ANNUAL REPORT (TECHNICAL)

OF THE

CENTRAL BOARD OF IRRIGATION,
INDIA

1938-39.

PUBLISHED BY ORDER OF THE BOARD.

NEW DELHI: PRINTED BY THE MANAGER, GOVERNMENT OF INDIA PRESS: 1940.
CENTRAL BOARD OF IRRIGATION, 1939.

From left to right.

STANDING:—Mr. A. R. B. Edgcombe, Mr. A. Oram, Mr. S. C. Majumdar,
Secretary. (N. W. F. P.).

Khan Bahadur M. Abdul Azis, C.I.E., Mr. E. O. Cox, M.B.E.,
(United Provinces). (Punjab).

Mr. C. E. Aitken,
(Bombay).

SITTING:—Mr. A. Vipan, C.I.E., Mr. S. H. Bigsby, C.I.E.,
(Orissa). (Punjab).

Mr. A. Gordon, C.I.E., Mr. T. M. Lyle, C.I.E.,
President. (Sind). (United Provinces).

Mr. F. A. Farquharson, M.C.,
(Punjab).
ANNUAL REPORT (TECHNICAL)

OF

THE CENTRAL BOARD OF IRRIGATION, INDIA,
1938-39.

Publication No. 22.

EDITED BY
Secretary.

SIMLA:
Published by order of the Board.
1940.
ADVERTISEMENT.

The Central Board of Irrigation as a body is not responsible either for the statements made or for the opinions expressed in the following pages.
FOREWORD.

Central Board of Irrigation
Simla, India.

This "Annual Report", which is published to make known to Engineers in India and other countries the problems confronting Irrigation Engineers in India, and the research and investigations, undertaken to solve them, is the fifth issue of its kind, and records the technical work of the Central Board of Irrigation during the year 1938-39.

The technical discussions are the result of three meetings given hereunder in chronological order:

(i) The Third Winter Meeting of the Research Committee, March 1939.
(iii) The Tenth Annual Meeting of the Central Board of Irrigation, November 1939.

For the information of the two last named meetings, summaries were prepared of the work done during 1938-39 by the five Research Stations which operate under the aegis of the Central Board of Irrigation, and are included with discussions in this publication.

The technical contents of the volume have been divided into seventeen groups, and the relevant discussions of the three meetings appear under their respective groups. It is thought that this new arrangement will facilitate reference.

Efforts have been made to provide a fully comprehensive index.

The undersigned would like to repeat the request contained in previous reports, for the supply of information relating to any of the problems mentioned in this publication, or any other matters of interest to Irrigation Engineers. He will gladly furnish further details of any of the experiments, investigations, etc., or other information relating to the problems mentioned in this Report.

A. R. B. Edgcombe,
Secretary,
Central Board of Irrigation.

Dated the 8th January, 1940.
CONTENTS.

Meetings of the Board and Committees during 1939 ... 1
Summarized Reports of Research Stations, 1938-39 ... 7
Field Results of Measures Adopted after Model Experiments 34
Design of Canal Falls ... 45
Meandering of Rivers ... 49
Silting of Reservoirs ... 51
Silt Excluders and Ejectors ... 58
The Collection of Hydraulic Data of Torrents in Boulder Rivers and Streams 67
The Role of Reservoirs in River Flood Control, and Floods and Deforestation 74
Canal Losses and Means of Conserving Irrigation Water (Staunching of Canals) 79
Waterlogging and Land Reclamation .. 98
The Design of Drains in Irrigated Areas ... 106
Programmes of the Research Stations, 1939-40 ... 110
The Design of Channels in Alluvium ... 124
Soil Denudation as an Adverse Factor on River Supplies and Agriculture 128
The Fair Incidence of the Cost of Irrigation Water on Different Classes of Crops ... 136
The Design of Distributary Heads ... 140
Means to Secure the Equitable Distribution of Irrigation Water 141
Appendices .. 147
Index ... 165
List of Sub-Committees provided by the Board ... 183
List of Publications of the Board .. 184

(ii)
PLATES.

Group of the Central Board of Irrigation, India, 1938-39 . . . (Frontispiece)
Illustrating "Field Results of Measures Adopted after Model Experiments" Facing page 40
Illustrating "Silt Excluders and Ejectors" Facing pages 60 and 61.
Illustrating "Soil Denudation as an Adverse Factor on River Supplies and Agriculture" pages 132 and 133.
INDEX.

A

Abrader, silt, 10.
Agricultural Co-operation in United Provinces, 39, 138, 142.
Aitken, C. E., 2, 50.
Alkaline soils, aerial survey proposed in Punjab, 105.
--------- cure of, 105.
--------- reclamation of, Board Resolution, 105.
All-American Canal, 58, 59, 64.
Anamdarra fall, verification of model, 43.
A. P. M. outlets, 86.
Aprons, experiments with falling, 9.
Assuan Dam, model experiments on discharge of sluices, 34, 36.
--------- reasons for absence of silting, 66.
Auranga River, training of, 10.
Aziz, Khan Bahadur Mohd. Abdul, 2, 4, 5, 105, 138, 139.

B

Baffles, 20, 23, 45, 47.
--------- type stabilizer, 9, 11.
Baghar New Cut, tail weir experiments, 19, 23.
Baluchistan, 10.
Bank erosion, control of, 14.
Bank scour, in models, 16.
Barrage, design of, for silt control, 58.
--------- Emerson, prediction of gauges by model, 43.
--------- sluices, operation of, for silt control, 58.
Bazin type formula, suitability of, 65.
Beea River model, approximate cost of, 44.
Bed load, 51, 53, 56, 66, 68, 72, 73.
--------- sampler and sampling, 53, 65.
--------- materials in Boulder Rivers, sampling of, 68, 72, 73.
Beds, models with movable, 10.
Bhakra Dam, 54, 75.
--------- details of, and question of silting of, 54, 56.
Bhandara Dam, model experiments on high coefficient weir for, 38.
Bigsby, S. H., 1, 2, 3, 15, 30, 31, 32, 44, 55, 57, 65, 66, 70, 77, 93, 94, 96, 101, 103, 104, 105, 109, 123, 127, 131, 134, 139, 139.
Bihar, floods in, and rivers contributing thereto, 76.
Bikaner Canal, lined section, 96.
--------- losses from, 86, 95, 96.
Blech, equation of, 42.
Blasius, equation of, 42.
Blench, T., 1, 17, 23, 47, 73, 83, 93, 94, 102, 104.
Blocks, stabilizer, 9, 11, 19, 23.
Bombay, model of Rajuri Nala, 8.
--------- Presidency, Watrack River Training, 8.
--------- 54, 41.
--------- 55, 39.
--------- 69, 7.
Bose, Dr. N. K., 1, 10, 11, 17, 23, 42, 43, 47, 52, 68, 73, 92, 93, 127.
--------- Note on "Observation of Data from the Boulder Bed of the River Havi at Mukeswar", 68.
Boulder Dam, 61, 68.
--------- rivers and streams, collection of hydraulic data of, 67.
Brahmaputra River, model of proposed bridge at Amingaon, 8, 34.
Bridge, Hardinge, model of the Ganges at, 8, 34, 39.
--------- on Brahmaputra at Amingaon, model of proposed, 8, 34.
--------- piers, protection of, 9, 11.
Bridges, submersible, 9.

165
Burnhope reservoir, model of spillway, 54, 66.
Burns, Dr. W., 4.
Butcher, 11.

Canal, All-American, 58, 59, 64.

