REPORT
OF THE
CALENDAR REFORM COMMITTEE
GOVERNMENT OF INDIA

Council of Scientific and Industrial Research,
Old Mill Road,
New Delhi.
1955
REPORT
OF THE
CALENDAR REFORM COMMITTEE

GOVERNMENT OF INDIA

Council of Scientific and Industrial Research,
Old Mill Road,
New Delhi.
1955
M E S S A G E.

I am glad that the Calendar Reform Committee has started its labours. The Government of India has entrusted to it the work of examining the different calendars followed in this country and to submit proposals to the Government for an accurate and uniform calendar based on a scientific study for the whole of India. I am told that we have at present thirty different calendars, differing from each other in various ways, including the methods of time reckoning. These calendars are the natural result of our past political and cultural history and partly represent past political divisions in the country. Now that we have attained independence, it is obviously desirable that there should be a certain uniformity in the calendar for our civic, social and other purposes and that this should be based on a scientific approach to this problem.

It is true that for governmental and many other public purposes we follow the Gregorian calendar, which is used in the greater part of the world. The mere fact that it is largely used, makes it important. It has many virtues, but even this has certain defects which make it unsatisfactory for universal use.

It is always difficult to change a calendar to which people are used, because it affects social practices. But the attempt has to be made even though it may not be as complete as desired. In any event, the present confusion in our own calendars in India ought to be removed.

I hope that our Scientists will give a lead in this matter.

Jawaharlal Nehru

New Delhi,
February 18, 1953.
MEMBERS OF THE CALENDAR REFORM COMMITTEE

CHAIRMAN

Prof. M. N. Saha, D. Sc., F. R. S., M. P.,
Director, Institute of Nuclear Physics,
92, Upper Circular Road, Calcutta-9.

MEMBERS

Prof. A. C. Banerji, M. A., M. Sc., F. N. I.,
Vice-Chancellor, Allahabad University,
Allahabad.

Dr. K. L. Daftari, B. A., B. L., D. Litt.,
Mahal, Nagpur.

Shri J. S. Karandikar, B. A., LL. B.,
Ex-Editor, The Kesari,
568 Narayan Peth,
Poona-2.

Dr. Gorakh Prasad, D. Sc.,
Reader in Mathematics, Allahabad University,
Beli Avenue, Allahabad.

Prof. R. V. Vaidya, M. A., B. T.,
Senior Lecturer in Mathematics, Madhav College, Ujjain,
78, Ganesh Bhuvan, Freegunj, Ujjain.

Shri N. C. Lahiri, M. A.,
55A, Raja Dinendra Street, Calcutta-6.

Shri N. C. Lahiri acted as the Secretary of the Committee.
The scheme of transliteration of Sanskrit alphabets into Roman script adopted in this publication is the same as generally followed. The corresponding scripts are given below:

<table>
<thead>
<tr>
<th>VOWELS</th>
<th>CONSONANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>अ ... a</td>
<td>k ... p</td>
</tr>
<tr>
<td>आ ... ā</td>
<td>kh ... ph</td>
</tr>
<tr>
<td>इ ... i</td>
<td>g ... b</td>
</tr>
<tr>
<td>ई ... ī</td>
<td>gh ... bh</td>
</tr>
<tr>
<td>उ ... u</td>
<td>h ... m</td>
</tr>
<tr>
<td>ऊ ... ū</td>
<td>c ... y</td>
</tr>
<tr>
<td>ऋ ... ṭ</td>
<td>ch ... r</td>
</tr>
<tr>
<td>ऌ ... ṭḥ</td>
<td>j ... l</td>
</tr>
<tr>
<td>ऎ ... e</td>
<td>jh ... v</td>
</tr>
<tr>
<td>ए ... e</td>
<td>n ...</td>
</tr>
<tr>
<td>ऐ ... ai</td>
<td>ṭh ... s</td>
</tr>
<tr>
<td>ओ ... o</td>
<td>d ... h</td>
</tr>
<tr>
<td>औ ... au</td>
<td>dh ...</td>
</tr>
<tr>
<td>ओ ... o</td>
<td>t ... th</td>
</tr>
<tr>
<td>औ ... au</td>
<td>th ... h</td>
</tr>
<tr>
<td>ओ ... o</td>
<td>d ... dh</td>
</tr>
</tbody>
</table>

N.B. Diacritical marks have not generally been used in names of persons belonging to recent times as well as in well-known geographical names.
PREFACE

The Calendar Reform Committee was appointed in November, 1952, by the Council of Scientific and Industrial Research (of the Government of India) with the following terms of reference:

"To examine all the existing calendars which are being followed in the country at present and after a scientific study of the subject, submit proposals for an accurate and uniform calendar for the whole of India."

In accordance with its terms of reference, the Committee (for personnel, see p. 4) has scientifically examined all the calendars prevalent in India (vide Part C, Chap. V), viz.——

Gregorian Calendar—which is used for civil and administrative purposes (vide p. 170) all over the world.

Islamic Calendar—used for fixing up the dates of Islamic festivals (vide p. 179).

