
AN INTRODUCTION TO THE 
THEORY OF STATISTICS~ 



OTHER BOOKS OF INTEREST 

J310MATHEMATICS. • 
Principles of Mathematics for Students of Biological Science. 

By W. M. FELDMAN, M.D., B.S (Lond.), F.R.S.(Edin.), 
F.R.C.S. 
(.Xl!\'Tf:l\'TS.-lntro<luotorv-Loi!anll.ma-A F..w l'ointl!' in Al~!<>br&-A Fl'W 
PointB in Elementary 'lri.{onorii.etry-A Jo'ew l~fJinrs in El('mPT1tary ME"l181tm
tioo~...:.Priea-fimple &nd f'ompound Jotef'f'8t8 l..aW!II in )i:Mtore-FunctlnDA 
and ThPir UraplJit:-&1 RPpresf>..ntation-!iomOilf"llpby-!Ji.tferPotiaJe and 
DiJierential C-oPthctrnts-Maxima and Minima-Estimation of Errol"'' of 
Ohservation--8uCCf'88ive lllfft:>f'l'"ntiatino-lnt4Ynll f'alcuJU&-liicx-bemiral 
Appli!'atioll8 of Jntt~~tion-ThE"nnodyn&rulc · Considerations and Tb,.ir 
Biologic..al Applicat.ions-l7se of lnt~l ('akulns in Animal lf~h8llil.'&
l"se of the lntf>t!Tal ValcuiUA for lJet.•nninin~ LeJJcths,. A.J·•=-as. and VolumP.B, 
alao CentTeA of Gravity aud Moments of lr1Prtur-8pecial Me:tb0111l of lnt~
rat.ion- Differential Equatiom- Fourit·r'a 8eriee- Mathematical Analy-.is 
Appliod w tbe Oo-ordination of Experimentalllesul-llJometq-AY.I'ICl'VJX 
-L'<I>KX. 

Second Edition. Eri'iarged and Re-set. In Large Crown Bvo. 
Cloth, Pp. 'i-xviii+480. With many worked numerical 
examples, and 164 Diagrams • • • • • • 2Ss. 
".An excellent introduction, and worthy of great praise."-Edin. Jlul. Jaw. 

MEDICAL JURISPRUDENCE & TOXICOLOGY. 
By WILLIAM A. BREND, M.A.Cantab., M.D., B.Sc.(Lond.). 
001\"TD"TS.-Part I: Medical Jurisprudence--Introductioo-ldPntificativn: 
of the Living: of tbe Dead-The Medit'O·Le,-al R•lations of Death~~•gns of 
Deatb-.Death from Causes nsually Jeadiu~ to A..~pby:~:ia--llf>...atb by Bum.il.l.g, 
S1ll18troke, and Electricity-Death from l<•ltl, and DPBth from 8tarva.tion
Wounds and Mocbanical Injuries-Matt<>rs involving tbe &xual J-unctions 
-Pregnancy and, Legitimacy-criminal Abortion-Rirtb: lnianUc•de
The Forms of lnsanity-Le"al Relatiolll!bips of Insanity and Otber Al:>n<>nnal 
StatEs of Mind-Medical Examinations for ~llaneous l'u.---.Medical 
Privileges and Obligatioos-EnMnce and .l>~ure as reg'lrds tbe Meo.l••·al 
Man. Part tl : T oxicology-GP.neral }'acta l\·it.b Rf'£'anl to l'oisorlilt-
Corrosive Poisons-Irritant Poi5ons (.Metals and Nou-Metala}-POI~)Jl.ll of 
Animal Origin and Poisoning by Food-L'<lJEL 

Seventh Edition, Revised. Pocket Size._ Pp. i-xiii+32S. 
lOs. 6d. 

"A trustworthy .. ·ork ••. especially suitable for students and practitiouera." 
-.Lanca. 

RADIO FREQUENCY MEASUREMENTS. By Moullin. Second 
Edition. 487 pp. 289 Illustrations • . Hs. 

STUDIES IN MOLECULAR FORCE. By Cha~ley. I 18 pp. 7s. 6d. 
THE CALCULUS FOR ENGINEERS AND PHYSICISTS. By Smith. 

Second Edition. 207 J;p. Diagrams and Plate 9s. 
THE POL Y,NUCLEAR COUNT. By Cooke and Ponder. 80 pp. 

Jllus. . • . . . . 6s. 
ELEMENTARY HA:MATOLOGY. By Cooke. 100 pp. 54 lllus. 

7s. 6d. 
THE FINANCE OF LOCAL GOVERNMENT AUTHORITIES. By 

Burton.· 289 pp. . . . . lOs. 
MECHANISED ACCOUNTANCY. By Curtis. 143 pp. 76 lllus. 

15s.' 
Prices net, Postage E xtrca 

CwlRLES GRIFFIN & CO •• L TO. 
Technical Publishert1 since 1820 

2 DRURY LANE, LONDON, W.C.l 

.. . 
~ 



AN· 'INTRODUCTION. TO· THE 

THEORY OF .. STATIS1JI0t 
BY 

G. UDNY.YUJ.JE, C.B.E., 1\I.A., i.R.S., 
FELLOW OF l7l lORN'S OOLLBGB, .lND II'OIUIEBL Y RBIDIIlR IN 

STATISTICS, CAKBBWGB; BOI'IORARY VJCJI.PBRSIDEN:r 

OP T~ ROYAL STATD!T[CAL 80CIBTY 

AND 

:M. G. KENDALL, .M.A., 
J'OnKEBL Y JIA1'HE1U.TJCAL IK'IIOLAB OP ST JOHN'S OOU.EGIII, CAKBBIDGE ;' 

FEU.OW 0' TUB DOYAL BrATISTICAL SQ('JE'l'Y, .. 

U'lttb 55 ll>tagram~ anl) 4 l'ol~tng ~lates 

EtkVENTH EDITION, REVISED THROUGHOUT 4ND RE.SET. 

LONDON: 

CHARLES .QRIF:tnN & COMPANY, LIMITED, 

42 DRURY LANE, w:c.2: 
19 3 7, 

[AU Right• Rutn~ed.] 



Prink<! ia Cmlt Brita by 
Nau. 6: Co., LID., EDD18uac& 



...\BRIDGED PREFACE TO THE FI~ 
EDITION. 

THE following chapters are based on the courses of instruction given 
during my tenure of the Xewmarch Lectureship in Statistics at University 
College, London, in the sessions 1902-1909. The variety of illustrations 
and examples has, howeYer, been increased to render the book more 
suitable for the use of biologists and others besides those interested in 
economic and ,;tal statistics, and some of the more difficult parts of the 
subject have been treated in greater detail than was possible in a sessional 
course of some thirty lectures. To enable the student to proceed further. 
with the subjt'Ct, fair1y detailed lists of references to the original memoirs 
have been ginn: exercises have also been added· for the benefit, more 
especially, of the student who is working ";thout the assistance ol'a 
teacher. . 

The volume represents an attempt to work out a systematic intro
ductory course on statistical methods-the methods available for dis
cussing, as distinct from collecting, statistical data-suited to those who 
possess only a limited knowledge of mathematics: an acquaintance with 
algebra up to the binomial.t theorem, together with such elements of 
co-ordinate geometry as are now generally included therewith, is all that. 
is assumed. I hope that it may prove of some service to the students of 
the diverse sciences in which statisti(·al methods are now employed. 

G. U. Y. 
D~emMHHO. 
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PREFACE TO THE E"LEVEN"TH EDITION. 

THE ''Introduction to the ThEory of Statistics" ha,·ing coinpleted fh·e-anc 
twent\· wars of life it was decided that the time had come when a comple1 
re,·i5i~n· !>hould be 'made. This, I felt, I could not personally undertake 
it was clearlv a task for a Youn(l'er man, more in touch with recent literatm 
and less aff~cted by the. prej~dices of age in fayour of the old and tl 
fan1iliar. 

::\Ir Kendall undertook the ta!>k not merely with willingness but wi1 
enthusiasm. I read his typest·ript, but to him is primarily and almo 
soldy due the credit for suggesting the general lines of the re\i.;;ion, ar 
for earrying out the agreed suggestions: the only new chapter for whic 
I am directly responsible is Chapter 2-' on Iuterpolation and Graduatio 
ba~cd on a few leetures sometimes ineluded in former eourses. 

I hope that in its new form the book may long continue to be of servi 
to further generations of !>tudents. 

C .. UIBRIDGE, 

July 1937. 

G. UD:\Y YL-LE. 

Ix the re,·ision undertaken for this edition, apart from some substitutic 
of new numerical illu!.trations for old, \-cry little of the material appeari1 
in earlier editions has been deleted. A few minor alterations ha,·e b{·· 
111ade-the matter forn1erly included in suppleme11ts has bee~1 incorporat 
in t!.e text, and tJ,ere has been some rearrangement-but the maj 
changes are almo,t entirely in the form of additiom. Of these, the mj 
important are sewral new dHipters on Sampling, inclu<l_'ng an int 
duetory chapter on Small Samples. (hapters han' also been adJed 
::\Iomcuts and ::\Ieasures of Skewness and Kurtosis, and on Simple CtJ~ 
Fitting by t!.e ::\lethud of Lca>.t Squart:s. ::\lr Yule has contributed a r.: 
chapter on Interpolation and Graduation. For the first titne Table~ 
the \·arirJus fun<"tions commonly requin-d in stati~tieal work ha,·e h1 
assembled at the t·nd of the book. Throughout the preparation of t 
new material I ha,·e had the benefit of ::\Ir Yule's encouragement, critiei 
and ad\·ice. 

The complete revision has presented the opportunity of i~suing 
book in new form, and it is hopt:d that the larger page awl type will 

1\'ii 
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found an improvement. A 1nore dio;tinetive system of paragraph number· 
ing and paragraph headings has been introduC'erl. Some further Excrr·io;e~ 
have also been addl'd. 

Notwithstanding the mathematical eharader of rePent development'! 
· n statistical theory, an attempt has been made to keq> within tlw limit'! 
aid down by Mr Yule for earlier editions of thi<> h'1ok in regard to the 
<nnwledge of mathematics required by its readers. In one or two placf's 
t has been neeessary to introduce the notation of t lw integral calculns, 
mt this hHs been aC'companicd by explanations in term<> of gcomrtrir·al 
de as. 

It is a pleasure to rceord ?IJ r Yule's and my indebtedness to "~tudcnt '' 
nd the proprietors of llletron for permission to reproduce a slight!~· 

ondensed version of the former's tabks of the t-integral: and to R. A. 
'isher and Messrs Oliver & Boyd for permission to reproduce the tables 
f the significance points of the z-integral from Professor Fisher's 
Stati:stical .l!ethu!h'for Research Workers." The tables for the 0·1 per l'f'nt. 
~vel of z are due to \Y. E. Deming, Lola S. Deming and C. G. Co!Pord. 
'ho, have also very generously given their consent to the reproduction. 

I shall feel indebted to any reader who directs my attention to possible 
,Tors, omissions, ambiguities or obscurities. 

i LONDON, 

' July 1937. 
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NOTES ON NOTATION AND ON TABLES FOR 
FACILITATING STATISTICAL WORK. 

A. Notation. 
The reader is assumed to be familiar with the commoner mathematical 

signs, e.g. those for addition and multiplication. We shall alsQ; employ 
the following symbols, all of which are in general use :- . 

. .. .. . 
The Factorial Sign. . .. 