---, Bikancer, losses from, 85, 95, 96.
---, lined section, 96.
---, Burala Branch, studies of seepage losses, 83, 84, 93.
---, Choi Branch, experiments on silt entry, 20.
---, Colonial Fife, model experiments of bead regulator, 19, 23.
---, Dadu, model of Pincher regulator, 18, 36.
---, Haveli, observations on coefficients of rugosity, 65.
---, lining of, 81, 93, 95, 96.
---, experimental falls on, 46, 47, 48.
---, Jamrao, experiments on silt entry, 20.
---, silt exclusion from minors of, 40.
---, Jhang Branch, seepage studies, 83.
---, Kur Hashim Branch, model experiments on silting of, 19.
---, Lower Chenab, seepage from, 13, 83, 84, 93, 95.
---, silt surveys, 14.
---, in, 66.
---, Lower Gugera Branch, seepage studies, 83.
---, Mithrao, effect of silt charge, 57.
---, model experiments in connection with remodelling, 38.
---, silt exclusion from, 58.
---, Nasir Branch, Rohri, Model of Taindo Allahyar Regulator, 18.
---, Nira Left Bank, agreement of model and prototype, 41.
---, Sarda, design of head regulator, 58.
---, model experiments on river training at headworks of, 7, 38, 44.
---, Upper Bari Doab, silt surveys, 14.
---, Chenab, seepage studies, 83, 84, 93, 95.
---, Gugera, seepage studies, 83, 84.
---, Jhelum, silt ejectors on, 65, 66.
---, Western Jumna, model of Dhanaur Regulator, 14.
---, silt surveys, 14.

Canal Falls, calibration of, 30.
---, design of, 46.
---, experiments on Haveli Project, 16.
---, Research Committee resolution, 47.
---, Resolution of the Board, 48.

Canal losses, in relation to head discharges, 89.
---, studies of, 83, 84, 85, 86, 87, 93, 94, 95.

Canals, and rivers, flow in, 94.
---, design of in alluvium, 124.
---, Board Resolution, 124.
---, discharge measurement by rods, 79.
---, current meters, 79.
---, calibrated flumes and falls, 79.
---, lining of, 80, 81, 94, 95, 96, 97.
---, Board Resolution, 97.
---, costs on the Thai Project, 95.
---, practicability of, 81.
---, warrantable expenditure on, 81.
---, losses in, 1, 29, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96.
---, accuracy of measurement of, 79, 93, 94, 95.
---, and waterlogging, 83, 84, 85, 93.
---, conditions affecting, 80.
Canals, losses in, determination of, by direct discharge observations, 85.

- drainage method, 84, 93.
- indirect methods, 86.
- point method, 86, 87.
- tank method, 86, 87.
- water account method, 87.

- in relation to viscosity, 84, 93.
- location of maximum, 85.
- measurement of, 79, 93.
- prevention of, 80, 81, 94.
- reduction of, by chemical processes, 81.

- lowering of canal supply level, 81.
- silt deposit, 81.

--- losses in lined, 86, 93, 96.
--- losses in, Sind, 92.
--- use of Lacey theory in computation of, 88.
--- variation with temperature, 80, 93.
--- weirs in determination of, 85.
--- Report on Studies of Seepage Losses from, by T. Blench,83.
--- seepage from, 10, 79, 80, 81, 82, 83, 92, 93.
--- drains to deal with, questionnaire on, 107.
--- silt entry into, 13, 14, 29.
--- silt exclusion from, 59.
--- staunching of, 1, 29, 78, 81, 94, 95, 96.
--- with sodium carbonate, 15, 29, 30, 31, 94, 96.
--- with sodium carbonate plaster, 12, 15, 16, 96, 97.

Capillarity, movement of moisture in soils, by, 101.
Capillary fringe, 102, 104.
Capillary power of sands and soils, 12.
Capillary tank models, 16.
Cauvery-Mettur, Madras, silting precautions, 56.
Cauvery River, Madras, 10.
Cavitation in models, 13, 14, 16, 41, 42.
Cement pipes, effect of salt on, 26.
Central Board of Irrigation, Tenth Annual Meeting, 2.

- Presidential Address, 3.
- Visit of members to Imperial Agricultural Research Institute, 5, 147.
- to Malaria Institute of India, 5, 150.
- to U. P. Tube Well areas, 5, 152.
- Resolution on, Assessment of water rates, 139.
- Design of canal falls, 48.
- Design of channels in alluvium, 127.
- Design of distributary heads, 140.
- Drainage system in irrigated areas, 109.
- Field results of measures adopted after model experiments, 44.
- Means to secure equitable distribution of irrigation water, 146.
- Meandering of rivers, 59.
- Model scales, 33.
- Reclamation of alkali soils, 105.
- Research programmes, 123.
- Role of reservoirs in river flood control, 78.
- Silting of reservoirs, 87.
- Soil denudation, 134, 135.
- Staunching of canals, 97.
- Submission of research reports, 33.

Central Board of Irrigation, Tenth Annual Meeting, 2.

- Presidential Address, 3.
- Visit of members to Imperial Agricultural Research Institute, 5, 147.
- to Malaria Institute of India, 5, 150.
- to U. P. Tube Well areas, 5, 152.
- Resolution on, Assessment of water rates, 139.
- Design of canal falls, 48.
- Design of channels in alluvium, 127.
- Design of distributary heads, 140.
- Drainage system in irrigated areas, 109.
- Field results of measures adopted after model experiments, 44.
- Means to secure equitable distribution of irrigation water, 146.
- Meandering of rivers, 59.
- Model scales, 33.
- Reclamation of alkali soils, 105.
- Research programmes, 123.
- Role of reservoirs in river flood control, 78.
- Silting of reservoirs, 87.
- Soil denudation, 134, 135.
- Staunching of canals, 97.
- Submission of research reports, 33.

Central Board of Irrigation, Tenth Annual Meeting, 2.

- Presidential Address, 3.
- Visit of members to Imperial Agricultural Research Institute, 5, 147.
- to Malaria Institute of India, 5, 150.
- to U. P. Tube Well areas, 5, 152.
- Resolution on, Assessment of water rates, 139.
- Design of canal falls, 48.
- Design of channels in alluvium, 127.
- Design of distributary heads, 140.
- Drainage system in irrigated areas, 109.
- Field results of measures adopted after model experiments, 44.
- Means to secure equitable distribution of irrigation water, 146.
- Meandering of rivers, 59.
- Model scales, 33.
- Reclamation of alkali soils, 105.
- Research programmes, 123.
- Role of reservoirs in river flood control, 78.
- Silting of reservoirs, 87.
- Soil denudation, 134, 135.
- Staunching of canals, 97.
- Submission of research reports, 33.
Coom., Lt.-Col. G., 5, 6, 150, 151.
Cox, E. O., 1, 2, 22, 44, 48, 54, 56, 76, 77, 95, 96, 105, 131, 134, 139.
Crop, permissible duration of submersion of, 109.
Crops, water requirements of, 15, 26, 30, 136, 137, 141, 142, 143, 144, 148.
Crump, E. S., 1, 65, 66, 84, 93, 102, 103, 104.
Current meters, 79, 82, 94, 95.
Curvature, induced, for silt control, 68.

