_{2}=\operatorname{Ch} 45, V_{3}=\operatorname{Ch} 47, V_{4}=\) DCA 2, \(V_{5}=D C A 12, j V_{6}=\) DCA 14 and \(\mathrm{V}_{\mathbf{7}}=\) Benibhog.

\section*{Sub-plot treatments :}

6 seeds treated with solutions: \(D_{0}=\) Control, \(D_{1}=\) Undiluted, \(D_{2}=1 / 10\) dilution, \(D_{3}=1 / 100\) dilution, \(D_{4}=1 / 1000\) dilution and \(D_{5}=1 / 10000\) dilution.
3. DESIGN :
(i) Split-plot. (ii) (a) 7 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(6^{\prime} \times 16^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (i i) Straw, height, tiller, ear-length and grain yield. (iv) (a) 1949-contd. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(834.4 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(329.0 \mathrm{lb} / \mathrm{ac}\).
(b) \(140.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Only \(V\) effect is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|ccccccc|c} 
& \(\mathrm{V}_{1}\) & \(\mathrm{~V}_{2}\) & \(\mathrm{~V}_{3}\) & \(\mathrm{~V}_{4}\) & \(\mathrm{~V}_{5}\) & \(\mathrm{~V}_{\mathbf{6}}\) & \(\mathrm{V}_{7}\) & Mean \\
\hline \(\mathrm{D}_{0}\) & 904.0 & 683.0 & 751.5 & 716.1 & 930.0 & 862.6 & 759.8 & 801.0 \\
\(\mathrm{D}_{1}\) & 1037.5 & 623.9 & 764.5 & 874.4 & 914.6 & 857.9 & 807.1 & 840.0 \\
\(\mathrm{D}_{2}\) & 1038.1 & 749.2 & 705.4 & 961.9 & 912.2 & 941.8 & 846.0 & 879.2 \\
\(\mathrm{D}_{3}\) & 879.1 & 680.6 & 862.6 & 879.1 & 896.9 & 904.0 & 729.1 & 833.1 \\
\(\mathrm{D}_{4}\) & 934.7 & 691.3 & 717.3 & 784.6 & 980.8 & 8650 & 784.6 & 822.6 \\
\(\mathrm{D}_{5}\) & 980.8 & 680.6 & 692.4 & 824.8 & 839.0 & 1006.8 & 789.3 & 830.5 \\
\hline Mean & 962.4 & 684.8 & 749.0 & 840.2 & 912.3 & 906.4 & 786.0 & 834.4
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. V marginal means & \(=77.6 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(D\) marginal means & \(=30.6 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(D\) means at the same level of \(V\) & \(=80.8 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(V\) means at the same level of \(D\) & \\
\end{tabular}

Crop :- Paddy (Second crop). Ref :- C.R.R.I. 50(18). Type :- 'DV'.
Object :-To find out the efficacy of insecticides to control stem berer.
1. BASAL CONDITIONS :
(i) (a) and (b) Paddy. (c) 'N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 26.12.1950/30, 31.1.1951. (iv) (a) 4 ploughings, laddering and levelling. (b) Transplanted. (c) 一. (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) 1 . (v) 1 ton/ac. of compost. (vi) As per treatments. (vii) Irrigated. (viii) 2 hand weedings and one weeding by means of Japanese rotary weeder. (ix) and (x) N.A.
2. TREATMENTS :

Main-plot treatments :
2 varieties: \(V_{1}=D I-4\) and \(V_{2}=P T B 10\).

\section*{Sub-plot treatments :}

5 insecticides : \(\mathrm{D}_{0}=\) Control, \(\mathrm{D}_{1}=\) Mechanical (collecting egg masses once in 4 days), \(\mathrm{D}_{2}=\) B.H.C. (P520) -0.05 solution i.e. \(1 \frac{1}{2} \mathrm{oz}\). in one gallon of water, \(\mathrm{D}_{3}=\mathrm{D} . \mathrm{D}\) T (G550)-0.1\% solution i.e. 1:50 gallon of water and \(\mathrm{D}_{4}=\) Hexyclan DP-50 i.e. \(1: 50\) gallon of water.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication and 5 sub-plots/main-plot. (b) \(66^{\prime} \times 64^{\prime}\). (iii) 4. (iv) (a) N.A. (b) \(30^{\prime} \times 12^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) This experiment is meant to control the pests population in the field. (iii) Borer attacked til eis and chaff percentage. (iv) (a) N.A. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Nil. (vii) S E. (a) and S.E. (b) worked out with the help of C.D's given.
5. RESULTS:
(i) \(587 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(55.09 \mathrm{lb} . / \mathrm{ac}\).
(b) \(78.92 \mathrm{lb} / \mathrm{ac}\).
(iii) Only V effect is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ccccc|c} 
& \(D_{0}\) & \(D_{1}\) & \(D_{2}\) & \(D_{3}\) & \(D_{4}\) & Mean \\
\hline\(V_{1}\) & \begin{tabular}{lllll}
678 & 647 & 633 & 629 & 640 \\
544 & 548 & 486 & 520 & 542
\end{tabular} & \begin{tabular}{l}
645 \\
Mean
\end{tabular} & 611 & 598 & 559 & 575 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(V\) marginal means & \(=17.42 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(D\) marginal means & \(=39.46 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(D\) means at the same level of \(V\) & \\
4. \(V\) means at the same level of \(D\) & \\
& \(=55.80 \mathrm{lb} . / \mathrm{ac}\). \\
&
\end{tabular}

Crop :- Paddy (Kharif). Ref:- C.R.R.I. 50(22). Type :- 'DM'.
Object :-To study the effect of manurial pre-treatment of seed with various chemicals at three concentrations on the yield and quality of Paddy.
1. BASAL CONDITIONS :
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) 2 to 4.7.1950.
(iv) (a) 4 ploughings, laddering and levelling. (b) Sown in puddled land. (c) 一. (d) \(6^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}\). (e) 2
(v) N.A. (vi) T-508 (mejium). (vii) Irrigated. (viii) Weeding during 3rd to 10 th and \(16-17\) th August 1950. (ix) N.A. (x) 12 to 14.11.1950.

\section*{2. TREATMENTS :}

Main-plot treatments :
2 doses of \(\mathrm{N}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=20 \mathrm{lb}\)./ac.
Sub-plot treatments:
3 concentrations: \(\mathrm{M}_{1}=\frac{1}{2} \mathrm{M}, \mathrm{M}_{2}=1 \mathrm{M}\) and \(\mathrm{M}_{3}=2 \mathrm{M}\).
Sub-sub-plot treatments:
\[
\begin{aligned}
& 12 \text { chemicals : } \mathrm{C}_{0}=\text { Control, } \mathrm{C}_{1}=\mathrm{KH}_{2} \mathrm{PO}_{4} ; \mathrm{C}_{2}=\mathrm{K}_{2} \mathrm{HPO}_{4} ; \mathrm{C}_{3}=\mathrm{K}_{3} \mathrm{PO}_{4} ; \mathrm{C}_{4}=\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4} ; \mathrm{C}_{5}= \\
& \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4} ; \mathrm{C}_{6}=\mathrm{NaH}_{2} \mathrm{PO}_{4} ; \mathrm{C}_{7}=\mathrm{Na}_{2} \mathrm{HPO}_{4} ; \mathrm{C}_{8}=\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} ; \mathrm{C}_{9}=\mathrm{NH}_{4} \mathrm{NO}_{3} ; \mathrm{C}_{10}= \\
& \\
& \\
& \text { Urine soaked and } \mathrm{C}_{11}=\text { Water soaked. }
\end{aligned}
\]

\section*{3. DESIGN :}
(i) Split-split-plot. (ii) (a) 2 main-plots/block; 3 sub-plots/main-plot; 12 sub-sub-plots/sub-plot. (b) \(78^{\prime} \times 54^{\circ}\). (iii) 4. (iv) (a) N.A. (b) \(12^{\prime} \times 41^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Attack of blue beatle on 20.8.1950. Sprayed with D.D.T. solution on 21.8.1950.
(iii) Straw, height and tiller countings. (iv) (a) 1949-50-contd. (b) No. (c) Nil. (v) (a), (b) N.A.
(vii) and (viii) Nil.

\section*{5. RESULTS :}
(i) \(613 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a), (b) N.A.
(c) \(159.5 \mathrm{lb} / \mathrm{ac}\).
(iii) C effect and interaction \(\mathrm{C} \times \mathrm{M}\) are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\) & C6 & \(\mathrm{C}_{7}\) & \(\mathrm{C}_{8}\) & \(\mathrm{C}_{9}\) & \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & Mean & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) \\
\hline \(\mathrm{M}_{1}\) & 635 & 620 & 825 & 755 & 720 & 699 & 663 & 766 & 557 & 718 & 185 & 694 & 653 & 571 & 735 \\
\hline \(\mathrm{M}_{2}\) & 571 & 588 & 641 & 716 & 580 & 413 & 667 & 546 & 551 & 640 & 281 & 724 & 576 & 572 & 581 \\
\hline \(\mathrm{M}_{3}\) & 660 & 709 & 722 & 591 & 753 & \(2+1\) & 593 & 787 & 692 & 664 & 283 & 626 & 610 & 582 & 639 \\
\hline Mean & 622 & 639 & 729 & 687 & 685 & 451 & 641 & 700 & 600 & 674 & 250 & 681 & 613 & 575 & 652 \\
\hline \(\mathrm{N}_{0}\) & 595 & 624 & 751 & 653 & 662 & 357 & 596 & 637 & 594 & 631 & 216 & 579 & 575 & & \\
\hline \(\mathrm{N}_{1}\) & 649 & 654 & 707 & 722 & 707 & 545 & 686 & 762 & 606 & 715 & 283 & 783 & 652 & & \\
\hline
\end{tabular}
S.E. of difference of two C_means \(\quad=46.05 \mathrm{lb} . / \mathrm{ac}\). Other S.E.'s N.A.
```

Crop :- Paddy. Ref :- C.R.R.I. 49(18). Type :- 'DM'.

```

Object :-To study the effect of manurial pre-treatment of seed with various chemicals at three concentra. tions on the yield and quality of Paddy.

\section*{1. BASAL CONDITIONS:}
(i) (a) Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer item 11 on page 1. (iii) \(1,2.7 .1949\). (iv) (a) 4 ploughings, laddering and levelling. (b) Sown in puddled land. (c) - (d) \(9^{\prime \prime} \times 9^{*}\). (e) 2 to 3. (v) Nil. (vi) T-608 (medium). (vii) Irrigated. (viii) Two weedings. (ix) N.A. (x) 8, 9.11.1949.

\section*{2. TREATMENTS :}

Main-plot treatments :
2 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=20 \mathrm{lb}\)./ac.
Sub-plot treatments :
3 concentrations of chemicals : \(\mathrm{M}_{1}=\frac{1}{2} \mathrm{M}, \mathrm{M}_{2}=1 \mathrm{M}\) and \(\mathrm{M}_{3}=2 \mathrm{M}\).
Sub-sub-plot treatments :
11 chemicals : \(\mathrm{C}_{0}=\) Control, \(\mathrm{C}_{1}=\mathrm{KH}_{2} \mathrm{PO}_{4}, \mathrm{C}_{2}=\mathrm{K}_{2} \mathrm{HPO}_{4}, \mathrm{C}_{3}=\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{C}_{4}=\mathrm{NH}_{4}\left(\mathrm{H}_{2} \mathrm{FO}_{4}\right), \mathrm{C}_{5}=\mathrm{NaH}_{2} \mathrm{PO}_{4}\), \(\mathrm{C}_{6}=\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{C}_{7}=\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, \mathrm{C}_{8}=\mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{C}_{9}=\) Cowdung soaked and \(\mathrm{C}_{10}=\) Water soaked.
3. DESIGN :
(i) Split-split-plot. (ii) (a) 2 main-plots/replication, 3 sub-plots/main-plot and 11 sub-sub-plots/sub-plot. (b) \(57^{\prime} 9^{\prime \prime} \times 83^{\prime}\). (iii) 4 . (iv) (a) \(5^{\prime} 3^{\prime \prime} \times 12^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Straw, height of plant, tiller observations etc. (iv) (a) No. (b) No. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(756 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(551.6 \mathrm{lb} / \mathrm{ac}\).
(b) \(288.6 \mathrm{lb} . / \mathrm{ac}\).
(c) 102.7 lb ./ac.
(iii) Only C effect is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & C4 & \(\mathrm{C}_{\text {b }}\) & \(\mathrm{C}_{6}\) & \(\mathrm{C}_{7}\) & \(\mathrm{C}_{8}\) & C & \(\mathrm{C}_{10}\) & Mean & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) \\
\hline \(\mathrm{M}_{1}\) & 740 & 771 & 847 & 829 & 831 & 857 & 774 & 748 & 857 & 751 & 770 & 798 & 672 & 839 \\
\hline \(\mathrm{M}_{2}\) & 635 & 710 & 745 & 718 & 669 & 723 & 735 & 797 & 723 & 672 & 751 & 716 & 613 & 819 \\
\hline \(\mathrm{M}_{3}\) & 708 & 773 & 791 & 779 & 771 & 777 & 731 & 775 & 775 & 706 & 724 & 755 & 711 & 885 \\
\hline Mean & 694 & 751 & 794 & 775 & 757 & 786 & 746 & 774 & 785 & 710 & 748 & 756 & 665 & 847 \\
\hline \(\mathrm{N}_{\boldsymbol{\sigma}}\) & 612 & 653 & 734 & 685 & 653 & 707 & 666 & 678 & 677 & 613 & 640 & 665 & & \\
\hline \(\mathrm{N}_{1}\) & 776 & 849 & 855 & 866 & 860 & 864 & 826 & 869 & 893 & 807 & 856 & 847 & & \\
\hline
\end{tabular}
S.E. of difference of two
1. N marginal means \(\quad-=67.9 \mathrm{lb} . / \mathrm{ac}\). 6. C means at the same level of \(\mathrm{N}=41.9 \mathrm{lb} . / \mathrm{ac}\).
2. \(M\) marginal means \(\quad=43.5 \mathrm{lb} . / \mathrm{ac} . \quad\) 7. N means at the same level of \(\mathrm{C}=78.8 \mathrm{lb}\)./ac.
3. C marginal means
\(=29.6 \mathrm{lb}\). ac .
8. C means at the same level of \(\mathbf{M}=51.4 \mathrm{lb}\)./ac.
4. \(\mathbf{M}\) means at the same level of \(\mathbf{N}\)
\(=61.5 \mathrm{lb} . / \mathrm{ac}\).
9. \(M\) means at the same level of \(C=65.5 \mathrm{lb} / \mathrm{ac}\).
5. N means at the same level of M
\(=84.5 \mathrm{lb} . / \mathrm{ac}\).

\title{
JUTE AGRICULTURAL RESEARCH INSTITUTE \\ BARRACKPORE
}

\section*{PROFORMA GIVING DETAILS OF EXPERIMENTAL STATION.}
1. Name of the experimental station. Jute Agricultural Research Institute.
2. Tehsil or Taluka.
3. District.
4. Address.
5. Year of establishment.
6. Distance from nearest railway station with the name of nearest railway station.
7. Programme of Research.
8. Normal cropping pattern.
9. Type of tract it represents.
10. General description of topography of the experimental area.
11. Soils.
(a) Broad soil types.
(i) Depth.
(ii) Colour.
(iii) Structure.

Barrackpore.'
24-Parganas.
Director, Jute Agricultural Research Institute, Barrackpore, West Bengal. 1950 (Experiments started from 1952).

12 miles from Howrah Railway Station.

Breeding and genetics, cytogenetics, anatomy, physiology, agronomy agricultural chemistry, mycology and plant pathology and entomology, of jute, mesta and allied fibres.

Kharif season-Jute and jute substitutes. Rabi season-Pulse, mustard an potato.

Alluvial.
More or less plain.

New alluvial; sandy loam.
Five to six feet in depth (below 6 feet : mostly sand; rock not found). Light grey.
Single grain.

In a typical soil profile, just below the top \(12^{\prime \prime}\) layer, these is deposition of loam clay soil of grey colour. The thickness of this layer is about 2 ft . The layers below this are of varying thickness of which some are sandy and some are loamy. Lime concretions are also found at lower depths.
(b) Chemical analysis if available with pH value.

Organic carbon
(W.B. value) - 0.5 to \(0.8 \%\)
(Indicate the percentage of Total nitrogen- 0.05 to \(0.07 \%\).
various constituents ana- Available \(\mathrm{CaO}-0.3\) to \(0.5 \%\).
lysed for). Available \(\mathrm{P}_{2} \mathrm{O}_{5}-60\) to 400 p.p.m.
Available \(\mathrm{K}_{2} \mathrm{O}-0.04\) to \(0.07 \%\)
\(\mathrm{pH} \quad-6.7\) to 7.2.
(c) Mechanical analysis (if Course sand - 1 to \(3 \%\)
available). Fine sand -45 to \(50 \%\)
(Indicate the \% of various Silt - \(\mathbf{2 8}\) to \(\mathbf{3 5 \%}\)
constituents analysed for). Clay -12 to \(18 \%\)
12. Normal rainfall in inches. (month-wise). (specify the period on which the figures is based).
\begin{tabular}{llllllllllllll} 
June & July & Aug. & Sept. & Oct. & Nov. & Dec. & Jan. & Feb. & March. April. May. & Total
\end{tabular}

Average for 10 years 1952-53 to 1961-62.
13. Irrigation facilities available; Proper irrigation is not yet not available. Irrigation of some areas done year from which the facilities by portable pumps from the adjoining canal. were made available.

1952
14. Whether any proper drainage Yes. system exists.
15. Any other information regar- Latitude : \(22^{\circ} 45^{\prime}\), Longitude : \(\delta 8^{\circ} 26^{\prime}\) and Altitude \(: 30^{\prime}\). ding the farm.

Object :-To compare the effect of line sowing with broadcasting.
1. BASAL CONDITIONS :
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{(a) Nil. (b) Jute. (c) Nil. (ii) (a) Light sandy loam. (b) Refer item 11 on page 99. (iii) 23.4.1952. (a) 5 ploughings and cross ploughing followed by laddering. (b) As per treatments. (c) N.A. (d) As treatments. (e) 一. (v) Compost at 3 !ton/ac. 'at the time of general preparation of land. (vi) D-154 psularis, late). (vii) Unirrigated. (viii) Broadcasting-3 hand weedings. No thinning-3 to 4 wheel ings between lines. Spacings-1st hand weeding and thinning to proper spacing. 3 to 4 wheel hoeings ween lives. (ix) 53.73" approximately. (x) 20.9.1952.} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{2. TREATMENTS:}
1. Broadcasting.
2. No thinning \(\times 12^{\circ}\) spacing.
3. \(2^{\prime \prime} \times 12^{\prime \prime}\) spacing.
4. \(3^{\prime \prime} \times 12^{\prime \prime}\) spacing.
5. \(4^{\prime \prime} \times 12^{\prime \prime}\) spacing.
3. DESIGN:
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 4 . (iv) (a) \(50^{\prime} \times 16^{\prime}\). (b) \(48^{\prime} \times 14^{\prime}\). (v) \(1^{\prime}\) border alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Stand, green weight and fibre weight. (iv) (a) 1948 to 1952 . (b) No. (c) Nil. (v) (a) Carried out at Chinsurah from 1948-51. (b) Nil. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(2123 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(156.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1807 \\
2. & 2038 \\
3. & 2304 \\
4. & 2354 \\
5. & 2113 \\
S.E./mean & \(=78.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

> Crop :- Jute. Ref :- J.A.R.I. 52(62). Type :- ‘C’.

Object :-To compare the effect of line showing with broadcasting.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Jute. (c) Nil. (ii) (a) Light sandy loam. (b) Refer item 11 on page 99. (iii) 27.4.1952. (iv) (a) 5 ploughings and cross ploughing followed by laddering. (b) As per treatments. (c) N.A. (d) As Fer treatments. (e) -. (v) Compost at 3 ton/ac. at the time of general preparation of land. (vi) \(C\) G. (olitorins, medium). (vii) Unirrigated. (viii) Broadcasting- 3 hand weedings. No thinning- 3 to 4 wheel hoeings. Spacings-1st hand weeding and thinning to requisite spacing. 3-4 wheel hoeings between lines. (ix) \(53.73^{\circ}\) approximately. ( \(\mathbf{x}\) ) 15.9.1952.

\section*{2. TREATMENTS :}
1. Broadcasting.
2. No thinning \(\times 12^{\circ}\) spacings.
3. \(2^{\prime \prime} \times 12^{\prime \prime}\) spacings.
4. \(3^{\circ} \times 12^{\prime \prime}\) spacings.
5. \(4^{*} \times 12^{\prime \prime}\) spacings.
3. DESIGN:
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 4 . (iv) (a) \(50^{\prime} \times 16^{\prime}\). (b) \(48^{\prime} \times 14^{\prime}\). (v) \(1^{\prime}\) border allound. (vi) Yes.

\section*{4. GENERAL :}
(i) Good. (ii) N.A. (iii) Stand, green weight and fibre weight. (iv) (a) 1948 to 1952. (b) No. (c) Nil. (v) (a) Carried out from 1948 to 1951 at Chinsurah. (b) Nil. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(2413 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(137.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of fibre in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 2166 \\
2. & 2463 \\
3. & 2408 \\
4. & 2518, \\
5. & 2510 \\
S.E./mean & \(=68.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Roselle. \(\quad\) Ref':- J.A.R.I. 52(68). Type :- ' C '.
Object : -To study the effect of spacings and stages of harvest on the yield of fibre.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jute. (c) N.A. (ii) (a) Sandy loam. (b) Refer item 11 on page 99. (iii) 29.4.1952. (iv)
(a) 4 ploughings and laddering. (b) Broadcast etc. (c) \(20 \mathrm{lb} . / \mathrm{ac}\). for broadcast sowing and for others according to spacings. (d) As per treatments. (e) 一. (v) Compost at 3 ton/ac. applied at the time of general preparation of land. (vi) R.T. 1 (medium). (vii) Unirrigated. (viii) 3 weedings for broadcast sowing 3 weedings and thinning to requisite spacings for others. (ix) 67.75" approximately. (x) As per treatments.
2. TREATMENTS :

Main-plot treatments :
5 spacings: \(\mathrm{S}_{1}=\) Broadcasting, \(\mathrm{S}_{2}=\) No thinning \(\times 12^{\prime \prime}, \mathrm{S}_{3}=2^{\prime \prime} \times 12^{\prime \prime}, \mathrm{S}_{4}=4^{\prime \prime} \times 12^{\prime \prime}\) and \(\mathrm{S}_{5}=5^{\prime \prime} \times 12^{\prime \prime}\).
Sub-plot treatments :
3 harvesting stages : \(\mathrm{H}_{1}=\) At bud (10.11.1952), \(\mathrm{H}_{2}=\) At flowering (14.12.1952) and \(\mathrm{H}_{3}=\) At pod (15.12.1952).
3. DESIGN :
(i) Split-p.ot. (ii) (a) 5 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) main-plot \(32^{\prime} \times 17^{\prime}\); sub-plot N.A. (b) Sub-plot \(10^{\prime} \times 15^{\prime}\). (v) \(1^{\prime}\) border around each plot. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) N.A. (iii) Stand count, green weight and fibre yield. (iv) (a) 1949-1953. (b) No. (c) Nil. (v) (a) Conducted at Chinsurah from 1949 to 1951. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1571 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(223.6 \mathrm{lb} . / \mathrm{ac}\).
(b) \(217.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccccc:c} 
& \(\mathbf{S}_{\mathbf{1}}\) & \(\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{3}}\) & \(\mathbf{S}_{\mathbf{4}}\) & \(\mathbf{S}_{\mathbf{5}}\) & Mean \\
\hline \(\mathbf{H}_{\mathbf{1}}\) & 1567 & 1478 & 1588 & 1635 & 1739 & 1601 \\
\(\mathbf{H}_{\mathbf{2}}\) & 1643 & 1548 & 1529 & 1493 & 1628 & 1569 \\
\(\mathbf{H}_{\mathbf{3}}\) & 1580 & 1478 & 1510 & 1691 & 1455 & 1543 \\
\hline Mean & 1598 & 1501 & 1542 & 1606 & 1607 & 1571
\end{tabular}

\section*{S.E. of difference of two}
\begin{tabular}{ll} 
1. \(S\) marginal means & \(=74.5 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(H\) marginal means & \(=56.2 \mathrm{lb} . / \mathrm{ac}\). \\
3. H means at the same level of \(S\) & \\
4. \(S\) means at the same level of \(H\) & \\
& \(=120.3 \mathrm{lb} . / \mathrm{ac}\). \\
&
\end{tabular}

\section*{Crop :- Roselle. \\ Ref:~ J.A.R.I. 53(84). \\ Type :~ 'C'.}

Object :-To study the effect of spacing an 1 stages of harvest on the yield of fibre.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Roselle. (c) Compost at 3 ton/ac. (ii) (a) Sandy oam. (b) Refer item 11 on page 99. (iii) 9.5.1953. (iv) (a) 4 ploughings and laddering. (b) Broadcasting etc. (c) 20 lb ./ac. for broadcast sowing and for others according to spacing. (d) As per treatments. (e) -. (v) Compost at 3 ton/ac. applied at the time of general preparation of land. (vi) R.T. 1 (medium). (vii) Unirrigated. (viii) 3 weedings for broadcast sowing and 3 weedings and thinning to proper spacing for others. (ix) 55.28" approximately. (x) As per treatments.

\section*{2. TREATMENTS :}

Main-plot treatments :
5 spacings: \(\mathrm{S}_{1}=\) Broadcasting, \(\mathrm{S}_{2}=\) No thinning \(\times 12^{\prime \prime}, \mathrm{S}_{3}=2^{\prime \prime} \times 12^{\prime \prime}, \mathrm{S}_{4}=4^{\prime \prime} \times 12^{\prime \prime}\) and \(\mathrm{S}_{5}=6^{\prime \prime} \times 12^{\prime \prime}\),
Sub-plot treatments :
3 harvesting stages : \(\mathrm{H}_{1}=\) At bud (9.11.1953), \(\cdot \mathrm{H}_{2}=\) At flowering (24.12.1952) and \(\mathrm{H}_{3}=\) At pod (15.12.1952).

\section*{3. DESIGN}
(i) Split-plot. (ii) (a) 5 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) main-plot \(32^{\prime} \times 17^{\prime}\); sub-plot N.A. (b) main-plot \(30^{\prime} \times 15^{\prime}\). ; sub-plot \(10^{\prime} \times 15^{\prime}\). (v) \(1^{\prime}\) border around each main-plot. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) N.A. (iii) Stand count, green weight and fibre yield. (iv) (a) 1949-1953. (b) No. (c) Nil. (v) (a) Conducted at Chinsurah during 1949-1951. (b) Nil. (vi) and (vii) Nil.

\section*{5. RESULTS}
(i) \(1816 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(238.1 \mathrm{lb} . / \mathrm{ac}\).
(b) \(183.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of fibre in lb./ac.
\begin{tabular}{l|lllll|l} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{\mathbf{9}}\) & \(\mathrm{S}_{\mathbf{3}}\) & \(\mathrm{S}_{\mathbf{4}}\) & \(\mathbf{S}_{\mathbf{5}}\) & iNean \\
\hline \(\mathrm{H}_{1}\) & 1835 & 1743 & 1832 & 1761 & 1774 & 1789 \\
\(\mathrm{H}_{2}\) & 1941 & 1844 & 1905 & 1811 & 1663 & 1833 \\
\(\mathrm{H}_{3}\) & 2056 & 1681 & 1683 & 1861 & 1842 & 1825 \\
\hline Mean & 1944 & 1756 & 1807 & 1811 & 1760 & .1816
\end{tabular}
S.E. of difference of two
1. \(S\) marginal means
\[
=79.4 \mathrm{lb} . / \mathrm{ac} .
\]
2. H marginal means \(\quad=47.3 \mathrm{lb} . / \mathrm{ac}\).
3. H means at the same level of \(S \quad=105.6 \mathrm{lb} . / \mathrm{ac}\).
4. S means at the same level of \(\mathrm{H} \quad=122.5 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Roselle.
Ref :- J.A.R.I. 53(81).
Type :- 'C'.

Object :-To find out optimum date of sowing.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Roselle. (c) Nil. (ii) (a) Sandy loam. (b) Refer item 11 on page 99. (iii) As per treatments. (iv) (a) \(4-5\) ploughings and harrowings. (b) N.A. (c) \(15 \mathrm{lb} . / \mathrm{ac}\). (d) \(12^{\circ \prime} \times 9^{\circ}\). (c) 2 seed/ hole at a depth of \(3^{\circ}\). (v) Compost at 3 ,ton/ac. broadcasted at the time of general preparation of land. (vi) R.T.I. (medium). (vii) Irrigated. (viii) 3 weedings and wheel hoeing. Thinning once to single plant/ point. (ix) 55.28". (x) 3.12.1953.

2: TREATMENTS :
14 sowing dates: \(D_{1}=3.3 .1953, D_{2}=17.3 .1953, D_{3}=31.3 .1953, D_{1}=14.4 .1953, D_{5}=28.4 .1953, D_{6}=12.5 .1953\), \(D_{7}=26.5 .1953, D_{8}=9.6 .1953, D_{9}=24.6 .1953, D_{10}=7.7 .1953, D_{11}=21.7 .1953, D_{12}=5.8 .1953, D_{13}=18.8 .1953\). and \(D_{14}=1.9 .1953\).
3. DESIGN :
(i) R.B.D. (ii) (a) 14. (b) N.A. (iii) 4. (iv) (a) \(11^{\prime} \times 9^{\prime}\). (b) \(9^{\prime} \times 7^{\prime}\). (v) \(1^{\prime}\) border around each plot. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) N.A. (iii) Stand, green weight and fibre weight. (iv) (a) 1953 to 1955 . (b) No. (c) Nil. (v) (a) No. (b) -. (vi) and (vii) Nil.
e. RESULTS :
(i) \(575 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(207.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments are highly significantly different.
(iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccccc} 
Treatment & Av. yield & Treatment & Av. yield & Treatment & Av. yield \\
1. & 1236 & 6. & 642 & 11. & 225 \\
2. & 1130 & 7. & 548 & 12. & 99 \\
3. & 1018 & 8. & 604 & 13. & 90 \\
4. & 880 & 9. & 451 & 14. & 28 \\
5. & 669 & 10. & 436 & &
\end{tabular}

Crop:- Roselle.
Ref:- J.A.R.I. 51(35). Type :- 'C'.
Object :-To find the optimum seed rate.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) Refer item 11 on page 99. (iii) 18.6.1951. (iv) (a) 4 ploughings and laddering. (b) N.A. (c) As per treatments (d) and (e) N.A. (v) Compost at 3 ton/ac. at the time of general preparation of land. (vi) R.T. 2 (medium). (vii) Unirrigated. (viii) Weeding thrice by hand. (ix) \(48.12^{\circ}\). (x) 20.10.1951.
2. TREATMENTS :

7 seed rates : \(R_{1}=5, R_{2}=10, R_{3}=15, R_{4}=20, R_{5}=25, R_{6}=30\) and \(R_{7}=35 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 5 . (iv) (a) \(24^{\prime} \times 15^{\prime}\). (b) \(22^{\prime} \times 13^{\prime}\). (v) \(1^{\prime}\) border alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Stand, green weight and fibre weight. (iv) (a) 1951 to 1953. (b) No. (c) Nil. (v) (a) No. (b) -. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1910 \mathrm{lb} / \mathrm{ac}\).
(ii) \(161.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments are not significantly different.
(iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
\(\mathbf{R}_{\mathbf{1}}\) & 1827 & \(\mathbf{R}_{\mathbf{5}}\) & 1889 \\
\(\mathbf{R}_{\mathbf{2}}\) & 2097 & \(\mathbf{R}_{\mathbf{6}}\) & 1879 \\
\(\mathbf{R}_{\mathbf{3}}\) & 1917 & \(\mathbf{R}_{\mathbf{7}}\) & 1758 \\
\(\mathbf{R}_{\mathbf{4}}\) & 2005 & & \\
& S.E./mean & \(=\mathbf{7 2 . 1} \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Roselle.
Ref :- J.A.R.I. 52(63). Type :- 'C'.
Object :-To find out optimum seed rate.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Fallow, (c) Nil. (ii) (a) Sandy loam. (b) Refer item 11 on page 99. (iii) 28.4.1952.
(iv) (a) 4 ploughings and laddering. (b) Broadcasted. (c) As per treatments. (d) and (e) -. (v) Compost at 3 ton/ac. applied at the time of general preparation of land. (vi) R.T. 2 (medium). (vii) Unirrigated. (viii) 3 hand weedings. (ix) \(61.75^{\prime \prime}\). (x) \(29,30.11 .1952\).
2. TREATMENTS :

8 seed rates: \(\mathrm{R}_{1}=5, \mathrm{R}_{2}=10, \mathrm{R}_{3}=15, \mathrm{R}_{4}=20, \mathrm{R}_{5}=25, \mathrm{R}_{6}=30, \mathrm{R}_{7}=35\) and \(\mathrm{R}_{8}=40 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 5. (iv) (a) \(25^{\prime} \times 15^{\prime}\) (b) \(22^{\prime} \times 13^{\prime}\). (v) \(1^{\prime}\) border alround (vi) Yes.
4. GENERAL:
(i) Fair. (ii) N.A. (iii) Stand, green weight and fibre weight. (iv) (a) 1951-1955. (b) No. (c) Nil. (v) (a) No. (b) -. (vi) and (vii) Nil.
5. RESULTS:
(i) \(2111 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(315.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments are highly significantly different.
(iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
\(\mathbf{R}_{1}\) & 2429 & \(\mathbf{R}_{5}\) & 2115 \\
\(\mathbf{R}_{2}\) & 2463 & \(\mathbf{R}_{6}\) & 1809 \\
\(\mathbf{R}_{3}\) & 2316 & \(\mathbf{R}_{7}\) & 1849 \\
\(\mathbf{R}_{4}\) & 2169 & \(\mathbf{R}_{8}\) & 1734 \\
& S.E./mean & \(=141.1 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop:- Roselle.
Ref :- J.A.R.I. 53(82). Type :- 'C'.
Object :-To find out optimum seed rate.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) Refer item 11 on page 99. (iii) 8.5.1953. (iv) (a) 4 ploughings and ladderings. (b) Broadcast. (c) As per treatments. (d) and (e) - (v) Compost at 3 ton/ac. applied at the time of general preparation of land. (vi) R.T. 2 (medium). (vii) Unirrigated. (viii) Weeding thrice by hand. (ix) \(53.82^{\circ}\) approximately. (x) 27.11.1953.
2. TREATMENTS :

8 seed rates: \(\mathrm{R}_{1}=5, \mathrm{R}_{2}=10, \mathrm{R}_{3}=15, \mathrm{R}_{4}=20, \mathrm{R}_{5}=25, \mathrm{R}_{6}=30, \mathrm{R}_{7}=35\) and \(\mathrm{R}_{8}=40 . \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R B.D. (ii) (a) 8 . (b) N.A. (iii) 5 . (iv) (a) \(24^{\prime} \times 15^{\prime}\). (b) \(22^{\prime} \times 13^{\prime}\). (v) \(1^{\prime}\) border alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Stand, green weight and fibre weight. (iv) (a) 1951-1955. (b) No. (c) Nil. (v) (a) No. (b) - (vi) and (vii) Nil.
5. RESULTS :
(i) \(2163 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(285.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments are not significantly different.
(iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
\(\mathbf{R}_{\mathbf{1}}\) & 2191 & \(\mathbf{R}_{\mathbf{5}}\) & \(\mathbf{2 1 8 2}\) \\
\(\mathbf{R}_{\mathbf{2}}\) & 2409 & \(\mathbf{R}_{\mathbf{6}}\) & 2144 \\
\(\mathbf{R}_{\mathbf{3}}\) & 2309 & \(\mathbf{R}_{\mathbf{7}}\) & \(\mathbf{1 8 8 0}\) \\
\(\mathbf{R}_{\mathbf{4}}\) & 2177 & \(\mathbf{R}_{\mathbf{8}}\) & 2010 \\
& & & \\
& S.E. \(/\) mean & \(=127.8 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop:- Mesta.
Ref:- J.A.R.I. 52(67).
Type :- 'C'.
Object :-To find out optimum seed rate for Mesta.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jute. (c) Nil. (ii) (a) Sandy loam. (b) Refer item 11 on page 99. (iii) 27.4.1952. (iv) (a) 4 ploughings and ladderings. (b) Broadcast. (c) As per treatments. (d) and (e) -. (v) Compost at 3 ton/ac. applied at the time of general preparation of land. (vi) M.T. 15 (medium). (vii) Unirrigated. (viii) Weeding and mulching on 13.5 .1952 and 2.6 .1952 . (ix) \(49.46^{\prime \prime}\) (approximately). (x) Sept., 1952.
2. TREATMENTS :

8 seed rates : \(R_{1}=5, R_{2}=10, R_{3}=15, R_{4}=20, R_{5}=25, R_{6}=30, R_{7}=35\) and \(R_{8}=40 \mathrm{lb}\) لac.
3. DESIGN:
(i) R.B D. (ii) (a) 8. (b) N.A. (iii) 5 . (iv) (a) \(14^{\prime} \times 10^{\prime}\). (b) \(12^{\prime} \times 8^{\prime}\). (v) \(1^{\prime}\) border around each plot. (vi) Yes. .
4. GENERAL :
(i) Fair. (ii) Attacked with stem rot on 16.7.1952. Perenox sprayed once on 20.7.1952. (iii) Stand, green weight and fibre yield. (.v) (a) 1952 to 1955. (b) No. (c) Nil. (v) (a) No. (b) -. (vi `and (vii) Nil.
5. RESULTS:
(i) \(1269 \mathrm{lb} / \mathrm{ac}\).
(ii) \(163.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments are significantly different.
(iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
\(\mathbf{R}_{\mathbf{1}}\) & 1044 & \(\mathbf{R}_{\mathbf{5}}\) & 1391 \\
\(\mathbf{R}_{\mathbf{2}}\) & 1277 & \(\mathbf{R}_{\mathbf{6}}\) & 1236 \\
\(\mathbf{R}_{\mathbf{3}}\) & 1426 & \(\mathbf{R}_{\mathbf{7}}\) & 1263 \\
\(\mathbf{R}_{\mathbf{4}}\) & 1244 & \(\mathbf{R}_{\mathbf{8}}\) & 1273 \\
& S.E./mean & \(=73.0 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Mesta (Kharif). Ref:- J.A.R.I. 53(85). Type :- 'C'.
Object :-To find out optimum seed rate of Mesta.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mesta. (c) Compost at 3 ton/ac. (ii) (a) Sandy loam. (b) Refer item 11 on page 99. (iii) 16.6.1953. (iv) (a) 4 ploughings and ladderings. (b) Broadcast. (c) As per treatments. (d) and (e) -. (v) Compost at 3 ton ac. applied at the time of general preparation of land. (vi) M.T. 15 (medium). (vii) U'nirrigated. (viii) Weeding and mulching twice (ix) 51.53' approximately. (x) 14.9.1953.

\section*{2. TREATMENTS :}

8 seed rates: \(\mathrm{R}_{1}=5, \mathrm{R}_{2}=10, \mathrm{R}_{3}=15, \mathrm{R}_{4}=20, \mathrm{R}_{5}=25, \mathrm{R}_{6}=30, \mathrm{R}_{7}=35\) and \(\mathrm{R}_{8}=40 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 5 . (iv) (a) \(14^{\prime} \times 10^{\circ}\). (b) \(12^{\prime} \times 8^{\prime}\). (v) \(1^{\prime}\) border alround. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) N.A. (iii) Stand count, green weight and fibre yield. (iv) (a) 1952 to 1955. (b) No. (c) Nil. (v) (a) No. (b) -. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1268 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(192.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(ii) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatner:t & Av. yie!d \\
\(\dot{R}_{\mathbf{1}}\) & 1476 & \(\mathbf{R}_{\mathbf{5}}\) & 1284 \\
\(\mathbf{R}_{\mathbf{2}}\) & 1503 & \(\mathbf{R}_{6}\) & 1.165 \\
\(\mathbf{R}_{\mathbf{3}}\) & 1365 & \(\mathbf{R}_{\mathbf{7}}\) & 1079 \\
\(\mathbf{R}_{\mathbf{4}}\) & 1292 & \(\mathbf{R}_{\mathbf{8}}\) & 978 \\
& S.E.incean & \(=86.0 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Mesta. Ref:- J.A.R.I. 53(80). Type :- 'C'.
Object :- To find out optimum date of sowing.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mesta. (c) N.A. (ii) (a) Sandy loam. (b) Refer item 11 on page 99. (iii) As per treatments. (iv) (a) \(4-5\) ploughings and harrowing. (b) and (c) N.A. (d) Plants \(6^{\prime \prime}\) and rows \(1^{\prime}\) apart. (e) 2 seeds/hole at a depth of about \(3^{\circ}\). (v) Compost at 3 ton/ac. applied at the time of general preparation of land. (vi) M.T. 15 (medium). (vii) Irrigated. (viii) 3 weedings and wheel hoeings. Thining once to single plant'point. (ix) \(51.53^{\circ}\). (x) 1.9 .1953 for treatments \(D_{1}\) to \(D_{5} ; 12.9 .1953\) for treatments \(D_{6}\) to \(D_{10}\).
2. TREATMENTS :

10 sowing dates: \(\mathrm{D}_{1}=3.3 .1953, \mathrm{D}_{2}=17.3 .1953, \mathrm{D}_{3}=31.3 .1953, \mathrm{D}_{4}=14.4 .1953, \mathrm{D}_{5}=28.4 .1953, \mathrm{D}_{6}=12.5 .1953\), \(\mathrm{D}_{7}=26.5 .1953, \mathrm{D}_{8}=9.6 .1953, \mathrm{D}_{9}=24.6 .1953\) and \(\mathrm{D}_{10}=7.7 .1953\).
3. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) \(11^{\prime} \times 9^{\prime}\). (b) \(9^{\prime} \times 7^{\prime}\) (v) \(1^{\prime}\) border around each ploi. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Sight attack of stem-rot. N.A. (iii) Stand, green weight and fibre weight. (iv) 1953 to 1955. (b) No. (c) Nil. (v) (a) No. (b) - (vi) and (vii) Nil.
5. RESULTS :
(i) \(1014 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(200.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments are highlv significantly different.
(iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Ar. yield & Treatment & Av. yield \\
\(\mathrm{D}_{1}\) & 1530 & \(\mathrm{D}_{6}\) & 1334 \\
\(\mathrm{D}_{\mathbf{2}}\) & 1497 & \(\mathrm{D}_{7}\) & 856 \\
\(\mathrm{D}_{3}\) & 1746 & \(\mathrm{D}_{8}\) & 235 \\
\(\mathrm{D}_{4}\) & 1434 & \(\mathrm{D}_{9}\) & 83 \\
\(\mathrm{D}_{5}\) & 1374 & \(\mathrm{D}_{10}\) & 55 \\
& S.E./Mean & \(=100.2 \mathrm{lb} / \mathrm{ac}\). &
\end{tabular}

\section*{CENTRAL TOBACCO RESEARCH INSTITUTE}

\section*{RAJAHMUNDRY}

\section*{PROFORMA GIVING DETAILS OF EXPERIMENTAL STATION}
1. Name of the experimental station.
2. Tehsil or Taluka.
3. District.
4. Address.
5. Year of establisbment.
6. Distance from nearest railway station with the name of nearest railway station.
7. Programme of researcb.
8. Normal cropping pattern.
9. Type of tract it represents.
10. General description of topography of the experimental area
11. Soils.
(a) Broad soil types.
(i) Depth.
(ii) Colour.
(iii) Structure.
(b) Chemical analysis if araila-
ble with pH value.
\begin{tabular}{cccccccc}
\begin{tabular}{c} 
Depth \\
(inches)
\end{tabular} & pH & \begin{tabular}{c} 
Organic \\
carbon
\end{tabular} & \begin{tabular}{c} 
Organic \\
Matter
\end{tabular} & \begin{tabular}{c} 
Total \\
N
\end{tabular} & \begin{tabular}{c} 
Available \\
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\end{tabular} & \begin{tabular}{c} 
Total \\
soluble salts
\end{tabular} & Chlorides \\
\(0-9^{*}\) & 8.2 & 0.48 & 0.82 & 0.035 & 0.033 & 0.068 & 0.0012 \\
\(9-18^{\circ}\) & 7.5 & 0.44 & 0.75 & 0.029 & 0.038 & 0.057 & 0.0011 \\
\(18-36^{\circ}\) & 8.1 & 0.47 & 0.80 & 0.026 & 0.028 & 0.053 & 0.0013 \\
\(36-54^{*}\) & 8.2 & 0.49 & 0.84 & 0.028 & 0.031 & 0.067 & 0.0012 \\
\(54-72^{*}\) & 8.2 & 0.45 & 0.78 & 0.026 & 0.020 & 0.067 & 0.0026 \\
\(72-87^{\circ}\) & 8.3 & 0.42 & 0.73 & 0.021 & 0.022 & 0.078 & 0.0043 \\
\(87-120^{\circ}\) & 8.3 & 0.42 & 0.72 & 0.022 & 0.013 & 0.077 & 0.0036
\end{tabular}
(c) Mechanical analysis (if available). (Indicate the \% of varions constituents analysed for)
\begin{tabular}{cccccc} 
Depth (inches) & Coarse sand & Fine sand & Silt & Clay & \(\mathrm{CaCO}_{3}\) \\
\(0-9^{\prime \prime}\) & 1.5 & 17.0 & 22.3 & 56.5 & 1.5 \\
\(9-18^{\prime \prime}\) & 0.6 & 11.4 & 25.1 & 61.8 & 0.3 \\
\(18-36^{\prime \prime}\) & 0.3 & 12.5 & 24.8 & 62.4 & 0.2 \\
\(36-54^{\prime \prime}\) & 0.4 & 10.8 & 26.2 & 63.9 & 0.1 \\
\(54-72^{\prime \prime}\) & 0.4 & 11.5 & 25.2 & 63.3 & 0.0 \\
\(72-87^{\circ}\) & 0.1 & 13.9 & 27.0 & 59.4 & 0.2 \\
\(87-120^{\prime \prime}\) & 0.1 & 13.8 & 27.4 & 60.2 & 0.0
\end{tabular}
12. Normal average rainfall in mms (month-wise).
\begin{tabular}{clc} 
Meteorological week & Month & \begin{tabular}{c} 
Rainfall in mms. (Decennial average \\
\(1953-62\) )
\end{tabular} \\
\(23-26\) & June & 162.68 \\
\(27-30\) & July & 203.56 \\
\(31-35\) & August & 195.34 \\
\(36-39\) & September & 157.02 \\
\(40-44\) & October & 222.56 \\
\(45-48\) & November & 14.49 \\
\(49-52\) & December & 4.77 \\
\(1-5\) & January & 9.34 \\
\(6-9\) & February & 15.45 \\
\(10-13\) & March & 10.15 \\
\(14-17\) & April & 12.15 \\
\(18-22\) & May & 79.88 \\
& & 1057.39 \\
\hline
\end{tabular}
13. Irrigation facilities available; year from wbich the facilities were made available.
14. Whether any proper drainage Yes. system exists.
15. Any other information regard- Nil. ing the farm.

Object :-To study the most suitable form in which ' \(N\) ' can be applied to Tobacco.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 8.11.1949. (iv) 3 to 4 ploughing with country plough. (b) Tracsplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\prime \prime}\). (e) 1. (v) Nil. (vi) N.A. (vii) Nil. (viii) N.A. (ix) N.A. (x) 24.1.1950 10 31.3.1950.

\section*{2. TREATMENTS :}

5 solrces of \(N\) and a contral: \(S_{1}=\) Ammo. Phos., \(S_{2}=A / S, S_{3}=A / N, S_{4}=\) Pot. Nit. and \(S_{5}=\) G.N.C. Different sources are applied on 24.10 .1949 to give 20 lb ./ac. of N .
3. DESIGN:
(i) R.B.D. (ii) (a) 6 . (b) N.A. (iii) 8. (iv) (a) \(16 \frac{1}{2}^{\prime} \times 38 \frac{1}{2}^{\prime}\). (b) \(11^{\prime} \times 33^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Green leaf and cured leaf yield. (iv) (a) 1949 to 1951. (b) No. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) N.A.
5. RESULTS :
(i) \(508 \mathrm{lb} / \mathrm{ac}\).
(ii) \(104.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of cured leaf in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
Control & 424 \\
\(\mathrm{~S}_{\mathbf{1}}\) & 573 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 522 \\
\(\mathrm{~S}_{\mathbf{3}}\) & 479 \\
\(\mathrm{~S}_{\mathbf{4}}\) & 546 \\
\(\mathrm{~S}_{\mathbf{5}}\) & 501 \\
\(\mathrm{~S} . \mathrm{E} /\) mean & \(=37.1 \mathrm{lb} . / \mathrm{ac}\)
\end{tabular}

Crop :- Tobacco.
Ref .. C.T.R.I. 50(4).
Type :~ ' M '.

Object :-To study the most suitable form in which ' \(N\) ' can be applied.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 3 replications on 18.11 .1950 while other 5 on 20.11 .1950 . (iv) (a) \(3-4\) ploughings with country plough. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\circ}\). (e) One. (v) Nil. (vi) N.A. (vii) Nil. (viii) Gaps filled on 26.11.1950. (ix) N.A. (x) 5.2.1951, 19.2.1951, 28.2.1951 and 21.3.1951.
2. TREATMENTS :

4 sources of \(N\) and 2 controls : \(S_{1}=A / S, S_{2}=\) Ammo. Phos. \(S_{3}=\) Pot. Nit and \(S_{4}=\) G.N.C.
Different sources applied on 14.11 .1950 to give \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 8. (iv) (a) \(16 \frac{1}{2}^{\prime} \times 38 \frac{1}{2}^{\prime}\). (b) \(11^{\prime} \times 33^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Green leaf yield, etc. (iv) (a) 1949-1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(866 \mathrm{lb} / \mathrm{ac}\).
(ii) \(132 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of cured leaf in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
Control & 853 \\
\(\mathrm{~S}_{\mathbf{1}}\) & 890 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 850 \\
\(\mathrm{~S}_{3}\) & 890 \\
\(\mathrm{~S}_{\mathbf{4}}\) & 858 \\
S.E./mean & \(=46.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Tobacco.}

Ref:- C.T.R.I. 51(6). Type :- 'M'.
Object :-To compare the effect of different nitrogenous manures on the yield and quality of Cigarette Tobacco.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Sorghum. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 26.10.1951. (iv) (a) 3-4 ploughings with country plough. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\prime \prime}\). (e) 1 . (v) Nil. (vi) Cigarette Tobacco. (vii) Nil. (viii) Gap filling, hand weeding and interculture with junior hoe. (ix) N.A. (x) 9.1.1952 to 25.2.1952.

\section*{2. TREATMENTS:}

5 sources of \(N\) and a control : \(S_{1}=\) Ammo. Phos., \(S_{2}=A / S, S_{3}=A / N, S_{4}=\) Pot. Nit. and \(S_{5}=G . N . C\). Different sources broadcast 15 days prior to planting to give 20 lb ./ac. of N .
3. DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 5. (iv) (a) \(22^{\prime} \times 49.5^{\prime}\). (b) \(16.5^{\prime} \times 44^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Transplants established very well. Earlier growth was satisfactory. Subsequently the plants suffered badly. Development of leaf was poor. This was probably due to the previous crop of Sorghum. (ii) Nil. (iii) Green leaf yield and cured leaf yield. (iv) (a) 1949-1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(349.7 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(51.24 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of cured leaf in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatments & Av. yield \\
Control & 275.1 \\
\(\mathrm{~S}_{1}\) & 359.8 \\
\(\mathrm{~S}_{2}\) & 365.1 \\
\(\mathrm{~S}_{3}\) & 304.2 \\
\(\mathrm{~S}_{4}\) & 399.5 \\
\(\mathrm{~S}_{5}\) & 394.2 \\
S.E./mean & \(=22.5\) lo./ai.
\end{tabular}
Crop :- Tobacco. Ref:- C.T.R.I. 52(7). Type :- 'M'.

Objezt:-To find out the effect of green manuring with maize and application of F.Y.M. and their residual effect on the yield of Cigarette Tobacco.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 29.10.1952. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\prime \prime}\). (e) 1. (v) Nil. (vi) N.A. (vii) Pot watering on 1.11 .1952 . (viii) Gap filling and hand weeding. Intercultures with planet junior hoe. (ix) N.A. (x) 27.1.1953 to 24.3.1953.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

3 organic treatments : \(M_{0}=\) Fallow in Kharif \(1952 ; M_{1}=\) Fallow in \(\cdot\) Kharif 1952 and F.Y.M. at 10 tons/ ac. and \(\mathrm{M}_{2}=\) Maize in Kharif 1952.
Sub-plot treatments:
2 levels of \(\mathrm{N}: \mathrm{N}_{0}=\) No manure and \(\mathrm{N}_{1}=20 \mathrm{lb}\). N/ac. as A/S.
Maize dibbled on 25.7.1952 and buried on 10, 12.9.1953. A/S applied on 25.10.1952.
3. DESIGN :
(i) Split plot. (ii) (a) 3 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) \(1 / 40\) ac. (b) \(1 / 60\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Abnormal season of short rain fall with poor establishment of transplants. The crop improved later on. Fields very high but quality of leaf poor. (ii) Nil. (iii) Green weight, percentage of bright grades and stalk weight, etc. (iv) (a) 1952 and 1953. (b) No. (c) Nil. (v) (a), (b) N.A. (vi) Nil. (vii) Only 5 replications were taken into account for analysis. Experiment was laid out with 8 replications originally.
5. RESULTS :
(i) \(1186 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(153.7 \mathrm{lb} . / \mathrm{ac}\).
(b) 146.7 lb ./ac.
(iii) None of the effects is significant.
(iv) Av. wt. of cured leaf in lb./ac.
\begin{tabular}{l|lll} 
& \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
\hline \(\mathrm{~N}_{0}\) & 1207 & 1146 & 1167 \\
\(\mathrm{~N}_{1}\) & I 185 & 1257 & 1154 \\
\hline Mean & 1196 & 1201 & 1160
\end{tabular}\(|\)\begin{tabular}{l} 
Mean \\
\hline 1173 \\
1199 \\
\hline 1186
\end{tabular}
S.E. of difference of two
1. \(M\) marginal means \(\quad=68.73 \mathrm{lb}\)./ac.
2. N marginal means \(\quad=53.57 \mathrm{lb} . / \mathrm{ac}\).
3. N means at the same level of \(\mathrm{M} \quad=92.78 \mathrm{lb} . . \mathrm{ac}\).
4. \(M\) means at the same level of \(N=95.02 \mathrm{lb} / \mathrm{ac}\).

\section*{Crop :- Tobacco. Ref:- C.T.R.I. 53(7). Type :- 'M'.}

Object:--To find out the residual effect of green manuring with maize and application of F.Y.M. on the yield and quality of Cigarette Tobacco.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Tobacco. (c) As per treatments. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) N.A. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\circ}\). (e) 1. (v) Nil. (vi) N.A. (vii) Nil. (viii) N.A. (ix) \(15.16^{\prime \prime}\). (x) 13.2.1954 and 17.2.1954.

\section*{2. TREATMENTS :}

Main-plot treatments:
3 organic treatments: \(\mathrm{M}_{0}=\) Fallow in Kharif \(1952 ; \mathrm{M}_{1}=\) Fallow in Kharif 1952 and F.Y.M. at 10 tons/ ac. and \(\mathrm{M}_{\mathbf{2}}=\) Maize in Kharif 1952.
Sub-plot treatments:
2 levels of \(\mathrm{N}: \mathrm{N}_{\mathbf{0}}=\) No manure and \(20 \mathrm{lb} . \mathrm{N} / \mathrm{ac}\). as \(\mathrm{A} / \mathrm{S}\).
Maize dibbled and lined
3. DESIGN:
(i) Split-plot. (ii) (a) 3 mann-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 2. (iv) (a) \(1 / 40 \mathrm{ac}\).
(b) 1,60 ac. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) N.A. (ii) Nil. (iii) Green leaf yield, cured leaf yield and percentage of bright grades. (iv) a) 1952 to 1953. (b) No. (c) Nil. (v) (a), (b) N.A. (vi) Nil. (vii) 6 replications in the original experiment. But flood made the site of the experiment heterogenerous. Hence only 2 replications in 1953-54 are taken for analysis.
5. RESULTS:
(i) \(8300 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(66.12 \mathrm{lb} . / \mathrm{ac}\).
(b) \(261.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in \(\mathrm{lb} . / \mathrm{ac}\).

S.E. of difference of two
1. \(M\) marginal means \(\quad=46.75 \mathrm{lb} / \mathrm{ac}\).
2. N marginal means \(\quad=150.8 \mathrm{lb} . / \mathrm{ac}\).
3. N means at the same level of \(\mathrm{M}=261.2 \mathrm{Ib} . / \mathrm{ac}\).
4. M means at the same level of \(\mathrm{N}=190.5 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop:- Tobacco.}

\section*{Ref :- C.T.R.I. 52(8) Type:- 'M'.}

Object:-To find out whether \(\mathrm{C} / \mathrm{N}\) can replace \(\mathrm{A} / \mathrm{S}\) in manuring Cigrette Tobacco.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 12.11 .1952. (iv) (a) 3 to 4 ploughings with couniry plough. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\circ}\). (e) 1. (v) Nil. (vi) Cigarette tobacco. (vii) Nil. (viii) Gaps filled on 23.11.1952, \(13 \%\) interculture with junior hoe on 4.12.1952. (ix) N.A. (x) 9.2.1953 to 10.4.1953.
2. TREATME \TS:

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. as basal dressing: \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=3\) ton/ac. of F.Y.M.
(2) 5 manurial doses : \(M_{0}=\) No manure, \(M_{1}=20 \mathrm{lb}\)./ac. of \(N\) as \(A / S, M_{2}=40 \mathrm{lb}\)./ac. of \(N\) as \(A / S\), \(M_{3}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{C} / \mathrm{N}\) and \(\mathrm{M}_{4}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{C} / \mathrm{N}\).
3. DESIGN :
(i) \(2 \times 5\) Fact. in R.B.D.
(ii) (a) 10 .
(b) N.A. (iii) 4. (iv) (a) \(1 / 40\) ac.
(b) \(1 / 60 \mathrm{ac}\)
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Due to peculiar seasonal condition the crop remained dark green with unmature leaves and first picking did not cure well. Subsequent 2 pickings were uniform. Sun cured. The yield of green leaf only could be compared. (ii) Nil. (iii Only green leaf. (iv) (a) Not continued. (b) and (c)-. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(8463 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(718.3 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of green leaf in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & Mean \\
\hline \(\mathrm{F}_{0}\) & 8900 & 8336 & 8300 & 8253 & 8966 & 8551 \\
\hline \(\mathrm{F}_{1}\) & 8300 & 7913 & 8550 & 8808 & 8306 & 8375 \\
\hline Mean & 8600 & 8125 & 8425 & 8531 & 8636 & 8463 \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of F marginal mean } & =160.6 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of M marginal mean } & =254.0 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of table } & =359.1 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

Crop :- Tobacco. Ref:- C.T.R.I. 52(2). Type :- ‘M'.
Object :-To study the effect of time of applicatlon of A/S and G.N.C.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Fallow in 1951. (c) Nil. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 28.10.1953. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\prime \prime}\). (e) 1 . (v) M.C. at 3 tons/ac. (vi) N.A. (vii) Irrigated. (viii) Gap filling on 17.11.1952, \(10 \%\) hand weeding on 2.12 .1952 interculture with planet junior hoe on 5.11.1952, 28.11.1952 and 10.12.1952. (ix) N.A. (x) 7.1.1953 to 6.3.1953.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)+one control (no manure).
(1) 2 times of application : \(\mathrm{T}_{1}=\) Early mid. September on 27.9.1952 and \(\mathrm{T}_{2}=\) Late mid. October on 22.6.1952.
(2) 2 sources of \(\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}\) and \(\mathrm{S}_{2}\) as G.N.C.
(3) 2 levels of \(\mathrm{N}: \mathrm{N}_{1}=20 \mathrm{lb}\)./ac. of N and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac. of N .
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 3. (iv) (a) \(1 / 48 \mathrm{ac}\). (b) \(1 / 69\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Abnormal season of short rain face with poor establishment of transplants. The crop improved late : Fields were very high but quality of leaf poor. (ii) Nil. (iil) Green leaf yield, percentage of bright grades, etc. (iv) (a) Not continued. (b) and (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Experiment laid for 4 replications. Only 3 replications taken into account for analysis.
5. RESULTS :
(i) \(983 \mathrm{lb} . / \mathrm{ac}\).
(ii) 153.0 lb ./ac.
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in \(\mathrm{Ib} . / \mathrm{ac}\).
\[
\text { Control }=950 \mathrm{lb} / \mathrm{ac}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathbf{S}_{\mathbf{2}}\) & Mean & \(\mathrm{T}_{1}\) & \(\mathrm{T}_{2}\) \\
\hline \(\mathrm{N}_{1}\) & 956 & 1126 & 1046 & 1043 & 1049 \\
\hline \(\mathrm{N}_{2}\) & 998 & 948 & 973 & 1001 & 945 \\
\hline Mean & 982 & 1037 & 1010 & 1022 & 997 \\
\hline T & 950 & 1094 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline T \({ }_{3}\) & 1013 & 981 & & & \\
\hline
\end{tabular}
S.E. of any marginal mean
\(=44.2 \mathrm{lb} . / \mathrm{ac}\)
\(=62.4 \mathrm{lb} . / \mathrm{ac}\)
S.E. of body of any table or control mean

Crop :- Tobacco. Ref :- C.T.R.I. 52(9). Type:- 'M'.
Object :-To compare the effects ofA/S, Pot. Nit. and \(A / S / N\) as sources of \(N\) on the yield and quality of Cigarette Tobacco.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 13.11.1952. (iv) (a) 3 ploughings with country plough. (b) Transplanted. (c) 3760 plants/ac. (d) \(33^{\circ} \times 33^{\prime \prime}\). (e) One.
(v) Nil. (vi) Cigarette Tobacco. (vii) Nil. (viii) Gap filling and interculture with junior hoe. (ix) N.A.
(x) 10.2.1953 to 104.1953 .

\section*{2. TREATMENTS:}

All combinations of (1) and (2) + a control (no manure)
(1) 3 sources of \(N: S_{1}=A / S, S_{2}=\) Pot. Nitrate and \(S_{3}=A / S / N\).
(2) 2 levels of \(\mathrm{N}: \mathrm{N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.

Manures applied on 8.11.1952.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 60 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Abnormal season of short rainfall with poor establishment of transplants. The crop improved later on. Yields very high 'but quality of leaf poor. (ii) Nil. (iii) Only green leaf yield. (iv) (a) Not contd. (b) -. (c) -. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(8017 \mathrm{Ib} . / \mathrm{ac}\).
(ii) \(644.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of green leaf in lb./ac.
\[
\text { Control } \quad=809 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 8072 & 7488 & 8422 & 7994 \\
\hline \(\mathrm{N}_{2}\) & 7570 & 7894 & 8184 & 7881 \\
\hline Mean & 7821 & 7691 & 8303 & 7938 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(S\) marginal mean & \(=227.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of N marginal mean & \(=186.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table or control mean & \(=322.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Tobacco. Ref:- C.T.R.I. 53(2). Type:- 'M'.
Object :-To compare the effect of \(A / S, C / N\) and \(A / S / N\) as sources of \(N\) on the yield and quality of Cigarette Tobacco.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 7.11.1953. (iv) (a) 3-4 ploughings with country plough. (b) Seedlings transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\circ}\). (e) One. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Gap filling interculturing with the planet junior hoe and ploughing. (ix) \(15.16^{\circ}\). (x) 23.1.1954 to 7.3.1954.
2. TREATMENTS :

All combinations of (1) and (2)+control (2 plots/block)
(1) 3 sources of \(N: S_{1}=A / S, S_{2}=C / N\) and \(S_{3}=A / S / N\).
(2) 2 doses of \(\mathrm{N}: \mathrm{N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).

Manures applied as top dressing on 4.11.1953.
3. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) \(22^{\prime} \times 38.5^{\prime}\). (b) \(16.5^{\prime} \times 33.0^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Not satisfactory due to floods in August 1953. (ii) Nil. (iii) Yield of green leaf, cured leaf, percentage of bright grades and stalk weight. (iv) (a) 1953-1954. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(5933 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(904.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of green leaf in lb ./ac.

Control \(\quad=5801 \mathrm{lb} / / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Control} & = \(5801 \mathrm{lb} / \mathrm{ac}\). & \multirow[b]{2}{*}{Mean} \\
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \\
\hline \(\mathrm{N}_{1}\) & 6455 & 5929 & 5758 & 6047 \\
\hline \(\mathrm{N}_{2}\) & 6088 & 5785 & 5847. & 5907 \\
\hline Mean & 6272 & 5857 & 5803 & 5977 \\
\hline
\end{tabular}
S.E. of marginal mean of \(S\) or control
S.E. of marginal mean of N
\(=261.2 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table
\(=213.3 \mathrm{lb} / \mathrm{ac}\).
\(=369.4 \mathrm{lb}\). ac .

\section*{Crop:- Tobacco. \\ Ref :- C.T.R.I. 51(3). Type :- ' \(M\) '.}

Object :- To find out the difference, if any, between broadcast application and placement of manure in furrows.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Wheat. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 26.10 .1951 and 3.11.1951. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\prime \prime}\). (e) 1. (v) Nil. (vi) N.A. (vii) Nil. (viii) Gap filling and hand weeding. Planet junior cultivator worked. (ix) N.A. (x) 9, 20 and 31.1.1952.
2. TREATMENTS :

All combinations of (1), (2) and (3).
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac. of N .
(2) 3 sources of \(N: S_{1}=A / S, S_{2}=G . N . C\) and \(S_{3}=\frac{1}{2} A / S+\frac{1}{2}\) G.N.C.
(3) 2 methods of application of \(\mathrm{N}: \mathrm{M}_{1}=\) Broadcast and \(\mathrm{M}_{2}=\) Drilling.

Manures applied on 26.10.1951 and 2.11.1951.
3. DESIGN :
(i) \(3 \times 3 \times 2\) Fact. in R.B.D. (ii) (a) 18 . (b) N.A. (iii) 4 . (iv) (a) \(22^{\prime} \times 44^{\prime}\). (b) \(16.5^{\prime} \times 38.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Green leaf yield, etc. (iv) (a) 1951 to 1952. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1047 \mathrm{Ib} . / \mathrm{ac}\).
(ii) \(142.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(\mathrm{S}_{\mathbf{2}}\) & \(S_{3}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathbf{M}_{2}\) \\
\hline \(\mathrm{N}_{1}\) & 1074 & 926 & 976 & 992 & 988 & 996 \\
\hline \(\mathrm{N}_{2}\) & 1059 & 1051 & 1040 & 1050 & 1049 & 1051 \\
\hline \(\mathrm{N}_{3}\) & 1074 & 1142 & 1081 & 1099 & 1081 & 1117 \\
\hline Mean & 1069 & 1040 & 1032 & 1047 & 1039 & 1055 \\
\hline \(\mathrm{M}_{1}\) & 1071 & 1028 & 1018 & 1039 & & \\
\hline \(\mathrm{M}_{2}\) & 1066 & 1051 & \(10+6\) & 1055 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of N or S marginal mean & \(=29.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(M\) marginal mean & \(=23.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{S}\) table & \(=50.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{M}\) or \(\mathrm{S} \times \mathrm{M}\) table & \(=41.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Tobacco.
Ref:- C.T.R.I. 52(4). Type:- 'M'.
Object :-To find out the difference between broadcast application and placement of manures in furrows.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Tobacco. (c) As per treatments. (ii) (a) Heavy black soil. Refer item 11 on page 107.
(iii) 20.10.1952. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) 5760 plants/ac.
(d) \(33^{\circ} \times 33^{\circ}\). (e) 1. (v) Nil. (vi) N.A. (vii) Nil. (viii) Gap filling, hand weeding and intercultures. (ix)
N.A. (x) 17.1.1953 to 21.3.1953.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
(2) 3 sources of \(N: S_{1}=A / S, S_{2}=G . N . C\). and \(S_{3}=\frac{1}{2} A / S+\frac{1}{2}\) G.N.C.
(3) 2 methods of application of \(\mathrm{N}: \mathrm{M}_{1}=\) Broadcast and \(\mathrm{M}_{2}=\) Drilling.

Manures applied on 6.10.1952.
3. DESIGN:
(i) \(3 \times 3 \times 2\) Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) \(22^{\prime} \times 44^{\prime}\). (b) \(16.5^{\prime} \times 38.5^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Abnormal season of short rainfall with poor establishment of transplants. The crop improved later. Yields very high but quality of leaf poor. (ii) Nil. (iii) Green leaf weight., percentage of bright grades etc. (iv) (a) 1951 to 1952 . (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(876.1 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(132.1 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av, yield of cured leaf in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(S_{8}\) & Mean & \(\mathbf{M}_{1}\) & \(\mathrm{M}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 798 & 870 & 849 & 839 & 817 & 861 \\
\hline \(\mathrm{N}_{1}\) & 915 & 809 & 947 & 890 & 926 & 854 \\
\hline \(\mathrm{N}_{2}\) & 888 & 847 & 962 & 899 & 925 & 873 \\
\hline Mean & 867 & 842 & 919 & 876 & 889 & 863 \\
\hline \(\mathrm{M}_{0}\) & 866 & 881 & 921 & & & \\
\hline \(\mathrm{M}_{1}\) & 868 & 803 & 917 & & & \\
\hline
\end{tabular}
S.E. of \(N\) or \(S\) marginal mean
\[
\begin{aligned}
& =27.0 \mathrm{lb} . / \mathrm{ac} \\
& =22.0 \mathrm{lb} / \mathrm{ac} \\
& =46.7 \mathrm{lb} . / \mathrm{ac} \\
& =38.1 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]

Crop :- Tobacco.
Ref :- C.T.R.I. 52(1). Type :- ' \(M\) '.
Object:-To find out whether the availability of manures to plants under local conditions is influenced by the application of Sulphur and Lime.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 11.11.1952. (iv) (a) 3-4 ploughings with country plough. (b) Seedlings transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\prime \prime}\). (e) 1. (v) M.C. at 3 ton/ac. broadcast before the onset of monsoon. (vi) N.A. (vii) Nil. (viii) \(11 \%\) gap filling on 26.11.1952. (ix) N.A. (x) 6.2.1953 to 20.3.1953.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
(1) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb}\)./ac. of \(N\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=50 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(3) 3 manures : \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=\frac{1}{4}\) ton Sulphur and \(\mathrm{M}_{2}=\frac{1}{4}\) ton Lime.

Manures applied on 5, 6.11.1952.
3. DESIGN :
(i) \(2 \times 2 \times 3\) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) \(16.5^{\prime} \times 33^{\prime}\). (b) \(11^{\prime} \times 27.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Abnormal season of short rainfall with poor establishment of transplants. The crop improved later. Fields were very high but quality of leaf was poor. (ii) Nil. (iii) Green leaf and bright grades percentage. (iv) (a) 1952-1953. (b) Nil. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1257 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(166.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in lb./ac.
\begin{tabular}{l|ll|ll|} 
& \(\mathrm{N}_{0}\) & \(\mathrm{~N}_{1}\) & Mean & \(\mathrm{P}_{0}\) \\
\hline \(\mathrm{M}_{0}\) & \(\mathrm{P}_{1}\) \\
\(\mathrm{M}_{1}\) & 1251 & 1186 & 1219 & 1171 \\
\(\mathrm{M}_{2}\) & 1222 & 1262 & 1266 \\
1314 & 1306 & 1242 & 1278 & 1206 \\
\hline Mean & 1262 & 1251 & 1310 & 1333 \\
\hline \(\mathrm{P}_{0}\) & 1246 & 1275 & 1286 \\
\(\mathrm{P}_{1}\) & 1278 & 1227 & 1253 & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of N or P marginal mean & \(=33.99 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(M\) marginal mean & \(=41.60 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(M \times N\) or \(M \times P\) table & \(=58.87 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(N \times P\) table & \(=47.79 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

> Crop :- Tobacco. Ref:- C.T.R.I. 53(8). Type :- ‘M’.

Object :-To find out whether the availability of manures to plants under local condition is influenced by application of Sulphur and Lime applied in the previous year.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Tobacco. (c) As per treatments. (ii) (a) Heavy black soil. (b) Refer item 11 on page \(107^{\circ}\) (iii) 31.10.1953. (iv) (a) N.A. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\circ}\). (e) One. (v) Nil. (vi) N.A. (vii) Nil. (viii) Gap-filling, hand weeding and intercultures. (ix) \(15.16^{\circ}\). (x) 18.1 .1954 to 28.2.1954,

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb}\)./ac. of \(N\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=50 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(3) 3 manures : \(M_{0}=\) Control, \(M_{1}=\frac{1}{4}\) ton Sulphur and \(M_{2}=1 \Varangle\) ton Lime. Manures applied last year on 5.11.1952.
3. DESIGN:
(i) \(2 \times 2 \times 3\) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) \(16.5^{\prime} \times 33^{\prime}\). (b) \(11^{\prime} \times 27.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Green leaf yield, cured leaf yield and percentage of bright grades. (iv) (a) 1952 1953. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1054 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(182.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only N effect is significant.
(iv) Av. yield of cured leaf in \(\mathrm{lb} . / \mathrm{ac}\).


Crop :- Tobacco. Ref:- C.T.R.I. 49(1). Type :- 'M’.
Object:-To fix the optimum dose of \(P\) in relation to \(N\) and \(K\) manures.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 11 and 12.11.1949.
(iv) (a) 3 to 4 ploughings with country plough. (b) Seedlings transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\circ}\). (e) 1. (v) M.C. (details N.A.). (vi) Flue cured tobacco. (vii) Nil. (viii) and (ix) N.A. (x) 19.1.1950 to 31.3.1950.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 5 levels of \(\mathrm{P}_{8} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=25, \mathrm{P}_{8}=50, \mathrm{P}_{3}=75\) and \(\mathrm{P}_{4}=100 \mathrm{lb}\)./ac.
(2) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb}\)./ac. of \(N\).
(3) 2 levels of \(\mathrm{K}_{9} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{-0}=0\) and \(\mathrm{K}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of K .

Fertilizers applied on 26.10 .1949 just before heavy rains (on 27.10.1949).
3. DESIGN :
(i) \(5 \times 2^{2}\) Confd. Fact. Confounding NK interaction. (ii) (a) 10 plots/block and 2 blocks/replication. (b) N.A. (iii) 4. (iv) (a) \(16 \frac{1^{\prime}}{} \times 49 \frac{1}{2}^{\prime}\). (b) \(11^{\prime} \times 44^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) The general condition of the crop in all the plots was good. After first heavy rains, there was again \(4^{\prime \prime}\) of rainfall and harvest was considerably delayed. (ii) Nil. (iii) Green leaf yield, percentage of bright grades. (iv) (a) 1949-1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(571 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(104.1 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in lb./ac.
\begin{tabular}{l} 
\\
\hline \(\mathrm{P}_{\mathbf{0}}\) \\
\(\mathrm{P}_{\mathbf{1}}\) \\
\(\mathrm{P}_{\mathbf{2}}\) \\
\(\mathrm{P}_{\mathbf{3}}\) \\
\(\mathrm{P}_{\mathbf{4}}\)
\end{tabular}

Crop :- Tobacco. Ref:- C.T.R.I., 50(3). Type :- 'M'.
Object :-To find out the optimum dose of \(\mathrm{P}_{2} \mathrm{O}_{5}\) to be applied to flue cured Tobacco.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 19.11.1950 and 20.11.1950. (iv) (a) 3 to 4 ploughings with country plough. (b) Seedlings transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\circ}\). (e) 1. (v) Nil. (vi) Flue cured tobacco. (vii) Nil. (viii) Gaps filled. Interculture with country plough. (ix) N.A. (x) 29.1.1951 to 30.3.1951.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 5 levels of \(P_{2} O_{5}\) as Super: \(P_{0}=0, P_{1}=\mathbf{2 5}, P_{\mathbf{2}}=50, P_{3}=75\) and \(P_{4}=100 \mathrm{lb} . / a c\).
(2) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb}\)./ac. of \(N\).
(3) 2 levels of \(\mathrm{K}_{8} \mathrm{O}\) as Pot. Sul.: \(\mathrm{K}_{\mathbf{0}}=0\) and \(\mathrm{K}_{1}=20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).

Manures applied on 16.11.1950.
3. DESIGN:
(i) \(5 \times 2^{2}\) Confd. Fact. (NK is confd.) (ii) (a) 10 plots/blcck and 2 blocks/replication. \({ }^{-}\)(b) N.A. (iii) 4. (iv) (a) N.A. (b) \(11^{\prime} \times 44^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. But only three replicates could be planted as the fourth replicate which was planted on 20.11.1950 was green for a long time and was also poorer in growth than the rest. (ii) Incidence of powdery mildew caused some damage to the lower leaves. (iii) Green leaf yield. (iv) (a) 1949-1951. (b) No. (c) No. (v) (a) and (b) N.A. (vi) Nil. (vii) Experiment during 1951 failed. Only 3 replications taken into account for analysis.
5. RESULTS :
(i) \(767.7 \mathrm{lb} / \mathrm{ac}\).
(ii) \(107.7 \mathrm{lb} / \mathrm{ac}\).
(iii) Ooly N elfect is significant.
(iv) Av. yield of green leaf in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{P}_{0}\) & 639.4 & 812.4 & 725.9 & 732.6 & 719.3 \\
\hline \(\mathrm{P}_{1}\) & 728.8 & 789.1 & 758.9 & 769.1 & 748.8 \\
\hline \(\mathrm{P}_{2}\) & 739.0 & 871.0 & 805.0 & 826.2 & 783.8 \\
\hline \(\mathrm{P}_{3}\) & 724.4 & 791.7 & 758.1 & 788.6 & 727.5 \\
\hline \(\mathrm{P}_{4}\) & 760.1 & 321.2 & 790.6 & 790.5 & 790.8 \\
\hline Mean & 718.3 & 817.1 & 767.7 & 781.4 & 754.0 \\
\hline \(\mathrm{K}_{\mathbf{0}}\) & 758.8 & 804.0 & & & \\
\hline \(\mathrm{K}_{1}\) & 677.8 & 830.2 & & & \\
\hline
\end{tabular}
\begin{tabular}{lr} 
S.E. of \(N\) or \(K\) marginal means & \(=17.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(P\) marginal means & \(=26.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(P \times N\) or \(P \times K\) table & \(=38.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{K}\) table & \(=24.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Tobacco. \\ Ref :- C.T.R.I. 51(1). Type :- ' \(M\) '.}

Object :-To find out the effect of N, P and K on yield and quality of Lanka Tobacco.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 27, 28.11.1951 (iv) (a) 3 to 4 ploughings. (b) Seedlings transplanted. (c) 10890 plants/ac. (d) \(2^{\prime} \times 2^{\prime}\). (e) One. (v) Nil. (vi) Lanka Tobacco. (vii) Nil. (viii) Gap filling. (ix) N.A. (x) N.A.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 5 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15, \quad \mathrm{~N}_{2}=30, \quad \mathrm{~N}_{3}=45\) and \(\mathrm{N}_{4}=60 \mathrm{lb}\)./ac. of N .
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=50 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=50 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) \(5 \times 2^{2}\) Confd. Fact., confounding PK interaction. (ii) (a) 10 plots/block; 2 blocks/replication. (b) N.A. (iii) 3. (iv) (a) \(10^{\prime} \times 30^{\prime}\). (b) \(6^{\prime} \times 26^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Green leaf yield etc. (iv) (a) No. (b) -. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1902 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(762.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only PK interaction is significant. All other effects are not significant.
(iv) Av. yield of cured leaf in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{3}\) & \(\mathrm{N}_{3}\) & \(\mathrm{N}_{4}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{P}_{0}\) & 1776 & 1976 & 1352 & 1946 & 2051 & 1820 & 1530 & 2110 \\
\hline \(\mathrm{P}_{1}\) & 2138 & 2081 & 1466 & 2238 & 1994 & 1983 & 2485 & 1482 \\
\hline Mean & 1957 & 2028 & 1409 & 2092 & 2023 & 1902 & 2008 & 1796 \\
\hline \(\mathrm{K}_{0}\) & 2042 & 2037 & 1632 & 2085 & 2243 & & & \\
\hline \(\mathrm{K}_{1}\) & 1872 & 2020 & 1187 & 2099 & 1802 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. o \(P\) or \(K\) marginal means & \(=139.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of N marginal means & \(=220.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{P}\) or \(\mathrm{N} \times \mathrm{K}\) table & \(=311.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{P} \times \mathrm{K}\) table & \(=196.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Tobacco. Ref:- C.T.R.I. 53(4). Type :- ' \(\mathrm{M}^{\prime}\) '.
Object :-To find out whether soil pH and availability of manures under local condition are influenced by the application of Sulphur.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Tobacco bulk in II and IV replications maize experiment in I and III replications. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 4.11.1953. (iv) (a) N.A. (b) Seedlings transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\prime \prime}\). (e) 1 . (v) Nil. (vi) Harrison special. (vii) Unirrigated. (viii) Gap filling hand weeding and interculture with planet junior hoe and plough. (ix) 15.16". (x) 18.1.1954 to 27.2.1954.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N .
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=50 \mathrm{lb}\)./ac. (as Kudada phosphate) and \(\mathrm{P}_{2}=50 \mathrm{lb}\)./ac. as Super.
(3) 2 levels of Sulphur: \(S_{0}=0\) and \(S_{1}=\frac{1}{4}\) ton/ac.

Manure applied as top dressing on 21.10 .1953 in replications I and II and on 2.11.1953 in replications III and IV.
3. DESIGN:
(i) \(3^{2} \times 2\) confd. Fact., Confounding NP and NPS interactions. (ii) (a) 6 plots/block; 3 blocks/replication. (b) N.A. (iii) 4. (iv) (a) \(16.5^{\prime} \times 44^{\prime}\). (b) \(11.0^{\prime} \times 38.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of green leaf, stalk, of curved leaf, percentage of bright grades. (iv) (a) 1953-1954. (b) -. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(7764 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(898.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only N effect is significant.
(iv) Av. yield of green leaf in lb./ac.


\section*{S.E. of \(\mathbf{N}\) or \(\mathbf{P}\) marginal means}
S.E. of \(S\) marginal means
S.E. of body of \(\mathbf{N} \times \mathbf{P}\) table
S. E. of body of \(S \times N\) or \(S \times P\) table
\[
\begin{aligned}
& =183.3 \mathrm{lb} . / \mathrm{ac} \\
& =149.7 \mathrm{lb} . / \mathrm{ac} \\
& =317.2 \mathrm{lb} . / \mathrm{ac} . \\
& =259.4 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
\]

Crop :- Tobacco.
Ref :- C.T.R.I., 48(4). Type :- 'M'.
Object :-To find out the dosage of important manures applied singly and in combination for Tobacco crop.

\section*{-1. BASAL CONDITIONS :}
(i) (a) Nil. (b) No. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 15.11 .1948. (iv) (a) N.A. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\prime \prime}\). (e) 1. (v) N.A. (vi) N.A. (vii) Unirrigated. (viii) Gap filling and hand weeding. (ix) and (x) N.A.
2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5)
(1) 2 levels of F.Y.M. : \(F_{0}=0\) and \(F_{1}=3\) ton/ac. (4) 2 levels of Super : \(P_{0}=0\) and \(P_{1}=300 \mathrm{lb}\)./ac.
(2) 2 levels of G.N.C. : \(G_{0}=0\) and \(G_{1}=300 \mathrm{lb} . / \mathrm{ac}\). (5) 2 levels of Pot. Sul. : \(K_{0}=0\) and \(K_{1}=100 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of \(A / S: N_{0}=0\) and \(N_{1}=100 \mathrm{lb} . / \mathrm{ac}\).
F.Y.M. applied on 22.10.1948, Super and Pot. Sul. on 24.10 .1948 and G.N.C. on 2.12.1948. A/S applied in two equal doses on 30.11.1948 and 6.12.1948.
3. DESIGN :
(i) to (iii) \(8 \times 8\) Quasi L. Sq. (iv) (a) \(22^{\prime} \times 38.5^{\prime}\). (b) \(16.5^{\prime} \times 33^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) General growth was fair. After planting there was no rainfall and \(A / S\) which was applied late after transplanting could not produce any effect. (ii) Nil. (iii) Height of plant and tobacco yield. (iv) (a) 1948 to 1951. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(684.4 \mathrm{lb} / \mathrm{ac}\).
(ii) \(57.87 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only G effect is significant.
(iv) Av. yield of green leaf in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{G}_{0}\) & \(\mathrm{G}_{1}\) & \(\mathbf{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathbf{K}_{\mathbf{0}}\) & \(\mathrm{K}_{1}\) & Mean \\
\hline \(\mathrm{F}_{0}\) & 622.5 & 717.0 & 674.7 & 664.8 & 676.7 & 662.7 & 687.4 & 652.0 & 669.7 \\
\hline \(\mathrm{F}_{1}\) & 662.2 & 735.9 & 692.8 & 705.3 & 718.7 & 679.5 & 664.2 & 734.0 & 699.1 \\
\hline Mean & 642.3 & 726.5 & 683.7 & 685.1 & 697.7 & 671.1 & 675.8 & 693.0 & 684.4 \\
\hline \(\mathrm{K}_{0}\) & 636.6 & 715.0 & 677.3 & 674.3 & 714.7 & 636.9 & & & \\
\hline \(\mathrm{K}_{1}\) & 648.0 & 738.0 & 690.1 & 695.9 & 680.7 & 705.3 & & & \\
\hline \(\mathrm{P}_{0}\) & 654.2 & 741.2 & 694.2 & 701.2 & & & & & \\
\hline \(\mathbf{P}_{1}\) & 630.4 & 711.8 & 673.2 & 669.0 & & & & & \\
\hline \(\mathrm{N}_{0}\) & 642.0 & 725.4 & & & & & & & \\
\hline \(\mathrm{N}_{1}\) & 642.6 & 727.6 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=10.23 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=14.47 \mathrm{Ib} . / \mathrm{ac}\).
\end{tabular}

Crop:- Tobacco. Ref:- C.T.R.I., 49(5). Type :- 'M'.
Object:-To find out the cumulative and residual effect of manures applied last year on the yield and quality of Tobacco.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Tobacco. (c) As per treatments. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) \(23.10 .1949 / 8,9.11 .1949\). (iv) (a) N.A. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\prime \prime}\). (e) 1 . (v) Nil. (vi) N.A. (vii) Nil. (viii) to (x) N.A.

\section*{2. TREATMENTS:}

All combinations of (1), (2), (3), (4) and (5)
(1) 2 levels of F.Y.M. : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=3\) ton./ac.
(4) 2 levels of Super : \(P_{0}=0\) and \(P_{\mathbf{1}}=300 \mathrm{lb} / / \mathrm{ac}\).
(2) 2 levels of G.N.C. : \(G_{0}=0\) and \(G_{1}=300 \mathrm{lb}\)./ac.
(5) 2 levels of Pot. Sul. : \(K_{0}=0\) and \(K_{1}=100 \mathrm{lb}\)./ac.
(3) 2 levels of \(\bar{A} / \mathrm{S}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=100 \mathrm{lb}\)./ac.

Each treatment plot has been split up into four sub-plots viz \(1=\) one year application in 1948-49, \(2 \mathrm{~A}=\) 2 years application in 1948-49 and 1949-1950, 2C=2 years application in 1948-49 and 1949-1950 and \(3 \mathrm{C}=3\) years application in 1948-49,1949-50 and 1950-1951. Manures applied on 20.10.1949.
3. \(\cdot\) DESIGN :
(i) to (iii) \(8 \times 8\) Quasi L. Sq.
(iv) (a) \(22^{\prime} \times 38.5^{\prime}\).
(b) \(11^{\prime} \times 33^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) On account of heavy cyclonic rains in October soon after planting the whole field was under water and so the whole field had to be replanted. Plants established well. The late rains received by the end of February considerably affected the \(\%\) of bright grades in all the treatments. (ii) Nil. (iii) Green leaf weight and percentage of bright grades. (iv) (a) 1948 to 1951. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(525.3 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(289.75 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only N effect is significant.
(iv) Av. yield of green leaf in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{G}_{0}\) & \(\mathrm{G}_{1}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathbf{P}_{1}\) & \(\mathbf{K}_{\mathbf{0}}\) & \(\mathrm{K}_{1}\) & Mean \\
\hline \(F_{0}\) & 514.1 & 540.1 & 469.3 & 584.9 & 548.9 & 505.3 & 499.5 & 554.7 & 527.1 \\
\hline \(\mathrm{F}_{1}\) & 477.2 & 569.8 & 448.1 & 598.9 & 521.9 & 525.1 & 516.0 & 531.0 & 523.5 \\
\hline Mean & 495.6 & 554.9 & 458.7 & 591.9 & 535.4 & 515.2 & 507.7 & 542.9 & 525.3 \\
\hline \(\mathrm{K}_{0}\) & 497.2 & 518.1 & 437.3 & 578.1 & 495.0 & 520.4 & & & \\
\hline \(\mathrm{K}_{1}\) & 494.0 & 591.7 & 480.1 & 605.7 & 575.8 & 510.0 & & & \\
\hline \(\mathrm{P}_{0}\) & 520.0 & 550.8 & 480.3 & 590.5 & & & & & \\
\hline \(\mathrm{P}_{1}\) & 471.2 & 559.1 & 437.1 & 593.3 & & & & & \\
\hline \(\mathrm{N}_{0}\) & 421.9 & 495.5 & & & & & & & \\
\hline \(\mathrm{N}_{1}\) & 569.3 & 614.5 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=51.22 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=72.44 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Tobacco.
Ref:- C.T.R.I. 50(6). Type :- 'M'.
Object :-To find out the cumulative and residual effect of manures applied last year on the yield and quality of Tobacco.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Tobacco. (c) As per treatments-applied in 1948. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 13.11 .1950 . (iv) (a) N.A. (b) TransplanteJ. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\circ}\). (e) one. (v) Nil. (vi) N.A. (vii) Nil. (viii) Gap flling, etc. (ix) N.A. (x) N.A.

\section*{2. TREATMENTS :}

All combinations of (1), (2), (3), (4) and (5)
(1) 2 level of F.Y.M. : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{2}=3\) ton/ac.
(2) 2 levels of \(N\) as G.N.C. : \(G_{0}=0\) and \(G_{1}=20 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb}\)./ac.
(4) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=50 \mathrm{lb}\)./ac.
(5) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=50 \mathrm{lb}\)./ac.

Each treatment plot has been split up into four sub plots viz. I=one year application in 1948-49, \(2 \mathrm{~A}=\) two years application in 1948-49 and 1950-1951, \(2 \mathrm{C}=\) two years application in 1948-49 and 1949-1950, and \(3 \mathrm{C}=3\) years application in 1948-49, 1949-50 and 1950-51.

\section*{3. DESIGN :}
(i) to (iii) \(8 \times 8\) Quasi L. Sq. (iv) (a) N.A. (b) \(1 / 576\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (i) Nil. (iii) Tobacco yield. (iv) (a) 1948-1951. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(692.4 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(180.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of G and N are significant.
(iv) Av. yield of green leaf in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{G}_{0}\) & \(\mathrm{G}_{1}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(P_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & Mean \\
\hline \(\mathrm{F}_{0}\) & 692.5 & 717.7 & 654.2 & 755.0 & 724.1 & 686.1 & 722.1 & 688.1 & 705.1 \\
\hline \(\mathrm{F}_{1}\) & 635.3 & 724.2 & 676.2 & 683.3 & 701.1 & 658.3 & 675.2 & 684.2 & 679.7 \\
\hline Mean & 663.9 & 720.9 & 665.2 & 719.7 & 712.6 & 672.2 & 698.7 & 686.1 & 692.4 \\
\hline \(\mathrm{K}_{0}\) & 678.5 & 718.9 & 690.7 & 706.9 & 714.7 & 655.7 & & & \\
\hline \(\mathrm{K}_{1}\) & 649.3 & 722.9 & 639.7 & 732.5 & 683.5 & 688.7 & & & \\
\hline \(\mathrm{P}_{0}\) & 675.4 & 749.8 & 680.9 & 744.5 & & & & & \\
\hline \(\mathrm{P}_{1}\) & 652.4 & 692.0 & 649.5 & 694.9 & & & & & \\
\hline \(\mathrm{N}_{0}\) & 619.3 & 710.9 & & & & & & & \\
\hline \(\mathrm{N}_{1}\) & 708.5 & 730.9 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=16.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=22.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop:- Tobacco. Ref :- C.T.R.I. \(51(9) . \quad\) Type :- 'M'.

Object :-To find out the cumulative and residual effect of manures applied last year on the yield and quality of Tobacco.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Tabacco. (c) As per treatments-applied in 1948. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 22.10.1951. (iv) (a) N.A. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\prime \prime}\). (e) One. (v) Nil. (vi) N.A. (vii) Nil. (viii) \(5 \%\) gaps filling 2 hand weedings and 2 intercultures. (ix) N.A. (x) 8, 12.1.1952 and 2, 18.2.1952.

\section*{2. TREATMENTS:}

All combinations of (1), (2), (3), (4) and (5)
(1) 2 levels of F.Y.M. : \(F_{0}=0\) and \(F_{1}=3\) ton/ac.
(2) 2 level of \(N\) as G.N.C. : \(G_{0}=0\) and \(G_{1}=20 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb} / \mathrm{ac}\).
(4) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=50 \mathrm{lb} . / \mathrm{ac}\).
(5) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=50 \mathrm{lb}\)./ac.

