STATISTICAL AŃALYSIS
 for Students in PSYCHOLOGY and EDUCATION

STATISTICAL ANALYSIS for Students in PSYCHOLOGY and EDUCATION

Allen L. Edwards
Associate Professor of Psychology
University of Washington

RINEHART \& COMPANY INC.
 Publishers
 New York

First Printing May, 1946 Second Printing July, 1947 Third Printing November, 194 Fourth Printing April, 1950 Fifth Prinbing January, 1951:

COPYBIGHT, 1946, BY ALLEN L. EDWARDS
PRINTED IN THE UNITED STATES OF AMERICA
BX VAIL-BALLOU PREGE, INC., BINGEAMTON; N.Y.
AIL RIGHTS RESERVED

PREFACE

Despite the recognition accorded statistical methods by active workers in psychology, education, and the social sciences, the average undergraduate major in these fields often regards the customary course in statistics as dull and uninteresting. And there is no denying the fact that his actual experience in the course may serve to bolster rather than to change his original opinions. This is apt to be true, I believe, when the instructor assumes a degree of mathematical training, however elementary, which the undergraduate major in the social sciences fails to have. Even when the student has had such training, its value may be largely nullified by the time interval which separates it from the course in statistics.

Another factor producing lack of interest, I believe, is the stress which is often placed upon long and involved problems which are essentially exercises in multiplication, subtraction, division, and addition. The student often regards these problems-and perhaps rightfully so-as so much "busywork." Such problems subtract from the time which the student feels could be more profitably spent in learning to appreciate the use and value of statistical techniques in his chosen field.

Under these conditions the student's memories of statistics are memories of laborious computations and mysterious formulas, and it is these memories which he passes on to next semester's class.

This text attempts to break the vicious circle. Little stress is placed upon calculative ability. I have tried in most cases to minimize the labor of computations by the use of illustrations and problems constructed with that end in view. In
addition, coding techniques for reducing the size of numbers are introduced early and stressed throughout. I would not change this emphasis in the introductory course even if a sufficient number of calculating machines were on hand to make one available to each student. In my opinion, it is not the function of this first course in statistics to train computers and machine operators. Let the beginning student get a picture of the use to which statistical techniques can be put in answering questions in his field of specialization. Let him see that statistical techniques are tools, instruments. Let him understand the simple formulas and the meaning of various statistics. He can then learn machine techniques of calculation if he ever needs to handle large masses of data.

To avoid assumptions concerning the student's mathematical training, a review of elementary principles has been included. An understanding of these should enable the student to follow subsequent developments. Stress on this section of the text will assist greatly in minimizing a major source of confusion for most students. Some theory and derivations are introduced throughout the text, but nothing is presented, I feel, which is beyond the comprehension of the nonmathematically trained student, if he is assisted by the instructor. In the last analysis, I am convinced that statistics, unlike many other college courses,.must be taught, not lectured.

The content of the book follows what I hope is a pedagogical as well as a logical order. Correlation is introduced earlier than in most texts because it has been my experience that students follow this development quite easily and that interest and motivation are increased because they see in correlation a technique of practical use. A good case could be made for introducing correlation by way of regression. But since regression is most often used in psychology and education for prediction, it is reserved for a later chapter on this topic.

Tests of significance have been stressed. One chapter has been devoted to the " t test," two to the " F test," and one
to the " χ^{2} test." It has been my experience again that students are able to relate these tests to problems in their own fields and are consequently interested in them. It is not uncommon to hear students exclaim with some degree of elation that for the first time they have some idea of what is meant by the frequent references to "critical ratios" and "significant differences" that they have encountered in their textbooks in other courses.
In discussing tests of significance, I have emphasized small sample theory since, whether the traditional attitude approves or not, more and more research as published in psychological and educational journals is being evaluated by small sample techniques. This does not mean, however, that there is a rigid division between large and small sample theory, but rather, as Kenney has said, that the "continuity between large and small sample theory is an essential part of the newer attitude" (53, II, 123).
There are omissions as well as additions in this text. The reader will look in vain for the customary treatments of partial and multiple correlation. They have been omitted because I have searched without much success to find many applications of these statistical techniques in the literature. That they have their uses as well as their limitations is fully recognized, but I feel that they may be developed more profitably, as far as the student is concerned, in advanced courses, where time spent on these topics will not be at the expense of statistical techniques which are more commonly in use. I have no excuse to offer for certain other omissions -for example, the customary chapter on the reliability and validity of tests, and the usual extended treatment of centiles and scaling techniques-other than the fact that I do not feel that they fall within the general orientation of the rest of the book and that these are problems which might well be taken up in a course in tests and measurements.