D

Dam, Aswan reasons for absence of silting, 56.
- models of sluices, 34, 36.
- Bhakra, details and question of silting, 54, 56.
- Bhandardara, high coefficient weir model experiments, 36.
- Boulder, 51, 58.
- Imperial, 64.
- Parker, 58.
- Roosevelt, silting of reservoir formed by, 56.
- Madden, model of, 34, 36.
- Mettur, effect on floods, 76.
Dams, design of, for flood control, 76.
- in view of silting, 56.
Darcy's Law, 84, 93.
Deflectors, 9, 19, 23, 41, 45.
Deforestation and floods, 30, 76, 129, 129, 130.
- danger zone in the Himalayas, 76.
- effect of, on irrigation projects, 128.
Delhi Gate Pumping Station, model experiments on training of Jumna River at, 5.
Denudation and misuse of land, effects of, 130.
Development and Research Division, Sind Programme for 1939-40, 119.
- Sind, Summarized Report, 18-23.
Dhaincha, for reclamation, 25, 26, 28.
Diameter, mean, of particles, determination of, 72, 73.
Discharge, means of measuring and their accuracy, 79, 80, 82, 86, 94, 95.
Discharge observations, Ravi River at Mukteswar, 68.
- sites for on the Indus, 53.
- determination of Canal losses by, 86.
Distortion in models, 11, 43.
Distributaries, losses from, 86, 87.
Distributary heads, design of, 31, 140.
Divergence experiments, 9, 11, 19, 23, 47.
Drag theory, Du Buoy's, 11.
Drainage, 24, 25.
- and irrigation, 26.
- and run-off, 15.
- method of estimating canal losses, 84, 93.
Drainage, under-, 27.
Drains, and run-off, 30, 109.
- design of, 106, 109.
- effect of, on seepage from canals, 13.
- in irrigated areas, questionnaire on design of, 106.
- pipe, 27.
- surface-cum-seepage, questionnaire on, 108.
- to deal with high water table, questionnaire on, 106.
- to deal with surface and storm water, questionnaire on, 108.
- to deal with seepage from canals, questionnaire on, 107.
Drains used for irrigation in Madras, 109.
Du Buoy's, 11.
Dundon, 1.
Duty of water, and yield of sugarcane and wheat, U. P. Scheme for study of, 142-146.
Emerson Barrage model, reproduction of river gauges, 43.
Erosion, and run-off, control measures, 130.

----, bank, control of, 14.
----, soil, 13, 129, 130, 131, 132.
----, prevention of, 129, 132.
----, soil losses by, in relation to plant cover, 131.
Evaporation and depth to water table, 26, 101, 102.
----, from soil surface, 15, 26, 83, 101, 102, 104.
----, from water surfaces and canals, 30, 87.
Exaggeration, vertical, in models, 10, 32, 36.

Excluders and ejectors, silt, 14, 68, 80, 82, 64, 65, 66.

Expansion in open channels, 9.
Exponential formula for replacing Kutter's formula, 90.

F

Farquharson, F. A., 2, 44, 134, 138, 139, 140.
Field results of measures adopted after model experiments, 34.

Flood Conference, Inter-Provincial, at Lucknow, 76.

Floods, and deforestation, 30, 76, 128, 129, 130.

---, control of by reservoirs, 74, 76, 77.

---, in Bihar, 76.

---, Madras, 76.

---, United Provinces, 76.

---, materials transported by, 67.

Flow, equations, exponential type, 90, 94.

---, regime, criterion of, 72.

---, rough turbulent, 23, 42.

---, smooth turbulent, 23, 42.

---, transitional turbulent, 42, 43.

---, turbulent, in pipes, 42, 43.

---, viscous stream line, 42, 43.

Flume, Crump, 31.

---, Jesson, 80.

---, meter fall, 9, 41.

---, Parshall, use of, in determining canal losses, 29, 31, 80.

---, standing wave, calibration of, 10.
Flume, tilting, study of silt movements in, 13.
Flumed falls, 9, 41, 46, 47.
Flumes, accuracy of, for measuring discharges, 79.
——, Venturi, 10, 31.
Foucheimer formula, 90.
Forest areas, run-off from, in the Punjab, 76.
Formula, Lacey's regime test, 31, 124, 126.
——, Regime test, departure from, in experimental channels, 10.
Fyzabad Pumping Scheme, 10.

G

Ganges at Narora, correlation of discharge with rainfall, 29.
——, model of, above Hardinge Bridge, E. B. Rly., 8, 34, 36, 39.
Gangas, automatic, proposed for rivers, 77.
Gibling, M. T., 1.
Glaicis of falls, 47.
Gogra pumping scheme, Fyzabad, 10.
Gordon, A., 2, 3, 6, 32, 44, 48, 49, 77, 95, 105, 125, 129, 148.
Gorrie, Dr. R. M., 46, 78, 129, 131, 132, 134.
Grassland and scrub jungle, value of, in erosion prevention, 130, 131, 134.
Gravel, movement of, in streams, 67.
——, shingle and Boulder, Note on the Determination of the Average Diameter of the Active Bed of Torrents, by Lacey, 72.
Gypsum for land reclamation, 25, 26.
Gugera Branch, silt trouble investigations, 57.
Gugera Branch, Upper and Lower, studies of seepage losses in, 83.
Gunn, experiments on protection below Khanki Weir, 46.

H

Haig, F. F., 2, 5, 15, 56, 60, 64, 65, 66, 96.
——, "Note on the Silt Exclusion Arrangements Provided at Trimmu Headworks and Proposed for Kalabagh Headworks", 60.
Hardinge Bridge, Model of Ganges above, 8, 34, 36, 39.
Havelli Canal, losses in, 95.
——, observations on rugosity, 65.
Havelli Model, Punjab, 11.
Havelli Project, experimental Falls on, 46, 48, 49.
——, lining of canals, 81, 93, 95, 96.
——, silt excluding arrangements at headworks, 60.
Heads, distributary, design of 31, 140.
——, Board resolution, 140.
——, silt selective, 30, 31.
Headworks, Kalabagh, proposed silt excluding arrangements, 60, 61, 62, 66.
——, Khanki, influence of river training on silt entry, 58.
——, Morla,
——, Rasul,
——, Rupar,
——, Selection of site of, for silt exclusion, 58.
——, Trimmu, silt excluding arrangements at, 60, 61.
Hole-Shaw observations in connection with seepage losses, Punjab, 93.
Hot wire and Oscillograph, record of turbulence, 9.
Howell, D. A., 2.
Hydraulic data of boulder rivers and streams, 67, 69, 70, 71, 72, 73.
Hydraulic jump, performance in model, 34.
Hydro-electric power from canal falls, U. P. Scheme, 162.
——, for tube well irrigation scheme in U. P., 162.
——, for pumping river water for irrigation in U. P., 160.
Hutchinson, F. H., 5, 161.

I

Imperial Agricultural Research Institute, New Delhi, experiments on irrigation and yields of crops, 147.
——, visit of the Board Members, 5, 147.
Imperial Council of Agricultural Research, studies of water requirements of crops, 142.
Imperial Dam, 64.
Indus, and Lloyd Barrage at Sukkur, model of 7, 11, 16, 34, 35, 37, 58.
Indus River Commission, form adopted for silt sampling, 55.
--------, Oscillations of, 33.
--------, silt sampling sites on, 53.
--------, silt surveys of o'Faking channels, 51.
Islam, C. C., 16, 32, 45, 48, 49, 50.
--------, analysis of data on meandering of rivers by, 49.
--------, fall, 16, 46, 47, 48.
--------, paper by, on Models, 33.
--------, proposed note on canal falls by, 46.
take for the Pumping Station for Fyzabad Pumping Scheme, remodelling of, 10.
Irrigation by sprinkling, proposals for investigation in the United Provinces, 162, 163.
Irrigation, effect of on subsoil water, 148.
Irrigation, future sources of in India, 74.
--------, in relation to flood control by reservoirs, 74, 76.
Irrigation water, means to secure equitable distribution of, 141, 142.
--------, on different classes of crops, fair incidence of the cost of, 136.
Irrigation water rates, assessment of, 138, 139, 139.
--------, Board Resolution 146.
Irrigation water, sale of, on contract basis, 139.
--------, on volumetric basis, 24, 82, 133, 111.
Irrigation and crop yields, experiments at the Imperial Agricultural Research Institute, 157.
Islam model, approximate cost of, 44.