Indian Calendars

or Pañcāṅgas——used for fixing up dates and moments of Hindu, Baudhā and Jainā festivals in different States of India, and in many cases for civil purposes also. They are about 30 in number. (vide Chap. V, p. 258).

It has been pointed out (p. 171) that the Gregorian calendar, which is used all over the world for civil and administrative purposes, is a very unscientific and inconvenient one. The World Calendar (p. 173), proposed by the World Calendar Association of New York, has been examined and found suitable for modern life. The proposal for its adoption by all the countries of the world for civil and administrative purposes was sponsored by the Indian Government before the U. N. O. and debated before the ECOSOC (Economic and Social Council) at Geneva in June, 1954 (p. 173) and its recommendations have been transmitted to the Governments of the World for their opinion. It is hoped that the World Calendar will be ultimately adopted. It will lead to a great simplification of modern life.

The introduction of the World Calendar in place of the Gregorian is a matter for the whole world, which has now to look for decision by the U. N. O.

The Islamic (Hejira) calendar has been discussed on p. 179, along with some proposals for reform suggested by Dr. Hashim Amir Ali of the Osmania University, and Janab Mohammed Ajmal Khan of the Ministry of Education. It is for the Islamic world to give its verdict on these suggestions. If these suggestions are accepted, the Islamic calendar would fall in line with other luni-solar calendars.

As these two important systems of calendars had to be left out, the Committee's labours were confined to an examination of the different systems of calendars used by Hindus, Baudhās and Jainās in the different states of India, chiefly for the fixing up of the dates and moments of their religious festivals, and for certain civil purposes as well.

For the purpose of examining all the existing calendars of India, as per terms of reference, an appeal was issued to the Pañcāṅgas (Almanacs) makers for furnishing the Committee with three copies of their Pañcāṅgas. In reply to our request 60 Pañcāṅgas (Almanacs) were received from different parts of the country and were examined (p. 21). To facilitate examination of the calendars, a questionnaire was issued to which 51 replies were received (pp. 23-31). In addition to the above, 48 persons offered their suggestions (pp. 32-38) for reform of the Indian calendar. These views were very divergent in character. Some quoted ancient scriptures to prove that the earth is flat, with a golden mountain in the centre round which move the sun and the planets, others tried to refute the precession of equinoxes. All opinions were taken into consideration in arriving at the decisions of the Committee.

Principles followed in fixing up the Calendar:—The calendar has got two distinct uses—civil and religious. The Indian calendars are used not only for fixing up the dates and moments of religious observances but also for the purpose of dating of documents and for certain civil purposes not only by the rural, but also by a large section of the urban population. There is great divergence in practice in different parts of the country in this respect. Therefore a unified solar calendar has been proposed for all-India use for civil purposes. This has been based on the correct length of the year (viz. the tropical year) and the popular month-names, viz., Caitra, Vaiśākhā, etc. have been retained (see p. 6).

Calendars are based partly on SCIENCE which nobody is permitted to violate and partly on CONVENTIONS which are man-made and vary from
place to place. The Indian calendars put up by almanac-makers commit the violation of the following principles of science —

They take the length of the year to be 365.258756 days (p. 240, Part C of Report) as given by the Sūrya-Siddhānta about 500 A.D.; while the correct length of the tropical year, which alone can be used according to the Sūrya-Siddhānta and modern astronomy for calendrical use, is 365.242196 days. The difference of 0.01656 days is partly due to errors of observation, not infrequent in those days, and to their failure to recognize the precession of equinoxes. As the Sūrya-Siddhānta value of the year-length is still used in almanac-making, the year-beginning is advancing by 0.01656 days per year, so that in the course of nearly 1400 years, the year-beginning has advanced by 23.2 days, with the result that the Indian solar year, instead of starting on the day following the vernal equinox, i.e., on March 22, as prescribed in the Sūrya-Siddhānta (see Chap. V, p. 239), starts on April 13 or 14. The situation is the same as happened in Europe due to the acceptance of 365.25 days as the length of the year at the time of Julius Caesar; the Christmas originally linked to the winter solstice preceded it by 10 days by 1582 A.D., when the error was rectified by the promulgation of a bull by Pope Gregory XIII. By this Friday, October 5 was proclaimed as Friday, October 15, and new leap-year rules were introduced.

Unlike Europe, where the Pope in the medieval times possessed an authority which every one in Catholic Europe respected, India had a multiplicity of eras and year-beginnings due to her history during the years 500-1200 A.D. But for calendric calculations, our astronomers all over India have been using only the Śaka era since Āryabhaṭa (500 A.D.) certainly and probably from much earlier times, and in local almanacs other eras are simply imposed on it. The Calendar Committee has therefore recommended —

That for all official purposes, the Central as well as State Governments should use the Śaka era along with the civil calendar proposed by the Committee (p.6). It is suggested that the change-over may take place from the Śaka year 1878, Caitra 1 (1956, March 21). If this is accepted, the last month of the year, i.e., 1877 Śaka, the solar Phālguna, which has a normal length of 30 days, will have an extra number of 6 or 7 days.