I have, as any student must, a desire to acknowledge my indebtedness to various individuals. Professor Harold Edgerton of Ohio State University first impressed upon me the

Preface

desirability of knowing more about statistical methods and theory. Professor Lloyd G. Humphreys of Northwestern University aroused my interest in small sample theory in 1939 and gave freely of his time in discussions of the subject. It is a pleasure also to acknowledge that I owe much to the various publications of Professor George W. Snedecor, Professor Helen M. Walker, Professor R. A. Fisher, and Professor C. C. Peters. In addition, Professor Walker and Professor Peters were kind enough to clarify, in personal communications, certain points of interpretation.

To Professors Herbert S. Conrad and Robert J. Wherry and Dr. Steuart H. Britt, who read a draft of the manuscript in its entirety, and to Dr. Edward E. Cureton, who read Chapters 10 and 11, and Professor Quinn McNemar, who read Chapter 14, a mere acknowledgment is hardly sufficient reward for the careful and painstaking service which they have rendered. I can only say that their comments proved invaluable in guiding me when I started to work on the revision of the original draft. The present text owes much to their efforts.

I am indebted to Professor R. A. Fisher, also to Messrs. Oliver \& Boyd Ltd. of Edinburgh, for permission to reprint Tables C, D, and H, from their book Statistical Methods for Research Workers. Professors Peters and Van Voorhis and their publishers, The McGraw-Hill Book Company, kindly granted permission to reproduce Table F from their book Statistical Procedures and Their Mathematical Bases. Table E has been reproduced from Professor Snedecor's book Statistical Methods by permission of the author and his publisher, the Iowa State College Press. Additional values of t at the 1 and the 5 per cent levels were also taken from Professor Snedecor's book by permission. Table G was prepared by J. G. Peatman and R. Schafer and is reproduced by their permission and by the consent of Carl Murchison from the Journal of Psychology, where it first appeared. Other acknowledgments are made at various points throughout the text.

Phyllis Covington and Jacqueline Charlton shared the major responsibility of typing the manuscript. Sidney S . Culbert assisted in the reading and proofing of the typed copy and Grace French in the checking of various computations. I am grateful to all of them for their assistance.
Finally, I owe a very special debt to Professor W. R. Clark of the University of Maryland, who encouraged me in my varied efforts to arouse student interest in statistical methods, and to my students both at the University of Maryland and at the, University of Washington who responded to these efforts.
A. L.E.

