Inventory Control \＆Costing

In

Risk Assessment
 In
 Small Scale Industry．

With Reference To Selected Units

深总淡炎

A Thesis submitted to SARDAR PATEL UNIVERSITY
For the Degree of DOCTOR OF PHILOSOPHY in COMMERCE

by
ASHOK ROY
MA．．LL．B．，B．Com．，FCS，AIB（England \＆Wales）． CAIIB，AIB（Malaysia）

淕糈炎

Under the guidance of

Manubhai M．Shah

Professor \＆Head
Post－Graduate Department of Commerce
Sardar Patel University
Vallabh Vidyanagar－ $388 \mathbf{1 2 0}$.

MESSAGES OF THANKS
It is said that it is ingratitude to thank hastily for the obligations received. I must, nevertheless, do it.

In completing this research, I owe much to a few individuals. Among them, I am very much indebted for invaluable advice, very helpful supervision, encouragement and cuidance, at all stages of my research, to Professor Manuthai M. Shah, M.Com, M.Sc(Econ) London, Head of the Post-Graduate Department of Commerce and the Hon. Director of Shri Gordhan'hai Hathibhai Patel PostGraduate Institute of Business Manaçement, Sardar Patel University, who is well-known to the economics profession in India.

I am further indebted to my parents, Dr. K.B. Roy, MBBS, DPH, DIH (London University), DIH (S.A. Encland), FRIPHH (London), Indian Medical Service (hetd), who is well-known to the industrial medicine profession abroad for his discovery of the incidence in India of the fatal Pneumoconiosis and Mrs. L. Roy, for their tremendous intellectual and moral support throughout the research period. A special debt, both within and heyond words, is owed to them.

I also wish to put on record my cratitude to Dr. V.R. Joshi, M.Com, Ph.D, HDC, GDC \& A, Professor of Commerce, Sardar Patel:University; Dr. K.D. Vasava, 1'.Com, Ph.D, Reader in Comerce at Sardar Patel University and a Director of the Union Bank of India; and my friend Mr. George Varchese, B.E., DFM, for allowing me to call on their vast experience in critical evaluation of certain aspects of the thesis.

I dedicate this work to the cherished memory of my cood brother Ajoy, now my suiding ancel in the perplexities of life. May I always remain worthy of his loving kindness.

Finally, I thank Mr. R. Rajagopalan, for having typed the research thesis.

I could have, undoubtedly, explored the subject matter of this thesis in an assortment of avenues and from different perspectives depending on one's disciplinary interests. I have, however, found it rewarding as well as realistic to study it from an integrative interdisciplinary point of view so as to confirm the thrust of $m y$ thesis and judgments.

GENESIS

A word, first, as to why the units studied belong to the Small Scale Industrial (SSI) Sector. The raison detre for this is not only their primacy in the economy but a variety of other reasons as well. To Dr. E.F. Schumacher, economist and the originator of the concept of Intermediate Technology, "Small is Beautiful". Professor Leopold Kohr of the University of Wales feels, "Small-sczle operations, no matter how numerous, are always less likely to be harmful to the natural environment than large-scale ones", showing thereby its relevance to the economics of permanence. I fully concur with Prof. Paul Ehrlich's judgment that our entire economic system, based on Thorstein Veblen's conspicuous consumption, must be supplanted by the forethought what scale is appropriate. It depends on what we are trying to do. The question of scale is
extremely crucial in today's idolatry of ciantism.
Even in highly industrialised countries where mass production is the rule, many small units exist and thrive as ancillaries to large units in sophisticated production. lines.

In Britain, at the end of 1982 , there were 1.3 million small firms, representing more than 95% of the total number of all businesses and providing employment for more than 30% of the working population and more than 20% of the GNP. Available statistics indicate that approximately 10,000 new small business start each month. The Bolton Committee regarded the two functions of this sector, "as a breeding ground of new industries and the source of dynamic competition," of crucial importance. The Wilson Committee too considered, in its brief, the financing of small firms and the Niacmillan Gap. The small-firm sector in the U.K. is significantly swaller than in other advanced countries.

Japan has twice as many small companies as the U.S.A. has and nearly ten times as many as Britain. For the last three decades in particular, they have reen the critical first stage of the economic rocket that has made Japan a by-word for industrial competition. In 1981 there were about 6.4 million small companies in Japan. Koji Omi, Director-General of the Ministry of International Trade, observes that in Japan small enterprises boast of
contributing 57% of the nation's output as against 47% in the U.S.A. and 15% in the U.K. In Japan the small sector employs 70% of the work force, while in the U.S.A. it is 65% and in the Federal Fepublic of Germany it is 27%. In Japan, the role of the SSI sector is clearly defined by market logic as sub-contractors and ancillaries to the parent large enterprise. As a direct result of this relationship, there is a lot of technology transfer, R \& D facilities, benefits of managerial experience and technical specialisation by the small firm reducing, in other words, the penumbra zone between big and small industries. The industrial structure thus is pyramidal in form with a wide base of small enterprises and a small apex of large corporations like Hitachi, Toshiba, Fujitsu, Sumitomo, Toyota, Nissan and others. The pay scales are, however, naturally, lower on an average by about 30% in the SSI sector compared to the scales in big industry. Unionisation is quite low in the SSI sector, being below 25%. For these reasons, the cost of labour in the SSI product is low. The diffusion rate of mechatronic equipment (robots, machining centres and other such computer \& microprocessor controlled equipment) is at present 19\% (as against 70\% for big enterprises) but it is predicted that about 60% of small businesses will introduce mechatronic equipment within the next three years or so.

In the U.S.A., small business constitutes 90% of all business and 9% of the manufacturing sector. In an illuminating study by Catherine Armington and Miarjorie Odle in The Brookincs Review (Winter 1982), it has been pointed out that the contribution of small business sector to net job growth is about proportional to its share of the American lahour force.

In the Republic of Korea, the small industry constitutes 75% of the manufacturing sector and provides 50% of manufacturing employment. Korea also boasts of a Small and Niedium Industry Bank which is the main financier of small industries.

After this global tour de force, we come inexorably to India. In India, at the end of 1982 , the SSI sector provided employment to 70 lac persons, recording 21 persons employed on an average for an investment of Rs. 1 lac. It is nearly four times the corresponding employment for the same level of investment in hiedium or Large Scale sectors. The number of recistered SSI units at the end of 1982 was around 6 lacs with an investment of Rs.1,900 crores and an output of Rs. 20,930 crores constitutinc; 40% of total incustrial output of the country. Its exports amounted to 25% of the total exports (the Pearson Report considers the expansion of exports the main criterion of success for developinc countries). The number of itoms to be exclusively purchased from the SSI sector :ly the Government is 401 and its share
in Government purchases works out to 45.6%.* The volume of bank finance to this sector is in the region of Rs. 3,000 crores.

The advantaces which radiate from the SSI sector are creation of larcer employment opportunities; promotion of decentralisation of activity; wider dispersal of industries; better distribution of income; improvement in the skills of artisans; providinc consumer coods without a lonc gestation period and contribution to the structural flexibility in an economy.

We see, therefore, that the role of the SSI sector in national development and in the comprehensive concept of "steady growth equilibrium" called the Optimum Golden Age (which combines the elements of the Von Neumann Path, the natural rate of growth defined by Sir Roy Harrod and the Golden Age analysed by Prof. Joan Robinson) is by no means small.

Shortage of funds for Working Capital has been possibly the biccest cause of business failures in recent years. Two of the most celebrated victims of Working Capital shortages, Rolls-Royce and Upper Clyde Shiphuilders, illustrate the seriousness of the manacement problem and the need for priority action. In spite of an international reputation for technological excellence, the best frand name in the world and a continuing history of reported profitability, Rolls-Royce could not survive when the money ran out. The Upper Clyde Shipbuilders failure demonstrated that Working Capital was a more pressinc; priority than full order books and notable * David Trippier, Mrs. M. Thatcher's minister in charge of Small Business in the U.K., supports public sector purchase from small firms.
advances in productivity and industrial relations. The experience of these world-famous companies has been mirrored by all too many medium and small sized firms.

And it was against the background of these that the subject matter of my thesis was culled.

Surveys usually involve the collection of relatively large amounts of information. The correlational data yielded by survey research contribute to the identification of the factors. One problem of surveys involves the adequacy of samples. Good tests should have a reliability coefficient of atleast 0.7, which represents 49% agreement (square the coefficient and convert into percentage). It is impossible or impractical to survey all the SSI units, so ten samples which are representative have been selected, going by the Law of Statistical Regularity, on the basis of Purposive Stratified Random Sampling from the 44,136 SSI units at the end of December 1982 in the State of Tamilnadu. Over 110 units were contacted and surveyed for the purpose of this study. To avoid duplication of study and findings, these ten units were purposely delinked for this research. It may be noted here that few of the concepts change when applied to the larger firm, although they usually become more sophisticated in design and more complicated to administer. The regression results of the in-depth study of these
ten units, from the clinical point of view, generally confirm the validity of this neoliberal thesis. The names of the units, of course, have been altered to preserve anonymity.

Today, the persistent sickness of industrial units is one of the overriding problems confronting our industrial sector. This is not a new phenomenon, but has assumed quantum jumps in recent years. The resultant effect is loss of production and displacement of labour from the macro angle and the jeopardy of the Bank's advances. To Indian Institute of Management faculty Prof. S.K. Chakraborty, "an unit would be sick if cash losses were suffered by it for more than or equal to 50% of the duration of the business cycle for that industry for two successive cycles". The number of sick SSI units at the end of December 1981 were 23,975 and the outstanding bank credit stuck Rs. 500 crores. While according to cfficial estimates 20% of SSI units are sick, my study revealed, that the actual percentage varies between 40\% and 50%, if we consider an unit as sick when it works at 20% or below of its capacity.

I have, therefore, dwelt on an Empirical Model to predict corporate failure in my study and also assigned a successful Nursing Programme in the ten empirical cases given.

1. To investigate the polychromatic aspects of Inventory Control \& Costing in Risk Assessment by Banks especially in the SSI sector.
2. To evaluate the techniques and aspects above.
3. To recommend emphatic peremptory measures, including an explicity dynamic, multi-sector intertemporally consistent empirical Model paradigm, for better multitherapeutic LRisk Assessment and control by Banks in the SSI sector.

METHODOLOGY

a. Primary and Secondary data were gleaned from published and submitted data by the units in the normal course of administration.
b. Direct observation: This involved the observation of the units with a minimum of interference from the observer. Observation is an important method and, without doubt, it is the most important step in stirategies of scientific enquiry. Observations suggest hypotheses and are also used to test hypotheses.

While there is some variation, the main steps in scientific enquiry are: (i) observation and assessment; (ii) the categorisation and
classification of observations; (iii) the formulation of hypotheses, models or theories to link observations (the Linkage Thesis) and explain them and (iv) the derivation of objectively testable predictions in order to validate or test hypotheses, models and theories. Baseline surveys were conducted.
c Clinical interviews with Government officials concerned with the SSI sector; entrepreneurs; bank officials and officials of the units were conducted. In all, 250 respondents were interviewed.
d. Reports: These were based on observations or informal conversations. They were usually incomplete and biased, but in certain cases useful. "Beware of cocuments": counselled Clemenceau rirhtly.
e. The postal questionnaire system was found to be unsatisfactory producing hardly any replies.
f. Asking questions by telephone did not prove a good method because I found a biased sample.
g. Specific case stucies were unciertaken for detailed enquiry. The enormous mass of data thus collected, which proved my labour of Sisyphus, was then edited; tabulated; $=0 m p a r i s o n$ of averages done; tested for accuracy ageinst errors; and then analysed to get intcrpretations.

CHAPTER ISATION SCHEME

The dissertation has been divided into 3 parts and 7 chapters as follows:

Part I consisting of 5 chapters, deals with important aspects against the backdrop of SSI financing. Chapters 1 and 2 wrap:

1. Definitions and
2. Synoptical overview of financing of SSI units.

Then chapters 3 and 4 set out the prismatic theoretical dimensions of Inventory Control and Costing relevant to Bank financing.

And finally, chapter 5 jells the dichromatic committees set up by the Government of India from time to time and the determination of "norms" for "size" of inventories.

Part II (Chapter 6) includes ten empirical case studies from the angle of the subject of the thesis and includes a Nursing Programme, viz., Boston Pharmas. Recommendations and findings in respect of each unit are given at the end of each respectively.

Part III (Chapter 7) reviews the major findings and assigns a number of peremptory recommendations.

To provide a catalytic step on the long journey, I have tried to present a codified and simplified vision
of the uniquity of SSI financing behaviour, against a canvas of enormous range of facts and swift modulations. However, it cannot be too strongly emphasised that no two banking propositions are alike and each has to be dealt with on its merits. To concoct the financing panorama further, the figures supplied to a banker, like Nabokov's prose, conceal more than they reveal. But, then, this is a.Rashomon Phenomenon where everyone sees things from one's own angle only. Any attempt to grasp bank financing realities through statistics alone, as Dyer, Clemens and Pitcher would acquiesce, is like wrestling with ectoplasm. You have to know the people behind the show. For, in the words of Sir Anthony Tuke of Barclays Bank, "at the end of the day a banker is concerned about people". And, contemplate the juxtaposition of two or more consumate possibilitics realising fully, as the Chinese sage Chuan: Tzu said, "the blended harmony of the Yin and Yang".

The paradoxical nature of Pascal and Neumann's Law of Probability is shared by bank-lending propositions in that you can predict with uncanny precision the overall result of a larger number of individual cases, but each• of them is in itself unpredictable. So, we are, as Prof. Harry Johnson of London School of Economics puts it, "Still confused, but at a much higher level of understanding". We must, nonetheless, in the words of

Socrates, "turn over together the treasures that.wise men have left us".

I earnestly hope that the argument of this thesis will, in some measure, add to knowledge, which is the reward for the industrious and understanding which is the prize of elect few.

Vallabh Vidyanagar
September 1983
ASHOK ROY

CONTENTS

Chapter	Title	Page
	Messages of thanks Introduction	iii
	PART ONE DYNAMICS OF STiALL INDUSTRY FINANCING THE GLOBAL BACKDROP	
1	Definitional Aspects	1
2	Financinc of Small Scale Industries: A Profile	4
3.	Mise en Scene	11
4.	Fragments from the Inventory Management Kaleicoscope - Concepts, Percepts and Precepts -	33
5.	The Dahejia, Tandon \& Chore Committees and Working Capital finance	64
	PAST TWO EAPIRICAL STULIES (Alongwith statistical Annex \& Appendices)	
6.	Jeya Murugan Incustries	81
	Small Tools Services	128
	Coimbatore Machine Tools (P) Ltd	164
	Lanward Industries	221
	Tools Engineering	247
	Sree Saila Engineering Enterprise	293
	Southern Ancillaries (P) Ltd	332
	Sabari Industries	361
	Eharat Tyre and Kubber Products	409
	Boston Pharmas (a Nursing Programme)	456
	contd.	

CHAPTER

DYNAMICS OF SMALL INDUSTRY FINANCING - THE GLOBAL BACKDROP

DEFINITIONS:

Few observers agree on the definition of a small unit, and economists are constantly disagreeing over the pro's and con's of various size measures, which range from the flow concept (such as turnover, various profit and income measures, etc.) to stock concepts (such as various asset measures, employment, etc.)

There are different ways of defining small companies, hence precise comparisons are difficult.

In the United Kingdom the standard definition of a Small Business is "fewer than 200 employees or a turnover of $\& 2$ million or less."

In Japan, small companies are those with less than 300 employees or less than $\mathrm{Y}-100$ million worth of capital. (Japanese Yen $100=$ Rs. 3.75 approx.)

In the U.S.A., as Columbia University Professor of Banking D. Carson points out, definition of Small Business is . usually done in terms of annual dollar volume of sales, total investment, number of employees. But, as Professor Carson adds, all these are changed by economic anc! technolccical chances.

This, I must admit, looks at the issue from a new slant and is more apt in the inflationary times ahead.

In India, a Small Scale Industrial unit means any industrial undertaking in respect of which an affidavit or a certificate is furnished by the owners that the investment in plant and machinery (excluding jics, tools, dyes, moulds) is not in excess of Rs. 20 lacs and is engaged in manufacturing, processinc; preservation of goods or functioning as servicing and repair workshops in specified lines or as custom service units. Under the Income-tax Act, an SSI unit is one which employs 10 or more workers in a manufacturinc process carried on with the aid of power or 20 or more workers without the aid of power. It does not use secondhand machinery more than 20% of total plant and machinery. Plant includes, apart from the usual concept of plant, scientific apparatus, books, drawings used for business.

A Small Scale Ancillary Unit is defined as one which produces parts, components, sub-assemblies andtooling or renders 50% of production for supply against known or anticipated demand of other units and the
investments in plant and machinery of which is not in excess of lis. 25 lacs.

A Tiny Unit is an undertaking having investment in fixed assets in plant and machinery not exceeding Rs. 2 lacs and is situated in towns and villages with a population of less than 50,000 as per 1971 census.

Small Business. includes individuals and firms managing a business enterprise established mainly for the purpose of providing any service other than professional services whose original cost price of the equipment used for the purpose of business does not exceed Rs. 2 lacs with working capital limits of ps. 1 lac or less and who are eligible for DICGC cover.

No undertaking will be considered as a small scale industry unit if it is a subsidiary or is owned or controlled by any other undertaking.

CHAPTER 2
 FINANCING OF SMALL-SCALE INDUSTRIES: A PROFILE

During the last decade and a half, special efforts have been made to enlarge the flow of institutional credit to the small scale industries, which have been designated as one of the priority sectors for deployment of bank credit. According to the target laid down by the Government of India, advances to priority sector by the public sector banks are to reach a level of one-third (raised to 40% by 1985) of their outstanding credit. A countrywide effective sample survey of 12356 small scale industrial units assisted by the banks was organised by the RBI in collaboration with commercial banks in 1977-78.*

The main findings were: An overall view of the small scale industrial units assisted by the banks revealed that internal resources formed a small proportion of total net assets (28.2\%) for small scale units than for medium and large public limited companies (41.1\%). Borrowings and trade credit were higher at 42.0% and 29.3% of total net assets than 33.8% and 25.1% respectively, in the case of public limited companies. Small Scale industrial units, as a whole, were net providers of trade credit unlike medium and large public limited companies which were net recipients of trade credit.

[^0]Institutional credit as a proportion of total borrowings (including deposits) was lower for small scale units at 63.0% than 72.0% for medium and large scale public limited companies. However, the role of institutional credit in the financing of total net assets was not materially different at 26.4% for small' scale units compared with 24.3% for medium and large public limited companies. Short-term bank credit as a proportion of inventories plus sundry debtors minus sundry creditors was not very different for small scale industries compared with that for medium and large public limited companies.

Within the small scale industrial sector, the use of institutional credit was more in the case of larger units (ie., those with investments in plant and machinery amounting to more than Rs. 1 lac) at 73.9% of total borrowings as against 63.8% for the smaller units. Short-term bank credit as a proportion of inveniories plus sundry debtors minus sundry creditors was much higher in the case of the larger units. In fact, this ratio showed a progressive increase along with the increase in the size of the units.

Classified according to the type of organisation, private limited companies managed with relatively low internal resources, which accounted for 19.7% of total
net assets, against 31.0% for partnership firms and 32.9\% for proprietory concerns. Resort to non-institutional sources to meet their credit requirements was more in the case of partnership firms than in the cases of private limited companies and proprietory concerns.

The main features of the deployment of institutional credit to the Small Scale Industrial Sector assisted by banks, as revealed by the survey, are indicated below:

1. According to the size of the credit, outstanding credit to the Small Scale Industry in amounts of Rs. 1 lac and above accounted for 82.2% of the total institutional credit. Those above lis. 10 lacs alone accounted for 32.5\%.
2. For all Small Scale Industrial Units assisted by banks, the proportion of institutional credit to total borrowings (excluding deposits) came to 70.9%.
3. Classified according to the original value $-f$ plant and machinery, 69% of the institutional credit was channelled to the larger units, ie., units with original value of plant and machinery above Rs. 1 lac. This group accounted for only 10.9% of the total number of units and 38.3% of all the persons employed by the assisted Small Scale units. This group, however, accounted for 55.9% of the total value of gross output of the Small Scale units covered
by the survey. I_{n} their borrowings, the very small units appear to get a smaller proportion of their requirements from institutional sources than the larger units. Thus, while institutional credit formed 68.6 to 75.2\% of the total institutional and non-institutional credit in the case of units with investments in plant and machinery in the ranges above $\mathrm{ks} .10,000$, in the range upto Rs. 1,000 , it formed only 61.2% and in the range Rs. 1,000 to Rs. 10,000 it was 65.1%.
4. Classified according to the number of persons employed, units employing 21 persons and above accounted for 61.7% of the total institutional credit to the Small Scale sector. These units formed only 11.8% of the total number of units but accounted for 62.9% of the total value of gross output and 70.8% of all the persons employed. Institutional credit formed 77.5% to 86.5% of the total institutional and non-institutional credit in the case of the units employing up to 5 persons as against 65.7 to 72.9% in the case of those employing 6 persons or more.
5. According to the type of organisation, 51.1% of the total institutional credit was found advanced to partnership concerns, 26.5% to private limited companies, 18.2% to proprietary concerns, and the rest to the others. It may be mentioned here that partnership concerns accounted for only 27.7% of the number of units but
their share of the total value of gross output amounted to 60.8% and that of the number of employees to 49.9%.
6. Small Scale units located in centres with population up to 10,000 accounted for 14.7% of total institutional credit, those in centres with population of 10,000 to 1 lac for 25.4%, those in centres with population of 1 lac to 10 lacs for 27.3%, and those in centres with population.above 10 lacs for 32.7%. The use of non-institutional credit was less in the case of the units assisted by banks in rural and semi-urban areas than in those in urban and metropolitan areas.
7. Only 18.4% of the total institutional credit was deployed in industrially backward districts. The units in backward districts financed by banks accounted for 46.7\% of the total number of assisted units, 31.0% of the number of employees, and 18.6% of the total value of gross output.
8. Conventional Small Scale industries such as grain mills and oil mills resorted to non-institutional credit to a greater extent than other Small Scale industries.

Consequent to the Puri Committee recommendations, there is now Standardisation of Application and Appraisal Forms, being one set of forms for advances up to Rs. 25,000 , another set for those between fis. 25,000 and Rs. 2 lacs, and the third one for those beyond Rs. 2 lacs.

Abstract

The following table exhibits, in brief outline, the Sources of Finance for Small Units and the Types of Lssistance rendered by cach:

No. Source: Institution Type of Assistance

1. State Financial Corporations Long term credit for purchase of fixed assets.
2. Statc Directors of Leans under State Aid to Industries Incustries Act/Rules for block capital.
Mcdium term credit for purchase of machinery and construction of factory.
Provide vorking Capital

Although 45% of the total industrial production in the country is from the SSI sector, only 10% of scarce raw materials is allotted to this scetor. Due to severe resourcc constraints, the overall capacity utilisation in the SSI sector hovers around 50%. It is interesting and instructive that my clinical interviews with (i) Mr. C.V. Kuppuswamy, Lirector of the Small Industries Service Institute, Madras; and (ii) Nir. K. Gopala Fiao, Dircctor-IN: Small Industry Extension Training Institute, Hydorabac, confirmod this finding.

Commercial banks arc able to obtain refinance under the "futomatic Fefinance Scheme" from the Industrial

Development Bank of India up to 75% of the amounts advanced by them to Small Scale units. They can also obtain guarantees covers under "Small Loans (Small Scalè Industries) Guarantee Scheme 1981", from the Deposit Insurance and Credit Guarantee Corporation (DICGC), in respect of credit facilities to small scale units.

EXTENT OF THE GUNRANTEE

(a) 90% of the amount in default in regard to credit facilities granted to such categories of borrowers as may be notified by the Corporation up to the limit and other conditions as may be prescribed by the Corporation.
(b) 90% of the amount in default for borrowers to whom credit facilities were granted, not exceeding Rs.25,000 in aggregate.
(c) 50% of the amount in default for borrowers to whom credit facilities were granted, exceeding Rs. 2.00 lacs in aggregate.
(d) 75% of the amount in default in other cases with maximum liabilities of Corporation or Rs. 10 lakhs, ie., 75% or, Rs. 10 lacs whichever is less. N.B. It may re worthwhile to note that in the U.K. there is 80% suarantee on loans to small firms.

CHAPTER

MISE EN SCENE

Inventory management is perhaps the most inportant aspect of Working Capital Management. Inventories account for 90% of the working capital and work out to 32% of sales in many industries, as also form the single largest asset in the balance sheets of most Indian Companies. Unlike in U.S.A., Germany or Japan, where factory managers talk in terms of few hours of inventory, in India even the strictest norms prescribed by Tandon Committee talk of inventories in months. Inventories constitute more than 60% of current assets in industries like tea plantation, oils, sugar, jute and cotton textiles, iron and steel, and cement, and about 30% in electricity generation and others. The cost of inventories varies from 40% to 80% of cost of production. The amount of money blocked in inventories in the country is about $\Omega .30,000$ crores of which Ps. 5,000 crores is estimated to be in obsolete, surplus and non-moving items. The sales-inventory ratio is around 4:1 in the private and 2.7:1 in the public sectors as against 6:1 in the developed countries.* Avoidance of over-investment (or industrial obesity) ${ }^{\infty}$

[^1]or under-investment has been mentioned as the desired management goal.* Three kinds of inventories have relevance to manufacturing ${ }^{(6)}$ companies - raw materials, work-in-process, and finished goods.

The size of work-in-
process inventory depends largely on the production cycle. The cost of holding inventories in today's conditions in India works out to 30%, ie., E3. 30 for every Rs. 100 locked up in the inventories. Inventory management is, therefore, of considerable significance. The importance of inventory management has also been stressed recently. by the 14 th Report of Committee on Public indertakings which mentions that "for proper inventory control, it is essential to adopt scientific practices and techniques that have been developed in this regard".

A scientific inventory control system can result in a saving of 5% to 15% on inventory cost.

Inventory management has assumed considerable importance in the last few years, thanks to the financial discipline on working capital introduced by the R.B.I.

[^2]throuch the Tandon and Chore Committees. The inventory paradox is, not too much, not too little; and, at lower cost for higher profit..

INVENTORY DEFINED

The American Institute of Accountants designates "inventory" as "the aggregate of those items of tangible personal property which (1) are held for sale in the ordinary course of business, (2) are in the process of production for sale, or (3) are to be currently consumed in the production of goods or services to be available for sale".* The Chambers dictionary defines the term "inventory" as a list of articles or stock of goods.

In management parlance, inventory is conventionally defined as an idle resource of any kind, having an economic value (Fred Hannsman). The resource used is in the form of raw material, which is capable of being transformed into work-in-progress, and then being converted into finished product which, when marketed to the consumer, gets cash into the organisation. This cycle, known as the operations cycle, begins with cash outflow and through

* Comnittee on Accounting Procedure, Research Bulletin 43, American Institute of Accountants, New York, June 1953, P. 27
the stages of purchase, storage, processing/manufacturing, sales and collection of receipts, ends in cash inflow to the organisation. The periodicity of the cycle depends upon the purchase and inventory policies, conversion process and sales policies. To the finance manager, the term inventory implies the monetary value of raw materials, consumables, spares, work-in-process, finished goods and scrap in which organisation funds have been locked up. Inventory is usually segregated according to the usage and point of entry in the operations.

The classification of a particular iten depends on the kind of business being discussed. For a coal mining firm, coal is finished goods. For a steel mill, coal is raw material, as it will be used in the production of steel. Similarly, steel is finished goods for a steel mill, but raw material for an automobile manufacturer.

> Cost of Funds $=$ Cost of Capital X Average Inventory Investment.

In its preamble, the International Accounting Standards Committee has provided a definition for inventories as "Inventories are tangible property (a) held for sale in the ordinary course of business, (b) in the process of production for such sale, or (c) to be consumed in the production of goods or scrvice for sale". The Director of Commercial Audit*

[^3]classifies the total inventory of the public enterprises: into two classes, viz., (a) Raw Materials, Stores and Spares (including, in-transit), loose tools, jigs and fixtures, and (b) Stock (finished and semi-finished goods). WHY INVENTGEY?

Having defined inventory as an idle resource, a natural question arises: Why then hold such idle resources in an organisation? Arrow* has applied to inventory itself, the three motives for holding cash that are referred to in the Keynesian analysis of the demand for money. Primarily, inventory is held for transaction purposes. Inventory is also held (i) as a precaution against in-lead time or consumption-rate increases, (ii) for speculative reasons, and (iii) for decoupling the stores from the user departments or the individual consumer.

WHERE SHOULL_INVENTCRIES_BE_HELE?

Inventories, in any industry, can be held in any
of the three stages of the manufacturing process mas Raw Materials (RM), Work-in-progress (WIP) or Finished

[^4]Goods (FG). A precise idea of where exactly inventory should be held is of paramount importance to the unit, given a set of operating conditions. To help make this decision, three parameters need to be examined. These parameters include relationship of market constraints vis-a-vis internal technological constraints, location of the bottleneck machine/section, and the commonality of raw materials/components to the finished products. Let us take these one by one:
(a) $\frac{\text { Market constraints and internal technological }}{\text { constraints }}$

Four different situations are possible under this head depending on variations in any one or more of the 3 factors defined below:
(i) Lead time for procurement of Raw Materials (LT_{p})

This is the time lapse between the moment a need for a particular item is identified and the moment it is available in the stores in an useable form.*
(ii) Lead time for Manufacture (LT_{M})

This is the time lapse between the moment the need for manufacturing of a particular item is felt and the moment it is ready for despatch. :

[^5](iii) Lead time for Delivery ($\mathrm{LT}_{\overline{\mathrm{D}}}$)

This is the time lapse between the moment an order is placed and the moment the finished acceptable product is available to the buyer.

The inter-relationship of the above 3 factors determines theoretically the location of inventories as illustrated in the following 4 categories:

CATEGORY (i)
If $L T_{P}+\mathrm{LT}_{\mathrm{Mi}}\left\langle L T_{\mathrm{L}}\right.$, no inventory need be held. For example, if $\mathrm{LT}_{\mathrm{p}}=1$ week, $\mathrm{LT}_{\mathrm{M}}=1$ week and $\mathrm{LT}_{\mathrm{D}}=1$ month. It is apparent that there is ample time for procurement of materials, manufacture and delivery, within the stipulated period of 1 month, obviating the need for inventories. Made-to-order goods, manufacture of a majority of capital equipments, etc., fall under this category. CATEGORY (ii)

IF $L T_{D} \geqslant L T_{M i}$ but $\left\langle L T_{P}+L T_{M}\right.$, inventories have to be held, at least at the $R M$ stage. For example if $L T_{P}=1$ month, $L T_{M}=1$ week, and $L T_{D}=2$ weeks. (as in the case of a foundry in which procurement of pig iron may take a longer time as compared to the processing time).

CATEGCRY (iii)

If $\mathrm{LT}_{\mathrm{D}} \geqslant \mathrm{LT}_{\mathrm{M} 2}$ but $\left\langle\mathrm{LT}_{\mathrm{M} 1}+\mathrm{LT}_{\mathrm{M} 2}\right.$, as in the case of a multistage manufacturing unit (c.g., foundries and machine shop, components manufacture and assembly), inventorics have to be held between stages 1 and 2 of the manufacturing process, ie., as WIIP. Illustratively, if
$\mathrm{LT}_{\mathrm{P}}=1$ month, $\mathrm{LT}_{\mathrm{M} 1}=1$ week, $\mathrm{LT}_{\mathrm{M} 2}=1$ week, and $\mathrm{LT}_{\mathrm{L}}=1$ week, inventory is required as VIIP soon after stage 1 of manufacturing.

CATEGORY (iv)
If $\mathrm{LT}_{\mathrm{D}}<\mathrm{LT}_{\mathrm{M}}$ for the last stage of processing, there is no alternative other than holding inventories as FG; e.g., soap, toothpaste, cigarettes, etc., in which delivery times are too short and the sale has necessarily to be from FG stocks.

As is evident from the above examples, to a large extent, it is the market that determines the stage at which inventories have to be held. The nearer the product is to the consuming market, the higher is the value added to it in the form of $R M$, expenses, overheads, etc. Therefore, the first cardinal rule in determining the positioning of inventories is "Materials should be held only as far away from the buyer as the buyer would permit".
(b) Location of bottleneck machine/section

The second rule is: "Inventories should be held immediately next to the bottleneck machine/section" as this facilitates the use of economic batch quantities for production and improves the aggregate machine utilisation. (c) Commonality of raw materials/sub-assemblies

The rule is: "Common items should be kept as far towards the finalising stage as necessary to facilitate faster processing, so long as the approach does not come in conflict with the economics of the earlier two rules". This is true for industries like foundries, engineering shops and manufacturers of radios, TVs and automobiles, where certain common items go into all or many of the. types of finished products.

COAPONENTS OF THE COST OF INVENTORY

Inventory costs money. The 3 major costs; generally, are:
(a) Inventory carrying cost,
(b) Ordering cost, and
(c) Stock-out cost.
(a) COST OF CABRYING INVENTORY:

Generally the cost of carrying inventory can be classified undex 5 heads.

The following table gives the probable range of cost under the five heads:

No. Factors congributing	Cost/annum as \%age of total value of inventory	
1	Interest on capital locked up	$12-15$
2	Obsolescence and deterioration	$2.5-10$
3	Handling expenses	$2-4$
4	Storage space	$1-3$
5	Insurance	$0.5-3$
		Total

It will be seen from the table that the average cost of carrying inventory is about 25\%.* The above percentages should be estimated for cifferent categories of items as per the experience/type of the industrial unit.

Yet another important cost that is incurred in holding inventory is the 'opportunity cost' of the money

[^6]tied up. This is the return that could have been realised had the same amount of money been invested in some other profitable venture.
(b) COST OF ORDERING:

This can be generally classified under the heads:
(i) Purchasing;
(ii) Inspection and Storage; and
(iii) Accounting-Checking supplies.

In general, the cost of ordering is the marginal or additional cost incurred in placing an order for an item and usually ranges between Re. 1 and Es. 5 in the case of a small scale unit.
(c) COST OF STOCK-OUTS:

Two situations are possible here: (i) In the case of finished goods, it may lead to a cancellation of the order and the loss of customer goodwill; (ii) In the case of raw materials it could be the cost of disruption in machine schecules. Quantification is selcom attempted; for, a part of the stock-out costs is intangible in nature and the probability of occurrence is low at about 5%. (d) OTHER COSTS:

There are overstock costs and systemic costs. Overstock costs can best be explained by an example. Demand for X'mas trees is obviously seasonal, and whatever
is left behind after ¿'mas can only be sold as firewood. The seller stocks more than can be sold, and the loss on trees left unsold is the "overstock cost". Other examples are fashionable clothing, newspapers, kites and perishable stuffs. Systemic costs cover the cost of inspection of various inventory systems and find very little application in SSI.

OB JECTIVES OF INVENTOIY CCNTROL

1) To minimise the cost of holding inventory.
2) To minimise the cost of ordering.
3) To minimise stockouts.

There are some amounts of conflicts among these objectives.

TYPES OF INVENTCRY CONTROL SYSTERIS
There are basically 3 different types of inventory control systems depending on the basis for releasing orders. These are:

1) Stock controlled systems - where release of orders is based on stock level falling to a predetermined re_order level.
2) Programme controlled systems - where release of orders is based on advance sales programme converted to a production programe.
3) Made to order systems - where release of orders is based on receipt of customers' order.

Stock controlled systems operate under the most uncertain conditions of demand and supply necessitating iı, -depth analysis of inventory movement and sto king, whereas the latter two - programe controlled systems and made to order systems - operate under relatively deterministic conditions. Inventory control in the latter cases becomes rather simple and is tied up with the production planning and control function which assumes greater significance. As such the emphasis (as far as inventory control is concerned) here is on stock controlled systems. STRUCTURE OF THE INVENTORY PROBLEM:

In inventory control it becomes necessary to determine two factors that will define the system completely:

1. How much to order at one time.
2. How often to order - or, when to order.

In short, the inventory problem is like Janus, the two-faced Fioman God and often presents a Hobson's choice.

1. HOW MUCH TO OE:DER?

This optimum size is known as the Economic Order Quantity (EOQ).

THE ECONCMIC OREER QUANTITY (EOQ)
The question of how much to order directly is concerned with the problem of minimising inventory holding costs and ordering costs. The most common and perhaps widely quoted solution to the problem is given by the Wilson model* which aims at minimising the total annual variable cost associated with any order quantity. This total annual variable cost is the sum of the annual carrying cost and annual ordering cost. Stock out costs do not figure in the formula as they depend more on the timing of an order than on the quantity ordered. In other words, EOQ is that size order which minimizes the total cost of ordering plus inventory carrying.

The EOQ approach has particular relevance and usefulness in instances of high usage, low value items.

The EOQ equation can also be derived on the basis of the principle that, at the economic order level, the ordering cost will equal inventory carrying costs.

[^7]How rigid is this dictum of economic ordering quantity? It provices considerable flexibility to adjust the order size to the changing needs of the situation.

THE ASSUMPIICNS FOR THE EOQ FORMULA OR WILSON'S Oi HARRIS SQUARE ROOT FOPMULA are:
a) Usage rate of items is linear and is known with certainty.
b) Order placed is received instantaneousiy, i.e., lead time is nil.
c) No stock-out can occur as is implied by the first two assumptions.

The EOQ formula in unitsis:

$$
\mathrm{EOQ}=\mathrm{Q}=\sqrt{\frac{2 \mathrm{AD} \mathrm{D}}{\mathrm{ac}}}
$$

where

Q	$=$ Ordering quantity in units
A	$=$ Cost per single order
D	$=$ Average annual demand in units
a	$=$Cost of holding in stock one unit per year
c	$=$ Unit price of the item.

Let us take a numerical example:

Annual demand	$=10,000$ units
Unit cost	$=$ Es. $0.50 /$ unit
Inventory holding cost	$=20 \%$
Ordering cost	$=$ Rs. 5 per order.

$$
\begin{aligned}
E O Q & =\sqrt{\frac{2 \times 10,000 \times 5}{0.2} \times 0.5} \\
& =1000 \text { units. }
\end{aligned}
$$

Transport costs and quantity discounts affect the EOQ in much the same manner.* Total costs change due to a change in holding costs because of the reduction in unit price and hence the value of average inventory. In practice, 25% above or below EOQ will not make much of a difference to the total cost.

The technique for handling $E O Q$ in aggregate is known as Aggregate Inventory Control Technique (AICT) ${ }^{\text {(1) }}$ or the Lot-Size Inventory Management Interpolation Technique (LIMIT)

LIMITATIONS IN THE APPLICATION OF EOQ:
The EOQ formula cannot be used in the case of 1) Allotment (Quota) items.
2) Imported items where lead times are high.
3) Scarce and Seasonal items.

[^8]0 See: R. Brown, Aggregate Inventory Management, APICS annual conference proceedings, 19ढ̈2, P.111-119.
¿ See: J. Harty and O. Wight, Management of Lot-Size Inventories, American Production \& Inventory Control Society, Chicago, 1963.

2. HOW OFTEN TO ORDEF, OI WHEN TO ORDER?

It is to be cautioned here that there can be no straight answer to this question and the evolution of a system of when to order depends purely on the conditions under which the system is required. Various factors such as product demand, material consumption rate, production planning and lead time for procurement, play an important part in deciding the final configuration of the ordering system. However, there are some guidelines and models that can be tailored to meet any requirement. We shall discuss a few relevant models that form the base for more sophisticated models.

The ideal model that is often used as an aid to understanding the concept of when to order is, the saw tooth graph shown below. The Y axis refers to the stock on hand and the X axis to time. Let us assume that at the beginning of the period we have Q units on hand. Suppose we were to get material as soon as we placed an order. The problem becomes very simple. We would then have to order Q units (determined by EOQ) every time the SOH falls to zero and we would get.

However, it is seldom in practice that we encounter such a situation. Usually the supplier with whom we place the order may not supply the goods instantaneously. There is always a time lag. Therefore, it becomes necessary to anticipate this delay in supply and order sufficiently in advance so that we do not run out of stock. If the lead time is known with certainty, (say, X days), we would order X days in advance so that the arrival of Q units coincides with stock falling to zero. In the figure, ROL is the point at which we place the orcier. When SOH reaches ROL, we place an order for Q units.

Thus, ROL $=L$ (lead time) $\times D$ (demand).

Both the parameters of consumption rate during lead time and lead time itself vary with the result that there may be a stock out before the arrival of Q units. One method of controlling such stock out is providing a "buffer" or "safety" ${ }^{*}$ stock to meet such a contingency. The exact quantity of safety stock of an iten depends upon its lead time and usage variations. One practical guide for fixation of safety stock can be had by

[^9]working out a reasonable maximum of the fluctuation in consumption over normal lead time consumption and allowing the safety margin equal to the extra consumption. For instance, if the normal lead time consumption is $100 \mathrm{~kg} .$, and if the maximum lead time consumption is 150 Kg. , the safety stock should be 50 Kg . The second method of provision of safety stock is based on the following formula:

Where

$$
\text { Safety Stock }=\mathrm{K}
$$

$$
\begin{aligned}
& K=\text { A constant (depending on the service } \\
& \text { level ve desire), and } \\
&=\begin{array}{l}
\text { Standard deviation of the demand during } \\
\text { lead time periods. }
\end{array}
\end{aligned}
$$

IMPACT OF VARIATION IN CONSUMPTION RATES AND LEAD THES ANL CALCULATION OF SAFETY STOCKS:

There are 3 possible situations in which a stock-out can occur:
a) When lead time is fairly constant but consumption rate varies.
b) When consumption rate is fairly constant but lead time varies.
c) When both lead time and consumption rate vary. It is possible to estimate the amount of safety stock (SS) required in each of these concitions, but as a majority of industries face the situation (c), ie., where both lead time and consumption rate vary, we shall consider the formula prescribed for such situations only:

$$
\begin{aligned}
\text { Safety Stock }= & \text { Maximum Consumption Rate X Reasonable } \\
& \text { Maximum Lead Time - Average Consump- } \\
& \text { tion Rate X Normal Lead time. }
\end{aligned}
$$

It has to be admitted that the formula is crude as it results in abnormally high (100\%) protection against a stock-out. It cannot, therefore, have much practical use.

The formula which is an empirical one used in the absence of meaningful data and which has proved useful and successful in a host of SSI units (which form the enquiry of this Thesis) is

Safety Stock $=$ Maximum consumption Rate X Crash Lead Time.
where, Crash Lead Time is the bare minimum time necessary for procurement of the material.

The safety stock, order quantity, re-order level, maximum anc minimum stock levels, constitute the inventory parameters.

```
ivinimum Stock = Safety Stock
Naximum Stock = Safety Stock + Order Quantity
Order Quantity(OQ) = EOQ or Ninimum Orderable Quantity
Re-orcler Level(ROL)= Safety Stcck + Lead Time
                        Consumption Quantity
Average Stock =
    =SS + OQ
```

The other formulae are:
i) Minimum Stock " = Reordering Level - (Normal Rate of Consumption X Normal Delivery Period)
ii) Maximum Stock . = Reordering level - (Minimum Rate of Consumption X Minimum Delivery Period) + SOQ (Standard Ordering Quantity.
iii) Reordering Level $=$ Maximum Rate of Consumption X Niaximum Delivery Period.

Operations Research Techniques can be applied for determination of EOQ of purchases of raw materials, components and spare parts by balancing the inventory carrying charges with the cost of acquisition and stock-out costs with the help of inventory control models. Examples of users being Indian Railways, ORG group.

WHERE EOQ MODEL FAILS
Under the EOQ model, the lead time consumption is much less than order quantity. If the lead time consumption cquals or exceeds $O Q$, the stock will not reach ROL at all. Consequently, there will not be an opportunity to place any order, and this can result in a stock-out. The ordering rule therefore is "place order whenever the stock level cuts either ROL_{1} or ROL_{2} and the order quantity would be equal to lead time consumption".

Here,

$$
\begin{aligned}
& \mathrm{nCL}_{1}=S S+\text { lead time consumption. } \\
& \mathrm{RCL}_{2}=S S \\
& \mathrm{OQ}=\text { lead time consumption. }
\end{aligned}
$$

Anc', in conclusion, as Lord Keynes is supposed to have said, "it is bettcr to be vaguely right than precisely wrons ${ }^{\text {it. }}$
Hix

FRAGMENTS FROA THE INVENTORY MANAGEMENT KALEIDOSCOPE
-- CONCEPTS, PERCEPTS \& PRECEPTS. -

FOUR CONVENIENT STATISTICAL DISTRIBUTIONS

1. A Frequency Listribution is an ordered arrangement of data from lowest to highest value, showing the relative occurrence of the various values. A single measure of the variation of individual values about the average value of a distribution is provided by the statistic known as the Standard Deviation.
2. In the foisson Distribution the frequency or probability of successively larger values increases rapidly up to some most frequent value and then decreases at a slower rate.
3. The Exponential Distribution is another distribution that gives a good approximation of some retail and wlolesale level of sales.
4. The Normal Distribution is a distribution in which the values of the variables are distributed evenly about the average and our interest lies only on the right hand side of the distribution where we can anticipate the probability of the random variable exceeding a given value rather easily.

These distributions have use in arriving at Safety Stock (SS). The accuracy and validity of the SS calculated depends to a large measure on the correct identification of the distribution of consumption.

The exponential distribution, in my experience, appears to apprcximate closely a majcrity of consumption patterns in the incustries of the Small Scalc Sector (SSS) in India tociay.

SELECTIVE CCNT:OL OF INVENTORY - THE AEC ANALYSIS
The tremendous strain on time is evident if systems have to be developed in units using 300 to 400 ra: materials. A typical example is the Pharmaceutical Incustry in which even an average small scale unit uses at least 400 chemicals and packing materials. The bost alternative is to make a distinction between those matcrials that require to be contrclled anc those that do not by means of some criteria. Such a segregation is usually done by what is called $A B C$ Analysis.

The $A B C$ Analysis is a refinement of Pareto's law.* It recogniscs that, in 80% of less significant items, some will be more important in others because of either increased

[^10]usage or higher cost and should probably be controlled more stringently. In a typical business the system might operate as shown in the following table.

Class	No. of Parts (\%)	Usage/V	Type of control
A	15 ie, a little less than Pareto's 20\%	60	Control closely, maintain good records Maintain Safety Stock Review frequently
B	25	25	Good control but not as close as in A. Review less frequently
C	60	15	Little control Few Reviews

This system needs to be used with discretion, giving more weight to high cost items than to those with a high usage. Control on A class items lead to a control over 60% value of material consumption. Fichmond* designates this plan of concentration on important items as Control by Importance and Exception (CIE) and refers to the process of classifying and ranking of the stock

[^11] Financial Executive, March 1969, P.74-78
items on the basis of their descending importance as Proportional Value Analysis (PVA). Chadda* provides some useful guicelines for selective control on the lines of my Table given.

Chadda found in his study that there was a tendency to overstock in most cases and the investment in stock could be reduced by 20 to 30% if inventory decisions were based on reason rather than intuition. In India many industrial units including public sector enterprises face this problem. ${ }^{\text {© }}$

The other criteria that can be used in $A B C$ analysis, apart from the common criterion of rupee value of consumption, is segregation on the basis of

```
* VED analysis (Vital, Essential, Desirable)
* HMiL analysis (High, Medium or Low Storage or
    Security)
* SDE analysis (Scarce, Difficult, Easily)
* S-OS analysis(Seasonal, Off-seasonal)
* FSN analysis (Fast moving, Slow moving, Non-moving)
```

* R.S. Chadda, Inventory Management in India, Allied Publications, Bombay, P. 38
(0) P.S. Rao, Inventory Control in an inflationary economy, Lok Jdhyog, July 1974.

Whatever the method of segregation, it is essential to realise the usefulness of selectivity in the control of inventory.

VALUATION OF INVENTGiIES

Valuation of stock provice the most comnon form of deception.* FIFO is the most popular method in the U.K., while in the U.S.A., it is LIFO. ${ }^{\circledR}$

Three basic methods as follows, are adopted for the purpose of ascertaining the value of material in stock as at the end of accounting period. These are:
a. Lit market price or realisable value. (As laid down in International/Naticnal Standarcis Exposure Draft 2)
b. At market price or at cost, whichever is lower.
c. At cost. (host of the concerns follow this in actual practice irrespective of the remarks they put in the publishec accounts.)

Some of the important methods used for valuation of material stocks under "at cost" methoc's are:
a. "First in, first out" method. (FiFO): The closing
stock valuation here will be near the market price.

[^12]But under inflationary conclitions, profits, taxes and dividends will be higher; for, production cost will be understated while closing stock will be overstated.
b. "Last in, first out" method (LIFO): Under inflaticnary conditions, this method is prucent and more conscrvative.
c. "Average Price" method: Average price neutraliscs the fluctuations in market prices. A number of Variations like Simple hverage, Weighted Average, Periodic Simple Avcrage, Periodic Weighted Average, Moving Simple Average anc Moving lieighted fiverage, are useci.
d. "Stanciard Price" method: Simple, but no auditor can accept inventories at standarc' prices.

Valuation of Work-in-Progress is alvays basec on actial cost. The actual cost is found by adding zost of clirect material, direct labour and proportienate factory overheadis.

Finished goods should be valued "at cost or selling price, whichever is lower". "At cost" would include direct material and labour, proportionate factory overheads, but would excluc'e administrative anc' selling and distribution overhcads.

The Sachar Committee on Company and MRTP Acts has suggested that the cost auditor must certify in the Balance Sheet, the figures relating to inventories.

Inventories may be valued at output values or at input values. (the latter is generally the case). Input value may be defined as measurement of resources used to bring the inventory to its present condition and location.

The following table presents a Summary of different Valuation Bases
Base (For semifinished and finished when applicable

output value

1. Discounted Money Receipts | When Sale Price is |
| :--- |
| 2nown and timings |
| of cash receipts |
| are known |

INPUT VALUES (For Raw Materials Valuations)

1. Historical Cost

When selling prices are highly uncertain

2. Current Replacement Costs	When current costs can be measured objectively.
3. Standard Cost	When current production costs under cfficient and normal conditions are to be reflected.
4. Ncrmal Stock Valuation	When an improvement over LIFO is aimed at.

THE GHEERERLNT STCCK CONTROL CHECK LIST.
Philip Gheerbrant and Anthony Jolliffe* suggest the following stock control and work-in-progress Check Lists vis-a-vis canons of lending: STOCK CONTROL:

1. Are careful records maintained showing age, number of lines and divisions into current, obsolescent and unsaleable stocks?
2. How often is the running balance per stock records checked with the physical stock?
3. Is there "Endependence" of maintenance of book records \& physical stecks or does the storeman keep the stock ledgers?

* P. Gheerbrant and A. Jolliffe, Integrated Lending
Techniques, Bankers Magazine, June 1978, London, P. 27

4. Are Stock values properly reduced when shortages are found?
5. Is the basis of valuation constant and are actual cost figures being applied, or are the latest prices being applied to all stocks, whatever the date of purchase thus anticipating profits as yet unrealised?
6. Is dead, damaged and defective stock written down in value?
7. Are there appropriate stock control safeguards?

WORK-IN-PROGFESS:

1. How valued, and what controls are there?
2. Who prepares the figures? Is there any check?
3. What control is there over materials, wages and other appropriate expenses charged to work-in-progress?
4. Have all costings been verified to ensure that the contracts are profitable?
5. What is the position regarding retentions, penalties for late completion, etc?
6. Are Quality Controls effective?

INVENTCRY MOLELS:

Inventory Models are hybrids between Deterministic (assume certainty) and Probabilistic (assume uncertainty). These models are used as aids in controlling inventory costs. By tackling the issues of "how much and when to order or purchase", the Nodels can help reduce the cost of purchasing, inventory carrying and being out of stock.

The models are different conditions:-
a. Certain demand with re-ordering.
b. Uncertain demand and no re-ordering, and
c. Uncertain demand with ordering.

In practice, all prediction is simply extrapolation, modified by known plans.

A mathematical description of the inventory system to be studiec is referred to as an Inventory Mcdel. Few accounting systems, in practice are capable of yielding the type of cost data required for inventory models. It is because acccunting systems are, in practice, geared towards the determination of periodic profits and do not employ concepts of costs such as variable costs and opportunity costs required for determining costs relevant for inventory decisions. This implies that supplementary analysis is required
to develop an estimate of these costs outside of the regular accounting system.

The various inventory models may be broadly classified into the following categories:

Vendor Models are those in which the inventorised items are purchased from suppliers outside the company, eg., the EOQ Model.

Procuction Models, on the other hand, deal with situations in which the user of the item products the replenishment supply.

In cases where the demand is contractual or otherwise stable, the deterministic demand may be reasonable. In other cases, however, cemand must be treated as a random variablc.

Let us take a simple model by way of illustration. for clarity. Consider the small grocer who replenishes his stocks from a local organisation. The object of the mociel is to minimize the total cost of acquiring and holding stock and to decide the most Economic Quantity that
should be ordered and the optimum number of orders placed.

Let $D=$ Annual demand for the item;
$Q=$ Size of the batch Quantity,
P = Cost Price per item,
$H=H o l d i n g$ Cost which may be expressed as a fraction of the average stock value, and

C $=$ Ordering Cost.

From the quantities, we can easily derive the following important relationships:

$\begin{aligned} & \text { Ordering costs per annum }=\text { Cost of One Order } \\ & \mathbf{X} \text { Number of orders }\end{aligned}$ per annum.
. $=\frac{C X D}{Q}$
Average stock on hand* at $=\begin{aligned} & \text { Half the batch } \\ & \text { any one time }\end{aligned}=\frac{Q}{2}$ quantity
Average stock value at any time.

$$
=P \times \frac{Q}{2}
$$

* If batch quantity Q is equal tc 10 and one unit per day is consumed until Q falls to zero, then the average stock on hand must be $=(10+9+8+7+6+5+4+3+2+1+0) / 11$ which equals 5 , which in turn is equal to $Q / 2$

Holding costs $=$ Some percentage of average stock value.

$$
=i P \times \frac{Q}{2}
$$

Total cost $=$ Ordering costs + Holding Costs

$$
=-\frac{C D}{Q}+-\frac{i P Q}{2}
$$

The problem now reduces itself to one of minimizing this total cost with respect to Q, which is achieved by taking the first derivative of TC with respect to Q and setting this equal to zero.

Therefore,

$$
\begin{aligned}
Q & =\sqrt{\left(\frac{2 C D}{i P}\right)} \text { and } \\
\frac{D}{Q} & \left.=\sqrt{\left(\frac{i P D}{2 C}\right)}\right)
\end{aligned}
$$

EXMPLE:

A grocer has a monthly demand for a certain food of 4,000 packages. The cost of placing an order is ls. 5 while the monthly cost of maintaining a package in store is 25 paise. What should be his optimum order quantity and how often should an order be placed?

$$
\begin{aligned}
& \mathrm{Q}=\frac{2 C D}{i P}=\sqrt{\left(\frac{2 \times 5 \times 4000}{0.25}\right)}=400 \\
& -\underline{D}=-\frac{i P D}{2 C}=\sqrt{\left(\frac{25}{2} \times \frac{4000}{5}\right)}=10
\end{aligned}
$$

Therefore, there should be 10 orders per month for 400 packages each. It should be mentioned here that for many inventory environments, there are far too many items for individual attcntion. In such cases, computerised packages such as IMPACT of .. IBM/IDRi can be used to monitor individual demand forecasts and steck status and thereby issue replenishment orders at the "right" times for the "right" quantities.

INVENTORY TRENDS IN INDIA. - Some Findings and Observations:

1. The ratio of inventories to total assets has been steady around 32\%.*
2. 12 out of 19 industries have raw materials as the major component of total inventories, 4 have finished goods and only 3 industries have "others" (spares and stores) as major items of inventory.@
3. The smallest companies (having each a paid up capital of Rs. 5 to 10 lacs) have a lesser percentage of their total and current assets in inventory than larger companies. ${ }^{\text {\& }}$

[^13]4. To the extent inventory management is mirrored in the ratio of inventories to sales, it will be seen that the performance of the very small companies is better than that of the bigger ones. Companies with a paid-up capital of less than Rs. 10 lacs carry nearly one month sales less in inventories as compared with companies in the range of R. 50 lacs to Rs. 100 lacs.*
5. Inventcries occupy nearly $1 / 3$ rd of total assets of private limited companies. \mathcal{L}
6. Many organisations carry 3 years' requirements as stocks and are defensive about their conservative stocking policies. ${ }^{0}$.
7. Less than 10% of organisations have developed their own systems of codification or catalogues of spares based on groupings such as engine spares, chassis sparcs, and transmission spares. 90% of organisations reported theirs finding it difficult to standardise spare parts since the original items of equipment were not standarcised. Only about 10% of organisations had successfully brought the area of maintenance spare parts uncer bucigetary control systems.

* EBI, Ibid.
\& RBI , Inid.
© P. Gopalakrishnan and iv. Sundareshan, Sparc Parts Management, Jaico, Bombay

8. Only 10% of the organisations have written policy manuals for inventories of various categories.*
9. Tender Committee System, for purchases, operates largely only in public sector organisations. ${ }^{\text {a }}$
10. Only 9\% of Public Sector and 27\% of Private Sector organisations use the EOQ for purchases. ${ }^{£}$
11. In the engineering industry, the administrative lead time is 16 days for direct purchases and 62 days for purchases through canalising agencies.
12. Purchase order costs per order vary from ks. 10 per order to Rs. 683 per order.
13. $/ B C$ Analysis is the most widely used technique being adopted by almost 80% of organisations.
14. The incidence of obsolete stocks is a nominal 2.5\% of total inventories, by valuc.
15. 25% of organisations have confirmed that they have no difficulty in implementing the Tandon norms.
16. About 40% of the companies computc inventery carrying . costs.

* Administrative Staff College of India Study, 1978.
© Prof. A. Iyengar of IFNR, Niadras, in a clinical interview.
\& Prof. V. Ramamurthy of IFNR, liadras, in a clinical intervicw.

17. About 50% of organisations employ the manual system of information processing for inventory control. libout 40% use computers and the rest have recourse to the Unitied Reccrd System.
18. Underutilisation of capacity is often responsible for additional raw materials inventory.
19. In heavy engineering units, work-in-progress constitutes the largest component of the inventory.*

THE FIVE ESSENTIAL STEPS FCR INVENTORY MANAGEMENT
"Inventory Management is" in the words of James Pichard, "the sum total of those activities necessary for the acquisition, storagc, sale, disposal or usc of materials".-©

Effective Inventory Management calls for the following five essential steps.

1. A COMPREHENSIVE AND WELL CLASSIFIEL LIST OF ITEAS IN INVFNTORIES

A full list of itcms in stock, duly coded, classified and with indications of location, prices, etc., will save

[^14]duplication of purchases and confusion. Materials codification can be said to be the foundation on which t.:.e whole edifice of inventory control is built up, particularly in large organisations.*

2. ABC ANALYSIS OF INVENTCRY ITEMS

This analysis is a selective approach aimed at keeping the investments low and at the same time avoiding stock-outs of critical items. The lesser the number of items and their varieties, the greater is the effectiveness of planning and control. fmong the varicty reduction techniques employed, are:

* Ordering and classification.
* ABC Analysis.
* Design unification.
* Preferred numbers

3. SETTING STOCK LEVELS FOR THE DIFFERENT ITEMS:

While uncertainties of supply, government policies and procedures, transport delays, etc., render forecasting exercises difficult, they cannot be dubbed wholly responsible for the inept forecasting of materials requirements in

[^15]many organisations. With better internal organisation, with the introduction of the concept of integration of materials management and with the provision of adequate base by way of codification and standardisation, forecasting abilities can be considerably improved, and the implications of external interferences on lead time, pricos, etc., can be assessed through appropriate sensitivity analysis. In quite a few instances, there will be scope for application of sophisticated techniques such as Exponential Smoothing and Regression Analysis.*

Some organisations employ the Materials Requirement Planning System (MRP). RRP is a total system to project the requirements for various components and parts, from the master schedule, by a level by level explosion of the bill of materials. Gross requirements thus arrived at are netted against available inventory and orders on hand, for each component, at that level.

The Minimum-Maximum System is also wiclely used in high usage and major value categorics.

[^16]
4. SYSTEM OF "CONTINUOUS STOCK TAKING" Of PERPETU\&L INVENTORY:

This system can cover almost all items. The stock verification is undertaken throughout the year, taking care to see that each item gets checked at least once a year. This system provides a cross check for the information furnished by bin cards and enables correction of recording errors, rendering them reliable as a basis for inventory decisions. It also compels prompt updating of stock records.

5. EVALU:ITION THROUGH SELECTED INVENTOPY RATIOS:

There are two basic methods of using financial ratios: (a) Cross Sectional Approach. (b) Time Series Approach. The Cross Sectional Appreach involves the comparison of the firm's financial ratios with those of other firms at the same point of time or that of the firm's ratio to the industry average. The Time Series hpproach involves the measurement of the firm's performance over a period of time. The conventional tool of ratio analysis through Value Management is widely used and well known. It is also used to predict any approaching sickness. A measure of how cood a ratio is, can le derived Sy. computinc; its Percentace Classification Error.

I wish to ciraw attention here to a new technique of application of accounting ratios, developed through
statistical exercise, for predicting sickness. Taffler and Tisshaw* in the U.K. have developed a Z-model incorporating a number of financial ratios taken together in a multi-variate approach using a statistical .technique known as "Linear Liscriminant Analysis". In the U.S.^., a variation of the formula has bcen evolved by Prof. E.filman ${ }^{\omega}$ and the tool is known as "Nultiple Discriminant Analysis". MD/ is a statistical tool by means of which the criterion for acceptance or rejection of prospective units can be developed.

The Altman criterion or Z-model runs as follows:

$$
\begin{gathered}
z=0.012 x_{1}+0.014 x_{2}+0.033 x_{3}+0.06 x_{4}+ \\
0.010 x_{5}
\end{gathered}
$$

Where

$$
\begin{aligned}
& x_{1}=\frac{\text { Working_Capital }}{\text { Total Assets }} \\
& x_{2}=\frac{\text { Retained_earnings_as_per balance sheet }}{\text { Total Assets }} \\
& x_{3}=\frac{\text { Earnings before_intercst and taxes }}{\text { Total } n s s e t s}
\end{aligned}
$$

* Jchn Argenti, Corporate Collapse, Mcgraw Hill, P. 55
(0) E.Altman, Corpcrate Eankruptcy in America, Heath Lexington Books, 1971. Other empirical works in financial ratio analysis for precictive and forewarning purposes include diller's cause-and-effect analysis, Beaver's approach and Wilcox's Gam: ler's Fuin approach.

$$
\begin{aligned}
& \mathrm{x}_{4}=\frac{\text { Total Market value of equity }}{\text { Book value of total debt }} \\
& \mathrm{x}_{5}=\frac{\text { Sales }}{\text { Total Assets. }}
\end{aligned}
$$

Units with a Z value in the region between 1.8 and 3 are classified as sick and can be revived if a suitable nursing programne is drawn up and implemented. Units with a Z score of less than 1.8 are chronically sick and beyond redemption as revealed by cxperience.*

The British model of Taffler and Tisshaw, also called the Z mociel, is as follows:-

$$
Z=C o+0.53 R_{1}+0.13 \mathrm{R}_{2}+0.18 \mathrm{R}_{3}+0.16 \mathrm{R}_{4}
$$

Where

$$
\begin{aligned}
& \mathrm{R}_{1}= \frac{\text { Profit before tax }}{\text { Current liabilitics }} \\
& \mathrm{R}_{2}=\frac{\text { Current_assets }}{\text { Total liabilities }} \\
& \mathrm{F}_{3}=\frac{\text { Current_liabilitics }}{\text { Total assets }} \\
& \mathrm{R}_{4}=\frac{\text { Immediate_assets_=current_liabilities }}{\text { Operating costs cxcluding cepreciation }}
\end{aligned}
$$

In this model, Co is a constant factor which is determined for a particular country based on the general econcmic climate and business environment, the rate of industrial growth, government policy and statutory provisions relating to industrial sector.

* Altman, however, failed to recocnise that shifts occur in :usiness conclitions and fortunes of inclustries, which push up or clown the a:solute levels of financial ratios.

In India, the Industrial Credit and Investment Corporation of India (ICICI) had conducted sometime back, a study on the usefulness of financial ratios in predicting sickness of industrial units. The study revealed that the following ratios are most useful in predicting sickness:

1. Ratio of CCCF to (Total assets + accumulated depreciation)
2. Ratio of EBDIT to (Interest +0.25 debt, being a measure of debt servicing capacity).
where

$$
\begin{aligned}
\text { OCF }= & \text { Prefit after interest and taxation with } \\
& \text { depreciation added back; } \\
\text { EELIT }= & \text { Earnings before depreciation, interest } \\
& \text { and taxation. }
\end{aligned}
$$

A unit is classified as potentially sick if any one of the ratics is adverse. The study also revcaled that balance sheet ratios are less reliable for measuring an enterprise's survival strength. Earnings ratios are best suited for the purpose. According to the study, a healthy unit must have satisfactory:-
3. Gross Profit (profit before depreciaticn, interest and taxation) on sales and total assets.
4. Cash profit (profit after interest and taxation with depreciation added back) on sales and total assets.

The following ratios are regarded as indices of inventory efficiency:
4. Inventory turnover $=$ Average Total Inventories at Cost

Inventory turnover $=$ Average Total Inventorics at Cost

All categories of inventories are aggregated. The higher this ratio, the more efficiently the inventory is said to be managed. fis it is to be accepted that a prudent business is one where maximum sales are obtained with minimum of inventory.*

The rates can also be computed inclividually for the major inventory categories: eg.,

Raw Material : Inventory Turnover

$$
=\frac{\text { Cost of Raw Materials Consumed }}{\text { Avcrage raw materials inventory at cost }}
$$

The ITR acts as an indicator of the liquidity of the inventory.@
(The ICICI study revealec, inter-alia, that sickness is more stroncly associated with excessive short-term Rorrowing than with long-term forrowing.

* N. Yasaswy, Vorking Capital Mianagement and Efficiency criteria, Economic Times, February 3, 1978, P.5.
© J. Van Horne, Fundamentals of Financial dianagement, Prentice Hall, P.37, Sec also M.C. Bhandari, Budgeting and Materials Mianagement, Commerce, Bombay, Vol.116, 2981, June 1968.
ficcording to Professors E. Graham and E. McGolerick, the ..chief criterion of inventory soundness is the turnover defined as the annual sales divided by the year end inventory.*
B. INVENTORY TO VALUE OF PROCUCTION R/ITIO

This shows the relationship between production levels and inventory requirements. A lower ratio will imply more efficient producticn.
C. INVENTORY TO NET WOKKING CAPITAL RATIO:

This relationship will show the long term sources of inventory and should be 1:1 ideally.

SIMULNTION OF INVENTORY BEHNVIOUK
Simulation is a very useful tool in recreating inventory behaviour in situations of uncertainty in demand and in lead times. Whenever inventory bchaviour does not fall into any identifiable pattern, the best alternative available to us is a simulation of future behaviour on the basis of past performance. The most commonly used technique of simulation is the Mionte Carlo simulation.

[^17]The Monte Carlo* technique is essentially one that generates projections on the basis of historical data with the use of random numbers.

