HEPORT

OF THE

CALENIAR REFIRM CIIMMITTEE

GOVERNMENT OF INDIA

Council of Scientific and Industrial Research, Old Mill Road,

New Delhi.
1955

nEPDRT

OF THE

CALENIAR REFIRM CIMMITTTEE

GOVERNMENT OF INDIA

Council of Scientific and Industrial Research, Old Mill Road, New Delhi.

Published by
The Council of Scientific and Industrial Research, Old Mill Road,

New Delhi.

Printed by
Sri Hari Narayan Dey,
Sree Gopal Printing Works,
25/1A, Kalidas Singhee Lane,
Calcutta-9.

MESSAGE.

I am glad thai* the Calendar Reform Committee has started its labours. The Government of India has entrusted to it the work of examining the different calendars followed in this country and to submit proposals to the Government for an accurate and uniform calendar based on a scientific study for the whole of India. I am told that we have at present thirty different calendars, differing from each other in various ways, including the methods of time reckoning. These calendars are the natural result of our past political and cultural history and partly represent past political divisions in the country. Now that we have attained independence, it is obviously desirable that there should be a certain uniformity in the calendar for our civic, social and other purposes and that this should be based on a scientific approach to this problem.

It is true that for governmental and many other public purposes we follow the Gregorian calendar, which is used in the greater part of the world. The mere fact that it is largely used, makes it important. It has many virtues, but even this has certain defects which make it unsatisfactory for universal use.

It is always difficult to change a calendar to which people are used, because it affects social practices. But the attempt has to be made even though it may not be as complete as desired. In any event, the present confusion in our own calendars in India ought to be removed.

I hope that our Scientists will give a lead in this matter. Gawaharlal Nam

New Delhi,
February 18, 1953.

MEMBERS OF THE CALENDAR REFORM COMMITTEE

CHAIRMAN

Prof. M. N. Saha, D. Sc., F. R. S., M. P., Director, Institute of Nuclear Physics, 92, Upper Circular Road, Calcutta-9.

MEMBERS

Prof. A. C. Banerji, M. A., M. Sc., F. N. I., Vice-Chancellor, Allahabad University, Allahabad.

Dr. K. L. Daftari, B. A., B. L., D. Litt.,
Mahal, Nagpur.

Shri J. S. Karandikar, B. A., LL. B.,
Ex-Editor, The Kesari,
568 Narayan Peth,
Poona-2.

Dr. Gorakh Prasad, D. Sc.,
Reader in Mathematics, Allahabad University, Beli Avenue, Allahabad.

Prof. R. V. Vaidya, M. A., B. T., Senior Lecturer in Mathematics, Madhav College, Ujjain, 78, Ganesh Bhuvan, Freegunj, Ujjain.

Shri N. C. Lahiri, M. A., 55A, Raja Dinendra Street, Calcutta-б.

Shri N. C. Lahiri acted as the Secretary of the Committee.
C. $\mathrm{R} .-\mathrm{B}$

TRANSLITERATION

The scheme of transliteration of Sanskrit alphabets into Roman script adopted in this publication is the same as generally followed. The corresponding scripts are given below :-

N. B. Diacritical marks hạve not generally been used in namés of persons belonging to recent times as well as in well-known geographical names.

PREFACE

The Calendar Reform Committee was appointed in November, 1952, by the Council of Scientific and Industrial Research (of the Government of India) with the following terms of reference :
"To examine all the existing calendars which are being followed in the country at present and after a scientific stuly of the subject, submit proposals for an accurate and uniform calendar for the whole of India".

In accordance with its terms of reference, the Committee (for personnel, see p.4) has scientifically examined all the calendars prevalent in India (vide Part C, Chap. V), vix., -

Gregorian Calendar...which is used for civil and administrative purposes (vide p. 170) all over the world.

Islamic Calendar......used for fixing up the dates of Islamic festivals (vide p. 179).

Indian Calendars
or Pañcangas......used for fixing up dates and moments of Hindu, Bauddha
1 and Jaina festivals in different States of India, and in many cases for civil purposes also. They are about 30 in number. (vide Chap. V, p. 258).
It has been pointed out (p .171) that the Gregorian calendar, which is used all over the world for civil and administrative purposes, is a very unscientific and inconvenient one. The World Calendar (p. 173), proposed by the World Calendar Association of New York, has been examined and found suitable for modern life. The proposal for its adoption by all the countries of the world for civil and administrative purposes was sponsored by the Indian Government before the U. N. O. and debated before the ECOSOC (Economic and Social Council) at Geneva in June, 1954 (p. 173) and its recommendations have been transmitted to the Governments of the World for their opinion. It is hoped that the World Calendar will be ultimately adopted. It will lead to a great simplification of modern life.

The introduction of the World Calendar in place of the Gregorian is a matter for the whole world, which has now to look for decision by the U. N. O.

The Islamic (Hejira) calendar has been discussed on p. 179, along with some proposals for reform
suggested by Dr. Hashim Amir Ali of the Osmania University, and Janab Mohammed Ajmal Khan of the Ministry of Education. It is for the Islamic world to give its verdict on these suggestions. If these suggestions are accepted, the Islamic calendar would fall in line with other luni-solar calendars.

As these two important systems of calendars had to be left out, the Committee's labours were confined to an examination of the different systems of calendars used by Hindus, Bauddhas and Jainas in the different states of India, chiefly for the fixing up of the dates and moments of their religious festivals, and for certain civil purposes as well.

For the purpose of examining all the existing calendars of India, as per terms of reference, an appeal was issued to the Pañcannga. (Almanac) makers for furnishing the Committee with three copies of their Pañcãígas. In reply to our request 60 Pañcāñgas (Almanacs) were received from different parts of the country and were examined (p. 21). To facilitate examination of the calendars, a questionnaire was issued to which 51 replies were received (pp. 23-31). In addition to the above, 48 persons offered their suggestions (pp. 32-38) for reform of the Indian calendar. These views were very divergent in character. Some quoted ancient scriptures to prove that the earth is flat, with a golden mountain in the centre round which move the sun and the planets, others tried to refute the precession of equinoxes. All opinions were taken into consideration in arriving at the decisions of the Committee.

Principles followed in fixing up the Calendar:-The calendar has got two distinct uses-civil and religious. The Indian calendars are used not only for fixing up the dates and moments of religious observances but also for the purpose of dating of documents and for certain civil purposes not only by the rural, but also by a large section of the urban population. There is great divergence in practice in different parts of the country in this respect. Therefore a unified solar calendar has been proposed for all-India use for civil purposes. This has been based on the correct length of the year (viz. the tropical year) and the popular month-names, vix., Caitra, Vaiśākha, etc. have been retained (see p. 6).

Calendars are based partly on SCIENCE which nobody is permitted to violate and partly on CONVENTIONS which are man-made and vary from
place to place. The Indian calendars put up by almanac-makers commit the violation of the following principles of science :-

They take the length of the year to be 365.258756 days (p. 240, Part C of Report) as given by the SüryaSiddhänta about 500 A. D. ; while the correct length of the tropical year, which alone can be used according to the Sūrya-Siddhānta and modern astronomy for calendarical use, is 365.242196 days. The difference of .01656 days is partly due to errors of observation, not infrequent in those days, and to their failure to recognize the precession of equinoxes. As the SüryaSiddhanta value of the year-length is still used in almanac-making, the year-beginning is advancing by .01656 days per year, so that in the course of nearly 1400 years, the year-beginning has advanced by 23.2 days, with the result that the Indian solar year. instead of starting on the day following the vernal equinox, i.e, on March 22, as prescribed in the SüryaSiddhānta (see Chap. V, p. 239), starts on April 13 or 14. The situation is the same as happened in Europe due to the acceptance of 365.25 days as the length of the year at the time of Julius Caesar ; the Christmas originally linked to the winter solstice preceded it by 10 days by 1582 A.D., when the error was rectified by the promulgation of a bull by Pope Gregory XIII. By this, Friday, October 5 was proclaimed as Friday, October 15, and new leap-year rules were introduced.

Unlike Europe, where the Pope in the medieval times possessed an authority which every one in Catholic Europe respected, India had a multiplicity of eras and year-beginnings due to her history during the years 500-1200 A. D. But for calendaric calculations, our astronomers all over India have been using only the Śaka era since Āryabhaṭa (500 A.D.) certainly and probably from much earlier times, and in local almanacs other eras are simply imposed on it. The Calendar Committee has therefore recommended :-

That for all official purposes, the Central as well as State Governments should use the Śaka era along with the civil calendar proposed by the Committee (p.6). It is suggested that the change-over may take place from the Śaka year 1878, Caitra 1 (1956, March 21). If this is accepted, the last month of the year, riz., 1877 Śaka, the solar Phālguna, which has a normal length of 30 days, will have an extra number of 6 or 7 days.