April, 1946

CONTENTS

pact
PREFACE v
chaptis
'1. INTRODUCTION 3

1. The text and the student 3
a. Previous mathematical training 3.
b. Examples and problems 4
c. Use of tables 4
d. Symbols 5
e. Daily preparation 6
f. Empirical approach 6
2. Statistical terms and statements 7
a. Averages 7
b. Variability 8
c. Relationships 9
3. Functions of statistical methods 10
a. Precise description 10
b. Study of relationships 10
c. Formulation of experimental designs 11
d. Statistical inference 13
e. Prediction 13
4. SURVEY OF RULES AND PRINCIPLES 15
5. Fractions 15
6. Decimals 16
7. Proportions and per cents 17
8. Positive and negative numbers 18
9. Numbers in a series 21
cum Racs
10. Squares and square roots 21
a. Finding squares and square roots 21
b. Locating the decimal point 22
c. Squares and square roots of numbers less than 1 23
11. Summation 23
12. Simple equations 25
13. MEASURES OF CENTRAL TENDENCY AND VARIABILITY 30
14. An experiment on retention 31
15. The range as a measure of variation 31
16. The mean as a measure of concentration 34
17. Some basic symbols 34
18. The average deviation as a measure of varia- tion 36
19. The variance and standard deviation 38
20. The normal distribution curve 39
21. The median as a measure of central tendency 41
22. The semi-interquartile range 45
23. Centiles 45
24. Standard scores 47
25. Other measures of central tendency"and vari- ability 49
26. Samples and statistics 50
27. SIMPLIFYING STATISTICAL COMPUTA- TIONS 54
28. The approximate nature of measurements I 54
a. Significant figures 55
b. Common practice in reporting statistics 56
c. Rounding numbers 57
29. Coding by subtraction 58
a. The sum of scores 58 58
b. The sum of squares 60
Contents xiii
CEAPTEE PACE
30. Coding by division 63
a. The sum of scores 63
b. The sum of squares 65
31. Summary of "coding formulas" 66
32. Grouping measures into classes 67
a. The number of intervals 68
b. Size of the class interval 68
c. Limits of the intervals 69
d. Tallying the scores 70
e. Assumptions concerning grouped scoress 70
f. Calculation of the mean and sum of squares 72
g. The "Charlier checks" 74
h. Calculation of the median 75
33. Summary of steps in coding 75
34. THE PRODUCT-MOMENT CORRELATION COEFFICIENT 79
35. The coefficient of correlation 80
a. A perfect positive correlation 80
b. A perfect negative correlation 83
c. A high positive correlation 84
d. A high negative correlation 85
e. A low correlation 86
36. Basic formulas for r 87
a. Standard deviations 87
b. Sum of squares method 88
c. Correlation using original measures 90
d. The difference method for $\Sigma x y$ 91
e. Correlation using coded scores 91
37. Correlation computed from a scatter diagram 94
a. Preparing the scatter diagram 94
b. The sum of scores and sum of squares 96
c. The sum of cross-products 97
38. Interpretation of correlation 99
a. The range of the correlation coefficient 99
xiv Contents
cerapter
PAGs
PAGs
b. The coefficient of determination 99
c. Common elements 100
39. Purpose for which r is to be used 101
40. Errors of measurement and correlation 102
41. THE CORRELATION RATIO AND OTHER MEASURES OF ASSOCLATION 106
42. The correlation ratio 107
a. A simple method of computation 109
b. Summary of steps in computing $\eta_{\text {vs }}$ 110
43. Biserial correlation 112
44. Tetrachoric correlation 116
45. The phi coefficient 117
a. The ϕ coefficient and true dichotomies 118
b. The assumption of continuity 119
c. The ϕ coefficient and tetrachoric r 121
46. The contingency coefficient 122
47. Rank-difference coefficient 123
48. Multiple and partial correlation 125
49. Summary of measures of association 127
50. PROBABILITY AND FREQUENCY DISTRI- BUTIONS 132
51. Meaning of probability 133
52. Combinations 136
53. Binomial distribution 137
54. The normal distribution curve 141
55. The use of Table B 144
56. Pragmatic considerations 146
57. Skewed distributions 148
58. SAMPLING DISTRIBUTIONS 151
59. Samples and populations 151
60. Sampling distributions 153
61. Standard error of the mean 157
Contents xv
CHAPTRE PAGE
62. Large samples and the normal curve table 159
63. The concept of fiducial limits 162
64. Small samples and the table of t 166
65. Other standard error formulas 168
a. Standard error of the standard deviation 168
b. Standard error of a proportion 168
c. Standard error of a per cent or frequency 170
66. THE t TEST OF SIGNIFICANCE 172
67. An experiment involying paired observations 172

- a. Standard error of a mean difference 174
b. Testing the null hypothesis 176
c. Establishing the fiducial limits 177
d. Another method for computing the stand- ard error 178

2. Experiments involving matched groups 180
3. Experiments involving independent groups 181
4. The advantages of pairing observations 183
5. Testing the significance of a proportion 184
6. Testing the significance of r 185
a. The direct computation of t 187
b. The use of Table D 188
7. ANALYSIS OF VARIANCE: INDEPENDENT GROUPS 192
8. Nature of analysis of variance 192
a. The total sum of squares 194
b. The sum of squares within groups 195
c. The sum of squares between groups 195
d. Generalized formula for r groups 196
e. The variance ratio 198
9. A comparison of F and t in the case of two groups 199
10. The comparison of three groups 202
a. The total sum of squares 202
CHAPTER page
b. The sum of squares between groups 203
c. The sum of squares within groups 204
d. The variance ratio 205
11. A more complex analysis 207
12. ANALYSIS. OF VARIANCE: MATCHED GROUPS 217
13. Analysis of variance of two matched groups 218
14. Analysis of variance of several matched groups 225
15. Correlation ratio and analysis of variance 232
a. The correlation ratio without bias 232
b. Tables of epsilon-square 233
c. Epsilon-square and analysis of variance 234
16. A test of rectilinear relationship 237
17. THE χ^{2} TEST OF SIGNIFICANCE 239
18. Simple applications of χ^{2} 239
a. Observed and expected frequencies 239
b. Testing a $50: 50$ hypothesis 241
c. Testing any a priori hypothesis 243
d. χ^{2} calculated from per cents 244
e. χ^{2} applied to more than two categories 245
19. χ^{2} applied to two sampies 246
20. χ^{2} applied to more than two groups 250
21. Testing "goodness of fit" 252
22. χ^{2} and small frequencies 253
23. χ^{2} and the ϕ coefficient 254
24. PREDICTIONS AND THE EVALUATION OF PREDICTIONS 258
25. Predicting simple characteristics 258
26. Predicting measurements 261