Each treatment plot has been split up into four sub plots viz. \(1=\) one year application in 1948-49, \(2 \mathrm{~A}=\) 2 years application in 1948-49 and 1950-1951, \(2 \mathrm{C}=2\) years application in (1948-49 and 1949-1950, and 3 \(\mathrm{C}=3\) years application in 1948-49, 1949-50 and 1950-51.
3. DESIGN:
(i) to (iii) \(8 \times 8\) Quasi L. Sq. (iv) (a) N.A. (b) \(22^{\prime} \times 38 \underline{I}^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Green leaf yield. (iv) (a) 1948-1951. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 601.5 lb ./ac.
'
(ii) \(198.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(G\) alone is significant.
(iv) Av. yield of green leaf in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{G}_{\mathbf{0}}\) & \(\mathrm{G}_{1}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & Mean \\
\hline \(\mathrm{F}_{0}\) & 543.9 & 609.6 & 546.7 & 606.8 & 594.8 & 558.6 & 599.7 & 553.7 & 576.7 , \\
\hline \(F_{1}\) & 603.9 & 648.5 & 613.9 & 638.6 & 642.8 & 609.6 & 625.9 & 626.5 & 626.2 \\
\hline Mean & 573.9 & 629.1 & 580.3 & 622.7 & 618.8 & 584.1 & 612.8 & 590.1 & 601.5 \\
\hline \(\mathrm{K}_{0}\) & 581.3 & 644.5 & 659.4 & 566.2 & 647.8 & 577.8 & & & \\
\hline \(\mathrm{K}_{1}\) & 566.5 & 613.7 & 501.2 & 679.2 & 589.8 & 590.4 & & & \\
\hline \(\mathrm{P}_{0}\) & 594.1 & 643.5 & 600.4 & 673.2 & & & & & \\
\hline \(\mathrm{P}_{1}\) & 553.7 & 614.7 & 560.2 & 608.0 & & & & & \\
\hline \(\mathrm{N}_{0}\) & 543.1 & 617.5 & & & & & & & \\
\hline \(\mathrm{N}_{1}\) & 604.7 & 640.7 & & & & & & & \\
\hline \multicolumn{5}{|r|}{S.E. of any marginal mean S.E. of body of any table} & \multicolumn{5}{|c|}{\[
\begin{aligned}
& =17.5 \mathrm{lb} . / \mathrm{ac} . \\
& =24.7 \mathrm{lb} . / \mathrm{ac.}
\end{aligned}
\]} \\
\hline
\end{tabular}

\section*{Crop :- Tobacco.}

Ref :- C.T.R.I. 48(2).
Type:- 'C'.
Object :-To find out the relation between spacing and yield with respect to early and late planting and also to see if the manner of distribution of spacing around the plants was of any importance.
1. BASAL CONDITIONS:
(i) (a) Nil.
(b) N.A. (c) N.A. (ii) (a) Heavy black soil.
(b) Refer item 11 on page 107. (iii) As per treatments. (iv) (a) N.A. (b) Transplanted. (c) and (d) As per treatments. (c) 1. (v) Nil. (vi) Flue cured Tobacco. (vii) Nil. (viii) N.A. (ix) N.A. (x) N.A.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
(1) 4 spacings : \(\mathrm{S}_{1}=39^{\prime \prime} \times 39^{\prime \prime}\) (4124 plants/ac.), \(\mathrm{S}_{2}=36^{\prime \prime} \times 36^{\prime \prime}\) (4840 plants/ac.), \(\mathrm{S}_{3}=33^{\prime \prime} \times 33^{\prime \prime}\) ( 5760 plants/ac.) and \(\mathrm{S}_{4}=30^{\prime \prime} \times 29^{\prime \prime}\) ( 7210 plants/ac.).
(2) 4 designs of spacings : \(C_{1}=\) Square system, \(C_{2}=\) Equilateral system, \(C_{3}=3: 2\) ratio between and within rows and \(C_{4}=2: 1\) ratio between and within rows.
(3) 2 planting dates: \(D_{1}=22.10 .1948\) (early) and \(D_{2}=20.11 .1948\) (late).
3. DESIGN :
(i) to (iii) \(8 \times 8\) Quasi L. Sq. (iv) (a) \(33^{\prime} \times 33^{\prime}\). (b) Different with different spacings, as per treatments. (v) One row of border alround except in case of equilateral system where two rows on one side and one row on the other side. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Final plant height and av. yield of cured leaf etc. (iv) (a) 1948-1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(721 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(152.1 \mathrm{lb} . / \mathrm{ac}\),
(iii) Effect due to \(D\) and interaction \(S \times D\) are significant. No other effect is significant.
(iv) Av. yield of cured in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & Mean & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) \\
\hline \(S_{1}\) & 686 & 576 & 590 & 747 & 649 & 717 & 582 \\
\hline \(\mathrm{S}_{2}\) & 644 & 603 & 746 & 733 & 682 & 767 & 597 \\
\hline \(\mathrm{S}_{3}\) & 693 & 809 & 687 & 846 & 759 & 863 & 654 \\
\hline \(\mathrm{S}_{4}\) & 815 & 792 & 945 & 617 & 793 & 833 & 752 \\
\hline Mean & 709 & 695 & 742 & 735 & 721 & & \\
\hline \(\mathrm{D}_{1}\) & 845 & 652 & 800 & 882 & 795 & & \\
\hline \(\mathrm{D}_{2}\) & 573 & 738 & 684 & 589 & 646 & & \\
\hline
\end{tabular}
S.E of marginal mean of \(S\) or \(C\)
\[
\begin{aligned}
& =38.0 \mathrm{lb} / \mathrm{ac} \\
& =26.9 \mathrm{lb} . / \mathrm{ac} \\
& =53.8 \mathrm{lb} . / \mathrm{ac} \\
& =76.0 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]
S.E. of marginal mean of \(D\)
S.E. of body of \(D \times S\) or \(D \times C\) table
S.E. of body of \(S \times C\) table

Object:-To find out the relation between spacing and yield with respect to early and late plantings and also to see if the manner of distribution of space around the plants was of noy importance.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Sorghum. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107 . (iii) As per treatments. (iv) (a) N.A. (b) Transplanted. (c) and (d) As per treatments. (e) N.A. (v) 10 lb . of N as A/S. (vi) Cigarette Tobacco. (vii) Nil. (viii) N.A. (ix) N.A. (x) N.A.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
(1) 4 spacings : \(\mathrm{S}_{1}=39^{\circ} \times 39^{\circ}\) ( 4124 plants/ac.), \(\mathrm{S}_{2}=36^{\circ} \times 36^{\prime \prime}\left(4840\right.\) plants/ac.), \(\mathrm{S}_{2}=33^{\circ} \times 33^{\prime \prime}\left(5^{\prime \prime} 60\right.\) plants/ac.) and \(\mathrm{S}_{4}=30^{\circ} \times 29^{\circ}\) ( 7210 plants/ac.).
(2) 4 designs of spacings : \(C_{1}=\) Square system, \(C_{2}=\) Equilateral system, \(C_{3}=3: 2\) ratio between and within rows and \(C_{4}=2: 1\) ratio tetween and within rows.
(3) 2 planting date : \(D_{1}=11.11 .1949\) (early) and \(D_{2}=30.11 .19+9\) (late).
3. DESIGN :
(i) to (iii) \(8 \times 8\) Quasi L. Sq. (iv) (a) \(41^{\prime} \times 37 \frac{1^{\prime}}{}\). (b) Different with different spacings as per treatments.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) On account of the cyclonic rains on the 27th and 28 October early planting could rot be done in that month as in the previous year. General growth of the crop was poor. Nut grats infestation in patches. (ii) Nil. (iii) Green leaf weight etc. (iv) (a) 1948-1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(314 \mathrm{lb} / \mathrm{ac}\).
(ii) \(100.75 \mathrm{lb} . / \mathrm{ac}\).
(iii) D and S effects are significant. Other effects are not significant.
(iv) Av. yield of cured leaf in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{l|llll|ll|ll} 
& \(\mathbf{C}_{\mathbf{1}}\) & \(\mathbf{C}_{\mathbf{2}}\) & \(\mathbf{C}_{\mathbf{3}}\) & \(\mathbf{C}_{\mathbf{4}}\) & Mean & \(\mathbf{D}_{\mathbf{1}}\) & \(\mathbf{D}_{\mathbf{2}}\) \\
\hline \(\mathbf{S}_{\mathbf{1}}\) & 291 & 388 & 249 & 221 & 288 & 341 & 235 \\
\(\mathbf{S}_{\mathbf{2}}\) & 238 & 336 & 239 & 335 & 287 & 349 & 225 \\
\(\mathrm{~S}_{\mathbf{3}}\) & 327 & 291 & 319 & 237 \\
\(\mathbf{S}_{\mathbf{4}}\) & 495 & 343 & 447 & 271 & 293 & 351 & 236 \\
389 & 429 & 348 \\
\hline Mean & 336 & 339 & 313 & 266 & 314 & \\
\hline \(\mathrm{D}_{\mathbf{1}}\) & 416 & 369 & 395 & 289 & 367 \\
\(\mathrm{D}_{\mathbf{2}}\) & 259 & 309 & 231 & 243 & 266 &
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal means of S or C & \(=25.19 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal means of \(D\) & \(=17.81 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(D \times S\) or \(D \times C\) table & \(=35.62 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. oí body of \(S \times C\) table & \(=50.37 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Tobacco. Ref:- C.T.R.I. 50(2). Type :- 'C’.
Object :-To study the effect of spacing and systems of planting on yield in relation to the time of planting.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) As per treatments. (iv) (a) N.A. (b) Transplanted. (c) and (d) As per treatments. (e) 1. (v) 15 lb ./ac. of N as \(A / S\) and 6 C.L./ac. of F.Y.M. (vi) N.A. (vii) Nil. (viii) Gap filling and interculture with rotary junior hand hoe. (ix) N.A. (x) 31.1.1951 to 31.3.1951.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
(1) 4 spacings: \(\mathrm{S}_{1}=39^{\circ} \times 39^{\circ}\left(4124\right.\) plants/ac.), \(\mathrm{S}_{2}=36^{\circ} \times 36^{\circ} \quad\) ( 4840 plants/ac.), \(\mathrm{S}_{3}=33^{\circ} \times 33^{\circ} \quad\) ( 5760 plants/ac.) and \(S_{4}=30^{\circ} \times 29^{\circ}(7210\) plants/ac.).
(2) 4 designs of spacings: \(\mathrm{C}_{1}=\) Square system, \(\mathrm{C}_{2}=\) Equilateral system, \(\mathrm{C}_{3}=3: 2\) ratio betweenand within rows and \(C_{4}=2: 1\) ratio between and within rows.
(3) 2 planting dites: \(D_{1}=18.11 .1950\) (early) and \(D_{2}=1.12 .1950\) (late).
3. DESIGN :
(i) to (iii) \(8 \times 8\) Quasi L. Sq. (iv) (a) \(41.1^{\prime} \times 37.5^{\prime}\). (b) Different with different spacings as per treatments. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Replanting of 1st planting had to be done due to heavy rains during 1st fortnight of November-growth below normal. (ii) Nil. (iii) Green leaf yield. (iv) (a) 1948 to 1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) N.A. (vii) Raw data and result for the experiment conducted during 1951 N.A.

\section*{5. RESULTS :}
(i) \(441 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(68.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only \(\mathbf{D}\) effect is significant.
(iv) Av. yield of cured leaf in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & C4 & Mean & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) \\
\hline \(S_{1}\) & 445 & 391 & 513 & 464 & 453 & 511 & 395 \\
\hline \(\mathrm{S}_{2}\) & 441 & 457 & 371 & 385 & 413 & 472 & 354 \\
\hline \(\mathrm{S}_{3}\) & 455 & 476 & 469 & 398 & 449 & 543 & 356 \\
\hline \(\mathrm{S}_{4}\) & 409 & 453 & 479 & 451 & 448 & 528 & 369 \\
\hline Mean & 437 & 445 & 458 & 425 & 441 & 513 & 369 \\
\hline \(\mathrm{D}_{1}\) & 516 & 526 & 488 & 524 & & & \\
\hline \(\mathrm{D}_{2}\) & 359 & 363 & 428 & 325 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of S or \(C\) & \(=17.15 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(D\) & \(=12.12 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(S \times D\) or \(C \times D\) table & \(=24.24 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(S \times C\) table & \(=34.29 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Tobacco.}

Ref:- C.T.R.I. 48(3). Type:- 'C'.
Object :-To find out the effect of planting seedlings of different ages and size (within the same age) on the quality and yield of Cigarette Tobacco.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 18.10 .1948. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\circ}\). (e) 1. (v) N.A. (vi) Cigarette Tobacco. (vii) Nil. (viii) Gap filling and hand weeding. (ix) and (x) N.A.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)
(1) 3 ages of seedlings: \(A_{1}=9\) weeks old, \(A_{2}=8\) weeks old and \(A_{3}=7\) weeks old.
(2) 2 sizes of seedlings : \(S_{1}=\) Normal size (large) and \(S_{2}=\) Small size.
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 6 .
(b) N.A.
(iii) 4. (iv) (a) \(16 \frac{1^{\prime}}{} \times 49 \frac{1}{2}^{\prime}\).
(b) \(11^{\prime} \times 44^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Poor establishment of seedlings particularly in plots with Ag. Damage was considerably high in two replications. (ii) Nutgram infestation. (iii) Final height of plants. (iv) (a) No. (b) and (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(662 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(155.4 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects significant.
(iv) Av. yield of cured leaf in lb./ac.
\begin{tabular}{c|cc|c} 
& \(\mathbf{S}_{1}\) & \(\mathbf{S}_{\mathbf{2}}\) & Mean \\
\hline \(\mathbf{A}_{1}\) & 660 & 560 & 610 \\
\(\mathbf{A}_{2}\) & 628 & 557 & 593 \\
\(\mathbf{A}_{3}\) & 776 & 788 & 782 \\
\hline Mean & 688 & 635 & 662
\end{tabular}
\begin{tabular}{ll} 
S.E. of A marginal means & \(=54.94 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of S marginal means & \(=44.86 \mathrm{lb} . / \mathrm{ac}\). \\
S E. of body of table & \(=77.70 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Tobacco. Ref:- C.T.R.I. 49(6). Type :- 'C'.
Object :-To find out how topping at different stages of the plant growth affect the yield and quality of the leaf along with the different plant spacings with a common row spacing.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 14.11.1949. (iv) (a) 3-4 ploughings with country plough. (b) Transplanted. (c) and (d) As per treatments. (e) One. (v) 5 C.L./ac. of M.C. and 100 lb ./ac. of A/S. (vi) Cigarette Tobacco. (vii) Nil. (viii) N.A. (ix) N.A. (x) 18.1.1950 to 18.3.1950.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 spacings (plant to plant) : \(\mathrm{S}_{1}=25.0^{\prime \prime}\); (7603 plants/ac.), \(\mathrm{S}_{2}=28.5^{\prime \prime}\); ( 6669 plants/ac.), \(\mathrm{S}_{3}=33.0^{\prime \prime} ;(5760\) plants/ac.) and \(S_{4}=39.3^{\prime \prime} ; ~\left(4829\right.\) plants/ac.) with a common row spacing of \(33^{\prime \prime}\).
Sub-plot treatments :
5 stages of topping : \(T_{0}=\) No topping, \(T_{1}=\) Topping at bud stage, \(T_{2}=\) Topping of the bud at emergence. with few leaves, \(T_{3}=\) Topping at the time of flowering and \(T_{4}=\) Topping where \(50 \%\) has taken place.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) \(33^{\prime} \times 47^{\prime}-11^{\prime \prime}\); \(33^{\prime} \times 49^{\prime}-10.5^{\prime \prime} ; 33^{\prime} \times 49^{\prime}-6^{\prime \prime} ; 33^{\prime} \times 49^{\prime}-1.33^{\prime \prime}\) for \(S_{1}, S_{2}, S_{3}\) and \(S_{4}\) respectively. (b) \(27 \frac{1_{2}^{\prime}}{} \times 43^{\prime}-9^{\prime \prime}\); \(27 \frac{1}{2}^{\prime} \times 45^{\prime}-1 \frac{1}{2}^{\prime \prime} ; 27 \frac{1}{2}^{\prime} \times 44^{\prime}-0^{\prime \prime} ; 27 \frac{1}{2}^{\prime} \times 42^{\prime}-6.9^{\prime \prime}\) for \(S_{1}, S_{2}, S_{3}\) and \(S_{4}\) respectively. (v) N.A. (vi) Yes.
4. GENERAL :
(i) On account of the late rains received during the last week of February 1950. Plants that were topped sucked profusedly and the suckers could not be removed in time till the fields became accessible. This greatly vitiated the effect of topping on the yield. (ii) Nil. (iii) Green leaf yield etc. (iv) (a) No. (b) (c) -. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(361.9 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(139.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(81.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in lb ./ac.
\begin{tabular}{c|cccc|c} 
& \(\mathrm{S}_{\mathbf{1}}\) & \(\mathrm{S}_{\mathbf{2}}\) & \(\mathrm{S}_{3}\) & \(\mathrm{~S}_{4}\) & Mean \\
\hline \(\mathrm{T}_{\mathbf{0}}\) & 401.2 & 399.2 & 367.6 & 221.6 & 347.4 \\
\(\mathrm{~T}_{\mathbf{1}}\) & 364.4 & 321.6 & 315.6 & 378.6 & 345.1 \\
\(\mathrm{~T}_{\mathbf{2}}\) & 485.4 & 369.2 & 433.0 & 3468 & 408.6 \\
\(\mathrm{~T}_{\mathbf{3}}\) & 338.4 & 304.2 & 375.8 & 363.2 & 345.4 \\
\(\mathrm{~T}_{\mathbf{4}}\) & 374.2 & 363.6 & 371.6 & 342.2 & 362.9 \\
\hline Me3n & 392.7 & 351.6 & 372.7 & 330.5 & 361.9
\end{tabular}
S.E. of difference of two
1. S marginal means
\(=39.51 \mathrm{lb} . / \mathrm{ac}\).
2. \(T\) marginal means
\(=25.77 \mathrm{lb} . / \mathrm{ac}\).
3. \(T\) means at the same level of \(S\)
\(=55.19 \mathrm{lb} . / \mathrm{ac}\).
4. S means at the same level of \(T\)
\(=60.72 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop:- Tobacco. \\ Ref :- C.R.R.I: 53(5). Type :- 'C'.}

Object :-To find out the influence of direction of rows and population on the iccidence of powdery mildew and yield.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 19, 20.11.1953. (iv) (a) \(3-4\) ploughings with country plough. (b) Transplanted. (c) -. (d) As per treatments. (e) One. (v) Manure broadcast. (vi) Chaltram. (vii) Unirrigated. (viii) Gap filling and interculture first with planet junior hoe and then with plough. (ix) \(15.16^{\prime \prime}\). (x) 8.2.1953 to 20.3.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
2 directions of planting: \(\mathrm{D}_{1}=\) East to West and \(\mathrm{D}_{2}=\) North to South.
Sub-plot treatments :
6 spacings : \(\mathrm{S}_{1}=4^{\prime} \times 1.5^{\prime}, \mathrm{S}_{2}=4^{\prime} \times 1.75^{\prime}, \mathrm{S}_{3}=4^{\prime} \times 2^{\prime}, \mathrm{S}_{4}=4^{\prime} \times 2.25^{\prime} \mathrm{S}_{5}=4^{\prime} \times 2.5^{\prime}\) and \(\mathrm{S}_{6}=2.75^{\prime} \times 2.75^{\prime}\).

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 2 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(88^{\prime} \times 20^{\prime}\). (b) \(1 / 33\) to \(1 / 44\) ac. according to spacing. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (il) Nil. (iii) Green leaf yield, cured leaf yield, tright grades percentage and capsule weight. (iv) (a) No. (b) and (c) -. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(5895 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(1609.0 \mathrm{lb} / \mathrm{ac}\).
(b) \(624.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of green leaf in 1 b ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & \(\mathrm{S}_{4}\) & \(\mathrm{S}_{5}\) & \(\mathbf{S}_{8}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 6074 & 6311 & 5853 & 5533 & 5230 & 5737 & 5790 \\
\hline \(\mathrm{D}_{2}\) & 6691 & 5985 & 6096 & 5418 & 5963 & 5864 & 6003 \\
\hline Mean & 6383 & 6148 & 5975 & 5476 & 5596 & 5801 & 5895 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. D marginal means & \(=464.5 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=312.0 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(D\) & \\
4. \(D\) means at the same level of \(S\) & \\
4. & \(=614.8 \mathrm{lb} . / \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Tobacco. Ref:- C.T.R.I. 49(2). TyFe :- 'CM'.
Object :-To provide information on the effect of different planting times in conjunction with \(\mathrm{N}, \mathrm{P}\) and K manuring on the yield and quality of crop and to find out the amount of dry matter removed from the soil during the various phases of plant growth at different planting times.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) As per treatments. (iv) (a) 3 to 4 ploughings with country plough. (b) Seedlings transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\prime \prime}\). (e) 1. (v) Nil. (vi) to (x) N.A.

\section*{2. TREATMENTS:}

All combinations of (1), (2), (3) and (4)
(1) 4 planting dates: \(\mathrm{D}_{1}=11.11 .1949, \mathrm{D}_{2}=21.11 .1949, \mathrm{D}_{3}=2.12 .1949\) and \(\mathrm{D}_{4}=19.12 .1949\).
(2) 2 levels of \(\mathrm{N}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=20 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=50 \mathrm{lb}\)./ac.
(4) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=50 \mathrm{lb}\)./ac.

Manure applied in deep furrows.
3. DESIGN :
(i) \(4 \times 2^{3}\) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 2 . (one replication set apart for sampling studies and the other for growth and yield studies). (iv) (a) \(573^{\prime} \times 463^{\prime}\). (b) \(20^{\prime} \times 17^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Due to cyclone October planting postponed. Manuring programme was upset. Only plots with Ist date of planting received manure. Growth sub-normal. Manure for other plots was given in November. (ii) Nll. (iii) Green leaf yield. (iv) (a) 1949-1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (i) Nil. (vii) Results available only in the fashion they are presented.
5. RESULTS :
(i) \(388 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(101.3 \mathrm{lb} / \mathrm{ac}\).
(iii) Only planting times are significantly different.
(iv) Av. wt. of cured leaf in \(\mathrm{lb} . / \mathrm{ac}\).


Crop :- Tobacco. Ref :- C.T.R.I. 50(1). Type :- 'CM'.

Object :-To study the optimum time of planting in relation to manuring and quality of leaf.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) Nil. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107 . (iii) As per treatments. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) 5760 plants/ac. (d) \(33^{\prime \prime} \times 33^{\prime \prime}\). (e) 1. (v) Nil. (vi) N.A. (vii) Nil. (viii) Gap filling. (ix) N.A. (x) 22.1.1951 to 31.3.1951.

\section*{2. TREATMENTS :}

All combinations of (1), (2), (3) and (4)
(1) 4 planting dates: \(D_{1}=13.10 .1950, D_{2}=28.10 .1950, D_{3}=12.11 .1950\) and \(D_{4}=27.11 .1950\).
(2) 2 levels of \(\mathrm{N}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=50 \mathrm{lb}\)./ac.
(4) 2 levels of \(K_{2} O: K_{0}=0\) and \(K_{1}=50 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) \(4 \times 2^{3}\) confd. Fact. (ii) (a) 8 plots/block and 4 blocks/replication. (b) N.A. (iii) 1. (iv) (a) N.A. (b) \(11^{\prime} \times 41 \ddagger^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) The rains in second week of October resulted in a no. of gaps so that the first planting was almost sim!lar to second planting in growth. (ii) Nil. (iii) Green leaf wt., etc. (iv) (a) 1949 to 1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(389 \mathrm{lb} / \mathrm{ac}\).
(ii) \(168.7 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in \(\mathrm{lb} . / \mathrm{ac}\).


Crop :- Tobacco.

\section*{Ref:- C.R.R.I. 51(10). Type :- 'CM’.}

Object : - To find out the optimum date of transplanting of Cigarette Tobacco in relation to \(\mathrm{N}, \mathrm{P}\) and K requirements.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page I07. (iii) As per treatments. (iv) (a) 3-4 ploughings with country plough. (b) Seedlings transplanted. (c) 5760 plants/ac, (d) \(33^{\circ} \times 33^{\prime \prime}\) (e) One. (v) 10 ton/ac. of M.C. applied on 18.10.1951. (vi) Cigarette Tobacco. (vii) Nil. (viii) Gap filling interculture with plough in some plots and wish plant junior cultivator in others. (ix) N.A. (x) 10.1.1952 to \(4,15.3 .1952\).

\section*{2. TREATMENTS :}

Main-plot treatments :
4 dates of planting: \(D_{1}=19.10 .1951, D_{2}=1.11 .1951, D_{3}=16.11 .1951\) and \(D_{4}=30.11 .1951\).
Sub-plot treatments :
All combinations of (1), (2) and (3)
(1) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as single Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=50 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=50 \mathrm{lb}\)./ac.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/replication; 2 blocks/main-plot and 4 sub-plots/block in main-plot. (b) N.A. (iii) 3. (iv) (a) \(22^{\prime} \times 49.5^{\prime}\). (b) \(16.5^{\prime} \times 44^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Green leaf yield etc. (iv) (a) 1949-1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(943 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(161.4 \mathrm{lb} / \mathrm{ac}\).
(b) \(83.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & Mean & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{D}_{1}\) & 1129 & 1131 & 1130 & 1125 & 1134 & 1123 & 1137 \\
\hline \(\mathrm{D}_{2}\) & 972 & 1022 & 997 & 1008 & 987 & 966 & 1028 \\
\hline \(\mathrm{D}_{3}\) & 979 & 925 & 952 & 952 & 951 & 954 & 950 \\
\hline \(\mathrm{D}_{4}\) & 715 & 675 & 695 & 711 & 679 & 693 & 697 \\
\hline Mean. & 949 & 938 & 943 & 949 & 938 & 934 & 953 \\
\hline \(\mathrm{K}_{0}\) & 936 & 931 & 934 & 946 & 922 & & \\
\hline \(\mathrm{K}_{1}\) & 961 & 945 & 953 & 952 & 954 & & \\
\hline \(\mathrm{P}_{0}\) & 941 & 957 & 949 & & & & \\
\hline \(\mathrm{P}_{1}\) & 956 & 919 & 938 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{|c|c|}
\hline marginal mean of D & \(=46.59 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 2. marginal mean of \(\mathrm{N}, \mathrm{P}\) or K & \(=17.02 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 3. \(\mathrm{N}, \mathrm{P}\) or K means at the same level of D & \(=34.05 \mathrm{lb}\) / ac . \\
\hline 4. D mean at the same level of \(\mathrm{N}, \mathrm{P}\) or K & \(=52.44 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 5. mean of \(\mathrm{N} \times \mathrm{P}, \mathrm{P} \times \mathrm{K}\) or \(\mathrm{N} \times \mathrm{K}\) table & \(=24.07 \mathrm{lb} / \mathrm{ac}\). \\
\hline
\end{tabular}

Crop :- Tobacco.
Ref:- C.T.R.I. 51(5).
Type :- 'CM'.
Object :-To find out the effect of different levels of \(\mathrm{N} / \mathrm{plant}\) with different plant number/ac.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 20.10.1951.
(iv) (a) 3-4 ploughings with country plough. (b) Transplanted. (c) and (d) As per treatments. (e) One.
(v) Nil. (vi) Cigarette Tobacco. (vii) Nil. (viii) Gap filling hand weeding and interculture with country plough between the rows. (ix) N.A. (x) 8.1.1952 to 7.3.1952.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as A/S: \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=0.78, \mathrm{~N}_{2}=1.57\) and \(\mathrm{N}_{3}=2.35 \mathrm{gm} . /\) plant.
(2) 6 levels of plant number/ac. and spacing : \(\mathrm{P}_{0}=3872\) and \(36^{\prime \prime} \times 45^{\prime \prime}, \mathrm{P}_{1}=4840\) and \(36^{\prime \prime} \times 36^{\prime \prime}, \mathrm{P}_{2}=5808\) and \(36^{\prime \prime} \times 30^{\prime \prime}, P_{3}=6776\) and \(35^{\prime \prime} \times 253^{\circ}, P_{4}=7744\) and \(36^{\prime \prime} \times 22 \frac{1}{2}^{\prime \prime}\) and \(P_{5}=8712\) and \(36^{\prime \prime} \times 20^{\prime \prime}\).
Manures applied just before planting.
3. DESIGN:
(i) \(4 \times 6\) Fact. in R.B.D. (ii) (a) 24. (b) N.A. (iii) 3. (iv) (a) \(18^{\prime} \times 30^{\prime}\). (b) Varying from \(1 / 128\) to \(1 / 138\) as per treatments. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Green leaf yield. (iv) (a) 1951-1954. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Only 3 replications taken into account for analysis. Experiment laid out with 4 repiications.

\section*{S. RESULTS :}
(i) \(1046 \mathrm{lb} / \mathrm{ac}\).
(ii) \(149.9 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathbf{P}_{0}\) & \(\mathbf{P}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{P}_{8}\) & \(\mathbf{P}_{4}\) & \(\mathrm{P}_{5}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 955 & 1139 & 926 & 1139 & 1014 & 1036 & 1035 \\
\hline \(\mathrm{N}_{1}\) & 882 & 1088 & 1058 & 1176 & 1132 & 1058 & 1066 \\
\hline \(\mathrm{N}_{2}\) & 941 & 1088 & 999 & 1051 & 1102 & 1051 & 1039 \\
\hline \(\mathrm{N}_{3}\) & 735 & 1080 & 1110 & 1220 & 1066 & 1066 & 1046 \\
\hline Mean & 8.78 & 1099 & 1023 & 1146 & 1078 & 1053 & 1046 \\
\hline \multicolumn{4}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
S.E. of \(P\) marginal mean \\
S.E. of N marginal mean \\
S.E. of body of table
\end{tabular}}} & & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& =43.27 \mathrm{lb} . / \mathrm{ac} \\
& =35.33 \mathrm{lb} . / \mathrm{ac} \\
& =86.55 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]}} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Crop:- Tobacco. \(\quad\) Ref:- C.T.R.I. 52(3). Type :- 'CM'.
Object:-To find out the effect of different levels of \(\mathbf{N} /\) plant with different plant number/ac.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 4.11.1952. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) and (d) As per treatments. (c) 1. (v) M.C. at 3 ton/ac. applied just before planting. (vi) N.A. (vii) Nil. (viii) Gap filling, hand weeding and interculture with planet junior hoe. (ix) N.A. (x) 17.1.1953 to 3.3.1953.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=0.78, N_{2}=1.57\) and \(N_{3}=2.35\) gm./plant.
(2) 6 levels of plant number/ac. and spacing : \(P_{0}=3872\) and \(36^{\prime \prime} \times 45^{*}, P_{1}=4840\) and \(36^{\circ} \times 36^{\prime \prime}, P_{2}=5808\) and \(36^{\circ} \times 30^{\circ}, \mathrm{P}_{2}=6776\) and \(36^{\prime \prime} \times 25 \frac{5}{4}^{\prime \prime}, \mathrm{P}_{4}=7744\) and \(36^{\circ} \times 221^{\prime \prime}\) and \(P_{5}=8712\) and \(36^{\circ} \times 20^{\prime \prime}\).
Manures applied on 29.10.1952.

\section*{3. DESIGN :}
(i) \(4 \times 6\) Fact. in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 4 . (iv) (a) \(1 / 81\) ac. (b) \(1 / 128\) to \(1 / 138\) ac. (as per spacings). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Abnormal season of short rainfall with poor establishment of transplants. The crop improved later. Fields very high but quality of leaf poor. (ii) Nil. (iii) Green wt., percentage of bright grades, etc. (iv)
(a) 1951 to 1954.
(b) No.
(c) Nil.
(v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1256 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(162.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only \(\mathbf{P}\) effect is significant,
(iv) Av. yield of cured leaf in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|cccccc|c} 
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{8}\) & \(P_{4}\) & \(P_{5}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 1144 & 1293 & 1216 & 1287 & 1293 & 1315 & 1258 \\
\(\mathrm{~N}_{1}\) & 1155 & 1337 & 1337 & 1282 & 1177 & 1293 & 1264 \\
\(\mathrm{~N}_{2}\) & 1111 & 1161 & 1128 & 1199 & 1359 & 1441 & 1233 \\
\(\mathrm{~N}_{3}\) & 1078 & 1254 & 1293 & 1304 & 1419 & 1271 & 1270 \\
\hline Mean & 1122 & 1261 & 1244 & 1268 & 1312 & 1330 & 1256
\end{tabular}
```

S,E. of P marginal mean
=40.70 lb/ac.
S.E. of N marginal mean
=33.23 lb./ac.
S.E. of body of table
=81.40 lb./ac.

```

\author{
Crop:- Tobacco.
}

\author{
Ref :- C.T.R.I. 53(3). Type :- ‘CM'.
}

Object:-To find out the effect of different levels of \(\mathrm{N} / \mathrm{plant}\) with different plant number/ac.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 11.11.1953. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) and (d) As per treatments. (e) 1. (v) Nil. (vi) N.A. (vii) Unirrigated. (vii) Gap filling, hand weeding and interculture with planet junior hoe. (ix) 15.16". (x) 3.2.1954, 18.2.1954 and 6.3.1954.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 4 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=0.78, \mathrm{~N}_{2}=1.57\) and \(\mathrm{N}_{2}=2.35\) gm./plant.
(2) 6 levels of plant number/ac. and spacing : \(\mathrm{P}_{0}=3872\) and \(36^{\prime \prime} \times 45^{\prime \prime}, \mathrm{P}_{1}=4840\) and \(36^{\prime \prime} \times 36^{\prime \prime}, \mathrm{P}_{2}=5808\) and \(36^{\circ} \times 30^{\prime \prime}, \mathrm{P}_{3}=6776\) and \(36^{\prime \prime} \times 253^{\prime \prime}, \mathrm{P}_{5}=7744\) and \(36^{\prime \prime} \times 22{\frac{1}{}{ }^{\prime \prime}}^{\prime \prime}\). and \(\mathrm{P}_{5}=8712\) and \(36^{\circ} \times 20^{\prime \prime}\).
Manures applied as top dressing on 9.11.1953.
3. DESIGN :
(i) \(4 \times 6\) Fact. in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 4 . (iv) (a) \(18^{\prime} \times 30^{\prime}\). (b) \(12^{\prime} \times 26^{\prime}\) and \(12^{\prime} \times 28^{\prime}\), as per spacings. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Nil. (iii) Green leaf yield, cured leaf yield, bright grades percentage, mean stalk weight and capsule weight. (iv) (a) 1951 to 1954. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(2747 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(633 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only N effect is significant.
(iv) Av. yield of green leaf in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathbf{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{P}_{3}\) & \(\mathrm{P}_{4}\) & \(\mathrm{P}_{5}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 2056 & 2756 & 2133 & 2574 & 2689 & 2376 & 2431 \\
\hline \(\mathrm{N}_{1}\) & 2623 & 1995 & 2673 & 3462 & 3207 & 2828 & 2798 \\
\hline \(\mathrm{N}_{2}\) & 2260 & 2767 & 2772 & 2458 & 3141 & 3103 & 2750 \\
\hline \(\mathrm{N}_{3}\) & 3312 & 2552 & 2954 & 3351 & 3312 & 2579 & 3010 \\
\hline Mean & 2563 & 2518 & 2633 & 2961 & 3087 & 2722 & 2747 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(P\) marginal mean & \(=158.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of N marginal mean & \(\quad\). \\
S.E. of body of table & \(=139.2 \mathrm{lb} . / \mathrm{ac}\). \\
& \(=316.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Tobacco. Ref:- C.T.R.I. 52(6). Type:- 'CM'.
Object :-To find out the residual effect of different levels of N per plant applied in the year 1951-52.

\section*{1. BASAL CONDITIONS :}

\footnotetext{
(i (a) Nil. (b) Tobacco. (c) As per treatments. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. 23, 24.10.1952. (iv) (a) 3-4 ploughings with country plough. (b) Seedlings transplanted. (c) and (d) As fer treatments. (e) One. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Gap filling, hand weedings and interculture with planet Junior hoe. (ix) N.A. (x) 3.2.1953 to 28.3.1953.
}

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 4 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=0.78, \mathrm{~N}_{2}=1.57\) and \(\mathrm{N}_{3}=2.35 \mathrm{gm} /\) plant.
(2) 6 levels of population/ac. and spacing: \(\mathrm{P}_{0}=3872\) and \(36^{\prime \prime} \times 45^{\prime \prime}, P_{1}=4840\) and \(36^{\prime \prime} \times 36^{\prime \prime}, P_{2}=5808\) and \(36^{\prime \prime} \times 30^{\prime \prime}, P_{3}=6776\) and \(36^{\prime \prime} \times 253^{\prime \prime}, P_{4}=7744\) and \(36^{\prime \prime} \times 22^{\prime \prime}\) and \(\mathrm{P}_{5}=8712\) and \(36^{\prime \prime} \times 20^{\prime \prime}\).
3. DESIGN :
(i) \(4 \times\) GFact. in R.B.D. (ii) (a) 24. (b) N.A. (iii) 4. (iv) (a) \(1 / 81 \mathrm{ac}\). (b) \(1 / 138\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Abnormal season of short ranifall with poor establishment of transplants. The crop improved later. Fields were very high but the quality of leaf was poor. (ii) Nil. (iii) Green weight mean stalk weight. (iv) (a) 1952-1953. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Direct effect of treatments studied vide experiment no C.T.R.I. 51(5).
5. RESULTS :
(i) \(849 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(158.4 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of cured leaf in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{P}_{3}\) & \(\mathrm{P}_{4}\) & \(\mathrm{P}_{5}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 733 & 860 & 804 & 838 & 997 & 931 & 861 \\
\hline \(\mathrm{N}_{1}\) & 799 & 810 & 882 & 882 & 827 & 926 & 854 \\
\hline \(\mathrm{N}_{2}\) & 926 & 860 & 970 & 882 & 744 & 738 & 853 \\
\hline \(\mathrm{N}_{3}\) & 733 & 871 & 810 & 711 & 920 & 931 & 829 \\
\hline Mean & 798 & 850 & 867 & 828 & 872 & 882 & 849 \\
\hline \multicolumn{3}{|l|}{S.E. of N marginal mean} & & & \multicolumn{2}{|r|}{\(=32.33 \mathrm{lb} . / \mathrm{ac}\).} & \\
\hline \multicolumn{3}{|l|}{S.E. of P marginal mean} & & & \multicolumn{2}{|r|}{\(=39.60 \mathrm{lb} . / \mathrm{ac}\).} & \\
\hline \multicolumn{3}{|l|}{S.E. of body of table} & & & \multicolumn{2}{|r|}{\(=79.20 \mathrm{lb} . / \mathrm{ac}\).} & \\
\hline
\end{tabular}

Crop :- Tobacco. Ref :- C.T.R.I. 53(6). TyFe :- 'CM'.
Object :-To find out the residual effect of different levels of N/plant.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Tobacco. (c) As per treatments. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107.
(iii) N.A. (iv) (a) N.A. (b) Transplanted. (c) and (d) As per treatments. (e) One. (v) Nil. (vi) N.A.
(vii) Nil. (viii) N.A. (ix) \(15.16^{\prime \prime}\) ( (x) N.A.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 4 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=0.78, N_{2}=1.57\) and \(N_{3}=2.35 \mathrm{gm} / \mathrm{plant}\).
(2) 6 levels of population/ac. and spacing : \(\mathrm{P}_{0}=3872\) and \(36^{\circ} \times 45^{\prime \prime}, \mathrm{P}_{1}=4840\) and \(36^{\prime \prime} \times 36^{\prime \prime} \mathrm{P}_{2}=5808\) and \(36^{\prime \prime} \times 30^{\prime \prime}, P_{3}=6776\) and \(36^{\circ} \times 253^{\circ}, P_{4}=7744\) and \(36^{\prime \prime} \times 222^{\prime \prime}\) and \(\mathrm{P}_{5}=8712\) and \(36^{\circ} \times 20^{\circ}\).
N as A/S applied in 1952-53 residual effect studied this year.
3. DESIGN:
(i) \(4 \times 6\) Fact. in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 4 . (iv) (a) \(16.5^{\prime} \times 33^{\prime}\). (b) \(11^{\prime} \times 27.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Only green leaf yield. (iv) (a) 1952-1953. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(5214 \quad \mathrm{lb}\)./ac.
(ii) \(976.3 \mathrm{lb} . \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of green leaf in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{P}_{3}\) & \(\mathrm{P}_{4}\) & \(\mathrm{P}_{5}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 5580 & 4746 & 5238 & 5381 & 4611 & 4397 & 4992 \\
\hline \(\mathrm{N}_{1}\) & 5215 & 5230 & 5223 & 4770 & 5365 & 4984 & 5131 \\
\hline \(\mathrm{N}_{2}\) & 5024 & 4770 & 5865 & 6238 & 4556 & 5294 & 5291 \\
\hline \(\mathrm{N}_{3}\) & 4588 & 5913 & 5842 & 6080 & 5215 & 5008 & 5441 \\
\hline Mean & 5102 & 5165 & 5542 & 5617 & 4937 & 4921 & 5214 \\
\hline \multicolumn{4}{|c|}{S.E. of N marginal mean} & \multicolumn{4}{|c|}{\(=199.3 \mathrm{lb} / \mathrm{ac}\).} \\
\hline \multicolumn{4}{|c|}{S.E. of P marginal mean} & \multicolumn{4}{|c|}{\(=244.1 \mathrm{lb}\) /ac.} \\
\hline \multicolumn{4}{|c|}{S.E. of body of table} & \multicolumn{4}{|c|}{\(=488.2 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

\section*{Crop:- Tobacco. \\ Ref:- C.T.R.I. 51(8). Type :- ‘CM'.}

Object :-To find out the optimum requirements of nitrogen in relation to spacing and topping on the yield and quality of Tobacco.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Sorghum. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 31.10.1951 and 1.11 .1951 . (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) and (d) As per treatments. (e) 1. (v) M.C. at 5 ton/ac. broadcast before the on set of monsoon. (vi) N.A. (vii) Nil. (viii) Gap filling, hand weediog and interculture with planet junior hoe. (ix) N.A. (x) 9 and 12.1.1952, 5 and 21.2.1952.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of spacing and no. of plants/ac.: \(\mathrm{S}_{0}=33^{\prime \prime} \times 244^{\prime \prime}-7690, \mathrm{~S}_{1}=33^{\prime \prime} \times 283^{\prime \prime}-6730\) and \(\mathrm{S}_{2}=\) \(33^{\prime \prime} \times 33^{\prime \prime}-5760\).
(3) 3 levels of topping: \(T_{0}=\) No topping, \(T_{1}=\) Topping two weeks before first priming and \(T_{2}=\) Topping a week before first priming.
3. DESIGN:
(i) \(3^{3}\) confd. (ii) (a) 9 plots/block and 3 tlccks/replication. (b) N.A. (iii) 3. (iv) (a) \(\mathrm{S}_{0}: 22^{\prime} \times 51.5^{\prime}\), \(\mathrm{S}_{1}: 22^{\prime} \times 51.7^{\prime}\), and \(\mathrm{S}_{2}: 22^{\prime} \times 52.6^{\prime}\). (b) \(\mathrm{S}_{0}: 16.5^{\prime} \times 51.5^{\prime}, \mathrm{S}_{1}: 16.5^{\prime} \times 51.7^{\prime}\) and \(\mathrm{S}_{2}: 16.5^{\prime} \times 52.6^{\prime}\). (v) N.A. (vi) Yes.
4. GE\ERAL:
(i) Early growth satisfactery but after a month the grouth was stunted. It was probably due to the previous crop of sorghum. (ii) Nil. (iii) Green leaf yield. (iv) (a) 1951-1954. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:

(ii) sllt.as.
(iii) Orly levels of N and sracing effect is significant.
(iv) Av. yield of cured leaf in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{0}\) & \(S_{1}\) & \(\mathrm{S}_{2}\) & Mean & T0 & T & T \({ }_{3}\) \\
\hline \(\mathrm{N}_{0}\) & 219 & 206 & 176 & 200 & 212 & 207 & 181 \\
\hline \(\mathrm{N}_{1}\) & 304 & 302 & 270 & 292 & 271 & 317 & 287 \\
\hline \(\mathrm{N}_{2}\) & 349 & 344 & 302 & 332 & 309 & 355 & 331 \\
\hline Mean & 291 & 284 & 249 & 275 & 264 & 293 & 266 \\
\hline \(\mathrm{T}_{0}\) & 274 & 289 & 230 & & & & \\
\hline T1 & 307 & 300 & 272 & & & & \\
\hline \(\mathrm{T}_{2}\) & 290 & 264 & 246 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=10 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of any mean in the body of table & \(=17 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Tobacco.
Ref :- C.T.R.I. 52(5). Type:- 'CM'.

Object:-To ffind out the optimum requirements of spacing and topping for Cigarette Tobacco.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 9/15.11.1952. (iv) (a) 3 to 4 ploughings with country plough. (b) Seedlings transplanted. (c) and (d) As per treatments. (e) 1. (v) M.C. at 5 C.L./ac. broadcasted before the on set of monsoon. (vi) Cigarette Tobacco. (vii) Nil. (viii) Gap filling and interculture with planet junior hoe. (ix) N.A. (x) 13.2.1953 to 28.3.1953.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac.
(2) 3 levels of spacing and no. of plants/ac.: \(\mathrm{S}_{0}=33^{\prime \prime} \times 244^{\prime \prime}-7690, \mathrm{~S}_{1}=33^{\prime \prime} \times 253^{\prime \prime}-6730\) and \(\mathrm{S}_{2}=\) \(33^{n} \times 33^{\prime \prime}-5760\).
(3) 3 levels of topping: \(T_{0}=\) No topping, \(T_{1}=\) Topping two weeks before first priming and \(T_{2}=\) Topping a week before 1st priming.

\section*{3. DESIGN:}
(i) \(3^{3}\) confd. Fact. (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii, 2. (iv) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 53\) ac. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Abnormal season of short rainfall with poor establishment of transplants. The crop improved later Fields were very high but qnality of leaf was poor. (ii) Nil. (iii) Fercentage of bright grades. (iv) (a) 1951-1954. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) For analysis, III replication has not been taken into account. Also the treatment topping has not been taken into account. The reasons are not given in the records without this treatment the total no. of replication for \(S \times N\) will be 6].
5. RESULTS:
(i) \(1152 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(157.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only levels of N effect are significant.
(iv) Av. yield of cured leaf in lb./ac.
\begin{tabular}{r|ccc|c} 
& \(\mathrm{N}_{\mathbf{0}}\) & \(\mathrm{N}_{\mathbf{1}}\) & \(\mathrm{N}_{\mathbf{2}}\) & Mean \\
\hline\(-\mathrm{S}_{\mathbf{0}}\) & 1113 & 1164 & 1250 & 1176 \\
\(\mathrm{~S}_{\mathbf{1}}\) & 1111 & 1092 & 1173 & 1125 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 1089 & 1182 & 1195 & 1155 \\
\hline Mean & 1104 & 1146 & 1206 & 1152
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =37.1 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of table } & =64.26 \mathrm{lb} . / \mathrm{ac}
\end{array}
\]

Crop :- Tobacco. Ref :- C.T.R.I. 53(1). Type :- 'CM'.
Oh;ect :-To find out the optimum requivements of N spacing and topping for Cigarette Tobacco.
1 ASAL CONDITIONS:
(i) (a) Nil. (b) Tobacco. (c) As per treatments. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 13, 14.11.1953. (iv) (a) 3-4 ploughings with country plough. (b) Transplanting. (c) and (d) As per treatments. (e) One. (v) M.C. at 5 C.L./ac. (vi) Chaltram. (vii) Unirrigated. (viii) Gap filling interculture with planet Junior hoe and plough. (ix) \(15.16^{\prime \prime}\). (x) 29.1.1954, 14.2.1954, 1.3.1954 and 18.3.1954.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
(2) 3 levels of spacing and no. of plants/ac.: \(\mathrm{S}_{0}=33^{\prime \prime} \times 24^{3^{\prime \prime}}-7690-\mathrm{S}_{1}=33^{\prime} \times 283^{\prime \prime}-6730\) and \(\mathrm{S}_{2}=33^{\prime \prime} \times\) \(33^{\prime \prime}-5760\).
(3) 3 levels of topping: \(T_{0}=\) No toppings, \(T_{1}=\) Topping two weeks before first priming. and \(T_{2}=\) Topping a week before first priming.
3. DESIGN :
(i) \(3^{8}\) Confd. Fact. (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 3. (iv) (a) \(22^{\prime} \times 51.5^{\prime}\) (b) \(16.5 \times^{\prime}\) 51.5'. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Not satisfactory due to floods in August 1953. (ii) Nil. (iii) Cured leaf yield, percentage of bright grades and weight per stalk. (iv) (a) 1951-1954. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(836.6 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(120.0 \mathrm{lb} / / \mathrm{ac}\).
(iii) N effect and interactions \(\mathrm{N} \times \mathrm{S}, \mathrm{S} \times \mathrm{T}\) are significant. Other effects are not significant.
(iv) Av. yield of green leaf in lb./ac.
\begin{tabular}{c|ccc|cccc} 
& \(\mathrm{S}_{0}\) & \(\mathrm{~S}_{1}\) & \(\mathrm{~S}_{2}\) & Mean & \(\mathrm{T}_{0}\) & \(\mathrm{~T}_{1}\) & \(\mathrm{~T}_{\mathbf{2}}\) \\
\hline \(\mathrm{N}_{0}\) & 692.1 & 644.6 & 745.9 & 694.2 & 677.1 & 718.4 & 687.1 \\
\(\mathrm{~N}_{1}\) & 923.4 & 869.5 & 754.6 & 849.2 & 834.6 & 812.1 & 900.8 \\
\(\mathrm{~N}_{2}\) & 982.0 & 949.5 & 968.3 & 966.6 & 934.5 & 972.0 & 993.2 \\
\hline Mean & 865.8 & 821.2 & 822.9 & 836.6 & 815.4 & 834.2 & 860.4 \\
\hline \(\mathrm{~T}_{0}\) & 864.6 & 870.8 & 710.9 & & \\
\(\mathrm{~T}_{1}\) & 849.6 & 775. & 877.1 \\
\(\mathrm{~T}_{2}\) & 883.3 & 817.1 & 880.8 & & \\
\hline
\end{tabular}

Object:-To provide information on the effect of pianting time in conjunction with N manuring on the yield and quality of Tobacco.

\section*{1. BASAL CONDITIONS :}
(i) (a) NiI. (b) N.A. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) As per treatments. (iv) (a) \(3-4\) ploughings with country plough. (b) Seedlings transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\circ}\). (e) One. (v) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS :

Main-plot treatments :
4 dates of plaating: \(\mathrm{D}_{1}=23.10 .1948, \mathrm{D}_{2}=15.11 .1948, \mathrm{D}_{3}=5.12 .1948\) and \(\mathrm{D}_{4}=24.12 .1948\) (discarded). Sub-plot treatments :

All combinations of (1) and (2)
(1) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{2}=20 \mathrm{lb}\)./ac.
(2) 2 levels of F.Y.M. : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=3\) ton/ac.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 4 main-plots/replication, 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(22^{\prime} \times 38 \frac{t^{\prime}}{}\). (b) \(16.5^{\prime} \times 33^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Immedialety after the first planting there was rain and this caused a set back to first planting. Growth in the fourth planting was very poor and this was discarded. (ii) Nil. (iii) Plant height. (iv) (a) No. (b) -. (c) -. (v) (a) and (b) N.A. (vi) Nil. (vii) Only first 3 planting dates taken into account for analysis.
5. RESULTS :
(i) \(561 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(141.9 \mathrm{lb} . / \mathrm{ac}\).
(b) \(117.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only D effect is significant.
(iv) Av. yi:Id of cured leaf in lb./ac.
\begin{tabular}{l|ll|lll|} 
& \(N_{0}\) & \(N_{1}\) & Mean & \(F_{0}\) & \(F_{1}\) \\
\hline\(D_{1}\) & 584 & 604 & 594 & 571 & 618 \\
\(D_{2}\) & 638 & 620 & 629 & 677 & 581 \\
\(D_{3}\) & 445 & 474 & 459 & 471 & 448 \\
\hline\(M e a n\) & 556 & 566 & 561 & 573 & 549 \\
\hline\(F_{0}\) & 563 & 550 & & \\
\hline\(F_{1}\) & 548 & &
\end{tabular}
S.E. of difference of two
1. D marginal means \(\quad=50.20 \mathrm{lb} . / \mathrm{ac}\).
2. F or N marginal means
\(=33.86 \mathrm{lb} . / \mathrm{ac}\).
3. F or N means at the same level of D
\(=58.65 \mathrm{lb}\). ac .
4. D ineans at the same level of \(F\) or \(N \quad=65.01 \mathrm{lb} . / \mathrm{ac}\).
5. means in the body of \(\mathrm{F} \times \mathrm{N}\) table
\(=47,8 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Tobacco.
Ref :- C.T.R.I. 50(5).
Type :- 'IM'.
Object :-To study whether judicious application of artificial watering may help the crop together with ' \(N\) ' manuring and top ting.
1. BASAL CONDITIONS
(i) (a) Nil. (b) Tobacco. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 18.11.1950.
(iv) (a) 3-4 ploughings with country plough. (b) Seedlings transplanted. (c) 5760 plants/ac. (d) \(33^{\circ} \times 33^{\circ}\). (e) One. (v) NiI. (vi) N.A. (vii) Nil. (viii) Gap filling. (ix) N.A. (x) N.A.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of watering: \(I_{0}=\) No watering, \(I_{1}=\) One watering a month after planting and \(I_{2}=\) Two waterings second watering given 20 days after the 1st.
(2) 2 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=20 \mathrm{lb}\)./ac. of N .
(3) 2 levels of topping: \(\mathrm{T}_{0}=\) No topping and \(\mathrm{T}_{1}=\) Topping.
3. DESIGN :
(i) \(3 \times 2^{2}\) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 3. (iv) (a) \(22^{\prime} \times 49.5^{\prime}\). (b) \(16.5^{\prime} \times 44.0^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Green leaf yield and percentage of bright grades. (iv) (a) 1950-1951. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Data analysed as R.B.D.
5. RESULTS :
(i) \(480.5 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(61.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Effects of I and T are significant. Interaction is not significant.
(iv) Av. yield of cured leaf in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{I}_{0}\) & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & Mean & \(\mathrm{T}_{0}\) & \(\mathrm{T}_{1}\) \\
\hline \(\mathrm{N}_{0}\) & 431.3 & 504.5 & 507.3 & 481.0 & 438.5 & 523.5 \\
\hline \(\mathrm{N}_{1}\) & 424.1 & 483.3 & 532.2 & 479.9 & 431.9 & 527.9 \\
\hline Mean & 427.7 & 493.9 & 519.7 & 480.5 & 435.2 & 525.7 \\
\hline \(\mathrm{T}_{0}\) & 382.5 & 448.7 & 474.5 & & & \\
\hline \(\mathrm{T}_{1}\) & 473.0 & 539.1 & 565.0 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of N or T marginal mean & \(=14.45 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of I marginal mean & \(=17.70 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{I} \times \mathrm{N}\) or \(\mathrm{I} \times \mathrm{T}\) tables & \(=25.02 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{T}\) table & \(=20.43 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop:- Tobacco}

\section*{Ref :- C.T.RI. 51(7). Type :- 'M'.}

Otject :-To find out the effect of different levels of irrigation with and without N on the yield and quality of Cigarette Tobacco.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Paddy in kharif. (c) N.A. (ii) (a) Heavy black soil. (b) Refer item 11 on page 107. (iii) 17.11.1951. (iv) (a) 3 to 4 ploughings with country plough. (b) Seedlings transplanted. (c) 5760 piants'ac. (d) \(33^{\circ} \times 33^{\circ}\). (e) 1. (v) Nil. (vi) Cigarette Tobacco. (vii) As per treatments. (viii) Gap filling. Planet junior cultivator worked once. (ix) N.A. (x) 21.2.1952 to 7.4.1952.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)
(1) 4 levels of irrigations: \(I_{0}=\) No irrigation, \(I_{1}=\) One irrigation 30 days after transplanting, \(I_{2}=\) One irrigation 50 days after transplanting and \(I_{3}=\) Two irrigations-first as in \(I_{1}\) and second as in \(I_{2}\).
(2) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb}\)./ac. of \(N\).
3. DESIGN :
(i) \(4 \times 2\) Fact. in R.B.D. (ii) (a) 8 . (b) N.A. (iii) 3. (iv) (a) \(22^{\prime} \times 49.5^{\prime}\). (b) \(16.5^{\prime} \times 44^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) Nil. (iii) Green leaf yield, etc. (iv) (a) 1950-1951. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(679.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(99.84 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only N effect is significant.
(iv) Av. yield of cured leaf in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & \(\mathrm{I}_{0}\) & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(I_{3}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 590.8 & 612.9 & 639.3 & 643.7 & 621.7 \\
\hline \(\mathrm{N}_{1}\) & 683.4 & 736.3 & 762.8 & 762.8 & 736.3 \\
\hline Mean & 637.1 & 674.6 & 701.1 & 703.3 & 679.0 \\
\hline \multicolumn{3}{|l|}{S.E. of marginal mean of N levels} & & \multicolumn{2}{|r|}{\(=28.82 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline \multicolumn{3}{|l|}{S.E. of marginal mean of I levels} & & \multicolumn{2}{|r|}{\(=40.76 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline \multicolumn{4}{|l|}{S.E. of means in the body of table} & \multicolumn{2}{|r|}{\(=57.64 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

\title{
INDIAN AGRICULTURAL RESEARCH INSTITUTE \\ NEW DELHI
}
1. Name of the texperinental station.
2. Tehsil or Taluka.
3. District.
4. Address.
5. Year of establishment.
6. Distance from nearest railway station with the name of nearest railway station.
. Frogramme of research.
8. Normal cropping pattern.
9. Type of tract it represents.
10. General description of topography of the experimental area
11. Soil types and soil analysis.

Indian Agricultural Research Institute.

Delhi.
Delhi.

Director, Indian Agricultural Research Institute, New Delhi-12.

1905 at Pusa in Bibar State, shifted to its present site in Delhi in 1936.
About 8 Kilometers west of New Delhi Railway Station.

The pimary functions of the Institute are to affect improvements in crop production through maintenance of soil fertility, fertilzer use and crop husbandry etc., evolve improved strains of some of the major tood and industrial crops resistent to peṣts and diseases, conduct fundamental studies in breeding methodology, cytogentics and crop physiology and impart training at posti-graduate level in furthering research in the above subjects.
N.A.
N.A.
N.A.

Morphological features of the profiles \(D_{1} \& D_{2}\) based on the results of two profile samples from the farm belonging to the Division of Botany of the Institute.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Profile & Cepth & Clay\% & Silt\% & Fine sand\% & Course sand \% \\
\hline \multirow[t]{4}{*}{\(\mathrm{D}_{1}\)} & \(0.4 *\) & 13.28 & 7.38 & 54.98 & 25.85 \\
\hline & 4*-2'20 & 21.34 & 14.44 & 49.96 & 13.87 \\
\hline & 2' ' \(^{\circ} 3^{\prime} 5^{\circ}\) & 15.46 & 19.08 & 48.21 & 18.30 \\
\hline & \(3^{\prime} 5^{\prime \prime}-3^{\prime \prime} 7^{\prime \prime}\) & 14.00 & 14.94 & 53.23 & 19.70 \\
\hline \multirow[t]{4}{*}{\(\mathrm{D}_{2}\)} & \(0-1{ }^{\prime \prime}\) & 12.45 & 10.38 & 55.95 & 21.17 \\
\hline & \(4^{\prime \prime}-11^{\prime \prime}\) & 11.14 & 8.72 & 55.78 & 24.38 \\
\hline & \(1^{\prime} 1^{\prime \prime}-2^{\prime} 1^{\prime \prime}\) & 9.76 & 9.90 & 59.43 & 21.32 \\
\hline & \(2^{\circ} 1^{\circ}-4^{\prime} 3^{\circ}\) & 19.68 & 14.42 & 50.39 & 16.07 \\
\hline
\end{tabular}

\section*{Chemical Analysis}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Profile & Depth & \[
\begin{gathered}
\text { Total S.S. } \\
\%
\end{gathered}
\] & pH & \[
\underset{\%}{\mathrm{CaCO}_{3}}
\] & \begin{tabular}{l}
Org. \\
N \%
\end{tabular} & Organic carbon \% & \(\mathrm{C} / \mathrm{N}\) \\
\hline \multirow[t]{4}{*}{\(\mathrm{D}_{1}\)} & \(0-24^{\prime \prime}\) & . 017 & 8.40 & 1.78 & . 026 & . 20 & 8.0 \\
\hline & 4*-2' \(2^{\prime \prime}\) & . 023 & 8.51 & 1.34 & . 025 & . 14 & 5.6 \\
\hline & \(2^{\prime} 2^{\prime \prime}-3^{\prime} 5^{\prime \prime}\) & . 127 & 8.48 & 2.75 & . 018 & . 10 & 6.0 \\
\hline & \(3^{\prime} 5^{\prime \prime}-3^{\circ} 7^{\prime}\) & . 156 & 8.23 & 11.83 & . 015 & . 07 & 49 \\
\hline \multirow[t]{4}{*}{\(\mathrm{D}_{2}\)} & & & & & . 022 & . 17 & 8.0 \\
\hline & 4*- 1'1* & . 063 & 8.22 & 1.70 & . 017 & . 10 & 6.0 \\
\hline & \(1^{\prime} 1^{\prime \prime}-2^{\prime} 1^{\prime \prime}\) & . 075 & 7.99 & 2.00 & . 019 & . 69 & 4.8 \\
\hline & \(2^{\prime} 1^{\prime \prime}-4^{\prime} 3^{\prime \prime}\) & . 084 & 8.20 & 2.57 & . 027 & . 14 & 5.1 \\
\hline
\end{tabular}

Base Exchange capacity and exchangeable bases
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Profile} & \multirow[t]{2}{*}{Depth} & \multirow[t]{2}{*}{b.e.c. me/100 gms. of soil} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Exchangeable base \\
\(\mathrm{Me} / 100 \mathrm{gm}\). of soil
\end{tabular}} & \multirow[t]{2}{*}{\(\mathrm{Ca} / \mathrm{Na}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{Ca} / \mathrm{Na} \& \\
\mathrm{~K}
\end{gathered}
\]} \\
\hline & & & Na & & Ca & & \\
\hline \multirow[t]{4}{*}{\(\mathrm{D}_{1}\)} & 0-4" & 13.50 & . 49 & . 07 & 11.07 & 22.44 & \\
\hline & \(4^{\prime \prime}-2^{\prime \prime} 2^{\prime \prime}\) & 16.15 & . 72 & . 22 & 14.75 & 20.49 & 15.69 \\
\hline & 2' \(2^{\prime \prime}-3^{\prime \prime} 5^{\prime \prime}\) & 17.80 & . 74 & . 73 & 15.50 & 20.95 & 15.44 \\
\hline & \(3^{\prime} 5^{\prime \prime}-3^{\prime} 7^{\prime \prime}\) & 12.10 & . 65 & . 44 & 10.00 & 15.38 & 9.17 \\
\hline \multirow[t]{4}{*}{\(\mathrm{D}_{2}\)} & \(0-4 *\) & 12.75 & . 86 & . 42 & 9.25 & 10.75 & 7.22 \\
\hline & \(4^{\prime \prime}-1^{\prime \prime} 1^{\prime \prime}\) & 11.75 & . 37 & . 44 & 8.75 & 23.65 & 10.80 \\
\hline & \(1^{\prime} 1^{\prime \prime \prime} 1^{\prime \prime}-2^{\prime} 1^{\prime \prime} 3^{\prime \prime}\) & 19.65 & . 49 & . 36 & 8.25 & 10.81 & 9.70 \\
\hline & \(2^{\prime} 1^{\prime \prime}-4^{\prime} 3^{\prime \prime}\) & 15.45 & . 78 & . 40 & 14.88 & 19.07 & 12.61 \\
\hline
\end{tabular}

Fusion analysis of clay
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Profile & Depth & \[
\underset{\%}{\mathrm{SiO}_{2}}
\] & \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & \[
\frac{\mathrm{Mol}}{\mathrm{SiO}_{2}} \stackrel{\mathrm{P}}{2} \text { O}
\] & \[
\begin{aligned}
& \mathrm{r} \text { Ratio } \\
& \mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\(\mathrm{D}_{1}\)} & 0-4* & 50.09 & 9.69 & 29.79 & 2.35 & 2.92 \\
\hline & 4"-2' \(2^{\prime \prime}\) & 51.68 & 13.48 & 28.07 & 2.39 & 2.39 \\
\hline & \(2^{\prime} 2^{\prime \prime}-3^{\prime} 5^{\prime \prime}\) & 50.53 & 12.85 & 26.69 & 2.46 & 3.22 \\
\hline \multirow[t]{4}{*}{\(\mathrm{D}_{2}\)} & 0-4" & 50.75 & 15.09 & 29.66 & 2.19 & 2.91 \\
\hline & 4"-1'1" & 47.74 & 14.64 & 29.42 & 2.07 & 2.76 \\
\hline & \(1^{\prime} 1^{\prime \prime}-2^{\prime} 1^{\prime \prime}\) & 50.51 & 14.20 & 28.80 & 2.27 & 2.98 \\
\hline & \(2^{\prime} 1^{\prime \prime}-4^{\prime} 3^{\prime \prime}\) & 49.82 & 12.63 & 30.10 & 2.22 & 2.81 \\
\hline
\end{tabular}
12. Normal average rainfall in About \(60 \mathrm{c} . \mathrm{m}\). (aqnual). cm.
13. Irrigation facilities available;

Yes; Year N.A. year from which the facilities were made available.
14. Whether any proper drainage Yes. system exists.
15. Any other information regard- Latitude \(28.4^{\circ} \mathrm{N}\), Longitude \(77.10^{\circ} \mathrm{E}\). ing the farm.

\footnotetext{
Source. Tamhane et,al. Soil of Arid and Semi-Arid Zones of India (DelhiAjmer) : Jour. Ind. Soc., Soil Sci. Vol. I, No. 2.
}

Object :-To study the effect of different manures applied to Paddy nursery on the yield of paddy crop in unmanured plot.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 8.6.1951/13, 14.7.1951.
(iv) (a) Ploughing with country plough, dressing with spade and ploughing with country plough. (b) to (e)
N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hand weeding. (ix) \(11.53^{\circ}\). (x) \(29,30.10 .1951\).
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=100, \mathrm{~N}_{2}=200\) and \(\mathrm{N}_{3}=400 \mathrm{lb}\)./ac. of N .
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=80\) and \(\mathrm{P}_{2}=160 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

Sub-plot treatments :
3 sources of \(N: S_{1}=A / S, S_{2}=\) F.Y.M. and \(S_{3}=A / S+F . Y . M\). in equal proportions.
3. DESIGN:
(i) Split-plot. (ii) (a) 12 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(1 / 52 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory.' (ii) N.A. (iii) Grain yield. (iv) (a) 1948-1951. (b) N.A. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1182 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(474.2 \mathrm{lb} . / \mathrm{ac}\).
(b) \(252.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(S\) effect alone is significant and others are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{S}_{1}\) & \(S_{2}\) & \(\mathrm{S}_{3}\) \\
\hline \(\mathrm{P}_{0}\) & 977 & 1011 & 1318 & 1106 & 1103 & 1053 & 1170 & 1086 \\
\hline \(\mathrm{P}_{1}\) & 1301 & 1158 & 1240 & 1249 & 1237 & 1128 & 1284 & 1300 \\
\hline \(\mathrm{P}_{2}\) & 1301 & 1154 & 1128 & 1240 & 1206 & 1083 & 1258 & 1277 \\
\hline Mean & 1193 & 1103 & 1229 & 1198 & 1182 & 1088 & 1237 & 1221 \\
\hline \(S_{1}\) & 1150 & 1042 & 1167 & 994 & \multicolumn{4}{|c|}{\multirow[b]{3}{*}{;}} \\
\hline \(\mathrm{S}_{3}\) & 1210 & 1184 & 1245 & 1309 & & & & \\
\hline \(\mathrm{S}_{3}\) & 1219 & 1098 & 1275 & 1292 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. N marginal means
\(=111.8 \mathrm{lb} . / \mathrm{ac}\).
2. \(P\) marginal means
\(=96.8 \mathrm{lb} . / \mathrm{ac}\).
3. \(S\) marginal means
\(=51.6 \mathrm{lb} . / \mathrm{ac}\).
4. \(S\) means at the same level of \(N\)
\(=103.2 \mathrm{lb} . / \mathrm{ac}\).
5. \(N\) means at the same level of \(S\)
\(=140.0 \mathrm{lb}\). \(/ \mathrm{ac}\).
6. \(S\) means at the same level of \(P\)
\(=89.3 \mathrm{lb}\). \(/ \mathrm{ac}\).
7. \(P\) means at the same level of \(S\)
\(=121.2 \mathrm{lb} . / \mathrm{ac}\).
8. means of the body of \(N \times P\) table
\(=193.6 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Paddy (Kharif)
Ref :- I.A.R.I. 51 (44). Type :- 'M'.
Object :-To study the effect on soil fertility by growing Wheat after Paddy.
1. BASAL CONDITIONS:
(i) (a) Paddy-Wheat.
(b) Paddy.
(c) N.A.
(ii) (a) and (b) Refer item 11 on page 143.
(iii) 20, 21.7.1951.
(iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Weeding. (ix) N.A. (x) 31.10.1951.
2. TREATMENTS :
, All combinations (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=30\) and \(N_{2}=60 \mathrm{lb}\)./ac. of N .
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=60\) and \(\mathrm{P}_{2}=120 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(3) 2 levels of \(\mathrm{K}_{\mathbf{2}} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=80 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN:
(i) \(3^{2} \times 2\) Fact. in R.B.D. (ii) (a) 6 plots/block and 3 blocks/replication. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 22\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(vi) and (vii) Nil.
(ii) Nil. (iii) Grain yield. (iv) (a) \(1951-\) N.A.
(b) N.A.
(c) N.A.
(v) (a) and (b) No.
5. RESULTS :
(i) \(2034 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(674.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(N\) effect is highly significant. Interaction \(N \times P\) is highly significant, interaction \(N \times K\) and \(P \times K\) are significant while other effects are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{\mathbf{2}}\) & Mean & \(\mathbf{K}_{0}\) & \(\mathbf{K}_{1}{ }^{\text {- }}\) \\
\hline \(\mathrm{N}_{0}\) & 1507 & 2241 & 1966 & 1905 & 1822 & 1989 \\
\hline \(\mathrm{N}_{1}\) & 1933 & 1947 & 1980 & 1953 & 1924 & 1983 \\
\hline \(\mathrm{N}_{2}\) & 2260 & 2145 & 2326 & 2244 & 2229 & 2257 \\
\hline Mean & 1900 & 2111 & 2091 & 2034 & 1992 & 2076 \\
\hline \(\mathbf{K}_{\mathbf{0}}\) & 1856 & 2116 & 2003 & & & \\
\hline \(\mathrm{K}_{1}\) & 1944 & 2106 & 2179 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(N\) or \(P\) marginal mean & \(=137.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(K\) marginal mean & \(=112.4 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(N \times P\) table & \(=238.4 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of body of \(K \times P\) or \(K \times N\) table & \(=194.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\text { Crop :- Paddy (Kharif). } \quad \text { Ref :- I.A.R.I. 52(60). Type :- 'M'. }
\]

Object:-To determine the nutritional requirement of Pusa soils.
1. BASAL CONDITIONS:
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) and (b) N.A. (iii) 9 to 11.8.1952. (iv) (a) Ploughing with victory plough twice and desi plough twice. (b) to (e) N.A. (v) Nil. (vi) N.P. 130. (vii) to (x) N.A.
2. TREATMENTS :

11 sprayings of micro-nutrients : \(T_{0}=\) No spraying (control), \(T_{1}=\) No spraying, \(T_{2}=\) Zinc sulphate at 25 \(\mathrm{lb} . / \mathrm{ac} ., \mathrm{T}_{3}=\) Manganese sulphate at 20 lb ./ac., \(\mathrm{T}_{4}=\) Copper sulphate at 20 \(\mathrm{lb} . / \mathrm{ac} ., \mathrm{T}_{5}=\) Ferrous sulphate at \(100 \mathrm{lb} . / \mathrm{ac} ., \mathrm{T}_{6}=\) Magnesium sulphate at \(100 \mathrm{lb} . / \mathrm{ac} ., \mathrm{T}_{7}=\) Borax at 15 lb ./ac., \(\mathrm{T}_{8}=\) N.A., \(\mathrm{T}_{9}=\) All micro-nutrients and \(\mathrm{T}_{10}=\) All micro-nutrients.
For all treatments \(T_{1}\) to \(T_{9}, 40 \mathrm{lb}\)./ac. of \(\mathrm{N}, 60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and 30 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) have been applied. Sources for N, P and K are not available.

\section*{3. DESIGN :}
(i) R.B.D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(48.5^{\prime} \times 9^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Damaged by rats. (iii) Grain yield. (iv) (a) \(1952-\) N.A. (b) Yes. (c) Nil. (v) (a) and (b) No. (vi) Nil. (vii) The expt. was conducted at Central Botanical Sub-station Pusa (Bihar).

\section*{5. RESULTS}
(i) \(1091 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(190.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ccccc} 
Treatment & Av. yield & & Treatment & Av. yield \\
\(\mathbf{T}_{\mathbf{0}}\) & 854 & & \(\mathbf{T}_{\mathbf{6}}\) & 1104 \\
\(\mathbf{T}_{\mathbf{1}}\) & 1117 & & \(\mathbf{T}_{\mathbf{7}}\) & 1239 \\
\(\mathbf{T}_{\mathbf{2}}\) & 1198 & & \(\mathbf{T}_{8}\) & 1017 \\
\(\mathbf{T}_{\mathbf{3}}\) & 1320 & & \(\mathbf{T}_{9}\) & 1098 \\
\(\mathbf{T}_{\mathbf{4}}\) & 1158 & & \(\mathbf{T}_{10}\) & 828 \\
\(\mathbf{T}_{5}\) & 1069 & & \\
& S.E. \(/\) mean & & & \\
& & & &
\end{tabular}

Crop :- Paddy (Kharif). Ref :- I.A.R.I. 53(63). Type :- 'M'.
Object :-To determine the nutritional requirement of Pusa soils.
1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) and (b) N.A. (iii) 5,6.8.1953. (iv) (a) 1 ploughing with empire plough and 1 ploughing with desi plough. (b) to (e) N.A. (v) N.A. (vi) Paddy N.P. 130. (vii) Irrigated. (viii) 2 weedings. (ix) \(37.32^{\prime \prime}\). (x) \(14,15.12 .1953\).
2. TREATMENTS :

11 sprayings of micro-nutrients: \(T_{0}=\) No spraying (control), \(T_{1}=\) No spraying, \(T_{2}=\) Zinc sulphate at 25 lb ./ac., \(\mathrm{T}_{3}=\) Manganese sulphate at 20 lb ./ac., \(\mathrm{T}_{4}=\) Copper sulphate at 20 lb ./ac., \(\mathrm{T}_{5}=\) Ferrous sulphate at 100 lb ./ac., \(\mathrm{T}_{6}=\) Magnesium sulphate at 100 \(\mathrm{lb} . / \mathrm{ac} ., \mathrm{T}_{7}=\) Borax at \(15 \mathrm{lb} . / \mathrm{ac} ., \mathrm{T}_{8}=\mathrm{N} . A ., \mathrm{T}_{9}=\) All micro-nutrients and \(\mathrm{T}_{10}=\) All micro-nutrients.
For all treatments \(\mathrm{T}_{1}\) to \(\mathrm{T}_{9}, 40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, 60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and 30 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) have been applied. Sources for \(\mathrm{N}, \mathrm{P}\) and K are not available.
3. DESIGN:
(i) R.B.D. (ii) (a) 11 . (b) N.A. (iii) 4. (iv) (a) \(48.5^{\circ} \times 9^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil.
(iii) Grain yield. (iv) (a) 1952-1954.
(b) Yes.
(c) Nil.
(v) (a) and
(b) No.
(vi) Nil. (vii) This experiment was conducted at the Central Botanical Sub-station, Pusa (Bihar).
5. RESULTS :
(i) \(2489 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(600.6 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).


Crop :- Paddy. Ref:- I.A.R.I. 51(42). Type :- ‘C'.
Object:-To find out the best method of growing Paddy.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) and (b) N.A. (iii) 22.7.1951. (iv) (a) Ploughing twice with desi plough. (b) Broadcasting. (c) \(40 \mathrm{sr} . / \mathrm{ac}\). (d) and (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Twice weeding and thinning. (ix) \(13.51^{\circ}\). (x) 4 to 7.11 .1951 .

\section*{2. TREATMENTS:}

3 cultural treatments : \(T_{1}=\) Broadcasting at \(40 \mathrm{sr} . / \mathrm{ac} ., \mathrm{T}_{2}=\) Transplanting at \(10 \mathrm{sr} . / \mathrm{ac}\). and \(\mathrm{T}_{3}=\) Drilling at 20 sr ./ac.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3.
(b) N.A
(iii) \(3 . \quad\) (iv)
(iv) (a) \(48^{\prime} \times 22.67^{\prime}\)
(b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) Nil. (v) (a) and (b) No. (vi) Nil. (vii) The experiment was conducted at the Karnal Sub-Station, Karnal (Punjab).

\section*{5. RESULTS:}
(i) \(1407 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(548.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathrm{T}_{1}\) & 2301 \\
\(\mathrm{~T}_{\mathbf{2}}\) & 587 \\
\(\mathrm{~T}_{3}\) & 1334 \\
S.E./mean & \(=223.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 50(14). Type :- 'M'.
Object :-To study the residual effect of fertilizers applied to maize in Kharif on yield of Wheat.
1. BASAL CONDITIONS:
(i) (a) Maize-Wheat. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page.143. (iii) N.A. (iv) (a) 2 discings with tractor. (b) to (e) N.A. (v) N.A. (vi) N.P. 710. (vii) Irrigated. (viii) Nil. (ix) and (x) N.A.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=40\) and \(\mathrm{N}_{2}=80 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=60 \mathrm{lb}\)./ac.

Manures applied to previous crop Maize in kharif 1950.
3. DESIGN :
(i) \(3 \times 3 \times 2\) Fact. confounded. (ii) (a) 6 plots/block and 3 blocks/replication. (b) N.A. (iii) 2 . (iv) (a) \(42^{\prime} \times 22^{\prime}\). (b) \(37^{\prime} \times 19^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) Kharif 1949-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) \(N \times P\) two way table is N.A.
s. RESULTS :
(i) \(2296 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(453.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Efiects of \(\mathrm{N}, \mathrm{P}, \mathrm{N} \times \mathrm{K}\) and \(\mathrm{P} \times \mathrm{K}\) are significant.
(iv) Av, yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathbf{P}_{2}\) \\
\hline \(\mathrm{K}_{0}{ }^{-}\) & 1884 & 2455 & 2786 & 2375 & 1990 & 2373 & 2763 \\
\hline \(\mathrm{K}_{1}\) & 1818 & 2119 & 2715 & 2217 & 1849 & 2410 & 2391 \\
\hline Mean & 1851 & 2287 & 2751 & 2296 & 1920 & 2392 & 2577 \\
\hline \multicolumn{5}{|c|}{S.E. of N or P marginal mean} & \multicolumn{3}{|c|}{\(=130.9 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline \multicolumn{5}{|c|}{S.E. of K marginal mean} & \multicolumn{3}{|c|}{\(=106.9 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline \multicolumn{5}{|c|}{S.E. of body of \(\mathrm{N} \times \mathrm{K}\) or \(\mathrm{K} \times \mathrm{P}\) table} & \multicolumn{3}{|c|}{\(=185.1 \mathrm{lb} / \mathrm{ac}\).} \\
\hline
\end{tabular}

Crop :- Wheat (Rabi). \(\quad\) Ref :~I.A.R.I. 51(11). Type :- 'M'.
Object:-To study the residual effect of fertilizers applied to maize in Kharif on yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 1.12.1951. (iv) (a) Ploughing twice with desi plough on 30.11.1951. (b) to (e) N.A. (v) N.A. (vi) N.P. 710. (vii) Irrigated. (viii) Nil. (ix) N.A. (x) 17.4.1952.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{\mathbf{0}}=\mathbf{0}, \mathrm{N}_{\mathbf{1}}=40\) and \(\mathrm{N}_{\mathbf{2}}=80 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\), and \(\mathrm{K}_{1}=60 \mathrm{lb}\)./ac.

Manures applied to the previous crop maize.
3. DESIGN:
(i) \(3 \times 3 \times 2\) Fact. confounded. (ii) (a) 6 plots/block and 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(42^{\prime} \times 22^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL:
(i) The crop had a luxuriant growth in N treated plots which lodged badly after the hail storm on 1.3.1952. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Heavy hail storm on 1.3.1952 and a light hail storm on 15.3.1952. (vii) Nil.
5. RESULTS :
(i) \(5.75 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(52.16 \mathrm{lb} \cdot / \mathrm{ac}\).
(iii) \(\mathbf{N}\) effects is highly significant. \(\mathbf{P}\) effect and interaction \(\mathbf{N} \times \mathbf{P}\) and \(\mathrm{N} \times \mathrm{K}\) are significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & Mean & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{8}\) \\
\hline \(\mathrm{N}_{0}\) & 370 & 413 & 391 & 357 & 420 & 397 \\
\hline \(\mathrm{N}_{1}\) & 603 & 581 & 591 & 579 & 587 & 611 \\
\hline \(\mathbf{N}_{\mathbf{1}}\) & 750 & 735 & 742 & 674 & 689 & 864 \\
\hline Mean & 574 & 576 & 575 & 537 & 565 & 624 \\
\hline \(\mathrm{P}_{0}\) & 539 & 535 & & & & \\
\hline \(\mathrm{P}_{1}\) & 571 & 560 & & & & \\
\hline \(\mathrm{P}_{2}\) & 614 & 634 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(N\) or \(P\) marginal mean & \(=15.06 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(K\) marginal mean & \(=12.29 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{P}\) table & \(=26.08 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{K}\) or \(\mathrm{P} \times \mathrm{K}\) table & \(=21.30 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I.52(22). Type :- 'M'.
Object :-To study the residual effect of fertilizers applied to maize in Kharif on yield of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize-Wheat. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 3.12.1952. (iv) (a) Ploughing with victory plough on 1.12 .1952 and ploughing accross with desi plough en 2.12.1952. (b) to (e) N.A. (vi) N.A. (vi) N.P-710. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 12.4.1953.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=40\) and \(\mathrm{N}_{2}=80 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=60 \mathrm{lb}\)./ac.

Manures applied to the provious crop maize.
3. DESIGN :
(i) \(3 \times 3 \times 2\) Fact. confounded. (ii) (a) 6 plots/block and 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(42^{\prime} \times 22^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1949-1953\). (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Prevalence of hot weather in February and March hastened maturity abruptly with the result that grain did not develop fully. (vii) Nil.
5. RESULTS :
(i) \(1502 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(114.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) N and P effects are highly significant and interaction \(\mathrm{N} \times \mathrm{P}\) is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & Mean & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \(P_{3}\) \\
\hline \(N_{0}\) & 991 & 1094 & 1042 & 960 & 1006 & 1161 \\
\hline \(\mathrm{N}_{1}\) & 1517 & 1548 & 1533 & 1363 & 1688 & 1548 \\
\hline \(\mathrm{N}_{2}\) & 1972 & 1889 & 1939 & 1920 & 1734 & 2137 \\
\hline Mean & 1493 & 1510 & 1502 & 1414 & 1478 & 1615 \\
\hline \(\mathrm{P}_{0}\) & 1383 & 1445 & & & & \\
\hline \(\mathrm{P}_{1}\) & 1404 & 1548 & & & & \\
\hline \(\mathrm{P}_{2}\) & 1693 & 1538 & & & & \\
\hline
\end{tabular}
S.E. of N or P marginal mean
S.E. of \(K\) marginal mean
S.E. of body of \(N \times K\) or \(P \times K\) table
S.E. of body of \(N \times P\) table
\(=33.03 \mathrm{lb} . / \mathrm{ac}\).
\(=26.96 \mathrm{lb} . \mathrm{ac}\).
\(=46.71 \mathrm{lb} . / \mathrm{ac}\).
\(=57.20 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Wheat (Rabi).
Ref :- I.A.R.I. 53(20). Type :- 'M'.
Object :-To study the residual effect of fertilizers applied to maize in Kharif on yield of Wheat.
1. BASAL CONDITIONS:
. (i) (a) Maize-Wheat. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on pagel43. (iii) 30.11.1953. (iv) (a) 1 ploughing with victory plough and 4 with desi plough. (b) to (e) N.A. (v) N.A. (vi) N.P. 710. (vii) Irrigated. (viii) Bakharing on 6.1.1954 and weedings on 9.1.1954 and 11.1 1954. (ix) N.A. (x) 16.4.1954

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=40\) and \(\mathrm{N}_{2}=80 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=60 \mathrm{lb}\)./ac.

Manures applied to the previous crop maize.
3. DESIGN:
(i) \(3 \times 3 \times 2\) Fact. confounded. (ii) (a) 6 plots/block and 3 blocks/replication. (b) N.A. (iii) 2 . (iv) (a) \(42^{\prime} \times 22^{\prime}\). (b) \(37^{\circ} \times 19^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 (kharif)-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1138 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(248.5 \mathrm{lb} / \mathrm{ac}\).
(iii) N effect is highly significant, \(\mathbf{P}\) effect is significant and others are not significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & Mean & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 541 & 682 & 611 & 645 & 631 & 558 \\
\hline \(\mathrm{N}_{1}\) & 1159 & 1166 & 1163 & 1071 & 1224 & 1193 \\
\hline \(\mathrm{N}_{2}\) & 1645 & 1637 & 1641 & 1673 & 1049 & 2200 \\
\hline Mean & 1115 & 1162 & 1138 & 1130 & 968 & 1317 \\
\hline & 1090 & 1170 & \multicolumn{4}{|l|}{\multirow{3}{*}{-}} \\
\hline \(\mathrm{P}_{1}\) & 906 & 1030 & & & & \\
\hline \(\mathrm{P}_{2}\) & 1349 & 1284 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(N\) or \(P\) marginal mean & \(=71.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(K\) marginal mean & \(=58.6 \mathrm{bb} . / \mathrm{ac}\). \\
S.E. of body of \(N \times K\) or \(P \times K\) table & \(=101.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(N \times P\) table & \(=124.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Wheat (Rabi). Ref:- I.A.R.I. 50(13). Type:- 'M'
Object :-To find out the relative efficiency of different forms of N on Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 10.11 .1950 . (iv) (a) Tractor ploughings on 8.6.1950, grubbing on 29.8.1950 and discing on 3, 6.10.1950. (b) Sown by kera. ( \(: 70 \mathrm{lb} / \mathrm{ac}\). (d) and (e) N.A. (v) N.A. (vi) N.P.52. (vii) Irrigated. (viii) Weeding on 8.2.1951. (ix) 2.8'. (x) 17.4.1951.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)+a control.
(1) 4 sources of \(N: S_{1}=A / S, S_{2}=A / N, S_{3}=\) Sodium nitrate and \(S_{4}=\) Urea.
(2) 2 levels of \(\mathrm{N}: \mathrm{N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.

Manures applied on 2.1.1951 about 52 days after sowing.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9 .
(b) N.A.
(iii) 8.
(iv) (a) \(43^{\prime} \times 17^{\prime}\)
(b) \(41^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. Lodging on 25.3.1951 due to rains. (ii) Loose-smut, brown-rust appeared after lodging in the 1st week of March 1951. (iii) Grain yield. (iv) (a) 1949-1950. (b) No. (c) N.A. (v) (a) and (b) No. (vi) October 1950-February 1951 practically dry. Heavy rains and high velocity of wind on 25, 27.3.1951 lodged the crop. After few days of sun-shine the crop came up a little, specially in no manure plots. Practically no loss. (vii) Nil.
5. RESULTS :
(i) \(1788 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(227.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) Control \(v s\) other and N effects are highly significant. S is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\[
\text { Control }=1385 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{c|cccc} 
& \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & \(S_{4}\) \\
\hline \(\mathbf{N}_{1}\) & 1687 & 1772 & 1828 & 1625 \\
\hline 1851 & 2052 & 2032 & 1864 & 1728 \\
\hline Mean & 1769 & 1912 & 1930 & 1745
\end{tabular}
S.E. of marginal mean of \(S\)
\(=56.77 \mathrm{lb} . / \mathrm{ac}\).
S.E. of marginal mean of N
\(=40.15 \mathrm{lb} / \mathrm{ac}\).
S.E. of body of table
\(=80.30 \mathrm{lb} . / \mathrm{ac}\).
\[
\text { Crop :- Wheat (Rabi). Ref :- I.A.R.I. } 51 \text { (13). Type :m ‘M'. }
\]

Object :-To find out the relative efficiency of different forms of N on Wheat.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 17.11.1951. (iv) (a) Tractor ploughings and tractor grubbing twice on 16.11 .1951 after soaking doze. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 5, 11.4,1952.
2. TREATMENTS :

All combinations of (1) and (2)+2 extra treatments
(1) 4 sources of \(N: S_{1}=A / S, S_{2}=A / N, S_{3}=\) Sodium Nitrate and \(S_{4}=\) Urea.
(2) 2 levels of \(\mathrm{N}: \mathrm{N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.

2 extra treatments : \(\mathrm{T}_{0}=\) Control and \(\mathrm{T}_{1}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Selecto-surer \(+40 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. applied to all combinations of (1) and (2).
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 8. (iv) (a) \(1 / 60\) ac. (b) \(1 / 70\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) 1949-1951. (b) No. (c) N.A. (v) (a) and (b) No. (vi) The crop was heavily damaged, ear heads broken and the crop badly lodged due to hail storm on 1.3.1952. (vii) Nil.
5. RESULTS :
(i) \(120.8 \mathrm{lb} . / \mathrm{ac}\).
(ii) 24.74 lb ./ac.
(iii) Only control \(v s\) treated differ higbly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\[
\mathrm{T}_{0}=95.9 \mathrm{lb} . / \mathrm{ac} . \text { and } \mathrm{T}_{1}=77.0 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{l|llll|l} 
& \(\mathrm{S}_{\mathbf{1}}\) & \(\mathrm{S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 132.3 & 121.8 & 121.1 & 131.6 & 126.7 \\
\(\mathrm{~N}_{2}\) & 126.0 & 135.8 & 139.3 & 126.7 & 131.9 \\
\hline Mean & 129.2 & 123.8 & 130.2 & 129.2 & 129.3
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(S\) marginal mean & \(=6.18 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of N marginal mean & \(=4.37 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table or selective treatments & \(=8.74 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 52(10). Type :- 'M'.
Object:-To study the effect of organic and inorganic manures on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Wheat-Maize. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 14.11.1952 (iv) (a) 1 double discing, 1 single grubbing and 1 double grubbing. (b) to (e) N.A. (v) Nil. (vi) N.P. 760. (vii) Irrigated. (viii) Weeding and hand hoeing. (ix) N.A. (x) 5, 8.4.1953.

\section*{2. TREATMENTS :}
1. Control.
2. A/S at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. \(A / S\) at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Potash at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
4. F.Y.M. at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Potash at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
5. Castor cake at 60 lb ./ac. of \(\mathrm{N}+\) Super at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Potash at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(38^{\prime} \times 29^{\prime}\). (b) \(36^{\prime} \times 27^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1952-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1276 \mathrm{lb} / \mathrm{ac}\).
(ii) \(290.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield
1. . 829
2. 1884
3. 1795
4. . 848
5.1026
S.E./mean \(=118.6 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Wheat (Rabi).}

Ref: I.A.R.I. 53(15).
Type:- ' \(M\) '.
Object :-To study the effect of inorganic and organic manures on the yield of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) Wheat-Maize. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 11.11.1953. (iv) (a) Dry victory plough given on 12.12 .1953 and desi plough on 9 and 10.11.1953. (b) to (c) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) 1 bakharing and 1 weeding. (ix) N.A. (x) 20.4.1954.

\section*{2. TREATMENTS :}
1. Control.
2. \(\mathrm{A} / \mathrm{S}\) at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. \(\mathrm{A} / \mathrm{S}\) at \(60 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Potash at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
4. F.Y.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Potash at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
5. Castor cake at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Potash at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) R.B.D.
(ii) (a) 5.
(b) N.A.
(iii) 6. (iv) (a) \(38^{\prime} \times 29^{\prime}\).
(b) \(36^{\prime} \times 27^{\prime}\).
(v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952 to 1956 (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1252 \mathrm{lb} \cdot / \mathrm{ac}\).
(ii) \(314.3 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1085 \\
2. & 1430 \\
3. & 1256 \\
4. & 1061 \\
5. & 1385 \\
S.E./mean & \(=128.3 \mathrm{ib} . / \mathrm{ac}\).
\end{tabular}

Crop:- Wheat (Rabi). Ref:- I.A.R.I. 51(26). Type :- 'M'.
Object :-To study the response of fertilizers and their residual effect with and without direct manuring of cereal.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 12.11 .1951 . (iv) (a) 1 ploughing with victory plough and 2 with desi plough. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 6.4.1952.
2. TREATMENTS :
1. No manure.
2. \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb}\)./ac. of N .
4. \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
5. \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
6. No manure (Fallow in previous season).

The treatments were applied to previous legumes. This year, in plots with treatment \(1,40 \mathrm{lb} \cdot / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) was applied to wheat.
3. DESIGN :
(i) L. Sq. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) \(84^{\prime} \times 26^{\prime}\). (b) \(78^{\prime} \times 20^{\prime}\). (v) \(3^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) Slow in the beginning but later on good. (ii) Loose smut. Smutted plants rouged. (iii) Grain yield. (iv) (a) \(1948-\mathrm{N} . \mathrm{A}\).
(b) No.
(c) N.A.
(v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1261 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(310.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1650 \\
2. & 1065 \\
3. & 1003 \\
4. & 1606 \\
5. & 1249 \\
6. & 991 \\
S.E./mean & \(=126.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 50(53). Type :- 'M'.
Object :-To study the effect of the time of turning in the sannhemp crop with and without fertilizers on the yield of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 2.11.1950. (iv) (a) 1 glubing, 2 ploughings and 2 discing. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 13.4.1951 to 16.4.1951.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 times of ploughing in of sannhemp : \(M_{1}=\) After 4 weeks of sowing, \(M_{2}=\) After 6 weeks of sowing, \(\mathbf{M}_{3}=\) After 8 weeks of sowing and \(\mathbf{M}_{\mathbf{4}}=\) After 10 weeks of sowing.
Sub-plot treatments :
4 applications of manures to sannhemp : \(\mathrm{S}_{1}=\) Super at 80 lb ./ac. of \(\mathrm{P}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}\) at sowing sannhemp, \(\mathrm{S}_{\mathbf{2}}=\mathrm{A} / \mathrm{S}\) at 15 lb ./ac. of N at burying of sannhemp, \(\mathrm{S}_{3}=\mathrm{S}_{1}+\mathrm{S}_{2}\) and \(S_{4}=\) No fertilizers.
Super applied on 14.7.1950, A/S on 11.8.1950, 31.8.1950, 12.9.1950, 25, 26.9.1950. Sannhemp sown on 14.7.1950 while ploughed in \(M_{1}\) on 11.8.1950, in \(M_{2}\) on 31.8.1950, in \(M_{3}\) on 12.9.1950 and in \(\mathbf{M}_{4}\) on 25, 26.9.1950.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(35^{\prime} \times 20^{\prime}\). (b) \(32^{\prime} \times 17^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Germination was uniform. Growth in general was well. (ii) Attack of white ants was observed in 2nd and 3rd week of December 1950. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1590 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(314.3 \mathrm{lb} / \mathrm{ac}\).
(b) \(162.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) M effects and interaction \(\mathrm{M} \times \mathrm{S}\) are highly significant while S effeets is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{2}\) & \(\mathbf{M}_{3}\) & \(\mathrm{Ma}_{1}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 1701 & 1431 & 2092 & 1651 & 1719 \\
\hline \(S_{2}\) & 1611 & 1441 & 1741 & 1341 & 1533 \\
\hline \(S_{3}\) & 1521 & 1501 & 1962 & 1521 & 1626 \\
\hline \(S_{4}\) & 1391 & 1361 & 1902 & 1231 & 1484 \\
\hline Mean & 1556 & 1433 & 1924 & 1448 & 1590 \\
\hline
\end{tabular}
S.E. of difference of two
1. M marginal means
\(=111.1 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means
\(=57.6 \mathrm{lb} . / \mathrm{ac}\).
3. S means at the same level of M
\(=115.2 \mathrm{lb} . / \mathrm{ac}\).
4. \(\mathbf{M}\) means at the same level of \(\mathbf{S}\)
\(=149.3 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 51(54). Type :- 'M'.
Object:-To study the effect of time of turning in a green manuring crop (sannhemp) with and without fertilizers on the yield of Wheat.
1. BASAL CONDITIONS:
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 13.11.1951. (iv) (a) Tractor ploughing and tractor discing to sannhemp and country ploughing and tractor discing twice to wheat. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 7, 8.4.1952.

\section*{2. TREATMENTS:}

Main-plot treatments :
4 times of ploughing of Sannhemp : \(\mathbf{M}_{1}=\) Sannhemp buried after 4 weeks on 9.8.1051, \(\mathrm{M}_{2}=\) Sannhemp buried after 6 weeks on 1.9.1951, \(\mathrm{M}_{3}=\) Sannhemp buried after 8 weeks on 14.9.1951, \(\mathrm{M}_{4}=\) Sannhemp buried after 10 weeks on 29.9.1951 and 1.10.1951.
A/S applied on each burying.