The symbol n I, read " factorial n," means the number 

lx2x3x ••• x(n:.:2)x{n-l)xn · 

Factoriai 'n is by some writers: expressed by the· symbol- ~ but this . 
notation appears to be falling out of use in favour of n !, probably owing 
to the greater ease with which the latter form can be printed and type- · 
~~~ ., . . . 

The Combinatoria~ Sign. 
The symbol "C,. means the number of ways in which r things can be· 

chosen from n things, e.g. li'C13 is the number of ways in which a hand 
of cards can be dealt from an ordinary pack of 52 _cards. 

In mO!.t t_ext-books on Algebra it is shown that 

"C n! nc 
'" r !(n -r} 1"" · ,,._,., 

. The Summation Sign. 
- ~· ' . . 

. x. is -M-itten· S (.x,.), fead "sum a;,. The sum of n numbers 3'1, Xao • 

from one to n," i.e. 
. r•l , · 

r-• 
. S (xr) =4'1 +xa +tra + • •· • +X~ta-11 +x,. 

r-1 .. 

. -

Where no ambiguity is likely to arise, the ·suffix r and· the limits 
, written above and below S are omitted, e.g. the ·abo\·e sum would be· 
' written simply S(.r), it being understood froll) the context that the 
. summation extends over the n values. · ·· · . ' 

lUany writers use the Greek letter :t instead of S. - -
I 

The Greek Alph,bet. , • 
As the letters of the Greek alphabet will often be used as symbols, we · 

give for connnience the names of those letters. · _ . , - . ·, 
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Small {'a pi tal 
~:lmt". 

Small fapitnl 
~amt". uttl"r. Letter. Letter. Lettt>r. 

a .\ ·alpha v ~ IIU 

fJ B beta ~ - xi , r gamma 0 0 omicron 
~ .l. delta 1T II pi 
£ E epsilon p p rho 

' z zeta u, S' :I sigma ., H eta .,. T tau 
() @ theta v y upsilon 
t I iota <fo 4> phi 
K K kappa X X chi ()'nm. ki) 
..\ A lambda 

"' 
.., psi 

,.,. )I mu (I) 0 omeg.1 

.. 
B. Calculating Tables. ,. 

For heaYy arithmetical work a calculating machine is inYa)uahle: 
but owing to their cost machines are, as a rule, beyond the reach of the 
student. 

For a great deal of simple work. especially work not intended for 
publication, the student will find a slide rule exceedingly useful : par
ticulars and prices will be found in any instrument-maker's catalo~ue. 
For greater exactness in multiplying or diYiding, logarithms are alm~t 
essential. 

If it is desired to aYoid logarithms, use may he made of exte11ded 
multiplication tables. There are a great many of these and some 
references to different fom1s are giwh. in the list on pages S:?.a.-5:!.5. 

In addition to general arithmetical tables of this kind. the studeut 
will derive inYaluable aid from llarlow's "Tablu of Squares. Cubes, S•Juarc
roots, Cube-rooL<~, aud Reciprocals of All lnf£gral Xum[,ers up to 10.000" 
(E. & F. X. Spon, London and Xew York, price 7s. 6d.), whic·h are u~eful 
over a "ide range of statistical work. 

C. Special Tables of Functions Useful in Statistical Work. 
The tabl's and diagram at the end of this book will conr m••,t of 

the student's ordinary requirements. Other tables appear in the works 
cited on page 525. The more adYanced student will find it useful to haYe 
"Tables for St£Jfi~tician:s Wid Biouutricians" (('ambridge rniwrsity Pres->, 
Part I, price 15s., and Part 2, price 80s. )-particularly Part 1. Jle,.:areh 
workers will wish to have the tables appended toR..\. Fi5her's "St<Iti.-tical 
Jlethods fur Research Jf' orkers," tab ed. (Olinr & lloyd, price u~. ). 

D. References to the Text. 
Each section in the book is di~tinguished by a number in hea,·y type 

('Onsisting of the number of the chapter in which the sec·tivn ~xcurs 
prefLxed to the number of the sec-tion in that chapter and seJ-ar&teJ fr•)lll 
it by a period; e.g. 7.13 means the Thirteenth Section c·f Uwpter 7, 
bUd 10.1 refers to the First Sec·tion of Chapter 10. The IIitroJuctiun, 
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Xlll 

which precedes Chapter ~.·is for this purpose regarded as Chapter 0, e.g.' 
0.26 refers to the Twenty-sixth Section of the Introduction. Reference$ 
to sections are given simply by the number of the sections, e.g. T We sa"! 
in 8.3 n-means "''"e saw in the Third Section of Chapter 8." , · ~ I 
. Similarly, equations, tables, examples, exercises and diagrams are 
distinguished first of all with the number of the chaptet in which they 
occur and then, separated by a period, with their serial number wit)lin 
the chapter, e.g. ·•• Table 6.7" refers to the Seventft Table in Chapter 6, 
and •• Equation (17.8)" refers to the Eighth Equation of Chapter 17. 
These figures are in ordinary type~ 

This simple notation saves a good deal of unnecessary wording. To 
facilitate quickness of reference we sometimes give pages as well. · 

A dV;tinction is draWn between examples, which are given in the texi 
for purposes of illustration, and exercises, which are set at the end of the 
chapter for the stud~nt to work_out for himself. 



. . 
INTRODUCTION; 

Number and Measurem~nt. 
· 0.1. Western civilisation is pervaded by ideas of number and measu~1 

ment. Even the events of our everyday life are inextricably bound 
with them. 'Ve have o~y to picture a race which cann_?t count or meas 
trying to run the· Ba~ of England, or control the rmlk market, or e'l 
understand the sporting oolumns of the daily press, to realise how deeil 
rooted numbers are in the ·complex activities of the modern world. . ! 

0.2~ ..... Science itself is particularly indebted .to numerical expressio 
As organised knowledge has increased, the necessity Ior. precision. b, 
become greater, and in the fonnulation of precise statements number a( 1 

measurement have played a leading part. The desire for quantitati11 
expression was fll"st felt in the physical sciences, but it has now spread inl 
nearly all branches of knowledge. The movement is by no means co~ 
plete. however, and may be seen at work to-day. As a significant instan~ 
we may note that courageous attempts are being made to· subject t}1 
process of thought itself-that last stronghold of the contentious· and. tJ 
mysterious-to quantitative inquiry. · - ·. 

0.3. l\lany .people, in fact, have been led by their enthusiasm· f 
numerical data to regard knowledge of a non-quantitative kind as hardl; 
deserving the name " knowledge " at all. Towards the close of the nine 
teenth century it was possible for Lord Kelvin to say; " When you cai 
measure what you are speaking about and express it in numbers you knov 
something about it ; but when you cannot measure it, when you cannol 

· express it in numbers, your knowledge is of a meagre and unsatisfactorJ, 
kind." This remark has often been quoted with an approvaJ which it doe~ 
not altogether deserve-it does not, for example, do justice to the work o1 
Darwin and Pasteur, to name only two of Kelvin's contemporaries. Dut 
there can be no denying that it expresses a point of view which many 
people will endorse. 1 

. , • . . • 

Num~ri~al Data. 
- 0.4~ The desire for precision, in fact, leads inve~tigators of all kinds, 
from the tttomic physicist to the business man, to express the facts about 
that part of the universe which interests them in a quantitative way, 
Numericd ~ata haw~ c~me into bein~not only in the laboratory and the 
study, b~t .m t~e countmu· house! th~ sales department, the Board Uoon1 
and t~e lfg~.~lahve assembly. It 1s d1 1cult to see how our society couJ.!f be 
orgamsed .without them. · 'Yfere the ews and the Romans we~ ~ontent 
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occasion&! censtises _for iuilitar; ·or .fisc~l p-i'i.~~~s,l th.~ "progressiv~.' 
ern.st~;~.te_finds itself under the necessity of keeping a close and quanti~· 
eey~ on _all thli.t,J~oes on withinorwithout its frontier.-· Acountry,

ch does. not do so ruay be• fairlY. regarded as. backward~~ In a typicaL 
se Anatole France· summed :up this point of viyw when he said ()f the 
ese : " Tant qu'ils 'ne se seront pas comptes, ils ne compteront pas "..:..,... 

. eydon't count they won't count. . . : . ' .• ·. . . 

· fistfc-~ ·aotice~~;~ with Nu~er1eal ·oat~.- : :· · · 

0.5. ·.There are certai~ features of nume~icai .data; no J~atter.in' .;h~f 
nch of knowledge they originate; whil!h may call for ·a special type ofl 
ntific method to treat them;' and elucidate theni. :This is known as 
tistical Method,or more briefly, as Statisdcs. ,, It does not, however, 
race the study of numerical data of every kirid,• and before w~ attempt 
rmal definition of its .nature and scope; it .is necessary to.·give some · 
ds of explanation·.: . ·: ·· · · ·· · · · · '· · 

ects and Causes:· -·•·· 

(f.6; ~ On~ of the prfncipal aim~·of S~ienceis to trace, amidst the tahgkd 
plexoftheexternal world; the operation of what are called -"laws"-· 

· i11terpr~t ~ til.Ultiplicity of natural phenomena in· termS of a few. funda-: 
ntal prmCiples ..• A knowledge of the operation of these laws enables us . 
talk of "·cause" and ·~effect.": _The metaphysical problems· associated 
th these words need not detahi'us, but _since in the sequel· we shall ofteii ' 

them,· it is proper to e~plain that we· adoptthe - convenient way .• 
expressing serviceable and familia:ddea.s.-, , ,ve: need notwo if the 
mic physicist says that causation must b~J'ejec ·.- e shall be dealing 

th the everyday·world,._vyhere_•_q~w" and ·~cause" have s1gm . 
portanteonnotations;"-- : -~ ·;' ·-·•···· ·; :; ;. :· • .. · ·.. . "--:';:._ ~: .. 
0. 7. · Wi~h this 'convention, we may say t'hat any physiciaJ._ey:ellt, and 
particular. that described by quantitative data, is· produced by the 
erationo~ one or .more causes. _ . The number of causes '\Vhich produce ~:QY 
rticular effect may • be, and usually is; extremely .large •. _ . F_or, instance,: 
e height, ·of a ·:m:an'is causally linke<l with his race, his ancestry, his 

abitation, his diet during youth, his ag~ his-occupation, and at any·given 
oment even with his position and the time of day: . . .. ·. . .. 

. ·. 0.8 •. Experiment,- the· great weapon of scientific inquiry; derives, itS: 
ower_~ from the' ability of the· experimenter.:. to replace .such: complex 
ste1l!.s of causation by simple systems ·in which. only o~~ causal circui'J.i.. 
ance is·fa.llowed to ·vary at a time~· . Thi's is perhaps. an ideal, but it :is 

ne which is closely approaclled-with the technique of modern laboratory 
practice .. •. _ ' .. __ . · · · ·· :<. · '. ;_· ·:- -- .. _; ... .,. ·.;._ o-:-,; _ ,, 
f ·. 0.9~ ·Let _us,· however,- turn to·social science, as the parent of the 
methods termed .. statistical," for a moment, and oonsider its char~cter
[stics as compared, say;:·with physics or chemistry.,<One characteristi< 
stands .out so markedly that attention hil.SJ~eeri repeatedly' dl.rt'CteU;tp u 
~ . . -:_c . • "-•"---:'• '11oi,. : _<'-• • .-.,~,c.,... --· -~. ~.-... ..• ,. _ ~ .-.. 

•.. 1. David (ll Samuel, 24) nu~d the:-peOpt.e:OOsrael andcalled d;,Wn a plague b~ 
doing so. He counted 800,000 valiant llltlR who drew the .sword, and· though the texl 
is not entirely clear it IICC'fll& "likeiy·;th!l~J>appr.lll'Ql-w~cted against thj 
militaristic purpose of the «nsus, not the census i~W~ are told later tbat 70,001 
men died. of the f(lllulting pe!l"ti~enl.'e) so it looks 3.'1 tf there was no baa on counting 4ea4 
men .. -· · ;"' -·.-···--~~; :-:-~~~=:--::.~~...;:· ... ~:~ --~-:.-:-. -~ ----:-- -
Ct . .::~.:.>,~ 
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by " statistical " writers as the source of the peculiar ditliculties of theii 
· science-the obsen•er of soc-ial facts cannot ea·periml'nt, but must deal with 

• circumstances as tlu•y occur, aport from his t•ontrol • . The simplification open 
to the expt'rimentcr being impossible, the obst•rvf'r has,· in general, to deal 
with highly complicated cases of multiple cau!>ation---<'ases in which a given 
result may be due to any one of a number of alternative causes or to a 
number ..of different causes acting conjointly. .~- · 

0.10. A little consideration will show that this iS' also characteristic 
of observations in other fields. The meteorologist; for ex~~omple, is in 
almost precisely the same position as the student of social science. He c&.n 

~ ·. experiment on minor points, but· the records of the barometer,· thermo· 
meter and rain gauge have to be treated as they stand. With the biologist, 
matters are somewhat better. He can and does apply el'perimental 
methods to a very large extent, but frequently cannot approximate closely 
to the experimental ideal; the internal circumstances of animals and plant! 

• too easily evade complete control.. Hence a large field (notably the stud) 
· of variation and heredity) is left in which methods of experiment have to bt 
supplemented by other methods. The physicist and chemist, finally, stanc 
at the other extremity of the 'Scale. Theirs are the sciences in whicl 
experiment. has been brought to its greatest perfection. But even so, tbert 
is still scope for the application of statistical treatment in these sciences 
The methods available for eliminati1ig the effect of disturbing circumstances 
though continually improved, are not, and cannot be, absolutely perfect 
The obsernr himself, as well as the observing instrument, is· a source oJ 