The pre-eminence of the Śaka era is due, as historical evidences cited on pp. 238-238 and 255-257 show, that it was the earliest era introduced in India, by Śaka ruling powers, and have been used exclusively by the Śakadvīpi - Brahmins (forming the astrologer caste) for calendar-making on the basis of Siddhāntic
(scientific) astronomy evolved by Indian astronomers on the basis of old Indian calendaric conceptions, which were put on scientific basis by blending with them astronomical conceptions prevalent in the West, from the third century B.C.

The era is also used exclusively for horoscope making. a practice introduced into India since the first century A.D. by the Śākadvīpi Brāhmanas.

The Calendar Committee has devised a solar calendar with fixed lengths of months for all-India use, in which it has been proposed to give up the calculations of the Sūrya-Siddhānta in which the solar months vary from 29 to 32 days.

Religious Calendar-The Committee's task resolved itself into a critical examination of the different Indian local calendars, about 30 in number, which use different methods of calculation. This produces great confusion.

As already stated the Sūrya-Siddhānta year being longer than the tropical year by about 24 mins., the Hindu calendar months have gone out of the seasons to which they conformed when the Siddhāntic rules were framed; as a result, the religious festivals are being observed not in the seasons for which they were intended but in wrong seasons. The Committee felt that the error should be corrected once for all and the months brought back to their original seasons. But with a view to avoiding any violent break in the present day practices, the desired shifting has not been effected, but any further increase of the error has been stopped by adopting the tropical year for our religious calendar also (see p. 7).

Before the rise of Siddhānta Jyotişa (400 A.D.), India used only the lunar calendar calculated according to the Vedānga Jyotiṣa rules and most religious festivals (e.g. the Janmāșṭamī, the birthday of Śrī Kṛṣna) used to be fixed up by the lunar calendar which used only tithi and naksatra. The Calendar Committee could not find out any way of breaking off with the lunar affiliation short of a religious revolution and has, therefore, decided to keep them. For this purpose, the lunar year is to be pegged on to the solar year by a number of conventions. The Committee has adhered to the ancient conventions as far as possible. But the erroneous calculations of tithis and nakșatras have been replaced by modern calculations given in the nautical almanacs and modern ephemerides, and the religious holidays have been fixed for a central station of India (ride page 40).

The present practice is to calculate the tithi for each locality and the result is that the same tithi may not occur on the same day at all places. The Calendar Committee has found that the continuance
of different lunar calendars for different places is a relic of medieval practice when communication was difficult, the printing press did not exist and astrologers of each locality used to calculate the calendar for that locality based on Siddhantic rules and used to proclaim it on the first day of the year to their clients. In these days of improved communication, free press, and radio, there is not the slightest justification for continuance of this practice and the Committee has fixed up the holidays for the central station ($82^{\circ} 30^{\prime} \mathrm{E}, 23^{\circ} 11^{\prime} \mathrm{N}$, see Report p. 40); and recommended that these holidays may be used for the whole of India. The dates of festivals of the Hindus, Jainas and Bauddhas have been determined on the above basis. This will put an end to the calendar confusion.

The confusion is symbolic of India's history. While all Christendom comprising people of Europe, Asia and America, follows the Gregorian calendar, and the whole of the Islamic world follows the Hejira calendar for civil and religious purposes, India uses 30 different systems for fixing up the same holidays in different parts of the country and frequently, two rival schools of pañcanga-makers in the same city fix up different dates for the same festival. This is a state of affairs which Independent India cannot tolerate. A revised national calendar, as proposed by us, should usher a new element of unity in India.

The Committee has therefore gone deeply into the history of calendar making in all countries from the earliest times particularly into the history of calendarmaking in India (vide Chap. V) and has arrived at their conclusions. Its recommendations are entirely in agreement with the precepts laid down by the Siddhanntic astronomers, as given in the Sūrya-Siddhānta and other standard treatises (see p. 238 et seq.).

The Committee has also compiled a list of all religious festivals observed in diffirent parts of India and listed them under the headings (i) Lunar, and (ii) Solar, with their criteria for fixing the dates of their observances (pp. 102-106).

Where does the Goveinment come in : Though India is a secular state, the Central Government and the State Governments have to declare a number of holidays in advance, a list of which will be found on pages 117-154 for the Central Government as well as for the States. These holidays are of four different kinds, viz. :-
(i) Holidays given according to the Gregorian calendar, e.g., Mahatma Gandhi's birthday, which falls on Oct. 2. These present no problem to any government.
(ii) But there are other holidays, which are given according to the position of the Sun (vide. pp. 117-118).
(iii) Others which are given according to the lunisolar calendar (pp. 119-124).
(iv) Holidays for Moslems and Christians (pp. 125 and 126).
It is a task for the Central as well as State Governments to calculate in advance dates for the holidays it gives. This is done on the advice of Pañcañga-makers attached to each Government. In addition, numerous indigenous pañcãngas are prepared on the Siddhāntic system of calculations, the elements of which are now found to be completely erroneous. There is a wide movement in the country first sponsored by the great savant, patriot and political leader, the late Lokamanya B. G. Tilak, for making the pañcānga calculations on the basis of the correct and up-to date astronomical elements. As a result, there are almost in every State different schools of pañcãnga calculations, differing in the durations of tithis, nakşatras, etc., and consequently in the dates of religious festivals. The problem before the Government is : which one of the divergent systems is to be adopted. The Committee has suggested a system of calculations for the religious calendar also, based on most up-to-date elements of the motion of the sun and the moon. Calendars for five years from 1954-55 to 1958-59 have been prepared on this basis showing therein inter alia the dates of important festivals of different States (vide pp. 41-100). The lists of holidays for the Government of India and of each separate State for the five years have also been prepared from this calendar for the use of the Governments. The Committee hopes that the Government of India as well as the State Governments would adopt these lists in declaring their holidays in future. The Ephemerides Committee which has been formed by the Government of India, consisting of astronomers versed in the principles of calendar-making would act as advisers to the Central as well as State Governments. It may be assisted by an advisory committee to help it in its deliberations.

The responsibility of preparation of the five-yearly calendar and the list of holidays on the basis of recommendations àdopted by the Committee has been shared by Sri N. C. Lahiri and Sri R. V. Vaidya, aided by some assistants and several pandits of note. amongst whom the following may be mentioned : Sri A. K. Lahiri, Sri N. R. Choudhury, Pandit Narendranath Jyotiratna, and Joytish Siddhanta Kesari Venkata Subba Sastry of Madras.

We have received great help from C. G. Rajan, B.A., Sowcarpet, Madras. He has kindly furnished
us with valuable suggestions regarding 'Rules for fixing the dates of festivals for South India':

We are indebted to the Astronomer Royal of Great Britain, Sir Harold Spencer Jones, and to Mr. Sadler, head of the Ephemerides divison of the Royal Observatory of U. K. for having very kindly supplied us with certain advance data relating to the sun and the moon which have facilitated our calculations. We have to thank the great oriental scholar, Otto Neuge-: bauer for having helped us in clearing many obscure points in ancient calendaric astronomy. We wish to express our thanks to Prof. P. C. Sengupta for helping us in clearing many points of ancient and medieval Indian astronomy.

We have reproduced figures from certain books and our acknowledgement is due to the publishers. It was however not possible to obtain previous permission from them, but the sources have been mentioned at the relevant places.

It is a great pleasure and privilege to express our gratitude to our colleagues of the Calendar Committee for their active co-operation in the deliberations of the Committee, and ungrudging help whenever it was sought for.
M. N. Saha

Calcutta, The 10th Nov., 1955.

Chairman
N. C. Lahiri

Secretary

CONTENTS

		PAGE
Message from the Prime Minister		iii
Members of the Calendar Reform Committee	...	∇
Transliteration		vi
Preface	\ldots	vii
PART A		
Introductory	\ldots	1
Appointment of the Committee		4
Final Recommendations of the Committee		
AnNextre:		
I-Proceedings of the First Meeting		
II-Proceedings of the Second Meeting		
1II-Proceedings of the Third Meeting of		
IV-A Summary of reasons for the diss ting note by Dr. K. L. Daftari	\ldots	18
V-List of Pañcäṅgas received	\ldots	21
VI-Questionnaire	...	22
Replies to questionnaire		23
VII-Summary of suggestions for Indian		
Calendar Reform received fr different persons and institutions		32

PART B

Explanation		40
Reformed Calendar Of india for each month of the five years 1876 to 1880 Śaka		41-100
General rules for religious festivals		101
Lunar festivals		102
Solar festivals		106
Criteria of some festivals for South India		106
Certain special tithis and combinations		107
Certain special Yogas		108
Tithis, Nakṣatras, Muhūrtas and their lords		
Yogas \& Karanas		110
Alphabetical list of festivals		111
Sunrise and sunset for certain important places		116
LIST OF HOLIDAYS		117
Consolidated list of holidays for all States of India--		
A-Fixed holidays \& Solar festivals	.	117
B-Lunar festivals		119
Moslem festivals		125
Christian festivals		126

BIBLIOGRAPHY

Achelis, Elisabeth (1955)-Of Time and the Calendar, New York.
Alter, D. © Cleminshaw, C. H. (1952)—Pictorial Astronomy, . New York.
Āryabhaṭìya of Āryabhata-translated with notes by W. E. Clark, Chicago, 1930.