\section*{Sub-plot treatments:}

4 applications of menures to sannhemp : \(\mathrm{S}_{1}=\) Super at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) at sowing sannhemp, \(\mathrm{S}_{2}=\mathrm{A} / \mathrm{S}\) at 15 lb ./ac. of \(N\) at burying sannhemp, \(\quad S_{3}=S_{1}+S_{2}\) and \(S_{4}=\) No manure.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(1 / 60 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Germination normal. The growth due to various treatments was distinct. Treatments \(\mathrm{M}_{3}\) and \(\mathrm{M}_{4}\) showed good growth in comparison to \(\mathrm{M}_{1}\) and \(\mathrm{M}_{2}\). Crop lodged completely due to hail storm on 1.3.1952.
(ii) Aphid attack
(iii) Grain yield
(iv) (a) 1950-1953.
(b) No. (c) N.A. (v)
(a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1190 \quad \mathrm{lb} . / \mathrm{ac}\),
(ii) (a) \(195.8 \mathrm{lb} . / \mathrm{ac}\).
(b) \(241.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(M\) and \(S\) effects are bighly significant. Interaction \(M \times S\) is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathbf{M}\) & \(\mathrm{M}_{4}\) & Mean \\
\hline \(S_{1}\) & 1301 & 990 & 1650 & 1320 & 1315 \\
\hline \(\mathrm{S}_{2}\) & 1063 & 825 & 1173 & 1136 & 1049 \\
\hline \(\mathrm{S}_{3}\) & 1338 & 1136 & 1888 & 1448 & 1452 \\
\hline \(S_{4}\) & 990 & 788 & 1063 & 936 & 944 \\
\hline Mean & 1173 & 935 & 1443 & 1210 & 190 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(M\) marginal means & \(=69.23 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=85.54 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(M\) & \\
4. \(M\) means at the same level of \(S\) &
\end{tabular}

Object:-To study the effect of the time of turning in of the green manuring crop (Sannhemp) with and without fertilizers.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 1.11.1952. (iv) (a) Tractor discing twice and country ploughing twice. (b) Sown with drill. (c) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Weeding on 23.1.1953 and 2, 3.2.1953. (ix) N.A. (x) 29, 30.3.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 times of ploughing in of sannhemp: \(\quad \mathbf{M}_{1}=\) Sannhemp buriedafter 4 weeks, \(\mathbf{M}_{\mathbf{2}}=\) Sannhemp buriep after 6 weeks and \(\mathrm{M}_{3}=\) Sannhemp buried after 8 weeks and \(\mathrm{M}_{4}=\) Sannhemp buried after 10 weeks
Super broadcasted on 2.7.1952.
Sub-plot treatments :
4 applications of mannures to sannhemp. \(\mathrm{S}_{1}=\) Super \(80 \mathrm{lb} . / \mathrm{ac} . \mathrm{P}_{2} \mathrm{O}_{5}\) at sowing of sannhemp, \(\mathrm{S}_{2}=\mathrm{A} / \mathrm{S}\) at \(15 \mathrm{lb} . / \mathrm{ac} . \mathrm{N}\) at burying in of sannhemp, \(\mathrm{S}_{3}=\mathrm{S}_{1}+\mathrm{S}_{2}\) and \(\mathrm{S}_{4}=\) No manure.
3. DESIGN:
(i) Split-plot.
(ii) (a) 4 Imain-plots/block and 4 sub-plots/main-plot
(b) N.A. (iii)
4. (iv) (a)
(a) N.A.
(b) \(1 / 60\) acre.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Germination normal and growth satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) Kharif 1950N.A. (b) No. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1938 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(333.3 \mathrm{lb} . / \mathrm{ac}\).
(b) \(337.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yiel」 of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|cccc|c} 
& \(\mathbf{M}_{1}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & \(\mathbf{M e a n}\) \\
\hline \(\mathrm{S}_{1}\) & 1493 & 1980 & 2419 & 2053 & 1986 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 1907 & 2016 & 2181 & 2043 & 2037 \\
\(\mathrm{~S}_{3}\) & 1750 & 2107 & 2401 & 1888 & 2036 \\
\(\mathrm{~S}_{\mathbf{4}}\) & 1686 & 1470 & 1870 & 1750 & 1694 \\
\hline Mean & 1709 & 1893 & 2218 & 1933 & 1938
\end{tabular}
S.E. of difference of two
1. \(M\) marginal means
\(=117.8 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means
\(=119.3 \mathrm{lb} . / \mathrm{ac}\).
3. \(S\) means at the same level of \(M\)
\(=238.6 \mathrm{lb} . / \mathrm{ac}\).
4. M means at the same level of \(S\)
\(=237.8 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Wheat (Rabi).}
Ref :- I.A.R.I. 53(69)

Type:- ' \(M\) '.
Object: - To study the effect of turning in a green manuring crop (sannhemp) with and without fertilizer.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 13.11.1953. (iv) (a)
Ploughing with desi plough and tractor discing. (b) Wheat sown with M. drill.
(c) to (e) N.A. (v) N.A.
(vi) N.A. (vii) Irrigated. (viii) Weeding. (ix) N.A. (x) 13.4 .1954. (vi) N.A. (vii) Irrigated. (viii) Weeding. (ix) N.A. (x) 13.4.1954.

\section*{2. TREATMENTS:}

\section*{Main-plot treatments :}

4 times of ploughing in of sannhemp: \(M_{1}=\) Sannhemp buried after 4 weeks on 3.8.1953, \(M_{2}=\) Sanohemp buried after 6 weeks on 17.8.1953, \(\mathrm{M}_{3}=\) Sannhemp buried after 8 weeks on 31.8 .1953 and \(M_{4}=\) Sannhemp buried after 10 weeks on 14.9.1953.
Sub-plot treatments:
4 applications of manures to sannhemp : \(\mathrm{S}_{1}=\) Super at \(80 \mathrm{lb} . \mathrm{P}_{2} \mathrm{O}_{5}\) at sowing sannhemp, \(\mathrm{S}_{2}=\mathrm{A} / \mathrm{S}\) at 15 lb . of \(N\) at burying in of sannhemp, \(S_{3}=S_{1}+S_{2}\) and \(S_{4}=\) No manure.
A/S applied on each burying of sannhemp and Super applied on 6.7.1953.
3. DESIGN:
(i) Split-plot.
(ii) (a) 4 main-plots/block and 4 sub-plots/main-plot.
(b) N.A. (iii) 4 . (iv) (a) N.A.
(b) \(1 / 60\) acre.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Germination satisfactory. Crop growth normal. (ii) N.A. (iii) Grain yield. (iv) (a) 1950-N.A. (b) No. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(1519 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(198.3 \mathrm{lb} . / \mathrm{ac}\).
(b) \(120.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) M and S effects are highly significant while interaction \(\mathrm{M} \times \mathrm{S}\) is not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{r|cccc|l} 
& \(\mathbf{M}_{\mathbf{1}}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & \(\mathbf{M e a n}\) \\
\hline \(\mathbf{S}_{\mathbf{1}}\) & 1542 & 1707 & 1898 & 1488 & 1659 \\
\(\mathbf{S}_{\mathbf{2}}\) & 1285 & 1489 & 1590 & 1238 & 1400 \\
\(\mathbf{S}_{\mathbf{3}}\) & 1567 & 1664 & 1860 & 1491 & 1645 \\
\(\mathrm{~S}_{\mathbf{4}}\) & 1240 & 1266 & 1637 & 1343 & 1371 \\
\hline Mean & 1409 & 1531 & 1746 & 1390 & 1519
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(M\) marginal means & \(=70.12 \mathrm{lb} \cdot / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=42.75 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(M\) & \(=85.50 \mathrm{lb} . / \mathrm{ac}\). \\
4. M means at the same level of \(S\) & \(=101.96 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop:- Wheat (Rabi).}

Ref:- I.A.R.I. 48(2).
Type :- \({ }^{\prime} \mathbf{M}\) '.
Object :-To compare the efficiency of N from different sources along with two green manures in FallowWheat rotation.

\section*{1. BASAL CONDITIONS :}
(i) (a) No, (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page \(143 . \quad\) (iii) N.A. (iv) (a) to (e) N.A. (v) to (x) N.A.
2. TREATMENTS:
1. G.M. sannhemp (in situ). 5. F.Y.M. at \(40 \mathrm{lb} . / \mathrm{ac}\). of N.
2. G.M. cowpeas (in situ).
6. Leaf compost at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
3. Rape cake at 40 lb ./ac. of N .
7. \(\mathrm{A} / \mathrm{S}\) at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
4. Castor cake at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
8. Control.
3. DESIGN :
(i) R.B.D.
(ii) (a) 8.
(b) N.A.
(iii) 8. (iv)
(iv) (a) and (b) N.A.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) aud (ii) N.A. (iii) Grain yield. (iv) (a) \(1944-1949\). (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1808 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(232.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment \({ }^{-}\) & Av. yield & Treatment & Av. yield \\
1. & 2000 & 5. & 1539 \\
2. & 1868 & 6. & 1901 \\
3. & 1868 & 7. & 1909 \\
4. & 1662 & 8. & 1720 \\
& S.E./mean & \(=82.36 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 51(53). Type :- 'M'.
Object :-To study the effect of low doses of \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Wheat.
1. BASAL CONDITIONS :
(i) (a) Cowpea-Wheat. (b)
(a) to (e) N.A. (v) to (x) N.A.
2. TREATMENTS :
1. F.Y.M. at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). 8. Super + F.Y.M. to give 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(1: 3\) ratio.
2. F.Y.M. at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. F.Y.M. at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. Super at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. Super at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super +F.Y.M. to give 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(1: 7\) ratio.
10. Super+F.Y.M. to give 32 lb ./ac. of \(\mathrm{P}_{8} \mathrm{O}_{5}\) in \(3: 1\) ratio.
7. Super+F.Y.M. to give 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(1: 1\) ratio.
These treatments were applied to the first three crops of berseem.
3. DESIGN:
(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) to (v) N.A. (vi) Yes.
4. GENERAL:
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1941-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) 1307 lb /ac.
(ii) N.A.
(iii) N.A.
(iv) Av yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1053 & 8. & 1226 \\
2. & 1325 & 9. & 1498 \\
3. & 1498 & 10. & 1399 \\
4. & 1168 & 11 & 1654 \\
5. & 1391 & 12. & 1045 \\
6. & 1679 & 13. & 741 \\
7. & 1308 & & \\
& S.E./mean & \(=\) N.A. &
\end{tabular}

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 51 (31). Type:-M'.
Object : - To study the effect of low doses of \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Wheat.
1. BASAL CONDITIONS :
(i) (a) Fallow-Wheat.
(b) Fallow. (c) Nil. (i
i) (a) and (b)
(a) to (e) N.A. (v) Nil. (vi) to (x) N.A.

\section*{2. TREATMENTS :}
1. F.Y.M. at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). 8. Super +F.Y.M. (1:3) at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. F.Y.M. at \(32 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super +F.Y.M. \((1: 7)\) at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. F.Y.M. at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. Super +F.Y.M. (3:1) at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. Super + F.Y.M. (7:1) at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. Super at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
12. No manure.
13. Fallow.
6. Super at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
7. Super +F.Y.M. (1:1) at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

These treatments were applied to first three crops of berseem.
3. DESIGN :
(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) 12. (iv) (a) and (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1941-1953. (b, Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1375 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(342.3 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1226 & 8. & 1448 \\
2. & 1300 & 9. & 1539 \\
3. & 1547 & 10. & 1514 \\
4. & 1136 & 11. & 1794 \\
S. & 1391 & 12. & 946 \\
6. & 1753 & 13. & 946 \\
7. & 1333 & & \\
& S.E./mean & & \(=98.81 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 52(76). Type :- 'M'.
Object:-To study the effect of low doses of \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Wheat.
1. BASAL CONDITIONS :
(i) (a) Cowpea-Wheat. (b) Cowpea. (c) Nil. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) Nil. (vi) to (x) N.A.
2. TREATMENTS:
1. F.Y.M. at 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). 8. Super+F.Y.M. to give \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{4}\) in \(1: 3\) ratio.
2. F.Y.M. at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super +F.Y.M. to give 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(1: 7\) ratio.
3. F.Y.M. at 94 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. Super + F.Y.M. to give 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(3: 1\) ratio.
4. Super at 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). 11. Super+F.Y.M. to give \(6+1 \mathrm{~b} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}^{-}\)in \(7: 1\) ratio.
5. Super at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). 12. No manure.
6. Super at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
13. Fallow,
7. Super +F.Y.M. to give \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(1: 1\) ratio.
These treatments were applied to first three crops of berseem.
3. DESIGN:
(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) N.A. (iv) (a) and (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1941-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1365 \mathrm{lb} / \mathrm{ac}\).
(ii) N.A.
(iii) N.A.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1259 & 8. & 1218 \\
2. & 1358 & 9. & 1489 \\
3. & 1300 & 10. & 1679 \\
4. & 1275 & 11. & 1456 \\
5. & 1358 & 12. & 1448 \\
6. & 1646 & 13. & 930 \\
7. & 1325 & &
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 52(56). Type :- ' M '.
Object :-To study the effect of low doses of \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Wheat.
1. BASAL CONDITIONS :
(i) (a) Fallow-Wheat. (b) Fallow. (c) Nil. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv)
(a) to (e) N.A. (v) Nil. (vi) to (x) N.A.
2. TREATMENTS :
1. F.Y.M. at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). 8. Super+F.Y.M. to give 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(1: 3\) ratio.
2. F.Y.M. at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super +F.Y.M. to give 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(1: 7\) ratio.
3. F.Y.M. at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. Super +F.Y.M. to give 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(3: 1\) ratio.
11. Super +F.Y.M. to give 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(7: 1\) ratio.
12. No manure.
5. Super at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
13. Fallow.
6. Super at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
7. Super + F.Y.M. to give \(16 \mathrm{lb} . / \mathrm{ac} . \mathrm{P}_{\mathbf{-}} \mathrm{O}_{5}\) in \(1: 1\) ratio.
These treatments were applied to the first three crops of berseem.
3. DESIGN :
(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) 12. (iv) (a); (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1941 to 1953. (b) Yes. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nill.
5. RESULTS :
(i) \(1770 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(484.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield. & Treatment & Av. yield \\
1. & 1572 & 8. & 1703 \\
2. & 1720 & 9. & 2008 \\
3. & 1695 & 10. & 2131 \\
4. & 1654 & 11. & 2065 \\
5. & 1901 & 12. & 1251 \\
6. & 2641 & 13. & 1037 \\
7. & 1637 & & \\
& S.E./mean & \(=139.9 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Wheat (Rabi). , Ref:- I.A.R.I. 53(41). Type :m 'M'.
Object :-To study the effect of low doses of \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Wheat.
1. BASAL CONDITIONS :
(i) (a) Cowpea-Wheat. (b) Cowpea. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) Nil. (vi) to (x) N.A.

\section*{2. TREATMENTS:}
1. F.Y.M. at \(16 \mathrm{lb} . / \mathrm{ac}\), of \(\mathrm{P}_{2} \mathrm{O}_{5} \quad\) 8. Super +F.Y.M. to give 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(1: 3\) ratio.
2. F.Y.M. at \(32 \mathrm{lb} . / \mathrm{ac}\). \&f \(\mathrm{P}_{2} \mathrm{O}_{5}\)
9. Super + F.Y.M. to give 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(1: 7\) ratio.
3. F.Y.M. at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\)
10. Super + F.Y.M. to give 32 lb ./ac of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(3: 1\) ratio.
4. Super at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\)
11. Super + F.Y.M. to give \(64 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in \(7: 1\) ratio.
5. Super at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\)
12. No manure.
6. Super at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\)
13. Fallow.
7. Super +F.Y.M. to give 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in 1:1 ratio.
These treatments were applied to the first three crops of berseem.
3. DESIGN :
(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) N.A. (iv) (a), (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1941 to 1953. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1446 \mathrm{lb} . / \mathrm{ac}\).
(ii) and (iii) N.A.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1218 & 8. & 1465 \\
2. & 1432 & 9. & 1835 \\
3. & 1670 & 10. & 1835 \\
4. & 1547 & 11. & 1580 \\
5. & 1646 & 12. & 1481 \\
6. & 1646 & 13. & 1218 \\
7. & 1456 & & \\
& S.E./mean & \(=\) N.A. &
\end{tabular}

Crop:- Wheat (Rabi). Ref :- I.A.R.I. 53(36). Type :- 'M'.
Object :-To study the effect of low doses of \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Wheat.
1. BASAL CONDITIONS :
(i) (a) Fallow-Wheat. (b) Fallow. (c) Nil. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) Nil. (vi) to (x) N.A.

\section*{2; TREATMENTS :}
1. F.Y.M. at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). 8. Super +F.Y.M. (1:3) at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. F.Y.M. at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super+F.Y.M. (1:7) at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. F.Y.M. at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. Super +F.Y.M. \((3: 1)\) at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. Super +F.Y.M. \((7: 1)\) at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{C}_{5}\).
5. Super at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
12. No manure.
6. Super at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
13. Fallow.
7. Super +F.Y.M. \((1: 1)\) at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) R.E.D.
(ii) (a) 13 .
(b) N.A. (iii) 12.
iv) (a) and (b) N.A.
(v) N.A. (vi) Yes.
4. GENERAL .
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1941-1953. (b) Yes. (c) Nil. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1584 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(600.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1514 & 8. & 1391 \\
2. & 1473 & 9. & 1646 \\
3. & 1901 & 10. & 1481 \\
4. & 1761 & 11. & 1596 \\
5. & 1547. & 12. & 1588 \\
6. & 1769 & 13. & 1267 \\
7. & 1662 & & \\
& S.E./mean & \(=173.4 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 51(52). Type :- 'M'.
Object :-To study the effect of manuring on the yield of Berseem and the residual effect on the rotational crops.

\section*{1. BASAL CONDITIONS:}
(i) (a) Berseem-maize-wheat-jowar. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 29.11.1951. (iv) (a) Ploughing with country plough. (b) to (e) N.A. (v) N.A. (vi) N.P.165. (vii) Irrigated. (viii) N.A. (ix) 3.24". (x) 12.4.1952.

\section*{2. TREATMENTS :}

Main-plot treatments :
7 combinations of N and \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=\) Ammo. Phos. at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=\) Ammo. Phos. at 160 \(\mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{3}=\) Super at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\) to supply N as in \(\mathrm{M}_{1}, \quad \mathrm{M}_{4}=\) Super at 160 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\) to supply N as in \(\mathrm{M}_{2}\), \(\mathrm{M}_{5}=\) Super at 80 ib ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \quad \mathrm{M}_{6}=\) Super at 160 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{7}=\) No manure.
Sub-plot treatments :
3 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0, \mathrm{~K}_{1}=40\) and \(\mathrm{K}_{2}=80 \mathrm{lb}\)./ac.
(Manures added to berseem in 1950-1951)/ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 7 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(43^{\circ} \times 25^{\circ}\).
(b) \(39^{\prime} \times 21^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1946-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) Very badly daraged by the hailstorm more than \(80 \%\). The produce of different plots got mixed up by the severe dust storm and therefore grain yield per plot could not be recorded for the individual plots. (vii) Nil.

\section*{5. RESULTS:}
(i) \(3720 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(1249 \mathrm{ib} / \mathrm{ac}\).
(b) \(819.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Meffect and interaction \(M \times K\) are significant while \(K\) effect is not significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{l|lllllll|l} 
& \(\mathbf{M}_{1}\) & \(\mathbf{M}_{2}\) & \(\mathbf{M}_{3}\) & \(\mathbf{M}_{\mathbf{4}}\) & \(\mathbf{M}_{\mathbf{5}}\) & \(\mathbf{M}_{\mathbf{6}}\) & \(\mathbf{M}_{\mathbf{7}}\) & Mean \\
\hline \(\mathbf{K}_{0}\) & 3392 & 4412 & 4611 & 4902 & 3882 & 3869 & 2332 & 3915 \\
\(\mathbf{K}_{1}\) & 4200 & 3829 & 4279 & 3657 & 3710 & 4333 & 2014 & 3717 \\
\(\mathrm{~K}_{2}\) & 3525 & 3113 & 3339 & 4810 & 3458 & 3869 & 2584 & 3528 \\
\hline Mean & 3706 & 3785 & 4076 & 4453 & 3683 & 4023 & 2310 & 3720
\end{tabular}
S.E. of difference of two
1. M marginal means
\[
\begin{aligned}
& =510.0 \mathrm{lb} . / \mathrm{ac} . \\
& =218.9 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
\]
2. \(K\) marginal means
3. K means at the same level of \(M \quad=579.3 \mathrm{lb} . / \mathrm{ac}\).
4. \(M\) means at the same level of \(K \quad=695.5 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Wheat (Rabi). Ref:- I.A.R.I. 53(7). Type :- 'M'.
Object :-To study the efficiency of fertilisers and their suitable combinations on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 4 and 5.11.1953. (iv) (a) 1 ploughing with victory plough, 1 with desi plough, 2 discings and 2 levellings. (b) Sowing in furrows by desi plough. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). (d), (e) N.A. (v) N.A. (vi) N.P. 716. (vii) Irrigated. (viii) Bakharing on 5.12.1953. (ix) N.A. (x) 15 to 16.4.1954.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3).
(1) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 sources of \(N: S_{1}=A / S, S_{2}=\) Ammo. Nit. and \(S_{3}=\) Urea.
(3) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.

3 extra treatments :
\(\mathrm{T}_{1}=60 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as triple super, \(\mathrm{T}_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as triple super and \(\mathrm{T}_{3}=60 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as triple super.
3. DESIGN :
(i) \(3^{3}\) Confd. with three extra treatments. (ii) (a) 12 plots/block and 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(23^{\circ} \times 47^{\prime} 4^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. Severe lodging in Feb. 1954. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) No. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Results of 3 extra treatments are not presented.
5. RESULTS :
(i) \(1623 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(196.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) P effect and interaction \(\mathrm{N} \times \mathrm{P}\) are highly significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\(\mathrm{N}_{0} \mathrm{P}_{0}=1242 \mathrm{lb} . / \mathrm{ac} ., \mathrm{N}_{0} \mathrm{P}_{2}=1391 \mathrm{lb} . / \mathrm{ac} ., \mathrm{N}_{0} \mathrm{P}_{2}=1663 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline & & \(P_{2}\) & \(\mathrm{P}_{3}\) & Mean & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(S_{9}\) \\
\hline \(\mathrm{N}_{1}\) & 1611 & 1639 & 1649 & 1633 - & 1602 & 1648 & 1650 \\
\hline \(\mathrm{N}_{2}\) & 1750 & 1865 & 1801 & 1805 & 1805 & 1949 & 1663 \\
\hline Mean & 1680 & 1752 & 1725 & 1719 & 1703 & 1798 & 1656 \\
\hline \(\mathrm{S}_{1}\) & 1669 & 1704 & 1736 & 1703 & & & \\
\hline \(\mathrm{S}_{2}\) & 1762 & 1904 & 1728 & 1798 & & & \\
\hline \(\mathrm{S}_{3}\) & 1609 & 1648 & 1711 & 1656 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(S\) and \(P\) marginal mean & \(=56.6 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(N\) marginal mean & \(=46.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(N \times P\) or \(N \times S\) table & \(=80.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(S \times P\) table & \(=98.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(P\) means at the level of \(\mathrm{N}_{0}\) & \(=80.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 52(12). Type :- 'M'.
Object:-To study the response of organic manures alone and in combination with inorganic manures.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 16.11.1952. (iv) (a) 1 ploughing by victory plough, 3 by desi plough and 3 harrowings. (b) to (e) N.A. (v) Nil. (vi) N.P. 760. (vii) Irrigated. (viii) One hoeing. (ix) N.A. (x) 15 to 17.4.1952.

\section*{2. TREATMENTS :}
1. Control.
2. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. 60 lb . /ac of N as \(\mathrm{A} / \mathrm{S}+100 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
4. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M. \(+100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
5. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as Castor cake \(+100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(+100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(38^{\prime} \times 29^{\prime}\). (b) \(36^{\prime} \times 27^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1952 -N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(368.9 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(90.35 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 193.4 \\
2. & 529.1 \\
3. & 505.2 \\
4. & 295.4 \\
5. & 321.7 \\
S.E./mean & \(=36.89 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 50(4). Type :- 'M'.
Object:-To study the relative efficiency of N in bulky or semi-bulky organic manures and inorganic fertilizers on Wheat.
1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item ! 11 on page 143. (iii) 12.11.1950. (iv) (a) Grubbing with tractor and discing twice. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) One weeding with khurpi. (ix) N.A. (x) N.A.
2. TREATMENTS :
1. Control. 7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
2. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
8. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
3. 60 lb ./ac. of N as F.Y.M.
9. 60 lb ./ac. of N as G.N.C.
4. \(80 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
10. \(80 \mathrm{lb} . / \mathrm{ac}\), of N as G.N.C.
5. \(100 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
11. 20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
6. \(120 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
12. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 8 . (iv) (a) \(33^{\prime} \times 22^{\prime}\). (b) \(31^{\prime} \times 20^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Yellow rust. (iii) Grain yield. (iv) (a) 1949-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2948 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(384.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Areatment & Av. yield \\
1. & 2781 \\
2. & 2419 \\
3. & 2896 \\
4. & 2946 \\
5. & 3110 \\
6. & 2921 \\
& S.E./mean
\end{tabular}
\begin{tabular}{cc} 
Treatment & Av. yield \\
7. & 2789 \\
8. & 2995 \\
9. & 3151 \\
10. & 3349 \\
11. & 2946 \\
12. & 3069 \\
\(=134.9 \mathrm{lb} . / \mathrm{ac}\). & \\
&
\end{tabular}

\section*{Crop:- Wheat (Rabi).}

\section*{Ref :- I.A.R.I. 51(6). Type :- 'M'.}

Object :-To study the relative efficiency of \(\mathbf{N}\) in bulky or semi-bulky organic manures and inorganic fertilizers on Wheat crop.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 16.11.1951. (iv) (a) Ploughing by victory plough ; beaming and ploughing by country plough. Horse hoe cultivator for mixing manure, grubbing twice by tractor and beaming. (b) to (e) N.A. (v) No. (vi) C. 518. (vii) Irrigated. (viii) Nil. (ix) N.A. (x) 12.4.1952.
2. TREATMENTS :
1. No manure. 7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
2. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
8. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
3. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
9. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathbf{G} . \mathrm{N} . C\).
4. \(80 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
10. \(80 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
5. \(100 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
11. 20 lb ./ac. of N as A/S.
6. \(120 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
12. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 8. (iv) (a) \(33^{\prime} \times 22^{\prime}\). (b) \(31^{\prime} \times 20^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1206 \mathrm{lb} / \mathrm{ac}\).
(ii) \(232.9 \mathrm{lb} . / \mathrm{ac}\)..
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1105 & 7. & 1117 \\
2. & 1112 & 8. & 1354 \\
3. & 1133 & 9. & 1391 \\
4. & 1163 & 10. & 1527 \\
5. & 1121 & 11. & 1180 \\
6. & 1098 & 12. & 1220 \\
& S.E./mean & & \(=82.35 \mathrm{lb} . / \mathrm{ac}\). \\
& & &
\end{tabular}

Crop :- Wheat (Rabi).
Ref:- I.A.R.I. 52(5). Type :- 'M'.
Object :-To study the relative efficiency of \(\mathbf{N}\) in bulky or semi-bulky organic manures and inorganic fertilizers on Wheat.

\section*{- BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 10.11.1952. (iv) (a) Ploughing with victory plough thrice and dest plough twice. (b) to (e) N.A. (v) Nil. (vi) N.P. 710. (vii) Irrigated. (viii) Weeding once. (ix) N.A. (x) 3/4.5.1953.
2. TREATMENTS :
1. No manure. 7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
2. 40 lb ./ac. of N as F.Y.M.
8. 40 lb ./ac. of N as G.N.C.
3. 60 lb ./ac. of N as F.Y.M.
9. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
10. \(80 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
11. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
5. 100 lb ./ac. of N as F.Y.M.
12. 40 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 8 . (iv) (a) \(33^{\prime} \times 22^{\prime}\). (b) \(31^{\prime} \times 20^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1949-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1654 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(286.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1442 & 7. & 1624. \\
2. & 1414 & 8. & 1791 \\
3. & 1581 & 9. & 1861 \\
4. & 1572 & 10. & 2002 \\
5. & 1484 & 11. & 1721 \\
6. & 1572 & 12. & 1782
\end{tabular}
S.E. \(/\) mean \(=101.2 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 52(52). Type :- 'M'.
Object :-To determine the optimum interval between the application of F.Y.M. and sowing of Wheat to obtain the maximum yield.
1. BASAL CONDITIONS :
- (i) (a) Wheat-Maize. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) 18.11.1952. (iv) (a) 2 discings by tractor and 5 desi ploughings. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) Weeding and hoeing. (ix) N.A. (x) 8 to 15.4.1953.
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2) +a control ( \(\mathrm{T}_{0} \mathrm{D}_{0}=\) no manure)
(1) 4 times of application of F.Y.M. : \(T_{1}=3\) months, \(T_{2}=2\) months, \(T_{3}=1\) month and \(T_{4}=1\) week before sowing.
(2) 3 doses of F.Y.M. : \(\mathrm{D}_{1}=2 \frac{1}{2}, \mathrm{D}_{2}=5\) and \(\mathrm{D}_{3}=10\) tons/ac.

Sub-plot treatments :
2 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=10 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 13 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A.
(b) Main-plot : \(32^{\prime} \times 35^{\prime}\) and sub-plot: \(32^{\prime} \times 18^{\prime}\). (v) N A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A
(iii) Grain yield.
(iv) (a) 1952-N.A.
(b) No.
(c) N.A.
(v) (a) and (b) No.
(vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1036 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(284.3 \mathrm{lb} . / \mathrm{ac}\).
(b) \(273.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only N effect is highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{T}_{0} \mathrm{D}_{0}\) & \(\mathrm{T}_{1} \mathrm{D}_{1}\) & \(\mathrm{T}_{1} \mathrm{D}_{2}\) & \(\mathrm{T}_{1} \mathrm{D}_{3}\) & \(\mathrm{T}_{2} \mathrm{D}_{1}\) & \(\mathrm{T}_{2} \mathrm{D}_{2}\) & \(\mathrm{T}_{2} \mathrm{D}_{3}\) & \(\mathrm{T}_{3} \mathrm{D}_{1}\) & \(\mathrm{T}_{3} \mathrm{D}_{2}\) & \(\mathrm{T}_{3} \mathrm{D}_{3}\) & \(\mathrm{T}_{4} \mathrm{D}_{1}\) & \(\mathrm{T}_{4} \mathrm{D}_{2}\) & \(\mathrm{T}_{4} \mathrm{D}_{3}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 836 & 1081 & 1059 & 892 & 1081 & 1030 & 1064 & 1030 & 972 & 848 & 1096 & 904 & 1110 & 1000 \\
\hline \(\mathrm{N}_{1}\) & 1030 & 1125 & 1147 & 1293 & 965 & 1018 & 1035 & 1059 & 1094 & 1011 & 1103 & 1191 & 855 & 10;1 \\
\hline Mean & 933 & 1103 & 1103 & 1092 & 1023 & 1024 & 1050 & 1044 & 1033 & 930 & 1100 & 1048 & 982 & 1036 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{S.E. of difference of two} \\
\hline 1. TD marginal means & \(=142.2 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 2. N marginal means & \(=53.5 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 3. N means at the same level of TD & \(=193.0 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 4. TD means at the same level of N & \(=197.1 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}

Crop :- Wheat (Rabi). Tef:- I.A.R.I. 53(55). Type :- 'M'.
Object :-To determine the optimum interval between the application of F.Y.M. and sowing of Wheat to obtain the maximum yield.

\section*{1. BASAL CONDITIONS:}
(i) (a) Wheat-Maize. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 4.12.1953. (iv) (a) 1 ploughing with victory plough and 3 with desi plough. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Bakharing. (ix) N.A. (x) 17, 18.4.1954.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

All combinations of (1) and (2) + a control ( \(\mathrm{T}_{0} \mathrm{D}_{0}=n 0\) manure)
(1) 4 times of application of F.Y.M. : \(T_{1}=3\) months, \(T_{2}=2\) months, \(T_{3}=1\) month and \(T_{4}=1\) week before sowing.
(2) 3 doses of F.Y.M. : \(D_{1}=2 \frac{1}{2}, D_{2}=5\) and \(D_{3}=10\) tens/ac. of F.Y.M.

\section*{Sub-plot treatments :}

2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=10 \mathrm{lb} . / a c\). of \(N\) as \(A / S\).
3. DESIGN :
(i) Split-plot. (ii) (a) 13 main-plots/block and 2 sub-plots/main plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) Mainplot : \(32^{\prime} \times 36^{\prime}\); Sub-plot : \(32^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1952-\) N.A. (b) No. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1460 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(313.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(560.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{T}_{0} \mathrm{D}_{0}\) & \(\mathrm{T}_{1} \mathrm{D}_{1}\) & \(\mathrm{T}_{1} \mathrm{D}_{2}\) & \(\mathrm{T}_{1} \mathrm{D}_{3}\) & \(\mathrm{T}_{2} \mathrm{D}_{1}\) & \(\mathrm{T}_{2} \mathrm{D}_{2}\) & \(\mathrm{T}_{2} \mathrm{D}_{3}\) & \(\mathrm{T}_{3} \mathrm{D}_{1}\) & \(\mathrm{T}_{3} \mathrm{D}_{2}\) & \(\mathrm{T}_{3} \mathrm{D}_{3}\) & \(\mathrm{T}_{4} \mathrm{D}_{1}\) & \(\mathrm{T}_{4} \mathrm{D}_{2}\) & \(\mathrm{T}_{4} \mathrm{D}_{3}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 1556 & 1499 & 1444 & 1319 & 1591 & 1589 & 1452 & 1371 & 1435 & 1239 & 1268 & 1555 & 1320 & 1434 \\
\hline \(\mathrm{N}_{1}\) & 1389 & 1376 & 1848 & 1525 & 1668 & 1601 & 1355 & 1494 & 1367 & 1199 & 1414 & 1636 & 1453 & 1486 \\
\hline Mean & 1472 & 1438 & 1646 & 1422 & 1630 & 1595 & 1404 & 1432 & 1400 & 1219 & 1341 & 1596 & 1386 & 1460 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. D marginal means & \(=156.8 \mathrm{lb} . / \mathrm{ac}\). \\
2. N marginal means & \(=109.8 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(N\) means at the same level of TD & \(=396.0 \mathrm{lb} . / \mathrm{ac}\). \\
4. TD means at the same level of N & \(=381.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:-Wheat (Rabi). Ref:- I.A.R.I. 50(6). Type :- ' \(\mathbf{M}\) '.
Object :-To study the soil fertility building capacity of manures applied to berseem in rotation by their effe.t on the succeeding Wheat crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A.
(b) Maize. (c) As per treatments. (ii) (a) and
(b) Refer item 11 on page 143. (iii) 6.11.1950. (iv) (a) Discing twice and grubbing twice. (b) to (e) N.A. (v) Nil. (vi) N.P. 710. (vii) Irrigated. (viii) 1 lever harrow and 1 weeding. (ix) \(2.71^{\prime \prime}\). (x) 4.5. 1951.
2. TREATMENTS :

All combinations (1) and (2) + a control (no manure)
(1) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{1}=50\) and \(\mathrm{P}_{2}=100 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=80 \mathrm{lb}\)./ac.

Manures applied to the previous crop of maize.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(60^{\prime} \times 27^{\prime}\). (b) \(58^{\prime} \times 25^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Grain yield, (iv) (a) N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(738.2 \mathrm{lb} / \mathrm{ac}\).
(ii) \(167.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|}
\hline & Control & 05.6 lb & \\
\hline & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean \\
\hline \(\mathrm{K}_{0}\) & 785.8 & 718.3 & 752.0 \\
\hline \(\mathrm{K}_{1}\) & 785.8 & 795.7 & 790.8 \\
\hline Mean & 785.8 & 757.0 & 771.4 \\
\hline \multicolumn{2}{|l|}{S.E. of any marginal mean} & \multicolumn{2}{|l|}{\(=48.4 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

Crop:- Wheat (Rabi).
Ref :- I.A.R.I. 51(7). Type :- ' \(M\) '.
Object:-To build up soil fertility by Phosphate manuring of berseem and tof study the residual effect on on Wheät in rotation.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 16.11 .1951 . (iv) (a) 1 ploughing with tractor, discing, one ploughing with desi plough and again with tractor. (b) to (e) N.A. (v) No. (vi) N.P. 710. (vii) Irrigated. (viii) N.A. (ix) \(0.86^{\prime \prime}\). (x) 17.4.1952.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)+a control (no manure)
(1) 2 leve's of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{1}=50\) and \(\mathrm{P}_{2}=100 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul : \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=80 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(58^{\prime} \times 25^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Badly lodzed. (ii) Nil. (iii) Grain yield. (iv) (a) 1946-1951. (b) Yes。 (c) N.A. (v) (a) and (b) No.
(vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(1140 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(193.4 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in Ib./ac.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Control} & \multirow[b]{2}{*}{Mean} \\
\hline & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \\
\hline \(\mathrm{K}_{0}\) & 1061 & 1162 & 1111 \\
\hline \(\mathrm{K}_{1}\) & 1121 & 1186 & 1154 \\
\hline Mean & 1091 & 1174 & 1133 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=55.85 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table or control mean & \(=78.99 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop : Wheat (Rabi). Ref:- I.A.R.I. 50(8). Type :- 'M'.
Object :-To study the effect of phosphatic manuring of berseem with and without K and N and to study the residual effect on the subsequent Wheat crop.
1. BASAL CONDITIONS :
(i) (a) Berseem-Maize-Cotton-Wheat. (b) Cotton. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 26.11.1950. (iv) (a) One ploughing with victory plough and two with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS:
1. Control (no manure).
2. \(25 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. \(50 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+120 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
4. 100 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}+120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
5. \(120 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+120 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
6. 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
7. \(100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+120 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +120 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
8. Fallow.

Manures applied to the previous crop cotton.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(36^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1948-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
(i) \(1136 \mathrm{lb} . / \mathrm{ac}\). \\
(ii) \(154.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
(i) \(1382 \mathrm{lb} . / \mathrm{ac}\). \\
(ii) \(261.7 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{2}{|l|}{(iii) Treatments differ highly significantly.} & (iii) Treatments differ & hly significantly. \\
\hline (iv) Av. yield of grain & 1b./ac. & (iv) Av. yield of grain & b./ac. \\
\hline Treatment & Av. yield & Treatment & Av. yield \\
\hline 1. & 867 & 1. & 921 \\
\hline 2. & 1211 & 2. & 1521 \\
\hline 3. & 1208 & 3. & 1558 \\
\hline 4. & 1271 & 4. & 1841 \\
\hline 5. & 1200 & 5. & 1234 \\
\hline 6. & 1191 & 6. & 1244 \\
\hline 7. & 1294 & 7. & 1812 \\
\hline 8. & 848 & 8. & 924 \\
\hline S.E./mean & \(=63.36 \mathrm{lb} . / \mathrm{ac}\). & S.E./mean & \(=106.8 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}
```

Crop :- Wheat (Rabi).
Ref :~I.A.R.I. 52(8).
Type :-' ${ }^{\prime}$ '.

```

Object :-To study the effect of phosphatic manuring of berseem with and without \(K\) and \(N\) and to study the residual effect on Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) Wheat-Berseem-Cotton. (b) Berseem. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 2.12.1952. (iv) (a) Ploughing with victory plough and with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.P. 710. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 12.4.1953.
2. TREATMENTS :
1. Control (no manure).
2. 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. Treat. (2) +120 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
4. Treat. (2) +25 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
5. Treat. (2) \(+50 \mathrm{lb} . / \mathrm{ac}\). of N as \(A / S\).
6. Treat. (2) \(+100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
7. Treat. (3) \(+103 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
8. Fallow (in berseem season).

Manures applied to Berseem during the previous year.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(36^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1943-\) N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(903 \mathrm{Jb} . / \mathrm{ac}\).
(ii) \(147.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 621 & 5. & 1008 \\
2. & 846 & 6. & 1154 \\
3. & 912 & 7. & 1176 \\
4. & 960 & 8. & 549 \\
& S.E. \(/\) mean & \(=60.14 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop:- Wheat (Rabi).
Ref :- I.A.R.I. 51(30).
Type:- 'M..
Object :-To study the effect of manured, unmanured, one, two or three years ley farming on soil fertility as judged by the yields of subsequent maize and Wheat crops.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize-Wheat. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 29.10.1951. (iv) (a) 1 plouging with victory plough, 2 ploughings with desi plough and preparatory tillage. (b) to (e) N.A. (v) Nil. (vi) C. 518. (vii) Irrigated. (viii) 1 hoeing with oudh plough. (ix) N.A. (x) 7.4.1952.

\section*{2. TREATMENTS:}

Main-plot treatments:
9 treatments (ley farming): \(T_{1}=\) One year ley-full dose. \(T_{2}=\) One year ley-no manure, \(T_{3}=T\) wo years ley-full dose. \(T_{4}=\) Two years ley-manured once. \(T_{5}=T\) wo years ley-no manure. \(T_{6}=\) Three years ley-full dose every year, \(T_{7}=\) Three years ley-full dose two consecutive years. \(T_{8}=\) Thres years ley-full dose once and \(T_{9}=\) Three years ley-no manure.
Sub-plot treatments :
4 G.M. treatments: \(M_{1}=\) Dich Anubilats Viciasative, \(M_{2}=\) Vicia Luceern. \(M_{3}=\) Rhoders and \(\mathrm{M}_{4}=\) Maize-wheat rotation.
3. DESIGN:
(i) Split-plot. (ii) (a) 9 main-plots/repiication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 80\) th of an acre, (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) \(1949-1953\). (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Itformation given as available. Classification is N.A. Description of (1) to (5) in the results for main-plots N.A.
5. RESULTS :
(i) \(547.7 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(150.6 \mathrm{lb} . / \mathrm{ac}\).
(b) \(125.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Effect of \(T\) is significant Effect of \(M\) and interaction \(T \times M\) are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccccc|c} 
& \((1)\) & \((2)\) & \((3)\) & \((4)\) & \((5)\) & Mean \\
\hline \(\mathbf{M}_{\mathbf{1}}\) & 559.5 & 659.9 & 619.6 & 479.7 & 380.2 & 539.8 \\
\(\mathbf{M}_{\mathbf{2}}\) & 659.9 & 700.3 & 700.3 & 559.5 & 619.6 & 647.9 \\
\(\mathbf{M}_{\mathbf{3}}\) & 559.4 & 577.6 & 479.7 & 440.2 & 479.7 & 507.3 \\
\(\mathbf{M}_{\mathbf{4}}\) & 640.2 & 399.9 & 539.8 & 419.7 & 479.7 & 495.9 \\
\hline Mean & 604.8 & 584.4 & 584.8 & 474.8 & 489.8 & 547.7
\end{tabular}
S.E. of difference of two
1. T marginal means
\[
=53.49 \mathrm{lb} . / \mathrm{ac}
\]
2. \(M\) marginal means
3. \(\mathbf{M}\) means at the same level. of \(\mathbf{T}\)
\(=29.62 \mathrm{lb}\). \(/ \mathrm{ac}\).
4. T means at the same level of \(\mathrm{M} \quad=68.89 \mathrm{lb} . / \mathrm{ac}\)

Crop:-Wheat (Rabi). Ref:- I.A.R.I. 52(71). Type:-'M'.
Object :-To study the effect of manured, unmanured, one, two or three years ley farming on soil fertility as judged by the yields of subsequent maize and Wheat crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize-Wheat. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 16.11.1952.
(iv) (a) Ploughing with victory plough and desi plough, preparatory tillage and grubbing with tractor. (b)
to (e) N.A. (v) Nil. (vi) C. 518. (vii) Irrigated. (viii) Bakharing and hoeing with oudh plough. (ix) N.A. (x) 7.4.1953.
2. TREATMENTS :

Main-plot treatments
9 treatments (ley farming) : \(T_{1}=\) One year ley-full dose of manure, \(T_{2}=\) One year ley-no manure, \(T_{3}=\) Two years ley-twice manured, \(T_{4}=T\) wo years ley -once mannured, \(T_{5}=T\) wo years ley-no manure, \(T_{6}=\) Three years ley-thrice manured, \(T_{7}=\) Three years ley-twice manured, \(T_{8}=\) Three years ley-once manured and \(T_{9}=\) Three years ley-no manure.
Sub-plot treatments:
4 G.M. treatments : \(M_{1}=\) Dich and hume mixture, \(M_{2}=\) Cenchus, \(M_{3}=\) Rhodes and \(M_{4}=\) Maize and wheat rotation.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/block and 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 1/80 ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) No. (iii) Grain yield. (iv) (a) 1949-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(762.9 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(160.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(190.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only M effect is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ccccccccc|c} 
& \(\mathbf{T}_{\mathbf{1}}\) & \(\mathbf{T}_{\mathbf{2}}\) & \(\mathrm{T}_{\mathbf{3}}\) & \(\mathrm{T}_{\mathbf{4}}\) & \(\mathrm{T}_{\mathbf{5}}\) & \(\mathrm{T}_{\mathbf{6}}\) & \(\mathrm{T}_{\mathbf{7}}\) & \(\mathrm{T}_{\mathbf{8}}\) & \(\mathrm{T}_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{M}_{1}\) & 860.7 & 749.7 & 741.4 & 733.2 & 741.4 & 762.0 & 753.8 & 753.8 & 770.3 & 762.9 \\
\(\mathrm{M}_{\mathbf{2}}\) & 655.8 & 733.2 & 737.3 & 741.4 & 753.8 & 758.0 & 749.7 & 758.0 & 741.4 & 736.5 \\
\(\mathrm{M}_{\mathbf{3}}\) & 737.3 & 733.2 & 758.0 & 749.7 & 745.6 & 737.3 & 758.0 & 737.4 & 762.4 & 746.5 \\
\(\mathrm{M}_{\mathbf{4}}\) & 741.4 & 745.6 & 729.1 & 729.1 & 729.1 & 737.3 & 741.4 & 737.4 & 737.5 & 746.4 \\
\hline Mean & 748.0 & 740.4 & 741.4 & 738.3 & 742.5 & 7486 & 750.7 & 746.6 & 752.1 & 762.9
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(T\) marginal means & \(=56.5 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(M\) marginal means & \(=31.7 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(M\) means at the same level of \(T\) & \\
4. \(T\) means at the same level of \(M\) & \\
& \(=91.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 53(53). Type :- 'M'.
Object :-To study the effect of manured, unmanured, one, two and three years ley farming on soil fertility as judged by soil structure.
1. BASAL CONDITIONS:
(i) (a) Maize-Wheat. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 25.10.1953. (iv) (a) Ploughing with victory plough and desi plough. (b) to (e) N.A. (v) N.A. (vi) N.P. 175. (vii) Irrigated. (viii) Bakharing on 1.12.1953 and 24.12.1953. (ix) N.A. (x) 14.4.1954.

\section*{2. TREATMENTS:}

Main-plot treatments .
9 treatments (ley farming) : \(\mathrm{T}_{2}=\) One year ley-full dose, \(\mathrm{T}_{2}=\) One year ley- no manure, \(\mathrm{T}_{3}=\) Two year ley-full dose, \(T_{4}=\) Two years ley-manured once, \(T_{5}=\) Two years ley-no manure \(T_{6}=\) Three years ley-full dose every year, \(T_{7}=\) Three years ley-2 consecutive years, \(\mathrm{T}_{8}=\) Three [years ley-once and \(\mathrm{T}_{9}=\) Three years ley-no manure.
Sub-plot treatments:
4 G.M. treatments: \(G_{1}=\) Dich Amublates, viciasative, \(G_{2}=\) Vicia lucame, \(G_{3}=R\) hodes and \(G_{4}=\) Maizewheat rotation.

\section*{3. DESIGN:}
(i) Split-plot. (ii) (a) 9 main-plots/replication and 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(1 / 80\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Effected by loose-smut. (iii) Grain yield. (iv) (a) 1949-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(610 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(115.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(124.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only T effect is significant.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{l|ccccccccc|c} 
& \(\mathbf{T}_{\mathbf{1}}\) & \(\mathbf{T}_{\mathbf{2}}\) & \(\mathbf{T}_{\mathbf{3}}\) & \(\mathrm{T}_{\mathbf{4}}\) & \(\mathrm{T}_{\mathbf{5}}\) & \(\mathrm{T}_{\mathbf{6}}\) & \(\mathrm{T}_{\mathbf{7}}\) & \(\mathrm{T}_{\mathbf{8}}\) & \(\mathrm{T}_{\mathbf{9}}\) & Mean \\
\hline \(\mathrm{M}_{\mathbf{1}}\) & 620 & 570 & 480 & 560 & 570 & 560 & 740 & 700 & 720 & 613 \\
\(\mathrm{M}_{\mathbf{2}}\) & 510 & 580 & 620 & 460 & 690 & 600 & 670 & 660 & 680 & 608 \\
\(\mathrm{M}_{\mathbf{3}}\) & 570 & 510 & 690 & 600 & 650 & 690 & 750 & 670 & 710 & 649 \\
\(\mathrm{M}_{\mathbf{4}}\) & 590 & 570 & 540 & 560 & 600 & 560 & 650 & 540 & 530 & 571 \\
\hline Mean & 572 & 558 & 582 & 545 & 627 & 602 & 702 & 642 & 660 & 610
\end{tabular}
S.E. of difference of two
\(\begin{array}{ll}\text { 1. } \mathbf{T} \text { marginal means } & =40.9 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } M \text { marginal means } & =29.3 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } M \text { means at the same level of } \mathbf{T} & =87.9 \mathrm{lb} . / \mathrm{ac} . \\ \text { 4. } T \text { means at the same level of } \mathrm{M} & \end{array}\)

Crop:- Wheat (Rabi). Ref:- I.A.R.I. 53 (13). Type :- 'M'.
Object :-To study the residual effect of fertilizers, applied to berseem, on Wheat crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Berseem. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 1.12.1953. (iv) (a) 1 ploughing with victory plough and 5 by desi plough. (b) to (e) N.A. (v) Nil. (vi) N.P. 710. (vii) Irrigated. (viii) Bakharing on 7.1.1954. (ix) N.A. (x) 16.4.1954.

\section*{2. TREATMENTS:}
1. Control (no manure).
2. 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. Treat. (2) \(+120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{5} \mathrm{O}\) as Pot. Sul.
4. Treat. (2) \(+25 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
5. Treat. (2) \(+50 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
6. Treat. (2) \(+100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A}^{\prime} \mathrm{S}\).
7. Treat. (3) \(+100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
8. Fallow (during berseem season).

Manures applied to berseem crop during 1951-5 2.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) \(36^{\prime} \times 18^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1948-1953\). (b) Yes. (c) N.A. (v) (a) and (b) No. (vi)
and (vii) Nil.
5. RESULTS :
(i) \(1081 \mathrm{lb} / \mathrm{ac}\).
(ii) \(193.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 807 & 5. & 1260 \\
2. & 1147 & 6. & 1311 \\
3. & 1133 & 7. & 1219 \\
4. & 1121 & 8. & 648 \\
& S.E. \(/\) mean & \(=78.95 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}.

Object :-To study the effect of organic and inorganic phosphatic fertilizers, applied to berseem on Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) Berseem-Cowpea-Wheat. (b) Cowpea. (c) N.A. (ii) (a) and (b) Refer ;item 11 on page 143. (iii) 22.11.1952. (iv) (a) 3 ploughings with victory plough, 2 ploughing with desi plough. (b) Sown with monarch drill. (c) \(2 \mathrm{md} . / \mathrm{ac}\). (d) and (e) N.A. (v) N.A. (vi) C-518. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 10.4.1953 to 13.4.1953.
2. TREATMENTS :
1. Control (no manure).
8. F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+8 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
2. F.Y.M. at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. F.Y.M. at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. F.Y.M. at \(24 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+8 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
4. F.Y.M. at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. F.Y.M. at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+8 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
11. F.Y.M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{6}\).
5. Super at 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). 12. F.Y.M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. Super at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
13. Fallow.
7. Super at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). Manurial treatments applied to berseem.
3. DESIGN:
(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) \(63^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1948-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1773 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(471.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1254 & -16. & 1638 \\
2. & 1574 & 9. & 1702 \\
3. & 1720 & 10. & 2004 \\
4. & 1693 & 11. & 2133 \\
5. & 1656 & 12. & 2069 \\
6. & 1925 & 13. & 1034 \\
7. & 2645 & & \\
& S.E./mean & &
\end{tabular}
\[
\text { Crop :- Wheat (Rabi). } \quad \text { Ref :- I.A.R.I. 50(10) Type :- ‘M'. }
\]

Object :-To study the comparative value of various green manuring crops from the point of view of organic matter and plant food ingredients in promoting the yield of subsequent Wheat crop.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 13.11.1950. (iv) (a) Tractor grubbing and discing twice. (b) to (e) N.A. (v) Nil. (vi) N.P. 718. (vii) Irrigated. (viii) Hoeing on 10.2.1951. (ix) N.A. (x) 17.4.1951 to 19.4 .1951 and 25.4.1951.

\section*{2. TREATMENTS :}

Main-plot treatments :
6 G.M. crops: \(G_{0}=\) Fallow, \(G_{1}=\) Guar, \(G_{2}=\) Sunhemp, \(G_{3}=\) Cowpea and \(G_{4}=\) Soyabean, \(G_{5}=\) Dhaincha.
Sub-plot treatments :
2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
Wheat is grown in all the plots in the subsequent season.
3. DESIGN:
(i) Split-plot. (ii) (a) 6 main-plots/replication and 2 sub-plots/main-plot.
(b) N.A
(iii) 6 .
(iv) (a)
N.A. (b) \(\left.64^{\prime} \times 11\right\}^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Removal of smutted plants on 28.2 .1951 and 10.3.1951. (iii) Grain yield. (iv) (a) 1950-N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1858 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(309.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(241.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only G effect is highly significant .
(iv) Av. yield of grain ia \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|cccccc|c} 
& \(\mathbf{G}_{\mathbf{0}}\) & \(\mathbf{G}_{\mathbf{1}}\) & \(\mathbf{G}_{\mathbf{2}}\) & \(\mathbf{G}_{\mathbf{3}}\) & \(\mathbf{G}_{\mathbf{4}}\) & \(\mathbf{G}_{\mathbf{5}}\) & Mean \\
\hline \(\mathbf{P}_{\mathbf{0}}\) & 1490 & 1935 & 2040 & 1755 & 1935 & 1920 & 1846 \\
\(\mathbf{P}_{\mathbf{1}}\) & 1490 & 2110 & 1995 & 1900 & 1855 & 1875 & 1871 \\
\hline Mean & 1490 & 2022 & 2018 & 1827 & 1895 & 1897 & 1858
\end{tabular}
S.E. of difference of two
1. G marginal means
\[
=126.2 \mathrm{lb} . / \mathrm{ac} .
\]
2. \(P\) marginal means \(\quad=56.8 \mathrm{lb} . / \mathrm{ac}\).
3. \(P\) means at the same level of \(G \quad=139.2 \mathrm{lb} . / \mathrm{ac}\).
4. G means at the same level of \(P \quad=160.0 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Wheat (Rabi). Ref:- I.A.R.I. 52(16). Type :- 'M'.}

Object:-To study the comparative value of various green manuring crops in point of view of organic matter and from plant food ingredients in promoting the yield of subsequent Wheat crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) N.A. (c) N.Aı (ii) (a) and (b) Refer item 11 on page 143. (iii) 5, 6.11.1952. (iv) (a) Ploughing with desi plough twice. Preparing land with desi plough twice after soaking. (b) to (e) N.A. (v) N.A. (vi) N.P.718. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 31.3.1952 to 3.4.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
6 G.M. crops: \(G_{0}=\) Control (Fa!low), \(G_{1}=\) Guar, \(G_{2}=\) Sunhemp, \(G_{3}=\) Cowpea, \(G_{4}=\) Soyabean and \(\mathrm{G}_{5}=\) Dhaincha.
Sub-plot treatments :
2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(64^{\prime} \times 11 \frac{1^{\prime}}{}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2002 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(576.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(324.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significa \(t\).
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|cccccc|c} 
& \(\mathbf{G}_{\mathbf{0}}\) & \(\mathbf{G}_{\mathbf{1}}\) & \(\mathbf{G}_{\mathbf{2}}\) & \(\mathbf{G}_{\mathbf{3}}\) & \(\mathbf{G}_{\mathbf{4}}\) & \(\mathbf{G}_{\mathbf{5}}\) & Mean \\
\hline \begin{tabular}{llllll}
\(\mathbf{P}_{\mathbf{0}}\) \\
\(\mathbf{P}_{\mathbf{1}}\)
\end{tabular} & \begin{tabular}{llllll}
1800 & 1950 & 2050 & 2080 & 2130 & 2050 \\
1820 & 2350 & 1920 & 1870 & 2030 & 1980
\end{tabular} & \begin{tabular}{l}
1995 \\
\hline Mean
\end{tabular} & 1810 & 2150 & 1985 & 1975 & 2080 \\
2015 & 2002
\end{tabular}

S E. of difference of two
1. G marginal mean
\(=235.1 \mathrm{lb} . / \mathrm{ac}\).
2. \(P\) marginal mean \(\quad=76.4 \mathrm{lb} . / \mathrm{ac}\).
3. P mean at the same level of \(G \quad=187.1 \mathrm{lb} . / \mathrm{ac}\).
4. G mean at the same level of \(P \quad=269.8 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi). Ref:-I.A.R.I. 53(17). Type :m' \({ }^{\text {( }}\).
Object :-To study the comparative value of various green manuring crops in point of view of organic matter and from plant food ingredients in promoting the yield of subsequent Wheat crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) 11.11.1953. (iv) (a) 3 discing with the help of disc harrow. 3 ploughings by desi plough followed by sohaga every time. (b) to (e) N.A. (v) No. (vi) N.P. 718. (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 10, 11.4.1954.

\section*{2. TREATMENTS :}

Main-plot treatments :
6 G.M. crops : \(G_{0}=\) Fallow (control), \(G_{1}=\) Guar, \(G_{2}=\) Sannhemp, \(G_{3}=\) Cowpea, \(G_{4}=\) Soyabean and \(\mathrm{G}_{5}=\) Dhaincha .
Sub-plot treatments :
2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{\mathrm{b}}\).
G.M. crops are incorporated in the soil on 28.9.1951.
3. DESIGN:
(i) Split-plot. (ii) (a) 6 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) \(1 / 60\) ac. (b) \(1 / 71.5 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) No lodging. (ii) Nil. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1312 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(152.2 \mathrm{lb} . / \mathrm{ac}\).
(b) \(115.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(\mathbf{G}\) effect alone is highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} \cdot / \mathrm{a}=\).
\begin{tabular}{c|cccccc|c} 
& \(G_{0}\) & \(G_{1}\) & \(G_{2}\) & \(G_{3}\) & \(G_{4}\) & \(G_{5}\) & Mean \\
\hline\(P_{0}\) & 867 & 1352 & 1487 & 1373 & 1123 & 1412 & 1269 \\
\(P_{1}\) & 812 & 1632 & 1577 & 1418 & 1120 & 1572 & 1355 \\
\hline Mean & 840 & 1492 & 1532 & 1396 & 1122 & 1492 & 1312
\end{tabular}
S.E. of difference of two
1. G marginal mean \(\quad=62.14 \mathrm{lb} . / \mathrm{ac}\).
2. \(\mathbf{P}\) marginal mean \(\quad=27.15 \mathrm{lb} . / \mathrm{ac}\).
3. P mean at the same level of \(G \quad=66.65 \mathrm{lb} . / \mathrm{ac}\).
4. G mean at the same level of \(P \quad=77.95 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi).
Ref:- I.A.R.I. 52(47). Type :- 'M'.
Object :-To study the effect of Wheat bhusa buried along with artificial manures on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 13.11.1952.
(iv) (a) Ploughing with victory 〔plough and tractor grubbing twice. (b) to (e) N.A. (v) N.A. (vi) N.A.
(vii) Irrigated. (viii) N.A. (ix) N.A. (x) 16, 17.4.1953.
2. TREATMENTS :

Main-plot treatments :
3 levels of bhusa: \(\mathrm{S}_{0}=0, \mathrm{~S}_{1}=20\) and \(\mathrm{S}_{2}=30 \mathrm{md} . / \mathrm{ac}\).
Sub-plot treatments :
5 doses of manures : \(\mathrm{M}_{0}=0, \mathrm{M}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, \mathrm{M}_{2}=40 \mathrm{lb}\)./ac. of \(\mathrm{N}, \mathrm{M}_{3}=60 \mathrm{lb}\)./ac. of N and \(\mathrm{M}_{4}=\) \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb} . / \mathrm{ac}\). of K.
N applied as A/S. Manures applied in \(\mathrm{S}_{1}\) and \(\mathrm{S}_{2}\) plots on 14.7.1952 and in \(\mathrm{S}_{0}\) plot on 11.11.1952.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/replication and 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(29.0^{\prime} \times 37.5^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(1658 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(847.5 \mathrm{lb} . / \mathrm{ac}\).
(b) \(395.0 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|ccccc:c} 
& \(\mathbf{M}_{\mathbf{0}}\) & \(\mathbf{M}_{\mathbf{1}}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{S}_{\mathbf{0}}\) & 1736 & 1769 & 1465 & 1201 & 1489 & 1532 \\
\(\mathrm{~S}_{\mathbf{1}}\) & 1991 & 1753 & 1860 & 1629 & 1637 & 1774 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 1893 & 1629 & 1547 & 1605 & 1670 & 1669 \\
\hline Mean & 1873 & 1717 & 1624 & 1478 & 1599 & 1658
\end{tabular}
S.E. of difference of two
1. S marginal means
\(=267.3 \mathrm{lb} . / \mathrm{ac}\).
2. \(M\) marginal means
3. \(M\) means at the same level of \(S\)
\(=161.2 \mathrm{lb} . / \mathrm{ac}\). \(=279.2 \mathrm{lb} / \mathrm{ac}\).
4. \(S\) means at the same level of \(M\)
\[
=320.5 \mathrm{lb} . / \mathrm{ac} .
\]

Crop:- Wheat (Rabi).
Ref :- I.A.R.I. 53(48). Type :- 'M'.

Object :-To study the effect of Wheat bhusa buried along with artificial manures on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 5.11.1953. (iv)
(a) Dry ploughing with victory and desi plough and land prepared with tractor disc. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) Gap filling on 4.12.1953. (ix) N.A. (x) 24 to 26.4.1954.
2. TREATMENTS :

Main-plot treatments:
3 levels of bhusa: \(\mathrm{S}_{0}=0, \mathrm{~S}_{1}=20\) and \(\mathrm{S}_{2}=30 \mathrm{md} . / \mathrm{ac}\).
Sub-plot treatments :
5 doses of manures : \(\mathrm{M}_{0}=0, \mathrm{M}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, \mathrm{M}_{2}=40 \mathrm{lb}\)./ac. of \(\mathrm{N}, \mathrm{M}_{3}=60 \mathrm{lb}\)./ac. of N and \(\mathrm{M}_{4}=\) \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb}\)./ac. of K .
Fertilizers in main-plot \(S_{0}\) were applied on 5.11.1953.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 3 main-plots/block and 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(37.5^{\prime} \times 29^{\prime}\).
(b) \(35.5^{\prime} \times 27^{\prime}\). (v) \(1^{\prime}\) on either side. (vi) Yes.

\section*{4. GENERAL :}
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1952-1954. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1601 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(274.0 \mathrm{lb} / \mathrm{ac}\).
(b) \(238.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{c|ccccc|c} 
& \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathbf{M}_{4}\) & Mean \\
\hline \(\mathrm{S}_{0}\) & 1489 & 1679 & 1547 & 1744 & 1531 & 1598 \\
\(\mathrm{~S}_{1}\) & 1687 & 1613 & 1654 & 1605 & 1761 & 1664 \\
\(\mathrm{~S}_{2}\) & 1572 & 1432 & 1580 & 1465 & 1654 & 1541 \\
\hline Mean & 1583 & 1574 & 1594 & 1605 & 1649 & 1601
\end{tabular}
S.E. of difference of two
\(\begin{array}{ll}\text { 1. } S \text { marginal means } & =86.4 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } M \text { marginal means } & =97.4 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } M \text { means at the same level of } S & =168.7 \mathrm{lb} / \mathrm{ac} . \\ \text { 4. } S \text { means at the same level of } M & \end{array}\)

Crop :- Wheat (Rabi). Ref :m I.A.R.I. 52(15). Type :- 'M'.
Object :-To study the effect of organic and inorganic manures applied to Wheat.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat-Maize-Peas. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 14.11 .1952 . (iv) (a) Double discing, single grubbing and double grubbing. (b) to (e) N.A. (v) N.A. (vi) N.P.760. (vii) Irrigated. (viii) Weeding and hand hoeing during 3 and 6.2.1953. (ix) N.A. (x) 5 to 8.4.1953.

\section*{2. TREATMENTS :}
1. Control.
2. \(A / S\) at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. A/S at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
4. F.Y.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
5. Castor at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).

Organic manures were applied fully to maize in kharif and inorganic manures half to maize in kharif and half to wheat in rabi.
3. DESIGN:
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 6 . (iv) (a) \(38^{\prime} \times 29^{\prime}\). (b) \(36^{\prime} \times 27^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1952-N.A. (b) Yes (up to 1956 kharif). (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1745 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(330.8 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are signifizant.
```

(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1203
2.	2443
3.	2209
4.	1312
5.	1558
S.E./mean	$=135.0 \mathrm{lb} . / \mathrm{ac}$.

```

Crop :- Wheat (Rabi).
Ref:- I.A.R.I. 50 (49).
Type :- 'M'.
Object:-To find out the optimum dose of N for Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 8, 9.11.1950. (iv) (a) 2 tractor ploughings and 3 discing. (b) Sown by kaira (behind desi plough). (c) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) Weeding with khurpi. (ix) N.A. (x) 24.4.1951.
2. TREATMENTS :

11 levels of \(N\) with \(P\) and \(K\) manures and a control : \(N_{0}=0, \quad N_{1}=10, N_{2}=20, N_{3}=30, N_{4}=40, N_{5}=50\), \(\mathrm{N}_{6}=60, \mathrm{~N}_{7}=70, \quad \mathrm{~N}_{8}=80, \quad \mathrm{~N}_{9}=90\) and \(\mathrm{N}_{10}=100\) lb ./ac. of N each with 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and 40 lb./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) \(8 . \quad\) (iv) (a) \(43^{\prime} \times 17^{\prime}\). (b) \(41^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of smuts-rogueing and burning the effected plants. (iii) Grain yield. (iv) (a) 1949N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(2369 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(317.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.
Control \(=1488 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
\(\mathbf{N}_{0}\) & 1582 & \(\mathbf{N}_{6}\) & 2516 \\
\(\mathrm{~N}_{1}\) & 1800 & \(\mathbf{N}_{7}\) & 2532 \\
\(\mathbf{N}_{2}\) & 2143 & \(\mathbf{N}_{8}\) & 3014 \\
\(\mathrm{~N}_{3}\) & 2281 & \(\mathrm{~N}_{9}\) & 3005 \\
\(\mathbf{N}_{\mathbf{4}}\) & 2533 & \(\mathrm{~N}_{10}\) & 3019 \\
\(\mathbf{N}_{5}\) & 2520 & & \\
& \multicolumn{2}{l}{ S.E./mean \(=112.3 \mathrm{lb} . / \mathrm{ac}\)} &
\end{tabular}

Crop :- Wheat (Rabi).
Ref :- I.A.R.I. 51(54).
Type :- 'M'.

Object:-To find out the optimum dose of N for Wheat.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 17.11.1951. (iv) (a) Tractor ploughing and grubbing, again tractor grubbing twice. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) Rouging on 28.3.1952. (ix) N.A. (x) 19/20.4.1952.
2. TREATMENTS :

11 levels of \(N\) with \(P\) and \(K\) manures and a control : \(N_{0}=0, N_{1}=10, \quad N_{2}=20, N_{3}=30, N_{4}=40, N_{5}=\) \(50, \mathrm{~N}_{6}=60, \mathrm{~N}_{7}=70, \mathrm{~N}_{8}=80, \mathrm{~N}_{9}=90\) and \(\mathrm{N}_{10}=\) \(100 \mathrm{lb} . / \mathrm{ac}\). of N each with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and 40 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
Agrophos and Potash were given before sowing and N was given with 1st irrigation.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 8 . (iv) (a) \(43^{\prime} \times 17^{\prime}\). (b) \(41^{\prime} \times 15^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1310 \mathrm{lb} / \mathrm{ac}\).
(ii) \(292.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=1144 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
\(\mathrm{N}_{0}\) & 1094 & \(\mathrm{~N}_{6}\) & 1325 \\
\(\mathrm{~N}_{1}\) & 1086 & \(-\mathrm{N}_{7}\) & 1316 \\
\(\mathrm{~N}_{2}\) & 1135 & \(\mathrm{~N}_{8}\) & 1316 \\
\(\mathrm{~N}_{3}\) & 1053 & \(\mathrm{~N}_{9}\) & 1646 \\
\(\mathrm{~N}_{4}\) & 1218 & \(\mathrm{~N}_{10}\) & 1489 \\
\(\mathrm{~N}_{5}\) & 1901 & & \\
& & & \\
& S.E./mean & \(=103.6 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 52(53). Type :- 'M'.

Object :-To find out the optimum dose of N for Wheat.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 12, 13.11.1952. (iv) (a) 1 ploughing with victory plough and 2 by desi plough. Preparing land with desi plough twice. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrig ated. (viii) Weeding once. (ix) N.A. (x) 18.4.1953.
2. TREATMENTS :

11 levels of \(N\) with \(P\) and \(K\) manures and a control : \(N_{0}=0, N_{1}=10, N_{2}=20, N_{3}=30, N_{4}=40, N_{5}=50\), \(\cdot N_{6}=60, N_{7}=70, N_{8}=80, N_{9}=90\) and \(N_{10}=100 \mathrm{lb} . / \mathrm{ac}\). of N each with 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and 40 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 8. (iv) (a) \(17^{\prime} \times 39^{\prime}\). (b) \(36^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Rust attack. (iii)\Grain yield. (iv) (a) \(1949-\) N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(29+2 \mathrm{lb} / \mathrm{ac}\).
(ii) \(367.9 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|}
\hline & Control & \multicolumn{2}{|l|}{\(=2632 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline Treatment & Av. yield & Treatment & Av. yield \\
\hline \(\mathrm{N}_{0}\) & 2753 & \(\mathrm{N}_{6}\) & 2938 \\
\hline \(\mathrm{N}_{1}\) & 2713 & \(\mathrm{N}_{7}\) & 2995 \\
\hline \(\mathrm{N}_{2}\) & 2914 & \(\mathrm{N}_{8}\) & 3260 \\
\hline \(\mathrm{N}_{3}\) & 2793 & \(\mathrm{N}_{8}\) & 3221 \\
\hline \(\mathrm{N}_{4}\) & 2986 & \(\mathrm{N}_{10}\) & 3187 \\
\hline \(\mathrm{N}_{5}\) & 2906 & & \\
\hline & S.E./mean & \(=112.3 \mathrm{lb}\). & \\
\hline
\end{tabular}
\[
\text { Crop :- Wheat (Rabi). } \quad \text { Ref :- I.A.R.I. 53(46). Type :- 'M'. }
\]

Object :-To find out the optimum dose of N for Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) \(9,10.10 .1953\). (iv) (a) 1 mould board plough one double discing and ploughing. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Bakharing and weeding. (ix) N.A. (x) 4.4.1954.

\section*{2. TREATMENTS :}

11 levels of \(N\) with \(P\) and \(K\) manures and a control: \(N_{0}=0, \quad N_{1}=10, \quad N_{2}=20, \quad N_{3}=30, \quad N_{4}=40, \quad N_{5}=50\), \(N_{6}=60, N_{7}=70, N_{8}=80, N_{9}=90\) and \(N_{10}=100 \mathrm{lb}\)./ac. of N each with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and 40 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
N applied as \(\mathrm{A} / \mathrm{S}\) half at sowing and half at the time of 1 st irrigation, and \(\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}\) as Super at sowing. A/S and Super applied by broadcast on 4, 5, 9.11.1953.
3. DESIGN :
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 8. (iv) (a) N.A. (b) \(1 / 60\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) The growth and stand of crop was excellent except in control plots till the crop lodged. Lodging was very marked in highly manured N plots and negligible in low N plots. No lodging in control plots. (ii) Mild attack of brown rust and later on black rust in some plots. (iii) Grain yield. (iv) (a) 1953-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) NiJ.
5. RESULTS:
(i) \(2059 \mathrm{lb} . / \mathrm{ac}\),
(ii) \(297.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cccc} 
& & Control & \(=1647 \mathrm{lb} . / \mathrm{ac}\). \\
Treatment & Av. yield & & Treatment
\end{tabular}\(\quad\) Av. yield
S.E./mean \(\quad=112.3 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 53(77). Type :- 'M'.
Object :-To study the differential response of three Wheat varieties at different levels of fertilizers.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 10.11.1953. (iv) (a) Discing, grubbing, making bunds for irrigation and ploughing with desi plough on \(6,7.11 .1953\). (b) to (e) N.A. (v) N.A. (vi) As per treatınents. (vii) Irrigated. (viii) Bakharing and weeding. (ix) N.A. (x) 28, 29.4.1954.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{6}=0 \mathrm{lb} . / a c ., N_{1}=20 \mathrm{lb} . / \mathrm{ac}\). and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0 \mathrm{lb}\)./ac., \(\mathrm{P}_{1}=20 \mathrm{lb}\)./ac. and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac.
(3) 3 varieties: \(\mathrm{V}_{1}=\) Local, \(\mathrm{V}_{2}=\) N.P. 718 and \(\mathrm{V}_{3}=\) N.P. 775.
3. DESIGN :
(i) \(3^{3}\) confounded factorial. (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii) One. (iv) (a) \(20 \mathbf{1}^{\prime} \times 54^{\prime}\). (b) \(15^{\prime} \times 48^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. Lodging in April. (ii) Light to medium attack of yellow brown rust and black rust. (iii) Grain yield. (iv) (a) 1953-N.A. (b) N.A. (c) N.A. (v) (a), (b) No. (vi) TThe weather during the growing period was normal except the storm in April which caused lodging. (vii) Nil.

\section*{5. RESULTS :}
(i) \(1640 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(1557 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathbf{P}_{\mathbf{2}}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathbf{V}_{2}\) & \(\mathbf{V}_{3}\) \\
\hline \(\mathrm{N}_{0}\) & 1214 & 1748 & 1809 & 1590 & 1537 & 1697 & 1537 \\
\hline \(\mathrm{N}_{1}\) & 2041 & 1668 & 1688 & 1799 & 1567 & 1769 & 2061 \\
\hline \(\mathrm{N}_{2}\) & 1355 & 1718 & 1517 & 1530 & 1305 & 1779 & 1506 \\
\hline Mean & 1537 & 1711 & 1671 & 1640 & 1470 & 1748 & 1701 \\
\hline \(\mathrm{V}_{1}\) & 1496 & 1396 & 1517 & 1470 & & & \\
\hline \(\mathrm{V}_{8}\) & 1567 & 1728 & 1950 & 1748 & & & \\
\hline \(\mathrm{V}_{3}\) & 1547 & 2010 & 1547 & 1701 & & & \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{S.E. of any marginal mean S.E. of body of any table}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& =519.0 \mathrm{lb} . / \mathrm{ac} \\
& =898.9 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
\]}} \\
\hline & & & & & & & \\
\hline
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 52(44). Type :- 'M'.

Object :- To find out the influence of compost on humus formation and on crop yield.

\section*{1. BASAL CONDITIONS:}
(i) (a) Maize-Wheat. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 19.11.1952. (iv) (a) Tractor discing and grubbing twice. Preparing land for sowing. (b) to (e) N.A. (v) N.A. (vi) N.P. 760. (vii) Irrigated. (viii) Hand hoeing from 3.2.1953 to 6.2.1953. (ix) N.A. (x) 14, 15.4.1953.

\section*{2. TREATMENTS :}

All combinations of (1) and (2) +3 levels of \(N\) as \(A / S\).
(1) 3 sources of \(N: S_{1}=\) Plastered trench compost, \(S_{2}=\) Above ground, heap compost and \(S_{3}=\) Exposed pit compost.
(2) 3 levels of \(\mathrm{N}: \mathrm{M}_{1}=40, \mathrm{M}_{2}=80\) and \(\mathrm{M}_{3}=120 \mathrm{lb}\)./ac. of N .

3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{3}=40 \mathrm{lb}\)./ac. of \(N\).
Fertilizers applied on 19.11.1952.
3. DESIGN:
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 6 . (iv) (a) \(24.66^{\prime} \times 30^{\prime}\). (b) \(22.66^{\prime} \times 28^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952 (kharif)-N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(979 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(336.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(S_{1}\) & 885 & 776 & 961 & 874 \\
\hline \(\mathrm{S}_{2}\) & 975 & 639 & 947 & 854 \\
\hline \(\mathrm{S}_{3}\) & 748 & 1105 & 913 & 922 \\
\hline Mean & 869 & 840 & 940 & 883 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=79.3 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body or N means & \(=137.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref: I.A.R.I. 53(46). Type :- ‘M’.
Object :-To study the influence of compost on humus formation and on crop yield.
1. BASAL CONDITIONS:-
(i) (a) Maize-Wheat. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 24.11.1953. (iv) (a) Dry victory ploughing, soaking and preparation of land. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Bakharing and weeding. (ix) N.A. (x) 19.4.1954.

\section*{2. TREATMENTS :}

All combinations of (1) and (2) +3 levels of N as \(\mathrm{A} / \mathrm{S}\).
(1) 3 sources of \(N: S_{1}=\) Plastered trench compost, \(S_{2}=\) Above ground, heap compost and \(S_{3}=\) Exposed pit compost.
(2) 3 levels of \(N: M_{1}=40, M_{2}=80\) and \(M_{3}=120 \mathrm{lb}\)./ac. of N .

3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac. of \(N\).
Fertilizers applied on 23.11.1953.
3. DESIGN:
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 6 . (iv) (a) \(24.5^{\prime} \times 30^{\prime}\). (b) \(22.66^{\circ} \times 28^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952 kharif-N.A. (b) Yes. (c) N.A. (v) (a). (b) No. (vi) Nil. (vii) Nil.'

\section*{5. RESULTS :}
(i) \(1243 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(294.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l}
\(\mathrm{N}_{0}=1170 \mathrm{lb} . / \mathrm{ac} . ; \mathrm{N}_{1}=1507 \mathrm{lb} . / \mathrm{ac} . ; \mathrm{N}_{2}=1493 \mathrm{lb} . / \mathrm{ac}\). \\
\\
\hline \(\mathrm{S}_{1}\) \\
\(\mathrm{~S}_{2}\) \\
\(\mathrm{~S}_{3}\)
\end{tabular}

Crop :- Wheat (Rabi).
Ref:- I.A.R.I. 49(5).
Type :- 'M'.

Object :-To test the efficiency of different organic manures on Wheat.

\section*{1. BASAL CONDITIONS:}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 6.11.1949. (iv) (a) Tractor discing on 4.11.1949. (b) to (e) N.A. (v) Nil. (vi) N.P.165. (vii) Irrigated. (viii) Weeding on 17.1.1950. (ix) N.A. (x) 1 st week of April 1949.

\section*{2. TREATMENTS :}
1. Sanhemp (G.M.) grown in situ.
5. F.Y.M. at \(40 \mathrm{lb} . / \mathrm{ac}\). of N.
2. Cowpea (G.M.) grown in situ.
6. Leaf compost at 40 lb ./ac. \({ }^{2}\) of N .
3. Mustard cake at 40 lb ./ac. of N .
7. A/S at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
4. Castor cake at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
8. Control.

\section*{3. DESIGN:}
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6 . (iv) (a) \(72^{\prime} \times 36^{\prime}\). (b) \(66^{\prime} \times 30^{\prime}\). (v) \(3^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) G.M. plots have better growth. (ii) Sulphur dusting to cheek rust. (iii) Grain yield. (iv)】(a) 1944-1949. (b) N.A. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(1432 \mathrm{lb} / \mathrm{ac}\).
(ii) \(259.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 2094 & 5. & 1170 \\
2. & 1665 & 6. & 1192 \\
3. & 1434 & 7. & 1434 \\
4. & 1316 & 8. & 1148 \\
& S.E./mean & \(=106.0 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{Crop:- Wheat (Rabi). \\ Ref :- I.A.R.I. 50(47). Type:- 'M'.}

Object :-To test the effect of organic manures and fertilizers on the yield of Wheat.
1. BASAL CONDITIONS:
(i) (a) Wheat-Maize. (b) and (c) N.A. (ii) (a) Refer item 11 on page 143. (iii) Wheat on 19.11.1950 and guar on 15.7.1950. (iv) (a) 1 ploughing, grubbing and discing with tractor. (b) to (e) N.A. (v) N.A. (vi) N.P.750. (vii) Irrigated. (viii) Weeding on 13.2.1951. (ix) 3.46*. (x) 21.4.1951.
2. TREATMENTS:

Main-plot treatments :
4 organic manures: \(\mathrm{M}_{0}=\) No manure, \(\mathrm{M}_{1}=\) Guar as G.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, \mathrm{M}_{2}=\) Castor cake at 60 \(\mathrm{lb} . / \mathrm{ac}\). of N and \(\mathrm{M}_{3}=\) F.Y.M. at 60 lb ./ac. of N .
Sub-plot treatments :
5 inorganic manures: \(\mathrm{T}_{0}=\) No manure, \(\mathrm{T}_{1}=\mathrm{A} / \mathrm{S}\) at 40 lb ./ac. of \(\mathrm{N}, \mathrm{T}_{\mathbf{2}}=\) Super at \(80 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{3}\), \(T_{3}=\left(T_{1}\right)+\left(T_{2}\right)\) and \(T_{4}=\left(T_{3}\right)+\) Pot. Sul. at \(60 \mathrm{lb} . / a c\). of \(\mathrm{K}_{2} \mathrm{O}\).
Guar buried on 8.9.1950 and Super, in guar plots, as bone Super, given on 8.9.1950. A/S and Pot. Sul. applied on 16.11.1950. F.Y.M. and Castor cake applied on 15.11 .1950 and in their sub-plots, bone Super was given on 24.10.1950, Pot. Sul. and A/S were given on 16.11.1950. In the unmanured main-plot, the fertilizers are applied at sowing time by placement, with desi plough.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 4 main-plots/block and 5 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(51^{\prime} \times 24^{\prime}\). (b) \(49^{\prime} \times 22^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1538 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(100.2 \mathrm{lb} . / \mathrm{ac}\).
(b) \(33.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only \(\mathbf{T}\) effect is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|ccccc:c} 
& \(T_{0}\) & \(T_{1}\) & \(T_{2}\) & \(T_{3}\) & \(T_{4}\) & Mean \\
\hline \(\mathbf{M}_{\mathbf{1}}\) & 1218 & 1528 & 1595 & 1467 & 1797 & 1521 \\
\(\mathrm{M}_{\mathbf{2}}\) & 1763 & 1615 & 1629 & 1831 & 1884 & 1744 \\
\(\mathrm{M}_{3}\) & 1380 & 1333 & 1561 & 1568 & 1588 & 1486 \\
\(\mathrm{M}_{4}\) & 1293 & 1353 & 1353 & 1467 & 1541 & 1403 \\
\hline Mean & 1415 & 1457 & 1534 & 1583 & 1702 & 1538
\end{tabular}
S.E. of difference of two
\(\begin{array}{ll}\text { 1. } \mathbf{M} \text { marginal means } & =25.87 \mathrm{I} . / \mathrm{ac} . \\ \text { 2. } T \text { marginal means } & =9.70 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } T \text { means at the same level of } M & \\ & =19.40 \mathrm{lb} . / \mathrm{ac} .\end{array}\)
4. \(M\) means at the same level of \(T \quad=31.15 \mathrm{lb} \cdot / \mathrm{ac}\).

Crop:- Wheat (Rabi). Ref:- I.A.R.I. 52(50). Type :- 'M'.
Object :-To test the effect of organic manures and fertilizer on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Wheat-Maize-Wheat. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Guar on 2.7.1952 and wheat on 7, 10.11.1952. (iv) (a) Ploughing with victory and desi plough, discing and beaming. (b) to (e) N.A. (v) N.A. (vi) N.P.760. (vii) Irrigated. (viii) N.A. (ix) \(15.81^{\circ}\). (x) Guar: 7.9.1953 and Wheat: 7 to 11.4.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 organic manures : \(\mathrm{M}_{\mathbf{0}}=\) No manure, \(\mathrm{M}_{1}=\) Guar as G.M. at 60 lb ./ac. of \(\mathbf{N}, \mathbf{M}_{\mathbf{2}}=\) Castor cake at 60 lb./ac. of N and \(\mathrm{M}_{3}=\) F.Y.M. at 60 lb ./ac. of N .

\section*{Sub-plot treatments :}

5 inorganic manures : \(T_{0}=\) No manure, \(T_{1}=A / S\) at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(N, T_{2}=\) Super at \(80 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{6}\), \(T_{3}=\left(T_{1}\right)+\left(T_{2}\right)\) and \(T_{4}=\left(T_{3}\right)+\) Pot. Sul. at 60 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
To Guar plots Super was given at sowing time on 2.7.1952, F.Y.M. during 26 to 30.9 .1952 aad castor cake on 5.11.1952. A/S and Pot. Sul. to manured main-plots on 4.11.1952. Fertilizers to unmanured main-plots at sowing time during 7 to 10.11 .1352 .
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block and 5 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(51^{\prime} \times 24^{\prime}\). (b) \(48^{\prime} \times 21^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) N.A. (iii) Grain yield
iv) (a) 1950-N.A.
(b) Yes.
(c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1417 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(305.1 \mathrm{lb} . / \mathrm{ac}\).
(b) \(165.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(T\) effect is highly significant and interaction is significant, while \(M\) effect is not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|ccccc|c} 
& \(\mathrm{T}_{\mathbf{0}}\) & \(\mathrm{T}_{1}\) & \multicolumn{1}{c}{\(\mathrm{~T}_{\mathbf{2}}\)} & \(\mathrm{T}_{\mathbf{3}}\) & \(\mathrm{T}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{M}_{0}\) & 1154 & 1487 & & 994 & 1582 & 1392 \\
\(\mathrm{M}_{1}\) & 1400 & 1590 & 1534 & 1629 & 1668 & 1322 \\
\(\mathrm{M}_{2}\) & 1275 & 1598 & 1361 & 1465 & 1577 & 1564 \\
\(\mathrm{M}_{3}\) & 1106 & 1469 & 1137 & 1452 & 1478 & 1328 \\
\hline Mean & 1234 & 1536 & 1256 & 1532 & 1529 & 1417
\end{tabular}
S.E. of difference of two
1. \(M\) marginal means \(\quad=78.77 \mathrm{lb} . / \mathrm{ac}\).
2. T marginal means \(\quad=47.71 \mathrm{lb} / \mathrm{ac}\).
3. T means at the same level of \(\mathbf{M} \quad=95.42 \mathrm{lb} . / \mathrm{ac}\).
4. \(M\) means at the same level of \(T \quad=116.20 \mathrm{lb} . / \mathrm{ac}\).

> Crop :- Wheat (Rabi). Ref:- I.A.R.I. 53(52). Type :- 'M'.

Object :-To test the effect of organic manures and fertilizers on the yield of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) Wheat-M aize-Wheat. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 15.11.1953. (iv) (a) Discing with tractor twice, ploughing with desi plough and beaming. (b) to (e) N.A. (v) N.A. (vi) N.P. 760. (vii) Irrigated. (viii) Weeding. (ix) \(5.30^{\circ}\). (x) N.A.

\section*{TREATMENTS :}

\section*{Main-plot treatments :}

4 organic manures: \(\mathrm{M}_{0}=\) No manure, \(\mathrm{M}_{\mathbf{1}}=G u a r\) as \(G . M\) at 60 lb ./ac. of \(\mathrm{N}, \mathrm{M}_{2}=\) Castor cake at 60 \(\mathrm{lb} . / \mathrm{ac}\). of N and \(\mathrm{M}_{3}=\) F.Y.M. at 60 lb ./ac. of N .
Sub-plot treatments:
5 inorganic manures: \(\mathrm{T}_{0}=\) No manure, \(\mathrm{T}_{1}=\mathrm{A} / \mathrm{S}\) at 40 lb ./ac. of \(\mathrm{N}, \mathrm{T}_{\mathbf{2}}=\) Super at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\), \(T_{3}=\left(T_{1}\right)+\left(T_{2}\right)\) and \(T_{4}=\left(T_{3}\right)+\) Pot. Sul. at 50 lb ./ac. of \(K_{2} O\).

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 4 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(51^{\prime} \times 24^{\prime}\). (b) \(48^{\prime} \times 21^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(\quad 352.9 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(240.3 \mathrm{lb} . / \mathrm{ac}\).
(b) \(259.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{l|ccccc:c} 
& \(\mathbf{T}_{0}\) & \(\mathbf{T}_{\mathbf{1}}\) & \(\mathbf{T}_{\mathbf{2}}\) & \(\mathbf{T}_{\mathbf{3}}\) & \(\mathbf{T}_{\mathbf{4}}\) & Mean \\
\hline \(\mathbf{M}_{\mathbf{0}}\) & 289.6 & 325.9 & 290.5 & 289.6 & 297.9 & .298 .7 \\
\(\mathbf{M}_{1}\) & 395.0 & 443.5 & 385.1 & 469.0 & 409.0 & 408.3 \\
\(\mathbf{M}_{2}\) & 281.4 & 360.4 & 313.5 & 353.0 & 381.0 & 337.9 \\
\(\mathbf{M}_{3}\) & 353.0 & 383.5 & 361.2 & 365.3 & 369.5 & 366.5 \\
\hline Mean & 329.8 & 378.3 & 337.6 & 354.2 & 364.4 & 352.9
\end{tabular}
S.E. of difference of two
\begin{tabular}{rlr} 
1. M marginal means & \(=62.04 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(T\) marginal means & & \(=74.82 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(T\) means at the same level of \(M\) & & \(=149.64 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(M\) means at the same level of \(T\) & & \(=147.53 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Wheat (Rabi). Ref:- I.A.R.I. 51(27). Type :- 'M'.
Object :-To study the effect of soyabean grown for grain, fodder and G.M. on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Soyabean-Wheat. (b) Soyabean. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 2.11.1951. (iv) ra) Ploughing with desi plough twice. (b) to (e) N.A. (v) Nil. (vi) N.P. 775. (vii) Irrigated. (viii) Hoeing with oudh plough. (ix) N.A. (x) 22.3.1952.
2. TREATMENTS :
1. Soyabean for grain-Wheat.
2. Soyabean for fodder-Wheat.
3. Soyabean for G.M.-Wheat.
4. Fallow-Wheat.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 40 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) \(1951-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1375 \mathrm{lb} / \mathrm{ac}\).
(ii) \(254.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 823 \\
2. & 1385 \\
3. & 1405 \\
4. & 1887 \\
S.E./mean & \(=127.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Wheat (Rabi). Ref :- I.A.R.I. 52(33). Type :- 'M'.}

Object :-To study the effect of soyabean grown for grain, fodder and G.M. on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Soyabean-Wheat. (b) Soyabean. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 3.12.1952. (iv) (a) Ploughing with desi plough twice. (b) to (e) N.A. (v) N.A. (vi) N.P. 775. (vii) Irrigated. (viii) Rouging once. (ix) N.A. (x) 5.4.1953.
2. TREATMENTS :
1. Soyabean for grain-Wheat.
2. Soyabean for fodder-Wheat.
3. Soyabean for G.M.-Wheat.
4. Fallow-Wheat.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 40\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Gräin yiold. (iv) (a) \(1951-\) N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1329 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(134.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 883 \\
2. & 1103 \\
3. & 1605 \\
4. & 1726 \\
S.E./mean & \(=67.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 53(29). Type :- ' \(M\) '.
Object :-To study the effect of soyabean grown for grain, fodder and G.M. on yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Soyabean-Wheat. (b) Soyabean. (c) Super at \(85 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii) (a) and (b) Refer item 11 on page 143. (iii) 2.11.1953. (iv) (a) Ploughing by victory plough once, with desi plcugh twice. (b) N.A. (c) \(1 \mathrm{md} . / \mathrm{ac}\). (d) and (e) N.A. (v) Nil. (vi) N.P. 775. (vii) Irrigated. (viii) Bakharing. (ix) N.A. (x) 4 to 8.4. 1953.
2. TREATMENTS :
1. Soyabean for grain-Wheat.
2. Soyabean for fodder-Wheat.
3. Soyabean for G.M.-Wheat.
4. Fallow-Wheat.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 40\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of smuts. (iii) Yield of fodder. (iv) (a) 1951-N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) 0.48 ton ac .
(ii) 0.05 ton/ac.
(iii) Treatment diferences are highly significant.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 0.34 \\
2. & 0.46 \\
3. & 0.53 \\
4. & 0.61 \\
S.E./mean & \(=0.03\) ton \(/ \mathrm{ac}\).
\end{tabular}

Crop:- Wheat (Rabi).
Ref :- I.A.R.I. 48(18).
Type :- ' M ’.
Object:-To study the response of phosphatic manuring of berseem and its residual effect on Wheat after taking maize crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Berseem-Maize-Wheat. (b) Maize. (c) Nil. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.11.1948. (iv) (a) 4 discings. (b) to (e) N.A. (v) F.Y.M. at 10 ton/ac. (vi) C.518. (vii) Irrigated. (viii) Lever harrow on 21.12.1948. (ix) \(0.94^{\prime \prime}\). (x) 19 to 22.4.1949.
2. TREATMENTS :
1. No manure.
2. B.M. at \(\mathbf{1 2 0 ~ l b}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at \(120 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 12 Jb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at \(60 \mathrm{lb} . / \mathrm{a}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Ammo. Phos. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). 6. B.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

Treatments are given to berseem during 1947.
3. DESIGN :
(i) R.B.D. (ii) (i) 6 .
(b) N.A.
(iii) 3. (iv) (a) N.A.
(b) \(16.5^{\prime} \times 33^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) 1944-1948. (b) and (c) N.A. (v) (a) and (b) Nit. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2683 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(275.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
Treatment Av. yield
1. 2765
2. 2621
3. 2774
4. 2642
5. 2564
6. 2732

S E. \(/\) mean \(=159.1 \mathrm{lb} / \mathrm{ac}\).

Crop:- Wheat (Rabi).
Ref :- I.A.R.I. 43(14). Type :- 'M'.
Object :-To study the effect of phosphatic manuring of berseem without any basal manure.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Berseem. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.11.1948. (iv) (a) Discing 4 times. (b) to (e) N.A. (v) Nil. (vi) C.518. (vii) Irrigated. (viii) Lever harrow on 21.12.1948. (ix) \(0.94^{\prime \prime}\). (x) 22.4.1949 and 2.5.1949.