SPARES ṠTCCKING CONTROL
At the indivicual unit level, expenses on spare parts constitute 50 tc 80% of the total maintenance cost and organisations invest.up to 10% of the capital cost in spare parts at the time of procuring the plant and machinery. Spares constitute 10 to 15% of the total inventory and 2 tc 5\% of the total cost of procluction and a: much as 40% of the working capital.

The Import Trade Control defines spares as "a part for substitution, ie., ready to replace an identical or similar part, if it becomes faulty or worn out and includes an accessory or attachment in the same regard". For practical working, we can categories those items as spares which because of wear and tear, usage or breakage, need replacement. In cther words, they are identical to the parts of machinc but the life of the part is less than the operating life of the equipment.

The $; B C-V E D$ approach or cost criticality analysis is usually the first step before introducing inventory control on spares.

[^18]The computer is usec to keep an up-to-date recorc of the spare parts carried in inventery. Advance warning is available well before the supply of any part is exhausted thereby allowing the purchaser to obtain replenishments at optinum prices.

The Committee on Inventory Control of the Bureau of Public Enterprises had suggested that the holding of the stores and spares should not excced 12 months' consumption in any public enterprise*

According to the Nakra Committee © if the spares inventory is to be reduced, the spares will have to be classified according to the nature of consumption, for example, fast moving; slow moving; risk insurance sparcs.

VfILUE ANALYSIS iid SGiE OTHE: CCNTENIFG:ARY TECHNIQUES TO CUI COSTS

It would be appropriate to round up the theoretical viewpoint of this Thesis by mentioning Valuc Anal;sis, started by Lawrence Miles in the General Elcctric Company, U.S.f., in 1947, which attacks directly the prime cost, which is at the core of the cost build-up. Value inalysis is the study of the cost of an item based

[^19]on quality, design and method of manufacture with a view to reducing its ultimate cost. The three basic principles through which Value Analysis is applied are:
(1) MISS (modify, improve, subdivide and substitute);
(2) EKCH:NGE (exchanging, keeping or changing the item); and
(3) D/RSIII (data analysis, recording ideas, speculating, improving, refining and implementing).

Cost recluction has become imperative for industry in the wake of monetary conditions. Value finalysis therefore, is being increasingly recognised tociay in Indian industry and helps them in replacing the costlier items of inventory by the less costly ones.

A. CAUTION

All said and done, the statement of A.N. Whitehead, Mathematician and Philosopher, must still be borne in mind:
"There is no more common error than to assume that, because prolonged and accurate mathematical calculations have been made, the application of the result to some fact of nature is absolutely certain".

The purpose of the application of Value Analysis by the Natrix System is to determine the effectiveness by means of numerical rating. The basic principle is
instead of making one decision over a large number of possible choices, we make a number of decisions each over any two choices and evaluate by conventional methods of grouping and combining. The two basic distinct steps for applying this technique of "forced decisions"are:-
a. Determining "weightage" which indicate the relative importance of all the factors identified as essential for a material cr service and this is effected by comparing these factors in pairs;
b. Applying "weightage" to indicate the acceptability of all the materials being compared in respect of any one of the factors. This is also completed by comparison in pairs.

The Queing Theory reduces the waiting time to a minimum after considering the service cost and waiting cost. In India, application of the Queing Theory to "rotable sparcs or floats" is being practised in Indian Railways, airlines, shipping, road transport, etc. The Queing System can be stuciied using the theory of Markov Chains (a sequence of events form a Markov Chain if the prolalilility of each event can be expresscd in terms of the previous event irrcspective of any information about carlier events).

Reliability Engineering (a concept concerned with prediction, control, measurement and continuous reduction of equipment failure rates) is widely used in electronic equipment \&acronautical component manufacture to reduce costs.

Línear Programming (a mathematical technique for finding the best use of a firm's limited resources) is widely used for allocating products of factories to warehouses, transportation logistics prcblems, etc., for profit maximisation.

Statistical Quality Control (by recucing the incidence of scrap, rework and rejection and better buyerseller relationship) and Obsolescence Control and Scientific Natcrials Handling (moving the right quantity of materials at the right time in a given space) go to reduce costs.

Group Technology (GT) concept can help bring down the quantum of bank credit by reducing inventories of both work-in-progress and finished goods and delivery time in engincering industrics, manufacturing pumps, valves, machine tcols, mctors, gauges, copying equipments for offices, brake linings, compresscrs, etc. While assessing the working capital neecis in an engincering industry, the provision for finishec goods and stock-inprogress is gencrally around three months production value. This can be halved by adopting GT, thereby recucing
working capital needs and improving profitability. For introduction of GT, the sequence of steps are:-
a. Determination of family of components from the engineering design and drawing office angles based on say, Universal component classification, eg., OPIPZ system, VUOSO system.
b. Production analysis.
c. Final syntheșis.
d. Design and installation/rearrangement of production system on the basis of GT cells:
e. Management control sysitem - production planning, machine loading, production control.

CHAPTER 5

THE D'AHEJIA, T/NLON \& CHORE COMMITTEES. AND. HCRKING CAPITAL FINANCE

The fundamental principle of working capital finance is to seek avenucs whereby funds can be sought for the lead-time involved in the production. Nll the Committees from Dahejia (1968) to Chore (1979) have indicated drawbacks in the cash credit system (CCS) of lencing to finance working capital requircments of business units. However, CCS continues to be the most popular and convenient methoc of such financing (cver one half of the total credit extended by banks are by way of cash credit and overdrafts). The main objection against CCS is the gap between credit limits sanctioned and the extent of their utilisation. This makes it difficult for banks to manage their funds rationally and impose credit disciplinc on borrowers.

Pricr authorisation of Resurve Bank is required for grant of fresh working capital limits of ls. 3 crores or more to any single berrower in the public or private scetor or enhancement of limits that would take the total working capital limits enjoyed by such a borrower from the entire banking system to the above level; the cut-off point is Ps. 5 crores in the case of a major export orionted manufacturing unit whose annual avcrage export turnover cluring the preceding three
calendar years is more than 25% of its total turnever. The working capital limits incluce securec or unsecured advances, as well as bills purchased and discountcci. In Dccomber 1982, the Rescrvo Bank appointed a committic undor S.S. Kiarathe, fermer Secretary to the Government of Incia, te revicw the opcrational aspects of this scheme.

THE D/HEJIi. CONLITTEE

The problem of financing werking capital needs by commercial banks was first locked into by the Dahejia Comittee in 1968.* The Committee which examined "the cxtent tce which credit ncods of incustry and trace are likely to be inflated and hew such trends could be checked" attomptec a rofincel expesition of the true nature of short tcrm/working capital finance granted by the commercial banks in the form of cash creciats. After analysing balance shocts of 250 firms over a period from 1961 to 1967, the Committoc hac come to an important conclusion that therc was a cictoricration in their current ratic and the increase in short torm liabilities vas utilised fer financines the gap betweon long term asscts anc lung tern liabilitics. The Cominttce had also

[^20]found that one-fifth of the gross fixed asscts formation of these companics was financed by expansion in short term liabilitics inclucing the bank lcans.

In orcer to chock the civersion of short term sources fer leng term uses, the Comittec recommended the scgrcgaticn of the tetal cash credit agreement with banks intc. (i) a "Harc Corc" component which would reprisent the minimum level of raw materials, finished goods anc: stcres, which the industry was required to hold for maintaining a given lovel of production, and (ii) the strictly short term component which would be a fluctuating part of the account. The Committee also c'esired that this "Hard Core" portion of the working capital neods might be financec through long term sources like equity, prefercnce capital and c'cbentures. Unfortunatcly, the recommendations wore not implementec cffectively and the firms continucd to depenc heavily on bank berrowings.

THE TANDCN CGBITTEE *
It was in this sotting that the Resorve Bank of India constituted, in July 1974, a stuciy group under the

[^21]Chairmanship of Shri Prakash Tancion, the then Chairman of the Punjeb Naticnal Eank, to frame guicelines for the fillcw-up of bank crecit (it is now wiciel: known as the Tancen Committec). The repert of the Cummittee has rcmaince a lancmark in the histcry cf financing of Working capital by comercial banks in Incia. liccepting the recomenciatiens, the Rescrve Bank cf Incia instructed the comercial banks, in 1976, to put all the bcrrowers having açrcgatc crccit limits from the banking systom in excess ef fs. 10 lacs uncer the first methec of lencing, which requires the berrowers te contribute 25\% of the workinc cepital gap - ie., the difference betweon the reascnable level of curient assets and ncn-bank curicnt liajilities - rssulting in a current ratic of 1.17:1.

Thrce altcrnativis, which can also be consiccred as three sequential stages, have been propesec to cnsurc the largest multiplicr offect of Eank finance for deciding on the maximura pormissible level cf bank credit for any borrowor.

NETHOL 1

Letorminc the working capital sap, ic., reascnable levol cf total current asscts minus ncnbank current liakilitics and recken 75% of the working capital gap as the permissible lcvel of bank financc.

The balance to be found by the borrower from his own funds and/or from long term borrowings.

METHOD 2

The borrower to get his own resources and/or long term funds to finance 25% of tctal current assets. Whatever is then rcquirec to meet the working capital gap, to be provided by the banker.

METHOL 3

Determinc the core current assets*. These tc be financed out of own funds and/or long term borrowings. The reascnable level cf total current assets less core current assets will represcnt "real current assets". 25\% of "real current assets" will alsc have to be supportec by borrcwer's own funcis and/or long term borrowings. If thic nen-bank current liabilities are inadequate to cover the balance of 75% of real current assets, the required amount will be oftained by way cf bank bcrrcwings.

* Core asscts are thesc assets which remain in the pipeline all the time: For example, if an ircn red is dippoci in the zinc solution, a certain portion of the finc solution should always be there insidc the machinery and this can be classifiec as a ccre asset. Why then, dic the Committec want this item to be financed by the borrower himsclf is not clear.

The final recommendations of the Tancon Committec enrwerged on the following five main aspects of working capital financing.

1. NORMS FOR INVENTOFY AND EECEIV/RLES:

The Comaittec fixce a maximuin levcl for inventories and reccivablcs. Thise noms would apply to all industrial berrowers whese aggregete limits for credit frem the banking system werc in exccss of ri. 10 lacs. The Committee cici nct fix nems for sparcs inventery, but only addrcssec a notc of cauticn that banks shcule "Keep a watchful eye if spares excecc 5% of total inventories".

In a stucy madic by P. Gcpalakrishnan of the Ac'ministrative Staff Collegc of Incia, it was found that uhis norm of 5% of total inventorics for spare parts was wocfully inadequate. Inc'ustrics carried spare parts at 10 to 60% of inventery levels. The survey confirmoce that incustries carry an inventcry of 2 years' consumpticn on an avcrago for spare parts. The Committce macic it clear that the noms ceuld not be regarded as entitlements. The prescribed norms for inventories were exprossec as: sc meny menths' consumption of raw matcrials and steres; for stecks in process, so many menths' cost cf procuction; and, fir finishoc' goce's and roceivables,
so many months' cest of sales. These norms are mandatcry in character.
2. APPFiCACH TO LENDING

The maximum permissible level of bank bcrrowings were worked cut by the Comraittee in terms cif three stages which have been dealt with.
3. THE STYLE OF CREDIT

Banks have ween adivised to bifurcate the entire necessary accommodation into two components: (a) Loan (hard core working capital needs) which the borrower expects to use throughout the year, and (b) a demand casin credit to meet the fluctuating requirements. Bcth these limits are to be reviewec annually.
4. INFCRA:ATION SYSTER

All berrowers whose tetal credit facilities from the banking system exceed lis. 10 lacs shculd subnit (a) an Operating Statement, (b) a Funds Flc: Statement, (c) a Peak Level Balance Sheet, and (d) a proferma Ealance Sheet for the next year at the time of submitting the loan application - vhether for renewal, enhancoment or fresh limits.

The bcrrowers whose agcregate credit facilitics from the banking system exceed li. 1 crore, should submit
(a) a Quarterly Operating Statement, (b) a Quarterly Funds Flow Statement, and (c) Quarterly statements of current assets and current liabilities for the purpose of follow-up. The informattion required will be of two types - data on past performance and plan for future estimates along with peak level requirement of bank finance.

5. BILL FINANCE

Apart from loan and cash credit limit, a part of the total credit requirement within the cverall eligibility could alsc be provided by way of bills limits to finance seller's receivables. It is desirable that, as far as possible, receivables should be financed by way of bills rather than cash credit against book debts. These bills could be demand based cr usance based, depending on the marketing pratice prevalent in the industry.

> THE CHORE COMMITIEE *

The Reserve Bank of India appointed a Committee under the Chairmanship of Shri K.B. Chore, in march 1979,

[^22]to review the working of cash credit system in recent years with particular reference to the gap between the sanctioned limits and the extent of their utilisation. The Chore Conmittee was an extension of the Tandon Committee.

The important recomendaticns of the Committee include:
a. In assessing the maximum permissible bank finance, banks should hereafter adopt the second method of lending recommended by the Tandon Committee, according to which the borrower's contribution from owned funds and term finance to meet the working capital requirements should be equal to at least 25% of the total current assets. In cases where the borrower is not in a position to comply with this requirement immediately, the excess borrowings should be segregated and treated as a working capital term loan (WCTL) which could be made repayable in half-yearly instalments within a definito pericd which should not exceed five years in any case.
b. The existing system of three types of lending, viz., cash credits, loans and bills should continue. But, wherever possible, the use of cash credit should be supplemented by the use of loans and bills.
c. The resources of the banks should be more widely spread than at present. In other words, the bulk of the credit being made available now to large houses should be spread among others.
d. Surplus funds generated during a firm's working should not be available for expansicn but should be applied towards bringing down the existing borrowing requirements of working capital.
e. In order to achieve better inventory control, financial discipline and planning, borrowers should submit quarterly projecticns of credit limits and depend more on bill finance so as to curb the use of credit. All borrowers-with working capital limits of Rs. 50 lacs and cver have to submit quarterly statements. Failure to submit quarterly information in time wịll attract 10% per annum penal interest.on total outstanding balance during the default period.

The acceptance by the Reserve Bank of India of the recommendations has made them a fait accompli. However, the report has cone in for some valid criticism.*

[^23]Thus, the shift recommended to the second method of lending, without assessing the impact of the operation of the first method fully is of far reaching consequence on industry which may not be capable of obtaining more funds. (For, it is not known as to how many borrowers are complying with the first method). Ancther consequence would be to shift the burden, partially, from banking channels to long term sources at a time when the term lending institutions are experiencing shortage of resources. Hence, the implementation of the recommendation of second method does not appear to be pragmatic. DETEFMINATION OF "NORMS" FOR THE "SIZE" OF INVENTORIES AND "ADEQUACY" OF BANK CREDIT - A GILBERTIAN SITUATION

In an assessment of the trend and magnitude of inventories in relation to sales or output, and of bank credit in relation to the requirement for financing working capital or inventories, the important question that arises is whether or nct it is possible to determine (i) the size of inventories, and (ii) the volume of bank credit needed by the industry. I_{n} other words, how does one find out, in particular situations, (a) that the size of inventories is excessive in relation to sales and output, and (b) that the volume of bank credit is adequate for financing the working capital (mainly, the inventory) requirement. It could be said
that in the determination of the adequacy of bank credit for financing the working capital requirement particularly, of inventories - it is imperative to know if the size of inventories is excessive, relative to needs. Both the exercises are, however, fraught with several difficulties which are explained below:
(1) SIZE OF INVENTOFiY HOLDING: DIFFICULTIES IN ASSESSING

A "NOPM".

Attempts have been made by some researchers* to work out - on a macro basis - an "cptimal" or a "normal" size of inventories by determining the rise in inventory value in relation to the rise in value of sales, taking into account the impact of (i) the inventory-carrying cost, ${ }^{(6}$ and (ii) the order, procurement or buying cost. ${ }^{\text {¿ }}$ These two costs operate inversely to

* T.M. Whitin, "Thecry of Inventory Management" (Princeton); W.J. Baumol, "Economic Theory and Operations Analysis" (Prentice-Hall), J.F. Magee, "Production, Planning and Inventory Control"(N.Y.1958)

0 This includes interest charges on capital, storage and insurance charges and depreciation on physical account and obsolescence.
\& This includes cost of processing a purchase order, cost of transportation and inspection and other administrative and overhead costs.
each other* and have to be balanced to bring about a saving in total inventory charges. Ultimately, the size of the inventory holding would vary with the changes (a) in the volume and value of sales, and (b) in the order cest and carrying cost. On this basis, it is indicated by some ${ }^{(0)}$ that the optimum level of inventories should be such that "inventory should increase only in proportion to the square root of sales". In other woris, "if sales of some item double, inventory should not be doubled - it should be increased to much less than 200% of its original amount".

However, the question of determining the "normal" or "optimal" size of inventcries is more important for an

* The annual order cost is equal to the number of deliveries multiplied by the cost per delivery, ie., the larger the quantity ordered at a time, the fewer the number of deliveries and, thereforn, the lower the order cost. Total carrying cost is equal to annual cost per unit multiplied by the number of units in an average inventory. The smaller the quantity orderec: at a time, smaller the average inventory and smaller the carrying cost (these two costs, therefore, operate inversely to each other).
* W.J. Baumol, Ibid
individual firm than for an industry as a whole, and much more than for a group of incustries. There are practical difficulties, toc, in attempting to fix an "optimal" size of inventcries for a group of industries because of the heterogeneity of the constituents different in regard to seasonality, patterns of demand and changes in the latter. The analysis here is, therefore, confined to a study of the relationship between 'inventory-sales' and 'inventory-output' ratios.*

(2) ADEQUACY OF BANK CRELIT - LIFFICULTIES OF FIXING
 A "NORM"

It is equally difficult to determine a "norm" for, what should be considered as, an adequate quantum of bank credit required for working capital purposes. Firstly, bank credit is not the only source of funds available to industry for financing working capital requirements. Secondly, bank credit could be used to meet the requirements cf finance emanating from acquisition of other assets, or for meeting business losses. Thus, interest and dividencls, if they are paid

[^24]out of the unrealised profits, would drain the working capital rescurces, by taking out that much cash. A drain on working capital may also occur in consequence of operating losses.

Among the main sources* of working capital, one source is the funds provided through profits on current cperations. For example, receipts from sales are used not only to replenish the working capital invested in inventories and to pay operating costs but also to generate new working capital. Other sources are bank credit and other short-term loans, trade credit, sale of marketable securities and shares, etc. There is, however, no fixed principle governing the use of short-term sources of funds to finance a part cr whole of working capital. Sometimes, a distinction is made between what is called "quick assets" ${ }^{1(1)}$ comprising such of the current assets as are "one step nearer to cash" (viz., cash and receivables), and the other current assets (viz., inventories), which are subject to changes in market valuc and which have to be sold before they become

[^25]available for paying off debts. Actually, some persons believe that the bankers, while giving credit against inventories, usually prefer those of the borrowing concerns whose total amount of current debt (liabilities) excluding such credit will not exceed the quick assets. This precaution is induced by the risk of price fluctuations in respect of inventories. However, this is not a general rule; and, actually, in the case of some of the highly speculative commodities (such as oilseeds and cotton in a rising market), their inventories are more readily convertible into cash than are receivables.

Again, there are some experts on financial management, who believe that the minimum current assets requirements of firms should be financed through longterm rather than short-term sources of funds.*

Any asset requirement, which is needed over and above the minimum, for meeting temporary seasonal change in sales, output and requirements of stocks for manufacturing purposes - which could be called temporary current assets - could appropriately be financed through short-term sources of funcls - chiefly, bank credit and

[^26]trade credit. On the basis of the illustration given by Prof.Wessel* in regard to the financing requirements of a firm curing the year (which depicts the monthly outstanding levels of current assets), approximately 37\% of the total current assets of a firm could be said to constitute the minimum current assets. This, along with some provision for a safety margin for emergencies and the like (together up to 44% of total current assets) should, according to him, be financed from out of the long term sources of funds. The financing of the temporary current assets may be done through the use of short term funds (current liabilities) will come, on this basis, to not more than 56% of total current assets. This would be the maximum or the peak level of current assets, for which the maximum amount of short-term funds might be required. It would be difficult, however, to say how much of these short term funds should be in the form of bank credit. The temporary rurrent assets, by their seasonal nature, would also reach a trough in the lean period of the year and the use of short term funds (especially the bank credit) has to be reduced at that time.

* Robert H. Wessel, Ibid, P. 95

JEYA MURUGAN INDUSTRIES

BRIEF HISTORY OF THE UNIT

M/s Jeya hurugan Industries was started in the year 1965 as a paitnership firm of near relatives to manufacture polyethylene tubes, sheets and bags as well as PVC products. The unit has been banking since 1968 and from small beginnings in bank facility as well as sales, have come a long way. The projectec sales of the unit for the year 1982-83 is expected to be about.「s. 36.4 lacs.

MANAGEMENT
The affairs of the unit, managerial and technical, are looked after by a Manager, Sri Vijayanathan, who was actually the promoter of the unit but is yet to become a partner. The partnership consists of

Mr T Padmanaban (Managing Partner)
Mr A Thirunurugan
Mr I Vivekanandam
inr T Ramaswamy
Mr Thirumalai
Mr R T PR Kumar
Mr R Udaya Kumar
Smt I Athma Bai
Smt Vijaya Sundareswaran
Smt I Saroja
Smt V Raciha Bai .
Smt V Radha Bai is the wife of Sri Vijayanathan (Manager) and Smt Saroja is the wife of Sri Thimmichetty, Auditor to the firm, who is also the Manager's brother. Smt Vijaya Sunciareswaran is the only partner outsicie the family circle.

SISTER CONCEIINS

The unit's sister concerns : rnkins are:

1. M / s Polyvine products, engaged in the manufacture of PVC films, pipes, conduits as well as polyethylene tubes on subcontract from Jeya Murugan Industries occasionally.
2. M/s Visupax Industries which
manufactures accrylic sheets. Both of
these units were started after the formation of M/s Jeya Murugan Industries and the partners of these firms are again, different contigurations of the partners cf M / s Jeya Murugan Industries. The only exceptions are, that the Manager of M/s Jeya durugan Industries is the Nanaging Partner of one unit and one Sri Subramaniam, another relative, is the Managing Partner of the other. Besides these two units, there are some trading concerns also details of which are not available.

PRESENT LIMITS
The unit presently enjoys the following credit facilities:

Facility	Limit
Rs.	
C/c Lock \& Key	$2,00,000.00$
C/c Mundy Type	$4,00,000.00$
C/c Bills	$3,00,000.00$
C/c Inward Bills	$40,000.00$

The present limits were sanctioned in 1980.

PRCDUCTS

The unit, as stated in the beginning, is
engaged in the manufacture of polyethylene tubes and sheets as well as polyethylene bags of various sizes. They also manufacture utility articles like folders, files, diary covers, wallets, bags, etc., from PVC sheet's. The major products are, however, tubes, sheets and bags based on low density polyethylene granules. The unit enjoys a fairly good reputation in and around Madurai and has a steady clientele.

PROCESS.
L 1 P TUBES/SHEETS AND BAGS
L D P granules are first fec into an extruder from which it comes out in the shape of tubes. These are folded or rolled as the case may be, if they are to be
sold as sheets. When bags are to be made, the sheets are cut into the required sizes and sealed by the cut sealing machine for large sized bags. For smaller sized bags, the tubes are fed into the automatic bag making machines which are pre-set to get bags of required size.

L L P COLOUR TUBES/SHEETS

Master batches in which= coloured granules are mixed with L i polyethylene granules in the proportion 1:24, then fed into the extruder to get coloured tubes. Tubes, when cut, yield sheets.

P V C PROLUCTS

These are made by manually cutting the PVC sheets to the required sizes and then welding them on or moulding them on the vacuum forming machine.

REMARKS

Normally, the extruders, once startec, work continuously from Monday to Sunday. As the unit possesses a generator also, power failures, if any, do not affect it adversely. There is virtually no wastage in production as the wastage occurring during the start up of the extruders and the rejects during the process as well as defective goods returneci can be reprocessed. (Please see Appendix XII for flow process charts).

GENERAL CCiMAENTS

The unit is one of those which are referred to as "gooci" in the bank. They have been promptly repaying the term loan dues and the unit has been generating surplus consistently. Even though the profitability has been as low as 2 to 3% the unit has been abde to finc avenues for development. It has established a good reputation in and around Niaciurai and as the bank has been extending more than aciequate credit facilities, the unit in turn, has been able to extend sufficient credit to its major customers.

Even though there are 11 partners in the unit, only 2 are cven marginally associated with the affairs of the unit. As stated elsewhere, the affairs of the unit are almost entirely managed by the Manager who is virtually a sole proprietor. The reasons for his not entering the firm as partner are not clear. However, he has given his personal guarantee to secure the advances
the bank has extended to the unit. As the unit has been able to ensure the quality of its products and has not changed its procluct prices despite the price fluctuations in raw materials, its major customers continue being its customers. However, the group has observed that a stricter quality control is necessary on the workers.

The marketing area of the unit has been mostly in and around Madurai. But of late, the unit has started selling its products in Kerala also. It has opened 2 new outlets at Tiruchirapalli and Coimbatore for its products which will help the unit to increase its sales apart from improving the return due to the anticipated cash sales. The unit already has a full-fledged sales office at Macurai where from the cash sales alone is of the orcier of is. 3, 000 per day. This office also looks after a certain portion of the credit sales of the unit. The office is headed by Sri Thirumalai Subbu, one of the partners of the firm.

INVENTORY CONTIOOL

The methodology adopted as also the significant findings and recommendations at each stage of the design of a suitable inventory control system for the unit's raw materials and consumables have been set out below.

ABC ANALYSIS

An ABC analysis of the projected consumption of raw materials and consumables for 1932-83 is presented in Appendix II. It can be seen that LDP granules, by themselves are anticipated to account for over 95% of the total value of consumption of raw materials and consumables. As such, only LDP granules have been treated as ' A ' class items while the rest, accounting for less than 5\% by value in aggregate of the total value of consumption, have been treated as 'B' class items. A fairly strict inventory control system (applying statistical methods) has been suggested, therefore, for LDP granules while a liberal adhoc system has been recommended: for the others.

Incidentally an $A B C$ analysis of past consumption, ic., 1901-82 coulc not be cone as the unit was unable to provide the necessary consumption figures. Nor, moreover, could these consumption be arrived at from the actual prociuction ciuring the year as the productmix dotails were not ascertainable. In the event, it was decided to do an ABC analysis of the projected
consumption for 1982-83 based on the production and sales programme envisaged for 1982-83, presented in Appendix IV. Cther assumptions made in the projection of consumption of raw materials and consumables have been explained adequately in Appendix II itself.

INVENTCīY CONTROL SYSTEN FOR 'A' CLASS ITERS

The steps involved in the design of a suitable inventory control system for LLP granules have been described below. The working details have been presented in Appendix III.

LETEMLINATION OF STANLAFIL DEVIATICN
First data relating to fortnightly consumption of LDP granules during 1981-82 were collated. Based on the se, the fortnightly standard deviation in consumption during 1981-32, was computed by applying the normal statistical formula. As shown in Appendix III, the fortnightly standard deviation during 1981-82 was found to be roughly $1,513 \mathrm{Kgs}$.

DETERMINATION OF SAFETY STOCK
First, the fortnightly standard deviation was converted to the standard deviation in a lead time for 1981-82. For this purpose, the lead time for procurement of LDP granules was taken as 10 days or 0.67 fortnights after discussions with the unit. Considering that the unit buys the bulk of its requirements of LLP granules from the open market (over 60%) whose average lead time is around a week, the assumption is felt to be reasonable. The standard deviation in a lead time for 1981-82 has been computed to be roughly $1,238 \mathrm{Kgs}$ (Appendix III).

Next, the standard deviation in a lead time for 1982-83 was computed by adjusting for the projected consumption during 1982-83. This was found to be approximately $1,376 \mathrm{Kgs}$, as shown in Appendix III.

Finally, the safety stock for 1982-83 was arrived at by multiplying the lead time standarc deviation for 1982-83 by a factor ' K '. The value of ' K ' was assumed to be 2.5 in the present case so as to limit the possibilities of a stock out to 1% only since LDP granules are the critical raw material for the unit. The safety stock for $1982-83$ works out to $3,440 \mathrm{Kgs}$ which has been rouncied off to $3,450 \mathrm{Kgs}$ or 136 bags of 25 Kgs each, as revcaled by Appendix III.

COMPUTATION OF ORLER QUANTITIES

(a) ECONOMIC ORDEI QUANTITY (EOQ)

The EOQ for LDP granules has been computed in Appendix III and found to be roughly 1.5 tonnes. It will be noticed that while the inventory carrying cost has been assumec' at the normal level of $16 \% \mathrm{p} . \mathrm{a}_{\text {., }}$, the order cost has been taken at l.s. 12 per order. This is because the ordor follow-up necessarily involves a few trunk calls to suppliers which aspect, after ciscussions with the unit, has been taken into account in the computation of order cost.

(b) liINIMUN ORLEER QUANTITY (MOQ)

Strictly speaking, there is no minimum order quantity for LLP granules as they are available in bags of 25 Kgs . However, the unit is of the opinion that an order quantity of less than 1 tonne, would not be a worthwhile proposition.

(c) LEAN TIAE CONSUMPTION (LTC)

The lead time consumption for LDP granules has been computcd to be roughly 5.9 tonnes, as shown in Appendix III. It will be noticed that the lead time has been taken at 10 days (or $1 / 3$ month) since the weighted average lead time for procurement approximates to 10 days.

INVENTORY CONTROL SYSTEM RECOMAENUED
A multiple order level system has been recommended for LDP granules with the EOQ being the order quantity at cach level. From Appendix III it will be seen that there are 7 orcer levels envisaged which have been spelt out, both in terms of Kgs of stock as well as in terms of bags. This has been done to facilitate the implementation of the system even in the absence of accurate stock records. The godiown-keeper or stores clerk has merely to count the number of bags in the stores from time to time to make the system work. The average inventory of LDP granules, after implementing the system, is likely to be about 4.2 tonnes,
as shown in Appendix III. The anticipated order frequency, once in 2 or 3 days, is acceptable to the unit.

INVENTORY CONTROL SYSTEM FOR OTHER ITERS

For all other items among the unit's raw materials and consumables, ie., other than. LDP granules, an adhoc system of inventory control has.been recomended. It is proposed that a provision of 1 month's consumption be made as safety stock while the order quantity be 2 month's requirements (ie., the order frequency being 6 times a year). The average inventory for these items, conscquently, is envisaged to be 2 months' consumption (1 month +2 months).

OVERALL STOCKING CF IIAW MATERIALS AND CCNSUMABLES

The overall average inventory of raw materials and consumables for the unit, after the implementation of the recommended systems, is anticipated to be of the value of roughly lis.84,150 (as shown in Appendix XI) which works out to about 0.3228 month's, say $1 / 3$ rd month's consumption, which is a very substantial improvement on the position obtaining presently..

COSTING
A detailed costing exercise was undertaken at the unit, based on which product costing of the unitrs major product categories was cione. ©ertain recommendations have also been made in regarc to product mix, and pricing basec on a profit/contribution analysis. The methodology adopted as well as the significant findings of the costing exercise have been enumerated below, in the order in which the exercise was carried out.

(a) ILENTIFICATION CF COST CENTRES

As shown in Appendix I, the machinery of the unit (inclusive of machines proposed to be acquired) were scgregated into produgfion, service and unoooked cost centres on the basis\%utility and utilisation. It will bc noticed that out of the 18 cost centres icientified (encompassing 27 machines), only 50%, ie.f 9 , vere production cost centres while as many as 7 were unbooked, the remaining 2 being service cost centres. To say the
least, the unit's choice of machinery leaves much to be desired. For the purposes of the costing exercise, the unbooked cost centres and the service cost centres were consolidated into one unbooked cost centre and one service cost centre respectively.

(b) PriOJECTION OF EXPENSES

The expenses of the unit for the next year, ie., July 1982 to June 1983, have been projected in Appendix VIII, based on the unit's anticipated production and sales programme (presentec in Appendix IV) and the past levels of expenses (presented in Appendix X), modified by discussions with the unit. It will be seen that out of the total expenses projected of is. $34,96,430$, raw materials alone account for as much as i.s.31,11,630. Since only raw material costs have been treated as prime costs (ie., directly traceable to products), the total overheacs work out to rs. $3,84,800$. Further, it can be seen that production overheads are envisaged to be I.s.1,54,100 (with i.s. 71,660 being cieemed variable and I.s. 82,440 fixed) while selling and administrative overheads (deemed to be entirely fixed) account for the balance of [.s.2,30,700.

(c) COiNONENT MACHINE LOADING MATRIX

Based on the projected production programme for the next year (shown in Appendix IV) and on considerations of batch sizes, set-up times and operating times, as arrived at after discussions with the unit, a component machine loading matrix was developed. It will be noticed, of course, that operating and total times at each of the production cost centres have been computed for prociuct categories than for individual products. This was because the unit expressed its inability to furnish a detailed break-up of the prociuct categories nor was the product-wise break-up of past sales available for purposes of projection of a detailed procuct-mix, as mentioned in the Appendix itself. It will also seen from the Appencix that the matrix has been arrived at after making libcral provisions for rejects and rework. Further, it is clear that the cut-sealing machine is a labour ceterminent cost centre for which labour hour rates arc more meaningful than machinc hour rates.

Based on the available hours and booked hours at each cost centre, the utilisation indices have been computed in Appendix V. It is seen that only 2 cost centres are anticipated to be fully utilised, viz., the $21 / 2^{\prime \prime}$ extruders and the bag making machines. However the capacity of the unit is really determined, for the assumed production programme, by the $21 / 2^{\prime \prime}$ extruders since thoy have been assumed to be working 3 shifts/day while the bag making machines have been assumed to be working on a single shift basis. However, it must be mentioned that in projecting the workload on the $2 y 2^{\prime \prime}$ extruders, it has been assumed that all large LDP bags and sheets, ie., over $4^{\prime \prime}$ and $8^{\prime \prime}$ width respectively, will be exclusively handied by then, though the $1^{\prime \prime}$ extruders are capable of handiling bags of upto $8^{\prime \prime}$ width. In other words, if the whole or a part of the work load on account of bags and sheets (made from cutting tubes of half the required width of the sheets) of width between $4^{\prime \prime}$ and $8^{\prime \prime}$, and $8^{\prime \prime}$ and $16^{\prime \prime}$ respectively were to be off-loaded to the $1^{\prime \prime}$ extruders, the capacity of the unit would increase furthor. As can be seen from the hppendix, the utilisation of the other cost centres is projectec to be low.

The low utilisation of the $1^{\prime \prime}$ extruders (under the assumptions made), about 25\%, is particularly disturbing since they are high cost machines. The low utilisation of the cut sealing machine can be improved by recucing the number of persons allocated to that centre. For example, if the number of persons allocated is reduced from the normal level of 6 to, say, 2 persons, the utilisation of the cost centre wilmprove to 50%, at the same time releasing 4 persons for other work.

Keeping the foregoing in minc, it is patently clear that the unit's decision to co in for two additional $1^{\prime \prime}$ extruders and a winding machine (which is not anticipated to be utilised at all) is not justified. The unit would have been better placed had it gone in for an additional $21 / 2^{\prime \prime}$ extruder instead. The capacity of the unit as a whole as well as the utilisation of existing machines would have improved substantially resulting in an over-all reduction in production costs.

(a) ALLOCATION OF OVERHEAD EXPENSES

The allocation of overhead expenses has been done in great detail in Appcndix VI. As may be seen from the Appendix itself, the factory overheads were first allocated to prociuction, unbooked and service cost centres. Next, tho overheads allocated to the service and unbooked cost centres were reallocated to production cost centres.

Finally, selling and administrative overheads (treated as entirely fixed expenses for the purpose of the study) were allocated to production cost centres. It will be noticed that where the allocated expenses were negligibly low no allocation has been made to the relative cost centre. (Eg., depreciation, ropairs and maintenance, insurance, etc.) The basis of allocation/re-allocation for each of the overhead expenses has been clearly indicated in the ippendix itself.

It can be seen from Appendix VI that the highest variable and fixec expenses have been allocated to the $1^{\prime \prime}$ extruders followed by the allocations to the $21 / 2^{\prime \prime}$ extruders, as is only to be expected keeping the relatively high cost of these machines in mind.
(e) DETERMINATION OF MACHINE-HOUR RATES

The variable and fixed machine hour rates for the cost centres have been computed in Appendix VI. While the variable machine hour rates have been computed by dividing the total variable overheads allocatec to a cost centre by the relative running hours, the fixed machine-hour rates were determined by dividing the total fixed overhcads allocated to a cost centre by the relative booked hours. As has been mentioned previously in the case of the cut sealing machine, the rates computed are really variable and fixed labour-hour rates since the output is labour determined.

It can be seen from the Appendix that the 3 cost centres with the highest fixed machine-hour rates (FilRi) are the vacuum forming machine, the 1 " extruders and the welding machines, primarily on account of low utilisation in that order. Similarly, the 3 cost centres with tice highest variable machine-hour rates (Vilik) are also the same as above and in the same order.

(f) PriCEUUCT COSTING

There are a few clarifications which may be made
at the outsct itself. First, for reasons cxplained earlier, the product costing exercise could be attempted only for product categories and not for individual products. Seconc, since the PVC-based products, whether welded or vacuum formed, comprise so many different categories of products that a meaningful prociuct costing exercise could be carried out in the absence of a much more detailed product-mix break-up than was available. As
such, product costing has been attempted for only those product categories (which in any case, account for the bulk of the unit's projected sales as revealed by Appendix IV) which are based on LDP granules. Finally the unit for product costing has been taken as 1 Kg instead of in terms of numbers because sales are offected in Kgs., the prices also being expressed in terms of rupees/Kg. The computation of product costs have been presented in Appendix VII.

The cost/kg of a procuct category was arrived at by adding together the raw matcrial cost/kg., ie., the prime cost, and the overhead cost/kg (both variable and fixed). The computation of prime cost/kg of product was fairly simple and was determined to be Es. 14 and Es. 14.44 for plain and coloured categorics of products respectively, as is evident from the fippendix itself. The variable overhead cost/kg for any product category at any cost centre was computed by multiplying the operating time/kg (derived from Appendix V) with the NiHF derived for that cost centre (arrived at in hppendix VI). Similarly, the fixed overhead cost/kg for any product at any cost centre was computed by multiplying the total time/kg (derived from Appendix V) with the $F M H K$ for that cost centre (arrivec at in Appendix VI).

Of the six product categories considered, the two highest cost categories appear to be tubes/sheets (small) and coloured bags, with unit costs of F .19 .54 and R.s. 19.20 per kg respectively. The high cost of tubcs/sheets (small) is mainly ciue to the substantial processing time at the 1 " extruders while the high cost of coloured bags is primarily on account of hot foil embassing. The two lowest cost categories are, apparently, tubes/shects (large) and coloured tubes, with unit costs of i.s. 14.57 and [s. 15.01 per kg respectively. The unit costs of bags (large) and bags (small) have been computed to be Fs .15 .26 and lis. 16.83 per kg respectively. There appears to be no correlation between the unit costs of product categories and their selling priccs. Apparently, the unit has not becn aware of the unit costs while pricing its product categories.

(g) PAOFIT ANL CCNTFIBUTION AN/LYSIS

A profit and contribution analysis for the six major product categories costed has been made in fippendix IX.

It is seen that only tubes/sheets (small) are expected to make a loss (about R. 2.54 per kg) while all the rest of the product categories are anticipated to make profits with coloured tubes being the most profitable (about ls. 2.99 per kg). The profitability (as a percentage of sale value) of the product categories ranges from 14.94\% (loss), in the case of tubes/sheets (small) to 16.61\% (profit), in the case of coloured tubes. Bags (small) are expected to just about break-even, with profits of 1.0 .0 .17 per $\mathrm{kg} .$, and a profitability of 1%.

It is evicient that all the product categories considered make substantial contributions towards fixed overheads with the highest contribution being made by coloured bags (about Cs .4 .87 per kg). The percentage contribution ranges from 10.65% in the case of tubes/ sheets (small) to 24.35% in the case of colourec bags.

Now that the unit is aware of the profit and contribution (in absolute and percentage terms) of each of the major product categories, it is in a position to make the necessary changes in its selling prices and/or product mix to improve over-all profitability, subject to the operating and marketing constraints. It would be impossible to set out all the possibilities. However, a couple of fairly obvious changes can be cited as illustrations.

First, the proportion of coloured products in the unit's prociuct-mix, particularly that of coloured tubes, should be increased to the extent possible. Second, unless the unit is hopeful of bagcing much higher volume of orders for tubes/sheets (small) than has been projected, thereby substantially improving the utilisation of the $1^{\prime \prime}$ extruders and lowering their FMER and therefore, the total product cost (in which case the present sale price of $\mathrm{Ra} .17 / \mathrm{kg}$ may be retained), the unit should explore the possibility of raising the sale price of tubes/sheets (small) by around 15% so as to enable the product to break-even. However, if the increase in price results in the loss of orders, the unit must first explore the possibility of increasing the production and sales of bags (small) so as to retain the utilisation of $1^{\prime \prime}$ extruciers atleast at the presently envisaged level. If even this is not feasible, it would be better for the unit to retain the present selling price as some contribution is better than no contribution.

QPERATING ECONOMICS

(a) Pf,ST PERFCRinance

The immediate past performance of the unit has been summarised in the form of profitability statements for 3 years in Appendix X. Based on these figures, a trend analysis, in a tabular form, has been carricd out in Appendix XIII. The ciata in Appendices X and XIII speak for themselves and detailed explanatory remarks are not deemed necessary. It has already been mentioned that financial analysis could not be completed due to non-availability of financial statements, particularly balance sheets. Consequently, trend analysis of balance sheet items and ratio analysis could not be carried out.

A careful perusal of Appendices X and XIII reveal so many discrepancies and anomalies that the veracity of the data provided by the unit itself appears to be in doubt. While some sets of figures suggest that the product-mix and the proportion of product sales to trading sales have been fairly stable, other sets of figures incicate just the opposite, for example, it appears that the audited statements of the unit have been "doctored" with the data for 1981-82 being provisional, seeming to be the most reliable. It is almost certain that the expenses for the year 1980-81 particularly have been inflated. This is borne out by, apart from the trend analysis which is also revealing, the fact that as against the normal break-even level of around Es .23 to $\mathbb{E s} .24$ lacs sales/annum (computed in fippendix X), the break-even level for 1980-81 is in excess of lis. 30 lacs/annum. Clearly the fixed expenses for the year appear to be inflated.

Under the circumstances, the only conclusion that can be drawn about the unit's past performance is that it has consistently generated profits, probably substantially more than what has been declared.

(b) PROFIT/BILITY AND EREAK-EVEN LEVEL

The projected profitability statement and the anticipated break-even level of sales for 1982-83 have been worked out and presented in Appendix VIII. The
profitability statement has been based on the projected production and sales programme of the unit, presented in Appendix IV. The expenses have been based on past trends, in general, modified by discussions. The sppendix is comprehensive enough to make further elaborations unnecessary.

It is seen that the anticipated profit before tax for 1982-83 ciespite very liberał provisions for expenses (particularly selling and administrative), works out to rouchly Es. 1.46 lacs. The break-even level of sales has been computec to be around Ps. 24.86 lacs/annum which works out to about 68.3% of the projected turnover for the year.

(c) WORKING Cf.PITAL ASSESSMIENT

The projected working capital requirements of the unit for 1982-83 have been assessed in Appendix XI. Most of the assumptions have been made explicit in the fippendix itself. It will be noticed that the existing margins have been retained.

The raw materials (and consumables) stocking level has been arrived at on the basis of the inventory control system recommended for the unit. As explained in the ippendix, an over-all stocking of roughly 10 days' consumption of raw materials and consumables, valued at is.84,150 is deemed to be adequate. However, for the purposes of sanctioning limits, an additional provision for R. 10,500 , in the requirements and lis.7,875 in the permissible limits representing provision for stocking of 750 kgs of LDP granules more, may be provided for the peak level stocking of LDP granules.

Considering that the maximum batch cycle time for prociuction is about a weck, one weck's stocking of semifinished coods may be permitted. It is felt that 3 weeks' stocking of finished goods would suffice keeping in mind the fact that most of the production is against orders. Both semi-finished and finished goods have been valued at cost of procuction, derived from Appendix VIII. In general, both the stocking level and the valuation of semi-finished and finished goods have been liberally assumed.

The recommended bill limit of 1.4 months' sales has been arrived at, as explained in the ippencix, after taking into account the fact that atleast 30% of the sales
of the unit are on cash terms. The weighted average bill payment period for credit bills approximates to 2 months. However, the cover period for the unit's bills may be retained at 3 months since a few major customers of the unit take between 2 and 3 months to effect payment.

It can be clearly seen that the recommended limits for working capital purposes aggregate to roughlyls. 6,44 lacs, even after making a provision for peak level stocking of raw matcrials, for 1982-83 as against the existing limits of is. 9 lacs. It is obvious therefore, that the unit has been overfinanced in the past. That the rcal working capital requirements of the unit were well below the level assessed by the bank is borne out by the relatively poor utilisation of limits in the past by the unit, as roughly gauged from the interest payments made to the bank by the unit. For example, the interest payment of is. 65,980 curing 1981-82 even if assumed to be entirely on account of working capital bank borrowings, tends to suggest that the average working capital outstandings during the year were about fi.5.08 lacs only as against the sanctioned limits of Rs. 9 lacs. There was no necessity for the bulk purchase of raw materials either.

It is recommended, therefore, that fresh limits be sanctioned to the unit as indicated below.

C/c Mundy type limit against stocks ($\mathrm{B}_{\mathrm{A}} \mathrm{Ni}_{\mathrm{i}}, \mathrm{SFG}, \mathrm{FG}$.)
C/c limit against outward bills .. Is.3,82,400(app)

Total | (say $\frac{\text { I.s.6,43,900 }}{\text { L. } .6,44,000)}$ |
| :---: |

A separate lock and key limit is not felt to be strictly necessary though a sub-limit of lis. 71,000 for raw matcrials and consumables may be specified. If felt necessary, the C/c inward bill limit may be retained.

Ofcourse, these limits relate to 1982-83 and will have to be reviewed for subsequent years to adjust for changes in operating levcls and product-mix. The bank must insist on regular and prompt submission of detailed stock statements and it would be advisable for the bank to check the veracity of stock statements submittcd by the
unit, atleast once in $2 / 3$ months, by physical stock verification. It would also be advisable for the bank to obtain, on a monthly basis, statements from the unit covering production, sales, expenses and the orc'er position. This would help the bank to monitor the advance better while the unit itself would benefit from this regular exercise.

CONCLUSION

It is imperative that the unit makes every effort for a programmed reduction in the level of stagnant stocks. Even among the moving stocks, the level of stocking needs to be brought in conformity with the recommendations made earlier. The unit's contention, for instance, that 20 tons of finished goods need to be stocked does not seem reasonable. Tiaw material stocking above the level recommendec would not be justified. In this connection, it may be mentionec that with the commissioning of the new IPCL plant, the availability of LDP granules, the major raw material for the unit, is likely to case further, fis such, stocking levels coulc conceivably be lower, rather than higher, than envisaged.

The unit cannot afford the luxury of so many idle machines as are presently existing. The unit needs to immediately bestow attention to this aspect. It is strongly recommended that the idle machines, unless the unit makes arrangements for their utilisation at a reasonable level, be cisposed off at the earliest. The utilisation of the useful machines also leaves much to be desired. The unit's decision to go in for $21^{\prime \prime}$ extruders and a winding machine, as mentioned carlier, has merely compounded the problem.

Though the unit has several obvious weaknesses, over-dependence upon the Manager and the interlocking between firms being two ready examples, it also has its inherent strengths, the most notable being its steady clientele, which suggest that the future prospects of the unit are fairly good.

MAJOR FINDINGS AND RECOMMENDATIONS -
Inventory control
The single most important raw material for the unit is low density polyethylene granules, which accounts for over 95% by valuc of the unit's projected consumption in 1982-83 of raw materials and consumables. Hence, LDP granules is the only 'A' class raw material for the unit, all the rest being treated as 'B' class items. (Appendix II)

The recommended inventory control system for LDP granules, based on detailed analysis of consumption and application of statistical methods, is a multiple order level system (7 order levels) with the Economic Order Quantity as the base. The average inventory of LDP granules is computed to be $4,200 \mathrm{Kgs}$, which would represcnt roughly 7 days' consumption projected for 1982-83 (Appendix. III).

The average inventory recommended for other raw materials and consumables, based on an adhoc system, is 2 months consumption.

The overall weighted average inventory, after implementation of the recomnendations, would work out to roughly 10 days' consumption. The value of the overall weighted average inventory is.computed to be Rs. 84,150, approximately for 1982-83 (Appendix XI).

The unit docs not need any stocking for high densty polyethylene cranules since no consumption is projected for 1982-83.

COSTING
Of the 9 production cost centres identified (Appendix I), only 2 are anticipated to be fully utilised during 1982-83 (fippendix V). As such the proposed purchase of two $1^{\prime \prime}$ extruders and a winding machine are deemed to be totally unnecessary, the utilisation of $1^{\prime \prime}$ extruders being 25% for 1982-83 while the winding machine is unlikely to be used at all (treated as an unbooked cost centre). The unit may have been better advised to go in for an adcitional $2.5^{\prime \prime}$ extruder instead (anticipateá utilisation - 99.75\% in 1982-83).

Due primarily to their low anticipatec utilisation, the 3 production cost contres with the highest variable
and fixed machine hour rates are the vacuum forming machine (utilisation 9.17%), the $1^{\prime \prime}$ extruders (utilisation 25%) and the welding machines (utilisation 45.83\%), in that order. The rclative variable/fixed machine hour rates have been computed to be fis.16.42/79.12, Is.5.93/20.72 and T..3.46/17.54 respectively. (Appendix VI)

A product costing exercise for the unit's LDP product categories reveals that all of them make a contribution to overheads. However, it is found that LDP tubes/sheets (small size) make a subtantial loss while the most profitable category appears to be coloured tubes. (Appencix VII \& IX).

It is recommended that the prices of Lip tubes/ sheets (small size) be revised upwards by atleast 15% or, alternatively, the production of this product category in the unit's product mix be reduced. It is also recommended that the proportion of coloured products, particularly colourcd tubes be increased in the unit's overall product mix. (f.ppendix IX).

OPERATING ECONOMICS
The projected sales of the unit for 1982-83 is !o. 36.42 lacs of which [.s. 32,000 is contributed by trading sales, ic., sales of PVC sheets (Appendix IV).

The anticipated profit before tax for 1982-83 is Ps. $1,45,600$ (app.) and the break-even level of sales works out to roughly $\mathrm{P} .24,36,200$ which is about 68.3% of the projected sales for the year (fippencix VIII).

The average working capital bank borrowings for 1982-83 have jeen assessed to be roughly Es. 6.36 lacs with sanctioned limits of f.s. 6.44 lacs being deemed adequate (Appendix XI). There is a good case for a reduction in the working capital limits granted to the unit, particularly ageinst stocks.

The past performance of the unit reveals consistent profitable operations even though the profitability has been very low. (Anpendix X).
LIST OF /PPPENDICES
Appendix

No.
List of machinery and identification of cost centres I
Projected consumption of raw materials and consumables during 1982-83 II
Inventory control systen for LDP granules \& determination of standard ceviation of fortnightly consumption during 1981-82 III
ABC analysis of projectec sales for 1982-83 IV
Component machine loading matrix V
Allocation of overheads to cost centres and consumption of variable and fixed machine hour rates VI
Product costing exercises for major product categories VII
Projected profitability statement for 1982-83 and break-even level computation VIII
Profit and contribution analysis for major product categorics L
Past performance of the unit (last 3 years) with computation of break-even level X
Working capital assessment for 1982-83 天I
Flow process charts for major product categories XII
Trend analysis XIII99

APPENDIX I

LIST OF MACHINERY
 AND IDENTIFICATION OF COST CENTRES

APPENDIX I:
... contd.

Note:

1) Two 1" extruders and one winding machine are proposed to be acquired before September 1982. These are expected to be commissioned by the first week of October 1982, at the latest. However, the utilisation of the winding machines are anticipated to be practically negligible and hence; they have been treated as unbooked centres.
2) For the purpose of costing, the 7 unbooked centres have been treated as a single unbooked cost centre and the 2 service centres as a single service cost: centre.

PROJECTED_CONSUMPIION OF RAW MAATERI/LS

AND CONSUMMBLES EUR ING 1982-83

S.Nc.	Material Category	Class	Fate (Rs.)	Value of consump-Quan-tion (Rentity dered off to nearest Rs. (Ton) (Rs.)	
1.	L.D.P.Granules	A	14/Kg. $212552 \mathrm{Kg} \mathrm{29,75,730}$		
$2 .$	P.V.C. Sheets (Several sizes/ thicknesses)	B	$\begin{aligned} & 7 / \text { (me } \\ & \text { tre } \\ & \text { (lyé } \\ & \text { rage) } \end{aligned}$	17100 metres	1,19,700
$3 .$	Master Batches (4 or 5 colours)	B	$25 / \mathrm{Kg}$.	$648 \mathrm{Kgs}$.	16,200
4.	Diesel Oil	B	$1.21 /$ Litre	$\begin{aligned} & 8,400 \\ & \text { Litres } \end{aligned}$	10,160
5.	Other consumables	B	-	-	6,000
Total		31,27,790			

NOTE:-
(1) For coloured LDP Bags, Sheets and Tubes, Master Batches and LDP granules are required to be mixed in the proportion of 1:24. Consequently, the consumption of Master Batches for 1982-83 has been estimated to be 4% (i.e., $1 / 25$) of the projefted production of coloured LDP products of $16,200 \mathrm{Kgs}$. (See Appendix IV). Similarly, the consumption of IDP granules has been arrived at by adding together the consumption for plain proclucts (1,97,000 Kgs.) and for coloured products (at 96\% of the projected production of $16,200 \mathrm{Kgs.g}$ ie., $15,552 \mathrm{Kgs}$.) It has already been mentioned that there is practically no wastage.
(2) The ccnsumption of PVC sheets includes the projectec tracing sales of 4,000 metres. (See ippendixIV).
(3) L.L.F. granules, by themselves, account fir rver 95% of the tetal value of consumption of raw materials and consumables projected for 1982-83 and as such a strict inventery control system for LDP granules is called $f(x$.
(4) The unit was not in a pesition to give a detailed censumpticn break-up in respect of PVC sheets and Master Batches in terms of inclivic'ual sizes/thickness ancl colours respectively. Since past consumption data vias alse net available aleng the required lines, nc suitable assumpticns could be made for 1982-83 regarding consumption of indivic!ual items aming PVC sheets and Master Eatchos.

INVENTORY CONTROL SYSTEM FQR LDP GRANULES

DETERMINATION OF STANDARD DEVIATION OF FCRTNIGHTLY CONSUMPTIONS
DURING 1981-82

Fortnight	Consumption (X) Kgs.	$\begin{gathered} (\mathrm{X}-\overline{\mathrm{X}}) \\ \mathrm{Kgs} \end{gathered}$	$(X-\bar{X})^{2}$	Standard deviation (F) Kgs.
1.	5,891	- 1,279	16,35,841	
2.	5,146	- 2,024	40,96,576	$\mathrm{F}=\frac{\left(\mathrm{X}-\overline{\mathrm{X}} \mathrm{T}^{2}\right.}{}$
3.	7,604	434	1,88,356	526, 30,978
4.	6,913	- 257	66,049	(24-1)
.	,		6,049	$=5 \underline{6} \underline{2}_{2} \underline{30} 2 \underline{9} 5$
5.	7,882	712	5,06,944	$=23$
6.	7,916	746	5,56,516	$=22,88,303.3$
7.	5,825	- 1,345	18,09,025	$=1,512.71 \mathrm{l}$
8.	6,431	- 739	5,46,121	$=$ say 1,513
9.	8,684	1,514	22,92,196	
10.	5,627	- 1,543	23,80,849	Note:
11.	5,781	- 1,389	19,29,321	All figures have been rounded off to the nearest
12.	6,698	- 472	2,22,784	whole number
13.	7,780	610	3,72,100	The consumption figures relate
14.	4,465	- 2,705	73,17,025	to the 12 months covered between
15.	7,893	723	5,22,729	July 1981 and
16.	6,034	- 1,136	12,90,496	
17.	7,874	704	4,95,616	
18.	5,599	- 1,571	24,68,041	

Appendix III ... contd.

^verge
(\bar{X}) 7,170

(B) Determination of safety stock for 1982-83

Lead time (L) $=10$ days or 0.67 fortnights.
Projected consumption in 1982-83 (A2) $=212,552 \mathrm{Kgs}$
Consumption during 1981-82 (A1) $\quad=172,070 \mathrm{Kgs}$
Standard deviation in a lead time during 1981-82
$=F \times \sqrt{L}=1513 \times \sqrt{0.67}=1238.44 K_{\Im}=$
$=$ say $1,238 \mathrm{Kgs}$
Standard deviation in a lead time for 1982-83 (1982-83)

$$
\begin{aligned}
& =L \times \sqrt{\frac{A 2}{A 1}}=1,238 \times \sqrt{\frac{212}{172}, \frac{552}{070}} \\
& =1238 \times 1.23526 \\
& =1238 \times 1.11142=1375.94=\text { say } 1376 \mathrm{Kgs}
\end{aligned}
$$

APPENDIX III

... contd.
Safety stock (SS) for 1982-83

$$
=k \times 1982-83=2.5 \times 1376
$$

$$
\begin{aligned}
& =3,440 \mathrm{Kgs} . \\
& =\frac{\text { say } 3,450 \mathrm{Kgs}}{}=\frac{(138 \text { bags })}{}========
\end{aligned}
$$

NOTE: The value of ' K ' has been taken as 2.5 so as to limit stock-out risk to 1%, LDP granules being the critical raw material for the unit.
(C) Computation of order quantities for 1982-83
(1) Economic order quantity

NOTE: Order cost has been taken at Rs. 12 after discussions with the unit, since order follow-up involves trunk calls to suppliers.
(2) Minimum order quantity (MOQ)

There is no specific minimum order quantity since the raw materials are available in bags of 25 kgs each. However, the unit feels that it would not be worthwhile to place orders for less than 1 tonne at a time.
(3) Lead time consumption

$$
\begin{aligned}
\text { UTC }= & \text { Average consumption in a lead time } \\
& \text { (ie. in } 10 \text { days or } 1 / 3 \text { rd month) } \\
= & \underline{212} \frac{5}{1} \frac{2}{2} \underline{2} \times \frac{1}{3}=5904.22 \mathrm{Kgs} \\
& =\text { say } 5,900 \mathrm{Kgs} .
\end{aligned}
$$

$$
\begin{aligned}
& E O Q=\sqrt{\frac{2 X A_{2} X_{a}}{{ }_{i} \bar{C}}} \\
& =\sqrt{2-\frac{x}{0} 212 . \frac{552}{16} \times 12^{-1}-12} \\
& =1509.09 \mathrm{Kgs}=\text { say } 1,500 \mathrm{Kgs}
\end{aligned}
$$

(D) The recommended inventory control system.

A multiple order level system is recommended with the EOQ computed being the order quantity, so as to minimise the average stocking level for LDP granules. The reorder levels would work out as follows.

Re-order level 1 (ROL)

$$
\begin{aligned}
& =\text { safety stock }+ \text { lead time consumption } \\
& =3,450 \mathrm{Kgs}(138 \text { bags })+5,900 \mathrm{kgs} \\
& =9,350 \mathrm{Kgs} \text { or } 374 \mathrm{bags}
\end{aligned}
$$

$$
\mathrm{ROL}_{2}=\mathrm{ROL}_{1}-\mathrm{EOQ}=(9,350-1,500) \mathrm{Kgs}=7,850 \mathrm{Kgs} \text { or } \underset{\text { bags }}{314}
$$

$$
\mathrm{ROL}_{3}=\mathrm{ROL}_{2}-\mathrm{EOQ}=(7,850-1,500) \mathrm{Kgs}=6,350 \mathrm{Kgs} \text { or } 254
$$

$$
\mathrm{ROL}_{4}=\mathrm{ROL}_{3}-\mathrm{EOQ}=(6,350-1500) \mathrm{Kgs}=4,850 \mathrm{Kgs} \text { or } \underset{\mathrm{b}}{194}
$$

$$
\mathrm{ROL}_{5}=\mathrm{ROL}_{4}-\mathrm{EOQ}=(4,850-1,500) \mathrm{Kgs}=3,350 \mathrm{Kgs} \text { or } 134
$$

$$
\mathrm{ROL}_{6}=\mathrm{ROL}_{5}-\mathrm{EOQ}=(3,350-1,500) \mathrm{Kgs}=1,850 \mathrm{Kgs} \text { or } 74
$$

$$
\mathrm{ROL}_{7}=\mathrm{ROL}_{6}-\mathrm{EOQ}=(1,850-1,500) \mathrm{Kgs}=350 \mathrm{Kgs} \text { or } \underset{\mathrm{bags}}{14}
$$

$$
\begin{aligned}
\text { Average_inventory } & =\text { Safety stock }+ \text { Order_gty. } \\
=\left(3,450+\frac{1500}{2}\right) \mathrm{Kgs} & =\underset{=}{4,200 \mathrm{Kgs} \text { or } 168 \mathrm{bags}}
\end{aligned}
$$

ABC ANALYSIS OF PROJECTED SALES FOR 1982-83

Sl. Product Categories	Fate	Quantity to be sold	$\begin{gathered} \text { Sales } \\ \text { Value (fis.) } \end{gathered}$
1. LDP Bags (Large size)	$\begin{aligned} & \text { Rs. } 16 /- \\ & \text { per } \mathrm{Kg} . \end{aligned}$	1,00,000 Kgs.	. $1600000 \%^{\circ} \Lambda^{\prime}$
2. LDP Tubes(Large size)	$\begin{aligned} & \text { Rs. 16/- } \\ & \text { per } \mathrm{Kg} . \end{aligned}$	50,000 Kgs	800000 lass
3. LDP Bags (Small size)	$\begin{aligned} & \text { Rs. } 17 /- \\ & \text { per } \mathrm{Kg} . \end{aligned}$	45,000 Kgs.	. 765000 of
4. LDP Coloured Tubes/ sheets	$\begin{aligned} & \text { Ris. } 18 /- \\ & \text { per } \mathrm{Kg} . \end{aligned}$	12,000 Kgs.	. 21.6000 l
5. PVC Welded Products	$\begin{aligned} & \text { Rs.8.33/ } \\ & \text { met.app. } \end{aligned}$	12,000 Mts.	
6. LDP Coloured Bags	$\begin{aligned} & \text { Rs. } 20 /- \\ & \text { Per Kg. } \end{aligned}$	4,200 Kgs	fit8400 dems.
7. LLP Sheets/Tubes (Small size)	$\begin{aligned} & \text { Rs. } 17 /- \\ & \text { per } \mathrm{Kg} . \end{aligned}$	2,000 Kgs.	$\text { - } 340000$
8. PVC Vacuum formed products	$\begin{aligned} & \text { Rs. } 10 / \text { met } \\ & \text { app. } \end{aligned}$	1,100 Mts.	$11,00$
TOTAL PROLUCTION SALE			3610000
9. PVC Sheets for sale	$\begin{aligned} & \text { Rs. } 7.50 /- \\ & \text { met app. } \\ & \text { TOTAL } \end{aligned}$	$\begin{array}{r} 4,000 \mathrm{Mts.} \\ \text { SALES }= \end{array}$. $\begin{array}{r}32000 \\ \hline 3642000\end{array}$

Remarks:- The projectedproduction and sales programme for 1982.83 was arrived at after disaussion with the unit.

NOTE (1) The rates assumed for PVC products are extremely approxinate since the rates vary considerably from product to product and from customer to customer.
(2) The ' A ' Class items identified abcve, ie, the first three items, constitute.roughly 87.7% of the projected production sales of the unit.

COMPONENT MACHINE LOADING MATRIX

ALLOCATION OF OVERHEADS TO COST_CENTRES AND CONSUMPIN OF VARIABLE \& FIXED MACHI NE HOUR RATES

(A) EACTORY OUERHEADS
(A)Variable Expenses

1. Power	32,400	Approximate HP rs	12,000	9,000	4,500	4,300
2. Repairs a Maintenance	23,100	Discussions	4,620	6,930	2,310	2,310
3. Fuel (Diesel Oil)	10,166	Only to generates				
4. Other Consumables	6,000	Discussions	12200	1.800	600	600
Sub-total 1. ${ }^{\text {dex }}$	71,660		$\begin{aligned} & 17,820 \\ & 88,290 \end{aligned}$	$\begin{array}{r} 17,730 \\ 7,461 \end{array}$	7,410	6,910
Reallocation of expenses of service cost	$\begin{aligned} & 16,580 \\ & \text { (included } \end{aligned}$	50\% to $\mathbf{1 月}^{\text {月 }}$ Extrudrs, 45\% to 2.5" Extrders	88,290	$7,461$		
centie to production cost centres.	in sub- total 1)	and 5% to vacuumForming M / c.				
Sub-total 2.	71,660		26,110	25,191	7,410	6,910
(b) Fixed Expenses						
1. Rent	9,780	Area occupled bj M/cs	2,178	1,695	1,502	1,743
2. Wages(29 workers)	49,820	Labour allocatich	10,307	6,872	5,154	6,872
3. Supervision	5,000	Estimate of time spent	1,250	1,250	750	500
4. Depreciation	14,440	Actuals (on W.DV.)	3,300	-	2,133	1,066
5. Insurance	3,400	Value of $\mathrm{m} / \mathrm{cs}(0: i g i n a l)$	480	690	509	230
Sub-total 3.	82,440		17,515	10,507	10,048	10,411
Reallocation of expenses of service cost centre to production cost centres.	- 4,890 (included in sub-total 3)	50% to 1" Extrusers, 45\% to 2.5" Extiuders and 5% to Vacuun Forming M/c.	2,445	2,200	-	-
Sub-total 4.	C2,440		19,960	12,207	10, ${ }^{2} 48$	10,411

APPENDIX VI (CONTD.)

PRODUCT COSTING EXERICISE FOR MAJOR PRODUCT CATEGORIES

51. No.	Product category	R.M. Cost	$1^{\text {n }}$ Extruder		$\begin{aligned} & 2.5^{\prime \prime} \text { Extru= } \\ & \text { dors } \end{aligned}$		$\begin{aligned} & \text { Bag Making } \\ & \text { Machines } \end{aligned}$		Welding portablo machings impulso			
			V C	FC	V C	FC	VC	FC	VC	FC	VC	FC
	Bags (Largo) (LDP)	14.00	-	-	0.154	0.443	0.039	0.208	-	-	0.003	0.105
	Tubes/Sheets (Large) (LDP)	14.00	-	-	0.148	0.423						
	Bags (Small) (LDP)	14.00	0.527	1.879	*-	-	0.070	0.355				
	Tubes/Sheets (Small) (LDP)	14.00	1.186	4.351								
	Coloured Tubes(LDP)	14.44	-	-	0.148	0.419		-				
	Coloursd Bags (LDP)	14.44	-	-	0.148	0.420						

REMARKS (1) Product costing for PVC items have not been done as the unit prices and number of units proposed to be manufactured for individual items wero not ascortainablo.
(2) Raw material cost par Kg. forcoloured L.D.P. products havo beon arrivod at as follows:

(a)	Cost of	LDP granules	960 gms	\cdots	is. 13.44	(人 $_{\text {N }} .14 / \mathrm{Kg}$)
(b)	Cost of	Master Batch	40 gms	\cdots	Rs. 1.00	(园 Rs. $25 / \mathrm{Kg}$)
		Total	1000 gms		Rg. 14.44	

PROJECTED PROFITABILITY STATEMENT FOR 1982-83

AND BREAK-EVEN LEVEL CCMPUTATION

Income/Expense	Amount Rs.	Amount Rs. .	Remarks

INCOME
a) Production sales
b) Trading sales

EXPENSES

a) Variable Factory Expenses

1. Raw materials*
2. Power
3. Repairs and maintenance
4. Fuel (Diesel oil)*
5. Other consumables *

$$
31,11,630
$$

32,400
23,100
10,160
. Other Consumables *
6,000
b) Fixed factory expenses

1. Wages
2. Supervision
3. Rent
4. Depreciation
5. Insurance.

COST OF PRODUCTION
c) Selling \& Administrative Expenses

1. Interest (Bank \&-others)
2. Bank charges
3. Printing \& stationery
4. Manager's salary \& bonus
5. Postage \& telegrams
6. Advertising

36,10,000
32,000
36,42,000
Please see Appendix IV
$31,83,290$

5,820
5,000
9,780
14,440
3,400
---->>-- 82,440

32,65,730

Selling and administrative expenses have been treated to be entirely fixed.