- a. The regression line 262
b. The regression coefficient 264
c. The regression equation 265
CHAPTER PAGE
d. Regression and correlation coefficients 265
e. The standard error of estimate 267
f. The index of forecasting efficiency 269
g. Predicting in the opposite direction 269
h. Coding and regression coefficients 270

3. Predicting from nonrectilinear relationships 270
4. RESEARCH AND EXPERIMENTATION 277
5. Interpretation of tests of significance 279
6. Samples and research 282
7. Size of the sample 287
8. Control groups 288
a. Control by random selection 289
b. Control by matching individuals 291
c. Control by matching groups 294
d. Single group serving as its own control 294
9. The t test and the assumption of homogeneity of variances 295
10. Additional problems in experimental design 299.
BIBLIOGRAPHY
APPENDIX
table A. Squares and Square Roots of Numbers from 1 to 1,000 307
table B. Areas and Ordinates of the Nor- mal Curve in Terms of x / σ 320
table C. Values of t at the 5% and 1% Levels of Significanct 330
table D. Values of r at the 5% and 1% Levels of Significance 331
table E. Values of F at the 5% and 1% Levels of Significance 332
table F. Values of ϵ^{2} at the 5% and 1% Levels of Significance 336
table G. Table of Random Numbers 340
xviii Contents
TABLS zags
table H. Table of χ^{2} 342
ANSWERS TO EXAMPLES 343
INDEX OF AUTHORS 353
INDEX OF SUBJECTS 355

AUTHOR INDEX

Allport, G. W., 278, 300
Anastasi, A., 9, 300
Armitt, F. M., 279, 302
Baker, K. H., 173, 300
Bancroft, T. A., 280
Barker, R., 12, 277, 300
Baxter, B., 232, 300
Blakemore, A. M., 129, 302
Brownman, D. E., 277, 300

- Camp, B. H., 120, 121

Cantril, H., 305
Chave, E. J., 271, 305
Chesire, L., 117, 300
Clark, E. L., 9, 302
Clopper, C. J., 170
Cochran, W. G., 297
Cox, G. M., 297
Cureton, E. E., 193
Curtis, J. W., 94, 300.
Dallenbach, K. M., 31, 303
Dembo, T., 12, 277, 300
Dollard, J., 79, 277, 300
Doob, L. W., 79, 277, 300
Dorcus, R. M., 274, 300
Dunlap, J. W., 232, 300
Edwards, A. L., 12, 277, 278, 300, 301
Enlow, E. R., 301
Ezekiel, M., 301
Fisher, R. A., 165, 166, 186, 188, 201, 202, 232, 280, 281, 289, 299, 301, 330, 331, 340
Fosdick, S. J., 124, 301
Franklin, M., 191, 303
Gallup, G. H., 152, 283, 301
Galton, F., 262
Garrett, H. E., 121, 122, 232, 302
Garrett, W. S., 277, 302
Gilliland, A. R., 9, 302