J

Jaha level crossing, model of, 14.
Jain, J. P., 1, 2, 31, 32, 56, 73, 94, 109.
Jamer Canal, silt exclusion from minor's of, 40.
Jooson Flume, 80.
Joosten Process, 81.
Jumna River, model of, 8.
--------, training of, near Palla Village, 10.

K

Kabul, H. S., 1, 2, 16, 17, 22, 43, 53, 56, 77, 92, 94, 102.
--------, Note on "Silt Observation of Rivers", 53, 56.
Kalabagh headworks, silt excluding arrangements at, 60, 64, 65.
Kendy's method of taking silt samples in canals, 56.
Khanki headworks, river training influence on silt entry, 58.
Khanki model, approximate cost of, 44.
Khanki Weir, protection below, 46.
--------, model investigations of silt entry into canals at, 11.
Khalsa, A. N., 5, 32, 77, 95, 105, 127.
King's Vanes, 31, 38.
Kutter equation, replacement of, 90, 93.
--------, use of in India, 93.

L

Lacey, G., 2, 5, 10, 11, 15, 17, 23, 25, 31, 32, 42, 43, 47, 48, 56, 57, 63, 65, 66, 72, 73, 88, 90, 92, 93, 104, 124, 125, 126, 127.
--------, Note on the Approximate Computation of Channel Losses in Re-modelling and Project Work, 88.
--------, Note on the Average Diameter of the Active Beds of Torrents in Gravel, Shingle, and Boulders, 72.
--------, Note on the Influence of Very Fine Silt and Cohesion as a Factor in Channel Performance, 63.
--------, Note on the Replacement of the Kutter Equation by a Simpler Exponential Formula, 90.
Lacey silt factor, 21, 30, 31, 63, 64, 65, 66, 72, 124, 125, 126, 127.
--------, in relation to average diameter of silt particles, 31.
Lacey silt theory, effects of silt charge, 57.
Lacey theory, Board Resolution on, 127.
--------, effect of cohesion, 16, 31, 63, 64, 125.
--------, silt, 10, 17, 18, 31, 32, 63, 64, 65, 72, 73, 124, 125, 126, 127.
--------, use of in the design of silt excluders and ejectors, 64, 65.
--------, use of in lined channels, 65.
La Grange River, size of material transported by, 67.
Lake Fife absence of silting, 56.
Land Drainage, 24, 25, 106—109.
—— Reclamation, 14, 15, 16, 25, 26, 28, 86, 99.
————, Board Resolution, 105.
Lea formula, 90.
Lea-Lacey formula, 90, 91, 92.
Leaburg siphon, model of, 14.
Leaching, 15, 25, 28, 162.
——, Board Resolution, 24, 26, 106-109.
————, study of losses on, 83, 84.
Lower Chenab Canal, silt in, 66.
—— study of losses on; 83, 84.
Lyle, T. M., 1, 12, 6, 42, 44, 48, 50, 65, 66, 70, 76, 77, 96, 104, 114, 140, 148, 149.

M

"m" the average diameter of silt and its relation to "f", 64, 72, 125, 126, 127.
Madden Dam, model of, 34, 36.
Madras, Cauvery Mettur Dam, silting precautions, 56.
———— River, silting of Grand Anicut Canal, 10.
Majumdar, S. C., 2, 77.
Malaria Institute of India, visit of members of the Board, 5, 100.
Malaria, measures for the control of, 150, 151.
Malarial mosquito, 150.
Malhotra, Dr. J. K., 2, 47, 65, 73, 93.
Manganese content of soils, and wheat yield, 15.
Manning's Nm., 23, 65.
Manning type, equations of, 42, 65, 90, 91, 92, 93, 94.
———— formula, as substitute for Kutter's equation, 90, 91, 92, 93, 94.
Manometer, Crump's, 104.
————, Chattock, 104.
Manure, farmyard, for reclamation, 26.
Manural Experiments, Imperial Council of Agricultural Research, 148.
Mat Branch, slumed falls on, 47.
McKenna, C. H., 2.
McKenzie-Taylor, Dr. E., 1, 2, 3, 3, 10, 15, 16, 17, 28, 32, 44, 48, 56, 57, 65, 66, 73, 76, 92, 94, 101, 103, 105, 109, 133, 127.
McLeod, W. N., 2, 5, 12, 92, 93, 101, 106, 109.
Meandering of rivers, 17, 49.
————, Board Resolution, 50.
————, definition of, 49.
————, resolution of Research Committee, 49.
Measuring Devices at head of Mutha Right Bank Canal, 10.
Meral Headworks, river training influence on silt entry, 58.
Mersey River model, 42.
Meter Fall, model experiments, 9.
Mettur Dam, effect on floods, 76.
Minors and distributaries, silt exclusion from, model experiments, 49.
Mississippi, hydraulic observations examined, 13, 16.
———— River, Model Experiments, 43.
Mithrao Canal, 38.
————, effect of silt charge, 57.
————, silt exclusion from, 58.
Model, Brahmaputra at Amingaon, 8, 34.
————, Choi Branch, 20.
————, combined bridge and fall, U. P., 30.
————, Dhanaura Regulator, Western Jumna Canal, 14.
————, discharge of river, 16, 17.
————, distorted, and scour, 43.
————, Emerson Barrage, prediction of gauges by, 43.
————, Faisawah Head for silt exclusion, 39.
————, fall, Montgomery-Pakpattan Link, 9, 16, 43, 46.
———— in connection with Kur Hashim Branch, 19, 23.
————, Jaba Level Crossing, 14.
———— Jamrao Canal, 20, 23.
Model, Karan Nadi Fall (proposed), U. P., 29.

--- Leisburg siphon, 24.

--- Madden Dam, 34, 36.

--- Mittlras Canal, Sind, 38.

--- Nira Left Bank Canal (Bombay), agreement of prototype with model, 41.

--- of Assuan Dam sluices, 34, 36.

--- head regulator, Col. Fife's Canal, 19, 23.

--- Panjnad Weir, verification of, 42.

--- River Jumna, New Delhi, 8.

--- River Mersey, 42.

--- near Panjnad Weir, 14, 16.

--- Sarda, U. P., 7, 39.

--- Salampur Feeder, verification of, 42.

--- the Ganges above the Hardinge Bridge, 8, 34, 36, 39.

--- Indus and Lloyd Barrage at Sukkur, 7, 11, 16, 34, 36, 37, 58.

--- Pinyari Canal, Head Regulator over, 18.

--- Pirsher Regulator over Dadu Canal, 18, 34.

--- Pirjuri Nala, 8.

--- River Chenab, 13, 14, 16.

--- results from, when they agree with prototype, 35, 36.

--- verification of, on the prototype, by H. L. Uppal, 42.

--- scale, Board's Resolution, 33.

--- turbine, 43.

--- Watrack River, 8, 43.

--- Experiments, approximate costs, 44.

---, double acting sluice, 18.

---, Field Measures Adopted after "., by A. R. Thomas, 35.

---, Resolution of Board, 44.

---, of Research Committee, 43.

---, field results of measures adopted after, 34, 43, 44.

---, in connection with standing wave flame meter falls, 9.