118
Appendix VIII
... contd.

BREAK-EVEN LEVEL

$$
\begin{aligned}
& =\mathrm{Rs} .24,86,224 \\
& =\text { Say Rs. } 24,86,200 \\
& \text { (68.3\% of projected sales) }
\end{aligned}
$$

* Please see Appendix II. For the purposes of costing variable overheads have been taken to be Rs. 71,660 treating raw materials alone to be the prime cost of products. The total fixed overheads assumed for costing purposes is Rs.3,13,140, ie., Rs.82,440 + Rs. 230,700 .

PROFIT AND CONTRIBUTION ANGLYSIS FOR MAJOR PRODUCT CATEGORIES

Sl.	Products	Variable overhead cost per unit.	R.M.cost per unit	Total VEriable Cost/ unit	Fixed overhead cost por unit	Total cost por unit	Unit Sale price ($\mathrm{Fi} . \mathrm{C}$)	profit/ Lass per unit.	Unit contribution	Percent ago profit/loss	percentage contribution
	Tubes/Sheets (Large size) LDP.	0.15	14.00	14.15	0.42	14.57	16.00	+ 1.43	1.85	+ 8.94\%	11.56\%
	$\begin{aligned} & \text { Bags (Large } \\ & \text { size) (LDP) } \end{aligned}$	0.20	14.00	14.20	1.06	15.26	16.00	$+0.74$	1.80	+ 4.63\%	11.25\%
	$\begin{aligned} & \text { Bags (Small } \\ & \text { size) (LDP) } \end{aligned}$	0.60	14.00	14.60	2.23	16.83	17.00	$+0.17$	2.40	+ 1.00\%	14.12\%
	Tubes/Sheets (Small size) LDP (LDP)	1.19	14.00	15.19	4.35	19.54	17.00	- 2.54	1.81	- 14.94%	10.65\%
	Coloured Bags (LDP)	0.69	14.44	15.13	4.07	19.20	20.00	$+0.80$	4.87	+ 9%	24.85\%
	Coloured Tubes $\text { (} \mathrm{L} D \mathrm{DP} \text {) }$	0.15	14.44	14.59	0.42	15.01	18.00	+ 2.99	3.41	+ 16.61%	18.94\%
		REMARKS: 1. The amounts aro in rupeas									
2. Fir all products, the unit has been taken to be one Kg .											
3: PVC products do not find a place above since they could not be meaningfully costed.											
5. Total Variable Cost = Variable Overhead cost + Raw Material Cost.											
6. Total Cost = Total Variable Cost + Fixed Cost.											
7. Profit/Loss = Sale Price - Total Cost.											
8. Contribution = Sale Price - Total Variable Cost											
9. Theunit needs to raise its priees forldP Tubes/Shoots (small size) by atleast 15%											
10. The proportion of colourod products, particularly coloured tubes, should be increased											

PAST PERFORMANCE OF THE UNIT (Last 3 years)
WITH COMPUTATION OF BREAK-EVEN LEVELS
(Amounts in rupees)

Income/Expenses	1979-80	1980-81	1981-82
INCOME			
Sales	25,77,630	38,99,020	28,46,540
EXPENSES			
A) Factory expe a) Variable			
1. Raw materials	21,97,340	33,29,280	24,48,030
2. Power	25,230	29,910	27,000
3. Repairs \& Maintenance	7,570	25,980	19,250
4. Fuel	4,540	12,870	8,480
Süb-total (a)	22,34,680	33,98,040	25,02,760

b) Fixed

1. Wages \& salaries

54,000	54,000	48,620
16,450	22,920	9,780
8,960	8,220	8,000
24,120	18,590	12,800
$1,03,530$	$1,03,730$	79,200
$23,38,210$	$35,01,770$	$25,81,960$

(B) Selling \& Administrative Expenses

1. Salary and Bonus (Manager)
2. Postage \& telegram
3. Printing and stationery
4. Interest (Bank \& others)
5. Bank charges
6. Commission

47,140
57,310
58,400
2. Rent
3. Insurance \& licence fees
4. Depreciation

Sub-total (b)
Total (A) (sub-totals
$a+b)$
$23,38,210 \quad 35,01,770 \quad 25,81,960$
7. Advertising
8. Subscriptions
9. Travelling expenses

10,620
15,860
16,450
8,710
78,960
1,960 740
3,760
1,930
10,600

5,670
1,860
86,290
65,980
5,090
3,820
2,910
4,920
17,790

3,450
3,020
2,720
6,500

REMARKS

1. Sales include both production and trading sales.
2. All amounts have been rounded of f to the nearest rupees ten.
3. The item 'interest' incluces, apart from interest on bank borrowings, interest payment to some chit funds also.
4. The item 'others' under selling and administrative expenses, is made up of several miscellaneous expenses (including substantial amounts by way of auditors fees/drawings) whose break up could not be provided by the unit.
5. The figures pertaining to 1981-82 are only provisional based on the records available and discussions with the unit, since the financial statements for the year were not available at the time of the study.
6. For 1979-80 and $1980-81$ wages have been computed roughly on the basis of Rs. $4,500 \mathrm{p} . \mathrm{m}$. since the unit does not maintain, nor furnish a manufacturing account.
7. For the purposes of computing the break-even levels, the entire selling and administrative expenses have been treated as fixed.

WORKING CAPITAL ASSESSNRENT FOR 1982-83

NOTE: In the absence of current financial statements, liquid surplus could not be ascertained. The net deficit will be met from cash accruals and liquid surplus, if any.

REMIARKS:

1. The raw material stocking level has been arrived at as follows:-
a) LDP granules - average stock $4,200 \mathrm{Kgs}$ (Appendix III)
b) Other raw materials and consumables -
b) Other raw materials and consumabl. 2 months' consumption (Annual consumption - Rs.152,100) - Rs.58,800

Total(representing a stocking of roughly 10 days' consumption of all items together) Rs.84,150

APPENDIK XI
 ... contd.

2. Cost of production and cost of sales are derived from Appendix VIII.
3. It is estimated that atleast 30% of the unit's sales will be on cash basis. (for 1981-82, cash sales were approx. Rs. 3, 000/day or about Rs. 9 lacs for the year which is roughly 31.6% of the total sales). The weighted average bill payment period for credit sales approximates to 2 months: The overall weighted average bill payment period works out, therefore, to 1.4 months, ie.,
0.7×2 months. However, the cover period for bills may be retained at 3 months since some of the customers take between 2 and 3 months to effect payment.
4. The interest on average bank borrowings at 13% p.a. works out to Rs. 82,683 (say lis. 82,700) while Rs. 84,000 has been provided for in Appendix VIII. In other words a provision has been made for roughly ls. 1,300 towards interest on other borrowings.
5. ine limit for raw materials should take into account peak level stockings of, particularly, LDP granules. An additional provision of Rs. 10,500 (750 kgs of LDP granules) in the requirements and Bs.7,275 in the permissible limits should suffice.

FLON PROCESS CHARTS FOR MAJOR PRODUCT CATEGORIES.
${ }^{1}$ L D POLVETHYLENE TUBES / SHEETS - LARGE SIZE/SMALL SITE

L D P BAGS - LARGE SIZE / SMALL SIZE

L E P COLOUTED BAGS

P V C WELDED PRODUCIS

P V C VACUUM FORMED PRODUCTS

* \because @ 0^{*} *

APPENDIX XIII

TREND ANALYSIS

SI. No.	Item(s) of Expense/ Income	$\begin{gathered} \text { Base year } \\ 1979-80 \end{gathered}$	1900-81	$\begin{aligned} & 1981-82 \\ & \text { Pre: } \end{aligned}$
I	SALES (incluciing tracing sales)	100	151.3	110.4
II VAFiIABLE FACTORY EXPENSES				
1	Raw materials and consumables	100	151.5	111.1
2	Power and fuel	100	143.7	119.2
3	Repairs and maintenance	100	343.2	254.3
4	Total	100	152.1	112.0
III FIXED FACTORY EXPENSES				
1	Wages and salaries	100	100.0	90.0
2	Rent	100	139.3	59.5
3	Insurance and Lepreciation	100	81.0	62.9
4	Total	100	100.2	76.5
IV SELLING \& ADMINISTRATIVE EXPENSES				
1	Manager's salary and bonus	100	121.6	123.9
2	Interest (Bank and others)	100	109.3	83.6
3	Travelling expenses and motor car maintenance	100	167.8	119.4
4	Postage, telegram, printing \& stationery	100	111.4	94.7
5	Bank charges, conmission, acivertising and subscriptions	100	199.5 120.8	109.5 125.7
6	Packing and forwarciing	100 100	120.8 284.2	125.7
8	Total	100	143.9	105.5
V	TOTAL EXPENSES	100	149.3	110.0
VI	PaOFIT BEFOIE TAX	100	274.6	135.1

REMAFIKS: 1. The trend analysis has been made on the figures provided in Appendix X.
2. Trend analysis of balance sheet items could not be undertaken as the balance sheets were not made available by the unit.
3. It appears fairly certain that the figures given in Appendix X particularly those relating 1980-81 have

SMALL TOOLS SERVICES

BRIEF HISTORY OF THE UNIT

The unit is a sole proprietory concern, Sri K Bhaskaran being the sole proprietor and enjoys the following credit facilities:

Cash credit	(bills)	Rs. 3.5
Cash credit	(L \& K)	Eis. 3.5 lacs
Cash credit	(mundy typ	Ris. 1.5
Term Loan I		Rs. 0.94 lacs
Term Loan II		Rs. 0.35 lac

Limit for establishment of letters of credit Rs. 5 lacs. The unit commenced production in the year 1971 and is engaged in the manufacturing of engineering/special cutting tools. The unit is regular supplier of special cutting tools to automobiles and auto-ancillary manufacturing units of repute.

As per the recomnenclations, the limits were revised recently. The recommended limits are:

The study was undertaken to examine the adequacy of the cash credit (L \& K) limit.

RAW MATER IAL
The raw materials required are mainly high speed stecl (HSS) 5:5:2 and HSS 5\% cobalt, along with EN series steel. The unit gets HSS material from M/s Firth India Limited, Bombay for its indigenous requirements. However its major supply of raw materials is through imports under licence, mostly from Japan and Austria.

The main classification of raw materials required

	R.M.		Size range	No. of items
a)	HSS 6:5:2	rounds	$8 \mathrm{~mm}-135 \mathrm{~mm}$	30
b)	HSS 6:5:2	Flats	28X8 to 50×16	10
c)	HSS 6:5:2	Squares	30 mm to 55 mm	5
d)	5\% Cobalt	Rounds Squares Flats	$\left.\begin{array}{l} 15 \mathrm{~mm}-135 \mathrm{~mm} \\ 25 \mathrm{~mm} \\ 40 \times 28 \& 45 \times 28 \end{array}\right\}$	15

e) EN-19 Rounds, Flats
\& Squares
25
Items a, b, c, d are partly imported and
iteme is easily available indigenously. The last item is required for butt welded tools.

Government has imposed some restrictions regarding the imports of HSS 6:5:2 rounds upto the size of 95 mm dia. As per the directive, atleast $1 / 3$ of total purchase must be indigenous, then only rest $2 / 3$ may be allowed to be imported. Earlier the restriction was only upto 40 mm dia size.

Proper and optional stocking of raw material. is the strong point of small units in this field. Sometimes higher size material is used by reducing the size but this will affect the unit adversely; so materials of all required sizes should be stocked in order to maximise profit.

PRODUCTS

The tools manufactured by the unit are to specific designs and drawings supplied by the consumer. This can be broadly classified as follows:

a) SHANK TYPE

Reamers, cndmills, slot drills, form drills, subland drills, various form cutters, core drills, counter bores, counter sinks, dove tail milling cutters, holc mills, twist drills, etc.
b) BORE TYPE

Cylindrical milling cutters, double angle millinc cutters, equal angle milling cutters, shell core cirills, shell and mills, shell rcamers, etc.
c) FORMED PELIEVED ITEMS

Concave milling cutter, convex milling cutter, keyway milling cutter, single counter rounding cutters, etc.
d) 5% COBんLT ITEMS

Subland drills, wick tools, form milling cutters; stepped core drills, spot facing cutters, shell reamers, twist drills, etc.

The unit is manufacturing only to orders and are booked for next 3 months. The major consumers are TELCO, fishok Leyland, TVS Group of industries, Enfield, TI cycles, Vidia India, HAL, HMT, BEML, BHEL, Bajaj Tempo, Kirloskar, etc.

The reputation of the unit is good in the market regarding quality and supply according to schedule. PROCESS

The process of manufacturing cutting tools is a sum total of a number of machine operations:
a. cutting
b. Facing
c. Step turning
d. Shot blasting
c. Butt wolding

Subcontracted outside
f. Annealing
g. Buff reaming
h. Taper turning, shank turning, etc.,
i. Grinding, debutting, etc.

CAPACITY

The major facilities available are lathes, i.illing machine grinder, testing machine, etc. The capacity utilisation is around 75%. The unit's sales
have increased from Is. 19,47,132 in 1980 to fs. $23,89,613$ in 1982. Even allowing for the rise in the cost of raw materials, the increase is considerable. The net profit earned by the unit has also increased from is. 40,776 to $\mathrm{ks} .73,725$ for the corresponding period.

POSITION OF ACCOUNTS
The present position of account as on 22 nd April 1982 is given below:

Item	$\begin{aligned} & \text { Limits } \\ & \text { sanctioned } \end{aligned}$	Value of s.tocks/ machinery bills (R)	Advance value (RS)	Drawing power (Rs)
Lock \& Key	3,50,000	3,47,253	2,77,802	2,77,800
Mundy	1,50,000	2,23,144	1,52,523	1,50,000
Bills	3,50,000	5,97,034	4,47,776	3,50,000
Total	8,50,000	11,67,431	8,78,101	7,77,800

There is a clean drawing of Ps. 2.08 lacs.

PERSONNEL

The unit's chief exccutive and the proprietor Sri K Bhaskaran is the man behind the venture. He has completed 5 years course of 'Machinc Shop Engineering' in Indian Ordnance Factories under Ministry of Defence, jovernment of India. He joincd H / s Acdison and Company Limited (Tools division) and worked in various capacities before he became procluction cngineer, responsible for the production of the factory. He was with them till 1966. Then he joinced $\mathrm{M} / \mathrm{s} \mathrm{SK}$ P Tools Itd., in the capacity of Works Manager and worked there till 1971. In 1971 he started his own venturc, M / s Small Tool Services and has been running it till now as a proprietory concern.

He is ably assisted by technically qualified people in the factory and for marketing of the production the responsibility has bcen assigned to a separate organisation.

PROJECTED PROÜUCTION /AND PROFIT/BILITY

The net sales are expected to increase from Ts. 23.89 lacs in 1982 to 「3.40.00 lacs in 1985. The ret profit will also improve over the years. The projected sales are high as the unit expects an increased demand for its tools (as the automobile and autoancillary industry is increasing its production every ycar), and also higher selling price for its products in view of increase in cost of inputs, particularly raw materials. The profit production is considered feasible.

MARKETING

general

The unit is selling its products to automobile and auto-ancillary industrics. The proprictor had a good idea about the market and its demand when the unit was started in 1971 as he was in the ficld before starting his own venture.

The unit has handed over the sales responsibility to a separate organisation, M/s S/LLPRC, which has resulted in increased sales. In the expansion programme at TELCO \& Ashok Leyland in the past, the unit has found large potential in these big organisations, besides like TVS group of companies. The unit is always on the look out for new itcms from its customers to increase production.

PRODUCTS

The unit's products are consumable in nature and are made for automobiles and ancillary to automobiles. The cutting tools manufactured by the unit are made to specific drawings and designs.

TESTING
The unit has good facility for testing its products, so as to match consumers' requirements and this also reduces late rejections.

CREDITS OFFERED

Even though the offered credit is one month, but being a small scale unit catering to large crcanisations it is not in a nosition to force them to pay before 3 months.

Sales have steadily increased in the past. The major buycrs are automobile industries, who in serving the transport need of the country, are always in the look out for increasing their capacity. Some of the big houscs are opening their units abroad in collaboration with foreign government. ":ith this trend and units tools being consumable in nature, they will always have a higher demand from these industries. The unit's sales organisation is fully equipped and exporienced in this line and could $b c$ in a position to tap new sources, as they have done in the past.

The strategies that have helped the unit in selling are:
a) Healthy contacts with private and public sector undertakings;
b) Prompt delivery;
c) Manufacturing tools to specific drawings and designs:
d) Taking up the problem of consuming industry and designing tools to serve their purpose;
e) Manufacturing bull-welded tools, thereby reducing the unit cost of tools.

UNIT'S POSITION

The unit's products have been well received by its customers and the capability of the unit to manufacture and supply precision tools is well acknowledged.

INVENTORY CONTROL

THE PRESENT SYSTEM

At present the unit is following a system, in which ordering is done on the basis of total orders in hand to be delivered within two or three months and present stock position of various raw materials.

The lead time for procuring imported raw materials is around six months and for indigenous material around four months. If there is any sudden rise in demand for a particular raw material, the present system cannot cope with.

Moreuver, the safety stock limit is also arrived at randomly, not taking into consideration the consumption pattern for the last year.

This has led the unit to purchase material from local market at a high premium, eating up the profit. THE PFIOPOSED SYSTEM

In order to design a selcctive stock control system for all raw materials an \&BC analysis of the raw materials based on the value of annual consumption was made. The consumption of raw matcrial was taken from stock issue register. For collection of data the period January 1982 to June 1982 was not considered, as the unit had some labour problem and the consumption during the period will not be representative. Instcad, April 1981 to December 1981, ic., nine months plus July and fugust 1982, ie., total eleven months have been taken and proportionately increased to arrive at the annual figurc. (Appendix I).

Out of the 98 items, 37 of them (38%) are classified as A class items (value of annual consumption per year above $8.10,000$) and the value of these 37 items constitute 80.59% of the total value of raw material cons umed.

For the B class items (22 in numbers) which forms 23% of the total number of raw materials, the value is 14.4% and for C class itcms which comes to 39\% (39) of the itcms, the value is 5.01%. The details are given in Appendix II \& III.

FREQUENCY LISTiIBUTION

Frequency distribution of the consumption of some of the A class raw materials verc plotted on a graph paper to find out whether it will fit into any of the three different types, normal, poison and exponential. But, none of them fit into any of the three different types, most of them have a slight similarity to exponential distribution.

LEAD TIME FOR Pi:OCUKEMENT

Most of the raw materials requirce are imported from Japan and iustria. The unit will prefer to import as much as possiblo ciue to quality reason. Government of India has imposed some restriction regarding the imports of rounds. is per the directive for sizcs 8 mm dia to 95 mm dia, atlcast $1 / 3 \mathrm{rd}$ of total requirement must be procured indigenously, only after that the unit can proceed to import the rest $2 / 3$ rd amount.

Lead time for procuring imported items is 25 weeks.
and for HSS indigenous items 15 weeks. Considering the above-mentioned lead time for procurement, the supply may be stated to be prompt.

For items which are procured indigenously as well as imported a weighted average of lead time, ie., 21 weeks has been taken for arriving at safety stock value.

SAFETY STOCK
The safety stock provides a cushion against variations in lead time and consumption. For A class items, safety stock has been found out for selected items:

Factor k has been taken as 1.0 considering the frequency pattern. The safety stocks for the A class raw materials are given in Appendix. V.
$M \subset Q$
The minimum order quantity for popuiar items is $200 \mathrm{~kg} .$, and for the rest HSS items $100 \mathrm{~kg} .$, for imported as well as indigenous items. The MOQs are given in Appendix IV.

EOQ
The economic order quantity is one which balances the cost of ordering the raw matcrials and the cost of holding inventory and is given by the formula:

$$
E O Q=\sqrt{2 A a / i c}
$$

wherc $A=$ Annual demand and consumption in units
$a=$ Incremental ordering cost
$i=$ Incremental inventory carrying cost per year as a fraction of the cost of materials stocks
c = Pricc of raw materials per unit.

Almost all the HSS items are imported either fully or atleast 2/3rd quantity. The lead time is also very high, ie., 25 weeks. Considering these two factors, ordering $E O Q$ quantity which is always less than $M O Q$ in this particular stuciy has been ruled out.

MONTE-CARLO SIMULATION OF CONSUMPTION PATTERN

With the data of safety stock and reorder levels, for the system chosen, the consumption pattern of five A class items were simulated for 48 weeks using random numbers.

The weekly consumption data were classified into class intervals. figainst each class interval, the number of occurrence (frequency) is marked. The cumulative frequency vore again converted into percentage cumulative frequency and numbers were allotted to each class intervals, bascd on the percentage cumulative frequency.

After plotting for all the 48 weeks, in cases the Safety Stock has been shifted, keeping in view the fact that the stock out occurring for a period should not affect the business. (Appendix V.

' A ' CLASS ITENS

Details regarding ' Λ ' class items; viz., maximum consumption, order quantity, recrcier level, average stock are given in Appendix VI. This is the suggested system for all 'A' class items.

INVENTORY SYSTEM FOR 'B' CLASS ITEMS
For 'E' class itcms a two-bin system of stock control has been recommended. The details regarding reorder level and ordering quantity havo bcen given in Appendix VII.

From lippendix it may be scen that even for the popular sizes of rounds for which the MOQ is 200 kgs , the ordering quantity has been taken as 100 kg .

The reason for taking 100 kgs , instead of 200 kgs , is that annual consumption for all the popular size B class itcms is such that it has only to be ordered once in. 2 or 3 years and not every year. So, two items will cancel each other even if the ordering quantity is 200 kgs , so far average stock calculation 100 kgs , has been taken.

INVENTORY SYSTEM FOR 'C' CLASS ITEMS

'C' class items can be bought twice in a year as the value involved. is very little. Total requirement may be calculated from past performance in the beginning of the year. Half the amount may be bought at the time and rest, after about six months.

PRODUCTION PLANNING AND CONTROL
The unit has a good system for planning its production. Since the number of products and the number of ravt materials are more, it is difficult for such units to survive without a good production planning programme.

Tho unit is supplying through its marketing agency only against specific orders. The procuction schedule has to be maintained strictly to supply in time, the goodwill created thercby is the main publicity for this kind of industry.

FINANCI/L ANALYSIS fNL WORKING CAPITAL REQUIREMENTS RATIO ANALYSIS
general
The sales (value) of the unit has increased from 17.43 lacs to 0.23 .89 lacs in a span of 5 years. This is an indication of the unit's progress in the last few years. ibout 40% of the increased sales is duc to increase in cost of raw material, but on an average, the sales volume has increased about 5% every year.

The profits for the last four years are more or less steady, varying from $\mathrm{Fs} .42,000$ to. Ei. 72,000 . Even though sales have gone up considerably, profits remained almost constant showing the declining profit margin on sales. This is basically due to very tough competition in the line. Another major reason that has contributed to the decrcasing profit margin is the increase in raw material prices.

ACTIVITY RATIOS

The average stocking of raw materials is found not to be optimum. The inventory turnover ratio 6.32 in 1978 came down to 3.45 in 1980 , but has again picked up and is 4.17 in 1982. This is an indication of unit's effort towards effective inventory control.

The assets turnover ratio (sales turnover by total assets) has remained more or less the same.

LIQUIDITY RATIOS

The current ratio (current assets by current liabilities) has remained steady with minor change in last five years. The range of ratio is between 0.98 to 1.1 .

The acid test ratio also has remained more or less the same and is around 0.50 .

PROFITABILITY RATIOS
Return on total capital employed was steady up to 1981 maintaining the level at around 27\%. There is a slump in 1982, the figure has come down to 20%. This is mainly due to rise in raw material price without the correspondingtitse in products and also purchasing of raw materials from local market at a premium. (Appendix X)

WORKING CfPITAL REQUIRENENTS

The working capital requirements has been calculated. The gross requirement is found to be Rs.17.95 lacs.

Working capital requirements have been worked out on Tandon Committee norms for the type of industry, viz., Engineering Ancillaries to which category the unit belongs.

The following deviation from prescribed norms are also found to be necessary and reasons therefore are
also furnished：

	Prescribed Norms	Recommended
a．Work－in－progress		
b．Finishedgoods and		
receivables	$3 / 4$ month	$13 / 4$ months
WORK－IN－PROGRESS：	$21 / 2$ months	3 months

The unit manufactures more than 200 different items of tools per month to customers＇specific requirements．It has to do the necessary tooling，etc．， before the jobs are completed．It is found that the unit has to keep some jobs at different stages of manufacture so that the necessary try－out at various stages can be carried out．Services like the heat treatment，machining，bulk welding for which the unit has to rely on sub－contracting，involve a time delay of around 20 days．It has been estimated after detailed discussion that the unit would require a minimum unavoidable stocking of work－in－progress equivalent to $13 / 4$ months＇cost of production and the same is recommended．

The average invoice value now comes to is． 2.8 lacs． Looking at the trend of pick－up in sales，value has been taken as Rs．3．0 lacs for future and calculations done accordingly．The raw material content（at present price） works out to be 40% ．

FINISHED GOODS AND RECEIVABLES

The unit does not require stocking of finished goods．However，it requires receivables to the extent of 3 months for the following reasons．
a）The unit caters to public sector undertakings like BHEL，HMT，HAL，Railways，defence installations， ctc．，apart from leading automobile industries and auto－ancillaries．These units accept
coods ：ざ＂シr try－cut，as
almost all the items are made to customers' specifications. After acceptance, it takes another $1 y 2$ months to pay, thus making the total delay around 3 months.
b) The unit being a small scale unit and catering to large undertakings, is not in a position to force them to pay before 3 months.

RAW MATERI/LLS:

The unit is importing raw materials under actual users licence, for the past 8 years. Since certain raw materials like HSS-cobalt are not available indigenously. Further, in the absence of any metallurgical laboratory in its premises, it considers it safe to depend on test certificates from reputed expertise of HSS materials.

There are very few indigenous suppliers and few of them are in fact new to the field. The minimum order quantity for popular range in 200 kgs , and the price ranges from Rs. 90 to lis.175. As on date, the credit available is also negligible.

The unit manufactures as many as 200 tools per month to varied reputed industries against their requirements. These industries insist on quality as well as prompt delivery.

Keeping the above mentioned factors in mind the system has been suggested and calculations made basing on the system.

Appendix IX gives details of calculations for working capital requirements.

CONCLUSION
The unit is a competently managed unit. With proper stocking of raw material, it will rise faster in future.

SUMMARY OF FINDINGS AND RECOMMENDATIONS

a) Based on the suggested system of inventory control the raw material inventory requirement for a level of production 10% more than present level (10% rise is envisaged) is found to be Ris. 4.5 lacs in value.
b) It was seen that the unit was stocking at a low level, though ls. 5 lacs limit was given in Mundy and L \& K. This resulted in purchasing of raw material from local market at about 40% premium. Ihis, if continued, will definitely affect the health of the unit.
c) Even though the suggested system will increase the inventory holding and subsequently the interest, cost will be higher, but considering the present number of stockouts and delaying of orders, the system has been suggested. The unit is manufacturing cutting tools to specific designs and drawings, this is a highly competitive field. It requires alloy steel in different shapes and sizes. The strength of a small scale unit in this field completely depends on quality and time bound supply. Steel requirements are mostly imported, though a fraction is procured indigenously. The time required for procuring indigenous as well as imported raw material is very high.
d) Automobile and ancillary industry is expanding with . Central Government backing. TEICO and some others are opening their units in Africa and other countries. The tools are consumables, so, a rise in demand is envisaged.
e) The unit has a good, production planning system and the unit's marketing, handled by a separate concern, is also on a sound line. The unit has a good system for recording the movement of raw material, but ordering is done randomly. In the past, stock-out has occurred a number of times forcing the unit to go for crash purchase at 40% premium.
F. The financial position of the unit is not strong. The working capital requirement is found to bc Rs. 16.79 lacs.
g. In short, with the professional approach of the management and proper stocking of raw material, the unit is expected to grow at faster rate than in the past even though it is in a very competitive line.

LIST OF APPENDICES

Appendix

 -Nos.Raw material consumption and cost I
Analysis of raw materials II
Break-up of raw materials III

- Lead time and minimum order quantity IV
Standard deviation \& safety stock for ' A ' class items for which graph has been plotted - V
Inventory system for 's' class items VI
Inventory system for 'B' class items VII
Detailed calculations for working capital requirements VIII
Working capital fequirements IX
Ratio analysis X

RAW MATERIAL	CONSUMPTION_AND_C	PENDIX_I_ OSI
S.No. Raw material	Consumption for year in Kgs.	```Replacement cost per Kg. in Rc.```
5\% Cobalt Items		
1. 15 MMR	22.9	150 for all 5% cobalt items
2. 19 MMR	2.9	
3. 21 MMR	2.4	
4. 24 MMR	54.5	
5. 28 MMR	48.9	
6. 32 MMR	121.8	
7. $35 / 36 \mathrm{MMR}$	20.3	
8. 42 MMR	137.1	
9. 48 MMR	115.1	
10. 55 MMR	126.3	
11. 80 MMR	20.9	
12. 120 MNR	166.4	
13. 110 MMR	45.6	
14. 135 MMR	14.8	
15. $40 \times 28 \mathrm{NMF}$	124.7	
16. $25 \times 25 \mathrm{MMF}$	50.9	
17. 25 MMS .	86.9	
18. 90 MMR	19.1	

S.No. Raw Material	Consumption fer year in Kgs.	Replacement cost per Kg. in Rs.
6:5:2 Flats	-	
19. $28 \times 8 \mathrm{~mm}$	11.9	
20. $24 \times 10 \mathrm{~mm}$	5.7	
21. $25 \times 10 \mathrm{~mm}$	23.7	
22. $35 \times 16 \mathrm{~mm}$	90.4	
23. $28^{*} \times 10 \mathrm{~mm}$	14.0	
24. $35 \times 25 \mathrm{~mm}$	77.9	
25. $40 \times 16 \mathrm{~mm}$	77.8	
26. $245 \times 16 \mathrm{~mm}$	77.1	
27. $5 ¢ \times 16 \mathrm{~mm}$	51.1	
28. $3 / 4 \times 5 / 8$ inch	45.5	
29. $1 \times 17 / 8$ inch	50.3	
20. 52 mm	99.2100 for	all 6:5:2 square items
31. 40 mm	40.4	.
32. 44 mm	206.6	
32. 45 mm	114.8	
34. 30 mm	24.9	
35. 1 1/4 inch	24.9	
3 6: 5 : 2 Rounds		
36. 8 mm	15.8	
37. 10 mm	31.9	
38. 13 mm	168.4	
39. 15 mm	440.5	
40. 16 mm	348.3	

S.No. Raw Materials	Consumption per Year in Kgs.	Replacement cost per Kg. in R.
41. 19 mm	185.3	
42. 20 mm	262.8	
43. 21 mm	77.1	
44. 22 mm	86.8	
45. 24 mm	712.1	
46. 28 mm	345.6	
47. 30 mm	642.1	
48. 32 mm	471.2	
49. 35 mm	325.7	
50. 38 mm	162.3	
51. 40 mm	322.4	
52. 42 mm	134.2	
53. $45^{\circ} \mathrm{mm}$	378.2	
54. 50 mm	307.2	
55. 55 mm	128.3	
56. 60 mm	54.3	
57. 65 mm	173.1	
58. 68 mm	121.9	
59. 70 mm	32.0	
60. 80 mm	202.5	
61. 90 mm	94.1	
62. 95 mm	115.6	
63. $106 / 107 \mathrm{~mm}$	159.2	
64: 117 mm	206.4	
65. 127 mm .	41.2	
66. 133-135 mm	535.6	-

APPENDIX - II.
A.B.C. ANALYSIS OF RAW MATERIALS

31. 25 mm Round ($\mathrm{K}-9 \mathrm{~m}$)	13035	821548
32. 42 mm Round	12749	834292
33. 55 mm Round	12189	846181
34. 68 mm Rcund	11581	858062
35. 30 mm Round	11480	869542
36. 95 mm Round	10982	869542
37. $35 \times 16 \mathrm{~mm}$ Flat	10396	880524
38. 40 mm Square	9920	890920
39. 32 mm Round (En-19)	9086	900840
40. 24 mm Round (M42)	9048	909926
41. $35 \times 25 \mathrm{~mm}$ Flat	8959	918974
42. 3016 Round	8947	927933
43. 90 mm Round	8940	936880
44. 45×16 Flat	8867	946880
45. 22 Round	8246	945820
46. 24 mm Round ($5 \% \mathrm{C}$).	8130	954687
47. 15 mm Round (M42)	7998	962933
48. 24×25 Round ($5 \% \mathrm{c}$)	7635	971063
49. 28 mm Reund ($5 \% \mathrm{c}$)	7335	979061
50. 21 mm Round	7324	986696
51. 22 mm Round (EN-19)	6859	994031
52. 110 mm Round ($5 \% \mathrm{C}$)	6840	1015044
53. $50 \times 16 \mathrm{~mm}$ Flat.	5946	1020990
54. 28 mm Round (EN-14)	5700	1026690
55. $3 / 4 \times 5 / 8$ inch flat	5232	1031922
56. 60 mm Rcund	5159	1037081
57. 52 mm Square	5030	1042111
58. 44 mm Square	4040	1046151
59. 40 mm Rcund (EN-19).	3119	1050070
60. 127 mm Round	3708	1053778
61. $35 \times 26 \mathrm{~mm}$ flat	3443	1057221
62. 15 mm Round ($5 \% \mathrm{C}$)	3435	1060656
63. 80 mm Round ($5 \% \mathrm{C}$)	3135	1060791
64. 50 mm Fiound (EN-19)	3065	106856

BRE/K UP OF RAW MATERIALS

S1. Class	Number	Percentage	Value	Percentage
1. h. Class	37	38	890920	80.59
2. B. Class	22	22	159150	14.4.0
3. C. Class	39	60	55373	5.01

APPENDIX IV

Sl. Raw Materials	Lead time, for imported quantity	Lead time for indige-: nous quantity.	Minimum order quan-
1. 5\% Cobalt items	25 weeks		$100 \mathrm{Kgs}$.
2. 455 Flats	25 weeks		100 Kgs.
3. HSS Square	25 weeks		$100 \mathrm{Kgs}$.
4. HSS Reund 8 mm to 95 mm	25 weeks	15 weeks $\begin{array}{r} (f c \\ -25 \\ \text { fo } \end{array}$	$\begin{aligned} & 200 \mathrm{Kgs} . \\ & \\ & \mathrm{r}(16 \mathrm{~mm} \\ & \mathrm{mm} 100 \mathrm{Kgs} \\ & \mathrm{r} \text { red. } \end{aligned}$
5. HSS rcund above 95 mm	25 weeks	-	200 Kgs.
6. M. 42 \& K9M	25 weeks	-	$100 \mathrm{Kgs}$.
7. EN-19	--	4 weeks	-

STANDARL DEVIATION\&S/FETY STCCK FCi ' $A^{\prime} C L A S S$
ITENIS FOR WHICH GRAPH HAS BEEN PLOTTED.

Sl. Raw Materials	Standard Deviaticn	Safcty stock
1. 24 mm Round	17.93	90.1
2. 30 mm Round	22.15	115.0
3. 32 min Round	16.2	80.0
4. 15 mm Round	12.09	65.0
5. 16 mm Rcund	0.79	50.0

APPENEIX VI

INVENTORY SYSTEM FOR ' Λ ' CLASS ITEMS

S1. Raw Material	Total con: sumption in 12 months in Kgs.	Max.consumption in ene week in Kgs.	Proportionate consumption for lead time in Kgs.
1. 24 mmd	712.1	68.9	370
2. 30 mmd	642.1	85.9	335
3. $133 / 135 \mathrm{mmd}$	491.0	156.6	236
4. 32 mmd	471.2	61.1	230
5. 15 mmd	440.5	46.3	153
6. 45 mmc	378.2	71.8	181
7. 16 mmd	348.2	35.4	180
8. 28 mmc	345.6	36.5	131
9. 35 mmd .	325.7	84.4	130
10. 40 mmd	322.3	37.0	124
11. 50 mmd	307.2	198.8	106
12. 20 mmd .	262.8	90.3	80
13. 120 mmd	166.4	149.1	57
14. 19 mmd . (M42)	118.5	30.1	92
15. 54 Sq.	189.4	46.2	66
16. $42 \mathrm{mmd}(5 \% \mathrm{c})$	137.1	38.7	105
17. 110 mmd .	218.0	131.1	82
18. 80 mmd .	202.5	33.5	61
19. 55 mmd . ($5 \% \mathrm{c}$)	- 126.3	33.7	60
20. $40 \times 28 \mathrm{~F}(5 \% \mathrm{C})$	124.7	34.2	100
21. 1.17 mmd .	206.4	69.1	59
22. 32 mmd . ($5 \% \mathrm{c}$)	121.8	78.2	75
23. 19 mmc .	185.2	37.6	56
24. 48 mmd . ($5 \% \mathrm{c}$)	115.7	77.9	56
25. $1^{\prime \prime} \times 7 / 8^{\prime \prime} \mathrm{F}$.	145.0	48.8	70
26. 65 mmc .	173.1	66.3	70
27. 13 mmd .	168.4	24.7	68
28. 38 mmd.	162.3	35.5	66

APPENDIX VI .. contd.

APPENLIX VI CONTD.

Initial stcck pattern/order quantity		Re order level	A.O. Stock SS+0Q/2.	Value
1.	Graph/200	Graph	195.25	17549
2.	Graph	Graph	177.75	16386
3.	300/250	250	139.0	12510
4.	Graph/200	Graph	172.5	16388
5.	Graph/200	Graph	169.2	16074
6.	200/200	170	117.0	11115
7.	Graph/200	Graph	119.82	11383
8.	240/200	200	120.0	11400
9.	200/200	150	119.0	11305
10.	200/200	145	115.0	10925
11.	150/140	140	86.0	8270
12.	130/200	125	119.0	11305
13.	120/100	90	60.0	9000
14.	80/100	65	58.0	10150
15.	155/200	100	59.0	5900
16.	85/100	75	59.0	8850
17.	125/200	120	70.0	6750
18.	85/100	95	63.0	5985
19.	80/100	70	59.0	8850
20.	80/100	70	60.0	9000
21.	125/100	110	65.0	5850
22.	75/100	70	61.0	9000
23.	100/200	85	110.0	5850
24.	80/100	65	59.0	9150
25.	90/100	80	60.0	6900
26.	80/100	80	60.0	5700
27.	80/100.	80	62.0	5890
28.	80/200	80	114.0	10830
29.	100/100	80	58.0	5220
30.	60/100	45	57.0	9975
31.	60/100	50	58.0	8700

APPENDIX VII
INVENTORY SYSTEM FOR 'B' CLASS ITEMS

S1.	Raw material	Consumption in cne year	Proportionate consumption in No.T.
Initial			

	Reorder Levei	A.V.Stock	Value
38.	30.0	30:0	3000
39.	15.0	97.0	1067
40.	3.0	30.0	4500
41.	45.0	33.0	3795
42.	45.0	33.0	3795
43.	35.0	32.0	3040
44.	35.0 .	32.0	3040
45.	35.0	109.0	10355
46:	35.0	33.0	4950
47.	30.0	33.0	5775
48.	30.0	30.0	4500
49.	30.0	31.0	4500
50.	30.0	107.0	10155
51.	120.0	74.0	814
52.	30.0	33.0	4950
'53.	30.0	30.0	3450
54.	100.0	70.0	770
55.	-2才.0	29.0	3795
56.	20.0	29.0	2755
57.	30.0	30.0	3000
58.	25.0	30.0	3000
59.-	70.0	55.0	605
.	TOTAL	862.0	61

'A'_CLASS ITEMS

37 Items constitute \AA Class.
Total Average stock value of A Class items is. 347955
(Margin 10\% for imported 20\% for indigencus)
Less 10% margin on all Is. $342 \underline{9} 9$

$$
\text { Rs. } 3,13,160
$$

- Now some of the items $1 / 3$ must be procured indiganously, only $2 / 3$ may be imported

$$
\begin{aligned}
\text { i.e. } & 1 / 3 \times 20 \%+2 / 3 \times 10 \%=6.66+6.66 \\
= & 13.32 \text { Say } 13.5 \%
\end{aligned}
$$

For the items which have to be imported as well as procured indigenously 13.5% may be taken as the margin. Now 10% has been taken for all, so taking 3.5% more for the above mentioned items

$$
\text { R. } 313160
$$

Less. R.__13_178
Advance va- Is. 300982
lue of. A Class items.
'B'_CLASS_ITEMS
22 Items constitute ' B^{\prime} Class
Total Average value of ' E ' Class items Iis. 86261

- Less 10% margin on all

Less 10% on indigenous items

'C' CLASS ITEMS

39 Items constitute ' C ' Class
${ }^{\prime} C^{\prime}$ Class items total value Ri. 55272
C Class items can be bought twice a year value of each buy . Rs. 27636
Average stock value Rs. 13818
Less 20% margin
Rs. 2762
Advance value of ' C ' class items . Fis. 11056

Work in Process

The average invoice value per month Rs. 300000
Reccmmended minimum period of 1.75 months. stccking

| 1.75 menths value of WIP | lis. 525000 | |
| :--- | :--- | :--- | :--- |
| Less margin $331 / 3 \%$ | Rs. 349 | 4965 |

Raw Materials content 40%
Raw Material held in WIP Rs. 139375
50% of 1.75 months expenses
TOTAL

Ps. 109375
Rs. 249361

$$
\begin{aligned}
& \text { Advance value - A Class lis. } 300982 \\
& \text { B Class Rs. } 74755 \\
& \text { C Class Ris. } 11056 \\
& \text { TOTAL Rs. } 386793
\end{aligned}
$$

The calculations are based on last years consumption. Expected rise in sales is 10%. This will increase raw material consumption by 4% and this in turn will increase average stock value by 2%
i.e. Rs. 386793

Plus R.S. Rs. . 7735
TOTAL Iis. 394528

APPENDIX IX

WORKING CAPITAL REQUIREMENTS

Items		Margin	\qquad
Raw materials	4.50	10\% for imported 20% for indigenous	3.90
Work in process	3.80	331/3\%	2.50
Bills	9.00	20\%	7.20
Total	17.30		13.60
Expenses for 30 days	$--1.25$		
Less creditors Purchase	1.05		
Less liquid surplus	$\begin{array}{r} 17.50 \\ .75 \end{array}$		
	16.75		
75% of Rs. 16.75 lacs $=$ Rs. 12.56 lacs Recommended limit:			
Cash credit Cash credit Cash credit	$\begin{aligned} & \text { (Lock \& key } \\ & \left(\begin{array}{l} \text { Mundy) } \\ \text { Bills } \end{array}\right. \end{aligned}$	$\begin{aligned} & \text { Rs. } 3.75 \text { lacs } \\ & \text { Rs. } 1.75 \\ & \text { Rs. } 7.00 \quad \text { " } \end{aligned}$	
Total Ris 12.50			

RATIO ANALYSIS

		77-78	78-79	79-80	80-81	81-82
ACTIVITY RATIO	ANNUAL SALES					
1. Inventory turnover ratio	A.V.Stock	6.32	4.84	3.45	3.79	4.17
2. Assets turn over ratio	Sales turnover Total assets	1.11	0.97	0.91	1.16	1.04
LIQUIDITY RATIO	CUKRENT ASSETS					
1.Current ratio	$\begin{aligned} & \text { Current lia- } \\ & \text { bility } \end{aligned}$	0.98	1.07	1.01	1.002	1.10
$\begin{aligned} & \text { 2.Acid test } \\ & \text { ratio } \end{aligned}$	$\begin{aligned} & \text { QUICK_ASSEIS } \\ & \text { Current lia- } \\ & \text { bility } \end{aligned}$	0.58	0.60	0.54	0.44	0.61
PROFITABILITY RATIO						
1.Return on total capital employec	Net profit before tax + bngterm liab.				28.81\%	20.75\%
	Prop. Fund + term liab.					
2.Return on tangible net worth	Net profit after the Prop.fund - intangible assets	. 285	. 196	. 094	. 14	. 12

Ei.IFF HISTORY OF THE UNIT

The unit is being ably managed by Shri N Chinnaswamy, Managing Director, who has got sufficient experience in this line of manufacture by virtue of his association with Nadras Machine Tool Manufacturers Ltd., as its Manager for the last 12 years. Shri C PGovindaraj is a qualified engineer having 3 years experience in Madras Machine Tool Manufacturers Ltd., as its Works Manager and 2 years experience experience in DP Fcundry Works. He is the technical director of the company. Shri R Narayanaswamy, a B.Sc. graduate in chamistry is looking after the sales of the Unit as its commercial director. The areas of management, production and sales, the threo vital areas for the successful and efficient running of the unit have been adequately served by a judicious combination of experience and education found in the dircctors.

PRCDUCTION FACILITIES ANL PROUUCTS

The unit is now functioning in - rented premises in Coimbatore. The unit has purchased land valued at Th. 72,000/- at Tiruchi Road, Coimbatore. The Tamilnadu Industrial Investment Corporation Ltd., has sanctioned to the unit a term loan of Rs. 7 lakhs in September 1981 for the purpese of construction of modernised fcundry, and for the acquisition cf additional machinery. This loan could net be availed of cue to delay in obtaininc of clearance certificate from the urban land tax authorities.

The production facilities available in the unit consist of

Lathes	6
Milling machine	1
Shaping machine	2
Planning machine	1
Radial drilling machine	1
Gear Hobbing machine	1
Cutting machine	1
Bench drilling machine	1
Tcol grinder	1
Diescl generating set	1

A complete list of machinery and equipment available with the unit is shown in Appendix I.

Skilled, qualified and experienced labourers numbering 100 are being employed. Besides, inplant training in the form of apprenticeship training is being imparted to an AMIE student.

PIOLUCTS MIANUEACTURED AND PROCESS OF MANUFACTURE

The unit is manufacturing six different varieties of lathes, viz., CMT-1, ChiT-2, CMT-3, CBE-1, CBE-2 and Vijai lathes. CMT and CBE varieties are belt driven types while Vijai is an all geared lathe. Norton gear box is attached as an optional attachment to scme lathes to convert them from belt drive to gear drive.

Graded castings (grade B-25) are received by the unit from PSG foundry, Coimbatore for lathe, lathebed, gap picce and sadcle. Upgraded grey iron castings for head stock body, tail stock body, change wheel blanks, etc., are received from other small founciries. These rough castings which arc procurcd from the foundries are rough machined by the unit to check whether the castings are of the desired quality. Defective ones are immediately returned to the suppliers for replacements. The lathe beds, other important sliding parts after Jreliminary machining are subject to a process carried 'annealing' to relieve machine stress. This is done in 24 hours. If gap bed is to be provided into the lathe the annealing or heat treatment process will be taken up after fixing the gap bed and after machining. This depends upon the order requirements. The lathe beds undergo natural seasoning for a month in the open yard at the factory. Then they are taken to the machine shop for bed grinding on planning machinc. After grinding, the legs will be fitted with the bed after drilling and tapping operations are completed. The cther compenents like headstock, tailstock machined at the unit are reccived at the asscmbling section and assembled there.

OTHER OPERATIONS

(a) Saddle seating with the bed.
(b) Cross slide seating and assembling.
(c) Compound slide seating and assembling,
(d) Tail stcek assembling. Headstock bearing, seating and assembling.
(f) Lead screw bracket fixing, l:ack and head screw assembling and fixing.
(g) Individual drive assembling (optional)
(h) Norton gearbox assembling. (i) Final alignment and inspection.
(j) Load test and trial run. Painting. (l) Packing and despatch.

Flcw process chart indicating the sequence of operations is furnished separately in Appendix II.

MARKETING
The unit has a network of established dealerships
in six States - Kerala, Karnataka, Maharashtra, West Bengal, Andhra, Tamilnadu and Pondicherry. The main incentive for the dealers is the 15% discount allowed on the list price. Moreover the unit shares 50% of the advertisement charges incurred by these dealers. Competition is severc and it is only through lower over-head expenses that the unit is able to score cver its bigger competitors. It however suffers from the handicap of nct being able to support an R \& D Wing for effecting sophisticated product changes. Nevertheless based on feedback received from dealers the unit has, from time to time incorporated inncvations and improvements on its products to suit the needs and requirements of its customers.

The unit faces competition from reputed lathe manufacturers like Mysore Kirloskar, PSG Industries, Madras Machine Tool Manufacturers Ltd., New Bharat Engineering Works and from other manufacturers of low cost Batala lathes from Punjab.

Considering the competition prevailing in the machine tool industry the unit has fared quite well not only in increasing turncver substantially in three yoars but also by expcrting 42 lathes to Sri Lanka during 1981-82. In 1983 six lathes have been exported upto Fcbruary 1983, whereas the L.C. has been opened for 16 lathes. The remaining lathes will be exported in three months time. The unit is conficent of sccuring on an average, orders for $8 / 10$ lathes per month in the near future.

One notable feature about the unit is that it is the only unit of its kind in the small scale sector trying to compete with the giants in the large scale sector.

The unit is also constantly on the look out for introducing now products by improving existing designs. It has kept itself abreast of latest clovelopments in the machine tool industry and changes in technology are being assimilated to introduce new proclucts. Eventhough the unit has get export orders, it is trying to locate alternate sources of buyers from abread as exclusive reliance on one importer will not be advantageous in the long run.

INVENTORY CONTROL

ABC ANLLYSIS

Based on the pattern of consumption of raw materials valuewise during the last year (Appendix III) 26 commoditis of the ' Λ ' category havo been taken for detailed analysis. Based on a production programme of 100 lathes in 1983-84 estimated annual consumption of raw materials have been arrived at. Product mix . proposed during the year 1983-84 is as follows:

Details	Lathes	Pieces
CMT - 1	Lathe	30
CMT - 2	"	15
CNT ... 3	"	5
CBE - 1	"	15
CBE - 2	"	15
Vijai 1000	"	20
	Total	100

ECONOMIC OREER QUANTITY
Economic Order Quantity (EOQ) has been derived with the help of the Wilson formula

$$
\begin{aligned}
& E O Q=\sqrt{\frac{2 i a}{c i}} \\
& \therefore=\text { finnual consumption in units in the coming } \\
& a=\text { Ordering cost at lestimated) } \\
& c=\text { Unit cost of the material order } \\
& i=\text { Cost of carrying the inventory assumed } \\
& \text { at } 0.20
\end{aligned}
$$

MOL $=$ Minimum order quantity is that batch or groups or units which the supplier will supply in one minimum lot.

In the case of lathe beds it has been taken in multiples of per bed casting weight.
Lead Time ${ }^{\text {represents }}$ the time lag between the time when the need for stock is felt and its actual arrival at the unit.
factual quantity consumed at monthly intervals for each item of Λ class material is represented by x. This is then compared with the monthly average consumption during such intervals $x-\bar{x}$.

The standard deviation of monthly consumption is computed as follows:

$$
6_{1}=\sqrt{-\frac{(x-x)^{2}}{n-1}}
$$

$X=$ Monthly consumption in units in the previous year.
$\bar{x}=$ Average monthly consumption
$\mathrm{n}=$ Number of readings taken.

$$
\zeta_{2}=61 \sqrt{\frac{A 2}{A 1}}
$$

Where

$$
\begin{aligned}
& A_{2}=\text { Anticipated annual consumption } \\
& A 1=\text { Anticipated annual consumption in } \\
& \text { previous year }
\end{aligned}
$$

$$
\text { Safety stock }=K \times \sigma_{2} \times \sqrt{L}
$$

Where

$$
\mathrm{L}=\text { lead time. }
$$

Order quantity $=\begin{aligned} & \text { EOQ or } \\ & \text { consumption whichever is is highest. }\end{aligned}$
Average Stock $=$ Safety Stock + Order quantity

EOQ, $\sqrt{1}$ and $\sqrt{2}$ have been calculated for all 'A' class items and safety stocks and average stocks determined on the basis of the above formula. Details are presented in Appendix IV.

In the case of some ' A ' class items, lead time consumption has been fcund to be much greater than EOQ or MOQ. Multiple order level systems of inventory control are suggested for these items. Details of order quantities and order levels for all 'A' class items are obtained in Appendix V.

It is suggested that incents be placed by the unit for all ' A^{\prime} class items under the system suggested whenever stock lovels fall below the order levels calculatec.

For B class items, it is suggested that orders be placed at two menth intervals, order quantities being two months requirements. As far as 'C' class items are concerned, orders can be placed at four month intervals, for four months requirements. A safety stock of one month is suggested for ' B^{\prime} and ' C ' class raw materials.

Under such an inventory control system, the average stock holding is likely to be as follows:

' ${ }^{\text {d }}$	Items	-	,	Ts. 81,000
${ }^{\prime}{ }^{\prime}$	Items	-		Rs. 35,000
${ }^{\prime} \mathrm{C}$ '	Items	-		Rs. 10,940
		Total		Rs. 1, 26,940

MACHINE HCUR COSTING

IDENTIFICATION GF COST CENTEES

The production facilities available at the unit have becn divided into the following cost centres:
(a) Lathe 6 Nes. identical in naturc/same horse power 3 H.P. jobs can be interchanged amongst lathes, hence adcpted as one Cost Centre.
(b) Milling machine 1
(c) Shaping machinc 2 identical in nature performing similar jobs.
(d) Planning machine 1
(e) Radial drilling machine 1
(f) Cutting machine 1
(g) Gear hobbing machine 1
(h) Generator set - Service Centre
(i) Assembling and painting - Cost Centre
(j) Welding set and maintenance sector - Service Centre.

SERVICE COST CENTRES

Two service cost centres have been iclentified, the same being (a) the generator and (b) the welding and maintenance secticn.

COMPONENT MACHINELOADING MATRIK
There are approximately 150-200 components that undergo machining before being assembled into a lathe. Thcugh a number of components are common to lathes within a particular type, each model of lathe has a number of components that are unique for that particular model. Very little commonality exists between lathes of different types. For example, there are common components for CMT-1, CMT-2, and CMT-3 machines but all other components are unique to each of these machines. Very little commonality exists between the CMT variety and the CBE variety of lathes.

As such, all components being machined at the unit were identified. Operating time and total time for machining each of these components on different machines were ascertained on the basis of ciscussions with the management of the unit and validated by observations on the shop flocr. The compenent machine loading matrix was then drawn up with reference to the prociuct mix envisaged for 1983-84. A summary of the matrix is presented in Appendix VI and shows the extent of loading on each of the machine centres.

ALLOCATION OF EXPENSES

Expenses for 1983-84 have been projected basec on ciscussions with the unit and have been divided into:
i) Prime costs which can be directly allocable to product.
ii) Expenses non-allocable to product. Non-allocable costs have again been divided into:
a) Production expenses and
b) Administrative and general cverheads.

Production expenses have been divicled into fixed costs and variable costs and they have been allocated to cost centres on appropriate basis. Service Cost Centres costs, both fixed and variablc, have been reallocated to cost centres on the basis of sub-tctals.

Wages, supervision salaries, rent, insurance, depreciation and interest have been treated as fixec expenses directly allocable to cost centres. Expenscs like powercharges, consumable tools and stores, repairs and maintenance charges have been taken as variable expenses ciirectly allocable to cost centres. All administrative cverheads have been treated as fixed.

BASIS OF ALLOCATION

The basis cf allocation of some heads of expenciture tc cost centres is discusscd below:
a) Rent : According to the area occupied by each cost centre. Rent of the office area has been taken into acministrative overheads.
b) Electricity : On the basis of operating hours of each cost centre x horse power of the machine at that cost centre. Power consumed at the office is negligible.
c) Depreciation : On the basis of vritten down value of each monine at each cost centre.

d)	Insurance	On the basis of original installed value of each machine.
e)	MTL interest :	Of a total MTL interest of Rs. 15,000 interest of is. 12775 has been allocated on the machine bought with this loan. The balance of lis. 2225 was not directly allocated to production cost centres as this balance was usec to purchase office furniture and equipment for Rs. 14,000/- and an annealing furnace for lis.21,000/-. These have been taken as administrative cverheads and redistributed again to cost centres on the basis of sub-totals.
f)	Wages	This has been civiceci into
		i. Direct wages to factory workers, ii. Superviscrs salaries, and iii. Office salary.
		Direct wages have been treated as directly allocable to cost centres and have been apportioned on the basis of deployment of labour to each machine centre. Supervisor's salary has been apportioned on the basis of extent of attention to each machine. Office staff salary has been taken to administrative and general overheads.
g)	Service cost : centre	Hiescl generater. The cost of this centre has been cistributed to all the production cost centres as all the machines are connected to it. The generatcr works approximately three hours on the average per day. As such this centre's variable costs have been allocated on the basis of H.P. X running heurs. Fixed costs have been allocated on the basis of sub-totals.
h)	Administrative and General overheads	This consists ef expenses like taxes, postages, telegrams, stationery, managing cirector's remuneration, audit fees, gencral expenses and such of those other expenses which cannot be directly allocated on the basis of

> any fixed norms. The acministrative overheads have been apportioned to production cost centres on the basis of percentage of sub-totals of allocated costs, prececing this allocation.

Appendix VII gives the complete table of cost centres and the expenses allocated to each.

DETERMINATION OF MACHINE HOUR PATE

Component machine loading matrix has been prepared with the help of procuct mix, operating time, and total time for all the components. After allocating and apportioning all the expenses to different cost centres, machine hour rates have becn determined for each cost centre as follows.

Variable machine
hour rate

Fixec machine
hour rate

The fixed machine hour rate would decrease with increase in turnover levels, while variable machine hour rate would remain the same.

PRODUCT CCSTING

Prime costs like cost of raw material, boughtout components, subcontracting charges, and painting charges are acded to machining and assembling charges to arrive at the cost of the product. Details of findings are presented in Appendix VIII.

As is evident, the unit makes substantial profits on Vijai 1000 and CMT-3 types of lathes. Though profits on other types are low and even negative with respect tc CBE-2 - contributions on all are positive.

On the strength of the above, it is suggested that, since there is no scope for increasing the prices and discounts cannot be reduced any further from 15% already being given, costs have to be reduced on overheads. Product mix can alsc be changed in favour of Vijai and CNIT-3 lathes in futurc.

Contribution towards fixed cost being positive on all models, it is not considered necessary to delete any of these models from the product mix. Concentration on selling effort can however be directed more towards pushing the more profitable models like Vijai and CMT-3.

FINANCIAL ANALYSIS

Funcs flow statement reveals that long term resources have been usec to acquire long term assets and short term funds used to acquire more liquid assets. There was no diversion of funds. The effective equity is being strengthenec. A detailed funds flow statement is presented in Appendix IX. Various financial ratios inclicating the operating efficiency of the unit are also presented in Appendix XA and XB.

WORKING CAPITAL ASSESSIMENT

RAW MATERIALS
Based on the inventory control systems suggested for the unit, the working capital requirements on raw materials has been assessed at Rs. 1.27 lakhs or 1.8 months consumption.
W.I.P.

The cycle time required for producing one lathe is approximately 2 months - one month for curing castings and one month for machining and assembling. As such one month requircment of castings (for curing) are required to be financed. The rcst of the work-in-process consisting of lathes in the process of being machined and assemblec, finance required for working capital has been assessec at one months cost of production, ie., tetal raw material plus value added for one month.

Total finance required for wirrk in process therefore is one month's requiremont of castings plus one month's cost of preciuction. Details are given in Appendix XI.

FINISHED GOODS

As the unit is catering tc the export market, a provision of two woeks requirement of finished goods has boen provicied for. In rospect of local sales, the unit
manufactures to order and as such no provision for stocking of finished goods for this purpose is contemplated.

BILLS
As export sales are through bills, a provision of 2 months' requirementshas been made. The total working capital requirements of the unit are summarised in Appendix $\lambda I I$.

PROJECTED PKOFITABILITY

Appendix XIII gives the projectec profitability of the unit for 1933-84 and has been drawn up on the basis cf discussicns held with the unit. It is to be noted that a substantial portion of the projected profit of Fs. 1,04,400 is due mainly to the addition of the Vijai 1000 model of lathe. There is however, adequate scope to improve profitability if overhead expenses are turned clown.

CONCLUSION
The Unit maintains all relevant records necessary to obtain an cverall picture of its operations. However, for purposes of strict controls, it is suggested that the stock register be posted with actual consumption of materials as and when materials are issued, to obtain better correlation with production.

As the consumption of consumable stores and sundiry bought-out components form a major portion of costs, detailed stock register may be introduced, for identifying and pegging down unnecessary expenditure.

Log books can also be introduced to keep track of the extent of utilization of each machine and ascertain causes for poor utilization, if any.

SUMMARY OF MAJOF FINDINGS AND RECOMEENDATIONS
ABC ANALYSIS AND INVENTORY CONTROL.
An analysis of raw materials consumed ciuring the period January 1982 to Decomber 1982 revealed the

following pattern:

Categcry	No. of Commodities	Annual consumption for 1982	\% of consumption
A	26	349699.16	72
B	62	111.667.00	23
C	83	24064.00	5
		485430.16	

Multiple orcier level systams have been suggested for nine of the 26 ' A ' items. Details are presented in Appendix V.

A safcty stock of 1 month's consumption has been suggested for B and C items. Ordering quantity for these items have been fixec at 2 and 4 months consumption respectively. ' B ' items being crciered 6 months a year, and 'C' items 3 times.

Eased on the above systoms, average stock of inventery required to be held by the unit for an anticipatec leval of turnover of 5.19 .42 lakhs in 1983-84 is Is. 352600.

COSTING
M/c hour costing ef the varicus products made by the unit reveals the following:-

Details	CRIT-1	CMT-2	CMT-3	CBE-1	CBE-2	$\begin{aligned} & \text { Vijai } \\ & 1000 \end{aligned}$
List prico	19250	20900	28490	11780	12870	21000
Disccunt	2887	3135	4273	1767	1930	3150
Net sales	16363	17765	24217	10013	10940	17850
Cost						
Fixed	0097	6445	7415	4275	5231	5050
Variablc	10266	11250	12950	5644	5852	8031
Total	16363	17695	20365	9920	11083	13082
Contribution	5097	6515	11267	4369	5088	9819
Profit/Loss(-)	-	70	3852	93	-143	4769

As is evident, profit potential on CMT-3 and Vijai-1000 lathes are high compared to the rost. Contribution is however positive for all products. be
It is suggested that product mix/suitably changed to accommodate more Vijai-1000 and CMT-3 lathes in future.

Attempt is also to be made by the unit to cut down on its overheac expenses to the extent possible.

When capacities at the unit arc bocked fully, the unit can gradually drep low margin lathes from its product mix, and concentrate effort in pushing up sales of the more profitable models.

WORKING CAPITAL ASSESSNENT
Working capital requirements of the unit have been assessed at fis. $3,28,000 \mathrm{based}$ on 1.8 months requirement of raw material, 2 months requirement of work in progress, 2 weeks requirement of finished goods and 2 months requirement of bills.

FINANCIAL ANALYSIS
Effective equity has increased from Rs. 2.79 lakhs in 1979-80 to Rs.3.49 lakhs in 1981-82 and liquid surplus available at the end of 1980-81 was Rs.1.02 lakhs.

Cash flow statement indicates the utilisation of long term funds for acquiring block assets and short term funcs for acquiring liquid assets indicating apprepriate utilisation of funds. It is suggested that the preliminary and pre-operative expenses of $\mathrm{Is} .6,000 /-$ shown in the balance shect as an intangible asset be written off by the unit cver a period of 2 to 3 years.

Though the unit incurred losses in the initial stages, it appears to have turned the corner and it is envisaged that the unit will reach a turnover of Ps. 19 lakhs in 1983-84. Net profit anticipated for this level of turnover is about lis. 1.8 lakhs.