Gossett, W. S., 166
Goulden, C. H., 167, 232, 253, 299, 302
Grant, D. A., 232, 302 .
Greene, E. B., 14, 102, 302
Guilford, J. P., 14, 123, 126, 179, 253, 302
Guthrie, E. R., 278, 302
Hartmann, G. W., 301.
Hay, E. N., 129, 302
Holman, L. J., 302
Horst, P., 258, 302
Hull, C. L., 278, 302
Hurlock, E. B., 277, 302
Irwin, F. W., 279, 302
$J_{\text {Jackson, }}$ R. W. B., 166, 232, 302
Jenkins, J. G., 31, 303
Jones, M. C., 278, 303
Kellar, B., 238, 303
Kelley, T. L., 123, 232, 303
Kendall, M. G., 123, 306
Kenney, J. F., 134, 149, 153, 160, 232, 253, 303
Kenney, K. C., 301
Klineberg, O., 190, 303
Koffka, K., 278, 303
Krathwohl, W. C., 275, 303
Kuo, Z. Y., 256, 303
Lewin, K., 12, 277, 278, 300, 303
Lewis, H. B., 191, 303
Likert, R., 103, 303
Lindquist, E. F., 126, 130, 157, 186, 193, 232, 253, 299, 303
Lo, C. F., 131, 304
Ludgate, K, E., 277, 304
Lynd, R. S., 277, 304
MacKinnon, D. W., 277, 304
McNemar, Q., 180, 181, 279, 281, 286, 287, 288, 293, 304

Miller, N. E., 79, 277, 300
Mowrer, O. H., 79, 277, 300
Murray, H. A., 304
Newcomb, T. M., 274, 301, 304
Odell, C. W., 304
Paterson, D. G., 277, 304
Pearson, E. S., 170
Pearson, K., 106, 120, 125, 127, 128
Peatman, J. G., 289, 304, 341
Peters, C. C., 4, 113, 126, 127, 130, 149, 157, 168, 232, 235, 236, 237, 252, 288, 293, 299, 304, 336
Peterson, R. C., 11, 278, 304
Rae, S. F., 152, 301
Remmers, H. H., 303
Rethlingshafer, D., 278, 304
Richardson, M. W., 116.
Rider, P. R., 253, 304
Rogers, C., 278, 304
Rosenthal, S. P., 278, 304
Rosenzweig, S., 257, 304
Saffir, M., 117, 300
Schafer, R., 289, 304, 341
Sears, R. R., 79, 277, 278, 300, 304
Shaffer, I. F., 104, 305
Shen, E., 232, 305
Simon, C. W., 279, 302
Skeels, H. M., 278, 305

Author Index
Snedecor, G. W., 56, 101, 186, 187, 193, 222, 232, 244, 253, 284, 296, 299, 305, 330, 331, 332
Sorenson, H., 305
Stalnaker, J. M., 116
Stock, J. S., 50, 51, 286, 305
Thurstone, IL. L. 11, 58, 61, 117, 271, 278, 300, 304, 305
Tippett, L. H. C., 149, 165, 168, 199, 232, 253, 297, 299, 305
Tolman, E. C., 278, 305
Treloar, A. E., 305
Upedegraff, R., 278, 305
Van Voorhis, W. R., 4, 113, 126, 127, 130, 149, 157, 168, 235, 236, 237, 252, 288, 293, 299, 304, 336

Walker, H. M., 166, 167, 179, 180, 181, 232, 281, 305
Watson, K. B., 189, 305
Wellman, B. L., 278, 305
Wilks, S. S., 180, 306
Williams, H. M., 278, 305
Wolfe, D., 277, 306
Wright, H. F., 279, 306
Yates, F., 289, 301
Yule, G. U., 123, 306
Zubin, J., 232, 302

SUBJECT INDEX

Abecissa, 81
Analysis of variance, 192-231
of independent groups, 192-214
of matched groups, 217-231
mature of, 192-199
relation to epsilon-square, 232-236
relation to t test in case of two independent groups, 199-201
relation to test in case of two matched groups, 224-225
of several independent groups, 202-207
of several matched groups, 225231
Ares, under normsi curve, 40, 141142
Arithmetic mean, 34
Attenuation, correction for, 102
Attributes, prediction of, 258-261
Average deviation, 36-38
Averages, 7-8, 34
correlation between, 181
of rates, 48
Binomial, rules for expending, 137138
Binomisl coefficients, 137-138
Binomial distribution, 137-140
Biserisl coefficient of correlation, 112116, 127-128
asumptions involved in computing, 113
computed from widespread classea, 113

Centiles, 45-47
as measures of relative position, 46
Central tendency, measures of, 34, 41-45, 49-50
Charlier checks, 74
Chi-equare, 239-255
applied to an a priori hypothesis, 241-246