error; the effects of changes of temperature, or of moisture, or pressure. 
and draughts, vibration, etc., cannot be' completely eliminated. 

0.11. It is with data affected by numerous causes that Statistics i! 
mainly concerned. Experiment seeks to disentangle a comp~ex of cause! 
by removing all but one of them, or rather by concentrating on the stud) 
of one and reducing the others as far as circumstances permit to a com· 
paratively small refiiduum. Statistics, denied this resource, must aceepl 
for analy~ois data subject to the influence of a host of causes, and try-tc 
disconr from the data themselves which causes are the important on~s an~ 
how much of the observed effect is due to the operation of each. 

Definitions. 
~ 0.12. In the light of the foregoing discu.,;sion we may accordingly givt 

the following definitions :-
By Statistics we mean quant~tative tl.J,fa affected to a marked ext<.'n1 

by a multiplicity of causes. . • . 
By Statistical Methods we mean methods specially adapted to th~ 

clu<'idation of quantitative data affected by a multiplicity of causes. . 
By Theory of Statistics or,· more briefly, Statistics we mean th~ 

exposition of statistical methods. · 
(It will be observed that the same word may be used both for the sciencE 

and for the raw material on which it works. This dual use gives rise to IH 

confusion in practice, but the distinction. is worth bearing in mind.) 

Use of" Statistic." 
0.13. This is perhaps the appropriate place to remark that there hat 

. recently come into use the singular form " statistic." This is the nam1 
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~ven to a particular kind of estimate compiled from observations, usually 
~ccording to some algebraical formula. In tlus book we shall rarely, 
tf ever, have occasion to usc the term, and we mention it mainly to 
forewarn the student who may meet the term dsewhere or in further 
l-eading. 'Ve may also point out that Statistics is not confined to the 
.study of such entities any more than Physics is the study of individual 
~rticles of physic. 

History of the word " Statistics." 
0.14. In their present meaning the words" statistics,"" ~tatistieian" 

:md "statistical" are less than a century old. They have, however, been 
;n use longer than that, and it is instructive to consider the process by 
[Which they have reached their present meaning. 
1 0.15. The" words " statist," " statistics," " statistical" appear to be 
,l.ll derived, more· or less indirectly, from the Latin status, in the sense, 
;t.cquired in medireval Latin, of a political State. 
r 0.16·. The first. term is, however, of much earlier date than the two 
~hers. The word "statist" is found, for instance, in Hamkt (1602)1, 
vymbeline (1610 or 1611 ),1 and in Paradise Regained (1611 ).1 . The earliest 
>ecurrence of the word " statistics " yet noted is in ''The Ekment8 of U ni
persal Erudition," by Baron J. F. von Bielfeld, translated by'"· Hooper, 
~.D. (3 vols., London, 1770 ). One of its chapters is entitled Statistics, and 
eontains a definition of the subject as " The science that teaches us what is 
.he political arrangement of all the modern states of the known world." • 
. ' Statistics " occurs again v;ith a rather wider definition in the preface to 
,• A Political Survey of the Present State of Europe," by E. A. ,V. Zimmermann, 5 

'ssued in 1787; "It is about forty years ago," says_ Zimmermann, "that 
bat branch of political knowledge, which has for its object the actual and 
ielative power of the several modern states, the power arising from their 
natural advantages, the industry and ci~ilisation of their inhabitants, and 
.he wisdom of their governments, has. been formed, chiefly by German 
IVriters, into a separate science. . • . By the more conveniet:lt form it has 
,ow received ....• this science, distinguished by the new-coined name of 
:tatistics, is become a favourite study in Germany" (p. ii); and the 
Ldjective is also given (p. v): "To the several articles contained in this· 
.vork, some respectable statistical writers have added a '\iew of the principal 
tpochas of the history of each country." • 

().17. Within the next few years the words were adopted by seyeral 
niters, notably by Sir John Sinclair, the editor and organiscr of the first 
.~Statistical Account of Scotland," 1 to whom, indeed, their introduction has 
feen frequently ascribed. In the circular letter to the Clergy of the Church 
tf Scotland issued in May 1790,7 he states that in Germany "'Statistical 
inquiries,' as they are called, have been carried to a very great extent," 
:nd adds an explanatory footnote to the phrase" Statistical Inquiries"-
! 1 Act 5, sc. 2. I Act 2, sc. J.. I Bk. 4. 
I ' We cite fro!p Dr W. F. Willcox, Quarterly Publications of the American Statistical 
f_ssociation, voL 14, 1914, p. 287. 

• Zimmermann's worli: appears to have been written in English, though he was a 
k:rman, Professor of Natural Philosophy llt Brunswick. 
'. • Twenty-one vols., 1791-99. . 
. ' "Statistical Account," vol. 20, Appendix to "The. History of the Origin and 
'rogress ••• " given at the end of the volume. 
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"or inquiries respecting the .X,pulati~n, the political circumstance's, the pro
ductions of a rountry. and other matters of state.'" In the'' History of the 
Origin and Progress " 1 of the work, he tells us, '' Many people we~ at first 
surp~ at my using the new words, Statistiu a_nd Statistical., as it was 
supposed that some term in our own language rmght have expressed the 
same meaning. · But in the rourse of a very extensive tour, through the 
northern parts of Europe, which ~happened to take in 1786, I found that in 
Germany they were en~<>ed in a species of political inquiry, to which they 
had gi,·en the name of Statistiu ; 1 • • • · as I thought that a new word might 
attract more public attention, I resolved on adopting it, and I hope that it 
is now rompletely naturalised and inrorporated with our language/: This 
hope was certainly justified, but the meaning of the word underwent t!lpid 
development during the half-century or so following its introduction. 

0.18. "StatistiCs" (statistik}, as the tem1 was used by German 
writers of the eighteenth century, by Zimmemiann and by Sir .John 
Sinclair,· meant. simply the e1L--position of the noteworthy characteristics 
of a state• the mode of exposition being-almost inevitably at that time 
-preponderantly nrbal The conciseness and definite· character of 
numeri~ data were recognised-at a comparatively early period-more 
·particular!~ by English writers-but trustworthy figures were scarce. 
After the ~mencement of the nineteenth century, however, the growth 
of official data was rontinuous, and numerical statements, acrordingly, 
began more and more to displace the \"erbal descriptions of earlier days. 
" Statistics " thus insensibly acquired a narrower signification, viz. the 
exposition of the characteristics of a State by numerical methods. It is 
difficult to say at what epoch the word came definitely to bear this 
quantitative meaning, but the transition appears to ha,·e been only half 
acromplished even after the foundation of the Royal Statistical Society' 
in 183i. The articles in the first ,·Q}ume of the Journal, issued in 1838-39, 
are for the most part of a numeri~ character, but the official definition 

· has no reference to method. "Statistics,'' we read,'' may be said, in the 
words of the prospectus of this Sociely. to be the ascertaining and bringing 
together of those facts which are calculated to illustrate the condition 
and prospects of society." ·It is, however, admitted that "the statist 

• commonly prefers to employ figures and tabular exhibitions." 
0.19. Once the first change of meaning was accomplished. further 

changes followed. From the name of a science. the word was transferred 
to t~~ series of figures_ o~ which it operated, so that one spoke of vital 
stallsbcs, poor-law lifabshcs, and so on. It was then applied to the 

. similar numerical data which occurred in other sciences. such' as anthro
F.lo!Q" ~·nd meteorplogy. Dy th~ ~nd ~~ the nineteenth century we find, 

statistics of mental charactensbcs m man," " statistics of children 
under the headings bright-.verage-dull,'' and e\•en·" an examination of 
the characteristics of the \"irgilian hexameter with statistics.'" The 
development of the meaning of the adjective " statistical '" and the noun 
•• statistician .. was naturally similar. 

• Loc. ~it., p. .xiii. . ' 
• The "A!Jria dn SIDaJ,IIW_i~Aafl_~ E11ropiii.chm Rftclte" (17-&9) of Gottfriecl .. 

~chef:'•al~~ Profesa10r of 1 olittl'll at GOttmg~. ia the \"olume in which the word · 
1b.lllltik appean to be fint employed, but the adj~ve ... tatistie1111,. oreun at a 

110ruewbat ea.rlier date in worb writteo in Latin. 
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0.20. • l'erhaps the most abstract use of the word occurs in the theory 
of thermodynamics, wherein one speaks of entropy a'! proportional tfl tl;,. 
logarithm of the statistical Jlrobability of the universe-a definition whieh 
no statesman would be unwilling to admit to lie completely outside hi<> 
purview. But it is unnecessary to multiply instances to show that th~ 
word " statistics " is now entirely divorced from " matters of State." 

The Theory of Statistics .. 
0.21. The theory of statistics as a distinct hraneh of scientific method 

is of comparatively recent growth: Its roots may be traced in the work 
of Laplac~ and Gauss on the theory of errors of observation, but the 
study itself did not begin to flourish until the last quarter of the nineteenth 
century. Under the influence of Galton and Karl Pearson remarkable 
progress was made, and the foundations of the subject. were laid in the 
next thirty years-as it has turned out, very securely. The subject has 
not, howeyer, yet reached a stage whereat a cut-and-dried t"xposition of 
its methods can be given. Research, particularly into the mathematical 
theory of statistics; is rapidly proceeding, and fresh discoveries arc bein.., 
made with a r.apidity which makes it difficult to keep pace with then:: 
It may, however, help the student to appreciate the work of later chapters 
if we sketch in brief general terms the field of statistical theory as it now 
exists. 

The Collection of Data. 
0.22. The first question which the statistician has to consider is the 

collection and assembling of his data. In many fields, such as economie'! 
and sociology, he cannot prepare the data himself but has to get what 
he can from such sources as official statistics, which are usually preparell 
with an object differing from his own. Such information is therefore 
rarely all that one could wish. Investigator A, studying the sugar 
market, finds that the official figures run cane and beet sugar together. 
Investigator B, wanting to compare prices over· a period of years, finds 
that during the war period 1914-18 there is a gap in the information. 
Investigator C, wishing to study poverty, has to content himself with 
indirect figures such as those of poor-law relief and unemployment. But 
however incomplete. the data may be, and however tangentially pertinent 
to his inquiry, the investigator must take what he can get and be thankful. 

0.23. In other cases, and particularly in meteorology, biology and 
psychology, he can produce his own data or borrow those of other im'esti
gators similarly engaged. He does not merely take his figures from some 
source or other ; he is instrumental in their production, and within limits 
can control their nature so as to bring them to bear directly on his inquiry. 

It might be thought that the only qualities required for such work are . 
an ability to count or measure and a reasonable care. But this is not so. 
Once outside the laboratory the investigator is beset with a swarm of 
practical difficulties. V\re might illustrate the point by referring to the 
troubles of an investigator who wished to find out how many dairy cows 
there were in a certain parish. He took the simplest course anrl went to 
all the farms in the parish and asked the occupier how many cow'! he had. 
Farmer A said that he had fifteen, but had sold eight and was waiting 
for the buyer to come and fetch them. Farmer B had "apout twenty." 
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Farmer C obviously could not be bothered and said the first figure which 
came into his head ; and so on. It is clear that the result of such an 
inquiry would be to give a quite illusory figure. 

0.24. A full discussion of such matters lies outside the scope of this · 
book, but we have given them more than a passing mention in order to 
introduce one very necessary caution. 

J. The reliability of data must always be examined before any attempt 
is made to base conclusions on them. This is true of all data,. but 
particularly so of numerical data, which do not carry their quality written 
large upon them_. It is a waste of tl.me to apply the refined theoretical 
methods of statistics to data which are suspect from the beginning. 

·. 
The Treatment of Data. 