The pre-eminence of the Śaka era is due, as historical evidences cited on pp. 228-238 and 255-257 show, that it was the earliest era introduced in India, by Śaka ruling powers, and have been used exclusively by the Śakadvipī Brahmins (forming the astrologer caste) for calendar-making on the basis of Siddhāntic (scientific) astronomy evolved by Indian astronomers on the basis of old Indian calendric conceptions, which were put on scientific basis by blending with them astronomical conceptions prevalent in the West, from the third century B.C.

The era is also used exclusively for horoscope making, a practice introduced into India since the first century A.D. by the Śakadvipī Brāhmaṇas.

The Calendar Committee has devised a solar calendar with fixed lengths of months for all-India use, in which it has been proposed to give up the calculations of the Sūrya-Siddhānta in which the solar months vary from 29 to 32 days.

Religious Calendar—The Committee's task resolved itself into a critical examination of the different Indian local calendars, about 30 in number, which use different methods of calculation. This produces great confusion.

As already stated the Sūrya-Siddhānta year being longer than the tropical year by about 24 mins., the Hindu calendar months have gone out of the seasons to which they conformed when the Siddhāntic rules were framed; as a result, the religious festivals are being observed not in the seasons for which they were intended but in wrong seasons. The Committee felt that the error should be corrected once for all and the months brought back to their original seasons. But with a view to avoiding any violent break in the present day practices, the desired shifting has not been effected, but any further increase of the error has been stopped by adopting the tropical year for our religious calendar also (see p. 7).

Before the rise of Siddhānta Jyotiṣa (400 A.D.), India used only the lunar calendar calculated according to the Vedāṅga Jyotiṣa rules and most religious festivals (e.g. the Jannāṭāṃa, the birthday of Śrī Kṛṣṇa) used to be fixed up by the lunar calendar which used only tithi and nakṣatra. The Calendar Committee could not find out any way of breaking off with the lunar affiliation short of a religious revolution and has, therefore, decided to keep them. For this purpose, the lunar year is to be pegged on to the solar year by a number of conventions. The Committee has adhered to the ancient conventions as far as possible. But the erroneous calculations of tithis and nakṣatras have been replaced by modern calculations given in the nautical almanacs and modern ephemeredes, and the religious holidays have been fixed for a central station of India (vide page 40).

The present practice is to calculate the tithi for each locality and the result is that the same tithi may not occur on the same day at all places. The Calendar Committee has found that the continuance
of different lunar calendars for different places is a relic of medieval practice when communication was difficult, the printing press did not exist and astrologers of each locality used to calculate the calendar for that locality based on Siddhantic rules and used to proclaim it on the first day of the year calendar for that locality based on station (\an:i\,...\,\E, \text{see} Report p. 40); and recommended that these holidays may be used for the whole of India. The dates of festivals of the Hindus, Jainas and Bauddhas have been determined on the above basis. This will put an end to the calendar confusion.

The confusion is symbolic of India's history. While all Christendom comprising people of Europe, Asia and America, follows the Gregorian calendar, and the whole of the Islamic world follows the Hejira calendar for civil and religious purposes, India uses 30 different systems for fixing up the same holidays in different parts of the country and frequently, two rival schools of pa\=n\c{c}\=n\c{g}a-makers in the same city fix up different dates for the same festival. This is a state of affairs which Independent India cannot tolerate. A revised national calendar, as proposed by us, should usher a new element of unity in India.

The Committee has therefore gone deeply into the history of calendar-making in all countries from the earliest times particularly into the history of calendar-making in India (\textit{vide} Chap. V) and has arrived at their conclusions. Its recommendations are entirely in agreement with the precepts laid down by the Siddh\=antistic astronomers, as given in the S\=urya-S\=iddh\=anta and other standard treatises (see p. 238 et seq.).

The Committee has also compiled a list of all religious festivals observed in different parts of India and listed them under the headings (i) Lunar, and (ii) Solar, with their criteria for fixing the dates of their observances (pp. 102-106).

Where does the Government come in?: Though India is a secular state, the Central Government and the State Governments have to declare a number of holidays in advance, a list of which will be found on pages 117-154 for the Central Government as well as for the States. These holidays are of four different kinds, viz.:

(i) Holidays given according to the Gregorian calendar, e.g., Mahatma Gandhi's birthday, which falls on Oct. 2. These present no problem to any government.

(ii) But there are other holidays, which are given according to the position of the Sun (\textit{vide} pp. 117-118).

(iii) Others which are given according to the luni-solar calendar (pp. 119-124).

(iv) Holidays for Moslems and Christians (pp. 125 and 126).