---, submersible bridges, 9.

---, Naundero Fall Regulator Rice Canal, 18.

---, Tando Allahyar Regulator, 18, 23.

---, on divergence in open channels, 9, 11.

---, on silt control in Sukkur Barrage Canals, 37.

---, with regulator at tail of Ghar Branch, 19, 23.

---, with weir at tail of Baghar New Cut, 19, 23.

---, models, boundary conditions, 11.

---, capillary tank, 16.

---, distorted, generally more accurate than geometrically similar for reproducing rivers, 43.

---, distortion of, 11, 43.

---, division of, into 8 types, 32.

---, effect of silt charge, 35, 36.

---, gravity in, 36.

---, viscosity in, 36.

---, geometrically similar, 11.

---, Haveli, 11.

---, hydraulic classification of, 34, 35.

---, interpretation of, 36.

---, Khanki, 11.

---, movable bed, 11.

---, reproduction of correct type of flow in, 42, 43.

---, scour in, 34, 36, 43.

---, Resolution of Research Committee on, 43, 44.

---, results obtained from, 18, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44.

---, scales of, 11, 16, 32, 33.

---, silt movement in, 10, 11, 16, 36.

---, use of two or more, 35, 36, 43, 47.

---, velocity distribution in, as compared with prototype, 31.

---, verification of results obtained from, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44.

---, vertical exaggeration in, 10, 32, 36.

Mohawk tunnel, model of, 34, 36.

Moisture capacity of soils, 104.

173
Moisture gradient in soils, 101.
Molasses added directly to soil ineffective for reclamation, 26.
— use of, for staunching channels, 29, 96.
Montagu fall, 16, 46, 48.
— semi-gravity parabolic glacis, 47.
Montgomery-Pakpattan Link, falls on, compared with model, 43, 46, 47.
— model of fall on, 9, 16, 43, 46.
Montana-Sayadwala Head Regulator, verification of model, 42.
Mud plaster for lining irrigation channels, 12, 16, 96.
Mutha Right Bank Canal, 10.

N

N Kutter's, 64, 72, 90, 91, 92.
N Manning's, 23, 65, 90, 91, 92.
N, 64, 65, 67, 72, 73.
Negative pressure in water films surrounding soil particles, 13, 15, 16.
Nira Left Bank Canal, agreement of model with prototype, 41.
Non-proportional standing wave flume meter fall, 9.
Nm, 23, 73.

O

Optical lever siltometer (Vaidhianathan), 17, 31.
Oram, A., 2, 33, 44, 96, 105, 131, 134, 139.
Oscillograph and hot wire, 9.
Outfall channels, Durrani Nala, Quetta, 10.

P

P-Q relationship, 13, 17, 31.
P = Q^1.17.
Pal, Dr., 148.
Panjnad Weir, model of river near, 14, 16.
— verification, 42.
Parker Dam, 58.
Parshall flumes, use of in determining canal losses, 29, 31, 80.
Permeability of soils, 29.
Phosphate in soils, and wheat yield, 15.
Phreatic surface, definition of, 102.
Piers, protection of, 9.
Pillipasara for reclamation, 28.
Pinnani Canal, verification of model, 43.
Pipes, cement, effect of salt on, 27.
—, flow in, 42, 43, 92.
—, smooth, similarity to channels, 13.
Plaster, mud, non-erodible, 12, 15, 16.
—, sodium carbonate, for lining of watercourses, 96.
Poiseuille, equation of, 42.
—, programme for 1939-40, 120.
Power development in relation to flood control, 74, 76.
— sites in Provinces and States, 74, 75.
Prandtl, relation for smooth pipes, similarity to channels, 13, 43.
— Von Karman flow equation for pipes, 92.
Pressure pipe observations in models and prototypes, 35.
— water, transmission through soils, 102, 103, 104.
Prishada Canal, verification of model, 43.
Programme, of the Central Irrigation and Hydrodynamic Research Station, Poona, 1939-40 110.
— Development and Research Division, Sind, 1939-40, 119.
— Poona Irrigation and Research Division, 1939-40, 120.
— Punjab Irrigation Research Institute, 1940-41, 112.
— United Provinces Irrigation Research Section, 1939-40, 122.
Programmes, research, of various Research Centres, Board Resolution, 123.
—, resolution of Research Committee on, 123.
Proportional standing wave meter fall, 9, 41.
Prototype in relation to models, 11.
Prototypes, result in, after adopting model experiment recommendations, 18.
Pumping Station, Delhi Gate. 8.

Punjab Irrigation Research Institute programme for 1940-41, 112.

slope-discharge silt formula, 13, 15.

Montgomery-Pakpattan Link, model of fall on, 9, 16, 43, 46

Puri siltometer, 17, 30, 31.

Q

Q and P correlation not considered fundamental, 31.

Quetta, Durrani Outfall Channel, 10.

R

R—Q relationship, 13, 17, 126.

Railway, E. B., Hardinge Bridge, model of Ganges above, 8, 34, 36, 39.

proposed bridge across Brahmaputra at Amingaon, 8, 34.

Rainfall and negative pressure, 13, 15, 16.

run-off, 15, 109.

in relation to conservation by grass growth, 131.

fluctuations of well levels with, 13, 15, 16, 17, 103, 104.

in relation to rise in water table, 13.

Rajurji Nala, model of, 8.

Ranganga River, rugosity of boulder portion, 73.

Rasul Roadworks, river training influence on silt entry, 58.

Ravi River at Mukteswar, information on ratio of bed load to suspended load, 56.

discharge and silt observations, 70, 71.

observations on boulder bed portion, 68.

Reclamation, Land, 88.

questionnaire on, 98, 99.

land, 14, 15, 16, 25, 26, 28, 98, 99, 105.

thur, 15.

Research Committee’s Resolution, 98.

Regime flow, criterion of, 72.

equations, Lacey’s, 124, 125, 126.

comparison of Lacey’s and Punjab, 126.

in Incoherent Alluvium, publication by Mr. Lacey, 124.

formula, 21, 31, 72, 124, 125, 126, 127.

Lacey’s, application to models of channels, 10.

test formula, 31, 72, 73, 126.

Regulator, at tail of Ghar Branch, 23.

Dhanaura, Western Jumna Canal, model of, 14.

head, Col. Fife’s canal, model of, 18.

design of, for silt control, 68.

Faizwah, silt exclusion experiments, 39.

Nira Left Bank Canal, verification of model, 41.

model of Tando Allahyar, on Nasir Branch Rohri Canal, 18, 23.

Mongranwala Sayadwala head, verification of model, 42.

Naundero fall, over Rice Canal, model of, 18.

Pirsher, model of, 18, 34, 36.

Rehbock, 93.

Research Committee, Winter Meeting, 1.

Ninth Annual Meeting, 1.

subjects discussed by, 2.

programmes, 1939-40, 110-123.

Board Resolution on, 123.

Reports, late submission of, Board Resolution on, 33.

The Development and Research Division, Sind, 18-23.

The Poona Irrigation and Research Division, 24-27.

The Punjab Irrigation Research Institute, 12-15.

The United Provinces Research Section, 29-30.

Reservoir, Boulder Dam, estimation of life of, 51.

sites, silt sampling at, 78.

Reservoirs, estimating life of, 51.

evaporation from, 30.
Reservoirs, for flood control, 74, 76, 77.

--- irrigation and flood control, 74, 76.

--- power development and flood control, 74, 75, 76.

--- methods of preventing silting, 52.

--- multipurpose, regulation and control of, 74, 76.

--- role of, in river flood control, Resolution of Research Committee, 77.