\section*{2. TREATMENTS :}
1. No manure.
2. B.M. at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Ammo. Phos. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. B.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

Treatments applied last year.
3. DESIGN:
(i) R.B.D.
(ii) (a) 6
(b) N.A.
(iii) 3
(iv) (a)
a) N.A.
(b) \(16.5^{\prime} \times 33^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Mild attack of brown rust. (iii) Grain yield. (iv) (a) 1944-1948. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1934 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(181.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 2012 \\
2. & 1657 \\
3. & 2204 \\
4. & 1844 \\
5. & 2097 \\
6. & 1793 \\
S.E./mean & \(=104.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop:-Wheat (Rabi).}

Ref :- I.A.R.I. 48(4). Type :- 'M'.
Object :-To study the residual effect of phosphatic manures on berseem and then on Wheat.
1. BASAL CONDITIONS :
(i) (a) Berseem-Guar-Wheat-Guar-Wheat. (b) Guar. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 19.11.1948. (iv) (a) Discing 4 times and grubbing once. (b) to (e) N.A. (v) Nil. (vi) C-518. (vii) Irrigated. (viii) N.A. (ix) 1.44". (x) 27.4.1949.
2. TREATMENTS:
1. No manure. . 7. (5) \(+\mathrm{A} / \mathrm{S}\) at \(30 \mathrm{lb} . / \mathrm{ac}\). of N .
2. Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{3}\).
8. (2) \(+\mathrm{A} / \mathrm{S}\) at \(30 \mathrm{lb} . / \mathrm{ac}\). of N .
3. Super at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\) at 30 lb ./ac. of N .
4. (2) \(+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
10. Super at 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. (3) \(+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
11. Super at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. (4) \(+\mathrm{A} / \mathrm{S}\) at 30 lb ./az. of N .

Treatments applied to berseem in 1946.
3. DESIGN:
(i) R.B.D. (ii) (a) 11 . (b) N.A. (iii) 6. (iv) (a) \(58^{\prime} \times 25^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of orange rust. (iii) Grain yield. (iv) (a) 1946-1948. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1740 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(329.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differ ences are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1818 & 7. & 1558 \\
2. & 1772 & 8. & 1462 \\
3. & 1757 & 9. & 1679 \\
4. & 1637 & 10. & 1892 \\
5. & 1701 & 11. & 2027 \\
6. & 1841 & & \\
& S.E. \(/\) mean & \(=134.7 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 48(3'. Type :- 'M'.
Object :-To study the effect of phosphati= manuring on berseem and its residual effect on Wheat.

\section*{1. BASAL CONDITIONS:}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 19.11 .1948 . (iv) (a) to (e) N.A. (v) N.A. (vi) C.518. (vii) Irrigated. (viii) N.A. (ix) \(0.94^{\circ}\). (x) 24.4.1949.
2. TREATMENTS:
1. No manure.
7. (5) +A/S at \(30 \mathrm{lb} . / \mathrm{ac}\). of N .
2. Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
8. (2) \(+\mathrm{A} / \mathrm{S}\) at 30 lb ./ac. of N .
3. Super at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. (3) \(+\mathrm{A} / \mathrm{S}\) at \(30 \mathrm{lb} . / \mathrm{ac}\). of N .
4. \((2)+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
10. \(\frac{1}{2}\) of (2) + F.Y.M. at 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. (3) +80 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
11. \(\frac{1}{2}\) of \((3)+\) F.Y.M. at \(60 \mathrm{lb} . / a c\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. (4) \(+A / S\) at 30 lb ./ac. of \(N\).

Treatments applied to Berseem in 1946.
3. DESIGN :
(i) R.B.D. (ii) (a) 11 . (b) N.A. (iii) 6 . (iv) (a) \(58^{\prime} \times 25^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of rust. (iii) Grain yield. (iv) (a) 1946 -N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1855 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(350.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. y ield \\
1. & 1486 & 7. & 1767 \\
2. & 1656 & 8. & 1957 \\
3. & 1972 & 9. & 1624 \\
4. & 2242 & 10. & 1892 \\
5. & 1759 & 11. & 1995 \\
6. & 2030 & & \\
\multicolumn{4}{c}{ S.E./mean }
\end{tabular}

Crop:- Wheat (Rabi). Ref:- I.A.R.I. 48(6). Type:~'M'.
Object:-To build up soil ferility through phosphatic manuring of berseem in Berseam-Guar-Whiat retation.
1. BA SAL CONDITIONS:
(i) (a) Berseem-Guar-Wheat. (b) Guar. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) C.518. (vii) N.A. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS:
1. No manure.
2. Super at \(60 \mathrm{lb} . / \mathrm{a}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Super at 12 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
5. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb}\). \(/ \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
6. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}+\mathrm{A} / \mathrm{S} 30 \mathrm{lb} . / \mathrm{ac}\). of N .
7. Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}+\mathrm{A} / \mathrm{S} 30 \mathrm{lb}\). ac . of N .
8. Super at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\) at 30 lb ./ac. of N .
9. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\) at 30 lb ./ac. of N .
10. Super at 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 30 lb ./ac .of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 11. (b) N.A. (iii) 6. (iv) (a) \(50^{\prime} \times 25^{\prime}\). (b) N.A. (v) N.A. (vi) Yes
4. GENERAL :
(i) N.A. (ii) N.A. (iii) No. of tillers per plant. (iv) (a) \(1946-1948\). (b) Yes. (c) N.A \({ }_{0}\) (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) 4.44 tillers/plot.
(ii) 1.12 tillers/plot.
(iii) Treatment differences are not significant.
(iv) Av. no. of tillers per plant.
\begin{tabular}{cccc} 
Treatment & Av. no. of tillers & Treatment & Av. no. of tillers \\
1. & 4.3 & 7. & 3.9 \\
2. & 4.2 & 8. & 4.8 \\
3. & 4.3 & 9. & 5.2 \\
4. & 4.0 & 10. & 4.0 \\
5. & 5.1 & 11. & 4.3 \\
6. & 4.7 & & \\
& S.E./mean & \(=0.46\) tillers/plot. &
\end{tabular}

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 48(5). Type :- 'M'.
Object :-To build up soil fertility through phosphatic manuring of berseem in rotation.

\section*{1. BASAL CONDITIONS:}
(i) (a) Berscem-Guar-Wheat. (b) Guar. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) Nil. (vi) C. 518 . (vii) N.A. (viii) N.A. (ix N.A. (v) N.A.
2. TREATMENTS:
1. No manure.
2. Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5} .4 \mathrm{Pot}\). Sul. at 80 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
5. Super at \(120 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{8} \mathrm{O}_{6}+\) Pot. Sul. at 80 lb . \(/ \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
6. Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at \(80 \mathrm{lb} . / \mathrm{ac}+\mathrm{A} / \mathrm{S}\) at \(30 \mathrm{lb} . / \mathrm{ac}\). of N .
7. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 80 lb ./ac. \(+\mathrm{A} / \mathrm{S}\) at 30 lb ./ac. of N .
8. Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\) at 30 lb ./ac. of N .
9. Super at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{\mathbf{3}} \mathrm{O}_{6}+\mathrm{A} / \mathrm{S}\) at \(30 \mathrm{lb} . / \mathrm{ac}\). of N .
10. Super at 30 .b./az. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. Super at 60 lb /ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 11 . (b) N.A. (iii) 6 . (iv) \(58^{\prime} \times 25^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Number of tillers per plant. (iv) (a) \(1946-1948\). (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 5.2 tillers/plot.
(ii) 1.37 tllers'plot.
(iii) Treatment differences are not significant.
(iv) Av. no. of tillers/plot.
\begin{tabular}{cccc} 
Treatment & Av. no. of tillers & Treatment & Av. no. of tillers \\
1. & 4.9 & 7. & 5.2 \\
2. & 5.7 & 8. & 4.5 \\
3. & 4.9 & 9. & 5.5 \\
4. & 4.4 & 10. & 4.9 \\
5. & 5.2 & 11. & 5.5 \\
6. & 6.2 & &
\end{tabular}

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 49(6). Type:- 'M'.
Object :-To build up soil fertility through phosphatic manuring of berseem in rotation.

\section*{1. BASAL CONDITIONS :}
(i) (a) Berseem-Guar-Wheat. (b) Guar. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) C-518. (vii) to (x) N.A.
2. TREATMENTS :
1. Control.
2. 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
4. Treatment (2) +80 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
5. Treatment (3) +80 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
6. Treatment (4) \(+30 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
7. Treatment \((5)+30 \mathrm{lb} . / \mathrm{ac}\). of N as \(A / S\).
8. Treatment (2) +30 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
9. Treatment (3) +30 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
10. \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as F.Y.M.
11. Treatment (2) +60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as F.Y.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 11 . (b) N.A. (iii) 6 . (iv) (a) \(58^{\circ} \times 25^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) No. of tillers per plant. (iv) (a) 1946-1949. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 4.33 tillers/plant.
(ii) 3.41 tillers/plant.
(iii) Treatment differences are not significant.
(iv) Av. number of tiller per plant.
\begin{tabular}{cccc} 
Treatment & Av. no. of tillers & Treatment & Av. no. of tillers \\
1. & 4.6 & 7. & 4.3 \\
2. & 4.1 & 8. & 4.4 \\
3. & 3.9 & 9. & 5.4 \\
4. & 3.9 & 10. & 3.9 \\
5. & 4.9 & 11. & 3.9 \\
6. & 4.3 & & \\
& S.E./mean & \(=1.39\) tillers/plant.
\end{tabular}

Crop :- Wheat (Rabi).
Ref:- I.A.R.I. 48(12).
Type :- ' \(\mathbf{M}\) '.
Object:-To study the effect of phosphatic manuring of berseem on Wheat, with sannhemp as basal dressing.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.11.1948. (iv) (a) 3 discings and grubbing. (b) to (e) N.A. (v) Sannhemp as G.M. (vi) C-518. (vii) Irrigated. (viii) Lever harrow worked on 17.12.1948. (ix) \(0.94^{\prime \prime}\). (x) 30.4.1949.

\section*{2. TREATMENTS :}
1. No manure.
2. B.M. at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at 120 lb ./ac of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). + Ammo. Phos. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

Treatments were given to berseem in 1947-1948.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(16.5^{\prime} \times 35^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL: ,
(i) Poor at several places due to lack of moisture. (ii) Nil. (iii) Grain yield. (iv) (a) 1944-1948. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1896 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(401.5 \mathrm{lb} / / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb ./ac. Treatment Av. yield
1.2021
2. 1725
3. 2121
4. 1814
5. 2018
6. 1680
S.E. \(/\) mean \(\quad=231.8 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 53(52). Type :- 'M'.
Object:-To find out suitable manure mixture for Wheat.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 21.11.1953. (iv) (a) Ploughing with victory plough once. Preparing land with desi plough twice. (b) to (e) N.A. (v) N.A. (vi) N.P. 761. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS:
1. \(50 \mathrm{lb} . / \mathrm{ac}\). of \(A / S+140 \mathrm{lb} . / \mathrm{ac}\). of G.N.C.
2. 50 lb ./ac. of \(A / S+364 \mathrm{lb} / \mathrm{ac}\). of G.N.C.
3. 70 lb ./ac. of Ammo. Phos. +364 lb ./ac. of G.N.C.
4. \(100 \mathrm{lb} . / \mathrm{ac}\). of \(A / S+280 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. \(+875 \mathrm{lb} . / \mathrm{ac}\). of Super.
5. \(50 \mathrm{lb} . / \mathrm{ac}\). of \(A / S+140 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. \(+44 \mathrm{lb} . / \mathrm{ac}\). of Super.
6. \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}+280 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. \(+140 \mathrm{lb} . / \mathrm{ac}\). of Super.
7. \(70 \mathrm{lb} . / \mathrm{ac}\). of Ammo. Phos. \(+196 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. \(+60 \mathrm{lb} . / \mathrm{ac}\). of Super.
8. 100 lb ./ac. of \(A / S+50 \mathrm{lb}\)./ac. of triple Super.
9. \(200 \mathrm{lb} . / \mathrm{ac}\). of \(A / S+100 \mathrm{lb}\)./ac. of triple Super.
10. \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\).
11. \(200 \mathrm{lb}, / \mathrm{ac}\). of \(\mathrm{A}^{\prime} \mathrm{S}\).
12. Control.
3. DESIGN:
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 60\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1953-\) N.A. (b) N.A. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.

\section*{5. RESULTS :}
(i) \(1687 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(210.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1728 & 7. & 1818 \\
2. & 1670 & 8. & 1662 \\
3. & 1720 & 9. & 1563 \\
4. & 1572 & 10. & 1761 \\
5. & 1712 & 11. & 1761 \\
6. & 1712 & 12. & 1563 \\
& S.E./mean & \(=105.3 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 53(27). Type :- 'M'.
Object :-To study optimum time of the application of fertilizers to Wheat.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 17.11.1953. (iv) (a) Ploughing with victory plough, disced twice, levelling, ploughing and harrowing. (b) Sown with seed drill. (c) to (e) N.A. (v) No. (vi) N.P. 710. (vii) Irrigated. (viii) Bakharing and weeding. (ix) N.A. (x) 16.4.1954.

\section*{2. TREATMENTS :}

All combinations of (1) and (2) + a control.
(1) 2 times of application \(: T_{1}=\) At time of sowing. \(T_{2}=\) At the time of first irrigation.
(2) 3 sources of \(\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}\). \(\mathrm{S}_{2}=\) Ammo. Nitrate and \(\mathrm{S}_{3}=\) Urea.

Application of \(\mathrm{A} / \mathrm{S}, \mathrm{A} / \mathrm{N}\) and Urea on 11.11.1953 a nd second application on 8.1.1954.
3. DESIGN:
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4 . (iv) \(22^{\prime} \times 49.5^{\prime}\). (b) \(1 / 60\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Severe lodging. (ii) Mild rust attack on border plants, earheads damaged by rats. (iii) Grain yreld. (iv) (a) 1953-1954. (b) No. (c) N.A. (v) (a), (b) No. (vi) The wind storm on 19.2.1954 caused severe lodging. (vii) Nil.
5. RSSULTS:
(i) \(1500 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(68.64 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccc|c} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & Mean \\
\hline \(\mathrm{T}_{1}\) & 1588 & 1379 & 1528 & 1498 \\
\(\mathrm{~T}_{2}\) & 1594 & 1468 & 1558 & 1540 \\
\hline Mean & 1591 & 1423 & 1543 & 1519
\end{tabular}
S.E. of \(S\) marginal means
S.E. of \(T\) marginal means
S.E. of body of table or control mean
\(=24.27 \mathrm{lb} / \mathrm{ac}\).
\(=19.82 \mathrm{lb} . / \mathrm{ac}\).
\(=34.32 \mathrm{lb} . / \mathrm{ac}\).

Object :-To study the optimum time of application of fertilizers to Wheat.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item:11 on page 143. (iii) 17.11.1950. (iv) (a) Tractor grubbing and discing twice. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Weeding. (ix) N.A. (x) 25.4.1951.
2. TREATMENTS:

All combinations of (1) and (2)+a control.
(1) 4 sources of \(N: S_{1}=A / S, S_{2}=A / S / N, S_{3}=C / N\) and \(S_{4}=\) Urea.
(2) 3 times of application of \(\mathrm{N}: \mathrm{T}_{1}=\) At sowing, \(\mathrm{T}_{2}=\) At 1 st irrigation and \(\mathrm{T}_{3}=\) At 2 nd irrigation.
3. DESIGN :
(i) R.B.D.
(ii) (a) 13. (b) N.A. (ii)
iii) 4. (iv) (
a) N.A. (b)
(b) \(34^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Sulphur dusting against rust on 5.2 .1951 and 20.2.1951. (iii) Grain yield. (iv) (a) 1950-N.A.
(b) N.A. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1298 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(312.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.

Control \(=1088 \mathrm{lb} . / \mathrm{ac}\).
\(\left.\begin{array}{c|ccc} & T_{1} & T_{2} & T_{3} \\
\hline S_{1} & 1340 & 1220 & 1180 \\
S_{2} & 1440 & 1350 & 1260 \\
S_{3} & 1400 & 1510 & 1240 \\
S_{4} & 1210 & 1380 & 1260 \\
\hline \text { Mean } & 1347 & 1365 & 1235\end{array}\right]\)\begin{tabular}{l}
1347 \\
\hline 1383 \\
\hline
\end{tabular}

> S.E. of \(T\) marginal mean
> S.E. of \(S\) marginal mean
> S.E. of body of table
\(=78.0 \mathrm{lb} . / \mathrm{ac}\).
\(=90.1 \mathrm{lb} . / \mathrm{ac}\).
\(=156.0 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Wheat (Rabi). Ref:- I.A.R.I. 51(2). Type :- 'M'.}

Object :-To study the residual effect of fertilizers added to 5 successive Wheat crops on the yield of Wheat crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 9.11.1951. (iv) (a) Tractor ploughing, discing and ploughing with desi plough. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac. of \(N\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Supur : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=80\) and \(\mathrm{P}_{2}=160 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{\mathbf{0}}=0, \mathrm{~K}_{\mathbf{1}}=80\) and \(\mathrm{K}_{\mathbf{2}}=160 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathbf{O}\).
(4) 3 levels of lime : \(L_{0}=\) No lime, \(L_{1}=\) Lime at \(5 \mathrm{mds} . / \mathrm{ac}\). and \(\mathrm{L}_{2}=\) Lime at \(10 \mathrm{mds} . / \mathrm{ac}\).
\(\mathrm{C} / \mathrm{N}\) nas added to \(\mathrm{N}_{1}\) and \(\mathrm{N}_{1}\) plots on 31 st December and 3rd, 4th January along with irrigation. Fertilizers added to 5 successive crops.

\section*{3. DESIGN :}
(i) \(3^{4}\) confounding. (ii) (a) 9 plots/block and 9 blocks/replications. (b) N.A. (iii) 2 . (iv) (a) \(28^{\prime} \times 26^{\prime} .3^{\circ}\). (b) \(25^{\circ} \times 23^{\prime} .3^{\circ}\). (v) \(1 \frac{1^{\prime}}{}{ }^{\prime}\) alround. (vi) Yes.
4. GENERAL:
(i) Excellent growth. Lodging first took place during March 1952. (ii) N.A. (iii) Grain yield. (iv) (a', 1945 -N.A. (b) N.A. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Raw data N.A. Therefore two way tables could not be prepared.
5. RESULTS :
(i) \(925.5 \mathrm{lb} . / \mathrm{ac}\).
(ii) N.A.
(iii) N.A.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
\(\mathbf{N}_{0}\) & 824 & \(\mathbf{K}_{\mathbf{0}}\) & 878 \\
\(\mathbf{N}_{\mathbf{1}}\) & 936 & \(\mathbf{K}_{\mathbf{1}}\) & 902 \\
\(\mathbf{N}_{2}\) & 1017 & \(\mathbf{K}_{\mathbf{2}}\) & 995 \\
\(\mathbf{P}_{0}\) & 771 & \(\mathbf{L}_{0}\) & 906 \\
\(\mathbf{P}_{1}\) & 890 & \(\mathbf{L}_{1}\) & 902 \\
\(\mathbf{P}_{\mathbf{2}}\) & 1115 & \(\mathbf{L}_{\mathbf{2}}\) & 969 \\
& S.E./mean & \(=\mathbf{N . A .}\) &
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 51(60). Type:-' \(\mathbf{M}^{\prime}\).
Object :-To study the effect of \(P\) on the yield of berseem and its residual effect on cowpea yield aad also to study the residual effect on Wheat after berseem-cowpea and berseem-fallow rotation.

\section*{1. BASAL CONDITIONS :}
(i) Berseem-Cowpea-Wheat. (b) Cowpea. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 2.12.1951. (iv) (a) Four ploughings by desi plough each followed by harrowing done after palewa. (b) Monarch drill. (c) 5 mds./ac. (d) and (e) N.A. (v) N.A. (vi) C-518. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 17,18.4.1952.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

13 manurial treatments: \(\mathrm{M}_{0}=0, \mathrm{M}_{1}=\) F.Y.M., at 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=\) F.Y.M. at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\), \(\mathrm{M}_{3}=\mathrm{F} . \mathrm{Y} . \mathrm{M}_{\text {. at }} 64 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{4}=\) Super at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{5}=\) Super at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{6}=\) Super at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{7}=\) Super at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{8}=\) Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{9}=\) Super at 8 lb ./ac. + F.Y.M. at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{10}=\) F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac} .+\) Super at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{11}=\) F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac} .+\) Super at \(56 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{12}=\) Fallow for berseem.

\section*{Sub-plot treatments:}

2 rotations: \(T_{1}=\) Cowpea-Wheat and \(T_{2}=\) Fallow-Wheat.
Manurial treatments applied to berseem crop.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 13 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(63^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Slight infection of wheat smut. (iii) Grain yield. (iv) (a) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Hail-storm occured on 1.3.1952. (vii) Nil.

\section*{5. RESULTS :}
\(\begin{array}{lll}\text { (i) } & 1338 & \mathrm{lb} . / \mathrm{ac} .\end{array}\)
(ii) (a) \(209.5 \mathrm{lb} . / \mathrm{ac}\).
(b) \(152.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only \(T\) effect is highly significant.
(iv) Av, yield of grain in Ib ./ac.
\begin{tabular}{l|lllllllllllll|l} 
& \(M_{0}\) & \(M_{1}\) & \(M_{2}\) & \(M_{3}\) & \(M_{4}\) & \(M_{5}\) & \(M_{6}\) & \(M_{7}\) & \(M_{8}\) & \(M_{9}\) & \(M_{10}\) & \(M_{11}\) & \(M_{12}\) & Mean \\
\hline\(T_{1}\) & 944 & 1228 & 1301 & 1549 & 1137 & 1373 & 1754 & 1331 & 1446 & 1537 & 1512 & 1797 & 950 & 1374 \\
\(T_{2}\) & 986 & 1053 & 1325 & 1500 & 1168 & 1391 & 1682 & 1307 & 1228 & 1500 & 1398 & 1658 & 744 & 1303 \\
\hline Mean & 965 & 1140 & 1313 & 1525 & 1153 & 1382 & 1718 & 1319 & 1337 & 1519 & 1455 & 1727 & 847 & 1338
\end{tabular}
S.E. of difference of two
1. M marginal means \(\quad=120.9 \mathrm{lb} . / \mathrm{ac}\).
2. \(\mathbf{T}\) marginal means \(\quad=34.4 \mathrm{Jb} . / \mathrm{ac}\).
3. \(T\) means at the same level of \(M \quad=124.2 \mathrm{lb} . / \mathrm{ac}\).
4. \(M\) means at the same level of \(T \quad=149.5 \mathrm{lb}, / \mathrm{ac}\).
\[
\text { Crop :- Wheat }(R a b i) . \quad \text { Ref :- I.A.R.I. } 53(71) . \quad \text { Type :- 'M'. }
\]

Cbject:-To study the residual effect of phosphatic manuring of berseem on Wheat.
1. BASAL CONDITIONS:
(i) (a) Berseem-Cowpea-Wheat. (b) Cowpea. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii)
18.11.1953. (iv) (a) Dry victory and desi ploughing. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigata.2.
(viii) Bakharing and weeding. (ix) N.A. (x) 17.4 .1954 .
2. TREATMENTS :

Main-plot treatments :
13 manurial treatments : \(\mathrm{M}_{0}=0, \mathrm{M}_{1}=\) F.Y.M. at 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=\) F.Y.M. at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\), \(\mathrm{M}_{3}=\) F.Y.M. at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{4}=\) Super at 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{5}=\) Super at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{6}=\) Super at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{7}=\) Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{8}=\) Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{F}\).Y.M. at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{9}=\) Super at 8 lb ./ac. + F.Y.M. at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{10}=\). F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac} .+\) Super at \(24 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{11}=\) F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac} .+\) Super at 56 lb ./ac. of \(\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}\) and \(\mathrm{M}_{12}=\) Fallow for berseem.
Sub-plot treatments :
2 rotations: \(T_{1}=\) Cowpea-Wheat and \(T_{2}=\) Fallow-Wheat.
Manurial treatments applied to berseem crop.
3. DESIGN :
(i) R.B.D.
(ii) (a) 13.
(b) N.A.
(iii) 6.
(.v)
(a) N.A.
(b) \(63^{\prime \prime} \times 15^{\prime}\).
(v) N.A.
(vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1948-N A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) After cowpea \(1542 \quad \mathrm{lb} . / \mathrm{ac}\).

After fallow \(19.33 \mathrm{lb} . / \mathrm{ac}\).
(ii) After cowpea \(390.8 \mathrm{lb} / \mathrm{ac}\). After fallow \(5.00 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccccc} 
Treatment & \begin{tabular}{c} 
Av. yield \\
After cowpea, after fallow
\end{tabular} & Av. yield
\end{tabular} Treatment \begin{tabular}{ccccc} 
Av. yield & Av. yield \\
After cowpea, after fallow.
\end{tabular}

Object :-To study the effect of method of application of different \(\mathrm{P}_{2} \mathrm{O}_{\mathbf{5}}\) fertilizers on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Sugarcane. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 27.11.1953. (iv)
(a) Vistory ploughing, tractor ploughing, discing and twice ploughing with desi plough. (b) to (e) N.A. (v) N.A. (vi) N.P. 710. (vii) Irrigated. (viii) Weeding and bakharing. (ix) N.A. (x) 24.4.1954.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3) and two control (no manure) plots.
(1) 3 sources of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=\) Super, \(\mathrm{S}_{2}=\) Nitro. Phos. and \(\mathrm{S}_{3}=\) Ammo. Phos.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=15 \mathrm{lb}\)./ac. and \(\mathrm{P}_{2}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(3) 2 methods of placement : \(\mathrm{M}_{1}=\) By broadcast before final cultivation and \(\mathrm{M}_{2}=21^{\prime \prime}\) below seed.
\(\mathrm{P}_{2} \mathrm{O}_{5}\) broadcast on \(25,26.11\).1953 and place at depth on 27.11.1953.
3. DESIGN:
(i) R.B.D. (ii) (a) 14. (b) N.A. (iii) 3. (iv) (a) \(23 \frac{1}{\prime}^{\circ} \times 47^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) The plants, at later stage, were slightly affected by black stem-rust. (iii) Graic yield. (iv) (a) to (c) N.A. (v) (a), (b) No. (vi) anJ (vii) Nil.
5. RESULTS:
(i) \(1566 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(212.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{Control} & \multicolumn{2}{|l|}{\(=1666 \mathrm{lb} . / \mathrm{ac}\).} & \multirow[b]{2}{*}{\(\mathrm{M}_{1}\)} & \multirow[b]{2}{*}{\(\mathrm{M}_{2}\)} \\
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) & Mean & & \\
\hline \(\mathrm{P}_{1}\) & 1552 & 1585 & 1582 & 1573 & 1563 & 1583 \\
\hline \(\mathrm{P}_{2}\) & 1550 & 1416 & 1570 & 1525 & \(14: 0\) & 1631 \\
\hline Mean & 1571 & 1500 & 1576 & 1549 & 1491 & 1607 \\
\hline \(\mathrm{M}_{1}\) & 1443 & 1428 & 1603 & & & \\
\hline \(\mathrm{M}_{2}\) & 1699 & 1573 & 1548 & & & \\
\hline & M or
S mar
body
body & margin

\(M \times S\)
\(M \times P\) & mean
\(\mathrm{P} \times \mathrm{S}\)
ble & control & \(=50.1 \mathrm{lb}\)
\(=61.3 \mathrm{l}\)
\(=86.7 \mathrm{lb}\)
\(=70.8 \mathrm{l}\) & \\
\hline
\end{tabular}

Crop :- Wheat (Rabi).
Ref :- I.A.R.I. 53(10).
Type :- ' M '
Object :-To find out the amount of F.Y.M. which is equivalent to the corresponding amount of A/S.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) N.A. ( \(\quad\) ) N.A. (ii) (a) and (b) Referitem 11 on page 143. (iii) 13.11.1953. (iv) (a) Two ploughings with desi plough, single discing with tracter, double ploughing and planking. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Weeding twice. (ix) N.A. (x) 11.4.1954.
2. TREATMENTS:
1. No manure.
2. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
3. 60 lb . ac. of N as F.Y.M.
4. 80 lb . ac. of N as F.Y.M.
5. \(100 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
6. \(120 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
8. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
9. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
10. 80 lb . 'ac. of N as G.N.C.
11. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
12. 40 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).

\section*{3. DESIGN :}
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 7. (iv) (a) \(33^{\prime} \times 22^{\prime}\). (b) \(31^{\prime} \times 20^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) \(1949-\) N.A. (b) N.A. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.

\section*{5. RESULTS:}
(i) \(1617 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(808.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1341 & 7. & 1721 \\
2. & 1401 & 8. & 1578 \\
3. & 1502 & 9. & 1726 \\
4. & 1607 & 10. & 1726 \\
5. & 1575 & 11. & 1721 \\
6. & 1705 & 12. & 1799 \\
& S.E./mean & \(=311.0 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{Crop :- Wheat (Rabi). Ref :- I.A.R.I. 51(14). Type :- 'M'.}

Object :-To find the fertility building value of Guar along with \(\mathrm{P}_{2} \mathrm{O}_{5}\) and micro-nutrients on Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) Guar-Wheat-Guar. (b) Guar. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 3.12.1951.
(iv) (a) 4 ploughings. (b) to (e) N.A. (v) N.A. (vi) N.P. 760. (vii) Irrigated. (viii) Nil. (ix) N.A.
(x) \(17,18 . .14952\).
2. TREATMENTS :
1. Guar harvested for tops.
2. Guar buried as G.M.
3. Guar grown with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) at sowing, harvested for tops.
4. Guar grown with 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) at sowing, buried as G.M.
5. Guar grown with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax \(5 \mathrm{lb} . / \mathrm{ac} .+\) molybdenum \(1 \mathrm{lb} . / \mathrm{ac}\). at sowing, harvested for tops.
6. Guar grown with 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax 5 lb ./ac. + molybdenum 1 lb ./ac. at sowing, buried as G.M.
7. Guar tops buried as obtained from treatment 1 .
8. Guar tops buried as obtained from treatment 3.
9. Guar tops buried as obtained from treatment 5 .
10. Control (fallow in kharif).
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 6 . (iv) (a) \(45^{\prime} \times 15^{\prime}\). (b) \(41^{\prime} \times 11^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Severe lodging in February. (ii) Nil. (iii) Grain yield. (iv) (a) \(1951-1954\). (b) Yes. (c) N.A. (v)
(a) and (b) No. (vi) Damage due to bail storm and squalls was about 70 to \(80 \%\). (vii) Nil.

\section*{5. RESULTS:}
(i) \(415.8 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(115.2 \mathrm{lb} . / \mathrm{ac}\).
iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 325.0 & 6. & 464.1 \\
2. & 594.9 & 7. & 397.4 \\
3. & 377.7 & 8. & 412.2 \\
4. & 454.2 & 9. & 452.4 \\
5. & 381.8 & 10. & 288.8 \\
& S.E./mean & \(=47.04 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{Crop :- Wheat (Rabi). \\ Ref :- I.A.R.I. 52(21). Type:- 'M'.}
- Object :-To find the fertility building value of Guar along with \(\mathrm{P}_{2} \mathrm{O}_{5}\) and micro-nutrients on Wheat.
1. BASAL CONDITIONS :
(i) (a) Guar-Wheat-Guar. (b) Guar. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 16.11 .1952 .
(iv) (a) 2 ploughings. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Nil. (ix) N.A. (x) 4.4.1953.

\section*{2. TREATMENTS :}
1. Guar harvested for tops.
2. Guar buried as G.M.
3. Guar grown with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) at sowing, harvested for tops.
4. Guar grown with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) at sowing, buried as G.M.
5. Guar grown with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax \(5 \mathrm{lb} . / \mathrm{ac}\). + molybdenum \(1 \mathrm{lb} . / \mathrm{ac}\). at sowing. harvested for tops.
6. Guar grown with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax \(5 \mathrm{lb} . / \mathrm{ac} .+\) molybdenum \(1 \mathrm{lb} . / \mathrm{ac}\). at sowing, buried as \(\mathrm{G} . \mathrm{M}\).
7. Guar tops buried as obtained from treatment 1 .
8. Guar tops buried as obtained from treatment 3.
9. Guar tops buried as obtained from treatment 5 .
10. Control (fallow in kharif).
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 6 (iv) (a) \(45^{\prime} \times 15^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack by white ants. (iii) Grain yield. (iv) (a) \(1951-1954\). (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Hot winds at the end of January hastened the maturity of the crop, resuiting in low yield. (vii) Nil.
5. RESULTS :
(i) \(1858 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(255.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1487 & 6. & 2408 \\
2. & 1877 & 7. & 1683 \\
3. & 1795 & 8. & 1875 \\
4. & 2396 & 9. & 1896 \\
5. & 1745 & 10. & 1422 \\
& S.E./mean & \(=104.5 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
Crop :- Wheat (Rabi). Ref :- I.A.R.I. 53(21). Type :- 'M'.

Object :-To find the fertility building value of Guar along with \(\mathrm{P}_{2} \mathrm{O}_{5}\) and micro-nutrients on Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) Guar-Wheat-Guar. (b) Soyateen (fodder). (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii)
24.11.1953. (iv) (a) Ploughing with victory plough and 6 ploughings with desi plough. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) Weeding and bakharing. (ix) N.A. (x) 16.4.1954.

\section*{2. TREATMENTS:}
1. Guar harvested for tops.
. Guar burried as G.M.
Guar grown with 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) at sowing, harvested for tops.
. Guar grown with 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) at sowing, buried as G.M.
5. Guar grown with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax at \(5 \mathrm{lb} . / \mathrm{ac} .+\) molybdenum \(1 \mathrm{lb} / \mathrm{ac}\), ai sowing, harvested for tops.
6. Guar grown with 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax at \(5 \mathrm{lb} . / \mathrm{ac} .+\) molybdenum at 1 lb ./ac. at sowing, buried as GM.
7. Guar tops buried as obtained from treatment 1.
8. Guar tops buried as obtained from treatment 3.
9. Guar tops buried as obtained from treatment 5 .
10. Control (fallow in kharif).
3. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 6. (iv) (
(a) \(45^{\prime} \times 15^{\prime}\).
(b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1951-1954. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1168 \mathrm{lb} / \mathrm{ac}\).
(ii) \(229.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(1 \mathrm{~b} \cdot / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1000 & 6. & 1221 \\
2. & 1195 & 7. & 1260 \\
3. & 1039 & 8. & 1273 \\
4. & 1403 & 9. & 1233 \\
5. & 1130 & 10. & 922
\end{tabular}
S.E./mean \(=93.75 \mathrm{lb} . / a c\).

Object :-To study the effect of organic and inorganic manuring on the yield of crops in rotations.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to No. 52(54) under BAJRA.

RESULTS:
(i) \(1390 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(336.0 \mathrm{lb} / \mathrm{ac}\).
(b) \(162.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of N alone is highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lllll|l} 
& \(F_{9}\) & \(F_{1}\) & \(F_{8}\) & \(F_{3}\) & \(F_{4}\) & IMean \\
\hline \(\mathrm{N}_{3}\) & 1236 & 1284 & 1344 & 1260 & 1332 & 1291 \\
\(\mathrm{~N}_{1}\) & 1320 & 1320 & 1524 & 1428 & 1584 & 1435 \\
\(\mathrm{~N}_{\mathbf{2}}\) & 1380 & 1368 & 1572 & 1452 & 1441 & 1443 \\
\hline Mean & 1312 & 1324 & 1480 & 1380 & 1452 & 1390
\end{tabular}
S.E. of difference of two
1. F marginal means \(\quad=122.6 \mathrm{lb} . / \mathrm{ac}\).
2. N marginal means \(\quad=45.8 \mathrm{lb} . / \mathrm{ac}\)
3. \(N\) means at a level of \(F \quad=102.6 \mathrm{lb} . / \mathrm{ac}\).
4. F means at a level of \(N \quad=136.2 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Wheat.
Object : - To study the effect of sowing premature and mature seed of \(k\) harif crops on the yield.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 4, 5.11.1952. (iv) (a) 1 palewa, 2 tractor discings. 2 sohaga and tractor grubbing. (b) to (e) N.A. (v) Nil. (vi) Wheat NP-760 and C-581, barley NP-13, gram NP-58 and peas NP-29. (vii) Unirrigated. (viii) Weeding. (ix) N.A. (x) May, 1953.
2. TREATMENTS :
1. Sowing fully mature seed.
2. Sowing one week premature seed.
3. Sowing 2 weeks premature seed.
3. DESIGN :
(i) R.B.D. (ii) (a) 3 for each of wheat NP-760 and C-518, barley, gram and peas crop. (b) N.A. (iii) 8. (iv) (a) N.A. (b) \(1 / 80 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Above normal. Lodging in NP-760 wheat. (ii) Smut in C-518 wheat. (iii) Yield of grain (iv) (a) 1952 -N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Raw data is N.A. Results of other crops may be seen under relevant crops.
5. RESULTS :

Wheat NP-760
(i) 2997 lb./ac.
(ii) \(188.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
Treatment Av. vield
\begin{tabular}{ll}
1. & 3455 \\
2. & 3295 \\
3. & 2241 \\
S.E./mean & \(=66.64 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Wheat C-518
(i) \(3411 \mathrm{lb} / \mathrm{ac}\).
(ii) \(181.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment Av. yield
1. 3817
2. 3490
3. 2927
S.E./mean \(\quad=64.18 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi)., Ref :- I.A.R.I. 53(32). Type :- 'C'.
Object :-To study the growth and development of premature seed of Wheat, Barley, Gram and Peas.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 4,5.11.1953. (iv) (a) 4 desi plough. ings. (b) to (e) N.A. (v) Nil. (vi) Wheat N.P. 760, Wheat C. 518 , Barley N.P. 13, Gram N.P. 58 and Peas N.P. 29. (vii) N.A. (viii) Bakharing in wheat. (ix) N.A. (x) May 1954.

\section*{2. TREATMENTS :}
1. Sowing fully matured seed.
2. Sowing one week premature seed.
3. Sowing two weeks premature seed,

\section*{3. DESIGN :}
(i) R.B.D. (ii) (a) 3 for each crop. (b) N.A. (iii) 8. (iv) (a) N.A. (b) \(1 / 80\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Peas and gram crop remained very poor. (ii) N.A. (iii) Grain yield (Wheat, Barley, Gram, Peas) (iv) (a) 1952 to 1954. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Experiment conducted on 5 crops as given under item (vi) in Basal conditions. Results of the other crops are given under relevent crops.
5. KESULTS :

Wheat N.P. 760
Wheat C. 518
(i) \(2274 \mathrm{lb} / / \mathrm{ac}\).
(i) \(2305 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(118.5 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(128.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ccc} 
Treatment & & Av. yield \\
1. & & 2590 \\
2. & & 2284 \\
3. & - & 1947 \\
& S.E./mean & \(=41.97 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ccl} 
Treatment & \multicolumn{1}{l}{ Av. yield } \\
1. & & 2505 \\
2. & & 2263 \\
3. & & 2147 \\
& S.E./mean & \(=45.26 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 51(16). Type :- ‘CM'.
Object :-To study the effect of frequency of cultivation with and without weeding and nitrogenous 【ferti-- lizers on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) No.
(b) N.A. (c) N.A.
(ii) (a) and
(b) Refer item 11 on page 143. (iii) 12.11.1951. (iv) (a) As per treatments. (b) Sown by monarch drill.' (c) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii)
Weeding twice. (ix) N.A. (x) 2 to 6.4.1952.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

4 levels of ploughings : \(C_{1}=3\) ploughings, \(C_{2}=6\) ploughings, \(C_{3}=9\) ploughings and \(C_{4}=12\) ploughings.
Sub-plot treatments:
2 levels of \(N\) as \(A / S: N_{0}=\) no manure and \(N_{1}=40 \mathrm{lb} . / a c\). of \(N\).
Sub-sub plot treatments:
3 levels of weedings: \(W_{0}=\) no weeding, \(W_{1}=\) one weeding, and \(W_{2}=\) two weedings
A/S applied on 11.11.1951.
3. DESIGN :
(i) Split-plot (main-plots in L. sq.). (ii) (a) 4 main-plots/block, 2 sub-plots/main-plot and 3 sub-sub-plots/ sub-plot. (b) N.A. (iii) 4. (iv) (a) \(53.3^{\prime} \times 20^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. Crop badly damaged and completely lodged due to hail-storm on 1.5.1952. (ii) N.A. (iii) Grain yield. (iv) (a) 1951 to 1953. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(593 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(182.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(156.3 \mathrm{lb} . / \mathrm{ac}\).
(c) \(59.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(\mathrm{C}, \mathrm{N}\) and M effects are all highly significant. All two factor interactions are significant while three factor interaction is not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & Mean & \(W_{0}\) & \(W_{1}\) & \(\mathbf{W}_{3}\) \\
\hline \(\mathrm{C}_{1}\) & 282 & 472 & 377 & 308 & 450 & 373 \\
\hline \(\mathrm{C}_{2}\) & 520 & 643 & 581 & 519 & 647 & 578 \\
\hline \(\mathrm{C}_{3}\) & 565 & 880 & 722 & 615 & 800 & 752 \\
\hline \(\mathrm{C}_{4}\) & 578 & 808 & 693 & 534 & 820 & 726 \\
\hline Mean & 486 & 701 & 593 & 494 & 679 & 607 \\
\hline \(W_{0}\) & 397 & 591 & 494 & & & \\
\hline \(W_{1}\) & 564 & 795 & 679 & & & \\
\hline \(W_{3}\) & 498 & 716 & 607 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal mean
2. N marginal means
\(=52.73 \mathrm{lb} . / \mathrm{ac}\).
\(=36.84 \mathrm{lb} . / \mathrm{ac}\).
\(=17.09 \mathrm{lb} . / \mathrm{ac}\).
3. W marginal means
4. \(\mathbf{N}\) means at the same level of \(\mathbf{C}=63.81 \mathrm{lb} . / \mathrm{ac}\).
5. \(C\) means at the same level of \(N=69.43 \mathrm{lb} . / \mathrm{ac}\).
6. W means at the same level of \(C=29.60 \mathrm{lb} . / \mathrm{ac}\).
7. C means at the same level of \(W\)
8. W means at the same level of N
9. N means at the same level of W
\(=58.01 \mathrm{lb} . / \mathrm{ac}\).
\(=24.17 \mathrm{lb} . / \mathrm{ac}\).
\(=41.79 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi).
Object :-To study the effect of frequency of cultivation with and without weeding and nitrogenous fertilizers on the yield of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 8.11.1952. (iv) (a) As per treatments. (b) Simplex seed drill. (c) \(1 \mathrm{md} / \mathrm{ac}\). of seed. (d) and (e) N.A. (v) N.A. (vi) N.P.-775. (vii) I. rigated. (viii) Weeding twice. (ix) N.A. (x) 30.3.1953; 1.4.1953.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

4 levels of ploughings: \(C_{1}=3\) ploughings, \(C_{2}=6\) ploughings, \(C_{3}=9\) ploughings and \(C_{4}=12\) ploughings.
Sub-plot treatments:
2 levels of \(N\) as \(A / S: N_{0}=\) and \(N_{1}=40 \mathrm{lb}\)./ac. of \(N\).
Sub-sub-plot treatments:
3 levels of weeding: \(W_{0}=\) No weeding, \(W_{1}=\) One weeding and \(W_{2}=2\) weedings.
A/S applied on 6, 7.11.1951.

3, DESIGN :
(i) Split-plot. (main-plot in L. Sq.). (ii) (a) 4 main-plots/block 2 sub-plots/main-plot and 3 sub-sub plots/ sub-plot. (b) N.A. (iii) 4. (iv) (a) \(53.3^{\prime} \times 20^{\prime}\) (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :

Germination was visible on 4th to 7th day. The early stand of crop was quite good. The manured and more cultivated plots showed in general better growth. It was differently invisible between manured and unmanured plots. No lodging. (ii) Attack of loose smut on wheat rouging was done to check the attack.
(iii) Grain yield.
(iv) (a) 1951-1953.
(b) Yes.
(c) N.A. (v) (a) and (b) No. (vi) and (vii, Nil.

\section*{5. RESULTS :}
(i) \(1758 \quad \mathrm{lb} / / \mathrm{ac}\).
(ii) (a) \(176.07 \mathrm{lb} . / \mathrm{ac}\).
(b) \(50.19 \mathrm{lb} . / \mathrm{ac}\).
(c) \(181.03 \mathrm{lb} . / \mathrm{ac}\).
(iii) Effects of C and N are highly significant interaction \(\mathrm{C} \times \mathrm{N}\) is significant while others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & Mean & \(\mathrm{W}_{0}\) & \(\mathrm{W}_{1}\) & \(\mathrm{W}_{2}\) \\
\hline \(\mathrm{C}_{1}\) & 1335 & 1618 & 1477 & 1464 & 1461 & 1506 \\
\hline \(\mathrm{C}_{2}\) & 1558 & 1770 & 1664 & 1626 & 1691 & 1675 \\
\hline \(\mathrm{C}_{3}\) & 1814 & 2007 & 1910 & 1857 & 1957 & 1915 \\
\hline \(\mathrm{C}_{4}\) & 1998 & 2065 & 1981 & 1954 & 1987 & 2003 \\
\hline Mean & 1651 & 1865 & 1758 & 1725 & 1774 & 1775 \\
\hline \(\mathrm{W}_{0}\) & 1647 & 1803 & 1725 & & & \\
\hline \(\mathrm{W}_{1}\) & 1660 & 1888 & 1774 & & & \\
\hline \(\mathrm{W}_{2}\) & 1646 & 1904 & 1775 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means \(\quad=50.83 \mathrm{lb} . / \mathrm{ac}\). 6. W means at the same level of \(C \quad=90.52 \mathrm{lb} . / \mathrm{ac}\).
2. N marginal means \(\quad=11.83 \mathrm{lb} . / \mathrm{ac}\).
3. W marginal means \(\quad=52.26 \mathrm{lb} . / \mathrm{ac}\).
4. N means at the same level of \(\mathbf{C}=20.49 \mathrm{lb}\)./ac.
7. \(C\) means at the same level of \(W=89.70 \mathrm{lb} . / \mathrm{ac}\).
8. W means at the same level of \(\mathbf{N}=73.91 \mathrm{lb}\)./ac.
9. N means at the same level of \(\mathrm{W}=61.50 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Wheat (Rabi).

\section*{Ref :- I.A.R.I. 53(24). Type :- ‘CM'.}

Object :-To study the effect of frequency of cultivation with and without weeding and nitrogenous fertilizers on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 7.11.1953. (iv) (a) As per treatments. (b) Seed sown with monarch drill. (c) \(1 \mathrm{md} / \mathrm{ac}\), (d) Rows \(9^{\circ}\) apart. (e) N.A. (v) N.A. (vi) N.P.775. (vii) Irrigated. (viii) Weeding was done with khurpi. (ix) N.A. (x) 16.4.1954.
2. TREATMENTS :

Main-plot treatments:
4 levels of ploughings : \(C_{1}=3\) ploughings, \(C_{2}=6\) ploughings, \(C_{3}=9\) ploughings and \(C_{4}=12\) ploughings. Sub-plot treatments:

2 levz's of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=40 \mathrm{lb} . / \mathrm{ac}\). of N.
Sub-sub-plot treatments:
3 levels of weeding: \(\mathrm{W}_{0}=\) No weeding, \(\mathrm{W}_{1}=\) One weeding and \(\mathrm{W}_{2}=2\) weedings.
A/S applied on 2.11.1953.
3. DESIGN:
(i) Split-plot (main-plots in L. Sq.). (ii) (a) 4 main-plots/block, 2 sub-plots/nain-plot and 3 sub-sub-plots/ sub-plot. (b) N.A. (iii) 4 . (iv) (a) \(53.3^{\prime} \times 20^{\prime}\) (b) N.A. (v) N.A. (vi) N.A.

\section*{4. GENERAL :}
(i) Poor stand. (ii) Nearly 30 to \(35 \%\) infectıon of smut. (iii) Grain yield. (iv) (a) \(1951-1953\). (b) Yes (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(993 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(196.65 \mathrm{lb} . / \mathrm{ac}\).
(b) \(222.16 \mathrm{lb} . / \mathrm{ac}\).
(c) \(62.53 \mathrm{lb} . / \mathrm{ac}\).
(iii) Effect of \(C\) and \(W\) are highly significant. Interaction \(N \times W\) is significant. Others are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).

S.E. of difference of two
1. C marginal means
2. N m?rginal means
3. W margiral means
4. \(\mathbf{N}\) mejns at the same level of \(C\)
5. \(\mathbf{C}\) means at the same level of \(\mathbf{N}\)
\(=56.77 \mathrm{lb} . / \mathrm{ac} . \quad 6\). W means at the same level of \(\mathrm{C}=31.26 \mathrm{lb} . / \mathrm{ac}\). \(=45.35 \mathrm{lb} . / \mathrm{ac} .7\). \(C\) means at the same level of \(\mathrm{W}=62.25 \mathrm{lb} . / \mathrm{ac}\). \(=15.63 \mathrm{lb} . / \mathrm{ac} .8\). W means at the same level of \(\mathrm{N}=22.11 \mathrm{lb} . / \mathrm{ac}\). \(=50.70 \mathrm{lb} . / \mathrm{ac} .9\). N means at the same level of \(\mathrm{W}=48.81 \mathrm{lb} . / \mathrm{ac}\). \(=85.65 \mathrm{lb} . / \mathrm{ac}\).

Type:- 'CM'.

Object : -To study the effect of different spacings, fertilizers, methods of placement, and different levels of \(N\) and \(P\) with and without basal dressing on maize crop and residual effect on Rabi Wheat.

\section*{1. BASAL CONDITIONS:}
(i) (a) Wheat-Maize-Oats. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii, 3.12.1949. (iv) (a) Discing twice beaming after tractor discing. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N A. (x) 29.4.1950 to 1.5.1950.
2. TREATMENTS:

\section*{Main-plot treatments :}

2 levels of basal dressing : \(\mathrm{B}_{0}=0\) and \(\mathrm{B}_{1}=20 \mathrm{lb}\)./ac. of N as F.Y.M.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 2 methods of placeınent : \(M_{1}=\) Broadcast and \(M_{2}=\) Placement at a certain depth.
(2) 3 spacings; \(S_{1}=2^{\prime}, S_{2}=2 \frac{1}{2}^{\prime}\) and \(S_{3}=3^{\prime}\) between rows.

Sub-sub-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of \(N\) as \(A / S: N_{1}=20, N_{1}=40\) and \(N_{3}=60 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{K}_{2} \mathrm{O}\) as Super and Pot. Sul. : \(\mathrm{P}_{1}=40 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{P}_{2}=80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/replication, 6 sub-plots/main-plot and 6 sub-sub-plots/sub-plot. (b) N.A. (iii) 2. (iv) (a) \(36^{\prime} \times 33^{\prime}\). (b) \(34^{\prime} \times 30^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Fair. (ii) N.A. (iii) Grain yield. (iv) (a) \(1949-\) N.A. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1136 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) 1876 lb./ac.
(b) \(467 \quad \mathrm{lb} . / \mathrm{ac}\).
(c) \(170 \quad \mathrm{lb} . / \mathrm{ac}\).
(iii) N.A.
(iv) Av. yiehd of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{Me}_{2}\) & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(P_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean \\
\hline \(B_{0}\) & 1245 & 1174 & 1086 & 1248 & 1295 & 1117 & 1302 & 944 & 1168 & 1517 & 1210 \\
\hline \(\mathrm{B}_{1}\) & 1096 & 1030 & 1055 & 1034 & 1100 & 998 & 1128 & 863 & 1051 & 1275 & 1063 \\
\hline Mcan & 1170 & 1102 & 1070 & 1141 & 1198 & 1057 & 1215 & 903 & 1110 & 1396 & 1136 \\
\hline \(\mathrm{N}_{1}\) & 970 & 837 & 845 & 983 & 882 & 816 & 991 & & & & \\
\hline \(\mathrm{N}_{2}\) & 1139 & 1081 & 985 & 1136 & 1209 & 1083 & 1137 & & & & \\
\hline \(\mathrm{N}_{3}\) & 1403 & 1389 & 1381 & 1305 & 1502 & 1274 & 1518 & & & & \\
\hline \(\mathrm{P}_{1}\) & 1094 & 1021 & 984 & 1044 & 1145 & & & & & & \\
\hline \(\mathrm{P}_{3}\) & 1247 & 1184 & 1157 & 1239 & 1250 & & & & & & \\
\hline \(S_{1}\) & 1093 & 1042 & & & & & & & & & \\
\hline \(S_{3}\) & 1209 & 1074 & & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & 1207 & 1191 & & & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. B marginal means
2. \(\mathbf{M}\) marginal means
3. \(S\) marginal means
4. \(N\) marginal means
5. \(P\) marginal means
6. \(M\) means at the same level of \(B=31.78 \mathrm{lb} . / \mathrm{ac}\). 18. \(P\) means at the same level of \(M=40.07 \mathrm{lb}\)./ac.
7. \(B\) means at the same level of \(M=322.25 \mathrm{lb}\)./ac. 19. M means at the same level of \(\mathrm{P}=82.83 \mathrm{lb}\)./ac.
8. \(S\) means at the same level of \(B=38.92 \mathrm{lb} . / \mathrm{ac} .20\). \(P\) means at the same level of \(S=49.07 \mathrm{lb}\)./ac.
9. \(B\) mean: at the same level of \(S=331.50 \mathrm{lb}\)./ac. 21 . \(S\) means at the same level of \(P=101.45 \mathrm{lb} . / \mathrm{ac}\).
10. \(N\) means at the same level of \(B=49.07 \mathrm{lb} . / \mathrm{ac} .22\). means of body of \(\mathrm{M} \times \mathrm{S}\) table \(=134.81 \mathrm{lb} . / \mathrm{ac}\).
11. B means at the same level of \(\mathrm{N}=315.20 \mathrm{lb}\)./ac. 23. means of body of \(\mathrm{N} \times \mathrm{P}\) table \(=49.07 \mathrm{lb} . / \mathrm{ac}\).
12. \(N\) means at the same level of \(M=49.07 \mathrm{lb}\)./ac.

Crop :- Wheat (Rabi). Ref:- I.A.R.I. 53(48). Type :- 'CM',
Object :-To study the effect of organic and inorganic manuring on the yield of crops in 3 rotations: 1. Bajra-Wheat 2. Fallow-Wheat and 3. Bajra-fallow.

\section*{1. BASAL CONDITIONS :}
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 1.11.1953.
(lv) (a) Ploughing with victory plough, ploughing thrice with desi plough and beaming twice. (b) to (e)
N.A. (v) N.A. (vi) N.P.775. (vii) Irrigated. (viii) Bakharing and weeding. (ix) 5.30". (x) 18.4.1954.
2. TREATMENTS :

Main-plot treatments :
2 rotations: \(\mathbf{R}_{\mathbf{1}}=\) Bajra-wheat and \(\mathbf{R}_{\mathbf{2}}=\) Fallow-wheat.
Sub-plot treatments: 5 levels of F.Y.M. : \(F_{0}=0, F_{1}=2 \frac{1}{2}, F_{2}=5, F_{3}=10\) and \(F_{4}=20\) ton/ac. of F.Y.M.
Sub-sub-plot treatments : 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\). \(/ \mathrm{ac}\).
Manures are applied to Bajra in \(\mathbf{R}_{1}\) and to wheat in \(\mathbf{R}_{\mathbf{2}} . \quad \mathrm{N}\) is applied as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication, 5 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 3. (iv) (a) \(58^{\prime} \times 12 \frac{1}{2}^{\prime}\). (b) \(55^{\prime} \times 9 \frac{1}{2}^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good in \(\mathrm{R}_{2}\) and poor in \(\mathrm{R}_{1}\). Considerable lodging all over in \(\mathbf{R}_{\mathbf{2}}\) due to heavy growth and rain and strong wind in III week of February, 1954. No lodging in \(R_{1}\). (ii) Mild attack of rust (yellow and black, comparatively more rust in \(\mathrm{R}_{2}\) due to lodging, smut attack about \(4 \%\) of the plants affected. (iii) Grain yield. (iv) (a) 1952-N.A., (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(1345 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(198.5 \mathrm{lb} . / \mathrm{ac}\).
(b) \(174.9 \mathrm{lb} . / \mathrm{ac}\).
(c) \(118.7 \mathrm{lb} / \mathrm{ac}\).
(iii) Effect of \(R\) is highly significant, effects of \(N\) and interaction \(R \times N\) are significant, while all others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{F}_{0}\) & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{2}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{4}\) & Mean & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) \\
\hline \(\mathrm{R}_{1}\) & 558 & 521 & 567 & 530 & 660 & 567 & 541 & 569 & 590 \\
\hline R \({ }_{2}\) & 2051 & 2111 & 2116 & 2185 & 2157 & 2124 & 2017 & 2151 & \(2: 04\) \\
\hline Mean & 1304 & 1316 & \(13+1\) & 1357 & 1409 & 1345 & 1279 & 1360 & 1397 \\
\hline \(\mathrm{N}_{0}\) & 1228 & 1186 & 1311 & 1311 & 1300 & 1279 & & & \\
\hline \(\mathrm{N}_{1}\) & 1311 & 1367 & 1367 & 1360 & 1395 & 1360 & & & \\
\hline \(\mathrm{N}_{2}\) & 1374 & 1395 & 1346 & 1401 & 1471 & 1397 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(\mathbf{R}\) marginal means
\(=41.84 \mathrm{lb} . / \mathrm{ac}\).
6. \(N\) means at the same level of \(R=43.34 \mathrm{lb} . / \mathrm{ac}\).
2. \(F\) marginal means
\(=58.30 \mathrm{lb} . / \mathrm{ac}\).
7. \(R\) means at the same level of \(N=54.81 \mathrm{lb} . / \mathrm{ac}\).
3. N marginal means \(\quad=30.65 \mathrm{lb}\)./ac.
8. N means at the same level of \(\mathrm{F}=68.53 \mathrm{lb} . / \mathrm{ac}\).
4. \(F\) means at the same level of \(R=82.45 \mathrm{lb}\)./ac.
9. \(F\) means at the same level of \(N=86.65 \mathrm{lb}\)./ac.
5. \(R\) means at the same level of \(F=84.79 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 50(61). Type :- 'M'.
Object:-To study the depth of cultivation with and without inversion of soil on the yield of fallowWheat.
1. BASAL CONDITIONS :
(i) (a) Maize-wheat. (b) Maize. (c) N.A. (ii) (a) Light soil. (b) Refer item 11 on page 143. (iii) 5.11.1950. (iv) (a) As per treatments. (b) Sown behind de si plough by 'Pona'. (c) to (e) N.A. (v) N.A. (vi) C-518. (vii) Irrigated. (viii) Hoeing with Bakhar. (ix) N.A. (x) 22, 24.4.1951.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 cultural treatments : \(\mathrm{C}_{1}=\) Ploughing \(9^{\prime \prime}-10^{\circ}\) depth with tractor plough in the first instance followed by normal cultivation with tractor implement (7 times). \(\mathrm{C}_{2}=\) Ploughing \(5^{\prime \prime}\) depth with soil inverting (Disc) plough by bullocks in the first instance followed by normal cultivation with country plough (8 times). \(\mathrm{C}_{3}=\) Country plough (8 times). \(\quad \mathrm{C}_{4}=\) Tractor discing ( 7 times).

\section*{Sub-plot treatments :}

4 levels of \(N\) as F.Y.M. : \(N_{0}=0, N_{1}=40, N_{2}=80\) and \(N_{2}=120 \mathrm{lb} . / \mathrm{ac}\).
F.Y.M. spread on 19, 20, 27 and 28.10.9150.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block, 4 sub-plots/main plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) 1/40 acre. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) The seeds germinated after 6 days of sowing, i.e. on 11.11.1952. Growth very good. No difference in the growth of various cultural treatments. Crop lodged. (ii) Slight smut infection. Smut earheads were roughed. (iii) Grain yield. (iv) (a) Yes; 1950-1954. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(2780 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(447.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(249.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only C cffect is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|cccc|c} 
& \(C_{1}\) & \(C_{2}\) & \(C_{3}\) & \(C_{4}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 2473 & 2539 & 2619 & 2533 & 2556 \\
\(\mathrm{~N}_{1}\) & 2759 & 2879 & 2906 & 2719 & 2816 \\
\(\mathrm{~N}_{2}\) & 2666 & 3019 & 2786 & 2781 & 2813 \\
\(\mathrm{~N}_{3}\) & 2853 & 2979 & 3226 & 2686 & 2936 \\
\hline Mean & 2688 & 2194 & 2884 & 2680 & 2780
\end{tabular}
S.E. of difference of two
1. C marginal means \(\quad=182.8 \mathrm{lb} . / \mathrm{ac}\).
2. N marginal means \(\quad=101.8 \mathrm{lb} . / \mathrm{ac}\).
3. \(N\) means at the same level of \(C \quad=203.6 \mathrm{lb} . / \mathrm{ac}\).
4. \(C\) means at the same level of \(N \quad=179.7 \mathrm{lb}\)./ac.

Crop :- Wheat (Rabi). Ref:-I.A.R.I. 50(11). Type :- 'M'.
Object :-To study the effect of depth of cultivation with and without inversion on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Heavy soil. (b) Refer item 11 on page 143. (iii) 5.11.1950. (iv) (a) As per treatments. (b) Sown with desi plough. (c) to (e) N.A. (v) N.A. C-518. (vii) Irrigated. (viii) Hoeing with Oudh plough. (ix) N.A. (x) 19.4.1951.
2. TREATMENTS :

Main-plot treatments :
4 cultural treatments : \(C_{1}=\) Tractor ploughing \(9^{\prime \prime}-10^{\prime \prime}\) depth with soil inverting followed by normal cultivation with tractor implement (Discing). \(\mathrm{C}_{2}=5^{\prime \prime}\) depth, bullock soil inverting plough followed by normal cultivation with country plough. \(\mathrm{C}_{3}=\) Country plough and \(\mathrm{C}_{4}=\) Tractor discing.
Sab-plot treatments:
4 levels of \(N\) as F.Y.M. : \(N_{0}=0, N_{1}=40, N_{2}=80\) and \(N_{3}=120 \mathrm{lb}\)./ac. of \(N\).
F.Y.M. applied on 19, 20, 27 to 29.10.1953.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main plots/block and 4 sub-plots/main-plot. (b) N.A. (iii) 3. (a) \(1 / 40\) acre. (b) \(1 / 52\) acre] (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Loose smut. Mild attack of ©aphids. (iii) Grain vield. (iv) (a) Yes; 1950 to 1954. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Some area towards north was water-logged. (vii) Nil.
5. RESULTS:
(i) \(1967 \mathrm{lb}, / \mathrm{ac}\).
(ii) (a) \(370.3 \mathrm{lb} . / \mathrm{ac}\).
(b) \(444.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) None cf the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|cccc} 
& \(\mathbf{C}_{1}\) & \(\mathbf{C}_{2}\) & \(\mathbf{C}_{3}\) & \(\mathbf{C}_{\mathbf{4}}\) \\
\hline \(\mathbf{N}_{0}\) & 1876 & 1569 & 1788 & 1876 \\
\(\mathbf{N}_{1}\) & 2033 & 2786 & 2069 & 1428 \\
\(\mathbf{N}_{2}\) & 2182 & 1893 & 1972 & 1780 \\
\(\mathbf{N}_{3}\) & 1937 & 2033 & 2086 & 2165 \\
\hline Mean & 2007 & 2070 & 1979 & 1812
\end{tabular}
S.E. of difference of two
1. C marginal means
2. \(\mathbf{N}\) marginal means
\[
\begin{aligned}
& =151.2 \mathrm{lb} . / \mathrm{ac} \\
& =181.4 \mathrm{lb} . / \mathrm{ac} \\
& =362.8 \mathrm{lb} . / \mathrm{ac} \\
& =348.7 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]

Crop:- Wheat (Rabi). Ref:- I.A.R.I. 51(18). Type :- 'CM'.
Object :-To study the effect of depth of cultivation with and without inversion on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) No. (t) N.A. (c) N.A. (ii) (a) Heavy soil. (b) Refer item 11 on page 143. (iii) 5.11.1951. (iv) (a) As per treatments. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 9.4.1952.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 cultural treatments: \(C_{1}=\) Tractor ploughing \(9^{\prime \prime}-10^{\prime \prime}\) followed by normal cultivation with tractor dise, \(\mathrm{C}_{2}=5^{*}\) bullock soil inverting victory plough followed by normal cultivation with desi plough, \(\mathrm{C}_{3}=\) Country plough and \(\mathrm{C}_{4}=\) Tractor discing.

\section*{Sub-plot treatments :}

4 levels of \(N\) as F.Y.M. : \(N_{0}=0, N_{1}=40, N_{2}=80\) and \(N_{3}=120 \mathrm{lb}\)./ac. of \(N\).
F.Y.M. spread on 12.9.1951.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 4 main-plots/block and 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(40^{\prime} \times 26.5^{\prime}\). (b) \(36^{\prime} \times 23^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-1954\). (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2103 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(2748 \mathrm{lb} . / \mathrm{ac}\).
(b) \(346.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of C is highly significant and effect of N is significant while interaction is not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|llll|l} 
& \(\mathrm{C}_{\mathbf{1}}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathbf{C}_{4}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 2032 & 2092 & 1863 & 1735 & 1981 \\
\(\mathrm{~N}_{1}\). & 2190 & 2131 & 2184 & 1788 & 2073 \\
\(\mathrm{~N}_{2}\) & 2223 & 2237 & 2283 & 1933 & 2169 \\
\(\mathrm{~N}_{3}\) & 2158 & 2269 & 2329 & 1959 & 2189 \\
\hline Mean & 2151 & 2182 & 2165 & 1856 & 2103
\end{tabular}
S.E. of difference of two
1. \(C\) marginal mean \(\quad=97.1 \mathrm{lb} . / \mathrm{ac}\).
2. N marginal mean \(\quad=122.4 \mathrm{lb}\). ac .
3. \(N\) mean at the same level of \(G \quad=244.8 \mathrm{lb} . / \mathrm{ac}\).
4. C mean at the same level of \(\mathrm{N} \quad=233.3 \mathrm{Ib} . / \mathrm{ac}\).

Object :-To study the depth of cultivation with and without inversion on the yield of Wheat.

\section*{1. BASAL CONDITIONS:}
(i) (a) No. (b) to (c) N.A. (ii) (a) Heavy soil. (b) Refer item 11 on page 143. (iii) \(14,15.11 .1952\). (iv) (a) As per treatments. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Bakharing; hoeing with oudh plough. (ix) N.A. (x) 12, 15.7.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 cultural treatments : \(\mathrm{C}_{1}=\) Tractor ploughing \(9^{\prime \prime}-10^{\prime \prime}\) deep followed by tractor grubber and disc, \(\mathrm{C}_{2}=3\) Bullock driven victory plough \(6^{\prime \prime}\) (inversion) + country plough, \(\mathrm{C}_{3}=\) Country plough alone and \(C_{4}=\) Tractor discing alone.
Sub-plot treatments:
4 levels of N as F.Y.M. : \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=40, \mathrm{~N}_{2}=80\) and \(\mathrm{N}_{3}=120 \mathrm{lb}\)./ac. of N .
F.Y.M. spread on 21.9.1952.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/block, 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 40\) ac. (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N. A. (iii) Grain yield. (iv) (a) 1950-1954. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Raw data N.A.
5. RESULTS :
(i) \(2247 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(483.8 \mathrm{lb} . / \mathrm{ac}\).
(b) \(332.4 \mathrm{lb} . / \mathrm{ac}\).
(iii)
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
\(\mathbf{C}_{1}\) & 2074 & \(\mathbf{N}_{0}\) & 2000 \\
\(\mathbf{C}_{\mathbf{2}}\) & 2343 & & \(\mathbf{N}_{1}\) \\
\(\mathbf{C}_{3}\) & 2469 & \(\mathbf{N}_{2}\) & 2148 \\
\(\mathbf{C}_{\mathbf{4}}\) & 2103 & \(\mathbf{N}_{3}\) & 2287 \\
S.E./mean & \(=121.0 \mathrm{lb} . / \mathrm{ac}\). & S.E./mean & \(=83.11 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :- Wheat (Rabi). Ref :- I.A.R.I. 53(26). Type :- ‘CM’.

Object :-To study the depth of cultivation with and without inversion on the yield of Wheat.
1. BASAL CONDITIONS:
(i) (a) No. (b) and (c) N.A. (ii) (a) Heavy soil. (b) Refer item 11 on page 143. (iii) 16.11.1953. (iv)
(a) As per "reatments. (b) Sown with drill. (c) N.A. (d) \(9^{\prime \prime}\) between rows. (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) bakharing. (ix) N.A. (x) 21, 22.4.1954.
2. TREATMENTS :

Main-plot treatments
4 cultural treatments: \(C_{1}=\) Tractor ploughing \(9^{\prime \prime}-10^{\prime \prime}\) deep followed by tractor grubber, \(C_{2}=\) Bullock victory plough \(5^{\prime \prime}\) to \(6^{\circ}\) deep followed by country plough, \(\mathrm{C}_{3}=\) Country plough \(4^{\prime \prime}-5^{\prime \prime}\) and \(\mathrm{C}_{8}=\) Tractor disc \(3^{\prime \prime}-4^{\prime \prime}\).
Sub-plot treatments :
4 levels of \(N\) as F.Y.M. : \(N_{0}=0, N_{1}=40, N_{2}=80\) and \(N_{3}=120 \mathrm{lb}\)./ac of \(N\).
F.Y.M. applied on 12, 15.9.1953.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block and 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 40\) ac. (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1950 to 1954 . (b) Yes. (c) N.A. (v) (a) and (b) No.
(vi) and (vii) Nil.
5. RESULTS :
(i) \(1273 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(165.4 \mathrm{lb} . / \mathrm{ac}\).
(b) \(162.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Effects of C and N are significant. Interaction is not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ccccc|c} 
& \(\mathbf{C}_{\mathbf{1}}\) & \(\mathbf{C}_{\mathbf{2}}\) & \(\mathbf{C}_{\mathbf{3}}\) & \(\mathbf{C}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{N}_{\mathbf{0}}\) & 1402 & 1090 & 1388 & 1317 & 1299 \\
\(\mathrm{~N}_{\mathbf{1}}\) & 1131 & 1265 & 1553 & 1265 & 1305 \\
\(\mathrm{~N}_{\mathbf{2}}\) & 1285 & 1388 & 1470 & 1502 & 1411 \\
\(\mathrm{~N}_{\mathbf{3}}\) & 1450 & 1358 & 1502 & 1481 & 1447 \\
\hline Mean & 1317 & 1275 & 1478 & 1021 & 1273
\end{tabular}
S.E. of difference of two
1. C marginal means \(\quad=58.48 \mathrm{lb} . / \mathrm{ac}\).
2. \(N\) marginal means \(\quad=57.60 \mathrm{lb} . / \mathrm{ac}\).
3. N means at the same level of \(\mathrm{C}=115.20 \mathrm{lb} . / \mathrm{ac}\).
4. \(\mathbf{C}\) means at the same level of \(\mathrm{N}=115.83 \mathrm{lb} / \mathrm{ac}\).

Crop :- Wheat (Rabi).
Ref :- I.A.R.I. 50(3).
Type :- 'CM'.

Object:-To study the effect of Napier grass on the soil fertility and yield of subsequent cereal crops under manured and unmanured conditions.

\section*{1. BASAL CONDITIONS:}
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Wheat on 11.12.1950 and!12.11.1950. (iv) (a) Ploughing with desi plough (wheat plots), 10.11.1950. (b) N.A. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) on 22.2 .1951 to Napier plots. (vi) N.A. (vii) Irrigated. (viii) Wheat bakharing on 30.12.1950 and hoeing grass plots with horse hoe on 31.12.1950. (ix) N.A. (x) Napier on 22.4.1951 and wheat on 20.4.1951.
2. TREATMENTS :

Main-plot treatments :
4 rotational treatments: \(\mathrm{R}_{1}=\) Control, (maize-wheat rotation), \(\mathrm{R}_{\mathbf{2}}=\) Napier (2 years)-maize-wheat, \(\mathbf{R}_{3}=\) Napier (3 years)-Maize-wheat and \(\mathbf{R}_{\mathbf{4}}=\) Napier (4 years)-maize-wheat.
Sub-plot treatments :
2 levels of manure : \(M_{0}=\) No manure and \(M_{1}=\) Manure at 40 lb ./ac. of \(N\) as F.Y.M. \(+A / S\).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block and 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(37^{\prime} \times 29.5^{\prime} . \quad\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1950 to 1953. (b) Yes. (c) N.A. (v) (a) and (b) Nil.
(vi) Nil. (vii) Only wheat yield was taken into consideration.
5. RESULTS :
(i) \(1094 \mathrm{lb} . / \mathrm{ac}\).
(i) \(216.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of wheat grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{M}_{\mathbf{0}}\) & 954 \\
\(\mathbf{M}_{\mathbf{1}}\) \} \(&{\mathbf{1 2 3 4}} \\
{\text { S.E./mean }} &{=88.2 \mathrm{lb} . / \mathrm{ac} .}\)
\end{tabular}

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 51(4). Type :- 'CM'.
Object :-To study the effect of Napier grass on the soil fertility and yield of subsequent cereal crops under manured and unmanured conditions.

\section*{1. BASAL CONDITIONS :}
(i) (a), (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Wheat : 6.11.1951 and Napier on 27, 29.11.1951. (iv) (a) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hoeing with Oudh plough only wheat 15.12 .1951. Hoeing Napier with desi plough on 29.12.1951 and hoeing wheat with Oudh plough on 2.1.1952. (ix) N.A. (x) Wheat on 16.4.1952 and Napier on 23.5.1952.
2. TREATMENTS :

Main-plot treatments :
4 crop rotations : \(\mathbf{R}_{\mathbf{1}}=\) Control : Maize and Wheat, \(\mathrm{R}_{\mathbf{2}}=\) Napier ( 2 years)-Maize and Wheat, \(\mathbf{R}_{\mathbf{3}}=\) Napier (3 years)-Maize and Wheat and \(\mathrm{R}_{4}=\) Napier (4 years)-Maize and Wheat.
Sub-plot treatments :
2 manures: \(\mathrm{M}_{0}=0\) and \(\mathrm{M}_{1}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) 1/40 acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1950 (Kharif) to 1953. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) The analysis was done only for wheat crop.
5. RESULTS:
(i) \(470.2 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(120.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cll} 
Treatment & & Av. yield \\
\(\mathbf{M}_{0}\) & & 396.9 \\
\(\mathbf{M}_{1}\) & & 543.6 \\
& S.E./mean & \(=48.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref.-I.A.R.I. 52(4). Type :- 'CM'.
Object : To study the effect of Napier grass on the soil fertility and yield of subsequent cereal crops under manured and unmanured conditions.

\section*{1. BASAL CONDITIONS :}
(i) (a), (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Wheat on 30, 31.10.1952, Napier 16, 17.11.1952. (iv) (a) Ploughing with victory plough once and twice with desi plough. (b) to (e) N.A. (v) Nil. (vi) Wheat C-518. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) Napier on 13.5.1953 and Wheat on 5.9.1953.
2. TREATMENTS :

Main-plot treatments :
4 crop rotations : \(\mathrm{R}_{1}=\) Control : Maize and Wheat, \(\mathrm{R}_{\mathbf{2}}=\) Napier ( 2 years)-Maize and Wheat, \(\mathrm{R}_{3}=\) Napier (3 years)-Maize and Wheat and \(R_{4}=\) Napier (4 years)-Maize and Wheat.
Sub-plot treatments :
2 manures: \(M_{0}=0\) and \(M_{1}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 2 sub-plots/main plot.
(b) N.A.
(iii) 6. (iv) (a) N.A.
(b) \(1 / 40\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 446.6 lb ./as.
(ii) (a) \(67.2 \mathrm{lb} . / \mathrm{ac}\).
(b) \(29.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|ll|l} 
& \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & Mean \\
\hline \begin{tabular}{l}
\(\mathrm{M}_{\mathbf{0}}\) \\
\(\mathrm{M}_{\mathbf{1}}\)
\end{tabular} & \begin{tabular}{ll}
380.0 & 440.0 \\
Mean & 466.7
\end{tabular} & 500.0 & 410.0 \\
483.3 \\
\hline & 423.3 & 470.0 & 446.6
\end{tabular}
S.E. of difference of two
1. \(R\) marginal means
\[
\begin{aligned}
& =27.43 \mathrm{lb} . / \mathrm{ac} . \\
& =12.08 \mathrm{lb} . / \mathrm{ac} . \\
& =17.10 \mathrm{lb} . / \mathrm{ac} . \\
& =29.98 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
\]
2. M marginal means
3. \(M\) means at the same level of \(R\)
4. \(R\) means at the same level of \(M\)

Object :-To study the effect of Napier grass on the soil fertility and yield of subsequent cereal crops under manured and unmanured conditions.

\section*{1. BASAL CONDITIONS:}
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 29.10.1953.
(iv) (a) 1 ploughing with victory plough 7.9.1953, 2 Harrowing (spring harrow) 23,5.1953 and ploughing with desi plough thrice. (b) N.A. (c) \(1 \mathrm{md} / \mathrm{ac}\). (d) and (e) N.A. (v) N.A. (vi) N.P-710. (vii) Irrigated. (viii) Bakharing 12.11.1953. (ix) N.A. (x) 4.4.1954.

\section*{2. TREATMENTS:}

Main-plot treatments :
4 crop rotation : \(\mathrm{R}_{\mathbf{1}}=\) Control : Maize and Wheat, \(\mathrm{R}_{\mathbf{2}}=\) Napier ( \(\mathbf{2}\) years)-Maize and Wheat, \(\mathrm{R}_{\mathbf{3}}=\) Napier ( 3 years)-maize and Wheat and \(R_{4}=\) Napier ( 4 years)-Maize and Wheat.
Sub-plot treatments :
2 manures : \(\mathrm{M}_{0}=0\) and \(\mathrm{M}_{1}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{s}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 40\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A.
(iii) Grain yield. (iv)
(a) 1950-1953.
(b) Yes.
(c) N.A. (v) (a) and (b) No.
(vi) and (vii) Nil.
5. RESULTS:
(i) \(818 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(192.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(84.0 \mathrm{lb} / \mathrm{ac}\).
(iii) \(R\) effect is significant, \(M\) effect is highly significant and lnteraction is not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccc|c} 
& \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{M}_{\mathbf{0}}\) & 707 & 687 & 874 & 758 \\
\(\mathrm{M}_{\mathbf{1}}\) & 847 & 780 & 1007 & 878 \\
\hline Mean & 777 & 733 & 940 & 818
\end{tabular}
S.E. of difference of two
1. R marginal means
\(=78.38 \mathrm{lb} . / \mathrm{ac}\).
2. \(M\) marginal means
\(=28.00 \mathrm{lb} . / \mathrm{ac}\).
3. \(M\) means at the same level of \(R\)
\(=4850 \mathrm{lb} / \mathrm{ac}\).
4. \(R\) means at the same level of \(\mathbf{M}\)
\(=85.56 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Wheat (Rabi). Ref:- I.A.R.I. 50(40). Type :- 'CMMV'.}

Object :-To find out the optimum seed-rate of Wheat varieties under manured and unmanured conditions.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 13, 14.11.1950. (iv) (a) Ploughing with tractor and discing. (b) N.A. (c) As per treatments. (d) N.A. (e) N.A. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 17.4.1951 to 1.5.1951.
2. TREATMENTS :

Main-plot treatments :
5 seed rates: \(\mathrm{R}_{1}=50, \mathrm{R}_{2}=65, \mathrm{R}_{3}=80, \mathrm{R}_{4}=95\) and \(\mathrm{R}_{5}=110 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments:
2 varieties: \(\mathrm{V}_{1}=\) N.P. 165 and \(\mathrm{V}_{2}=\mathrm{C}\)-518.
Sub-sub-plot treatments :
2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb}\)./ac. of \(N\).
3. DESIGN :
(i) Split-plot in L. Sq. (ii) (a) 5 main-plots/block, 2 sub-plots/main-plot and 2 sub-sub-plots/sub-plot. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(1 / 48.4\) ac. (v) N.A. (vi) N.A.

\section*{4. GENERAL:}
(i) N.A. (ii) Removal of plants attacked by smut on 3, 4.3.1951. (iii) Grain yield. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1774 \mathrm{lb} . / \mathrm{ac}\).
(ii) N.A.
(iii) N effect is highly significant and interaction \(\mathrm{N} \times \mathrm{V}\) is significant while all others are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathbf{R}_{2}\) & \(\mathbf{R}_{3}\) & \(\mathrm{R}_{4}\) & \(\mathrm{R}_{5}\) & Mean & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) \\
\hline \(V_{1}\) & 1694 & 1975 & 1921 & 1619 & 2050 & 1852 & 1849 & 1856 \\
\hline \(\mathrm{V}_{2}\) & 1488 & 1631 & 1941 & 1779 & 1641 & 1696 & 1583 & 1809 \\
\hline Mean & 1591 & 1803 & 1931 & 1699 & 1845 & 1774 & 1716 & 1832 \\
\hline \(\mathrm{N}_{0}\) & 1532 & 1728 & 1912 & 1590 & 1817 & 1716 & & \\
\hline \(\mathbf{N}_{1}\) & 1650 & 1878 & 1950 & 1808 & 1873 & 1832 & & \\
\hline
\end{tabular}
S.E's N.A.

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 51(15). Type :- 'CMV'.
Object :-To find out the optimum seed-rate of Wheat varieties under manured and unmanured conditions.

\section*{1. BASAL CONDITIONS:}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) \(16,17.11 .1951\). (iv) (a) Preparatory cultivation 2 victory ploughings, 1 desi ploughing discing and grubbing twice levelling and again ploughing with desi plough twice. (b) N.A. (c) As per treatments. (d) Rows \(9^{\circ}\) apart. (e) N.A. (v) N.A. (vi) As per treatments. (vii) N.A. (viii) No. (ix) N.A. (x) N.P. 165-10.4.1952; ;C-518-17.4.1952.

\section*{2. TREATMENTS :}

Main-plot treatments :
5 seed rates : \(R_{1}=50, R_{2}=65, R_{3}=80, R_{\mathbf{4}}=95\) and \(R_{5}=110 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments :
2 varieties: \(\mathrm{V}_{1}=\) N.P. 165 and \(\mathrm{V}_{2}=\mathrm{C}-518\).
Sub-sub-plot treatments :
2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=20 \mathrm{lb}\)./ac. of \(N\).
\(\mathrm{A} / \mathrm{S}\) broadcaste before sowing.
3. DESIGN :
(i) Split-plot in L. Sq. (ii) (a) 5 main-plots/block, 2 sub-plots/main-plot and 2 sub-sub-plots/sub-piot. (b) N.A. (iii) 5 . (iv) (a) N.A. (b) \(58.5^{\prime} \times 11^{\prime}\). (v) N.A. (vi) N.A.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-1953\). (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1086 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(291.2 \mathrm{lb} . / \mathrm{ac}\).
(b) \(336.8 \mathrm{lb} . / \mathrm{ac}\).
(c) \(408.4 \mathrm{Jb} . / \mathrm{ac}\).
(iii) \(V\) effect is highly significant and interaction, \(N \times S, S \times V, V \times N\) are all significant while other effects are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathbf{R}_{3}\) & \(\mathrm{R}_{4}\) & \(\mathrm{R}_{5}\) & Mean & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) \\
\hline \(\mathrm{V}_{1}\) & 1192 & 1317 & 1317 & 1170 & 1359 & 1271 & 1231 & 1311 \\
\hline \(\mathrm{V}_{2}\) & 769 & 863 & 900 & 1026 & 944 & 900 & 786 & 1015 \\
\hline Mean & 981 & 1090 & 1108 & 1098 & 1151 & 1086 & 1009 & 1163 \\
\hline \(\mathrm{N}_{0}\) & 893 & 1022 & 1010 & 996 & 1122 & 1009 & & \\
\hline \(\mathrm{N}_{1}\) & 1069 & 1157 & 1206 & 1201 & 1181 & 1163 & & \\
\hline
\end{tabular}
S.E. of difference of two
1. R marginal means
2. V marginal means
\(=92.06 \mathrm{lb} . / \mathrm{ac}\).
3. N marginal means
4. V means at the same level of \(R\)
b./ac.
\(=81.68 \mathrm{lb} . / \mathrm{ac}\).
\(=150.60 \mathrm{lb} . / \mathrm{ac}\).
6. \(\mathbf{N}\) means at the same level of \(\mathbf{R}=182.6 \mathrm{lb} . / \mathrm{ac}\).
7. \(R\) means at the same level of \(N=158.6 \mathrm{lb} . / \mathrm{ac}\).
8. \(N\) means at the same level of \(V=115.5 \mathrm{lb} / \mathrm{ac}\).
9. V means at the same level of \(N=105.9 \mathrm{lb} . / \mathrm{ac}\).
5. \(R\) means at the same level of \(V\)
\(=167.40 \mathrm{lb} . / \mathrm{ac}\).

Object :-To find out the optimum seed-rate of Wheat varieties under manured and unmanured conditions.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 3.11.1952. (iv) (a) 3 ploughings with desi plough. Discing and grubbing twice. (b) N.A. (c) As per treatments. (d) and (e) N.A. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) Interculture once. (ix) N.A. (x) 15, 20.4.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
5 seed rates : \(\mathbf{R}_{\mathbf{2}}=50, \mathbf{R}_{\mathbf{2}}=65, \mathbf{R}_{\mathbf{3}}=80, \mathbf{R}_{\mathbf{4}}=95\) and \(\mathbf{R}_{\mathbf{5}}=110 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments:
2 varieties: \(\mathrm{V}_{1}=\) N.P. 165 and \(\mathrm{V}_{2}=\mathrm{C}-518\).

\section*{Sub-sub-plot treatments:}

2 levels of \(N\) as \(A / S: N_{0}=0\), and \(N_{1}=20 \mathrm{lb}\)./ac. of \(N\).
3. DESIGN:
(i) Split-plot in L. Sq. (ii) (a) 5 main-plots/block, 2 sub-plots/main-plot and 2 sub-sub-plots/sub-plot. (b) N.A. (ii) 5 . (iv) (a) N.A. (b) \(62.5^{\circ} \times 15^{\prime}\). (v) N.A. (vi) N.A.
4. GENERAL :
(i) Normal. (ii) Loose smut. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1802 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(1266 \quad \mathrm{lb} . / \mathrm{ac}\).
(b) \(390.0 \mathrm{lb} / \mathrm{ac}\).
(c) \(391.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathbf{R}_{3}\) & \(\mathrm{Ra}_{4}\) & \(\mathrm{R}_{5}\) & Mean & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) \\
\hline \(V_{1}\) & 1500 & 1789 & 1791 & 1931 & 1907 & 1784 & 1752 & 1815 \\
\hline \(\mathrm{V}_{2}\) & 1349 & 1626 & 1851 & 2305 & 1972 & 1821 & 1783 & 1859 \\
\hline Mean & 1425 & \(\square 708\) & 1821 & 2118 & 1940 & 1802 & 1767 & 1837 \\
\hline \(\mathrm{N}_{0}\) & 1519 & 1696 & 1781 & 2049 & 1791 & 1767 & & \\
\hline \(\mathrm{N}_{1}\) & 1330 & 1719 & 1861 & 2186 & 2089 & 1837 & & \\
\hline
\end{tabular}
S.E. of the difference of two
1. \(R\) marginal means
2. \(V\) marginal means
3. N marginal means
4. V means at the same level of \(R\)
5. \(R\) means at the same level of \(V\)
\(=400.3 \mathrm{lb} . / \mathrm{ac}\).
6. N means at the same level of \(\mathrm{R}=174.8 \mathrm{lb} . / \mathrm{ac}\).
\(=78.0 \mathrm{lb} . / \mathrm{ac}\).
\(=78.2 \mathrm{lb} . / \mathrm{ac}\).
\(=174.4 \mathrm{lb} . / \mathrm{ac}\).
\(=418.9 \mathrm{l} . / \mathrm{ac}\).
7. \(R\) means at the same level of \(N=4190 \mathrm{lb}\)./ac.
8. \(N\) means at the same level of \(V=110.3 \mathrm{lb} . / \mathrm{ac}\).
9. \(V\) means at the same level of \(N=110.5 \mathrm{lb}\)./ac.

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 53(23). Type :- ‘CMV'.
Object :-To find out the optimum seed-rate of Wheat varieties under manured and unmanured conditions.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 20, 21.11.1953. (iv) (a) and (b) N.A. (c) As per treatments. (d) and (e) N.A. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) Weeding once. (ix) N.A. (x) 19, 20.4.1954.
2. TREATMENTS:

All combinations of (1), (2) and (3)
1. 3 varieties : \(\mathrm{V}_{1}=\mathrm{NP}-710, \mathrm{~V}_{2}=\mathrm{NP}-718\) and \(\mathrm{V}_{3}=\mathrm{NP}-775\).
2. 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac. of \(N\).
3. 3 seed rates: \(R_{1}=50 . R_{2}=80\) and \(R_{3}=110 \mathrm{lb} . / \mathrm{ac}\).

Manures to be applied in two doses, half before sowing on 19.11 .1953 and half with first itrigation on 9.1.1954.
3. DESIGN:
(i) \(3^{3}\) Fact. confd. ii) (a) 9 plots'block and 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(24^{\prime} \times 35^{\circ}\) (b) \(22^{\prime} \times 33^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal, heary lotzing. (ii) Brown rust in N.P-710 (iii) Grain yield. (iv) (a) N.A.-1953. (b) Yes. (c) N.A. ( \(\mathbf{v}\), \(a\), (bi No. (vi) Heavy rains in February 1954. (vii) Nil.

\section*{5. RESULTS:}
(i) \(1867 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(261.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of N and V are significant others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(V_{1}\) & \(\mathrm{V}_{2}\) & \(V_{3}\) & Mean & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathrm{N}_{2}\) \\
\hline \(\mathbf{R}_{1}\) & \(18: 2\) & 2118 & 1925 & 1972 & 1936 & 1925 & 2054 \\
\hline \(\mathrm{R}_{2}\) & 1594 & 1765 & 1883 & 1747 & 1958 & 1466 & 1819 \\
\hline \(\mathbf{R}_{3}\) & 1733 & 1861 & 2054 & 1883 & 1947 & 1722 & 1979 \\
\hline Mean & 1733 & 1915 & 1954 & 1867 & 1947 & 1705 & 1950 \\
\hline \(\mathrm{N}_{0}\) & 1786 & 1861 & 2193 & 1947 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} \\
\hline \(\mathrm{N}_{1}\) & 1594 & 1851 & 1669 & 1705 & & & \\
\hline \(\mathrm{N}_{2}\) & 1819 & 2032 & 2000 & 1950 & & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =61.68 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of any table } & =106.80 \mathrm{lb} . / \mathrm{ac}
\end{array}
\]

Crop :- Wheat (Rabi). Ref :- I.A.R.I. 50(32). Type :- 'CMV'.
Object :-To study the effect of N on different varieties of Wheat when sown on different dates.
1. BASAL CONDITIONS:
(i) (a) No. (b) Cowpeas. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 20.10.1950, 15.11.1950 and 9.12.1950. (iv) (a) Ploughing with victory plough after cowpeas once and 1 ploughing with desi plough. (b) to (e) N.A. (v) \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super and \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. sul. (vi) As per treatments. (vii) Irrigated, (viii) Roguing 5,6.4.1951. (ix) N.A. (x) 7 to 16.4.1951.

\section*{2. TREATMENTS:}

Main-plot treatments :
3 dates of sowing: \(D_{1}=20.10 .1950, D_{2}=15.11 .1950\) and \(D_{3}=10.12 .1950\).
Sub-plot treatments :
3 varieties: \(\mathrm{V}_{1}=\mathrm{N} \cdot \mathrm{P}-165, \mathrm{~V}_{2}=\mathrm{N} . \mathrm{P}-710\) and \(\mathrm{V}_{3}=\) N.P. 771.
Sub-sub-plot treatments:
5 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N at sowing, \(\mathrm{N}_{2}=20 \mathrm{lb} . / \mathrm{ac}\). of N with 1 st irrigation after sowing, \(\mathrm{N}_{3}=40 \mathrm{lb} . / \mathrm{ac}\). of N at sowing and \(\mathrm{N}_{4}=40 \mathrm{lb} . / \mathrm{ac}\). of N with final irrigation after sowing.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/replication, 3 sub-plots/main-plot and 5 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(50^{\circ} \times 20^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) \(1949-1949\). (b) N.A. (c) N.A. (v) (a), (b) No. (vi) Nil. (iii) Nil.

\section*{5 RESULTS:}
(i) \(1142 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(295.2 \mathrm{lb} . / \mathrm{ac}\).
(b) \(396.1 \mathrm{lb} . / \mathrm{ac}\).
(c) \(219.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Sub-sub-plot treatments differ highly significantly. Main-plot, and sub-sub-plot treatments do not differ significantly. Interaction is not significant.
(iv) Av. yield of grain in Ib./as.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & - & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathbf{V}_{3}\) \\
\hline \(\mathrm{S}^{\mathbf{N}} \mathbf{0}\) & & 757 & 849 & 1036 & 881 & 875 & 898 & 869 \\
\hline \(\mathrm{N}_{1}\) & & 1205 & 1330 & 1287 & 1274 & 1267 & 1336 & 1220 \\
\hline \(\mathrm{N}_{2}\) & & 873 & 955 & 1084 & 971 & 1049 & 926 & 937 \\
\hline \({ }^{*} \mathrm{~N}_{3}\) & & 1289 & 1510 & 1361 & 1387 & 1407 & 1414 & 1339 \\
\hline \(\mathrm{N}_{4}\) & & 1138 & 1249 & 1214 & 12 CO & 1196 & 1280 & 1125 \\
\hline Mean & & 1052 & 1179 & 1196 & 1142 & 1159 & 1171 & 1098 \\
\hline \(\mathrm{V}_{1}\) & & 1117 & 1114 & 1245 & & & & \\
\hline \(\mathrm{V}_{2}\) & & 1134 & 1280 & 1099 & & & & \\
\hline \(\mathrm{V}_{3}\) & & 906 & 1142 & 1246 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{|c|c|c|c|c|}
\hline 1. D marginal means & \(=53.90 \mathrm{lb} . / \mathrm{ac}\). & & \(\mathbf{N}\) means at a level of \(\mathbf{D}\) & I= \(89.41 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 2. V marginal means & \(=72.31 \mathrm{lb} . / \mathrm{ac}\). & & D means at a level of N & \(=96.44 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 3. \(\mathbf{N}\) marginal means & \(=51.62 \mathrm{lb} / \mathrm{ac}\). & & \(N\) means at a level of \(V\) & \(=89.41 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 4. V means at a level of D & \(=125.25 \mathrm{lb} / \mathrm{ac}\). & 9 & \(V\) means at \(e\) level of \(\mathbf{N}\) & \(=107.81 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 5. D means at a level of V & \(=115.60 \mathrm{lb} . / \mathrm{ac}\). & & & \\
\hline
\end{tabular}

Crop:- Wheat (Rabi). Ref:- I.A.R.I. 53(11). Type :- 'IM'.
Object:-To study the effect of irrigation and manures on the growth, yield and water requirements of Wheat.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 11.11.1953. (iv) (a) 4 plcughing with victory plough, 6 ploughing, with desi plough and double discing with tractor. (b) N.A. (c) 1 md./ac (d) and (e) N.A. (v) N.A. (vi) N.P-710. (vii) Irrigated. (viii) One weeding. (ix) N.A. (x) 6,7.4.1954.
2. TREATMENTS :

All combinations of (1), (2 and (3).
(1) 3 levels of irrigation: \(\mathrm{I}_{1}=1, \mathrm{I}_{2}=2\) and \(\mathrm{I}_{3}=3\) irrigations.
(2) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac. of \(N\).
(3) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN:
(i) \(3^{3}\) Fact. confd. (ii) (a) 9 plots/block and 3 blocks/replication. (b) iN.A. (iii) 2. (iv) (a) \(44^{\prime} \times 20^{\prime}\). (b) \(40^{\prime} \times 18^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Black ants. (iii) Grain yield. (iv) (a) 1953-N.A. (b) N.A. (c) N.A. (v) (a), (b) No. (vi) N.A. (vii) Raw data N.A;
5. RESULTS:
(i) \(2174 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(205.54 \mathrm{lb} . / \mathrm{ac}\).
(iii) N.A.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccccc} 
Treatment & Av. yield. & Treatment & Av. yield. & Treatment & Av. yield \\
\(\mathbf{N}_{0}\) & 1967 & \(\mathbf{P}_{0}\) & 2002 & \(\mathbf{I}_{\mathbf{1}}\) & 2018 \\
\(\mathbf{N}_{1}\) & 2153 & \(\mathbf{P}_{\mathbf{1}}\) & 2163 & \(\mathbf{I}_{\mathbf{2}}\) & 2232 \\
\(\mathbf{N}_{\mathbf{2}}\) & 2402 & \(\mathbf{P}_{\mathbf{2}}\) & 2358 & \(\mathbf{I}_{\mathbf{3}}\) & 2273 \\
S.E. \(/\) mean & \(=83.93 \mathrm{lb} . / \mathrm{ac}\). & S.E./mean & \(=83.93 \mathrm{lb} . / \mathrm{ac}\). & S.E./mean & \(=83.93 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Object :-To study the effect of different doses of \(N\) along with different number of Irrigations on three different varieties of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 19, 20. 11.1952. (iv) (a) Tractor grubbing twice, desi ploughing, tractor discing crosswise on 18.11 .1952 . (b) to (e) N.A. (v) \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super and \(\mathrm{A} / \mathrm{S}\). applied at the time of sowing. (vi) As per treatments. (vii) Irrigated. (viii) Weeding done with Khurpi. (ix) N.A. (x) 1.5.1953.