Anerican Ephemeris \& Nautical Almanac for the years 1954 and 1955.
Bachhofer, Dr. L. (1936)-Herrscher and Munzen inspaten Küshanas, Journal of American Oriental Society. Vol. 56.

- (1941) On Greeks and Śakas in India, Journal of American Oriental Society, Vol. 61, p. 223.
Basak, Dr. Radhagovinda (1950)—Kauṭilīya Arthaśāstra, Bengali translation, Calcutta.
Bhandarkar (1927-34)-Inscriptions of Northern India, Appendix to Epigraphia Indica, Vols. XIX-XXII.
Brennand, W. (1896)—Hindu Astronomy.
Burgess, Rev. E. (1935)-The Sūrya-Siddhānta, English translation, with an introduction by P. C. Sengupt ${ }_{3}$ (Republished by the Calcutta University).
Clark, Walter Eugene (1930)-The Āryabhatiya of Āryabhata, English translation with notes, Chicago.
Couderc, Paul (1948)-Le Calendrier, France.
Cunningham, Alexander (1883)-Book of Indian Eras with tables for calculating Indian dates, Calcutta.
Debevoise (1938)-Political History of Parthia.
Desdier (1951)-Le date de Kaniska etc. Journal Asiatique, Vol. 239.
Dìgha Nikāya (1890), Vol. I, Pali Text Book Society, Dīksit, S. B. (1896)-Bhāratī̄a Jyotis̄āstra (in Mārāthi).
Discovery (1953), Vol. XIV, p. 276, Norwich (Eng.).
.Dreyer, J.L.E. (1953)-A History of Astronomy from Thales to Kepler, Dover Publications, Inc.
Dvivedī;Sudhākara (1925)-The Sūrya Siddhānta, translation ' under his editorship, Asiatic Society of Bengal, Cal.
Encyclopaedia Britannica (14th edition)-Articles on Chronology, Calendar and Easter.
Encyclopaedia of Religion \& Ethics-Vols. I, II \& III, New York (1911),-Articles on Calendar and Festivals.
Epigraphia Indica, Vol. XXVII.
Flammarion, C. \& Gore, J. E. (1907)-Popular Astronomy, London.
Fotheringham, Dr. J. K. (1935)-The Calendar, article published in the Nautical Almanac, London 1935.
Ginzel, F. K. (1906)-Handbuch der Mathematischen und Technischen Chronologie, Bd. L Leipzig.

Haug, Dr. Martin-Aitareya Brāhmana of the Rig-Veda.
Herzfeld (1932)-Sakasthan, Archaeologische Mitteilungen ans Iran.
Jacobi, Prof. Hermann (1892)—The computation of Hindu dates in inscriptions, Eph. Ind. Vol. I, p. 403.
Jones, Sir H. Spencer (1934, 1955)-General Astronomy,
London.

- (1952)-Calendar, Past, Present \& Future -a lecture delivered at the Royal Society of Arts, London, 1952.
- (1937)- The measurement of time, published in the Reports on Progress in Physics, Vol. IV, London.
Journal of Calendar Reform, New York.
Keith, Dr. Berriedale-The Veda of the Black Yajur School entitled Taittirīya Samibitā, Part. 2.
Khandakhādyaka of Brahmagupta--Edited with an introduction by Babua Misra-translated by P. C. Sengupta (1934), Calcutta University, 1934.
Konow, Dr. Sten (1929)-Corpus Inscriptionum Indicarum, Vol.II, Käroṣthī Inscriptions.
Krogahal, Wasleg. S.-The Astronomical Universe, U.S. A.
Lahiri, N. C. (1952)-Tables of the Sun, Calcutta.
Lididers (1909-10)-A list of Brāhmí Inscriptions from the earliest times to 400 A.D. Appendix to Epigraphia Indica, Vol. X. (The references are given, e.g., Lididers 942, which means inscription No. 942 of Lididers).
Majumder, N. G. (1929)-Inscriptions of Bengal, Rajshahi, Bengal.
Majumder, R. C. (1943)-The History of Bengal, Vol. I. Dacca University.
Nautical Almanac (British) for the years 1935 \& 1954 to 1956.
Neugebauer, O. (1952)-The Exact Sciences in Antiquity, Princeton, New Jeresy,
- (1954) Babylonian Planetary Theory, Proceedings of the American Philosophical Society, Vol. 98. No. 1, 1954
Newcomb, Simon (1906)-A Compendium of Spherical Astronomy, New York.
Norton, Arthur P. (1950)-A Star Atlas, London.
Pannekoek, Antone (1916)-Calculation of Dates in Babylonian Tables of Planets, Proc. Roy. Soc. Amst. I, 1916, 684.
- (1951)-The Origin of Astronomy, M. N. R. A. S., Vol. III, No. 4, 1951.
- (1930)-Astrology and its influence upon the development of Astronomy-Jr.R. A. S. of Canadas. April, 1930.

Panth, B. D. (1944)-Consider the Calendar, New York.
Pillai, L. D. Swamikannu (1922)-An Indian Ephemeris, Vol. I, Suptd. Govt. Press, Madras.
Rapson (1922)-The Cambridge History of India, Vol. I, Ancient India.
Ray Chowdhury, H. C. (1938)-Political History of Ancient India, 5th edition, Calcutta University.
Roy, J. C. (1903)—Amāder Jyotị̣ı؛ O Jyotiṣī (Benğali). Calcutta.
Rufus, W. Carl (1942)-IIow to meet the fifth column in Astronomy, Sky \& Telescope, Jan, 1942, Vol. I, No. 3.
Russell, H. N., Dugan, R. S., \& Stewart, J. Q. (1945)Astronomy, 2 Vols, U. S. A.
Sachau, Edward C. (1910)-Alberuni's India, English translation in 2 Vols., London.
Sachs, A. (1952)-Babylonian Horoscopes,-Teprinted from the Journal of Cunieform Studies, Vol. VI, No. 2.
Saha, M. N. (1952)-Reform of the Indian Calendar, Science d Culture, Vol. 18, 1952.

- (1952)-Calender through Ages and Countries, Lecture delivered at the Andhra University, 1952.
(1953)-Different methods of Date recording in Ancient and Medieval India and the origin of the Saka era-Jounal of the Asiatic Society, Letters, Vol. XIX, No. 1, 1953.

Sarton, George (1953)—A History of Science, Osford University Press, London.
_- Introduction to the History of Science, Vol. III.
Schmidt, Olaf (1951)-On the Computation of the Ahargana, Centaurus, September, 1952, 2. Copenhagen.
Scientific American, 188, 6-25, 1953, New York.
Sen, Sukumar (1941)-Old Persian Inscriptions of the Achemenian Emperors, Calcutta University.
Sengupta, P. C. (1947)—Ancient Indian Chronology, Calcutta University.

- Articles published in the Śrī Bhāratī (Bengali)
- (1925)-Khandakhādyaka of Brahmagupta edited with an introduction, Calcutta University.
Sewell. R. S. (1924)—The Siddhāntas and the Indian Calendar.
- (1912) - The Indian Chronography

Sewell, R. S. \& Dikgit, S. B. (1896)-The Indian Calendar, London.
Shamasastry, R. (1936)-Vedānga Jyautisha-edited with English translation \& Sanskrit commentary, Mysore.
Sirkar, D. C. (1942)-Select inscriptions bearing on Indian history and civilization, Calcutta University.
Sky if Telescope, Vol. I, $1942 \&$ Vol. XII, 1953, Cambridge, Mass., U. S. A.
Smrtitirtha, Pt. Radhavallabha-Siddhānta Síromaṇi of Bhāskarācārya-Bengali translation in 2 Vols. Calcutta.
Svāmī, Vijīānānanda (1909)—Sūrya Siddhānta, Bengali translation with notes, Calcutta.
Thibaut, G. (1859)-The Pañca Siddhintikā-the Astronomical works of Varāhamihira, edited by G. Thibaut \& Mm. Sudhakara Drivedi, Banaras.
Tilak, B. G. (1893)-Orion or Researches into the Antiquity of the Vedas, Poona.
Universal History of the World, Vols. I \& II, edited by J. H. Hammerton, London.

Van der Waerden-Science Awakening.
Van Lohuizen de Leeuw (1949)-The Scythian Period, Leiden, (shortly called L. de. Leeuw or Leeuw with page following).
Varābamihira-Bṛhat Sañhitā, Bengali translation by Pt. Pañcānana Tarkaratna (1910), Calcutta.

- Pañca Siddhāntikā-edited by G. Thibaut \& Mm. Sudhakara Dvivedi, Banaras, 1889.
Watkins, Harold (1954)-Time Counts, London.
Webster, A. G.-Dynamics of Particles and of Risid Elastic \& Fluid bodies.
Winternitz-History of Indian Literature, Vol. I, Calcutta University.
Woolard, Edgar W. (1942)—The Era of Nabonassor, article published in the Sky \& Telescope, Vol. I, No. 6, April, 1942.