--- of the Board, 78.

--- silt deposit in, compared with suspended silt, 51.

--- silting of, 51, 54, 56, 77, 78.

---, application to Bhakra Dam, 54, 56.

--- Board Resolution, 57.

---, in the United Provinces, 58.

---, sites for, in Assam, 74.

---, Bengal, 74.

---, Bihar and Orissa, 75.

---, Bombay, 75.

---, Burma, 75.

---, Central Provinces, 75.

---, Madras, 75.

---, Punjab, 75.

---, United Provinces, 75.

---, Indian States, 75.

---, ultimate capacity of, and use of Lacey's theory in calculating same, 52.

---, use of, in flood control, 74, 76, 77.

Resolutions of the Central Board of Irrigation, Tenth Meeting, vide, "Central Board Resolution of the Research Committee on Control of floods by reservoirs, 77.

--- Design of drains, 109.

--- distributary heads, 31.

--- falls, 47.

--- Discharge observations, 95.

--- Flow in rivers and canals, 94.

--- Meandering of rivers, 49.

--- Observations on boulder rivers and streams, 73.

--- Research programmes, 123.

--- Results obtained from models, 43, 44.

--- Silt and cohesion, 31.

--- Silt excluders and ejectors, 66.

--- Silting of reservoirs, 56.

---, Waterlogging, 105.

Retardation works on tributary streams, Bhakra Dam Project, costs of, 56.

Reynolds, 42, 43.

--- Number, division of, for models, 43.

Rice and reclamation, 16, 25, 26.

River action and control, time factor in, 35.

--- Auranga, training of, 10.

--- Brahmaputra, model of, near proposed bridge at Amingaon, 8, 34.

---, Canverry, Madras silting of Grand Anicut Canal, 10.

--- Chenab, model of, 13, 14, 16.

--- Colorado, 58, 64.

--- Ganges, model of above Hardinge bridge, 8, 34, 36, 39.

--- gauging sites in India, map of, 75.

--- Indus Commission, form for silt sampling data, 54.

---, and Lloyd Barrage at Sukkur, model of, 7, 11, 15, 34, 36, 37, 58.

---, oscillations of, 35.

---, silt sampling and discharge sites on, 53.

---, silt surveys on offtaking channels, 21.

--- Jamna, model of, 8.

---, training of, near Palla village, Delhi, 10.

--- La Grange, size of material transported by, 67.

--- Mersey model, 42.

--- Mississippi, hydraulic data examined, 13, 16.

---, model experiments, 43.

--- Ranganga, rugosity of boulder portion, 73.

--- Ravi at Makewar, information on ratio of bed load to suspended silt, 56.

---, discharge and silt observations, 70, 71, 73.

---, observation on boulder bed portion, 68.

--- Sarda, rugosity of boulder portion, 73.

---, training, influence on silt entry, 58.

--- Watrack, model of, 8, 43.

176
Rivers and canals, flow in, examination of data to evolve exponential or other relationship, 91.

- boulder, collection of hydraulic data of, 67.
- factors affecting tortuosity of, 49.
- in the United Provinces contributing to floods in U. P. and Bihar, 76.
- meandering of, definition of, 19.
- resolution of Board Resolution, 50.
- of Northern India favourable to silt deposition in reservoirs, 58.
- Silt Observations on, Note by H. S. Kahai, 53.

Roads, earth, 12.

- effect of calcium chloride on, 12.
- sodium chloride on, 12.
- sulphate on, 12.

Rocks, velocity, accuracy of, for discharge measurements, 79, 82, 95.

Rohri canal, Tando Masti Khan Fall, agreement of model and prototype, 41.

Roosevelt Dam, silting of reservoir of, 56.

Rugosity coefficients, 63, 64, 65, 72, 90, 91, 92.

Run-off and drainage, 15, 30, 169.

- erosion, control measures, 139.
- in relation to plant cover, small scale experiments, 13.
- from forest areas, 76.
- rainfall, and underground storage, 129.

Rupar Headworks, river training influence on silt entry, 58.

S

S, Q and m relationship used in the Punjab Irrigation Research Institute, 31.

Sahai, R. C., 5, 132.

Salampur feeder, verification of model of, 42.

Salinity of subsoil and drainage water, 26.

Salt, appearance of, and waterlogging, 101, 105.

Salts, accumulation of in soil crust under irrigation, 14, 15.

- distribution in soil crust, 12, 14, 17.
- leaching of, 15, 25, 28, 100.
- movement of, in soil crust, 15, 17, 28.

San Gabriel investigations on Kutter’s X, 67.

Sands and soils, capillary power of, 12.

- transmission constants of, 12.

Santa Anna, investigations of materials transported by floods, 67.

Sarda Canal, design of head regulator, 58.

- River, rugosity of boulder portion, 73.

- training of, 7, 38.

Saturated zone in soils, 103.

Scales, discharge, for models, 11, 16, 17.

- model, 11 16, 17, 32, 33.
- time, for models, 11, 16.

Scour, models in relation to, 11, 16, 23, 36, 43.

- reproduction in models, 16, 36, 43.

Seepage drains, 107, 109.

- from canals, and channels, 10, 13, 22, 23, 79, 80, 81, 82, 83, 84, 92, 93, 95, 99, 107.
- determination by direct discharge method, 86.
- drainage method, 84.
- point method, 86, 87.
- statistical method, 83, 84.
- tank method, 86, 87.
- water account method, 87.
- drains to deal with, questionnaire on, 107.
- effect of drains on, 13.
- effect of temperature, 80.
- variation with soils, 89.
- losses from canals, observations of, 13.
- prevention of, from Canals, 89.

Shaw, J, 5, 49, 50.

Shingle Gravel and Boulders, Note on the Determination of Average Diameter of the Active Bed, Silt of, by G. Lacey, 72.

- movement of, in streams, 67.
Shock in relation to flow in open channels, Lacey's theory, 124, 125, 126, 127.
--- theory, Lacey's Board Resolution, 127.
Silt abrader, 10.
---, analysis of, 23, 30.
---, average diameter in relation to scouring velocities, 31.
--- channels, experimental, divergence from Lacey's regime Theory, 10.
--- charge, effects of, 57.
---, in models, 34, 36.
--- control at heads of canals and distributaries, 7, 16, 30, 37, 38, 39, 40, 58.
---, effect of cohesion, 31, 63, 64.
---, in canals and rivers, 21, 22, 30, 56, 57.
---, in models, 34, 36.
---, in relation to average diameter of silt, 31.
---, movement in models, 10, 11, 16, 36.
---, mechanical, 59, 64.
---, in relation to average diameter of silt, 31.
---, selective heads, 30, 31.
---, settling velocities of, 64.
---, suspended, relation of, to silt deposit in reservoir, 51.
---, theory, Lacey's, 17, 18, 21, 31, 60, 63, 64, 65, 66, 72, 73, 124, 125, 126, 127.
---, tramps, 65, 66.
Silting of reservoirs, 51, 52, 54, 56, 76, 77, 78, 131.
---, absence of, at Lake Fifs, 58.
---, application to Bhakra Dam, 54.
---, Board Resolution, 57.
---, in the United Provinces, 56, 76.
---, precautions taken in Mettur Dam, 56.
---, troubles, Grand Anicut Canal, Cauvery River, 10.
Siltometer, Puri's, 17, 30, 31.
---, Vaidhianathan's, 17, 31.
Silty water, density of, 26.
Siphon, Leaburg, model of, 31.
---, spillway for Lake Arthur Hill, Bombay, 10.
---, spillways, models of, 40, 41.
---, cavitation in models of, 36, 43.
Sind, canal losses in, 92.
---, slopes in, 57.
---, Development and Research Division, programme for 1939-40, 112.
---, summarized report, for 1938-39, 18-23.
---, salts in soil crust, 17.
---, sub-soil water in, 17.
Slope-Discharge-Silt Formula, of Punjab Irrigation Research Institute, 13, 16.
Slopes, and transport of materials by streams, 67, 70, 71.
---, canal, in Sind, 57.