0.25. Having obtained his data and satisfied himself that they are 
reliable enough to permit him to proceed, the statistician must then " lick 
them into shape." He must decide on some form of arrangement and 
presentation, reduce them to a convenient scale of units, and so on ; in 

.j short, he must work on his raw material until it is ready for the application 
of his prepared tools. · - · 

0.26. The only process of treatment to which attention need be called 
is that of con~ensation. The mind is incapable of grasping the significance 
of a large mass of figures. If, therefore, the quantity of data available 

../ is of any size, _ some process of condensation is necessary to enable the 
mind to appreciate the picture which the data represent. · 

Suppose, for instance, we are discussing the stature of a thousand men, 
and have as data the height of each man t<\ the nearest inch. Our raw 

. material then consists of a thousand sets of figures ranging from fom- feet 
to seven feet, or thereabouts. Only the supermind could look over these 
figures and grasp their essentials. Nor· would the position be met by 
rearranging the figures in order of magnitude. To get a clear picture of 
the situation some condensatiqn is necessary, and in this case it can be · 
carried out easily by grouping together all the men whose heights lie in a 1 

· certain range, say of three inches. Our total range of three feet is then I 
replaced by twelve sub-ranges, each of three inches, and we may summarise 1 
the data by giving the numbers of men who fall into the twelve sub-ranges. 

~--II--l__Short, we have replaced our original thousand figures by twelve. 
0.27. It will be clear that in so doing we have sacrificed a certain 

amount of information. Twehre figures cannot possibly tell us as much as 
a thousand. It may very well be, however, that ,the information in the 
twelve is all that we require ; the lost information may be irrelevant to 
the inquiry. Such a case would happen if we wanted to know, to an inch 

· or so, what was the height exhibited by the greatest number of men. 
0.28. The process of condensation thus sacrifices- information but 

Jgives us instead a very necessary clarity and adaptability for manipulation. 
How far the process is carried in any particular case will depend on how far 
the disadvantages of the sac1·ifice are offset by the advantag~!' of the clarity., 

Summarising and Descriptive Statistics. 
0.29. The process of summarising which we have just described ma~ 

be carried a great deal further, and leads to a branch of theory whif'h ha 
very important practical applications. · 
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The reader is probably familiar already with the idea of an " avemge 
value," and with its use in compressing into a single number the results of 
a series of observations. Such quantities are, in fact, the result of sum
marising to the greatest possible extent ; thf'y are summaries in which the 
statistician has distilled the information of a diffuse mass of figures into a 
single drop, so to spe:,1k. 

0.30. There is a wide demand for such summarising numbers, and a 
good deal of this book will be devoted to considering them from one aspect 
or another. They give a conYenient bird's-eye view of what is sometimes 
a complex and confusing whole. Special scienees have evolved special 
quantities of this type to meet their own needs. For instance, the econo
mist has inwnted various kinds of index numbers to express in a short
hand way complicated changes in prices; and the psychologist has devised 
coefficients to express the reactions of an individual mind to a sequence of 
tests. 

0.31. The remarks we made in 0.27 and 0.28 apply herewith additional 
force. It must never he forgotten that in summarising we omit. Part of 
the statistician's task is to see that we do not omit too much. 

0.32. The problem of describing a complicated set of data in as 
few terms as possible is facilitated by the use of mathematical functions. 
Suppose, for instance, that in the thousand men of 0.26 we assumed that 
the number of men (y) of height m· inches varied as the square of m
frankly a most improbable result, but one which will serve for the purposes 
of illustration. Then we may describe the data completely by an equation 
of the form 

!f = a,-r2 

where a is a consta~o be determined from the data. Knowing a, we can 
find the number of mct1 of any given height. 

0.33. In this case it rather looks as if we have condensed all the 
information into a single number a without-losing any of it. But that is 
not so. ·what we have done is to replace the set of a thousand figures by 
an assumption about their nature. 'Ve_ have lost none of the infmmation. 
because we assumed, in using the equation, that the information was of 
a type known to us already. _ 

0.34. It is found in practice that many sets of data may be verv con
veniently expressed by mathematical functions. The question as to ·whid1-
functions are the most suitable for purposes of description leads to some 
interesting theory, some of which will be dea1t with latPr and some of which 
is of an advanced character lying outside the scope of an Introduction to 
the Theory of Statistics. Such functions are particularly helpful ir}, the 
theory of snmpling. · 

!Analysis of Data. 
l 0 .35. . 'When the statistician has arranged and compressed his data into 
!,<< suitable form, or decided on the functions and evaluated the quanti- .J 
ties which he has ehosen to describe them, the first stage of his inquiry is 
!lnished. It may be that he would wish to take it no further; for instance,, 
\f he is preparing an index number for the economist he may wish to hand 
.w:r the number to that person without comment, for him to make such -.J 

~se of it as he thinks fit. l\Iore frequently, however, he has prepared the 
i 
I 



INTRODUCTION. 

data for his own use as a statistician. He then proceeds to the next stage, 
that of analysis and elucidation of t;he causal system which gave rise to 
them. .. · . .., 

0.36. The methods for such purposes are very numerous. In this 
brief review we need only point out the importance of the investigation of 
relationship, the theory of which bulks very large in statistical literature. 
If two events are related there is usually, though not always, some causal 
nexus between them. The problems of the investigation of relationship 

I between phenomena lead to the theory of dependence, contingency and 
correlation, and the formulation of various coefficients to measure the 
extent to which one set of events depends upon another. 

Sampling. 
0.37: "'hen we wish to discuss the properties of an aggregate we may 

jhe prevented by practical or theoi·etical reasons from examining every
single member of it. For example, in considering the stature of the male 
inhabitants of the Unjted Kingdom we cannot measure every man, because 
of the time and trouble involved ; and in considering the scores of a roulette 
wheel we cannot examine every score, ~ecause the number is practically 
infinite and observations can be continued as long as the wheel lasts. 

· 0.38. We do not despair, nevertheless, of being able to gaii1 some 
knowledge of the aggregate. · \\'here we cannot take the whole we do the 

I best we can and try to obtain a selection of members. This selection is 
. called a sample. 

0.39. It is clear that a sample will not tell·us everything about the 
parent aggregate from which it is derived. Nevertheless, most people have 
a feeling, and we shall see later in this book that under certain conditions 

' the feeling is a justifiable one, that the sample will give us some information 
a,bout the parent. Values calculated from the sample may be taken to be 
estimates of values in the parent, to a degree of approximation which 
becomes closer as the sample gets larger ; and even where the sample is 
small we can sometimes draw inferences of a general nature about the 
parent. · 

0.40. 'Ye are rarely, if ev:er, able to reason from the sample to the 
parent with the categorical certainty of a mathematical proof. Our 
inferences wiH usually be expressed in terms of probabilities. Moreover, 
,_;..·e shall find it much easier to reject a lqpothesis than to accept it . 

.. Our inferences will generally ,he not of the type "the hypothesis li 
i'strue,-'' or even "the hypothesis II is probably true," but of the type 
4' hypotheses A, B and C are probably untrue, but we see no reason to 
~doubt hypothesis II." 

:For example, suppose we take a sample of a thousand men from the 
population of the L'nited Kingdom and find their average height to be 
5 ft. 8 in. What can we say abou~ the aYcrage· height of the population as 
:i whole? \Ye cannot give it with any certainty. We cannot even say, 
with certainty, that it lies within, say, one inch of 5 ff. 8 in. Wnat we can""" 

·,say, assuming that the sampling technique is sound, will be something to 
the effect that a hypothesis which supposes that the meati of the whole 
population is greater than 5 ft. 9 in. or less than 5 ft. 7 in . .is probably 
incorrect, but that the data are c·onsistent with the supposition that the 
mean lies between those limits. 
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0.41. The theory of sampling is thus c·losely bound up with the thror); 
J of probability. The many problems which arise in this connection arc 

among the mo~t interesting and at times the most difficult which sr·imrc 
and philo:;ophy can offer. It is only fair to warn the student that thl're 
still exists an important difference of opinion among scientific men about 
the validity of certain types of statistical inference. In this hook we have, 
so far as we could, avoided these contentious matters, but the arlvancerl 
student will have to be prepared to face them sooner or later. 

The Popular Attitude towards Statistics. 
0.42. :Finally, to conclude this introduction we may, prrhap.,, n-fcr 

to the popular mistrust of statistics and statistical methods. 
The layman's attitude towards statistics is admirably summed up in 

the remark that mankind is divided into two parts, those who say that 
figures can prove anything and those who assert that they can prove 
nothing. It must be admitted that this attitude is not unreasonahle. 
From the advertisement hoarding, from the electioneering platform, from 
the partisan press and from a dozen other sources the man in the street is 
bombarded. with tendentious figures put forward to support some ex part.· 
statement, Sometimes such figures are justifiably used to form a basis for 
the arguments which are built upon them; more often they giw a !'pceious 
picture of the truth, which may be due to ignorance or inadvertence, but 
has also been known to be occasioned by a deliberate "'ish to mi~lcad. 
The layman is well aware of this fact. His attitude in di~trusting all . 
arguments based on figures is that of a reasonable man, who has not th·~ 
training to distinguish for himself the true from the false, and is thcn-f<>n
inclined to suspect everything. 

0.43. lVe are not concerned here with the vindication of btatio;tics in 
the public view. \Ve have alluded to the matter in order to remind the 
student that statistical methods are most dangerous tools in the hanus (Jf 

the inexpert. Few subjects have a '\\ider application; no subject rrquin·s 
such care in that application. Statistics is one of those sciences who~;e 
adepts must exercise the self-restraint of an artist. 



CHAPTEU 1. 

THEORY OF ATTlUBUTES-NOTATION AND 
TERMINOLOGY. 

1t-es and Variables. . 
The methods of statistics, as defined in the Introduction, deal 

;i:.titative data alone. The quantitative character may, however, 
two different ways. . • · 

lw first pllict>, the obst>rver may note only the pr_esence or_!!ll.sence 
11t tribute in a series of objects or individuals, and count how many 

:l not pos!;t'SS it. Thus, in a givt>n population, we. may. count the 
(,f the blind and seeing, the dumb and speaking, or the insane and 
The quat\t~tative character, in such cases, arises solely in the. 

i:e second i1lace •. the observer may note or measure the aciual 
J•ie of some variable character for each of the objects or indi
ubserved. He may record, for instance, the ages of perSQJ)S at 
!t~ prices of different samples of a commodity, the \{atures of men, 
.. hers of petals in flowers. The observations .in these cases are 
,tive ab initio. · 
:The methods applicable to the former kind of observations, 

.ay be termed statistics of attributes, are also applicable to trte 
r statislics of variables. A record of statures of men, for 

·,.may be treated by simply counting all measurements as tall that 
4 et·rtain limit, nt'glecting the magnitude of any excess, and 
the numlot-rs of tall and short (or more strictly not-tall) on the .basis 
: tssif:cl\liun. Similarly, the methods that are specially.adapted to 
Jtnetlt of stati.,tics of variables, making use of each value recorded,· 
iable to a greater extent than miJ.!ht at first sight set>m possible for 
~ith statistics of attributes. }'or example, we may treat the 