GENERAL

The bottleneck machine has been identified as the planning machine wheh has anutilisationi index of 93\% on a two shift basis. に:
The break even level of sales for the unit given the product mix for the ensuing year has been estimated lat lis. 14.16 1akhs (Appendix-XIV)

LIST OF APPENDICES

\cdots	Appendix Nos.
List of machinery	* . I.
- Flow process chart	\therefore II
:ABC analysis of raw materials Average stock of 'A' class items	III $\cdots \quad$ IV
-Inventory systems for 'A' class items	V
Component machine loading matrix summary	$\because \mathrm{VI}$
Allocation of expenses to cost centres	VII
- Product : costing	VIII
Funds flow statement	\cdots : IX
Financial ratios	$X-A$
inalysis of balance sheets	X-B
Valuation of work-in-process	, XI ${ }^{\text { }}$
Working capital assessment	XII
Projected profitability statement	', XIII
Break-even analysis	XIV

APPENDIX I

DETAILS OF MACHINERY PLEDGED TO BANK

12	3	4	5
9. One number rocket arc TPA 300 3 phase, aircool Acivani Oerlikon welding transformer with standard accessories 300 Amps.	Advani Gerlikon	19.5.30	5,115
10. Cne number CriT-1 brand lathe with necessary accessories and special attachinents with chuck 300 amps.	'Our own fabrication"	30.6 .80	16,249
11. One number $3 / 4^{\prime \prime}$ geared head bench type drilling machine with fittings \& motor 1 HP	- Co	30.5 .80	1,033
12. Cne number press for sheet metal work	-cio-	30.6 .30	1,156
13. One number electric make 31-25 KVA $400 / 440$ volts 3 phase diesel generating set 32.5 KVI	Ruston	17.4 .80	52,188
1^ One number Avery platform 11 On scale - 300 Kg capacity	Avery	14.6 .79	1,296
15. One number KAC mociel SGC 6 air compressor 1 HP	KAC	4.10 .79	1,211
16. One number Mialva No .3 Incian make milling machine universal tup vith all standard accessories \& divicling heac 3 HP	Mialva No. 3	6.5 .79	12,421
17. One number oil \& second hand Malva 24 machine 3 HP	Malva	11.5 .79	3,005

	APPENDDK I .. contd..		
1.2	3	4	5
18. One number Sharada planning machine 12.5 HP	Sharada	15.9.79	33,712
19. One number annealing furnace	Gur own fabrication"	30.6.80	12,550
20. One number Wolf portable grinder	Wolf	16.7.80	1,040
21. One number HMT radial drilling machine with necessary accessories 5 HP	Hit	27.8.80	33,737
22. Two numbers brand-new CMT-1 brand lathe with chucks 6 HP	Mour own fabrication"	30.7.80	24,650
23. One number 24\% stroke Cooper shaping machine	Cooper	27.8.80	9,562
24. One number 'Indef' brand triple spur gear chain pulley block	Indef	27.8 .80	1,678
Total			54,494

APPENDIX iI

FLOW PROCESS CHART

APPENDIK III

ABC ANALYSIS CF RAW MATERIALS

$\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$	Raw materials	Quantity $\mathrm{Kg} .$	Unit Price	Annual consumption	Cumulative consump-	\%
1	2	3	4	5	tion 6	7

1. Lathe bed CMT - 1-71	11321.00	4.66	52755.8652755 .86
2. Motor H P 3.00 HP	41.00	910.00	90065.8690065 .86
3. Lathe bed CMT - 2 - 9'	7820.00	4.62	36144.00126209 .86
4. Chucks	34.00	700.00	23800.00150009 .86
5. Gun metal	833.50	25.51	22538.08172547 .94
6. Motor HP 1.5 HP	30.00	680.00	20400.00192947 .94
7. Lathe bed CBE - 2 - 6^{1}	3237.00	491.00	15893.67208841 .61
8. Sadcle	3091.00	4.37	13507.67222349 .28
9. 100 NM MS round			13459.00235808 .28
10. Paints - speed coat surface Groyand dry			12112.00247920 .28
11. Big lathe leg CMT-type	5003.00	2.30	11556.9925957727
12. Small head stock leg	4952.00	2.14	10597.28270174 .55
13. Phospher Bronze	234.10	45.05	10546.20280720 .75
14. Lathe bed CBE-1	1917.00	4.19	9412.47290133 .22
15. Head stock body	5219.30	1.51	7881.14298014 .36
16. D.A. grey	56.00		6358.00304372 .36
17. Ni.S. sheet 16 G.G.	1308.00		5616.00309988 .36
18. 56 Mil M.S. round			5575.00315563 .36
			4764.00320327 .36
19. Gap piece	$\begin{aligned} & 1392.00 \\ & 2026.00 \end{aligned}$	2.30	$4659.80 \quad 324897.16$
20. Big lathe leg CBE	1904.00		4570.00329557 .16
22. M.S. sheet 14. G.cr	1230.00		$4469.00 ~ 334026.16$ $4404.00 ~$ 38430.16
23. Follow rest	1452.00		4404.00 338430.16
24. Paints or thinner			4071.00342501 .16

		APPENDIX III ... contd..			
12	3	4	5	6	7
25. Cone pulleg	140.00		3684.00	3461	
26. Paints oil primary					
Redoxide			3514.00	3496	
27. H.S. Small leg	2232.00		49:4.00		
28. Reversible switch	68.00		340.00		
29. Thrust bearing 32211					
30. 3210	130.00		3510.00		
31. M. S. material 63 mm	1166.00		2923.00		
32. M.S. rounds 80 mm	2400.00		2870.00		
33. Dead centre Mr 4	82.00		2870.00		
34. Ball bearing 6306	82.00		2747.00		
M.S. MATERIAL					
35. M.S. Rounds 45 mm	1090.00		2752.00		
36. Wiring leise 15 anys $/ 3$ core 10^{\prime}	680.00		2720.00		
37. Bearing block	1200.00		2640.00		
38. Compound slide	1152.00		2544.00		
39. Drawing plate	312.00		2520.00		
40. Face plate	1200.00		2520.00		
41. Back gear shaft	1080.00		2364.00		
42. 170 type all gears lathe leg	452.00		2345.00		
M.S. MATER IAL					
43. M.S. round 70 mm	682.00		2222.00		
44. M.M. Rounds	888.00		2076.00		
45. Norton gear box	924.00		2040.00		
46. Aprin box	912.00		2004.00		
47. Compount rest	900.00		1980.00		
48. Coolant motors	6 pieces				

2	34	5	6	7
49.Mono pully	864.00	1896.00		
50.Bull gear	792.00	1848.00		
51.Rockes bracket	828.00	1800.00		
52.Back gear	792.00	1800.00		
53.H.S. Lockny Rc.	804.00	1740.00		
54.Dog plate	780.00	1728.00		
55. Head stock screw bracket	700.00	1704.00		
56.Thrust bearing 51114 ABC.SKF	41 pieces	1735.00		
57. N. Rope B. 80 Fenner	41 "	1763.00		
$58 . \mathrm{M.S.Round} 32 \mathrm{~mm}$	357.00	1759.00		
59.M.S.Sheet 18G CR sheet	571.00	1711.00		
60. Door head stock \& gear	744.00	1680.00		
61.CMT follow-rest pattern	720.00	1680.00		
62.M.S.Round 36 mm	2107.00	1699.00		
63.M.S.Round 40 mm	739.00	1605.00		
64.Gear wheel	708.00	1560.00		
65.Allen key spanners	68 pieces	1584.00		
¢ . Feed gear (CMT use)	696 "	1548.00		
67.M.S.Square 40 mm Sq .	585.00	1579.00		
68.Ball bearing 6305	54 pieces	1404.00		
69.Handle wheel \& screw rod	588.00	1296.00		
70.Handlc wheel carriage	576.00	1296.00		
71. Head stock cover	588.00	1296.00		
72. Dead centre MT 3				
73. Change wheel cover bracket	600.00	1248.00		
74.M.S. Bright base	444.00	1200.00		
75.M.S.Rounds 25 mm	511.00	1145.00		
76.Follow rest base	504.00	1080.00		
77.Flate belt $2^{\prime \prime}$ width	82 met.	1066.00		
78.Head stock base	552.00	1044.00		
79. Name plate	68 pieces	1020.00		
80.Motor pully	468 "	1008.00	-	
81. M.S.Fiounds 22 mm	444.00	1032.00		

1	2	3	5	$6 \quad 7$
	Feed gear (CBE use)	696.00	996.00	
	M.S. square 125 mm	513.00	996.00	
	Chuck flange	384.00	828.00	
	M.S. Rounds 50 mm	432.00	919.00	
	M.S. Rounds 190 mm	2136.00	890.00	
	Thrush bearing 0.9 ABC SKF	41 pieces	853.00	
88.	M.S. Round 28 mm	350.00	773.00	461366.16 95\%
89.	M.S. Sheets	211.00	619.00	
	Fiack pinion wheel	357.00	797.00	
		27 pieces	756.00	
	Gear box collar	396.00	948.00	
	L. plate	324.00	708.00	
	Balls (balee leler)	68 pieces	765.00	
	Cross slide	300.00	660.00	
	S wire product	262.00	588.00	
	Chuck plate	264.00 36.00	588.00 576.00	
	Worm dusk	252.00	552.00	
	Collar wheel	228.00	516.00	
10\%.	Grinder piece	247.00	543.00	
101.	Tail stock end	173.00	429.00	
102.	Worm wheel	208.00	461.00	
103.	Base metal	228.00	516.00 468.00	
104.	Cross slide (small size)	216.00	468.00	
	Clan pevision press	304.00	444.00 444.00	
106.	Lathe wheel	240.00	444.00 444.00	
107.	Bearing straw	192.00	444.00	
108.	Dry belt	192.00	432.00	
109.	- Gear wheel slide plate	192.00	432.00	
110.	Cross wheel	192.00	408.00	
111.	M.S. Rounds 90 mm	201.00	444.00	
112.	Spanners	68 pieces	680.00	
113.	Drilling machine body	192.00	408.00	

12	3	4	5	6	7
114. Turn slip gear	180.00		396.00		
115. Height press	120.00		312.00		
116. Brass stand	132.00		288.00		
117. M.S. Square 80 mm Sq .	105.00		396.00		
118. M.S. Square 22 mm Sq .	139.00		314.00		
119. Tapper press	163.00		305.00		
120. Star handle	8 pieces		319.00		
121. M.S. Rounds 110 mm	173.00		403.00		
122. E.N. - 8 Rounds	233.00		624.00		
123. E.N. - 8 Rouncis 54 mm	86.00		370.00		
124. Press shaw .	132.00		288.00		
125. Handle for TG Gradet	120.00		276.00		
126. Wheel Pinion	120.00		276.00		
127. T.S. Head screw braker	120.00		252.00		
128. Gerar (H.S.)	108.00		240.00		
129. Handle wheel Pinion bracker	108.00		240.00		
130. End bracket	108.00		240:00		
10.. $1 / 2^{\prime \prime}$ Desc Round	72.00				
132. Flate belt 142" width	54.00		297.00		
133. M.S. Material	122.00		269.00		
134. Inter locking bracket	108.00		228.00		
135. Back gear	84.00		180.00 180.00		
136. Cross feed driving wheel	84.00		180.00		
137. Surface plate	60.00		$\begin{array}{r} 168.00 \\ 168.00 \end{array}$		
138. Inter locking wheel	72.00 60.00		$\begin{array}{r} 168.00 \\ 168: 00 \end{array}$		
139. 5/8" Dia Rod	60.00		168.00		
140. Norton gear box	60.00		144.00		
141. Bush for worm	60.00		132.00		
142. Eccentric bracket	48.00		96.00		

156. M.S. Plates

APPENDIX IV
CALCULATION OF AVERAGE STOCKS OF "A" CLASS ITEMS.

So. Raw materials	-Oty. Kg.	Unit Price Rs.	Annual consump-tion-Rs.	Monthly Average.	Lead Time	: Safety Stock
1.2	3	4	5	6	7	8
1. Graded castings Lathe Beds CMT1 425 Kgs. each.	15480	485	75078	625650	1 M	$\text { (3 castings) } \begin{aligned} & 1275 \\ & \text { cas } \end{aligned}$
2. CMT 2500 Kgs. each.	7500	485	36375	303125	1 M	$\left(\begin{array}{l} 1000 \\ \text { castings }) \end{array}\right.$
3. CBE2 205 Kgs . each.	3075	485	14913.75	12428.5	$\begin{aligned} & 1 \mathrm{M} \\ & 7 \% \end{aligned}$	$\begin{gathered} 410 \\ (2 \mathrm{Beds}) \end{gathered}$
4. CMT $3675 \mathrm{Kgs}$. each	3375	485	16368'. 75	136456	1 M	675
5. CBE 1175 Kgs .	2625	485	12731.25	106014	1 M	(3 castings)
6. Vijai 205 KG .	4100	225	19885	165708	1 M	$\begin{gathered} 410 \\ \text { (2 castings) } \end{gathered}$
7. Vijai HS	4000	225	9000	750	1 M	400
8. Vijai. TS	2800	225	6300	- 525	1 M	280

191
APPENDIX IV .. contd.

NOTE: There are 29 items under 'A' class here because of the inclusion of a new model of Lathe : the Vizai 1000 and the deduction of a few other previously 'A' Class items which have ceased to be 'A' class according to projections.

Appendix IV.conte.

					APPENDIX IV		$\begin{aligned} & \because 194 \\ & \text { contd. } \end{aligned}$
1. 2 .	3	4	45	6	-. 7	- 8	- -
13. Gun Metal	58°		144	144	256	6656	
14. Phosphor Brooze	32		76	76	82	3581	76
15. Saddle	230		427	427	572	2774	20
16. H.S. Brooze	383		549	383	933	2099	25
17. Motor $1.5 \mathrm{H.r}$.	1.48		3	2	6	4080	
18. Motor 3 H.P.	1.65		4.16	4	6	54.60	
19. Motor 2 H.P.	1.62		1.66	2	2	1500	*Multiple order
20. Chuck	1.88		4.16	4	6	4200	system used.
21. M.S. Rounds 100 mm	228		215	228	546	1365	
$\begin{aligned} & \text { 22. Paints N.C. } \\ & \text { Thinner } \end{aligned}$	67	200	60	200	144	1152.	
23. Oil Primary	32		27	40	44	662	
24. Speedcourt Surface grey	48		108	120	. 118.	3304	
25. D.A. Grey	20		17°	20	23	598	
26. Cap Piece 27 Kg . per unit.	130		138	135	235	1139	75*

INVENTORY SYSTEM FOR 'A' CLASS ITEMS

10. CBE HS
11. CBE TS

NOTE: The multiple order level system requires a fair amount of work in maintaining a close watch on inventory levels. As such, depending on the manpower available, a twolevel order system can also be used as an alternative. Order quantity in such cases will be lead time consumption and orders will be paced at two levels (a) the order level and (b) the safety stock level.

ALLOCATION OF EXPENSES AMONG COST CENTRES

S1. Item of Expenditure	Basis for allocation	Budget for the year 1983-84	Lathe	Milling	Shapping	Plaining
			1	2	3	4
Fixed Expenses						
1. Direct Wages	No. of men	196600	38300	6384	6384	12740
2. Supervision	"	28000	5509	918	1836	918
3. Rent	Area	9400	2300	470	710	940
4. Depreciation	Value of Mech.	39900	11700	2000	2000	5100
5. Medium Term Loan	"	12775	2200	-	1200	-
6. Insurance	.	2000	586	98	256	256
7. Labour Welfare Expenses	No. 8f men	3000	600	100	200	100
Sub-Total (A)		291675	61195	9970	12428	20054
Variable						
8. Electricity	HP x running Hrs.	14000	4800	765	1800	4700
9. Repairs \& Maintenance	Discussion	2000	500	100	100	500

Item of Expenditure	Radial drilling.	Cutting	Gear Hobbing	Generator	ARPENLIX: Assembly $\&$ painting	203	
						Welding Transformer	intenance ction.
	5	6	7	8	9	10	11
Fixed Expenses							
1. Direct Wages	6400	3192	6400	-	97300	2800	16700
2. Supervision	918	918	918	-	13311	459	2295
3. Rent	470	470	940	700	2350	50	
4. Depreciation	5100	100	5200	7800	-	900	
5. Medium Term Loan				8500		875	
6. Insurance	256		263	390		53	
7. Labour Welfarc Expenses	100	100	100	-	1450	100	150
Sub Total (A)	13244	4780	13821	17390	114411	5237	19145
Variable							
8. Electricity	1200	135	400			200	
9. Repairs \& Maintenance	e 250	50	250	'200		50	
10. Consumable Tools	2000	500	1500				
11. Consumable Stores				3000			
Sub Total (B)	3450	685	2150	3200	-	250	-

PRODUCT COSTING

	CMT I			CMI II			CMI III		
	Total weight	Unit	Value	Total weight	Unit	value	Total weight	Unit	value
	1	2	3	4	5	6	7	8	9
1. Graded Castings	462	4.85	2241	591	4.85	2866	766	4.85	3715
2. Ungraded Castings	844.	2.25	1975	844	2.25	1975	844	2.25	1975
3. Gun Metal	21.55	26.00	560	21.55	26.00	560	21.55	26.00	560
4. Phosph or Brooze	10.80	43.68	472	14.10	43.68	616	14.10	43.68	616
5. M.S. Rounds \& Squares	197.50	3.00	600	212.20	3.00	650	240	3.00	740
6. M.S. Sheets	35.75	3.25	130	44.75	3.25	150	50.25	3.25	200
7. Purchase Parts. (Direct.)			1500	.		1500			1500
8. -do- (Indirect)			156			156			156
9. Painting Materials			625			625			825
10. Consumer Stores			1298			1430 .			1939
11. Sub-Contract			400			400			400
12. Machining \& Assembling Cost			6406			6767			7739
13. E.N.S. Rounds									
Total A			16363			17695			20365

				APPENDIX		VIII .. conta.			206
	2	3	4	5		6	7	8	9
Seliing Price		19250			209				28490
Less Discount 15\%		2887				35			4273
Net Sales		16363			177				. 24217
$\begin{gathered} \text { Net Profit } \\ (\mathrm{B}-\mathrm{A}) \end{gathered}$		Nil				70			3852
Total Profit					110				19260
```Total Variable Cost```		10266			112				12950
Total Fixed Cost		6097	.			45			7415
Contribution towards towards Fixed Costs.		6097				15			11267


CBE I				CBE II			$\begin{array}{r} 207 \\ \text { VIJAY } 1000 \end{array}$		
$\begin{gathered} \text { Sl. } \\ \text { NO. } \end{gathered}$	Total Weight	Unit Price	Value	Total   weight	Unit   Price	Value	Total weight	Unit   Price	balue
1. Graded Castings	185	4.85	897	205	4.85	995	234	4.85	1135
2. Ungraded Castings	400	2.25	900	400	2.25	- 900	543	2.25	1222
3. Gun Metal	13.15	21.55	342	13.15	26.00	350	15	26.00	390
4. Phosphor Brooze	-	-	-	-	-	-	-	-	-
5. MS Rounds \& Squares	120.50	3.00	370	128.50	3.00	390	105	3.00	315
6. M.S Sheets	2180	3.25	75	2780	3.25	75	12	20.65	250
7. Purchase parts (Direct)			1100			1100	-		1658
8. -do- (Indirect)			100			100			100
9. Painting Materials			- 400			400			350
10. Consumer Stores			811			887.			1431
11. Machining \& Assembling cost			4525	;		5486			5565
12. Sub Contract			400			400			400
13. E.N.S. Rounds									265
Total A			9920			11083			13081



## FUNDS ELOW_STATEMENT

Sales $\frac{1979-80}{71} \quad \frac{1980-81}{512} \quad \frac{1981-82}{1203}$	1980-81	1981-82
Sources:		
Increase in Equity	60	=
Increase in Term Leans	28	58
Increase in short term Bank horrowings	151	11
Increase in Sundry Creditors	38	
Increase in Unsecured berrowings	32	
Increase in Deposits	33	
Increase in Other Liabilities	24	10
Decrease in Loss	1	9
Decrease in Fixed Assets		10
Decrease in Loans \& Advances		8
Total Cash Actuals	367	106
Applicaticn		
Increase in Sundry Debtors	25	15
Increase in Investments	-	3
Increase in Stocks	237	4
Increase in Fixed Assets	64	
Decrease in S. Creditors 41		
Decrease in other liability	33	39
Increase in Loans \& Advances	10	
Tctal Investments	369	102



APPENDIX_=_X_A

## FINANCIAL RATIOS

		1979-80	1980-81	1981-82
1.	Debt	422	695	694
2	Equity + Reserves Less all Lesses	279	340	349
3	Current Assets	333	603	621
4	Current Liasilities	358	588	519
5	Net Prefit (Before tax)	-15	2	5
6	Net Sales	Less	Prefit	Profit
7	Raw Naterials consumed	71	512	1203
8	Average Inventcry	35	226	650
9	Sunciry Debters	138	300	471
10	Tctal Assets	17	42	57
11	Fixed Assets	701	1035	1043
12	Total capital employed	368	432	422
13	Value added	701	1035	1043
14	Tctal Investments (Capital + Reserves + Doferred Liabilities)	364	467	535

Financial Ratics

Debt/Equity	0.213	0.3	0.49
Current Ratic	.93	1.03	1.2
Net Prefit/Sales	Loss	0.3	0.4
Inventory turncver   Avenage material consumed	3.9	0.75	1.4



ANALYSIS OF BALANCE SHEET					APPENDIX XB		
Current Liabilities	1979-80	1980-81	1981-82.	Current Assets	1979-80	1980-81	1981-82
State Bank	-	-	3.58	Cash	3	1	5
Other Banks	196	347	-	Stocks	303	540	544
Sundry Creditors	33	71	30	S. Drs.	17	42	57
Unsecured loans	38	70	56	Loans \& Advances	10	19	11
Creditors for Expenditure	14	23	15	Investments		1	4
Others	67	34	30				
Security deposit	10	43	30				
	$35 \varepsilon$	588	519		333	603	621
Deferred							
SBIMTL	-	-	150	Land \& Building	96	$12^{3}$	105
Other Banks	64	92	- .	Plant and	272	309	317
Dues to Debtors	-	15	25	Machinery			
	64	107	175		360	432	422
Equity				Intangible			
Capital	300	360	360	$\begin{aligned} & \text { Accumulated } \\ & \text { Losses } \end{aligned}$	15	14	5
Reserves				Preliminary Expenses	6	6	6
	300	360	360		21	20	11
	722	1055	1054		722	1055	1054

## APPENDIX - XI

## VALUATION OF STCCKS IN PROGRESS.

${ }^{\prime}$ Cycle'time for manufacture of a. Lathe $=2$ Menths

This comprises of
Curing time for castings $\quad=1$ Month

- Machining, enameling, painting \& testing
$=1$ Month
. Working capitall required for 2 months
$=1$ Minth finance for curing costings
$\therefore+1$ Month cost of production
$=22026+67130+75270$
FM + Valae added in 1 Month
$:=1,64,4260^{\circ}$


## ASSESSMENT OF WORKING_CAPITAL REQUIREMENTS



## Expenses

To Raw Materials
To Sub contracting

Wages including ESI Bonus

$$
1,96,600
$$

Supervisory charges

$$
28,000
$$

Labcur Welfare

$$
3,000
$$

Rent

$$
\begin{array}{r}
8,05,550 \\
40,000 \\
\hline 8,45,000
\end{array}
$$

$$
9,400
$$

Interest on MTL (12775 + 2225)
Depreciation $\quad(39900+5100)$
15,000
45,000
Insurance
2,000
Repairs \& Maintenance

$$
2,000
$$

Power Charges
14,000
Consumable Tools 10,000

## Diesel

 3,000ADMINISTRAI IVE OVERHEADS
Administrative Staff Salary ..... 45,400
Printing \& Staticnery ..... 8,000Postage \& Telegrams13,000
Travelling Expenses16,000
Licenses \& Taxes ..... 1,000
Filing Fees550
Subscription1,500

Advertisement			ND I	IX XII	$\frac{. . \text { contc. }}{3,000}$
Miscellanecus					10,000
Interest on Bank borrowings, Cash credit a/c					80,000
Bank charges					3,000
Brokerage/commission (2) 15\% on Rs. 18.76 lakhs					2,81,400
Audit Fees					2,500
Donations					500
Selling Expenses					7,000
Remuneration to Directors					62,400
					17,08,800
PROFITAB ILITY ESTIM/TES FOR. 1983-84					
By Sales	TYPE	UNIT PEEICE		PIECES	VALUE
	CMT 1	19250	x	'30	5,77,500
	CMT 2	20900	x	15	3,13,500
	CMT 3	28490	x	5	1,42,450
	CBE 1	11780	x .	15	1,76,700
	CBE 2	12870	x	15	1,93,050
	Vijai 1000	21000	x	20	4,20,000
					18,23,200
Cash Incentive $20 \%$   Duty Drawback $3 \%$					
on exparts 23\%					
Export Sales from $40 \%$ of total   sales $1875600 \times 40=7,50,640$					
On this $23 \% 750640 \times \frac{23}{100}=1,72,647$					



## APPENLIX - XIV

## BREAKEVEN_NNALYSIS



## LANUARD INDUSTRIES

## BRIEF HISTOFY OF THE UNIT

Mi/s Lanward Inclustries was established in 1969 as a 'solc proprictary concern of Sri S. Srinivasa Varadan, who is rechanical engineer. The unit manufactures reversible jumps which are incustrial procucts. about $90 \%$ of the unit's sales curins 1981-82 vere reversilic switches. The monthly average cales of switches curing 1981-82 amounted to about Rs.10,000, and the present average production per month is 200 switches. The switches are manufacturer! acainst firm orcers placed by the 8 offices of the $I_{i} E C$ and $M / s$ Mysore Kirloskar. The switches are manufactured uncer the patent rishts of $\mathrm{M} / \mathrm{s}$ Nysore Electrical Incustries, and $4 \%$ royalty is being paid to thom on the sale of switches.

The unit enjoys cash credit, mundy type limit of Rs. 1 lakh and a lill limit of Rs.40,000. A term loan of Rs. 7,500 has also becn granted to the unit towards reimbursing part cost of the machinery purchased by it.

The unit is housed in one of the plots allotted by the State Industries Development Corporation Limited. The factory premises have leen made availarle to the unit on hire purchase lasis and the present outstandincs are Rs. $7,000 /-$.

## INVENTORY CONTRCL

The machined components of the reversible switches constitute only $27 \%$ and the rest $73 \%$ are either bousht out or suli-contracted. In the case of circuit breakers, the process involves only cutting to sizes of the glass tubes and fittinc; the brass caps and tin ware, which are all bought out components. Copper jumps are manufactured by cutting the . copocr wire to the required lencth and bencing the encis.

All the raw materials and components required by the unit arc availa! le locally. There is no minimum quantity stipulation in the procurement of any raw material required by the unit.

As the Unit's :ooks werc not up-dated, the details of purchases and consumption of raw materials ty the unit vis-a-vis its sales curing ipril 1981 to Octoker 1981 were stucied in detail.

In analysis of the sales revealed that reversible switches manufactured by the unit constitute $90 \%$ of the sales and the circuit reakers and copper jumps account for the
remainder. The analysis of raw material consumption indicates that $88 \%$ of the total value of total consumption relates to reversille switches and $12 \%$ to circuit breakers and jumps.
ABC ANALYSIS OF RAGij haterials
An analysis of raw inaterials that woulc be consumed in the ncxt year reveals the following catecorisation. ( $/$ ppendix $I_{i}$ ).


The inventory parameters for the unit's envisagod scale of operation, viz., 500 switches a month, have been worked out in the Appendix II.

## ST/ANL/RD EEVIムTICN ANU SAFETY STCCK

The safety stock of each raw material/component for $A$ and $B$ class items has keen arrived at, takinc into account the stanclard deviation o! served in the consumption pattern of the relative materials curing the period April 1981 to Octoler 1981. 15 fortnichtly reacings of consumption of raw materials worc noted for arriving at the standard deviation. The annual consumption for the projected period has, however, leen Eased on the quantum of materials/components required for manufacturing a sincle switch and the proposed prociuction plan. Ihis procedure had to be adopted as the consumption pattern durinc; April 1991 to October 1981 was found to le not represcntative.
ECOINOMIC OKDER QUFINTITY (ECQ)
The Economic Gicier Quantity of $A \& B$ items was found out using the formula

$$
\begin{aligned}
E O Q & =\sqrt{2 h a} \text { in in quantity, where } \\
A & =\text { Annual demand (Qty) } \\
\text { a } & =\text { cost of per class per order (N. } 5 \text { ) } \\
I & =\text { Inventory carrying cost ( } 20 \% \text { per annum) } \\
F & =\text { Price of the itemper unit in Rs. }
\end{aligned}
$$

and the unit needs to take positive steps to counter this problem.

MACHINERY INSTALLED
The unit has the following machinery:

a)	6' PSG lathe	-
b	1 No.	
Drilling machines	-	2 Nos.
Bench Grinder	-	1 No.
d	Spray painter	-

A spot welding set acquired in January 1981 is yet to be commissioned. The utilisation factor of all the above machinery is estimated at about $50 \%$ only at present.

## COSTING AND PRICING PATTERN

No proper costing method has been adopted by the unit in pricing its products. The discussions reveal that the unit has followed differential pricing in marketing the switches, depending upon the selling price of its competitors.

The unit at present has to sub-contract the materials for bending, punching, spot welding, plating and painting. Further, the entire fixad and variable costs have to be borne by the switches only as the other components, viz., circuit breakers and copper jumps, manufactured by the unit forms only a negligible portion of sales (about 10\%). In view of the marketing problems faced by the unit and its declining profitability, the unit may follow marginal costing in determining the price of reversible switches. Tae details of the fixed and variable costs in chis reọard are worked out in the Annexure III.

MACHINE HOUR RATE
The spot welding set will have low utilisation.
To enable the unit to know the rate at which it can take up jobs for these machines, the machine-hour rates for the same have been worked out in the Annexure $V$ and the unit will do well to undertake job works to utilise the idle capacity of these cost centres. The other items of machinery will be fully utilised at the production levels anticipated by the unit during 1982-83.

## BREAK EVEN POINT

The break even level of sales has been assessed at an annual turnover of Es. 2.61 lacs or 5,455 switches, representing $94 \%$ of the projected sales.

## FINANCIAL ANALYSIS

The balance sheets for the years 1980 and 1981 were made available. Basing on that and the details available for the period 1.4.1981 to 31.12.1981, the projected balance sheets for 1982 and 1983 were drawn and analysec in the annexure.

PAST PERFCRMANCE
a) A sudden slump in sales during 1981 was due to the general recession as well as the failure in initiating steps to maintain and boost the sales of the product by the main dealers, the Industrial and Agricultural Engineering Company, Bombay.
b) Scarcity and abnormal increase in the price of essential raw materials during 1980-81 have hampered production.
c) Power-cut was also partially responsible for the downward trend in production.
d) The unit level of production was not sufficient to meet the fixed expenses which has resulted in loss and erosion in equity.
e) Lecrease in sales has resulted in decrease in profit and the unit is expected to suffer a loss of about lis. 8,000 during the current year.
f) Inorcinate delay in rcalisation of receivables has affected the profit of the unit.
g) Increasc in bank borroving disproportionate to the level of operation was due to repayment of and application of interest.

FUTUIE PROGFAMAE
The unit envisages an increase in production from 200 to 500 reversing switches per month in view of the
repeat orders on hand as well as the favourable trend in market for raw materials and finished goods.

A spot welding set acquired in 1981 is expected to commence work in April/May 1982 which will increase the unit's earnings substantially in view of the availability of adequate job orders.

Thus, the unit's working capital requirements has been assessed on the basis of a monthly production of 500 reversing switches. There is a net deficit of [. $.55,400$ which can be made good as follows:
$\begin{array}{ll}\text { Drocees from chit } & \text { Rs. } 10,000 \\ \text { Eresh capital } & \text { Rs. } 10,000 \\ \text { Term loan } & \text { Rs. } 20,000 \\ \text { Drofit accruals } & \text { Iw. } 15,400\end{array}$
At the envisaged level of production, the unit will be in a position to earn a profit of $\mathrm{Rs}_{\mathrm{s}} 1,750$ per month which will enable it to repay the term loan at the rate of [s. 500 per month even after making adequate provision for the working capital deficit. Thus, the term loan will be repaid in 40 monthly instalments.

The proprietor is stated to have substantial income from agricultural land and buildings which will enable him to stabilise the financial position of the unit.

SURMARY OF FINDINGS AND RECOMNENDATIONS
a. The unit at present carries an inventory worth If. 64,693/- against an average. inventory level of ls.23, 855 required for its scale of operation.
b. The reversible switch, the main product of tne unit, is manufactured by assembling $60 \%$ bought out components and incurring sub-contracting charges of $12: / 2 \%$. The machine-hour costing of the product will not, therefore, be representative of the pricing pattern to be adopted by the unit. The unit has to follow marginal costing in determining the sale price of switches, especially due to the marketing problems faced by the unit, which are detailed elsevhere in this report.
c. A spot welcing set acquired in January 1981, remains uncommissioned. The unit can undertake job works
for spot welding to increase its profitability by commissioning the welding set forthwith. The unit can also save sub-contracting charges of 40 paise per switch, now being paid by it for spot wolding.

The PSG lathe in the unit has been found to have idle capacity, the present utilisation being $50 \%$.
The machine-hour rates in respect of the lathe and the spot welding set, have been worked out in the Annexure to enable the unit to undertake job works on these machines, to increase the utilisation of the machines and to increase the unit's profitability.
d. The unit will break even at [s. 2.61 lacs, which is very much on the high side. The unit should take up sales promotion measures to achieve its capacity turnover of 150 switches a month, on single shift basis.
e. The analysis of the working results of the unit during the past three years reveals a downward trend in sales accompanied by decreasing profitability. Thise has been a gradual erosion in equity. This needs to be remedied forthwith.
f. The working capital requirements of the unit at the peak level of production are furnished in the Appendix VII. The overall position reveals a net deficit of fis. 55,400 which should be met by the unit bringing in additional equity by the proprietor and by ploughing back profit accruals.
g. The unit maintains the basic records and books of accounts such as stock registers, cash book, ledger, sales and purchase registers. The entries in the stock register need to be up-dated.

## LIST OF APPENDICES

ABC analysis of raw materials consumed for past 7 : months ..... I
$A B C$ analysis of raw materials based on projectec consumption ..... I-A
Inventory control system ..... II
Fixed and variable cost of reversible switches and break-even level ..... III
Gross revenue from circuit breakers and -... copper jumps ..... IV
Machine hour rate for lathe and spot welding set ..... V
Summary of balance sheet ..... VVI
Working capital requirement at the peak level of production anticipated ..... VII
Trend analysis - Figures ..... VIII
Funds flow statement ..... IX
Ratio analysis ..... X

APPENDIX I
A B C ANALYSIS OF RAW MATERIALS CONSUMED FOR PAST 7 MONTHS

Item Description	Consumption value Rs.	Cumulative Consumption value Rs.	Cumu-   lative \%
A			
1. M.S.Strips (16G \& 14G)	9,180		
2. Red Oxide Primer	5,830		
3. Fixed Contacts	4,960		
4. Main Housing	3,792		
5. Brass Caps	3,700		
6. Moving Contact	3,528		
7. Moving Contact	3,277	34,267	65.2
B			
8. M.S.Strips 12G	2,400		
9. Copper Wire	2,400		
10. Lever Arms			
11. Copper Caps	2,000		
12. Switch Covers	1,482		
13. Paint	1,240		
14. M.S.Rounds	1,068	47,157	89.7
C			
15. Compressor Spring	685		
16. Sleevings	640		
17. Glass Tubes	630		
18. Leatheroid Sheet	438		
19. M.S.Nuts	429		
20. Corrugated Box	427		
21. Handle Knob	368		
22. Carrier Spacer	330		
23. Tension Spring	315		
24. Name Plates	315		
25. Soldering Lead	200		
26. M.S. Screws (M4)	200		
27. M.S. Screws 3/8	146		
28. M.S. Nuts	80		
29. M.S. Washers 3/4	47		
30. M.S. Screws 3/4	44		
31. Spring Washers 3/16	28		
32. Collar Pin	23		
33. M.S. Washers 5/8	18		
34. Spring Washers 3/8	12	52,541	


Categorisation	No. of items.	\%	Valve	\%
A Item	7	20	34,267	65.2
B Item	7	20	12, 030	2才. 5
C Item	21	60	5, - 4	10.3
Total	35	100	52, 5:1	100.0

Note:- As the Consumption Fatt.rn cirrisy tr 3 past 7 r.onths is not a rerreseniãive one, an AEC of anticipated consumption was taken and made use of in the Inventory control exercise.



The Projected consumption has been deduced from the projected sales and the bills of materials.

APPENDIX II.
INVENTORY CONTROL SYSTEM

Present Production 200 Switches per annum Anticipated production 500 Switches per annum.					Copper Jumps Tine limit basis		$\begin{aligned} & 1500 \text { sets } \\ & 6000 \end{aligned}$
$\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$	Items   particulars	Annual consumption quantity   (A)	Annual Consumption value ${ }_{\text {Rs }}$. (B)	Unit price	$\begin{gathered} E O Q \\ \sqrt{\frac{2 A a}{p}} \\ 7.07 \bar{P} \end{gathered}$	Order quantity O.Q.	For   Projected   $26 \times \sqrt{\mathrm{L}}$   6× 1.414
1	2	3	4	5	6	7	8
1. Copper Wire $\quad 570 \mathrm{Kg}$.2. Redoxide Primer 86 Litres			22,800	40/kg	26.8	27 Kg .	13
			22,790	265	3.9	4 Ltrs.	2.31
3. Fixed Contact 54,000 Pieces			21,600	0/40	2595	2600	1148
4. Movin; Contact Carrier		18,000 Sets	18,000	1 Set	947	950	292
5. Switch Covers		6,000 Pieces	15,000	2/50	346	350	99
6. Movins Contacts		36,000 Pieces	14,400	0/40	2121	2200	1094
7. Main Housing		6,000 Pieces	14,400	2/40	353	400	226
8. M.S. Strips		$2,200 \mathrm{Kg}$.	13,320	$6 / \mathrm{Kg}$	136	150	210
			142,310				


Sl. Items   No. Particulars	$\begin{aligned} & \text { Safety } \\ & \text { stock } \\ & 26 I \\ & - \text { S.S. } \end{aligned}$	NLT   Normal   Lead   Time	Average consumption Rate per week.	LTGead Time consumption.	Max stock SS + OQ	R.OL S.S. + LTC	Average stock Max+ SS/2	Value of ave rage stock Rs.	Stock held
1	9	10	11	12	13	14	15	16	17
1. Copper wire	26 Lt.	1 week	11 Kg .	11 Kg .	53 Kg	37 kg	40 Kg	1,600	
2. Redoxide Primer		1 week	1.7	1.7	9. Lt	7	7	1,855	
3. Fixed Contact	2300	1 week	1038	1038	4900	3350	3600	1,440	
4. Moving Contact Carrier	800	1 week	345	345	1750	1150	1275	1,275	
5. Switch covers	198	1 week	115	115	548	320	373	- 933	
6. Moving contacts	2200	1 week	690	690	4400	2900	3300	1,320	
7. Main Housing	500	1 week	115	115	900	625	700	1,680	
8. M.S. Strips $(16 \& 14 \mathrm{G})$	420	1 week	43	43	570	463	495	2,970	
								13,073	41,009 about four $\qquad$



1. 2.									
9.'Sleevings	$62^{-}$	1 week	38	38	$2 \overline{6} 2^{\circ}$	100	162	518	
10. Brass caps	3000	1 week	230	230	3600	3250	3300	1.650	
11. Lever arms	866	1 week	115	115	1416	990	1141	1,141	
12: Glass Tujes	12	1 week	6	6	42	18	27	486	
13. Leatheroid sheets	4	1 week	3	3	19	7	12	420	
14. Corrugated Boxes	176.	1 week	115	115	876	291	526.	342	
15. Compressor Spring	1428	1 week	692	692	5678	2120	3553	355	
16. M.S.Rounds	56.18	1 week	18.1	18.1	177	75	117	410	
17. Handle Knob	196	1 week	115	115	596	311	396	198	
18. Name Plates	182	1 week	115	115	582	297	382	191	
	128	1 week	8.5	8.5	193	137	166	996	
20. Paint	19.98	1 week	1.1	1.1	29	21	25	1,000	
				-				7,707	13603   Three   Months



:IXED AND VARIABLE COST OF REVERSIBLE SNITCHES AND BREAKEVEN LEVEL

	1981-82 R.	$\begin{gathered} 1982-83 \\ \text { (Projected) } \end{gathered}$
Sales - raantity	2200 Nos.	6000 Nos.
Sales - value	Řs. 1,05,000	Rs. $2,88,000$
Fixed and Semi Variable	Rs.	Rs.
Expenses per annum		
1. Wages	16,287	17,500
2. Rent	4,620	4,620
3. Depreciation	2,800	2,400
4. Bank Interest (MTL \& WC)	17.520	17,400
5. Insurance	1,600	1,600
6. Cottages and Telephone	2,220	2,500
7. Printing \& Stationery	420	600
8. Rates and Taxes	3,015	5,800
9. Audit fees	350	350
10. Proprietor's Remuneration	7,200	7,200
Total Fixed and Semi-Variable expenses per annum	51,032	59,970
Variable Expenses per annum		
1. Electricity (12 HP)	1,200	1,200
2. Repairs \& Maintenance	1,030	1,200
3. Consumable Tools	990	1,200
4. Freight \& Octroi	850	1.700
5. Royalty (4\%)	4,000	11,500
6. Sub Contracting Charges (@) Rs. 6/- per switch)	14.952	36,000
7. Sub Total	23,022	52,800
8. Raw Materials	59,000	1,69,200
9. Total variable costs	82, 022	2,22,000
Variable cost/Reversible Switch	37.3	37.00
Contribution towards Fixed Expenses $=2,88,000-2,22,000$ $=$ Rs. 66,000		
$\begin{aligned} \text { Break Even Point } & =\frac{59,970}{66,000} \times 2,88 \\ & =\text { Rs. } 2,61,840 \text { ie } \\ & i . e, 94 \% \text { of } p \end{aligned}$	000   , 5455 switch ojected Sales	per annum



The fixed and semi variable expenses applicable to the manufacture of the above items forms a negligible portion of about $2 \%$ and hence have not been segregated from the estimates for manufacturing switches.

# APPENDIX $V$ <br> MACHINE HOUR RATE FOR LATHE AND SPOT WELDING SET 

Particulars
Fixed and Semi Variable Expenses per Month
(150 Hours),

SUMMARY OF BALANCE SHEET AS ON 31ST MARCH

Liabilities	1980	1981	1982   Expected	$\begin{aligned} & 1983 \\ & \text { Pro- } \\ & \text { jected } \end{aligned}$	Assets ${ }^{\text {' }}$	1980	1981	1982   Expected	1983   Pro-   fected
Current Liabilities					Current   Assets				
Bank	144	129	135	151	Cash	5	1	-	13
Sundry	44	27	16	12	Stock	102	91	65	34
creditors					Sundry Debtors	75	49	25	75
Other	5	9	-	-	Investment	4	3	12	2
Liabilities	193	165	151	163		186	144	102	124
Deferred					Block				
K S I C	14	10	7	3	Land \& Building	44	47	44	41
Bank Term Loan			4	-	Plant \& Machinery				
	14	10	11	3	Sundries	4	4	3	2
Capital and	27	20	-	1		48	51	47	43
Surplus					Intangibles	-	-	13	-
	27	20	-	1	-	-	-	13	-
Total	234	195	162	167	Total	234	195	162	167
Less	237	129	130	333					
$\begin{aligned} & \text { Raw matem } \\ & \text { rials } \end{aligned}$	133	52	59	204					
Expenses	93	70	76	111					
Depreciation	4	4	3	2					
Net Profit	11	3	8	16					

## WORKING CAPITAL REQUIREMENT AT THE PEAK LEVEL OF PRODUCTION ANTICIPATED

Monthly Sales			Rs.27,7.50
Cost of Production			Rs.26,000
Raw materials			Rs.17,000
		Permissible	W R C
Raw Materials Average 13/2			
Month as per system			
proposed	BS.25,500		
LESS 25\% Margin	6,375		
		19,125	25,500
Goods in Process 1 Week	Rs. 6,500		
LESS Margin 33-1/3\%	2,100		
		4,400	6,500
Finished Goods 1 Month LESS Margin 33-1/3\%	$\begin{array}{r} \text { Rs. } 26,000 \\ 8,600 \end{array}$		
		17.400	26,000
Bills 3 Months	Rs.83, 250		
LESS Margin 10\%	8,325		
	------	74,925	78,000
Expenses 1 Month			9,000
		1,15,850	1,45,000
Sundry Creditors 3 week		12,750	
Permissible Limit		1,15,850	1,28,600
Deficit			
Deficit in working capit	1 l ( Rs.	6,400	
Current Deficit	Rs.	39,000	
Net Deficit	Rs.	55,400	

Sources to meet the deficit
Proceed's from chit.. Rs, 10,000
Fresh Capital Rs. 10.000
Term Loan Rs.20,000
Profit Accretion Rs.15,400
Rs. 55,400
---...--

APPENDIX VIII
TREND ANALYSIS

Particulars	Actual Figures (Figures are in Rupees thousands)			Pro-jected	```As % with 79-80 as Base Year (100%) % % %```		
	79-80	80-81	81-82	82-83	81	82	83
Sales	237	129	130	333	54	55	140
Raw Materials Compound	133	52	59	204	39	44	153
Expenses	93.	70	76	111	75	82	119
Net Profit	11.	3	8	16	27	73	146
Equity	27	20	-	1	74		
Current Assets	186	144	102	124	77	55	67
Deferred Liability	14	10	11	3	71	78	21
For Bank Working Capital Borrowing	144	129	135	151	60	94	105
Total Assets	234	195	149	167	83	64	71
Block	44	47	44	41	107	100	93
Sundry Debtors	75	49	25	75	65	33	100
Sundry Creditors	44	27	16	12	61	36	27
Interest Paid	15	12	17	17	80	113	113
Total Cost of Production	226	126	138	317	56	58	140


FUNDS FLOil STATEMENT	APPENDIX.   (Figures	$\begin{aligned} & \text { IX } \\ & \text { in } \end{aligned}$	$10002$
Sources	198119821983		
Increase in other liability	4	-	
Increase in bank borrowings	-	6	16
Increase in term loan	-	4	-
Increase in equity	-	-	1
Decrease in stock	11	26	31
Decrease in sundry debtors	26	24	3
Decrease in investment	1		10
Decrease in fixed assets	-	3	3
Decrease in sundries	-	1	1
Decrease in intangibles (Loss)	-	-	13
	42	64	75
Application			
Decrease in bank borrowings	15	-	
Decrease in sundry creditors	17	11	4
Decrease in other liability	4	9	-
Decrease in K S I C	4	3	4
Decrease in term loan	7	-	4
Decrease in equity	7	20	50
Increase in sundry debtors	$\underline{-}$		50
Increase in investment	3	9	-
Increase in fixed assets	3	13	
Increase in intangibles (Loss)	-	13	-
	46	65	62
Opening cash balance	5 42	1 64	75
ADD Sources	42 46	64 65	75 62
LESS Application	46	65	62
Closing balance	1	Nil	13

## APPENDIX X

## RATIO ANALYSIS

	1980	1981	1982	1983
Debt:Equity	207:277.7	185:209.2	162	166:1
Current Asset:Current Liability	186:193	144:165	102:151	124:163
Net profit:Sales	11:237	3:129		16:333
Annual consumption: Average inventory				.
$\begin{gathered} \text { Average collection (No. in } \\ \text { days) } \end{gathered}$	109	138	71	83
Earning power	4.9\%	1.5\%		9.5\%
Fixed assets: Equity	44:27.	47:20	-	41:1
Value added to total investment				

## BRIEF HISTORY OF THE UNIT

The unit was established as a partnership concern in the year 1975 and has been banking since its inception. The unit has now converted itself into a proprietorship firm. Snt $\Omega$ Dinubhen Shah is the proprietrix of the firm. The unit is presently enjoying extensive credit facilities with the bank. The unit has recorded a satisfactory level of growth and by dint of a well-run managerial system, good quality of its procucts and good public contacts has established itself as a strong force in the market and has among its regular customers - M/s Jindal Aluminium, M/s Bharat Electronics Ltc, M/s NGEF, M/s Mysore Electrical Engineering Industries Ltd.

The position of the unit's accounts as on 18.2.1983 is given below:

Facility

C/c mundy / bills


45,000
1,10,000

80,000
67,000
94,000

$$
\begin{array}{r}
11,250.00 \\
6,080.00 \\
54,500.00
\end{array}
$$

* includes excess drawings allowed for purchase of machinery.
The various data collected and classified under various appencices have been culled from the available records provided by the unit and detailed discussions
with Sri R L Shah*(husband of the proprietrix), the full time accountant and the foreman-cum-floor supervisor. For the guidance of the unit, a proforma cost sheet is cnclosed. (Appendix No. XIX )
COSTING (Fiefer Appenciix Nos VIII \& XI)
The procuction programme for the budget year, viz., 1983-84 was fixed in consultation with the unit and its past performances.
* Manaser of the unit.

The budgeted figures given in the Appendix are within the normal capacity and reach of the unit and should be comfortably attained.

The projected production programme has been subdivided into three categories on the basis of the unit's operating performance in the past.

The unit expects to sell 7,000 sprinklers of various sizes valued at fs.5,60,000 between July 1983 and January 1984 since the demand for sprinklers is of a seasonal nature. The unit expects to reach its peak performance, between August and October.

The unit expects to do jobbing with raw materials valued at Es. $5,00,000$ over the entire 12 months of the year. A major part of this work is expected to be accomplished between March and June 1983 and in February 1984.

The unit expects to do jobbing without raw material valued at Rs. $4,00,000$. These are in the nature of fabrication jobs undertaken in a sporadic manner.

Thus the total projected sales comes to $\mathbb{1} .14,60,000$.

## DIRECT COSTS

The raw material cost in the case of sprinklers is expected to be $71.57 \%$. of the sale value. However, if we take into account the value of scrap generated during the production of sprinklers, the value of raw materials will come down to $64.07 \%$. The conversion cost for sprinklers is expected to be $12.7 \%$ of the sale value.

The raw material content in jobbing with raw material is expected to be about $75 \%$. However, an analysis of the actual consumption based on the balance sheet figures reveals a vary high raw material consumption rate of $85 \%$. There has been a marginal under-valuation of closing stocks which coupled with rejections has resulted in an apparently low margin of profits on jobbing with raw materials. The conversion cost is expected to be $17.7 \%$ of sale value.

In the case of jobbing without raw materials, the unit expects to generate a net profit of $29 \%$ on sale value.

The unit expects to generate a profit of $16.44 \%$ on the the sale value at the projected production and sales level.

## BUDGETED EXPENSES ANL ALLCCATION

The various expenses to be incurred to achieve this target have also been projected after detailed discussions with the unit and have been allocated suitably to the different cost centres, after segregating them into fixed allocable costs, variable allocable costs and fixed non-allocable costs.

The various procuction facilitiesin the factory were categorised into various cost centres, production centres and service centres, (no unbooked cost centre came to light) depending upon the purpose to which they were put.liachines performing similar functions have been allocated/identified under one common cost centre. The machines used for the various operations like turning, drilling, milling, grinding, etc., have been accordingly identified as different cost centres. The bench-grinders two in number, which are used for sharpening, levelling, etc., of the various items of consumable tools for feeding into the machines have been classificd necessarily as a service centre.

The expenses undcr the following heads have been allocated as describec below:
(a) Electricity to be consumed has been allocated on the basis of H.P. rating of each machine $X$ the operating hours.
(b) Wages - paid to each category of workmen have been obtained from the books of the unit and apportioned to each cost centre based on the labour force in each unit. The wages (salary) paid to the fore-man-cum. floor supervisor has becn apportioned on the basis of time spent at the respective cost centres.
(c) Rent - paid by the unit has been calculated and apportioned on the basis of carpet/floor area occupied by each cost-centre after making suitable provisions for the area occupiec by the office, storeroom, open space and a shed.
(c) Deprcciation on machinery - has been allocated according to the written down valuc of each cost centre.
c) Consumable tools and stores - have been allocated to each cost centre on the basis of discussions with the unit.

FINEU $\therefore N D$ VARIAELE RACHINE HOUR RATES
The facilities available with the unit have been loaded with the projected production sales programme based on the projected operating and booked hours on each cost centre and the expenses allocated/apportioned to them. The variable and fixed machinc hour rates have been completed and presented in fippendix VII.

## PRODUCT COSTING AND PROFORIM COST SHEET

Using the machine hour rates sprinklers and some of jobbing products have been costed (Appendix X) and a contribution analysis has been done (fppendix $1 K$ ). It is observed that all the items yield positive contribution as well as profits. The components of water sprinklers have been costed and it is hoped that this will serve a useful purpose in spare part pricing.

## INVENTGEY \& FECEIVIBLES NORMS AND HORKING CAPITAL REQUIREMENTS

The inventory norms have been evolved on the basis of a cietailed estimate of the requirments of RM, $\because$ IP, FG \& BR of sprinklers, job-work with and without Fui. The basic assumptions are given below.

EAN MATERIALS (RAI)
The tiv requirements for sprinklers have been estimated on the basis of order cuantity and lead time for individual components of the sprinkler (Gppendix). The crash lead time has been assumed to be one ciay since all the components are oither easily available in the market or arc processed at the factory itself.

The raw inaterial requirements for jobbing with raw materials has been estimated at seventy five per cent of salc value. The stocking level has been assumed at 1/2 month consumption.

WCRK IN PriCCESS
The process time for sprinkler, jobbing with raw materials and jobbing vithout raw matcrials, has been assumed to be 10 days, 7 days and 7 days respectively,

## FINISHED GOODS STCCK

The finished goods stock for sprinklers has been assumed as 10 days. The finished goods stock of jobbing with raw materials has been assumed at 7 days.

## BILLS RECEIVABLES

The outstanding bills against sprinklers has been assumed to be seven days, since therealisation has been almost immediate in the past.

In the case of jobbing with and without RM, the unit expects to have 60 days' bills outstanding since the payment from its major customers are very much delayed due to procedural problems and normal credit available in the market.

On the basis of the above assumptions, the unit's requirement of working capital is expected to peak in July 1983 (is.2,83,992). The inventory norms consequently evolved are as under:-

Raw materials	30 days
Work-in-process	10 days
Finished goods	7 days
Bills receivable	60 days

The aggregate working capital requirements based on above work out to be $[\mathrm{s}, 3,65,500$ against which is a bank finance of Rs.1,70,000 for bills and lis.25,000 for stocks is considered adequate.

## OPERATING ECONOMICS

The unit has registered a sales turnover of R. 13 - 10 lacs during the year 1982. For the year 1983, it anticipates a turnover of approximately lis. 15 lacs. Taking the figure for the year 1980, as the basis; the unit has registered a growth of $195 \%$ in 1981 and $303 \%$ in 1982. The present budgeted sales of Rs.14,60,000 works out to be about $303 \%$ which appears to be realistic.

The unit being one among the very few irrigation sprinkler manufacturers in the country, has got a competitive advantage in sales and its relationship with its sole buyer - $\mathrm{M} / \mathrm{s}$ Jindal Aluminium appears to be most satisfactory. The unit however encounters stiff
competition from the very many tool components units in the area as far as its jobbing activitica go but, has managed to do well for itself, judging by the many noteworthy customers on its books, viz., M/s NGEF, MEEI, BEL, etc.

PROFITABILITY
The unit has earned profits amounting to Pi. 49,000 , Ps. 81,000 and Is. 35, 000 during the years 1980, 1981 and 1982 respectively. The profit earned during 1982 has however come down as a result of the unit's expansion programmes/endeavours but taking into account the provision made for the investment allowance reserve for which it is eligible, the decline in profits need not be taken too seriously.

## BREAK-EVEN AN/LLYSIS

Since the unit is involved in both the production of sprinklers and job works with and without raw materials, an attempt has been made to evaluate the break-even level on the basis of SILLOCATED FIXED COST on account of sprinklers. The basic assumption here is that "product mix" will continue to remain unchanged.

Sale price	R. 80.00	per piece
Cost of production	$\mathbb{R} .61 .91$	per piece
Contribution	$\mathbb{R} .24 .29$	per piece

Fixed Cost(Allocated) Iis.43,400
Break-even level of production of sprinklers 1,787 pieces
Break-even value of sales In. 1,42,960.
\%age production at
break-even (as compared
to projected sales level)
$25.52 \%$
The break-even value of total sales on the basic assumption that the "product mix" remains unchanged is given now:

Total projected sales
Total projected variable cost
Total contribution
Total fixed cost

IS. 14, 60, 000
Rs. 8,75,818
Rs. 5,84,182
Rs. . 3,01,687

Break-even sales $=\frac{301687}{584182} \times 1460000=$ Rs. $7,53,982$
Break-even sales of job work without and with RM $=$ Is.6,11,022.

FINANCIAL ANALYSIS
Funds flow statement (Appendix No.XVI)
An analysis of the funds flow statement for
the last three years reveals that in the years 1980 and 1982, there has been a diversion of short term sources of funds for long term uses. In 1982 this situation has arisen on account of drawings permitted in the cash credit account in anticipation of sanction of a term loan of Lis. 1,63,000 for purchase of machinery. However, if we assume that the purchase of machinery has been financed by a long term source then the surplus of long term sources of funds over long term uses will be $\mathrm{ls} .1,01,000$. In 1981 the unit has been able to generate a long term source of funds amounting to Is. 75,000 to meet the short term uses.

The unit has increased its outlay against stocks considerably in 1982, to the tune of $\mathrm{Ps} .2,64,000$. This has mainly arisen on account of stocking of brass extrucler rods and imported steel rods in anticipation of orders for sprinklers. The stocking goes much beyond the inventory norms evolved for the unit.

There has been a steady increase in sundry creclitors over the years. The increase in 1982 has been to the tune of $\mathrm{P} .1,90,000$ which is an indication of the unit's ability to generate short term funds to finance its operations.

The increase in capital in 1980 and 1981 has been steady but with the retirement of two partners and the reconstitution of the firm as a sole proprietorship, the increase in capital has been only ls. 2,000 in 1982.

FINANCIAL RATIOS (Appendix XVII, XVIII)
The debt equity ratios have shown a substantial increase from 1.7 in 1981 to 2.98 in 1982. This has mainly been due to (a) reconstitution of the firm as a proprietorship and (b) an increase in the net block consequent on the acquisition of fixed assets in 1982.

The current ratio has shown a satisfactory increase from 0.73 in 1980 to 1.23 in 1982. The unit is therefore in a position to effectively meet its maturing current obligations.

The sales equity ratio has shown a steady increase from 1:5 in 1980 to 1:9 in 1902.

The ratio of equity to total liabilities came down to 1:3.8 in 1981 from 1:5.82 in 1980. However, in 1982 the ratio has increased to 1:6.8.

The major bills raised by the unit were analysed for a weighted average collection period, which comes to 67 days.

TREND NNALYSIS
The sales of the unit have shown a substantial increase over the years. Sales increased by $90 \%$ in 1981 as compared to the level obtained in 1980. There has been a further encouraging increase of $60 \%$ in sales in 1982.

The gross profit has shown a steady rise from Rs. 2, 28,000 in 1980 to lis.3,79,000 in 1982.

## SURMARY OF FINLINGS AND RECOMUENDATIONS

The unit is among one of the five manufacturers of irrigation 'sprinklers' in the country and enjoys. the enviable position of being the sole supplier of the above named product to $\mathrm{M} / \mathrm{s}$ Jindal Aluminium, from this part of the country. The unit's saleshavi registered an appreciable upward trend over the past so many years and is expected to record even better performances in the years to come. The turnover for the last three years is given below:


Sales (in So.-000's)
432
821
1310

The unit is managed by the husband of the proprietrix, Sri R L Shah who has business interest in a foundry unit, which is supplying castings for sprinklers.

## P:ZODUCT CLASSIFICATION

For the purpose of analysis the unit's products have been grouped into three categories:
(a) Sprinklers accounting for a sale of Es.5,60,000.
(b) Jobbing with raw material accounting for a sale of ks.5,00,000.
(c) Jobbing without raw materials accounting for a sale of $\mathrm{fs} .4,00,000$.

These three categories, the projected sales figure for which are given abcve were used for arriving at machine loads and utilisation and subsequent costing exercise.

COSIING, PRICING AND PRODUCT MIX
From the machine hour rates estimated during the study, some of the major products have been costed and the results show that all the products yield positive contribution and profit. A proforma cost sheet has been prepared and given in Appendix xIX. It will help the unit to quote for enquiries it receives in future.

## INVENTORY NORMS

The findings of the costing exercise have been used to arrive at average stocking periods for various categories of inventory items at the peak level of requirement which work out to be:
a) Raw materials 30 days
b) Work-in-process 10 days
c) Finished goods 7 days

RECEIVABLE NORJIS
By taking major bills and their collection
period during 1982, the weighted average collection period for unit's jobbing bills comes out to be 67 days. The sprinklers bills are realised in 7 days and the weighted average receivables period has been estimated at 60 days for assessing working capital.

WORKING CAPITAL REQUIREMENTS
On the basis of estimated inventory and receivables norms the unit's requirements for working capital at the projected annual sales turnover of ms. $14,60,000$ works out to be ns. $3,66,000$ against which following bank finance may be considered to meet the requirement adequately:
c/c bills

$$
\begin{array}{r}
\text { R. } 1,50,000 \\
\text { R.s. } \quad 75,000
\end{array}
$$

$\mathrm{C} / \mathrm{c}$ mundy type

## BREAK-EVEN AN/LYSIS

Since the very nature of the unit's operation is heterogenous, the break-even value of the total sales has been estimated at $\mathrm{B} .7,53,982$. On the basis of allocated fixed cost the break-even value of sale of sprinklers is $\mathrm{f} .1,42,960$. Thus, the break-even value of sales of job work including both with and without raw materials is Rs.6,11,022.
/NALYSIS OF FINANCI/L ST/ATEMENTS (APPENDIX XV, XVI)
The unit's limits were reviewed recently and a term loan of ns. $1,63,000$ and enhanced working capital facilities of Bs. 2.5 lacs have been recommended by the bank. In anticipation of sanction, excess drawings have been permitted in the unit's cash credit account which is expected to be regularised once the formal sanction is received.

The unit's stocking has shown a dramatic rise in 1982 from R.s. 65,000 to lis. $3,29,000$. This has been mainly due to stocking of brass extruder rods and imported steel rods in anticipation of orders for sprinklers. The stocking level is unusually high and considering that the lead time for procuring brass extruder rods is very low the stocking level is considered excessive.

There has been a steady rise in sundry debtors and sundry creditors cominensurate with the increased level of operations of the unit over the past three years. There has been a substantial increase in sundry creditors in 1982 to the tune of $175 \%$ of the level obtaining in 1931.

The unit has acquired substantial fixed assets in 1982. Consequently, the net block has increased by nearly $48 \%$ in 1982 over the level obtaining in 1981.

The unit was reconstituted as a proprietorship firm. There has therefore been a marginal increase in capital and surplus.

Loans from friends and relatives have shown wide fluctuations and stands at ks.2,63,000 in 1982.

There has been a very encouraging rise in sales which stood at R. $13,10,000 /-$ in 1982.

CAPACITY UTILISATION (Please refer to Appendix II, III and IV)

On a scrutiny of the machine loading matrix, it will be observed that all the machines have been fairly well utilised. The bottle-neck machines in the unit are the milling machines which are utilised to the extent of $121 \%$. It is suggested that the unit goes in for a second shift also, but from discussions with the unit, it appeared that it had no immediate plans to go in for a second shift due to major operational and managerial problems--such as supervision, labour and power and the implications of the Factory fict, ESI, etc.
Appendix
Nos.
Particulars of machinery ..... I
Machine loading matrix - irrigation sprinklers ..... II
Machine loacing matrix - job works with raw materials ..... III
Machine loading matrix - job works without raw materials ..... IV
Product machine loading matrix ..... V
Computation of facility hour rate ..... VI
Allocation of expenses for budgeted level of production ..... VII
Contribution analysis ..... VIII
Product costing ..... IX
Projected production and sales programme ..... X
Working capital requirements ..... XI
Inventory norms and working capital requirements XII
Stocking norms for sprinkler raw materials ..... KIII
Statement of profitability on projected sales ..... XIV
Balance sheet analysis ..... XV
Funds flow statement ..... XVI
Ratio and trend analysis ..... XVII
Weighted average collection period ..... XVIII.
Proforma cost sheet ..... XIX


PARTICULARS_OF MACHINERY_=COST CENTRE WISE

S.No.	Description of Machine	P?	Value of Machinery	Value on 31-12-1982	Depreciat   for 1983		Cost Centre	
1. Kirloskar Shimaga   Lathe		4.15	38320.00	27935.00	2800.00	$x$		
		2.15	26692.00	16786.00	1678.00	X	cost	
3.	Qetoos HMT Centre Lathe	3.15	41059.20	29932.00	2993.00		CEntre	
4.	Geedee Weiler Lathe	1.65	33102.11	21718.00	2172.00		No. 1	
5.	Geedee Weiler Lathe	1.65	22606.10	16479.00	1648.00	$\chi$		
6:	Copying Lathe	6.50	13150.00	11835.00	1184.00		$\begin{aligned} & \text { COST CENTRE } \\ & \text { NO. } 2 \end{aligned}$	
7.	Verticle Milling						${ }^{\chi} \times \mathrm{COST}$ CENTRE	
8.	Horizontal Milling Machine	10.15	113988.60	87309.00	8730.00	$\times$		
10.	Drilling Machine	1.5	3108.87	1338.00	134.00	$\hat{\chi}$		
	Universal Drilling Machine	1.0	10054.00	5936.00	593.00		COST	
11.	Bench Drilling				593.00	X CENTR$\times$ No.P		
	Machine Cincinnati	3.0	11509.00	9322.00	932.00			
12.	Bench Type Drilling					$\chi$		
	Machine	0.9	2652.00	2386.00	238.00	X		
13.	HMT Drilling Machine	9.15	146912.94	137221.65	13722.00	$\chi$		
14.	Battliboi Shaping Machine	3.0	20800.00	15163.00	1516.00		OST   ENTRE NO. 5	
15.	Essics Stalling Machine	1.0	13300.00	8726.00	873.00		OST CENTRE	
16.	PSG Surface Grinder	1.5	5301.75	3478.00	348.00		cost centre	
17.	Praga Surface Grinder	1.65	73958.04	66562.00	6656.00		No. 7	
	Fly Press No. 5	-	940.00	450.00	45.00		cost centre	
19.	Double sided Fly.			2792.00	279.00		No. 8 ;	
20	Press No.10	1.0	4256.00 2392.00	1412.00	141.00		COST CENTRE	



## COMPONENT MACHINE LOADING_MATRIX_=SPRINKIERS

```
 Vertical and
 Compenent & Quantity-Batch. Lathe (5 Nos Copying Horizontal Drilling
```

S.No. Operation Description

Ouantity. Batch. Lathe (5 Nos Budgeted Qty. OT

Copying Horizontal Milling Nos. (2) OT TT

```
(1) BODY \(7000 \quad 500\)
\begin{tabular}{lrrrr}
a. pcs & & \\
a. Turning & 23100 & 24680 & 17325 & 18165 \\
b. Drilling - do- & & 7700 & 7910
\end{tabular}
(2) ARMS
\begin{tabular}{lllllll}
a. Turning \\
b. Driling & -do- & 17325 & 18165 & 15400 & 15610
\end{tabular}
(3) BOTTOM NUT
\begin{tabular}{llrr}
a. Cutting & 7000 & 7420 & 7000 \\
b. Turning & 7420 \\
c. Drılining & & 10900 & 10710 \\
d. Threading & & &
\end{tabular}
(4) BOTTOM TUBE
```

a. Cutting
b. Turning
1575015960
a. Threading
e. Slotting