It is a task for the Central as well as State Governments to calculate in advance dates for the holidays it gives. This is done on the advice of Pa\=n\c{c}\=n\c{g}a-makers attached to each Government. In addition, numerous indigenous pa\=n\c{c}\=n\c{g}as are prepared on the Siddh\=ant\=ic system of calculations, the elements of which are now found to be completely erroneous. There is a wide movement in the country first sponsored by the great savant, patriot and political leader, the late Lokamanya B.G. Tilak, for making the pa\=n\c{c}\=n\c{g}a calculations on the basis of the correct and up-to-date astronomical elements. As a result, there are almost in every State different schools of pa\=n\c{c}\=n\c{g}as, differing in the durations of thithis, nak\=p\=atras, etc., and consequently in the dates of religious festivals. The problem before the Government is: which one of the divergent systems is to be adopted. The Committee has suggested a system of calculations for the religious calendar also, based on most up-to-date elements of the motion of the sun and the moon. Calendars for five years from 1954-55 to 1958-59 have been prepared on this basis showing therein \textit{inter alia} the dates of important festivals of different States (\textit{vide} pp. 41-100). The lists of holidays for the Government of India and of each separate State for the five years have also been prepared from this calendar for the use of the Governments. The Committee hopes that the Government of India as well as the State Governments would adopt these lists in declaring their holidays in future. The Ephemerides Committee which has been formed by the Government of India, consisting of astronomers versed in the principles of calendar-making would act as advisers to the Central as well as State Governments. It may be assisted by an advisory committee to help it in its deliberations.

The responsibility of preparation of the five-yearly calendar and the list of holidays on the basis of recommendations adopted by the Committee has been shared by Sri N. C. Lahirii and Sri R. V. Vaidya, aided by some assistants and several pandits of note, amongst whom the following may be mentioned: Sri A. K. Lahirii, Sri N. R. Choudhury, Pandit Narendranath Jyotiratna, and Joytish Siddhanta Kesari Venkata Subba Sastry of Madras.

We have received great help from C. G. Rajan, B.A., Sowcarpet, Madras. He has kindly furnished...
us with valuable suggestions regarding 'Rules for fixing the dates of festivals for South India'.

We are indebted to the Astronomer Royal of Great Britain, Sir Harold Spencer Jones, and to Mr. Sadler, head of the Ephemerides division of the Royal Observatory of U. K. for having very kindly supplied us with certain advance data relating to the sun and the moon which have facilitated our calculations. We have to thank the great oriental scholar, Otto Neugebauer for having helped us in clearing many obscure points in ancient calendaric astronomy. We wish to express our thanks to Prof. P. C. Sengupta for helping us in clearing many points of ancient and medieval Indian astronomy.

We have reproduced figures from certain books and our acknowledgement is due to the publishers. It was however not possible to obtain previous permission from them, but the sources have been mentioned at the relevant places.

It is a great pleasure and privilege to express our gratitude to our colleagues of the Calendar Committee for their active co-operation in the deliberations of the Committee, and ungrudging help whenever it was sought for.

M. N. Saha
Chairman

N. C. Lahiri
Secretary
CONTENTS

Message from the Prime Minister	iii
Members of the Calendar Reform Committee	v
Transliteration	vi
Preface	vii

PART A

Introductory	1
Appointment of the Committee	4
Final Recommendations of the Committee	6

ANNEXURE:

I—Proceedings of the First Meeting of the Committee	9
II—Proceedings of the Second Meeting of the Committee	15
III—Proceedings of the Third Meeting of the Committee	17
IV—A Summary of reasons for the dissenting note by Dr. K. L. Daftari	19
V—List of Pañcāṅgas received	21
VI—Questionnaire	22
VII—Summary of suggestions for Indian Calendar Reform received from different persons and institutions	32

PART B

REFORMED CALENDAR OF INDIA for each month of the five years 1876 to 1880 Śaka 41-100

General rules for religious festivals	101
Lunar festivals	102
Solar festivals	106
Criteria of some festivals for South India	106
Certain special tithis and combinations	107
Certain special Yogas	108
Tithis, Nakṣatras, Muhūrtas and their lords	109
Yogas & Karanas	110
Alphabetical list of festivals	111
Sunrise and sunset for certain important places	116

LIST OF HOLIDAYS

| Consolidated list of holidays for all States of India— | 117 |

A—Fixed holidays & Solar festivals	117
B—Lunar festivals	119
Moslem festivals	125
Christian festivals	126

PART C

History of the Calendar in different countries through the ages

I—General Principles of Calendar Making	157-163
1.1 Introduction	157
1.2 The natural periods of time	157
1.3 The problems of the Calendar	158
1.4 Subdivisions of the day	159
1.5 Ahāragaṇa or heap of days: Julian days	161

II—The Solar Calendar	164-173
2.1 Time reckonings in ancient Egypt	164
2.2 Solar calendars of other ancient nations	165
2.3 The Iranian Calendar	166

Government of India Holidays

| Page |
Assam Holidays	128
Bihar	129
Bombay	130
Madhyā Pradesh Holidays	131
Madras	132
Orissa	133
East Punjab	134
Uttar Pradesh	135
West Bengal	136
Hyderabad	137
Jammu & Kashmir	138
Madhyā Bharat	139
Mysore	140
Patiala & East Punjab States Union Holidays	141
Rajasthan Holidays	142
Saurashtra	143
Travancore-Cochin	144
Ajmer	145
Bhopal	146
Bilaspur	147
Coorg	148
Delhi	149
Himachal Pradesh	150
Kutch	151
Manipur	152
Tripura	153
Vindhya Pradesh	154