. or absence of the attribute as corresponding to the changes of a 
~which can only possess two values, say 0 and 1. Or, w~ may 
-{~at ~e ha,-e reapy to do with a variable character which has.~een 
,asslfied, as suggested above, and we may be able, by aux1hary , 

·.es as to the nature of this variable, to draw further con<~lusion~~ 
ntthods and principles developed for the case in which the observ.j! 

! ?S the presence or absene~ of attributes are the simplest and r, '!!;.' 
· ntal, and are best considered first. This ·and the next· · 
' are aPeordingly devoted to the Theory of Attributes. 

ication with reference to Attributes.· , . 
The objects or individuals that possess the attribut ,:· 1 

not po!.scss it, may be said to be members of two dis' ·-
11 I , ;< 

. t ~ ' ' 
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the ot's~~ver classifying the objects or individuals observed. In t hr· 
simplest case, where attention is paid to one attribute alone, only two 
mutually exclusive classes are formed. If several attributes are noted 
the process of classification may, however, b~ continued inflefiuitd/ 
Those that do and do .not possess the first attnhute may be reelas.;ifkd 
according as they do or do not possess the second, the members of each of 
the sub-classes so formed according as they do or do not posses'! the tl1ird, 
and so on, every class being divided into two at each step. Thn~ tht' 
members of the population of any district may be classified into males l'liHl 

females ; the members of each sex into sane a,nd insane ; the insane males, 
.sane males, insane females and sane females into blind and seein". If we 

·were dealing witJ.?. a number of peas (Pisum sativt~m) of different ~nricties, 
they might be classified as tall or dwarf, with green seeds or yellow seeds, 
with wrinkled seeds or round seedS', so that we should have eight dasse~ 
tall with round green seeds, tall with round yellow seeds, tall with wrinkled 
green seeds, tall with wrinkled yellow seeds, and four similar classes of 
dwarf plants. · . . . 

1.4. It may be noticed that the fact of classification does not neces
sarily imply the existence of either a natural or a clearly defined boundary 
between the two classes. The boundary may be wholly arbitrary, e.g. 
where prices are classified as above or below some special value, barouwter 
readings as above or below some particular height. ·The division m:..y also 
be vague and uncertain: sanity and insanity, sight and blindness, pass into 
eacl~ other by such fine gradations that judgments may differ as to the 
class in which a given individual should be entered, The possibility of 
uncertairrties of this kind should always be borne in mind in considering 
statistics of attributes : whatever the nature of the classification, howenr, 
natural or artificial, definite or uncertain, the final judgment must he 
decisive; any one object or individual must be held either to possess the 
g'1ven attribute or not. 

Dichotomy. 
1.5. A classification of the simple kind considered, in which each 

clas!l is ·divided into two sub-classes and no ;more, has been termed by 
logicians classification, or, to use the more strictly applicable term, 
division by eichotomy (cutting in two). The classifications of mo.;;t 

,statistics are not dichotomous, for most :usually a class is di,ided i11tu 
more than two sub-classes, but dichotomy is the fundamental case. !11 
Chapter 5 the relation of dichotomy to more elaborate (manifold, instcll.<l 
of twofold or dichotomous) processes of classification, and the methods 
applicable to some such cases, are dealt with briefly. 

, 1.6. For theoretical purposes it is necessary to have some .simple 
'\,notation '1or the classes forrned, and for the numbers of observations 
·:~'~signed·to each. ~ . . 
· \'... The capitals· A,' B, C, .... ~ will be used to denote the several attri?utcs. 

' .. bject or individual pas essing the attribut_t A will be termed SID. lply 
' .;he class, all the me be.rs of which possess the attribute .1. will 

· \\~d the class A .. - . is conveuient to use single symbols abo to 
·· e absence of the attributes A, ·B, C, ... We shall employ t lw 
' "S a, {3, y, ... Thus if A represents the attribute bli11t 1111' :.· ... 

sight, i.e. non-blindness ; if B stands for deafness, {3 fob" b 
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'·. 1 rin~. Gcucrnlly "a" is ctrui\·aknt to "not-A," or an object or 
, /ur£ nnt po,,st's::>ing t/,e altribuit' .1; the class a is equiYalent to the 
,·ou~ of the mcmbas of 1chich possessfs the attribute A. I 
. 7. ('~nnbinatiom. of attributes will be represented by juxtapositions 
: ·~ers. Thus if, as ahoYe, A represents bhndncss, B deafness, AB 
cnts the combination blindness and deafness. If the presence and. 

-:•·e of these attributes be noted, the four elasses so formed, viz. AB, 
tB, af3, indude respectively the blind and deaf, the blind but not-deaf, 
·t"rlf but not-blind, and the neithrr blind nor deaf. If a third attribute 
ted, t•.g. in,anity, denoted say by C, the elass .1BC includes those 

; re at once dt·af, blind and insane, .1 By those who are deaf and blind 
· t insane, and so on. 

y letter or combination of letters like A, All, aB; .d. By, by means 
1 ch we specify the characters of the members of a class, may be 

I a tlass symbol. 

-;-frequencies . 

. :). The HIJlllber.of observatiom AS.Sigue<l to any dass is termed, for 
. y, the frequency of the class, or the class-frequency. Class-

ncies will he denoted bv endosiurr the corresponding class-symbols 
·<.:kd~ .. Thus: · 

0 

' 

dt>ll•Jtes number of A's, 
a's, 

· A/fs, 
all's. 
AllC's, 
fllJC·s, 
tl(JC'H, 

i.e. objeds posscssiug attribute A 
, not , , . A 

posse.-;sing attributes A aud IJ 
attribute B but not A 
attributes A, Band C 

, JJ and C but not. A 
attribute C hut nl'ither A no!' iJ 

u on for ::ny liUJniJer of attriLdes. If A represcut, a~ in the illu-.tra-
1Ju\·e, llliudJJI'~s, lJ Jeafttess, C in-;:u.it.y, the symLols givl.'n stand fm· 
· '"'Jt"T'> uf th'· Ulind, the not-Mind, the blind and deaf, the dPaf lmt not
' he blind, dt't({ and insane, the deaf and insane but not-Mind, and the 

, but neitha Uind nor draf, respcdin·ly. 

: ~·e Attributes. 

·· Tl.e ;,ttril>utes d<'uoted hy ea]Jitals .tRC ... mar he terllled 1 

e attrtbllte~, auJ tltPir c?ntrarics denoted.by Greek letters negative 
lcs. If~ ~L(';~-~y!Jlb<!l llldlide ouly cap1L.l letters, the elass may 

o1ed a pr>~Jtn·e da~s; 1f only Greek letters, a negative class. Thus 
; ~~scs A, All, AUC art··positi\·e da~ses; the dass<'S a af3 a By 
· .e da,o.;cs. · · . ' . ' 1 .• 

'wo tl.'tssf"s are ~ud-. thdt e\'ery attribute in tbc sy111Lol for the one 
• .H'f':atn:e or t·ontrary of the correspun<..li11g attribute in the symbol 
•.· otlwr, they may. Le t erme,d con~ary classes and their fre<pl.cncies 
a~y frt:q u~nC'Ies , e.g. A£ an~l .J' A f3 and alJ, A f3C anq a/Jy, arc 
"f contranes. · · · • 
10. IT we· Jtlak.e a.. certaiu di..!H~t(•ruy with re~~rd to a ~~~flnit~ 
t.tr .-1--su< h as male sex, bi11Jdne~s or Lluc eyes--it ma~ b•! uf 
L'al llllJH•rtali('C to nutc a pns•;ible distinetiou in the natun1 of the 
IIOt-.1., Tlw C(Jilli•Iementary <'Lls~ may, in fact, t·ither Lc equally 

1 
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definite-female sex, ability to see--or it ma.y he a mere h<'terogene'ous 
remainder, as in our last instancr-not'-''1ltJe-cyed, the not-blue-t>yed 
being- brown-eyed, grey-eyed, or even possessing no eyes at all. . : 

Logically, this distinction is diffi{·ult to maintain, hut practieally it. is 
of some iti1portance. . The statistical data in official returns are almo!>t 
always classified according to positive and clearly defined attributes'. 
For exan:tple, .we are given the numbers of persons dying from typhoic', 
not the numbers who did not die of typhoid ; the number of acres under 
grass, not the number of acres not .under grass. 

Order of Classes and Class-frequencies. 
1.11. The classes obtained by noting, say, n attributes fall into natural 

groups according to the numbers of attributes used to specify the respective 
classes, and these natural groups should be borne in mind in tabulating 
the class-frequencies. A class specified by r attributes may be spoken of 
; as a class of the 'rth order and its frequency as a frequency of the rth 
,order. Thus AB, AC, BC are' classes of the second order; (A), (A{J), 
(aBC), (AByD), class-frequencies of the first, second, third.and fourth 
orders respectively. · 

i Aggregates. 
.. ;,.... 

· _ 1.12. The classes .of one and the same order fall into further groups 
:according to the. actual attributes specified. Thus if three attributes
A, B, C have been noted, the classes of the second order may be spe(•ified 
by any one of the pairs of attributes AB, AC or BC (and their contraries). 
The series of classes or class-frequencies· given by any one positive class 
and the classes whose symbols are derived therefrom by substituttng 
Greek letters for one or more of the italic capital letters in every possible 
way will be termed an aggregate. Thus (AB), (AfJ), (aB), (a{J) form au 
aggregate of frequencies of the second order, and tlie twelve classes of the 
second order which can be formed where three attributes have been uoted 
may be grouped- into three such aggregates. 

1.13. Class-frequencies should, ·'in tabulating, be arranged so that 
frequencies of the same order and frequencies belonging to the sa..'lle 

1 <tggregate are kept together. Thus the frequencies for the case of three 
. attributes should be grouped as given below, the whole number of observa
' tions denoted by the letter N being reckoned as a freq w:m:y uf order zero, 
I since no attributes ar~ specified. , . 

Order 0. . )I 
Order 1. (A) . (B) (C) 

(a.J ({J) (}:)_ 
Order 2. (AIJ) :- (AC) (BC) 

<Am . (Ay) .-. (By) (1.1) 
(aB) (uC) - (~C) 
(a{J) . (ay} r ({Jy}, 

Order 3. (ABC) (aBC).' 
~ 

' (ABy) , (aBy) · 
(A~C).! (a{JC) • 
(A{Jy} . ' (a{Jy)' 

·' 
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:fe Total Number of Class-frequencies. · . 
' , . • ~! ,. 

: t 1.14 •. In su<'h a compl .tc table for the <·~e of thrct> attributes, 
''t'nty-scveu dist in('t frequencies are given: I o'-order zero, 6 of Jhe firstj 
··Jer, 12 of the S("('()lld and 8 of the th1rd. · · - .~ · 
fIn gci1eral, for n attributes, there are 3" distinct class-frequencies, if we 

-.unt X as a frt"quen<'y of order 0. · · · · 
; t To demon~trate this, let us consider the number of classes of different 
rders. · · 

Of order o there is one class N. . 
! Of orJer 1 there are 2n classes, for d~ses of this order contain only one. 

1bol, and each of the n attributes contributes two symbols, one of the 
A and one of the type a. · ~-'!''<~, ~ 

. n(n-1)' ' . · . 
1 Of order 2 there are _ 

2 
.. ~~~_.classes, _for each class contams two . 

1bols, t~-o at~ribtites ~a~ be chosen from n in ~(n; 1 ~ _ways, and each 

ir gives J..e to 2 1 different frequencies of the types (AB), (A~). (aB) 
J (a~}. •. • ... ·, .. - . • 
~imilarJy, 1t may be r.een that of ~d~ r there are · 

. .-"'~ 11(n -1) •.. (~:_r+l)'x 2r. ":~ :)__: ,- · 

• • r! .. 
.,-'ses. • 
· _ llenet·, the total number of class-frequencies is. 

I 2 
n(n-1) 

21 
· tL(n-1) •·• _--(~::.r 1-1) 

+n • +--.• --· • + • • . +---- ! J<!1r • . . ~ . r . 

uJ this is the binomial expansion of {1 +2)" r3~:./ . 
· It is ell'ar that if n is at all large the number of class-frequencies _will be., 
•ery great. :For instance, if n =6, the number is 729. )r., 1 l ... l • ~ ~v' · ; · 
: 1.15. }"ortunately, howe\·c~ the class-fre<tuencie'l are not independen~-., · 
of one another, and it is not necessary, in order to specify the data col)l;-' 
)lctcly, to give every dass-frcquency. . . · 
f in the first place, let us uote the simple result tltat any clll$s-Jreqmncy 'r 4 ab:ayll be e:rpressed in tenns of CW8-frequende~ of hight'f' ordRr. For 
ttc whole number of obsen·ations must clearly be equal to the number of 
:t·s added to the number of a's, i.e. · 
( 

N;=(A)+(a) (1.2) 
. . ' . 

t Similarly, the number of A 1s is eqlllil to the number of A's 1rhich are 
ll',; addl•d to the numbt•r of A's whid1 are ~·s, i.e. , · 

Similarly, 

and so on. 

(-;f) =(A~) +(A~) 

(All) =(ABC)+ (.4By) · 

(1.3)'. 

• (1.4 ., 
. f.. 

Ultimate Class-frequencies. · . , • : 

1.16. It follows at once from the result we have just given that evet'/ 
c-lass-freque~1cy can he ~~prf"ssed in terms of the frequencies of the hight:f f/. 

' \ j, . . . 
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order, i.e. of order n.. For any frequency can be analysed into high) 
frequencies, and the process need only stop when we have reached th 
frequencies of highest order. ·For example, with three attributes, 

(A)=(AB)+(AfJ) . 
. =(AB(:)+_(ABy)+(AfJC)+(AfJy) 

The classes specified b~ .n attrlb~~s: i,e: 'th~s~ ~r th~ -l~ighest order, an 
termed the ultimate class-frequencies. 

Our result may then be expressed in the form : Every cla8s-frerJ.Iumn 
can be expressed ll8 the sum of certain of the ulti11Uite class-Jreqzumcies. Tl 