```
c. Drilling . 1260012810
77007910
```



$$
\begin{array}{lc} 
& 264 \\
\text { APPENDIX } & \text { III }
\end{array}
$$

MACHINE LOADING_MATRIX_=_JOB WORK_WITH R.M.

S.No.	Products Description	Qty. Budgeted	Batch No.	Latbes   (5)   $0 . T$	$\begin{array}{r} \mathrm{CO} \\ \mathrm{~T} \times \mathrm{I}^{2} \end{array}$	Vertic   Hori.   Millin   O.T.	$\begin{aligned} & \text { ical/ } \\ & \text { ing } \\ & \text { TT } \end{aligned}$	$\begin{gathered} \text { Drilling } \\ \text { (5 Nos. } \\ \text { U.T. } \end{gathered}$	.) TT
1.	C.I. Match Plates	50	10			1000	1150	2250	2430
2.	Brush Holder	580	100	5000	5090	17400	17490	17490	17490
3.	Allum Alloy Sindle	2170	500	21700	21.790	10850	10895	6510	6540
4.	Parellel Key	26000	1000			208000	208135	78000	78090
5.	Bearings	280	280	2800	2815				
6.	M.S. Shafts	50	5	9000	9420	3000	3210		
	Boat Pressure Lever	2000	500	20000	20120	30000	30120		
8.	Terminal Jug	50	50	750	780	750	780	250	260
9.	plunger Bush	120	120	1800	1830				
10.	Retainer	370	200	9250	9310				
11.	Contract Block	320	200	9600	9660	3200	3260	3200	3260
12.	Aruing Contact	540	500			8100	8160	2700	2720
13.	Inserts	2040	1000	20400	20490				2720
14.	O.D. 150	140	140	16800	16860				
15.	Outer Contact	100	100	3000	3015	4000	4035		
16.	T.L. Steeve	450	450	6750	6750	4500	4505	4500	4510
17.	S.S. Mercury Dosing	Rod 50	50	2700	2730				
18.	Fan Hubs/Inserts	10250	2000	102500	102830				
19.	Qrease Nipple	5000	2000	50000	50060				
20.	Brass Wedge	90	90			2700	2710	900	905
21.	Hinges	20	20	- 1200	1220				
22.	Sparkler Spares	400	400	1400	1460			1000	1030
23.	Terminals (BEL)	3400	1000			10200	10230		
24.	Star Strio	4900	1000	49700	49760				
25.	Misc. Gen. Items			5000	5440	3000	3030	2900	2930
26.	Terminal Link	26000	5000						
	total (minutes)			339350	341430	306700	307710	1173601	120165
	TOTAL (HOURS)			5656	5691	5111	5128	1956	2002

## JOB_WORKS_= WITHOUT RAW MATERIALS_=COMPONENTS_MACHINE_LOADING_MATRIX




## APPENDIX V

## PRODUCT MACHINE LOADING MATRIX



1. Water Sprinklers

2. Job Works without Raw Materials

3. Job Works with Raw Materials: $\begin{array}{lll}\text { O.T. } & 5656 & = \\ \text { T.T } & 5691 & =\end{array}$

TOTAL

O.T.	7602	1575	54
T.T.	7708	1620	54


5111	1956	900	180	17	1141	13	-	-	145
5128	2002	902	181	17	1148	13	-	-	145
5411	5060	900	355	1267	1141	392	180	350	1895
5440	5180	902	358	1292	1148	406	180	350	1895
4500	11250	2250	2250	4500		4500	2250	2250	2250

Machine H
Capacity
$\begin{array}{lllllllllll}\text { Utilisation } & 68.5 \% & 72 \% & 120.88 \% & 46.04 \% & 40.08 \% & 15.91 \% & 28.71 \% & 25.51 \% & 18 . & 8 \%\end{array}$
NOTE: THE O.T. (OPERATING TIME) AND T.T. (TOTAL time) have been taken from APPENDICES II, III, IV.

## COMPUTATION OF FACILITY HOUR_RATES



APPENDIX VII 270
ALLOCATION_OF EXPENSES FOR_THE _BUDGETED LEVEL OF _PRODUCTION

S. Fixed No. Expenses	Budgeted	Lathe (5)	Copy-   ing   Lathe	cled Hori. Mill-	$\begin{aligned} & \text { Drill- } \\ & \text { ing } \\ & (5) \end{aligned}$	$\begin{aligned} & \text { Shap- } \\ & \text { ing } \end{aligned}$	Slott   ing	Grinder (2)	Fly press (2)	Hacksaw	Compres sor	$\begin{aligned} & \text { Hand } \\ & \text {-fil- } \\ & \text { ing } \end{aligned}$	Assem bly	Grin-   ders   SCC   (2)
1: Wages	64000	30000	4500	12000	6000	2000	1000	3000	1500	500	1100	400	1500	500
2. Rent	13000	4300	800	2700	2400	580	400	800	280	60	400	170	-	110
3. Sal. of Supervisor	18000	4500	900	5400	4500	540	540	720	-	-	-	-	200	700
4. Bonus	15000	7050	1400	2800	1400	460	250	700	350	120	350			
5. Bldg. Maintenance	3250	1075	200	675	600	185	100	200	70	15	100	-	-	30
6. Depreciation	48700	11291	1184	10408	15619	1516	873	7004	324	141	90	-	-	250
7. Interest on Term Loan	22200	5164	540	4750	7200	691	397	3190	147	64	41	-	-	
SCC		63380	9524	38733	37719	5972	3560	12614	2671	900	2081	570	1700	1726
Allocated		518	172	432	432	86	86							
(A) 1	184150	63898	9696	39165	38151	6058	3646	12614	2671	900	2081	570	1700	1726
VARIABLE EXPENSES:														
1. Tools Written Off \& Store Consumed	70000	017500	3500	19600	3500	3500	-	7000.	- 7	7000	-	1400	-	7000
2. Tools Maintenance	9000	02250	- 450	2700	450	450	-	900	-	900	-	-	-	900

APPENDIX VII - B
FIXED COSTS (NON-ALIOCABLE)

1. Baner Charges ..... 400
2. General \& Fire Insurance ..... 3000
3. Printing \& Stationery ..... 1000
4. Postages \& Telegrams ..... 800
5: Auditors' Fee ..... 400
5. Water Charges ..... 300
6. Telephone Charges ..... 4000
7. Profession Tax ..... 1200
9: Fright Inward ..... 5000
8. Freight outward ..... 2000
9. Conveyance Charges ..... 2000
10. Scooter Maintenance ..... 3000
11. Advertisomont ..... 6000
12. Hicences \& Renewels ..... 600
13. Medical Aid to Workers ..... 600
14. Sundry Expenses ..... 12000
15. Commission on Sales ..... 15000
16. Rent (Office) ..... 3850
17. Salaries ..... 27000
18. Building Maintenance ..... 1250
19. Interest on Working Capital ..... 27000
20. Depreciation ..... 1137 ..... 1137
TOTAL ..... 117.537

CONTRIBUTION_ANAIYSIS


V. Boat \& Pressure
$\begin{array}{llllllllllllllllllllllll}\text { Lever Gun Metal } & & 12.00 & 12.00 & 2.93 & 5.42 & 8.35 & 20.35 & 22.00 & 7.07 & 1.65\end{array}$
VI. Allum. Alloy

Spindle
Allum
$\begin{array}{lllllllllllllllll}\text { Casting } & 100 & 30 /- & 3.00 & 3.00 & 0.72 & 1.74 & 2.46 & 5.46 & 9.00 & 5.28 & 3.54\end{array}$
VII M..S. Shafts
steels Rods
3 Rgs. $^{10 /-300.00300 .0013 .4033 .67 \quad 47.07 \quad 347.07370 .0056 .60 \quad 22.93}$
VIII Parellel
Keys -
M.S. Flats
$\begin{array}{lllllllllllllllllllllll}\text { Keybars } & 50 & 10 /- & 0.50 & 0.50 & 0.36 & 0.88 & 1.24 & 1.74 & 2.39 & 1.53 & 0.65\end{array}$
IX Terminal -
BEL -
Brass Strips 40 50/- $2.00 \quad 2.00 \quad 0.15 \quad 0.29 \quad 0.44 \quad 2.44 \quad 3.401 .25 \quad 0.96$

## PRODUCT _ COSTING





## APPENDIX X

## PROJECTED PRODUCTION_AND_SALES_PROGRAMME



CONVERSION_COST												
1. Sprinkler (ns. 711					6352	15246	-15246	15246	6352	6352	6352	
2. Jobbing with HM (Rs.88840)	10661	10661	10661	10661	6885	2665	52665	52665	6885	6885	6885	10661
3. Jobbing without RM (Rs.284285)	35536	34115	34115	34115	21321	8528	8528	8528	21321	21321	21321	35536
$\begin{aligned} & \text { TOTAL } \\ & \text { (RS. } 444271 \text { ) } \end{aligned}$	46197	44776	44776	44776	34558	26439	26439	26439	34558	34558	34558	46197
COST OF PRODUCTION												
1. Sprinkler (Rs.471964)					42139	101136	1c1136	101135	42139	42139	42139	
2. Jobbing with RM (Rs.463840)	55661	55661	55661	55661	35945	13915	139151	139153	35945	35945	35955	55661
3. Jobbing without RM (Rs. 284285)	35536	34115	34115	34115	21321	8528	8528	8528	21321	21321	21321	32536
TOTAL COST OF												
PRODUCTION (Rs. 1220089)	91197	89776	897768	897769	99408	123579	12357912	12350	99405	99405	99415	91197

## APPENDIX XI

## WORKING CAPITAI REQUIREMENTS



The current assets as on 31-12-1982 are Rs.5,81,000/- and the current liabilities are Rs.6,36,000/-. Howerver Rs.1,63,000/Represents a Term Loan to be sanctioned where drawals have been permitted in the c.c. account. Hence the real current liabilities are Rs.6,36,000-Rs.1,63,000 = Rs.4,73,000. The liquid surplus is therefore Rs.5,81,000/- - Rs.4,73,000/- = Rs.1,08,000/-

A limit of Rs.2,25,000/- has been Recommended. The deficit of Rs. 32,500 - is expected to be met out of future profit accruals which are projected to be Rs. $23,000 /-$ per month. The limits recommended are as under:

		Rs.
Limit Against Bills	$\ldots$	$1,50,000 /-$
Stocks	$\ldots$	$75,000 /-$
		$2,25,000 /-$




STOCKING_NORMS FOR SPRINKIER RAW MATERIALS

Particulars	Rate Rs.	Order Qty.	Lead Time	Crash   Lead   Time	Averag   Stock Quant	Value Rs.
	Rs.	Pleces	Days	Day	Pieces	Rs.
1. Body Casting	12/-	500	15	1	250	3,000
2. Arm	12/-	500	15	1	250	3,000
3. Bottom Nut	12/-	1000	7	1	500	6,000
4. Tubes	9.36	1000	7	1	500	4,680
5. Main Jet	1.20	5000	7	1	2500	3,000
6. Soider Jet	1.20	5000	7	1	2500	3,000
7. Pin	4.50	5000	7	1	2500	11,250
8. Spring set	4.00	2000	7	1	1000	4,000
9. Washer set	1.00	5000	28	1	2500	2,500
total						40.430

APPENDIX ..... XIV
STATEMENT OF PROFITABILITY FOR PROJECTED_SALES
Rs. Rs.
A. 1. Sales
2. Scraps sales
14,60,00042,000
$15.02,000$
B. VARIABLE COST_OF PRODUCTION: .
Raw Materials Consumed$\begin{array}{lr}\text { Stores Consumed } & 70,000 \\ \text { Tools Maintenance } & 9,000 \\ \text { Machinery Maintenance } & \\ \text { Overtime Wages } & 15,000 \\ \text { Power } & 36,000 \\ & \\ \end{array}$70,000
9,000$\begin{array}{lr}\text { Stores Consumed } & 70,000 \\ \text { 2. Tools Maintenance } & 9,000 \\ \text { 3. Machinery Maintenance } & 15,000 \\ \text { 4. Overtime Wages } & 36,000 \\ \text { 5. Power } & 12,000\end{array}$
15,000$\begin{array}{lr}\text { Stores Consumed } & 70,000 \\ \text { 2. Tools Maintenance } & 9,000 \\ \text { 3. Machinery Maintenance } & 15,000 \\ \text { 4. Overtime Wages } & 36,000 \\ \text { 5. Power } & 12,000\end{array}$
36,000$\begin{array}{lr}\text { Stores Consumed } & 70,000 \\ \text { 2. Tools Maintenance } & 9,000 \\ \text { 3. Machinery Maintenance } & 15,000 \\ \text { 4. Overtime Wages } & 36,000 \\ \text { 5. Power } & 12,000\end{array}$
5. Power ..... 12,000
--.... 1,42,000 ..... $1,42,000$

1. Tools Written Off \&
C. FIXED \& SEMI VARIABLE COST:
2. Wages ..... 64,000
3. Rent ..... 13,000
4. Supervisors Salary ..... 18,000"- B.onus15,000
5. Building Maintenance. ..... 3,250
6. Depresiation ..... 48,700
7. Interest of Term Loan ..... 22, 200
8.'Bank Charges ..... 400
8. Gen. \& Fire Insurance ..... 3,000
9. Printing \& Stationery ..... 1,000
10. Postage \& Telegram ..... 800
11. Auditor's Fees ..... 400
12. Water Charges ..... 300
13. Telephone4,000
14. Profession Tax
15. Profession Tax ..... 1,20016. Freight Inward17. Freight Outward5,0002,000

$$
2,02,250
$$

## APPENDIX •XIV Contd.....

- RS. Rs.

$$
2,02,250
$$

18. Conveyance Charges ..... 2,000
19: Scooter Maintenance ..... 2,000
19. Advertisement ..... 6,000
21: Licences \& Renewals ..... 600
20. Medical Aid to Workers ..... 600
21. Sundry Expenses ..... 12,000
22. Commission on Sales ..... 15,000
23. Rent ..... 3,820
24. Salaries ..... 27,000
25. Building Maintenance ..... 1,250
26. Interest on Working Capital ..... 27,000
27. Depreciation ..... 1,137

$$
3,00,657 /-
$$

i
Total Cost of Production12,18,475/-2,83,525/-

BALANCE SHEETS


Liquid Surplus: Rs.
(Current Assets - Current Liabilities)

## FUNDS FLOW_STATEMENT

SOURCES	1980	1981	1982.	USES	1980	1981	1982
SHORT TERM				SHORT-TERM			
1. Increase in Bank Borrowings	100	-	155	1. Increase in Stocks	10	4	264
2. Increase in Sundry Creditors	36	69	190	2. Increase in Sundry Debtors	-	104	13.
3. Increase in other cur Liabilities	$14$	3	-	3. Increase in other Current Asscts	21	7	
4. Decrease in other Cur Assets	37	-	-	4. Decrease in other current Liabilities	-	32	6
Sub-Total	177	72	345	Sub-Total	31	147	283
LONG -TERM				LONG -TERM			
1. Increase in Bank Borr	ngs -	47	-	1. Increase in Fixed Assets	48	-	165
2. Increase in term Liabilities	-	1	165	2. Increase in other			
				- term assets	13	16	-
3. Increase in Capital	14	59	2	3. Decrease in other term liabilities	107	28	64
4. Decrease in net block	-	3	-				
5. Decrease in other							
Term Assets	8	9	-				
Sub-Total	22	119	167	Sub-Total	168	44	229
TOTAL	199	191	512	TOTAL	199	191	512



APPENDIX XVII

## RATIOS AND TREND ANALYSIS



## APPENDIX . XVIII

WEIGHTED AVERAGE COLLECTION PERIOD OF MEWOR BILLS RAISEL BY THE UNIT (A SAMPLE ANALYSIS)


(1)	(2) (3)	(3) $-\overline{4}$		( $\overline{6}$ - $\overline{(7)}$	
31.	28-7-82 Jindal	8658.00	30/9/82	74	640100
32.	30-7-82 BEL	2933.00	6/10/82	68	197200
33.	25-7-82 MET	13015.80	22/9/82	59	769000
34.	1-8-82 JINDIL	8325.00	30/9/82	61	506300
35.	11-8-82 NGEL	8408.62	27/10/82	77	616800
36.	-do-	9297.00	28/10/82	78	725400
37.	-do-	4590.65	27/10/82	77	354200
38.	-do-	2603.16	27/10/82	77	200200
39.	16-8-82 D.C. \& V	3357.25	17/10/82	62	207700
40.	26-8-82 N.G.E.F	2570.10	27/10/82	62	158100
41.	28-8-82 JINDASL	23552.40	30/9/82	33	777150
42.	-do-	7498.34	30/9/82	33	247500
43.	1-9-82 MET	3532.86	18/11/82	79	276500
44.	-do-	15056.48	-do-	79	1188950
45.	-do-	2993.63	-do-	79	237000
46.	H.H.V.P.				
	Ltd.	12055.11	20/12/82	142	1831600
$47{ }^{\circ}$	1-9-82 MET	13432.29	16/1/83	138	1849200
48.	20-10-82 -do-	3765.28	22/1/83	93	348750
49.	28-10-82 NGIF	2900.00	10/2/83	105	304500
50.	-do-	2856.10	5/2/83	100	285000
51.	24-9-82 MET	2833.00	10/12/82	77	210000
52.	-do-	22705.34	10/12/82	77	1747900
53.	3-11-82 MET	3137.73	7/2/83	96	297600
54.	-do-	5447.92	7/2/83	96	523200
55.	22-11-82 -do-	16491.85	15/12/82	25	412500
56.	28-11-82 NGEF	3236.00	2/1/83	35	113750
57.	9-12-82 NGEF	6846.72	15/2/83	68	465800
	Rounded off to the nearest 50	406900			27552.500

(round off to the nearest hundred)

WEIGHTED AVERAGE COLLECTION PERIOD
$=\frac{\text { TOTAL: PRODUCTS }}{\text { TOTNL } A M O J N T}=\frac{27552500}{406900}=67$
AVERAGE VALUE OF A BILL


- TOTAL MACHINE $=(\mathrm{B})$

TOTAL VARIABLE' $r$
$\operatorname{COST}=(A+B) \quad=$
TOTAL COST $/=(A+B+C)=$
(C)


## SREE SAILA ENGINEERING ENTERPRISE

## BRIEF HISTORY OF THE UNIT

The unit, originally started in 1968 as M/s Linas Engineering Enterprise Private Limited, was engaged in the manufacture of clamping elements. In 1973, the above named company ciecided to close the unit and Shri Sreesaila, their production engineer purchased the unit and renamed it as $\mathrm{Ni} / \mathrm{s}$ Sree Saila Engineering Enterprise. The unit continued to manufacture the prociucts manufactured by the erstwhile firm. Besides, the unit is executing orcers from $\mathrm{M} / \mathrm{s}$ Lakshmi Automatic Looms Company, Hosur, covering supnly of various products.

The position of the unit's accounts as on 26.2.1983 is as under:
(Amount in Rupees)

Facility	Limit	$\begin{aligned} & \text { Market } \\ & \text { Value } \end{aligned}$	Advance Value	Drawing Power	Outstanding
C.C. Bills	90000	115,598	92,478	90,000	195,522/92
C.C.M.T.	80000	138,367	97, 988	80, 0 O00	
	170000	253,965	190,466	170,000	
	B.F.C. .fs.52,000				
M.T.L.	-	$\bigcirc$	-	33,000	33,000/00

## PRODUCTS MANUFACTURED

The unit is engaged in the manufacture of clamping elements made from alloy steel (EN-8 mostly) and mild steel. The regular product range covered by the unit consists of the following:

1. T. Bolts
2. T. Nuts
3. Studs
4. UClamos
5. Flat Strap Clamp
6. Coose Neck Clamps
7. Table Clamps
8. Double ended Clamps
9. Stepped Packing Blocks
10. Slotted Clamps
11. Clamping Kits, etc.

The unit is also manufacturing the following prociucts based on the orders and specification received from $\mathrm{M} / \mathrm{s}$ Laxmi Automatic Loons Works, Hosur

1. Flanges A (Small)
2. Flanges B (Big)
3. Clamps
4. Clamping Plate
5. Hexspacing Nut
6. Eye Bolt
7. Latch
8. Guide Plate

All the products from 1 to 5 are manufactured in various sizes and for simplicity grouped into 3 categories, viz., low, medium and high ranges of dimension. For study, the product M12 group which are fast moving are taken into account for the purpose of costing.
MIARKET
The unit's customers are machine tools manufacturers and machine tools users. The first category customers buy the clamping elements and sell them along with the machines as standard accessories. While the machine tool users are the enci-users of the products, hence the products are sold directly to the customers. Among the major customers are M/s Hindustan Machine Tools and iii/s Kirloskar Lto. The other products are manufactured by the unit on orders placed by Mi/s Laxmi Automatic Loon Viorks according to the specifications. This segment constitutes about $50 \%$ of the unit's total sales turnover.

## PROCESS OF NANUFACTURE AND FACILITIES

The details of machinery are given in Appendix IV, and the flow process chart for the selected procucts are given in Appencices $I, I I \& I I I$. The process of manufacture involves simple machining and milling operation on standard machine tools. All the operations are done within the unit except for head forging, which is done in sister concern $\mathrm{A} / \mathrm{s}$ Sree Saila Forge, Peenya Industrial Estate and gas cutting of M.S. Sheets which is done by a neighbouring unit.

As the unit manufactures against firm orders there is no economic batch quantity. Only the exact quantity ordered is manufactured.

## CCSTING

The unit has projected for 1983, a total sales of T. $5.5,80,900 /-, 50 \%$ of this constitutes an order receiver from $\mathrm{ki} / \mathrm{s}$ Laxmi Automatic Loom Works worth p: $2,90,000 /$. balance constituting sale of regular products. A separate proclucturise costing has been cone for all the prociucts to be macie and supiliec to $\mathrm{i} / \mathrm{s}$ Laxmi Automatic Looms Ltci., and few representative regular proclucts, viz., I Eelt, M12 stud, i:12 T Nut, N14 flat strap clamps, i114 U clamp and Goose neck clamp 114.

The unit has furnished its buciget of overhead expenses for 1983-84. The budget inclucles selling commission, packing anci forwarcing charges and CIW aggregating pis. $25,500 / \ldots$. The first 2 items of expenciture are recoverable and the other is cirectly traceable to the product. Thus, they have been eliminated from the overheaci expenses.

To arrive at the utilisation of the capacity, machine loacing matrix have been prepared based on the information obtained from the propiietor of the unit with regard to products, quantity, batch quantity, operation time and set-up time, etc.

The capacity utilisation works out as uncier for each of the identified production facility:

1. Hacksaw cutting machine	$67 \%$
2. Vertical milling machine	$97 \%$
3. Horizontal milling machine	$47 \%$
4. Centre lathe	$89 \%$
5. Erilling machine	$5 \%$
6. Bench grinder	$4 \%$

Basec on the capacity utilisation, vertical milling machine has been identified as the bottleneck facility.

Overheads have been allocated, apportioned to production cost centres on suitable logical basis. Fiefer column No. 3 for basis of allocation chart. Allocation of direct costs have been ascertained from the proprietor for each of the procucts and variable and fixed overheac costs have been arrived at based on time utilised in each prociuction cost centre by the prociuct multipliec by the variable anc fixer! hour rates worked out earlies.

All the procucts manufacturec by the unit cover fully their variable costs and are contributing toviards the fied overheacis.

The total contribution for the year 1983-84 comes to Rs. 2,50,655 (Rs.1,02,977 from Laxmi Automatic Loom Works, the rest from the regular procucts).

It is observec from the contribution analysis that the unit is not able to cever the fixed overheac's fully in case of 6 items manufactured and supplied to $\mathrm{ki} / \mathrm{s}$ Laxmi Automatic Loom Works. Therefore, there is a need for the unit to seek of higher price for those itens in production of which it is incuring losses. It is acivisec that the unit concentrates more on sale of the regular products, which have higher margins.
wonking Capital
Assessment of working capital requirements have been worked out on an anticipatec monthly sales of no.47,200/-. The requirement of raw materials to achieve the anticipated monthly sales has been worked out at is.20,000. The total expenses of the unit per month comes to f. 24,000.
aAW BATERIALS
Major raw materials required by the unit are bricht bars, black rods, M.S. sheets, M.S. Flats, etc. The unit has an annual quota of 20 tonnes of K.S. flats and sheets fron KSSIDC. Fiest of the raw materials are obtained from open market. Ratio of quota to open market procurement of raw material works out to 60:40 (1:66). Based on the ABC analysis anc: the neec: to lift quota allotments, an inventory of 7 vecks' requircments of raw materials has been provicled for.

STOCK-IN-P:iOCESS
The process involves cutting, milling, drilling, machining and other operations which normally takes 15 days to convert the raw material into finished products. Therefore, a provision for holding of 15 cays' stocks has been macie.

FINISHEL GOOT,S
A. Diovision for holcing 1 weck's finished goods has been macie while arriving at the working capital requirements to enable the unit to arrange for transportation/despatch.

## SUNLiY DEBTCRS

Average collection period for the unit's receivables comes to 68 days. Therefore, a provision for financing the unit's requirements for 68 days less $10 \%$ margin has been made.

## EXPENSES

The total expenses of the unit per month works out to Ps.24,000. The total working capital requirements of the unit works out to $\mathrm{R} .1,93,500$. The unit gets one month's credit on purchases made from the local suppliers which works out to Rs.10,000 and from other creditors on account of expenses another his.10,000. Thus the total credit availability for the unit has been assumed as $\mathrm{Es} .20,000$.

The permissible limits for the unit against stocks comes to Ps.52,350 and against bills Rs. 96,300 . Therefore, the following limits are recommended for sanction:

Cash credit (M.T.) Rs.52,000
Cash credit (Eịlls) $\frac{\text { Rs. } 96,000}{-2.1,48,000}$
There is a deficit of Rs. 30,500 incluciing Rs.5,000 liquid deficit in the Balance Sheet as on 28.2.1982 amounting tax. The deficit in the working capital requirement has to be met by the unit either by infusion of fresh capital or by ploughing back the profit accruals or by both.

In the event of the proprietor expressing his inability to bring in fresh funds, a clean cash credit limit of Rs. 25,000 repayable over a period of 12 months may be considered for sanction keeping in view the conduct of the unit's accounts in the past.

INVENTORY CONTROL
An ABC analysis of the stocks of raw materials has been worked out and is given in Appendix XV. The unit is mainly using EN8 rods, EN8 kright, M.S. flats, plates, etc., for the manufacture of its products. These items except $\mathrm{H} . \mathrm{S}$. plates are available locally and the lead time for the materials varies from 2 days to one week. Howevcr,
M.S. plates are allotted by the KSILC atiregular intervals. As the quota material is insufficient, the unit buys M.S. plates in the open market also. About 9 items of raw materials account for $73.8 \%$ of the total value of materials consumed during 1982. These items have been classified as 'A'. The balance 10 items are classified as B \& C items.

SAFETY STCCK
A chart detailing the quantity of raw materials of ' $A$ ' items consumed cluring 1902 has been drawn. The safety stock of these items has been worked out by applying the following formula:

Safety stock $=\quad$| (hiaximum consumption rate - |
| :---: |
| Average consumption rate) $X$ Lead time |

ECONOVIIC ORDER QUANTITY
The economic order quantity has been arrived at on the basis of the following formula:
$\mathrm{EOQ}=\sqrt{\frac{2 A a}{I \times C}}$
The order cost, transport cost, inventory carrying cost, etc., have been worked out on the information supplied by the proprietor and the EOQ was calculated taking into consideration the transport cost.

MINIMUM ORDER QUANTITY
As all the raw materials are freely available in the local market, no minimum order quantity is stipulated by any of the suppliers. The order quantity is taken as maximum of minimum orcier quantity / economic order quantity / lead time consumption.

AVERAGE STCCK
fiverage stock has been arrivec at employing
the following formula:

$$
\text { Average stock }=\text { Safety stock }+\frac{\text { Ordei_guantity }}{2}
$$

A detailed study on the above pattern was considered not necessary for $B$ and $C$ items as they comprised of materials of smaller value. However, a safety stock of one month and an order quantity of two months have been arrived at on ad-hoc basis based on past experience. The last category of items, viz., Quota materials, no formula could be applied by $w$ since these are allotted by the KSIDC at irregular intervals and the unit has no option but to lift the same immediately.

## SUMiARY OF FINDINGS AND RECOMENDITIONS

It is recomnendec that 2 or 3 pieces be clamped at a time when doing the milling operations as against the present practice of milling one piece at a time, thus bringing down the total time per piece. This would also result in better utilisation of the machine and increase in the capacity. This is specially recommended for milling long and medium size clamps.

While making slots in the clamps the dxilling and milling operations are cone on the milling machine. It is suggested that drilling machine which is used sparingly ( 992 minutes per month) is made use for crilling operations for making shots in the clamp instead of the milling machine which is the practice at present.
naw materials, viz., bright rods and bars are kept on the floor of the shop haphazardly hampering free movement of workers in the shop area. It is suggested that raw materials are properly stored in a corner of the workshop using a suitable stand.

The unit has on hand an order worth Rs. $2,90,600$ from $\mathrm{M} / \mathrm{s}$ Laxmi Automatic Loom Works, Hosur, for execution during 1983-84.

It is observed from the cost contribution analysis that the unit is making a net profit of Ps. 4,770 on execution of this orcler. The total contribution made by this order towarcls the unit's fixed overheads comes to $\mathrm{R}_{5} 1,02,977$. Balance contribution out of total fis. $2,50,656$ and total net profit of R. $.38,773$ is from the unit's regular products.

Though the unit makes a net profit of $\mathrm{fs} .4,770$ only on the orcer received from $\mathrm{N} / \mathrm{s}$ Laxmi futomatic Loom Works, it gives stability to the unit's operations and
results in covering fixed overheads to the tune of ins.1,02,997. It is however recommended that the unit should try and obtain a higher price in respect of those products where price obtained at present is insufficient to cover the fixed overheads, especially, clamps, hex spacing nut, clamping plate and eyembolt. It is also suggested that the unit concentrates more in future, on sale of its regular products where the margin of profit is very high.

Capacity utilisation chart reveals that the bottleneck machine is vertical milling machine, which is utilised to the extent of 19,364 minutes out of the available 20000 minutes, which expressed in percentage works out to 97\% of the available capacity. The next bottleneck machine being centre lathes which are utilised to the extent of 35508 minutes out of the available time of 40,000 minutes which works out to $89 \%$ of the capacity. It is therefore sucgested that greater attention and more care he exercised in handling the critical facilities.

FINAINCIAL ASSESSNENT
The unit's financial position has been analysed and the following observations have been made.

Sales have steadily increased from Es. $1,88,000$ in 1979 to Rs. $4,86,000$ in 1982 ( 11 months period) with the year 1979 as the base, the increase works out to 201\%.

The \% of raw materials, the total sales and \% of expenses in the sales are as under:

1979 to . 1982
naw materials
42\%
46\%
Expenses
50.53\%

45\%
There has been a steady increase in profit during the period under review. Net profit has increased fron lis. 3,000 in 1979 (the I year of the unit) to I.s. 16,000 in 1982 (for 11 months period).

The trend analysis indicates, (with 1979 as basc year), that sales have increased by $201 \%$, consumption of raw materials by $151 \%$, expenses by $230 \%$ ( 1901 ) and profit by 633\%. The net profit per centage on sales which was $1.59 \%$ in 1979 has gone upto $5.02 \%$ in 1981. Further, it is expectec to go upto $6.67 \%$ in 1983.

The current position during the period under review has not been very comfortable except for 1980. There has been a liquid deficit of fo. 9,000 in 1979 , Es.11,000 in 1981 and Es.5,000 in 1982. The position has resulted inainly due to withdrawal of lis. $16,000 \mathrm{from}$ the partner's current account during 1931 and due to nonplough back of a portion of the profits to strengthen the equity basc. The position calls for strengthening cf equity base by curtailing drawings by the proprietor to the minimum extent and, if possible, by infusion of fresh capital.

The unit has becn able to bring clown the average collection period of reccivables which was 93 days in 1981 to 68 days in 1902. It is suggested that the unit start to follow-up the reccivables promptly.

## INVENTORY CONTKOL

Raw materials consumed by the unit for its products arc classified as 'i' class; ' $B$ ' class and ' $C$ ' class items. f.part from this, li.S. plates which fall under quota allotment by the KSILC are treatec separately. boout 9 items which constitute $73.8 \%$ of value of rav materials consumec: ciuring 1982 are classificc' as ' 11 class items. The remaining items are taken altogether and treater as 'E' and ' C ' class items. The orcier quantity has been arrivec' at after taking into consideration the economic order quantity as vell as minimurn orcer quantity. In this type of inclustry, the supplicrs do not proscribe any minimum quantity for purchase. lis such only the cconomic order quantity alone renains to be adopted. However, the abnormal cost of transport would rencier it impossible for the unit to place repcat orders based on conomic order quantity. Therefore the unit's order quantity has been arrivec at 200 kgs . (ECQ consicicring the transport cost also) for all the ' $\therefore$ class itums. The order quantity for 'g' and 'C' class i.tems has been worked out on ad-hoc basis with cluc consideration for past consumption pattern. is regare's the quota allotment items, viz., li.s. plates, the unit cannot follow any procuring pattern as the allotnents arc made at irregular intervals and the cuantities are also subject to change.

## Bīe/_K-EVEN LEVEL

Breakmeven level for the unit has been worked out applying the formula

Total overhead expenses $\times$ Total sales
Total contribution
which works out to Rs. $4,08,393 /$ - expressec in percentage as $68.07 \%$ of the projectec level of sales.

## LIST OF APPENDICES

Flow process chart - Flanges B ..... I
Flow process chart - Clamps ..... II
Flow process chart - Eye Bolt ..... III
List of machinery ..... IV
Projected Sales for 1983-84 ..... V
Budget of overhead expenses for 1983-84 ..... VI
Component machine loading matrix ..... VII
Capacity utilisation of facilities ..... VIII
Allocation of overheads ..... IX
Variable and fixed overheads ..... X
Direct cost ..... XI
Cost and contribution analysis ..... XII
Break-even point ..... XIII
Estimated ficures of profitability for 1983-84 ..... XIV
ABC analysis of raw materials ..... XV
Monthly consumption of ' $A$ ' class items ..... XVI
Inventory system of ' $h$ ' class raw materials ..... XVII
Economic Order Quantity for ' $A$ ' class items ..... XVIII
Inventory norms of ' $\mathrm{B}^{\prime}$. \& 'C' class items \& Quota items ..... XIX
Balance Sheet as at 31.3.79, 31.3.80 \& 31.3.81 ..... $X X$
Balance Sheet as at 29th Felruary 1982 ..... XXI
Past performance ..... XXII
Financial analysis ..... XXIII
Irend analysis ..... XXIV
Assessment of working capital requirements ..... XXV

## FLCU PIIOCESS CHART - FLANGES B

M.S. Plates cut by sub-contract ...
Plates cut to required size
Mill one surface
Mill opposite surface
Mill adjacent surface
Mill last surface
Drilling 1
Urilling 2
Drilling 3
Irilling 4
Trilling 5
Ieboring
Inspection

## APPENDIX II

## FLOU PriCCESS CHART - CLAMPS



FLOW PEOCESS CHARI - ... EYE' BOLI
EN8 Round rod cut to required length
Forge (sub-contract)
Turning the tail to the required size
Turning head portion
Facing
Tapering turning treck portion (sub-contract)
Milling the head portion
Iniling for length control
Inspection
Packing
Reaming of the drill

## APPENDIX IV

## LIST OF MACHINERY

Machinery	Year of   purchase	H.P.	Book value   31.3 .183
1. Horizontal milling machine	1967	3	Rs.
2. -dom	1981	4	19,500

## APPENLIX $V$

PROJECTED SALES FOR 1983-84


## APPENDIX VI

BUEGET OF OVERHEAL EXPENSES FOR 1983-84

			Rs.
Wages, incentives bonus, etc.,	$\cdots$	-	55,000
Tools \& accessories	-	-•	40,000
Consumabie stores	-	$\cdots$	18,000
Power	-	-	4,320
Wiater	-	-•	480
Fiepairs \& maintenance	*	-	3,000
Depreciation	-•	-	17,868
Rent	-	-	5,748
Interest on Tis.	-	-	3,000
" W.C.	-•	-	22,800
Bank charges	-	-	500
Salaries to proprietor	-	-•	18,000
Salary - skilled staff	-	-	18,000
T.A. \& Conveyance	-	-•	6,500
Printing \& stationery	-	-	2,000
Postages, telephone \& telegram	$\cdots$	-	5,500
Professional charges	-	-	6,000
Professional tax	$\cdots$	.	2,507
Advertisement	-	-	1,000
Sales promotion	-	-•	3,000
Carriage outwards	.	-•	2,500
Insurance	-	-	700
Vehicle maintenance	-	-	1,500
Labour welfare	-	-•	5,000
Subscription	-	-	500
Miscellaneous	-	-•	3,747
Selling commission	-	.	15,000
Freight inward	-	-	1,500
Packing \& forwarding	-•	-•	9,000
Total			67,040

APPENDIX VII
COMPCNENT MiACHINE LOALING MATIIIX


APPENDIX VII contd..


M.	T.T.	A.T.	Percentage   utilisation
1. Hack saw	26754	40000	$67 \%$
2. Vertical milling machine	19364	20000	$97 \%$
3. Horizontal milling machine	18700	40000	$47 \%$
4. Bench grinder	750	20000	$4 \%$
5. Drilling machine	992	20000	$5 \%$
6. Centre lathe	35508	40000	$89 \%$

NOTES
T.T. = Total time (Book time)
A.T. $=$ Available time
$=$ No. of shifts $\times$ No. of machines $\times 400$ minutes $/$ day
$\times 25$ days.



Sl. No.	LASCH			guide plate t belt			T	UT M		$M 12$	Flat Strap Clamp		U Clamp Coose Neck			
	V	F	v	F	V	F	V	F	V	F	$v$	F	V	F	$v$	$F$
1.	0.11	0.24	0.11	0.24	0.02	0.04	0.03	0.07	0.02	0.04	0.48	1.05	0.48	1.05	0.31	0.67
2.	0.17	0.40	0.17	0.41	-	-	0.06	0.14	-	-	0.38	0.89	0.47	1.10	0.92	2.17
3.	0.43	1:21	0.32	0.91	0.12	0.64	0.34	1.37	-	-	0.99	3. 68	0.26	4.35	1.28	4.84
4.	-	-	0.27	0.90	0.20	1.37	0.13	0.17	0.19	0.76						
5.					.	-										
6.			.		0.12	0.14	.		.							
7.	0.11	0.49	0.18	0.79	0.02	0.07	0.04	0.18	0.01	0.05	0.04	0.17	0.04	0.17	0.05	0.23
Total	.		$\cdots$	-	' ${ }^{\text {¢ }}$	$\because$				$\uparrow$		$\bigcirc$		.	-	
	0.82	2.34	1.05	3.25	0.48	2.26	0.60	1.93	0.22	0.85	1.89	5.79	2.25	6.67	2.59	8.01

Variable 0.H/4iece
and Fixed $0 . H /$ Piece



## BREAK-EVEN POINT

	$\frac{\text { Contribution }}{\text { lis. }}$	$\frac{\text { Profit }}{\text { hs. }}$	$\frac{\text { Loss }}{\text { IS. }}$
${ }_{\text {Flanges }} \quad \begin{gathered} A \\ E \end{gathered}$	$\begin{aligned} & 31,570 \\ & 24,185 \end{aligned}$	$\begin{array}{r} 15,820 \\ 7.945 \end{array}$	
Clamps	7,740		-18,810
Clamping plate	5,700		2,850
Hex Spacing Nut	6,180		3,810
Eye bolt	15,060		2,520
Latch	2,775		735
Guide plate - 102,590	9,180		2,270
T Nut	6,786	2,329	
T Bolt	37,466	5,148	
Stuc	3,256	1,386	
Flat strap clamp	11,543	7,722	
U Clamp	9,746	7,185	
Gooseneck clamp 74.018	5,221	3,491	
TOTAL CONTRIEUTICN FROAI LAKSHAI OiLEE.	1,76,708	51,526	28,995
		23,995	
		- 22,531	
T Eolts $\quad \mathrm{H}+\mathrm{N}$	28,034	3,852	
Studs $\quad \mathrm{H}+\mathrm{N}$	4,14.4	1,764	
T Nuts $\quad \mathrm{H}+\mathrm{iv}$	13,075	5,451	
Flat strap clamp $\mathrm{H}+\mathrm{il}$	13,642	9,126	
U Clamp $\mathrm{H}+\mathrm{M}$	11,573	8,532	
Goose neck clamp H + M	3,480	2,327	
total contnibution TOTAL P:CFIT	2,50,656	53,583	
BREAK-EVEN LEVEL: P.E.P.	$=\frac{\text { Iotal }}{} \text { fixed } 0 . \mathrm{H} \cdot \frac{\mathrm{x} \text { Total sales }}{\text { Total }} \text { contribution }$		
	$=14585 \frac{\text { Tota }}{\times} \frac{1}{250}$	$\begin{aligned} & \frac{1}{2} \text { contrib } \\ & 2 \times \quad \% \\ & 656 \end{aligned}$	$\begin{aligned} & \text { ution } \\ & 900 \end{aligned}$
	4.08,393 Fs.		
	68.07\% of p	rojected	ales

ESTIMATEE FIGUGES OF PiOFITAEILITY FOii 83-84.

ENCLOSUAE	
Sales	Rs. 5300900 (A)
Raw materials consumed 252,844   Less: Scrap 15,967	
Net 236,877	
Su's-contract charges 48,900	
	Ps.285,777
Consumable stores	Es. 18,000
Power \& fuel	Es. 4,320
Repairs and maintenance	Es. 3,000
Wages	Es. 55,000
Factory supervision and overheads	Fis. 42,500
Administrative overheads (office salaries, insurance, rent, travelling and other expenses, etc.)	Ris. 43,928
Selling and advertising expenses	Is. 4,000
Interest on borrowings:	
a) Cn maximum permissible (working capital limits) as per enclosure 'B'	
b) On term loans sanctioned (and/ or) to be sanctioned.   Rs. . 3,000	
c) On other borrowings . 500	If. 26,300
Depreciation	Fs. 17,868
Salaries of partners	Iis. 18,000
Other expenses	IS. 8,624
Total expenses	Ro.527,317 (B)
Profit ( $A-B$ )	Re. 53,583
Less: Comnission on sale of regular prociucts	Rs 14,810
Net profit	Rs. 33,173

## A B C ANALYSIS OF RAW MATESIALS

		Qty.   Kgs.	Rate	Value	Cumulative Total	
1.	16 mm Bright	1351	9.50	12,834.50	12,834.50	
2.	EN8 22Ni nod	1634	7.00	11,438.00	24,272.50	
3.	25mm Bright	854	9.00	8,113.00	32,385.50	
4.	$20 \times 40$ Flats	766	7.50	5,745.00	38,130.50	
5.	20mm Bright	567	9.50	5,385.50	43,517.00	
6.	EN8 32min Rod	716	7.00	5,012.00	48,529.00	
7.	EN8 25mm Bright	520	9.00	4,680.00	53,209.00	' $\mathrm{A}^{\prime} \mathrm{Cl}$ ass
3.	EN8 20mm Rod	612	7.00	4,284.00	57,493.00	,
9.	28 mm Bright	445	9.50	4,227.50	61, 720.50	73.81\%
10.	EN8 45mm Rod	571	7.00	3,997.00	65,717.50	
	EN8 36 mm Rod	492	7.00	3,444.00	69,161.50	'E'Class
:2.	EN8 50 mm Rod	441	7.00	3,087.00	72,248.50	
13.	EN8 40 mm Rod	393	7.00	2,751.00	742999.50	15.80\%
14.	ENB MM Rod	375	7.00	2,625.00	77,624.50	
15.	24 mm Bright	276	9.50	2,622.00	80,246.50	
16.	M.S. 28 Bright	241	7.50	1,807.50	82,054.00	'C'Class
17.	EN8 10 mm Bright	100	9.50	950.00	83,004.00	
18.	EN8 55mm hod	100	7.00	700.00	83,704.00	10.40\%


Rew Materials	Januar	February March April May June JulyAugust September October November December											pue
1. 16 MM. Bright	300	347	237	-	-	-	-	-	265	-	-	202	113
2. EN B 22 MM	520	300	200	-	-	-	210	100	200	104	-	-	136
3. 25 mm . Bright	-	-	600	-	-	-	-	-	-	-	254	-	71
4. $20 \times 40$ Flats	245	$\cdots$	521	-	-	-	-	-	$\cdots$	-	-	-	64
5. 20 mm . Bright	-	-	100	-	-	-	-	-	-	-	-	467	47
6. EN8 32 mm .	-	363	7	-	-	-	-	-	-	346	-	$\cdots$	60
7. EN 825 mm .	-	-	-	\%-	-	100	-	91	-	137	-	192	44
8. EN 820 mm .	325	148	-	-	-	-	-	-	-	169	-	-	51
9. 20 mm . Bright	245	-	-	-	-	-	-	-	-	-	200	-	37



APPENDIX XIXINVENTORY NORMS FOR 'B' AND 'C' CLASS ITENS \& QUOTA ITEMS
B_\&_C_ITEMS Consumption
Rs.22,000/- per annum
S.S. = 1 month
O.Q. = 2 monthsS.S. $=\frac{22000}{12}=$ Rs. $1,800 /-$O.Q. $=$ Rs. 3,600 (2 months)
Average stock for B \& C.items $=1800+\frac{3600}{2}=$ R. $3,600 /-$
QUOTA ALLOTMENTMaximum ailotment during 1982
6.39 tonnes value Rs.22,365/-
TOTAL_RAW MATERIALS_INVENTOTY
Value of average stock of 'A' Class items Ro.10,837/-
-do- $\quad \mathrm{B}$ \& C Class items $\mathrm{I} . \mathrm{B}$. 3,600/-Maximum quota allotment
Rs. $22,365 /-$
Rs. $36,802 /-$
$=$
Balance sheet as at $31-3-79,31-3-80$, and 31-3-81.




APPENLIX $X X I I$

## PAST PERFORMANCE .

$1979 \quad 1980 \quad 1981 \quad 1982$

Sales	188	293	378	486
Paw materials	79	85	120	225
Expenses	95	174	219	218
Depreciation	11	20	20	27
Profit/Loss	3	14	19	16

## APPENDIX XXIII

## FINANCIAL ANALYSIS

[1979 198190190			
1,7			
Profitability	-1.59\%	4.78\%	5.02\%
Liguidity ratio	0.92:	$1.04 ?$	0.93
CA/CL	i :	1\%	20
Acid test ratio CA - Stocks/CL	0.47	0.43	0.65
Equityatebt	2.24	2.34	3.60
Equity/Sales	$2.84^{\circ}$	$4.50{ }^{7}$	$9.00^{\circ}$
Long Term Debt	0.30	0.25	0.57
Stock turnover	\% $\%$	4.13	5.73
Average collection period		42 days	93 days
Payment period for creditors :- ! $t$	$\therefore$	88 days	40 days
nsset turnover ratio	i ${ }^{\text {a }}$	$\therefore \therefore$	53
T.opales	0.88	1. 33	1.62
! ! ! ごy \%*.		1. $\because$	$\because, \because$

## APPENDIX XXIV

## TREND ANALYSIS

	1979	1980	1981
Sales	188	293	378
	100	155	201
Fav materials	79	85	120
	100	107	151
Expenses	95	174	219
	100	183	230
Profit	3	14.	19
	100	466	633
Liquidity ratio	0.92	1.04	0.93
	100	113	101

APPENLIX XXV
ASSESSNENT OF VOFKKING CAPITAL FEQUIEENENTS
A) Monthly sales
B) Cost of production
C) Raw materials consumed

$\therefore \quad$|  | 1 |
| :--- | :--- |
|  |  |
|  |  |
| Bs. . |  |

Less: Margin 25\% - -2,200 27,600

Horking capital required --ms. 36,800
ii) Stock-in-process 15 days 22,000 Less: Margin $25 \%$ _52500
ii) Finished goods 1 week 11,000 Less: Margin $25 \% \quad 2,750$
iv) Sundry Drs.(at sale value) 68 days 107,000 Less: $10 \%$ Margin. 10,700

Sundry Drs. at cost
96,300
99,700
v) Expenses 1 month(s)

c) Liquid deficit in balance sheet as on 23.2.1982
TOTAL WORKING CAPITAL REQUIRED:
LESS: a) Sundry creditors
( 1 month purchases)
b) Limits recommencied

DEFICIT

5,000
$-198,500$
168,000
30,500

## SOUTHERN GNCILL/UIIES (PRIVATE) LIMITED

## BRiEF HISTORY OF THE UNIT

The unit was established as a private limited company in 1968. It was started as an associate concern of $\mathrm{Ni} / \mathrm{s}$ Southern illoy Foundries ( P ) Itd., one of the leading SG. Iron manufacturers in India. The present Board of Directors are:-

1. Sri S Thiagha Rajan, B.E., N. A., R. L.F.S.
2. Sri S Sadasivam
3. Sri M Subramaniyam
4. Sri S Ratnavel
5. Sri S Karunanancham

Sri S Sadasivam, who is also one of the dircctors and a diploma engineer in Niechanical Engineering looks after the day to day affairs of the company.

The unit came to Bank in Lecember 1970, when an instalment credit loan of Rs. 27,400 was sanctioned. Again the unit was sanctioned a term loan of Rs.85,000 for purchase of machinery in October 1975 for its unit No.II at Kodavasal, Tanjore District. The above two loans have becn repaid promptly. A term loan of Rs. 82,500 was sanctioned on 19.6.1980 to meet cost of machincry partially. Another term loan of lis.1,99,400 was sanctioned on 3.11.1981 for the purpose of purchase of machinery.

PASI PERFORMANCE
The unit's performance over the years has been satisfactory. The sales/service turnover and profit figures are given below:-

figures are giver	balo	('000s)			
	1976-77	1977-78	1978-79	1979-80	1980-81
Sales/Service *	313	415	267	378	403
Profit *	132	155	35	89	32

[^27]
## COSTING

IMPORTANCE OF COSTING
A good system for costing and pricing will be of assistance in making sound financial and marketing decisions in a small scale industry. The scientific costing enables, to vary the prices without affecting its economic viability keeping an edge over the competitors. The unit being basically a machine shop, the value added can be identified with a machine centre.

## COST CENTRE

In developing the costing system the entire machinery in the factory as given in fppendix $I$, has been subdivided into production cost centres, service cost centres and unbooked cost centres, while doing this two leased planing machines which have been leased to unit's sister's concerns are not considered.

The service cost centres are:-

1. Generator
2. Tool cutter grinder
3. Hacksaw machine
4. Bench grinder
5. Welding set

Because of their non-utilisation the following machincry are classified as unbooked cost centres.

1. MM centre lathe - 4
2. 12' Punjab lathe
3. Radial drilling machine
4. HMT LB 20 lathe

During the discussion with the Director it was told that the negotiations are underway for few new orders from Ashok Leyland\&if it comes through both Radial drilling machine and HNiT LB 20 will be utilised.

MACHINE LOADING M/TRIX
Detailed time study was conducted on the items. Operation times and total times for various operations were computed after applying rating and giving allowances. Appendix II, gives the operation time and total time for each operation. For the budgeted programe, a
component-Machine Loading Matrix was built as shown in Appendix III. The percentage utilisation of the machines and the performance index of the unit is also shown in this lippendix.

## PROJECTION OF PROFITiBILITY AND EXPENSES FCR THE

 BUIGE TED PROGRMAIEThe projected profitability and expenses are shown in Appendix V. These projections have been made on the basis of past ciata and on discussion with the unit. The expenses on power, fuel, consumable stores and tools and repairs and maintenance of machinery are considered as variable expenses.
is the unit is presently engaged in jobing. hence there is no raw material utilisation. While computing the variable cxpenses, an allowance for price rise upto $10 \%$ has been taken into account.

Hages, salaries, bonus, insurance, depreciation on machinery, MTL Interest, repair of builcing and administrative and other expenses have been considered as fixed expenses. Wages have been arrived at after summing up of the individual wages of all the 17 operators. Expenses on insurance, ciopreciation, MTL interest, etc., are the actual expenses the unit would incur. The interest on the W.C. limit recommended is considered as administrative and other expenses.

## ALLOC\&TION OF EXPENSES

All the expenses have been broken into variable and fixed expenses and allocated to different cost centres. The fixed expenses are further sub-classified as production fixed expenses and administrative and other fixed expenses. Salarics of office staff, remuneration to Director, Dircctor's sitting charges, ctc., are taken as administrative expenscs.

While allocating both fixec and variable production expenses to different cost centres, the responsibility of each cost centre in incurring it are taken into consicleration.

## FIXED EXPENSES

(a) WAGES: This comprises of wages for operators. This has been apportioned on the basis of actual number of operators allotted to each cost centre. ESI, EPE and LUF have been apportioned on the same lines.
(b) SUPERVISOKS' $\$ NL INSPECTORS' S $M$ LARIES: This has been apportioned on the basis of extent of supervision and inspection demanded at each cost centre.
(c) REPAIti iND INTEREST ON LE/ASEHOLD OF BUILDING: This has bcen apportioned on the basis of the area occupied by each cost centre, including the service and unbooked cost contres. The area occupied by each machine is given in fippendix $I$.
(d) INSURANCE: This has been apportioned on the basis of the value of each machine.
(e) M.T.L. INTEREST: This has been apportioned on the basis of actuals and allocated to respective cost centres.
(f) DEPFiECIATION: Depreciation of the machinery is apportioned on the basis of value of each machincry.
(g) GENEIATOR: Fixec expenses on the Generator are reallocated to other booked cost centres on the basis of the product of H.P. of each machine and total number of operating hours on each machine.
(h) SERVICE COST CENTRES: The machines which are utilised for servicing and which are not directly involved in the jobing are considered in this head, expenses on these machines are re-allocated to the booked cost centres on the basis of sub-totals.
(i) UNBOCKED COST CENTRES: The machineswhich are unbooked are consiciercd under this head. Allocation is made on the basis of sub-totals.

VAKIiBLE EXPENSES:
(a) POHER AND FUEL: The expenses on the power and fuel are apportioned on the basis of product of H.P. and the hours booked on each cost centre. The fuel is also consiciered in this head as the fuel is used by the generator.
(b) FEPAIR /ND MACHINERY: The apportionment is made on the basis of the extent of use (age) and the replacement cost of the machine.
(c) CONSUMABLE STORES AND TOOLS: These include coolant oil, lubricants, kerosenc, cotton waste, etc., and tools like drills, reamers, and other cutting tools. Allocation has been made on the basis of past data and in consultation with the unit.

## /DMINISTRATIVE AND GENERAL EXPENSES

Will the costs other than procuction overheads are considered in this catogory. The expenses are shown in Appendix IV. The expenses are considered as fixed and distributed on the basis of the procuction fixed costs.

M/CHINE HOUP: RATES
From the total, variable and fixed costs, variable hour rate and fixed hour rates are computed. The fixed hour rate will. be valid for a particular time-bound production and cecreases with increased production, whereas the variable hour rate remains a constant.

Variable machine hour rate $=$ Total variable cost at the
Total operating hours
Fixed machine hour rate $=\frac{\text { Total fixed cost at the centre }}{\text { Total booked hours }}$
i.ppendix VI gives both the fixec and variable machine hour rates. It is observed from the fppendix VI that the fixed machine hour rates are very high in case of centre lathes DN 2 and min. This is because of the fact that these two machines are very much uncler-utilised. The unit should take steps to step up the utilisation of these two machines. Fixce hour rate is slightly higher in C $\triangle P S T A N$ lathe because of interest burcen.

## PROLUCT COSTING

After ceriving fixed and variable hour rates at cach cost centre, costing can bo done for each job. The fixed and variable costs at each cost centre could be computed.

Fixed cost $=$ fixed hour rate $X$ booked hours at the centre
$\begin{gathered}\text { Variable } \\ \text { cost }\end{gathered}=$ variable hour rate $X$ operating hours at
This is shown in fppendices VII and I入.
The total cost of each product is derived by adding total variable cost and total fixed cost and this is shown in Appendix VIII.

## CONTRIBUTION AN/LYSIS

Appendices VIII \& VIII-A shov the sale value/ piece. Mppendix VIII shows the contribution analysis without taking into consiceration the scrap. Whereas Appendix VIII-f. shows the contribution analysis after taking into consideration the income from scrap sales.

The total revenue - total variable cost gives the contribution for each product. It is seen from Appendices VIII and VIII-A that all the items contribute positively. It is also seen that the maximum contribution is from Elbow and the minimum contribution is from F.T.C. collar. Though the unit is making loss from F.T.C. collar because of very high fixed hour rates of Mili centre lathes 2 and 3, as this item is giving positive. contribution, the unit should continue to job this product. Hovever, the unit should raise the utilisation of the above two machines in order to reduce the high fixed hour rates. The value added as shown in Appendix $x$, in case of Nozzle clamp is $70 \%$, Drain plug $84 \%$, Elbows $76 \%$, Tee pieces $83 \%$ and in case of FTC collar it is $183 \%$. The unit should try to get a higher price in the case of drain plug. Tee pieces and F.T.C. collars, contribution/ critical facility hour is better in CAP Elbows compared to Tee piece as shown in Appendix $X-A$.
GIDEITIONAL JOB ORDEFSS
The unit should try to get additional job works in order to utilisc under-utilised and unbooked machines. The charges can be fixed at least to cover the variable expenses, excess going to meet the fixed expenses. The pricing of each item could be cone as per the format given in cippendix IX by computing, operating time and total time.

SUMMARY OF FINDINGS AND RECOMMENDATIONS
(a) M/CHINE LOADING MATRIX

The utilisation of each machine for the projected level of operation is given in the component Machine Loading Matrix shown in Appendix III.
(b) PROFIT/BILITY

The profitability at the projected level of operation is shown in Appenclix $V$.
(c) MACHINE HOUR COSTING

Apportionment of projected expenses to production cost centres and derivation of machine hour rates is shown in Appendix VI. In the case of MMM2, and MMM3 the fixed hour rates are very high as both these machines are very much under-utilised.
(d) 'PRODUCT COST

Cost for each product has been derived by summing up the products of process times at each machine centre and variable hourly rates and the product of Total time for each product and fixed hourly rates. Derivation of labour cost, variable and fixed costs are shown in Appendix VII. The total cost/piece, contribution and profit/loss per piece are shown in Appendix VIII and VIII-A. Cut of 5 items, the unit is incurring loss in one item, ie., F.T.C. collar. The loss here is due to the reason that the item is being processed on the centre lathes $\operatorname{MLM} 2$ and MiMM3, which are very much under-utilised, hence resulting in very high fixed hour rates. However, the item is giving positive contribution. The unit should take steps to utilise these under-utilised lathes to capacity. Also, the unit should try to increase its labour charge on the drain plug, tee pieces and F.T.C. collars.
(e) MARGINAL COSTING:

The unit can make use of the hourly rates for decisions on taking job orders on under-booked machines, like centre lathes MM2 and MMM3, HMT milling, radial drilling machine, HMT LB 20 lathe, etc: The variable cost of any, job should be covered by the service cherge and excess will go towards meeting the fixed oyerheads. The variable machine hour
sates can be made use of for this purpose. A model computation is shown in Appendix IK.


## LIST OF APPENDICES

: ... . ..	Appendix Nos
List of Machinery	I
Budgeted production programme	I A
Operating time and total time	II
Component, machine loading matrix	III
Administrative and General Expenses	IV
Profitability at project level	V
Projected expenses	V A
Apportionment of expenses to cost centres and cerivation of machine hour rate	VI
Fixed and variable machine cost and product	$t$ VII
Contribution analysis per piece	VIII
Contribution analysis per piece taking into consicleration the scrap sales	VIII A
Proforma for computation of product cost for any product	IX
Value acded for each item	X
Analysis of contribution per critical facility hour	X A

## LIST OF MACHINERY

No.	- Name of 'the machine"	Date of purchase	H.P.	Area occupied in sq.ft.	Remarks
1.	HMT Lathe 16.20	Sep. 70	10.00	49.36	
	Lmt Milling	Feb. 72	9.63	39.80	
3.	Effco Drilling M/C	Sep. 78	2.00	10.89	
	Pmt Milling	May. 73	4.60	16.00	
	12' Punjab Lathe	Apr. 70	3.00	37.50	
	Tool and cutter grinder	Liar. 70	0.75	3.61	
7.	Capston 3 Ds ViAriL	Aug. 80	5.50	26.92	
	Hacksaw illc	Apr 90	0.50	6.00	
9.	Bench grinder m/c	Apr .70	0.80	5.00	
10.	Welcing set	Apr .70	12.00*	6.00	
11.	Model Lathe 4	1977	3.00	33.25	
12.	" 3	Jan. 78	3.00	35.00	
13.	$\because \quad 2$	Sep. $81^{\circ}$	3.00	35.00	
14.	" 1	Feb. 82	3.00	35.00	
15.	Radial Drilling M/C	Mar. 82	9.00	48.86	
16.	MEI Drilling in/c	Apr .70	0.50	3.00	
17.	4' Beco Planing i/m	1977	3.00	15.75	
18.	6 \% 1	1970	3.00	18.00	
19**	Generator	Dec. 75	35.00*	66.00	



## OPERATING AND TOTAL TIIE

No.	Cperating	Machine	Batch Qty.	O.T. per piere

## NOZZLE CLAIIP

a. Drilling
b. Spot facing
c. II side spot facing
M.E.I. Drilling

500
2.775

EIFCO drilling
500
1.221
d. Radial Rilling
e. II Milling
f. Rough spherical
g. Fine spherical
2. ELBOWS
a. , Side threading drilling
b. Side II
3. DhiAIN PLUG
a. Machining
b. Kirilling
4. PTC COLLAR
a. Bore machining Nil Lathe

200
55
b. Secord side facing
c. Milling
d. Erilling
e. Lirilling
5. TEE PIECES
a. I side crilling threading condensor
b. II side
c. III side

Capston
"
500
500

4,3656
4,3656
4,3646

APPENLIX II contci.

No.	Set up time per batch	Total time per piece
	(mts)	(mts)
a	15	2,805
b	15	1,251
c	15	1,5285
d	150	3,4218
e	90	1,5675
f	30	0,4341
G	30	0,544
2.a.	240	5,1531
b.	240	7,4179
3.a.	240	9,1406
b.	240	1,1364
4.a.	55	3,305
b.	60	1,7985
$c$.	120	1,9043
$c$.	30	1,5625
e.	30	0,6924
5.a.	240	4,8456
b.	240	4,8456
$c$.	240	4,8456



## APPENDIX III .. contci.

No.Zadial drilling   machine	nivilling   machine
1.	144,738
2.	
3.	
4.	21,648
5.	
6.	17,167
7.	183,553
8.	256,500
9.	71.56

Stanciard man minutes for prociuction: 12,16,088
Available attencance man minutes $=450 \times 300 \times 17 \times .85$
Performance inclex $=\ldots-1,21,6088-\ldots \times 100$ $450 \times 300 \times 17 \times 8.5$

$$
88 \% \quad 62.33 \%
$$

## Administrative \& General Expenses

Ps.

1. Director's remuneration ..... 12,600
2. Iransportation, petrol \& car maintenance ..... 13,000
3. Postage, telephone \& stationery ..... 5,400
4. Licence \& tax ..... 2,500
5. Acivertisement ..... 400
6. Travelling expenses ..... 2,000
7. W.C. Interest \& bank charges ..... 12,350
8. Directors' sitting charges ..... 4,000
9. Iient ..... 3,750
10. Sundry expenses ..... 8,000

Phofitability at pirojected level

1. Service charges recovery	368,000
2. Scrap sales	12,000
$\mathbf{T O T A L}(A)$	380,000


3. Electricity and fuel	16,000
4. Consumables and tools	60,000
5. Repairs and maintenance	13,000
	TOTAL VAKIABLE EXPENSES(B)

6. Salaries and wages 80,300
7. ESI, PF and LVF 8,600
8. Directors' remuneration 12,600
9. Petrol and car maintenance $\quad 8,000$
10. Postage, telephone \& stationery 5,400
11. Travelling expenses . 2,000
12. Transportation charges ${ }^{\text {12 }}$ 5,000
13. Licence and tax 2,500
14. Insurance 500
15. Advertisement 400
16. Bank interest \& charges 30,000
17. Directors' sitting charges 4,000
18. Rent

3,750
19. Sundry expenses

8,000
20. Building repairs

8,000
21. Depreciation

40,000
TĆTAL FIXEI, EXPENSES(C) 221,090
Say 222,000
Total expenses $=E+C=3,16,000$
Gross profit $=$ Net sales - Total expenses
$=380,000-316,000=$
64,000
Provision for taxation $=\quad 40,000$

- Profit after tax

24,000
Add Back depreciation
40,000
Net cash accruals
64,000

4

## APPENDIX VA

## PROJECTED EXPENSES

I. VAFIAELE EXPENSES ..... lis.

1. Electricity and fuel ..... 16,000
2. Consumables and tools ..... 60,000
3. Repairs and maintenance ..... $-18,000$
II. FIXED EXPENSES
4. Salaries and wages ..... 88,300
5. ESI, PF and LVF ..... 8,600
6. Directors' remuneration ..... 13,600
7. Postage \& car maintenance ..... 8,000
8. Postage, telephone and stationery ..... 5,400
9. Travelling expenses ..... 2,000
10. Transportation charges ..... 5,000
11. Licence and tax ..... 2,500
12. Insurance ..... 500
13. Advertisement ..... 400
14. Bank interest and charges ..... 30,000
15. Directors' sitting charges ..... 4,000
16. Rent ..... 3,750
17. Sundry expenses ..... 8,000
18. Building repairs ..... 2,000
19. Lepreciation 40,000
TOTAL FIXED EXPENSES(B) . 221,090 222,000
TOTAL EXPENSES $=A+B=316,000$


APPENDIX VI contd.

No.	BOOKEL COST CENTRES					
	$\begin{aligned} & \text { Hmt } \\ & \text { milling } \end{aligned}$	Hint milling	Capston	$\begin{gathered} \mathrm{MMMi} \\ 1 \end{gathered}$	$\begin{gathered} M \operatorname{MiM} \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{MMN} \mathrm{M} \\ & \hline \end{aligned}$
1.	3636	5616	7956	7776	3816	3096
2.	567	877	1242	1214	596	483
3.	1000	1800	3000	2800	600	600
4.	481	857	1125.	798	156	84
5.	280	112	190	245	245	245
6.	7	9	137	55	46	23
7.	-	-	5382	3303	-	-
8.	468	2228	9685	3515	3275	2095
9.	1225	1042	1636	634	119	64
10.	7384	12141	30163	20095	8607	6445
11.	2528	4500	10327	6881	2948	2207
12.	9912	17641	40491	26976	11656	8652
13.	3484	2965	4557	-1802	339	183
14.	1165	1265	4340	14460	735	875
15.	8000	12000	20000	4000	3000	2000
16.	12649	16230	28997	7262	4074	3058
17.	2528	3243	5995	1451	814	611
18.	15177	19473	34792	8713	4888	3669
19.	4493	8000	18357	12230	5284	3922
20.	14405	25641	58848	39206	16940	125574
21.	1827	3246	4264	3025	591	317
22.	7.88	7.89	13.80	12.96	28.66	39.66
23.	1546	2962	3918	2866	542	26.5
24.	9.82	6.57	8.88	3.04	9.0	13.85

APPENDIX VI contd.

No.	Effico Drilling	$\begin{aligned} & \text { M.E.I. } \\ & \text { Driling } \end{aligned}$	Generator	Total cutter grinder	Hacksaw machine
$\cdots 1$.	6138	6138	-	4176	-
$\therefore 2$.	958	958	-	652	-
. 3.	800	800	-	600	-
4.	992	807	-	-	-
$\cdots 5$.	76	21	462	60	-
$\therefore 6$.	11	-	33	17	-
77.	-	-	-	-	-
8.	1015	-	-	-	-
- 9.	535	107	-	66	-
,10.	10439	8810	-	108	-
11.	3375	3016	-	$\therefore \quad-$	-
12.	14014	11826	-	-	-
-13.	1492	. 302	-	284	189
.14.	705	675	3000	525	-
-15.	1500	1500	2000	5000	500
16.	3697	2377	5000	5809	689
17.	739	475	-	-	-
.18.	4436	2852	-	-	-
. 19.	6353	5361	-	-	-
20.	20367	17187	-	-	-
'21.	3941	3059	-	-	-
- 22.	5.17	5.62	-	-	-
1. 23.	3750	2978	-	-	-
24.	1.18	0.96	-	-	-

UNBOOKED \& SERVICE COST CENTRES

No.	Bench grinder	Welding set	Mid	$12^{\prime}$   Lathe	Radial drilling	Hmt   LH 20
1.					2376	4356
2.					372	681
3.						
4.						
5.	35	42	233	263	343	346
6.			13		149	
7.					8965	
8.			1330		9485	
9.	66					
10.	142	42	1576	263	21690	5383
11.	303					
12.						
13.	303					
14.			995		2360	
15.	500					
16.	803		995		2360	
17.						
10.						
19.						
20.						
21.						
22.						
23.						
24.						

FIXED/VARIABLE MACHINE COSTS AND PRODUCT COSTS.

No. Product	Cost centre	$\begin{gathered} \text { Booked time } \\ \text { in } \\ \text { minutes } \end{gathered}$	Operation time in minutes
	Print milling	3;4218	3,1218
	EIFFCO	3,7576	3,556
1. Nozzle clamp	Hat milling	1,5657	1,3875
	MEI drilling	2,8050	2;7750
	Total cost/piece	$\because$	$\cdots$
2. Elbow	CAPSTAN	12,5710	11,6110
	Total cost/piece		
	MMi	9,1406	8,6606
3. Drain plug	EIFFCO	1,1364	1,0764
	Total cost/piece		
	Hmt milling	1,9043	1,3043
FTC collar	MMM2	3,3050	3,0305
	MMM3	1,7985	1,4985
	MEI	2,2549	1,9565
	Total cost/piece	.	
5. TEE piece	Capstan	13,5368	13,0968
- ..... .	Total cost/piece	..... . .	

APPENDIX VII ... contd.

Variable hour rate	Fixed hour rate	Variable cost per piece	Fixed cost per piece	Total cost
6.57	7.89	0.34	$\because 0.45$	0.79
1.18	5.17	0.07	0.32	0.39
9.82	7.88	0.23	0.20	0.43
'0.96	5.62	0.04	0.26	0.30
		0.68	1.23	1.91
0.88	13.80	1.72	2.89	4.61
		1.72	2.89	4.61
3.04	12.96	0.43	1.97	$2.40{ }^{\circ}$
1.18	5.17	0.02	0.03	0.11
		0.45	2.06	2.51
9.82	7.88	0.21	0.25	0.46
9.00	28.66	- 0.45	1.57	2.02
13.85	39.66	0.34	1.18	1.52
0.96	5.62	1.03	0.21	0.24
- i		-1.94 ${ }^{\prime}$	3.21	4.24
8.88	13.80	1.94	3.11	5:05
		1.94	3.11	5.05




## APPENDIX VIII A

CONTRIBUTION ANALYSIS PER_PIECE CONSIEETING SCRAP SALES


## APPENDIX IX. $35 \%$

PROFOPMA FOR COMPUTATION OF PRODUCT COST FOR ANY PROEUCT



## APPENEIX X



## APPENDIK • XA

ANALYSIS OF CONIRIBUTION/CRITICAL FACILITY HOUR. CFIITICAL FACILITY

CAPSTON Lfithe

	Taking into consideration scrap sales			
No. Product	No. of pieces.	Total time as critical facility	$\begin{aligned} & \text { Contribution } \\ & \text { per } \\ & \text { piece } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { contri- } \\ & \text { bution } \end{aligned}$
1. Elbow	14,400	181,023 Min	4.47	61,368
2. Tee piece	3,500	50,879 Min	4.25	14,875

Without consicering scrap sale revenue

No.	ontiibu-   ion per   itical   cility   our	Total time on critical facility	```Contribution per piece.```	Total contribution	contribution per critical facility Hr .
1.	21.33	181,023 Min	4.28	61,632	20.42
2.	17.54	50,879 Nin	4.06	14,210	16.75

SABARI INDUSTRIES

## BRIEF HISTORY OF THE UNIT

The unit was established in 1968 as a partnership concern. The present partners are: (1) Smt R Rajamani, (2) Sri N Sukumaran, (3) Sri N Mohan and (4) Sri N Duraiswamy. Sri N Mohan is the Managing Partner in active charge of the unit's working. The unit is a machine shop engaged in the manufacture and supply of electric motors in the H.P. range of $2,3,5,7.5,10,12.5$ and 20. The unit's motors are marketed under the trade name of 'Suguna' motors with ISI markings. The unit markets its products in Tamil Nadu, Andhra Pradesh, Karnataka and Rajasthan throuigh its own branch offices.

The position of the unit's operative account with the bank as on 6.3.1983 is as follows:
(Amount in Rupees)


The unit's sales have fluctuated over the years with no definite upward trend. The net profit has also dwindled, touching a low point of Rs.17,000 during 1982.

EQUITY
The unit's equity which was streng thened gradually upto 1981 has dipped during 1982 and continues at the level of R.614,000 ever since.

The unit's performance from 1979 to 1983 is summarised in the following table:
(in 000's)

Years	-1979	-1980	-1981	-1982
Sales	55.44	66.74	45.48	42.33
Profit	3.36	3.32	0.70	0.17
Equity \& Reserves 6.04	6.94	7.88	6.14	

INFPASTRUCTURE, PROCESS AND MARKETING
The unit is functioning on its own premises and factory off Avanashi Road within the municipal area. The space is adequate for the present and may also meet the needs of any marginal expansion. The unit has a sanctioned power load of 65 H.P. of which only 45 H.P. are now bcing drawn.

The total compliment of staff of 44 is made up as follows:

Accountant	1
Clerks	3
Storekeeper	1
Supervisor	1
Asst.Supervisor	1
Foreman	1
Turners	11
Driller	1
Chippers	7
Shaper	1
Winders	6
Painters	5
Fitter	1
Watchmen	3
Office boy	1
	-4.
	-

The major items of machinery are as follows: .

NAME	NO. OF
MACHINES	

The machinery is more than adequate for the present needs of the unit; as a matter of fact, the machinery is utilised only to $2 / 3$ rd of its capacity.

PROCESS
Among the various components that go into the manufacture of the unit's motors, only 6 items are machined. These are (1) motor body which is seated, drilled, tapped and shaped; (2) motor cover; (3) motor cover caps both of which undergo machining operations similar to item (1); (4) shaftings which are cut, centred, drilled and ground filed; (5) rotors which are machined; and (6) stator stampings which are pressed under hydraulic press. The machined parts are assembled after passing through the winding section. The assembled motor is painted, cleared for defects, tested for horse power and finally despatched.

MARKETING
Marketing has not posed much of a problem to the unit in view of the quality (ISI) of the product and the ready demand for 3 HP and 5 HP motors especially in Andhra Pradesh, where the unit has one of its branches. As a matter of fact, the unit could well market a considerably more number of motors, judging by the heavy order book position.
. The only constraint is self-imposed as the unit has taken a deliberate decision not to work more than one shift.

## SALES PATTERN

The pattern of the unit's sales is shown in Appendix III. It would be observed that the first three items, namely, 3,5 and 7.5 HP motors alone account for $80 \%$ of the sales. The unit anticipates and the pending orders confirm that the same sales pattern will continue during the coming years.
PROJECTED PERFORIIANCE
On the basis of the pencling orders, presently with the unit - most of them being of a repetitive nature - and the fairly stable sales pattern mentioned earlier, a sales of Rs. 70.07 lacs has been projected for the period April 1983 to March 1984. The projected production programine together with the product mix is given in Appendix IV. INVENTORY CONTROL

An ABC analysis of the unit's raw material consumption for the 12 months ending March 1983 reveals that the unit consumed a total of 153 items valued at Rs.47,29,243. Of these, 11 items accounting for $77.5 \%$ have been classified as ' $A$ ' class items. These comprise of super enamelled wire of different gauges, stator stampings and motor stampings of different diameters and thickness and rough castings. A detailed study with monthly readings of the consumption pattern of the eleven items revealed that the pattern conforms, by and large, to a normal frequency distribution; standard deviation was therefore computed to arrive at safety stock level.

18 items accounting for $12.9 \%$ of annual consumption and $12 \%$ items accounting for $9.6 \%$ of annual consumption have been classified as ' $B$ ' and 'C' class items respectivedy. Details of the ABC analysis are given in fippendix $I$.

For the projected sales of Rs. 70.07 lacs, the itemwise requirements of 'A' class items have been calculated; the total works out to Rs:433,900. Adding 2 months' holdings of 'B' class items and 4 months' holdings for 'C' class items, it is estimated that the total requircment of inventory would be about

Rs. 688,754 based on average stock level. Average
stock calculations are presented in Appendix II. LEAD TIME

The unit procures its major raw materials from the following sources:

1. Bharat Insulation Company,
Bombay . .. Copper enamelled
wire
2. Indo-Mmerican Electricals, Calcutta "
3. Metal Syndicate, Ccimbatore.. "
4. Geskin Williams, Bangalore .. Stampings
5. -do- Coimbatore
"
6. Suguna Founclry, Coimbatore .. Rough castings
7. Bharat Bright Bar Peelamedu .. Shaftings
8. Orgay's National Enginecring

Foundry Co., Madras
.. "
9. Associated Boaring Company, Bombay
. . Ball bearings
10. J.B. Bearings, Madras .. "

Since the unit is a regular customer with these suppliers, its requirements are regularly met. The unit generally finds no difficulty in obtaining the materials on regular basis. There has, seldom, been stoppage of production on account of a stock-out of these items since, at a pinch, the unit is able to resort to local purchases in small quantitics. Considering all these factors and the unit's past experience, the average leac time for all the ' $\Lambda$ ' class items except rough castings has been taken as one month and the crash lead time as nearly zero. The lead time for rough castings has been taken as 15 days.

## PROJECTED INVENTORY LEVEL

As stated earlier, the unit requires an average raw material inventory of Rs.688,754 for its working for tne next 12 months. The 'A' class items have been treated with special care in devising a system of inventory control.
SAFETY STOCK (K $\sqrt{L}$ )
In calculating the safety stock the rate of consumption in the average lead time for all the items has been taken into account. The constant factor $K$ has been reckoned at 2.5 for maximum safety. This factor gives a protection of nearly $99 \%$ against stockouts.

ECONOMIC ORDER QUANTITY
The EOQ has been calculated for each of the 11 items using the formula

$$
E O Q=\sqrt{\frac{2 \Lambda \mathrm{a}}{\mathrm{ic}}}
$$

where
$A=$ annual projected consumption in quantity
a $=$ cost of ordering (in rupees)
i $=$ inventory carrying cost expressed as
a fraction, ie., 0.2
$\mathrm{c}=$ cost per unit quantity
In case of all the items the EOQ as worked out above is in very small quantities in view of the minimum cost of ordering, namely Rs. 2 per order. In most cases, the EOQ represents only a day's consumption. For practical reasons it is not possible to order in such tiny quantities. Hence in calculating the average inventory of raw materials the figure has been arrived at by adding the safety stock and half the minimum order quantity. (MOQ) The detailed calculations have been shown in Appencix II.

In the case of 9 out of 11 ' $\Lambda^{\prime}$ class itcms, the lead time consumption (LTC) is more than the order quantity. Multiple orcier systems have therefore been suggested with a view to pegging down inventory holdings. For example, with respect to stator stampings 142 M ( 5 HP ),
the LTC is 3107 kg . Safety stock is 2362 kg . The order rule is: an order for 2000 kgs is to be placed when the stock level touches 5400 or 3400 or 1400. There are thus 3 order levels. Average stocks in such cases will be safety stock + order quantity. Items for which the maltiple order system has to be used are indicated in Appendix II with the notation (M).

SEMI FINISHED GOODS
Taking the unit's production pattern, delivery schedules and machine and labour constraints into consideration, the processing time has been taken to be one week on the basis of the discussions with the unit's engineer. The working capital required for semifinished goods has therefore been taken as onc week's requirement.

FINISHED GOODS

The unit produces only against a definite production programme and the motors are promptly despatched. However, in case of same items of more frequent demand, a small buffer stock is kept to meet urgent demands. Taking this into consideration the average stocking period has been taken as one wcek.

To summarise, the unit's raw material inventory holding for the future is expected to be significantly lower than the past, even after allowing for the requirements of increased production.

COSTING
NEED FOR COSTING
The unit manufactures a number of motors of different HPs in different RPMS. In the past even when there was an increase in sales, profitability remained uneven. The unit has a general idea that some of the items are not remunerative. A proper costing system will give the unit a correct picture of the relative profitability of the different products. The following paragraphs explain the approach adopted during the course of the study in arriving at the actual cost incurred by the unit in manufacture of the products along with an outline of the steps the unit will have to take to enhance profitability.

## MACHINE UTILISATION AND DETERMINATION OF BOOKED HOURS

The production programme furnished by the unit provides the basis for finding the machinery utilisation ratios and tetal number of hours for which the machincs will be actually engaged (Booked hours) during the year.

The unit's engineer furnished the operation times and the set up times fer a batch of 30 mctors . The unit has only 3 cifferent batch timings. For this reasen, $2,3,5 \mathrm{HP}$ motors are grouped together as one batch, 7.5 and 10 HP as another and $12.5,15$ and 20 as the third. As the factory cid not function, it was not possible to valiclate the timings given by the enginecr. These have therofore been taken as tho basis for computing the following particulars:
a) The operation time in hours that will be spent in each work centre in manufacture of different proclucts;
b) The set up time in hours that will be spent in setting up the machines for different operations;
c) Tho booked hours being the sum of $a \& b ;$
d) The utilisation factors for the differont work centres given by

Total booked hours on a centre Nc. of hours available curing the yoar

## $\therefore$ ASSEMBLY SECTION

The method given above has been applied for the procuction contres. Howevor, in the assombly section consisting of winding, finishing and asscmbly, varicus types of miscellancous works are cione. The value of the inc!ivictual machines is negligiblc herc.

Accorcingly, since the work cone is of manual nature, the labour hours required for assembling various products have been takcn on the basis of information given by the unit's engineer.

There would be no sct-up time in this section and hence the booked hours will be the same as the operation time. The available hours for this section is given entirely by the man-hours of the workers employed in
various jobs. The eperation times, bookec hours for cifferent work centres with correspending utilisation factor are given in sppenclix $V$.

MACHINE HOUR/M/N HOUR COSTING
Since the unit uncier stucly is a machinc shop, with widely different material contents, operation time and set up time for different jobs, a system of machinc hour costing has been attemptec. All the expenses, variable as well as fixed, are allocated to specified cost centres anc the cost per hour at cach cost centre is worked out on the basis of total load on the particular cost centre. This load is expressed as machine hours. However, as explained in para above an element of man hour costing is inevitable in the assembly cost contres. The total loaci in these contres is expressoc? as man hours.

COST CENTRES
For the purpcse of costing, the factory has been clivided into 12 cost centros as shown in ippencix $V$. It can be seen that the 12 lathes have been groupeci tegether to form one cost centre as it is learnt that the work performed on these lathes is frcely interchangeable. Similarly, drilling and tapping machines as also the shaping machincs have been grouped together.

## Priojection of Expenses

The total expenses for the factory have been classifiec into variable and fixed expenses. Variable expenses are those that vary cirectly with the lovel of prociuction, eg., electricity, repairs and maintenance, consumable stores, etc. Fixece expenses are items such as wages, depreciation anc interest which remain constant at all levels of procuction. The expenses for the 12 months from April 1983 to Narch 1984 have been projected on the basis of previous year's financial statements and c'iscussions with the managing partner of the unit. The details of projectec cxponscs are given in Appencix VIII.

## ALLOCATION OF EXPENSES

The allocation of variable and fixed expenses to different cost centres is shown in Appendix VI. The basis of allocation is explained below:

## (a) ELECTEICITY CHARGES

This is a variable expense and depends on the horse power rating of each machine and the extent of utilisation of the machine. It has been apportioned on the basis of per-centage, weighted product of HP rating and the actual working hours.
(b) MACHINERY MAINTENANCE AND REPAIRS

This depends on the number of years a machine has worked, the number of hours it is used and its cost. It is a variable expense and has been apportioned to the cost centres on the basis of ciscussion with the engineer.

## (c) CONSUMABLE STORES

These variable expenses have been apportioned to different cost centres on the basis of discussion with the store keeper in charge of these items.
(d) WAGES

This has been classified as
(i) Direct wages of factory workers including Supervisor's salaries;
(ii) Indirect wages, ic., of office staff.

Direct wages have been treated as fixed expenses and have be en apportioned on the basis of the deploymont of labour on each machine which has been determined in consultation with the unit. The incirect wages of office staff, have becn treated as part of the administrative and gencral overheads.
(c) RENT

No rent is paid for the factory which is on the unit's own premises. Rent for the residence of the managing partner has been included in the administrative cverheads.

This varies with the cost of machines and the number of years they have been used. The basis of allocation has been written down value of each machine; after discussicns with the unit, the depreciation has been budgeted individually for cach item.
(g) BONUS, PF, ESI, ETC

Thesc costs incurred on behalf of factory workers are fixed costs and havo been apportioned to each cost centre on the same basis as the wages.
(h) INSURANCE

This has been bulgeted for on the basis of the past years' expenses and allocated amongst cost centres on the basis of the valuc of machinery.

## (i) SERVICE COST CENTRE

There is one service cost centre, viz; the generator which is not being used at all after the casing of the power situation. For a single shift, the unit does not anticipate any need to resort to captive power generation in the year to come. As such only fixed costs such as depreciation and insurance are incurred on this service cost centre. These costs have been re-apportioned on the basis of the electricity consumption amongst the power consuming cost centres only.