List of Holidays for different States of India—

| Page |
Assam Holidays	128
Bihar	129
Bombay	130
Madhyā Pradesh Holidays	131
Madras	132
Orissa	133
East Punjab	134
Uttar Pradesh	135
West Bengal	136
Hyderabad	137
Jammu & Kashmir	138
Madhyā Bharat	139
Mysore	140
Patiala & East Punjab States Union Holidays	141
Rajasthan Holidays	142
Saurashtra	143
Travancore-Cochin	144
Ajmer	145
Bhopal	146
Bilaspur	147
Coorg	148
Delhi	149
Himachal Pradesh	150
Kutch	151
Manipur	152
Tripura	153
Vindhya Pradesh	154
CONTENTS	
-----------------	---
CHAPTER	PAGE
2.4 The French Revolution Calendar	167
2.5 The Roman Calendar	168
2.6 The Gregorian Calendar	170
2.7 The World Calendar	171
3.1 Principles of luni-solar calendars	174
3.2 Moon's synodic period or lunation: Empirical relation between the year and the month	175
3.3 The luni-solar calendars of the Babylonians, the Macedonians, the Romans and the Jews	176
3.4 The introduction of the era	177
3.5 The Jewish Calendar	179
3.6 The Islamic Calendar	179
4.1 The Moon's movement in the sky	181
4.2 Long period observations of the moon: The Chaldean Saros	184
4.3 The Gnomon	185
4.4 Night observations: the celestial pole and the equator	190
4.5 The apparent path of the sun in the sky: The Ecliptic	191
4.6 The Zodiac and the Signs	193
4.7 Chaldean contributions to astronomy: Rise of planetary and horoscopic astrology	194
4.8 Greek contributions to astronomy	201
4.9 Discovery of the precession of the equinoxes	204
5.1 The periods in Indian history	212
5.2 Calendar in the Rg-Vedic age	214
5.3 Calendaric references in the Yajur-Vedic literature	218
5.4 The Vedianga Jyotisa Calendar	221
5.5 Critical review of the inscriptionsal records about calendar	226
5.6 Solar Calendar in the Siddhanta Jyotisa period	234
5.7 Lunar Calendar in the Siddhanta Jyotisa period	245
5.8 Indian Eras	251
Appendix:	
4-A—Newton's explanation of the precession of the equinoxes	207
4-B—Stars of the lunar mansions	210
5-A—The Seasons	259
5-B—The Zero-point of the Hindu Zodiac	263
5-C—Gnomon measurements in the Altareya Brahmana	266
5-D—Precession of the Equinoxes amongst Indian Astronomers	267
5-E—The Jovian years	270
Corrigenda and Addenda	271
Bibliography	272
Index	274
BIBLIOGRAPHY

Achelia, Elisabeth (1955)—Of Time and the Calendar, New York.
Āryabhaṭya of Āryabhaṭa—translated with notes by W. E. Rhys, Chicago, 1930.
American Ephemeris & Nautical Almanac for the years 1954 and 1955.
Basak, Dr. Radhagovinda (1950)—Kauṭilya Arthashastra, Bengali translation, Calcutta.
Bhaudar (1927-34)—Inscriptions of Northern India, Appendix to Epigraphia Indica, Vols. XIX-XII.
Clark, Walter Eugene (1930)—The Āryabhaṭiya of Āryabhaṭa, English translation with notes, Chicago.
Couderc, Paul (1945)—Le Calendrier, France.
Cunningham, Alexander (1883)—Book of Indian Eras with tables for calculating Indian dates, Calcutta.
Debevoise (1938)—Political History of Parthia.
Deydorj (1951)—Le date de Kaniska etc. Journal Asiatique, Vol. 239.
Driweolen, Sādhanākara (1925)—The Sūrya Siddhānta, translation under his editorship, Asiatic Society of Bengal, Cal.
Encyclopaedia Britannica (14th edition)—Articles on Chronology, Calendar and Easter.
Epigraphia Indica, Vol. XXVII.
Flammarion, C. & Gare, J. E. (1907)—Popular Astronomy, London.
Haug, Dr. Martin—Āitareya Brāhmaṇa of the Rig-Veda.
Hersfeldt (1932)—Sakasthan, Archaeologische Mitteilungen ans Tran.
Journal of Calendar Reform, New York.
Keith, Dr. Berriedale—The Veda of the Black Yajur School entitled Taittirīya Samhitā, Part. 2.
Konow, Dr. Sten (1939)—Corpus Inscriptionum Indicarum, Vol. II, Kārṣṭṭi Inscriptions.
Lahiri, N. C. (1952)—Tables of the Sun, Calcutta.
Liddeler (1909-10)—A list of Brāhmaṇ Inscriptions from the earliest times to 400 A.D. Appendix to Epigraphia Indica, Vol. X. (The references are given, e.g., Liddeler 942, which means inscription No. 942 of Liddeler).
Majumder, N. G. (1929)—Inscriptions of Bengal, Rajshahi, Bengal.
Nautical Almanac (British) for the years 1935 & 1954 to 1956.
Neugebauer, O. (1952)—The Exact Sciences in Antiquity, Princeton, New Jersey.
Newcomb, Simon (1904)—A Compendium of Spherical Astronomy, New York.
BIBLIOGRAPHY

Paeth, B. D. (1944)—Consider the Calendar, New York.