Yampolsky, Philip (1950)—The Origin of the Twenty-eight Lunar mansions, published in Osiris, Vol. IX, 1950.
Zinner, Dr. Ernest (1931)—Die Geschichte der Sternkunde, Berlin.

I NDEX

	Artemidorus of Puşkalāvati, 230	Brāhmanas, 193, 214, 221, 241, 245
Abd al-Rahamān al-Sūfi, 206	Arthasāstra of Kautilya, 235, 236	Brähmi, 227, 229, 231, 232, 233
Achelis, Miss Elisabeth, 12, 171	Aruṇodaya, 108	Brhat Samhitū, 296, 267
Adar, 179	Aryabhata 1. 204, 234, 236, 237, 238, 240, 252,	Brown, 193
Addaru, 175,176	- 253, 254, 267	Buddha, 231, 235 ;
Adhika ($=$ mala) month, 7, 247, 250	Aryabhata II, 238, 268	nirvāna of, 256, 257
Agni, 216	Aryabhatiya of Aryabhata, 162 238, 253	views on astrology. 235
Ahargana, 9,11, 161, 162, 163	Āryã Sañgamikā, 232	Budhagupta, Gupta emperor, 234
Ahonātra, 157, 160	Arya Siddhänta, 1, 214, 251, 268	Burgess, Rev. E., 238, 253, 262, 263
Aitarcya Brālımana, 189, ¢116, 219, 221, 266	Ã ryã Vasulã, 232	
Akber, 1, 159, 214, 251	Aśokachalla Deva, 256	
Akşaya trrtīyã, 18, 19	Assoke, 177, 212, 227, 228, 252	Calendar, defined, 1, 157 ;
Al-Baţtiani, 2C4, 206, 240 ;	Assouan papyri, 179	civil, 6 ,
rate of precession, 206	Astādhyäyi, 214	compilation according to S. S., 1 ;
Alberuni, 198, 204, 237 ;	Astrolatry, 235, 236	: confusion in Indian, 10 ;
Al-Bitruji, 206	Astrology, 12, 194, 196, 205, 206, 235, 236, 256	Egyptian, 164 ;
Alexander of Macedon, 202, 213, 234, 235	Atharra Sainhitä, 217, 218	French revolution, 167;
Al-Farghāní, 206.	Atharea Veda, 214, 217, 218	Fusli, 248 ;
Almagest, 204, 206, 238, 240	Audayika system, 254	Gregorian, 1, 3, 11, 170-172 ;
Aloysius Lilius, 171	Angust Compte, French positivist philosopher,	Hejira, 1, 166, 179, 180, 214 ;
Altekar, Prof., 254.	171.	history of reform movement, 10, 11 ;
Al-Zarquali, 206	Augustus, 168	Iranian (Jelali) 1, 166167 ;
Amānta month, 101, 157, 177, 247	Ayanāṅı́sa, 5, 7, 16, 17, 20, 268, 269 ;	Islamic, 179, 180 ;
Ammonia clock, 12, 159	amount of acc. to Aryabhata II, 268	Jewish 179 ;
Anaximander of Miletus, 188, 202 ;	amount of fixed, 16, 17	lunar, 3, 179, 245, 247 ;
gnomon, 202	(see also calendar for five years)	Iuni solar, 1, 3, 174, 249,251;
Ancient Indian Chronology, 215, 253, 266	definition, 268	calendar in Siddhāntas 245-251;
Andau (inscription), 233	rate of, 7	of Babylonians, Macedonians, Roman
Antiochus Sorter, 203	rate of Bhāskarācārya, 269	and the Jews, 176, 177 ;
Antiochus I, II of Babylon, 228	value of, 7, 17	principles of 174;
Anubis, Egsptian god, 164	Ayanas, 267, 268, 269	Siddhāntic rules for 247 ;
Anuratsara, 225	Azes, 256	National, 12-14;
Anyanka Bhìma Deva of Gangā dynasty, 257	Azes I, 230, 233, 256	Paitāmaha Siddhānta, 223,
Aparāhṇa, 108	Azes II, 230, 233,256	problems of the, 158,159;
Ipastamba Saṇilitax; 218	Axilises, 230, 233	Reformed, 4 ;
Aphelion, 242 ; movement of, 243		Religious 7;
Apollonios of Perga, 203		Roman, 168 ;
Ārā (inscription), 230	Babylon, 225, 226, 228 ; latitude of, 225	Seleucid Babylomian, 229 ;
Arachosia, 229, 230	Bachhofer, Dr. L., 230, 231, 232	Siddhānta Jyotişa period, 245, 246
Āranyaka, 214	Bādāmi (inscription), 233, 253	Solar, 1, 2, 164-173, 245 ;
Archebius of Taxila, 230	Bailey, 253	Siddhāntā Jyotiṣa period, 234-245
Archimedes of Syracuse, 203	Balaräma, 227	Tärikh-i-Jelali, 166, 167 ;
Archytas of Tarentum, 202	Banerjee, late R. D., 212	Tārikh-İāhi, 1, 214, 251, 257, 258 ;
Ardeshir I of Persia, 232	Bentley, 253	Vedāñga Jyotişa, 9, 221, 222, 223 ;
Ardharātrika system, 1, 253, 254	Berossus, Chaldean priest, 203	World, 1, 171-173
Ariana, Herat regions, 229	Bhäratiya Jyotisūstra, 11, 160, 219, 225, 236,	Calendar of India, Reformed (as recommended
Aries (zodiacal sign), 192, 193	267 .	by the Committee), 41-100;
```Aries, first point of, 157, 192, 199, 207, 239, 240, 262,268;```	Bhāskarācārya, 238, 246, 262, 267, 268, 269 ; ayana calana, 269	explanation of terms used, 40 Calendar Reform,
Hipparcho's, 200, 205, 206 ;	Bhāscatī 160	suggestion received, 5 ;
movement of 200, 205, 206 ;	Bhattotpala, 237	summary of suggestions, 32-38
position in different times, 200 (fig).	Bhoga (celestial longitude), 262	Cālikya Vallabhesvara, 233
Ptolemy's, 200	Bīja (correction), 3	Caliph Omar, 167, 179
Aristarchos of Samos, 203	Box lid (inscription), 230	Calippos, length of season, 175, 261
Armellini, 171 Armillary sphere, 199 (fi	Brahmă. Creator in Hindu mythology, 223,	Cānakya, 213, 235, 236
Arsaces of Parthia, 178		Candragupta, Maurya, 213, 236,257
Artabanus I of Parthia, 213	$269$	Candragupta II, Vikramảditya, 254, 255
Artabanus II of Parthia, 256	Brahma Siddhānta, 1, 214	Capricorn, first point of, 192

Cara, correction, 268
Cardinal days, 189
Cardinal points, 189, 130, 219 ;
determination of, 190
Castana, Śaka Satrap, 233, 250
Centarrus. 163
Central Station, 3, 4, 7, 14, 40
Chanlwick, 202
Chaldem Sarob, 184, 185, 186, 202
Christ, Jesus, 157, 201
Chronometer, 157
Cicero, 205
Cleostratos of Tenedos, 193, 202 ; zodiac. 193. 202 ; 8-year cycle of intercalation. 202
(Clepsydrat, 159, 223, 225
Committee, Indian Calendar Reformappointment of, 4 ;

- dissenting note, 8,18 ;
final recommendations of civil, 6, 7 ; final recommandations of religious, 7,8 ; members of, 4 ;
proceerlings of the first meeting, 9 ; proceedings of the second meeting, 15 ; proceedings of the third meeting, 17 ; terms of reference. 4
Committee, Indian Ephemeris and Nautical Almanac, 8
Committee meetings, 4,5 ; resolutions of 4,5
Compline (division of day), 159
Constantine, Roman emperor, 170
Co-ordinate, celestial. Siddhāntic designation of, 262
Copernicus, 195, 203, 206, 235
Corpus-Inseriptionum Indicarum, 229
Cūḍāmaṇi yoga, 108
Cunningham, 230,231
Cycle of Indiction, 162

Dakşin̄āyana, 189, 219, 226, 239, 260
Danḍa ( = nādi or ghatikā), 160
Darius I, Achemenid emperor, 166, 176, 212, 256
Day,
apparent length of, 226 ;
astronomical. 159 ;
civil, 159 ;
counting of the succession of, 248 ;
definition of, 157, 217 ;
designation in ancient time, 183 ;
division among Egyptians, 160 ;
division among Hindus, 160 ;
Julian, 161, 162 ;
length of, 157, 159, 259 ;
length at Babylon, 226 ;
length of longest and shortest, 225 ;
mean solar, 157, 158, 159, 197 ;
reckoning of 13,14 ;
saura. 197 ;
sidereal, 157, 158 ;
solar, 157 ;
starting of, $1,5,7$; sub-divisions of, 159 ;
Debevoise, 230

Decad, 164