## (j) ADMINISTRATIVE, FINANCIAL \& GENERAL OVERHEADS

This category comprises such expenses as office salaries, benus, resiciential rent, $\mathrm{P} \& \mathrm{~T}$, stationery, conveyance, maintenance, interest on borrowings, carriage inward and miscellancous expenses. Thesc overheacis have been apportioned to the production cost centres on the basis of the relative percentages ancl sub-totals of allocated cost preceding this allocation (ic., subtotal $C$ in Appendix VI).

VARI/BLE AND FIXED MACHINE HOUR RATES
The variable machinc hour rate for each cost centre has been found by dividing the total variable expenses for cach cost centre, by the total operating hours. The fixed machine hour rate for each cost centre has been found by clividing the total fixed expenses allocated to each cost centre by the number
of booked hours. These rates are given in Appendix VI. As the fixed machine hour rates are applicable only to the production programme on hand, these rates will vary as and when the machine loading pattern changes with a revision in the production programme. The variable machine hour rate would remain constant and the fixed machine hour rates would decrease with an increase in turnover levels.

## PRODUCT COSTING

The variable machining cost for each component of the motor has been calculated by multiplying the actual operating time at each production cost centre for each component with the variable machine hour rate for that centre and totaliling these products for all the centres at which work is done on the component. Similarly the fixed machining cost has been obtained for all the components by multiplying the fixed machine hour rates with the total times (ie., O.T.+set-up time). The machining cost for 2,3 and 5 HP motor component is presented in Appendix VII. The total cost of each motor has been calculated by adding the raw material cost to the total of the variable and fixed machining costs for the component undergoing process.
fppendix V. gives the machine loading for all the proposed components, detailing the O.T. and T.T. for manufacturing.

Appendix VII gives the component wise details of costing. VII-A gives the machining cost involved in making $2,3.5^{\prime \prime}, 7.5,10$ and $12.5,15,20$ HP motors. VII-B gives the total product cost for all the different HP motors, the selling prices, contributions and profit/ loss on each motor. An addendum to VII B gives the break-even list prices together with suggested list prices for the unit to make profits of $3 \%, 4 \%$ and $5 \%$.

## FINANCIAL AN/LYSIS AND OPERATING ECONOMICS

FINANCIAL RATIOS AND TREND ANALYSIS
Appencix XI, and Appendix XII give the financial data and the financial ratios respectively of the unit for the past 4 years. Appendix XIV gives the funds flow statement for these four years.

As was mentioned earlier and as is evidenced by the trend analysis in Appendix XIII, there appears to be
no discernible upward or downward in the overall financial and operating picture of the unit. All indicators have registered erratic movements.

Equity has clecreased from Rs.7.88 lacs in 1981 to Rs. $0 . i 4$ lacs in 1982. It is considered essential to step up the equity base of the unit by ploughing back at lcast Rs. 1.3 lacs of profit likcly to materialise by the end of the current financial year. Debt has increased from Rs. 11.17 lacs in 1979 to Rs. 18.41 lacs in 1982.

Profitability shows a downward trend, perhaps because of the substantial increase in raw material prices without corresponding increase in selling prices.

OPERATING ECONOMICS

## PROFITABILITY

The projected profitability statement is presented in Appendix VIII. Against anticipated prefits of Rs. 2.09 lacs in 1982-83, the projections for 1983-84 anticipate a relatively low profit of Rs.20,800. This is mainly clue to increased prices of raw materials. It is however learnt that the unit is contomplating an upward revision of prices by April 1983 which, if instituted, will improve the profit picture substantially.

## WORKING CAPITAL REQUIREMENTS

The working capital requirements for the unit for the projected level turnover of Rs. 70 lacs in 1983-84 is presented in Appendix X.

Based on inventory control norms suggested in this report, 1.5 months' requirements of $r a w$ materials need be financed.

Other requirements have been calculated on the basis of 1 week's work-in-progress, 1 week's finished, goods, 1 month's bills and 12 month's expenses.

The total working capital requirement is anticipated to be about Rs. 12.07 lacs and a limit of $\mathrm{Rs}_{\mathrm{s}} 8.00$ lacs is suggested. The deficit of fis.1.31 lacs after provicling for sundry creditors anc liquid surplus has to be met by profit anticipated in 1982-83.

## BREAK-EVEN POINT

A break-even analysis for 1983-84 (Appendix IX) reveals that the unit will break-even at the inorcinately high level of $97 \%$ of turnover, ie., at Rs. 67.98 lacs of sales. This is again mainly bocausc of the substantial increase in cost of raw materials over the last couple of ycars without corrcsponding increase in prices of the finished motors. The contemplated upward revision of sclling prices of motors in April 1983 should, however, help improve this situation.

SUMMARY OF FINUINGS $\triangle N D$ RECOMMENDATIONS
(a) SALES

The sales turnover for the 12 months from April 1983 to March 1984 is projected at Rs. 70,07,000. The break-up of sales of the different types of motors is given in Appendix IV.
(b) INVENTORY CONTROL
(i) Raw materials: To achieve the projected sales, the unit will require 153 items of raw materials. The total consumption of raw materials at current rate is estimated at Rs.54.70 lacs for the next 12 months out of this an ABC analysis reveals that 11 ' $A$ ' class items account for $77.5 \%$ of the consumption, 18 ' B ' class items account for $12.9 \%$ and the remaining 124 itoms account for $9.6 \%$ classified under ' C '.
(ii) A suitable-inventory control system has been recommended for the ' $A$ ' class items and reasonable level of inventory based on observations and discussions has been recommended for ' $B$ ' and ' $C$ ' class of raw material items.
(iii) For the ' $A$ ' class items, an EOQ system of inventory control has been recommended. The average carry over of raw material
invontory is estimated to be around Rs.688,000 for all items put together.
(iv) The unit has been advised to discontinue the present practice of cluobing together the various sizes/qualities of the four major ' $A$ ' class items (wires, stampings, castings, shaftings) in their stotes register and instead maintain separato recorc of individual items of distinctive size/quality, ctc.

## (c) SEMI FINISHED AND FINISHEL GOODS INVENTORY

Consiclering the machining/processing times for the different components and the batch quantities, one week's inventory of semi-finished goods is recommendec!. As for finished goods, a similar period of 1 week will suffice in viow of the fact that the unit produces motors only against pencing orders.
(d) costing
(i) The unit's cperations have been studied on the basis of machine hour costing. Twelve procluction cost centres and one service cost centre have been identified and the unit's estimated expenses for the next 12 months have been allocated amongst these centres. The cost incurred at the service contre has been further apportioned amongst the prorluction cost centres. The variable and fixec machinc hour rates at each of the procluction centres have been worked out on the basis of timings given by the unit's engineer. These timings could not be valiciated by actual observations in view of the continuing and total strike in the unit referred to clsewhere. at the asscmbly section, cost centre alone the basis of costing has been 'man hour' insteac: of machine hour considering the miscellancous nature of machinery and minor nature of work cione at the centre.
(ii) The following table summarises the major findings in the area of costing:

. Prficluct ${ }^{-}$	2 HP	3HP	5HP 7.5 HP	10 HP	-12.5HP	15	(1)
List price	865.00	1040.00	1320.001720 .00	2000.00	2320.00	2800.00	3700
Price less discount	692.00	832.00	1056.001376 .00	1880.00	1856.00	2240.00	2900
Total cost	728.73	859.19	1004.831418 .52	1623.69	2073.42	2348.33	2679
Vasiable cost	631.75	762.21	967.851311 .49	1516.66	1883.61	2158.52	2480
Contribution	60.00	70.00	148.0065 .00	163.00	- 28.00	81.00	480
Profit/Loss -	- 36.73	-27.19	51.17-42.52	56.31	-214.42	-108.33	289

## (e) RELATIVE PROFITABILITY OF PRODUCTS

(i) As is apparent from table above the unit will be incurring a loss on 5 of the 8 different HP motors manufactured by it, these 5 accounting for nearly $85 \%$ of the total sales. It is recommended that the unit revise upwards the prices of the loss making items. For this purpose, a three tier system of prices at $3 \%$, $4 \%$ and $5 \%$ profitability has been suggested for all the 8 items (Appendix VII B).
(ii) The utilisation of the machines-at present approximately $60 \%$ - if improvec, can bring down costs. Contribution on 7 products being positive, it is not necessary to celete any of them from the product mix. However, the unit has to take a second look at its pricing policies and contemplate upward revisions if possible. The $12.5 \% \mathrm{HP}$ motors providing negative contribution can be deleted from the procluct mix. If, however, for various reasons it is considerec necessary to continue producing it, the management can take a ceeper look into the product to identify areas of potential cost reduction.
(iii) It is also consiclered essential that the unit review its product mix on a continuing basis.

## (f) CAPACITY UTILISATION

It would appear that the unit is working at around $2 / 3$ rd of its capacity on the existing machinery. The unit works only one shift a day. It will be advisable for the unit to attempt to work to full capacity with a view to improving its working results. In particular, the unit would be well advised to cliscontinue the existing system of combined batch timings for machining "2-3-5-", "7.5-10" and "12.5-15-20" HP motor parts. This might involve the installation of a few more items of machinery and possibly the working of a double shift.

## (g) FINANCIAL ANALYSIS

A study of the unit's finencial data for the past 4 years indicates that there has been no discernible upward trend in its sales. Even the rather erratic sales have not been accompanied by corresponding levels of profitability. The equity base of the unit also calls for urgent strengthening; the unit has been advised to plough back not less than Rs. 1.30 lacs from the current year's profits into the business. The unit has also been advised to regulate the workings in the partners clrawing account on some basis.
(h) ESTIMATED PROFITS AND WORKING CAPITAL REQUIREMENTS

The profit before tax for the projected sales of Rs. 70.07 las for the period April 1983 to March 1934 at the existing sales prices, procluct mix and capacity utilisation is estimated at Rs.21,C00. The working capital limits for this level of operations have been assessed at Rs. 8 lacs.

## (i) LABOUR SITUATION

Throughout the period of the study, the factory remained closed clue to a strike by all the workers. The background to the strike is that the factory employs 10 apprentices as against 35 regular workers. When the apprentices enrolled themselves in the workers' union,
the management decided to remove them from service. In protest, the factory workers resorted to a wild cat sit-in-strike from 6.3.1983. The factory has since remained idle and at the moment of writing, both sides seem to be treating the strike as a test of endurance. There does not seem to be any definite prospect of early resumption of activity in the unit. It may be added in this connection that there was alsc protracted strike in the unit from 9.9.1981 to 6.12.1981; halting production for 3 months. It would therefore appear that the labour situation in the unit requires ; close watch, and sensitive handling, so that irritants could be identified and avoided.
the management decided to remove them from service. In protest, the factory workers resorted to a wild cat sit-in-strike from 6.3.1983. The factory has since remained idle and at the moment of writing, both sides seem to be treating the strike as a test of endurance. There does not seem to be any definite prospect of early resumption of activity in the unit. It may be adcled in this connection that there was alsc protracted strike in the unit from 9.9.1981 to 6.12 .1981 ; halting production for 3 months. It would. therefore appear that the labour situation in the unit requires a ciose watćh, and sensitive handling, so that irritants could be identified and avoided.

## LIST OF APPENDICES

	Appendis Nos.
1 BC analysis - consumption of raw materials	I
diverace stocks calculations	ご
ABC analysis of sales	III
Product mix at proposed level of operations 1983-84	IV
Machine loading matrix - Batch quantity 30	V
Allocation of expenses among cost centres	VI
Machine cost components - 2,3,5 HP Motors	VII
Product costing - machine cost for each motor	VII A
Product costing for different 1440 RPMi motors	VII B
Statement of profitability for the year 1983-84	VIII
Machine loading matrix - future production	VIII $A$
Machine loading matrix - Batch quantity 30	VIII B
Break-even level of operation	IX
Assessment of working capital requirements	$x$
Financial Data	XI
Financial ratio	Xt ${ }^{\text {T }}$
Trend analysis - Base year 1979	XIII
Funds flow statement	XIV


RAW MATERIALS	AP RIL	MAY	JUNE	Jul. Y	AUGUST	SEPTEMB	OCTOE	NOVEMB	DECEM	JANUAR
$1$	2	$-$	$\overline{4}$	5	6	7	8	9	- 10	11
1. Super Enamel Wire 18.5 SWG	1178	1364	1600	1779	1203	1258	1364	812	1581	1680
2. 20 SUG	1214	107.1	1459	1290	826	857	800	1433	1622	1234
3. Rough Castings	16605	20244	21440	22455	20054	17995	15534	16371	24218	19445
4. Stator Stampings .142 M ( 5 HP )	2565	2970	3483	3875	261.9	2741	2970	1769	3443	3659
5. Stator Stamping 142M (3HP)	2451	2163	2946	2606	1669	1730	1617	2894	3275	2534
6. Super Enamel Wire (17 SUG)	350	640	413.	521	534	810	481	631	618	499
7. 142M. Rotor Stamping 5 HP	1539	1782	2090	2325	1571	1644	1782	1061	2066	2195
8. 142 M Rotor Stamping 3 HP	1618	1428	1945	1720	1102	1142	1068	1911	2162	1673
9. Motor Stamping 142 M 7.5 HP	698	- 1242	737	931	989	1533	815	1222	1164	1009
10. Super Enamel Wire 16 SWG	171	144	324	234	587	209	188	107	163	167
11. Rotor Stamping P.D.C.	468	832	494	624	663	1027	546	819	780	676


Raw Materials	$\begin{aligned} & \text { FEGRUARY } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { MARCH } \\ & 13 \end{aligned}$	$\begin{gathered} \text { TOTAL } \\ 14 \end{gathered}$	$\begin{gathered} \text { RATE } \\ 15 \end{gathered}$	$\begin{aligned} & \text { VALUE } \\ & 16 \end{aligned}$	$\begin{gathered} 5.0 .0 . \\ 17 \end{gathered}$
		Rs.				
1. Super Enamal Wire 18.5 SuG	1469	279	15567	43/-	669381	414
2. 20 5wG	1616	316	13738	43/-	590734	388
3. Rough Castings	21691	10845	226897	2/-	453794	3659
4. Stator Stampings 142 M ( 5 HP )	3199	608	33899	13/-	440687	901
5. Stat or Stamping $142 \mathrm{M}(3 \mathrm{HP}$ )	3265	639	27789	13/-	361257	785
6. Super Enamel Wire 17 SWG	667	186	6350	43/-	273050	164
7. 142 M. Rotor Stamping 5 HP	1920	365	20339	13/-	264408	540
8. 142 M Rotor Stamping 3 HP	2156	422	18346	13/-	238503	652
9. Motor Stamping 142 M 7.5 HP	1203	388	11931	13/-	155103	306
10. Super Enamel Wire 16 5WG	153	22	2549	43/-	109607	142
$\begin{aligned} & \text { 11. Rotor Stamping } \\ & \text { P.D.C. } \end{aligned}$	806	260	7995	13/-	103935	205
					3660459	77.5\%



B. Contd.
11. Ball Bearing SKF 6308
12. Gall Bearing 8I BC 335
13. Startor Stamping 102 M (15)
14. Startor Stamping 102 M (12.5)
15. Startor Stamping
102M (2)
16. Shaftings 17/8"
17. Ball Bearing MEC 340
16. Ball Bearing 6309

475896
$760 \quad 33.50 \quad 25460$

812 25/- 20300

1163 16/-18614

914 16/-14624
$1052 \quad 13 /-13676$
$5470 \quad 2.5 \quad 13674$
$398 \quad 33.50 \quad 13333$
322 40/- 12880
$608457 \quad 12.9 \%$

450327 9.6\%

SUNHAPY	NO. OF   ITEMS	VAIUE Fis.	PERCENTAGE
A	11	36,60,459	77.5\%
B	18	6,08,459	12.9\%
C	124	4,60,327	9.5\%
		47,29,243	100.0\%

APPENUIX II

## AVERAGE STCCKS CAICULATIONS

No. (1)	Raw materials (2)	Quantity consumed 1982$(3)^{3}$	Unit Price   (4)	Annual Consumption 198384   (5)	Average months consumption   (6)	Procurement ретic'   (7)	Safety stock (8)
	Super Enamel 18.5 SWG	15567	43	17124	1427	1 month	1086
	$\begin{gathered} \text { Super Enamel wire } \\ 20 \text { SWG } \end{gathered}$	13738	43	15112	1259	-do-	1017
	Stator Stampings 142 M (5)	33899	13	37289	3107	-do-	2362
	$\begin{gathered} \text { Stator Stampings } \\ 142 \mathrm{M} .(3) \end{gathered}$	27789	13	30568	2547	-do-	2058
$5 .$	$\begin{aligned} & \text { Super Enamel wire } \\ & 17 \text { SWG } \end{aligned}$	6350	43	6985	582	--cio-	430
	Fotor Stampings 142 M (5)	20339	13	22373	1864	-do-	1415
	Potor Stampings 142 M (3)	18346	13	20181	1682	-do-	1710
	$\begin{gathered} \text { Stator Stampings } \\ 14.3 \mathrm{M}(7.5) \end{gathered}$	11931	13	13124	1094	-do-	802
9.	$\begin{gathered} \text { Super Enamel Vire } \\ 16 \text { SViG } \end{gathered}$	2549	43	2804	234	-CO-	372
10.	Rotor Stampings Ft. Diecast	7995	13	8795	733	-do-	537
11.	Ranger castings	226897	2	249586	20799 1/	$1 / 2$ month	16789



## APPENDIX III

## ABC ANALYSIS OF SALES



APPENDIX III contc.


PhoLUCT hix at prioposed level of opeiaticns 1983-84

Name			Quantity
3 HP	1440	RPPA	2375
5 HF	$\because$	"	2275
7.5 HP	"	"	464
10 HF	"	"	92
12.5 HP	3	"	12
15 HP	3	"	14.
20 HP	1	*	4
2 HP OT	960	"	11
3 HP	"	"	19
5 HP	"	$;$	110
7.5 HP	;	"	97
10 HP	"	"	62
12.5 HP	"	"	12
15 HP	"	;	12
2 HP TEFC	14.40	;	76
2 HP	28.30	;	6
3 HP TEFC	14:40	:	398
3 HP	2380	"	6
5 HP TEFC	1440	"	291
5 HP	2880	"	5
7.5 HF TEFC	1440	:	75

## APPENDIX. IV contd.

Name			Quantity
7.5 HP	2880	FPM	2
10 HP TEFC	14.40	"	29
12.5 HP	"	;	12
15 HP	"	i	16
20 HP	;	i	3
3 HP	960	;	5
2 HP TEFC	;	"	20
3 HP	"	"	20
5 HP	"	"	68
7.5 HP	"	$\because$	38
10 HP	"	\%	19
12.5 HP	"	"	2
15 HP	"	"	6
20 HP	"	\#	12
2 HP NON. STE	2880	"	50
3 HP	"	$\because$	14.5
5 HP	$\because$	"	12
10 HP	$\because$	ii	3
			6879



ALLOCATION OF EXPENSES AMONG COST CENTRES - CONTD.


1. Fixed Expenses


ALLOCATION OF EXPENSES AMONG COST CENTRES						APPENDIX VI		393
$\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$	Items of Expendi	- Basic for an allocation	Budjet   for   -1984	Lathes 12	$\begin{gathered} \text { M2 } \\ \text { Drilling } \\ \text { Tapping } \end{gathered}$	M3   Shaping Machine	M4 Cutting Machine	M5   Kayway Machine
1	2	3	4	5	6	7	8	9
	ixed Expenses							
1.	Direct Ulages	No. of Men	180500	60042	10453	8059	729	1205
2.	Depreciation	Value of Machine	28500	11680	2900	994	249	2071
3.	Insurance	- -Ho	4000	1640	407	140	35	291
4.	Bonus	No. of Men	20700	6885	1199	924	84	138
5.	Provident \&							
	Other Funds Sub-Total	-dom	18000	5988	1042	804	73	120
	$\begin{gathered} \text { Sub-Total A } \\ \text { Variable Exgenses } \end{gathered}$		2517000	86235	16001	10921	1170	3825
6.	Electricity	HP Hours	13200	5198	2189	1184	49	243
7.	Repairs	* Valus	12000	10347	694	151	7	61
8.	Consumable Stores	Total Time (OT)	46100	11404	3090	1942	322	393
	Sub Total B		71300	26949	5973	3277	378	697




ADMINISTRATIUE OVERHEADS

Banus	9000
Rent	8000
Office Salaries	51400
Printing \& Stationery	55400
Conveyance	15000
Interest	111800
Carriage Inuard	15000
Milisc. Expenses	168300
	-433900



PRODUCT COSTING -. MACHINE COST FOR EACH MOTOR
APPENDIX VII A

		M 1	M 2	M3	M 4	M 5	M 6	M	M 8	M 9	M 10	M 11	M 12	2 To
2, 3, 5 HP	Fixed Costs	34.42	6.82	$4: 44$	. 48	1.43	5:92	4:27	2.67	16:24	17.15	1.42	1:70	96.98
	Variable cost	3.82	. 87	. 47	. 05	. 10	. 37	. 52	. 25	1.4 ;	1.89	. 12	. 15	10.11
	Total	38.24	7.69	4.91	. 53	1.53	6.29	4.80	2.94	17.73	19.04	1.54	1.85	107.09
7,5,10 HP	Fixed Costs	36.79	6.44	4.43	. 47	1.43	5.91	4.26	2.69	24.36	17.14	1.42	1.69	107.03
	Variable cost	4.10	. 86	. 47	. 05	. 10	. 37	. 53	. 25	2.24	1.89	. 12	. 14	11.12
	Total	40.89	7.30	4.90	. 52	1.53	6.28	4.79	2. 94	26.60	19.03	1.54	1.83	118.15
$\begin{gathered} 12,5,15,20 \\ \mathrm{HP} \end{gathered}$	Fixed Costs	62.85	11.93	7.10	.60	3.41	15:79	5.19	5.38	48.72	25.72	1.42	1.70	189.81
	Variable cost	7.00	1.61	. 75	. 07	. 23	- 98	. 64	. 45	4.48	2.84	. 12	-14	19.31
	Total	69.85	13.54	7.85	.67	3.64	16.77	5.83	5.83	53.20	28.56	1.54	1.84	209.12


PRODUCT COSTING FOR DIFFERENT 1440 RPM MOTORS						APPENOIX VII ${ }^{\text {B }}$		
	2 HP	3 HP	5 HP	7.5HP	10 HP	12.5 HP	15 HP	20 HP
1. Raw Materiais	532.93	655.14	786.38	1167.01	1356.78	1694.90	1948.41	2230.11
2. Packing Materials	14.49	14.49	14.49	14.49	14.49	14.49	14.49	14.49
3. Diecasting Charges - Rotors	23	26	32	42	46	60	67	80
4. Carriage outwards	25.27	25.27	25.27	25.27	25.27	25.27	25.27	25.27
5. Commission on Sales	25.95	31.20	39.60	51.60	63	69.60	- 84	111
6. Machining cost variable	10.11	10.11	10.11	11.12	11.12	19.35	19.35	19.35
$\therefore$ A. Tool Variable Cost	631.75	762.21	907.85	1311.49	1516.66	1883.61	2158.52	2480.22
7. Machining Cost Fixed	96.98	96.98	96.98	107.03	107.03	189.81	189.81	189.81
B. Total Cost	728.73	859.19	1004.83	1418. 52	1623.69	2073.42	2348.33	2670.03
8. Selling Price : List Price	865	1040	1320	1720	2100	2320	2800	3700
9. Price Less Discount Net Selling Price	692	832	1056	1376	1680	1856	2240	2960
10. Contribution (9-A)	60	70	148	65	163	28	81	480

## PRODUCT COSTING FOR DIFFERENT 1440 RPM MOTORS - CONTD.


*The underlying assumption is that the product mix ramains the same.

## APPENDIX VIII

STATEMENT OF PROFITABILITY FOR THE YEAR 1983-84

		Rs.	dis.
1.	Sales		70,07,500
	Eaw materials	-54,70,500	
	Direct wages \& supervision	1,80,500	
	Bonus	20,700	
	Consumable stores	46,100	
	Electricity	13,200	
	Kepairs \& Miaintenance	12,000	
	Iient - residential	8,000	
	Office staff salary \& bonus	60,400	
10.	Postage, telephone \& stationery	55,400	
11.	Conveyance \& vehicle maintenance	15,000	
12.	Miscellaneous expenses:		
	$\begin{array}{lr}\text { a) Insurance } & 4000 \\ \text { b) } & 4000 \\ \text { PF, ESI, etc } & 18000\end{array}$		
	c) Carriage inward 18000		
	d) Carriage outward 173800		
	e) Packing 99700		
	f) Comnission on sales 346300   -) Lie casting		
	5) Lie casting   charges   139500		
	h) Others 168300		
		9,64,600	
	Depreciation	28,500	
	Interest on cash credit	1,11,800	
. 15.	Total cost of production (2 to 14)	69,86,700	
			69,86,700
16.	Net profit before tax		20,800



## MACHIEF LOADING MATRIX - BATCH QUANTITY 30



Stator

Stamping	$2,3,5 \mathrm{HP}$
	12.5, 15, 20HP


$21 / / 2$	24.
$21 / / 2$	24
27	30

Rotor

Rotor		
Stampings	$2 ; 3,5 \mathrm{HP}$	$23 / 4$
	$7.5,10 \mathrm{HP}$	$23 / 43$
	$12.5,15,20 \mathrm{HP}$	$23 / 4$


Shaftings	2,3,5 HP	21/4 $21 / 2 \quad 23 / 4,351 / 2$
	7.5, 10 HP	21/4 $21 / 2 \quad 23 / 4 \begin{array}{llllll} & 31 / 2\end{array}$
	12.5,15,20 HP	$23 / 4$ 5-61/4 7 141/2



## APPENLIK IX

BREAK-EVEN LEVEL OF OPERATION


$$
\text { APPENLIX } x
$$

ASSESSMENT OF WOKKING CAPITAL REQUIREMENTS



Deficit is to be met by capitalising a portion of the projected profits of about l.s.209,000 for the year ending 31.3.1983. This would ensure that the equity base of the unit is strengthenec adequately so that the ratio of equity to the projected sales of $\mathrm{R} .70,07,000$ will fall within the Bank's norins.

FINANCIAL DATA


#  



APPENLD XIII

TRENU \&NALYSIS - EASE YE/R 1979

			1979	1980	1981	1982	1983
1.	Sales	5544	100	120	82	76	113
2.	Current assets	1313	100	130	135	135	-
3.	Current liabilities	1117	100	129	122	138	-
$\therefore$	Equity + Reserves	604	100	115	130	102	-
5.	Gress profit	1256	100	115	86	71	88
	Bank borrowings	456	100	114	101	112	-
7.	Overheacl expenses	971	100	90	100	130	96
8.	Suncry debtors	265	100	195	254	212	-
	Sundry creditors	-	100	159	158	190	-


	1979-80	1980-81	1981-82
	(Rupees in thousands)		
Increase in bank borrowings	63	-	55
Increase in sunciry creditors	199	-	111
Increase in expenses	-	-	23
Increase in loans	94	-7	-
Increase in capital	90	94	-
Decrease in inventory	-	-	134
Decrease in sundry debtors	-	-	-
Decrease in fixed assets	35	25	16
Decrease in other miscellaneous assets	160	82	-
Decrease in cash \& bank balances	$s$	34	-
	641	242	339
Decrease in bank borrowings	-	60	-
Decrease in sundry creditors	-	8	-
Decrease in expenses	30	22	-
Decrease in loans	-	-	28
Decrease in capital	-	-	$1 / 4$
Increase in inventory	364	18	-
Increase in sundry debtors	225	134	4
Increase in other miscellaneous assets	-	-	40
Increase in cash \& bank balances	22	-	123
	641	242	339

BHMRAT TYRE AND FUBBER PKODUCTS

## BRIEF HISTORY OF THE UNIT

The unit is encaged in the manufacture of various types of rubber products and has the essential know how for running an inclustry of this nature. The proprietor after having uncercone training at the Imperial Chemical Industries Laforatories, has furthered his knowledge by studying the rubber industry in Japan and Nialaysia. As such, the unit is now in a position to cater to the needs of various customers including Government and public sector undertakings. Besides undertaking job works like retreading of truck, car, jeep and scooter tyres, the unit also undertakes the manufacture of various rubber products as per desich and specifications of customers, a fair percentace of such procucts being import substitution items which call for high degree of sophistication in technique and workmanship. Given below is a list of a few major items made by the unit and the customers for whom they are made:

(i)	Dredger suction hose	Port Trusts
(ii)	Fenders	Hindustan Shipyard
(iii)	Conveyor Diocs	Vizag Port Trust, NADC
(iv)	Rubber lining for metallic pipes and tanks	Coromandel Ferti Limited
(v)	Neoprene Rubber Gaskets-	Hindustan Shipyard
(vi)	Non-skid lined matting	- CO
(vii)	Expansion Joints	Coromandel Fertilizer   Limited, Vizag
iii)	Cable connectors	Ri/s Allied Inclustries
(ix)	Vulcan coupling	Tuticorin Port Trust

PREMISES
The unit is situated in the plots of the Industrial Estate, which area has been acquired from the State Industrial Infrastructure Corporation at a cost of Rs. $1,50,000 /$ -

NACHINERY
The total cost of the machinery installed in the unit is lis.219,000 all of which are wholly owned by the company.

PERSONNEL

The break-up of the personnel employed in the unit is as follows:

Production Manager	- 1
Office Rianager	- 1
Foreman	- 1
Office clerk	- 1
Skilled, semi-skilled and unskilled workers	- 18
Total	22

POMER AND FUEL
The unit has six machines which run on electricity as per the break-up given below:-

Mixing mill	-
Air compressor	-
Solution mixture	-
fP	
Water feeding pump	-5 HP
Tyre buffing machine	-
Flexible shaft grinder	-
	-
HP	
	1 HP

In acidition to the above power, an average of 400 litres of oil are required per day to run the two vertical cross tube boilers for production of steam.

## F INANCE

The unit has, at present, been afforded two facilities, the hypothecation and the outward bill facilities, the limits for which as on date are Rs. 50,000 and Rs. 100,000 respectively. The position of the accounts as on 13.3.1903 were as under:

	Linit	D.P.	Outstandings
Hypothecation	Rs. 50,000	Rs. 50,000	Rs. $174,033.58$
Outward bill	Rs. 100,000	Rs. 17,820	Rs. $9,279.91$

The primary security for the hypothecation facility are stocks of raw material, stocks in process and finished goods, and for the bill facility, the receivables. The collateral security is in the form of pledge of the
unit's machinery valued at Rs.219,000. The unit has also promised to mortgage the land and building once the purchase of the same from the State Industrial Infrastructure Corporation is registered.

## RAW MATERIALS

With the exception of natural rubber which has to be procured from Kerala, the rest of the raw materials are available locally and within the State. The purchase of the same does not pose any problem.

## PAST PEPFOFMANCE

The sales of the unit have been showing steady increase over the years. However, there was a dip in the year 1982-83 when the unit failed to receive some of the bulk orders it normally did every year. The big orders have been resumed this year thus leaving no cause for concern.

## INVENTCRY CONTROL

The raw material requirement of the unit has been studied in detail and it is apparent that the unit has to stock 62 varieties of raw materials required for production, not taking into account the various raw materials purchased as and when required. On flipping through the stock register which the unit maintains, it was evicient that the consumption of certain items was much higher than most others. The annual consumption of all raw materials was worked out and an $A B$ analysis of the same revealed that 10 items out of 62 (refer Appendix I) accounted for $85 \%$ of the annual consumption, these items were labelled as 'A' class items.

On the basis of the annual consumption of 1982-83, the annual consumption for 1983-54 was worked out keeping in view a $7 \%$ and $20 \%$ increase in the price of carbon black and corce repairs fabric respectively and a general $10 \%$ increase in consumption of raw materials following a $10 \%$ increase in sales. On the basis of the projected annual consumption, the following were then ascertained for ' $A$ ' class items of raw materials (Appendix II).
(i) Leac: time consumption
(ii) Monthly standard deviation

$$
\sigma_{1}=\sqrt{\frac{(x-x)}{n-1}}
$$

$$
\begin{aligned}
& \text { where }=\text { average monthly consumption } \\
&=\text { monthly consumption } \\
& \mathrm{X}=\text { number of months for which } \\
& \text { data was collected and used, ie. } 12
\end{aligned}
$$

(iii) Monthly stanclarc deviation for projected annual consumption (for 1983-84)

$$
\text { ie., } \sigma_{2}=\sigma \sqrt[1]{\frac{A 2}{A 1}}
$$

$$
\begin{aligned}
\text { where } & A 2 \\
& \text { A } \\
& =\text { annual consumption for 1983-84 } \\
& \text { annual consumption for 1982-83 }
\end{aligned}
$$

(iv) Safety stock for each item of 'A' class raw materials

$$
\text { Safety stock }=K \times \sqrt{2} \times \sqrt{L}
$$

where

$$
\begin{aligned}
K & =2.5 \\
\sigma_{\mathrm{L}} & =\text { as mentioned above. } \\
& =\text { lead time expressed in months. }
\end{aligned}
$$

(v) Economic order quantity (EOQ) for the ten raw materials.

$$
\text { ESQ }=\sqrt{\frac{2 A a}{i c}}
$$

where

$$
\begin{aligned}
& A=\text { Annual consumption in rupees } \\
& \mathrm{a}=\text { cost of ordering } 84 \\
& \text { ing } \\
& \text { inventory holding } 2 \\
& \mathrm{c}=\text { cost }=\text { Rs. } 0.20 \\
&=\text { cost of raw material/unit. }
\end{aligned}
$$

(vi) The minimum order quantity by discussions with the unit. This would be minimum amount of any raw material that could be ordered at a particular time. Column 11 of Appendix III inclicatos the MORs in the major items of R.M. It may be noticed that only one item namely vulcanising solution can be ordered as per ECQ while for the rest, the order quantity will be MOQ.
(vii) Feorder level: This is the level of stocks at which an orcer has to be placed. Reorcer lovels have becn fixed at a level equal to safety stock plus lead time consumption.
(viii) Average inventory: With implementation of the inventory systems suggestec in this study the average level of inventory holding is likely to be of the order of Rs. 29,400 in the ensuing year. Average inventory has been cleterminec using the formula

$$
\text { Average inventory }=\text { safety stock }+\frac{0 . Q .}{2}
$$

In the case of 'E' class items, safety stocks of 1 month and order quantity of four months' requirements are suggestec. Average inventory holcings thus, are likely to be about 3 months' requirements in the case of ' B ' class items.

## COSIING

A detailec costing exercise -was undertaken to cletermine the costs, contribution and profits of a few major items made by the unit. The method of costing adopted was machine hour costing, an overview of which, follows:

## IDENTIFICATION OF COST CENTRES

For purposes of the above study, the factory was divided into 13 production centres, 3 service centres and 6 unbookec centres. Appencix VI gives the detailed break-up of the various cost centres.

COMFONENT :iACHINE COSTING MATHIK
The main pre-rcquisite for drawing up a component machine loading matrix is the projection of product mix for the onsuing year. However, the nature of the unit is such that it survives entirely on job orders and as such no ciefinite product-mix coulc be identified. Appencix IV and V provide adequatc indication to the variec nature of sales effected during 1982-83. Hence, for drawing up the component machine loading matrix pending (firm) orders on hand and projections of a fevt repetitive kincis of job works have been usecl. Appendix VII gives the estimatec procuct aix for 1983-84.

Appendix VIII gives the component machine loading matrix for the envisaged production in the ensuing year. The following is the explanation of the terminology used in the Appendix.
O.I. - Operating time is the time taken at a cost centre to process the product mix, ie., it is the time during which the machine is in operation.
T.T. - Total time is the actual tine that a product books a cost centre, ie., it is the total set up time and operating time.

Utilisation factor is the anticipated utilization of a cost centre for the envisaged product mix and is given by the formula

Utilisation factor $=\frac{\text { Total booked hours }}{\text { Total available hours }}$
Available hours have been calculated on the basis of an 8 hours single shift operation of the factory over a period of 300 cays in a year. After allowing 100 hours for breakdown, etc., the total available hours for each machine has been taken as 2300 hours.

## ALLOCATION OF EXPENSES

As mentioned earlier the sales of the unit have been projected at Rs. 8.51 lacs for the ensuing year and a projected profitability statement has been cirawn up (Appendix $\lambda I I$ ).

Prime costs have first been segregated and all remaining expenses have been categories as either
a) Costs allocable to cost centres, or
b) Costs non-allocable to cost centres.

Costs allocable to cost centres are mainly production overheads and these overheads have been separated into fixed and variable overheads and allocated amongst the various cost centres on as logical basis as possible (Appendix $\mathrm{I} i$ ). The basis of allocation of various expenses are outlined:

HAGES
The budgeted expenditure for wages has been apportioned according to the number of men working at each cost centre.

BONUS AND PRCVIDENT FUNL AND E.S.I.
These are apportioned in the same manner as wages. SUPERVISCRY SALARIES

This has been allocated to various cost centres depending on the amount of supervisory attention deemed necessary at each.

INSURANCE AND DEPRECIATION
These have been apportioned accorcing to the value of machinery installed at each cost centre.

POWER
This expense has been apportioned on the basis of the ratio of weighted product of horse power and running hours of each cost centre.

FUEL
Fuel has been apportioned among the machines which work on steam on the basis of discussions held with the unit.

CONSUMABLE STORES, REPAIRS AND NAINTENANCE
These expenses have been apportioned on the basis of ciscussions with the unit.

The fixed and variable expenses allocated to service centres have thus been apportioned to production centres on the basis of the sub-totals arrived at consequent to the above. Further, the entire chunk of non-allocable expenses have been termed financial, acministrative and general overheads and have been apportioned to production centres on the basis of the sub-totals arrived at after apportioning service centre expenses.

## CALCULATION OF FIXED AND VARIABLE NiACHINE HOUR RATES

After the allocation of expenses to cost centres, the fixed and variable machine hour rates for cost centres have been worked out as follows:

Fixed machine hour rate $=$ Totalfixed expenses
Total booked hours
Variable machine hour rate $=$ Total variable expenses

## PRODUCT COSTING

With the hour rates calculated as mentioned above, major items of pending and repetitive type orders were costed in order to gauge costs contribution of various items. Appendix $X$ gives an overview of the costing exercise.

Variable cost of machining a product has been arrived at.in the following manner:

The operating times taken by the product at different cost centres have been multiplied with the respective variable machine hour rates of the cost centres and the variable costs thus arrived at for machining at each centre, have been aggregated to give total variable cost of machining/processing.

A similar exercise has been carried out to determine the total fixed costs of machining/processing a product, using total booked hours and fixed machine hour rates.

The total cost of a product is then raw material (prime) cost plus the variable and fixed costs of machining. Appendix $X-A$ sumnerises the findings of the costing exercise.

As is evident, four products, namely cable connectors male \& female, and retreaing the scooter and car/jeep tyres result in losses. It is also of interest to note that contribution on scooter tyres is negative implying that the unit not only fails to cover its fixed expenses on the retreading of these tyres but also incurs more expendjture on variable costs.

Hence, it is suggested that the unit discontinues retreac'ing of scooter tyres. A major factor, contributing to the incidence of high variable costs, is the boiler which is oil fired. It may be worthwhile
for the unit to explore possibilities of converting this boiler into a coal fired one. Whereupon variable expenses are likely to come down drastically.

The other three loss-incurring products need not necessarily be deleted from the product mix as their contributions towards fixed expenscs are positive. This is in the light of the part that the machines available with the unit are under-utilised and as such the unit can still minimise losses by taking up more products on a marginal cost basis.

## OPERATING ECONOMICS

Break-even analysis (Annexure XII)
based on the projected sales of Rs.8.51 lacs Appendix XII and the projected profit and loss account. The break-even point has been worked out at ks. 7.10 lacs sales or 83.5\% of production.

WORKING CAPITAL ASSESSNENT
The average inventory of $A$ and $B$ class items in future is likely to be Rs.29,400/- as per the inventory control norms suggested in this report. The requirement against stocks in process has been estimated at 10 days' stocking of goods at cost of production, which would be raw material plus value added at peak level.

In the case of finished goods, the unit does not need to stock for long period in view of the fact that most of the works undertaken are job orders of a small nature. In the case of big orders like dredger hoses, fen ders, conveyor ciscs, belts, etc., the finished goods have to be stocked until the entire order is executed and hence it is envisaged that 15 days' stocking against finished goods may be necessary. The requirenent as per the assessment works out to lis. 83,200 and after maintaining a margin of $25 \%$, against raw materials and $40 \%$ against stocks in process and finished goods, a permissible limit of $\mathrm{F} .54,330$ has been arrived at.

A stucy of the realisation of bills has revealed that it takes about 30 days for a bill to be realised (Appendix XVI) and hence finance is to be afforded in the form of an outvard bill limit on the monthly average sales after retaining a margin of $10 \%$.

The following limits are recommended:
a) Mundy type limit of Rs,55,000
b) Outward bill facility of Rs.65,000
c) $I_{n}$ ward bill limit of R. 5, 000
as a sub-limit under the mundy type account to enable the unit to make advance payments to suppliers of certain raw materials.

FINANCIAL ANALYSIS
A study of the unit's balance sheets and profit and loss accounts for the years ended 1980, 1981, and 1982 has been made (Refer Appendix XIV) through ratio analysis,trend analysis and funds flow analysis.

SOME SALIENT RATIOS
TOTAL DEBT/EQUITY PLUS RESERVES
The capital invested in the unit has shown a declining trend with the proprietor with-clrawing more funds than the profit made. The borrowings from the bank have also risen.

CUR:佂NT ASSETS/CURRENT LIABILITIES
Though the bank borrowings have increased from IN. 91,000 in 1981 to R. 140,000 in 1982, there has been no corresponding increase in the current assets reflecting the utilisation of these funds for purchase of fixed assets.

FIXED ASSETS TO CAPITAL EMPLOYED
This ratio also clearly reflects that the fixed asscts have increased without any increase in the capital thus showing that the only other. source, ie., Bank Finance (W.C) has been used for purchase of fixed assets.

TREND ANALYSIS \& FUNDS FLOW STATEMENT
A cursory glance at the financial ratios, trend analysis and the funds flow statement Appendix XIII reveals that the diversion of funds from working capital finance has been towards purchase of miscellaneous assets and not towards plant and machinery which action may not be to the health of the unit.

## SUMMARY OF FINDINGS /ND RECCNDNEND/ITIONS

## INVENTCRY CONTROL

fccording to an iB analysis of raw materials consumed by the unit, 10 out of 62 items accounted for nearly $85 \%$ of annual consumption and were labelled as ' $h$ ' class items. The remaining have been marked as 'B' class itoms.

Detailed inventory norms have been suggested for ' 6 ' class items (foppendix III) and ac!-hoc systems for ' $B$ ' class items.

Average inventory likely to $b c$ held by the unit on adoption of the system suggested in this report is Rs. 29,400.

COSTING
in exercise on machine hour costing reveals that four of the unit's pending orders are loss incurring items. A summary of their costs is given below:


Though the first three items are losinc, their contribution towards fixed expenses is positive and since machine utilisation at the unit is rather low, it is not considered necessary to celete these procucts from the product-mix. However, the retreading of scooter tyres has necessarily to be celetec as contribution from the same is negative.

It is advised that the unit explore the possililities of convertinc the oil fired loiler into a coal fired one in order that varia'le expenses currently at a high level are krought cown.

FINANCIAL RNALYSIS
An analysis of the unit's financial position,
vice kalance sheets over the past three years,reveals that short term funcis have been utilisec in acquiring non-current assets which indication is consicered unhealthy for the unit.
NOROKO*

## Appendix <br> Nos.

Analysis of consumption of raw materials of 'A' class iterns ..... I
Distribution pattern of raw materials consump- II consumption for the year 1982-83
Value of raw materials - projected figures ..... IIIfor 'A' class itoms only'
Analysis of sales - procluction jobs (from 1.4.1982 to 31.3.1983) ..... IV
Analysis of sales - job works (from 1.4.1982 to 31.3.1983) ..... V
Icentification of cost centres anc: available machine hours ..... VI
List of pencing orders and proposec sales inclusive of retreading and job works ..... VII
Component 'machine loading matrix ..... VIII
Allocation of expenses for the budgeted level of production ..... I.
Product costing by machine hour consting method ..... X
Break-even analysis ..... XI
Statement of profitability for projectec: ..... XII sales
Funds flow statement ..... XIII
Financial ratios ..... $X N$
Assessment of working capital requirements ..... XV
Statement of outward bills submitted for collection upto 31.3.1983 ..... XVI

APPENDL, I
ANALYSIS OF CONSUMPTCON OF KAU MATERIALS OF 'A' CLASS ITEMS

Sl. Particulars of   No. Haw Materials	Quantity   in Kes.	Unit price. R.	Annual   consumption value	Cumulative consumption value
1. Natural nubber				
2. Caxbon Black	2023	7.50	15,172	32,196
3. Natural Rubber R.M.A.	1700	8.50	14,450	46,646
4. Corde Repair Fabric	57 Rolls	200.00	11,400	58,046
5. Chemlock 220	13 Kcs	750.00	9,750	67,796
6. Reclaim zubber	2735	2.60	7,111	74,907
7. Vulcanising sclution	750 Ltrs.	8.50	6,375	81,282
8. Cotton Duck	11/2 fiolls	3893.00	5,840	87,122
9. Neoprene Rubber	77 KGS .	35.00	2,695	89,817
1?. China Clay	3766	0.65 P .	2,447	92,264
'B' Class items	K¢S.	In.	85\%	
11. Zinc Oxicie	278.8	7,00	1,952	94,216
12. Nitrile Kubber	32.5	32.00	1,040	95,256
13. Hagnesium Oxicie	61.4	15.00	921	95,177
14. Process Oil	90	10.00	900	97,077
15. Chemlock 205	1.5	500.00	750	97,827
16. Whitinc Powder	1110	0.65 P.	722	98,549
17. Steasic Acid	100.5	6.50	653	99,202
18. Pine Tar	97.4	6.00	584	99,786
19. Forcal S	225.5	2.50	564	1,00,350

APPENDIX I (Contd)


:IPPENDIX II
dISTRIBUTION PATTERN OF RAW MATERIALS CONSUMPTION FOR THE YEAR 1982-1983




APPENDIX III (Contd.)

5l. Name of the Raw material No.   1 2.	Safety stock $k 6 / t$	E.O.Q. in units   11	R.O.Q. in units   12	$\begin{aligned} & \text { R.O.L. } \\ & \text { (S.S. LTC) } \end{aligned}$   in units $13$	Average invontory in units $S S+0 Q / 2$ 14	Average inventory in iupees. 15	Remark $16$
1. Natural Rubber Creep	330	93	250	498	455	3,185	
2. Carbon Black	134	75	250	195	259	2,072 -	increas is ex
3. Natural Rubber RMA	148	71	250	265	273	2,320 -	
4. Corde Repair Fabric	12	2.2	10	15.3	17	$4,080-$	increas   is exp
5. Chemlock.	2.56	0.61	5	3.2	5	3,750	
6. Reclaimed Rubber	173	162	250	335	254	$660-$	
7. Vulcanising Solution	133	44	24	168	155	1,31日 =	
B. Cotton Duck	0.5	1	1	-	1	3,893 -	
9. Neoprene Rubber	14	7.4	50	18.9	39	1,365	
10. China Clay	77	357	2060	304.5	1077	700 -	
23,343							
Notes:   (i) Incirease in cost of raw materials over last year's consumption works out to 21.9\%   (ii) Considering the future level of production, requircment of rubber of various $l$ variaties is stepped up by $25 \%$ of consumption during last year. In the case   Basis : Discussion with the unit of other items an increaso of $10 \%$ is required to be maintainod.   (iii) Lead time Consumption, and E.O. Q. otc. are not calculated for $4 \& 8$ in view of their low consumption.							

# ANALYSIS OF SALES - PEODUCTION JOBS 

(FiGM 1.4.1982 TO 31.3.1983)

Sl. No. 1 $\quad$ Type of Prociuct	$\begin{gathered} \text { Sale Value } \\ 3 \end{gathered}$	Cumulative sale value 4
1. Dredger Suction Hoses	93,418-	93,418
2. Rubber Liscs	62,622 -	1,56,040
3. Neoprin Kubber Gaskets	41,623 -	1,97,663 -
4. Conveyor Bilts	26,100 -	2,23,763 -
5. Non skic rubber mattings	23,648 -	2,47,411 -
6. Expansion Joints	22,650 -	2,70,061 -
7. Cable Connectors	20,049 -	2,90,110
8. Iubber ' 0 ' Fings	18,010 -	3,08,120
9. Kubber Packing	14,892 -	3,23,012 -
10. Rubber Packing Strip	14,649 -	3,37,661 -
11. Bushes	13,326 -	3,50,987
12. Rubber Fings for Ball \& Sockets	8,190	3, 59,177 -
13. Rubber Sleeves	6, 840 -	3,66,017 -
14. Pubber spools	4,200-	3,70,217 -
15. Fiubber Washers	4,734 -	3,74,951 -
16. nubber buffer rinss for import iclers	3,626 -	3,78,577 -
17, Rubber Compound	3,123 -	3,81,700 -
18. Rubber cell lock strip	3,038 -	3,84,738-
19. Vulcanisinc blow impire	2,828 -	3,87,566 -
20. Fiubber Cock	2,475-	3,90,041 -
21. Rubber below for scrubber pump	2,424 -	3, 92,465-
22. -do- for stand pipe jump	2,136 -	3,94,601

APPENDIX IV (Contd.)

1.2	3.	4.
23. Rubber beciain; \& bedding	1,976 -	3,96,577 -
24. Rubber radiator hose	1,822 -	3,98,399 -
25. Fubber bucket seal	1,720 -	4,00,119 -
26. Rubber Liaphragms	1,621 -	4,01,740 -
27. Fubber Cups	1,474 -	4,03,214 -
28. Coupling Pacis	1,309 -	4,04,523
29. Chair boots	1,108 -	4,05,631
30. Hubber Blocks	928 -	4,06,559 -
31. Spacers	837 -	4,07,396-
32. Rubber tyres for castrorrels	$700-$	4,08,096 -
33. :iubber impellor	600 -	4,08,696 -
34. Rubber link mat	570 -	4,09,266 -
35. riubber ferrules	550 -	4,09,816 -
36. nubber Pully	490 -	4,10,306 -
37. Rubber x - bushes	320 -	4,10,626 -
38. Kubber Plugs	151 -	$4,10,777$
39. Fiubber Oil crasher boot	41.	4,10,819 -
	10,819 -	
Total of job works as per Appendix V	43,635 -	
Total Sales	54,454 -	

## APPENLI: V

ANALYSIS OF SALES - JOD WCRKS
(FRCM 1.4.1982 to 31.3 .1983 )

Sl.   No.	Type of Product	Sale Value	Cumulative Sale Value
1.	Misccllaneous Job Works	1,13,581 -	1,03,581 -
	EETPEADING		
2.	Truck Tyres	1,86,120 -	2,89,701 -
3.	Car/Jeep Tyres	40,400 -	3,30,101 -
4.	Scooter	3,534 -	3,33,635 -
		---------	3,43,635
		3,43,635 -	

APPENDIX VI

IDENTIFICATION OF COST CENTRES \& AVAILABLE MACHINE HOURS


APPENDIX VI (Contd)

1.2	3	4	5	6-
12. Steam hand ply moulding prefs $12^{\prime \prime} \times 12^{\prime \prime}$		1,339.00		
		1,545.00		
14. $A / B 4$ Nos. -do-	10	6,000.00	12,000	
15. $\Lambda$ B 2 Nos. -do-		3,000.00		
16. Hand fly press for cutting with one H.P. Motor		4,046.00		
17. $24^{\prime \prime} \times 24^{\prime \prime}$ Steam Mould Press 2 Nos.	11	6,250.00	2,400	
18. $28^{\prime}$ Long wicanising chamber with loose inner guides.	12	11,266.00	2,400	
		1,05,944.50		
19. Fenner Vertical cross Tube Boilers 2 Nos.	1	20,255.00	2,400	
20. Air Compressor	2	4,074.00	2,400	
21. Welding machine 350 Amp.220/ 440	3	1,500.00	2,400	
22. Vulcanising Chamber		10,200.00		
23. Truck Tyre Changing machine	U n	2,21.4.65		
24. Calendering machine with 3 designed rollers $21 / 2 \mathrm{HP}$ Motor	b	4,800.00		
25. 71 "x71" Steam Press	k	18,000.00		
26. Vertical vulcanising chambers 2 Nos.	d c e	3,800.00	.	
27. Vulcanising Machine	$\underline{\square}$	1,556.85		
	e	1,72,345.00		
Value of other items of		46,655.00		
detail . Total value		2,19,000,00		

APPENDIX VII
LIST OF PENDING ORDERS AND PROPOSED SALES
INCLUSIVE OF RETREALING \& JOB WORKS.

Sl. Name of the Product	Quantity	Rate   Hs. P.	Sale mate_ value rial Rs. value Rs.	Grōs margin of contribution
Production Items				
1. Dredger Suction Hoses	15	7200-	1,08,000 60,000	48,000
2. Fencers$308 \times 150 \times 2100 \mathrm{MM} 25 \quad 3650-91,25037,500 \quad 53,750$				
3. Fenders				
4. त̃ubber Discs	10850	7.50	81,375 43,400	37,975
5. Expansion Joints 18"	5	5000 -	25,000 9,000	16,000
6. Cable Connectors Male	2600	4.75	12,350 5,840	6,510
7. Cable Connectors Female	2600	3.75	9,750 5,200	4,550
8. Hiscellaneous Pro-cluction items				
Job Works				
1. Betreading Tyres   - Truck	871	240 -	2,09,040 1,25,400	83,640
2. Retreacing Jeep/Car		100-	40,500 25,920	14,580
3. Retreacling Scooter	93	$38-$	3,534 2,230	1,304
4. Other Miscellaneous   Job Works $1,00,000$				
Total			8,51,399 3,36,090	




1. Dredger Suction Hoses
2. Tenders $308 \times 150 \times 2100 \mathrm{M} . \mathrm{M}$.
3. Tenders $400 \times 200 \times 3000$ M. M.
4. Rubber Discs
5. Expansion Joints 18"
6. Gable connectors Male
7. Cable connoctors Female

B. Retreading Truck Tyres	145.00	217.45	580.00	725.00	1742.00	2177.30			50.0570 .00
9. Retreading Carf Jeep tyres	67.30	101.15	202.30	270.00					
10. Scooter Tyres	15.30	23.15	31.00	46.30			108.30	155.00	
Total	228.00	342.15	813.30	1041.30	1742.00	2177.30	100.30	155.00	50.0070 .00
		2300		2300		2300		2300	2300
		14.8\%		45\%		94.6\%		6.7\%	$3 \%$



allocation of expenses for the bldgetted level of production

S1. Item of Expenditure	Basis	Eudgetted expenditure	C1	C2	C3	C4	C5	C6
A. Fixed Expenditure								
1. Wages	No. of men	49,000	2,450	1,200	1,250	2,450	1,250	600
2. Insurance	Value of machinery	1,500	100	50	50	-	-	50
3. Salaries	No. EMF	23,200	700	700	700	500	500	500
4. Bonus, P.F. \& E.S.I.	-do-	17,300	980	540	540	980	540	270
5. Depreciation	Value of	16,000	1,000	400	400	400	400	400
Sub Total I		1,07,000	5,230	2,890	2,940	4,430	2,690	1,820
B. Variable Expenditure								
1. Power	H.P.\& Ṙunning hours	8,600	-	-	-	-	516	-
2. Fuel	Discussion	81,000	-	4,000	4,000	-	-	20,000
3. Consumable Stores	with unit	36,000	500	500	500	500	500	1,000
4. Repairs \& Maintenance		6,000	200	100	100	200	200	100
ADDSub Total   Sub Total   II		$1,31,600$ $1,07,000$	$\begin{array}{r} 700 \\ 5,230 \\ \hline \end{array}$	4,600 2,890	4,600	$\begin{array}{r} 700 \\ 4.430 \\ \hline \end{array}$	1,216 2,690	$\begin{array}{r} 21,100 \\ -1,820 \\ \hline \end{array}$
Fixad		13,990	396	494	497	358	288	1,673
" Variable		15,446	489	564	558	380	289	1,786
		2,68,036	6,815	8,548	8,595	5,868	4,483	26,379



							APPENDIX IX (Contd.)				441
1. 2.	C7	C8	CO	C10	C11	C12	C13	SC1	SC2	SC3	Centre
A. Fixed Expenditure											
1. Wages	600	1,300	7,350	4,900	1,200	2,450	14,700	6,000	1,000	300	'
2. Insuranci	50	50	300	50	50	50	50	200	50	50	350
3. Salaries	500	500	4,000	4,000	500	4,000	4,000	1,000	500	500	-
4. Bonus, PF E ESI	270	540	2,240	2,160	540	980	4,830	1,300	450	140	-
5. Depreciation	400	400	3,000	1,100	400	800	400	1,600	400	500	4,000
Sub Total I	1,820	2790	16,890	12,210	2,690	8,280	23,980	10,100	2,400	1,490	4,350
B. Variable Expenditure.											
1. Power	-	-	7,138	-	-	**	-	258	516	172	-
2. Fuel	2,000	1,000	-	25,000	5,000	20,000	-	-	-	-	-
3. Consumable Stares	500	500	15,000	500	500	500	3,000	9,000	1,000	2,000	-
4. Repairs \& Maintenance	100	100	1,000	200	500	700	-	2,100	200	200	-
Sub Tôtal II	2,600	1,600	23,138	25,700	6,000	21,200	3,000	11,358	1,716	2,372	-
Add Sub Total I	1,820	2,790	16,890	12,210	2,690	日,280	23,980	10,100	2,400	1,490	4,350
	4,420	4,390	40,028	37,910	8,690	29,480	26, 980	21,458	4,116	3,862	4,350
Service Cost Centres											
Fixed:	592	289	2,662	2,542	573	1,946	1,880	$\cdots$	$\cdots$	-	$\cdots$
-do- Variable:	347	324	2,960	2,905	667	2,181	1,996	-	-	-	-
Unbooked Centres:--	5,159 99	$\begin{array}{r} 5,003 \\ 91 \end{array}$	$\begin{array}{r} 45,650 \\ 849 \end{array}$	$\begin{array}{r} 43,357 \\ 794 \end{array}$	9,930 181	33,607 577	$\begin{array}{r} 30,856 \\ 562 \end{array}$	$21,458$	4,116	3,862	4,350
	5,258	5,094	46,499	44,151	10,111	34,184	31,418	21,458	4:116	3,862	4,350
Financial, Admn. \& General overheads	3,614	3,501	31,961	30,347	6,950	23,496	21,595	-	-	-	-
Total Expenses : Ris.	8,872	8,595	78,460	74,498	17,061	57,680	53,013	21,458	4,116	3,862	4,350






## APPENDLX $X-A$

Sl. Item	Quantity.	Variable   Machin-   ing cost   in Rs.	Raw   Material   cost in Rs.	```Total variable cost in Rs.(4+5)```
1 - 2	3	4	5	6
1. Dredger Suction Hoses	15	3,420.80	54,000.00	62,420.80
2. Fenders $308 \times 150 \times 2100 \mathrm{Ma}$	125	15,874.50	37,500.00	54,374.50
3. -do- $400 \times 200 \times 3000 \mathrm{Mm}$	12	8,099.76	21,600.00	29,699.76
4. Rubber Discs	10850	14,913.00	36,400.00	51,313.00
5. Expansion Joints 18"	5	1,083.29	9,000.00	10,083.29
6. Cable connectors (Male)	2600	3,125.20	5,840.00	8,965.20
7. Cable connectors (Female)	$2600^{\circ}$	3,125.20	5,200:00	8,325.20
8. Retreacing of Tyres Truck	871	27,329.78	1,25,400.00	1,52,729.78
9. Retreading Car/Jeep	405	11,367.09	25,920.00	37,287.09
10. Fetreading Scooter	93	3,159.23	2,230.00	5,389.23

## APPENDIX $X-A$ (Contd.)



S1. Item	$\begin{gathered} \text { Profit/Loss } \\ \text { in BS. } \\ \left(\begin{array}{c} -8 \end{array}\right) \end{gathered}$	$\begin{aligned} & \text { Contribution } \\ & (9-6) \end{aligned}$
12	10	11
1. Dredger Suction Hoses	+ 22,083.83	$+45.579 .20$
$\begin{aligned} & \text { 2. Fenders } 308 \times 150 \times \\ & 2100 \mathrm{NM} \end{aligned}$	+ 5,237.50	+ 36,875.50
3. Fencers $400 \times 200$ x 3000 MA	+12,713.54	' $+27,900.24$
4. Rubber Discs	+ 1,335.40	$+30,062.00$
5. Expansion Joints 18"	+ 12,171.81	+ .14,916.71
6. Cable connectors (Male)	- 1,689.65	+ 3,384.80
7. Cable connectors (Female)	- 3,649.65	$+\quad 1,424.80$
8. Retreading of Tyres Truck	+ 10,341.84	+56, 310.22
9. Retreading Car/Jeep	- 23,309.41	+ 3,212.91
:O. Retreading Scooter	- 9,399.23	- 1,855.23

$$
\begin{aligned}
\text { Column } 10:- & + \text { indicates Profit } \\
& - \text { indicates Loss } \\
\text { Column } 11:- & + \text { indicates Positive contribution } \\
& - \text { indicates Negative contribution }
\end{aligned}
$$

## BREAK - EVEN ANALYSIS

(for projected level of sales)


Projecțed annual sales 8,51,000
Less:- Cost of raw materials 3,95,000
Variable Expenses 1,31,600
5,26,600

Margin of contribution . 3,24,400

Total Fixed Expenses $\quad 2,71,000$
Break-Even Point $\quad \frac{2,71,000}{3,24,400}=83.5 \%$

Break Even Sales $=83.5 \%$ of annual sales . 7,10,600

Monthly sales for break even point

59,200

Note:-
Break Even Point $=\frac{\text { Total Fixed Expenses }}{\text { Margin of contribution }(\text { Expressec ascentage })}$ a

## APPENDIX $\times I I$

STATEMENT OF PROFITABILITY FOR PROJECTED SALES
S.No.

1. Sales realisation
2. Raw Materials
3. Direct Wages \& Supervision
Charges
4. Bonus, P.F. \& E.S.I.
5. Consumable Stores
6. Electricity \& Fuel
7. Repairs \& Maintenance
8. Rent
9. Sales Tax
10. Office Staff Salaries
11. Postages, Telephone \&
Stationery
12. Conveyance \& Vehicles Upkeep
13. Interest on Bank Borrowings
(C/c)
14. Depreciation
14,
15. Miscellaneous Expenses
16. 

## FUNDS FLOW STATEMENT

-.	March '		ch '	arch
Sources				
. Increase in Equity/Reserves Feserves		157	52	-
2.	-do- Bank Loans	42	50	49
3.	$\text { -dom } \begin{aligned} & \text { Sundry Creditors } \\ & (\text { Misc. }) \end{aligned}$	99		-
4.	Decrease in Fixed Assets	-	12	-
5.	-do- Current Assets	-	-	-
6.	Cash	-	-	90
		298	114	139
	Uses			
1. Decrease in Equity/ Reserves		-	-	4
$2 .$	-do- Sundry Creditors	-	1	4
	Increase in Fixed Assets	197	-	53
4.	-do- Current Assets	98	22	78
	-do- Cash	3	91	-
		298	114	139

FINANCIAL FATIOS
$\left.\begin{array}{lcc} & 1981 & 1982 \\ \text { 1. Total Debt./Equity + } \\ \begin{array}{c}\text { Reserves }\end{array} & 0.91: 1 & 1.14: 1 \\ \text { 2. Current Assets/Current } \\ \text { Liabilities }\end{array}\right]$

TREND ANALYSIS

1. Sales .	700	960	995
2. Current Assets	119	215	177
3. Current Liabilities	141	191	235
4. Equity + Reserves	158	209	206
5. Gross Profit	$@$	407	395
6. Bank Borrowings	77	91	140
7. Overhead Expenses	0	360	327
8. Sundry Debtors	71	3	122

Note: For Trend Analysis, base year is 1980 Amount in thousands.
© - Not available.

ASSESSMENT OF WORKING CAPIT/L REQUIREMENTS


APPENDIK XVI
STATEMENT OF OUTWARD BILLS SUBMITTED FOR COLLECTION UPTO 31.3 .83

S.No.	Date of Bill	Amount	Realiedd on	No. of da	ys Product
1.	10.12 .82	22,275,00	6. 3.83	86	19,15,650
2.	14.12.82	239.99	6. 1.83	23	5,520
3.	14.12.82	226.65	6. 1.83	23	5,221
4.	14.12.82	959.94	19.1.83	36	34,560
5.	14.12.82	1,060.00	2. 1.83	19	20,140
6.	22.12.82	1,877.22	27.12.82	5	9,385
7.	29.12:82	2,303.86	9. 2.83	42	96,768
8.	29.12.82	513.30	23. 1.83	25	12,825
9.	29.12.82	11,583.20	19. 1.83	21	2,43,243
10.	6. 1.83	- 685.18	23. 1.83	17	11,645
11.	6. 1.83	2,730.00	15. 3.83	68	1,85,640
12.	6. 1.83	1,\$50.00	23. 1.83	17	19,550
13.	6. 1.83	5,173.00	25. 1.83	19.	98,287
14.	20. 1.83	2,495.84	25. 1.83	5	12,480
15.	20. 1.83	4,629.04	25. 1.83	5	23,145
16.	20. 1.83	1,479.90	25. 1.83	5	7,400
17.	20. 1.83	746.62	25. 1.83	5	3,735
18.	20. 1.83	4,053.08	25. 1.83	5	20,265
19.	20. 1.83	5,300.00	25. 1.83	5	31,500
20.	20. 1.83	2,559.84	25. 1.83	5	12,800
21. ${ }^{\text {. }}$	9. 3.83	33,079.25	27. 3.83	18	5,95,422
22.	10.3.83	3,034.78	10. 3.83	-	-



## NURSING PROGRAMhE - BOSTONS PHARMAS

## INTRODUCTION

This report relates to the study made at $\mathrm{M} / \mathrm{s}$ Bostons Pharmas, Curing April 1983. Bostons Pharmas is a sick unit and its account is irregular by about Ro. 4.6 lacs. I have tried to evaluate the technical and financial status of the company and suggest a suitable course of action.

The situation with regarc to nursing sick units reminds me of a story 1 heard long ago, long before these turbulent times. It concerns a doctor who was awakened in the middle of the night by a phone call.
"Doctor", a frantic housewife said, "my husband is very ill with pneumonia. What shall I do?"
"That depends", the coctor replied. "If your husband was basically healthy before he caught sick, the normal medications will do. [ut if he was not, ask him to write his will".

If. the unit was managed well before, it will probably be nursed back to health. If not, it will be difficult.

## BRIEF HISTORY OF THE UNIT

M/s Bostons Pharmas was started in 1975 at Pondicherry by Mr. Nagarathinam with a view to manufacture ointments, syrups and tablets. The unit nas a capacity to manufacture and repack chemicals and drugs worth about Rs. 1 lac per month. After the expiry of the proprietor, Mr . Nagarathinam, the unit is being managed by his son, Mr. Janakiraman, with the guiciance of the Manager, Mr. Ramalingam. A brief history of the unit is given in Appendix I.

BALANCE SHEET
The balance sheet of the company as on 31 st March 1983 is given in Appendix II. The balance sheet shows that the loans and advances from
bank (Rs. 6.13 lacs) is balanced more than $90 \%$ by sunclry debtors - Williams and Company, stock and proprietor's negative balance. The sundry debtors - Williams and Company, shown in the balance sheet is merely pruprietor's drawings from the company accounted as sundry debtors. The raw material stock is high and the majority of lock and key stock items have not been consumed at all for procuction curing the last 3 years. It is consiclored that the stook will fetch a higher realisation than the book value as the market value of the majority of items is higher than the book value. The unit has made a loss of about Rs. 81,000 during the year 1982-83 as shown in the profit and loss account given in Appendix III.

REASONS FOR SICKNESS
The major reasons which led to the current position of the unit are:
(i) Diversion of the funds by the proprietor for personal uses.
(ii) Closure of the manufacture for more than 16 months within a period of 3 years and the expiry of the proprietor in 1982 has greatly upset the working of the unit, .
(iii) Lack of planning of production and purchase has resulted in non-use of stock for manufacture and the consequent build up of high raw material stock.
(iv) Lack of proper management information to enable the proprietor to control procluction, wastage, quality, etc. The cancellation of the licence is partly due to the lack of information system.
(v) The absence of a responsible person at the unit on a day-to-day basis to physically control procuction, quality and wastage. This provicles scope for manipulation of production, wastage, etc. The cancellation of licence twice cluring the last three years could have been avoided by suitable action at the right time by a responsible person.

In spite of the present financial position of the unit, it has the capacity to come out of this present crisis clue to the following reasons:
(a) The profitable working of the associate concern, namely, Williams and Company which has made a net profit (before tax) of Rs.48,000/- (estimated) during 1982-83. In addition, rent is received from builcings (about lis. 12,000 p.a.) owned by M/s Williams \& Co.
(b) Higher market value for the stock held in lod and key account. It is believed that, on a modest estimate, about Rs. 1.5 lacs could be realised by selling non-usable stock worth Rs. 1.15 lacs as per the books.
(c) Reasonable sales potential for the products. NURSING SCHENE

A nursing scheme is recommended after considering pros and cons as follows:
(i) The total outstandings of Ro. 6.135 lacs is proposed to be divided as follows:

The details are given in Appenclix IV. Thus à clean term loan (CTL-1) of Rs. 3.65 lacs and frozen lock and key account of Rs. 1.0 lac is recommended.
(ii) Based on sales projections by the unit and the past performance, a projected working of the unit quarter by quarter, corresponding working capital requirements, cash flow and repayment of CTL-1 and frozen lock and key account has been estimated as shown in Appendices V to VIII.
(iii) The successful operation of the nursing scheme greatly depends on
(a)
payment of Rs. 5000 per month from Williams and Company till the dues are cleared. It is understood that the proprietor of the unit has agreed to pay li. 6000 per month. However; the study of the balance sheet and profit and loss account of hilliams and Company inclicated that the company may not be able to make a payment of Ro. 6000 per month on a regular basis. Hence, a payment of Rs. 5000 per month is recommencied. Any default in this payment will upset the nursing scheme recommencled.

In addition to Bostons Pharmas, Williams and Company has sunciry crecitors of Rs. 1.37 lacs. However, it is understood. that no payment is necessary in the immediate future (next 5 years) as agreed by Mr. Janakiraman and accordingly no repayment towards this has been provided in the cash flow.
(b) Disposal of stock not usable by Boston Pharmas in the immediate future. It is considered that stock worth about Ps.1.15 lacs as per the books could be disposed off. It is believed that since the market value of such stock is higher than the book value, an amount of fi .1 .5 lacs could be realised from such a sale. A list of items that could be cisposed off, probable selling price and the values are given in Appendix IX. A physical stock verification was also done for the majority of the items, and this revealed that the actual weight is less for some items and the total value of the loss is Rs.14,000. This value has been deducted in the closing stock shown in the balance sheet. The proprietor of Bostons Pharmas (Mr. Janakiraman) has given a period of one year within which the above stock will be sold. However, since the stock is imported, the unit $s^{-\cdots u l d}$ obtain the permission of Drug authorities and sell the materials only to actual users.
(c) Maintaining the level of operation as indicated in the programme (Appendix V). It is considered that the unit should be able to maintain the level indicated without much difficulty with proper salos plan and follow-up action.
(c) Exercising proper controls on procuction, wastage anc quality and maintaining the expenses within the limits indicated in the proposal (Appendix V)
(c) In general, all purchases anc sales should be routed through the bank and a monthly reconciliation of production, purchases, stock ancl sales should be done to the satisfaction of the bank. In this context, it is recommenced that the unit compile and submit the returns recommended in the Task Force report for all nursing units.

## PRODUCTION PROGRAMNIN

The production programme was discussed with the unit and based on the programme given by the unit, itemwisc raw material and packing material requirements have been worked out. The raw material cost for both manufacturing and repacking items and sales realisation have been worked out and given in Appendices $X$ and $X I$. The raw materials required for the programme indicated is given in Appendix XII.

## MARKETING

The unit proposes to sell the products to hospitals, medical stores and private parties in Madras city and surrounding arcas. The unit has already developed contacts for the same. In acdition, it is also employing salesmen on a commission basis to sell its:products. It is believed that it would not be very difficult for the unit to sell the production indicated in the proposal for nursing programme. However, collection of outstandings shoulc be more aggressive.

EISCUSSIONS WITH DRUG INSPECTOR
Discussions were held with tho Drug Inspector to get his views on cancellation of liconce earlier and, in general, about the unit, from the point of view of acinerence to the Gevernment Drug Regulations. It is uncerstooc' that the Drug Inspector is happy about the change of chemist, and if other minor requirements listed out by the Central Drug Contrcl authorities are also complied with, the unit should not have much problom. The Drug Inspecter also expressed that a responsible person shoulc. stay at Pondicherry to look after the unit. Other points suggested by Drug Inspector are:
(a) The unit should plan to set up an Analytical laboratory since, by the end of this ycar, it will be a statutory requirement to have a laboratory;
(b) The unit should manufacture items under loan licence arrangement on behalf of big firms:
(c) The floor area of the unit is less fur the number of sections in the unit. Hence, the unit could think of shifting the ropacking of chemicals to some other area (it is suggested that repacking could be shifted to Maciras).

## hanagenint Infohation systemi

The present information system is inadequate $f \mathrm{c}:$ : preper control of the unit. It was cbserved that the materials are not balanced with material issues from stock and production. The prociuction recorc's were not being maintained properly, and the batch yield was found to vary consicerably and wastaçe shown was high in scme cascs. With such rocorcis, it is not possible to balance input and output, and scope for malpractices is high. Also, it is difficult to cnsure whother it is profitable at all to manufacture an item or not. Although major accounts are boing maintained, it was observed that cash book and ledger are not written then and there, but only once in an year. The purchase registor was not being maintained properly.
N.B. It may not be out of context to note that clearing banks in U.K. have set up "intensive care units" to nurse ailing companies (Barclays runs a special team lead led by Assistant General Manager S. Carslake; Midland ... contd. p.t.o.

Hence, to provide the information requirec for the unit and bank, the following acditional/modified records and reports are suggested:
(a) Purchase book (Appendix XIII) to be raintained at Factory and Madras.
(b) Stock book (Appendix XIV) to be maintained at factory and inadras.
(c) Batch control statement (Appendix XV).
(c) Monthly stock statement showing itemwise opening stock, receipts, issues and closing stock (Appencix XVI)

MONITORING OF NURSING SCHEjbE
A close monitoring is consicered necessary to ensure strict acherence to the scheciule. For this purpose, monthly profit and loss account and balance sheet shoulc: be prepared. All the expenses should be checked and ascertained. The control books and statements recommencec to be maintained in this report will provide the information required for the above.

SENSITIVITY RN/LLYSIS
A sensitivity analysis was carried out to examine the sensitivity of repayment perioc to pessimistic and optimistic variations from those scheclules in the projections as follows:
(a) OPTIMISTIC: Sales reaching a level of 10 lacs per annum from the thirc quarter itself. The repayment under such optimistic conditions is estimated to be three years.
(b) PESSIMISTIC: Sales not increasing beyond 6.0 lacs fer annum and payment from $\mathrm{M} / \mathrm{s}$ Williams and Company being restrictec. to Rs. 4000 per month. The repayment uncler such conditions is estimated to be 7 years.

[^28]Sank has General Manacer M. Wallis presiding over while Nativest tackles through its head office and regional structure - much like the banks in India)

An examination of the relevant data inciicates that repayment programme is sensitive to the two following main parameters:
(a) The ability of Williams and Company to maintain payment of Rs.5,000 per month till the account is regularised and atleast a minimal equity is built up.
(b) The disposal of surplus stock being carried out as early as possible, preferably within the period mentioned, at a price higher than the book value.

GENERAL RELIARKS
(a) The unit should raise as much funds as possible by selling off properties like air-concitioner, lanc, car, etc., and from leans from friencs and relatives to reduce the outstancings as much as possible.
(b) The services of the manager Mr. Ramalingam, will be required by the unit to guide Mr. Janakiraman, since he is new to the business.

SUMMAPY OF FINDINGS AND RECOMMENDATIONS
(a) A nursing scheme with a clean term loan of Rs. 3.65 lacs and frozen lock and key loan of lis. 1 lac is recommencied. The expected repayment period is four years.
(b) Aciciitional management control recorcis ancl reports are recommenced both from the bank's point of view and the proprietor's control point of view.

A study of sick units being nursed will show that Lenin hac correctly saic, that the strongest of all the forces is the force of inertia. "When one cannot wipe off one's errors", wrote Chateaubriand (in the Execution of the Duke of Enghien) "one dismisses them, one makes a docma of one's mistakes and one believes oneself to be a renecade to cive up the cult of one's iniquities."

## LIST OF APPENDICES

Appendix.No.
Brief history of the unit ..... $I$
Balance sheet as on $31 / 3 / 1983$ ..... II
Profit and Loss account for the year ended 31/3/1983 ..... III
Break-up of outstandings ..... IV
Sales and profitability ..... V
Working capital requirement ..... VI .
Cash flow ..... VII
Position of account ..... VIII
Lock and key stock ..... IX
Production programme and raw material cost - manufacture ..... X
Sales realisation - manufacture ..... X.A
Production programme, raw material cost and sales realisation, repacking, ..... XI
Raw materials requirement ..... XII
Purchase book ..... XIII
Stock book ..... XIV
Batch control statement ..... XV
Stock statement for the month of ..... XVI

APPENDIX I

## BRIEF HISTOAY OF THE UNIT

Bostons Pharmas was established at Pondicherry by Mr K Nagarathinam, in the year 1974 with a view to manufacture tablets, ointments and syrups and repack a few items of drugs and chemicals. The unit started production in January 1975. The unit was able to increase the turnover. to R.4.9 lakhs by 1978 from 0.39 lakh in 1975. The manufacturing licence was cancelled for eight months in 1978-79 and again for eight months in 1980-81, for manufacturing substandard drugs and drugs not included in the licence. In spite of the cancellation of manufacturing licence, the unit was able to maintain a turnover of Rs. 4.7 lakhs in -1980-81 by repacking drugs and chemicals. The expiry. of the proprietor Mr K Nagarathinam, in May 1982 has drastically affected the unit since the Proprietor's son who is now looking after the unit and the three medical shops in Madras (Williams \& Co.), has yet to acquire the experience to run the business. The proprietor's son Mr. Janakiraman, is greatly depending on the Manager, Mr. Ramalingam, for guidance in running Williams \& Co., and Boston Pharmas. $\mathrm{M} / \mathrm{s}$ Janakiraman and Thamalingam visit Pondicherry only once/twice in a fortnight, and the

## APPENDIK I..contci.

day-to-day runninc of the unit has been entrusted to a relative of Mr. Janakiraman. The books of accounts of $\mathrm{Mi} / \mathrm{s}$ Boston Pharmas are maintained at Madras.

The total outstandings as on 31st March 1983, is Ro.6.13 lakhs and the account is irregular by Rs. 4.65 lakhs, out of which the clean drawings amount to R.3.65 lakhs.
bal ance sheet as on 31.3.1983


PROFIT \& LOSS ACCOUNT FOR THE YEAR ENDED $315 T$ MARCH, 1983.

EXPENDITURE		INCOME		
To opening stock	315,130.00	By Sales		313,256.61
To Purchases- Raw Material $142,335.71$   B otties \& Caps $12,248.14$	161,583.85	By Clesing Stock: Look \& Kay A/C.	180,607.00	
To Freight, Cooly \& Cartage (Purchase)	10,916.68	1. Mundy	41,240.40	-
To Wages and Salaries	4,078.22	r/ Finished stook	45,676.20	267,523.60
To Electric Charges	2,073.07			267,523.60
To Fuel, firewood atc.	241.71			
Ta Packing \& Forwarding	1,642.13			
To Gross Profit	85,114.55		-	
	580,780.21			580,780.21
Sales Tax .. ..	25,150.61	Gross Profit		85,114.55
Commission ©. - .	8,202. 23	Net Loss		81,179.99
Printing \& Stationery ..	186.80			
Rent $\quad .$.	5,357.69			
Entertainment -	45.05			
Postage, Telegram \& Telephones	1,291:37		.	
Interest ..	88,510.83			
Taxes \& Licences	1,297.50			
Bank Charges -:	480.57			
Travelling Conveyance ..	5,237.31			
Insurance .. -.	1,693.80			
Machinery Maintenance	376.33			
Repairs \& Renowals ..	748.16			
General charges, testing, fees etc.	5,732.80	-		
Salaries ..	19,158.00			
Advertisement	50.00			
Depreciation ..	2,775.49			
	166,294.54			166,294.54

APPENDIX IV

## BREAK-UP OF OUTSTANDINGS



SALES AND PROFITABILITY
(Rs. Thousands)

Description	Q1	QII	QIII	QIV to V	QUI to VII	VIII to XI	$\begin{aligned} & \text { Q. XII } \\ & \pm 0 \quad X V \end{aligned}$
Net Sales Realisation excl. S.T. and excise.	135.0	180.0	180.0	360.0	360.0	900.0	1000.0
A. DIRECT							
Raw Materials 71\% (app)	95.2	127.8	127.8	255.6	255.6	639.0	710:0
Carriage Inwards	5.8	7.7	7.7	15.4	15.4	33.4	42.6
Wages	2:0	2.7	2.7	5.4	5.4	5.4	11.8
Pouer	0.6	$0: 8$	0.8	1.6	1.6	1.6	5.0
Fuel	0.2	0.3	Q. 3	0.6	0.6	1.6	1.6
B. DVERHEADS							
Sales commission	4.1	6.8	6.8	13.6	13.6	34.2	38.0
Rent	1.2	1.2	1.2	2.4	2.4	4.8	4.8
Postage, Telaphone	0.4	0.4	0.4	2.4	0.8	1.6	1.6
Taxes \& Licences	0.2	0.2	0.2	0.4	0.4	0.8	0.8
Travelling, Conveyance	1.2	1.8	1.8	3.6	3.6	7.2	7.2
Insurance	0.3	0.3	0.3	0.6	0.6	1.2	1.2
Packing \& Forwarding	1.4	1.8	1.8	3.6	3.6	9.0	10.0
Maintenance	0.3	0.3	0.3	0.6	0.6	1.2	1.2
Testing charges	1.5	2.1	2.1	4.2	4.2	9.6	10.0
Salaries	0.4	0.4	0.4	0.8	0.8	1.6	1.6
Depreciation	0.6	0.6	0.6	1.2	1.2	2.4	2.4
Interest UCR	8.0	10.5	10.5	21.0	21.0	52.2	58.0
L\&K - CTL.	96. 2	-15.?	13.8	-20.2**	16.5*	.23.5*	-9.1*
Cost of Prod.	139.6	180.9	179.5	351.6	347.9	334.7	916.9
Profit/Loss	- 4.6	- 0.9	0.5	8.4	12.1	55.3	83.1
ADD Dapreciation	ㅁ.6	0.6	0.6	1.2	1.2	2.4	2.4
Cash Accruals	- 4.0	- 0.3	1.1	9.6	13.3	57.7	85.5
NOTE : Raw materials include bottlos, stationery, caps etc.							

## APPENDIX VI

## WORKING CAPITAL BEQUIREMENT

	(Rs. in thousands)			
Sl. Details	$\text { WCR } \quad \stackrel{Q I}{P L}$	$\mathrm{WCR}_{\mathrm{PL}}^{\text {QII-VII }}$	$\text { WCR }_{\text {Q.VIII-XI }}^{\text {PL }}$	$\begin{aligned} & \text { QXII-XV } \\ & \text { WCR PL } \end{aligned}$
1. Raw materials 3 months Less Margin 10\%	$\begin{gathered} 95.786 .1 . \end{gathered}$	$127.8$	${ }^{159.8} 143.8$	${ }^{177.5} 159.8$
2. Work in progress 1 week Less Margin 20\%	$9.0 \quad 7.2$	$11.8 \quad 9.4$	$14.211 .3$	15.612 .5
3. Finished goods at $11 / 2$ months	69.555 .6	$89.271 .4$	$104.583 .6$	$114.391 .4$
```4. Bills 2 months at C.Op. Sales value less 10%```	92.6 81.0	119.2 108.0	139.3 135.0	152.4 150.0
5. Expenses, say 1/2 month	7.2	8.0	8.2	8.2
(Say)	$\begin{aligned} & 274.0 \\ & 229.9 \\ & 229 \end{aligned}$	$\begin{gathered} 356.0 \\ 303.8 \\ 303 \end{gathered}$	$\begin{gathered} 426.0 \\ 373.7 \\ 373 \end{gathered}$	$\begin{array}{r} 4.68 .0 \\ 413.7 \\ 413 \end{array}$
Deficit	45	53	53	55
Limits recommended		.		
Cc stock M.T/L \& K CC Bills	$\begin{array}{r} 148 \\ 81 \end{array}$	$\begin{aligned} & 195 \\ & 108 . \end{aligned}$	$\begin{aligned} & 238 \\ & 135 \end{aligned}$	$\begin{aligned} & 263 \\ & 150 \end{aligned}$
	229	303	373	413