Roy, J. C. (1938)—Amidha Jyotisha O Jyotiṣa (Bengali), Calcutta.

Scientific American, 188, 6-25, 1953, New York.

Sen, Sukumar (1941)—Old Persian Inscriptions of the Achaemenian Emperors, Calcutta University.

Sengupta, P. C. (1947)—Ancient Indian Chronology, Calcutta University.

Sewell, R. S. (1924)—The Siddhāntas and the Indian Calendar.

Sewell, R. S. & Dikṣit, S. B. (1896)—The Indian Calendar, London.

Smūni, Vijñānānanda (1909)—Sūrya Siddhānta, Bengali translation with notes, Calcutta.

Tilak, B. G. (1939)—Orion or Researches into the Antiquity of the Vedas, Poona.

Van der Waerden—Science Awakening.

Van Lohuizen de Leeuw (1949)—The Sthyan Period, Leiden, (shortly called L. de. Leeuw or Leeuw with page following).

Webster, A. G.—Dynamics of Particles and of Rigid Elastic & Fluid bodies.

Winternitz—History of Indian Literature, Vol. I, Calcutta University.

Zinner, Dr. Ernest (1931)—Die Geschichte der Sternkunde, Berlin.
INDEX

Holidays, list of—contd.
- Bombay, 130 ;
- Christian festivals, 126 ;
- Coorg, 148 ;
- Delhi, 149 ;
- East Punjab, 134 ;
- Fixed holidays & solar festivals, 117, 118 ;
- Govt of India, 127 ;
- Himachal Pradesh, 150 ;
- Hyderabad, 137 ;
- Jammu & Kashmir, 133 ;
- Kutch, 151 ;
- Lunar festivals, 119-124 ;
- Madhya Pradesh, 131 ;
- Madras, 132 ;
- Manipur, 132 ;
- Moslem festivals, 125 ;
- Mysore, 140 ;
- Orissa, 133 ;
- Patiala & East Punjab States Union, 141 ;
- Rajasthan, 143 ;
- Saurashtra, 148 ;
- Trancunore-Cochin, 144 ;
- Tripura, 153 ;
- Uttar Pradesh, 135 ;
- Vindhya Pradesh, 154 ;
- West Bengal, 193 ;
- Horai, 236, 266 ;
- Horoscope, 196, 205, 256 ;
- Hotoscope astrology, 194, 196, 204, 256 ;
- Hoar circle, 191 ;
- Hsin, Chinese lunar mansion, 182, 183, 210, 211, 224 ;
- names with component stars, 210, 211 ;
- starting of, 183 ;
- Huviska, 231 ;
- Hypatia, 234 ;
- Jiba Yunnus, 206 ;
- Idavatsara, 225 ;
- Iδes, 169 ;
- Iδravisara, 225 ;
- Iδrid, 201 ;
- Indian Calendar, 246 ;
- Indian Ephemeris, An, 101 ;
- Indian Ephemeris and Nautical Almanac, 5, 8, 12, 14, 17 ;
- Indra, Indian god, 199, 215, 216 ;
- Indus. river, 157 ;
- Intercalendar month (= mulamasa), 175, 176, 245, 246 ;
- Babylonian calendar, 176 ;
- calculation of, 246, 249 ;
- definition of 247 ;
- eight-year cycle, 202 ;
- Islamic calendar, 180 ;
- Jewish calendar, 179 ;
- list of acc. to modern calculations, 250 ;
- list of according to S. S., 250 ;
- 19-year cycle, 176, 200, 203, 210, 245, 246 ;
- Pāṭāmāha Siddhānta, 249 ;
- Re-Veda, 216, 218 ;
- Romaka Siddhānta, 237 ;
- Siddhānta Jyotiṣa, 246, 248 ;
- Vedāṅga Jyotiṣa, 223, 224, 225, 246 ;

Introduction to the History of Science, 159
- Isa, Egyptian god, 164, 165 ;
- Jacobi, 215 ;
- Jaldās, 254 ;
- Jai Singh of Amber, 10 ;
- Jāmotika, Śaka king, 233 ;
- Janmaśāti, 19 ;
- Jātaks, 239 ;
- Jayanti, names of, 107 ;
- Jayaswal, 225 ;
- Jeconia, 230 ;
- Jelaluddin, Melik Shah, 166 ;
- Johann Werner, 206 ;
- Jones, Sir Harold Spencer, 6, 12, 158 ;
- Jovian cycle, 207 ;
- Jovian (Bhaskaputra) years, 270 ;
- names of, 270 ;
- Julian days, 161, 162 ;
- Julian days of important events, 162, 163 ;
- Julian period, 162 ;
- Julius Ceasar, 3, 10, 155, 165, 168, 241 ;
- Junction stars, of nakṣatra, 184, 210, 211, 220 ;
- long of, 262-265 ;
- dhrvaka of, 264, 265 ;
- latitude of (1950), 220, 264, 265 ;
- long of (1950), 220, 264, 265 ;
- magnitude of, 210, 211, 264, 265 ;
- Jupiter, planet, 194, 195, 203, 239 ;
- sidereal period of, 270 ;
- Jyā (chord), 204 ;
- Jyotisa Karaṇa, 223 ;