D' Eqlantine, 167
Declination, 192, 204, 263
Demetrius, 213
Democritos of Abdera, 202
Dewai (inscription), 229
Dharma Sindhu, 19, 101
Dhruva (celestial pole), 190, 192
Dhruvaka (polar long.), 192, 262, 263, 267
of junction stars, 264, 265
Digha Nikīya, 235
Dikşit, S. B., 11, 19, 160, 212, 219, 223, 224, 225, 236,237, 246, 262, 267. 268, 269
Diopter, 203
Dios, Macedonian month, 179, 229, 255
Direct motion, 169, 195
Diseovery, 190
Durgästami, 108
Dvādaśāha, 217

Earth-
equatorial axis of, 208 ;
period of rotation, 12 ;
polar axis of, 208 ;
speed in a second, 195 ;
spinning of, 208
Easter, 170, 171
Eclipses-
condition of, 185 ;
list of lunar, 186 ;
list of solar, 187 ;
periodicity of, 185 ;
recurrence of, 186 ;
saros cycle, 184-187;
Ecliptic, 158, 181. 191, 192, 197, 198, 207, 259;
definition of, 191 ;
earliest mention of, 199 ;
fixing of, 191 ;
plane of, 192, 207 ;
pole of, 192,208;
obliquity of, 191, 207, 208, 225
Ekādaáí, observance of, 105
Elements of Euclid, 202
Elliptic theory, 243
Encyclopaedia Britannica, 170, 179, 199
Epagomenai, 164
Ephemerides, 201
Ephemerides Committee, 4, 6
Epicycle, 203
Epigenis, 165
Epigraphia Indica, 233, 254
Equator, celestial, 191, 192, 197, 207, 239, 259
Equinoctial days, 188
Equinoxes, 188;
autumnal, 189, 192 ;
oscillation of, 268 ;
vernal, $2,11,13,188,189,192,205,253$, 260
Era, 13, 177, 228-231, 236, 251, 252, 258 ;
Amli, 244, 257, 258 ;
Arsacid, 178, 230 ;
Azes, 232;256;
Bengali San, 257, 258 ;
Buddha Nirväṇa, 256-258;
Burmese, 162 ;
Calukya Vikrama, 258;
Chedi (Kālaccurì), 258 ;

Era-contd.
Christian, 170, 251, 258 ;
current, 251 ;
Diocletion, 162 ;
elapsed, 251 ;
Fasli, 257, 258 ;
French Revolution, 167 ;
Gaingā, 257, 258 ;
Gupta, 255, 257, 258 ;
Harga, 254, 258 ;
Hejirā, 162, 180, 258 ;
introduction of, 177 ;
Jelali (Iranian), 162;
Jewish era of Creation, 179 ;
Jezdegerd (Persian), 162 ;
Kălāchuri (Chedi), 234 ;
Kaliyuga, 13, 162, 252, 254, 258 ;
Kaniska, 232, 256 ;
Kollam, 257, 258 ;
Kollam Andu, 257 ;
Krta, 254 ;
Kusäña, 231, 232 ; inscription of. 230 ; method of date-recording, 232 ;
Lakspmaṇa Sena, 258;
Laukika kāla, 258 ;
Maccabaean, 179 ;
Magi, 258;
Mahãvīra Nirvāṇa, 258;
Mälavagana, 254 ;
Nabonassar, 162, 177, 178, 253 ;
Newar, 162, 258 ;
Old Śaka, 230, 232-234, 236, 255, 256 ;
Olympiads, 178 ;
Pāndava kāla, 252 ;
Paraśurāma, 257;
Parganati Abda, 257 ;
Parthian, 178, 256 ;
Philippi, 162 ;
Raja Śaka, 258 ;
Saka, 2, 4, 6, 13, 162, 178, 214, 233, 234 , 236, 255-258; earliest records of, 233 ;
Saptaryi, 190, 252, 258;
Seleucidean, 161, 176, 178, 179, 229, 230, 231, 255, 256 ;
Vallabhi, 258 ;
Vikrama, 13, 234, 247, 254, 255. 257,-258;
Vilāyati, 244, 257, 258 ;
Yudhisthira, 252, 258
Eratosthenes, 178 ; on diameter of the earth. 203
Euclid, 202, 203
Eucratidas, 229
Euctemon, length of season, 175, 261
Eudoxus of Cuidus, 201, 202 ; on geometry, 203
Euphrates, river, 157
Euthydemids, 213
Evection, 204
Exact Sciences in Antiquity, 3, 197, 198, 201

Fabricious, 235
Fatehjang (inscription), 229
Festivals, Religious-
Alphabetical list of, 111-115
Christian, 126 ;
general rules for, 101 ;

Festivals, Religious-contd.
Lunar-general rules for, 102-105; dates of, 119-124
Moslem, 125 ;
Solar-general rules for, 106 ; dates of, 117-118;
South Indian-general rules for 106 ;
Fotheringham, Dr. J. K., 165

Galilio, 159
Gāndhāra, 225, 226, 229, 230; latitude of 225
Ganés caturthī, 108
Ganges, river, 157
Gangooly, P. L., 238
Garga, 226 ; receding of solstices, 226
Garga Sainhitā, 226
Gargasrota, river, 226
Gauṇa (māna), 247, 248
Geminus, 197
General Astronomy, 158
Geocentric theory, 204, 239
George Washington, birthday of, 161
Gesh (division of time), 160
Ghaţikā, 160
Ghirshman, 232
Ginzel, F. K. 162, 193
Gnomon, 159, 174, 188, 189, 202, 219, 223, 268 ;
measurement in Aitareya Brähmana, 266
Gondophernes, 178, 230
Gorpiaios, Greek month, 231
Great Bear (Saptarsi), 190
Greek Olympiads, 178
Greenwich time (U. T.), 14
Gregory XIII, Pope, 2, 10, 11, 170, 171
Gupda (inscription), 234
Guptas, 254, 255, 257

Hajj, 180
Hammurabi, Babylonian king, 175
Harapp $\overline{\text {, }} 212$
Harsa Vardhana, 254
Hashim, Amir Ali, 180
Hang, Dr. Martin, 216
Heliacal rising, 164, 191
Heliocentric theory, 203
Herzfeld, 252, $2 \overline{5} 5$
Hesiod, 201
Hidda (inscription), 230
Hipparchos of Nicaea, 165, 166, 177, 178, 192,
197, 200, 201, 203, 205, 206, 226, 235, 237,240;
catalogue of stars, 203 ;
discovery of precession, 205,267;
first point of Aries, 200, 205, 206 ;
geometry \& spherical trigonometry, 203, 204.

Hippocrates of Chios, 202
History of Science, 206
Hoang Hó, river, 157
Holidays, 5, 6 ; list of, 117-154;
Ajmer, 145 ;
Assam, 128;
Bhopal, 146 ;
Bihar, 129 ;
Bilaspur, 147 ;

Holidays, list of-contd.
Introduction to the History of Science, 159
Bombay, 130 ;
Christian festivals, 126 ;
Coorg. 148 ;
Delhi, 149 ; Jacobi, 215
East Punjab, 134 ;
Fixed holidays \& solar festivals, 117, 118 ;
Govt. of India, 127 ;
Himachal Pradesh, 150;
Hyderabad, 137;
Jammu \& Kashmir, 138 ;
Kutch, 151;
Lunar festivals, 119-124;
Madhya Bharat, 139 ;
Madhya Pradesh, 131;
Madras, 132 ;
Manipur, 152 ;
Moslem festivals, 125 ;
Mysore, 140;
Orissa, 133 ;
Patiala \& East Panjab States Union, 141 ;
Rajasthan, 142 ;
Saurashtra, 143 ;
Travancore-Cochin, 144;
Tripura, 153;
Uttar Pradesh, 135 ;
Vindhya Pradesh, 154 ;
West Bengal, 136
Horā, 236, 266
Horoscope, 196, 205, 256
Horoscopic astrology, 194, 196, 204, 256
Hour circle, 191
Hsiu, Chinese lanar mansion, 182, 183, 210, 211, 224 ;
names with component stars, 210, 211 ; starting of, 183
Huviska, 231
Hypatia, 204

Ibn Yunus, 206
Idavatsara, 225
Ides, 168
Idvatsara, 225
Iliad, 201
Indian Calendar, 246
Indian Ephemeris, An, 101
Indian Ephemeris and Nantical Almanac, $5,8,12,14,17$.
Indra, Indian god, 199, 215, 216
Indus. river, 157
Intercalary month (=malamasa), 175, 176,
245, 246 ;
Babylonian calendar, 176 ;
calculation of, 246, 249 ;
definition of 247 ;
eight-year cycle, 202 ;
Islamic calendar, 180;
Jewish calendar, 179 ;
list of acc. to modern calculations, 250 ;
list of according to S. S., 250 ;
19-year cycle, 176, 200, 202, 229, 245, 246 ;
Paitāmaha Siddhänta, 223 ;
Rg-Veda, 216, 218 ;
Romaka Siddhānta, 237 ;
Siddhānta Jyotişa, 246, 248 ;
Vedānga Jyotişa, 223; 224, 225, 246

Isis, Egyptian god, 164, 165