CASH F-LOW
(is. in thousands)

Sl. No.	I . II	III	IV to V	$\begin{aligned} & \text { VI } \\ & \text { to } \\ & \text { VII } \end{aligned}$		$\begin{aligned} & \text { XII } \\ & \text { to } \\ & \text { XVV } \end{aligned}$
12	34	5	6	7	8	9
I SOURCE OF FUNDS						
1 Net profit before tax 2.Depreciation	$\begin{array}{rr}-4.6 & -0.9 \\ 0.6 & 0.6\end{array}$	0.5 0.6	8.4 1.2	12.1 1.2	55.3 2.4	83.1 2.4
3 Net cash accruals	$-4.0-0.3 .1 .1 \quad 9.613 .3 \quad 57.785 .5$					
4. Increase in S.T. borrowing	80.574 .0	-	-	- 7	70.0	40.0
5 Reduction in dues from Williams	$15.015 .015 .030 .030 .060 .0 \quad 60.0$.					
$\begin{aligned} & 6 \text { Recluction in old debts } \\ & (\quad 60 \text { days }) \end{aligned}$	5.06 .0	6.0	-	-	-	-
7.Reduction in frozen lock \& key a/c	27.027 .0	40.0	20.0	-	-	-
8 Surplus in sales of stock in Fz L\&K A / c	10.010 .0	12.0	5.0	-	-	-
9 Decrease in inventory \& book debts	- -	-	-	-	-	-
10 Net cash inflow (1.)	$133.5131 .7 \quad 74.1 \quad 64.643 .3187 .7185 .5$					
II APPLICATION OF FUNDS						
11 Taxation	- -	-	-	9.31	18.02	5.0
12 Increase in inventory \& book dcbts	103.0.82.0	-	-	- 7	70.04	2.0
13 Decreasc in Fz L \& K A / C	24.024 .0	36.0	16.0	-	-	-
14 Decreasc in C.T.L. 1	6.018 .0	36.0	48.0	36.09	95.0125	5.0
15 Decrease in S.T. bank borrowings	- -	-	-	-	-	-
Net cash outflow (B)	$133.0124 .0 \quad 72.064 .042 .3184 .0192 .0$					

APPENDIK VII contc.

1	2	3	4	5	6	7	8	9

Op. surplus ($/ 1-E)$	0.5	7.7	2.1	0.6	1.0	3.7	-6.5	
Opening balance	-	0.5	8.2	10.3	10.9	11.9	15.6	
	-	0.5	8.2	10.3	10.9	11.9	15.6	8.9

NOTE: (1) The total payment from Williams \& Co., envisagod in the above projection is Fs .2 .25 lakhs.
(2) Tax liability has bcen estimeted as a partnership firm with nine partners.
(Mr. Janakiraman informed that before end of next year, partnership will be signed)

LOCK AND KEY STOCK

$\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$	Item	Unit	Qty.	Rate/ unit	Value	Qty . usa- ble in $03 n-84$	Value of usable materiale.	Surplus	Pro- bable sell- ing price	Realisablo amount	Non-salable	Scrap rate		Re- ma- rks
. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Carbolic Acid	200 kg	4	1070	4280	All	4280	-	-	. ${ }^{*}$	\cdots	-	\cdots	-
2.	Lactose	25 kg	53	100	5300	36bags	3600	17	225	3825	-	-	-	-
	Mag.Trisilicate	50 kg	14	107	1498	All	1498	-	-	-	-	-	-	-
	Borax	相	48	10	480	Nil	-	48	10	480	-	\cdots	-	-
	Barium Sulphate	50 kg	4	450	1800	Nil	0	4	300	1200	\cdots	-	-	-
	Amm. Bicar bonate $^{\text {a }}$	50 kg	8	250	2000	Al1	2000	-	\ldots	-	-	-	-	-
	Glycerine	50 kg	3	1050	3150	All	3150	-	-	-	-	-	-	-
	Lactic acid	25 kg	1	1250	1250	Nil	-	1	500	500	,	-	-	-
	Ext.Gentian	Lts.	120	60	7200	Nil	-	120	60	7200	/	\cdots	-	-
	Phtgalyl Sulphathiazole	50 kg	11	2640	29040	230 kg	12144	6	2750	16500.	-	-	-	*
11.	Caffeine	50 kg	3	2750	8250	1	2750	2	4000	8000	1	-	-	-
12.	Caffeine citrato	25 kg	1	1250	1250	Nil	--		2500	2500	1	-	-	-
13.	Phenacetin	kg	140	28	3920	All	3920	-	-	-	$\%$	-	-	-
14.	Phenobarbitone	50 kg	4	7750	31000	83 kg	12865	2	20000	40000	1	-	-	**
	Sulphaguardine	50 kg	3	6300	18900	Nil	-	3	6300	10900	1	-	-	-
96.	Vitamin 82	Kg^{\prime}	5	1025	- 5125	2 kg	2050	3	1025	3075	1	-	-	-
17.	Ephedrine Hel	Kg_{9}	90	360	32400	16	5760	50	300	15000				HN\%
ME.	Vitamin 81	25 kg	2	8525	17050	10 k	3410	35	450	15750	1	-	-	@
33.	Nicacinamide	K	10	250	2500	Nil	-		K. 100	1000	1	-.	-	-
	NOTE: * :	Physical stock 20 Kg less.												
	***	Physical stock 17 k 1 loss.												
	4**	Physical stock 24 kg less												
	@ :	Physical stock 5 泃 less.												

Less - Storage Loss:

1. Pthalylsulpha				
thiazole	K.	20	52.8	1056
2. Phenabarbitone	K.g.	17	155	2635
3. Ephodrine Hcl	K.	24	300	8640
4. Vitamin B1	kg	5	341	1705
				14036
Total value of stock			180607	

PRODUCTION PROGRAMME AND RAU MATERIAL COST - MANUFACTURE

APPENDIX $\times \mathrm{A}$
S/IEES REALISATION - M/NUFACTURE

$\begin{gathered} \text { S1. } \\ \text { No. } \\ 1 \end{gathered}$	$\begin{gathered} \text { Item } \\ 2 \end{gathered}$	Fiate/ Unit 3	$\mathrm{Qty}_{4}^{\mathrm{I}}$	$\begin{gathered} \text { Quarter } \\ \text { Value Rs. } \\ 5 \end{gathered}$	$\begin{array}{r} \text { Qty } \\ 6 \end{array}$	Total Value Rs.
1	Zinc cream BP	850	250	2125	2550	21675
2	Sulphurointment 1P	600	450	2700	3250	19500
3	Lysol 1P	900	440	3960	3320	29880
4	$/ \mathrm{mm}$. Miexcury oint.1P	1200	100	1200	420	5040
5	Benzyl Benzoate App.1P	600	200	1200	1250	7500
6	Tobu syxup $1 P$	540	300	1620	2050	11070
7	Calcium Gluconate Tab	1900	-	-	540	10260
8	Ichthayol Gly. BFC	1200	200	2400	1080	12960
9	Liquified phenol $1 P$	600	1000	6000	5000	30000
10	ficetic Acici 1P	375	100	375	650	24375
11	Diethyl carbonazine	1800	50	900	380	6840
12	Fphechine Hcl. Tab.	2800	50	1400	290	8120
13	Phthalyl sulphathiazole 1P	3300	100	3300	400	13200
14	Benedicts Coln.	400	300	1200	1500	6000
15	Vasaka Syrum	950	200	1900	2000	19000
16	Salycylic Acid Cint 1P	850	300	2550	2000	17000
17	Boric fcid oint. 1P	800	300	2400	1500	12000
18	Lint turpentire 1P	300	1500	4500	10000	30000
19	Cal. Lactatc Tab 1P	550	200	1100	800	4400
20	Manciles Pt. EPC	1450	400	5800	2000	29000
21	Whitofielc oint BPC	1075	600	6450	3000	32250
22	Zinc oxice oint 1P	850	300	2550	2000	17000
23	Syrup USP	500	200	1000	1000	5000
24.	Stg. Amm. Acetato Sol 1P	400	200	800	1000	4000
25	Ext. Liquoricc lig.1P	850	200	1700	2000	17000

APPENDIX $x a$ contd

1	2	3	4	5	6	7
26	Coal tar oint.	850	100	850	1000	8500
27	Spt. Manthia Pip.	1500	-	-	300	4500
28	Tr . Iodine	500	250	1250	2000	10000
29	Mag. Trisilicate	750	50	375	500	3750
30	Paracetamol	4500	125	5625	500	22500
31	Vitamin C. 100 mg .	1800	125	2250	500	9000
32	Tr. Benzoin	1050	1000	10500	5000	52500
33	Riboflovinc	900	30	270	150	1350
34	Vitamin B1 50 mg .	750	50	375	200	1500
35	Piperazine citrate	750	100	750	200	1500
36	A P C Tab.	3000	100	3000	620	18600
37	Asprin	1250	150	1875	600	7500
38	Phenobarbitone $1 / 2 \mathrm{gm}$.	2000	50	1000	250	5000
39	-do- 1 gm.	3500	50	1750	250	8750
89000						526082

SUMMARY

Manufacture (Ps.)	Repacking (lis.)	Total/Qr.(Rs.)
Sales I Qr. $=89,000 / \mathrm{Qr}$.	53,125.5	142,000 (say)
$\begin{array}{r} \text { II - IV Qr. }=437,082 \mathrm{at} \\ 145694 / \\ \text { Qr. } \end{array}$	$\begin{array}{r} 145,259.5 \text { at } \\ 48420 / \\ \mathrm{Qr} . \end{array}$	193,000 (say)
Total $=526,082$	198,385.0	335,000

RAU MATERIALS REQUIREMENT
APPENDIX
XII

APPENDIX XII (Contd.)

485

							APPENDIX XII（Contd．）			
1.2	3.	4.	5.	6.	7.	8.	9.	0.	11.	12.
39．Pot．Iodide	Kg 。	20	19.61	． 28	25.00	；			1.	44.61
40．Iodire	Kg ．	20	5.80	28	20.00					29.80
41．Alcohol 90\％	Lts．	20	29.40	25	363．6J	27	128．55	28	550.00	3571．55
：		32	2500．00							357．5
42．Peppermint oil	Lts．	20	3.30	27	14.29					17.59
43．Calcium Lactate	Kg．	19	260.80	XVII	45.00					305：80
44．Benzoic Acid	Kg．	21	85.74							85.74
45．Amm．Bicarbonate	Kg．	24	218.80	XXXI	225．00					443.80
46．Stg．Ammonia Soln．	Lts．	24	46.50							46.50
47．Gkycerizzha root	Kg．	25	1454.60							1454．60
48．Chloroform	Lts．	25	2.50	（XV）	135.00					137.50
49．Coal tar solution	Lts．	25	30：06							30.06
50．Mag．Trisilicate	Kg．	29	266.00	x	225.00					491.00
51：Paracetamol	Kg．	30	267.75							267.75
52．Ascorbic Acid	Kg 。	31	51.50			．				51.50
53：Sodium Benzoate	Kg 。	31	2.58	35	0.19					2.77
54：Banzoil	Kg．	32	250.00							250.00
55．Prepared，Storex	Kg ．	32	187.50							187.50
56．Tolu Balsum	Kg．	32	62.50	6	17.00					79.00
57：Alocs	Kg 。	32	50.00							50.00
58．Riboflavin	Kg．	32	0.79							0.79
59．Vitamin $\mathrm{B1}$	kg ．	34	10.42							10.42
60．Piperzine citraie	Kg ．	35	10.48							10.48
61．Sugar	Kg．	35	47.62	23	578.00	6	1394.00	15	272.00	2291.62
62．Aspirin	Kg．	36	131.87	37	197.56	（IX）	135.00			454.43
63．Phenacetin	kg．	36	98．90	（XXXI I）	200．00					298.90
64．Caffeirie	Kg 。	36	15．78	XXII）						19.78
65．Phenabarbitone	Kg．	38	78.15							78．15
66．Vasaka	Lts．	15	680．80							680.00
67．Cala．．line		（III）	135．00							135.00

appendix Xil (Conta.)

To be maintained at Madras.

PURCHASE BOOK

$\begin{aligned} & \text { sl. } \\ & \text { No. } \end{aligned}$	Date	Description	Name of manum facturer	Name supp.. 1ier.	Invoice No. and date.	$\begin{gathered} \text { Qtyo Recde } \\ \text { Kgs. Value } \\ \text { Ris. } \end{gathered}$	Qty. sent for analysis	Date sample sent for analysis	Date of receiving anam lytical report.

stock statement for the month of

MAJOR FINDINGS AND RECOMNENDATIONS

- OVEATURES TO A NEVi PROSPECTIVE -

AN INTRIODUCTORY RECAPITULATION

The object of this Thesis has been to stucy Inventory Control and Costing in Risk Assessment in Eank Lending to Small Scale Units. The Risk (which is the variability of the possible returns) of an investment proposal is measured by a relative measure of dispersion known as coefficient of variation (CV) of the cash flows from the investment over its economic life. The $C V$ is the valuc obtained by dividing the standard ceviation of cash flows by its expected value. The greater the value of CV , the greater is the risk of the investment. I have endeavoured to consider established management accounting principles vis-a-vis inventory control and their relevance to the lending banker in the context of basic canons of lending. I am not sure whether any one can explain fully as to why the learning process for lencing is a slow one. Some would say it is an art that can be perfected only over many years of experience and not taught in the form of a Bullet Paymentin euro-currency boncs. There are nearly always good reasons for "not lencing". But to
use a quotation from James Gilbert, the Adam Smith of modern banking, "a bank that is so conductec as never to make a loss, will selcom make much profit." And to quote Nobel Laureate Albert Szent--Gyorgyi, the discoverer of Vitamin C, "There is but one safe way to avoid mistakes, to do nothing or, atleast, to avoid doing something new." As once aptly observed by retireci haster of the fiolls Lorc Denninç, "Like many other things, a good banker is easier to recognise than to define." And therein lies the neec for highlighting the problems of and fincings on bank finance to Small Units and making recommendations for reducing the risk component by using the Occam's razor yet ever watching out for the operation of Murphy's Law.

I begin by re-emphasising a point made in the Introciuction, viz., no two banking proposals are alike. This leacis to Ashby's law which states "Only variety absorbs variety". As Besnard Shaw said (in a different context), the golden rule is that there is no golden rule. No universal key exists. Therefore, for the sake of clarity, the findings and recommencations pertaining to each of the units stucied have been presented separately at tho end of each empirical study for estimating the
effect of related financial engineering. The ten real life cases given in this dissertation highlight the instructional purposes of the Thesis and are offered as a major pedagogic device for reinforcing my thesis. It is axiomatic that each SSI Unit will need to formulate its own positive programe of bank finance. The temptation to adopt common "solutions" has to be contained to avoid exacerbation of situations.

The study has, of course, exhibited certain similar problems in bank financing of Small Scale Industrial Units. They show that, though there is no one answer for all, there is a certain harmony, which stand out like Volkswagens in Casino parking lots. Yes, if one stands high atop the Himalayas and looks down into the valleys, many miles deep, one does sense a strange combination of limits, depths and heights relating to each other in harmony. Similarly the problems of financing SSI Units, blend-into a holistic understanding.

Successful banking is concerned with the careful balancing of asset anc liability. And by coing this with regard to the criteria of quality, quantity and maturity, it is able to create acided value. This is the fundamental Banking Equation.

AT THE NACRO OR NATIONAL SETTING

1. Research by Dun and Bradstreet -. and, by a few others - indicates that failure is particularly common among new firms, ie., those that have been in existence for less than five years. This has been corroborated by my study, too. The most important single cause of business failure has historically been the inability of the unit to promote effectively the product and generate sufficient sales. Difficulties in collecting receivables and in controlling operating expenses have also frequently been the causes of failure.
2. There are some units whose products are highly seasonal, ie., where there are alternative peaks in stockbuilding and billinc - eç., agro-based products _ike fertilisers, pesticides, fungicicies, sprayers, fireworks, hosieries. It is observed that banks encounter cifficulties in the assessment of ex ante working capital requiroments of such units. At present the guarantee-cum-special hypothecation limit (against both stocks and bills) is applicable only to private or public limited
companies. For other units (partnership firms and sole proprietary units) separate mundy and bill limit only are made available. During the lean season the units go on building the stocks, the bill limit is sparingly used and vice-versa. Till such time, the banks modify the policy on the guarantee-curn-special hypothecation limits, so as to be applicable for all types of units engaged in the manufacture of seasonal products, the banks should work out the possible peaks in the initial stage itself. for stocks and bills so that day-to-day excess drawings/ ERC problems are minimised, if not entirely avoided. For working out the projections, the available data of the previous year/s should be used.
3. Often there is unintentional diversion of working capital by SSI units due to lack of manaçerial expertise, into fixed assets, development of new products, development of new jigs and fixtures without proper finance, overstocking. This leads to reduction in circulating working capital which, in turn, leads to low level of operations and losses. Provision of training (for entrepreneurs) on working capital management, by banks, on the lines of the Entrepreneur Development Scheme of

State Bank of India, the programmes of the Management Development Institute, Now Delhis in conjunction with Snall Industries Service Institute, State Technical Consultancy Organisation, Small Industries Development Organisation, New Delhi, National Small Incustries Corporation, New Delhi, and Small Industry Extension Training Institute, Hyderabad is recommended. A National Entrepreneurial Research \& $\&$ 保 to train entrepreneurs in what Jisaku Akatsu of komatsu Corporation and Prof. R. Hirono of Seikei University call, "Total Quality Control" and what Prof. in.K. Datta Chandhuri of the Delhi School of Economics calls more comprehensively as "software aspect of infrastructura". In short, to tutor entrepreneurs all about, to choose a phoneme between the Palaeopolis of Academia and the Charybdis of commerce, Cybernetics. The recent move by the all India financial institutions, IDEI, ICICI, IFCI and SEI to set up the Entrepreneurship Development Institute in Ahmedabad and the introduction of a M S Degree in Entrepreneurship by the Indian Institute of Technology Nadras, are moves in this direction. A famous Chinese philosopher rightly said: "If you wish to plan for a year,
sow seeds. If you wish to plan for ten years, plant trees. If you wish to plan for a lifetime, develop men". So, it is the entreprener who must be developed. I may point out here that the present Chairman of Chase Miannattan Bank in a recent lecture at the Harvard Business School listed "quality of management" as the number-one-cause for failure of Small Business in the U.S.A.
4. SSI Units in Tamil Nadu find it difficult to meet their Sales Tax dues as banks do not finance then and because they suffer from paucity of finance. Some of the State Governments like the Government of Maharashtra do give Sales Tax Loans to SSI Units. This system needs to be adopted in other States.
5. A separate specialised Bank for Small Industry along the lines of the Small and Meclium Industry Bank (SMIB) of the Republic of Korea, to cater to and appreciate the special needs and problems of the Sector may be set up. The recently-established Export Import Bank of India and the National Agriculture Bank for Rural Development are efforts in a similar direction. The proposed special Bank for the Small Industry Sector
can, in order to augment its foreign currency resources to finance the foreign exchange requirenents of SSI Units, avail of the credit-line from international institutions like the fisian Development Eank (ADB) in ianila, agree to arrange co-financinc with $A D E$ anc so or. Apart from becoming the main financier of sinall inclustries and their most important source of foreign currency, the proposed Bank can also provide other forms of advisory and technical assistance. The Incustrial Development Bank of Incia (IDEI), vhich is the apex inciustrial financial institution in the country, renders direct financial assistance to large and medium scale industries and only indirect financial assistance (mainly in the form of refinancing) to SSI. Thus there is a clear case for a separate autonomous apex financial institution for the SSI Sector.
6. Today the Public Sector Eanks in Incia have a socio-economic responsibility also. Should a banker be governed solely by private profitability or something more like the Social iate of heturn?

Bryce* provides a solution to the riddle when he
*Bryce li., Policies and methocs for Industrial Development, Kogakusha Co. Ltci, Iokyo, 1950 P.32-33.
defines the desirable rate of return "as the total net measurable rate of return to the economy on an investment". This is a macro-economic view of profit potential. Normally, no incustrial project with an Internal Rate of Return of less than 15% should be approved by banks, except perhaps projects belonging to the core sector and "Priority Sector". Because of the implicit Social Rate of Return, one may also ask whether there is or not a case for separating commercial lending from social purpose lending*
7. Niy study of SSI Units also revealed that the existing scheme of concession in Excise Duty hampered continuous growth and, hence, it needs to be liberalised.
8. It has been observed that the present poor equity base of SSI units is responsible to a large extent for its poor performance as it reduces the additional borrowing capacity of the units in time of dire necessity and the resultant excessive dependence on loans increases the interost burcien.

It is suggested - to rejuvenate sick units and reduce industrial sickness - that an Equity Fund be created and the modalities of administering assistance out of this Fund be evolved jointly by a consortium of banks and the

[^29]term-lending institutions. This arrangement can be made on these lines: (a) Assuming the debt-equity ratio 4:1 as reasonably satisfactory, any shortfall in the owned funds to this extent should be given as equity loan, and (b) in the case of non-adherence to financial discipline by entropreneurs, the facility should be withdrawn by converting it into interest-bearing credit.
9. This study of SSI Units has revealed that the major underlying contours of industrial sickness emanate primarily from liquidity problems.

One of the main objectives of management in the control of the company's liquidity is to maintain the lowest possible ratio of working capital to turnover. It is against this macro-economic backdrop that I am making the following suggestion for implementation by banks, industry and Government. In Britain, banks have subsidiaries which engage in other activities. For instance, Griffin Factors Ltd, is a subsidiary of Midland Eank plc. In India, there is a proposal now in Parliament to amend the banking law to permit subsidiaries. Two points may be noted here in this regard:
(i) For several reasons fullfledged Factoring has yet to establish itself in India and its role in working capital management is yet to be appreciated. Factoring smoothens Cash Flow and increases it.
(ii) Leasing is another means to release funds for meeting working capital needs. It also helps capital gearing. While the lessors can provide for depreciation in their books, the lessees can treat lease-rent as an item of cost in their profit and loss account. Hopefully, it will beçome eventually as popular as in the U.S.A. and U.K.
10. There is a thorough confusion about what should be the role of SSI. Small Units are venturing into product areas which should logically lie in the domain of the large scale sector. For example, due to some misguided egalitarian logic, the Government is promoting small enterprises in the finished product fiele, like TV receivers. As a consequence, such absurdly low capacitics have sprung up that there. is no possibility of substantial investment in areas like design, development and product improvement.

I suggest, therefore, that as in Japan, the SSI
 manufacturers. While the large industries should concentrate on assembly, finishing and some major highly specific jobs (like large casting and forgings in the case of the automobile industry), the SSI Sector should play the role of sub-contractors and ancillaries to the parent large enterprise.

This symbiosis will narrow down the penumbra zone between big and small industries and should result in:
(a) Technology transfer to the SSI Units. (My study found the sector to be technologically primitive).
(b) Research 8: Development facilities being made available to the SSI Units. (My study perceived an almost total lack of this facility therein).
(c) Benefit of managerial experience to the SSI Sector. (My study detected a massive deficiency in this direction).
(d) Diffusion of marketing problems - a major constraint also - for the SSI Sector.
11. I also suggest a rapic diffusion of mechatronic equipment in the SSI Sector
(a) to combat the chronic shortage of skillec workers;
(b) for increasing demand for small lot production of a variety of commodities (flexibility) to reduce vulnerability to change in business cycles;
(c) for a sharp rise in productivity;
(d) for improvement of quality and precision of products;
(e) for lowering unionisation (a major confinement in some States like West Bengal and Maharashtra); and
(f) for lowering the Cost of Labour.

The Ministry of International Trade and Industry which played a key role in catalysing Japan's phenomenal post-war industrial progress, sponsored, inter-alia, the establishment of a robot leasing company (Japan Robot Lease). In the same way, the Ministry of Industries of the Government of India can float a leasing company for diffusion of mechatronic equipment for the SSI Sector.
12. I recommend the establishment of a Small Firms Information Centre described by the acronym SFIC, along the lines spelled out by Professor Leslie Chadwick of the University of Bradford, to act as Advisory Service between banks anc: entrepreneurs. This will
be a useful Clearing House for both, banks as well as entrepreneurs, for sorting out enigmas.
13. The definitional aspects to quantify a SSI Unit in terms of total investment, number of employees, volume of sales and the like are unsatisfactory as we all know. The Bolton Committee in UK defined a Small Firm in manufacturing as an enterprise with 200 employees or less and in retailing with an annual turnover of $250,000^{\circ} \not \subset$ at $^{\circ} 1963$ prices). In continental Europe, it is usual to distinguish between small and medium enterprises (Petites et Moyennes Enterprises $|\mathrm{PME}|$); in manufacturing small enterprises are those with 50 employees or less and medium with 51-300 employees. In the USA, the Small Business Act (1953) states that "a small business concern shall be deemed to be one which is independently owned and operated and which is not dominant in its field of operation." Thus, you have American Motors, a substantial enterprise with 28,000 employees, been classified as a Small Firm because it has only 2% of the US car market. With the passage of time come inexorable changes in the real value of the monetary unit (owing to inflation), and technological innovation continually changes the proportions of labour and capital inputs.

Hence, a quantitative definition becomes obsolete and irrelevant soon. It seems best to me, as Professor Ross Robertson of Indiana University and Professor Deane Carson of Columbia University say, to define a SSI Unit. "in relative terms".

I would, therefore, commend a definition of SSI Unit which says that as long as its guiding venturer and chief operating officer maintains direct and firm lines of communication with his operating managers and keeps personal ties with a large proportion of his work force, it is a small unit. I admit such a distinction is unsatisfactory in some respects, but it brings into focus the ultimate distinguishing characteristic of the small unit, the crucial importance of the indivicual entrepreneur in its ultimate success or failure.
14. My survey divulged that banks discriminated against SSI Units in lending during tight money conditions. The discrimination issue has political overtones and only government policy through priority sector exemptions, etc., can stem this discrimination. There is a continuing debate regarding empirical validity between Professors J. Galbraith, Thomas Meltzer and D. Carson
interpreting findings as definitive evidence of discrimination of this issue on one hand, and Professors G. Bach, D. Hodgman, W. Mazek, J. Christian and the Wharton School of the University of Pennsylvania study (1967) rejecting the discrimination hypothesis, on the other.
15. There is no universally accepted definition of Working Capital (WC).* Broadly speaking, it is taken either as the total current assets (which are also called circulating capital or trading assets), or the excess of current assets ${ }^{(2)}$ over current liabilities. ${ }^{\AA}$

* See Joseph F. Bradley, Administrative Financial Management, Holt, Rinehart and Winston, New York, 1964, pp.2-3: A recent attempt at defining the term "working capital" has widened the gap still more. According to it, the meaning of the term "working capital" may be limited to capital consumed during the fiscal period creating current income. In accordance with this idea, the value of that portion of a company's land, buildings and equipment which is applicable to the production of current as distinguished from future goods falls within the scope of "working capital". See Wilford J. Eitmen and James N. Holtz, "Working Capital Management", in Karl A. Boedecker etal (ed.), Essays on Business Finance, Mastereo Press, Ann Arbor, 4th edition, pp.209-211.
- Current assets are those assets that in the ordinary course of business can be or will be turned into cash within a brief period (not exceeding one year normally) without undergoing diminution of value and without disrupting the organization.
\& See next page.
"Working capital, according to the time honoured definition", says Professor Harry G. Guthmann and Herbert E. Dougall, "is the excess of current assets over current liabilities."* Accountants' Handbook ${ }^{\ominus}$ completely endorses this view, while to Professor C.W. Gerstenberg, "any comprehensive discussion on the working capital includes the excess of current assets over current liabilities".§ In recent years, there has been a systematic attempt to relate the level of bank finance permissible to industry (other than term loans for financing acquisitions of capital assets) to the WC requirements based on. an analysis of the projected financial position of the borrower. Successive committees on bank finance have recommended the adoption of methods which limit the permissible bank finance to 75% of the WC gap (Method 1) or of current assets further reduced by available current liabilities (Method 2).
\& Current liabilities are those liabilities intended at their inception to be paid in the ordinary course of business within a reasonably short time (normally within a year) out of the current assets or the income of the business.
* Harry G. Guthmann and Herbert E. Dougall, Corporate Financial Policy, Prentice-Hall, New York, P. 387
O Rufus Wixon (ed.), Accountants' Handbook, The Ronald Press Co., New York, 4th edition, 1957, p. 254.
§ C.W. Gerstenberg, Financial Organisation \& Management, Prentice Hall, New York, P. 282

A correct understanding of the term WC assumes importance since an incorrect definition can lead to denial of bank finance legitimately due to an industrial organisation giving an illustration of the Morton's Fork. There is reason to believe that the level of clarity in the minds of bankers or the industry in this regard needs to be improved.

Even the affected borrower, apart from expressing anguish over the inadequate bank finance sanctioned, is not able to pinpoint the conceptual error in the computation. Forms, such as those used for determining the maximum permissible bank finance under the Credit Authorisation Scheme, have a mind-boggling effect and interfere with logical reasoning. And, the banker is unable to go beyond the boundaries set by the established methods of determination of a maximum permissible bank finance. It is 'time the Reserve Bank undertook a more detailed study of the problem. -

The fundamental principle of WC finance is to seek an avenue whereby funds can be sought for the leadtime involved in the production. Core assets are those which remain in the pipe-line all the time.

Abstract

I, therefore, propose the following empirical definitions which are strictly based on the Operating Cycle concept; and, bank finance computed on the basis of the resultant classification will be determined solely by changes in business position and not by accounting practices.

Working Capital refers to the total of current assets required to support a given level of operations less the current liabilities incurred against them.

Current Assets are the cash and other assets reasonably expected to be realised in cash during the normal operating cycle of a business and will include assets realisable beyond one year if the operating cycle exceeds a year. The operating cycle refers to the process starting with the acquisition of materials and ending with the realisation of sale proceeds.

Current Liabilities are limited to obligations for items which have entered into the operating cycle, such as trade credit but will not include purely financial liabilities such as current instalments of long term debt, proposed dividend, provision for taxes, etc.
16. Should there be a different set of Normally Accepted Accounting Principles (NAAP) for SSI Units? Is the universal application of Accounting Standards (AS), national or international, as effective when applied to small units?*

I found the following criticisms of AS, by SSI Units, during my survey:
(i) that the AS are too complicated to be easily adopted by them;
(ii) that the costs of adopting the AS are too high, vis-a-vis, the benefits of better management; and (iii) that some of the NAAP are not germane to SSI financial reporting requirements.

Although I acquiesce that a dual AS can have undesirable effects, I none-the-less recommend, as a blueprint for action that:
(a) the reporting requirement can be cleaved into
(i) a Core Group of Accounting information that will apply to all business irrespective of size and
(ii) a group of information that will apply only selectively;

* The Cohen Commission (1978) (U.S.A.) has concluded against a separate set of standards for Small business.
(b) every AS can be simplified in such a manner that both big and small units can easily apply.

THE PERSPECTIVE FROVi BANKS AND INDUSTPY

17. The inflationary turbulence is not taken into account while assessing the requirements of working capital for the units. For example, two years back, a working capital limit of is .6 lacs was sanctioned to a new rubber unit. The gestation period took two years. The limit of Ris. 6 lacs had been fixed on the basis of the rubber price of lis. 10.50 per kg . ruling at the time of project appraisal. The rubber price now being $\mathbb{R} .14 .50$ per $k g^{\prime}$, the limit is inadequate to achieve the anticipated sales. It follows, therefore, that the inflationary aspect of raw materials for one to two years hence should be taken into consideration. Since inflation seems to have become a permanent feature of modern economies, it is recomnended that Inflation Accounting be made a part and parcel of workinc capital assessments. Adoption of Inflation Accounting is also recommended as it is perfeotly possible for a company to show high profits when it is going bankrupt. The GNP deflator is, many economists like Bank Negara Malaysia Deputy Governor Dr. Lin See Yan
think, a better and more comprehensive gauge of the underlying rate of inflation. During inflationary conditions, firms have an incentive to invest more heavily in inventory than is indicated by the minimum cost calculation. "Inventory Speculation" is the term used to describe this extra investment. Bankers should insist for meaningful analysis and evaluation on the introduction of Inflation Accounting as balance-sheets and profit and loss accounts prepared on the basis of historical costs provide neither an adequate measurement of the "real" profits nor indicate the true financial position of the company. Profits reported on historical cost basis are much higher than what would have been the case if the profits are computed on the basis of replacement value of assets. Also, in a historical-cost based balance-sheet, long and medium term assets are shown at misleading values, which are much lower than their replacement costs, leading to improper valuation of the networth of such business. By paying dividends out of illusory book profits, when there are only real losses, the companies are really paying dividend out of capital. Although the various professional accounting bodies have produced an enormous amount of paper indicating how inflation-corrected accounting should be undertaken,
except in UK and the USA where inflation accounting have been introduced as a legal or quasi-legal requirement, nothing much has happened except some purple prose in the Chairman's statement. There is still no comprehensive official pronouncement available in this regard.