specify the data completely it is, therefore, only necessary to give th· 
ultimate class-frequencies. 

Example 1.1.-(See ref. (69).) A number of school-children were e' 
amined for the presence or absence of certain defects of which three chit~ 
descriptions were noted : A, development defects ; B, nerve signs ; C, lo\ ' 
nutrition. . . ; 

Given the following ultimate frequencies, find the frequencies of th· 
positive classes, including the w~ole number of observations N :-

(ABC) I 57 (a.BC). 78 
(ABy) 281 • (aBy} 67'U 
(AfJC) , 86 '-. (.afiC) 65. 
(AfJy) 453 (a.fJy) 8310 

--4- -·~--.. , .. ~ .. 
. The whole number _of observations N i!t:equal to the grand total ~ 

N = 10,000. . . . ' t 
· 't:'be frw,ucucy of !IDy(fi~ class, e.g. (A), is given by the total of 

the four tnird-order frequencies the class-symbols for which contain the ' 
same letter :• ' 

(ABC)+ (A By)+ (AfJC).t· (AfJy) =(A) =811 

. Similarly, the freguenc_y o.f_an~ond-order c~, e.g. (AB), is ginn 
by the total of the two third-orderrequencies the class-svmbols for whieh 
both contain the same pair of letters : • 

· ·.(ABC)+ (A By)= (AB) =338 

. The complete results _are : 

N 10,000 
(A) 877 
(B) 1,086 

.. ~, (C) · . 286 ... 

(AB) 
(AC)· 
(BC) 

(ABC) 

The Number of Ultimate Class-frequencies. 

. 338 
U3 
135 

57 

'. 1.17. 'The class-frequencies of highest order each contain n symbols. 
, ; JW each letter corresponding to a particular attribute may be written 

·~, two ways : A or a., B or p, etc. ·Hence the total number of pos!>iblc 
\'mbols is . _ 
.~ . _ \ 2 X[.~-~ X 2" X 2 X 2 ~ 2 X. , •• = 2" 

l d tlus is the number of ultimate class-frequencies. 
. I Hence the 3" .frequencies may all be expressed in terms of the 2" 

)timate frequencies. For example, if n =6, the '429 frequencies can be 
I • , 
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lritten in terms of 64. ultimate elass-frequeni'if's, whieh speei1; the 

1~lmpJetely. · 

11 
dahl 

l''<'undamental Sets. 
1.18. The ultimate frequencies are, howevet•, not the only set which 

~peeify the whole of the data. In fact, any set will serve the purpose 
provided thut (a) thPy arc 2n in number, and (b) they are algebraically 

!independent; that is to say, when they are writte.a.symbolieally no one can 
pc expressed in tern)s of. some or all~f the othermr' 
, We may call su(•h a set of frequencies a fundamental set. 

rfhe Positive Class-frequencies form a Fundamental Set. 
' 1.19. The positive class-frequencies, including under this head the 
~otalnumber of observations N, form one such set. They are·algebraicalty 
mdcpcndent ; no one positive class-frequency can he expressed ·wholly 
in terms of the others. Their number is, moreover, 2", as may he readily 

1seen from the fact that if the Greek letters are struck out of the svmbols 
'for tlw ultimate elasses, they become the symbols for the positive ~lasses, 
with the e'Xccption of a.f3y ... for which N must be substituted. Alter

, 11atively we may, in the manner of 1.14, prove the result by considering 
the number of positive class-frequencies of each OI"der. The n()bcr is 
'111ack up as follows :- ' 

)rcler 0. (The whole number of observations) 1 
1Jrder 1. (The number of attributes noted) . n 

)rdcr 2. (The number of combinations of n things 2 togeth~q n(~t.-21) 
i)rckr :J. (The number of combinations of n things 3 together) . 

n(n -l)(n -.2) 
- -1-:z-:a-~ 

·,, 
tnd ,;o 011. But IIH~ series 

n(n·-1) n(n-1)(11· 2) 
11 n 1 1.2 + 1.2.u +-

is the hino111ial t•xparrsion of ( 1 + 1 )" 01' 2n; tht•refore tb; 'total number of 
pusitivt' ('lasses is 2". 

1.20. The set of positive dass-frc9.ucnei('s is a most~coo.venient one 
for both t ht·orcticnl and practical purposes. 

Conrpar ... for instance, the two forms of statement, in ·-tns of the 
t~ltimatc and the positive classes rt:spectively, as givct'\ in Example 1.1•:: 
The latter gi vt·s tlirt•t>t ly the whole number of observations and the totals 
()f A's, /J's and (:'s. The former gives none of these· fundam;_n~ally 
important figmt"s wrt htlut the performance of wore or less lengthy adil1hons. 
l'nrther, lh<' IaUer gin~s the Sel'ond-order frequencies (AB), (AC) and 

I:( nc ), which arc li('<'('S'iar~· for disrussing the relations subsisting between 
\ ' l. n and. c, bur arc on I: indirct'tly given by the frequencies of ~he ultimate 
,·h':~es. . 

1.21. We are now able to indil'ate the applications ot' the. foregoing, 
1 ualysrs to some praet'~(·al pmblcms. ' · ~- · 
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· The typical problem whieh arises in this eonnection is the followin}.! 
Civen certain da,;s-frequeJtcics, to find them a.ll. 

Jn the fir~t place, we may remark at once that unless 211 indqwrHlent 
dass-frel]ll<·nr·ics are gi,·en the problem is insoluble. \Ye might lw abl< 
to find s:m,e of the frequeneies, hut it is certain that we could not llw 
evn.\ one. \Y e shall reserve to a later chapter the consideration of whai 
ean Lw done with s11ch incomplete data. ln the examples of this chaptel 
we shall deal only with data which specify the problem com)Jlctdy. 

Example 1.2.-Give:rfthe positive· elass-frequeneies of Example J .1, to 
find all the class-frequencies. 

The data are : 

N=10,000; (A)=o=877; (B)=1086; (C)=286; !I(AB)=338: 
(AC)~oJ43; (BC)=-1:35; (ABC)=57. 

Ol' 

i.e. 

We have: 
(AB)=(ABy)+(ABC) 

3H8=(ABy)+57 

(A By) =281 

Sim'ilarly, from (AC) and (BC) we find: 

(A{1C)=86 
(a:BC) =78 

'r'his gives us the three ultimate class:frequcneies which contain onl:! 
one (;r_eek letter. For the others, · · 

(a{1C) o. ((3C)- (A {1C) 
(C)- (BC)- (A{;(') 

• :2:->6 - 1:35 - 8G 

Similarly, we ha,·e: 

Finally, 
(a/1·y) = (j3y)- (A {3y) 

= ( y) - (By y- (A f3y) 
=N- (C) -{(B)- (BC)}- (Afiy) 
=10,000 -286-951-453 
= 8310 

\Vt• can now calculate ~nty ehss-frcquenr·~· by t'xpressing it in terms ol · 

the ultimate class-frequeneies, e.r;. 

( ay) ~· ( aBy) + ( afiy) 
=670 +i-!310 
=8980 

It is, of POUi'st•, also possible to calculate these ftqquencies py expressinr 
th~1 dir<·(·tly i 11 trrms of the given frequencies, c.fi. . 

• 
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(a.y) = (y)- (.Ay) . ' 
- =N -{C) -{(.A)- (.A C)} 
= 10,000- 286 -877 +us 
=8980 . 

' t . . . •. 

'&ample /-.t-In a free· vote in the House of Commons, 600 members 
ed.- 300 Government members representing English constituencies 
:·lulling _Welsh) voted, in fav.oilr of the motion.. . 25 Opposition members,. 
1~nting Seottish) cbnst~tuencies vot.e4 ·against~ the 'lllotion. The 
~~ment nUl.jority among ·those' who voted was 96. 135 of the 
t~:rs voting rep~nted Scottish constitqencies. · 18 · GovernmenV 
tfhers voted against· the motion. · 102 Scottish members , voted in · 
~ of the motion.· · The motion was carried by 310 votes. Analyse 

&
ting accordi.ng to the -~ationality_ of the constituencies and party. .. 

noting the Government and Opposition parties by A an~pec
voting for and against the-· motion by B and fJ, and English and 

sh members by C and y respectively, our data, in the order of the 
( on,are: · . -- ·. ·. 

N =60Q · · ~- (a) 
(.ABC):r300 (b) 

(.a.fJy) = 25 •. (c) . 
(.A)-'-(tl)~-96 (d) 

(y)=135 • . (e) 
(AfJ).=- 18 . • (f) 

- (By),.l02 (g). 
(B)-JfJ)=SIO (h) 

fwish. to find the ultimate c~s-frequen~ies. • . 
Let us note 6~t of all that there are 21 =8 equations here. We 
'l'efore" expect them to give us the eight ·ultimate <.·lasses. Equations ' 
and (c) already give us two. - · 
from (a) we. ha,-e: J 

• N =(.A)+ (a.) =600 
from (d): 
f 
lienee, 

! 
f . 

• (.A)- (a.} =96 

(.A) =3!8 
- (a.)=252 

$imilarly, from (a) and (h) we obtain: 

' (B) =455 
(fJ)=U5 

From (a) and (e) we have: 

T (C) =N- (y) =465 

We have thus found all first-Order frequencies. 

(i) and (f) give ' 
(.AB)=(A)-(AfJ). 

=8!10 

Cir 
(j) 

(k) 
(l) 

(m) 

In) 
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(k) and (~) givr 

"' e also ha vc : 
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(flC) ~(B)- (By) 
=:1.'53 

(afly) =(fly)- (A fly) ( 

lr 

· ·= (y)·-; (By)- {(..4)- (AC).- (A B)+ (ABC)} 

and suhstituting th{ known vah;e~ ~n tht> right and the \·aluf" nf (a/3y 
we have . · 

25 = 135 -102- 3-t8 + (AC) + 3130- aoo 
(AC) =310 

From (n) and (b) we get 

(A By) =(AB)- (ABC) =30 

I•'rom (o) and (b) we get, similarly, 

(aBC) =53. 
From (p) and (b) we get 

From (e) and (g).: 

Hence, 

From {f) and (l): 

Hence, 

(AfJC) =10. 

(fly)= (y)- (By) =33 

(A fly)= (fly)- {apy) = 8 

(a/3) =_127 · 

(aflC)=(afl)-(afly) 
=10:! 

Finally, N =sum of ultimate class-frequencies, aud this giYts · 

(aBy)=72 . 

(] 

(I 

(s 

(I 

(u 

This straightforward but rather heavy analysis has therefore gin-n 1.. 

the eight ultimate class-frequencies in equations (b), (c), (q), (r). (s), (t 
(u) and (v). . 

1.22. The data encountered in practice are rarely diehotomis~ 
according to more than three or four variables, and the student shou) 
cxpel'ience little difliculty in expressing anY. dass-frequeney in tern.s ( 
the known class-frequf'ncies, either directly, or by lhst..nnding the ultimat 
<·lass-frequencies and then expressing the dt'sin·d frequency in terms ( 
them. 

It is, however, interesting to note the general result that the dal 
symbols can be treated as operators and multiplied together like alg-elm,ic: 
quantities. Let us write A . N for the operation of didwtomi~iPg _ 
according to A, and write 

:4. N ={A) 

whieh is the symbolic Wll3 of saying that if we diehotomi~<-' S acwnlin~ i 
A we get a dass-frcquenry equal to (A). 'Ve ean siJHilarly put 

a.N=(a) 
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AddV1g these two, and putting ,A . N + ~. N equal to (A+ a)·. N, we have: 

so that we may take . 
(fl+a) .. N=N 

. . ' 

A+a=I 

In any symbolic expression we can therefore replac~ the operators A or a· 
by 1 -a, 1 - A, respectively. . . 

Furthermore, since (AB)=A. (B)=B. (A), we may take the symbol 
· AB. N to be the dichotomy of N according to both A and B, and equate 
it to (AB). A little reflection will show that the op_erative symbols there-· 
fore obey the ordinary laws of algebra and in p~rt.icular may be multiplied
together. 

For example, we have: 

( afi) = afi. N = (1 -A ){1- B) .. N 
···: =(i·-A·-.B+AB)'.·N . 

=N- (A)- {B)+ (AB). {1.5) 
And, similady, 

(a{Jy)=a{Jy.N . · 
. . = (1 -A )(1 - B)(1 -C)_ N 

- =(1-A--B'-C+AB+BC+AC-ABC). N 
=N- (A)- {B)- (C)+ (AB) + (AC) + (BC)- (ABC) (1.6) 

Simii~r r~~ults. could~ :o~ co~rs~, b~ obtained by .step-by-step sub
stitution ; for instance, 

(afJ)=(a) -(aB) 
=N- (A)- (B)+ (AB) 

1.23. The symbolism we have discussed in this chapter is also of use 
in deduc-ing results of a less definite character expressible by inequalities. 

t E.rample J . .f.-In'a war between "'hitc and Ued forces there are more 
HeJ soldiers than \\'l,ite; there are more armed "nites than unarmed 
Heds; there are f('wt>r ariucd Rt-ds with ammunition than unarmed \Yhites 
without ammunition. Show that there are moi·e armed Reus without 
am'll mition than unarmed \\'hites with ammunition .. 

\\"riting .. t to denote' the property of being a \rhite soldier, and hence a 
to denote the property of being a Hed soldier; writing .Band f3 to denote 
armed and unarmed, respectinly; and writing C and y to denote the 
po~scssion or non-po-;~cssion of ammuuition, respectively, our data are: 

We have to show that 

(a)>{A). 
(AB) > (a{J) 
{-(~y) > (aBC) . / 

/ 
{ally)> (Af3C) . _ . . _ 

_/(ltJ 
(b) 
(c) 

,, / 

hav~t;om (a), considering the diehotomy of each-si~e-a(';9-?r<!J:~/to .R, we 

(aB)+(afJ) > (AB}+(A{J) •··· · 1// · 
, • ~ r • , ; ....--"'-"" 
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~ub!>lituting for (.AR) from (h) in thi<; incrp1ality, 

and henee, 
(all)+ (r1{3) > (a{3) + (A{3) 

(all)> (.1{3) (r/l 

From this, con~idcring the dichotomy of each side aC'cording to C, w·~ 
have: 

(aBC)+ (ally.)> (Af3C) + (.1f3y) 

and in \irtuC' of (c) this ginos 

(ally) > (Af3C) I 

which is the required result. 
1.24. The symbols of our nutation are, it should be remarked, u~cd 

in an inclusive sense, the symbol A, for example, sig11ifying an ohjl"l t or 
indiYidual possessing the attribute A with or without ot!tns. This ~{'em.~ 

' to be the. only natur~ us<: of ~e. symbo~ hut a\,least on~ notation has b.een 
constructed on an ea:~lusrve fi!isJs, the 5ymbol·.1 denot!flg th<>t the o!.Jcd 
or indi,·illual possesses the attribute A, but not B or Cor JJ, or wL:1tenr 
other attributes haYc been noted. An exclusive notation is apt to Jy, 
rdatively cumbrous and also ambiguous, for the narlrr ca!lnot ktJIJI\' wl!.tt 
attributes a given symbol excludes until he has seen the whole li~t c,f 
attributes of which note has been taken, and this li~t he must bear in mi11J. 
The statement that the symbol A is used exdusivdy cauaot mea11, 
obviously, that the object referred to possesses only the attribute A an.l no 
others whatever; it merely excludes the othtr attributes noted in the 
particular inYestigation. Adjective!':, as well a~ the symbuls \1 hi(·l1 lllay 
represent them, are naturally used in an inclusive scn~e. a11tl c~:n· ,J:ould 
therefore be taken, when classes are verbally deseribed, tlwt tht' de,eriptron 