\section*{2. TREATMENTS :}

All combinations of (1), (2) \& (3).
(1) 3 varieties: \(\mathrm{V}_{1}=\) N.P. \(710 \quad \mathrm{~V}_{2}=\) N.P. 718 and \(\mathrm{V}_{3}=\) N.P. 775.
(2) 3 levels of \(N\) as \(A / S: N_{0}=\) No manures, \(N_{1}=20\) and \(N_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of \(N\).
(3) 3 levels of irrigations : \(I_{1}=\) One Irigation, \(I_{2}=\) Two Irrigations and \(I_{3}=\) Three Irrigations.
3. DESIGN :
(i) \(3^{3}\) Fact. confd. (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(50^{\prime} \times 17^{\circ}\) (b) \(48^{\prime} \times 15^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Below Normal. (ii) N.A. (iii) Yield of grain. (iv) (a) \(1952-\) N.A. (b) N.A. (c) N.A. (v) (a) \({ }_{2}\) (b) No. (vi) \& (vii) Nil.
5. RESULTS :
(i) \(1639 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(297.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) N effect is highly significant, interaction \(\mathrm{V} \times \mathrm{N}\) is significant. Other effects are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathbf{N}_{2}\) & Mean & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) \\
\hline \(\mathrm{V}_{1}\) & 1238 & 1926 & 1883 & 1682 & 1593 & 1775 & 1680 \\
\hline \(\mathrm{V}_{2}\) & 1032 & 1766 & 2117 & 1638 & 1616 & 1764 & 1535 \\
\hline \(\mathrm{V}_{3}\) & 1041 & 1723 & 2027 & 1597 & 1541 & 1632 & 1619 \\
\hline Mean & 1104 & 1805 & 2009 & 1639 & 1583 & 1724 & 1611 \\
\hline \(\mathrm{I}_{1}\) & 1088 & 1890 & 1771 & 1583 & & & \\
\hline \(\mathrm{I}_{2}\) & 1167 & 1883 & 2121 & 1724 & & & \\
\hline \(\mathrm{I}_{3}\) & 1056 & 1642 & 2135 & 1611 & & & \\
\hline \multicolumn{4}{|c|}{S.E. of any marginal mean S.E. of body of any table} & \[
\begin{aligned}
& =70.05 \\
& =121.3
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
1b./ac. \\
Ib./ac.
\end{tabular}} \\
\hline
\end{tabular}

Crop :- Wheat (Rabi).
Ref :- I.A.R.I. 53(72).
Type:- ‘IMV'
Object :-To study the effect of varying doses of irrigation and \(\mathbf{N}\) doses on the yield of Wheat varieties.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 2.11.1953. (iv) (a) Victory ploughing, desi ploughing 4 times crosswise 4th week October, 1953. (b) to (e) N.A. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) Weeding. (ix) N.A. (x) May 1954.
2. TREATMENTS :

All combinations of (1), (2) and (3).
(1) 3 varieties: \(\mathrm{V}_{1}=\mathrm{NP}-710, \mathrm{~V}_{2}=\mathrm{N} . \mathrm{P}-718\) and \(\mathrm{V}_{3}=\) N.P-775.
(2) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N .
(3) 3 levels of irrigation : \(I_{1}=\) One irrigation. \(I_{2}=\) Two irrigations and \(I_{3}=3\) irrigations.
3. DESIGN :
(i) \(3^{3}\) Fact. confounded. (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(48^{\circ} \times 18^{\prime}\). (b) \(48^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Below normal.
(ii) N.A. (iii) Grain yield. (iv)
(a) 1952-N.A.
(b) and (c) N.A.
(v) (a) and (b) No.
(vi) and (vii) Nil.
5. RESULTS :
(i) \(1228 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(172.5 \mathrm{lb} / \mathrm{ac}\).
(iii) Only V and I effects are signifcant.
(iv) Av. yield of grain in lb ./ac.


Crop:- Wheat (Rabi). Ref:- I.A.R.I. 48(1). Type :- 'D'.
Object :-To find out the efficiency of spraying methexan on the yield of Wheat.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) N.P-165. (vii) to (x) N.A.
2. TREATMENTS :

Main-plot treatments :
2 levels of spraying: \(\mathrm{T}_{0}=\) No spraying before sowing and \(\mathrm{T}_{1}=\) Spraying methexan before sowing.
Sub-plot treatments :
4 weeding treatments: \(W_{0}=\) No weeding, \(W_{1}=\) Weading with hand, \(W_{2}=\) Spraying weedicide once after sowing and \(\mathrm{W}_{3}=\) Spraying weedicide twice after sowing.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 2 main-plots/replication and 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(36^{\prime} \times 36\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1948-N.A. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1245 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(395.8 \mathrm{lb} / \mathrm{ac}\).
(b) \(216.4 \mathrm{lb} \cdot \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} \cdot / \mathrm{ac}\).
\begin{tabular}{r|cccc|c} 
& \(W_{0}\) & \(W_{1}\) & \(W_{\mathbf{2}}\) & \(W_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{T}_{0}\) & 951 & 1554 & 1280 & 1157 & 1236 \\
\(\mathrm{~T}_{1}\) & 1228 & 1280 & 1294 & 1217 & 1255 \\
\hline Mean & 1089 & 1417 & 1287 & 1187 & 1245
\end{tabular}

\section*{S.E. of difference of two}
1. T marginal means \(\quad=139.9 \mathrm{lb} . / \mathrm{ac}\).
2. W marginal means \(\quad=108.2 \mathrm{lb} . / \mathrm{ac}\).
3. W means at the same level of \(T \quad=153.0 \mathrm{lb} \cdot / \mathrm{ac}\).
4. T means at the same level of \(W \quad=192.7 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Maize (Kharif)
Ref :- I.A.R.I 49 (3) Type :- 'M'.

Object :-To Study the residual effect of fertilizers applied to Maize in Kharif on the yield of Wheat.
1. BASAL CONDITIONS:
(i) (a) Maize-Wheat. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on Page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS:

All combinations of (1), (2) \& (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \quad \mathrm{~N}_{1}=40\) and \(\mathrm{N}_{2}=80 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\), and \(\mathrm{K}_{1}=60 \mathrm{lb}\)./ac.

3 DESIGN :
(i) \(3^{2} \times 2\) Confd. Fact. (ii) (a) 3 blocks/replication and 6 plots/block. (NP and NPK are partially confounded.) (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(42^{\prime} \times 22^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 (Kharif) to 1953. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) \& (vii) Nil.

\section*{5. RESULTS:}
(i) 2427 lb./ac.
(ii) \(396.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) N effect alone is significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{N}_{0}\) & 2037 & 2186 & 2144 & 2122 & 2051 & 2194 \\
\hline \(\mathrm{N}_{1}\) & 2482 & 2728 & 2539 & 2583 & 2609 & 2557 \\
\hline \(\mathrm{N}_{2}\) & 2393 & 2565 & 2766 & 2575 & 2516 & 2634 \\
\hline Mean & 2304 & 2493 & 2483 & 2427 & 2392 & 2462 \\
\hline \(\mathrm{K}_{0}\) & 2232 & 2382 & 2502 & & & \\
\hline \(\mathrm{K}_{1}\) & 2377 & 2604 & 2404 & & & \\
\hline
\end{tabular}
S.E. of N or P marginal means
S.E. of \(K\) marginal means
S.E. of body of \(N \times P\) table \(=114.5 \mathrm{lb} . / \mathrm{ac}\).
\(=93.5 \mathrm{lb} . / \mathrm{ac}\).
\(=229.0 \mathrm{lb} . / \mathrm{ac}\).
\(=161.9 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Maize (Kharif).}

Ref :- I.A.R.I. 50(58). Type :- 'M'.
Object :-To study the residual effect of fertilizers applied to Maize in kharif on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 2,3.7.1950. (iv)
(a) Ploughing with desi plough twice. (b) to (e) N.A. (v) N.A. (vi) Yellow No. 2. (vii) Irrigated. (viii)

Thinning, horse hoeing, weeding twice and filling gaps. (ix) N.A. (x) 4.10.1950.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=40\) and \(N_{2}=80 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.
(3) 2 levels of \(K_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0\) and \(K_{1}=60 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{2} \times 2\) Confd. Fact. (ii) (a) 3 blocks/replication and 6 plots/block. (NP and NPK are partially confounded). (b) N.A. (iii) 2. (iv) (a) \(42^{\prime} \times 22^{\prime}\). (b) \(37^{\prime} \times 19^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Spraying maize crop with D.D.T. (iii) Grain yield. (iv) (a) 1949 ( \(k\) harif)-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2069 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(281.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(N\) is highly significant. Interactions \(N \times P\) and \(N \times K\) are significant. Others are not significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathbf{P}_{1}\) & \(\mathbf{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{N}_{0}\) & 1519 & 2046 & 2307 & 1957 & 1539 & 1663 \\
\hline \(\mathrm{N}_{1}\) & 1627 & 2509 & 2076 & 2071 & 2220 & 2199 \\
\hline \(\mathrm{N}_{2}\) & 1658 & 2076 & 2803 & 2179 & 2469 & 2324n \\
\hline Mean & 1601 & 2210 & 2395 & 2069 & 2076 & 2062 \\
\hline \(\mathrm{K}_{0}\) & 2004 & 2034 & 2190 & & & \\
\hline \(\mathrm{K}_{1}\) & 1911 & 2107 & 2169 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(N\) or \(P\) marginal mean & \(=81.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(K\) marginal mean & \(=66.3 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of \(N \times P\) table & \(=162.4 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(P \times K\) or \(N \times K\) table & \(=114.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Maize (Kharif). Ref:-I.A.R.I. 51(59). Type:- 'M'.
Object :-To study the residual effect of fertilizers applied to Maize in kharif on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat. (b) Wheat. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 31.7.1951. (iv) (a) Ploughing with victory plough, tractor discing and tractor grubbing (b) to (e) N.A. (v) N.A. (vi) Yellow No. 2. (vii) Irrigated. (viii) Horse hoeing, weeding and earthing up. (ix) N.A. (x) 4, 5.11.1951.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{2}=40\) and \(N_{2}=80 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.: \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=60 \mathrm{lb}\)./ac.
3. DESIGN:
(i) \(3^{3} \times 2\) Confd. Fact. (ii) (a) 3 blocks/replication and 6 plots/blocks. (NP and NPK are partially confounded). (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(42^{\prime} \times 22^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 (kharif)-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1685 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(302.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of N and P differ highly significantly. Interaction \(\mathrm{N} \times \mathrm{P}\) and \(\mathrm{N} \times \mathrm{K}\) are significant. Others are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{N}_{0}\) & 1120 & 1114 & 1184 & 1139 & 1045 & 1234 \\
\hline \(\mathrm{N}_{1}\) & 1326 & 2339 & 1750 & 1805 & 1909 & 1701 \\
\hline \(\mathrm{N}_{2}\) & 2012 & 2092 & 2233 & 2112 & 2005 & 2219 \\
\hline Mean & 1486 & 1848 & 1722 & 1685 & 1653 & 1718 \\
\hline \(\mathrm{K}_{0}\) & 1322 & 1890 & 1748 & & & \\
\hline \(\mathrm{K}_{1}\) & 1650 & 1807 & 1697 & & & \\
\hline
\end{tabular}
S.E. of \(N\) or \(P\) marginal mean
S.E. of K marginal mean
\(=87.4 \mathrm{lb} / \mathrm{ac}\).
S.E. of body of \(N \times P\) table
S.E. of body of \(\mathrm{N} \times \mathrm{K}\) or \(\mathrm{P} \times \mathrm{K}\) table
\(=71.4 \mathrm{lb} / \mathrm{ac}\).
\(=174.8 \mathrm{lb} . / \mathrm{ac}\).
\(=123.6 \mathrm{lb} / \mathrm{ac}\).

Crop :- Maize (Kharif). Ref :- I.A.R.I. 52(75). Type :- 'M'.
Object :-To study the residual effect of fertilizers applied to Maize in Kharif on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat. (b) Wheat. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 25.7.1952. (iv) (a) Ploughing with victory plough and desi plough. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Bullock hoeing, weeding and earthing up. (ix) N.A. (x) N.A.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=\mathbf{0}, \mathrm{N}_{1}=40\) and \(\mathrm{N}_{2}=80^{\circ} \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=60 \mathrm{lb}\)./ac.
3. DESIGN:
(i) \(\mathbf{3}^{2} \times 2\) Confd. Fact. (ii) (a) 3 blocks/replication and 6 plots/block. (NP and NPK are partially confounded). (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(42^{\prime} \times 22^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 (kharif)-1953. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Crop sufferred a lot due to utter failure of rains in September. (vii) Nil.
5. RESULTS:
(i) \(1045 \mathrm{lb} . / \mathrm{ac}\)
(ii) \(346.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only main effe:t of N differs highly significantly.
(iv) Av. yield of grain in Ib./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(P_{0}\) & \(P_{1}\) & \(\mathbf{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{N}_{0}{ }^{-}\) & 767 & 842 & 681 & 763 & 681 & 846 \\
\hline \(\mathrm{N}_{1}\) & 823 & 1324 & 1009 & 1052 & 1097 & 1007 \\
\hline \(\mathrm{N}_{2}\) & 1293 & 1324 & 1343 & 1320 & 1176 & 1464 \\
\hline Mean & 961 & 1163 & 1011 & 1045 & 985 & 1106 \\
\hline \(\mathrm{K}_{0}\) & 813 & 1167 & 974 & & & \\
\hline \(\mathrm{K}_{1}\) & 1110 & 1159 & 1048 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(N\) or \(P\) marginal mean & \(=100.0 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of \(K\) marginal mean & \(=81.6 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of body of \(N \times P\) table & \(=200.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of tody of \(P \times K\) or \(N \times K\) table & \(=141.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Kharif). Ref :- I.A.R.I. 53(74). Type:- 'M'.
Object :-To study the residual effect of fertilizers applied to Maize in kharif on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat. (b) Wheat. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 5.7.1953. (iv) (a) Ploughing with victory plough and twice with desi plough. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Hand weeding, bullock hoeing, thinning and earthing. (ix) N.A. (x) 7.10.1953. Stripping on 11.10.1953 ; shelling on 26.10.1953.
2. TREATMENTS :

All combinations of (1), (2) and (3).
(1) 3 levels of N as \(\mathrm{C} / \mathrm{N}\).: \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=40\) and \(\mathrm{N}_{2}=80 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=60 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{2} \times 2\) Confd. Fact. (ii) (a) 3 blocks/replication and 6 plots/block. (NP and NPK are partially confounded). (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(42^{\prime} \times 22^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 (kharif)-1953. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1400 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(423.2 \mathrm{Ib} . / \mathrm{ac}\).
(iii) \(\mathbf{N}\) effect is highly significant. Interaction \(\mathbf{N} \times \mathrm{K}\) is significant. Others are not significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathbf{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{N}_{0}\) & 682 & 835 & 706 & 741 & 732 & 750 \\
\hline \(\mathrm{N}_{1}\) & 1451 & 1567 & 1378 & 1465 & 1707 & 1225 \\
\hline \(\mathrm{N}_{2}\) & 1762 & 1893 & 2323 & 1993 & 1974 & 2012 \\
\hline Mead & 1298 & 1432 & 1469 & 1400 & 1471 & 1329 \\
\hline \(\mathbf{K}_{0}\) & 1313 & 1492 & 1607 & & & \\
\hline \(\mathrm{K}_{1}\) & 1284 & 1371 & 1331 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(N\) or \(P\) marginal mean & \(=122.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(K\) marginal mean & \(=99.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(N \times P\) table & \(=244.3 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(N \times K\) or \(P \times K\) table & \(=172.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Kharif).
Ref :- I.A.R.I. 52(78).
Type :- 'M'.
Object :-To study the response of barley to different doses of \(\mathbf{N}\) and P fand its residual effect on Maize fodder.
1. BASAL CONDITIONS :
(i) (a) Barley-Maize. (b) Barley. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 30.7.1952. (iv) (a) Ploughing with victory plough and preparing the field. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) Hoeing on 25.8.1952. (ix) N.A. (x) 15.10.1952 to 19.10.1952.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30\) and \(\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 varieties: \(V_{1}=\) Pusa-13 and \(V_{2}=\) Kanpur-251.
3. DESIGN :
(i) \(3^{2} \times 2\) Fact. Confd. (ii) (a) 3 blocks/replication and 6 plots/block. (NP and NPV are partially confounded). (b) N.A. (iii) 4 . (iv) (a) \(38^{\circ} \times 25^{\prime}\). (b) \(36^{\prime} \times 23^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Fodder yield. (iv) (a) 1951 to N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 6.51 ton/ac.
(ii) 1.027 ton/ac.
(iii) Levels of N differ highly significantly, interaction \(\mathrm{P} \times \mathrm{V}\) is significant. Otherare not significant.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{llll|l|ll} 
& \(N_{0}\) & \(N_{1}\) & \(N_{2}\) & Mean & \(V_{1}\) & \(V_{2}\) \\
\hline\(P_{0}\) & 6.19 & 6.59 & 6.70 & 6.49 & 6.91 & 6.08 \\
\(P_{1}\) & 6.03 & 5.80 & 7.43 & 6.42 & 6.40 & 6.43 \\
\(P_{2}\) & 6.16 & 6.64 & 7.04 & 6.61 & 6.13 & 7.10 \\
\hline Mean & 6.13 & 6.34 & 7.06 & 6.51 & 6.48 & 6.54 \\
\hline\(V_{1}\) & 5.87 & 6.63 & 6.94 & & \\
\hline\(V_{2}\) & 6.39 & 6.06 & 7.17 & & \\
\hline
\end{tabular}
S.E. of N or P marginal mean
\(=0.296\) ton/ac.
S.E. of \(V\) marginal mean
S.E. of body of \(N \times P\) table
\(=0.242 \mathrm{ton} / \mathrm{ac}\).
\(=0.592\) ton/ac.
S.E. of body of \(\mathrm{N} \times \mathrm{V}\) or \(\mathrm{P} \times \mathrm{V}\) table
\(=0.419 \mathrm{ton} / \mathrm{ac}\).

Object :-To study the response of different doses of \(N\) and \(P\) on barley varieties and residual effect on Maize fodder.

\section*{1. BASAL CONDITIONS :}
(i) (a) Barley-Maize. (b) Barley. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 6.6.1953 and 9.6.1953. (iv) (a) Dry ploughing with victory plough and with desi plough. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) Hoeing and weeding. (ix) N.A. (x) 17.8.1953 and 23.8.1953 to 28.8.1953.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30\) and \(\mathrm{P}_{2}=60 \mathrm{lb}\)./ac.
(3) 2 varieties: \(V_{1}=\) Pusa N.P-13 and \(V_{2}=\) Kanpur-251.
3. DESIGN :
(i) \(3^{2} \times 2\) Confd. Fact. (ii) (a) 3 blocks/replication and 6 plots/block. (NP and,NeV are partially confounded). (b) N.A. (iii) 4 . (iv) (a) \(38^{\prime} \times 25^{\prime}\). (b) \(36^{\prime} \times 23^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (i) N.A. (iii) Fodder yield. (iv) (a) 1951 (Rabi)-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(7.83 \mathrm{ton} / \mathrm{ac}\).
(ii) 0.65 too/ac.
(iii) Main effects N and P are significant.Others are not significant.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathbf{N}_{2}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) \\
\hline \(\mathrm{P}_{0}\) & 8.81 & 8.26 & 8.05 & 8.37 & 8.69 & 8.06 \\
\hline \(\mathrm{P}_{1}\) & 6.86 & 8.16 & 7.81 & 7.62 & 7.44 & 7.80 \\
\hline \(\mathrm{P}_{2}\) & 7.36 & 7.72 & 7.38 & 7.48 & 7.40 & 7.57 \\
\hline Mean & 7.68 & 8.05 & 7.75 & 7.83 & 7.84 & 7.81 \\
\hline \(V_{1}\) & 7.42 & 8.33 & 7.78 & & & \\
\hline \(\mathrm{V}_{2}\) & 7.94 & 7.77 & 7.71 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(N\) or \(P\) marginal mean & \(=0.13 \mathrm{ton} / \mathrm{ac}\). \\
S.E. of \(V\) marginal mean & \(=0.11 \mathrm{ton} / \mathrm{ac}\). \\
S.E. of body of \(N \times P\) table & \(=0.25 \mathrm{ton} / \mathrm{ac}\). \\
S.E. of body of \(N \times V\) or \(P \times V\) table & \(=0.19\) ton/ac.
\end{tabular}

Crop :- Maize (Kharif). Ref :- I.A.R.I. 52(7). Type :- 'M'.
Object :- To study the residual effect of phosphatic manuring of berseem with and without \(K\) and \(N\) on Maize.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize-Berseem-Cotton-Wheat. (b) Berseem. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) \(13,15.7 .1952\). (iv) (a) Ploughing with victory plough and with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hand hoeing, bullock hoeing ard earthing up. (ix) N.A. (土) 18.10.1952.

\section*{2. TREATMENTS:}
1. 0 lb ./ac. of \(\mathrm{N}+0 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+0 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) (Control).
2. 0 lb ./ac. of \(\mathrm{N}+120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+0 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. 0 lb ./ac. of \(\mathrm{N}+120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+120 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
4. 100 lb ./ac. of \(\mathrm{N}+120 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+0 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
5. 25 lb ./ac. of \(\mathrm{N}+120 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+0 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
6. 50 lb ./ac. of \(\mathrm{N}+120 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+9 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
7. 100 lb ./ac. of \(\mathrm{N}+120 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+120 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
8. Fallow in berseem season.

Source of fertilizers N.A. Treatments applied to berseem in Rabi 1951-1952.
3. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(36^{\prime} \times 18^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1948-\) N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) 1557 lb./ac.
(ii) \(254.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Av. yiel & Av. yield & Treatment & Av. yield \\
Treatment & 1232 & 5. & 1636 \\
1. & 1568 & 6. & 1647 \\
2. & 1613 & 7. & 1736 \\
3. & 1702 & 8. & 1322 \\
4. & S.E./mean & \(=103.8 \mathrm{Ib} . / \mathrm{ac}\). &
\end{tabular}
Crop :- Maize (Kharif). Ref :- I.A.R.I. 50(43). Type :- 'M'.

Object :-To study the effect of green manuring on Maize.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) \(15,16.7 .1950\). (iv) (a) Ploughing with desi plough twice. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) No. (viii) Horse hoe, hand hoeing and thinning. (ix) \(0.7^{\circ}\). (x) \(25,26.10 .1950\).

\section*{2. TREATMENTS :}

Main-plot treatments:
8 G.M. crops : \(\mathrm{G}_{1}=\) Berseem, \(\mathrm{G}_{2}=\) Senji, \(\mathrm{G}_{3}=\) Methra, \(\mathrm{G}_{4}=\) Khesari, \(\mathrm{G}_{5}=\) Gram, \(\mathrm{G}_{6}=\) Peas, \(\mathrm{G}_{7}=\) Lentil and \(G_{8}=\) Fallow (control).

\section*{Sub-plot treatments :}

2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=\) Control (no \(\mathrm{P}_{2} \mathrm{O}_{5}\) ) and \(\mathrm{P}_{1}=80 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 8 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(1 / 60\) acre. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) N.A. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
\(\begin{array}{lll}\text { (i) } & 1277 & \mathrm{lb} . / \mathrm{ac} .\end{array}\)
(ii) (a) \(307.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(724.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) P effect alone is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|cccccccc|c} 
\\
\hline \(\mathbf{P}_{\mathbf{0}}\) \\
\(\mathbf{P}_{\mathbf{1}}\) & \(\mathbf{G}_{\mathbf{1}}\) & \(\mathbf{G}_{\mathbf{2}}\) & \(\mathbf{G}_{\mathbf{3}}\) & \(\mathbf{G}_{\mathbf{4}}\) & \(\mathbf{G}_{\mathbf{5}}\) & \(\mathbf{G}_{\mathbf{6}}\) & \(\mathbf{G}_{\mathbf{7}}\) & \(\mathbf{G}_{\mathbf{8}}\) & Mean \\
\hline Mean & 1230 & 1515 & 1080 & 1080 & 1320 & 1885 & 960 & 960 & 1254 \\
1500 & 1290 & 1155 & 1350 & 1350 & 1260 & 1410 & 1095 & 1301 \\
\hline 1403 & 1117 & 1215 & 1335 & 1573 & 1185 & 1027 & 1277
\end{tabular}
S.E. of difference of two
1. Main-plot treatment means
\(=153.5 \mathrm{lb} . / \mathrm{ac}\).
2. Sub-plot treatment means \(=181.1 \mathrm{lb} . / \mathrm{ac}\).
3. Sub-plot treatment means at the same level of main-plot treatment mean \(=512.4 \mathrm{lb}\)./ac.
4. Main-plot treatment means at the same level of sub-plot treatment mean \(=393.5 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Maize (Kharif). Ref:- I.A.R.I. 53(16). Type :- 'M'.
Object :-To determine the interval between application of F.Y.M. and sowing of wheat to obtain the maximum yield.

\section*{1. BASAL CONDITIONS :}
(i) (a) Wheat-Maize. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 11.6.1953 and 15.6.1953. (iv) (a) Dry ploughing with victory plough, land prepared with desi plough twice. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Hoeing with [desi plough and. weeding. (ix) N.A. (x) 17.8.1953 to 22.8.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
All combinations of (1) and (2) +a control ( \(\mathrm{T}_{0} \mathrm{~F}_{0}\) )
(1) 4 times of application of F.Y.M.: \(T_{1}=3\) months, \(T_{2}=2\) months, \(T_{3}=1\) month and \(T_{4}=1\) week before sowing.
(2) 3 levels of F.Y.M.: \(F_{1}=2.5, F_{2}=5\) and \(F_{3}=10\) ton/ac.

Sub-plot treatments:
2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=10 \mathrm{lb}\)./ac.
3. DESIGN:
(i) Split-plot. (ii) (a) 13 main-plots/block; 2 sub-plots/main plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) (b) \(18^{\prime} \times 32\).' \(^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Fodder yield. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(9.77 \mathrm{ton} / \mathrm{ac}\).
(ii) (a) 4.69 ton/ac.
(b) \(1.48 \mathrm{ton} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{l|cccccccccccccc|c} 
& \(T_{0} F_{0}\) & \(T_{2} F_{1}\) & \(T_{1} F_{2}\) & \(T_{1} F_{2}\) & \(T_{2} F_{1}\) & \(T_{2} F_{2}\) & \(T_{2} F_{3}\) & \(T_{3} F_{1}\) & \(T_{3} F_{2}\) & \(T_{3} F_{3}\) & \(T_{4} F_{1}\) & \(T_{4} F_{2}\) & \(T_{1} F_{3}\) & Mean \\
\hline \(\mathbf{N}_{0}\) & 7.28 & 6.80 & 10.92 & 9.84 & 10.33 & 10.13 & 11.52 & 9.54 & 11.64 & 9.78 & 9.10 & 9.77 & 10.62 & 9.79 \\
\(\mathrm{~N}_{1}\) & 7.13 & 6.71 & 10.34 & 10.95 & 11.45 & 10.65 & 9.60 & 9.60 & 10.68 & 10.21 & 8.74 & 9.52 & 11.26 & 9.76 \\
\hline Mean & 7.20 & 6.75 & 10.63 & 10.40 & 10.89 & 10.39 & 10.56 & 9.57 & 11.16 & 9.99 & 8.92 & 9.64 & 10.94 & 9.77
\end{tabular}
S.E. of difference of two
1. Main-plot treatment means \(\quad=2.340\) ton/ac.
2. Sub-plots treatment means
3. Sub-plot treatment means at the same level of main-plot treatment mean
\(=0.290\) ton/ac.
\(=1.045\) ton/ac.
4. Main-plot treatment means at the same level of sub-plot treatmentmean \(\quad=2.459\) ton/ac.
\[
\text { Crop:-Maize (Kharif). } \quad \text { Ref:-I.A.R.I. } 51(48) . \quad \text { Type :- 'M'. }
\]

Object :-To study the residual effect of manures applied to wheat on Maize.

\section*{1. BASAL CONDITIONS :}
(i) (a) Wheat-Maize. (b) Wheat. (c) As par treatments. (ii) (a) and (b) Refer item 11 on page 143.
(iii) 4.7.1951. (iv) (a) Tractor ploughing and tractor discing. Bullock ploughing with desi plough and beaming 3.7.1951. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Hoeing, thinning and weeding. (ix) \(6.82^{\circ}\). (x) 18.11.1951.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 organic manures: \(\quad M_{0}=\) No manure, \(M_{1}=\) Green manuring with guar at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, \mathrm{M}_{2}=\) Castor cake at \(60 \mathrm{lb} . / a c\). of N and \(\mathrm{M}_{3}=\mathrm{F} . Y\).M. at 60 lb ./ac. of N .

\section*{Sub-plot treatments :}

5 doses of fertilizer: \(T_{0}=\) No manure, \(T_{1}=A / S\) at 40 lb ./ac. of \(\mathrm{N}, \mathrm{T}_{2}=\) Super at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\), \(T_{3}=A / S\) at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\), and \(\mathrm{T}_{4}=\mathrm{A} / \mathrm{S}\) at 4 lb ./ac. of \(\mathrm{N}+\) Super at 80 jb ./ac. of \(\mathrm{P}_{3} \mathrm{O}_{5}+60 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul..

\section*{3. DESIGN:}
(i) Split-plot. (ii) (a) 4 main-plots/replication ; 5 sub-plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) \(51^{\prime} \times 24^{\prime}\). (b) \(48^{\prime} \times 22 \frac{z^{\prime}}{2}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Poor. (ii) Slight attack of mildew and short stem-borer. (iii) Grain yield. (iv) (a) 1950-N.A. (b) Yes. (c) N.A. (v) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(302.2 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(384.3 \mathrm{lb} . / \mathrm{ac}\).
(b) \(135.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only M effect is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|cccc|c} 
& \(\mathbf{M}_{0}\) & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & Mean \\
\hline \(\mathbf{T}_{0}\) & 179.4 & 553.0 & 213.9 & 239.4 & 296.4 \\
\(\mathbf{T}_{1}\) & 231.2 & 532.4 & 286.3 & 219.7 & 317.4 \\
\(\mathbf{T}_{\mathbf{2}}\) & 218.1 & 377.7 & 311.0 & 277.3 & 296.0 \\
\(\mathbf{T}_{3}\) & 207.4 & 460.8 & 219.7 & 320.9 & 302.2 \\
\(\mathrm{~T}_{\mathbf{4}}\) & 179.4 & 512.6 & 226.3 & 277.3 & 298.9 \\
\hline Mean & 203.1 & 487.3 & 251.4 & 266.9 & 302.2
\end{tabular}
S.E. of difference of two
1. \(M\) marginal means
\(=99.22 \mathrm{lb} . / \mathrm{ac}\).
2. \(\mathbf{T}\) marginal means
\(=39.20 \mathrm{lb} . / \mathrm{ac}\).
3. T means at the same level of \(\mathbf{M}\)
\(=78.40 \mathrm{lb} . / \mathrm{ac}\).
4. \(M\) means at the same level of \(T\)
\(=121.50 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Maize (Kharif).
Ref :- I.A.R.I. 53(51). Type :- 'M'.
Object :-To study the effect of organic manures and fertilizers on the yield of crops in the rotation Wheat-Maize-Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) Wheat-Maize-Wheat. (b) Wheat (manured). (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 28.6.1953. (iv) (a) Ploughing with victory plough, ploughing with desi plough and beaming. (b) to (e) N.A. (v) N.A. (vi) Yellow No. 2. (vii) Irrigated. (viii) Hoeing by dest plough; thinning, hoeing by horse-hoe and hand weeding. (ix) \(15.81^{\circ}\). (x) 6.10.1953.
2. TREATMENTS :

Main-plot treatments :
4 organic manures : \(\mathrm{M}_{0}=\) No manure, \(\mathrm{M}_{1}=\) Guar as G.M., \(\mathrm{M}_{2}=\) Castor cake at \(60 \mathrm{lb} . / \mathrm{ac}\). of N and \(\mathrm{M}_{3}=\) F.Y.M.
Sub-plot treatments :
5 fertilizers : \(\mathrm{T}_{0}=\) No fertilizer, \(\mathrm{T}_{1}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}, \mathrm{T}_{2}=80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super, \(\mathrm{T}_{3}=40\) \(\mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super and \(\mathrm{T}_{4}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +60 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
Manures applied to wheat crop in 1952.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block and 5 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(51^{\prime} \times 24^{\prime}\).
(b) \(48^{\prime} \times 22^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Poor to fair. No lodging. (ii) Slight attack of stem bcrer. (iii) Grain yield. (iv) (a) 1950-N.A. (b) Yes. (c) N.A. (v; (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(500.4 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(552.1 \mathrm{lb} . / \mathrm{ac}\).
(b) \(144.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(M\) effect is significant and \(T\) effect is highly significant, while interaction is not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|llll|l} 
& \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(\mathrm{T}_{0}\) & 274.8 & \(6 C 4.8\) & 329.1 & 460.0 & 417.2 \\
\(\mathrm{~T}_{1}\) & 384.3 & 697.0 & 469.9 & 659.9 & 552.8 \\
\(\mathrm{~T}_{2}\) & 284.7 & 641.8 & 410.6 & 474.0 & 452.8 \\
\(\mathrm{~T}_{3}\) & 343.1 & 728.2 & 469.9 & 490.4 & 507.9 \\
\(\mathrm{~T}_{4}\) & 316.0 & 959.4 & 475.5 & 553.0 & 571.5 \\
\hline Mean & 320.6 & 726.2 & 427.4 & 527.5 & 500.4
\end{tabular}
S.E. of difference of two
1. Main-plot treatment means \(\quad=142.6 \mathrm{lb} / \mathrm{ac}\).
2. Sub-plot treatment means
\(=41.8 \mathrm{lb} / \mathrm{ac}\).
3. Sub-plot treatment means at the same level of main-plot tieatment
\(=83.6 \mathrm{lb} . / \mathrm{ac}\).
4. Main-plot treatment means at the same level of sub-plot treatment
\(=161.0 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Maize (Kharif). Ref:- I.A.R.I. 51(5). Type :- 'M'.'
Object :-To compare the residual efficiency of N in F.Y.M., G.N.C. and A/S.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) As per treatments. (i) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (c) N.A. (v) to (x) N.A.

\section*{2. TREATMENTS :}
1. No manure.
7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
2. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
8. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
3. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M .
9. \(60 \mathrm{Jb} . / \mathrm{ac}\). of N as G.N.C.
4. 80 lb ./ac. of N as F.Y.M.
10. \(80 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
5. 100 lb ./ac. of N as F.Y.M.
11. 20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
6. 120 lb ./ac. of N as F.Y.M.
12. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 8. (iv) (a) \(33^{\prime} \times 22^{\prime}\). (b) \(31^{\prime} \times 20^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL:
(i) and (ii) N.A. (iii) Fodder yield. (iv) (a) 1949-1951. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) 10.45 ton/ac.
(ii) 2.95 tod/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 10.20 & 7. & 10.71 \\
2. & 10.37 & 8. & 10.17 \\
3. & 10.39 & 9. & 10.58 \\
.4. & 9.56 & 10. & 11.63 \\
5. & 9.58 & 11. & 10.30 \\
6. & 11.20 & 12. & 10.77 \\
& S.E./mean \(=1.04\) ton/ac. &
\end{tabular}

Crop :- Maize (Kharif). Ref :- I.A.R.I. 5 2(35). Type :- ‘M’.
Object :-To study the residual effect of different phosphatic manures on Maize.
1. BASAL CONDITIONS :
(i) (a) No. (b) Berseem. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 16.6 .1952 . (iv) (a) Ploughing with victory and desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hoeing with oudh plough. (ix) N.A. (x) 19, 20.8.1952.
2. TREATMENTS :
1. Agro. Phos.
7. Magnesium phosphate.
2. Ammo. Phos.
8. Reno hyper phosphate.
3. \(\mathrm{A} / \mathrm{S}\).
9. Rock phosphate.
4. B.M.
10. Selecto phosphate.
5. Bone Super.
11. Super.
6. Bone Super compost.
12. Control.

Fertilizers are applied to give \(80 \mathrm{lb} . \mathrm{P}_{2} \mathrm{O}_{5}\) or \(80 \mathrm{lb} . / \mathrm{ac}\). of N . These treatments were applied to berseem in 1950.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(17^{\prime} \times 64^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Fodder yield. (iv) (a) \(1951-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 15.31 ton \(/ \mathrm{ac}\).
(ii) 2.40 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 15.09 & 7. & 15.12 \\
2. & 16.28 & 8. & 17.74 \\
3. & 15.13 & 9. & 14.81 \\
4. & 17.15 & 10. & 15.13 \\
5. & 14.19 & 11. & 15.45 \\
6. & 13.82 & 12. & 13.77 \\
& S,E. \(/\) mean & \(=0.99\) ton/ac. &
\end{tabular}

Crop :- Maize (Kharif). Ref :- I.A.R.I. 51 (25). Type :- 'M'.
Object :-To study the response of berseem to fertilizers and comparing the residual effects with direct manuring of cereals.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (c) Refer item 11 on page 143. (iii) 7.7.1951 and Resownon 2.8.1951. (iv) (a) 2 tractor discings and ploughing with desi spring harrow twice. (b) to (e) N.A. (v) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 27 to 30.9.1951.'
2. TREATMENTS :
1. No manure.
2. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. \(\mathrm{A} / \mathrm{S}\) at 40 lb ./ac. of \(\mathrm{N}+\) Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. A/S at 40 lb ./ac. of \(\mathrm{N}+\) Super at 20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 80 lb ./ac. of \(\dot{\mathrm{K}}_{2} \mathrm{O}\).
5. Super at \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 80 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
6. Fallow in previous season.
3. DESIGN :
(i) L. Sq. (ii) (a) 6. (b) N.A. (iii) 6 . (iv) (a) \(84^{\prime} \times 26^{\prime}\). (b) \(78^{\prime} \times 20^{\prime}\). (v) \(3^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Nil. (iii) Fodder yield. (iv) (a) \(1950-\) N.A. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) 7.64 ton/ac.
(ii) 10.56 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 8.25 \\
2. & 7.78 \\
3. & 7.44 \\
4. & 7.98 \\
5. & 7.40 \\
6. & 7.01 \\
S.E./mean & \(=4.31\) ton/ac.
\end{tabular}

Crop :- Maize (Kharif). Ref:- I.A.R.I. 52(43). Type :~ 'M'.
Object :-To study the influence of compost on humus formation and on crop yield.
1. BASAL CONDITIONS :
(i) (a) Maiz=Wheat. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.7.1952. (iv) (a) Ploughing with victory plough and preparing the field. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Weeding, hoeing and thinning. (ix) N.A. (x) 10.11.1952 to 15.11.1952.

\section*{2. TREATMENTS:}
1. No manure. 7. Compost (over ground heap) at \(120 \mathrm{lb} . / \mathrm{ac}\). of N .
2. Compost (plastered trench) at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N} . \quad\) 8. Compost (exposed pit) at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
3. Compost (plastered trench) at 80 lb ./ac. of N . 9. Compost (exposed pit) at \(80 \mathrm{lb} . / \mathrm{ac}\). of N.
4. Compost (plastered trench) at \(120 \mathrm{lb} . / \mathrm{ac}\). of N. 10. Compost (exposed pit) at \(120 \mathrm{lb} . / \mathrm{ac}\). of N.
5. Compost (over ground heap) at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N} .11 . \mathrm{A} / \mathrm{S}\) at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
6. Compost (over ground heap) at \(80 \mathrm{lb} . / \mathrm{ac}\). of N .12 . A/S at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
3. DESIGN :
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 6. (iv) (a) \(24.66^{\prime} \times 30^{\prime}\). (b) \(22.66^{\circ} \times 28^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A.
(ii) N.A. (iii) Grain yield
(iv) (a) 1952 (kharif)-N.A.
(b) Yes.
(c) N.A.
(v) (a), (b) No.
(vi) and (vii) Nil.
5. RESULTS:
(i) \(949 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(438.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 792 & 7. & 966 \\
2. & 882 & 8. & 952 \\
3. & 1021 & 9. & 993 \\
4. & 1029 & 10. & 890 \\
5. & 690 & 11. & 1118 \\
6. & 980 & 12. & 1070 \\
& S.E. \(/\) mean & \(=178.8 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Maize (Kharif). Ref:- I.A.R.I. 53(45). Type :- 'M'.
Object :-To study the influence of compost on humus formation and on crop yield.

\section*{1. BASAL CONDITIONS:}
(i) (a) Maize-Wheat. (b) Wheat. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 28.6.1953. (iv) (a) Land prepared with desi plough thrice. Soaking dose given. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Weeding and hoeing. (ix) N.A. (x) 2 to 4.10 .1953.

\section*{2. TREATMENTS :}
1. No manure. 7. Compost (over ground heap) at \(120 \mathrm{lb} . / \mathrm{ac}\). of N .
2. Compost (plastered trench) at \(40 \mathrm{lb} . / \mathrm{ac}\). of N. 8. Compost (exposed pit) at \(40 \mathrm{lb} . / \mathrm{ac}\). of N.
3. Compost (plastered trench) at \(80 \mathrm{lb} . / \mathrm{ac}\). of N. 9. Compost (exposed pit) at \(80 \mathrm{lb} . / \mathrm{ac}\). of N.
4. Compost (plastered trench) at \(120 \mathrm{lb} . / \mathrm{ac}\). of N. 10. Compost (exposed pit) at \(120 \mathrm{lb} . / \mathrm{ac}\). of N.
5. Compost (over ground heap) at \(40 \mathrm{Jb} . / \mathrm{ac}\). of N .11 . A/S at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
6. Compost (over ground heap) at 80 lb ./ac. of N . 12. A/S at \(40 \mathrm{lb} . / \mathrm{ac}\). of N.

Compost applied on 6.6.1953 and fertilizers on 28.6.1953.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 6 . (iv) (a) \(24.5^{\circ} \times 30^{\circ}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952 (kharif)-N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1100 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(302.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv). Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 802 & 7. & 1742 \\
2. & 994 & 8. & 782 \\
3. & 1214 & 9. & 1049 \\
4. & 1193 & 10. & 1076 \\
5. & 720 & 11. & 1145 \\
6. & 1029 & 12. & 1454 \\
& S.E./mean & \(=123.6\) Ir./ac. &
\end{tabular}

Crop :- Maize (Kharif). Ref :~I.A.R.I. 50(17). Type :- 'M'.
Object :-To study the effect of placement of fertilizers on yield of Maize and its residual effect on Oats.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 28 and 29.7.1950. (iv) (a) Ploughing with double desi plough, ploughing with tractor, grubbing. beaming and harrowing twice. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hoeing with horse hoe and weeding. (ix) N.A. (x) 23.11.1950.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 methods of application of fertilizers : \(\mathrm{M}_{1}=\) Broadcasting of fertilizers, \(\mathrm{M}_{2}=\) Fertilizers placed \(2 \frac{1}{2}^{\prime \prime}\) deep in the seed line and \(M_{3}=\) Fertilizers placed \(4 \frac{1}{2}^{\circ}\) deep in the seed line.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{1}=40 \mathrm{lb} . / \mathrm{ac} ., \mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}\). and \(\mathrm{P}_{3}=120 \mathrm{lb}\)./ac.
(3) 3 levels of \(N\) as \(A / S: N_{1}=20 \mathrm{lb}\)./ac., \(N_{2}=30 \mathrm{lb}\)./ac. and \(\mathrm{N}_{3}=60 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN:
(i) \(3^{3}\) Confd. fact.. (ii) (a) 9. (b) N.A. (iii) 2 . (iv) (a) N.A. (b) \(128^{\prime} \times 12 \frac{1}{2}^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL:
(i) Very adversely affected by water logging and weeds. (ii) Mild attack of borer. (iii) Grain yield.
(iv) (a) 1949-1950.
(b) No.
(c) N.A.
(v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS
(i) \(361.2 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(153.98 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.


Crop :- Maize (Kharif). Ref:- I.A.R.I. 51(1). Type :- 'M'.
Object :-To study the effect of placement of fertilizers on yield of Maize and its residual effect on oats.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 4.7.1951. (iv) (a) Ploughing with tractor, discing twice and beaming. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Hoeing and weeding. (ix) N.A. (x) 28.10.1951.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 methods of application of fertilizers: \(\mathrm{M}_{1}=\) Broadcasting of fertilizers, \(\mathrm{M}_{2}=\) Fertilizers placed \(2 \frac{1}{2}^{\prime \prime}\) deep in the seed line and \(M_{3}=F\) ertilizers placed \(4 \frac{1}{2}^{\prime \prime}\) deep in the seed line.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{6}\) as Super : \(\mathrm{P}_{1}=40 \mathrm{lb}\)./ac., \(\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}\). and \(\mathrm{P}_{3}=120 \mathrm{lb}\)./ac.
(3) 3 levels of \(N\) as \(A / S: N_{1}=20 \mathrm{lb} . / \mathrm{ac} ., N_{2}=30 \mathrm{lb} / \mathrm{ac}\). and \(N_{3}=60 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{3}\) Confd. Fact. (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 2 . (iv) (a) \(109^{\prime} \times 10^{\prime}\). (b) \(105^{\prime} \times 6^{\prime}\). (v) \(2^{\prime}\) on each side. (vi) Yes.
4. GENERAL:
(i) Poor. (ii) N.A. (iii) Grain yield. (iv) (a) \(1949-1951\). (b) N.A. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1161 \mathrm{lb} / \mathrm{ac}\).
(ii) \(205.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only levels of \(\mathbf{N}\) differ highly significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{iN}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
\hline \(\mathrm{P}_{1}\) & 1096 & 1027 & 1331 & 1151 & 1155 & 1161 & 1138 \\
\hline \(\mathrm{P}_{2}\) & 1084 & 1110 & 1259 & 1151 & 1046 & 1343 & 1063 \\
\hline \(\mathrm{P}_{3}\) & 1007 & 1049 & 1485 & 1180 & 1055 & 1269 & 1217 \\
\hline Mean & 1062 & 1062 & 1358 & 1161 & 1085 & 1258 & 1139 \\
\hline \(\mathrm{M}_{1}\) & 969 & 1072 & 1215 & & & & \\
\hline \(\mathrm{M}_{2}\) & 1187 & 1086 & 1500 & & & & \\
\hline \(\mathrm{M}_{8}\) & 1031 & 1028 & 1359 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=48.37 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=83.77 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Maize (Kharif).
Ref:- I.A.R.I. 50(5). Type :- 'M'.
Object:-To study soil fertility building by manuring berseem in berseem-guar-berseem-wheat-maize rotation.

\section*{1. BASAL CONDITIONS :}
(i) (a) Berseem-Guar-Berseem-Guar-Berseem-Guar-Wheat-Maize-Wheat. (b) Guar. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 31.7.1950. (iv) (a) Ploughing with tractor, grubbing, ploughing with victory plough, and harrowing across. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) :Unirrigated. (viii) Hoeing with hand hoe. (ix) 13.19". (x) 31.10.1950.
2. TREATMENTS:
1. No manure.
2. Super at 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(50 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
5. Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).

Manures applied to previous crop of berseem.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) N.A.
(iii) 3. (iv)
(a) \(60^{\circ} \times 27^{\prime}\).
(b) \(58^{\prime} \times 25^{\prime}\).
(v) I' on each side. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Mild attack of borer. (iii) Fodder yield. (iv) (a) 1946-1951. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 3.86 ton/ac.
(ii) 0.64 ton/ac.
(iii) Treatments differ significantly.
(iv) Av. yield of fodder in ton/ac. Treatment Av. yield
\begin{tabular}{lc} 
1. & 3.75 \\
2. & 2.48 \\
3. & 4.60 \\
4. & 4.61 \\
S. & 1.75 \\
S.E./mean & \(=0.37\) ton/ac.
\end{tabular}

\section*{Crop :- Maize (Kharif). Ref:- I.A.R.I. 52(14). Type :- 'M'.}

Object :-To study the building of soil fertility through organic and artificial fertilizers in a legume rotation.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat-Maize-Peas. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 19.7.1952. (iv) (a) Dry victory ploughing, irrigated before sowing. Land prepared twice with desi plough. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) 2 weedings and 2 hoeings. (ix) N.A. (x) 21.10.1952 to 23.10.1952.
2. TREATMENTS :
1. Control.
2. A/S at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 100 lb ./ac; of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. \(\mathrm{A} / \mathrm{S}\) at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
4. F.Y.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{\mathbf{2}} \mathrm{O}\).
5. Castor cake at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot Sul. at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathbf{O}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(38^{\prime} \times 29^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) \(1952-\) N.A. (b) Yes (except in 1956 Rabi). (c) N.A. (v)
(a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(615 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(173.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in Ib./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 499 \\
2. & 535 \\
3. & 653 \\
4. & 524 \\
5. & 866 \\
S.E.,mean & \(=70.87 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Kharif).
Ref :- I.A.R.I. (52)65. Type :- 'M'.
Object :-To study the response of Maize to seed soaking.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 26, 28.7.1952. (iv) (a) to (c) N.A. (v) N.A. (vi) Maize yellow. (vii) N.A. (viii) Horse hoeing and weeding with khurpi. (ix) N.A. (x) Middle of Oct. 1952.
2. TREATMENTS :
1. No soaking.
2. Soaking seed in \(5 \% \mathrm{~A} / \mathrm{S}\) sol.
3. Soaking seed in \(5 \%\) Super sol. (neutralised with lime).
4. Soaking seed in 5\% Ammo. Phos. sol.
5. Soaking seed in water.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(36^{\prime} \times 33^{\prime}\). (b) \(34^{\prime} \times 31^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) 1951-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1435 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(148.3 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1407 \\
2. & 1242 \\
3. & 1572 \\
4. & 1522 \\
5. & 1434 \\
S.E./mean & \(=60.54 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Grop :- Maize (Kharif). Ref :- I.A.R.I. 53(58). Type :- 'M'.
Object:-To study the response of Maize to seed soaking.
1. BASAL CONDITIONS:
(i) (a) No. (b) Oats. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 22.7.1953. (iv) (a) Desi ploughing 4 times cross wise. (b) to (e) N.A. (v) Nil. (vi) Maize yellow. 2. (vii) Unirrigated. (viii) Gap filling and horse hoeing. (ix) N.A. (x) 4th week of Oct. 1953.
2. TREATMENTS :
1. No soaking of seeds.
2. Soaking seed in \(5 \%\) sol. of \(\mathrm{A} / \mathrm{S}\).
3. Soaking seed in \(5 \%\) sol. of Super.
4. Soaking seed in \(5 \%\) sol. of Ammo. Phos.
5. Soaking seed in water.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 47\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Bird attack. (iii) Grain yield. (iv) (a) 1951-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1515 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(181.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av, yield of grain in lb./ac.
\begin{tabular}{lc} 
Av. yield of grain & Av. yield \\
Treatment & 1348. \\
1. & 1498 \\
2. & 1654 \\
3. & 1654 \\
4. & 1420 \\
5. & \(=74.26 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Kharif).
Ref :- I.A.R.I. 51(51).
Type :- ' \(M\) '.
Object :-To study the residual effect of manuring on Maize.
1. BASAL CONDITIONS:
(i) (a) N.A.
(b) Berseem.
(c) N.A.
(ii) (a) and (b) Refer item 11 on page 143. (iii) 8.7.1951. (iv) (a)
Tractor ploughing, tractor discing and ploughing with desi plough. (b) Sowed with kera. (c) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) Hoeing and weeding. (ix) 6.82'. (x) 6.11.1951.
2. TREATMENTS :

\section*{Main-plot treatments :}

7 doses of fertilizers : \(\mathrm{F}_{1}=\) Ammo. Phos. at \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~F}_{2}=\) Ammo. Phos. at \(160 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\), \(F_{3}=\) Super at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\) to supply N as in \(\mathrm{F}_{1}, \mathrm{~F}_{4}=\) Super at 160 b ./ac. of \(\left\{\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\right.\) to supply N as in \(\mathrm{F}_{2}, \mathrm{~F}_{5}=\) Super at 80 lb ,/ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~F}_{6}=\) Super at 160 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{F}_{7}=\) No manure.
Sub-plot treatments :
3 levels of \(\mathrm{K}_{\mathbf{2}} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{\mathbf{0}}=0, \mathrm{~K}_{\mathbf{1}}=40\) and \(\mathrm{K}_{2}=80 \mathrm{lb}\)./ac.
Treatments applied to berseem in 1950-1951.
3. DESIGN :
(i) Split-plot. (ii) (a) 7 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(43^{\circ} \times 25^{\prime \prime}\) (b) \(40 \mathbf{z}^{\prime} \times 22 \frac{1}{2}^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) \(1946-\) N.A. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(296.4 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(184.4 \mathrm{lb} \cdot / \mathrm{ac}\).
(b) \(79.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) K effect alone is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ccccccc|c} 
& \(\mathrm{F}_{\mathbf{1}}\) & \(\mathrm{F}_{\mathbf{2}}\) & \(\mathrm{F}_{\mathbf{3}}\) & \(\mathrm{F}_{\mathbf{4}}\) & \(\mathrm{F}_{\mathbf{5}}\) & \(\mathrm{F}_{6}\) & \(\mathrm{~F}_{7}\) & Mean \\
\hline \(\mathrm{K}_{\mathbf{0}}\) & 264.3 & 339.3 & 239.3 & 223.8 & 272.6 & 177.4 & 372.6 & 269.9 \\
\(\mathrm{~K}_{\mathbf{1}}\) & 245.2 & 364.3 & 198.8 & 245.2 & 282.1 & 303.6 & 436.9 & -296.6 \\
\(\mathrm{~K}_{\mathbf{4}}\) & 313.1 & 390.5 & 258.3 & 304.8 & 330.9 & 313.1 & 348.8 & 322.8 \\
\hline Mean & 274.2 & 364.7 & 232.1 & 257.9 & 295.2 & 264.7 & 386.1 & 296.4
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. main-plot treatment means & \(=75.3 \mathrm{lb} . / \mathrm{ac}\). \\
2. sub-plot treatment means & \(=21.3 \mathrm{lb} . / \mathrm{ac}\). \\
3. sub-p!ot treatment means at the same level of main-plot treatment mean & \(=56.2 \mathrm{lb} . / \mathrm{ac}\). \\
4. main-plot treatment means at the same level of sub-plot treatment mean & \(=88.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

> Crop :- Maize (Kharif). Ref :- I.A.R.I. 48(7). Type :- 'M'.
- Object :-To study the residual effect of manuring Berseem on the subsequent Maize crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Berseem-Fallow-Wheat-Maize-Berseem and Berseem-Maize-Wheat-Maize-Berseem. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) to (x) N.A.

\section*{2. TREATMENTS :}
1. No manure.
2. B.M. at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at \(120 \mathrm{Ib} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Ammo. Phos. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. B.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
- (i) R.B.D. (ii) (a) 6 .
(b) N.A. (iii) 3. (iv) (a) N.A.
b) \(165^{\prime} \times 33^{\prime}\)
(v) N.A. (ii) Yes.

4, GENERAL :
(i) N.A. (ii) No. (iii) Grain yield. (iv) (a) 1944-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(ii) \(948 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(78.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} \cdot / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1021 \\
2. & 712 \\
3. & 896 \\
4. & 1101 \\
5. & 1021 \\
6. & 939 \\
S.E./mean & \(=45.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Kharif). Ref :- I.A.R.I. 48(8). Type :- ‘M’.
Object:-To study the residual effect of manuring Berseem on the subsequent Maize crop.
1. BASAL CONDITIONS :
(i) (a) Berseem-Fallow-Wheat-Maize-Berseem and Berseem-Maize-Wheat-Maize-Berseem. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) to (x) N.A.

\section*{2. TREATMENTS :}
1. No manure.
2. B. M. at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Ammo. Phos. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(165^{\prime} \times 33^{\prime}\). (v) No. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1944-1948: (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) N.A. (vii) Nil.
5. RESULTS :
(i) \(726 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(169.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ccc} 
Treatment & Av. yield \\
1. & 776 \\
2. & 621 & \\
3. & 659 & \(\ddots\) \\
4. & 803 \\
5. & 720 \\
6. & 776 \\
S.E./mean & \(=97.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Kharif). Ref:- I.A.R.I. 48(9). Type :- 'M'.
Object :-To study the residual effect of manuring Berseem on the subsequent Maize crop.
1. BASAL CO'DITIONS:
(i) (a) Berseem-Fallow-Wheat-Maize-Berseem and Berseem-Maize-Wheat-Berseem-Maize: (b) Berseem.
(c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) to (x) N.A
2. TREATMENTS :
1. No manure.
2. B.M. at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Ammo. Phos. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(165^{\prime} \times 33^{\prime}\). (v) N.A. (vi) Yes. . .
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1944-1948\). (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) N.A. (vii) Nil.
5. RESULTS :
(i) \(1736 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(254.4 \mathrm{lb} . \mathrm{Jac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1754 \\
2. & 1688 \\
3. & 1749 \\
4. & 1664 \\
5. & 1784 \\
6. & 1778 \\
S.E./mean & \(=146.91 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Maize (Kharif).
Ref :- I.A.R.I. 48(10).
Type :- 'M'.
Object :-To study the residual effect of manuring Berseem on the subsequent Maize crop.

\section*{-1. BASAL CONDITIONS:}
(i) (a) Berseem-Fallow-Wheat-Maize-Berseem and Berseem-Maize-Wheat-Berseem-Maize-Berseem. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143 . (iii) N.A. (iv) (a) to (e) N.A. (v) to (x) N.A.
2. TREATMENTS :
1. No manure.
2. B.M. at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{6}\).
4. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at \(60 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Ammo. Phos. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. B.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\)

\section*{3. DESIGN :}
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(165^{\circ} \times 33^{\prime}\). (v) No. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Fodder yield. (iv) (a) 1944-1948. (b) Yes. (c) N.A. (v) (a) and (b) No.
(vi) and (vii) Nil.
5. RESULTS:
(i) 1.46 ton/ac.
(ii) 0.16 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of fodder in ton/ac. Treatment Av. yield
\begin{tabular}{lc}
1. & 1.47 \\
2. & 1.40 \\
3. & 1.50 \\
4. & 1.50 \\
5. & 1.52 \\
6. & 1.42 \\
S.E./mean & \(=0.09\) ton/ac.
\end{tabular}

\section*{Crop :- Maize (Kharif). Ref :- I.A.R.I. 48(11). Type:- 'M'.}

Object:-To find out the residual effect of the phosphate manuring of Berseem on the subsequent Maize crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) No. (b) Berseem. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 19.7.1948. (iv) (a) Tractor ploughing and discing, (b) to (e) N.A. (v) Nil. (vi) and (vii) N.A. (viii) 2 hoeings. (ix) \(19^{\prime \prime}\). (x) 27.10.1948.
2. TREATMENTS:
1. No manure.
2. B.M. at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(120 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) +Ammo. Phos. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) R.B.D.
(ii) (a) 6. (b) N.A.
(iii) 3. (iv) (a) N.A.
(b) \(165^{\circ} \times 33^{\prime}\). (v) N.A. (vi) No.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1944-1948. (b) No. (c) N.A. (v) (a) and (b) Yes. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(948 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(247.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1021 \\
2. & 712 \\
3. & 896 \\
4. & 1101 \\
5. & 1021 \\
6. & 939 \\
S.E./mean & \(=142.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Kharif). Ref:- I.A.R.I. 48(15). Type :- 'M'.

Object:-To study the residual effect of phosphatic manuring of Berseem on subsequent Maize crop.
1. BASAL CONDITIONS :
(i) (a) No. (b) Berseem and sunnhemp. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.7.1948. (iv) (a) Tractor discing and grubbing. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) 2 horse hoeing. (ix) 21.53". (x) 22 to 25.10.1948.

\section*{2. TREATMENTS:}
1. No manure.
2. B.M. at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Ammo. Phos. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. B.M. at \(60 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

Manures applied to previous crop.
3. DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(33^{\circ} \times 165^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1944-1948. (b) N.A. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) \(1755 \mathrm{lb} / \mathrm{ac}\).
(ii) \(444.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1754 \\
2. & 1928 \\
3. & 1749 \\
4. & 1664 \\
5. & 1665 \\
6. & \\
& S.E./mean \\
& \(=286.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Object :-To study the residual effect of phosphatic manuring of Berseem with F.Y.M. as a basal dose on Maize crop.
1. BASAL CONDITIONS :
(i) (a) No. (b) Berseem. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 20.7.1948. (iv) (a) Tractor eloughing and discing. (b) to (e) N.A. (v) F.Y.M. at 10 ton/ac. (vi) N.A. (vii) N.A. (viii) 2 horse hoeings. (ix) \(16.30^{\circ}\). (x) 7 to 9.10 .1948 .
2. TREATMENTS :
1. No manure.
2. B.M. at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Ammo. Phos. at 60 lb ./ac. of \(\mathrm{P}_{3} \mathrm{O}_{5}\).
6. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(33^{\prime} \times 165^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Fodder yield. (iv) (a) 1944-1948. (b) Yes. (c)'N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) 1.78 ton/ac.
(ii) 0.19 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Ar. yield \\
1. & 1.79 \\
2. & 1.70 \\
3. & 1.82 \\
4. & 1.81 \\
5. & 1.85 \\
6. & 1.73 \\
& S.E./mean \\
& \(=0.11\) ton/ac.
\end{tabular}

\section*{Crop :- Maize (Kharif). Ref:- I.A.R.I. 48(17). Type :- 'M'.}

Object :-To study the residual effect of phosphatic manuring of Berseem without any basal manure on Maize crop.
1. BASAL CONDITIONS:
(i) (a) No. (b) Berseem. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 19.7.1948. (iv) (a) Tractor ploughing and discing. (b) to (e) N.A. (v) Nil. (vi) and (vii) N.A. (viii) 2 hoeings. (ix) \(14.15^{\prime \prime}\). (x) 27.10.1948.

\section*{2. TREATMENTS:}
1. No manure.
2. B.M. at \(120 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Ammo. Phos. at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{6}+\) Ammo. Phos. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. B.M. at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) R.B.D.
(ii) (a) 6.
(b) N.A.
(iii) 3
(iv) (a) N.A
(b) \(33^{\prime} \times 165^{\prime}\). (v) N.A. (vi) Ycs.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) \(1944-1948\). (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(948 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(1073 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\). -
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1021 \\
2. & 712 \\
3. & 896 \\
4. & 1101 \\
5. & 1021 \\
6. & 938 \\
S.E./mean & \(=619.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Kharif). Ref :- I.A.R.I. 53(14). Type :- 'M'.
Object :-To study the effect of inorganic and organic manures on the yield of cereals.

\section*{1. BASAL CONDITIONS:}
- (i) (a) Maize-Wheat. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 27.6.1953. (iv) (a) 4 ploughings with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (x) 28 to 30.9.1953.

\section*{2. TREATMENTS :}
1. Control.
2. A/S at 60 lb ./ac. of \(\mathrm{N}+\) Super at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. \(\mathrm{A} / \mathrm{S}\) at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
4. F.Y.M. at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{8} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
5. Castor cake at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
F.Y.M. applied on 9.6.1953 and fertilizers on 26.6.1953.
3. DESIGN :
(i) R.B.D. (ii) (a) 5.
(b) N.A.
(iii) 6. (iv) (a) \(38^{\prime} \times 29^{\prime}\).
(b) \(36^{\circ} \times 27^{\prime}\). (v) \(1^{\prime}\) on each side.
(vi) Yes.
4. GENERAL:
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1199 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(181.85 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ll} 
Treatment & Av. yield \\
1. & 951 \\
2. & 1221 \\
3. & 1215 \\
4. & 1150 \\
5. & 1459 \\
S.E./mean & \(=74.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Kharif). Ref :- I.A.R.I. 52(11). Type :- 'M'.
Object: - To study the effect of inorganic manures on the yield of cereals.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize-Wheat. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 19.7.1952. (iv) (a) 1 ploughing with victory plough and 2 with desi plough... (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) 2 weedings and 2 hoeings with horse hoe. (ix) N.A. (x) 24 to 26.10 .1925

\section*{2. TREATMENTS:}
1. Control.
2. \(\mathrm{A} / \mathrm{S}\) at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. \(\mathrm{A} / \mathrm{S}\) at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
4. F.Y.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
5. Caster cake at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(38^{\prime} \times 29^{\prime}\). (b) \(36^{\prime} \times 27^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1952-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1142 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(273.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 921 \\
2. & 1236 \\
3. & 969 \\
4. & 1258 \\
5. & 1323 \\
S.E./mean & \(=111.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Maize (Kharif). Ref:- I.A.R.I. 52(13). Type :- 'M'.}

Object :-To study the effect of inorganic and organic manures on the yield of crops in rotation.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize-Wheat-Maize-Peas. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 27.6.1953. (iv) (a) 4 ploughings with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 28.9.1953 to 20.10.1953.
2. TREATMENTS :
1. Control.
2. \(A / S\) at 60 lb ./ac. of \(N+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. A/S at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
4. F.Y.M. at 60 lb ./ac. of \(\mathrm{N}+\) Super and Pot. Sul. to make up \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{K}_{8} \mathrm{O}\) as in treatment 3.
5. Castor cake at 60 lb ./ac. of \(\mathrm{N}+\) Super and Pot. Sul. to make up \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{K}_{2} \mathrm{O}\) as in treatment 3.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(38^{\prime} \times 29^{\prime}\). (b) \(36^{\prime} \times 27^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1952-\) N.A. (b) Yes (except in 1956). (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1061 \mathrm{lb} . / \mathrm{ac}\).
(ii) 385.1 1b./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1150 \\
2. & 1157 \\
3. & 1011 \\
4. & 1064 \\
5. & 924 \\
S.E./mean & \(=157.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop:- Maize (Kharif). \\ Ref :- I.A.R.I. 49(4). \\ Type: ' \(M\) '.}

Object :-To study the effect of direct and indirect manuring of cereals in rotation with Rabi legume.

\section*{1. BASAL CONDITIONS :}
(i) (a) and (b) Rabi legumes. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) N.A.

\section*{2. TREATMENTS :}
1. No manure to legume ; \(40 \mathrm{lb} . / \mathrm{ac}\). of N to cereal.
2. A/S at 40 lb ./ac. of \(\mathrm{N}+\) Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) of N to legume.
3. Super at 120 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) to legume.
4. Super at \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{6}+\) Potash [dose N.A.].
5. 80 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) to legume but no manure to cereal.
6. Manure to cereal.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(84^{\prime} \times 26^{\prime}\) (v) N.A. (vi) 'Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of fodder. (iv) (a) to (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 1.65 ton/ac.
(ii) 0.60 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 2.03 \\
2. & 1.44 \\
3. & 1.67 \\
4. & 1.55 \\
5. & 1.51 \\
6. & 1.69 \\
S.E./mean & \(=0.245\) ton/ac.
\end{tabular}
Crop ؛- Maize (Kharif). Ref:- I A.R.I. 53(9). Type :-‘M’.

Object : - To study the effect of different combinations of \(\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{K}_{2} \mathrm{O}\) on Maize crop.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 25.6.1953. (iv) (a) Ploughing with empire plough, 1 with desi plough and 2 harrowings. (b) to (e) N.A. (v) and (vi) N.A. (vii) Unirrigated. (viii) 1 lever harrowing, 1 hoeing with desi plough and ridging. (ix) \(48.44^{\prime \prime}\). (x) \(5,6.10 .1953\).
2. TREATMENTS :
1. No manure.
2. F.Y.M. at \(8000 \mathrm{lb} . / \mathrm{ac}\).
3. Rape cake at 40 lb ./ac. of N .
4. A/S at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
5. Pot. Sul. at 25 lb ./ac. of \(\mathrm{K}_{\mathbf{2}} \mathrm{O}\).
6. Super at 40 lb ./ac of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
7. Treat. \(5+6\).
8. Treat. \(4+5+6\).
9. Treat. \(4+6\).
10. Treat. \(4+5\).
3. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 10. (iv) (a) \(44^{\prime} \times 24^{\prime}\). (b) \(37.5^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Top and stem borers and some cases of mosoic. (iii) N.A. (iv) (a) 1932-1956. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(365.2 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(118.6 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 289.5 & 6. & 308.7 \\
2. & 458.9 & 7. & 260.8 \\
3. & 557.0 & 8. & 468.8 \\
4. & 371.1 & 9. & 378.7 \\
5. & 229.9 & 10. & 328.2 \\
& S.E./mean & \(=41.9 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop:- Maize (Kharif). Ref:- I.A.R.I. 51(29). Type :- 'M'.
Object:-To study the effect of manured, unmanured, one, two and three year ley farming on soil fertility as judged by the yields of Maize and Wheat crops.

\section*{1. BASAL CONDITIONS:}
(i) (a) Wheat-Maize. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 5,6.7.1951. (iv) (a) Ploughing with victory plough, desi plough and preparatory tillage before sowing. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hoeing with horse hoe and weeding. (ix) N.A. (x) 11,12 and 16.10.1951.

\section*{2. TREATMENTS:}

Main-plot treatments :
9 treatments (ley farming): \(T_{1}=\) one year ley-full dose, \(T_{2}=\) one year ley-no manure, \(T_{3}=\) two year ley-full dose, \(T_{4}=\) two year ley-manure appliej once, \(T_{5}=\) two year ley-no manure, \(T_{8}=\) three year ley-full dose every year, \(T_{7}=\) tharee year ley-full dose for two consecutive years, \(T_{8}=\) three year ley-full dose once, \(T_{9}=\) three"year ley-no manure.

\section*{Sub-plot treatments:}

4 G.M. treatments: \(\mathrm{M}_{1}=\) Dich. Amlatum Vicia Visula, \(\mathrm{M}_{2}=\) Vicialucerne, \(\mathrm{M}_{3}=\) Rhodes and \(\mathrm{M}_{1}=\) Maize-wheat rotation.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 80\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) Yes; 1949-1953. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Raw data N.A. Information given as available. Clarification is N.A. Description of (1) to (5) in the results for main-plots N.A.
5. RESULTS:
(i) \(813 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) N.A.
(b) \(130.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Sub-plot treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{l|ccccc|c} 
& 1 & 2 & 3 & 4 & 5 & Mean \\
\hline \(\mathrm{M}_{\mathbf{1}}\) & 955 & 852 & 917 & 829 & 792 & 869 \\
\(\mathrm{M}_{\mathbf{2}}\) & 860 & 757 & 978 & 844 & 903 & 869 \\
\(\mathrm{M}_{3}\) & 810 & 792 & 855 & 815 & 817 & 818 \\
\(\mathrm{M}_{4}\) & 690 & 679 & 702 & 714 & 699 & 697 \\
\hline Mean & 829 & 770 & 863 & 801 & 804 & 813
\end{tabular}
S.E. per treatment mean for sub-plot treatmeats \(=22.98 \mathrm{lb} . / \mathrm{ac}\).

> Crop :- Maize (Kharif). Ref :- I.A.R.I. 52(70). Type :- ‘M’.

Object:-To study the effect of manured, unmanured, one, two and three year ley farming on soil fertility as judged by the yields of Maize and Wheat crops.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize-Wheat. (b) Wheat. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 19.7.1952. (iv) (a) Ploughing with victory plough and discing with tractor twice. (b) to (c) N.A. (v) Nil. (vi) Maize yellow No. 2. (vii) Irrigated. (viii) Hoeing with horse hoe, desi hoe, thinning and weeding. (ix) . N.A. (x) 23.10.1952.

\section*{2. TREATMENTS :}

Main-plot treatments :
9 treatments (ley farming) : \(T_{1}=\) one year ley-full dose, \(T_{2}=\) one year ley-no manure, \(T_{3}=\) two year ley-full dose, \(\mathrm{T}_{4}=\) two year ley-manure applied once, \(\mathrm{T}_{5}=\) two year leyno manure, \(T_{6}=\) three year ley-full dose every year, \(T_{\lambda}=\) three year ley-full dose for two consecutive years, \(\mathrm{T}_{8}=\) three year ley-full dose once and \(\mathrm{T}_{9}=\) three year ley-no manure.

\section*{Sub-plot treatments :}

4 G.M. treatments : \(\mathrm{M}_{1}=\) Dich. Amlatum Vicia Visula, \(\mathrm{M}_{2}=\) V'icia lucerne, \(\mathrm{M}_{3}=\) Rhodes and \(\mathrm{M}_{4}=\) Maize - wheat rotation.

\section*{3. DESIGN :}
(i) (a) Split-plot. (ii) (a) 9 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 80\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Last two replications showed poor growth as crop could not be sown with irrigation. (ii) N.A. (iii) Grain yield. (iv) (a) Yes; 1949-1953. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(379 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(255.4 \mathrm{lb} . / \mathrm{ac}\).
(b) \(104.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main-plot treatments and sub-plot treatments do not differ significantly. Interaction is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|lllllllll|l} 
& \(\mathbf{T}_{\mathbf{1}}\) & \(\mathbf{T}_{\mathbf{2}}\) & \(\mathbf{T}_{\mathbf{3}}\) & \(\mathbf{T}_{\mathbf{4}}\) & \(\mathbf{T}_{\mathbf{5}}\) & \(\mathbf{T}_{\mathbf{6}}\) & \(\mathbf{T}_{\mathbf{7}}\) & \(\mathbf{T}_{\mathbf{8}}\) & \(\mathbf{T}_{\mathbf{9}}\) & \(\mathbf{M e a n}\) \\
\hline \(\mathbf{M}_{\mathbf{1}}\) & 500 & 470 & 430 & 326 & 350 & 350 & 380 & 296 & 326 & 381 \\
\(\mathbf{M}_{\mathbf{2}}\) & 410 & 340 & 440 & 340 & 480 & 316 & 310 & 290 & 266 & 355 \\
\(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{3 7 0}\) & 300 & 586 & 312 & 426 & 420 & 410 & 350 & 500 & 408 \\
\(\mathbf{M}_{\mathbf{4}}\) & 490 & 356 & 306 & 270 & 280 & 440 & 440 & 306 & 466 & 372 \\
\hline Mean & 440 & 367 & 441 & 312 & 384 & 382 & 385 & 311 & 389 & 379
\end{tabular}
S.E. of the difference of two
1. main-plot treatment means \(\quad=63.8 \mathrm{lb} . / \mathrm{ac}\).
2. sub-plot treatment means \(\quad=17.4 \mathrm{lb} . / \mathrm{ac}\).
3. sub-plot treatment means at the same level of main-plot treatment mean \(=73.7 \mathrm{lb} . / \mathrm{ac}\).
4. main-plot treatment means?at the same level of sub-plot treatment mean \(=110.6 \mathrm{lb}\). ac .

Crop:- Maize (Kharif).
Ref :- I.A.R.I. 53(50).
Type :- ' M '.
Object :-To study the effect of manured, unmanured, one, two and three years ley farming on soil fertility as judged by the yields of Maize and Wheat crops.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) 18 to 20.6.1953.
(iv) (a) 1 ploughing with victory and desi plough and preparing land for sowing. (b) to (e) N.A. (v) Nil.
(vi) Maize yeliow No. 2. (vii) Irrigated. (viii) Lever harrowing, hoeing with horse hoe, thinning and weeding.
(ix) N.A. (x) 2s.9.1953 to 5.10.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
9 treatments (ley farming) : \(\mathrm{T}_{1}=\) one year ley-full dose, \(\mathrm{T}_{2}=\) one year ley-no manure, \(\mathrm{T}_{3}=\) two year ley-full dose, \(T_{4}=\) two year ley-manure applied once, \(T_{5}=\) two year ley-no manure, \(T_{6}=\) three year ley-full dose every year, \(T_{7}=\) three year ley-full dose for two consecutive years, \(T_{8}=\) three year ley-full dose once and \(T_{9}=\) three year ley-no manure.
Sub-plot treatments:
4 G.M. treatments : \(\mathrm{M}_{1}=\) Dich. Amlatum Vicia Visula, \(\mathrm{M}_{2}=\) Vicia lucerne, \(\mathrm{M}_{3}=\) Rhodes and \(\mathrm{M}_{4}=\) Maize—wheat rotation.

\section*{3. DESIGN:}
(i) Split-plot. (ii) (a) 9 main-plots/replication and 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 80 \mathrm{ac}\). (v) No. (vi) Yes.

\section*{4. GENERAL:}
(i) Sub normal growth. (ii) Monkeys damaged the crop. (iii) Grain yield. (iv) (a) Yes; 1949—1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(632 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(311.9 \mathrm{lb} . / \mathrm{ac}\).
(b) \(205.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main-plot treatments differ significantly, sub-plot treatments differ highly significantly while interaction is not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lllllllll|l} 
& \(\mathrm{T}_{\mathbf{1}}\) & \(\mathrm{T}_{\mathbf{2}}\) & \(\mathrm{T}_{\mathbf{3}}\) & \(\mathrm{T}_{\mathbf{4}}\) & \(\mathrm{T}_{\mathbf{5}}\) & \(\mathrm{T}_{\mathbf{6}}\) & \(\mathrm{T}_{\mathbf{7}}\) & \(\mathrm{T}_{\mathbf{8}}\) & \(\mathrm{T}_{\mathbf{9}}\) & Mean \\
\hline \(\mathrm{M}_{\mathbf{1}}\) & 670 & 580 & 680 & 570 & 510 & 980 & 830 & 700 & 1089 & 734 \\
\(\mathbf{M}_{\mathbf{2}}\) & 610 & 620 & 530 & 370 & 490 & 719 & 620 & 590 & 759 & 590 \\
\(\mathrm{M}_{\mathbf{4}}\) & 629 & 510 & 759 & 500 & 540 & 780 & 850 & 600 & 1010 & 686 \\
\hline 759 & 400 & 513 & 390 & 510 & 550 & 490 & 510 & 520 & 516 \\
\hline Mean & 667 & 528 & 620 & 458 & 512 & 757 & 698 & 600 & 844 & 632
\end{tabular}
S.E. of difference of two
1. main-plot treatment means \(\quad=110.3 \mathrm{lb} . / \mathrm{ac}\).
2. sub-plot treatment means \(\quad=48.6 \mathrm{lb} . / \mathrm{ac}\).
3. sub-plot treatment means at the same level of main-plot treatment mean \(=145.6 \mathrm{lb} . / \mathrm{ac}\).
4. main-plot treatment means at the same level of sub-plot treatment mean \(=172.8 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Maize (Kharif). Ref:- I:A.R.I. 50(18). Type :- 'CM'.
Object :-To study the best cultural treatment in combination with best method of application of fertilizers to Maize.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 20.7.1950. (iv) (a) As per treatments. (b) Sown in lines with Oudh plough and kera. (c) N.A. (d) 2 \(^{\prime}\) apart. (e) N.A. (v) and (vi) N.A. (vii) Unirrigated. (viii) As per treatments. (ix) \(5^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}

Main-plot treatments :
Number of ploughings: \(C_{1}=\) two, \(C_{2}=\) four and \(C_{3}=\) six ploughings.
Sub-plot treatments :
5 cultural operations: \(\mathrm{H}_{2}=\) one interculture, \(\mathrm{H}_{2}=\) two intercultures, \(\mathrm{H}_{3}=\) three intercultures, \(\mathrm{H}_{4}=\) four intercultures and \(\mathrm{H}_{5}=\) removal of weeds.

\section*{Sub-sub-plot treatments :}

2 methods of application of manures : \(M_{1}=\) in plough sole and \(M_{2}=\) on top of furrow.
Interculture done with bullock hoe. \(5,000 \mathrm{lb}\). of manure mixture of \(\mathbf{N}, \mathbf{P}\) and K in the tatio \(1: 2: 1\) applied as \(\mathbf{M}_{1}\) and \(\mathbf{M}_{2}\) on 20.7.1950.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 3 main-plots/replications; 5 sub-plots/main-plot and 2 sub-sub-plots/sub-plot. (b). N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 60\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) 1950-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(865.5 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(454.2 \mathrm{lb} / \mathrm{ac}\).
(b) \(109.8 \mathrm{lb} / \mathrm{ac}\).
(c) \(285.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effect of H and interaction \(\mathrm{C} \times \mathrm{H}\) are highly significant. All others are not significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{H}_{1}\) & \(\mathrm{H}_{2}\) & \(\mathrm{H}_{3}\) & \(\mathrm{H}_{4}\) & \(\mathrm{H}_{5}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathbf{M}_{2}\) \\
\hline \(\mathrm{C}_{1}\) & 738.7 & 810.0 & 768.7 & 1053.7 & 693.7 & 813.0 & 843.0 & 783.0 \\
\hline \(C_{2}\) & 933.7 & 948.7 & 877.5 & 821.2 & 825.0 & 881.2 & 867.0 & 895.5 \\
\hline C3 & 877.5 & 997.5 & 956.3 & 840.1 & 840.0 & 902.3 & 855.0 & 949.5 \\
\hline Mean & 850.0 & 918.7 & 867.5 & 905.0 & 786.2 & 865.5 & 855.0 & :876.0 \\
\hline \(\mathrm{M}_{1}\) & 870.0 & 940.0 & 900.0 & 885.0 & 785.0 & & & \\
\hline \(\mathrm{M}_{2}\) & 830.0 & 897.5 & 835.0 & 925.0 & 787.5 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means
\(=101.6 \mathrm{lb} . / \mathrm{ac}\).
6. M means at the same level of \(C=9012 \mathrm{lb} / \mathrm{ac}\).
2. \(H\) marginal means \(\quad=31.69 \mathrm{lb} . / \mathrm{ad}\). 7. \(C\) means at the same level of \(M=119.90 \mathrm{lb}\)./ac.
3. \(M\) marginal means \(\quad=52.03 \mathrm{lb} . / \mathrm{ac}\).
8. \(M\) means at the same level of \(\mathbf{H}=116.30 \mathrm{lb}\)./ac.
4. H means at the same level of \(\mathrm{C}=54.89 \mathrm{lb} . / \mathrm{ac}\).
9. \(H\) means at the same level of \(M=88.17 \mathrm{lb}\)./ac.
5. \(C\) means at the same level of \(H=112.80 \mathrm{lb}\).ac.

Crop:- Maize (Kharif). Ref:- I.A.R.I. 51(24). Type':- 'CM'.
Object :-To study the best cultural treatment in combination with best method of application cf fertilizer to Maize.
1. BASAL CONDITIONS :
(i) a) Nil. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 31.7.1951. (v) (a) Oudh ploughing. (b) and (c) N.A. (d) \(2 \frac{2^{\prime}}{}\) apart. (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hoeings and as per treatments. (ix) N.A. (x) 1, 8.11.1951.
2. TREATMENTS :

Main-plot treatments :
Number of ploughings : \(C_{1}=\) two, \(C_{2}=\) four and \(C_{3}=\) six ploughings.
Snb-plot treatments :
4 cultural eperations: \(\mathrm{H}_{1}=\) one interculture, \(\mathrm{H}_{2}=\) two intercultures, \(\mathrm{H}_{3}=\) three intercultures and \(\mathrm{H}_{4}=\) removal of weeds.
Sub-sub-plot treatments:
3 meth ods of application of manures : \(M_{1}=\) in plough sole, \(M_{2}=0\) top of furrow and \(M_{3}=\) broadcast. Interculture done with bullock hoe. \(5,000 \mathrm{lb}\). of manures mixture, in \(1: 2: 1\) ratio, of \(N, P, K\) applied as \(M_{1}, M_{2}\) and \(M_{3}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication, 4 sub-plots/main-plot, 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 60 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-1954\). (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1500 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(339.0 \mathrm{lb} / \mathrm{ac}\).
(b) \(209.8 \mathrm{lb} . / \mathrm{ac}\).
(c) \(351.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(H\) is highly significant and main effect of \(M\) is significant. . Interaction \(C \times H\) is highly significant while the rest are all not significant.
(iv) Av. yield of grain in lb ./ac.

S.E. of difference of two
\begin{tabular}{|c|c|c|}
\hline 1. C marginal means & \(=69.2 \mathrm{lb} . / \mathrm{ac}\). & 6. M means at the same level of \(\mathrm{C}=124.2 \mathrm{lb}\) \\
\hline 2. H marginal means & \(=49.5 \mathrm{lb} . / \mathrm{ac}\). & 7. C means at the same level of \(\mathrm{M}=122.8 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 3. M marginal means & \(=71.7 \mathrm{lb} / \mathrm{ac}\). & 8. M means at the same level of \(\mathrm{H}=143.5 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 4. H means at the same level of C & \(=85.7 \mathrm{lb} . / \mathrm{ac}\). & 9. \(H\) means at the same level of \(\mathrm{M}=127.1\) \\
\hline 5. C means at the same level of H & \(=101.4 \mathrm{lb} . / \mathrm{ac}\). & \\
\hline
\end{tabular}
\[
\text { Crop :- Maize (Kharif). } \quad \text { Ref :- I.A.R.I. 52(32). Type :- ‘C'. }
\]

Object :-To study the best cultural treatment in combination with best method of application of fertilizer to Maize.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 28, 30.7.1953. (iv) (a) As per treatments. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) As per treatments. (ix) N.A. (x) 3, 8.10.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
Number of ploughings: \(C_{1}=\) two,\(C_{2}=\) four and \(C_{3}=\) six ploughings.
Sub-plot treatments :
4 cultural operations : \(\mathrm{H}_{1}=\) one interculture, \(\mathrm{H}_{\mathbf{2}}=\) two intercultures, \(\mathrm{H}_{3}=\) three intercultures and \(\mathrm{H}_{4}=\) removal of weeds.

\section*{Sub-sub-plot treatments :}

3 methods of application of manures: \(M_{1}=\) in plough sole, \(M_{2}=\) on top of furrow and \(M_{3}=\) broadcast. Interculture done with bullock hoe. \(5,000 \mathrm{lb}\). of manures mixture, in 1:2:1 ratio, of \(\mathrm{N}, \mathrm{P}, \mathrm{K}\) applied as \(\mathbf{M}_{1}, \mathbf{M}_{2}\) and \(\mathbf{M}_{\mathbf{3}}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication; 4 sub-plots/main-plot; 2 :sub-sut-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 72\) ac. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Raw data is N.A.
5. RESULTS :
(i) \(1178 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(353.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(205.6 \mathrm{lb} / \mathrm{ac}\).
(c) \(193.6 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effects of \(\mathrm{C}, \mathrm{H}\) and M are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & Av. yield & Treatment & Av. yield & Treatment & Av. yield \\
\hline \(C_{1}\) & 1261 & \(\mathrm{H}_{1}\) & 1133 & \(\mathbf{M}_{\mathbf{1}} \ldots\) & 1163 \\
\hline \(\mathrm{C}_{2}\) & 1130 & \(\mathrm{H}_{2}\) & 1170 & \(\mathbf{M}_{\mathbf{2}}\) & 1163, \\
\hline \(\mathrm{C}_{3}\) & 1144 & \(\mathrm{H}_{3}\) & 1163 & \(\mathbf{M}_{\mathbf{3}}{ }^{\mathbf{4}}\) : & 1208. \\
\hline & & \(\mathrm{H}_{4}\) & 1245 & & \\
\hline S.E./mean & \(=62.52 \mathrm{lb} . / \mathrm{ac}\). & S.E./mean & \(=42.0 \mathrm{lb} . / \mathrm{ac}\). & S.E./mean & \(=28.0 \mathrm{lb} / \mathrm{ac}\) \\
\hline
\end{tabular}

Crop :- Maize.
Ref :- I.A.R.I. 52(28).
Type :- 'C'.

Object :-To study the effect of sowing premature and mature seed of Kharif crops on their yield.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) 29 and 30.7.1952. (iv) (a) Tractor ploughing, tractor discing and desi ploughing cross-wise in 3rd week of July 1953. (b) to (e) N.A. (v) N.A. (vi) Maize yellow No. 2, Maize T-41, Bajra Local, Jowar white Purhi, Jowar lacal and cow-peas 397. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) Oct. and Nov. 1952.

\section*{2. TREATMENTS :}
1. Sowing fully mature seeds.
2. Sowing 1 week premature seeds.
3. Sowing 2 week premature seeds.
3. DESIGN:
(i) R.B.D.
(ii) (a) 3 for each crop.
(b) N.A. (iii) 6
(iv) (a) N.A.
(b) \(30^{\prime} \times 27^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Poor in cowpeas and jowar. (ii) N.A. (iii) Grain and fodder yield. (iv) (a) 1952-N.A . (b) No. (c) N.A. (v) (a. and (b) No. (vi) Nil. (vii) Raw data N.A. Experiment conducted with 3 treatments on 6 crops as given under item (vi) in basal conditions. Results for other crops given under respective crops.
5. RESULTS :

Maize yellow No. 2
(i) \(4475 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(492.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield in Ib./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 4764 \\
2. & 4618 \\
3. & \(\mathbf{4 0 4 3}\) \\
S.E./mean & \(=\mathbf{2 0 1 . 2} \mathbf{~ i b} . / \mathrm{ac}\).
\end{tabular}

Maize T-4I
(i) \(4139 \mathrm{lb} / \mathrm{ac}\).
(ii) \(336.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 4380 \\
2. & 4123 \\
3. & 3915 \\
S.E./mean & \(=137.2 \mathrm{lb}\)./ac.
\end{tabular}
```

Crop:- Maize.
Ref:- I.A.R.I. 53(31)
Type:- ‘C'.

```

Object :-To study the effect of sowing premature and mature seed on their yield.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on 143. (iii) Maize and bajra on 25.7.1953 and jowar and cowpeas on 28.7.1953. (iv) (a) 1 Tractor ploughing, 4 desi ploughings and sohaga. '(b) to (e) N.A. (v) Nil. (vi) Maize yellow No. 2, Maize T-41, Bajra local, Jow ar local and cowpeas U-397. (vii) No. (viii) 1 hoeing with oudh plough. (ix) N.A. (x) Oct. and Nov. 1953.

\section*{2. TREATMENTS :}
1. Sowing fully mature seeds.
2. Sowing 1 week pre-mature seeds.
3. Sowing 2 weeks pre-mature seeds.
3. DESIGN :
(i) R.B.D. (ii) (a) 3 for each crop. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) \(1 / 80\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of grain. (iv) (a) 1952 to 1954. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Raw data N.A. Experiments conducted with 3 treatments on 5 crops as given under item
(vi) in basal conditions. Results for other crops are given under respective crops.
5. RESULTS :

Maize yellow No. 2 Maize T-41
(i) \(2011 \mathrm{lb} / \mathrm{ac}\).
(ii) N.A.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ccc} 
Treatment & Av. yield & \\
1. & 2332 & \\
2. & 2172 & \\
3. & 1530 & \\
& S.E./mean & N.A.
\end{tabular}
(i) \(2186 \mathrm{lb} . / \mathrm{ac}\).
(ii) N.A.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 2596 \\
2. & 2321 \\
3. & 1640 \\
S.E./mean & N.A.
\end{tabular}

Crop:- Maize (Kharif). Ref:- I.A.R.I. 51 (19) Type:- 'CM'.
Object :- To study the effect of basal dose, fertilizer placement and spacing with different levels of N and \(\mathbf{P}\) to maize and to study the residual effect on the following crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize-oats (b) N.A. (c) N.A. (ii) (a) \& (b) Refer item 11 on page 143. (iii) \(11,12.7 .51\). (iv)
(a) Double discing. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Hoeing, earthing, thinning and weeding. (ix) \(2.7^{\prime \prime}\). (x) 21 to 24.10.1951.
2. TREATMENTS :

Main plot treatments :
2 levels of F.Y.M. as basal dressing : \(B_{0}=0\) and \(B_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
Sub-plot treatments : All combinations of (1) and (2)
(1) \(\mathbf{2}\) methods of fertilizer application : \(\mathbf{M}_{1}=\) Broadcasting and \(\mathbf{M}_{2}=\) placement.
(2) 3 spacings between rows: \(\quad S_{1}=2^{\prime}, S_{2}=22^{\prime}\) and \(S_{3}=3^{\prime}\).