I suggest that inventories and depreciation should be reflected at the current replaceinent costs for measuring the "real" profitability for each of the company's products. For this purpose, it is quite in order to use reasonable approximations rather than getting tied up in knots trying to locate the appropriate economic indices of one kind or the other. Or, alternatively, the purchase price of " A " class items (10% items in number constituting around 70% in terms of value of annual consumption) based on ABC analysis should be forecast every quarter and used for pricing out materials. This method should be relatively easy to administer as the number of " A " items will be small. The variations in purchase price can be picked up at the time of the purchase by means of a price variance account and the net variance distributed onto the product cost as an overhead item. While reporting product-wise profitability, it is essential to include
full inflation-corrected manufacturing costs (based on replacement costs). This is based on the understanding tinat all manufactured products use capacity anc there is an opportunity cost of this capacity. It is very important, indeed critical, to charge interest at current borrowing rates on average working capital (based on replacement values), locked up in cash production. In this sense, interest becomes a variable cost because it varies directly with the amount of Working Capital invested, which in turn is a function of the volume of operations. We can, therefore, say that if the product is not manufactured, the working capital employed in it can be liquidated to release funds for investment elsewhere.
18. The Tandon Committee norms for stocking period of raw materials, finished goods, etc., are erroneous in an uncertain economy like ours, where controlled (quota) items are decontrolled, scarce items become plentiful, OGL items in import policy are canalised, and so on. It follows, therefore, that it is not pragmatic to fix rigid norms. A lot of flexibility is called for. It is better to have a quantitative approach
in fixing the requirements rather than a period-based approach especially in the case of raw materials and finished goods. For example, a person using Soda Ash as raw material keeps a minimum stock of 10 tonnes. The Soda Ash arrives, however, in wagon loads of 30 tonnes. So, the maximum working capital requirement will have to be evaluated for stocking 40 tonnes $(10+30)$ or Rs. 1 lac $(40 \times$ Rs. 2,500 per tonne).
19. Because of credit squeeze and reduction of limits, cash flow and liquidity problems, etc., large units which generally paid for materials purchased from Small Units in 60 days before - now pay the bills only after 120 days. Hence, if the working capital is assessed on 60 days' requirement of bills, the SSI Units do not get the actual requirements. The financing bank should have a flexible approach by temporarily increasing the cover period for bills and bill limits in such periods of crisis.
20. Credit on purchase of materials and expense creditors (Sales Tax, especially) create problems for bankers. Many units get double finance for stocks the unpaid stocks are hypothecated to banks and they
get money for unpaid stocks. Strictly speaking, in 95\% of the units, the margins on working capital stipulated by the banks are met not by the entrepreneur's capital but through purchase creditors and expense creditors. This should not be allowed. The assessment of working capital requirement should be such that unpaid stocks are deducted from the working capital requirement. Similarly, expense creditors should be deducted from semi-finished goods. While computing the advance value and the drawing power of the units depending on stock statements, banks should find out the quantum of purchase creditors and expense creditors, and these should be deducted from stocks before applying-margins so as to arrive at the drawing power/advance value.
21. A big flaw-area which nobody seems to have rrought out earlier is the cash losses which a SSI Unit incurs during the initial production period. Most units take 6 months to 3 years to achieve cash break-even sales after starting production. This results in diversion of working capital. Bankers do not finance such cash losses as there is no security. What usually happens in such cases is that the cash loss
is ultimately met by the banks as clean drawings in the working capital. Then the bank tightens the grip on the SSI Unit in many cases by not allowing the unit to operate the account till it is made regular by putting in money. This naturally affects the units. So, it is essential that bankers finance cash losses also till the unit achieves the break-even point. I may point out that 5 years is the accepted norm by the Small Business Administration of the US Government, in this regard.
22. In many countries like Japan, Working Capital is given as a term loan which has to be repaid over a period of time. In India Working Capital cash credit increases with the level of operations of the units. I suggest the adoption of the system prevalent in Japan so that dependence on bank finance is reduced; in it, the incentive to plough back profit will be given and the staff employed in monitoring cash credits will be reduced.
23. It need hardly be emphasised that the book values of assets as shown in the balance sheet should NOT be accepted implicitly for valuation purposes - the balance sheet figures represent only the unamortized portion of
money invested in assets.

The lower of cost or market value which is the prevalent mode of valuation, too, is unsound for a variety of reasons like:
(a) The valuation in one year may represent substantially the market price and, in another year, the cost. This oscillation between the market price and cost from year to year, would distort the analysis and interpretation of financial statements.
(b) This method involves valuation at market price when the market price is lower than cost and thereby, it charges a loss in the Profit and Loss Account of the year in which the loss has not actually arisen, distorting the view of earnings.
(c) Market price may connote replacement cost or realizable value. This method does not state in what specific sense the two terms are to be used.
24. Many customers like Government undertakings and large industries retain 10% of the bills for items supplied
by SSI Units for a long time (6 to 9 months) and, in many cases I have come across the retention money is not paid. Banks are hesitant to finance 10% retention bills for more than 3 months.

Most of the SSI Units have a profit margin of 2% to 10% and this blocking of 10%, which is higher than the profit margin, reduces the availability of working capital.

It is suggested that banks should provide a separate bill limit with higher cover period of 6 to 9 months for the 10% retentions so that the unit receives sufficient finance for working capital. The banks along with the units should follow up the bills to recover the retentions. This aspect is more pronounced in the cases of units engaged in pesticides, furnace manufacturers, control panels, etc.
25. A painstaking researcher will find a policy of $A D$ HOCISM and reckless lending to be the root of the failure of cooperative banking in India. I found that they still continue to give weightage to the Balance Sheets only and give a scant regard to Cash Flows. This is not a correct approach. According to G.Williams,

Vice-Chairman of J. Henry Schroderwagg \& Company, "the tendency towards exclusive concentration on balance-sheet ratios is being supplemented by increasing attention to Cash Flow projections." This is because, as Philip Gheerbrant and Anthony Jolliffe have rightly put it, balance-sheets and revenue accounts look backwards, while Cash Flow looks forward. Notwithstanding the evidence presented to the Wilson Committee, banks still appear to place much greater emphasis on historical accounting figures than on forward projections of trading and cash flow.

What does this mean to the lending banker? I think the following information on corporate customer accounts could be most useful:
(a) Wherever profit is used in ratio analysis, potential Cash Flow from operations and/or internally generated Cash Flow might provide a revealing additional comparison.
(b) The ratio comparing internally generated Cash Flow to additional operating investments would reveal the extent to which the firm was living within its means.
(c) . A development of the analysis will indicate what inflation does to Cash Flow.

The lending banker should try to find out the non-optimum operating proceciures of the borrower to become alert to risks. Of the various Miodels structured by Pogue, Faucett and Bussard*, Lerner ${ }^{\mathbb{O}}$, Reed ${ }^{\AA}$, Baumol ${ }^{\S}$ and others, I recommend the use of the Miller and Orr $\$$ model which has, reportedly, a 40% accuracy.

* G. Pogue, R. Faucett and R. Bussard: Cash Management; a system approach: Industrial Management Review: Vol.II, P.55-74.

0 E.M. Lerner, Simulating a Cash Budget, California Management Review, Vol.9, P.79-86.
$\hat{\mathcal{E}}$ W. Reed, Profits from better Cash Management, Financial Executive, Vol.40, May 1972, P.40-56.
§ W.J. Baumol, The Transactions Demand for cash: an inventory theoretic approach, Quarterly Journal of Economics, November 1952.

* M.H. Miller and D. Onr, A model of the Demand for Money by Firms, Quarterly Journal of Economics, August 1966. The mathematical proof of this model is rather complicated, the interested reader is therefore referred to the original article.

In the Miller and Orr stochastic Cash Flow Model, the cash balance is allowed to wander freely until it reaches either (i) an upper control limit 'h'; whereupon it is reduced to some return point ' Z^{\prime} ' or, (ii) a lower control limit 'r' which triggers a liquidation of investments to restore the cash balance to 'Z'. Given this policy structure, the return point ${ }^{\prime} Z$ ' and the upper control limit ' h ' are derived by minimizing the expected cost function with respect to ' h ' and ' Z ', setting these expressions equal to zero and solving. The lower control limit 'r' is assumed given, reflecting perhaps some intuj.tive assessment of the goodiwill consequences of small cash balances. In their original derivation, fiiller and Orr assume $\mathbf{r}=0$ for the sake of mathematical simplicity, but any user of the model is not constrained to make this assumption. In the special case where the probability of a decrease in the cash balance is equal to the $p=o b a b i l i t y$ of an increase, it can be shown that the optimum value of ' h ' and ' Z ' are

$$
z=\left(\frac{3 b}{4 i}\right)^{\prime}
$$

$$
h=32
$$

where $\epsilon^{2}=$ the variation of daily changes in the cash balance; $b=$ fixed minimum fees and $i=$ cost of capital.

In the preparation of the Cash Flow projections, I suggest the useful life of the project be divided irto three periods as under:
(i) Project implementation stage,
(ii) Initial operating years,
(iii) Subsequent operating years till the end of the useful life.

Perhaps, with a suitable Cash Flow analysis and timely remedial action, industrial sickness could be avoided. Cash Flow analysis, done at regular intervals, offers an excellent method of control of various factors affecting profitability. Wider use of Cash Flow statements is, therefore, recommended, unlike the practice prevalent now, where Cash Flow statements are given importance only at the time of appraisal of the proposal and thereafter religiously asked for but not looked into.
26. In the interests of appraisal, control, costs, time, profitability and accuracy, it is suggested that computers begin to be used. Simple programmes have been developed to quantify judgments about the borrower's standing, and to compute the Internal Rate of Return on his project. By way of illustration, a mention may
be made here of the system devised by Citibank N.A., USA, to computerize its loaning function. It is a package of six computer programnes, viz., HISTRY, FUNFLC, NODFUN, ALTEFN, SPREAD, and UPDATE, each catering to a specific area of analysis. To elaborate: HISTRY calculates some key financial ratios upto 6 years and trends; MODFUN procuces a complete financial forecast for the next, five time-intervals - months, quarters or years. It prints out how much, when and in What manner finance will be needed and raised. The hLTERN programme evaluates the financial alternatives. SPREAD produces a complete synopsis of the company's financial statements for the preceding six years for use in other calculations. UPD I_{2} TE feeds new figures into the computer as and when received, and, thus, automatically updates the data. Top American, Japanese and European banks like American Express, Bank of Tokyo, Midland Bank plc., and Barclays International plc.s - all use computers profitably. Since the entire emphasis of financial analysis is on logical conclusions, computerization of analysis will reduce. the riskiness of bank lending. Using Database Management Systems and on-line processing, accurate,
analytic, relevant information becomes available in seconds. R.J. White, President of the Australian Institute of Bankers and other experts see a big role for computers in banks in the financial environment of the future. A beginning can, at least, be made by setting up regional data processing centres.
27. The use of Numerical Credit Rating System (NCRS) is strongly recommended for introduction in all banks in India, where only a few banks like Grindlays plc., use it at the moment. This technique holds great promise . in the screening of loan applications and in reducing risk in bank lending to SSI sector. Statistical weights are assigned to some basic nonfinancial factors with reference to each particular client. Narks are awarded to each of the important variables which bear upon the liquidity and solvency of the firm/incividual. The aggregate score helps the banker to categorise the client according to "riskiness". In Japan, excellent credit rating services exist.
28. The existing Stancard Format used for Assessment of Working Capital Requirements by the public sector banks in India - which constitute 92% of the banking sector in the country - suffers from some severe drawbacks.

This aspect stands out in technicolour against the monochrome of assessments done by banks now. In order. to make my findings and recommendations in this aspect clear, I am presenting first the Format in use, then highlighting its shortcomings as revealed in this study and thereafter suggesting a new Format for use by banks. Format now in use

ASSESSNENT OF WORKING CAPITAL REQUIREMENTS
Name of the Unit:

* Anticipated monthly sales Rs.
§ Cost of production per month Rs.
Cost of raw materials per . month
* Sales to be computed at the maximum level of anticipated production during the next 12 months.
§ Cost of production includes cost of raw materials plus, all expenses.

[^30]The limitations of this Format
My stucy showed that the use of the existing Format leads to either over-financing or under-financing.
(a) Normally, the Ex-factory Sales are taken to mean Sales for assessing Working Capital. This leads to under-financing for bills. The Invoice Value of Sales (gross sales, ie., ex-factory value + Excise Duty + Sales Tax + freight outwards) should be the basis for assessment of bill finance since it is the invoice value of bills that is being financed and not the exfactory value of Sales.
(b) lit the semi-finished and finished goods stages, the valuation is based on cost of production which normally includes both direct selling expenses and non-cash expenses like depreciation. This is incorrect. For semi-finished goods and finished goods, the valuation should be based on cost of procuction excluding direct selling expenses (commission, freight outwards, excise duty, sales tax, etc.) and non-cash expenses like depreciation.
(c) Semi-finished goods are valued at cost of production (Rav katerials + value acied), which is not correct. This assumption leads to substantial over-
financing in units where the processing time is long. The correct assessment of semi-finished goods is given in (b) above.
(d) While calculating liquid surplus, the latest available balance-sheet figures are taken, which normally will be six months old at least. The correct procedure will be to take the current figures of current assets and current liabilities, and then arrive at the liquid surplus. Also, while assessing the current assets and current liabilities, care should be taken to remove stagnant stocks and bad and doubtful bills from current assets to arrive at the genaine liquid surplus.
(e) While ariving at the working capital deficit, creditors for purchases are reduced but not creditors for expenses and outstanding expenses. In an unit, normally there will be substantial expense creditors as it enjoys credit, on an average: one month Sales Tax; one month power; one to two months telephone expenses; 15 days wages and salaries; and 45 days interest on term loans and working capital (interest is charged only once in three months). So, for assessing the actual deficit, creditors for expenses and outstanding expenses must be reduced.
(f) Normally, the deficit in working capital however big - will have to be financed by injection of fresh capital or by profits. Usually, for running units, it is almost impossible to bring in extra finance as capital to bridge the working capital deficit. So, the only alternative is to plough back profits. It is, therefore, necessary to ensure that the cash accruals available in the first-operating cycle (after meeting the long term repayment obligations during theperiod of the operation cycle) is more than the working capital deficit. Otherwise, there will be a shortage of working capital which will bring down the level of operation.

Suggested Format For Working Capital Assessment (using hypothetical figures)

For 1983 fissessment on 31.12.1982

Figures in Rs. (Lacs)
(i) ínticipated Monthly Gross Sales (Including excise duty, sales tax and freight outwards)2.20
(ii) finticipated Monthly Net Sales (Excluding excise duty, sales tax and freight outwards)1.70

(iii)	Raw materials consumption per month	1.00
(iv)Cost of production excluding direct selling expenses, excise duty, sales tax and depreciation)	1.50	
(v)Cost of production excluding depreciation	2.00	

LIQUIDITY POSITION A.S ON 31.12.1982

(Actual circulating Current Assets \& Current Liabilities)
(fis. in lacs)

| | Current Liabilities | | Current Assets |
| :--- | :--- | :--- | :--- | Stocks $\quad 3.50$

Liquid surplus $7.10-6.80=0.30$
The operating cycle is 5.5 months $(2+1 / 2+1+2)$
Number of operating cycles in a year $=-\frac{12}{5.5}=2.2$
Cash accrual per year $=R s .2 .4$ lacs (assuming no tax)
Cash accrual per operating cycle $=\frac{2.4}{2.2}=1.1$ lacs
Repayment of Term Loan in the first operating cycle.

$$
=\mathrm{Rs} .0 .30 \mathrm{lacs}
$$

Net amount available for meeting working capital deficit in the first operating cycle $=1.10-0.30$
Deficịt $=0.30$ lacs

Hence, Working Capital deficit can be easily met.
29. A common forecasting problem faced by banks in evaluating estimates proviced to it by units - and by the industry - is one of estimating total incustry sales during the next year. One method - which I recommend for wide use as a pre-emptive strategy is of the use of an exponential smoothing technique. represented by the following equation:

$$
F_{t}=\left(S_{t-1}\right)+(1-\infty)\left(F_{t-1}\right)
$$

Where
$F_{t}=$ Sales forecast for the next year,
$S_{t-1}=$ Actual sales this year,
$\mathrm{F}_{\mathrm{t}-1}=$ Forecast for this year (made last year), and $\alpha=a$ smoothing constant.

In simple terms, this equation states that the next year's sales will be governed by two factors: (a) The market's behaviour (sales) this year, (L) The market's behaviours in previous periods as summarized in the forecast macie for this year.
30. My survey detected that Trade Credit (short-term credit extenced by one non-financial business firm to another) was the cheapest source of funds to a SSI Unit. I would, therefore, agree with Professor Robert Johnson of

Purdue University that it is vital to monitor its use properly. I must, howeves, in all fairness, mention that Professor Thomas Mayer and Professor P. Micszkowski of Queen's University in Canada have warned against the unqualified use of Trade Credit as it is "notoriously expensive" and adversely affects the firm's credit standing. In other words, there is a continuing debate with regard to its empirical validity. Possibly, both are valid in diffcrent socio-economic environments. .
31. Iesearch \& Development (B \& D) is important to the survival and growth of SSI Units, especially those engaged in electronics, drugs, etc. Since a SSI Unit cannot afforc the luxury of waiting for several years, the R \& D payoff must be short-term. Of course, I admit, uncertainty of success, assurance of productquality, nonavailability of manpower, facilities and capital are big constraints. (For example, some work can be clone on Magneto-hydrodynamics USSR and China and in Fuel Cells for isothermal electrochemical transformation of hydrogen against rapidly depleting fossil fuel).

Unfortunately, in-house $R \& D$ is there more with an
eye on the tax benefits than anything else. An information agency, along the lines of the Science and Technology Agency in Japan, can be set up to maintain a data bank for SSI Units of the latest research findings in various fields. A study of the excellent information collection systems of Japan's giant trading houses like Marubeni and Mitsui will be of great benefit.*

Even in the OECD countries, the vast majority of small firms do not carry out any significant $R \& D$ work. For the few that do, R \& D fall into firms which have just begun to exploit a new invention, either their own or that of an independent inventor. Some U.K. examples are plugboard sequence control for machine tools (Nickels Automatic); printed circuit board for electronics industry (Technograph) and atmospheric press packing for raw wool fibres (Roypack).

Turning to the empirical correlation between the size of a firm and the innovative contribution, as distinct from inventions, OECD studies and those of the Science Policy Research Unit, Sussex, indicate that for Britain, France, Japan and Germany, the following

[^31]țendencics are broadly common:-
(a) In capital-intensive areas of chemicals, cement, pharmaceuticals, steel, nuclear power, shipbuilding, aerospace and the like, small firms hardly play a role. The large firms dominate invention and innovation.
(b) In textiles, paper and boarc, leather and footwear, machine tools, furniture, electronics and scientific instruments, small firms account for 15% of the inncvations and 20% of the value of net output.
(c) Small firms make their contributions mainly in the field of machinery and instrument innovations where capital intensity and development costs are low for many products and entry costs low for new firms.

I recommend that Government assistance should cover fundamental research; applied research, development, prototype development, marketing and distribution in onc integrated package. So far, the Council of Scientific and Industrial Research(CSIR),

Abstract

through its laboratories and the National Research Development Corporation (NRDC), have made sporadic efforts only to disseminate information in technical areas, $l \in a v i n g$ the marketing and distribution aspects to be handled by the Central and State Small Industries Corporations. The result is the absence of an unified approach and negligible progress in innovation.

Each State Small Industries Corporation shoulc: coopt representatives of the NRDC, CSIR, and the private sector to form a separate Enterprise Development Board (EDB). Every company wanting assistance should apply to the EDB in its state with full particulars of the innovative activity involved which requires funding. The EDB should focus on overall firm performance in addition to specific innovation projects and ensure that innovation assistance is provided only if the project implies a real risk in relation to aggregate firm resources.
32. Bankers depend on the Current Ratio as a liquicity indicator. But, this suffers from a very crucial weakness as it depends on book-value of current

Abstract

assets which may not be reliable and which lie generally at different stages of liquidity. What is the way out to provide a banker information on the quality of financial management with regard to working capital?

I suggest the use of Time Adjusted Current Ratio through a process of discounting and close selection. In it, different segments of current assets and liabilities arc equated to cash and an Adjusted Current Ratio is calculated to indicate the short-term liquidity of the organisation. This is cone through the method of discounting as in case of Discounted Cash Flow (DCF) methods. Normally in LCF calculations, the discount rate is based on the cost of capital. But here the rate should be the company's earning rate before tax. This would be much higher than the cost of capital which is used to find the net cash flow after tax in DCF computations. In a loss making concern, the ciiscount rate should be the borrowing rate. The calculation of the discount factor is as follows:

$$
\text { Discount factor }=\frac{-1}{\left(1+\frac{r}{T 0}\right)^{n}}
$$

where,
Period ' n ' is the total cycle time taken to convert cash into raw materials, then into finished products and ultimately back to cash. It is denoted as ' n ' used in the calculation as a fraction of a year.
'r' indicates the annual earning rate and is taken as the discounting rate.

AT THE MICRO LEVEL
33. While assessing the ex-ante working capital requirements with regard to semifinished goods (SFG), finished goods and bills the following approach should be adopted:

SFG:

The Process Time (ie., the time taken for the raw materials to become finished product) is computed. The value of SFG to be financed is arrived at using the formula:

$$
\begin{aligned}
S F G= & \text { Raw materials consumption during process time/ } \\
& \text { days }+1 / 2 \text { cash expenses other than direct } \\
& \text { selling expenses during the process time. }
\end{aligned}
$$

(The full cash expenses other than direct selling expenses can be taken for computing SFG if the process time is less than a week).

Finished goods:
Finished goods are to be valued at cost of production. While computing finishec goods value noncash expenses like depreciation, writing off of preoperation expenses, etc., need not be taken into account. Similarly, selling expenses like freight, sales tax, and excise ciuty, need not be taken.

Bills:

Bills should be valued at cost of sales, ie., in the expenses, excise ciuty, sales tax, freight outward, are to be added to arrive at cost of sales. However, non-cash expenses like depreciation etc, need not be taken.
34. SSI Units, of ten engage in only one line of product or activity, - ic., with no diversification of activities - and are, as such, very vulnerable to the vagaries of large units. For instance, the recent sectoral recession in the automobile inclustry affected the giants like Ashok Leyland Ltd, and the TVS group, in the State of Tamil Nadu; as a direct consequence of this, the numerous SSI Units which supplied components
to them have been hit badly, mainly because there is no civersification and change of product-mix. The ranks have to consider this aspect when financing the SSI Units.
35. Often, the success of a SSI Unit depends on the ability of the indiviclual behind the show. If for some reason the incividual is not able to continue therein, the unit fails. This vulnerable aspect too, must be looked into by banks when financing it.
36. Lack of advertising ability on the part of SSI Units becomes a handicap in competition for procuring/ maintaining a share in the market.
37. Generally, there is an inflexibility in operations of SSI Units - ie., they suffer from an inability to increase/reduce production commensurate with the market demand - due to paucity of finance. While considcring financing proposals banks tenc to overlook this dimension.
38. It was observed, in the course of this study, that many SSI Units had accumulated surplus raw materials which they were not actually using but were saying they
would use at a future date - and against which they were obtaining bank finance. This obviously, results in "double financing" by the banks. (The prominent examples are of M.S. items, alloy castings in the case of furnace manufacturers, and tools, jigs; fixtures, in the case of electronics units). This requires rectification.
39. The next step is to build an explicitly dynamic, multi-sector inter-temporally consistent empirical Model for Assessment of Working Capital. This I have ventured to do as follows:
(A) In case of semi-finished goods (SFG)

Case (a) Where all the raw materials are added initially and the value addition is more or less uniform throughout the processing period:

$$
S F G=\left(\begin{array}{c}
\text { Raw materials } \\
\text { consumption per day }
\end{array}+\begin{array}{c}
\text { Value added } \\
-\frac{p e r}{2} \\
2
\end{array}\right) \times \text { PT }
$$

PT $\quad=$ processing time in days.

Examples of industries to which applicable: Manufacture of nails, bolts, foundry and soap:

Case (b) Where raw materials are added in stages but value addition is more or less uniform:

$$
\mathrm{SFG}=\left(\begin{array}{l}
\text { Weighted Average } \\
\text { Raw Material Content }
\end{array}+\text { Value }_{2} \text { added }\right) \times \mathrm{PT}
$$

Examples of industries to which applicable: Assembly units like manufacture of $T V$, radio and control panels.

Case (c) Where raw materials are added initially but the value addition is in stages:

$$
S F G=\left(\begin{array}{l}
\text { Raw Materials con- } \\
\text { sumption per day }
\end{array}+\begin{array}{l}
\text { Weighted avera- } \\
\text { ges value added }
\end{array}\right) \times \mathrm{PT}
$$

Example of industry to which applicable: Aluminium extrusion.

Case (d) Where both raw materials and value addition are in stages:

$$
\text { SFG }=\left(\begin{array}{l}
\text { Weighted average } \\
\text { raw materials content }
\end{array}+\begin{array}{l}
\text { Weighted avera- } \\
\text { ges value added }
\end{array}\right) \times \mathrm{PT}
$$

Examples of inclustries to which applicable: Perfumery, Chemicals.

It was found, on analysis of the working capital requirements for SFG in SSI Units using the above models, t'rat the actual stocks were 10% to 40% higher. The difference (a) was marginal in the case of units which followed a production plan and (b) was very pronounced where units were run through "Crisis Management". In such units, it was found that, when a customer pressed for supply of some component, the unit stopped production of the ones in the pipeline and took up the production of the former on a priority basis. As a result, stocks of semi-finished goods piled up and became stagnant in the long run, distorting the stocking.

(B) In the case of Bills.

The 3 variables in case of working capital requirement against Bills are:
(a) Gross Billing per month: Billing is seldom uniform throughout the year, because of seasonality and other factors. Net sales (ex-factory) differs from gross sales (gross billing includes excise duty, sales tax, freight outwards, etc). The basis for calculation should always be gross billing as it indicates the total value of the bill which is discounted/presented to the bank
and is also the amount that is collected from the customers.
(b) Weighted average collection period: The collection period of a bill is the time from the date of invoicing or despatch to the date of credit in the account of the unit. The weighted average collection period can be arrived at by analysing the past bills and will be equal to

$$
\underset{\sum B i}{\sum B i C i}
$$

where $\mathrm{Bi}=$ Value of an individual bill, and $\mathrm{Ci}=$ collection period for bill Bi.

Normally, 3 months are taken for arriving at the weighted average collection period.

Alternatively, the weighted average collection period can be arrived at by analysis of periods for payments of different customers and will be equal to $<S i C i$
where $S i=$ percentage sales to customer i (out of the monthly billing),
$\mathrm{Ci}=$ the collection period for customer i, and $i=$ customer.
(c) Profit Margin: Normally, it is taken as the difference between gross sales and cost of sales excluding depreciation, both expressed as a percentage.

(C) In the case of cash:

Cash required is dependent on
(a) the length of the operating cycle; and
(b) the extent of uncertainties.

Generally, a cash requirement equal to upto 15 days' cash expenses is provided if the operating cycle is of 3 months or less, and equal to one month's. cash expenses is provided if the operating cycle is of more than 3 months.

Wathematically, \quad Working Capital $\quad\left[\sum_{i=1}^{n} \quad S S i+\frac{O Q i}{2}\right]+\left[P M C+\frac{V A D}{2}\right] P T$

$$
\begin{aligned}
& +\left[\sum_{0=1}^{n} S S_{0}+\frac{B Q}{2}\right]+\left[G S D x \frac{\varepsilon_{B} i C_{i}}{\xi_{B i}}\right] \\
& +15 \mathrm{VAD} .
\end{aligned}
$$

Where,

SSi	=	Safety stock or minimum stock for raw material i (in rupees),
UQi	$=$	Order Quantity (Purchase Quantity) of raiN material (in rupees),
INC	=	Raw Material consumption per day (in rupees),
V / D	$=$	Value added per day .
		Cost of production \qquad Faw Materials consumption per month per month
	$=$	25 (working days in a month)
PT	=	Processing time in days (time taken from Raw Material stage to finished goods stage),
S_{0}	$=$	Safety stock of finished goods O (in Rupees),
$B Q_{0}$	$=$	Batch Quantity produced of finished goods 0 (in rupees),
GSD	$=$	Average gross sales per day (in rupees) (ex-factory sales + excise duty + sales tax + outward freight)
Bi	$=$	Bill value for Bill i,
Ci	=	Collection period for Bill i (the days from despatch of finished goods to the credit of sales proceeds in the account), and
S	=	Cost of sales expressed as a fraction of gross selling price.

Assumptions:
(a) A number of raw materials are used in some industries. For instance, in paints, or electronic industries.
(b) In manufacturing, all the raw materials are added at the initial stages.
(c) The value addition is uniform.
(d) Products are consumer items where production is not açainst orcier but for stocking since customers are not willing to wait.
(e) Proc'uction is in batches.
(f) Uniform sales throughout the year.
(c) No advance payment for sup ly of materials is required.

There will be some variations in the hodel
in some cases as follows:
(i) Where the units are having only a fow (less than 4) Raw inaterials and the sources of supply are the same as in the case of chemical industrics making sodium silicate or potassium nitratc:
$\begin{aligned} \text { Working capital }= & {\left[\begin{array}{ll}\sum_{i=1}^{n} S S i+O Q i \\ i=1\end{array}+\left[R M C+\frac{V i D}{2}\right] P T\right.} \\ & \left.+\sum_{0=1}^{n} S S_{0}+\frac{B Q_{0}}{2}\right]+\left[G S D \times \frac{B i C i}{\sum B i}\right]^{S}\end{aligned}$
$+15 \mathrm{ViD}$
(ii) Where the products are manufactured against orders as in the case of industrial products:
Working Capital $=\left[\sum_{i=1}^{n} S S i+\frac{Q Q i}{2}\right]+\left[B M C+\frac{V G D}{2}\right] P T$

$$
+\left[\sum_{0=1}^{n} \frac{D Q_{0}}{2}\right]+\left[G S D \times \frac{\sum B i C \bar{i}}{\sum B \bar{i}}\right]^{S}+15 \mathrm{~V} / D
$$

where, $D Q_{0}=$ Despatch Quantity for product 0 (in rupees)
(iii) Where there is only one product manufactured against orders as in the case of assembly of components: $\begin{aligned} \text { Working Capital }= & {\left[\sum_{i=1}^{n} S S i+\frac{0 Q i}{2}\right]+\left[R M C+\frac{V A D}{2}\right] P T } \\ & +D Q+\left[G S D \times \frac{\langle B i C i}{\langle B i}\right]+15 \mathrm{VAD}\end{aligned}$
40. The use, as far as practicable, of the Matching Principle - which holds that the firm should finance short-term needs with short-term sources and long term needs with long-term sources - is recommended to avoid diversion of funds and its consequent effect on production levels. I would, in the same breath, however, stress that the use of long-term sources of finance for short-term uses, it will be discerned, increases liquidity and working capital and is desirable to an extent and is the rationale behind the Tandon and Chore Committees! recommendations.
41. The banks must be constantly alert to symptoms* of approaching sickness in units financed by them so that corrective measures are taken in time. My study revealed

[^32]that the following danger signals are emitted from the accounts operated by the units:
(a) Poor operations in the cash credit account.
(b) Frequent returning of cheques unpaid.
(c) Request for frequent overdrawals in the cash credit account.
(d) High proportion of purchased bills being returned unpaid or dishonoured.
(e) Heavy carry-over stocks in the monthly stock statements.
(f) figeing of stocks.
(c) Inability to repay the instalments on due dates.

The ratios developed by Altman, Beavers, Deakin and Libby help to determine the health of the firm by part crystal ball gazing. In India, at the moment, only the Grindlays Bank plc., widely uses the Altman Analysis.* It is recommended that the following health ratios be used by other banks, too:
(i) Cash Flow Ratios: Lower trend normally indicates sickness.
(ii) Net Income Ratios: Lower trend normally indicates sickness.
(iii) Debts/Total Assets Ratios: Higher trend normally indicates sickness.

[^33](iv) Current Asset/Current Debt Ratios: Lower trend normally indicates sickness. This ratio indicates liquidity. I must emphasise here that this ratio only indicates the relationship at a point of time, ie., it is a static concept. Therefore, it becomes necessary to use a different indicator called the "Liquidity Index". It is not the quantum of assets at a point of time but how quickly the assets can be converted into cash that is relevant in assessing the liquidity position of a firm. The "Liquidity Index" reflects the duration for which the assets remain in a nonliquid state.
(v) Turnover Ratios: Lower trend normally indicates sickness.
(vi) Cost Ratios: Higher trend normally indicates sickness.
(vii) Debt-Equity Ratios: Indicates solvency and is, perhaps, the most widely used ratio by bankers.

Though at 1:1 ratio is considered ideal, in India 3:1 and more is also tolerated. It will be pertinent to mention that in Korea debt-equity ratios of $5: 1$ to $25: 1$ are common.

I would add that it is advisable to use both the basic methods of using these financial ratios, viz., the Cross Sectional approach as well as the Time Series approach, so as to have a more reliable and complete panorama.

I would further recommend that, to the extent possible, the banks carry out Sensitivity Analysis to examine the impact of variation (usually 10\%) in the critical inputs on the profitability of the units.
42. A banker must, as an investor, see, inter-alia, that the SSI Unit which has approached for finance is "growing". In this context, I recommend the use of Growth Ratio which sets out to explore the relationship of certain defined endogenous variables empirically. It is hypothesized that firms tend to rely on borrowing only to the extent the growth in funds from operations do not keep pace.

Mathematically,

$$
G R_{t}=\frac{T \Lambda_{t-0} / T A_{0}}{F O P_{t-0} / F O P_{0}}
$$

$$
\begin{aligned}
\text { Where, } \mathrm{GR} & =\text { Growth Ratio (ie., a ratio of the percentage } \\
& \text { growth in IA to the percentage growth in FOP) } \\
\mathrm{TA} & =\text { Total fissets, } \\
\mathrm{FOP}= & \text { Funds from operations, } \\
\mathrm{t} & =1983 \text { (say), and } \\
0 & =1980 \text { (say) }
\end{aligned}
$$

43. Because of continued inflation, external auditors of the SSI Units as well their bankers ask the same questions each year:
(a) Why have inventories grown so much? Is the volume up, or do you have more obsolete or slow moving items?
(b) Why are receivables up? Are you being more credit-lenient?
(c) Why are payables up? Aren't you paying your bills.

Three classifications of working capital changes, viz., productivity changes, sales volume changes, and
inflation impact, can be used to measure the Impact of Inflation on Working Capital. To break these components out of the balance sheet, I am advocating herein-below a series of formulae. (The formulae conform to LIFO accounting, as adopted by most units.) The use of these formulae would quantify the money (rupees) impact for operating management in the form of an events analysis report.

FORMULAE APPLIED TO WORKING CAPITAL DATA

PRODUCTIVITY

Inventory change $=$ (Current Inventory) (Prior_year LIFO_Indx $)$ Current year LIFIndx. $-\frac{\text { (CCS) (PY LIFO Indx) (CY LIFO Indx) }}{\text { Prior year turns }}$

```
Where CCS = Current cost of sales
        PY = Prior year
        CY = Current year
        Indx = Index
```

 Accounts receivable \(=(C R)(P Y P / C Y P)-(P Y D)(C Y S)(P Y P) / C Y P)\)
 change \(=-\infty-m-n-\infty\)
 Where $C R=$ current receivables
PYP = prior year prices
CYP = current year prices
PYD $=$ prior year days
CYS = current year sales

$=(\mathrm{CP})(\underset{\mathrm{CY}}{\mathrm{PY}-\mathrm{LIFO}}-\mathrm{Indx} \cdot \mathrm{I} \overline{\mathrm{x}} \cdot)-$
 (CCS)(PY LIFO Indx)/(CY LIFO Indx.)

Account payable change $=$ Prior year payable turns

Where $C P=$ Current payables
PY = Prior Year
CY = Current Year
CCS = Current Cost of Sales

VCLUNE CHANGE

Inventory Change $=$ (Prior year's inventory) | $(\%$ volume |
| :---: |
| change $)$ |

Accounts receiva-
ble change $\quad=$ (Prior year's receivables)(\% vol- ume change)

Accounts payable change $=$ (Prior year's payables)(\% volume change)

INFLATION IMPACT

$$
\begin{aligned}
\text { Inventory change }= & \text { Current year inventory - volume } \\
& \text { change + productivity - prior } \\
& \text { year inventory } \\
\text { ficcounts receiva- = } & \text { Current year receivables - volume } \\
\text { ble change } & \text { change + productivity - prior } \\
& \text { year receivables } .
\end{aligned}
$$

Accounts payable change $=$ Current year payables + volume change - productivity - prior vear Davables.
44. My survey exhibited that the transcriptions by the bank branches regarding Inspection and Valuation of stocks wrire not homolocious. For the proper control over the advances against stocks, I urge that the following records be invariably maintained:
(a) Proposal file of latest limits.
(b) Gociown stock register - gociown-wise.
(c) Stock register - total stock/party-wise.
(d) File of stock statements and lodgement letters.
(e) Delivery order book.
(f) Insurance due date diary.
(g) Market price register.
(h) Drawing power register.
(i) Lock and key register.
(j) Open loan stock register for ready reference of stock value, drawing power, balance, insurance, etc.
(k) Party's ledger account.
(1) Gociown Inspection Report file.

It is desirable that both ${ }^{*}, S 1$ and $/, S 2$ should be made mandatory to ensure full, fair and effective disclosure of accounting policies in respect of Inventory Valuation.

[^34]In the meanwhile, it is suggosted that all the statutory auditors should see that all the recommencations of the Institute of Chartered Accountants of India as provided in AS1 anc iS2 are observed. A mention in the audit report on this aspect will be excellent.
45. In the course of my investigation, I came across a number of cases where classification of manufactured components into fiaw ikaterials (Ni) and Work in Progress (WIP) proved a Gordian knot to untie.

For instance, a limited company in the light engineering industry manufactures certain components and also purchases some others to be used in sub-assemblies and final assemblies. The components are normally manufactured for stock and there is no connection between the work-order for these components and the work-order for finished products.

QUESTION: Should the manufactured components be classified into RN, WIP or in some other category keeping in view the disclosure requirements of Schedule VI to the Companies fict, 1956 ?

OPINION: In view of the Statement on Amendments to Schedule VI to the Companies het 1955 (1980) of
the Institute of Chartered Accountants of India (para 6.4., page 27), the manufactured components should not be classified as Rim. find, the finished manufactured components requiring further production operations should be shown as WIP. In the alternative, this can be separately disclosed in the Profit \& Loss l.ccount and Balance Sheet, as Finished Components. It should be noted that the alternative chosen must be followed consistently throughout.
46. The strategy of market segmentation:
(i) The small scale entrepreneur should select those products which ensure positive cash flows over fairly long periods of time rather than jump into products with apparent high profit,and growth potentials (but with large risks). This is because liquidity problems will normally arise as the SSI is plagued by limitec cash and credit resources.
(ii) It is dosirable for a small scale entrepreneur to avoid products or product lines in which credit
terms are liberal or easy, as in the process of compcting with large or established manufacturers, he is most likely to run into cash or liquidity problems.
(iii) Large markets in which there is little scope for successful competition with the large scale sector may be avoided, eg., scooter tyre.
(iv) Rapidly expanding small markets attract the attention of large scale units sooner or later and it is, therefore, appropriate for the sinall scale sector to avoid them. For example, in the USh, the snall firms dominated the electronic calculator market in the developmental stages. However, as the market expanded, giants like Hockwell International and Texas Instruments dominated the market soon decimating in the process the small scale units.
(v) Products with saturated markets in which a major portion of the total demand is accountec by replacement demand, also deserve to be ignored by prospective Small scale entrepreneurs as they involve toush competition with the units already entrenched in the industry.

It is therefore, desirable for a prospective small. scale entrepreneur to concentrate his attention. on relatively small markets with potential for reasonable but stable profits over long periods of time.
47. How is it that some owners of SSI Units manage without any formal systems or overall strategies while others have to devote much attention to such approaches and work 10 hours a day? During my research this was a recurrent observation like the great melody that recurs throughout the whole opera. And out of fragments, I have tricd to construct a mosaic.

To recapitulate briefly, the models over the last 20 years that seck to delineate stages of corporate growth.

McGuire* building on the work of W.W. Rostow in economics, formulated a model that saw companies moving through five stages of clevelopment:

1. Traditional sraall company,
2. Planning for growth

[^35]3. Takeoff or departure from existing conditions;
4. Drive to professional management,
5. Nass production marked by a "ciffusion of objectives and an interest in the welfare of society."

Christensen and Scott* formulated. three stages that a company moves through as it grows in overall size, number of products and market coverage:

1. One-unit management with no specialised organisational parts,
2. One-unit management with functional parts such as finance and marketing,
3. Multiple operating units, such as divisions, that act in their own behalf in the market place.

Steinmetz ${ }^{\S}$ theorized four stages:

1. Direct supervision,
2. Supervised supervision - the manager devotes attention to growth and expansion,
3. Indirect control - deleçate tasks to key managers
4. Divisional organization - at this stage, the company will remain viable.

* Foland Christensen \& B. Scott, Fieview of Course Activities, IMEDE, Lausanne, 1964.
§ Lawrence Steinmetz, Citical Stages of Small Business Growth, Business Horizons, February 1969, P. 29.

Finally, Greiner* proposed a model of corporate evolution in which organizations move through 5 phases of growth (in sales anci cmployces). Each phase is distinguished by a particular management style and a crisis which precipitates a jump into the next phase.

1. Growth through creativity. Crisis of leadership.
2. Growth through direction. Crisis of autonomy.
3. Growth through delegation. Crisis of control.
4. Growth through coordination.Crisis of red-tape.
5. Growth through collaboration.

A framework relevant to small and growing businesses can now be developed, emanating from the work of Steinmetz and Greiner, using a combination of experience, a search of the literature and empirical research. (To test the model, 52 responses were obtained from owners of successful smail companies/firms asking them to identify as best they could, the phases or stages their units passed through). The framework evolved from this effort delineates five stages of development through which a company must grow and pass or die. Each stage is characterized by an .

[^36]index of size, diversity and complexity and described by five manacement factors (Southern Methodist University distinguished professor of hccounting, N. Churchill, distinguishes between management factors relating to the enterprise and those relating to the owner): manacerial style, organisational structure, extent of formal systems, major strategic goals and owner's involvement in the business.

To depict in a compact form:

En Passant: (The position of SSI sector in the ASEAN nations)

(a) The respective shares of SSI (defined as establishments with 10-49 persons engaged) in employment and value added are far small, with the exception of Indonesia, than in Japan. This is especially pronounced in the Philippines, where the share of SSI in value addec is even less than in the USA. SSI is well represented in the manufacturing sector of Nalaysia. Assuming a waçerental ratio approximately reflecting the market-price ratio in Nialaysia, SSI isefficient in only incustrial chemicals and in the Philippines in leather and plastic products anci professional instruments.
(5) In the highly developed Singaporean economy, SSI is efficient in traclitional industries (leather, wood and cork products, etc) as well as in modern industries (pofessional goods, non-electrical machinery, etc).

	Stag I Exist:nce	Stag $=$ II Survival	Stags TITI-D Succese -Dísengegement (eg. start a new enterprise	Stage TII-G Succ:ss growth	Stags TV Talce-off	Stage V Resource isaturity
Management style	$\begin{aligned} & \text { Dir„ct } \\ & \text { Supirvision } \end{aligned}$	Supervised supervision	Functional	Functional	Divisionel	Lins ε staff
Major strategy	Existerce	Survival	Naintaining profiteble statusquo	Get resources for growth	Growth	Return On invest- ment
Extent of formel. systems	Hininal to non22istたnt	Minimal	Basic	Developing	laturing	Extensive
	Nowly star. ted r:stau rants ε : rきtail stores to hi.gh technulogy manufactur?rs	Manufectu ring business that cannot get their products or proces: sold as planned.	-	- .		

48. The Materials Department satisfies three out of fourbasic criteria for a Frofit Centre - it employs capital; it incurs costs and it adds value by distribution. Just onc basic criterion is missing pricing. This limitation is not serious. This can be remedied as in the case of conventional Profit Centres. The solution lies in the fixation of proper transfer pricing (Once determined, this shoule not be changed until the company chances the price of end products). The procedure for this can be illustrated as:

Purchases during the year	Rs. 500,000
Annual operating expenses of the Materials Department	R. 20,000
Return on Capital $(20 \%$ on the average investment of hs. 150,000$)$ Is. 30,000 Ris. 550,000	

Thus, in this company, value adcied by distribution in the Materials management process is Ps. 50,000 a year on purchases worth is. 5 lacs. The lis. 30,000 return on capital can be earned if the Materials Department adds 10% on every item it buys. Naterials costing Ris. 5 . lacs should be suppliod to the procuction department for Rs. 5.5 lacs.

I recommend the Profit Centre approach to Naterials Nanagement as it converts the materials manager into an entreprencur to seek opportunities for profit, take reasonable risks and work towards corporate goal congrue:ace.

FINF.LE

It will be clcarly seen that histcrical analysis as well as regression results generally confirm the validity of this nooliberal thesis. The various paradigms make us come to tho same normative conclusion.

In closing, it must be said that there is in lifc an element of elfin coincidence which bankers, reckoning on the prosaic, may perpetually miss. is it has been well expressed in the paradox of Poe, wisdom should reckon on the unforeseen, despite all the sophisticatec modern techniques and financial statements. After all, ciespite all "unconscious inisrences" (H. Von Helmhi-i) anc "inferential constructs" (F. Eartlett), as firthur Koestler, Wittgenstein, Einstein Arnold Toynbee, Eertrand Russell, and other titans in the Valhalla of worthies would acquiesce with me, 30% of everything is placebo and 70\% does you harm. We may,
however, as Monsieur Poincare once said, and Sir Winston Churchill and Sir John Colville never ¿ired of quoting, "take refuge beneath the impenetrable arch of probability". It is important to recognise that bankers, like economists, have a propensity to react to Emmanuel Kant's "categorical imperatives" similarly or Holl-over together" (an observation expressed by the late Roy Blough of Columbia University and on which Professor Paul Samuelson of massachusetts Institute of Technology and a Nobel Laureate has rightly laid fin-de-siecle emphasis in his Memorialarticle on John Maynard Keynes). A successful development banker, however, must ab-initio follow, as New York Zoological Society Director Dr. George Schaller puts it, his own vision. Comparce to the pond of knowledge, our ignorance still remains atlantic. in empirical statement, rightly concludes Oxford University philosopher F. Haismann, is never "completely verifiable", since no battery of tests can establish its truth. Waismann goes further by arguing that an empirical proposition does not even entail specific observational propositions. If it did, it could be refuted by coming into conflict with observations. All we are entitled to say, as dustralian

National University don John Passmore explains, is that an experience "speaks for" or "speaks against", "strengthens" or "weakens" a proposition, never that it proves or disproves it. In fact, we come once again to the three C's, which are so important in banking. Capital, Character and Capability. The capital can be seen by examining accounts, but the character and the capability must be judged on wider observation. A banker must, therefore, in the ultimate analysis, know his man. There is, alas, no way out of it. Yet.

SELECT BIBLIOGRAPHY

A) ARTICLES IN JOUPNALS AND PERIODICALS

Ashford, I.K., Risk Assessment in small or medium bank, Journal of Commercial Bank Lending - March 1979

Banks, Ro, Managing the smaller company, American Management Association - 1969

Bates, James, The Finance of Small Business, Bulletin of Oxford Institute of Statistics - May 1958

Bates, James, Financing the Small Business, Chartered Secretary - March 1962

Bollard, A., Small is Beautiful, Management Accounting, London - November 1982

Gheerbrant, P., and Jolliffe, A., Integrated Lending Techniques, Bankers Magazine, London - June 1978

Gopalakrishnan, P., Inventory Problems in Public Sector Units, The Economic Times - September 1975

Horn, C., Is Small really beautiful? Management Accounting, London, - June 1982

Piercy, Lord, Financing Small Business, The Banker, London - October 1961

Richmond, H., Effective Inventory Management, Financial Executive - March 1969

Snyder, Artinur, Principles of Inventory Management, Financial Executive - April 1964

Yasaswy, N., Working Capital Management and Efficiency Criteria, The Economic Times February 1978

B) REPORTS

Bolton Report on Small Firms, FMSO - 1971
Campbell Report, Melbourne, - 1981
Dahejia Committee Report, National Credit Council Study Group 2-1968

Macmilian Report on Finance \& Industry, HMSO - 1931
Nakra Committee Report on Spare Parts, H.S.L. Ranchi - June 1968

Radcliffe Report on the Working of the Monetary System, HMSO - 1959

Report of the Study Group to frame guidelines for follow-up of Bank Credit, Reserve Bank of India - 1975 (Tandon Committee)

Report of the Working Group to review the system of Cash Credititt Reserve Bank of India - 1979
Wilson Report on Financing of Small Firms, HMSO - 1979
C) UNPUBLISHED REPCRTS AND OTHER PAPERS

Ballan, R., and Tomita, I., Financial Reporting in Japan, Sophia University, Tokyo - 1976

Banerji, R., Employment and growth potential of Small Scale Industries, Kiel working paper 64, Institute fur Weltwirtschaft,Kiel - 1977

De Vries, B., Industrialisation and Employment, the role of Small Firms, International Economic Development \& Resource Transfer Workshop 1978, Tubingen

Okamoto, Y., Business Behaviour in Japan, Tokyo University Economic Research Fund - 1973

Patmasiriwat, D., Industrial Growth and Employment, Thai University Research Association Report 7, Bangkok, - 1980

Rea, D., A comparative Financial Analysis of 26 indigenous North Ireland Public Companies, unpublished thesis for the degree of M.Sc. (Econ), Queen's University of Belfast

Takahashi, K., The Mitsushita Electric Company Limited, Keio University, - 1971.
D) PUBLISHED STULIES, STATEMENTS, REVIEITS, JOURNALS, ETC

Banks and Small Businesses, Cambridge Seminar 1978, Institute of Bankers, London

Business Ratios (a Dun and Bradstreet/Moodies Publication) this journal ceased publication in 1970

Chartered Accountant, Institute of Chartered Accountants of India, New Delhi

Chartered Secretary, Institute of Company Secretaries of Incia, New Delhi

Committee on Accounting Procedure, Research Bulletin 43, American Institute of Accountants, New York, - June 1953

Compendium of BPE circulars, Bureau of Public Enterprises, Delhi

Financing Small Business, Report to the Committee on Banking, US Congress, Federal Reserve System, US Government Office, - 1958

Journal of the Australian Institute of Bankers, Melbourne

Journal of the Indian Institute of Bankers, Bombay
Journal of the Institute of Bankers, (Banking World) London
Journal of the Institute of Bankers Malaysia, Kuala Lumpur
Management Accountant, Institute of Cost \& WorksAccountants of India, Calcutta
Mathews, T., and Mayers, C., Developing a Small Firm B.B.C., - 1968
National Association of Accountants Research Report 40, Techniques in Inventory Management, New York - 1982
Philip, S., TVA and the Grass Roots, University of California, Berkeley, - 1949
Production and Inventory Management, Journal ofProduction \& Inventory Control Society,Washington
Purchasing \& Supply, Institute of Purchasing, London
R.B.I. Financial Statistics of Companies in IndiaRaiborn, D., Audit Problems in Small Business
E) PUBLISHED BOOKS
Abramovitz, M., Inventories \& Business Cycles with special reference to Manufacturer's Inventories, National Bureau of Economic Research, USA 1950
New York

Argenti, John, Corporate Collapse, McGraw Hill - 1976
Arrow, K., Studies in Miathematical Theory ofInventory and Production, Stanford University- 1959
Balakrishnan, G., Financing Small Scale Industries 1950-52 in India, Gokhale Institute of Economics, Poona - 1961

Banerji, B., Cash Management, World Press - 1982
Bannock, G., The Economics of Small Firms, Basil Blackwell, - 1981

Bates, James, Financing of Small Business, Sweet \& Miaxwell, London 1971

Battersby, Albert, A guide to Stock Control, BIM Publication, 1970

Baumol, W.J., Economic Theor. Y and Operations Analysis, Prentice-Hall

Brown, Robert, Statistical Forecasting for Inventory Control, McGraw Hill

Chadda, R.S., Inventory Management in India, Allied Publications

Clemens, J., and Dyer, L.S., Balance Sheets and the Lending Banker, Europa, London

Drucker, Peter, The New Markets, Heinemann, London, - 1971

Dyer, L.S., A Practical Approach to Bank Lending, Institute of Bankers, London, - 1979

Egginton, D.A., Accounting for the Banker, Longman, - 1977°

Gopalakrishnan, P., Spare Parts Management, Jaico
Graham, B., Interpretation of Financial Statements. Harper \& Row, London

Guthmann, Harry G., Analysis of Financial Statements, Prentice-Hall

Horne, Van, J., Fundamental of Financial Management, Prentice-Hall

Institute of Cost \& Works Accountants of India, Management Accounting Problems in Small Scale Industries,ICWA, - 1975

Institute for Financial Management \& Research, Inventory Management, IFliR, - 1980

Lipton, Mo, Why poor people stay poor, Temple
Mather, L.C., Lending to limited companies, Institute of Bankers, London, - 1975

Mishra, R.K., Problems of Working Capital, Somaiya, - 1975

Morishima, M., Why has Japan succeeded - Western Technology and Japanese ethos, Cambricge University, Cambridge - 1982

Pascale, R., and Athos, A., The art of Japanese Management, Penguin, - 1982

Pfeffer, I., The Financing of Small Business, Collier Macmillan, - 1967

Pitcher, M.A., Management Accounting for the Lending Banker; Institute of Bankers, London, - 1980

Pylee, M., Essentials of Materials Management, Somaiya Publications
Ramamoorthy, V.E., Working Capital Management, IFMR, - 1976

80'. Reserved Small Industries, Small Business Publication, Delhi, 1982.

Robinson, R.T., Financing the Dynamic Small Firm, Wadsworth, 1966

Scase, R., and Goffee, R., The Real World of Small Business, Croomhelm, London, - 1980

Schollhammer, H., and Kuriloff, A., Entrepreneurship and Small Business Management, John Wiley \& Sons, New York, 1979

Schumacher, E.F., Small is Beautiful, Abacus, London, - 1974

Thomas, A., Stock Control in Manufacturing Industries, Gover Press, London, - 1970

Wessel, Robert, H., Principles of Financial Analysis, Macmillan Company

Whitin, T.M., Theory of Inventory Management, Princeton University, - 1958

World Bank, Employment \& Development of Small Enterprises, World Bank, Washington, - 1978

Zwick, J., Handbook of Small Business Finance, U.S. Government, SBA, Washington, - 1965
F) FURTHER RE/DING

ARTICLES (arranged on the basis of publication year)
Peitzke, D.L., Inventory management and the accountants. Cost and Management, March/April 1970, p. 32

Hampton, J.D., Some implications of methods of inventory control. The South African Chartered Accountant, April 1970, p. 131

Crankshaw, C.D., and Corlett, R.J., Stock inventory control with data bases and analysis, N.A.A. Management Accounting, May 1970, p. 26

Jones, A.C., Mechanisation of stock control in small batch or jobbing manufacture. Work Study and Management Services, September 1970, P. 733

Hill, G., Improved inventory control methods can assist liquidity. Accountancy Age, 13th Nov.1970, p. 15

Parry, E., Product categorisation eases inventory decisions. Industrial Engineering, Nov.1970, p. 24

Burton, R.O., Computerised stock control in heavy nngineering, Purchasing Journal, Jan. 1971 -

Wholey, T.A., Stock control by punched tape, Purchasing Journal, March 1971, p. 32

Saalmans, P., Stock control and simple packages, Computer Management, May 1971, p. 20
Brady, E., and Babbitt, J.C., Inventory control systems, Management Accounting, (Nfu), December 1972

Smith, D., Controlling the investment in inventory. $^{\text {. }}$ Chartered Accountant in Australia, December 1972, p. 42

Goyal, S.K., and Honeyman, N., Some capital investment aspects of stock control, Cost and Management, May/June 1973, P. 32.

Pattinson, . W.R., Excess and obsolete inventory control, Management Accounting (NAA), June 1974, p. 35

Crowe, W.R., Effective stock management: short-term demand forecasting for inventory control. Accountants Review, September 1974, p. 218

Claycombe, W.W., and Sullivan, W.G., Steps to effective inventory, Journal of Systems Management, March 1975, p. 38

Herzberg, E., Management's growing stock problems, Business Administration, June 1975, p. 14

Karsh, R.S., Inventory management, Internal Auditor, July/Aug.1975, p. 69

Brewster, R.S., Controlling inventory: on line computer systems. The CPA, September 1975, p. 35

Shim, J.K., and Siegel, J., Automated methods in inventory planning, Management ficcounting, November 1975, p. 363

Duncan, I.D., Inventories - their use and control, Cost and Management, Jan/Feb.1976, p. 46

Bowness, J., Stock control, Procurement, Sep.1976, p. 18

Jagetia, L.C., Inventory control as simple as ABC, Management Accounting, September 1976, p. 305

Northcote, E.F., Stock control policies questioned, Management Accounting, November 1976, p. 390

Shaw, R.J., Blueprints for production planning and inventory control, Management Controls, Jan/Feb.1977, P. 19

Gaskell, D.L., Merchandise and cash control in retailing, Accountant, 3rd March 1977, p. 246

Brooks, W.J., and Alexander, W.S., Methods of inventory control, Journal of Purchasing and Materials Management, Summer 1977, p. 3

Allen, D.,Stock control, Accountants Weekly, 15th
Jagetia, L.C., Effective raw materials inventory system, Cost and Management, July/August 1977, p. 19

BOOKS
American Institute of Certified Public Accountants Practical Techniques and policies for inventory control, New York:A.I.C.P.A., c. 1968

Baily, P.(J.H.) and Tavernier, G., Design of stock control systems and records, (London), Gower, P., 1970

Baily, P.,
Successful stock control by manual systems, London, Gower P., 1971
Barrett, D.A., Automatic inventory control techniques, London, Business Bks, 1969

Battersby, A
A guide to stock control, 2nd ed. London: Pitman for the British Institute of Management, 1970

Brown, R.G.,
Statistical forecasting for inventory control, New York:McGraw-Hill, 1959

Clyne, H.W.,
Stock control: needs of the smaller company. London: Industrial and Commercial Finance Corporation Ltd, 1971

Fowler, H.O.
The elements of financial merchandising control. (Melbourne? The author?), 1972

Harvard Business Review
Inventory policy - reprints of selected articles
(Cambridge, Mass.):H.B.R., (1976?)
(Harvard Business Review reprint series)
Hobbs, J.A.,
Control over inventory production, London; McGraw-Hill, 1973.

Humphreys, R.G.,
How to release cash through stock
reduction, London: Chartered Accountants Trust for Education and Research, 1974.

Lavery, K.R.,
Selective Inventory management, Hamilton, Ont.:S.I.A.C., c. 1972

Lewis, C.D.,
Demand analysis and inventory control, Farnterough: Saxon House, c. 1975

Lewis, C.D.,
Scientific inventory control., London:Butterworths, 1970.

Lincs, A.H., and Beart, J.,
Inventory control techniques, London: Industrial and Commercial Techniques Ltd, 1972

Reisman, A., \& others
Industrial inventory control. New York: Gordon
\& Breach Science Pubs., c. 1972
Sewell, R.,
Profitable stock management; a brief guide for motor traders, Rev. ed. London: N.E.D.O., 1971

Stohr, E.A., Information systems for observing inventory levels, Evanston, Ill.: Northwestern University, Centre for Mathematical Studies in Economics and Management Science, 1976 (Discussion paper, No.243)

Thomas, A.B.,
Stock control, London: Chartered Accountants Trust for Education and Research 1973.

Tomeski, E.A.,
Fundamentals of Computers in Business, Holden Day Inc., USí., 1979
Trux, W.R.,
Data processing for purchasing and stock control., London: McGraw-Hill, c. 1971
U.S. Government Publication, U.S. Small Business
Administration The Vital Majority,
Business in .the American Economy, 1974.

Vendemark, R.L.,
Wholesaler inventory control, Rev. ed. Dallas:
VanDeMark Inc. for National Association of Wholesaler-Distributcrs, 1972 (1975 reprint)

UNITED STATES GOVERNMENT PRINTING OFEICE

America's Small Business Economy, Agenda for Action, Report to the President, - 1980
Best of the SBI Review, 1973-79, - 1980
Buying and Sciling a Small Business, - 1979
Economic Rescarch on Small Business: The environment for entreprencurship and small business summary analysis of the regional research reports, - 1981

Export marketing for smaller firms, - 1979

Future of small business in America, - 1979
Handbook for small business, - 1980
Protecting the small business cash flow lifeline, - 1980

Role of smail business enterprise in Economic Development, - 1981

Small business administration annual report, - 1980
Small business administration business basics, -self-instructional booklets on
Inventory and scheduling techniques, manufacturing, - 1980

Inventory management, Manufacturing service, - 1980

Purchasing management and inventory control for small business, - 1980

State of small business: A report of the President transmitted to the congress, March 1982, - 1982

Study of small business, - 1978

[^0]: * Report of the sub-group on "Credit requirements of Small Scale Industries (1978)" - Working Group on Small Scale Industries for the Five Year Plan 1978-83.

[^1]: * Journal of National Productivity Council, Vol.4, No.4.
 © Albert Battersby, A Guide to Stock Control, BIM Publication 1970.

[^2]: * John P.D'Anna, Inventory and Profit, American Management Association, New York, 1966, P. 23
 © In Black's Law Lictionary the word "manufacture" is defined as "the production of articles for use from raw or prepared materials by giving such materials new forms, qualities, properties or combinations, whether by hand labour or machinery".

[^3]: * Audit Report-Comnercial, 1967, New Delhi, P. 10

[^4]: * K. Arrow, S. Karlin and H.Scarf, Studies in the Mathematical Theory of Inventory and Procuction, Stanford University, 1959, Chap.2,3.

[^5]: * See: J. Buchan \& E. Koenisberg, Scientific Inventory Mianagement, Prentice Hall, New Delhi 1966, P. 335

[^6]: * Experts on inventory management write that the annual cost of carrying inventory averages approximately 25% of the value of inventory, See L.Alford and J Bangs, production Handbook, The Ronald Press, New York, P.267. See also D.Somerly, You cannot afford Dead Money Inventories, Purchasing, Sept.15, 1971, P.73-74.

[^7]: * R.H. Wilson, Harvard Business Review, 13, 1929, 116-28. See also F. Clark, Harvard Business Review, 6, 394-400; H. Nicgill, Industrial Managcment, 73, 6, 344-47; R. Davis, hanufacturing Industries, 9, 353-56; G.Mellen, Management and Acministration, 10, 155; H. Owen, Industrial Management, 70, 71; G. Pennington, Manufacturins Industries-13, 199-203; R. Wilcox and W. Niucller, Harvard Business Review, 5, 197-205 (1926-7).

[^8]: * Arthur Snyder, Principles of Inventory Nianagement, Financial Executive, April 1964.

[^9]: * Safety stock is that which minimizes the expected cost, while variation is within prescribed limits.
 See N.T. Khoury, The Cptimal Level of Safety Stocks in Nanagement of Working Capital, West Publishing Co., 1974.

[^10]: * M.A. Pitcher, Management Accounting for the Lending Banker, Institute of Bankers, London, P. 80. See also G. Zimmerman, The $A B C$ of Pareto, Production anci Inventory Management, September 1975, 1.

[^11]: * H. Richmond, Effective Inventory Management, The

[^12]: if L.S. Dyer, A Practical Approach to Bank Lencing, Institute of Bankers, Loncicn. P. 57
 © J. Clemens \&. L. Dyer, Balance Sheets and the Lending Banker, Eurcpa, Loncion, P. 73

[^13]: * KBI Financial Statistics of Joint Stock Companies in India, 1977.
 © RBI , Ibid.
 £ FBI, Ibid

[^14]: * P. Gopalakrishnan, Inventory Problems in Public Sector Units, The Economic Times, September 24, 1975.
 (0) J. Pichard and R. Eagel, Modern Inventory Management, John Wicly, New York, 1965, P. 2

[^15]: * A. Thomas, Stock Control in Manufacturing Industries, Gover Press, London, 1970. Sec also P. Gokarn and M. Pylec, Essentials of Materials Management, Somaiya Publications, Bombay, P.45-46.

[^16]: * These techniques have been lucidly explained in: Robert G. Brown, Statistical Forecasting for Inventory Control, Mcgraw Hill.

[^17]: * C. McGolcrick and B. Graham, Interpretation of Financial Statements, Harper and Row, London, 1964.

[^18]: * J. Jackson, Naval Research Logistics Quarterly, 7 (1960), P. 235

[^19]: * Compendium of BPE circulars, Burcau of Public Enterprises, Now Delhi, 1969, P.108.
 (0) Nakra Committec Report (Report of the Spare Parts Committec) H.S.L. Ranchi, June 1968, P.6-19.

[^20]: * Dahejia Cumaittce Foport, tho National Crecit Ccuncil Stucly Group No.2, set up in 1968.

[^21]: * 'Fleport of the Stuc'y Group te Frame Guidelines for Follow-up of Eank Credit", Fieserve Bank of Incia, Bumbay, 1975.

[^22]: * "Report ef the Working Group to Review the system of Cash Credit," Fieserve Bank of India, Bombay 1979

[^23]: * Reference: Miy clinical intervicw with S. Nurali Prasad, Managing Director of Sam Consultancy Services Ltc, Madras

[^24]: * M.Abramovitz, "Inventories \& Business Cycles with special reference tc manufacturers' inventories", Studies in Business Cycles, National Bureau of Economic Research, U.S.A., 1950.

[^25]: © Harry G. Guthmann, "Analysis of Financial Statements" (Prentice Hall) P. 81

[^26]: * Robert H. Wessel, "Principles of Financial

 Analysis - a study of Financial Management" (Macmillan Co) P:93-96

[^27]: * This includes for both this unit as well as the unit No.II at Kociavasal.

[^28]: ... from page 461

[^29]: * For a detailed study of social analysis of projects, see: I. Little \& J. Nirrlees, Social Cost Eenefit Analysis, LCOECD, Paris, 1968; The Charles Noskowitz lectures, New York, 1972, by Jan Tinbergen.

[^30]: § State, under WWorking Capital Required" the value receivable at cost, and under "Permissible Limit", value thercof at sales value as margin.
 For items (iii) and (iv) the basis of calculation would be the cost of production. Deficit, if any in balancesheet to be added to working capital requirements.

[^31]: * The best hope lies in industries like electronics and biotechnology.

[^32]: * Much like Weber anticipated Spencler or Sydney University historian John MicManners extension in the area of "liberty".

[^33]: * En passant: I am dubious as to the appropriateness to Small Units of computer models based on either "Z" score formula of Altman or City University's Taffler, or "A" score of John Argenti, mainly because of delayed information.

[^34]: * Accounting Standards Board, Valuation of Inventories; Institute of Chartered iccountants. of Inclia, June 1981.

[^35]: * Joseph McGuire, Factors Affecting the Growth of Manufacturing Firms, University of Washington, 1963.
 § W.W. Rostow, Stages of Economic Growth, Cambridge University, 1960.

[^36]: * Larry Greiner, Evolution as Organizations Grom, HBR, July-^ugust 1972, P. 37