Chi-square-Continued
applied to more than two categories, 245-246
applied to several samples, 250-252
applied to two samples, 246-250
calculated from per cents, 244
correction for small frequencies, 253-254
degrees of freedom for, 248
interpretation of, 240
relation to contingency coefficient, 123
relation to phi coefficient, 254-255
sampling distribution of, 241
as test of "goodness of fit," 252-253
Class intervals, 67-70
assumptions concerning scores within, 70
influence of number of on accuracy, 68
midpoint of, 71
recorded limits of, 69-70
size of, 68-69
theoretical limits of, 70
Coding, 58-67, 270
and calculation of correlstion coefficient, 91-93
and calculation of regreasion coefficient, 270
corrections for, 60-67
by division, 63-66
formulas, 66-67
by subtraction, 58-63
Coefficient, biserial, 112-116
contingency, 122-123
of correlation, 9, 79-99
of determination, 99-100
of non-determination, 99-100
phi, 117-122
point-biserial, 115
rank-difference, 123-125
regreasion, 264, 266, 270.
Combinations, 136-137
Common elements, theory of, 100-101

Confidence intervals, 162-165
Constant, definition of, 24
Constant errors, 283
Contingency coefficient, 122-123
Control group, 12, 288-295
formed by matching on experimental variable, 294
formed by matching on related variable, 294
formed by pairing individuals, 291294
formed by random selection, 289 291
single group serving as own, 294
Coordinates, 82
Correction, for attenuation, 102
for coding, 60-66
for small frequencies in calculating chi-square, 253-259
Correlation, accuracy of predictions based upon, 261
and causation, 79
chart, 96
and common elements, 100-101
as means of reducing standard error, 183
multiple, 125-126, 181
negative, 83-85
partial, 125-126
positive, 80, 84-85
of ranks, 123-125
and regression, 265-267
and standard error of mean difference, 179-181
tetrachoric, 116-117
Correlation coefficient, 9, 79-99
computed from coded scores, 91. 93
computed from original measures, 90-91
computed from scatter diagram, 94-99
computed from standard scores, 88
estimated by phi, 120
as mean of product of paired 2 scores, 88
multiple, 125
partial, 125
purpose for which used, 101

Correlation coefficient-Continued
as ratio of two averages of variance, : 89
reduction in size from grouping, 127
relation to regression coefficient, 265-266
reliability of, 127
significance of, 185-189
size of, 80, 99
zero order, 125
Correlation ratio, 83, 107-112, 232236
without bias, 232-236
relation of size of to number of class intervals, 127
size of, 108
summary of steps in computing, 110-111
Covariance, 87, 89
Cross-products, computation of, 87
Curvilinear relationships, 83, 106-111

Deciles, 46
Decimals, 16-17
Degree of confidence, 13, 161-162
in rejecting hypotheses, 165
Degrees of freedom, 166-167, 168, 170, 177, 179-180, 182-183, 188189, 197-198, 201, 206, 210, 212213, 221-223, 235-236, 242, 245246, 248-249, 252-253, 296
in calculating chi-square, 242, 249
in determining fiducial limits of mean, 167
formulas for in analysis of variance, 207, 231
for mean difference between independent groups, 182
for mean difference between matched groups, 177, 179, 180
in testing "goodness of fit" of normal distribution, 252-253
in testing significance of $r, 188$
Dependent variable, 12
Deviation, 36-37
of observed from expected frequency, 240
significant, 139, 163

Deviation-Continued
from some value other than mean, 59
Diagrams, scatter, 94
for computing tetrachoric correlstion, 117
Differences, esmpling distribution of mean of, 281-2s2
Distributions, binomial, 137-140
frequency, 41
leptokurtic, 149
normal, 39, 41, 139
platykurtic, 149
reduced to common scales, 48
of eample means, 154-156
sampling 153-156
skewed, 148-149
trunested, 41
Epsiton, 232-236
Epsilon-equare, 232-236
comparison with P, 234-236
relation to analysis of variances 234-236
as test of rectilinear relationship, 237
use of tables of, 233
Equations, rulea for performing operations upon, 25-27
Errors, constant, 283
of estimate, 262
of finst kind, 165
of measurement, 102
of randorn sampling, 281, 283
Eta, 107
Experimental design, 11, 13, 30, 192, 208, 278, 281, 299
Experimental group, 12
Experimental varisble, 12
Experiments, nature of, 11
Fiducial limita, 162-166
of mean difference, 177-178, 182
of proportion, 169
and small samples, 166-170
Fiducial probability, 162
Fractions, 15-16
Frequency, standard error of, 170
Frequency distributions, 41, 67