Jaikadeva, 254
Jai Singh of Amber, 10
Jāmotika, Śaka king, 233.
Janmāstamī, 19
Jātakas, 239
Jayanti, names of, 107
Jayaswall, 255
Jehonika, 230
Jelaluddin, Melik Shah, 166
Johann Werner, 206
Jones, Sir Harold Spencer, 6, 12, 158
Jovian cycle, 257
Jovian (Bārhaspatya) years, 270; names of, 270
Julian days, 161, 162
Julian days of important events, 162, 163
Julian period, 162
Julius Caesar, 2, 10, 159, 165, 168, 241
Junction stars, of naksatra, 184, 210, 211, 220 ; 262-265;
dhruvaka of, 264, 265 ;
latitude of (1950), 220, 264, 265 ;
" (1956), 184, 210, 211 ;
long. of (1950), 220, 264, 265;
(1956), 184, 210, 211 ;
magnitude of, 210, 211, 264, 265
Jupiter, planet, 194, 195, 203, 239 ;
sidereal period of, 270
Jyā (chord), 204
Jyotisa Karanda, 223

Kabishah, 180
Kadamba, pole of the ecliptic, 192
Kalä or liptikā, 160
Kālāloka Prakāsa, 223
Kalasang (inscription), 229
Kălāstamī, 108
Kāldarra (inscription), 229
Kalends, 168
Kalhana, Historian of Kashmir, 252
Kali, 162 ; long. of planets at Kali beginning 253
Kālidāsa, 7, 261
Kalpa, 162, 175, 214, 240, 268, 269
Kalpādi, names of, 107
Kāndāhār, 229
Kanişka, 230, 231, 236, 256
Kanişka 1, 231
Kanişka II, 232
Kanişka III, 231, 232
Kanişka Casket (inscription), 230
Kāniza Ḍheri (inscription), 231
Kāña, 213, 228
Kapişthala Kaţha Samihitā, 218
Kapsa, 230

## Karaṇa, 163

Karanas, definition, names and calculation of, 110 ; lords of, 110
Kathaka, 218
Kaurpa (name of a sign), 193

Kautilya, views on astrolory, 236
Keith, Dr. Berriedale, 218
Kendra, 236. 266
Kepler, 2, 206. 242
K"rtu (nole), 186
Khalatse (inscription). 229
Khandakhädyalia of Brahmagupta. 162. 240, 2.3

Eharosthi (inseription), 229.230. 231, 233
Khotani Saka (language), 231
Kidinnu, 200
Konow, Dr. Sten, 229. 231. 255
Krânti (declination), 262
Krttikis, 182, 219, 252
Kiaga month, 247, 248250
Kugler, 176, 106, 225
Kumbha melä, 6
Kumbha yoga, 108
Kurram (inscription), 230
Kuruksetra, latitude of, 225
Kuşaṇas. 213, 230-234, 236, 252, 256

Lagadha, 214, 222
Laghumānasa of Muñjāla, 162, 267
Lagna (orient ecliptic point), 237, 268
Lagrange, 167
Lalla, on precession 267
Lambaka (co-latitude), 239
Lañkā, Greeu wich of ancient India, 239, 253
Laplace, 167
Latitude, celestial, 192, 203, 204, 210, 211, 264 265 ; polar, 192, 263, 264, 265
Leap year, 6, 13, 15 ; of Islamic calendar, 180 ; of Reformed Calendar of India, 186
Leonardo of Pisá, 160
Leeuw, Mrs. Van Lohuizen, 232, 255, 256
Libra, first point of, 192, 199, 239, 262, 268
Liptikā, 160, 236, 263, 266
Lockyer, Sir Norman, 190
Lokavibhāga of Simhasuri, 233
Longitude, celestial, 7, 192, 203, 204, 210, 211 253, 264, 265 ; polar, 192, 263, 264, 265
Longitudes of planets at Kali-beginning, 253
Lüders, 228, 232
Lunar eclipse, 185
Lunar mansions, 182 ; of $\operatorname{Rg}$ Veda, 217 ; stars of, 210, 211
Lunar year, beginning of, 220, 221
Lunation, duration of, 158, 174, 175, 246 ; length of, 164, 248

Madhyähna, 101, 108
Mahābhārata, 170, 183, 185, 219, 221, 227, 228, 239, 252 ;
month reckoning in, 185 ;
time of compilation, 226, 252
Mahādvādáaí, defined, 107
Mahāyuga, 160, 162, 217, 254
Maira (inscription), 229
Maitrāyaū Sathhitā, 218
Malamàsa, 246, (see also intercalary month),
Mamāne Ḍheri (inscription), 231

Mápikiăla (inscription), 230
Mäpsehrä (ingcription), 229
Manvädi, names of, 107
Manzil, Arabian lunar mansion, 182, 183, 210, 211 ;
names with component stars, 210,211 ;
starting of, 183
Märguz (inscription), 229
Mars, planet, 194, 195, 203, 239 ;
retrograde motion of, 194
Misakft, 174
Matins, 159
Maues, 230, 233
Mauryas, 228
Max Müller, 183, 214, 215
Maya, 236, 238
Mean solar day, 157, 158
Mean solar time, 158
Meghadūta of Kälidāsa, 261
Melik Shab the Seljuk, 159
Menander, 213, 229, $23 \overline{0}$
Menelaos (Greek astronomer), 204 ; Spherical trigonometry, 204
Mercedonius, 168
Mercury, planet, 194, 195, 203, 239
Meridian passage, 57
Meşādi, 239
Meşādi, sidereal, 16, 17, 40
Meton of Athens, 176, 202 ;
ninetcen-year cycle, 202
Metonic cycle, 162, $1^{\prime} 6$
Milinda Pañho (philosophical treatise), 229
Mithra (Persian god), 167, 170
Mithradates I, 213, 255
Mithradates II, 213, 255
Mitra, Indian god, 215
Moga, Śaka king, 230
Mohammed Ajmal Khan, 180
Mohammed, Prophet, 159, 179, 180
Mohenjodāro, 212
Moise of Khorene, 232
Month, anomalistic, 197 ;
beginning in Babylonian calendar, 185 ;
definition of, 157, 158, 185 ;
draconitic, 186, 197 ;
intercalary (see intercalary month);
Lunar, 220, 221, 225, 245, 246 ;
commencement of as recommended by the Committee, 7;
names of Indian, Chaldean and Jewish, 177 ; Macedonian, 177, 229 ;
length of Islamic, 180 ;
interpretation of month names, 221 ;
length acc. to S. S., 246
reckoning in Mahäbhārata, 185 ;
relation between draconitic and synodic, 186 ;
sidereal, 223 ;
Solar, causes of variation in length, 243 ;
commencement of, 7 ;
definition of, 242 ;
different conventions in beginning of, 244 ;
duration of, 243 ;
Egyptian, 164 ;
first month of the jear, 5,6 ;

Month, Solar-contd.
Iranian names, 166 ;
length of, 211, 242-246, 251 ;
length recommended by the
Committee 2, 5, 6, 13, 15 ;
names in French Revolution calendar, 167 ;
names in Yajur-Veda, 218 ;
names of, Indian 5, 6, 7, 14, 15 ;
names, Persian 166, 167 ;
number of days in Vedaninga Jyotiş, 225 ;
variation in length, 1
Synodic period, 197,223
Moon, crescent of, 182 ;
deviation of path from the ecliptic, 192, 208;
inclination of path to the ecliptic, 201;
limiting values of true motion, 197 ;
mean daily motion, 197 ;
motion of, 182 ;
movement of, 31. 181, 182 ;
rate of motion over the sun, 184 ;
sidereal period of, 182 ;
synodic period of. 182
Mount Banj (inscription), 229
Mucai (inscription), 229
Muhürta, 100, 108, 160 ; lords of, 109
Mukhya māna, 247, 249
Mul Apin, Babylonian astrological text, 198
Muní́vara, commentator, 267
Muñjāla Bhata, 11, 259
on precession, 267-269
Mural quadrant, 203
Nabu Nazir, 177
Naburiannu, 200
Nadir, 157
Nägabhata, 257
Nahapāna. 233
Nakgatra, average length of, 224 ;
beginning of, 14, 229 ;
calculation of (acc. to the recommendations of the Committee), $5,7,16,17$;
component stars of, 210, 211 ;
def. of in earliest times, 183, 218, 227 ;
def. of in Vedānga Jyotişa, 183, 223-225;
designation of, 182, 183 ;
division of, 183, 184, 219 ;