Kabir, 150 ;
- Kadamab, pole of the ecliptic, 192 ;
- Kalā or lipātā, 160 ;
- Kaṭkiolaka Prakāśa, 225 ;
- Kalasang (inscription), 229 ;
- Kālaṇṭa, 108 ;
- Kāldara (inscription), 229 ;
- Kalendra, 198 ;
- Kalhaṇa, Historian of Kashmir, 253 ;
- Kali, 161 ;
- long. of planets at Kali beginning, 233 ;
- Kālīdāsa, 7, 251 ;
- Kalpa, 182, 175, 214, 240, 268, 269 ;
- Kalpadi, names of, 107 ;
- Kāndāhār, 229 ;
- Kaniṅka, 230, 231, 236, 256 ;
- Kaniṅka I, 231 ;
- Kaniṅka II, 232 ;
- Kaniṅka III, 231, 232 ;
- Kaniṅka Casket (inscription), 230 ;
- Kānta Dheri (inscription), 251 ;
- Kārta, 213, 224 ;
- Kapīṭhala Kāṭha Siddhāti, 218 ;
- Kapra, 230 ;
- Kāruṇa, 163 ;
- Kāraṇas, definition, names and calculation of, 110 ;
- lords of, 110 ;
- Kāṣhāka, 218 ;
- Kapra (name of a sign), 193 ;
INDEX

Month, Solar—contd.

Iranian names, 106 ;
length of, 211, 242-246, 251 ;
length recommended by the Committee 9 ;
names in French Revolution calendar, 167 ;
names in Yajur-Veda, 218 ;
names of, 5, 6, 7, 14, 15 ;
names, Persian 166, 167 ;
number of days in Vedâgga Jyotisha, 228 ;
variation in length, 1
Synodic period, 197, 223
Moon, crescent of, 182 ;
deviation of path from the ecliptic, 192, 209 ;
inclination of path to the ecliptic, 201 ;
limiting values of true motion, 197 ;
mean daily motion, 197 ;
motion of, 182 ;
movement of, 31, 181, 182 ;
rise of motion over the sun, 184 ;
sidereal period of, 192 ;
synodic period of, 192
Mount Bân (inscription), 229
Muci (inscription), 229
Muhiirta, 100, 108, 160
Mukhâ, 100,
Mûriîna, 229
Naburîîna, 229
Nâgabhâta, 211, 229
Nabhâpa, 223
Nâkpatra, average length of, 224 ;
beginning of, 14, 229 ;
calculation of (see to the recommendations of the Committee), 9, 7, 18, 17 ;
component stars of, 210, 211 ;
def. of in earliest times, 183, 218, 227 ;
def. of in Vedâgga Jyotisha, 183, 223-225 ;
designation of, 182, 183 ;
division of, 183, 218, 219 ;
junction-stars of, 184, 210, 211, 220, 224, 265 ;
lords of, 109 ;
meaning of, Indian, 182, 210, 211 ;
names of, 210, 211, 263 ;
also Tamil, 109 ;
also Yajur Vedic with presiding deities, 223 ;
number of, 182 ;
Yajur Veda, 183 ;
shifting of the beginning of, 18, 19 ;
starting of, 182, 183
Nânda Vâsa inscription, 254
Nâyapith, 120
Nâseh, Sassanian king, 232
Nâshya, 215
Nâsik, 228