Sub-sub-plot treatments : All combinations of (1) and (2)
(1) 3 levels of \(N\) as \(A / S: N_{1}=20, N_{2}=40\) and \(N_{3}=60 \mathrm{lb}\)./ac. of \(N\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super with 2 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.: \(\mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block, 6 sub-plots/main-plot and 6 sub-sub-plots/sub-plot. (b) N.A.
(iii) 2. (iv) (a) \(48^{\prime} \times 24^{\prime}\). (b) \(S_{1}=44^{\prime} \times 20^{\prime} ; S_{2}=42.5^{\prime} \times 20^{\prime}\) and \(S_{3}=42^{\prime} \times 20^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:

\footnotetext{
(i) Normal. (ii) Phadka bores. (iii) Grain yield. (iv) (a) 1949-1951. (b) Yes. "(c) N.A. (v) (a) and (b) No. (vi) \& (vii) Nil.
}

\section*{5. RESULTS :}
(i) \(1315 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(1153 \mathrm{lb} . / \mathrm{ac}\).
(b) \(616 \mathrm{lb} / \mathrm{ac}\).
(c) \(286 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(\mathbf{N}\) and \(P\) effects are highly significant. All other effects are not significant.
(iv) Av. yield of maize in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1} \mathrm{M}_{1}\) & \(\mathrm{S}_{1} \mathrm{M}_{2}\) & \(\mathrm{S}_{2} \mathrm{M}_{1}\) & \(\mathrm{S}_{2} \mathrm{M}_{2}\) & \(\mathrm{S}_{3} \mathrm{M}_{1}\) & \(\mathrm{S}_{3} \mathrm{M}_{2}\) & Mean & \(\mathrm{B}_{0}\) & \(\mathrm{B}_{1}\) \\
\hline \(\mathrm{N}_{1} \mathrm{P}_{1}\) & 987 & 965 & 1166 & 1362 & 1348 & 1226 & 1176 & 1065 & 1287 \\
\hline \(\mathrm{N}_{1} \mathrm{P}_{2}\) & 1386 & 1124 & 1107 & 1317 & 1313 & 801 & 1175 & 1099 & 1251 \\
\hline \(\mathrm{N}_{2} \mathrm{P}_{1}\) & 1299 & 1299 & 1525 & 1157 & 1387 & 1063 & 1288 & 1267 & 1310 \\
\hline \(\mathrm{N}_{2} \mathrm{P}_{2}\) & 1742 & 1312 & 1671 & 1195 & 1569 & 1044 & 1422 & 1459 & 1385 \\
\hline \(\mathrm{N}_{3} \mathrm{P}_{1}\) & 1497 & 1677 & 1484 & 1352 & 1620 & 827 & 1409 & 1378 & 1441 \\
\hline \(\mathrm{N}_{3} \mathrm{P}_{2}\) & 1662 & 1711 & 1262 & 1127 & 1560 & 1400 & 1420 & 1376 & 1465 \\
\hline Mean & 1429 & 1348 & 1369 & 1252 & 1466 & 1060 & 1315 & 1274 & 1357 \\
\hline \(\mathrm{B}_{0}\) & 1346 & 1365 & 1452 & 1136 & 1390 & 953 & & & \\
\hline \(\mathrm{B}_{1}\) & 1545 & 1331 & 1286 & 1367 & 1543 & 1167 & & & \\
\hline
\end{tabular}
.E. of difference of two :
1. Main plot treatment means
2. Sub-plot treatment means
3. Sub-sub plot treatment means
\(=192.2 \quad \mathrm{lb} . / \mathrm{ac}\).
\(=177.8 \quad \mathrm{lb} . / \mathrm{ac}\).
\(=82.56 \mathrm{lb} . / \mathrm{ac}\).
\(=251.5 \quad \mathrm{lb} / \mathrm{ac}\).
\(=299.5 \mathrm{lb} . / \mathrm{ac}\).
\(=116.7 \quad \mathrm{lb} . / \mathrm{ac}\).
\(=220.0 \quad \mathrm{lb} . / \mathrm{ac}\).
\(=202.2 \mathrm{lbl} . / \mathrm{ac}\).
\(=256.3 \mathrm{lb} . / \mathrm{ac}\).
. Sub-plot treatment means at the same level of main-plot treatment
5. Main-plot treatment means at the same level of sub-plot treatment
6. Sub-sub plot treatment means at the same level of main-plot treatment
\(=116.7 \mathrm{lb} . / \mathrm{ac}\).
7. Main-plot treatment means at the same level of sub-sub plot treatment
8. Sub-sub plot treatment means at the same level of sub-plot treatment
9. Sub-plot treatment means at the same level of sub-sub-plot treatment
\(=256.3 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Maize (Kharif). Ref:- I.A.R.I. 50(19). Type :- 'CM'.
Object :-To study the depth of cultivation with and without inversion on the yield of Maize.
1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 13.7.1950. (iv) (a) As per treatments. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Nil. (viii) 2 hoeings with horse hoe. (ix, N.A. (x) 26 to 28.10.1950.

\section*{2. TREATMENTS:}

Main-plot treatments:
4 methods of ploughing: \(C_{1}=9^{\circ}\) deep tractor ploughing in 1st instance followed by normal cultivation with tractor implement (disc). \(\quad C_{2}=\) Ploughing \(5^{\prime \prime}\) deep with soil inverting plough by bullock in 1 st instance followed by normel cultivation with country plough aud \(C_{3}=\) Ploughing with country plough, \(C_{4}=\) Tractor discing.
Sub-plot treatments:
-plot treatments :
4 levels of \(N\) as F.Y.M. : \(N_{0}=0, N_{1}=40, N_{2}=80\) and \(N_{3}=120 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 4 sub-phots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A.
(b) \(1 / 40\) acre. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (i) N.A. (iii) Grain yield. (iv) (a) \(1949-N . A . \quad\) (b) N.A. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1163 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(674.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(370.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{N}\) alone is highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean \\
\hline \(\mathrm{C}_{1}\) & 1186 & \(1393{ }^{\text { }}\) & 1373 & 1406 & 1340 \\
\hline \(\mathrm{C}_{2}\) & 860 & 953 & 1053 & 1159 & 1006 \\
\hline \(\mathrm{C}_{3}\) & 913 & 1133 & 973 & 1346 & 1091 \\
\hline \(\mathrm{C}_{4}\) & 1160 & 1186 & 1120 & 1400 & 1216 \\
\hline Mean & 1030 & 1166 & 1130 & 1328 & 1163 \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means \(\quad=275.7 \mathrm{lb} . / \mathrm{ac}\).
2. N marginal means \(\quad=151.4 \mathrm{lb} . / \mathrm{ac}\).
3. C means at the same level of \(N \quad=302.8 \mathrm{lb} . / \mathrm{ac}\).
4. \(N\) means at the same level of \(C \quad=379.3 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Maize (Kharif). Ref:- I.A.R.I. 51(17). Type:-‘CM’.

Object : - To study the effect of depth of cultivation with and without inversion on the yield of Maize.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Heavy soil. (b) Refer item 11 on page 143. (iii) 6.8.1951.
(iv) (a) As per treatments. (b) Seed sown with desi plough. (c) N.A. (d) \(2 \frac{1}{2}{ }^{\circ}\) apart in rows. (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Horse hoeing. (ix) N.A. (x) 1.11.1951•

\section*{2. TREATMENTS :}

Main-plo \(t\) treatments :
4 methods of ploughing : \(\mathrm{C}_{1}=\) Tractor ploughing \(9^{\prime \prime}\) to \(10^{\circ}\) deep followed by tractor discing. \(\mathrm{C}_{2}=5^{\circ}\) to \(6^{\prime \prime}\) deep bullock soil inverting plough followed by country plough. \(\mathrm{C}_{3}=\) ploughing with country plough and \(\mathrm{C}_{\ell}=\) Tractor discing.
Sub-plot treatments :
4 levels of \(N\) as F.Y.M. : \(N_{0}=0, N_{1}=40, N_{2}=8\) ) and \(N_{3}=120 \mathrm{lb}\)./ac.
F.Y.M. spread on 23 and 25.6.1951.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block, 4 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a), (b) \(1 / 40\) acre. (v) Nil. (vi) N.A.
4. GENERAL:
(i) Germination satisfactory. Growth of the crop in general poor due to late sowing. (ii) N.A. (iii) Grain yield.' (iv) (a) 1950-1954. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Maize crop failed in 1950 due to heavy rain and water logging. (vii) Nil.
5. RESULTS :
(i) \(747 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(222.4 \mathrm{lb} . / \mathrm{ac}\).
(b) \(146.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yicld of grain in lb./ac.
\begin{tabular}{r|cccc} 
& \(\mathbf{N}_{\mathbf{0}}\) & \(\mathbf{N}_{\mathbf{2}}\) & \(\mathbf{N}_{\mathbf{2}}\) & \(\mathbf{N}_{\mathbf{3}}\) \\
\hline \(\mathrm{C}_{\mathbf{1}}\) & 840 & 763 & 1039 & 1054 \\
\(\mathrm{C}_{\mathbf{2}}\) & 748 & 710 & 725 & 795 \\
\(\mathrm{C}_{\mathbf{3}}\) & 595 & 717 & 871 & 817 \\
\(\vdots \mathrm{C}_{\mathbf{4}}\) & 595 & 595 & 565 & 527 \\
\hline Mean & 695 & 696 & 800 & 798 \\
7450 \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means
\(=90.8 \mathrm{lb} . / \mathrm{ac}\).
2. N marginal means \(\quad=59.6 \mathrm{lb} . / \mathrm{ac}\).
3. \(\mathbf{N}\) means at the same level of \(\mathrm{C} \quad=119.2 \mathrm{lb} . / \mathrm{ac}\).
4. C means at the same level of \(\mathrm{N} \quad=123.9 \mathrm{lb} \cdot / \mathrm{ac}\).

Crop :- Maize (Kharif) Ref :- I.A.R.I. 52(19) Type :n 'CM'.
Object :-To study the effect of depth of cultivation with and without inversion on the yield of Maize.
1. BASAL CONDITIONS:
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. F(iii) 28.7.1952. (iv) (a) As per treatments. (b) Sown with monarch drill. (c) N.A. (d) \(2^{\prime}\) apart in rows. (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) 1 weeding and 2 hoeings. (ix) N.A. (x) 5.11.1952.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 types of ploughing: \(C_{1}=\) Tractor ploughing \(9^{\prime \prime}-10^{\prime \prime}\) deep folloned by tractor discing, \(C_{2}=\) Bullock soil inversion plough (victory) \(5^{\circ}\) to \(6^{\prime \prime}\) deep followed by country plough, \(C_{3}=\) Ploughing with country plough and \(\mathrm{C}_{4}=\) Tractor discing.

\section*{Sub-plot treatments :}

4 levels of \(N\) as F.Y.M.: \(\quad N_{0}=0, N_{1}=40, N_{2}=80\) and \(N_{3}=120 \mathrm{lb}\)./ac.
F Y.M. spread on 3, 4.7.1952.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block, 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(40^{\prime} \times 26.5^{\prime}\). (b) N.A. (v) N.A. (vi) N.A.
4. GENERAL :
(i) Germination satisfactory. (ii) N.A. (iii) Yield of grain. (iv) (a) \(1950-\) N.A. (b) Yes. (c) N.A. (v) (a),
(b) No. (vi) and (vii) NII.

\section*{5. RESULTS :}
(i) \(1002 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(371.9 \mathrm{lb} . / \mathrm{ac}\).
(b) \(342.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main-plot treatments differ significantly. Sub-plot treatments differ highly significantly. Interaction is not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|rrrr|r} 
& \(\mathbf{C}_{\mathbf{1}}\) & \(\mathbf{C}_{\mathbf{2}}\) & \(\mathbf{C}_{\mathbf{3}}\) & \(\mathbf{C}_{\mathbf{4}}\) & Mean \\
\hline \(\mathbf{N}_{0}\) & 759 & 950 & 700 & 410 & 705 \\
\(\mathbf{N}_{1}\) & 1170 & 920 & 1170 & 710 & 993 \\
\(\mathbf{N}_{\mathbf{2}}\) & 1120 & 1070 & 1100 & 780 & 1018 \\
\(\mathbf{N}_{\mathbf{3}}\) & 1560 & 1280 & 1280 & 1050 & 1292 \\
\hline Mean & 1152 & 1055 & 1062 & 738 & 1002
\end{tabular}

\section*{S.E. of difference of two}
\begin{tabular}{ll} 
1. Main-plot treatment means & \(=131.6 \mathrm{lb} . / \mathrm{ac}\). \\
2. Sub-plot treatment means & \(=120.9 \mathrm{lb} . / \mathrm{ac}\). \\
3. Sub-plot treatment means at the same level of main-plot treatment & \(=241.9 \mathrm{lb} . / \mathrm{ac}\). \\
4. Main-plot treatment means at the same level of sub-plot treatment & \(=175.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Maize (Kharif) Ref:- I.A.R.I. 53(25) Type:- ‘CM'.
Object :-To study the effect of depth of cultivation with and without inversion on the yield of Maize.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) to (x) ㄱ.A.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 types of ploughing: \(\quad C_{1}=\) Tractor ploughing \(9^{\prime \prime}-10^{\prime \prime}\) deep followed by tractor discing, \(C=\) Bullock soil inversion plough (victory) \(5^{\circ}\) to \(6^{\circ}\) deep followed by country plough, \(\mathrm{C}_{3}=\) Ploughing with country plough and \(\mathrm{C}_{\mathbf{4}}=\) Tractor discing.
Sub-plot treatments :
4 levels of \(N\) as F.Y.M. : \(\quad N_{0}=0, N_{2}=40, N_{2}=80\) and \(N_{3}=120 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block, 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. \(\dot{\text { i }}\) (b) \(1 / 40\) acre. (v) N.A. (vi Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of grain. (iv) (a) 1950-1954. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(826.3 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(55.13 \mathrm{lb} . / \mathrm{ac}\).
(b) \(27.97 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main-plot treatments and interaction are significant. Sub-plot treatments are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|cccc} 
& \(C_{1}\) & \(C_{2}\) & \(C_{3}\) & \(C_{4}\) \\
\(\mathbf{N}_{\mathbf{0}}\) & 600 & 830 & 840 & 1050 \\
\(\mathbf{N}_{\mathbf{1}}\) & 630 & 640 & 750 & 850 \\
\(\mathbf{N}_{\mathbf{2}}\) & 870 & 960 & 1100 & 1130 \\
\(\mathbf{N}_{\mathbf{3}}\) & 560 & 750 & 760 & 870 \\
\hline Mean & 665 & 795 & 862 & 982 \\
\hline
\end{tabular}
S.E. of difference of two
1. Main-plot treatment means \(\quad=19.49 \mathrm{lb} . / \mathrm{ac}\).
2. Sub-plot 1 .
\(=9.89 \mathrm{lb} . / \mathrm{ac}\).
3. Sub-plot treatment means at the same level of main-plot treatment
\(=19.78 \mathrm{lb} . / \mathrm{ac}\).
4. Main-plot treatment means at the same level of sub-plot treatment \(=39.20 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Maize (Kharif).
Ref :- I.A.R.I. 52(30). Type :- 'CM'.
Object : -To study the response of Hubam clover for fodder, seed and green manuring and its effect on soil fertility as judged by the yield of following Maize.

\section*{1. BASAL CONDITIONS:}
(i) (a) Hubam clover-Maize. (b) Hubam clover. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143.
(iii) 18.7.1952. (iv) (a) Ploughing once with victory and twice with desi plough. (b) to (e) N.A. (v) Nil.
(vi) N.A. (vii) Irrigated. (viii) Hoeing, thinning and weeding. (ix) N.A. (x) 2.11.1952 and 17.11.1952.

\section*{2. TREATMENTS:}

\section*{Main-plot treatments :}

4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40, \mathrm{P}_{2}=80\) and \(\mathrm{P}_{3}=120 \mathrm{lb}\)./ac.
Sub-plot treatments :
6 uses of clover: \(C_{1}=\) Hubam clover grown for seed, \(C_{2}=\) Hubam clover left for seed after one cutting, \(C_{3}=\) Hubam clover green manured, \(C_{4}=\) Hubam clover left after one cutting, \(C_{5}=\) Hubam clover left after two cuttings and \(\mathrm{C}_{6}=\) Hubam clover grown for fodder.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 6 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) and (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1951-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Raw data N.A.
5. RESULTS :
(i) \(758 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) N.A.
(b) N.A.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
\(\mathrm{P}_{\mathbf{0}}\) & 856 & \(\mathbf{C}_{\mathbf{1}}\) & 963 \\
\(\mathrm{P}_{\mathbf{1}}\) & 572 & \(\mathbf{C}_{\mathbf{2}}\) & 987 \\
\(\mathrm{P}_{\mathbf{2}}\) & 844 & & \(\mathbf{C}_{\mathbf{3}}\) \\
\(\mathrm{P}_{3}\) & 761 & \(\mathbf{C}_{\mathbf{4}}\) & 662 \\
& & \(\mathbf{C}_{5}\) & 634 \\
& & \(\ldots\) & 700 \\
& & \(\mathbf{C}_{\mathbf{6}}\) & 604
\end{tabular}
S.E.'s are not available.

Crop:- Maize (Kharif).
Ref :- I.A.R.I. 53(38). Type :- ‘CM'.

Object :-To study the response of Hubam clover to different doses of phosphatic manures grown for fodder, seed and green manuring and its effect on soil fertility as judged by the yield of following Maize crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Hubam clover-Maize. (b) Hubam clover. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.7.1953. (iv) (a) Ploughing with desi plough. (b) N.A. (c) 18 seers. (d) and (e) N.A. (v) N.A. (vi) Maize yellow No. 2. (vii) Irrigated. (viii) 2 hoeings, weeding and filling up gaps. (ix) N.A. (x) 25 and 26.10.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40, \mathrm{P}_{2}=80\) and \(\mathrm{P}_{3}=120 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treat ments :
6 uses of clover: \(C_{1}=\) Hubam clover grown for seed, \(C_{2}=\) Hubam clover left for seed after one cutting, \(\mathrm{C}_{3}=\) Hubam clover green manured, \(\mathrm{C}_{4}=\) Hubam clover left after one cutting, \(\mathrm{C}_{5}=\) Hubam clover left after two cuttings and \(\mathrm{C}_{6}=\) Hubam clover grown for fodder.
3. DESIGN
(i) Split-plot. (ii) (a) 4 main-plots/replication and 6 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(1 / 100 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) \(1951-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1045 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(384.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(235.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) C effect alone is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & C4 & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{6}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 1464 & 975 & 791 & 827 & 998 & 923 & 926 \\
\hline \(\mathrm{P}_{1}\) & 1622 & 1083 & 619 & 785 & 860 & 821 & 965 \\
\hline \(\mathrm{P}_{2}\) & 1393 & 1152 & 771 & 796 & 1222 & 1035 & 1061 \\
\hline \(\mathrm{P}_{3}\) & 1574 & 1241 & 866 & 939 & 1374 & 942 & 1156 \\
\hline Mean & 1513 & 1113 & 762 & 837 & 1114 & 930 & 1045 \\
\hline
\end{tabular}
S.E. of difference of two
1. P marginal means \(\quad=128.0 \mathrm{lb} . / \mathrm{ac}\).
2. C marginal means \(\quad=95.9 \mathrm{lb} . / \mathrm{ac}\).
3. C means at the same level of \(\mathbf{P} \quad=191.8 \mathrm{lb} . / \mathrm{ac}\).
4. \(\mathbf{P}\) means at the same level of \(\mathbf{C} \quad=265.7 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Maize (Kharif).
Ref :- I.A.R.I. 53(34).
Type :- 'CM':'
Object :-To study the effect of different fertilizers and cultural practices on the yield of Maize.

\section*{1. BASAL CONDITIONS:}
(i) (a) Maize-Oats. (b) Oats. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) As per treatments. (iv) (a) Ploughing with victory and desi plough. (b) to (e) N.A. (v) N, P and K at 80,60 and 20 lb ./ac. respectively. (vi) N.A. (vii) Irrigated. (viii) 2 cuttings for each main-plot, hoeing, thinning and weeding. (ix) N.A. (x) \(D_{1}-22,23.9 .1953, D_{2}-14.10 .1953\) and \(D_{3}-1.11 .1953 / 9.11 .1953\).
2. TREATMENTS :

Main-plot treatments :
3 dates of sowing: \(\mathrm{D}_{1}=18.6 .1953, \mathrm{D}_{2}=21.6 .1953\) and \(\mathrm{D}_{3}=1.7 .1953\).
Sub-plot treatments:
3 earthings: \(E_{1}=\) No, \(E_{2}=1\) and \(E_{3}=2\) earthings.
Sub-sub-plot treatments:
3 times of application of fertilizers: \(\mathrm{T}_{1}=\) Full dose at the time of sowing, \(\mathrm{T}_{2}=\frac{1}{2}\) dose at sowing and \(\frac{1}{2}\) at 1st earthing and \(T_{3}=\frac{1}{3}\) dose at sowing, \(\frac{1}{3}\) at 1 st earthing and \(\frac{1}{2}\) at 2nd earthing.
Fertilizer mixture was applied to give 80 lb . of \(\mathrm{N}, 60 \mathrm{lb}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and 20 lb . of \(\mathrm{K}_{9} \mathrm{O}\).

\section*{3. DESIGN:}
(i) Split-plot. (ii) (a) 3 main-plots/replication; 3 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) \(34^{\prime} \times 25^{\prime}\). (b) \(30^{\prime} \times 21^{\prime}\). (v) \(2^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1951-1953\). (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1212 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(515.8 \mathrm{lb} . / \mathrm{ac}\).
(b) \(203.7 \mathrm{lb} . / \mathrm{ac}\).
(c) \(201.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects \(D, T\) and interaction \(D \times T\) and \(D \times E\) fare 'significant. \(E\) effect is highly significant. Others are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & Mean & T1 & T8 & Ts \\
\hline \(\mathrm{E}_{1}\) & 1414 & 884 & 1187 & 1162 & 1158 & 1080 & 1247 \\
\hline \(\mathrm{E}_{2}\) & 1481 & 956 & 833 & 1090 & 1155 & 910 & 1204 \\
\hline \(\mathrm{E}_{3}\) & 1850 & 1149 & 1155 & 1385 & 1267 & 1360 & 1527 \\
\hline Mean & 1582 & 996 & 1058 & 1212 & 1193 & 1117 & 1326 \\
\hline T1 & 1561 & 984 & 1034 & & & & \\
\hline T \({ }_{2}\) & 1518 & 755 & 1077 & & & & \\
\hline \(\mathrm{T}_{3}\) & 1666 & 1250 & 1063 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(D\) marginal means \(\quad=85.97 \mathrm{lb} . / \mathrm{ac}\). 6. T means at the same level of \(\mathrm{E}=82.07 \mathrm{lb} . / \mathrm{ac}\).
2. E marginal means \(\quad=33.95 \mathrm{lb} . / \mathrm{ac} .7\). E means at the same level of \(\mathrm{T}=82.44 \mathrm{lb} . / \mathrm{ac}\).
3. T marginal means \(\quad=33.51 \mathrm{lb} . / \mathrm{ac}\). 8. E means at the same level of \(\mathrm{D}=83.16 \mathrm{lb} . / \mathrm{ac}\).
4. T means at the same level of \(D=82.07 \mathrm{lb} . / \mathrm{ac}\). 9. D means at the same level of \(\mathrm{E}=139.25 \mathrm{lb} . / \mathrm{ac}\).
5. D means at the same level of \(T=138.82 \mathrm{lb} . / \mathrm{ac}\).
\[
\text { Crop :- Maize (Kharif). } \quad \text { Ref :- I.A.R.I. 52(3). Type :- ‘CM'. }
\]

Object :-To study the effect of Napier grass on soil fertility and on the yield of subsequent cereal crops.
1. BASAL CONDITIONS:-
(i) (a) No. (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Maize 22.7.1952 and Napier 23, 24.6.1952. (iv) (a) Digging Napier roots of 2 years age, ploughing with victory plough once and twice with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hoeing with oudh plough. (ix) N.A. (x) Maize 7.10.1952 and Napier 28.8.1952.

\section*{2. TREATMENTS :}

\section*{Main-plot (reatments :}

4 rotations : \(\mathbf{R}_{1}=\) Control ; Maize-Wheat, \(\mathrm{R}_{\mathbf{2}}=\) Napier (2 yrs)-Maize-Wheat, \(\mathrm{R}_{\mathbf{3}}=\) Napier (3yrs)-Maize-Wheat and \(\mathbf{R}_{\mathbf{4}}=\) Napier ( 4 yrs )-Maize-Wheat.
Sub-plot treatments :
2 manures : \(\mathrm{M}_{0}=\) No manure and \(\mathrm{M}_{1}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/replication ; 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) 1/40 ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Yield of maize grain and napier fodder. (iv) (a) 1949-N.A. (b) Yes. (c) N.A.
(v) (a) and (b) No. (vi) Crop failed due to early closure of monsoon and irrigations were also given late. (vii) Raw data N.A. Therefore results could not be presented in the proper form.
5. RESULTS :
(i) to (iv) Av. yield of Maize in Ib./ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & Mean \\
\hline \(\mathrm{M}_{0}\) & 381.0 & 427.9 & 404.4 \\
\hline \(\mathrm{M}_{1}\) & 468.2 & 515.1 & 491.6 \\
\hline Mean & 424.6 & 471.5 & 448.0 \\
\hline
\end{tabular}

Av. yield of Napier grass in lb./ac.
\begin{tabular}{ll} 
Treatment & Av. yield \\
Manured & 47849 \\
Unnmanured & 40066
\end{tabular}

Crop :- Maize (Kharif). Ref :- I.A.R.I. 53(3) Type :- ‘CM'.
Object :-To study the effect of Napier grass on soil fertility and on the yield of subsequent cereal crops.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Maize on 10.6.1953, Napier on 8, 9.7.1953. (iv) (a) Digging roots of Napier grass of 3 years age, ploughing with victory and desi plough. (b) to (e) N.A. (v) Nil. (vi) Maize yellow No. 2. (vii) Irrigated. (viii) Ploughing with desi plough and weeding. (ix) N.A. (x) Cowpeas: 9, 10.7.1953, Napier 20.8.1953. and Maize 3 to 6.9.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 rotations: \(\mathrm{R}_{1}=\) Control : Maize-wheat, \(\mathrm{R}_{2}=\) Napier ( 2 years) -maize-wheat, \(\mathrm{R}_{3}=\) Napier (3 years)-maize-wheat and \(\mathrm{R}_{4}=\) Napier (4 years) -maize-wheat.
Sub-plot treatments :
2 manures: \(\mathrm{M}_{0}=\) No manure and \(\mathrm{M}_{1}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A.
(b) \(1 / 40\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Fodder yield. (iv) (a) 1950-1953. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Only 3 main-plots are taken for analysis.

\section*{5. RESULTS :}
(i) 3.52 ton/ac.
(ii) (a) 0.79 ton/ac.
(b) \(0.53 \mathrm{ton} / \mathrm{ac}\).
(iii) Only M effect is significant.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{l|lll|l} 
& \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & Mean \\
\hline \(\mathbf{M}_{\mathbf{0}}\) & 3.10 & 3.30 & 2.86 & 3.09 \\
\(\mathbf{M}_{\mathbf{1}}\) & 4.25 & 4.00 & 3.59 & 3.95 \\
\hline Mean & 3.68 & 3.65 & 3.22 & 3.52
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(R\) marginal means & \(=0.323 \mathrm{ton} / \mathrm{ac}\). \\
2. \(M\) marginal means & \(=0.177 \mathrm{ton} / \mathrm{ac}\). \\
3. \(M\) means at the same level of \(R\) & \\
4. \(R\) means at the same level of \(M\) & \\
\(=0.307 \mathrm{ton} / \mathrm{ac}\). \\
\end{tabular}

Crop :-Maize. Ref:- I.A.R.I. 53(127). Type :- ‘CM'.
Object :- To study the effect of different manures on crop yield with different rotations.
1. BASAL CONDITIONS:
(i) (a) First year : Maize+oats, second year : Maize+peas, third year: Maize+ wheat, fourth year : Maize + gram. (4 year rotation to be conducted 8 course for rotation). (b) Oats. (c) As per treatments. (ii) (a) Light loam. (b) N.A. (iii) 25.6.1953. (iv) (a) 4 to 6 desi ploughings. (b) and (c) N.A. (d) Between rows \(=2 \frac{1}{2}^{\circ}\), within row \(=1 \frac{1^{\prime}}{}{ }^{\prime}\). Rows to run east to west. (e) Thinned to one strong seedling per hole. (v) Nil. (vi) Pusa yellow (medium). (vii) Unirrigated. (viii) Intercultivation and weeding. (ix) 42.39*. (x) 5.10.1953.

\section*{2. TREATMENTS}
1. Control.
6. Super at \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. F.Y.M. at \(8000 \mathrm{lb} . / \mathrm{ac}\)
7. Tr. \(4+\mathrm{Tr} .5\).
3. Rape cake at 40 lb ./ac. of N .
8. Tr. \(4+\) Tr. 6 .
4. A/S at \(40 \mathrm{lb} . / \mathrm{ac}\). of N
9. \(\operatorname{Tr} .5+\operatorname{Tr} .6\).
5. Pot. Sul. at \(50 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{\mathbf{2}} \mathrm{O}\).
10. \(\operatorname{Tr} .4+\operatorname{Tr} .5+\operatorname{Tr} .6\).
3. DESIGN :
(i) R.B D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) (a) \(44^{\prime} \times 24^{\prime}\). (b) \(37.5^{\prime} \times 18^{\prime}\). (v) Yes. (vi) Yes.
4. GENERAL :
(i) Satisfactory. No lodging. (ii) Nil. (iii) Weight of cob and grain. (iv) (a) 1953-1961 (8th year of the Expt.). (b) Yes. (c) Nil. (v) (a) No. (b) Nil. (vi) Nil. (vii) Experiment conducted at Botanical Sub-s:ation, Pusa (Bihar).
5. RESULTS :
(i) \(377 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(57.43 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 276 & 6. & 325 \\
2. & 467 & 7. & 315 \\
3. & 572 & 8. & 425 \\
4. & 386 & 9. & 270 \\
5. & 250 & 10. & 485 \\
& S.E./mean & \(=28.71 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :Maize. Ref:- I.A.R.I. 51(41) Type :- 'D'.
Object : - To study the effect of soaking seeds of Maize in dilute solutions of feritilizes on the yield.
1. BASAL CONDITIONS
(i) (a) Nil. (b) and (c) N.A. (ii) and (b) Refer item 11 on page 143. (iii) Maize 6.7.1951 and Oats N.A. (iv) (a) Maize : Tractor ploughing and discing 1st week July 1951. Oats: Desi plough twice after Palewa on 1.12.1951. (b) to (e) N.A. (v) \(\mathbf{C} / \mathrm{N}\) top dressed in Oats on 17.1.1952 along with irrigation. (vi) N.A. (vii) Irrigated. (viii) Hoeing in maize twice on August 1951 and hoeing in oats 1st week of Feb. 1952. (ix) N.A. (x) Maize Oct. 1951 and oats May 1952.

\section*{2. TREATMENTS :}

Soaking of seeds.
1. No soaking.
2. Soaking in \(5 \%\) solution of A/S.
3. Soaking in \(5 \%\) solution of Super.
4. Soaking in \(5 \%\) solution of Amm. Phos.
5. Soaking in water.
3. DESIGN:
(i) R.B.D. (ii) (a) 5 each for maize and oats. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(38^{\prime} \times 23^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Maize poor and oats normal. (ii) Nil. (iii) Yield of grain for maize and oat crops. (iv) (a) 195119 3. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Results of experiment conducted for oats crop may be seen under relevent crop.

\section*{5. RESULTS :}
(i) 717 Ir./ac.
(ii) \(233.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments dffer highly significantly.
(iv) Av. yield of maize in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 890 \\
2. & 704 \\
3. & 296 \\
4. & 696 \\
5. & 996 \\
S.E./mean & \(=95.45 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar. Ref :- I.A.R.I. 53(31 a) Type :- ‘C’.
Object :-To study the effect of premature and mature seed on the yield of Jowar.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to No. I.A.R.I. 53(31) under MAIZE.
5. RESULTS :
(i) \(116.8 \mathrm{lb} . / \mathrm{ac}\).
(ii) N.A.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 138.2 \\
2. & 115.2 \\
3. & 97.1
\end{tabular}

Crop:- Barley (Rabi). Ref:- I.A.R.I. 51(55). Type :~' \(M V\) '.
Object :-To study the response of varieties of Barley to the application of \(N\) and \(P\).
1. BASAL CONDITIONS :
(i) (a) Barley-Maize. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 5.12 .1951 . (iv)
(a) Double discing and three ploughings. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii)
N.A. (ix) N.A. (x) 7.4.1952.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3).
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=30\) and \(\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 varieties: \(V_{1}=P u s a-13\) and \(V_{2}=C-521\).
3. DESIGN:
(i) \(3 \times 3 \times 2\) Fact. in R.B.D. (ii) (a) 18 . (b) N.A. (iii) 4 . (iv) (a) \(38^{\prime} \times 25^{\prime}\). (b) \(33^{\prime} \times 20^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Medium to heavy lodging in plots manured with N. (ii) N.A. (iii) Grain yield. (iv) (a) 1951 - N.A.
(b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Hailstorm on 1.3.1952. (vii) Nil.
5. RESULTS:
(i) \(1122 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(257.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of N and V are significant. Others are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathbf{N}_{2}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathbf{V}_{2}\) \\
\hline \(\mathrm{P}_{0}\) & -888 & 1119 & 1132 & 1046 & 1230 & 862 \\
\hline \(\mathrm{P}_{1}\) & 970 & 1175 & 1284 & 1143 & 1340 & 946 \\
\hline \(\mathrm{P}_{2}\) & 928 & 1155 & 1449 & 1177 & 1320 & 1034 \\
\hline Mean & 929 & 1150 & 1220 & 1122 & 1297 & 947 \\
\hline \(\mathrm{V}_{1}\) & 1096 & 1296 & 1498 & & & \\
\hline \(\mathrm{V}_{2}\) & 761 & 1003 & 1078 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of \(N\) or \(P\) & \(52.6 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(V\) & \(45.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{P}\) table & \(91.1 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of \(P \times V\) or \(N \times V\) table & \(73.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Barley (Rabi). Ref :- I.A.R.I. 52(77) Type :~ 'MV'.
Object :-To study the response of varieties of Barley to the application of \(\mathbf{N}\) and P .
1. BASAL CONDITIONS:
(i) (a) Barley-Maize. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 30.10.1952.
(iv) (a) Desi ploughing and tractor discing. (b) to (e) N.A. (v) N.A. (vi) .As per treatments. (vii) Irrigated. (viii) to (x) N.A.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as A/S: \(N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac. of \(N\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30\) and \(\mathrm{P}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(3) 2 varieties of barley: \(\mathrm{V}_{1}=\) Pusa 13 and \(\mathrm{V}_{2}=\) Kanpur 251.

Fertilizers applied on 29.10.1952.
3. DESIGN :
(i) \(3 \times 3 \times 2\) Fact. in R.B.D. (ii) (a) 18 . (b) N.A. (iii) 4 . (iv) (a) \(38^{\prime} \times 25^{\prime}\). (b) \(36^{\prime} \times 23^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.

\section*{4. GENERAL:}
(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1951-N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2072 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(302.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(N\) is highly significant, main effect of \(P\) and interactions \(N \times P\) and \(V \times P\) are significant, while others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathrm{N}_{8}\) & Mean & \(\mathrm{V}_{1}\) & V8 \\
\hline \(\mathrm{P}_{0}\) & 1762 & 1936 & 2127 & 1942 & 2007 & 1876 \\
\hline \(\mathrm{P}_{1}\) & 16S0 & 2048 & 2498 & 2069 & 2167 & 1970 \\
\hline \(\mathrm{P}_{2}\) & 1713 & 2209 & 2696 & 2206 & 2185 & 2227 \\
\hline Mean & 1712 & 2064 & 2440 & 2072 & 2120 & 2024 \\
\hline \(V_{1}\) & 1782 & 2082 & 2496 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \(\mathrm{V}_{2}\) & 1641 & 2047 & 2384 & & & \\
\hline
\end{tabular}
1. S.E. of N or P margina Imean
\(=61.69 \mathrm{lb} / \mathrm{ac}\).
2. S.E. of \(V\) marginal mean
\(=50.36 \mathrm{lb} . / \mathrm{ac}\).
3. S.E. of body of \(N \times P\) table
\(=106.80 \mathrm{lb} . / \mathrm{ac}\).
4. S.E. of body of \(N \times V\) or \(P \times V\) table
\(=87.22 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Barley (Rabi). Ref :- I.A.R.I. 53 (75). Type :- 'MV'.
Object :-To study the response of varieties of Barley to the application of \(\mathbf{N}\) and \(\mathbf{P}\).
1. BASAL CONDITIONS :
(i) (a) Barley-Maize. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 30.10 .1953 and 31.10.1953. (iv) (a) One victory and 2 desi ploughings and preparation of land with desi plough. (b) to (e) N A. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) 1 weeding and taking out smutted plants. (ix) N.A. (x) 22 to 24.3.1954.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30\) and \(\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 varieties: \(\mathrm{V}_{1}=\) N.P. 13 and \(\mathrm{V}_{2}=\) Kanpur 251.
3. DESIGN :
(i) \(3 \times 3 \times 2\) Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) \(38^{\prime} \times 25^{\prime}\). (b) \(36^{\prime} \times 23^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1951-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(2087 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(725.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in 1 lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(N_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) \\
\hline \(\mathrm{P}_{0}\) & 2052 & 1910 & 2098 & 2020 & 2113 & 1927 \\
\hline \(\mathrm{P}_{1}\) & 2048 & 2229 & 2016 & 2098 & 2157 & 2038 \\
\hline \(\mathrm{P}_{2}\) & 2311 & 2081 & 2042 & 2145 & 2227 & 2063 \\
\hline Mean & 2137 & 2073 & 2052 & 2087 & 2166 & 2009 \\
\hline \(\mathrm{V}_{1}\) & 2183 & 2183 & 2131 & & & \\
\hline \(\mathrm{V}_{2}\) & 2091 & 1964 & 1973 & & & \\
\hline
\end{tabular}
S.E. of marginal mean of \(N\) or \(P\)
S.E. of marginal mean of \(V\)
S.E. of body of \(N \times P\) table
S.E. of body of \(N \times V\) or \(P \times V\) table
\(=74.0 \mathrm{lb} . / \mathrm{ac}\). 128.2 lb . \(=60.4 \mathrm{Jb} . / \mathrm{ac}\).
\(=128.2 \mathrm{lb} . / \mathrm{ac}\).
\(=104.7 \mathrm{lb} . / \mathrm{ac}\).

Object :-To study the effect of sowing premature and mature seeds on Barley yield.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to No. I.A.R.I. 53(32) on WHEAT.
5. RESULTS:
(i) \(2510 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(218.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment Av. yield
\begin{tabular}{ll} 
1. & 2834 \\
2. & 2487 \\
3. & 2210 \\
S.E./mean & \(=77.35 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\text { Crop :- Barley (Rabi). } \quad \text { Ref :- I.A.R.I. } 52(27 \text { b). Type :- ‘C'. }
\]

Objest :-To study the effect of sowing premature and mature seed on Barley yield.
1. BASAL CONDITIONS to 4. GENERAL :

Please refer to No. I.A.R.I. 52(27) on WHEAT.
5. RESULTS :
(i) \(4040 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(311.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Treatment Av. yield
1. 3530
2. 3305
3. 5284
S.E./mean \(=110.26 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Bajra (Kharif). Ref:- I.A.R.I. 52(54). Type:- 'M’.
Object :-To study the effect of organic and inorganic manuring on the yield of crops in rotations.
1. BASAL CONDITIONS:
(i) (a) As per treatments. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 28.7.1952 (iv) (a) 1 ploughing and 2 discings with tractor and 1 beaming. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) 1 weeding and 1 hoeing. (ix) \(12.89^{\circ}\). (x) 11 to 24.10 .1952 ; 21.10.1952 to 8.11.1952.
2. TREATMENTS :

Main-plot treatments:
3 crop rotations: \(\mathbf{R}_{\mathbf{1}}=\) Bajra-Wheat, \(\mathbf{R}_{\mathbf{2}}=\) Fallow-Wheat and \(\mathbf{R}_{\mathbf{3}}=\) Bajra-Fallow.
Sub-plot treatments:
5 levels of F.Y.M. : \(F_{0}=0, F_{1}=2.5, F_{2}=5, F_{3}=10\) and \(F_{4}=20\) ton/ac.
Sub-sub-plot treatments:
3 levels of N as Sod. Nit. : \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
Manures applied to Bajra in \(\mathbf{R}_{1}\) and \(\mathbf{R}_{3}\) and to Wheat in R2. F.Y.M. applied on 8.7.1952 and Sod. Nit. on 2.9.1952.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/replication ; 5 sub-plots/main-plot; 3 sub-sut-plots/sub-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(58^{\prime} \times 12 \xi^{\prime}\) (v) N.A. (vi) Yes-;

\section*{4. GENERAL:}
(i) Fairly good on the whole. (ii) Green ear discease (sclerospora-graminicola) 4\% attack on harvest. Pyrilla-incidence severe as the nearby Sugarcane was affected badly. (iii) Grain yield. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) For wheat the number of replications is 5 and for Bajra 6.

\section*{5. RESULTS :}
(i) \(999.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(200.4 \mathrm{lb} . / \mathrm{ac}\).
(b) \(152.4 \mathrm{lb} . / \mathrm{ac}\),
(iii) None of the effects is significant.
(iv) Av. yield of bajra in lb./ac.
\begin{tabular}{c|ccc|c} 
& \(\mathrm{N}_{\mathbf{0}}\) & \(\mathbf{N}_{\mathbf{1}}\) & \(\mathrm{N}_{\mathbf{2}}\) & Mean \\
\hline \(\mathrm{F}_{\mathbf{0}}\) & 958 & \(\mathrm{S09}\) & 973 & 947 \\
\(\mathrm{~F}_{\mathbf{1}}\) & 945 & 1008 & 1007 & 987 \\
\(\mathrm{~F}_{\mathbf{2}}\) & 985 & 921 & 967 & 958 \\
\(\mathrm{~F}_{\mathbf{3}}\) & 922 & 1017 & 1047 & 995 \\
\(\mathrm{~F}_{\mathbf{4}}\) & 1074 & 1124 & 1130 & 1109 \\
\hline Mean & 977 & 996 & 1025 & 999
\end{tabular}
S.E. of difference of two
1. F marginal means
2. \(\mathrm{N}^{\prime}\) marginal means
3. N means at the same level of F
\(=66.8 \mathrm{lb} . / \mathrm{ac}\).
\(=39.4 \mathrm{lb} . / \mathrm{ac}\).
4. \(\mathbf{F}\) means at the same level of \(\mathbf{N}\)
\(=88.2 \mathrm{lb} . / \mathrm{ac}\).
\(=98.1 \mathrm{lb} . / \mathrm{ac}\).

Crop:-Bajra(Kharif). Ref :- I.A.R.I. 53(47). Type:- 'M'.

Object :-To study the effect of organic and inorganic manuring on the yield of crops in rotations.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) \(1,2.7 .1953\). (iv) (a) 5 ploughings and 2 beamings. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Nil. (viii) Weeding and hoeing with horse hoe. (ix) \(15.71^{\prime \prime}\). (x) I picking 15 to 23.9.1953 II picking on 7 to 13.10.1953.

\section*{2. TREATMENTS:}

Main-plot treatments :
3 crop rotations: \(\mathbf{R}_{\mathbf{1}}=\) Bajra-Wheat, \(\mathbf{R}_{\mathbf{2}}=\) Fallow-Wheat and \(\mathrm{R}_{\mathbf{3}}=\) Bajra-Fallow.
Sub-plot treatments:
5 levels of F.Y.M. : \(\mathrm{F}_{0}=0, \mathrm{~F}_{1}=2.5 . \mathrm{F}_{2}=5, \mathrm{~F}_{3}=10\) and \(\mathrm{F}_{4}=20\) ton/ac.

\section*{Sub-sub-plot treatments :}

3 levels of \(N\) as Sod. Nit. : \(N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac.
Manures applied to Bajra in \(R_{1}\) and \(R_{3}\) and to Wheat in \(R_{2}\). F.Y.M. applied during 7 to 12.6.1953 and Sod. Nit. on 1, 2.7.1953.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 3 main-plots/replication, 5 sub-plots/main-plot, 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(58^{\prime} \times 12 \frac{1^{\prime}}{}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL:}
(i) Fair to good. Better in \(\mathrm{R}_{3}\) rotation. (ii) Green ear disease in about \(8 \%\) of ears. Smut attack in about \(28 \%\) of ears. (iii) Grain yield. (iv) (a) \(1952-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii)
Only 2 replications are taken for analysis of Bajra.
5. RESULTS :
(i) \(1456 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(314.3 \mathrm{lb} . / \mathrm{ac}\).
(b) \(566.1 \mathrm{lb} . / \mathrm{ac}\).
(c) \(218.1 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \({ }^{1} \mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{3}\) & Mean & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) \\
\hline \(\mathrm{F}_{0}\) & 1177 & - & 1505 & 1341 & 1259 & 1333 & 1424 \\
\hline \(\mathrm{F}_{1}\) & 1201 & - & 1629 & 1415 & 1317 & 1366 & 1563 \\
\hline \(\mathrm{F}_{2}\) & 1259 & - & 1374 & 1017 & 1193 & 1259 & 1506 \\
\hline \(\mathrm{F}_{3}\) & 996 & - & 1835 & 1415 & 1226 & 1448 & 1572 \\
\hline & 1563 & - & 2032 & 1802 & 1605 & 1786 & 2016 \\
\hline Mean & 1234 & - & 1679 & 1456 & 1316 & 1440 & 1613 \\
\hline \(\mathrm{N}_{0}\) & 1119 & - & 1522 & & & & \\
\hline \(\mathrm{N}_{1}\) & 1210 & - & 1662 & & & & \\
\hline \(\mathrm{N}_{2}\) & 1382 & - & 1843 & & 1 & & \\
\hline
\end{tabular}
S.E. of difference of two
1. R marginal means \(\quad=81.15 \mathrm{lb} . / \mathrm{ac} .6 . \mathrm{N}\) means at the same level of \(\mathbf{F}=125.92 \mathrm{lb} . / \mathrm{ac}\).
2. F marginal means \(\quad=188.70 \mathrm{lb} . / \mathrm{ac} .7 . \mathrm{F}_{\text {ryeans }}\) at the same level of \(\mathrm{N}=214.90 \mathrm{lb} . / \mathrm{ac}\).
3. N marginal means
\(=56.31 \mathrm{lb} . / \mathrm{ac} .8\). F means at the same level of \(R=326.85 \mathrm{lb} / \mathrm{ac}\).
4. N means at the same level of \(\mathrm{R}=97.53 \mathrm{lb} . / \mathrm{ac}\). 9. R means at the same level of \(\mathbf{F}=303.39 \mathrm{lb}\)./ac.
5. R means at the same level of \(F=113.70 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Bajra (Kharif). Ref :- I.A.R.I. 53(51). Type:- \(M\) '.
Object :-To determine the optimum level of N for top dressing and its time of arplication in relation to different spacings between rows of Bajra crop.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 1st Rep. 28.7.1953; 2nd Rep. 18.1953. iv) (a) Tractor discing, desi ploughing and working with cultivator. (b) N.A. (c) 6 srs./ac. (d) As per treatments. (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Removal of Baru grass and weeding. (ix) N.A. (x) \(15,16.10 .1953\).

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
1. 3 levels of \(N\) as \(A / S: N_{1}=20, N_{2}=40\) and \(N_{3}=60 \mathrm{lb} . / \mathrm{ac}\).
2. 3 times of application of \(N: T_{1}=\) full dose at sowing, \(T_{2}=\) half at sowing and half at tillering and \(\mathrm{T}_{3}=\frac{f}{}\) at sowing \(+\frac{1}{}\) at tillering \(+\frac{1}{3}\) at earing.
3. 3 spacings : \(\mathrm{S}_{1}=9^{\circ}, \mathrm{S}_{2}=12^{\circ}\) (Control) and \(\mathrm{S}_{3}=15^{\circ}\).
3. DESIGN :
(i) \(3^{3}\) confd. (ii) (a) 3 blocks of 9 plots each. (b) N.A. (iii) 2 . (iv) (a) \(14^{\prime} \times 62.2^{\prime}\). (b) \(12^{\prime} \times 60^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) N.A. (iii) Grain yie!d. (iv) (a) 1953-N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) There was heavy rains after sowing of the crop. Delayed sowing in second replication, due to beavy rains on 29.7.1953. (vii) Nil.
5. RESULTS :
(i) \(916 \mathrm{lb} . / \mathrm{ac}\).
(ii) 188.46 lb ./ac.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(\mathrm{S}_{8}\) & \(\mathrm{S}_{3}\) & Mean & \(\mathrm{T}_{1}\) & \(\mathrm{T}_{2}\) & Ts \\
\hline \(\mathrm{N}_{1}\) & 890 & 850 & 950 & 897 & 940 & 910 & 840 \\
\hline \(\mathrm{N}_{2}\) & 850 & 990 & 890 & 910 & 960 & 880 & 890 \\
\hline \(\mathrm{N}_{3}\) & 1030 & 860 & 930 & 940 & 980 & 910 & 930 \\
\hline Mean & 923 & 900 & 923 & 916 & 960 & 900 & 887 \\
\hline T 1 & 950 & 920 & 1010 & & & & \\
\hline T & 900 & 870 & 930 & & & & \\
\hline T3 & 920 & 910 & 830 & & & & \\
\hline - & \multicolumn{3}{|l|}{S.E. of any marginal mean S.E. of body of table} & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =44.43 \mathrm{lb} . / \mathrm{ac} \\
& =76.95 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]} & \\
\hline
\end{tabular}

Crop :- Bajra. Ref:- I.A.R.I. 53(31b). Type :- 'C'.
Objest :-To study the effect of premature and mature seed on the yield of Cowpeas.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to No. I.A.R.I. 53 (31) under MAIZE.
5. RESULTS :
(i) \(203.5 \mathrm{lb} / \mathrm{ac}\).
(ii) N.A.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.,
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 236.2 \\
2. & 207.4 \\
3. & 167.0
\end{tabular}

Crop:- Bajra.
Ref:- I.A.R.I. 52(28b). Type :- 'C'.
Object :-To study the effect of sowing permature and mature seed on Bajra yield.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to No. I.A.R I. 52 (28) under MAIZE.
5. RESULTS:
(i) \(3347 \mathrm{lb} / \mathrm{ac}\).
(ii) \(1568 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ccc} 
Treatment & & Av. yield \\
1. & 3445 \\
2. & & 3393 \\
3. & & 3203 \\
& S.E./mean & \(=64.0 \mathrm{Jb} . / \mathrm{ac}\).
\end{tabular}

Object :-To determine the nutritional requirements of Indian soils.
1. BASAL CON̄DITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Oats on 4.11.1950, Tobacco on 17.1.1951 and Rape on 6.11.1950. (iv) (a) Tractor discing twice. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Bakharing to rape and oats on 29.12.1950. Hand hoeing to tobacco on 8.2.1951. Topping and suckering of tobacco on 16.4 .1951 and 17.4.1951. (ix) N.A. (x) Rape on 5.4.1951. Oats on 8, 9.4.1951 while tobacco N.A.
2. TREATMENTS :
1. Control. 5. Treatment \(2+\) Zinc sul. at \(5 \mathrm{lb} . / \mathrm{ac}\).
2. N at \(40 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(60 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(30 \mathrm{lb} . / \mathrm{ac}\).
3. Treatment \(2+\mathrm{Mag}\). sul. at \(10 \mathrm{lb} . / \mathrm{ac}\).
6. Treatment \(2+\) Borax àt 5 lb ./ac.
4. Treatment \(2+\) Mag. sul. at \(5 \mathrm{lb} . / a c\).
7. Treatment \(2+\mathrm{Fe}\). sul. at \(5 \mathrm{lb} . / \mathrm{ac}\).
8. Treatment \(2+\) Treatments \(3,4,5,6\) and 7 .
3. DESIGN :
(i) R.B.D. (ii) (a) 8 for each crop. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(35^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) \(\mathbf{2 0 \%}\) locust attack on rape on 29.1.1951. (iii) Rape and oats seed yield. (iv) (a) \(1950-\) N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) No observations we.e taken on the field of tobacco. Results of experiment on rape may please be seen under the relevent crop.

\section*{5. RESULTS :}
(i) \(2401 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(513.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1832 & 5. & 2497 \\
2. & 2385 & 6. & 2480 \\
3. & 2394 & 7. & 2618 \\
4. & 2593 & 8. & 241 l \\
& S.E./mean & \(=256.7 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Oats (Rabi). Ref:- I.A.R.J. 51(8). Type :- 'M'.
Object :-To determine the nutritional requirement of Indian soils.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) Oats: 29.11.1951, Rape : 29.9.1951, 24.10.1951 (Resowing) and Tobacco (Transplanting) on 23, 24, 25.1.1952. (iv)
(a) Oats ploughing with victory plough on 26.10 .1951 with desi plough on 24.11 .1951 and 29.11.1951. (b) to
(e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Tobacco-hand hoeing from 8.2.1952 to 11.2.1952 and from 103.1952 to 14.3.1952, oats-micro nutrients sprayed on \(14,15.2 .1952\) and rape micro nutrients sprayed on 14.2.1952. (ix) N.A. (x) Oats: 27 to 31.3.1952 and Rape 14 to 18.3.1952.
2. TREATMENTS :
1. Control.
5. Treatment \(2+\) Zinc Sul. at \(5 \mathrm{lb} . / 2 \mathrm{c}\).
2. N at \(40 \mathrm{Ib} . / \mathrm{a}^{-} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at 60 lb ./ac. \(+\mathrm{K}_{2} \mathrm{O}\) at 30 lb ./ac. 6. Treatment \(2+\) Borax at \(3 \mathrm{lb} / \mathrm{ac}\).
3. Treatment \(2+\) Mag. Sul. at \(10 \mathrm{lb} . / \mathrm{ac}\).
7. Treatment \(2+\mathrm{Fe}\). Sul. at \(5 \mathrm{lb} . / \mathrm{ac}\).
4. Treatment \(2+\) Mag. Sul. at 5 lb ./ac. .,
8. Treatment \(2+\) Treatments \(3,4,5,6\) and 7 .
3. DESIGN:
(i) R.B.D. (ii) (a) 8 for oats, rape and tobacco.(b) N.A. (iii) 4. (iv) (a) N.A. (b) \(35^{\circ} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. little lodging by hail storm. (ii) N.A. (iii) Yield of grain and tobacco leaf. (iv) (a) 1950 to 1951. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Results of experiments on rape and tobacco may be seen under the relevent crops.

\section*{5. RESULTS:}
(i) \(2116 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(91.34 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Areatment & Av. yield & Treatment & Av. yield \\
1. & 1161 & 5. & 2287 \\
2. & 2252 & 6. & 2270 \\
3. & 2252 & 7. & 2311 \\
4. & 2158 & 8. & 2406 \\
& & &
\end{tabular}

Crop :- Oats. Ref:- I.A.R.I. 50(15). Type :- 'M'.
Object:-To study the relative utility of mixed cropping kharif cereals and cowpea in different proportions over individual cropping and to study their residual effect on the succeeding Oats crop.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.11.1950. (iv) (a) Tractor grubbing on 17 11.1950. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Lever harrowing in December, 1950. (ix) N.A. (x) April, 1951.
2. TREATMENTS:
1. Maize alone for seed.
10. Maize + Cowpeas \(1: \frac{8}{3}\) for grain.
2. Jowar alone for fodder.
11. Maize + Cowpeas \(1: \frac{1}{3}\) for grain.
3. Bajra alone for seed.
12. Jowar+Cowpeas \(1: 1\) for fodder.
4. Maize alone for seed with F.Y.M. at 10 ton/ac.
13. Jowar + Cowpeas \(1: \frac{2}{3}\) for fodder.
5. Jowar alone for fodder with F.Y.M. at 10 ton/ac.
14. Jowar + Cowpeas \(1: \frac{1}{3}\) for fodder.
6. Bajra alone for seed with F.Y.M. at 10 ton/ac.
15. Bajra+Cowpeas 1:1.
7. Cowpeas alone for fodder.
16. Bajra+Cowpeas 1: ? ?
8. Cowpeas alone for seed.
17. Bajra+Cowpeas 1 : \(\frac{1}{2}\).
9. Maize + Cowpeas 1: 1 for grain.
18. Fallow during kharif.
3. DESIGN :
(i) R.B.D. (ii) (a) 18 . (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(52^{\prime} \times 20^{\circ}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Insects in previous cowpeas crop. (iii) Grain yield. (iv) (a) 1949-N.A. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(962 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(808.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 931 & 10. & 1036 \\
2. & 774 & 11. & 994 \\
3. & 827 & 12. & 1015 \\
4. & 1068 & 13. & 964 \\
5. & 827 & 14. & 869 \\
6. & 910 & 15. & 1057 \\
7. & 1026 & 16. & 1015 \\
8. & 1214 & 17. & 911 \\
9. & 1120 & 18. & 764 \\
& S.E./mean & \(=404.0 \mathrm{lb} . / \mathrm{ac}\) &
\end{tabular}

Object :-To study the effect of placement of fertilizers on yield of maize and their residual effect on Oats.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 28.11.1950. (iv) (a) 2 discings, grubbing twice and beaming. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Nil. (ix) N.A. (x) 25.4.1951.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 metheds of application of fertilizers : \(M_{1}=\) Broadcast, \(M_{2}=\) Fertilizers placed \(2 \frac{1}{2}{ }^{\prime \prime}\) deep in seed line and \(M_{3}=\) Fertilizers placed \(4 \frac{1}{2}^{\prime \prime}\) deep in seed line.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super : \(\mathrm{P}_{1}=40, \mathrm{P}_{2}=60\) and \(\mathrm{P}_{3}=120 \mathrm{lb}\)./ac.
(3) 3 levels of \(N\) as \(A / S: N_{1}=20, N_{2}=30\) and \(N_{3}=60 \mathrm{lb}\)./ac.

Treatments applied to kharif Maize in 1950.
3. DESIGN :
(i) \(3^{3}\) confounded. (ii) (a) 9 plots/block, 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(128^{\prime} \times 12 \frac{z^{\prime}}{}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Patchy growth. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1950.\&(b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(812.2 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(172.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Interaction \(\mathbf{P} \times \mathrm{M}\) alone is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{1}\) & \(\mathbf{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
\hline \(\mathrm{P}_{1}\) & 830.4 & 694.2 & 848.5 & 791.0 & 825.8 & 748.7 & 798.6 \\
\hline \(\mathbf{P}_{2}\) & 884.8 & 803.1 & 821.3 & 836.4 & 848.5 & 807.7 & 853.0 \\
\hline \(\mathrm{P}_{3}\) & 730.5 & 785.0 & 912.0 & ع09.2 & 939.3 & 685.2 & 803.1 \\
\hline Mean & 815.2 & 760.8 & 860.6 & 812.2 & 871.2 & 747.2 & 818.2 \\
\hline \(\mathrm{M}_{1}\) & 1070.8 & 762.3 & 780.4 & & & & \\
\hline \(\mathrm{M}_{2}\) & 667.0 & 680.6 & 893.9 & & & & \\
\hline \(\mathrm{M}_{8}\) & 707.8 & 839.4 & 907.5 & & & & \\
\hline
\end{tabular}
S.E. of any marginal mean
\(=40.8 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of any table
\(=70.6 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Oats (Rabi). Ref :- I.A.R.I. 51(3). Type :-.'M'.
Object :-To stujy the effect of placement of fertilizers on yield of maize and the residual effect on Oats.
1. BASAL CONDITIONS:
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 16.11.1951. (iv) (a) Discing twice with tractor, grubbing twice and beaming. (b) to (e) N.A. (v) N.A. vi) N.A. (vii) Irrigated. (viii) Harrowing on 18.11.1951. (ix) N.A. (x) 10.4.1952.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 methods of application of fertilizers: \(M_{1}=\) Broadcast, \(M_{2}=\) Fertilizers placed \(2 \frac{1}{2}{ }^{\prime \prime}\) deep in seed line and \(\mathrm{M}_{3}=\) Fertilizers placed \(4 \frac{1}{2}^{\prime \prime}\) deep in seed line.
(2) 3 levels of \(\mathrm{P}_{9} \mathrm{O}_{5}\) as super: \(\mathrm{P}_{1}=40, \mathrm{P}_{\mathbf{2}}=60\) and \(\mathrm{P}_{3}=120 \mathrm{lb} . / \mathrm{ac}\).
(3) 3 levels of \(N\) as \(A / S: N_{1}=20, N_{2}=30\) and \(N_{3}=60 \mathrm{lb}\) /ac.

Treatments applied to \(k\) harif Maize in 1951.
3. DESIGN :
(i) \(3^{3}\) confounded. (ii) (a) 9 plots/block, 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(109^{\prime} \times 10^{\prime}\). (b) \(107^{\prime} \times 9^{\prime}\). (v) \(1^{\prime}\) on each side of length and \(\frac{1}{\prime}^{\prime}\) on each side of width. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) N.A. (iii) Grain yield. (iv) (a) 1949-1951. (b) N.A. (c) Nil. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1031 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(267.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of N alone is highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).


Crop:- Oats.
Ref:- I.A.R.I. 51(41 a). Type :- ' M '.
Object :-To study the effect of soaking seeds of Oats in dilute solutions of fertilizers on the yield.
1. BASAL CONDITIONS to 4. GENERAL :

Please refer to No. I.A.R.I. 51 (41) under MAIZE.
5. RESULTS :
(i) 1573 lb./ac.
(ii) \(842.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1461 \\
2. & 1332 \\
3. & 1735 \\
4. & 1604 \\
5. & 1683 \\
S.E./mean & \(=344.0 \mathrm{Ib} . / \mathrm{ac}\).
\end{tabular}

Crop :- Oats (Rabi). Ref :- I.A.R.I. 52(64). Type :- 'M'.

Object :-To study the effect of soaking seed in solutions of fertilizers.
1. BASAL CONDITIONS:
(i) (a) Oats-Maize. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on fage 143. (iii) 6.11.1952. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Nil. (viii) Hoeing with oudh plough. (ix) N.A. (x) April 1953.

\section*{2. TREATMENTS :}
1. No soaking.
2. Soaking in \(5 \% \mathrm{~A} / \mathrm{S}\) solution.
3. Soaking in \(5 \%\) Super (neutralised with lime).
4. Soaking in 5\% Ammo. Phos. solution.
5. Soaking in water.

\section*{3. DESIGN:}
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(40^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) 1951-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1299 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(439.2 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1387 \\
2. & 1182 \\
3. & 1336 \\
4. & 1303 \\
5. & 1289 \\
S.E./mean & \(=179.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Oats (Rabi). Ref:- I.A.R.I.53(59). Type 'M'.
Object :-To study the effect of soaking seeds in solution of fertilizers.
1. BASAL CONDITIONS :
(i) (a) No. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 9.11 .1953 . (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) April 1954.
2. TREATMENTS :
1. No soaking.
2. Soaking in \(5 \% \mathrm{~A} / \mathrm{S}\) solution.
3. Soaking in \(5 \%\) Super (neutralised with lime).
4. Soaking in \(5 \%\) Ammo. Phos, solution.
5. Soaking in water.
3. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(42^{\prime} \times 20^{\prime}\). (b) \(40^{\prime} \times 18^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1951-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1218 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(193.4 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1111 \\
2. & 1275 \\
3. & 1326 \\
4. & 1255 \\
5. & 1121 \\
S.E.inear & \(=78.99 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Oats (Rabi). Ref :- I.A.R.I. 52(38). Type :- 'CM'.
- Object :-To study the residual effect of different cultural practices and manures, applied to maize, on the succeeding Oat crop.
1. BASAL CONDITIONS :
(i) (a) Maize-Oats. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) As per treatments. (iv) (a) Tractor ploughing and preparing land with desi plough. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) One hoeing, thinning and weeding. After every earthing bunds are prepared with hand. (ix) and (x) N.A.

\section*{2. TREATMENTS :}

Main-plot treatments:
3 dates of sowing : \(D_{1}=18.6 .1952, D_{2}=7.7 .1952\) and \(D_{3}=27.7 .1952\).
Sub-plot treatments :
3 earthings : \(E_{0}=\) No, \(E_{1}=1\) and \(E_{2}=2\) earthings.

\section*{Sub-sub-plot treatments:}

3 times of application of fertilizers : \(T_{1}=\) Full dose at sowing, \(T_{2}=\frac{1}{2}\) at sowing \(+\frac{1}{2}\) four weeks after sowing and \(\mathrm{T}_{3}=\frac{1}{\frac{1}{2}}\) at sowing \(+\frac{1}{3}\) four weeks after sowing \(+\frac{1}{3}\) six weeks after sowing.
Fertilizers applied as a mixture of \(\mathrm{N}, \mathrm{P}\) and K at 80,60 and 20 lb . respectively.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block, 3 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) \(34^{\prime} \times 25^{\prime}\). (b) \(30^{\prime} \times 21^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) N.A. (iii) Grain yield. (iv) (a) 1951-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.'
5. RESULTS :
(i) \(1413 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(691.1 \mathrm{lb} / \mathrm{ac}\).
(b) \(375.2 \mathrm{lb} / \mathrm{ac}\).
(c) \(340.6 \mathrm{Jb} / \mathrm{ac}\).
(iii) Main effects of \(\mathrm{D}, \mathrm{E}\) and T are significant. Others are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & Mean & T \({ }_{1}\) & T \({ }_{2}\) & T3 \\
\hline \(\mathrm{E}_{0}\) & 1219 & 1783 & 1593 & 1531 & 1472 & 1764 & 1357 \\
\hline \(\mathrm{E}_{1}\) & 1173 & 1564 & 1391 & 1376 & 1374 & 1098 & 1656 \\
\hline \(\mathrm{E}_{2}\) & 1259 & 1259 & 1478 & 1332 & 1213 & 1374 & 1409 \\
\hline Mean & 1217 & 1535 & 1487 & 1413 & 1353 & 1412 & 1474 \\
\hline T1 & 1138 & 1535 & 1386 & & & & \\
\hline T \({ }_{2}\) & 1185 & 1518 & 1535 & & & & \\
\hline \(\mathrm{T}_{3}\) & 1328 & 1553 & 1541 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means
\(=162.8 \mathrm{lb} . / \mathrm{ac}\).
6. T means at the same level of \(D=139.1 \mathrm{lb} / \mathrm{ac}\).
2. E marginal means
\(=88.4 \mathrm{lb} . / \mathrm{ac}\).
7. D means at the same level af \(T=198.6 \mathrm{lb} . / \mathrm{ac}\).
3. T marginal means
\(=80.3 \mathrm{lb} / \mathrm{ac}\).
8. T means at the same level of \(D=296.8 \mathrm{lb} . / \mathrm{ac}\).
4. E means at the same level of D
\(=176.7 \mathrm{lb} . / \mathrm{ac}\).
9. E means at the same level of \(T=143.9 \mathrm{lb} . / \mathrm{ac}\).
\(=205.3 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Oats (Rabi).
Ref:- I.A.R.I. 53(33).
Type :- 'CM'.

Object :-To study the residual effect of different cultural practices and manures, applied to maize, on the succeeding Oats crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize-Oats. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) As per treatments. (iv) (a) Ploughing with victory plough on 6.10.1953. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) 16, 17 and 18.4.1952.

\section*{2. TREATMENTS:}

Main-plot treatments :
3 dates of sowing : \(D_{2}=21.6 .1953, D_{2}=18.7 .1953\) and \(D_{3}=1\), 4.8.1953.
Sub-plot treatments :
3 earthings: \(E_{0}=\) No, \(E_{1}=1\) and \(E_{2}=2\) earthings.
Sub-sub-plot treatments :
3 times of application of fertilizers : \(\mathrm{T}_{1}=\) Full dose at sowing, \(\mathrm{T}_{2}=\frac{1}{2}\) at sowing \(+\frac{1}{2}\) four weeks after sowing and \(T_{3}=\frac{1}{3}\) at sowing \(+\frac{1}{3}\) four weeks after sowing \(+\frac{1}{3}\) six weeks after sowing.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication; 3 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(34^{\prime} \times 25^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1951-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1116 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(3736 \mathrm{lb} . / \mathrm{ac}\).
(b) \(247.7 \mathrm{lb} . / \mathrm{ac}\).
(c) \(199.1 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects or interactions are significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & Mean & \(\mathrm{T}_{1}\) & T2 & T3 \\
\hline \(\mathrm{E}_{0}\) & 1061 & 1031 & 1304 & 1132 & 1108 & 1097 & 1190 \\
\hline \(\mathrm{E}_{1}\) & 1052 & 1104 & 1184 & 1113 & 1099 & 1099 & 1143 \\
\hline \(E_{2}\) & 1105 & 1040 & 1159 & 1102 & 1030 & 1151 & 1124 \\
\hline Mean & 1073 & 1058 & 1216 & 1116 & 1079 & 1116 & 1152 \\
\hline T \({ }_{1}\) & 1073 & 1019 & 1145 & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{- ...}} \\
\hline T \({ }_{2}\) & 1055 & 1032 & 1143 & & & & \\
\hline \(T_{3}\) & 1090 & 877 & 1242 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means \(\quad=88.1 \mathrm{lb} . / \mathrm{ac}\). 6. T means at the same level of \(\mathrm{D}=81.3 \mathrm{lb} . / \mathrm{ac}\)
2. E marginal means \(\quad=58.4 \mathrm{lb} . / \mathrm{ac}\).
3. \(T\) marginal means \(\quad=46.9 \mathrm{lb} . / \mathrm{ac}\).
4. E means at the same level of \(D=101.1 \mathrm{lb} . / \mathrm{ac}\).
7. \(D\) means at the some level of \(T=110.3 \mathrm{lb} . / \mathrm{ac}\).
8. T means at the same level of \(E=81.3 \mathrm{lb} . / \mathrm{ac}\).
9. E means at the same level of \(T=88.4 \mathrm{lb} . / \mathrm{ac}\).
5. \(D\) means at the same level of \(E=120.7 \mathrm{lb} . / \mathrm{ac}\).

> Crop :- Oats (Rabi). Ref:- I.A.R.I. 50(24). Type :- ‘CM’.

Object :-To study the effect of spacing, fertilizers and their method of application on maize crop and the residual effect on Oats.

\section*{1. BASAL CONDITIONS :}
(i) (a) Oats-Maize. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 8.12.1950. (iv) (a) Double discing was done along with double beaming with bullocks. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 22.4.1951.

\section*{2. TREATMENTS:}

Main-plot treatments :
2 levels of basal manure : \(\mathrm{B}_{0}=\) Nil and \(\mathrm{B}_{1}=\) F.Y.M. at \(20 \mathrm{lb} . / a c\). of N .
Sub-plot treatments :
All combinations of (1) and (2)
(1) 2 methods of application of fertilizers: \(\mathrm{M}_{1}=\) Broadcast and \(\mathrm{M}_{2}=\) Placement.
(2) 3 spacings between rows: \(S_{1}=2^{\prime}, S_{2}=2 \frac{1}{2}^{\prime}\) and \(S_{3}=3^{\prime}\).

Sub sub-plot treatments:
All combinations of (1) and (2)
(1) 3 levels of \(N\) as \(A / S: N_{1}=20, N_{2}=40\) and \(N_{3}=60 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{K}_{2} \mathrm{O}: \mathrm{P}_{1}=\) Super at 40 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{P}_{2}=\) Super at \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{Pot}\). Sul. at 20 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 2 main-plots/replication; 6 sub-plots/main-plot and 6 sub-sub-plots/sub-plot. (b) N.A. (iii) 2. (iv) (a) \(48^{\prime} \times 24^{\circ}\). (b) \(44^{\prime} \times 20^{\circ}\). (v) \(2^{\prime}\) on each side. (vi) Yes.

\section*{4. GENERAL :}
(i) Fair. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1951. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1651 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(186.2 \mathrm{lb} . / \mathrm{ac}\).
(b) \(286.8 \mathrm{lb} . / \mathrm{ac}\).
(c) \(241.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only sub-su \({ }^{\text {ºp }}\)-plot treatments differ highly signifisantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1} \mathrm{M}_{1}\) & \(\mathrm{S}_{1} \mathrm{M}_{2}\) & \(\mathrm{S}_{2} \mathrm{M}_{1}\) & \(\mathrm{S}_{2} \mathrm{M}_{2}\) & \(\mathrm{S}_{3} \mathrm{M}_{1}\) & \(\mathrm{S}_{3} \mathrm{M}_{2}\) & Mean & \(\mathrm{B}_{0}\) & \(\mathrm{B}_{1}\) \\
\hline \(N_{1} \mathrm{P}_{1}\) & 1077 & 1219 & 1191 & 1076 & 1180 & 1011 & 1126 & 1215 & 1037 \\
\hline \(\mathrm{N}_{1} \mathrm{P}_{2}\) & 1139 & 1349 & 1153 & 1147 & 1236 & 959 & 1164 & 1242 & 1086 \\
\hline \(\mathrm{N}_{2} \mathrm{P}_{1}\) & 1603 & 1596 & 1576 & 1742 & 1711 & 1432 & 1610 & 1666 & 1554 \\
\hline \(\mathrm{N}_{2} \mathrm{P}_{2}\) & 1541 & 1479 & 1525 & 1723 & 1672 & 1582 & 1587 & 1735 & 1438 \\
\hline \(\mathrm{N}_{3} \mathrm{P}_{1}\) & 2302 & 2178 & 2486 & 2063 & 2347 & 2242 & 2269 & 2396 & 2143 \\
\hline \(\mathrm{N}_{3} \mathrm{P}_{7}\) & 1943 & 2209 & 2184 & 2229 & 2068 & 2256 & 2148 & 2220 & 2077 \\
\hline Mean & 1600 & 1672 & 1686 & 1653 & 1702 & 1581 & 1651 & 1745 & 1556 \\
\hline \(\mathrm{B}_{0}\) & 1592 & 1714 & 1821 & 1832 & 1857 & 1657 & & & \\
\hline \(\mathrm{B}_{1}\) & 1609 & 1629 & 1550 & 1495 & 1547 & 1504 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. Main-plot marginal means
\(=31.0 \mathrm{lb} . / \mathrm{ac}\).
2. Sub-plot marginal means
\(=82.8 \mathrm{lb} . / \mathrm{ac}\).
3. Sub-sub-plot marginal means
\(=69.8 \mathrm{lb} . / \mathrm{ac}\).
4. Sub-plot means at the same level of main-plot treatment
\(=95.3 \mathrm{lb}\)./ac.
5. Main-plot means at the same levels of sub-plot treatment
\(=98.7 \mathrm{lb} . / \mathrm{ac}\).
6. Sub-sub-plot means at the same level of main-plot treatment
\(=111.3 \mathrm{lb}, / \mathrm{ac}\).
7. Main-plot means at the same level of sub-sub-plot treatment
\(=117.1 \mathrm{lb} . / \mathrm{ac}\).
8. Sub-sub-plot means at the same level of sub-plot treatment
\(=170.9 \mathrm{Jb} . / \mathrm{ac}\).
9. Sub-plot means at the same level of sub-sub-plot treatment
\(=176.6 \mathrm{lb} . / \mathrm{ac}\).

Object :-To study the effect of spacing, fertilizers and their method of application on maize crop and the residual effect on Oats.
1. BASAL CONDITIONS:
(i) (a) Maize-Oats. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 4.12.1951. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) Last week of April 1952.
2. TREATMENTS :

Main-plot treatments :
2 levels of basal manure : \(\mathrm{B}_{0}=\mathrm{Nil}\) and \(\mathrm{B}_{1}=\) F.Y.M. at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
Sub-plot treatments :
All combinations of (1) and (2)
(1) 2 methods of applications of fertilizers : \(\mathrm{M}_{1}=\) Broadcast and \(\mathrm{M}_{2}=\) Placement.
(2) 3 spacings between rows : \(S_{1}=2^{\prime}, S_{2}=2 \frac{1}{2}^{\prime}\) and \(S_{2}=3^{\prime}\).

Sub-sub-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of \(N\) as \(A / S: N_{1}=20, N_{2}=40\) and \(N_{3}=60 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{K}_{2} \mathrm{O}: \mathrm{P}_{1}=\) Super at 40 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Pot. Sul. at \(20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{P}_{2}=\) Super at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{Pot}\). Sul. at 20 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 6 sub-plots/main-plot and 6 sub-sub-plots/sub-plot. (b) N.A. (iii) 2. (iv) (a) \(48^{\prime} \times 42^{\prime}\). (b) \(44^{\prime} \times 20^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Nil. (iii) Grain yield: (iv) (a) 19+9-1951. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(764 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(1368 \mathrm{lb} . / \mathrm{ac}\).
(b) \(225.6 \mathrm{lb} . / \mathrm{ac}\).
(c) \(216.7 .1 \mathrm{~b} . / \mathrm{ac}\).
(iii) Only sub-sub-plots treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1} \mathrm{M}_{1}\) & \(\mathrm{S}_{1} \mathrm{M}_{2}\) & \(\mathrm{S}_{2} \mathrm{M}_{1}\) & \(\mathrm{S}_{2} \mathrm{M}_{2}\) & \(\mathrm{S}_{3} \mathrm{M}_{1}\) & \(\mathrm{S}_{3} \mathrm{M}_{2}\) & Mean & \(\mathrm{B}_{0}\) & \(\mathrm{B}_{1}\) \\
\hline \(\mathrm{N}_{1} \mathrm{P}_{1}\) & 755 & 621 & 723 & 723 & 846 & 587 & 709 & 611 & 807 \\
\hline \(\mathrm{N}_{1} \mathrm{P}_{2}\) & 856 & 668 & 758 & 761 & 780 & 638 & 744 & 677 & 810 \\
\hline \(\mathrm{N}_{2} \mathrm{P}_{1}\) & 693 & 604 & 689 & 784 & 628 & 726 & 687 & 689 & 685 \\
\hline \(\mathrm{N}_{2} \mathrm{P}_{2}\) & 814 & 657 & 875 & 711 & 832 & 936 & 804 & 856 & 752 \\
\hline \(\mathrm{N}_{3} \mathrm{P}_{1}\) & 787 & 799 & 717 & 774 & 628 & 837 & 756 & 710 & 803 \\
\hline \(\mathrm{N}_{3} \mathrm{P}_{5}\) & 866 & 894 & 925 & 869 & 783 & 968 & 884 & 865 & 903 \\
\hline Mean & 795 & 707 & 781 & 770 & 750 & 781 & 764 & 735 & 793 \\
\hline \(\mathrm{B}_{0}\) & 757 & 674 & 788 & 693 & 772 & 726 & & & \\
\hline \(\mathrm{B}_{1}\) & 831 & 740 & 775 & 847 & 727 & 838 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. Main-plot marginal means \(\quad=228.1 \mathrm{lb} . / \mathrm{ac}\).

2 Sub-plot marginal means
\(=65.1 \mathrm{lb} . / \mathrm{ac}\).
3. Sub-sub-plot marginal means
\(=62.6 \mathrm{lb} . / \mathrm{ac}\).
4. Sub-plot means at the same level of main-plot
\(=241.9 \mathrm{lb} . / \mathrm{ac}\).
5. Main-plot means at the same level of sub-plot
\(=88.5 \mathrm{lb} . / \mathrm{ac}\).
6. Sub-sub-plot means at the sama level of main-plot
\(=243.1 \mathrm{lb} . / \mathrm{ac}\).
7. Main-plot means at the same level of sub-sub-plot
\(=92.1 \mathrm{lb} . / \mathrm{ac}\).
8. Sub-sut-plot means at the same level of sub-plot
\(=153.2 \mathrm{lb} / \mathrm{ac}\).
9. Sub-plot means at the same level of sub-sub-plot
\(=154.3 \mathrm{lb} . / \mathrm{ar}\).

\section*{Crop :- Potato (Rabi). \\ Ref:- I.A.R.I. 51(57). Type:- 'M'.}

Object :-To find out the optimum dose and the best method of application of the fertilizers.

\section*{1. BASAL CONDITIONS:}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 25.10.1951. (iv) (a) One ploughing with desi plough and laying out by victory plough. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) One weeding and two earthings. (ix) N.A. (x) 2.4.1952 and 3.4.1952.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{1}=40, \mathrm{~N}_{2}=80\) and \(\mathrm{N}_{3}=120 \mathrm{lb}\)./ac. of N .
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=30, \mathrm{P}_{2}=60\) and \(\mathrm{P}_{3}=90 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(3) 3 depths of placement : \(\mathrm{D}_{0}=\) Broadcast, \(\mathrm{D}_{\mathrm{i}}=\mathrm{In}\) rows \(1^{\prime \prime}\) under the water and \(\mathrm{D}_{2}=\operatorname{In} 2\) row, \(2 \frac{1}{2}^{\prime \prime}\) to the side and \(1^{\prime \prime}\) under the other.
Fertilizers applied on 25.10.1952.
3. DESIGN :
(i) \(3^{3}\) Fact. (ii) (a) 27. (b) N.A. (iii) 2. (iv) (a) \(24^{\prime} \times 23^{\prime}\). (b) \(24^{\prime} \times 16^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Yield of potato. (iv) (a) \(1951-\) N.A. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 1.01 ton/ac.
(ii) 0.139 ton/ac.
(iii) Effect of \(N\) is highly significant. Interaction \(N \times P\) and \(N \times D\) are significant. Others are not significant. (iv) Av. yield of Potato in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{1}\) & \(N_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{D}_{0}\) & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) \\
\hline \(\mathrm{P}_{1}\) & 0.87 & 1.02 & 1.66 & 0.98 & 0.99 & 0.93 & 1.02 \\
\hline \(\mathrm{P}_{2}\) & 0.89 & 1.03 & 1.13 & 1.02 & 1.00 & 1.00 & 1.05 \\
\hline \(\mathrm{P}_{3}\) & 0.90 & 1.03 & 1.19 & 1.04 & 1.05 & 1.08 & 0.99 \\
\hline Mean & 0.89 & 1.02 & 1.13 & 1.01 & 1.01 & 1.00 & 1.02 \\
\hline \(\mathrm{D}_{0}\) & 0.88 & 1.00 & 1.16 & & & & \\
\hline \(\mathrm{D}_{1}\) & 0.91 & 1.03 & 1.07 & & & & \\
\hline \(\mathrm{D}_{2}\) & 0.87 & 1.04 & 1.15 & & & & \\
\hline & \multicolumn{3}{|l|}{S.E. of any marginal mean} & & \multicolumn{3}{|l|}{\(=0.033 \mathrm{ton} / \mathrm{ac}\).} \\
\hline & \multicolumn{3}{|l|}{S.E. of body of any table} & & \multicolumn{3}{|l|}{\(=0.057 \mathrm{ton} / \mathrm{ac}\).} \\
\hline
\end{tabular}
Crop :- Potato (Rabi). Ref :- I.A.R.I. 52(79). Type :- 'M’.

Object :-To study the effect of depth of ploughing and placement of fertilizers on the yield of Potato.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 17 and 18.10.1952. (iv) (a) One ploughing with tractor, one with victory plough, 13 with desi plough, discing and grubbing once. (b) to (e) N.A. (v) F.Y.M. at 120 mds broadcast as basal dose. (vi) D.R.R. (vii) Irrigated. (vii) 2 earthings and hoeing by wallace horse hoe and khurpi. (ix) N.A. (x) 2 to 9.3.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 ploughings : \(\mathrm{C}_{1}=9^{\circ}\) deep tractor ploughing followed by tractor cultivator, \(\mathrm{C}_{\mathbf{2}}=5^{\prime \prime}\) deep ploughing by victory plough followed by country plough and \(C_{3}=5^{\circ}\) deep ploughing by country plough.
(2) 2 placement of fertilizers : \(\mathrm{P}_{\mathbf{1}}=\) Placement with plough sole and \(\mathrm{P}_{\mathbf{2}}=\) Top dressed.

\section*{Sub-plot treatments :}

4 levels of fertiizers : \(\mathrm{F}_{1}=120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, \mathrm{F}_{2}=80 \mathrm{lb}\)./ac. of \(\mathrm{N}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\), \(\mathrm{F}_{3}=120 \mathrm{lb}\)./ac. of \(\mathrm{N}+80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{F}_{4}=160 \mathrm{lb}\)./ac. of \(\mathrm{N}+80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 6 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(38.5^{\prime} \times 12.5^{\prime}\).
(b) \(38.5^{\prime} \times 9.0^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Attack of late blight. (iii) Yield of potato. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 6.77 ton/ac.
(ii) (a) 0.99 ton/ac.
(b) \(1.14 \mathrm{ton} / \mathrm{ac}\).
(iii) Main effect of \(F\) is highly significant. Other effects and interaciions are not significant.
(iv) Av. yield of potato in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & C3 & Mean & \(\mathrm{P}_{1}\) & \(\mathbf{P}_{2}\) \\
\hline \(\mathrm{F}_{1}\) & 5.72 & 5.07 & 5.14 & 5.31 & 5.18 & 5.45 \\
\hline \(\mathrm{F}_{2}\) & 7.35 & 6.61 & 7.00 & 6.99 & 7.10 & 687 \\
\hline \(\mathrm{F}_{3}\) & 7.54 & 7.43 & 7.28 & 7.42 & 7.67 & 7.05 \\
\hline \(F_{4}\) & 7.66 & 7.57 & 6.88 & 7.37 & 7.60 & 7.14 \\
\hline Mean & 7.07 & 6.67 & 6.58 & 6.77 & & \\
\hline \(\mathrm{P}_{1}\) & 6.92 & 6.91 & 6.83 & 6.89 & & \\
\hline \(\mathrm{P}_{2}\) & 7.22 & 6.42 & 6.32 & 6.65 & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means
2. \(P\) marginal means
3. F marginal means
4. F means at the same level of \(C\)
\(=0.17\) ton/ac. 5. C means at the same level of \(F=0.38\) ton/ac. \(=0.14\) ton/ac. 6. \(F\) means at the same level of \(P=0.51\) ton/ac. \(=0.33\) ton/ac. 7. \(P\) means at the same level of \(F=0.44\) ton/ac. \(=0.40\) ton/ac. 8. means of body of \(C \times P\) tatle \(=0.35\) ton/ac.
Crop :- Potato (Rabi). Ref :- I.A.R.I. 53(78). Type :- 'CM'.

Object : - To study the effect of depth of ploughing and placement of fertilizers on the yield of Potato.
1. BASAL CONDITIONS:
(i) (a) N A. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18, 19.10.1953. (iv) (a) One ploughing by victory and seven by desi plough and 3 grubbings. (b) to (e) N.A. (v) N.A. (vi) D.R.R. (vii) Irrigated. (viii) 2 earthings. (ix) N.A. (x) 24 to 27.2.1954.

\section*{2. TREATMENTS :}

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 ploughings : \(C_{1}=10^{\prime \prime}\) deep ploughing by tractor + tractor operation, \(C_{2}=6^{\prime \prime}\) deep ploughing by victory plough + desi plough and \(C_{3}=4^{\prime \prime}-5^{\prime \prime}\) deep ploughing by country plough.
(2) 2 placement of fertilizers : \(\mathrm{P}_{1}=\) placement and \(\mathrm{P}_{2}=\) top dressing.

Sub-plot treatments :
4 levels of fertilizers: \(\mathrm{F}_{1}=120 \mathrm{lb}\)./ac. of \(\mathrm{N}, \mathrm{F}_{2}=80 \mathrm{lb}\)./ac. of \(\mathrm{N}+80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\), \(\mathrm{F}_{3}=120 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{F}_{4}=160 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
Fertilizers applied just before planting.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 6 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(38.5^{\prime} \times 12.5^{\prime}\). (b) \(38.5^{\circ} \times 9^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Very good but affected by frost in the latter stage. (ii) After 'frost, late attack of blight on the uneffected portion of leaves. (iii) Yield of potato. (iv) (a) \(1952-\) N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 10.39 ton/ac.
(ii) (a) 0.176 ton/ac.
(b) \(0.243 \mathrm{ton} / \mathrm{ac}\).
(iii) Main effects of \(C, P\) and \(F\) are highly significant. Interactions are not significant.
(iv) Av. yield of potato in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & Mean & \(\mathrm{F}_{1}\) & \(F_{2}\) & \(\mathrm{F}_{3}\) & \(\mathrm{F}_{4}\) \\
\hline \(\mathrm{P}_{1}\) & 10.40 & 10.13 & 9.44 & 9.99 & 8.79 & 10.21 & 10.39 & 10.57 \\
\hline \(\mathrm{P}_{2}\) & 11.29 & 10.74 & 10.32 & 10.78 & 9.75 & 10.94 & 10.87 & 11.57 \\
\hline Mean & 10.85 & 10.43 & 9.88 & 10.39 & 9.27 & 10.58 & 10.63 & 11.07 \\
\hline \(\mathrm{F}_{1}\) & 9.93 & 9.22 & 866 & & & & & \\
\hline \(\mathrm{F}_{2}\) & 10.63 & 10.29 & 10.81 & & & & & \\
\hline \(\mathrm{F}_{3}\) & 11.53 & 10.50 & 9.86 & & & & & \\
\hline \(\mathrm{F}_{2}\) & 11.30 & 11.74 & 10.17 & & & & & \\
\hline
\end{tabular}
S.E. of difference of two


Crop:- Potato (Rabi). Ref:- I.A.R.I.51(18). Type:- 'CM'.
Object :-To study the effect of date of sowing, time of application of fertilizers and spacing between rows on Potato yield.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (bj N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) As per treatments. (iv) (a) Preparing seed beds by desi plough after irrigating the land. (b) to (e) N.A. (v) A/S at \(120 \mathrm{lb} . / \mathrm{ac}\). of N, Super at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and Pot. Sul. at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\). (vi) N.A. (vii) Irrigated. (viii) 1st and 2 nd earthing twice in each main-plot. (ix) N.A. (x) 25.3.1952 to 2.4.1952.
2. TREATMENTS :

Main-plot treatments :
3 dates of sowing : \(D_{1}=25.9 .1951, D_{2}=15.10 .1951\) and \(D_{3}=5.11 .1951\).
Sub-plot treatments:
3 spacings between rows : \(S_{1}=1 \frac{1^{\prime}}{}, S_{2}=2^{\prime}\) and \(S_{3}=2 \frac{1^{\prime}}{}\).
Sub-sub-plot treatments :
3 times of application of fertilizers : \(\mathrm{T}_{1}=\) Full dose at sowing, \(\mathrm{T}_{2}=\frac{1}{2}\) at sowing \(+\frac{1}{2}\) at first earthing and \(T_{3}=\frac{1}{3}\) at sowing \(+\frac{1}{3}\) at first earthing \(+\frac{1}{\frac{1}{3}}\) at second earthing.
Fertilizers given as under basal manuring.
3. DESIGN:
(j) Split-plot. (ii) (a) 3 main-plots/replication; 3 sub-plots/main-plot; 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(30^{\prime} \times 15^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Fair. No lodging. (ii) Negligible attack of mosaic. (iii) Yield of potato. (iv) (a) 1951-N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 5.51 ton/ac.
(ii) (a) 0.98 ton/ac.
(b) 0.44 ton \(/ \mathrm{ac}\).
(c) 0.48 ton/ac.
(iii) S and T effects are highly significant. All interactions are significant while D effect is not significant. (iv) Av. yield of potato in ton/ac.
\begin{tabular}{l|lll|llll} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & Mean & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) \\
\hline \(\mathrm{D}_{1}\) & 5.06 & 5.13 & 3.98 & 4.72 & 5.14 & 5.35 & 3.68 \\
\(\mathrm{D}_{2}\) & 7.09 & 6.62 & 4.92 & 6.21 & 7.00 & 6.30 & 5.33 \\
\(\mathrm{D}_{3}\) & 6.44 & 5.53 & 4.84 & 5.60 & 7.19 & 5.66 & 3.97 \\
\hline Me n & 6.20 & 5.76 & 4.58 & 5.51 & 6.44 & 5.77 & 4.33 \\
\hline \(\mathrm{~T}_{1}\) & 7.05 & 6.74 & 5.54 & & \\
\(\mathrm{~T}_{2}\) & 6.81 & 5.79 & 4.69 & & & \\
\(\mathrm{~T}_{3}\) & 4.72 & 4.76 & 3.51 & & & \\
\hline
\end{tabular}
S.E. of difference of tuo
1. D marginal means
\(=0.23\) ton \(/ \mathrm{ac}\)
6. T means at the same level of \(S \quad=0.19\) ton/ac.
2. S marginal means
\(=0.10\) ton/ac.
7. \(S\) means at the same level of \(T\)
\(=0.22\) ton/ac.
3. T marginal means
\(=0.11 \mathrm{ton} / \mathrm{ac}\).
8. \(S\) means at the same level of \(D\)
\(=0.17\) ton/ac.
4. \(T\) means at the same level of \(D=0.19\) ton/ac.
9. D means at the same level of \(S=0.27\) ton/ac.
5. D means at the same level of \(T=0.03\) ton/ac.

Crop :- Potato (Rabi).
Ref:- I.A.R.I. 52(40). Type :- 'CM'.

Object :-To study the effect of date of sowing, time of application of fertilizers and spacing between rows on Potato yield.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) As per treatments. (iv) (a) Preparing seed beds by desi plough after irrigating the land. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) 1 st and 2 nd earthing thrice in each main-plot. (ix) N.A. (x) 7, 8, 10 to 12.4.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
3 dates of sowing : \(D_{1}=24.9 .1952, D_{2}=14.10 .1952\) and \(D_{3}=4.11 .1952\).
Sub-plot treatments :
3 spacings between the rows: \(S_{1}=1 \frac{1}{2}^{\prime}, S_{2}=2^{\prime}\) and \(S_{3}=2 \frac{1^{\prime}}{}\).
Sub-sub-plot treatments :
3 time of application of fertil zers: \(\mathrm{T}_{1}=\) Full dose at sowing, \(\mathrm{T}_{2}=\frac{1}{2}\) at sowing \(+\frac{1}{2}\) at 1 st earthing and \(\mathrm{T}_{3}=\frac{1}{8}\) at sowing \(+\frac{1}{2}\) at 1 st earthing \(+\frac{1}{3}\) at 2 cd earthing.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 3 main-plots/replication; 3 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) \(30^{\prime} \times 15^{\prime}\). (b) \(26^{\prime} \times 13^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Fair. No lodging. (ii) Heavy attack of mosaic, and cut-worm. (iii) Yield of potato. (iv) (a) \(1951-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 13.26 ton/ac.
(ii) (a) 1.76 ton/ac.
(b) 0.71 ton/ac.
(c) 0.67 ton/ac.
(iii) D effect is significant, T and S effects are highly significant and interactions are significant.
(iv) Av. yield of potato in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(S_{2}\) & \(\mathrm{S}_{3}\) & Mean & T1 & T2 & \(\mathrm{T}_{3}\) \\
\hline \(\mathrm{D}_{1}\) & 12.30 & 10.73 & 7.39 & 10.14 & 10.05 & 11.29 & 9.08 \\
\hline \(\mathrm{D}_{2}\) & 16.89 & 14.51 & 11.57 & 14.32 & 14.91 & 15.28 & 12.79 \\
\hline \(\mathrm{D}_{3}\) & 17.49 & 14.44 & 14.06 & 15.33 & 17.53 & 16.24 & 12.22 \\
\hline Mean & 15.56 & 13.23 & 11.01 & 13.26 & 14.16 & 14.27 & 11.36 \\
\hline T \({ }_{1}\) & 16.99 & 13.35 & 12.15 & & & & \\
\hline T 2 & 16.22 & 15.09 & 11.49 & & & & \\
\hline T3 & 13.48 & 11.23 & 9.38 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means
2. S marginal means
3. T marginal means
4. T means at a level of \(D\)
5. D means at the same level of \(T\)
\(=0.41\) ton/ac.
\(=0.17\) ton/ac.
6. T means at the same level of \(S=0.27\) ton/ac.
\(=0.16 \mathrm{ton} / \mathrm{ac}\).
7. S means at the same level of \(T=0.28\) ton/ac.
8. \(S\) means at the same level of \(D=0.29\) ton/ac.
\(=0.28\) ton/ac.
\(=0.47\) ton/ac.

Crop :- Potato (Rabi). Ref :- I.A.R.I. 53(45). Type :- ‘CM'.
Object :-To study the effect of sowing, time of application of fertilizers and spacing between the rows of Potato.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) As per treatments. (iv) (a) Ploughe itwice with desi plough. The bunds and channels were prepared with victory plough. (b) to (e) N A. (v) A/S at 6.19 lb ., Super at 1.50 lb . and Pot. Sul. at 0.83 lb . for each sub-plot. (vi) N.A. (vii) Irrigated. (viii) Weeding and twice earthing. (ix) N.A. (x) 31.3.1954; 1 to 3.4.1954.

\section*{2. TREATMENTS :}

Main-plot treatments :
3 dates of sowing : \(D_{1}, D_{2}\) and \(D_{3}=N . A\).
Sub-plot treatments :
3 spacings between rows: \(S_{1}=1 \frac{1}{2}^{\prime}, S_{2}=2^{\prime}\) and \(S_{3}=2 \frac{1}{2}^{\prime}\).
Sub-sub-plot treatments :
3 times of application of fertilizer : \(\mathrm{T}_{1}=\) Whole at the time of sowing, \(\mathrm{T}_{2}=\frac{1}{2}\) at sowing \(+\frac{1}{2}\) at the first earthing and \(T_{3}=\frac{1}{3}\) at sowing \(+\frac{1}{3}\) at first earthing \(+\frac{1}{8}\) at \(2 n d\) earthing.