Geometric mean, 49, 89
"Goodness of fit," chi-square as test of, 252-253
Graphs, 81-82
Harmonie mear, 49
Homogeneity of variance, test of, 296
Hypotheses, testing of, 160-166, 176, 187-188, 201, 236-237, 240, 243, 247-248, 295-299
Hypothesis, acceptance of false, 165
based upon pooled frequencies, 247
of homogeneity of variance, 295
of no difference, 279-282
mall, 176-177, 184-185, 193, 280281, 234
rejection of true, 165
and theory, 278-279
Identities, substitution of in formolas, 26-27
Independent groups, 181-183, 192214
Independent varisble, 12
Index of forecasting efficiency, 269
Interaction, 208
Interaction variance, 212-214
Interval, 41
Intervals, confidence, 162-165
Kurtosis, 149
Least equanes, principle of, 272
Mstched groups, 12, 30, 152, 180-181
Mean, arithmetic, 34
ealculated from grouped scores, 72 74
geometric, 49
harmonic, 49
2s a measure of concentration, 34 36
of a set of a scores, 48
standard error of, 157-159
Mean difference, fiducial limits of, 177-178
significance of when variances differ, 297-299

Mean difference-Conlinued standard error of, 174-176
Mean square, 38
Means, variability of in correlation chart, 108-109
Measurements, approximate nature of, 54-58
errors of, 102
paired, 11, 80
precision of, 67
predictions of, 261-273
reduced to common scales, 47-48, 88

- reliability of, 102
in social sciences, 147
transformed into set of ranks, 125
Median, 41-45, 75
Method of least squares, 262
Midpoint, of class interval, 71
Mode, 49
Multiple correlation coefficient, 125126, 128, 181

Normal curve, 39-40, 140-144
and large samples, 159-162
ordinates of, 114, 141-143
and standard scores, 142
use of tables of, 40, 144-146
zone embracing middle 95 per cent of measures, 145
Normal distribution, 39-40, 139-140
fitted to sample set of measurements, 142-144
as a mathematical ideal, 146
relation of mode, median, and mean in, 148
of test scores, 147
testing "goodness of fit" of, 252253
Null hypothesis, 176-177, 184-185, 193, 234, 280-281
Numbers, in a series, 21
positive and negative, $18-20$
techniques of rounding, 57-58

Opinion polls, 283
Ordinate, 81
of normal curve, 114

Paired associates, method of, 31
Paired observations, 11
advantages of, 183-184
reduction in degrees of freedom for, 183-184
Parameters, 51, 153
Partial correlation coefficient, 125126, 128
Per cents, 17-18
calculation of chi-square from, 244
standard errors of, 170
Phi coefficient, 117-122, 128
applied to true dichotomies, 118119
and assumption of continuity, 119121
estimate of r derived from, 120
relation to chi-square, 254-255
as substitute for tetrachoric r, 121122
Point biserial r, 114-116, 128
Population, definition of, 51
estimate of mean of, 159
estimate of variance of, 192, 222
ratio, 240
Precision, of measurements, 67
Predictions, 13
accuracy of dependent upon correlation, 261
of attributes, 258-261
based upon means of columns of correlation table, 272
errors of, 259, 262
evaluation of efficiency of, 259, 269
of measurements, 261-273
Principle of least squares, 272
Principle of maximum likelihood, 258
Principle of maximum probability, 258
Probability, a priori, 134
empirical, 134
fiducial, 162
meaning of, 133-136
principle of maximum, 258
Probable deviation, 49
Probable error, 49
Proportions, 17-18
standard error of, 168-169
testing significance of, 184-185