Lagadha, 214, 222
Laghnîmînâtan of Mûlânâ, 162, 267
Lagna (orient ecliptic point), 237, 265
Lagrange, 167
Lalla, on procession 207
Lambâka (co-latitude), 239
Laikâa, Greenwich of ancient India, 239, 253
Laplace, 167
Latitude, celestial, 192, 203, 204, 210, 211, 254
polar, 192, 203, 204, 205
Leap year, 6, 13, 15 ; of Islamic calendar, 180 ;
of Reformed Calendar of India, 180
Leonardo of Pisa, 160
Leeuw, Mrs. Van Lohuizen, 226, 225, 226
Libra, first point of, 192, 199, 228, 230, 238
Lîptâs, 103, 236, 253, 266
Lockyer, Sir Norman, 129
Lokârajâ of Sîthasurî, 223
Longitude, celestial, 7, 192, 203, 204, 210, 211
254, 264, 265
polar, 192, 203, 204, 205
Longitudes of planets at Kali-beginning, 233
Lûders, 238, 239
Lunar eclipse, 185
Lunar mansions, 182 ;
of Yaj Veda, 217 ;
stars of, 210, 211
Lunar year, beginning of, 220, 221
Lunation, duration of, 158, 174, 175, 246 ;
length of, 104, 246
Madâbyâna, 101, 108
Makhâbhârat, 170, 183, 185, 219, 221, 227, 228, 229, 232 ;
mouth reckoning in, 183 ;
time of compilation, 226, 228
Mahâvidâsa, defined, 107
Mahâyangâ, 103, 107, 217, 254
Maitâ (inscription), 229
Maitrîyâgâ Sâkhâ, 218
Malâmâsâ, 246, (see also intercalary month),
Mamâs̄t̄e (inscription), 231
Mâwikâla (inscription), 230
Mâsesâ (inscription), 229
Mânapû (inscription), 217
Mânapû (inscription), 217
Manzâl, Arabian lunar mansion, 182, 183, 210, 211 ;
names with component stars, 210, 211 ;
starting of, 153
Mârguz (inscription), 229
Mars, planet, 194, 195, 203, 239 ;
retrograde motion of, 194
Mâtâšâ, 174
Matsya, 170
Maurus, 233
Maurus, 228
Max Müller, 183, 214, 215
Maya, 236, 238
Mean solar day, 157, 158
Mean solar time, 158
Megâdhi of Kâliaîas, 261
Melik Shah the Seljuk, 159
Mecander, 213, 229, 235
Menâe (Greek astronomer), 204 ;
Spherical trigonometry, 204
Mercury, planet, 194, 195, 203, 239
Mercury, year, 185
Meridian passage, 57
Mesâli, 239
Mesâli, sidereal, 15, 17, 40
Methon of Athens, 176, 207 ;
nineteen-year cycle, 203
Meaning cycle, 182, 195
Mînâdî Paîho (philosophical treatise), 229
Mithra (Persian god), 167, 170
Mithradates I, 213, 255
Mithradates II, 213, 255
Mîna, Indian god, 215
Moga, Šaka king, 230
Mohammed Ajmal Khan, 223
Mohammed, Prophet, 159, 179, 190
Mohendjodaro, 212
Moise of Khorene, 233
Month, anomalistic, 197 ;
beginning in Babylonian calendar, 183 ;
definition of, 157, 158, 185 ;
draconistic, 195, 197 ;
calendar, (see intercalary month) ;
Lunar, 230, 231, 245, 245, 248 ;
commencement of as recommended by the Committee 7 ;
names of Indian, Chaldean and Jewish, 177 ;
name, Iranian, 180 ;
interpretation of month names, 221 ;
length acc. to S. S., 248
reckoning in Mahâbhâratâ, 185 ;
relation between draconistic and synodic, 188 ;
sidereal, 223 ;
Solar, causes of variation in length, 243 ;
commencement of, 7 ;
definition of, 242 ;
different conventions in beginning of, 244 ;
duration of, 243 ;
Egyptian, 164 ;
first month of the year, 5, 6 ;
INDEX

Year, 216; beginning of, 1, 4, 6, 13, 175; beginning of in Brahmasastra, 241, 243; beginning of lunar, 221;
 " in Pishtamaha, 223;
 " in S. S., 229
 " religious calendar, 251;
 " Sidhanta, 11, 241, 245;
 " Solar, 2, 241;
 " Vedanga Jyotisa, 241, 245;
 " Vedas Arany, 216, 218;

definition of, 197, 158;
 " draconic (eclipse), 180;
error in beginning of, 1, 13, 15, 241;
error in beginning of Indian solar, 2;
 first month of, 4, 6, 241, 242, 243;
 " Vrddha Garga, 258

length (average) of Babylonian, 161, 177;
length of as found by ancient astronomers, 174, 261;
 " Brahmagupta, 182;
 " " " " Gregory, 12, 13;
 " " " " Pishtamaha, 223, 240;
 " " " " Ptolemy, 240;
 " " " " sidereal, 138, 202, 240, 246;
 " " " " solar, 223;
 " " " " Surya Siddhanta, 2, 240, 241, 246;
 " " " " tropical, 1, 2, 12, 138, 174, 175, 233, 240, 246;
 " " " " Varahamihira, 240;
 " " " Vedas Arany, 216;

Year—contd.
 starting day of the solar, 241
 " Yoga, names and lords of, 113;
 " calculation of, 110
 " Yoga (junction star), 183, 241, 210, 211
 " Yoga, 217;
 " of Romaka Siddhanta 237
 of Vedanga Jyotisa, 223, 224;
 " Yoga, 217

World Calendar Association, 10, 12, 171
 " World's day, 172, 173

Yajnavalkya Vajasaneyi, 218
 " Yajur Vedas, 182, 183, 214, 215-222;
 " Black, 218;
 " Suka, 219

Yajus Jyotisa, 222

Yama, division of day, 100

Yamadhoa, 103

Yaks, 214

Yavanapuri, 237

Yavanas, 213, 226

Zarathustra, 167
 " Zeda (inscription), 230, 231
 " Ziggurat, 196
 " Zinner, Dr. Ernest, 164, 196

Zodiac, definition of, 193, 195, 202;
 " first point of, 14;
 " lunar, 182, 223, 226;
 " Arabian, 182, 183;
 " Chinese, 182, 183;
 " Indian (see nakshatra)
 " place of origin, 183;
 " Vedic, 217;
 " position through ages, 200;
 " signs of, 193;
 " starting point of, 193;
 " zero point of the Hindu, 292, 296, 297, 299;

Zodiacal signs, different names of, 193 (see also signs of the zodiac).