\section*{3. DESIGN:}
(i) Split-plot. (ii) (a) 3 main-plots/replication; 3 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b( N.A. (iii) 4. (iv) (a) N.A. (b) \(30^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of potato. (iv) (a) \(1951-\) N.A. (b) and (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 1.79 ton/ac.
(ii) (a) 0.75 ton/ac.
(b) \(0.53 \mathrm{ton} / \mathrm{ac}\).
(c) 0.39 ton/ac.
(iii) Effects of D and T are highly significant. S effect is significant. Others are not significant.
(iv) Av. yield of potato in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) & Mean & \(\mathrm{T}_{1}\) & \(\mathrm{T}_{2}\) & \(\mathrm{T}^{3}\) \\
\hline \(\mathrm{D}_{1}\) & 1.25 & 1.38 & 1.10 & 1.24 & 1.29 & 1.35 & 1.09 \\
\hline \(\mathrm{D}_{2}\) & 2.46 & 2.29 & 1.90 & 2.22 & 2.51 & 2.10 & 2.05 \\
\hline \(\mathrm{D}_{3}\) & 1.89 & 1.99 & 1.81 & 1.90 & 2.08 & 1.82 & 179 \\
\hline Mean & 1.87 & 1.89 & 1.60 & 1.79 & 1.96 & 1.76 & 1.64 \\
\hline T 1 & 2.02 & 1.99 & 1.86 & & & & \\
\hline T & 1.94 & 1.82 & 1.51 & & & & \\
\hline T3 & 1.64 & 1.85 & 1.44 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means \(\quad=0.177\) ton/ac. 5. \(D\) means at the same level of \(T=0.219\) ton/ac.
2. \(S\) marginal means
\(=0.125\) ton/ac. 6 . \(S\) means at the same level of \(T=0.180\) ton/ac.
3. T marginal means
\(=0.092\) ton/ac. 7. \(S\) means at the same level of \(D=0.216\) ton/ac.
4. \(T\) means at the same level of \(D\) or \(S=0.159\) ton/ac. 8. \(D\) means at the same level of \(S=0.250\) ton/ac.
Crop :- Potato (Rabi). Ref:- I.A.R.I. 51(34). Type :- 'IM'.

Orject:-To study the effect of manuring and irrigation along with different depth of furrows on the yield of Potato.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 27.10.1951. (iv) (a) One ploughing and one cross ploughing. (b) to (e) N.A. (v) 100 md . of F.Y.M./ac. (vi) N.A. (vii) Irrigated. (viii) Weeding after every irrigation. (ix) 2.83". (x) 5, 6.4.1952.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
1. No. of irrigations : \(I_{1}=5, I_{2}=7\) and \(I_{3}=9\) irrigations.
2. Depth of furrows: \(\mathrm{F}_{1}=4 \frac{1}{2}^{*}, \mathrm{~F}_{2}=6^{*}\) and \(\mathrm{F}_{3}=9^{\prime \prime}\) deep.
3. 3 levels of \(N: N_{1}=40, N_{2}=80\) and \(N_{3}=120 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{3}\) factorial. (ii) (a) 9 . (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(24^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Fairly good. (ii) Negligible attack of mosaic. (iii) Yield of potato. (iv) (a) No. (b) No. (c) N.A. (v) (a), (b) No. (vi) Crop damaged by hail storm. (vii) Nil.

\section*{5. RESULTS :}
(i) 5.05 ton/ac.
(ii) 0.47 ton/ac.
(iii) N and V effects are highly significant. Interaction \(\mathrm{F} \times \mathrm{I}\) and \(\mathrm{F} \times \mathrm{N}\) are significant. Others are not significant.
(iv) Av. yield of potato in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{2}\) & \(F_{3}\) \\
\hline \(\mathrm{I}_{1}\) & 4.25 & 4.57 & 4.43 & 4.42 & 3.70 & 4.59 & 4.94 \\
\hline \(\mathrm{I}_{2}\) & 5.05 & 5.68 & 5.31 & 5.35 & 4.93 & 6.12 & 4.98 \\
\hline \(\mathrm{I}_{3}\) & 4.99 & 5.83 & 5.35 & 5.39 & 4.62 & 6.26 & 5.29 \\
\hline Mean & 4.76 & 5.37 & 5.03 & 5.05 & 4.42 & 5.66 & 5.07 \\
\hline \(F_{1}\) & 4.27 & 4.67 & 4.32 & & & & \\
\hline \(F_{2}\) & 4.93 & 6.48 & 5.58 & & & & \\
\hline \(\mathrm{F}_{3}\) & 5.09 & 4.95 & 5.17 & & & & \\
\hline
\end{tabular}
\begin{tabular}{lr} 
S.E. of any marginal mean & \(=0.11\) ton/ac. \\
S.E. of body of any table & \(=0.19\) ton/ac.
\end{tabular}

Crop:- Potato.
Ref :- I.A.R.I. 53(68). Type :- 'IM'.
Object :-To study the eff.ct of depth of furrows, \(N\) and irrigation on the yield of Potato.

\section*{1. BASAL CONDITIONS:}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and \(\\) (b) Refer item 11 on page 143. (iii) 24.10.1953. (iv) (a) 4 cross ploughing by desi plough. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) 2 earthings. (ix) N.A. (x) Ist week of March 1954.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) No. of irrigations: \(\mathrm{I}_{1}=5, \mathrm{I}_{2}=7\) and \(\mathrm{I}_{3}=9\) irrigations.
(2) Depth of furrows: \(F_{1}=41^{\prime \prime}, F_{2}=6^{\circ}\) and \(F_{3}=9^{\circ}\) decp.
(3) 3 levels of \(\mathrm{N}: \mathrm{N}_{1}=40, \mathrm{~N}_{2}=8\) ) and \(\mathrm{N}_{3}=120 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{3}\) confounded factorial. (ii) (a) 9 . (b) N.A. (iii) 2. (iv) (a) \(1 / 121 \mathrm{ac}\). (b) \(1 / 20 \mathrm{ac}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Below normal. (ii) Nil. (iii) Yield of potato. (iv) (a) 1951 -N.A. (b) No. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Raw data N.A.
5. RESULTS:
(i) 4.07 ton/ac.
(ii) 0.85 ton/ac.
(iii) None of effects is significant.
(iv) Av. yield of potato in ton/ac.
\begin{tabular}{cccccc} 
Treatment & Av. yield & Treatmen & Av. yield & Treatment. & Av. yield \\
\(\mathbf{I}_{1}\) & 3.84 & \(F_{1}\) & 3.92 & \(N_{1}\) & 3.93 \\
\(\mathbf{I}_{2}\) & 4.37 & \(F_{2}\) & 4.12 & \(N_{2}\) & 4.16 \\
\(I_{3}\) & 4.01 & \(F_{3}\) & 4.18 & \(N_{3}\) & 4.12 \\
& S.E. \(/\) mean & \(=0.20\) ton/ac. & & &
\end{tabular}

Crop:-Carrot (Rabi). Ref :- I.A.R.I. 52(63).
Type:- 'CM'.
Object :-To study the effect of different methods of cultivation and fertilizer application on the yield of Carrots.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 3, 14. 10. 1952. (iv) (a) to (e) As under treatments. (v) B.D. of F.Y.M. at \(120 \mathrm{md} . / \mathrm{ac}\). (vi) N.A.: (vii) Irrigated. (viii) weeding and thinning (ix) N.A. (x) 7, 9 to 22, 24.3.1953.

\section*{2. TREATMENTS :}

Main-plot treatments:
All combinations of (1) and (2)
(1) 3 ploughings: \(\mathrm{C}_{1}=9^{\circ}\) to \(10^{\circ}\) deep ploughing by tractor, \(\mathrm{C}_{2}=5^{\circ}\) deep by mould bord plough and \(\mathrm{C}_{3}=5^{r}\) deep by country plough.
(2) 2 methods of applying fertilizers : \(\quad \mathbf{M}_{1}=\) Placement with plough sole and \(\mathbf{M}_{2}=\) Broadcast.

\section*{Sub-plot treatments :}
(3) 3 fertilizer mixtures : \(\mathrm{N}_{1}=80 \mathrm{lb}\)./ac. of \(\mathrm{N}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}, \mathrm{N}_{2}=120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{N}_{3}=120 \mathrm{lb}\)./ac. of N .
Source of fertilizers N.A.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/replication and 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 69 \mathrm{ac}\). (b) \(1 / 79\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of carrot. (iv) (a) \(1952-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 21.88 ton/ac.
(ii) (a) 5.37 ton/ac.
(b) 4.70 ton/ac.
(iii) \(M\) effect alone is significant.
(iv) Av. yield of carrot in ton./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & C 1 & C 2 & C3 & Mean & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) \\
\hline \(\mathbf{M}_{1}\) & 22.11 & 20.40 & 21.02 & 21.18 & 21.83 & 20.79 & 20.91 \\
\hline \(\mathrm{M}_{2}\) & 20.83 & 22.83 & 24.09 & 22.58 & 22.85 & 24.64 & 20.26 \\
\hline Mean & 21.47 & 21.61 & 22.55 & 21.88 & 22.34 & 22.72 & 20.59 \\
\hline \(\mathrm{N}_{1}\) & 22.15 & 22.59 & 22.27 & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\(\cdots\)}} \\
\hline \(\mathrm{N}_{2}\) & 23.92 & 21.43 & 22.80 ! & & & & \\
\hline \(\mathrm{N}_{3}\) & 18.35 & 20.82 & 22.59 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means
\(=1.55\) ton \(/ \mathrm{ac}\).
2. \(M\) marginal means
\(=1.27\) ton/ac.
3. N marginal means
\(=1.36\) ton/ac.
4. \(N\) means at the same level of \(C\)
\(=2.35 \mathrm{ton} / \mathrm{ac}\).
5. C means at the same level of \(N\)
\(=2.46\) ton \(/ \mathrm{ac}\).
6. \(N\) means at the same level of \(\mathbf{M}\)
\(=1.92\) ton/ac.
7. \(M\) means at the same level of \(N\)
\(=2.83 \mathrm{ton} / \mathrm{ac}\).
S.E. of body of \(\mathrm{C} \times \mathrm{M}\) table
\(=1.55 \mathrm{ton} / \mathrm{ac}\).

Crop :- Carrot (Rabi). Ref :- I.A.R.I. 53(69). Type :- ‘CM'.
Object - To study the effect of different methods of cultivation and fertilizer application on the yield of Carrots.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) and (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 15 and 16 10. 1953. (iv) and (v) As per treatments. (vi) N.A. (vii) Irrigated. (viii) Gap-filling, thinning and weeding. (ix) N.A. (x) N.A.

\section*{2. TREATMENTS:}

\section*{Main-plot treatments :}

All combinations of (1) and (2)
(1) 3 ploughings: \(C_{1}=9^{\prime \prime}\) to \(10^{\prime \prime}\) deep ploughing by tractor, \(C_{2}=5^{\circ}\) deep by mould bord plough and \(\mathrm{C}_{3}=5^{\prime \prime}\) deep by country plough.
(2) \(\mathbf{2}\) methods of applying fertilizers : \(\mathbf{M}_{\mathbf{1}}=\) Placement with plough sole and \(\mathbf{M}_{\mathbf{2}}=\) Broadcast.

Sub-plot treatments :
(3) 3 fertilizer mixtures : \(\mathrm{N}_{1}=80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}, \mathrm{N}_{2}=120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{N}_{3}=120 \mathrm{lb}\)./ac. of N .
Source of fertilizers N.A.
3. DESIGN :
(i) Split-plot. (ii) 6 main-plots/block and 3 sub-plots/main-plot. (iii) 4. (iv) \(1 / 60\) ac. (b) \(1 / 70\) ac. (v) Yes. (vi) Yes.

\section*{4. GENERAL :}
(i) Fair. (ii) Nil. (iii) Yield of carrot. (iv) (a) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 8.11 ton/ac.
(ii) (a) 42.38 ton/ac.
(b) 26.26 ton/ac.
(iii) Interaction main-plot \(\times\) sub-plot is highly significant.
(iv) Av. yield of carrot in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & Mean & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) \\
\hline \(\mathrm{M}_{1}\) & 7.00 & 5.69 & 7.11 & 6.60 & 6.84 & 6.69 & 6.27 \\
\hline \(\mathrm{M}_{2}\) & 11.31 & 9.31 & 8.29 & 9.64 & 10.55 & 9.26 & 9.10 \\
\hline Mean & 9.16 & 7.50 & 7.70 & 8.12 & 8.69 & 7.97 & 7.68 \\
\hline \(\mathrm{N}_{1}\) & 9.76 & 8.29 & 8.03 & & & & \\
\hline \(\mathrm{N}_{2}\) & 9.13 & 7.11 & 7.68 & & & & \\
\hline \(\mathrm{N}_{3}\) & 8.58 & 7.09 & 7.38 & & & & \\
\hline
\end{tabular}
S. E. of difference of two
\begin{tabular}{ll} 
1. C marginal means & \(=12.23\) ton/ac. \\
2. M marginal means & \(=9.99\) ton/ac. \\
3. N marginal means & \(=7.58\) ton/ac. \\
4. N means at the same level of C & \(=13.13\) ton/ac. \\
5. C means at the same level of N & \\
6. N means at the same level f M & \(=16.27\) ton/ac. \\
7. M means at the same level of N & \\
S.E. of body of \(\mathrm{C} \times \mathrm{M}\) table & \\
& \(=10.72\) ton/ac. \\
&
\end{tabular}

\section*{Crop :- Sweet Potato (Kharif). Ref :- I.A.R.I. 52(67). Type :- 'CV'.}

Object :-To study the effect of different cultural practices on different varieties of Sweet Potato.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 4 to 7.7.1952. (iv) (a) Ploughing with tractor and desi plough twice and making ridges. (b) Ridge planting. (c) to (e) N.A.
(v) F.Y.M. at 5 ton/ac. (vi) As per treatments. (vii) Irrigated. (viii) Weeding and thinning. (ix) \(13.44^{\circ}\).
(x) February, 1953.
2. TREATMENTS:

Main-plot treatments :
2 methods of ploughing : \(\mathrm{P}_{1}=\mathrm{On}\) flat and \(\mathrm{P}_{2}=\) On ridges.
Sub-plot treatments :
2 varieties: \(\mathrm{V}_{1}=\) T.S.T. white and \(\mathrm{V}_{2}=\) F.A. 17.
Sub-sub-plot treatments:
3 spacings between lines: \(S_{1}=6, S_{2}=9\) and \(S_{3}=12\) inches.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 2 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) \(28^{\prime} \times 28^{\prime}\). (b) \(26^{\prime} \times 26^{\circ}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) Fairly good. (ii) Attack of stem weevil and leaf roller. (iii) Potato yield. (iv) (a) 1952-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 1.05 ton/ac.
(ii) (a) 0.41 ton/ac.
(b) 0.76 ton/ac.
(c) 0.36 ton/ac.
(iii) V effect alone is highly significant.
(iv) A y yield potato in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathbf{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathbf{V}_{1}\) & \(\mathbf{V}_{2}\) \\
\hline \(S_{1}\) & 0.95 & 1.13 & 1.04 & 0.61 & 1.46 \\
\hline \(S_{2}\) & 1.11 & 1.05 & 1.08 & 0.73 & 1.42 \\
\hline \(\mathrm{S}_{3}\) & 0.92 & 1.14 & 1.03 & 0.52 & 1.54 \\
\hline Mean & 0.99 & 1.10 & 1.05 & 0.62 & 1.47 \\
\hline \(\mathbf{V}_{1}\) & 0.59 & 0.64 & & & \\
\hline Vi & 1.39 & 1.56 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(P\) marginal means \(\quad=0.12\) ton/ac. 6. \(S\) means at the same level of \(V=0.18\) ton/ac.
2. V marginal means
\(=0.22\) ton/ac.
7. \(V\) means at the same level of \(S=0.26\) ton/ac.
3. \(S\) marginal means
\(=0.13\) ton/ac.
8. V means at the same level of \(P=0.30\) ton/ac.

9 P means at the same level of \(V=0.16\) ton/ac.
4. \(S\) means at the same level of \(P=0.18\) ton/ac.
5. \(P\) means at che same level of \(S=0.19\) ton/ac.

Crop:- Sweet Potato (Kharif).
Ref :- I.A.R.I. 53(56), Type :- ‘CV':
Object :-To study the effect of different cultural practices on different varieties of Sweet Potato.
1. BASAL CONDITIONS:
(i) (a) No. (b) and (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.6 .1953 to 22.6.1953. (iv) (a) Ploughing with victory plough, desi plough, tractor and levelling. (b) to (e) N.A. (v) F.Y.M. at 10 ton/ac. and A/S at 20 lb ./ac. of N. (vi) N.A. (vii) Irrigated. (viii) Weeding and hoeing. (xi) 25.35*. (x) 17.12.1953 to 9.1.1954.
2. TREATMENTS :

Main-plot treatments :
2 methods of ploughing: \(P_{1}=O n\) flat and \(P_{2}=O n\) ridges.
Sub-plot treatments :
2 varieties : \(V_{1}=\) T.S.T. white and \(V_{2}=\) F.A. 17.
Sub-sub-plot treatments:
3 spacings between lines : \(S_{1}=6, S_{2}=9\) and \(S_{9}=12\) inches.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 2 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) \(30^{\prime} \times 24^{\prime}\). (b) \(28^{\prime} \times 21^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Stem weevil-spraying of D.D.T. (iii) Yield of sweet potato. (iv) (a) 1952-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 2.14 ton/ac.
(ii) (a) 0.67 ton/ac.
(b) 1.19 ton/ac.
(c) 0.81 ton/ac.
(iii) V effect alone is highly significant.
(iv) Av. yield of sweet potato in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathbf{V}_{2}\) \\
\hline \(\mathrm{S}_{1}\) & 1.80 & 2.31 & 2.06 & 1.26 & 2.86 \\
\hline \(\mathrm{S}_{2}\) & 2.28 & 2.15 & 2.22 & 1.50 & 2.93 \\
\hline \(S_{3}\) & 1.94 & 2.34 & 2.14 & 1.06 & 3.22 \\
\hline Mean & 2.01 & 2.27 & 2.14 & 1.27 & 3.00 \\
\hline \(\mathrm{V}_{1}\) & 1.22 & 1.33 & & & \\
\hline \(\mathrm{V}_{2}\) & 2.80 & 3.20 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. P marginal means
\(=0.19\) ton/ac.
6. \(S\) means at the same level of \(V=0.33\) ton/ac.
2. \(V\) marginal means
\(=0.34\) ton/ac.
7. \(V\) means at the same level of \(S=0.36\) ton/ac.
3. \(S\) marginal means
4. \(S\) means at the same level of \(P\)
5. P means at the same level of \(S\)
\(=0.23\) ton/ac.
-0.33 ton/ac.
\(=0.39\) ton/ac.
8. V means at the same level of \(P=0.48\) ton/ac.
9. \(P\) means at the same level of \(V=0.39\) ton/ac.

\section*{Crop :- Gram (Rabi). Ref :- I.A.R.I. 52(27c). Type :- 'C'.}

Object :-To study the effect of sowing premature and mature seeds on Gram yield.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to I.A.R.I. 52(27) on WHEAT.
5. RESULTS :
(i) \(1576 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(297.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1986 \\
2. & 1484 \\
3. & 1259 \\
S.E./mean & \(=105.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Gram. Ref:- I.A.R.I. 53(32c). Type :- 'C'
Object :-To study the effect of sowing premature and mature seeds on Gram yield.
1. BASAL CONDITIONS to 4. GENERAL :

Please refer to I.A.R.I. 53(32) on WHEAT.
5. RESULTS:
(i) \(94^{3} \mathrm{lb} . / \mathrm{ac}\).
(ii) \(207.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1209 \\
2. & 941 \\
3. & 695 \\
S E./mean & \(=73.23 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Peas.
Ref :- I.A.R.I. 53(16).
Type :- ' M '.
Object :-To study the effect of inorganic and organic manures on the yield of crops in the rotation of cereals.
1. BASAL CONDITIONS :
(i) (a) Maize-Wheat-Maize-Peas. (b) Maize. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page.143. (iii) 28.10.1953. (iv) (a) Dry victory plough and desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) N.A. (viii) Bakharing on 27.11.1953, weeding on S.1.1954 and weeding on 17.2.1954 to 18.2.1954. (ix) N.A. (x) 23.3.1954.
2. TREATMENTS :
1. Control.
2. A/S at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. \(A / S\) at 60 lb ./ac. of \(\mathrm{N}+\) Super at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{K}\) at 100 lb ./ac. cf \(\mathrm{K}_{2} \mathrm{O}\).
4. F.Y.M. at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{K}\) at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
5. Castor cake at \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathbf{X}_{2} \mathrm{O}\).

Organic manures (F.Y.M. and Castor cake) to be applied to maize in full dose and artificial manures half to maize and half to peas.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(38^{\prime} \times 29^{\prime}\). (b) \(36^{\prime} \times 27^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952-1955. (b) Yes. (a) N.A. (v) (a). (b) NO. (iv) Nil. (vii) Nil.
5. RESULTS :
(i) \(1013 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(314.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 874 \\
2. & 1045 \\
3. & 1170 \\
4. & 946 \\
5. & 1029 \\
S.E./mean & \(=128.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Peas (Rabi). Ref :- I.A.R.I. 51(58). Type :- 'MV'.
Object :-To study the effect of placement of Super at different depths and at different levels on Pea varieties.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 17.10.1951. (iv) (a) Palewa followed by desi plough twice. (b) to (e) N.A. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filling was done on 1st week of Dec. 1951. (ix) N.A. (x) 1st and 2 nd week of April, 1952.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 varieties: \(\mathrm{V}_{\mathbf{1}}=\) N P. 29, \(\mathrm{V}_{2}=\) Phillipare smooth and \(\mathrm{V}_{3}=\) Delroyche comments.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb} / \mathrm{ac}\).
(3) 3 depth of placement of Super : \(D_{1}=\) Broadcast, \(D_{2}=\) Placed \(2 \frac{1}{2}^{\circ}\) telow seed and \(D_{3}=\) Placed \(4 \frac{1}{2}^{\prime \prime}\) below seed.
Super placement was done along with sowing in \(\mathrm{P}_{0}, \mathrm{P}_{\mathbf{1}}, \mathrm{P}_{\mathbf{2}}\).
3. DESIGN :
(i) \(3^{3}\) confounded factorial. (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(52^{\prime} \times 14^{\prime}\). (b) \(52^{\prime} \times 10^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) The crop was very heterogeneous. (ii) N.A. (iii) Grain yield. (iv) (a) \(1951-\) N.A. (b) No. (c) N.A. (v) (a), (b) No. (vi) Hail storm on 1st march 1952 damaged the crop considerably. (vii) Raw data N.A. Hence the two way tables could not be presented.

\section*{5. RESULTS:}
(i) \(498.4 \mathrm{lb} . / \mathrm{ac}\).
(ii) N.A.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccccc} 
Treatment & Av. yield & Treatment & Av. yield & Treatment & Av. yield \\
\(\mathbf{V}_{\mathbf{1}}\) & 565.3 & \(\mathbf{D}_{\mathbf{1}}\) & 548.0 & \(\mathbf{P}_{0}\) & 478.1 \\
\(\mathbf{V}_{\mathbf{2}}\) & 469.0 & \(\mathbf{D}_{\mathbf{2}}\) & 464.9 & \(\mathbf{P}_{1}\) & 478.9 \\
\(\mathbf{V}_{\mathbf{3}}\) & 460.8 & \(\mathbf{D}_{\mathbf{3}}\) & 482.2 & \(\mathbf{P}_{\mathbf{2}}\) & 538.1
\end{tabular}
```

Crop :- Peas (Rabi). Ref:- I.A.R.I. 53(123). Type :- 'M'.

```

Object :-To study the effect of different manures on crop yield with different rotations.

\section*{1. BASAL CONDITIONS:}
(i) (a) First year : Maize-Oats, Second year: Maize-Peas, Third year : Maize-Wheat and Fourth year Maize- Gram (8 course rotation). (b) Maize. (c) As per treatments. (ii) (a) Light loam. (b) N.A. (iii) 30.10.1953. (iv) (a) 4 desi ploughings. (b) Sown behind the plough. (c) 24 seers/ac. (d) Row to Row1' apart. (e) -. (v) Nil. (vi) N.P. 29 (medium). (vii) Unirrigated. (viii) Weeding. (ix) 2.17" (x) 23.2.1954.
2. TREATMENTS :
1. Control. 6. Super at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. F.Y.M. at \(8000 \mathrm{lb} . / \mathrm{ac}\).
3. Rape cake at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
4. \(\mathrm{A} / \mathrm{S}\) at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
7. Treatment \(4+\) Treatment 5 .
8. Treatment \(4+\) Treatment 6 .
9. Treatment \(5+\) Treatment 6.
5. Pot. Sul. at \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{\mathbf{2}} \mathrm{O}\).
10. Treatment \(4+\) Treatment \(5+\) Treatment 6 .
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 10. (iv) (a) \(44^{\prime} \times 24^{\prime}\). (b) \(42^{\prime} \times 22^{\prime}\). (v) \(1^{\prime}\) alround the plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1933-1961 (8th year of the expt.). (b) Yes. (c) Nil. (v) (a) No. (b) Nil. (vi) Nil. (vii) The experiment was conducted at the Botanical Sub-station, Pusa (Bihar).
5. RESULTS :
(i) \(927.4 \mathrm{lb} / \mathrm{ac}\).
(ii) \(85.49 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 699 & 6. & 990 \\
2. & 1406 & 7. & 727 \\
3. & 1083 & 8. & 1011 \\
4. & 733 & 9. & 882 \\
5. & 748 & 10. & 995 \\
& & & \(=27.04 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\text { Crop :- Peas (Rabi). } \quad \text { Ref :- I.A.R.I. 53(8). Type :- 'M'. }
\]

Object :-To study the effect of manures on the yield of Pea crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Maize. (c) As per treatments. (ii) (a) and (b) N.A. (i i) 21, 30.11.1953. (iv) (a) 1 ploughing with empire plough and one with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Nil. (viii) 1 hoeing with wallace horse hoe and 1 weeding. (ix) \(1.08^{\prime \prime}\). ( x ) 23 to 26.2.1954.
2. TREATMENTS:
1. No manure. 6. Super at 40 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. F.Y.M. \(8000 \mathrm{lb} . / \mathrm{ac}\).
7. Treatment \(4+\) Treatment 5 .
3. Rape cake \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
8. Treatment \(4+\) Treatment 6 .
4. A/S 20 lb ./ac. of N .
9. Treatment \(5+\) Treatment 6 .
5. Pot. Sul. \(25 \mathrm{lb} . / \mathrm{ac}\) of \(\mathrm{K}_{2} \mathrm{O}\).
10. Treatment \(4+\) Treatment \(5+\) Treatment 6 .

Application of F.Y.M. on 5th June, Rape cake on 9th June, fertilizers on 16th and again Rape cake on 24th August 1953.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 10. (iv) (a) and (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(1) Satisfactory. (ii) Wilt in the plots where F.Y.M. was applied. (iii) Grain yield. (iv) (a) 1932-1953. (b) and (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) The experiment was conducted at the Botanical Sub-station, Pusa (Bihar).
5. RESULTS :
(i) \(802 \mathrm{lb} / \mathrm{ac}\).
(ii) \(297.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 604 & 6. & 857 \\
2. & 1217 & 7. & 629 \\
3. & 937 & 8. & 874 \\
4. & 634 & 9. & 763 \\
5. & 647 & 10. & 1046 \\
& S.E. \(/\) mean & \(=60.9 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Peas (Rabi). Ref:-I.A.R.I. 52 (27a) Type :- 'C'.
Object :-To study the effect of sowing premature and mature seeds on Peas yield.
1. BASAL CONDITIONS to 4. GENERAL

Please refer to No. I.A.R.I. 52 (27) on WHEAT
5. RESULTS:
(i) \(2142 \mathrm{lb} / \mathrm{ac}\).
(ii) \(309.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 2681 \\
2. & 2456 \\
3. & 1289 \\
S.E./mean & \(=109.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:-Peas
Ref:-I.A.R.I. 53(32a) Type :-'C’
Object :-To study the effect of sowing premature and mature seeds on Peas yield.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to No. I.A.R.I. 53(32) on WHEAT.
5. RESULTS :
(i) \(948 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(216.4 \mathrm{Ib} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av.yield of grain in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1165 \\
2. & 972 \\
3. & 706 \\
S.E./mean. & \(=76.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Cowpeas (Kharif). Ref:- I.A.R.I. 50(59). Type:- 'M'.
Obje:t :-To study the effect of phosphatic manuring of berseem and its residual effect on Cowpeas.

\section*{1. BASAL CONDITIONS:}
(i) (a) Berseem-Cowpzas-Berseem—(Wheat after 3 years). (b) Berseem. (c) As per treatments. (ii)
(a) and (b) Refar item 11 on page 143. (iii) 20.7.1950. (iv) (a) 1 ploughing with victory plough and 2 ploughings with desi plough. (b) to (e) N.A. (v) N.A. (vi) and (vii) N.A. (viii) 3 hoeings with desi plough. (ix) N.A. ( \(x\) ) 4 to 9.10 .1950 .

\section*{2. TREATMENTS:}
1. F.Y.M. at 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. F.Y.M. at \(32 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. F.Y.M. at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. Super at \(32 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. Super at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
7. Super at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac}\) of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
8. Super at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at \(24 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{F} . \mathrm{Y} . \mathrm{M}\). at \(56 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. F Y.M. at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. F.Y M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
12. No manure.
13. Fallow in berseem season.

Treatments applied to previous crop berseem.
3. DESIGN :
(i) R.B.D. (ii) (a) 13.
(b) N.A.
(iii) 6. (iv) (a) N.A.
(b) \(63^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) and (ii) N.A. (iii) Fodder yield. (iv) (a) 1948-1954. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (bii) Replications I and II were comparatively more breedy than other replications.

\section*{5. RESULTS :}
(i) 4.30 ton/2c.
(ii) 0.95 ton \(/ \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 3.99 & 8. & 4.22 \\
2. & 4.67 & 9. & 5.42 \\
3. & 4.59 & 10. & 4.41 \\
4. & 4.07 & 11. & 4.49 \\
5. & 4.09 & 12. & 3.13 \\
6. & 4.96 & 13. & 432 \\
7. & 3.59 & & \\
& S.E./mean & \(=0.39\) ton/ac. &
\end{tabular}
\[
\text { Crop :- Cowpeas (Kharif). } \quad \text { Ref:- I.AR.I. 51(61). Type :- 'M'. }
\]

Object :- To study the effect of \(P\) on the yield of berseem and the residual effect on the yield of Cowpeas.

\section*{1. BASAL CONDITIONS :}
( 1 ) (a) Berseem-Cowpeas - Berseem (Wheat after 3 years). (b) Berseem. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 6.7.1951, resowing on 31.7.1951. (iv) (a) 2 ploughings. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) 27.10.1951, 28.10.1951 and 29.10.1951.
2. TREATMENTS:
1. F.Y.M. at \(16 \mathrm{l} \mathrm{j} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. F.Y.M. at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. F.Y.M. at \(64 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(16 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. Super at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. Super at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
7. Super at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{F} . Y\).M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
8. Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{F} . Y\).M. at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. F.Y.M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at \(24 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. F.Y.M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 56 lb ./ac of \(\mathrm{P}_{2} \mathrm{O}_{5}\)
12. No manure.
13. Fallow in terseem season.

Treatments applied to previous crop berseem.
3. DESIGN :
(i) R.B.D. (ii) (a) 13 . (b) N.A
(iii) 6. (iví (a) N.A. (b) \(63^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.

\section*{4 GENERAL:}
(i) Poor. (ii) N.A. (iii) Yield of fodder. (iv) (a) 1948-1954. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) No rains, scarcity of water, dry and hot weather. (vii) Nil.
5. RESULTS :
(i) 1.62 ton/ac.
(ii) 0.97 ton/ac.
(iii) Tieatments do not differ significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1.33 & 8. & 1.17 \\
2. & 1.80 & 9. & 1.82 \\
3. & 1.42 & 10. & 1.58 \\
4. & 1.22 & 11. & 1.76 \\
5. & 2.46 & 12. & 1.31 \\
6. & 1.53 & 13. & 2.08 \\
7. & 1.62 & & \\
& S.E./mean & \(=0.40\) ton/ac.
\end{tabular}

Crop :-Cowpeas (Kharif). Ref:- I.A.R.I. 52 (14). Type:- 'M'.
Object :-To study the effect of the yield of \(P\) on berseem and residual effect on Cowpeas yield..
1. BASAL CONDITIONS :
(i) (a) Berseem-Cowpeas (Wheat after 3 years). (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.6.1952. (iv) (a) Preparing land with desi plough. After harvesting wheat, land ploughed twice and sowing done with third ploughing. (b) N.A. (c) 46 srs/ac. (d) and (e) N.A. (v) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) 29,30.8.1952.
2. TREATMENTS :
1. F.Y.M. at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. F.Y.M. at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. F.Y.M. at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{6}\).
5. Super at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. Super at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

Treatments applied to berseem.
7. Super at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
8. Super at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at \(24 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at \(56 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. F.Y.M at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at \(24 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. F.Y.M at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at \(56 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
12. No manure.
13. Fallow in berseem season.
3. DESIGN :
(i) R.B.D.
(ii) (a) 13. (b)
N.A.
(iii) 6
(iv) (a) N.A. (b) \(63^{\circ} \times 15^{\prime}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of fodder. (iv) (a) 1948-54. (b) Yes. (c) N.A. (a) and (b) No (vi) and (vii) Nil.
5. RESULTS:
(i) 2.41 ton/ac.
(ii) 0.85 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 2.21 & 8. & 3.05 \\
2. & 1.80 & 9. & 2.01 \\
3. & 2.29 & 10. & 2.82 \\
4. & 2.30 & 11. & 2.71 \\
5. & 2.58 & 12. & 2.57 \\
6. & 2.88 & 13. & 2.06 \\
7. & 2.06 & & \\
& S.E./mean & \(=0.35\) ton/ac. &
\end{tabular}
```

Crop := Cowpeas (Kharif). Ref :m I.A.R.I. 53(73). Type :- 'M'.

```

Object :-To study the effect of \(\mathrm{P}_{2} \mathrm{O}_{5}\) on the yield of berseem and its residual effect on Cowpeas yield.
1. BASAL CONDITIONS :
(i) (a) Berseem-Cowpeas-Berseem (Wheat after 3 years). (b) Wheat. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 20 to 22.6 .1953 . (iv) (a) 1 dry ploughing with victory plough and preparation of land. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) 1 hoeing and 1 weeding. (ix) N.A. (x) 1.9.1953 to 3.9.1953.
2. TREATMENTS :
1. F.Y.M. at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
7. Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{6}+\mathrm{F} . \mathrm{Y} . \mathrm{M}\). at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
2. F.Y.M. at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
8. Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\)
3. F.Y.M. at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at 16 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. Super at 32 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. Super at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
12. No manure.'
13. Fallow in berseem season.
3. DESIGN :
(i) R.B.D. (ii) (a) 13 . (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(63^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of green fodder. (iv) (a) 1948-1954. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 3.41 ton/ac.
(ii) 0.80 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 2.85 & 8. & 3.13 \\
2. & 3.83 & 9. & 2.89 \\
3. & 3.21 & 10. & 3.14 \\
4. & 4.31 & 11. & 3.40 \\
5. & 3.17 & 12. & 3.14 \\
6. & 3.69 & 13. & 3.74 \\
7. & 3.88 & & \\
& S.E./mean & & \(=0.33\) ton/ac.
\end{tabular}

Crop :- Cowpeas. Ref :- I.A.R.I. 52(28 c). Type :- 'C'.
Object :-To study the effect of sowing premature and mature seed on Cowpeas yield.
1. BASAL CONDITIONS to 4. GENERAL :

Please refer to No. I.A.R.I. 52(28) under MAIZE.
5. RESULTS :
(i) \(2909 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(20.16 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 3165 \\
2. & 2855 \\
3. & 2706 \\
S.E./mean & \(=8.23 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Cowpeas.
Ref :- I.A.R.I. 53(31 c).
Type :- 'C'.
Object :-To study the effect of premature and mature seed on the yield of Cowpeas.
1. BASAL CONDITIONS to 4. GENERAL :

Please refer to No. I.A.R.I. 53(31) under MAIZE.
5. RESULTS :
(i) \(422.1 \mathrm{lb} . / \mathrm{ac}\).
(ii) N.A.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 562.8 \\
2. & 464.9 \\
3. & 238.6
\end{tabular}

Crop :- Sugarcane. Ref :- I.A.R.I. 50(1). Type :- 'MV'.
Object :-To study the effect of N on different Sugarcane varieties.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 2nd week of March 1950. (iv) (a) Tractor ploughing and tractor discing. (b) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) Horse hoeing and weeding. (ix) N.A. (x) End of April 1951.
2. TREATMENTS :

Main-plot treatments :
6 varieties: \(\mathrm{V}_{1}=\mathrm{CO}-312, \mathrm{~V}_{2}=\mathrm{CO}-647, \mathrm{~V}_{3}=\mathrm{CO}-622, \mathrm{~V}_{4}=\mathrm{CO}-655, \mathrm{~V}_{5}=\mathrm{CO} .659\) and \(\mathrm{V}_{6}=\mathrm{CO}-680\).
Sub-plot treatments :
4 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=40, N_{2}=80\) and \(N_{3}=120 \mathrm{lb}\)./ac.
3. DESIGN:
(i) Split-plot. (ii) (a) 6 main-plots/block ; 4 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) \(75^{\prime} \times 18^{\prime}\). (b) \(75^{\prime} \times 12^{\prime}\). (v) N.A. (vi) I es.
4. GENERAL :
(i) Normal. Lodging took place. (ii) Top borer. (iii) Yield of sugarcane. (iv) (a) 1950-N.A. (b) Yes.
(c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 23.73 ton/ac.
(ii) (a) 7.27 ton/ac.
(b) 2.31 ton/ac.
(iii) V and N effects are highly significant while interaction is not significant.
(iv) Av. yield of sugarcane in ton/ac.
\begin{tabular}{c|cccccc|c} 
& \(\mathrm{V}_{1}\) & \(\mathrm{~V}_{2}\) & \(\mathrm{~V}_{3}\) & \(\mathrm{~V}_{\mathbf{4}}\) & \(\mathrm{V}_{5}\) & \(\mathrm{~V}_{6}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 19.04 & 23.13 & 22.35 & 23.32 & 23.64 & 23.40 & 22.48 \\
\(\mathrm{~N}_{1}\) & 20.54 & 25.81 & 22.89 & 20.87 & 23.45 & 24.99 & 23.09 \\
\(\mathrm{~N}_{2}\) & 21.15 & 25.87 & 25.06 & 21.52 & 25.55 & 26.17 & 24.22 \\
\(\mathrm{~N}_{3}\) & 23.08 & 27.08 & 24.69 & 22.82 & 26.77 & 26.09 & 25.69 \\
\hline Mean & 20.95 & 25.52 & 23.75 & 22.13 & 24.85 & 25.16 & 23.73
\end{tabular}
S.E. of difference of two
1. V marginal means \(\quad=2.97 \mathrm{ton} / \mathrm{ac}\).
2. \(N\) marginal means \(\quad=0.77\) ton \(/ \mathrm{ac}\).
3. N means at the same level of \(\mathrm{V} \quad=1.89 \mathrm{ton} / \mathrm{ac}\).
4. V means at the same level of \(N \quad=3.39\) ton/ac.

Object :-To study the effict of N on different Sugarcane varieties.
1. BASAL CONDI rIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 10 to 12.3.1951. (iv) (a) Tractor ploughing, disc hoeing and grubbing. (b) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) N.A. (viii) Horrowed on March 31.3.1951. (ix) N.A. (x) N.A.
2. TREATMENTS \& 3. DESIGN:

Please refer to No. I.A.R.I. 50(1) on page 300.
4. GENERAL :
(i) Suffered from draught. Heterogenous growth. (ii) N.A. (iii) Yield of sugarcane. (iv) (a) 1950 to N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) 9.34 ton/ac.
(ii) (a) 2.08 ton/ac.
(b) 1.95 ton/ac.
(iii) Only V effect is highly significant.
(iv) Av. yield of cane in ton/ac.
\begin{tabular}{l|rrrrrr|l} 
& \(V_{1}\) & \(V_{2}\) & \(V_{3}\) & & \(V_{4}\) & \(V_{5}\) & \(V_{6}\) \\
\hline \(\mathrm{~N}_{\mathbf{0}}\) & 9.83 & 10.33 & 10.46 & & 8.01 & 10.21 & 6.23 \\
\(\mathrm{~N}_{1}\) & 9.00 & 9.89 & 9.10 & & 10.10 & 8.92 & 4.83 \\
\(\mathrm{~N}_{2}\) & 10.42 & 13.26 & 8.77 & 9.08 & 9.13 & 7.02 & 9.18 \\
\(\mathrm{~N}_{3}\) & 8.64 & 13.80 & 12.78 & 10.70 & 8.63 & 5.12 & 9.89 \\
\hline Mean & 9.47 & 11.82 & 10.28 & 9.47 & 9.22 & 5.80 & 9.34
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(V\) marginal means & \(=0.85\) ton/ac. \\
2. \(N\) marginal means & \(=0.65\) ton/ac, \\
3. \(N\) means at the same level of \(V\) & \(=1.59\) ton/ac. \\
4. \(V\) means at the same level of \(N\) &
\end{tabular}

Crop :- Sugarcane. Ref :- I.A.R.I. 52(2). Type :- 'MV'.
Object :-To study the effect of \(\mathbf{N}\) on different Sugarcane varieties.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 16 to 18.3.1952. (iv) (a) Ploughing with desi plough and sohaga. (b) to(e) N.A. (v) Nil. (vi) As per treatments. (vii) N.A. (viii) Earthing up in July 1952 . (ix) N. A. (x) N.A.
2. TREATMENTS \& 3. DESIG \(V\) :

Please refer to No I.A.R.I. 50(1) on page 300.
4. GENERAL :
(i) N.A. (ii) Pyrilla and top-borer. (iii) Yield of sugarcane. (iv) (a) 1950 to N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) \& (vii) Nil.
5. RESULTS :
(i) 13.10 ton \(/ \mathrm{ac}\).
(ii) (a) 1.37 ton/ac.
(b) \(3.87 \mathrm{ton} / \mathrm{ac}\).
(iii) Only V effect is highly significant.
(iv) Av. yield of sugarcane in ton/ac.
\begin{tabular}{c|cccccc|c} 
& \(\mathbf{V}_{\mathbf{1}}\) & \(\mathbf{V}_{\mathbf{2}}\) & \(\mathbf{V}_{\mathbf{3}}\) & \(\mathbf{V}_{\mathbf{4}}\) & \(\mathbf{V}_{\mathbf{5}}\) & \(\mathrm{V}_{\mathbf{6}}\) & Mean \\
\hline \(\mathrm{N}_{\mathbf{0}}\) & 14.50 & 15.34 & 10.75 & 10.28 & 12.77 & 8.84 & 12.07 \\
\(\mathrm{~N}_{\mathbf{1}}\) & 14.72 & 16.40 & 12.88 & 12.26 & 13.21 & 9.43 & 13.14 \\
\(\mathrm{~N}_{\mathbf{2}}\) & 1527 & 16.81 & 12.70 & 12.29 & 13.29 & 9.73 & 13.69 \\
\(\mathrm{~N}_{\mathbf{3}}\) & 15.52 & 16.99 & 11.96 & 13.69 & 14.79 & 10.02 & 13.84 \\
\hline Mean & 15.00 & 16.40 & 12.07 & 12.11 & 13.50 & 9.51 & 13.10
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(V\) marginal means & \(=0.56 \mathrm{ton} / \mathrm{ac}\). \\
2. N marginal means & \(=1.29 \mathrm{ton} / \mathrm{ac}\). \\
3. N means at the same level of V & \(=3.16 \mathrm{ton} / \mathrm{ac}\). \\
4. \(V\) means at the same level of N &
\end{tabular}

Crop :- Sugarcane. Ref:- I.A.R.I. 53(2). Type:- 'MV'.
Object:-To study the effect of N on different Sugarcane varieties.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a), (b) Refer itemjll on page 143. (iii) 12, 13.2.1953. (iv) (a) Tractor ploughing and discing. (b) to (e) N.A. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) Hoeing after 1st irrigation. (ix) N.A. (x) N.A.
2. TREATMENTS and 3. DESIGN :

Please refer to No. I.A.R.I. 50(1) on page 300.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of [sugarcane. (iv) (a) 1950 to N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(18.98 \mathrm{ton} / \mathrm{ac}\).
(ii) (a) 3.14 ton/ac.
(b) 1.78 ton/ac.
(iii) Only N effect is highly significant.
(iv) Av. yield of sugarcane in ton/ac.
\begin{tabular}{c|cccccc} 
& \(\mathbf{V}_{\mathbf{1}}\) & \(\mathbf{V}_{\mathbf{2}}\) & \(\mathbf{V}_{\mathbf{3}}\) & \(\mathbf{V}_{\mathbf{4}}\) & \(\mathbf{V}_{\mathbf{5}}\) & \(\mathbf{V}_{\mathbf{6}}\) \\
\hline \(\mathbf{N}_{\mathbf{0}}\) & 19.08 & 19.56 & 16.13 & 19.59 & 16.32 & 20.62 \\
\(\mathbf{N}_{\mathbf{1}}\) & 18.92 & 21.57 & 17.19 & 20.54 & 18.96 & 22.17 \\
\(\mathbf{N}_{\mathbf{2}}\) & 17.98 & 20.19 & 17.92 & 19.97 & 19.21 & 21.59 \\
\(\mathbf{N}_{\mathbf{3}}\) & 16.54 & 19.20 & 16.73 & 16.50 & 15.45 & 23.60
\end{tabular}
S.E. of difference of two
1. V marginal means \(\quad=1.28\) ton/ac.
2. N marginal means \(\quad=0.59 \mathrm{ton} / \mathrm{ac}\).
3. N means at the same level of \(\mathrm{V} \quad=1.45\) ton/ac.
4. \(V\) means at the same level of \(N \quad=1.79\) ton/ac.

\section*{Crop :- Sugarcane. Ref :- I.A.R.I. 50(37). Type :- ‘CMV’.}

Object :-To study the effect of different depths of cultivation and different doses of \(\mathbf{N}\) and \(\mathbf{P}\) on two varieties of Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a), (b) Refer item 11 on page 143. (iii) 14 to 19.3.1950. (iv) (a) As per treatments. (b) to (e) N.A. (v) 10 ton/ac. of F.Y.M. (vi). As per treatments. (vii) Irrigated. (viii) Horse hoeing o. 10.5 .1950 and weeding in May and June. (ix) N.A. (x) Last week of April, 1951.

\section*{2. TREATMENTS}

Main-plot treatments :
3 ploughings: \(\mathrm{C}_{1}=\) Desi ploughing \(3^{\prime \prime}-4^{\prime \prime}\) deep, \(\mathrm{C}_{2}=\) Tractor ploughing \(6^{\prime \prime}\) deep+discing+grubbing and \(\mathrm{C}_{3}=\) Tractor ploughing \(10^{\circ}\) deep + discing + grubbing.

\section*{Sub-plot treatments :}

2 varieties: \(\mathrm{V}_{1}=\mathrm{CO} .312\) and \(\mathrm{V}_{2}=\mathrm{CO} .453\).
Sub-sab-plot treatments :
All combinations of (1 and )2)
(1) 3 levels of \(N\) as A/S: \(N_{0}=0, N_{1}=40\) and \(N_{2}=80 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{\mathbf{1}}=80 \mathrm{lb}\)./ac.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 3 main-plots/block; 2 sub-plots/main-plot and 6 sub-sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(62^{\prime} \times 21^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL:}
(i, Slightly heterogenous. (ii) Top borer. (iii) Yield of sugarcane. (iv) (a) 1950 to N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 22.78 ton/ac.
(ii) (a) 8.57 ton \(/ \mathrm{ac}\).
(b) 884 ton/ac.
(c) 3.78 ton \(/ \mathrm{ac}\).
(iii) N effect is highly significant. P effect and interactions \(\mathrm{NP} \times \mathrm{C}\) and \(\mathrm{NP} \times \mathrm{V}\) are significant.
(iv) Av. yi:Id of sugarcane in ton/a:.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0} \mathrm{P}_{0}\) & \(\mathrm{N}_{0} \mathrm{P}_{1}\) & \(\mathrm{N}_{1} \mathrm{P}_{0}\) & \(\mathrm{N}_{1} \mathrm{P}_{1}\) & \(\mathrm{N}_{2} \mathrm{P}_{0}\) & \(\mathrm{N}_{2} \mathrm{P}_{1}\) & Mean & \(\mathbf{V}_{1}\) & \(\mathrm{V}_{2}\) \\
\hline \(\mathrm{C}_{1}\) & 19.61 & 20.12 & 24.24 & 24.92 & 21.83 & 25.35 & 22.68 & 20.43 & 24.93 \\
\hline \(\mathrm{C}_{2}\) & 14.09 & 19.58 & 22.85 & 21.10 & 24.32 & 24.73 & 21.11 & 20.60 & 21.63 \\
\hline C3 & 13.92 & 18.84 & 25.84 & 27.88 & 26.67 & 29.18 & 24.56 & 24.90 & 24.22 \\
\hline Mean & 17.54 & 19.51 & 24.31 & 24.63 & 24.27 & 26.42 & 22.78 & 21.98 & 23.59 \\
\hline \(\mathrm{V}_{1}\) & 17.55 & 16.76 & 22.26 & 23.65 & 24.95 & 26.69 & & & \\
\hline \(\mathrm{V}_{2}\) & 17.54 & 22.27 & 26.37 & 25.61 & 23.60 & 26.16 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(C\) marginal means \(\quad=2.02\) ton/ac. 6. NP means at the same level of \(C=2.18\) ton/ac.
2. \(V\) marginal means \(\quad=1.70\) ton/ac. 7. \(C\) means at the same level of \(N P=2.84\) ton \(_{/}\)ac.
3. NP marginal means \(\quad=1.26\) ton/ac. 8. NP means at the same level of \(V=1.78\) ton/ac.
4. V means at the same level of \(C=2.95\) ton/ac. 9. \(V\) means at the same level of \(N P=2.35\) ton/ac.
5. \(C\) means at the same level of \(V=2.90\) ton/ac.

Crop :- Sugarcane.
Ref :- I.A.R.I. 51(36). Type :- 'CMV'.

Object : - To study the effect of different depths of cultivation and different doses of \(\mathbf{N}\) and \(\mathbf{P}\) on two varieties of Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a), (b) Refer item 11 on page 143. (iii) 14 to 18.3.1951. (iv) (a) As per treatments. (b) to (e) N.A. (v) 10 ton/ac. of F.Y.M. (vi) As par treatments. (vii) Irrigated. (viii) Lever harrowing on 21.3.1951, hand hoeing on 19 to 23.5.1951, horse hoeing in June 1951 and earthing up from 3 to 6.7.1951. (ix) N.A. (x) June 1952.

\section*{2. TREATMENTS:}

\section*{Main plot treatments :}

3 ploughings: \(\mathrm{C}_{1}=\) Desi ploughing \(3^{\prime \prime}-4^{*}\) deep, \(\mathrm{C}_{2}=\) Tractor ploughing \(6^{\prime \prime}\) deep + discing + grubbing and \(\mathrm{C}_{3}=\) Tractor ploughing \(10^{\prime \prime}\) deep + discing + grubbing.

\section*{Sub-plot treatments :}

2 varieties: \(\mathrm{V}_{1}=\mathrm{CO} .312\) and \(\mathrm{V}_{2}=\mathrm{CO} .453\).
Sub-sub-plot treatments:
All combinations of (1) and (2)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=80\) and \(N_{2}=160 \mathrm{lb} / / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=80 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 2 sub-plots/main-plot and 6 sub-sub-plots/sub-plot. (b) N.A. (iii) 3. (iv) (a) \(51^{\prime} \times 27^{\prime}\). (b) \(45^{\circ} \times 21^{\prime}\). (v) \(3^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) Pyrilla. Top borer. (iii) Yield of sugarcane. (iv) (a) 1950 to N.A. (b) Yes. (c) N.A. (v) (a', 'b) No. (vi) and (vii) Nil.

\section*{3. RESULTS:}
(i) 18.5 ton \(/ \mathrm{ac}\).
(ii) (a) 4.67 ton/ac.
(b) 2.64 ton/ac.
(c) 2.32 ton/ac.
(iii) Levels of V and N differ highly significantly. Interaction \(\mathrm{V} \times \mathrm{C}\) is significant. Levels of C not significant Interaction \(V \times N P\) is significant while \(C \times N P\) is not significant.
(iv) Av. yield of sugarcane in tod/ac.
\begin{tabular}{l|llllll|l|ll|} 
& \(N_{0} \mathrm{P}_{0}\) & \(\mathrm{~N}_{0} \mathrm{P}_{1}\) & \(\mathrm{~N}_{1} \mathrm{P}_{0}\) & \(\mathrm{~N}_{1} \mathrm{P}_{1}\) & \(\mathrm{~N}_{2} \mathrm{P}_{0}\) & \(\mathrm{~N}_{2} \mathrm{P}_{1}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{~V}_{2}\) \\
\hline \(\mathbf{C}_{1}\) & 14.50 & 14.98 & 18.25 & 18.97 & 18.10 & 18.01 & 17.12 & 18.38 & 15.85 \\
\(\mathbf{C}_{2}\) & 16.31 & 16.73 & 18.44 & 19.74 & 20.34 & 22.04 & 18.94 & 19.15 & 18.72 \\
\(\mathbf{C}_{3}\) & 18.86 & 18.95 & 21.47 & 19.09 & 19.34 & 19.18 & 19.48 & 21.05 & 17.91 \\
\hline Mean & 16.56 & 16.85 & 19.39 & 19.26 & 19.26 & 19.74 & 18.51 & 19.53 & 17.49 \\
\hline \(\mathbf{V}_{1}\) & 18.66 & 18.09 & 20.76 & 19.37 & 19.70 & 20.59 & & & \\
\(\mathbf{V}_{2}\) & 14.46 & 15.61 & 18.02 & 19.16 & 18.82 & 18.89 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means
2. V marginal means
3. NP marginal means
\(=1.10\) ton/ac. 6. NP means at the same level of \(C=1.34\) ton/ac.
\(=0.39\) ton/ac. 7. \(C\) means at the same level of \(N P=1.65\) ton/ac.
\(=0.77\) ton/ac. 8. NP means at the same level of \(V=1.09 \mathrm{ton} / \mathrm{ac}\).
4. \(V\) means at the same level of \(C=0.68\) ton/ac. 9. \(V\) means at the same level of \(N P=1.07\) ton/ac.
5. C means at the same level of \(V=1.20\) ton/ac.

Object :-To stujy the effect of different depths of cultivation, and different doses of \(N\) and \(P\) on two varieties of sugarcane.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 11 to 15.3 .1952. (iv) (a) As per treatments. (b) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) N.A. (viii) Horse hoeing in April and May, weeding and earthing up in July, 1952. (ix) N.A. (x) N.A.

\section*{2. TREATMENTS :}
- Main-plot treatments :

3 ploughings: \(C_{1}=\) Desi plouging \(3^{\prime \prime}-4^{\prime \prime}\) depth, \(C_{2}=\) Tractor ploughing \(6^{\prime \prime}+\) discing + grubbing and \(\mathrm{C}_{3}=\) Tractor ploughing \(10^{*}+\) discing + grubbing.
Sub-plot treatments :
2 varieties: \(\mathrm{V}_{1}=\mathrm{CO} 312\) and \(\mathrm{V}_{2}=\mathrm{CO} 453\).
Sub-sub-plot treatments :
All combinations of (1) and (2).
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=40\) and \(N_{2}=80^{\prime} \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=80 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split plot. (ii) (a, 3 main-plots/block, 2 sub-plots/main-plot and 6 sub-sub-plots/sub-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(1 / 50\). ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Suffered from draught. (ii) Pyrilla effect. (iii) Yield of sugarcane. (iv) (a) 1950 to N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 22.96 ton/ac.
(ii) (a) 1.18 ton/ac.
(b) 1.57 ton/ac.
(c) 2.14 ton/ac.
(iii) Effects due to \(\mathrm{C}, \mathrm{NP}\) and interaction \(\mathrm{V} \times \mathrm{C}\) are significant, V effect is bighly significant while other effects are not significant.
(iv) Av. yield of sugarcane in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0} \mathrm{P}_{0}\) & \(\mathrm{N}_{0} \mathrm{P}_{1}\) & \(\mathrm{N}_{1} \mathrm{P}_{0}\) & \(\mathrm{N}_{1} \mathrm{P}_{1}\) & \(\mathrm{N}_{2} \mathrm{P}_{0}\) & \(\mathrm{N}_{2} \mathrm{P}_{1}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) \\
\hline \(\mathrm{C}_{1}\) & 19.00 & 18.65 & 21.91 & 23.80 & 23.41 & 24.87 & 21.94 & 25.70 & 18.18 \\
\hline \(\mathrm{C}_{2}\) & 21.33 & 23.10 & 25.60 & 25.33 & 23.35 & 24.70 & 23.90 & 28.69 & 19.12 \\
\hline \(\mathrm{C}_{3}\) & 22.03 & 22.74 & 23.66 & 22.20 & 23.74 & 23.84 & 23.04 & 28.84 & 17.23 \\
\hline Mean & 20.79 & 21.50 & 23.72 & 23.78 & 23.50 & 24.47 & 22.96 & 27.74 & 18.18 \\
\hline \(V_{1}\) & 24.46 & 26.71 & 28.86 & 28.80 & 27.71 & 29.91 & & & \\
\hline \(\mathrm{V}_{2}\) & 17.11 & 16.28 & 18.59 & 18.76 & 19.28 & 19.03 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(C\) marginal means
2. \(\mathbf{V}\) marginal means
3. NP marginal means
4. \(V\) means at the same level of \(C\)
\[
\begin{aligned}
& =0.28 \mathrm{ton} / \mathrm{ac} \\
& =0.30 \mathrm{ton} / \mathrm{ac} \\
& =0.71 \mathrm{ton} / \mathrm{ac} . \\
& =0.52 \mathrm{ton} / \mathrm{ac} \\
& =0.46 \mathrm{ton} / \mathrm{ac} .
\end{aligned}
\]
5. C means at the same level of \(V\)
6. NP means at the same level of \(C=1.24\) ton/ac.
7. \(C\) means at the same level of NP \(=1.16\) ton/ac.
8. NP means at the same level of \(V=1,09\) ton/ac.
9. \(V\) means at the same level of \(N P=0.95\) ton/ac.

\section*{Crop:- Sugarcane. \\ Ref:- I.A.R.I. 52(31). \\ Type :- 'DM'.}

Object :-To study the relative efficiency of some weedicides along with nitrogeneous fertilizers on the weed control and correlated yield on sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) \(15,16.3\).1952. (iv) (a) Tractor ploughing, tractor discings and desi ploughing. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Nil. (ix) N.A. (x) 25 to 29.41953.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3).
(1) 3 sources of \(N: \quad S_{1}=A / S, S_{2}=C / N\) and \(S_{3}=\) Cal. Nitrate.
(2) 3 levels of \(\mathrm{N}: \quad \mathrm{N}_{1}=40, \mathrm{~N}_{2}=80\) and \(\mathrm{N}_{3}=120 \mathrm{lb}\)./ac.
(3) 3 weedicides : \(\mathrm{W}_{0}=0, \mathrm{~W}_{1}=\) Distox at \(0.5 \mathrm{Ib} . / \mathrm{ac}\). and \(\mathrm{W}_{2}=\) Cobalt Sulphate at \(15 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) \(3^{3}\) Fact. confd.
(ii) (a) 9 .
(b) N.A. (iii) 2.
v) (a) \(50^{\prime} \times 17 \cdot 5^{\prime}\).
(b) \(50^{\prime} \times 12 \cdot 5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Below normal. (ii) Pyrilla affected the crop. (iii) Yield of sugarcane. (iv) (a) 1952 to 1954. (b) Yes. (c N.A. (v) (a) and (b) No. (vi) Nil. (vii) Raw data N.A.
5. RESULTS :
(i) 1760 ton/ac.
(ii) 3.97 ton/ac.
(iii) S effect alone is highly significant.
(iv) Av. yield of sugarcane in ton/ac.
\begin{tabular}{cccccc} 
Treatment & Av. yield & Treatment & Av. yield & Treatment & Av. yield \\
\(\mathrm{S}_{1}\) & 16.19 & \(\mathrm{~N}_{1}\) & 17.10 & \(\mathrm{~W}_{0}\) & 17.72 \\
\(\mathrm{~S}_{2}\) & 17.19 & \(\mathrm{~N}_{2}\) & 17.29 & \(\mathrm{~W}_{1}\) & 17.53 \\
\(\mathrm{~S}_{3}\) & 19.46 & \(\mathrm{~N}_{3}\) & 18.42 & \(\mathrm{~W}_{2}\) & 1755 \\
S.E./mean & \(=0.94\) ton/ac. & S.E./mean & \(=0.94\) ton/ac. & S.E./mean & \(=0.94\) ton/ac.
\end{tabular}

Crop:- Sugarcane.
Ref:- I.A.R.I. 53(37).
Type :- 'DM'.
Object :-To study the relative efficiency of some weedicides along with nitrogeneous fertilizers on the weed control and correlated yield on Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 3rd week of February, 1953. (iv) (a) Victory ploughing, desi ploughing and sohaga. (b) to (e) N.A. (v) Nil. (vi) CO. 312. (vii) N.A. (viii) One earthing up. (ix) and (x) N.A.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 sources of \(N: S_{1}=A / S, S_{2}=C / N\) and \(S_{3}=C a l\). Nitrate.
(2) 3 levels of \(\mathrm{N}: \mathrm{N}_{2}=40, \mathrm{~N}_{2}=80\) and \(\mathrm{N}_{3}=120 \mathrm{lb}\)./ac.
(3) 3 weedicides : \(\mathrm{W}_{0}=0, \mathrm{~W}_{1}=\) Distox at \(0.5 \mathrm{lb} . / \mathrm{ac}\). and \(\mathrm{W}_{2}=\) Cobalt Sulphate at \(15 \mathrm{lb} . / \mathrm{ac}\),
3. DESIGN :
(i) \(3^{3}\) Fact. confounded. (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii) 2 . (iv) (a) \(60^{\prime} \times 17.5^{\circ}\). (b) \(60^{\prime} \times 12.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Slightly poor in southern field. (ii) Top borer infected the crop. (iii) Sugarcane yield. (iv) (a) 1952 to 1954. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) 17.51 ton/ac.
(ii) 3.85 ton/ac.
(iii) Only N effect is highly significant.
(iv) Av. yield of sugarcane in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(S_{8}\) & Mean & \(\mathrm{W}_{0}\) & \(\mathrm{W}_{1}\) & \(\mathrm{W}_{2}\) \\
\hline \(\mathrm{N}_{1}\) & 15.31 & 16.56 & 20.43 & 17.43 & 17.31 & 17.75 & 17.23 \\
\hline - \(\mathrm{N}_{2}\) & 16.53 & 14.93 & 20.76 & 17.41 & 17.72 & 17.67 & 16.84 \\
\hline \(\mathrm{N}_{3}\) & 16.25 & 16.10 & 20.74 & 17.70 & 16.74 & 19.20 & 17.15 \\
\hline Mean & 16.03 & 15.86 & 20.64 & 17.51 & 17.26 & 18.21 & 17.07 \\
\hline \(\mathrm{W}_{0}\) & 15.34 & 15.58 & 20.86 & & & & \\
\hline \(\mathrm{W}_{1}\) & 16.66 & 16.05 & 21.93 & & & & \\
\hline \(\mathrm{W}_{2}\) & 16.10 & 15.97 & 19.14 & & & & \\
\hline
\end{tabular}
S.E. of any marginal mean \(\quad=0.91\) ton/ac.

Crop:- Cotton.
Ref :- I.A.R.I. 50(7).
Type :- ' \(M\) '.

Object:-To find out the residual effect of combinations of \(\mathbf{N}_{2} \mathbf{P}\) and \(K\), applied to berseem on succeeding Cotton crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) Berseem-Maize-Berseem-Cotton-Wheat. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 5.6.1950. (iv) (a) One ploughing with victory plough and two ploughings with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) 4 horse hoeings, 1 thinning and 1 weeding. (ix) N.A. (x) 1st picking on 12, 19.10.1950 and 2nd picking on 20, 23.11.1950.

\section*{2. TREATMENTS :}
1. Control (no manure).
5. N at \(25 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
2. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
6. N at \(50 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
3. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\). 7. N at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
4. N at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at 120 lb ./ac. 8. Fallow.

Manures applied to previous berseem crop.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(36^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Kapas yield. (iv) (a) 1948-1953. (b) Yes. (c) N.A. (v) (a) and (b) No.
(vi) and (vii) Nil.
i. RESULTS :
\(\begin{array}{lll}\text { i) } & 1295 & \mathrm{lb} . / \mathrm{ac} .\end{array}\)
(ii) \(48.55 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.
\begin{tabular}{ccccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1144 & & 5. & 1274 \\
2. & 1242 & & 6. & 1311 \\
3. & 1236 & 7. & 1389 \\
4. & 1391 & \(\therefore\) & 8. & 1373 \\
S.E./mean & \(=19.82 \mathrm{lb} . / \mathrm{ac}\). & & -
\end{tabular}
```

Crop:- Cotton. Ref :- I.A.R.I. 52(6). Type :- 'M'.

```

Object:-To study the residual effect of combinations of \(\mathrm{N}, \mathrm{P}\) and K , applied toderseem crop, on succeeding Cotton crop.
1. - BASAL CONDITIONS :
(i) (a) Wheat-Berseem-Cotton. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 7.5.1953. (iv) (a) 1 ploughing with victory plough and 1 with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) 2 bullock hoeings and 2 thinnings. (ix) N.A. (x) 1 st picking 14 to 20.10.1952. 2nd picking 9 to 16.11.1952.
2. TREATMENTS :
1. Control (no manure). 5. N at \(25 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at 120 lb ./ac.
2. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\). 6. N at \(50 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
3. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\). 7. N at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
4. N at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\). 8. Fallow.

Manures applied to berseem in Rabi 1951-52.
3. DESIGN :
(i) R.B.D. (ii) (a) 8 . (b) N.A. (iii) 6 . (iv) (a) N.A. (b) \(36^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL: ,
(i) N.A. (ii) Mild attack of jassid and white fly on 26.7.1953. (iii) Yield of kapas. (iv) (a) 1948-1953 N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1571 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(118.5 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1319 & 5. & 1601 \\
2. & 1579 & 6. & 1625 \\
3. & 1601 & 7. & 1734 \\
4. & 1699 & 8. & 1412 \\
& S.E./mean & \(=48.4 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

> Crop :- Cotton. Ref :- I.A.R.I. 53(19). Type :- ‘M’.

Object :-To study the residual effect of combinations of \(\mathrm{N}, \mathrm{P}\) and K , applied to berseem crop, on succeeding Cotton crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) Cotton-Berseem-Maize. (b) Berseem. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) F-216. (vii) N.A. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS :
1. Control (no manure). \(5 . \mathrm{N}\) at \(25 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
2. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
6. N at \(50 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{rb} / \mathrm{ac}\).
3. \(\mathrm{P}_{2} \mathrm{O}_{5}\) a. \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac} .7 . \mathrm{N}\) at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O} \mathrm{at} 120 \mathrm{lb} . / \mathrm{ac}\).
4. \(\quad \mathrm{N}\) at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at 120 lb ./ac. 8. Fallow.

Manures applied to berseem in Rabi 1952-53.
3. DESIGN:
(i) R.B.D. (ii) (a) 8 . (b) N.A. (iij) 6. (iv) (a) N.A. (b) \(36^{\circ} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Yield of kapas. (iv) (a) 1948-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1288 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(89.69 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1120 & 5. & 1361 \\
2. & 1345 & 6. & 1341 \\
3. & 1383 & 7. & 1305 \\
4. & 1317 & 8. & 1129 \\
& S.E./mean & \(=36.62 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Cotton.
Ref :- I.A.R.I. 52(39).
Type :- 'MV'.
Object :-To study the performance of different varieties of Cotton under local conditions and their response to nitrogenous manuring.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 2, 3 May, 1952. (iv) (a) Three ploughings. (b) to (e) N.A. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) 4 weedings, 1 thinning and 1 gap filling. (ix) N.A. (x) 2ad week of November, 1952 and last week of December, 1952.

\section*{2. TREATMENTS :}

Main-plot treatments :
8 varieties: \(\mathrm{V}_{1}=\mathrm{M}-4, \mathrm{~V}_{2}=\mathrm{F} .216, \mathrm{~V}_{3}=\mathrm{F} .216 / 3, \underline{\mathrm{I}} \mathrm{V}_{4}=\mathrm{F} .216 / 14, \mathrm{~V}_{5}=23 . \mathrm{F}, \mathrm{V}_{6}=100 . \mathrm{F}, \mathrm{V}_{7}=\mathrm{M} . \mathrm{A} . \mathrm{V}\) and \(V_{8}=\) B.C. 68.

\section*{Sub-plot treatments:}

2 doses of \(\mathrm{N}: \mathrm{N}_{0}=\) No manure and \(\mathrm{N}_{1}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{C} / \mathrm{N}\) and 20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
Manures applied on 11.7.1952 and 3.9.1952.
3. DESIGN :
(i) Split-plot. (ii) (a) 8 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(33^{\prime} \times 25^{\prime}\). (b) \(31^{\prime} \times 23^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Red leaf disease more in \(N_{0}\). plots than in \(N_{1}\) plots. Pink boll worm effected all the plots unformly. (iii) Kapas yield. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1578 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(109.4 \mathrm{lb} . / \mathrm{ac}\).
(b) \(79.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of V and N are highly significant while their interaction is significant.
(iv) Av. yield of kapas in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathbf{V}_{\mathbf{2}}\) & \(\mathbf{V}_{\mathbf{3}}\) & \(\mathbf{V}_{\mathbf{4}}\) & \(\mathbf{V}_{5}\) & \(\mathrm{V}_{6}\) & \(\mathrm{V}_{7}\) & \(\mathrm{V}_{8}\) & M 2 an \\
\hline \(\mathrm{N}_{0}\) & 1591 & 1661 & 1558 & 1640 & 1341 & 1442 & 1445 & 1168 & 1493 \\
\hline \(\mathrm{N}_{1}\) & 1759 & 1850 & 1722 & 1846 & 1506 & 1578 & 1652 & 1385 & 1662 \\
\hline Mean & 1675 & 1755 & 1642 & 1743 & 1424 & 1511 & 1599 & 1276 & 1578 \\
\hline
\end{tabular}
S.E. of difference of two
1. V marginal means
\[
\begin{aligned}
& =54.7 \mathrm{lb} . / \mathrm{ac} \\
& =19.9 \mathrm{lb} . / \mathrm{ac} \\
& =56.2 \mathrm{lb} . / \mathrm{ac} \\
& =67.6 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]
\(\begin{array}{ll}\text { 2. } \mathrm{N} \text { marginal means } & =19.9 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } \mathrm{N} \text { means at the same level of } \mathrm{V} & =56.2 \mathrm{lb} . / \mathrm{ac} .\end{array}\)
4. \(V\) means at the same level of \(N \quad=67.6 \mathrm{lb} . / \mathrm{ac}\)

Object :-To find out the effect of different spacings and dates of sowing on different varieties of Cotton.
1. BASAL CONDITIONS :
(i) (a) No. (b) Berseem. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) As per treatments. (iv) (a) Twice grubbed and once disced. (b) to (e) N.A. (v) G.N.C. A/S, Linseed cake, Castor cake and chillies cake : dose N.A. Berseem buried in March, 1951. (vi) American cotton. (vii) Irrigated. (viii) 2 intercultures, 2 weedings, 2 hoeings and 1 thinning. (ix) \(9.5^{\circ}\). ( \(x\) ) Picking on 12, 18.10.1951 to 23.11.1951 and 28.11.1951 to 13.12.1951.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 dates of sowing : \(D_{1}=24.4 .1951, D_{2}=14.5 .1951, D_{3}=25.5 .1951\) and \(D_{4}=10.6 .1951\).
Sub-plot treatments :
4 varieties: \(\mathrm{V}_{1}=\mathrm{M}-4, \mathrm{~V}_{2}=\mathrm{F}-216, \mathrm{~V}_{3}=\mathrm{F}-320\) and \(\mathrm{V}_{4}=\mathrm{L} . \mathrm{SS}\).
Sub-sub-plot treatments :
3 spacings : \(S_{1}=3^{\prime}, S_{2}=2.5^{\prime}\) and \(S_{3}=2^{\prime}\).

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 4 main-plots/blocks, 4 sub-plots/main-plot and 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(23.5^{\circ} \times 37.5^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Sowing was affected due to locust. Red leaf blight severe in \(\mathrm{V}_{1}\) and \(\mathrm{V}_{3}\). (iii) Kapas yield. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1258 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(320.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(249.0 \mathrm{lb} . / \mathrm{ac}\).
(c) \(166.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(D\) is highly significant. \(V\) and \(D \times V\) are significant. Others are not significant.
(iv) Av. yield of kapas in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & Mean & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) \\
\hline \(\mathrm{V}_{1}\) & 1295 & 1403 & 1396 & 1142 & 1309 & 1259 & 1334 & 1334 \\
\hline \(\mathrm{V}_{2}\) & 1294 & 1347 & 1190 & 985 & 1204 & 1219 & 1157 & 1238 \\
\hline \(\mathrm{V}_{3}\) & 1480 & 1326 & 1366 & 1157 & 1332 & 1321 & 1345 & 1331 \\
\hline \(\mathrm{V}_{4}\) & 1591 & 1170 & 1191 & 806 & 1189 & 1151 & 1270 & 1147 \\
\hline Mean & 1415 & 1311 & 1286 & 1022 & 1258 & 1237 & 1276 & 1262 \\
\hline \(S_{1}\) & 1353 & 1334 & 1287 & 975 & & & & \\
\hline \(\mathrm{S}_{2}\) & 1442 & 1344 & 1264 & 1055 & . & & & \\
\hline \(\mathrm{S}_{3}\) & 1450 & 1256 & 1307 & 1037 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means
2. \(V\) marginal means
3. \(S\) marginal means
4. \(V\) means at the same level of \(D\)
5. D means at the same level of \(V=109.6 \mathrm{lb}\)./ac.
\(=65.3 \mathrm{lb} . / \mathrm{ac}\).
\(=50.8 \mathrm{lb} . / \mathrm{ac}\).
\(=29.5 \mathrm{lb} . / \mathrm{ac}\).
6. \(S\) means at the same level of \(D\)
7. D means at the same level of \(S\)
8. S means at the same level of \(V\)
lb./ac.
8. \(S\) means at the same level of \(S\)
lb./ac.
\(=59.0 \mathrm{lb} . / \mathrm{ac}\).
\(=70.0 \mathrm{lb} . / \mathrm{ac}\).

Object :-To find out a suitable variety for Delhi tract with optimum time of sowing and spacing in between lines.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 25 th April, 10 th May, 25th May and 10th June. (iv) (a) 1 ploughing by victory plough, double discing by tractor, grubbing and levelling by karha. (b) to (e) N.A. (v) Berseem ploughed in as G.M. (vi) American Cotton. (vii) Irrigated. (viii) 7 hoeing and 3 weedings. (ix) \(24.24^{*}\). (x) Picking from middle of Oct. to first week of January.

\section*{2. TREATMENTS:}

Main-plot treatments :
4 dates of sowing : \(D_{1}=25.4 .1952, D_{2}=10.5 .1952, D_{3}=25.5 .1952\) and \(D_{4}=10.6 .1952\).
Sub-plot treatments :
4 varieties: \(V_{1}=M-4,=V_{2}=F-216, V_{3}=F-320\) and \(V_{4}=L . S S\).
Sub-sub-plot treatments:
3 spacings line to line : \(S_{2}=3^{\prime}, S_{1}=2 \cdot 5^{\prime}\) and \(S_{3}=2^{\prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block; 4 sub-plots/main-plot; 3 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) \(23.5^{\prime} \times 37.5^{\prime}\) (b) \(1 / 60\) ac. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Normal. No lodging. (ii) No. (iii) Yield of kapas. (iv) (a) \(1950-\) N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1062 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(368.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(251.4 \mathrm{lb} . / \mathrm{ac}\).
(c) \(109.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of \(\mathrm{D}, \mathrm{V}\) and S are highly significant. Others are not significant.
(iv) Av. yield of kapas in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & Mean & \(S_{1}\) & \(S_{2}\) & \(S_{3}\) \\
\hline \(\mathbf{V}_{1}\) & 1245 & 938 & 1005 & 672 & 965 & 914 & 930 & 1051 \\
\hline \(\mathrm{V}_{2}\) & 1412 & 1091 & 1222 & 863 & 1147 & 1006 & 1165 & 1271 \\
\hline \(\mathrm{V}_{3}\) & 1428 & 1046 & 1212 & 833 & 1130 & 1049 & 1132 & 1209 \\
\hline \(\mathrm{V}_{4}\) & 1370 & 1041 & 983 & 635 & 1007 & 973 & 990 & 1060 \\
\hline Mean & 1364 & 1029 & 1106 & 751 & 1062 & 986 & 1054 & 1148 \\
\hline \(S_{1}\) & 1243 & 981 & 1031 & 688 & & & & \\
\hline \(\mathrm{S}_{2}\) & 1366 & 1009 & 1082 & 759 & & & & \\
\hline \(\mathrm{S}_{3}\) & 1482 & 1098 & 1204 & 806 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means
\(=75.3 \mathrm{lb} . / \mathrm{ac}\).
\(=51.3 \mathrm{lb} . / \mathrm{ac}\).
\(=19.3 \mathrm{lb} . / \mathrm{ac}\).
\(=102.7 \mathrm{lb} . / \mathrm{ac}\).
\(=116.5 \mathrm{lb} . / \mathrm{ac}\).
6. \(S\) means at the same level of \(D\)
\(=38.6 \mathrm{lb} . / \mathrm{ac}\).
2. \(V\) marginal means
3. \(S\) marginal means
4. \(V\) means at the same level of \(D\)
\(=102.7 \mathrm{lb} . / \mathrm{ac}\).
7. \(D\) means at the same level of \(S\)
8. \(S\) means at the same level of \(V\)
\(=81.6 \mathrm{lb} . / \mathrm{ac}\).
\(3.6 \mathrm{lb} . / \mathrm{ac}\).
5. \(D\) means at the same level of \(V\)
9. \(V\) means at the same level of \(S\)
\(=60.3 \mathrm{lb} . / \mathrm{ac}\).

Object:-To find out a suitable variety for Delhi tract with optimum time of sowing and spacing in between lines.
1. BASAL CONDITIONS:
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 25.4,1953, 18.5.1953 and 10.6.1953. (iv) (a) Ploughing twice with desi plough preparing land with desi plough after soaking twice and beaming. (b) to (e) N.A. (v) G.N.C. at \(213 \mathrm{lb} . / \mathrm{ac}\). applied on 30/31. 7.1953. (vi) American cotton. (vii) Irrigated. (viii) 3 weedings, 3 thinnings and 3 hoeings. (ix) and (x) N.A.
2. TREATMENTS:

All combinations of (1), (2) and (3).
(1) 3 dates of sowing : \(D_{1}=25.4 .1953, D_{2}=18.5 .1953\) and \(D_{3}=10.6 .1953\).
(2) 3 varieties: \(\mathrm{V}_{1}=\mathrm{F}-216, \mathrm{~V}_{2}=\mathrm{F}-320\) and \(\mathrm{V}_{3}=\mathrm{M}-4\).
(3) 3 spacings : \(S_{1}=1 \frac{1}{2}^{\prime}, S_{2}=2^{\prime}\) and \(S_{3}=2 \frac{1}{2}^{\prime}\).
3. DESIGN :
(i) \(3^{3}\) Fact. in R.B.D. (ii) (a) 27 (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(30^{\prime} \times 24^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Yield of kapas. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1629 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(617.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of kapas in Ib./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(V_{3}\) \\
\hline \(\mathrm{S}_{1}\) & 1971 & 1794 & 1341 & 1712 & 1761 & 1712 & 1662 \\
\hline [ \(\mathbf{S}_{2}\) & 1753 & 1588 & 1382 & 1580 & 1712 & 1415 & 1505 \\
\hline \(\mathrm{S}_{3}\) & 1868 & 1744 & 1201 & 1605 & 1687 & 1341 & 1786 \\
\hline Mean & 1868 & 1712 & 1308 & 1629 & 1720 & 1489 & 1687 \\
\hline \(\mathrm{V}_{1}\) & 1967 & 1786 & 1415 & & & & \\
\hline \(\mathrm{V}_{2}\) & 1753 & 1605 & 1111 & & & & \\
\hline \(\mathrm{V}_{3}\) & 1893 & 1744 & 1415 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal means & \(=102.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=178.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-‘Cotton. Ref:- I.A.R.I. 52 (49). Type :- 'CM'.

Object : - To study the effect of depths of ploughing and method of application of fertilizers.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer itern 11 on page 143. (iii) \(18,19.5 .1952\). (iv) (a) As per treatments. (b) to (e) N.A. (v) N.A. (vi) F-216. (vii) Irrigated. (viii) 1 weeding by khurpl, 2 hoeings with bullock hoe and 1 thinaing. (ix) N.A. (x) 3 pickings from 22.9.1952 to 4.12.1952.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

3 depths of ploughing : \(A_{1}=9^{\prime \prime}\) to \(10^{\prime \prime}\) deep ploughing by tractor followed by grubbing, \(A_{2}=5^{\prime \prime}\) to \(6^{\prime \prime}\) deep ploughing by bullock soil turnin; plough followed by country plough and \(\mathrm{A}_{3}=4^{\prime \prime}\) to \(5^{\prime \prime}\) deep ploughing by country plough.
Sub-plot treatments :
2 methods of application : \(\mathrm{B}_{1}=\) Broadcast and \(\mathrm{B}_{2}=\) Placement.
Sub-sub-plot treatments :
4 manures : \(M_{1}=A / S\) at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, \mathrm{M}_{2}=\mathrm{G} . \mathrm{N} . C\). at 40 lb . \(/ \mathrm{ac}\). of \(\mathrm{N}, \mathrm{M}_{3}=\mathrm{A} / \mathrm{S}\) at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Selecto Phos. at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{4}=\) G.N.C. at \(40 \mathrm{lb} . / \mathrm{ac} .+\) Agro. Phos. at 80 \(\mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
Manures applied on 18, 19.5.1952.
3. DESIGN :
(i) Spl t-plot. (ii) (a) 3 maia-plots/block; 2 sub-plots/main-plot and 4 sub-sub-plots/sub-plot. (b) N.A. (iii) 5. (iv) (a) \(30^{\prime} \times 21^{\prime}\) (b) \(27^{\prime} \times 18^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Very minor attack of jassids and pink ball worm. (iii) Yield of kapas. (iv) (a) 19521954. (b) No. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(\quad 1555 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(297.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(197.5 \mathrm{lb} . / \mathrm{ac}\).
(c) \(142.4 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effects of \(A\) and \(M\) are highly significant and main effect of \(B\) is significant. Others are not s:gnificant.
(iv) Av. yield of kapas in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & Mean & \(\mathrm{B}_{1}\) & \(\mathrm{B}_{2}\) \\
\hline \(\mathrm{A}_{1}\) & \(1: 21\) & 1489 & 1346 & 1406 & 1391 & 1370 & 1412 \\
\hline \(\mathrm{A}_{2}\) & 1553 & 1634 & 1577 & 1603 & 1592 & 1562 & 1622 \\
\hline \(\mathrm{A}_{3}\) & 1546 & 1755 & 1633 & 1791 & 1681 & 1607 & 1755 \\
\hline Mean & 1473 & 1626 & 1519 & 1600 & 1555 & 1513 & 1596 \\
\hline \(\mathrm{B}_{1}\) & 1420 & 1586 & 1523 & 1522 & & & \\
\hline \(\mathrm{B}_{2}\) & 1526 & 1665 & 1515 & 1677 & & & \\
\hline
\end{tabular}
S.E. of difference of two

1 A marginal means \(\quad=66.3 \mathrm{lb} . / \mathrm{ac} .6\). M means at the same level of \(A=63.7 \mathrm{lb} \mathrm{ac}\).
2. \(B\) marginal means \(\quad=35.5 \mathrm{lb} . / \mathrm{ac} .7\). A means at the same level of \(M=864 \mathrm{lb}\)./ac.
3. \(M\) marginal means \(\quad=36.8 \mathrm{lb} . / \mathrm{ac}\). 8. \(M\) means at the same level of \(B=52.0 \mathrm{lb} . / \mathrm{ac}\).
4. B means at the same level of \(A\)
\(=62.7 \mathrm{lb} . / \mathrm{ac}\). 9. B means at the same level of \(\mathrm{M}=57.9 \mathrm{lb} . / \mathrm{ac}\).
5. A means at the same level of \(B\) \(=82.7 \mathrm{lb} . / \mathrm{ac}\).
Crop:- Cotton. Ref:- I.A.R.I. 53(50). Type :- 'CM.

Object:-To study the effect of depth of ploughing and method of application of fertilizers.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) N.A. \({ }^{-}\)(c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) 14 to 17.5.1953. (iv) (a) As per treatments. (b) ito (e) N.A. (v) N.A. (vi) F-216. (vii) Irrigated. (viii) 3 hoeings and 3 weedings with khurpi. (ix) N.A. (x) Picking from 28.9.1953, to 4 10.1953.

\section*{2. TREATMENTS:}

\section*{Main-plot treatments :}

3 depths of ploughing: \(A_{1}=\) Tractor ploughing \(9^{*}-10^{\circ}\) deep followed by grubbing. \(A_{2}=\) Bullock victory plough \(5^{\prime \prime}-6^{\prime \prime}\) deep followed by country plough and \(A_{3}=4^{\prime \prime}-5^{\prime \prime}\) deep country plough.

\section*{Sub-plot treatments :}

2 methods of application of manure : \(\mathrm{B}_{1}=\) Broadcast and \(\mathrm{B}_{2}=\) Placement
Sub-sub-plot treatments :
4 manures : \(M_{1}=A / S\) at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, \mathrm{M}_{2}=\mathrm{G} . \mathrm{N} . C\). at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, \mathrm{M}_{3}=\mathrm{A} / \mathrm{S} 40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at \(80 \mathrm{lb} . / \mathrm{ac}\). of, \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{4}=G . N . C\). at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+\) Super at \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
Manures applied at the time of sowing.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 3 main-plots/replication, 2 sub-plots/main-plot and 4 sub-sub-plots/sub-plot. (b) N.A. (iii) 5. (iv) (a) \(30^{\prime} \times 21^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) N.A. (ii) N.A. (iii) Yield of kapas. (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) \(1384 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(378.5 \mathrm{lb} / \mathrm{ac}\).
(b) \(1860 \mathrm{lb} / \mathrm{ac}\).
(c) \(99.6 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effect of \(B\) alone is highly significant.
(iv) Av. yield of kapas in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(M_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & Mean & \(\mathrm{B}_{1}\) & \(\mathrm{B}_{2}\) \\
\hline \(\mathrm{A}_{1}\) & 1336 & 1333 & 1452 & 1460 & 1395 & 1483 & 1308 \\
\hline \(\mathrm{A}_{2}\) & 1450 & 1468 & 1523 & 1351 & 1448 & 1503 & 1393 \\
\hline \(A_{3}\) & 1419 & 1322 & 1232 & 1262 & \(13 \mathrm{C8}\) & 1359 & 1257 \\
\hline Mean & 1402 & 1374 & 1402 & 1358 & 1384 & 1448 & 1319 \\
\hline \(\mathrm{B}_{1}\) & 1396 & 1479 & 1435 & 1484 & & & \\
\hline \(\mathrm{B}_{2}\) & 1408 & 1269 & 1368 & 1231 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. A marginal means \(\quad=84.7 \mathrm{lb} . / \mathrm{ac}\). 6. M means at the same level of \(\mathrm{A}=44.5 \mathrm{lb} . / \mathrm{ac}\).
2. \(B\) marginal means \(\quad=33.9 \mathrm{lb} . / \mathrm{ac}\). 7. \(A\) means at the same level of \(M=93.0 \mathrm{lb} . / \mathrm{ac}\).
3. \(M\) marginal means \(\quad=25.7 \mathrm{lb}\)./ac.
8. M means at the same level of \(B=35.4 \mathrm{lb}\)./ac.
4. \(B\) means at the same level of \(A=58.9 \mathrm{lb} . / \mathrm{ac}\).
9. B means at the same level of \(M=46.3 \mathrm{lb} . / a c\).
5. A means at the same level of \(B=94.3 \mathrm{lb} . / \mathrm{ac}\).
Crop:- Tobacco. Ref :- I.A.R.I. 53(44). Type :- 'M'.

Object :-To study the effect of different levels of \(\mathrm{N}, \mathrm{P}\) and K on Tobacco.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) \(12,13.2 .1953\). (iv) (a) 1 ploughing with victory plough and 2 with desi plough. (b) and (c) N.A. (d) \(2 \frac{y}{2}^{\prime}\) between rows and 2 ' between plants (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) 4.6 .1953 to 7.6 .1953.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=40\) and \(\mathrm{N}_{2}=80 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=40\) and \(\mathrm{K}_{2}=80 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{3}\) Factorial confounded. (ii) (a) 9 . (b) N.A. (iii) 2. (iv) (a) \(46 \frac{1}{2}^{\prime} \times 17 \frac{1}{2}^{\prime} \cdot\) (b) \(42^{\prime} \times 12 \frac{1^{\prime}}{}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) The growth was normal. (ii) 1 to \(2 \%\) plants effected by stem-rot. (iii) Yield of tobacco leaf. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :'
(i) \(1216 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(156.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Levels of N alone differ significantly.
(iv) Av. yield of tobacco leaf in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{8}\) \\
\hline \(\mathrm{P}_{0}\) & 1026 & 1214 & 1238 & 1159 & 1155 & 1144 & 1179 \\
\hline \(\mathrm{P}_{1}\) & 1010 & 1373 & 1261 & 1215 & 1312 & 1172 & 1160 \\
\hline \(\mathrm{P}_{2}\) & 1126 & 1349 & 1350 & 1275 & 1255 & 1261 & 1308 \\
\hline Mean & 1054 & 1312 & 1283 & 1216 & 1241 & 1192 & 1216 \\
\hline \(\mathrm{K}_{0}\) & 1053 & 1380 & 1290 & \multicolumn{4}{|l|}{\multirow{3}{*}{:}} \\
\hline \(\mathrm{K}_{1}\) & 1061 & 1308 & 1208 & & & & \\
\hline \(\mathrm{K}_{4}\) & 1050 & 1248 & 1350 & & & & \\
\hline
\end{tabular}
S.E. of any marginal mean
S.E. of body of any table
\(=45.2 \mathrm{lb} . / \mathrm{ac}\).
\(=78.3 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Tobacco. Ref :- I.A.R.I. 51(8b). Type:- \(M\).
Object :-To determine the nutritional requirements of Indian soils.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to No. I.A.R.I. 51:8) under OATS.
5. RESULTS:
(i) \(956.2 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(66.65 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of tobacco leaf in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 258 & 5. & 1011 \\
2. & 1011 & 6. & 1037 \\
3. & 1192 & 7. & 1067 \\
4. & 1115 & 8. & 1037 \\
& S.E./mean & \(=33.33 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
```

Crop:- Jute (Kharif).
Ref:- I.A.R.I. E2(o3). Type :- 'CV'.

```

Object :-To find out the higher yielding variety when sown at different times.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) As per treatments. (iv) (a) Vistory plough once and iesi plough thrice. (b) to (e) N.A. (v) Nil. (vi, As per treatmeats. (vii) Irrigated. (viii) Weeding. (ix) N.A. (x) 14.8.1952, 2.9.1952, 19.9.1952 and 6.10.1952.

\section*{2. TREATMENTS:}

Main-plot treatments :
4 dates of sowing: \(D_{1}=25.3 .1952, D_{2}=15.4 .1952, D_{3}=5.5 .1952\) and \(D_{4}=20.5 .1952\).
Sub-plot treatments :
2 varieties: \(\mathrm{V}_{1}=\mathrm{D}-154\) and \(\mathrm{V}_{2}=\mathrm{O}-4025\).
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(16^{\prime} \times 16^{\prime}\). (b) \(15^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of fibre and seed. (iv) (a) 1951-1953. (b) No. (c) N.A.'. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1742 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(364.8 \mathrm{lb} . / \mathrm{ac}\).
(b) \(549.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only \(V\) effect is highly significant.
(iv) Av. vield of jute fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}{ }^{\text {' }}\) & \(D_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & Mean \\
\hline \(\mathrm{V}_{1}\) & 1056 & 989 & 1642 & 1425 & 12:8 \\
\hline \(\mathrm{V}_{2}\) & 2178 & 2129 & 2313 & 2204 & 2206 \\
\hline Mean & 1617 & 1559 & 1977 & 1814 & 1742 \\
\hline \multicolumn{6}{|l|}{S.E. of difference of two} \\
\hline \multicolumn{4}{|l|}{1. D marginal means} & \multicolumn{2}{|l|}{\(=182.4 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline \multicolumn{4}{|l|}{2. V marginal means} & \multicolumn{2}{|l|}{\(=194.2 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline \multicolumn{4}{|l|}{3. V means at the same level of \(D\)} & \multicolumn{2}{|l|}{\(=388.4 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline \multicolumn{4}{|l|}{4. D means at the same level of \(V\)} & \multicolumn{2}{|l|}{\(=329.7 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

> Crop :- Jute (Kharif). Ref :- I.A.R.I. 53(55). Type :- ‘CV’.

Object:-To find out the higher yielding variety when sown at different times.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) As per treatments. (iv) (a) 3 ploughings with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) 11.8.1953, 28.8.1953, 18.9.1953 and 8.10.1953.
2. TREATMENTS:

\section*{Main-plot treatments :}

4 dates of sowing: \(\mathrm{D}_{1}=25.3 .1953, \mathrm{D}_{2}=15.4 .1953, \mathrm{D}_{3}=5.5 .1953\) and \(\mathrm{D}_{4}=255.1953\).
Sub-plot treatments :
2 varieties: \(\mathrm{V}_{1}=\mathrm{D}-154\) and \(\mathrm{V}_{2}=\mathrm{O}-40-753\).
3. DESIGN :
(i) Split-plot.
(ii) (a) 4 main-plots/block and 2 sub-plots/main-plot.
(b) N.A. (iii)
4. (iv) (a) \(16^{\prime} \times 16^{\prime}\).
(b) \(15^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (ii) Yield of jute fibre. (iv) (a) 1951-1953. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(769 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(335.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(204.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of \(D\) and \(V\) are significant. Interaction is not significant.
(iv) Av. yield of jute fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & Mean \\
\hline \(V_{1}\) & 7:57 & 699 & 658 & , 362 & 619 \\
\hline \(\mathrm{V}_{2}\) & 1029 & 1259 & 675 & 716 & 920 \\
\hline 1 Mean & 893 & 979 & 667 & 539 & 769 \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means
\(=167.9 \mathrm{lr} . / \mathrm{ac}\).
2. \(V\) marginal means
\(=72.2 \mathrm{lb}\)./ac.
3. \(V\) means at the same level of \(D\)
\(=144.3 \mathrm{lb} . / \mathrm{ac}\).
4. \(D\) means at the same level of \(V\)
\(=196.3 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Rape.
Ref :- I.A.R.I. 50(9a).
Type :- ' M '.
Object :-To determine the nutritional requirements of Indian soils.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to I.A.R.I. 50(9) under OATS.
5. RESULTS :
(i) \(458.3 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(102.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of seed in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 257.6 & 5. & 393.3 \\
2. & 389.2 & 6. & 384.3 \\
3. & 389.2 & 7. & 395.0 \\
4. & 434.5 & 8. & 366.2 \\
& \multicolumn{2}{c}{ S.E./mean } & \(=51.02 \mathrm{lb}\)./ac.
\end{tabular}

Crop :- Rape. Ref:- I.A.R.I. 51(8a). Type:- 'M'.
Object :-To determine the nutritional requirements of Indian soils.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to No. I.A.R.I. 51 (8) under OATS.
5. RESULTS :
(i) \(1302 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(117.7 \mathrm{lb} / / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 1040 & 5. & 1361 \\
2. & 1331 & 6. & 1361 \\
3. & 1346 & 7. & 1331 \\
4. & 1361 & 8. & 1285 \\
& \multicolumn{2}{c}{ S.E./mean } & \(=59.25 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Sesamum (Kharif). Ref:- I.A.R.I.s52(61). Type :- 'M'.