j, C'omplete, and states what, if anything, is exdudcd a'S wdl as "hat is 
included, in the same way as our notation. The terminology of s0rue t:t bit-s 
in our older English census has not, in this respect, been qL:ite !'],•;tr. Tlw 
"Blind" includes those v.ho are "Blind and Dumb," or •· Blind, Dm:dJ 
and Lunatic," and so forth. But the heading" Blind allll Dun1h, ·• in the 
table rclatin~ to "combined infirmities,'' is used in the ~en<-e "Illind and 
Dumb, but not Lunatic or Imbecile," etc., and so on [.)f the othf·r". Iu 
the first table the headings are inelusive, in the second exclusive. 

SU~DIARY. 

'r, A collection of individu·lls may be divided into two d;os~es ac·c.•t·ding 
to whe.J-her they do or do not possess a pa,rtieular uttnbuh:. Thi~ lh'•''"'''s 
1s calkd qichotonw. 

2. C0nt1:.n1cd Zliehotomy IV't·ordillg to n attributes giH's r:.;r· LJ :~' 
dasses. ' · 

3. 'fl.e 1\\.'ttunwics in these da.>ses can bt t'X]Hesscd in terms oi t Le :!'' 
. t l' . tl1tuna e. l' '•ss-frequencie!>, t'l' of the 2" positiH· das.~·fn·lJllf'llt'l\'"· 
-!. G1 ,·en -.n iwl."'l'"'lldcnt cla~s-freq .J('ncies, all the da~">-freqneiH ies I•H< 1 

be calculated l.y SimpJ .. >~rithmetir·,tl process<s. 
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EXEHCISES. 

,I 1.1. (~'igures from ref. (69).) The following are the numbers of boys obJcrved 
· ·ith l'ertain classes pf defects amougst a nwnber of school-children. A denotes 
\evdopment defc~s; B, nerve signs; C, low nutrition. • · 
I . 

• ~ .(ARC) 149 
. JAB;·) 738 

(4{3C) 225 
- (APr> 1,196 

(aBC) 
(aB}') 
(af3C) · 
(a/])•) 

204 
1,762 

171 
21,842 

I< ind the freq uelicies of the positive classes. 
· 1.2. (Figures from ref. (69).) The following are the frequencies of the 

positive <'lasses for the girls in the same investigation:--

N 23,713 (AB) 587 
(.4) 1,618 (AC) · 428 
(B) 2,015 (BC) 335 
(C) 770 (ABC) 156 

Find the freq~encies of the ultimate classes. 
1.3. (l<'igure1 from Cemms, Engltlttd and Wales, 1891, vol. 3.) Convett 

tlte census 11takment as bdow into a statement in terms of (a) the P.OsitJve; : 
(b) the ultimate class-frequencies. A =blindness, B =deaf-mutism, p:;,mental' 
d•!r.mgement. •. · 

N 
(A) 
(B) 
(C)· 

29,002,525 . 
23,467 
14,192 
97,38::1 

•. 
(ABy) 
(A /]C) 
~aBC) 
(ABC! 

82 . 
380 ,i 

500~ 
25 

J • 1.4.. (Cf. !\Iill'e~ "~gic," bk. 3, ch. 17, and ref. (65).) Show that if A occur~ 

I' 

; a a larger proportion of the eases where B is than where B is not, then B will 
occur in a larger proportion of the eases whert! A is than where. A is not: i.e. · 
given (AB),'(B) > (A/3)/({3), show that (AB)/(A) > (aB)/{a). 

1.5. ({1. De Morgan, •• Formal Lugic," p. 163, and ref. (65).) l\Iost B'g are' 
A's, rnotst Irs arc C's: find the least number of A's that are C's, i.e. the lowest·· 
poHsible value of (A C). · . ..' 

1.6. Given that · 

shqw that 
• (A) =(a) =(B) =(fJ) =iN 

(AB) ==(a'p), (A/3) =(aB) 

'-· 1.7. (CJ. ref. (78), SC(•tior) 9, •·Case of equality of contraries,") Given that 

and alt;O that 
(A) =(u) =(B) =(/3) =(C) •(y) ==!N 

• 
' (ABC) =(a{Jy) • 

!ihow tlutt • 
2(ABC) =(AB) +(AC) +(BC) -.iN 

1.8 • .\Jca~;uremcnts are nt:e on-~ thousand hlllibands lmd a · . ( 
If the measurements of the· ""bands exceed the m~surcmen•~ -
800 eases fur one mt-asurement, in 700 ca~es for another, an • ,.,. 
both mcusurcmcnts, in how many ca11eli will both rnea~>ure ' 
exceed the measurement(! on the huilJand ? f. . 1 · . 

1.9. ; 100 (·hildrt;n tl)(1k three examinations .. 40 passeJ • · .. 1 ~, 
the second and 48 pas,;ed the third. 10 pas'it'd all thref. l•· \, 
9 passl't) the first two and failed the third, 19 failed the fi·. · 
third. l~md how many chilarcn passed at leat.t two exa .: ' · 
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Show that for the qut"stion B!'.kro N.'rtain of the given frr-quencir-s aw n 
De<>t'S.'<Bfj". WLich are they? 

Show further that the data are not sufficient to pennit of the dt'tt'mlinati• 
of tht' ultimate dass-frt"qtwndes. . 

1.10. (Lewis Carroll, •• A Tu,~ltd Talt,"l81H.) In a , . .,TY hotly fo•Jgl.t Lattl 
70 per cent. at least of the combatanh lost an eye, 73 per cent. at least lost a 
ear, SO per cent. at lca~t lo!'.t an ann and 85 per N.'nt. at lca>'t lost a lr-g. Ho 
many at least must have lost all four? 

l.ll. Show that for n attributt"S A, B, C, ••• . 111, 

(ABC • •. M) ~{(A) +(B) +(C)+ ••. +(.\!)} -(n -1):\" 

whr-re N is the total frequency; and hence generalise the result of Exewise 1.10. 



CHAPTER 2. 

CONSISTENCE" OF DATA. 

Universe of Discourse. 
2.1. Any statistical inquiry is. necessarily confined to a ce~tain tiine, 

space or.material. An investigation on the prevalence of unemployment, 
for insknce, may be limited to England, to Englartd in 1931, to English 
males in· 1931, or ...even to English males qver ·so years ot·age in 1931, 
and so" on. · · · . ' , . _ · . . , · 

· For actua} work on any given subject, no term is required ·to denote 
th&· material. to which the _work is so confined:. the limits are specified, 
and that is,sufficient. But for theoretical purposes some term is almost 
essential to·: avoid circumlocution. The expression the universe of 
discourse, or simply the universe, used in this sense by -"~riters on 
logic, may be adopted as familiar and convenient. ·· . · 

2.2. The universe, like any class, may be considered as specified 
by an enumeration of. the attributes common to all its .members ; e.g. 
taking the illustration of l.l, those attributes implied by the predicates 
English, male, over 50 years • of age, l-iving in 1931. It is not, in 
general, necessary to introduce a special letter· into the class-symbols to 
denote the attributes common to all members· of the universe. We know 
that such attributes must exist, and the common. symbol can be under~ 
stood.. · 

ln strictn~s, however, the symbol ought to be written: if, say~ U 
den<..te the combination of attributes, English-male~ver 50-living in 
1931, ~employed, B married, we- should strictly use the symbols: ' 

' \ . ' 

( lT ={Number of English males over 50 living in 1931 
( U .t ). \ , ,. une~ployed English males over 50 living in 1931 
( U B 1 , roamed, , , • "', 

(UAB,I· \ , unemployed and inarried E~glish' males over 50 
· · \. living in 1931 

il,;tstead o( t simpler symbols N, (A), (B), '(A.B) .. Similarly, th~ general 
re~a.~iom,J>f .quations (1.2), (1.8) and (1.4), page 15, using U to denote the 
co1mon at 'butesof all the members of the universe and (U} consequently i!: ~tal n nber o~ observations N, should in strictness be writt~n in the 

\ 

(U) =(UA) +(Ua) "=(UB) + (Ufi) =etc. 
= (UA.B) + (UA}3) + (claB) + {Uafi) r=etc; . 

, (UA.) =(UA.B) +(UAfi) =(U4C) + UAy) =~tc . 
• 'll AB) = ( U ABC)+ (~A By} =etc. 

\1. \ • . 25 



26 THEORY OF STATISTICS. 

Specifying the Universe. 
2.3. Clearly, however, we might have used any other symbol inst~ · 

of U to denote. the attributes common to all the members of the tmive,. • .. 
e.g. A orB or AB or ABC, writing in the latter case: 

(ABq~(ABCD) + (ABCo) . 
and so on. Hence any attribute or combination of attributes common to\': ' 
the rlMs.symbols in an equation may be regarded as specifying the univn 
~L•itftin .which the equation holds good. Thus the equation just written may. 
be read in words: "The number of objects or individuals in the universe 
ABC is equal to the number of D:s togethe~ _1:itb the number of not-D's 
within the same universe." Tbe·equation ., · . 

(ACt=. (A!JC) +.(AfiC).. . 

may be read: "The number of A's is equal to the number of A's that arc 
B's together with the number of A's that are not~B's within the universe C." 

2.4. The more complex relations. between class-frequencies may be 
derived from the simpler ones very readily by the pro<'ess. of specifying 
the universe. Thus, starting from the simple.equation 

. '('a)=N -(A)J . 
. . I . 

we have, b:y specifying the universe as f3z 
I . • • . •. 

(af3) = (fJ)- (A{3)- . 
- :t.'N ""':(A)'- (B)+ fAB) 

\ . . 
Specifying the universe, again, as y, we have~ · 

(a{3y)_= (y)- (Ay)- (By)+ (A By) • 
. "'"'N- {A)- (B)- (C) t (AB) + (AC) + (BC)- (ABC)· 

" • . I 

Consistence. · . · · · · · 
2.5 •. ·Any class-frequencies which have been or mi~ht I~ .b en 

observed within one ·and the same universe may be said to be con sis ent 
with one another. They conform with one another, and do not' it any 
way conflict. • • 

The conditions of consistence are some of them simple, but others are 
by no means of an intuitive character. Suppose, for instance, th~ f<rowing 
data are given :~ 

N 1000 {AB) 42 . 
(A) 525 (A.C) 147 I 
(BY 812 (BC) 86 
(C) 470 (ABC): 2.~ • I 

.-there is nothing obviously wrong with the figures. . \'et tflley are 
certainly inconsistent. · They might have bern observed at different 
times, in different places or on different materia!, but they ~annot J1avf' 
been observed in one and the same universe. They impl~. in f«·~t, 11 

negative value for (a{3y) ~ 

(a{3y) = 1009- 5:!5 -312-4:70 + i2 + H7 + 86- ::?.') 

""1000 -1307 + 275-2.5 -'- _e:;.,. 
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Clearly no clas~-frequency can be negative. If the figures, conse
quently, are alleged to be the result of an actual· inquiry in a .djfinite · 
universe, there must haYe been some miscount or misprint. · • . 

Condition for Consistence . .,I . . .. 
2.6. It is, in fact, the necess~uy ·and sufficient condition for the 

-consistence of a set of independent class~frequencies that no ultimate 
class-frequency be l}.~ative. It is neressary for the obvious r~a~n that 

. no class-frequency occurring by counting real attributes can be negative~ 
. it is sufficient because, ginn any non-negative set of 2" numbers, we can 

always imagine a real universe wit4 n dichotomies which should have these 
numbers for its ultimate class-frequencies, and it L'j impossible for thi.s real · 
universe to give inconsistent results. · · · . 

Hence to test the consiste~ce of a set of 2" algebra~cally independent 
t·lass-frequencies we need only calculate the ultimate class-frequenci("S and 
ascertain 11"hethcr any one is negative. If it is, the data· are inconsistent. 
If no ultimat.e frequency is negative, the data are consistent. 

Consistence oJ Positive Class-frequencies. . . 
2.7. For \lata W.ven by a heterogeneous collection of class-frequencies, 

consistence is ~st tested by actually calculating the ultimate frequencies. 
~ We saw in the last chapter, howe\·er, that the positive class-frequencies 

hold a. peculiar position,in that many data encountered in practice are 
gi\·en entirely in terms of them alone. To save the trouble of calculating . 
the ultimate.frequendes from the~ we proceed to discuss the fm·rn -'l.~"~' · 
the consistence conditions ~sume wneu expressed entrrely in terms of the·: 
positive class-freqlleneies. These conditions may be expressed symboli- · 
cally by expa.11d.ing the ultimate in terms of the positive frequencies, and : 
writing eac p such exv.ansion not less than zero. We will consider the cases 
of one, two and three attributes in turn. · 

2.8. lll(f only one attribute be noted, say A, th¢ positive frequencies 
su·O!. N and (A). The ultimate frequencies are (A) an~_(a), where 

.(a)=N -(A) 

• The conditions of consistent'~! are therefore simply 

(A)< 0 
. . 

N-(A)<O 

or, 111ore conveniently exprt·!>"ed, 

(a) (.i) < o , (b) (A))- N (2.1) 

These fOllditions are obvious: the number of .-I.'s cannot' be less than 
:tt"ro, nor rxceed the whole number of observations. · 

2.9. 1f two attributes be noted there are four ultimate frequencies 
(AlJ), (AfJ), (alJ), (afJ). The following conditions are given by expanding·· 
£:8.<'h in terms of the fr:queneies of positive ~lasse'l :- . · . 

(a) (.4 ll) -t: 0 , ~r (AlJ) would he ~egative} 
(b) (AB) < {A)+(B)-~ , (afJ) , • ,. (

2
.
2

) 
(c) (.41l)::} (.-l): . .. ,. (A/3) -.. · ., 
(d) (AB);;} (B! · , (a.B) ., ., 
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(a), (c) and (d) are obvious i (b) is perhRps a little less obvious, and is 
oceasionally forgotten. It is, however, of precisely the same type as the 
other three. None of these conditions is really of a new form, but may be 
derived at once from (2.1) (a) and (2.1) (b) by specifying the universe as B 
or as {3 respectively. The conditions (2.2) are therefore really covered 
by (2.1). . 

2.10.. But a further point arises as regards such a system of limits as 
is given by (2.2). The conditions (a) and (b) give lower or minor limits to 
the vah}e of (AB); (c) and (d) give upper or major limits. • If either major 
limit be less than either minor limit the conditions are impossible, and it is · 

. necessary to see whether (A) and (B) can take such values that this may 
be the case. 

Expressing the condition that the major limits must be not less than 
the minor, we have: 

-(A)-4::0} 
. (A) ::1> N 

(B) 1:: o} · 
(B) 1- N . 

These are simply the conditions of the form (2.1 ). If, therefore, (A) and 
(B) fulfil the conditions (2.1 ), the conditions (2.2) must be possible. The 
conditions (2.1) and (~.2) therefore give all the conditions of consistence 