junction-stars of, 184, 210, 211, 220, $264,26 \overline{5}$;
lords of, 109 ;
meaning of Indian, 182, 210, 211 ,
names of-general 210, 211, 263 ;
" Tamil, 109 ;
" " -Yajur Vedic with presiding
deities, 220 ;
number of, 182 ;
Rg-Vedic, 183 ;
shifting of the beginning of, 18, 19 ;
starting of 182, 183
Nandsa Yupa inscription, 254
Napolean Bonaparti, 168
Narseh. Sassanid king, 232
Nāsatya, 215
Nasit, 228

National Observatory, 5, 8, 12, 14
Nautical Almarac, 3, 165
Nepthys, 164
Neugebaner, O., 3, 160, 175, 185, 189, 192, 197, 198, 199. 201, 203, 204
New Testament, 169
Newton, Isaac, 2, 193, 206, 240, 259 ;
precession of the equinoxes, 207
Night, definition of, 157
Nile flood, 158, 164, 165, 174, 189
Nineteen-year cycle, 176, 200
Nirayana, 259, 260, 262, 268
Nirnaya Sindku, 101
Nirakta, 214
Niryāna, Buddha, 235, 257
Nisan, 161, 170, 175: 178, 179, 229
Niśitha, 108
Nodes, 185, 186, 187, 269
Nona, 159
Nones, 168
Nums Pompilius, 168
Nut, 164
Nutation, 209
Nyckthemeron, 157,159

Obliquity, of the ecliptic, 158, 191, 207, 208, 225 amonnt of, 191 ; definition of, 191 ;
Octaeteris, 176
Octavious Caesar, 168 ;
Odyssey, 201
Olympiads, 178
Omar Khayyam, 166, 172, 240 .
Omina, 195, 235
Orbit, of the earth, 207
Orion, 189
Orion, 190, 195
Osiris, Egyptian god, 164

Paikuli (inscription), 232
Paitāmaha Siddhänta, 223
Pāāā (inscription), 229
Palsa, 227-231;
krsina or vahula, 15, 221, 228, 233, 247 ;
śakla, 15, 221, 228, 247 ;
Pala, 160
Pialas, 257.
Pallavas, 256
Pañcaingas, list of, 21, 22
Paйca Siddkīntikī of Varāhamihira, 158, 162, $197,233,226,236,237,238$
Panemos, Greek month, 230
Pāṇini, 214
Panjtar (inscription), 229
Pannekoek, Dr Anton, .174, 176, 178, 185, 194, 196, 197.
Paraviddhä, 101, 108 ; rules for, 109
Parivatsara, 225
Passover fast, 170
Pātaliputra, 10, 213, 234, 252
Paulesa Sùddhārta, 204
Paulus of Alesandria, 204. 237
Perihelion, 242 ; movement of, 243 : -
Peshāซar Museum (inscription), 229; 230
Philhellens, 213

Phraates I, 213
Pictorial Astronomy, 194, 195
Pillai, S. K.,-101, 223
Pingala, 214
Planet, 169 ; order of distance, 203 ; references in Rg -Veda, 212 ;
Planetarium, 203
Planetory Astrology, 169, 194-196
Plato, 202, 203, 228, 229 ; geometry, 202
Pleiades, 182, 190, 195, 199, 219
Polar axis, 208
Polaris ( $x$ Ursae Minoris), 190, 207, 239
Pole, celestial, 191, 192, 207;
definition of, 191 ;
motion of, 207;
observation of, 190, 191 ;
precessional path of, 207
Pope, Gregory XIII, 159, 172
Pradoşarrata; 108
Prahara, 160
Prajäpati, 217
Praña (division of time), 160
Prätaḩ, 108
Precession of the equinoxes, 2, 7, 8, 193, 200, 204-206, 237, 238, 240, 253, 259, 267 ; Al-Battāni's rate of, 206 ; among Hindus, 226 ; among Indian astronomers, 267 ; . amplitude of precessional oscillation according to S. S., 268 ;
Bhāskarācārya's rate of, 269 ;
consequences of, 205, 206 ;
discovery of, 204, 205 ;
effect in Indian calendar, 7, 11, 18 ;
effect in Indian Siddhāntas, 226 ;
explanation by Newton, 207, 208 ;
Hipparchos's rate of, 205 ;
motion of (precessional), 208, 268 ;
Muñjala Bhata's rate of, 268 ;
numerical value of, 209 ;
physical explanation of, 207, 208 ;
Prthū̃aka Svāmi's rate of, 268 ;
Ptolemy's rate of, 205206 ;
rate of annual, 209 ;
rate of lunar, 208, 209 ;
rate of solar, 208, 209 ;
Sūrya Siddhānta's rate of, 268
Prthūdaka Svāmi, 259, 268, 269
Proclos, on precéssion, 206
Ptolemy, Claudius, 161, 165, 166, 177, 178, 185,
$192,200,201,203-206,214,228,238,240$,
263, 266 ;
on astrology, 205 ;
" evection, 204 ;
" rate of precession, 205 ;
", theory of planetary motion, 204 ;
Ptolemies, 213
Ptolemy, Euergetes, 165
Pulakesin I, 233
Pulakesi= 1I, 253
Pulastya, 236
Purãnas, 101, 252
Pūrṇimänta, month, 157, 227, 230, 231, 233, 247, 256
Puruşpur, 232
Pīrvāhna. 101, 108
Pürvaviddhā, 101; 108 ; rules for, 109

Puskalāvati, 230
Pythagorean number, 198 ;(fig.)

Quartz clock, 12, 159
Questionnaire, regarding calendar, 22 ; replies to, 23-31

Rā, Egyptian sun-god, 164
Rahu, ascending node, 186
Rāmāyana, 261

- Rāmpürva (inscription), 227

Ranganätha, 233
Rapson, 255
Refraction, 225,226 ; effect of, 225
Retrograde motion, 169, 194, 195
Kgg-Samihitā, 217, 218
Rig-Vedas, 183, 212, 214, 216, 217, 218, 221, 222 ;
calendaric references in, 216-218; description of, 215 ;
Ribhus, 216
Right ascension, 192,204
Riza Shah Pahlavi ; 167
Romaka, 236, 239
Rome, Era of foundation of, 178
Rotation of the earth, 157, 158
Rudradāman, 233
Rudra Simha, Saka satrap, 231,236

Sachs, A., 199, 201
Saha, Prof. M. N., 173, 232, 252, 256
Sahdaur A (inscription), 229
Sahdaur B (inscription), 229
Sahni, Dayaram, 232
Śakas, 213, 230, 233, 236
Śākadvipi Brähmanas, 214, 236, 256
Saka samivat, $2 \overline{5} 5$
ŚKkasthān, 213, 233
Sakendra kāla, 255
Śālivāhana Saka, $25 \overline{5}$
Samarkand, 10
Sāma Veda, 214, 218
Samihitàs, 214, 218
Saṁkrānti, 2, 7, 239, 244 ;
Mahāvisuva, 215 ;
Makara, 215
rules of, 244, 247, 259 ;
Uttarāyaṇa, 215 ;
Sampät calana, 269
Samudragupta, 255
Samvatsara, 255, 270
Sañgava, 108
Sanku (gnomon), 188
Sara (celestial latitude), 262
Sargon I, 215
Saros, 184, 185, 202, 217
Sarton, George, 159, 188, 203, 204, 206
Sästry, Mm. Bapudev, 259
Śāstry, Prof. Mm. Bidhusekhar,, $23 \overline{5}$
Śátakarnị, 228, 233
Satānanda, 160
Śatapatha Brāhmaǔa, 18, 189, 219
Śātavāhanas, 212, 213, 227-231, 233, 234, 255
Saturn, planet, 194, 195, 203, 239

Saura day, 197
Suivana, 2, 157, 223, 224
Säyühna, 108
Süyana, 1, 11, 12, 13, 217, 259
Scaliger, Joseph, 9, 11, 161
Scaliger, Julius, 162
Schmidt. Dr. Olaf, 163
Schrader, 215
Scientific American. 190
Scorpion, 193, 195, 138
Scythian Period of Indian History, 232, 255
Seasons, 157, 158, 174, 189, 216, 217, 227,230, 239
causes of, 259 ;
determination by gnomon, 189
error in counting, 260 ;
length of, $174,175,261$;
moving back of, 18 ;
names of Indian, 217. 241, 260 ;
position of, $1,6,260$;
relation of months with seasons in Vedic age, 216, 218 ;
in R r -Veda, 216, 217
Sel, Egyptian god 164
Scleucus, 178, 213, 228
Senas, Hindu ruling dynasty, 257
Seneca, 225
Sengupta, P. C., 183, 215, 221, 227, 238, 253, 266
Set, Egyptian god, 164
Sewell, R. S., 946
Sexta, 159
Shahpur I (Sassanid king), 232
Shama Sastry, Dr. R., 223, 224
Shin Kot (inscription), 229
Siddhānta Jyotişa, 161, 221
Siddhäntas, 1, 2, 3, 163, 234, .236, 237, 238, 245 ;
Ārya, 238, 242, 251 ;