Object :-To study the effect of different forms of organic and inorganic manures in combination with \(P\) on the yield of Sesamum.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 4.7.1952. (iv) (a) 1 ploughing with victory plough. 2 with desi and one with tractor. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 6 to 13, 16.10.1952, and 21 to 26.10.52.

\section*{2. TREATMENTS :}

Main-plot treatments :
3 sources of \(N: \quad S_{1}=A / S, S_{2}=\) F.Y.M. and \(S_{3}=\) G.N.C.

\section*{Sub-plot treatments :}

All combinations of (1) and (2)
(1) 3 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30\) and \(\mathrm{N}_{2}=60 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=80 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication and 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A.
(b) \(33^{\prime} \times 22^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Poor germination (ii) Nil. (iii) Yield of sesamum. (iv) (a) \(1952-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(441 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(176.1 \mathrm{lb} . / \mathrm{ac}\).
(b) \(238.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant .
(iv) Av yield of sesamum in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|llllll|l} 
& \(\mathrm{N}_{0} \mathrm{P}_{0}\) & \(\mathrm{~N}_{1} \mathrm{P}_{0}\) & \(\mathrm{~N}_{2} \mathrm{P}_{0}\) & \(\mathrm{~N}_{0} \mathrm{P}_{1}\) & \(\mathrm{~N}_{1} \mathrm{P}_{1}\) & \(\mathrm{~N}_{2} \mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 361 & 486 & 468 & 444 & 508 & 402 & 445 \\
\(\mathrm{~S}_{2}\) & 407 & 518 & 632 & 534 & 301 & 444 & 473 \\
\(\mathrm{~S}_{3}\) & 387 & 471 & 294 & 490 & 357 & 429 & 405 \\
\hline Mean & 385 & 492 & 465 & 489 & 389 & 425 & 441
\end{tabular}
S.E. of difference of two
1. \(S\) marginal means
\(=51.0 \mathrm{Jb} . / \mathrm{ac}\).
2. NP marginal means
\(=97.4 \mathrm{lb} . / \mathrm{ac}\).
3. NP means at the same level of \(S\)
\(=168.7 \mathrm{lb} . / \mathrm{ac}\).
4. \(S\) means at the same level of \(N P\)
\(=162.2 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Sesamum (Kharif). Ref:-I.A.R.I. 53(62). Type:-'M'.
Object:-To study the effect of different forms of ' \(N\) ' organic and inorganic in contrast with \(\mathbf{P}\) manures.
1. BASAL CONDIȚIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 21.6.1953. (iv) (a) 3 ploughings with desi plough and one with victory plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hoeing with oudh and horse plough, kera and weeding. (ix) N.A. (x) 6.10.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
3 sources of \(\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\) F.Y.M. and \(\mathrm{S}_{3}=\) G.N.C.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30\) and \(\mathrm{N}_{2}=60 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=80 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block and 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 1/60 ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Germination good. (ii) Virus desease. (iii) Yield of sesamum. (iv) (a) 1952-N.A. (b) Yes. (c) N A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(223.8 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(108.6 \mathrm{lb} . / \mathrm{ac}\).
(b) \(133.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of sesamum in Ib./ac.
\begin{tabular}{l|llllll|c} 
& \(\mathrm{N}_{0} \mathrm{P}_{0}\) & \(\mathrm{~N}_{1} \mathrm{P}_{0}\) & \(\mathrm{~N}_{2} \mathrm{P}_{0}\) & \(\mathrm{~N}_{0} \mathrm{P}_{1}\) & \(\mathrm{~N}_{1} \mathrm{~F}_{1}\) & \(\mathrm{~N}_{2} \mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 275.6 & 199.1 & 289.8 & 166.2 & 215.6 & 267.4 & 249.3 \\
\(\mathrm{~S}_{2}\) & 177.7 & 244.4 & 200.8 & 219.7 & 144.8 & 182.7 & 195.0 \\
\(\mathrm{~S}_{3}\) & 222.2 & 138.2 & 292.9 & 232.9 & 232.9 & 244.4 & 227.1 \\
\hline Mean & 225.5 & 194.2 & 260.8 & 206.5 & 224.6 & 231.2 & 223.8
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. S marginal means & \(=31.3 \mathrm{lb} . / \mathrm{ac}\). \\
2. NP marginal means & \(=54.4 \mathrm{lb} . / \mathrm{ac}\). \\
3. NP means at the same level of S & \\
4. \(S\) means at the same level of NP & \(=76.8 \mathrm{lb} . / \mathrm{ac}\). \\
\end{tabular}

Crop:- Linseed (Rabi). Ref:- I.A.R.I. 50 (22). Type:-'MV'.
Object :-To see the effect of nitrogenous manures on Linseed varieties.
1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 7.11.1950. (iv) (a) 2 ploughings, 2 beamings, 2 harrowings with spring tooth harrow and levelling with kera. (b) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 1 weeding. (ix) N.A. (x) 11 to 14.4.195 1.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
1. 4 varieties: \(V_{1}=N\) P.-21, \(V_{2}=B-5128, V_{3}=\) Dakota flax and \(V_{4}=\) Sheycone flax.
2. 2 levels of \(N: N_{0}=0\) and \(N_{1}=20 \mathrm{lb} / \mathrm{ac}\) of \(N\).

\section*{3. DESIGN:}
(i) \(4 \times 2\) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(19^{\prime} \times 25^{\prime}\). (b) \(17^{\prime} \times 23^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Yield of linseed. (iv) (a) No. (b) No. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(457.4 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(93.01 \mathrm{lb} . / \mathrm{ac}\).
(iii) V and N effects are highly significant while interaction is not significant.
(iv) Av. yield of linseed in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|cccc|c} 
& \(\mathrm{V}_{1}\) & \(\mathrm{~V}_{\mathbf{2}}\) & \(\mathrm{V}_{3}\) & \(\mathrm{~V}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{N}_{\mathbf{0}}\) & 485.5 & 392.7 & 396.3 & 324.9 & 399.8 \\
\(\mathrm{~N}_{1}\) & 621.2 & 524.8 & 556.9 & 357.0 & 515.0 \\
\hline Mean & 553.3 & 458.7 & 476.6 & 340.9 & 457.4
\end{tabular}
S.E. of V marginal mean
S.E. of N marginal mean
\(=32.88 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table
\(=23.25 \mathrm{lb} . / \mathrm{ac}\).
\(=46.50 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Linseed (Rabi). Ref:- I.A.R.I. 51(28). Type :- 'MV'.
Object:-To study the relative performance of some improved American variety in relation with doses of N .
1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 18.10.1951. (iv) (a) 1 palewa and 1 desi ploughing. (b) to (e) N.A. (v) Nil. (vi) to (ix) N.A. (x) April, May, 1952.
2. TREATMENTS:

All combinations of (1) and (2)
1. 4 varieties: \(V_{1}=\) N.P. \(21, V_{2}=\) B. \(5128, V_{3}=\) Dakota flax and \(V_{4}=\) Sheycone flax.
2. 3 levels N as \(\mathrm{C} / \mathrm{N}: \mathrm{N}_{0}=0 . \mathrm{N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3 \times 4\) fact. in R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4 . (iv) (a) \(43^{\prime} \times 16^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) N.A. (iii) Yield of linseed. (iv) (a) 1949-N.A. (b) N.A. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(407 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(80.64 \mathrm{lb} . / \mathrm{ac}\).
(iii) V effect alone is highly significant.
(iv) Av. yield of linseed in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \(V_{4}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 425 & 541 & 341 & 205 & 378 \\
\hline \(\mathrm{N}_{1}\) & 434 & 546 & 375 & 314 & 417 \\
\hline \(\mathrm{Na}_{\mathbf{a}}\) & 443 & 589 & 353 & 311 & 424 \\
\hline Mean & 434 & 559 & 356 & 277 & 407 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
S.E. of marginal means of \(V\) \\
S.E. of marginal means of \(\mathbf{N}\) \\
S.E. of body of table
\end{tabular}}} & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& =23.28 \mathrm{lb} . / \mathrm{ac} \\
& =20.16 \mathrm{lb} . / \mathrm{ac} \\
& =40.32 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Object :-To study the effect of placement of fertilizers on different varieties of Linseed.

\section*{1. BASAL CONDITIONS:}
(i) (a) No. - (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) 30 and 31.10 .1952 and 4, 5.11.1952. (iv) (a) 3 ploughings with desi plough, 2 tractor discings and 1 tractor grubbing. (b) to (c) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) 1 hoeing and 2 weedings. (ix) N.A. (x) 31.3 .1953 to 9.4.1953.

\section*{2. TREATMENTS :}

Main-plot treatments :
3 varieties: \(V_{1}=R . R .10, V_{2}=\) R.R. 236 and \(V_{3}=\) N.P. 12.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=60 \mathrm{lb}\)./ac.

Sub-sub-plot treatments :
2 methods of application: \(\mathrm{M}_{1}=\) Broadcast and \(\mathrm{M}_{2}=3 \frac{11^{\prime \prime}}{}\) deep placement.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block, 6 sub-plots/main-plot and 2 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(27^{\prime} \times 23^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of linseed. (iv) (a) 1951-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
3. RESULTS :
(i) \(884.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(241.1 \mathrm{lb} / \mathrm{ac}\).
(b) \(288.8 \mathrm{lb} . / \mathrm{ac}\).
(c) \(148.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) NP effect is highly significant, \(\mathrm{V} \times \mathrm{M}\) and \(\mathrm{V} \times \mathrm{NP}\) effects and interactions are significant while others are not significant.
(iv) Av. yield of linseed in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0} \mathrm{P}_{0}\) & \(\mathrm{N}_{0} \mathrm{P}_{1}\) & \(\mathrm{N}_{1} \mathrm{P}_{0}\) & \(\mathrm{N}_{2} \mathrm{P}_{1}\) & \(\mathrm{N}_{2} \mathrm{P}_{0}\) & \(\mathrm{N}_{2} \mathrm{P}_{1}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
\hline \(V_{1}\) & 731 & 741 & 846 & 791 & 1095 & 929 & 855 & 894 & 817 \\
\hline \(V_{2}\) & 755 & 680 & 886 & 785 & 753 & 700 & 760 & 762 & 757 \\
\hline \(V_{8}\) & 985 & 906 & 967 & 1015 & 997 & 1353 & 1037 & 978 & 1096 \\
\hline Mean & 823 & 776 & 900 & 863 & 948 & 994 & 884 & 878 & 890 \\
\hline \(\mathrm{M}_{1}\) & 862 & 783 & 897 & 828 & 947 & 949 & & & \\
\hline \(\mathrm{M}_{2}\) & 784 & 768 & 901 & 899 & 950 & 1039 & & & \\
\hline
\end{tabular}
S.E. of difference of two


\section*{Crop :- Linseed (Rabi). Ref :- I.A.R.I. 53(65). Type :- 'MV'.}

Object :-To study the effect of placement of fertilizers on different varieties of Linseed.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) \(14 / 15 \cdot 10.1953\). (iv) (a) Tractor grubbing, 2 ploughings with desi plough and 2 tractor ploughings. (b) to (e) N.A. (v) Nil. (vi)
N.A. (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (x) 3, 7, 19, 20 and 23.4.1954.

\section*{2. TREATMENTS :}

Main-plot treatments:
3 varieties: \(V_{1}=R . R .10, V_{2}=R . R .236\) and \(V_{3}=\) N.P. 12.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of \(N: N_{0}=0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=60 \mathrm{lb} . / \mathrm{ac}\).

Sub-sub-plot treatments :
2 methods of application : \(\mathbf{M}_{1}=\) Broadcast and \(\mathbf{M}_{2}=3 \frac{2^{* \prime}}{}\) deep placement.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication, 6 sub-plots/main-plot and 2 sub-sub-plots/sub-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(27^{\prime} \times 23^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Yield of linseed. (iv) (a) 1951-1956. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(758.5 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(188.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(148.0 \mathrm{lb} . / \mathrm{ac}\).
(c) \(145.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of linseed in lb ./ac.
\begin{tabular}{l|llllll|l|l|l|} 
& \(\mathrm{N}_{0} \mathrm{P}_{0}\) & \(\mathrm{~N}_{0} \mathrm{P}_{1}\) & \(\mathrm{~N}_{1} \mathrm{P}_{0}\) & \(\mathrm{~N}_{1} \mathrm{P}_{1}\) & \(\mathrm{~N}_{2} \mathrm{P}_{0}\) & \(\mathrm{~N}_{2} \mathrm{P}_{1}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{\mathbf{3}}\) \\
\hline \(\mathrm{V}_{1}\) & 649.2 & 872.4 & 753.2 & 686.4 & 734.9 & 756.3 & 742.1 & 698.5 & 785.7 \\
\(\mathrm{~V}_{2}\) & 772.1 & 766.5 & 708.3 & 733.8 & 721.4 & 775.5 & 746.3 & 745.8 & 746.7 \\
\(\mathrm{~V}_{3}\) & 763.1 & 762.0 & 795.8 & 796.9 & 772.3 & 833.1 & 787.2 & 775.1 & 799.2 \\
\hline Mean & 728.1 & 800.3 & 752.4 & 739.0 & 742.9 & 788.3 & 758.5 & 739.8 & 777.2 \\
\hline \(\mathrm{M}_{1}\) & 699.6 & 734.1 & 743.1 & 729.6 & 763.5 & 768.1 & & & \\
\(\mathrm{M}_{2}\) & 756.7 & 866.4 & 760.9 & 748.4 & 722.3 & 808.5 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. V marginal means
2. NP marginal means
3. D marginal means
4. NP means at the same level of V
5. V means at the same level of NP
\[
\begin{aligned}
& =38.5 \mathrm{lb} . / \mathrm{ac} . \\
& =42.7 \mathrm{lb} . / \mathrm{ac} . \\
& =24.3 \mathrm{lb} . / \mathrm{ac} . \\
& =74 . \\
& =74.0 \mathrm{lb} . / \mathrm{ac} . \\
& =77.8 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
\]

Crop :-Jowar (Kharif). Ref:-I.A.R.I. 50(42). Type :~' \({ }^{\prime}\) '.
Object :-To study the effect of manuring on the yield of berseem and the residual effect on the following maize, wheat and Jowar crops.

\section*{1. BASAL CONDITIONS:}
(i) (a) N.A.- (b) Berseem. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 25.6.50. (iv)
(a) Ploughing with tractor, grubbing and beaming and harrowing twice after sowing. (b) to (e) N.A.
(v) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) 24.99". (x) 29.9.50.

\section*{2. TREATMENTS :}

Main-plot treatments :
7 le els cf \(N\) and \(P\) fertilizers: \(M_{0}=0, M_{1}=\) Ammo. Phos. at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \quad \mathrm{M}_{2}=\) Ammo. Phos. at \(160 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{3}=\) Super at \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\) at \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}, \mathrm{M}_{4}=\) Super at 160 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S}\) at 160 lb ./ac. of \(\mathrm{N}, \mathrm{M}_{5}=\) Super at 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{6}=\) Super at 160 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
Sub-plot treatments :
3 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0, \mathrm{~K}_{1}=40 \mathrm{lb}\)./ac. and \(\mathrm{K}_{2}=80\). lb ./ac of \(\mathrm{K}_{2} \mathrm{O}\).
Fertilizers \(}\)
3. DESIGN :
(i) Split-plot. (ii) (a) 7 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(43^{\prime} \times 25^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Growth was poor on the whole. (ii) N.A. (iii) Yield of fodder. (iv) (a) \(1946-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Growth affected adversely due to water logging caused by rains in July and August. (vii) Nil.
5. RESULTS :
(i) 2.98 ton/ac.
(ii) (a) \(1.09 \mathrm{ton} / \mathrm{ac}\).
(b) \(0.59 \mathrm{ton} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{l|lllllll|l} 
& \(\mathbf{M}_{\mathbf{0}}\) & \(\mathbf{M}_{\mathbf{1}}\) & \(\mathrm{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathrm{M}_{\mathbf{4}}\) & \(\mathbf{M}_{\mathbf{5}}\) & \(\mathbf{M}_{\mathbf{6}}\) & \multirow{2}{*}{ Mean } \\
\hline \(\mathrm{K}_{\mathbf{0}}\) & 2.38 & 3.48 & 3.29 & 3.20 & 3.14 & 3.00 & 3.10 & 3.08 \\
\(\mathrm{~K}_{1}\) & 1.98 & 3.40 & 3.40 & 3.50 & 2.68 & 2.68 & 3.40 & 3.31 \\
\(\mathrm{~K}_{\mathbf{2}}\) & 2.34 & 2.51 & 2.81 & 2.73 & 3.50 & 2.44 & 3.69 & 2.86 \\
\hline Mean & 2.23 & 3.13 & 3.17 & 3.14 & 3.11 & 2.71 & 3.40 & 2.98
\end{tabular}
S.E. of difference of two
\(\begin{array}{ll}\text { 1. main-plot treatment means } & =0.45 \mathrm{ton} / \mathrm{ac} . \\ \text { 2. sub-plot treatment means } & =0.16 \text { ton/ac. } \\ \text { 3. sub-plot treatment means at the same level of main-plot treatment } & =0.43 \text { ton/ac. } \\ \text { 4. main-plot treatment means at the same level of sub-plot treatment } & =1.33 \text { ton/ac. }\end{array}\)

Crop:-Jowar.
Ref :-I.A.R.I. 52(28a).
Type: ' \(C\) '.
Object :-To study the effect of sowing premature and mature seed on Jowar yield.
1. BASAL CONDITIONS to 4. GENERAL.

Please refer to No. I.A.R.I. S2(28) under MAIZE.
5. RESULTS :
Jowar: - White Purhi
Jowar:-local
(i) \(3579 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(112.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(i) \(5983 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(112.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of fodder in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 4197 & 1. & 6265 \\
2. & 3459 & 2. & 6781 \\
3. & 3082 & 3. & 4904 \\
S.E./mean & \(=45.72 \mathrm{lb} . / \mathrm{ac}\). & S.E./mean & \(=45.72 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Guar (Kharif). Ref :- I.A.R.I. 51(12). Type :- 'M'.
Object :-To find out the response of Guar to P and application of micro-nutrients and its effect on Wheat.

\section*{1. BASAL CONDITIONS:}
(i) (a) Guar-Wheat-Guar. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 5.7.1951. (iv) (a) Ploughing twice. (b) Seed sown in furrows behind plough with kera. (c) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Nil. (ix) N.A. (x) 29th and 31st Aug. and 1st Sept. 1951.

\section*{2. TREATMENTS :}
1. Guar without \(\mathrm{P}_{2} \mathrm{O}_{5}\) removed.
2. Guar without \(\mathrm{P}_{2} \mathrm{O}_{5}\) buried.
3. Guar with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) removed.
4. Guar with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) buried.

5 Guar with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax \(5 \mathrm{lb} . / \mathrm{ac} .+\) Molybdenum 1 lb ./ac. removed.
6. Guar with 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax \(5 \mathrm{lb} . / \mathrm{ac} .+\) Molybdenum 1 lb ./ac. buried.
7. Guar from treatment 1 buried.
8. Guar from treatment 3 buried.
9. Guar from treatment 5 buried.
10. Fallow.

\section*{3. DESIGN :}
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 6. (iv) (a) \(45^{\prime} \times 15^{\circ}\). (b) N.A. (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Good. No lodging. (ii) Nil. (iii) Fodder yield. (iv) (a) 1951-1954. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Nil. (vii) Raw data is N.A.

\section*{5. RESULTS :}
(i) 0.56 ton/ac.
(ii) N.A.
(iii) N.A.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 0.51 \\
2. & 0.60 \\
3. & 0.54 \\
4. & 0.59 \\
5. & 0.58 \\
6. & 0.57 \\
S E./mean & \(=\) N.A.
\end{tabular}

Crop:- Guar (Kharif).
Ref :- I.A.R.I. 52(20). Type :- 'M'.
Object :-To find the response of Guar to \(P\) and application of micro-nutrients and their effect on Wheat.
1. BASAL CONDITIONS:
(i) (a) Guar-Wheat-Guar. (b) Wheat. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N A. (v) to (x) N.A.

\section*{2. TREATMENTS :}
1. Guar without \(\mathrm{P}_{2} \mathrm{O}_{5}\) removed.
2. Guar without \(\mathrm{P}_{2} \mathrm{O}_{5}\) buried.
3. Guar with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) removed.
4. Guar with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) buried.
5. Guar with 60 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax \(5 \mathrm{lb} . / \mathrm{ac} .+\) Molybdenum \(1 \mathrm{lb} . / a c\). removed.
6. Guar with \(60 \mathrm{lb} . /\) ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Borax \(5 \mathrm{lb} . / \mathrm{ac} .+\) Molybdenum 1 lb ./ac. buried.
7. Guar from treatment 1 buried.
8. Guar from treatment 3 buried.
9. Guar from treatment 5 buried.
10. Fallow.
3. DESIGN:
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(45^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A
(iii) Yield of Guar fodder.
(iv) (a) 1951-1954.
(b) Yes.
(c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) 7.04 ton/ac.
(ii) 0.84 ton/ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 5.23 \\
2. & 6.78 \\
3. & 6.92 \\
4. & 7.58 \\
5. & 7.85 \\
6. & 7.92 \\
S.E./mean & \(=0.34\) ton/ac.
\end{tabular}

Crop :- Hubam Clover (Rabi). Ref :- I.A.R.I. 51(23). Type :- 'CM'.
Object :-To study the response of Hubam Clover grown for fodder, seed and green manuring and its effect on soil fertility as judged by the yield of following maize crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Hubam Clover-Maize. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 21.11.1951. (iv) (a) 1 ploughing with victory plough, 2 discings with tractor and 2 grubbings. (b) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) 1 weeding. (ix) N.A. (x) 22.3.1952, 2.5.1952 and 9.6.1952.
2. TREATMENTS :

Main-plot treatments:
4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40, \mathrm{P}_{2}=80\) and \(\mathrm{P}_{3}=120 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments:
6 cultural practices: \(C_{1}=\) Hubam Clover grown for seed, \(C_{2}=\) Hubam Clover left for seed after one cutting, \(\mathrm{C}_{3}=\) Hubam Clover grown for green manuring, \(\mathrm{C}_{4}=\) Hubam Clover grown after one cutting, \(\mathrm{C}_{5}=\) Hubam Clover grown after two cuttings and \(\mathrm{C}_{6}=\) Hubam Clover grown for fodder.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 6 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(1 / 100 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of fodder. (iv) (a) 1951-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Raw data N.A. (vii) Nil.
5. RESULTS :
(i) 0.76 ton/ac.
(ii) N.A.
(iii) N.A.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{c|cccc|c} 
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) & Mean \\
\hline\(C_{3}\) & 0.48 & 0.35 & 0.41 & 0.41 & 0.41 \\
\(C_{5}\) & 0.89 & 0.78 & 0.82 & 0.83 & 0.83 \\
\(C_{5}\) & 0.98 & 0.89 & 0.95 & 0.94 & 0.94 \\
\(C_{6}\) & 0.83 & 0.83 & 0.87 & 0.89 & 0.86 \\
\hline Mean & 0.79 & 0.71 & 0.76 & 0.77 & 0.76 \\
& & & & \\
\hline \multicolumn{5}{c}{ S.E.-N.A. } &
\end{tabular}

Crop :- Hubam Clover (Rabi). - Ref :- I.A.R.I. 52(29). Type :- ‘CM’.
Object :-To study the resp onse of Hubam Clover grown for fodder, seed and green manuring and its effect on soil fertility as judged by the yield of following maize crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Maize—Hubam Clover. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 29.11.1952. (iv) (a) 1 ploughing with victory plough and 2 with desi plough. (b) N.A. (c) \(20 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) 1 weeding. (ix) N.A. (x) 31.3.1953, 1.4.1953, 5.5.1953 and 5.5.1953.
2. TREATMENTS :

Main-plot treatments :
4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40, \mathrm{P}_{2}=80\) and \(\mathrm{P}_{3}=120 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments :
6 cultural practices: \(C_{1}=\) Hubam Clover grown for seed, \(C_{2}=\) Hubam Clover left for seed after one cutting, \(C_{3}=\) Hubam Clover grown for green manuring, \(C_{4}=\) Hubam Clover grown after one cutting, \(\mathrm{C}_{5}=\) Hubam Clover grown after two cuttings and \(\mathrm{C}_{6}=\) Hubam Clover grown for fodder.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block and 6 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(1 / 100\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of fodder. (iv) (a) \(1951-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Raw data N.A.
5. RESULTS :
(i) 6.47 ton/ac.
(ii) N.A.
(iii) N.A.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{c|cccc|c} 
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) & Mean \\
\hline \(\mathrm{C}_{3}\) & 3.43 & 3.70 & 3.40 & 4.36 & 3.72 \\
\(\mathrm{C}_{4}\) & 6.12 & 6.35 & 6.77 & 6.80 & 6.51 \\
\(\mathrm{C}_{5}\) & 7.91 & 8.54 & 7.82 & 8.25 & 8.13 \\
\(\mathrm{C}_{6}\) & 7.56 & 6.74 & 7.86 & 7.34 & 7.38 \\
\hline Mean & 6.26 & 6.33 & 6.46 & 6.69 & 6.44 \\
& & &
\end{tabular}

Crop :-Hubam Clover (Rabi). Ref:-I.A.R.I. 53(39). Type:-‘CM'.
Object :-To study the response of different doses of phosphatic manures on Hubam Clover grown for fodder, seed and green manuring and its effect on soil fertility as judged by yield of following crop of maize.
1. BASAL CONDITIONS :
(i) (a) Maize-Hubam Clover. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) 17.11.53. (iv) (a) 1 ploughing with victory plough and 2 with desi plough. (b) N.A. (c) 10 srs./ac. (d) and (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) to (x) N.A.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40, \mathrm{P}_{2}=80\) and \(\mathrm{P}_{3}=120 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments :
6 cultural practices : \(C_{1}=\) Hubam Clover grown for seed, \(C_{2}=\) Hubam Clover grown for seed after one cutting, \(C_{3}=\) Hubam Clover grown for green manuring, \(C_{4}=\) Hubam Clover grown for green manuring after one cutting, \(\mathrm{C}_{5}=\) Hubam Clover grown for green manuring after two cuttings and \(\mathbf{C}_{6}=\) Hubam Clover grown for fodder.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block and 6 sub-plots/main-plot.
(b) N.A. (iii) 3. (iv) (a) N.A. (b) 1/100 ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Yield of fodder. (iv) (a) \(1951-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Raw data. N.A.
5. RESŪLTS :
(i) 7.74 ton/ac.
(ii) N.A.
(iii) N.A.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{c|cccc|l} 
& \multicolumn{1}{c}{\(P_{0}\)} & & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) \\
\cline { 4 - 6 }\(C_{3}\) & 7.02 & & 5.73 & 7.07 & 6.19 \\
\(C_{4}\) & 9.50 & 8.50 & 9.22 & 8.92 & 6.50 \\
\(C_{5}\) & 7.47 & 10.03 & 8.99 & 7.98 & 9.04 \\
\(C_{6}\) & 6.63 & 6.68 & 7.10 & 6.81 & 6.80 \\
\hline Mean & 7.66 & 7.74 & 8.10 & 7.48 & 7.74
\end{tabular}
S.E.-N.A.

Crop:-Berseem (Rabi). Ref :-I.A.R.I. 48(13). Type:- \({ }^{\prime} \mathbf{M}^{\prime}\).
Object :-To study the response of phosphatic manuring of Berseem with and without K and N .
1. BASAL CONDITIONS:
(i) (a) Manured berseem followed by unmanure'd Maize-Wheat-Maize. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Nil. (ix) and (x) N.A.

\section*{2. TREATMENTS:}

\section*{Main-plot treatments :}

7 manures : \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=\) Ammo. Phos. 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=\) Ammo. Phos. \(160 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \quad \mathrm{M}_{3}=\) Super \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \quad \mathrm{M}_{4}=\) Super 160 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{5}=\) Super \(80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S} 80 \mathrm{lb}\)./ac. of N and \(\mathrm{M}_{6}=\) Super 160 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S} 80 \mathrm{lb} . / \mathrm{ac}\). of N .
Sub-plot treatments :
3 leveis of \(\mathrm{K}_{\mathbf{2}} \mathrm{O}\) as Pot. Sul.: \(\mathrm{K}_{\mathbf{0}}=\mathbf{0}, \mathrm{K}_{\mathbf{1}}=40\) and \(\mathrm{K}_{\mathbf{2}}=80 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 7 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) N.A. (iv) (a) N.A. (b) \(43^{\prime} \times 24^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Yield of fodder. (iv) (a) 1946-1949. (b) N.A. (c) N.A. (v) (a) and (b) No. (vi) N.A. (vii) Raw data and number of replication is N.A. Therefore the results are not complete.
5. RESULTS:
(i) 30.82 ton/ac.
(ii) N.A.
(iii) Main-plot treatments alone differ significantly.
(iv) Av. yield of fodder in lb ./ac.
\begin{tabular}{c|ccccccc|c} 
& \(\mathrm{M}_{0}\) & \(\mathrm{M}_{\mathbf{1}}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{6}\) & Mean \\
\hline \(\mathrm{K}_{0}\) & 24.96 & 30.22 & 35.73 & 30.57 & 30.34 & 26.81 & 31.92 & 30.08 \\
\(\mathrm{~K}_{1}\) & 25.03 & 30.66 & 35.31 & 30.12 & 32.43 & 30.17 & 33.43 & 31.02 \\
\(\mathrm{~K}_{2}\) & 24.62 & 32.31 & 34.76 & 31.88 & 32.68 & 27.28 & 36.04 & 31.35 \\
\hline Mean & 24.87 & 31.06 & 35.27 & 30.86 & 31.82 & 28.09 & 33.80 & 30.82
\end{tabular}
S.E.-N.A.

Crop :- Berseem (Rabi). Ref:- I.A.R.I. 50(41). Type :- 'M'.
Object :-To study the effect of manuring on the yield of Berseem and the residual effect on the following maize, wheat and jowar.

\section*{1. BASAL CONDITIONS:}
(i) (a) N.A. (b) Maize. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 2.11.1950. (iv) (a) D:scing twice. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) 2.91 \({ }^{\circ}\). (x) 18.1.1951, 26.2.1951, 28.3.1951, 28.4.1951 and 29.5.1951.

\section*{2. TREATMENTS :}

Main-plot treatments :
7 manures: \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=\) Ammo. Phos. 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=\) Ammo. Phos. \(160 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{3}=\) Super 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{4}=\) Super 160 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{5}=\) Super 80 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S} 80 \mathrm{lb}\)./ac. of N and \(\mathrm{M}_{6}=\) Super 160 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{A} / \mathrm{S} 50 \mathrm{lb}\)./ac. of N .
Sub-plot treatments :
3 levels \(\subset f K_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0, \mathrm{~K}_{1}=40\) and \(\mathrm{K}_{2}=80 \mathrm{lb}\)./ac.
3. DESIGN:
(i) Split-plot. (ii) (a) 7 main-plots/block, 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(43^{\prime} \times 25^{\circ}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Fodcer yield. (iv) (a) 1946-1947; N.A. (b) N.A. (c) N.A. (iv) (a),
(b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 22.16 ton \(/ \mathrm{ac}\).
(ii) (a) 8.23 ton/ac.
(b) 2.62 ton/ac.
(iii) Main effect of \(M\) is highly significant. \(M \times K\) is significant.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{l|ccccccc|c} 
& \(M_{0}\) & \(M_{1}\) & \(M_{2}\) & \(M_{3}\) & \(M_{4}\) & \(\mathbf{M}_{5}\) & \(\mathbf{M}_{6}\) & Mean \\
\hline \(\mathrm{K}_{n}\) & 8.55 & 25.28 & 29.19 & 20.04 & 22.50 & 22.57 & 25.29 & 21.77 \\
\(\mathrm{~K}_{1}\) & 7.52 & 25.91 & 2657 & 21.87 & 25.65 & 24.33 & 25.03 & 22.41 \\
\(\mathrm{~K}_{2}\) & 9.10 & 22.61 & 24.85 & 23.89 & 27.78 & 21.40 & 26.53 & 22.31 \\
\hline Mean & 8.39 & 24.60 & 26.54 & 21.93 & 25.31 & 22.77 & 25.62 & 22.16
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(M\) marginal means & \(=3.36 \mathrm{ton} / \mathrm{ac}\). \\
2. \(K\) marginal means & \(=0.70 \mathrm{ton} / \mathrm{ac}\). \\
3. \(K\) means at the same level of \(M\) & \(=1.86 \mathrm{ton} / \mathrm{ac}\). \\
4. \(M\) means at the same level of \(K\) & \(=3.68\) ton/ac.
\end{tabular}

Crop :- Berseem (Rabi). Ref:- I.A.R.I. 50(60). Type :- 'M'.
. Object :-To study the effect of \(P\) on the yield of Berseem and residual effect on the subsequent crop.
1. BASAL CONDITIONS:
(i) (a) Berseem-Cowpeas-Berseem. (b) Cowpeas. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143.
(iii) 3, 4.11.1950. (iv) (a) 1 tractor discing (double), 2 grubbings and 1 discing. (b) to (e) N.A. (v)
N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 25.1.1951; 5.3.1951 and 1.4.1951.
2. TREATMENTS :
1. No manure.
2. F.Y.M. at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. F.Y.M. at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. F.Y.M. at 64 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. Super at \(16 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. Super at \(32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
7. Super at \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
8. Super at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{F} . Y\).M. at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. Super at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) F.Y.M. at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. F.Y.M. at \(8 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 24 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
12. F.Y.M. at 8 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at 56 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
13. Fallow.

\section*{3. DESIGN :}
(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) 6. (iv) (a) \(63^{\prime} \times 15^{\circ}\). (b) N.A. (v) N.A. (vi) Yes.
4. GEVERAL :
(i) Normal. (ii) N.A. (iii) Yield of berseem fodder and seed. (iv) (a) \(1948-1954\). (b) Yes. (c) N.A. (v) (a), (b) No. (vi) Crop in unmanured plots remained stunted in growth and the colour of the leaves was predominantly red till 2 nd cutting. (vii) Nil.
5. RESULTS :

\section*{Fodder}
(i) 8.39 ton \(/ \mathrm{ac}\).
(ii) 1.94 ton/ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 0.78 \\
2. & 2.77 \\
3. & 6.22 \\
4. & 9.09 \\
5. & 6.34 \\
6. & 9.97 \\
7. & 13.34 \\
8. & 5.86 \\
9. & 8.00 \\
10. & 13.07 \\
11. & 14.23 \\
12. & \(=0.79\) ton/ac,
\end{tabular}

Seed
(i) \(233.7 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(52.66 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of seed in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 32.1 \\
2. & 147.3 \\
3. & 204.1 \\
4. & 280.6 \\
5. & 197.5 \\
6. & 260.8 \\
7. & 302.0 \\
8. & 204.9 \\
9. & 259.2 \\
10. & 323.4 \\
11. & 282.2 \\
12. & 307.7 \\
S.E./mean & \(=21.49 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:-Berseem (Rabi). Ref:- I.A.RI 50(20). Type :- 'M'.
Object : - To study the residual effect of differ ent forms of phosphates on the followirg maize-berseem and maize-fodder crops.
1. BASAL CONDITIONS:
(i) Maize-Berseem-Maize. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 8, 9.11.1950. (iv) (a) Tractor plough at the end of Ostober 1950. Grubbing twice after tractor pioughing. (b) to (e) N A.
(v) N.A. (vi) N.A. (vii) Irrigated. (viii) Nil. (ix) N.A. (x) 5 suttings from 31.1.1951 to 27.5.1951.
2. TREATMENTS :
1. Agro. Phos.
7. Mg. Phosphate.
2. Ammo. Phos.
8. Reno. hyper Phosphate.
3. \(\mathrm{A} / \mathrm{S}\).
9. Rock Phosphate.
4. B.M.
5. Bone Super.
10. Selecto Phosphate.
6. Bone Sulpher compost.
11. Super.
These sources give 80 lb ./ac. of N or \(\mathrm{P}_{2} \mathrm{O}_{5}\).
12. Control.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(17^{\prime} \times 64^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Poor till 2nd cutting. (ii) Locust attack. (iii) Yield of fodder. (iv) (a) 1948-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 9.02 ton/ac.
(ii) 3.53 ton/ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cccc} 
Treatment & Av. sield & Treatment & Av. yield \\
1. & 7.85 & 7. & 6.39 \\
2. & 17.35 & 8. & 7.39 \\
3. & 10.14 & 9. & 6.37 \\
4. & 12.35 & 16. & 5.96 \\
5. & 9.71 & 11. & 8.29 \\
6. & 8.47 & 12. & 7.98 \\
& S.E /mean & \(=1.44\) ton/ac. &
\end{tabular}

Crop :- Berseem (Rabi). Ref :- I.A.R.I. 50(25). Type :- 'M'.
Object:-To study the response of berseem to fertilizers and comparison of residual effects with direct manuring of cereals.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (ini) 12.10.1950. (iv) (a) Tractor ploughing once, tractor discings 4 and 1 grubbing. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Seed mixed with spring time harrow after broadcacting. (ix) N.A. (x) 5 cultings from 30.12 .1950 to 10.5.1951.
2. TREATMENTS :
1. No manure.
2. 120 lt ./ac. of N .
3. \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. \(120 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
5. 40 lb ./ac. of \(\mathrm{N}+120 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+80 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
6. Fallow in Rabi.
3. DESIGN :
(i) L. Sq. (ii) (a) 6. (b) N.A. (iii) \(\overline{6}\). (iv) (a) N.A. (b) \(1 / 20\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) No. (iii) Yield of fodder. (iv) (a) No. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 23.88 ton/ac.
(ii) 2.97 ton/ac.
(iii) Treatments differ \(h\) ghly significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 12.96 \\
2. & 28.33 \\
3. & 28.94 \\
4. & 30.54 \\
5. & 29.85 \\
6. & 12.70 \\
S.E./mean & \(=1.21\) ton/ac.
\end{tabular}

Crop :- Berseem (Rabi). Ref:- I.A.R.I. 53(64). Type :- 'M'.
Object :-To study the relative value of different phosphatic manures.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 30.10.1950. (iv) (a) 1 ploughing with victory plough and 2 with desi plough. (b) to (e) N.A. (v) \(10 \mathrm{oz} . / \mathrm{plot}\) of A/S. (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) 1st cutting on 7,8.1.1954, 2nd cutting on 23/26.2.1954 and 3rd cutting on 25/27.3.1954.
2. TREATMENTS :
1. Control.
2. Rock Phos. at 103 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. Super at 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Rock Phos. at 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
4. Super at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
5. B.M. at \(100 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
6. Farm B.M. powder at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
7. B.M. grade I at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
8. B.M. grade II at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
9. B.M. grade III at 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
10. Trichi-nodules at \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
11. Trichi-nodules at 50 lb . \(/ \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+\) Super at \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
12. Super at \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) R.B D.
(ii) (a) 12 .
(b) N.A. (iii) 5. (iv) (a) N.A.
(b) \(27^{\prime} \times 20^{\prime}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of fodder. (iv) (a) \(1953-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) N.A. (vii) Nil.
5. RESULTS:
(i) 7.18 ton/ac.
(ii) 2.45 ton/ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & 5.84 & 7. & 5.32 \\
2. & 7.56 & 8. & 6.06 \\
3. & 8.03 & 9. & 5.66 \\
4. & 9.75 & 10. & 7.08 \\
5. & 5.54 & 11. & 9.82 \\
6. & 5.50 & 12. & 9.94 \\
& S.E./mean & \(=1.09\) ton/ac. &
\end{tabular}
```

Crop:- Berseem (Rabi).
Ref :- I.A.R.I. 51(9). T ype := 'M'.

```

Object:-To study the effect of phosphatic manuring of Berseem with and without K and N on rotation of crops.

\section*{1. BASAL CONDITIONS :}
(i) (a) Wheat-Berseem-Cotton. (b) Seed cotton. (c) Nil. (ii) (a) and (b) Refer item 11 on page 143.
(iii) 12.10 1951. (iv) (a) 2 ploughings with victory plough and 2 with desi plough. (b) to (e) N.A. (v) Nil.
(vi) N.A. (vii) Irrigated.(viii) and (ix) N.A. (x) 22.12.1952, 24.1.1951, 3.3.1952, 26.3.1952 and 25.4.1952.
2. TREATMENTS :
1. Control.
2. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} / \mathrm{ac}\).
3. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
4. N at \(100 \mathrm{lb} / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
5. N at \(25 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
6. N at \(50 \mathrm{lb} / \mathrm{ac}+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
7. N at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
8. Fallow in Rabi.

Sources of fertilizers N.A.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6 . (iv) (a) \(36^{\prime} \times 18^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Crop lodged on account of heavy rains. (ii) N.A. (iii) Yield of fodder. (iv) (a) 1948-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) 25.56 ton \(/ \mathrm{ac}\)
(ii) 1.08 ton/ac.
(ii) Treatments differ highly significantly.
(iv) Av. yield of fodder in ton/ac. Treatment Av. yield
\begin{tabular}{ll}
1. & 10.43 \\
2. & 26.05 \\
3. & 26.16
\end{tabular}
4. 27.67
\(5 . \quad 27.77\)
6. 28.78
7. 32.04
S.E /meau \(\quad=0.44\) ton/ac.

Crop :-Berseem (Rabi). Ref:- I.A.R.I. 52(9). Type:‘‘M’.
Object :-To study the residual effect of phosphatic manuring of Berseem with and without \(K\) and \(N\) on rotation of crops.
1. BASAL CONDITIONS :
(i) (a) Wheat Berseem-Cotton. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 21 and 22.10.52. (iv) (a) 1 ploughing with victory plough and beaming across. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) 2, 3.1.53, 24.2.53, 27.3.53 and 30.4.53.
2. TREATMENTS :
. Control.
2. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
3. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
4. N at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
5. N at \(25 \mathrm{lb} / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\)

6 , N at \(50 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
7. N at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
8. Fallow in Rabi.

Applied to berseem in Rabi 1951.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(36^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of fodder. (iv) (a) \({ }^{\text {a }} 1948-53\). (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) 15.80 ton/ac.
(ii) 1.73 ton/ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 6.77 \\
2. & 1675 \\
3. & 16.75 \\
4. & 17.57 \\
5. & 17.51 \\
6. & 17.47 \\
7. & 17.78 \\
S.E./mean & \(=0.71\) ton/ac.
\end{tabular}

\section*{Crop :-Berseem (Rabi). Ref:-I.A.R.I. 53(12). Type :-'M'.}

Object :-To study the effect of phosphatic manuring of Berseem with and without \(K\) and \(N\) on rotation of crops.

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton-Berseem-Wheat. (b) Wheat. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 9.10.53. (iv) (a) 4 ploughings with desi plough and mixing the fertilizers with desi plough. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) to (x) N.A.
2. TREATMENTS:
1. Control.
2. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
3. \(\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac} .+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
4. N at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\),
5. \(N\) at \(25 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
6. N at \(50 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
7. N at \(100 \mathrm{lb} . / \mathrm{ac} .+\mathrm{P}_{2} \mathrm{O}_{5}\) at 120 lb ./ac. \(+\mathrm{K}_{2} \mathrm{O}\) at \(120 \mathrm{lb} . / \mathrm{ac}\).
8. Fallow in Rabi.

Fertilizers applied in Rabi 1951. Source is N.A.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(36^{\prime} \times 18^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of berseem fodder. (iv) (a) 1948-1953. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) 41.05 ton/ac.
(ii) 2.50 ton/ac.
(iii) Treatments differ significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 18.53 \\
2. & 44.63 \\
3. & 42.78 \\
4. & 45.95 \\
S. & 43.75 \\
6. & 44.10 \\
7. & 47.64 \\
S.E./mean & \(=1.02\) ton/ac.
\end{tabular}

Ref :- I.A.R.I. 52(62). Type :- 'IM'.
Object :-To find out the optimum number of irrigations for different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).

\section*{1. BASAL CONDITIONS :}
- (i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) 8 to 11.11 .1952 . (iv) (a) 1 ploughing with desi plough and 1 beaming with viccory plough. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) IrrigateJ. (viii) N.A. (ix) N.A. (x) 4, 5.1.1953.
2. TREATMENTS :

\section*{Main-plot treatments :}

All combinations of (1) and (2)
1. 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=30 \mathrm{lb} / \mathrm{ac}\).
2. 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=60\) and \(\mathrm{P}_{2}=120 \mathrm{l}\)./ac.

Sub-plot treatments :
3 levels of irrigation with \(3^{\circ}\) intensity: \(I_{1}=10, I_{2}=14\) and \(I_{3}=18\) irrigations.
3. DESIGN:
(i) Split-plot. (ii) (a) 6 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) \(27^{\prime} \times 20^{\prime}\). (b) \(26^{\prime} \times 18^{\prime}\). (v) \(\frac{1}{2} \times 1^{\prime}\). (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Fodder yield. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(33.50 \mathrm{ton} / \mathrm{ac}\).
(ii) (a) 4.427 ton/ac.
(b) 2.080 ton/ac.
(iii) Main effects of N, P and I are highly significant. Others are not significant.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) \\
\hline \(\mathrm{N}_{0}\) & 29.09 & 30.31 & 34.16 & 31.19 & 26.65 & 32.24 & 34.67 \\
\hline \(\mathrm{N}_{1}\) & 31.70 & 37.10 & 38.63 & 35.81 & 30.12 & 36.83 & 4049 \\
\hline Mean & 30.39 & 33.70 & 36.40 & 33.50 & 28.38 & 34.53 & 37.58 \\
\hline \(\mathrm{I}_{1}\) & 26.61 & 28.16 & 30.38 & & & & \\
\hline \(\mathrm{I}_{2}\) & 30.92 & 34.80 & 37.87 & & & & \\
\hline \(\mathrm{I}_{3}\) & 33.65 & 3815 & 40.94 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. N marginal means \(\quad=0.852\) ton/ac. 5. \(N\) means at the same level of \(I=1.447\) ton/ac.
2. \(P\) marginal means \(\quad=1.043\) ton/ac. 6. I means at the same level of \(P=1.201\) ton/ac.
3. I marginal means \(=0.490\) ton/ac. 7. \(P\) means at the same le el of \(I=1.772\) ton/ac.
4. I means at the same level of \(N=0.980\) ton/ac. 8. means of body of \(N \times P\) table \(=1.476\) ton/ac.

Crop :- Vicia Sativa (Rabi). Ref:- I.A.R.I. 53'30). Type :- 'CM'.
Object:--To study the effect of different doses of phosphatic fertilizer and the number of cuttings on the yield of Vicia Sativa.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 3.11.1953. (iv) (a) Ploughing with desi plough twice on 1.11.1953. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) N.A. (x) 21.1.1954, 22.3.1954 and 6.3.1954.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
1. 4 levels of \(P_{2} O_{5}: P_{0}=0, P_{1}=40, P_{2}=80\) and \(P_{3}=120 \mathrm{lb}\)./ac.
2. Number of cuttings: \(\mathrm{C}_{1}=\) One and \(\mathrm{C}_{2}=\) Two cuttings.
3. DESIGN :
(i) Factorial in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 80\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Fodder yield. (iv) (a) \(1953-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and , vii) Nil.
5. RESULTS :
(i) 11. 32 ton/ac.
(ii) 0.24 ton/ac.
(iii) Main effect of C and interaction \(\mathrm{P} \times \mathrm{C}\) are highly significant. P effect is significant. Others are not significant.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{l|cccc|c} 
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) & Mean \\
\hline \(\mathrm{C}_{1}\) & 10.87 & 10.93 & 10.63 & 10.71 & 10.79 \\
\(\mathrm{C}_{2}\) & 11.47 & 12.09 & 11.60 & 12.23 & 11.85 \\
\hline Mean & 11.17 & 11.51 & 11.12 & 11.47 & 11.32 \\
& & & \\
\begin{tabular}{ll} 
S.E. of P marginal means & \\
S.E. of C marginal means & \\
S.E. of body of table &
\end{tabular} & \(=0.06\) ton/ac. \\
\end{tabular}

Crop :- Hubam Clover and Senji (Rabi). Ref:- I.A.R.I. 51(47). Type :-‘M’
Object:-To study the response of Hubam Clover-Senji mixture in two proportions to phosphatic manuring.
1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (cj N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 27.11.1951. (iv) (a) Ploughing with victory on 14.11 .1951 and one with desi on 22.11 .1951 . (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Weeding on 26.2.1952. (ix) N.A. (x) Senji Hubam : 1.3.1952, and 27.4.1952, Hubam Clover: 29.3.1952, 30.4.1952 and 3, 4.6.1952.
2. TREATMENTS :

All combinations of (1) and (2)
1. Types of G.M. : \(G_{1}=\) Hubam Clover, \(G_{2}=\) Senji, \(G_{3}=\) Hubam Clover+Senji ratio (1:1) and \(G_{4}=\) Hubam Clover + Senji (3:2).
2. 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN:
(i) Fact. in R.B.D.
(ii) (a) 12.
(b) N.A. (iii) 3.
(iv) (a) N.A.
(b) \(1 / 100\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of G.M. (iv) (a) 1951-1954. (b) Yes. (c) N.A. (v) \({ }^{\text {f }}\) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) 4.78 ton/ac.
(ii) 0.73 ton/ac.
(iii) \(G\) effect is highly significant. \(P\) effect and interaction \(P \times G\) is significant.
(iv) Av. yield of green manure in ton/ac.
\begin{tabular}{l|llll} 
& \(G_{1}\) & \(G_{\mathbf{2}}\) & \(G_{3}\) & \(G_{\mathbf{4}}\) \\
\hline\(P_{0}\) & 5.08 & 3.33 & 3.67 & 5.57 \\
\(P_{\mathbf{1}}\) & 5.62 & 3.33 & 4.03 & 5.54 \\
\(P_{2}\) & 4.79 & 4.73 & 6.02 & 5.69 \\
\hline Mean & 5.16 & 3.80 & 4.57 & 5.60
\end{tabular}\(|\)\begin{tabular}{l} 
Mean \\
\hline 4.41 \\
\hline 5.60 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of G marginal mean & \(=0.24 \mathrm{ton} / \mathrm{ac}\). \\
S.E. of P marginal mean & \(=0.21 \mathrm{ton} / \mathrm{ac}\). \\
S.E. of body of table & \(=0.42\) ton \(/ \mathrm{ac}\).
\end{tabular}

Crop :- Hubam Clover and Senji (Rabi). Ref:- I.A.R.I. 52(66). Type :- 'M'.
Object :-To study the response of Hubam Clover-Senji mixture in two proportions to phosphatic manuring.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) As under treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 27.11.1953. (iv) (a) Ploughing with desi plough twice. (b) to (e) N.A. (v) Applied single super 36 seers with \(20 \%\) \(\mathrm{P}_{2} \mathrm{O}_{5}\). (vi) N.A. (vii) Irrigated. (viii) Weeding 22, 24.2.1953. (ix) N.A. (x) 25.2.1953, 26.3.1953, 8 and 9.5.1953 and 6.6.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) Types of G.M.: \(G_{1}=\) Hubam Clover, \(G_{2}=\) Senji, \(G_{3}=\) Hubam Clover + Senji (1:1) and \(G_{4}=\) Hubam Clover + Senji (3:2).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

DESIGN :
(i) \(4 \times 3\) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(1 / 100 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1951-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 7.45 ton/ac.
(ii) 1.10 ton/ac.
(iii) Only \(\mathbf{P}\) effect is significant.
(iv) Av. yield of green manure in ton/ac.
\begin{tabular}{c|cccc|c} 
\\
\hline \(\mathrm{P}_{0}\) & \(\mathrm{G}_{\mathbf{1}}\) & \(\mathrm{G}_{\mathbf{3}}\) & \(\mathrm{G}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{P}_{1}\) & 862 & 8.62 & 10.58 & 3.27 & 7.77 \\
\(\mathrm{P}_{\mathbf{2}}\) & 4.13 & 4.22 & 7.34 & 8.26 & 5.96 \\
9.84 & 7.01 & 7.61 & 9.79 & 8.56 \\
\hline Mean & 7.53 & 6.62 & 8.51 & 7.11 & 7.45
\end{tabular}
S.E. of \(G\) marginal mean
S.E. of \(P\) marginal mean
S.E. of body of table
\(=0.37 \mathrm{ton} / \mathrm{ac}\)
\(=0.32\) ton/ac
\(=0.64\) ton/ac.

\section*{Crop :- Hubam Clover and Senji (Rabi).Ref :- I.A.R.I. 53(57). Type :- 'M'.}

Object :-To study the response of Hubam Clover, Senji and Hubam and Senji mixture in two proportions to phosphatic manuring.
1. BASAL CONDITIONS :
(i) (a) No. - (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 30.11.1953. (iv) (a) Ploughing with victory plough (thrice). (b) N.A. (c) 20 lb ./ac. (d) and (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Weeding on 17.2.1954. (ix) N.A. (x) 8.3.1954, 23.3.1954 and 30.4.1954.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) Types of G.M. : \(G_{1}=\) Hubam clover, \(G_{2}=\) Senji, \(G_{3}=\) Hubam + Senji (1:1) and \(G_{4}=\) Hubam + Senji (3:2).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 12 . (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(1 / 100 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Sub-normal. (ii) Nil. (iii) Yield of fodder. (iv) (a) 1951-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Due to late rains the growth was sub-normal. (vii) Nil.
5. RESULTS :
(i) 6.69 ton/ac.
(ii) 0.92 ton/ac.
(iii) Only G effect is highly significant.
(iv) Av. yield of green manure in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{G}_{1}\) & \(\mathrm{G}_{2}\) & \(\mathrm{G}_{3}\) & \(\mathbf{G}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 7.61 & 4.28 & 6.57 & 6.24 & 6.18 \\
\hline \(\mathrm{P}_{1}\) & 9.60 & 3.71 & 6.54 & 8.50 & 7.09 \\
\hline \(\mathrm{P}_{2}\) & 9.95 & 4.52 & 8.12 & 6.63 & 6.80 \\
\hline Mean & 8.39 & 4.17 & 7.07 & 7.13 & 6.69 \\
\hline \multicolumn{3}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
S.E. of \(G\) marginal mean \\
S.E. of \(P\) marginal mean \\
S.E. of body of table
\end{tabular}}} & & \multicolumn{2}{|l|}{\(=0.31\) ton/ac.} \\
\hline & & & & \multicolumn{2}{|l|}{\(=0.27\) ton/ac.} \\
\hline & & & & \multicolumn{2}{|l|}{\(=0.53\) ton/ac.} \\
\hline
\end{tabular}

Crop :- Penium antedotale (Kharif). Ref :- I.A.R.I. 53(61). Type :- 'CM'.
Object :-To study the effect of \(\mathbf{N}\) and optimum interval of cutting.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 24, 25.8.1953. (iv) (a) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) 1 hoeing with desi plough and 1 weeding. (ix) N.A. (x) 10.3.1954, 29.3.1954, 9.4.1954, 19.4.1954, 29.5.1954 and 6.11.1954.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of \(N: N_{0}=0, N_{1}=40, N_{2}=80\) and \(N_{3}=120 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 intervals of cutting: \(C_{1}=20, C_{2}=30\) and \(C_{3}=40\) days.
3. DESIGN :
(i, \(4 \times 3\) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(1 / 80\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) Nil. (iii) Yield of fodder. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) 7.93 ton/ac.
(ii) 0.96 ton/ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of fodder in ton/ac.
\begin{tabular}{l|llll|l} 
& \(\mathrm{N}_{0}\) & \(\mathrm{~N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{C}_{1}\) & 6.40 & 7.35 & 7.73 & 9.24 & 7.68 \\
\(\mathrm{C}_{\mathbf{2}}\) & 7.13 & 8.04 & 8.46 & 9.62 & 8.31 \\
\(\mathrm{C}_{3}\) & 5.93 & 7.52 & 8.63 & 9.10 & 7.79 \\
\hline Mean & 6.49 & 7.64 & 8.27 & 9.32 & 7.93 \\
& & & & \(=0.32\) ton/ac. \\
\begin{tabular}{ll} 
S.E. of N marginal mean \\
S.E. of C marginal mean \\
S.E. of body of table
\end{tabular} & & & \(=0.28\) ton/ac..
\end{tabular}

Crop :- Maize and Sesamum (Kharif). Ref:- I.A.R.I. 52(36). Type :- 'X'.
Object :-To study the response of mixed cropping of Maize and Sesamum.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) No. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 20, 21.7.1952. (iv) (a) 1 ploughing with victory plough on 21, 23.5.1952, tractor discing on 31.5.1952 and ploughing with desi on 5.7.1952 and 16.7.1952. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Nil. (viii) 2 weedings. (ix) N.A. (x) 26 to 28.10.1952.

\section*{2. TREATMENTS:}
1. Sesamum pure in lines.
2. Maize pure in lines.
3. Sesamum and maize in separate rows (full rate).
4. Sesamum and maize in separate rows (full rate).
5. Sesamum and maize in separate rows ( \(\frac{1}{2}\) rate).
6. Sesamum and maize in same row ( \(\frac{1}{2}\) rate).
3. DESIGN :
(i) R.B.D. (ii) (a) 6.
(b) N.A.
(iii) 6 .
(iv) (a) N.A.
(b) \(1 / 60\) ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) N.A. (iii) Yield of grain. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 175.65 Rs./ac.
(ii) 45.60 Rs./ac.
(iii) Treatments differ higher signiffcantly.
(iv) Av. value in Rs./ac.
Treatment Av. value
1. 45.65
2. 258.85
3. 181.35
4. 230.25
\(5 . \quad 156.65\)
6. \(\quad 187.15\)
S.E. \(/\) mean \(=18.61\) Rs. \(/ \mathrm{ac}\).

Object :-To study the effects of mixed cropping of Sesamum and Maize.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 17.6.1953. (iv) (a) 1 ploughing with victory plough, 1 with desi plough and one tractor discing. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) 1 weeding and 1 hoeing with hand hoe. (ix) N.A. (x) 22, 23, 26 to 28.9.1953.
2. TREATMENTS :
1. Sesamum pure in lines.
2. Maize pure in lines.
3. Sesamum + Maize in separate rows (full rate).
4. Sesamum+Maize in same row (full rate).
5. Sesamum + Maize in separate rows ( \(\frac{1}{2}\) rate).
6. Sesamum + Maize in same row ( \(\frac{1}{2}\) rate).
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 60\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of sesamum and maize. (iv) (a) 1952-1956. (b) Yes. (c) N.A. (v)
(a) and (b) No. (vi) and (vii) Nil.
- RESULTS:
(i) \(165.48 \mathrm{Rs} / \mathrm{ac}\).
(ii) \(51.60 \mathrm{Rs} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. value in Rs,/ac.
\begin{tabular}{cc} 
Treatment & Av. value \\
1. & 70.03 \\
2. & 189.28 \\
3. & 199.94 \\
4. & 195.43 \\
5. & 155.97 \\
6. & 192.21 \\
S.E./mean & \(=21.06\) Rs./ac.
\end{tabular}

Crop :- Linseed, Wheat and Gram (Rabi). Ref:- I.A.R.I. 53(54). Type :- 'X'.
Object : - To find out suitable crop mixture of Wheat, Gram and Linseed.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 5.11.1953. (iv) (a) 1 ploughing with victory plough, twice tractor discing and preparing with desi plough. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Hoeing with oudh plough and weeding. (ix) N.A. (x) 16, 17, 19.4.1954.
2. TREATMENTS :
1. Linseed pure in lines.
6. Linseed + gram + wheat ( \(4: 1: 1\) ).
2. Wheat pure in lines.
7. Linseed+gram (1:1).
3. Gram pure in lines.
8. Linseed + wheat (1:1).
4. Linseed + gram ( \(2: 1\) ).
9. Linseed + wheat + gram (2:1:1).
5. Linseed + wheat \((4: 1)\).
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(40^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of linseed, wheat and gram. (iv) (a) 1951-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) to (iv) Av. yield in lb./ac.
\begin{tabular}{lcllcccccccc} 
Treatment & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & 5 & 6 & 7 & 8 & 9 & Significance & S.E./mean \\
Lineeed & 1094 & - & - & 832 & 348 & 439 & 640 & 171 & 220 & H.S. & 85.58 \\
Wheat & - & 1972 & - & - & 1453 & 802 & - & 1478 & 1513 & H.S. & 151.40 \\
Gram & - & - & 1445 & N.A. & - & 100 & 1089 & - & 325 & H.S. & 218.06
\end{tabular}

Crop :-Wheat, Gram and Linseed (Rabi). Ref :-I.A.R.I. 52(69). Type '-'X'.
Object :-To find out suitable crop mixture of Wheat, Gram and Linseed.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) 31.10.1952 and 1.11.1952. (iv) (a) Ploughing with desi plough and tractor. (b) to (e) N.A. (v) Nil. (vi) and (vii) N.A. (viii) Bakharing. (ix) N.A. (x) 4 to 30.4 .1953 .
2. TREATMENTS:
\(\begin{array}{ll}\text { 1. Linseed pure in lines. } & \text { 6. Linseed+gram+wheat }(4: 1: 1) \text {. } \\ \text { 2. Wheat pure in lines. } & \text { 7. Linseed+gram }(1: 1) . \\ \text { 3. Gram pure in lines } & \text { 8. Linseed+wheat }(1: 1) \text {. } \\ \text { 4. Linseed + gram }(2: 1) & \text { 9. Linseed+wheat+gram }(2: 1: 1) . \\ \text { 5. Linseed+wheat }(2: 1) . & \end{array}\)
3. DESIGN :
(i) R.B.D.
(ii) (a) 9 .
(b) N.A. (iii) 4 .
(iv) (a) N.A.
(b) \(40^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Yield of gram, linseed and wheat. (iv) (a) \(1951-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) to (iii) N.A.
(iv) Av. yield in lb./ac.
\begin{tabular}{lccccccccr} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
Linseed & 587 & - & - & 496 & 45 & 157 & 458 & 14 & 37 \\
Wheat & - & 3773 & - & - & 2885 & 2764 & - & 2961 & 2895 \\
Gram & - & - & 1213 & 457 & - & 76 & 795 & - & 133
\end{tabular}

Other details N.A.

Crop :-Paddy and Berseem.
Ref:-I.A.R.I. 50(28). Type:- 'M'.
Object :-To study the relative merits of direct and indirect` manuring of Paddy and Berseem with A/S and Super.

\section*{1. BASAL CONDITIONS:}
(i) (a) No. (b) and (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) 28.10.1950.
(iv) (a) Victory ploughing. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A.
(x) 8,9.1.1951, 12.2.1951 and 10.3.1951.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 crops: \(\mathrm{C}_{1}=\) Paddy and \(\mathrm{C}_{\mathbf{2}}=\) Berseem.
(2) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=30\) and \(N_{2}=60 \mathrm{lb}\)./ac.
(3) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=80\) and \(\mathrm{P}_{2}=160 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 12.
(b) N.A.
(iii) 3.
(iv) (a) N.A.
(b) \(51^{\prime} \times 10^{\prime} . \quad\) (v) N.A.
(vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1948-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Yield of treatment \(\mathrm{N}_{\mathbf{2}} \mathrm{P}_{1}\) in Rep. IV is not avialable for Paddy and dhas been estimated by missing plot technique.
5. RESULTS :

\section*{PADDY}
(i) 626 b./ac.
(ii) \(115.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only P effect is significant.
(iv) Av. yield of paddy in \(\mathrm{lb} . / \mathrm{ac}\).

\section*{BERSEEM}
(i) \(663 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(89.72 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only \(\mathbf{P}\) effect is 'significant.
(iv) Av. yield of berseem in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l} 
& \(\mathbf{P}_{\mathbf{0}}\) & \(\mathbf{P}_{\mathbf{1}}\) & \(\mathbf{P}_{\mathbf{2}}\) & Mean \\
\hline \(\mathbf{N}_{\mathbf{0}}\) & 555 & 641 & 725 & 640 \\
\(\mathrm{~N}_{\mathbf{1}}\) & 589 & 676 & 676 & 647 \\
\(\mathrm{~N}_{\mathbf{2}}\) & 520 & 625 & 622 & 589 \\
\hline Mean & 555 & 648 & 674 & 626
\end{tabular}
S.E. of \(\mathbf{N}\) or \(\mathbf{P}\) marginal mean
(excluding \(\mathrm{N}_{2}\) and \(\mathrm{P}_{1}\) ).
S.E. of \(\mathrm{N}_{2}\) or \(\mathrm{P}_{1}\) marginal mean
\(=33.5 \mathrm{lb} . / \mathrm{ac}\).
\(=35.8 \mathrm{lb}\)./ac.
S.E. of body of table (excluding
\[
\left.\mathrm{N}_{2} \mathrm{P}_{1} \text { mean }\right) \quad=57.9 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{l|lll|l} 
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & \begin{tabular}{lll}
589 & 661 & 737 \\
\(\mathrm{~N}_{1}\) & 495 & 770 \\
\(\mathrm{~N}_{2}\) & 728 & 662 \\
\hline Mean & 628 & 784 \\
653 & 686 & 760
\end{tabular} & \begin{tabular}{l}
664 \\
662
\end{tabular} \\
\hline
\end{tabular}
S.E. of \(N\) or \(P\) marginal mean \(\quad=44.86 \mathrm{lb}\)./ac.
S.E. of body of table \(\quad=25.90 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat and Peas (Rabi). Ref:- I.A.R.I. 50(45). Type :- 'R'.
Object:-To test the economics of different Kharif and Rabi crop combinations as compared to green manuring.

\section*{1. BASAL CONDITIONS:}
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer' item 11 on page 143. (iii) Maize and groundnut on 7, 14.7.1950 while wheat on 14/15.11.1950. (iv) (a) Tractor ploughing on 7.6 .1950 and tractor grubbing on 26.6.1950 for kharif, victory plough on 28.10 .1950 and desi plough twice on 5 and 7.11 .1950 for rabi crops. (b) to (e) N.A. (v) N.A. (vi) Wheat NP-4. (vii) Irrigated. (viii) Hoeing of maize and groundnut on 9.8.1950 to 11.8 .1950 . Thinning of maize on 24, 25.8.1950. Weeding, hoeing and earthing for groundnut and maize on 19.8.1950. Earthing up of maize on \(23,25.8 .1950\). Weeding for wheat on \(7,9.2\).1951. (ix) N.A. ( \(x\) ) Maize and groundnut on \(16,17.10 .1950\) while wheat on 10.4 .1951 to 13.4.1951.
2. TREATMENTS:
\begin{tabular}{lll} 
Kharif & Rabi \\
1. Maize & Fallow \\
2. Fallow & Wheat \\
3. Maize & Wheat \\
4. Maize, with F.Y.M. at 10 ton/ac. & Wheat \\
5. Maize & Peas \\
6. Sannhemp green manured at \(60 \mathrm{lb} . / a c\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). & Wheat \\
7. Groundnut with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). & Wheat \\
8. Sannhemp manured in alternate rows of Maize with \(60 \mathrm{lb} . / a c\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). & Wheat
\end{tabular}
3. DESIGN :
(i) R.B.D.
(ii) (a), (b) N.A.
(iii) 8. (iv) (a) N.A.
(b) \(60^{\circ} \times 20^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Removal of smut-affected plants on 28.2.1951. (iii) Yield of grain and pod, etc. (iv) (a)
1950-N.A.
(b) No.
(c) N.A.
(v) (a) and (b) No.
(vi) N.A. (vii) Nil.
5. RESULTS :

Economics valve

\section*{Maize and Groundnut yield.}
(i) \(143.6 \mathrm{Rs} / \mathrm{ac}\).
(i) N.A
(ii) \(89.5 \mathrm{Rs} / \mathrm{ac}\).
(ii) N.A.
(iii) Treatments differ significantly
(iii) N.A.
(iv) Av. net income in Rs./ac.
\begin{tabular}{cc} 
Treatment & Av. income \\
1. & 48.6 \\
2. & 164.3 \\
3. & 154.4 \\
4. & 169.0 \\
5. & 130.5 \\
6. & 214.0 \\
7. & 85.2 \\
8. & 182.6 \\
S.E./mean & \(=31.64\) Rs./ac.
\end{tabular}
(iv) Av. yield in lb./ac.

Treatment Av. yield
1. 850
\(2 . \quad-\)
\(3 . \quad 771\)
4. 1050
\(5 . \quad 917\)
6.
7.49 .4
\(8 . \quad 726\)
S.E./mean \(\quad=\) N.A.

\title{
Crop :- Wheat and Peas (Rabi). Ref :- I.A.R.I. 51(38). Type :- 'R'.
}

Object :- To study the economics of having different Kharif crops preceeding Wheat and Peas crops in the Rabi season.

\section*{1. BASAL CONDITIONS :}
(i) (a) As per treatments. (b) Maize and sanohemp. (c) As per treatments. (ii) (a) and (b) Refer item 11 on page 143. (iii) Peas on 2.11.1951 and wheat on 14 and 29.11.1951. (iv) (a) Peas : victory ploughing, desi ploughing and planking on 24.10.1951, wheat : ploughing, desi ploughing and planking on 2, 3 and 4 .10.1951 (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Weeding on 18.2.1952. (ix) N.A. (x) Peas on 21.3.1952 and wheat on 3, 24.4.1952 and 16.4.1952.
2. TREATMENTS:

Kharif \(1951 \quad\) Rabi 1951
1. Maize. Fallow
2. Fallow. Wheat
3. Maize. Wheat
4. Maize with F.Y.M. at 10 ton/ac. Wheat
5. Maize.
6. Sannhemp with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). Wheat
7. Groundnut with \(60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

Wheat
8. Sannhemp manured with \(\mathrm{P}_{2} \mathrm{O}_{5}\) in alternate rows of maize. Wheat
3. DESIGN :
(i) R.B.D. (ii) (a) 8 . (b) N.A. (iii) 6 . (iv) (a) \(33^{\prime} \times 31^{\prime}\). (b) \(31^{\prime} \times 29^{\prime}\). (v) \(1^{\prime}\) on each side. (vi) Yes.
4. GENERAL:
(i) Good. Lodging occured. (ii) N.A. (iii) Yield of wheat grain. (iv) (a) \(1950-\) N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(1153 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(241.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cccc} 
Treatment & Av. yield & Treatment & Av. yield \\
1. & - & 5. & - \\
2. & 1462 & 6. & 1543 \\
3. & 832 & 7. & 1002 \\
4. & 865 & 8. & 1212 \\
& S.E./mean & \(=98.7 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{Crop :- Wheat-Peas (Rabi). Ref:- I.A.R.I. 51(50). Type :- 'R'.}

Object :-To study the economics of different Kharif and Rabi crop - combinations in comparison to green manured crop of Wheat.
1. BASAL CONDITIONS :
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Kharif crops on 21.7.1951, Peas on 2.11.1951, Wheat on 14.11.1951 and 29.11.1951. (iv) (a) Kharif crops : Levelling on 9,10, 13 and 22.7.1951. making ridges on 23.7.1951. Peas: Victory plough, cross plough by desi plough and planking on 24.10.1951. Desi plough and planking on 1.11.1951, cross plough by desi plough and planking on 2.11.1951. Wheat : Plough by victory plough and cross plough by desi and planking on 2 to 4.11.1951. Plough and cross plough by desi plough on 12 and 14.11.1951. Plough and cross plough by desi plough on 29.11.1951 (treatment 7). (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Kharif crops : Hoeing on 9, 11.8.1951 and 8.9.1951. Weedirg on 24.8 .1951 and \(11_{2} 27.9 .1951\) and earthing up on 10.9.1951. Ploughing in fallow plots on 11.2.1952 by desi plough weeding on 18.2.1952. (ix) N.A. (x) Maize on 16 to \(24,26,27.10 .1951\), Groundnut on \(27,28.11 .1951\) while Sannhemp green manured on 29.8.1951, Peas on 21.3.1952 and Wheat3, 4 and 16.4.1952.
2. TREATMENTS:
\begin{tabular}{lll} 
& Kharif & Rabi \\
1. Maize. & Fallow \\
2. Fallow. & Wheat \\
3. Maize. & Wheat \\
4. Maize with F.Y.M. at 10 ton/ac. & Wheat \\
5. Maize. & Peas \\
6. Sannhemp green manured at \(60 \mathrm{lb} . / a c\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). & Wheat \\
7. Groundnut with \(63 \mathrm{lb} /\) ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). & Wheat \\
8. Sannhemp green manured at \(60 \mathrm{lb} /\) /ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) with alternate rows of maize. & Wheat \\
F.Y.M. applied on 17.7 .1951 . Super applied on 14.7 .1951 . &
\end{tabular}
3. DESIGN:
(i) R.B.D.
(ii) (a) 8 .
(b) N.A.
(iii) 6.
v) (a) \(33^{\prime} \times 31^{\prime}\).
(b) \(31^{\prime} \times 23^{\prime}\).
(v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Treatments \(2,6,8,4,3\) and 7 came in succession, best growth in 2. On the whole, lodging worked out is \(40 \%\). Crop of heavy growth has lodged extensively. (ii) Some ear heads were affected by smut. No pests. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) No. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS :}

Economic value Maize yield
(i) \(236.3 \mathrm{Rs} . / \mathrm{ac}\).
(ii) \(79.2 \mathrm{Rs} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. net income in Rs./ac.
\begin{tabular}{cc} 
Treatment & Av. income \\
1. & 152.6 \\
2. & 296.9 \\
3. & 307.7 \\
4. & 202.3 \\
5. & 238.4 \\
6. & 258.7 \\
7. & 167.6 \\
8. & \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
\hline
\end{tabular}
(i) \(1233 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(695.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1405 \\
2. & - \\
3. & 1464 \\
4. & 1210 \\
5. & 1152 \\
6. & - \\
7. & - \\
8. & \\
& S.E./mean \\
& \(=283.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
S.E. \(/\) mean \(=283.9 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat-Peas (Rabi). Ref :- I. A.R.I. 52(42). Type:- 'R'.
Object:-To study the economics of different Kharif and Rabi crop combinations as compared to green manuring.
1. BASAL CONDITIONS:
(i) (a), (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Kharif crops on 4.7.1952 and 23, 24.10.1952. (iv) (a) Ploughing with victory plough once; ploughing with desi plough tuice. Preparing land with desi plough twice after soaking dose. (b) to (e) N.A. (v) N.A. (vi) Wheat : N P. 4 and Peas: N.P.29. (vii) Irrigated. (viii) One weeding and thinning for Kharif ciops, hoeing for peas and weeding for wheat. (ix) N.A. (x) Maize and Moong on 6, 9.10.1952 and Sannhemp buried on 18.8.1952, Peas on 11.3.1953 and Wheat on 19.3.1953.

\section*{2. TREATMENTS:}
\begin{tabular}{llc} 
& Kharif & Rabi \\
1. Maize & Fallow \\
2. Fallow & Wheat \\
3. Maize & Wheat \\
4. Maize +10 ton/ac. of F.Y.M. & Wheat \\
5. Maize & Peas \\
6. Sannhemp (G.M.) & Wheat \\
7. Mung & Wheat \\
8. Maize+Sannhemp, in alternate rows, G.M. & Wheat
\end{tabular}
3. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) \(33^{\prime} \times 31^{\prime}\). (b) \(31^{\prime} \times 29^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Disease observed in Moong crop. The plants turned; black and died. (iii) Grain yield. (iv) (a) \(1950-N . A\). (b) No. (c) N.A. (v) (a), (b) No. (vi) N.A. (vii) Raw data N.A. Results are a vailable as given under item 5 .
5. RESULTS :

\section*{Kharif crops 'Rabicrops}
(i) to (iii) N.A.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1145 (Maize) \\
2. & - \\
3. & 1179 (Maize) \\
4. & 1285 (Maize) \\
5. & 1285 (Maize) \\
6. & 16723 (Maize) \\
7. & - \\
8. & 1067 (Maize)
\end{tabular}
(i) to (iii) N.A.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Treatment Av. yield

1421 (Wheat)
942 (Wheat)
1169 (Wheat)
1799 (Peas)
1227
1164
805

Crop :- As under treatments. Ref :- I.A.R.I. 53(43). Type :- ' R '.
Object :-To study the economics of different Kharif and Rabi crop combinations as compared to F.Y.M.

\section*{1. BASAL CONDITIONS :}
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) Kharif crops : 26, 27.6.1953, Rabi crops; on 27.10.1953. (iv) (a) Ploughed with the victory plough ; Preparing land with desi plough twice and beaming. (b) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated, (viii) 1 hoeing on 27.7.1953 and 1 weeding on \(20,21.8 .1953,1\) weeding on \(26,27.12 .1953\) for wheat and peas. (ix) N.A. (x) Maize on 1, 2.10.1953, Sannhemp on 5.8.1953, Peas on 16.3.1953 and Wheat on 1.4.1954.
2. TREATMENTS :
\begin{tabular}{ll}
\multicolumn{2}{c}{ Kharif crops } \\
1. Maize & Rabi crops \\
2. Fallow & Fallow \\
3. Maize & Wheat \\
4. Maize 10 ton/ac. of F.Y.M. & Wheat \\
5. Maize & Wheat \\
6. Sannhemp G.M. & Peas \\
7. Soyabeans & Wheat \\
8. Maize+Sannhemp in alternate rows, G.M. & Wheat \\
\end{tabular}
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(31^{\prime} \times 29^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of grain and fodder. (iv) (a) \(1950-\) N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil. 1
5. RESULTS :
(i) \(347.9 \mathrm{Rs} . / \mathrm{ac}\).
MAIZE yield
(ii) \(39.8 \mathrm{Rs} . / \mathrm{ac}\).
(i) to (iii) N.A.
(iii) Treatments differ highly significantly.
(iv) Av. yield of maize in lb./ac.
(iv) Av. net income in Rs./ac.
\begin{tabular}{cc} 
Treatment & Av. value \\
1. & 220.9 \\
2. & 270.0 \\
3. & 400.1 \\
4. & 491.4 \\
5. & 424.2 \\
6. & 379.2 \\
7. & 192.0 \\
8. & 405.1 \\
S. E./mean & \(=16.26\) Rs./ac.
\end{tabular}
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1702 (Maize) \\
2. & - \\
3. & 1518 (Maize) \\
4. & 1988 (Maize) \\
5. & 1615 (Maize) \\
6. & 20263 (Sannhemp) \\
7. & 202 (Soyabean) \\
8. & 1639 (Maize)
\end{tabular}

\author{
Crop :- Wheat-Peas-Potato-Berseem (Rabi). Ref :- I.A.R.I. 51(22). Type :- 'R'. \\ Object :-To find out a suitable rotation for Delhi tract.
}
1. BASAL CONDITIONS:
(i (a) As per treatments. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Wheat on 26, 29.11.1951, Peas on 31.10.1951, Potato on 11.10.1951 and Berseem on 21.9.1951, 8.10.1951, 6, 7.12.1951. (iv) (a) Wheat-dry ploughing with desi plough twice, preparing land with desi plough twice, and beaming. Peas-dry ploughing with desi plough once, preparing land with desi plough twice and teaming. Potato-dry ploughing with desi plough thrice. Berseem-dry pioughing. (b) to (e) N.A. (v) Wheat: A/S at 20 lb ./ac. of N except in G.M. plot. Berseem-A/S at 3 srs/plot. (vi) N.A. (vii) Irrigated. (viii) Wheat-weeding on 27, 8.2.1952, Peas-Hoeing with desi plough on 30.11.1951 to 2.12.1951, Poiato-Earthing up on 9.11.1951 and Berseem-Thinning on 4, 29 and 31.12.1951. (ix) N.A. (x) Wheat from 4 to 8.4.1952, Potato on 18, 26.2.1952 and Berseem on 11, 12.1.1952, 18, 26.2.1952 and 17, 18.4.1952.
2. TREATMENTS:
\begin{tabular}{llllllc} 
& Khorif I & Rabi I & Kharif II & Rabi II & Kharif III & Rabi III \\
A & Maize and Cowpeas & Wheat & Fallow & Wheat & - & - \\
B & Sannhemp & Potato & Maize & Peas & - & - \\
C & Cotton & Berseem & Fallow & Wheat & - & - \\
D & Maize and Cowpeas & Wheat & Cotton & Berseem & - & - \\
E & Maize & Potato & Sugarcane & Sugarcare & - & - \\
F & Sannhemp & Wheat & Maize & Peas & - & - \\
G & Fallow & Wheat & Fallow & Peas & Cotton & Fallow \\
H & Fallow & Wheat & Cotton & Fallow & Sugarcane & Sugarcane \\
I & Cowpeas & Wheat & Fallow & Peas & Maize & Berseem \\
J & Sanohemp & Wheat & Fallow & Potato & Sugarcane & Sugarcane
\end{tabular}
3. DESIGN :
(i) R.B.D. (ii) (a) and (b) N.A. (iii) 4. (iv) (a) \(41^{\prime} \times 61^{\prime}\). (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of wheat grain, peas, potato and berseem fodder. (iv) (a) 1951-1956. (b) Yes. (c N.A. (v) (a) and (b) No. (vi) Nil. (vii) The results as available are given.
5. RESULTS :
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{WHEAT} & \multicolumn{2}{|c|}{BERSEEM} \\
\hline Treatment & Av. yield & Treatment & Av. yield \\
\hline \(\mathrm{A}_{1}\) & 600 & \(\mathrm{C}_{1}\) & 24375 \\
\hline \(\mathrm{A}_{2}\) & 625 & \(\mathrm{D}_{2}\) & 24066 \\
\hline \(\mathrm{C}_{2}\) & 583 & \(\mathrm{I}_{3}\) & 40225 \\
\hline \(\mathrm{D}_{1}\) & 458 & \multicolumn{2}{|l|}{POTATO} \\
\hline \(\mathrm{F}_{1}\) & 566 & \(\mathrm{B}_{1}\) & 2224 \\
\hline \(G_{1}\) & 685 & \(E_{1}\) & 3765 \\
\hline \(\mathrm{H}_{1}\) & 629 & \(\mathrm{J}_{2}\) & 1782 \\
\hline \(\mathrm{I}_{1}\) & 520 & \multicolumn{2}{|c|}{PEAS} \\
\hline \(\mathrm{J}_{1}\) & 615 & \(\mathrm{B}_{2}\) & 881 \\
\hline permanent plot & 720 & \(\mathrm{F}_{2}\) & 657 \\
\hline & & \(\mathrm{G}_{2}\) & 703 \\
\hline & & \(\mathrm{I}_{2}\) & 586 \\
\hline
\end{tabular}

Object :-To find out suitable rotation for Delhi tract.

\section*{1. BASAL CONDITIONS :}
(i) (a, and (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Cotton :21.4.53, Maize, Cowpeas-29 and 30.5.53, Sannhemp-18.6.53, Maize 28.6.53 and Sugarcane-7, 10.3.53.
(iv) (a) Cotton :-Ploughing with victory plough once, with desi thrice preparing level with desi plough. Maize and Cowpeas:-Beaming after soaking dose, ploughing twice, preparing land with desi plough after soaking dose. Sannhemp-Preparing land with desi plough twice after soaking dose. MaizeVictory ploughing once, desi twicepreparing land with desi plough twice and beaming. Sugarcane - Preparing land with desi plough thrice and beaming. (b) to (e) N.A. (v) Cotton- 1400 lb . of F.Y.M./plot, Maize and Cowpeas-G.N.C. at \(400 \mathrm{lb} . / \mathrm{ac} .+20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{N}\) and \(10 \mathrm{lb} . / \mathrm{ac} . \mathrm{N}\) on 28.6 .53 . Sannhemp- \(700 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M./plot and \(6 \frac{1}{2} \mathrm{lb}\)./ac of Ammo. Phos. at sowing time. Maize- 700 lb ./ac. F.Y.M. per plot. Sugarcane\(1400 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. (vi) Nil. (vii) Irrigated. (viii) Cotton :-Hoelng, interculturing with desi plough on 2.6.53. Maize—Weeding 4 times. (ix) N.A. (x) Cotton-30.9.53, Cowpeas 5,8.8.1953, 8,11.8.1953., Maize-3.10. 3 3 and Sugarcane 9.2.1954. to 18.2.1954.
2. TREATMENTS to 4. GENERAL:

Please refer to No. I.A.R.I. 51 (22) on page 345.

\section*{5. RESULTS :}

MAIZE
(i) \(1692 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(243.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathrm{B}_{2}\) & 1925 \\
\(\mathrm{E}_{1}\) & 1628 \\
\(\mathrm{~F}_{2}\) & 1318 \\
\(\mathrm{I}_{3}\) & 1899 \\
S.E./mean & \(=121.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{SUGARCANE}
(i) \(74256 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(9671.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of sugarcane in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cl} 
Treatment & Av. yield \\
\(\mathrm{E}_{\mathbf{2}}\) & 72845 \\
\(\mathrm{H}_{3}\) & 69717 \\
\(\mathrm{~J}_{\mathbf{3}}\) & 80206 \\
S.E. \(/\) mean & \(=4835.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{COTTON}
(i) \(1376 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(669.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of kapas in lb./ac.
\begin{tabular}{cc} 
Treatmeant & Av. yield \\
\(\mathrm{C}_{1}\) & 1220 \\
\(\mathrm{D}_{2}\) & 1517 \\
\(\mathrm{G}_{3}\) & 1461 \\
\(\mathrm{H}_{2}\) & 1306 \\
S.E./Mean & \(=334.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{MAIZE and COWPEAS}
(i) \(25576 \mathrm{lb} . / \mathrm{ac}\)
(ii) \(16110 \mathrm{lb} \cdot / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{A}_{1}\) & 24429 \\
\(\mathrm{D}_{1}\) & 27302 \\
\(\mathrm{I}_{1}\) & 24998 \\
S.E./mean & \(=8054.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Wheat-Peas-Potato-Berseem (Rabi).

Object :-To find out a suitable rotation for Delhi tract.
1. BASAL CONDITIONS :
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Peas on 18, 20.10.1952, Wheat on \(26,30.10 .1952\), Potato on 17.10 .1952 and Berseem on 8.10 .1052 . (iv) (a) Peas-ploughing with victory plough once, 5 times with desi plough. Wheat ploughing with victory plough once, desi plough twice, preparing land with desi plough. Potato-ploughing with victory plough once, with desi twice, preparing land with desi plough thrice and Berseem-preparing land with victory plough once and preparing land with desi plough twice except in cotton plots. (b) to (e) N.A. (v) N.A. (vi) Potato : D.R.R, Wheat : N.P. 775 and Peas : N.P. 29. (vii) Irrigated. (viii) Peas-bakharing once, Wheat-weeding and Potato-hoeing. (ix) N.A. (x) Peas on 12, 14.3.1953, Wheat on 23, 24.3.1953, Potato on 24.2.1953 and 2.3.1953 and Berseem on 13.12.1952 to N.A.
2. TREATMENTS to 4. GENERAL :

Please refer to No. I.A.R.I. 51(22) on page 345.
5. RESULTS :
\begin{tabular}{cc}
\multicolumn{1}{l}{ WHEAT } & \\
Treatment & Av. yield \\
\(\mathbf{A}_{\mathbf{1}}\) & 1562 \\
\(\mathbf{A}_{\mathbf{2}}\) & 1612 \\
\(\mathbf{C}_{\mathbf{2}}\) & 2220 \\
\(\mathbf{D}_{1}\) & 1891 \\
\(\mathrm{~F}_{1}\) & 2249 \\
\(\mathbf{G}_{1}\) & 2241 \\
\(\mathbf{H}_{1}\) & 1889 \\
\(\mathbf{J}_{1}\) & 2149 \\
Permanent plot & 1807
\end{tabular}

\section*{POTATO}
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{E}_{1}\) & 21913 \\
\(\mathbf{B}_{1}\) & 20896 \\
\(\mathbf{J}_{\mathbf{2}}\) & 23433 \\
\multicolumn{2}{c}{ BERSEEM } \\
\(\mathbf{C l}_{\mathbf{1}}\) & \\
\(\mathbf{D}_{\mathbf{2}}\) & \\
\(\mathbf{I}_{\mathbf{3}}\) & \\
& PEAS \\
\(\mathbf{B}_{\mathbf{2}}\) & \\
\(\mathbf{F}_{\mathbf{2}}\) & \\
\(\mathbf{G}_{\mathbf{2}}\) & \\
\(\mathbf{I}_{\mathbf{2}}\) & \\
& \\
& \\
& \\
\hline
\end{tabular}

Crop :- Wheat-Potato-Peas-Berseem (Rabi). Ref :- I.A.R.I. 53(35). Type :- 'R'.

Object :-To find out a suitable rotation for Delhi tract.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Wheat from 31.10.1953 to 2.11.1953. (iv) (a) Wheat-ploughing with victory plough, desi plough, preparing land with plough and beaming. Peas-ploughing with victory plough and discing. Preparing land with desi plough and beaming. (b) to (e) N.A. (v) \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Ammo. Phos. (vi) Wheat: N.P. 775 and Peas: N.P. 29. (vii) Irrigated. (viii) Wheat-weeding on 8, 18.12.1953 and Peas-weeding on 16, 22.11.1953. (ix) N.A. (x) Wheat on 4, 6.4.1954 and Peas on 16.3.1954.
2. TREATMENTS to 4. GENERAL.

Please refer to No. I.A.R.I. 51 (22) on page 345.
5. RESULTS :
wHEAT
(i) \(1979 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(174.48 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathrm{A}_{1}\) & 1670 \\
\(\mathrm{~A}_{2}\) & 1678 \\
\(\mathrm{C}_{2}\) & 2131 \\
\(\mathrm{D}_{1}\) & 2024 \\
\(\mathrm{~F}_{1}\) & 1967 \\
\(\mathrm{G}_{1}\) & 2172 \\
\(\mathrm{H}_{1}\) & 2107 \\
\(\mathrm{I}_{1}\) & 2000 \\
\(\mathrm{~J}_{1}\) & 2065 \\
S.E./mean & \(=87.39 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{POTATO}
(i) \(14020 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(1685.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of potato in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|}
\hline Treatment & Av. yield \\
\hline \(\mathrm{B}_{1}\) & 15489 \\
\hline . \(\mathrm{E}_{1}\) & 14018 \\
\hline \(\mathrm{J}_{2}\) & 12552 \\
\hline S.E./mean BERSE & \[
=842.6 \mathrm{lb} . / \mathrm{ac}
\] \\
\hline Treatment & Av. yield \\
\hline \(\mathrm{C}_{1}\) & 31589 \\
\hline \(\mathrm{C}_{2}\) & 39526 \\
\hline \(\mathrm{C}_{3}\) & 57975 \\
\hline PEAS & - \\
\hline \(\mathrm{B}_{2}\) & 1275 \\
\hline \(\mathrm{F}_{2}\) & 820 \\
\hline \(\mathrm{G}_{2}\) & 1462 \\
\hline \(\mathrm{I}_{2}\) & 1266 \\
\hline
\end{tabular}

Crop :-Maize-Cotton-Cowpeas-Sugarcane (Kharif). Ref :-I.A.R.I. 51(21). Type :-‘R'. Object :-To find out a suitable rotation for Delhi tract.
1. BASAL CONDITIONS :
(i) (a) As per treatments. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143 . (iii) N.A. (iv) (a) to (e) N.A. (v) to (x) N.A.
2. TREATMENTS to 4. GENERAL :

Please refer to No. I.A.R.I. 51(22) on page 345.
5. RESULTS : (i) to (iii)
(iv) Av. yield in lb./ac.

\begin{tabular}{|c|c|c|c|}
\hline Treatment & Av. yield & Treatment & Av. yields \\
\hline \(\mathrm{B}_{2}\) & 1062 & \(\mathrm{C}_{1}\) & 955 \\
\hline \(\mathrm{E}_{1}\) & 983 & \(\mathrm{D}_{2}\) & 971 \\
\hline \(\mathrm{F}_{2}\) & 959 & \(\mathrm{G}_{3}\) & 996 \\
\hline \(\mathrm{I}_{3}\) & 864 & \(\mathrm{H}_{2}\) & 987 \\
\hline Permanent plot & 592 & Permanent plot & 930 \\
\hline SUGARCANE & & \multicolumn{2}{|l|}{MAIZE and COWPEAS} \\
\hline \(\mathrm{E}_{2}\) & 51659 & \(\mathrm{A}_{1}\) & 17691 \\
\hline \(\mathrm{H}_{3}\) & 47586 & \(\mathrm{D}_{1}\) & 24612 \\
\hline \(\mathrm{J}_{3}\) & 50137 & \(\mathrm{I}_{1}\) & 21872 \\
\hline Permanent plot & 40120 & & \\
\hline
\end{tabular}

Crop :-Maize-Cotton-Cowpeas (Kharif). . Ref:-I.A.R.I. 52(25). Type :-‘R'.
Object :-To find out a suitable rotation for Delhi tract.
1. BASAL CONDITIONS :
(i) (a) As per treatments. (b) and (c) N.A. (ii) (a) and (b) Refer item 11 on page 143. (iii) Maize and cowpeas: 31.5.52; cotton 21.4.1952 and 20.5.1952. Maize 27.6.1952. and G.M. 13.6.1952. (iv) (a) Ploughing with victory plough and desi plough, preparing land with desi plough twice after soaking dose. (b) to (e) N.A. (v) F.Y.M. at 5 ton/ac. \(\mathrm{C} / \mathrm{N}\) at \(20 \mathrm{lb} . / \mathrm{ac}\). of N on 31.5 .1952 . (vi) N.A. (vii) Irrigated. (vii) Hoeing with oudh plough on 14 and 25.6.52. (ix) N.A. (x) 9.8.52 to 12.8.52.
2. TREATMENTS to 4. GENERAL:

Please refer to No. I.A.R.I. 51 (22) on page 345.
5. RESULTS :
(i) to (iii) N.A.
(iv) Av. yield in lb./ac.

MAIZE
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{B}_{\mathbf{2}}\) & 1699 \\
\(\mathrm{E}_{\mathbf{1}}\) & 1448 \\
\(\mathrm{~F}_{\mathbf{2}}\) & 1424 \\
\(\mathbf{I}_{\mathbf{3}}\) & 1399 \\
Permanent plot & 1025 \\
\multicolumn{1}{c}{ SUGARCANE } & \\
\(\mathbf{E}_{\mathbf{2}}\) & 41126 \\
\(\mathbf{H}_{\mathbf{3}}\) & 44986 \\
\(\mathbf{J}_{\mathbf{3}}\) & 43101 \\
Permanent plot. & 45446
\end{tabular}
\begin{tabular}{|c|c|}
\hline Treatment & Av.yield \\
\hline \(\mathrm{C}_{1}\) & 1137 \\
\hline \(\mathrm{D}_{2}\) & 1004 \\
\hline \(\mathrm{G}_{3}\) & 1224 \\
\hline \(\mathrm{H}_{2}\) & 1253 \\
\hline Permanent plot & 905 \\
\hline \multicolumn{2}{|l|}{MAIZE and COWPEAS} \\
\hline \(\mathrm{A}_{1}\) & 30372 \\
\hline \(\mathrm{D}_{1}\) & 30986 \\
\hline \(\mathrm{I}_{1}\) & 33992 \\
\hline
\end{tabular}```