178
Slopes, canal, effect of silt extraction on, 65, 66.
---, movement of, in models, 10, 11, 16, 36.
Slices, model of double acting, 18.
Slices, barrage, operation of, for silt control, 58.
--- of Assuan Dam, model experiments, 34, 36.
Sodium carbonate lining of canals, deterioration with age, 29, 30, 82, 94, 96.
---, plaster lining for watercourses, 96, 97.
---, chlorides, effect on earth roads, 12.
---, clay, reclamation of, 94.
---, sulphate in Punjab soils, 12.
---, disintegrating effect of, on roads, 12.
Sodiumization of soil, testing of, 27.
Soil conditions in the design of falls, 43, 48.
---, conservation and the Chos Act, 132.
---, by control of grazing, 131, 134.
---, grass growth, 131.
---, crust in relation to water table, 12, 14, 16, 17.
---, leaching, 128, 129, 130, 131, 134, 135.
---, as an adverse factor on river supplies, 128, 129.
---, preservation of, 129, 132.
---, Map of India, 149.
---, moisture gradient, 101.
---, Research at the Imperial Agricultural Research Institute, 149.
---, samples, chemical analysis of, 23.
---, sodiumization tests, 27.
---, surveys, 15.
---, types, and variation of seepage losses, 80.
Soils, alkaline, cure of, 105.
---, and seepage from canals, 88.
---, capillary power of, 12.
---, dispersion of, 15.
---, drainage capacity of, 24.
---, moisture content of, 101, 103, 104.
---, permeability of, 28, 104.
---, pressure transmission in, 102, 103, 104.
---, saturated zone in, 103, 104.
Spillway siphon for Lake Arthur Hill, Bombay, 10.
Spillways, siphon, models of, 40, 41.
---, models of, 34, 36.
Spurs, T., spacing of, 14.
Stabilizer blocks, 9, 11, 19, 23.
Standing wave flume, calibration of, 10.
---, meter falls, 9, 41.
State Tube Well Scheme in the United Provinces, Address by R. C. Sahai, 152.
Stone protection round piers, 9, 11.
Strickler-Gauckler formula, 90.
Subjects discussed by the Board, 4.
--- Research Committee, 2.
Subsoil water, 102, 103, 104.
--- levels, recording of, 101.
---, salinity of, 28.
---, gradient, 28.
Sugarcane, 24, 25, 26, 27, 142, 143, 144, 145.
---, and effluent irrigation, 27, 28.
---, reclamation, 15.
---, relation between duty of water and yield, U. P. Scheme for study of, 142, 143-146.
---, suitable varieties for reclaimed lands, 26.
Sukkur, model of Indus and Lloyd Barrage at, 7, 11, 16, 34, 36, 37, 38.

T

Tando Mastikhan fall, agreement of model and prototype, 41.
Tank method of determining canal losses, 86, 87.
Tar for painting steelwork, 30.
Temperature, effect on canal losses, 80, 82, 84, 87, 93.
--- of canal water, 30, 84.

179
Temperature of water in pipe drains, 27.
Thal project, silt extraction arrangements, 62, 64, 65, 66.
--------, lined channels, 65, 95, 96.
Thur, 14, 15, 16, 17.
Time factor in river action and control, 35.
Tolman, 104.
Torrents in gravel, shingle and boulders, hydraulic data of, 67, 68, 70, 71, 72.
-----------, Note on the Determination of the Average Diameter of Active Bed of, by Lacey, 72.
Transmission constants of sands, 12.
Transpiration, 15.
Trimmu Headworks, silt exclusion at, 60.
--------, Weir, verification of model, 32.
Tube well investigations, 29.
--------, irrigation, effect on subsoil water levels in U. P., 155, 156.
--------, future developments in U. P., 162.
--------, Scheme in the Western Districts of the United Provinces, Board's Visit, 5.
--------, irrigation results, 153, 162.
--------, water rates, 158, 159.
--------, lined channels, 157.
--------, proposed piped supply, 157, 161.
--------, pumping sets, 156.
--------, sale of water, 157, 161.
--------, strainers, 152.
--------, type of wells, 152.
--------, yields, statistical investigation, 13.
Tube wells, design of, 12.
--------, for increasing canal supplies, 159, 160.
--------, shrouding of, 12.
--------, strainers for, 12, 13, 152.
--------, yield of, 12.
Tunnel, Mohawk, model, 34.
Turbine models, 43.
Turbulences, record of, by hot wire and oscillograph, 9.
--------, reproduction of, in models, 42.
Turbulent flow, rough, 42.
--------, smooth, 42, 43.

U

United Provinces, floods in, and rivers contributing thereto, 76.
--------, Fyzabad and Gogra Pumping Scheme, 10.
--------, Irrigation Research Section, programme for 1939-40, 122.
--------, siting of reservoirs in, 56.
--------, training of River Sarda, 7, 38.
--------, Tube Well Scheme, 152.
Uplift pressure in models of weirs, 16, 35.
Uppal, H. L., "Verification of Model Results on the Prototype ", 42.
Upper Bari Doab Canal, effect of silt extraction on, 59.
--------, Chenab Canal, study of losses on, 83, 84, 85, 92.
--------, Jhelum Canal, silt ejectors on, 65, 66.

\[V = 10.05 (R^1 S) \] confirmation of Lacey's equation, 7.
\[V^2 / R \] a criterion of regime flow, 72.
--------, ratio, use of, 64.
V \[R^1 \] 17.
Vaidhianathan siltometer, 17, 31.
Vane, large radius, in river, 7, 38, 58.
Vanes, King, 58.
Velocity distribution in smooth channels, 13.
--------, rods, 79, 95.
Venturi flumes, 10, 31.
Vertical exaggeration, 10, 22, 36.
Vicksburg data examined, 13.
Viscosity effect in models, 36.

Viscous stream line flow, 42.

Viswanath, Rao Bahadur B., 5, 147, 149.

Vogel, "Hydraulic Laboratory Results and their Verification in Nature", 43.

Vogel's experiments on models of the Mississippi River 41.

Water courses, lining of, 12, 29, 96, 97.

Water in pipe drains, temperature of, 27.

Waterlogging, 12, 83, 84, 93, 98, 101, 105.

Water table, 101, 105.

Water and Their Eradication from Canals, by Inglis, 28.

Water analysis in tube well areas, 15.

Water analyses, chemical analysis of, 23.

Water analyses in tube well areas, 15.

Water table and alkalinity, 101, 105.

Weir, broad crested, formula, 18, 22.

Weir, high co-efficient, for Bhandardara Dam, 36.

Weir, Khanki, experiments on, 44.

Weir, Panjnad, model of river near, 14, 16.

Weir, sharp crested, 45, 89.

Weir, for determining losses in water courses, 23.

Weir, uplift pressure in models of, 18.

Weir, for determining canal losses, 85, 89.

Well records, interpretation of, 13.

Weir, sharp crested, 45, 89.

Well, cavity, in Tube Well areas in U. P., 132.

Well, cavity under, detection of, 13, 16.

Water track River, model, 8, 43.

Water, and their eradication from canals, by Inglis, 28.