Subject Index

Public opinion polls, 152
margin of error in, 153
samples used in, 152

Quadrant, 82
Quartile, 45

Random numbers, tables of, 289-290
Range, 5
of correlation coefficient, 80,99
inclusive, 33-34
as measure of variability, 8-9, 3134
middle 80 per cent, 49
semi-interquartile, 45
Rank-difference coefficient, 123-125
Ranks, method of dealing with ties, 125
Rates, averaging of, 49
Rectilinear relationship, test of significance of departure from, 237
Regression coefficient, 263
coding of, 270
and correlation, 265-267
Regression equation, 265
Regression line, 83, 262-263
fitted by method of least squares, 263
Relationships, between averages and differences, 9
curvilinear, 83, 106-107
negative, 79, 85
positive, 79, 84
rectilinear, 83
study of, 9-10, 79-80
Relative deviates, 47
Reliability, 13, 153
Replication, 230
Research problems, 277-279
Residual sum of squares, 221-222, 229-230
Residual variance, 222, 224, 230

Ssmples, definition of, 50
generalizations from, 283
large, 287

Samples-Continued
random, 283-286
reasons for studying, 151-152
representativeness of, 282, 286
and research, 282-286
size of, 287-288
small, 166-168, 170, 287-288
used in opinion polls, 283
Sampling distribution, 153-156, 173
of chi-square, 241-242
of correlation coefficient, 186-187
of difference between correlated means, 181
of difference between means, 173
of epsilon-square, 233
of means, 157
of standard deviation, 168
of t ratio, 166-167
of variance ratio, 193, 296
Sampling, errors of random, 281, 283
Sampling theory, 153
Scatter diagram, 94
Significance, tests of, 57, 297-299
Significant figures, 55-56
Skewness, 148-149
Squares and square roots, 21-23
Squares, sum of, $39,51,60-63,65$, 157, 193-195, 202, 210, 219, 226
Standard deviation, 27-39
calculated from grouped scores, 73
of a distribution of z scores, 48
estimate of population, 157-158
of a sampling distribution, 156
standard error of, 168
Standard errors, 156-159, 168-170, 174-189, 200
based on pooled sum of squares, 200
of difference in mean gains, 293
of estimate, 267-269, 272-273
of frequencies, 170
of mean differences, 174, 179-180, 200
of mean differences of independent groups, 181, 200
of mean differences when correlation is present, 179-181
of means, 157-159
of per cents, 170, 184-185
of proportions, 168-169, 184-185

Standard errors-Continued
relation to population variability, 156
relation to sample size, $\mathbf{1 5 6}$
of standard deviation, 168
Standard scores, 47-49, 88, 141
mean of distribution of, 48
mean of products of paired, 88
as measures of relative position, - 47-48
standard deviation of distribution of, 48
Statistical inference, 13
Statistical methods, applications of, 3
approaches to study of, 6
continuity of development of, 6
functions of, 10-14
mathematical bases of, 4
Statistics, 51, 152
Sum of cross-products, 87
computed from correlation chart, 97-98
computed from original measures, 90
correction for coding, 90
1 difference method of computing, 91
Sum of squares, $51,60-63,65,157$, 193-195, 202, 210, 219, 226
computed from correlation chart, 96-97
between groups, 193, 195-196, 203204, 210, 219, 227
within groups, 193, 195, 204-205, 210, 219, 227, 230
interaction, 212, 230
pooling of within groups, 199, 204205, 210, 219, 227
residual, 221-222, 229-230
Summation, 23-25, 35
of an algebraio sum of two or more terms, 24.
of a constant, 24
of a varisble, 24
of a variable divided by a constant, 25
Symbols, use of, 5, 34-36

Test construction, 14
Tests of significance, 133, 184
chi-square, 239-255
comparison of F and t in case of two groups, 199-202, 218-225
epsilon-square, 232-237
interpretation of, 279-282
tratio, 166, 187
variance ratio, 193, 296
Tetrachoric correlation, 116-117
assumptions involved in computing, 117
diagrams for computing, 117
and phi coefficient, 121
Two-way frequency table, 94
Universe, definition of, 51
Variability, 8-9
in population as related to sample, 156
Variable, definition of, $\mathbf{2 3}$
dependent, 12
dichotomous, 112-113
experimental, 12
independent, 12
Variables, used for matching groups, 293-294
Variance, analysis of, 192-231
assumption of homogeneity of, 295-299
definition of, 38
estimate of population, 192, 197, 199
interaction, 212-214.
of means of columns in correlation chart, 108-109
in one variable associated with second, 99
residual, 222, 224, 230
Variance ratio, 193, 198, 296, 205-$206,213-214,218,225,227,296$

X-2xis, 81-82
Y-axis, 81-82