Brahma, 238, 242, 251 ;
definition of, 234 ;
Paitāmaha, 236-238;
Pauliéa, 236-238;
Romaka, 236, 237, 240 ;
Sūrya, 236, 238-244;
Vāsiştha, 236, 237
Sidllhänta Selihara of Śripati, 162
Siddlānta Śiromani of Bhāskarācärya, 238, 269
Sidereal time, 158
Signs, of the zodiac, 192, 193, 191, 196, 206 , 223, 224, 237, 239, 240
Śiksā, 214
Sircar, D. C., $228,231,233,234$
Sirius, 164
Sivaràtri, 108
Sky and Telescope, 177
Solar day, mean, 157, 158 ;
division of, 159 ;
Solar cycle, 162 ;
Solar time, mean, 158 ;
Solstices, 188, 189, 226 ;
determination by Vedic Hindus, 266 ; observation in Aitareya Brähmaṇa, 266 summer, 188, 189, 192, 226, 266 ; winter, 13, 189, 192, 223, 224, 226, 241, 259 ;
Solstitial colure, 226

Somakara, 229
Sosigenes, 168
Sothic cycle, $16 \mathbf{j}$
Śripati, 11, 246
Śripena, 237 ; on precession, 267
Stone-henge, 189, 190
Sudi, 247, 248
Śuddha, 7, 247
Sui Vihar (inscription), 230
Sūlva-Sūtras, 190, 214
Sun, distance from the earth, 208 ;
entry into naksatras, 15, 40 ;
mass of, 208 ;
mean daily motion, 197 ;
semi-diameter of, 225
Sun-dial, 159
Sun-1ise. 15 ;
timings of certain important places, 116
Sun-set. 15 timings of certain important places, 116 ;
Suñga, $213, \underline{2} 28,235$
Sūrya Praj̃apti, $223 \quad$ Ulugh Begh, 10
Sürya Siddhānta, 1, 2, 158. 189, 192, 203, 214, Umbra Extensa, 204 236-240, 242-46, 250, 251, 253, 262-264, Umbra Versa, 204 267, 268, 270; calendar in, 239, 240 ; description of, 238, 244 ; error in length of year, 2,241 ; length of the year, $2,240,241$; star positions of, 264,265 ; theory of trepidation, 268
Sūtras. 214, 215, 221; Srauta, Gṛhya, Dharma, Sūlva, 214
Synodic period, 158, 175, 182 ; revolution of planets acc. to P. S., 197
Syntaxis or Almagest, 192, 201, 203, 204

Taittirīya Brāhmaña, 182;
Taittiriya Sainhitā, 218, 220, 221, 260
Takht-i-Bahi (inscription), 229
Tantra, 163
Tarn, 229, 255
Taxila, 213, 228, 230, 256
Taxila copper plate (inscription), 229
Taxila silver scroll (inscription), 229
Taxila silver vase (inscription), 229
Telephos of Kapśā, 230
Tertia, 159
Tetrabiblos, 201, 204, 205
Thabit-ibn-Qurra, 206
Thales of Miletus, 202
prediction of solar eclipse, 202 ;
Theaitetus of Athens, 202 ;
Theon of Alexandria, 204, 206, 240 ; on trepidation, 206, 240
Thibaut, Dr. G., 197, 223, 225, 237
Thirteen-mouth calendar, 171
Thoth, Egyptian god, 164
Tigris, river, 157
Tilak, B. G., 11, 189, 215, 216
Time, natural divisions of, 157-160
Timocharis, 205
Tiridates, 178
Tisya, 217, 227

Cllulu, 176
Tithi. 183, 218, 227, 228, 230, 234, 236, 248 ;
average daration of, $221,222,224,248$; comparison of Siddhantic and modern, 3 . defined, 3, 221 ;
definition in Aitareya Brāhmaņa, 221 ;
" "Siddhāntas, 221 ;
" " Vedäñga Jyotişa, 224, 225 ;
duration of Vedic tithi, 221 ;
error in the old method, 3,14 ;
lords of, 109 ;
measurement of, 248 ;
names of, 222 ;
numbers of, 15, 221, 222
Tithitatoam, 101
Trepidation, theory of, 204, 206, 207, 238, 240, 259, 268, 269
Tulädi, 239
Tycho Brahe, 206

Und (inscription), 231
Upanişads, 214, 215
Uranometry, 205
Usavadata, Śaka prince, 233
Ctkalakalikā, 101
Utkramajyā, 204
Uttariyana, 189, 219, 224, 226, 239, 260

Vadi, 247, 248
Vaidya, Prof. R.V., 263
Vaidyanātha Dīksitīyam, 101
Vājasaneyi Samihitā, 218
Vajheska, 231
Van der Waerden, 160
Varähamihira, 2, 7, 192, 193, 197, 223, 226, 236, $237,238,240,252,255,267$
Varuṇa, Indian god, 215, 216
Vasistha, Indian sage, 236
Vāsiştha Siddhānta, 236, 237, 267
Väsudeva I, 231, 232
Vāsudeva II, 231, 232
Vedas, description and literature, 214 ; age of its literature, 214, 215
Vedāñgas, 214, $21 \overline{\text { an }}$
Vedān̄ga Jyotişa, 161, 217, 224, 226, 237, 240, 241, 245, 246; description of, $221-225$
Vehsadjun, 232
Ventris, 202
Venus, pianet, 194, 195, 198, 203, 239 ; heliacal rising and setting of, 6, 15 ( see also Calendar for five years).
Vernal equinox, $2,158,226,239,241,267$
Vernal point, 1, 158, 205 ; movement of, 193, 194, 205, 267
Vespers, 159
Vidyasagar, Pandit Ishwar Chandra, 260
Vighati, 160
Vikramāditya, 254, $2 \overline{55}$
Viksepa, 192, 262-265, 267
Virapuruşadatta, 228

Vispu Candra, 237; on precession, 267
Vişuvān, 216, 219, 221, 266
Tişuvānśa, 268
Vogt, 203
Vrddha Garga, 253
Vyäkarana, 214

Wardak (inscription), $230^{\circ}$
Water-clock, 157, 159
Webster, A. G., 207, 208
Week, 169, 170, 203, 223, 234. 251, 252 ;
origin and invention of, 169, 170
Winternitz, 214, 215, 218
World Calendar Association, 10, 12, 171
Worlds' day, 172, 173 ?

Täjüavalkya Vājasaneyn, 218
Yajur Veda, 182, 183, 214, 218-222;
Black, 218 ;
Śukla, 218 .
Yājurveda Sainhitā, 218
Yäjus Jyotiṣa, 222
Yāma, division of day, 160
Yamakoti, 239
Yämärdha, 108
Yäska, 214
Yavanapuri, 23 ?
Yavanas, 213, 256.

INDEX
Year, 216 ; beginning of, 1, 4, 6, 13, 175 ; beginning of in Brähmaņas, 241, 245 ; beginning of lunar, 221 ;
" ". in Paitīmaha, 223 ;
" " in S. S., 239
" ". religious calendar, 251 ;
" " "Siddhāntio, 11, 241, 245 ;
v " Solar, 2, 241;
" "Vedäñga Jyotisa, 241, 245 ;
"Vedic Aryan, 216, 218 ;
definition of, 157, 158 ;
draconitic (eclipse), 186 ;
error in beginning of, $1,13,15,241$;
error in beginning of Indian solar, 2 ;
first month of, 4, 6, 241, 242, 251 ;
Jovian (Bārhaspatya), 270 ;
length (average) of Babylonian, 161, 177 ;
length of as found by ancientastronomers,
174, 261;
?Brahmagupta, 162;
" "Gregorian, 12, 13 ;
" . "Paitāmaha, 233, 240;
" " "Ptolemy, 240;
" " sidereal, 158, 2005, 240, 246 ;
". " solar, 223 ;
" "Sūrya Siddhānta, 2,240, 241, 246;
". "tropical, $1,2,4,12,158,174,175$,
$\therefore \quad 205,240,246$;
" :"Varāhamihira, 240;
"Vedic Arjan, 216 ;

Year-contd.
starting day of the solar, 241
Yoga, names and lords of, 110 ;
calculation of, 110
Yogatārā (junction star), 183, 184, 210, 211
Yuga, 217;
of Romaka Siddhānta 237
of Vedänga Jyotisa, 223, 224 ;
Yugādi, 107

Zarathustra, 167
Zeda (inscription), 230, 231
Ziggurat, 196
Zinner, Dr. Ernest, 164, 196
Zodiac, definition of, 192, 193, 202 ;
first point of, 14 ;
lunar, 182, 183, 223, 226 ;
Arabian, 182, 183 ;
Chinese, 182, 183 ;
Indian (see nak§atra)
place of origin, 183 ;
Rg Vedic, 217 ;
position through ages, 200 ;
signs of the, 193 ;
starting point of, 193 ;
zero point of the Hindu, 262, 266, 267, 269 ;
Zodiacal signs, different names of, 193 (see also
signs of the zodiac).

漟