Water, and their verification, 42.

Wood, fall, 9, 41.

Wood growth in canals stopped by sodium carbonate plaster, 97.

Wood, 10, 24, 26, 28.
Wells, tube, investigations of effects on subsoil reservoir in U. P., 29.

shrouding of, 12.

strainers for, 12, 13.

yield of, 12, 13.

Wheat, relation between duty of water and yield of, U. P. scheme for study of, 142, 143-146.

soils, survey of, 15.

varietal yield trials of, 148.

yield and phosphate in soils, 15.

manganese in soils, 15.

Wire, hot, record of turbulence, 9.

Wooler Lake, no data of silting, 66.

Yield of tube wells, 12, 13.

wheat in relation to manganese in soils, 15.

Yields of crops and irrigation, experiments at the Imperial Agricultural Research Institute, 147.
List of Sub-Committees provided by the Central Board of Irrigation.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sub-committee convened to examine the Nyaunggyat Dam Project, Burma</td>
<td>12th December 1927</td>
</tr>
<tr>
<td>2</td>
<td>Sub-committee convened to enquire into the causes of floods in Orissa</td>
<td>22nd August 1928</td>
</tr>
<tr>
<td>3</td>
<td>Sub-committee convened to report on the practicability of the proposal of the Engineer-in-Chief, Cauvery Metur Project to utilize cement concrete in place of cyclopean masonry in surkhi mortar in the construction of the Metur Dam</td>
<td>11th April 1929</td>
</tr>
<tr>
<td>4</td>
<td>Sub-committee convened to examine the causes of failure of the Islam Weir, Sutlej Valley Project, on the 19th September 1929</td>
<td>10th December 1929</td>
</tr>
<tr>
<td>5</td>
<td>Sub-committee convened to report on the organization of the Irrigation Department, Bengal and the practicability of separating the Department and forming a separate Board of Waterways</td>
<td>13th March 1930</td>
</tr>
<tr>
<td>6</td>
<td>Sub-committee convened to enquire into the desirability of remodelling the headworks and canal system of the Sun Canals in Bihar and Orissa</td>
<td>16th January 1931</td>
</tr>
<tr>
<td>7</td>
<td>Sub-committee convened by the Government of India to report upon the Quetta Drainage Scheme, Baluchistan</td>
<td>24th February 1934</td>
</tr>
<tr>
<td>8</td>
<td>Sub-committee convened by the Government of India to report on the conversion of the Paharpur Canal (North-West Frontier Province) into a perennial canal</td>
<td>15th September 1934</td>
</tr>
<tr>
<td>9</td>
<td>Sub-committee convened by the Government of India to report on Distribution of the Waters of the Indus and its Tributaries</td>
<td>1934-35</td>
</tr>
<tr>
<td>10</td>
<td>Sub-committee convened to suggest protective measures against damage caused by floods in 1935 to “Anderson Weir” of the Damodar Canal, Bengal</td>
<td>1935-36</td>
</tr>
<tr>
<td>11</td>
<td>Sub-committee convened to examine the Haveli (Punjab) Project, 1935</td>
<td>10th August 1936</td>
</tr>
<tr>
<td>12</td>
<td>Sub-committee convened by the Government of India to examine the Khairpur State Lloyd Barrage Project, 1935-36</td>
<td>13th December 1937</td>
</tr>
<tr>
<td>13</td>
<td>Sub-committee convened by the Government of India to examine the Spin Karez Dam Project in Baluchistan</td>
<td>26th December 1938</td>
</tr>
<tr>
<td>Publication No.</td>
<td>Title</td>
<td>Date</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>Digest of Technical Notes 1931 (Reprint)</td>
<td>24th October 1931</td>
</tr>
<tr>
<td></td>
<td>A summary of views of Chief Engineers on the following subjects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. — Waterlogging and Reclamation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II. — Effect of deforestation and afforestation on river floods.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. — Design of works on sand foundations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV. — Fluming of canal works.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V. — Regulation at canal headworks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VI. — Design of canal falls.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Digest of Technical Notes 1932</td>
<td>15th October 1932</td>
</tr>
<tr>
<td></td>
<td>A summary of views of Chief Engineers on the following subjects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. — Waterlogging.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II. — Design of works on sand foundations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. — Design of canal falls.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV. — Staunching of canals.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Catalogue of Books in the Library of the Central Board of Irrigation, Simla</td>
<td>2nd January 1934</td>
</tr>
<tr>
<td></td>
<td>First Supplement to the Catalogue of Books</td>
<td>2nd January 1935</td>
</tr>
<tr>
<td></td>
<td>Second Supplement to the Catalogue of Books</td>
<td>2nd January 1936</td>
</tr>
<tr>
<td>5</td>
<td>Glossary of Technical and Vernacular Terms in connection with Irrigation in India together with Standard Notations</td>
<td>15th October 1934</td>
</tr>
<tr>
<td>6</td>
<td>Fluming: A series of examples illustrating the use of Hydraulic Diagrams—Central Board of Irrigation Publication No. 4</td>
<td>31st November 1934</td>
</tr>
<tr>
<td>7</td>
<td>Standing Wave or Hydraulic Jump</td>
<td>1st December 1934</td>
</tr>
<tr>
<td>8</td>
<td>Observations and Record of Pressures below Works on Permeable Foundations</td>
<td>15th December 1935</td>
</tr>
<tr>
<td>9</td>
<td>Stabilization of Soils by the use of Bitumen Emulsion</td>
<td>1st February 1935</td>
</tr>
<tr>
<td>10</td>
<td>Irrigation Canal Falls</td>
<td>16th February 1935</td>
</tr>
<tr>
<td>11</td>
<td>Annual Report (Technical) of the work of the Central Board of Irrigation, India, 1934-35</td>
<td>1st May 1936</td>
</tr>
<tr>
<td>12</td>
<td>Design of Weirs on Permeable Foundations</td>
<td>1st September 1936</td>
</tr>
<tr>
<td>13</td>
<td>Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1935-1936</td>
<td>1st October 1936</td>
</tr>
<tr>
<td>14</td>
<td>Annual Report (Technical) of the work of the Central Board of Irrigation, India, 1935-1936</td>
<td>1st April 1937</td>
</tr>
<tr>
<td>15</td>
<td>Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1935-1937</td>
<td>15th September 1937</td>
</tr>
</tbody>
</table>

* For official use only.
<table>
<thead>
<tr>
<th>Publication No.</th>
<th>Title</th>
<th>Date</th>
<th>Number in stock on 1st January 1940</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Annual Report (Technical) of the Board of Irrigation India, 1936-37</td>
<td>1st April 1938</td>
<td>116</td>
</tr>
<tr>
<td>17</td>
<td>Notes on Waterlogging and Land Reclamation in the form of a Questionnaire</td>
<td>15th September 1938</td>
<td>220</td>
</tr>
<tr>
<td>18</td>
<td>Annual Report (Administrative) of the Central Board of Irrigation India, 1937-38</td>
<td>15th September 1938</td>
<td>21</td>
</tr>
<tr>
<td>19</td>
<td>Annual Report (Technical) of the Central Board of Irrigation India, 1937-38</td>
<td>1st April 1939</td>
<td>129</td>
</tr>
<tr>
<td>20</td>
<td>Regime Flow in Incoherent Alluvium</td>
<td>18th July 1939</td>
<td>In press</td>
</tr>
<tr>
<td>21</td>
<td>Annual Report (Administrative) of the Central Board of Irrigation India, 1938-39</td>
<td>15th September 1939</td>
<td>22</td>
</tr>
</tbody>
</table>

* For official use only.