for the· case .of two attributes, conditions of an e~"tremely simple and 
obvious kind. . 

2.11. Now consider the case of three atttjbutes. There are eight 
_ultimate frequencies. ·Expanding the ultimate in terms of the positive 
-frequ...-.P.ies. and,_ expressing the condition that each expansion is not less 
than zero, we have : - · , 

r or the r .. l"quency given below 
/ will "'A negative · 

i (a) {ABC) -4:: tf · (ABC) l 
f (b) · 1::·(AB) + (AC}- (A) (A{3y) 

(c). 1::-(AB).+(BC)-(B} (aBy) 
(d). -l::(AC)-i.(BC):-(C) (a{3C) 1 

, (e) ::1> (AB} (ABy)J' 
. {f) . . - ::t> {AC) (A{3C) 
, (g) ::1> (BC) 1 (aBC) 
i. (h) ::f (AB)+(AC)+(BC)-(A)-(B)-(C)+N (a{3y) . 

(2 . .3) 

These, again, are .not conditions of a new form. \Ve leave it as an 
exercise for the student to show that they may be derived from (2.1) (a) 
and (2.1) (b) by specifying the universe in turn as BC, By, f3C and {3-y. 
The two conditions holding in four universes give the eight inequalitiet 
above. · · • I 

\ 

2.12. As in the last case, however, these conditions will be impossiblt: 
to fulfil if any one of the major limits (e)-(h) be less than any hne of the 
minor limits (a)-(d). The values on the right must be such as to make 

· no major limit less than a minor. · · · i 
There are four major and four minor limits, or sixken comparisons1 in 

all to be made. But twelve of these, the student will find, only le.ld bal·k 
to conditions of the form (2.2) for (AB), (A.C) and (BC) respectively. 

• ·The four comparisons of expansioJ;ts due to contrary frequencies ((a) and 
I (h), (b) and (g), (c) and (f), (d) and (e)} alone lead to new conditions, viz. 
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(a) (AB) + (AC) +(RCl -1:: (A) +(B)+ (.C) -N} 
{b) (A.B)+(.1C).-(BC):} (-li: : . t .... I (2.4) 
(c) (A"B)-(AC)+(Bc.) ~-.{B).· . I, . 
(d~A:'J)+(.IC)+(B~).:> (C)~ I .} 

2.13. TheSe are conditions of a wholly new type, not derivable in any 
way from those given under (2.1} and (2.2)·. They are conditions for the 
consistence of the second-ord1r frequencies with each other, whilst the in
equalities of the form (2.2) are only conditions for the consistence of the 
second-order frequencies with those of lower orders. ·Given any' two of the 
second-order frequencies, e.g. (.AB) and (AC), the conditions (2.4) g~Ye 
limits for the third, viz: (BC). 

Incomplete Data. • · · · 
2.14. We can now take up a question ~·:bich we set aside in Chapter I, 

namely. that of the inferences which may be drawn from dato. which, though 
giving us a certain amount of infor'mation in the shape of class~fi:equencies, 
yet are insufficient to enable us to calculate all the class-frequencies. · , 

·The form of the consistence conditions (2.-1) shows that a knowledge of 
certain clas~-frequencies allows us to assign limits to others, even though 
we may not ~e able to find the actual values of those others. · The fQllowing 
will serve as·~llustrations of the statistical uses of the conditions ;- . · 

' Example 2.1.-Given that (A)=(B)=(C)=!N and 80 per cent. of 
the A'!i are B's, 75 per cent. of A's are C's, find the iimits to the percentage 
of B's that are c·~. . 

· ' ' ' 2(AB) t/ 2(AC) .. . 
The data are: · ---r=~B ---z;;r-=0·75' '· • 

and the conditions (2.-1) give: v 

· (a) ~BC) -1:: 1 -0·8 -0·75 v' 
J.V . t 

(b) -4:: 0·8 +0·75 .,.J. -· 
(c) :::1- 1· :_0·8 +0·75 
(d) ::}.1 +0·8 -;0·75 

(a) gives a negative limit and .. (d) a limit g'reater than unity; hence they 
may be disregarded. }'rom (b) and (c) we have: ' 

2(~C) -t:: 0·55 · ~{RC) :} 0·95 
N. . N • 

' I 

-that is to say, not less than 5.'S per cent. 11or n~ore than 95 per cent. ot 
the B's can be C's. . · · · ' 

. Example 2.2.-lf a report gi~es the fo1lowi1~g frequencies as actually 
oLser\'ed, show that there must be a misprint or mistake of some sort, and 
that possibly the misprint <;onsil>ts in the dropping of a 1 before the 85 
given as the frequency (BC) :- . 

· Ntooo· · 
(A) 5IO· (AB) 189 
(B) 490 (AC) uo·· 
(C) . 427 (JJC) ...: .• 85 . ' 
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:.;rom (2.-1) (a) we have: 

(IJC) -1:: 510 + .J9o + -127-1000-189- uo 
-1:: 98 

But 85 < 98, therefore it cannot be the corrt>ct \-·alue of (BC). 
IC we read 185 for 85 all the conditions are fulfilled. 
Example 2.3.-In a certain set of 1000 observations (A) =45, (B) =23, 

(C)= U. Show that \-\·hatenr the percentages of B's that are'A's and of 
C's that are A's, it cannot be inferred that any B's are C's. · . - . 

The conditions (2.4) (a) and (b) give the lower limit of (BC), \-\·hich is 
required. We find: · 

(
a) (BC) _ (AB) _ (AC) _

0
_
918 N· -4:: N N 

: (b) <n;>-4: (AB) + (AC) -O·O-'S 
...V N . 

The first limit is clearly negative. The second must also be negati,·e, 
sin~e (AB)JN cannot exceed 0·023 nor (AC)JN O·OU. JIIO'm·e we cannot 
conclude that there is any limit to (BC) greater than 0. This result is 
indeed immediately obvious when we consider that, even if all the B's 
were A's, and of the remaining 22 A's H were C's, there would still be 
8 A's that were neither B's nor C's, 

2.15 •• The student should notei the result of the last example, as it 
illustrates the sort of result at which one may often arrive by applying the 
conditions (2.4) to practical statistics. For given values of N, (A), (B), 
(C), (AB) and (AC), it will often happen tha.t any value of (BC) not 
less .than zero (or, more generally, not less than either of the lower limits 
(2.2) (a) and (2.2) (b)) will satisfy the conditions (2.4}, and hence no 
true inference of a lower limit is possible. The argument of the type 
•• So many A's are B's and so many B's are C's that we must expect some 
A's to be C's " muat be used with caution. 

2.16. \Yhere the data are not gi\·en in terms of the positive or of 
the ultimate class-frequencies, and cannot readily be thrown into such a 
form, the device illustrated in the following example is often useful :-

·E.xample 2.4.-1.Among the· adult population of a ('(-rtain town 50 per 
cent. of the population are male, 60 per cent. ar,. wage-earnet"S. and 
50 per cent. are 45 years of age or, over. 10 per cent. of the males are 
not. wage-earners ~nd 40 per cent. of the males are· under 45. Can we 
infer anything .about what percentage' of the population of 45 or m·er 
are wage-earners ! ; ' . ·· , . 

Denoting the attri_butes male, wage-'earner and 45 years ~lJ or more 
by A. B and C, respectively, and letting N = 100 for convenience,. our 
data are: 

(A) =50 
(B}=60 • 
(C) =50 

(AP) = 5 I 
(Ay) =20 . 
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We require the limits, if any, of (BC). : · _· · :· ·· · · ·· •·'· · 
Let us note first of all that we are given 6 class-frequencies (including 

_ N}. U we knew two more, independent of these 6, the probl~m woUld be 
completely determinate, for we should have 23 class-frequenCies. . : ·· 

.Let us therefore put · 
.. (a.{Jy) =te 
• (:fBC):;.,y • . . 

We <'An then solYe for the ultiroate hiass-frequenci~ and get· 

-. ~-- . .· ~1:i~·=:~.= l· ' . . 

. . 
· (a.BC); ~ -15·. 
(A{Jy)=-y -25' 
(a.By) =30 :- :e 

• (a.{JC) =85- « . 
. k.. . ,. 

The condition that these must M ))on-negative. gives us conditions on 
:e_ and y. In fact, from ( a.BC) and ( a.By) we get 

--. . ·. 1- . .. - - - . 
. • 15 ~ :e ;;j- 80~ 

and from (A{i<;) and (A{Jy), . - r' : : · 
- . . : 25 ::} y ::} 30 

the conditions frorri the other· frequencies being included hl. ·these-limits 
to :e and y. · . ' · ' · · ' · · 

Now (BC)=(ABC) +(4IlC) · . 
\ • =y+a:-15_ 

and heriee, from the limits to a: and y,. 

25 ~ (BC) :> 45 

Consequently, the percentage of the population 45 yt-ars old or. more. 
(50 per cent. of the total population) who are wage-earners lies between 
50 and 90 per cent. . . ~ · . -
· It is worth while examining whether .these limitS .are the narrowest • 

possible which can he assigned with the available data; and it is easy to 
·see that they are. For if a:=15 and y-25, (BC)=25"; and if a:=30 and 
y =30, (BC) =4.5. There b nothing in the conditions of the problem. to 
prevent a: andy, and hence (BC), from reaching the limiting values, and· 
thus no narrowing of the li_mits is possible. 

SUMMARY.~ · 

I. The necessary and sufticient. condition for the consistence of a set 
of independent class-frequencies relating to a particular J.llliverse is that no· 
UJtiiuate cws-freq~i!ich may be calcuJated from them is negative. 

2. In view of the practical importance of the positive class-frequencies,· 
the form of the consistence conditions is expressed solely in terms of such 

· frequencies, · · 
3. The conditions may be applied to the examination of inaccurate· 

~ incomplete data. For the latter they may allo'v us to assign limits to 
an unknown class-ft·cquency. : . · ·.. · . 
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l:XERCISES. 

2.1. (For this and simil~r estimat<'ll cf. "Heport by Miss Collet on the Statistk" 
of Employment of Women and Girls" [C.-7564),189.J..) If, in the urban district 
of Bury, 817 per thousand of the women between 20 and 25 yt"ars of age were 
returned as "occupied" at the census of 1891, and 263 per th~Jll'!anll as marrh•d 
or widowed, what is the lowest proportion per f110usand of the married or 
widowed that'must have been occupied?. . ,. · . 

2.2. If, in a series of houses actually invaded _by smallpox, 70 per cent. of the 
inhabitants are attacked and 85 per cent. have been ,·accinated, what is the 
lowest percentage of the vaccinated that must have been attacked? 

2.3. Given that 50 per cent. of the inmates of a workhouse are men, 60 per 
cent; are "aged" (over 60), 80 per cent. non-able-bodied, 35 per cent. aged 
men, 45 per cent. non-able-bodied men, and 42 per cent. non-able-bodied and 
aged, find the greatest and least possible proportions of non-able-bodied aged 
men. 

2.4. (Material from ref."(69).) The following are the proportions per 10,000 
of boys observed for certain classes of defects amongst a number of school
children. A =development defects, B =nerve signs, D =mental dulness. '.. . - .. 

N =10,000 (D) =789 
(A)= , 877 (AB) =;338. 
(B)= 1,086 (BD) =455 

Show that some qull boys do not exhibit development defe~ts, and state how 
many at least 'do not do·so. · • · 

2.5. _The following are the corresponding figures for girls:-

N =10,000 
(A)= 682 
(B)= 850 

(D) =689 
(AB)=248 
(BD) =363 

Show that some defectively developed girls are not dull, and state how many 
at least must be so. 

2.6. Take the syllogism "All A's are B's, all B's are C's, therefore all A's ~re 
C's," express the premises in terms of the notation of the preceding chapters, 
and deduce the conclusion by the use of the general conditions of consistence. 

2. 7. Do the same for the syllogism "AU A's are B's, noB's are C's, there fort' 
no A's are C's." 

2.8. Given that (A) =(B) =(C) =!N, and that (AB)/N =(AC)/N =p, find 
what must be the greatest and least values of p in order that we may infer that 
(BC)fN exceeds any given value, say q. 

2.9. Show that if 
(A) 
N=iJJ 

and 

(B) 
N=2.1J 

(C) 
N=a~ 

Zh value of neither i1J nor y can exceed !· 
2.10. A market investigator returns the following data. Of 1000 people co:-.

sulted, 811 liked chocolates, 752 liked toffee and 418 liked boiled sweets; 570 
liked chocolates and toffee, 356 liked ehocolates and boiled sweets and 348 liked 
toffee and boilfd sweets; 297 liked aU three. Show that this_ information ali it 
stands must be incorrect. , . 

2.11. (Imaginary data.) 50 per cent. ofthe imports of barley into a rountry 
come from the Dominions; HO per cent. of the total im)Jorts go to brewing; 
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75 per.cent. of the imports are grown in t11e Northern hemisphere; 80 per cent. 
of Northern-grown barley goes to brewing; 100 per cent. of foreign Squthem• 
~rown barley goes to stock-feeding. 'Show that the foreign Northe$-grown: 
barley which goes to brewing cannot be Jess than 80 per cent. nor more than 
60 per ceflt. of the total imports. . , · · • . 

(It is assumed that brewing and stock-feeding are the only two uses to which 
iruported barley is put:) . . . . 

2.12. A penny is tossed three times and the results, heads and tails, noted. 
The process is continued until there are 100 sets of threes. . In 69 cases heads 
fell first, in 49 cases heads fell second, and in 53 cases heads fell third. In 33 cases 
heads fell both first and second, and in 21 cases heads feU both second and third. 
Show that there must have been at least 5 occasions on which heads fell 
three times, and that there caJJd not have been more than 15 occasions on 
which tails feU three times,. though there need not have been any.. · 

~ 



tiiAPTER 3. 

ASS9CIATION, OF ATTRIBUTES. 

lndependence. 
3.1. If there is no sort of relationship of any kind between two 

attributes A and J], we expect t., find the same proportion of A's amongst 
the B's as amongst the not-B's. \Ve may anticipate, for instanC'e, the 
same proportion of abnormally wet seasons in leap years as in ordinary · 
years, the same proportion of male to total births when the moon is waxing 
as when it is waning, the same proportion of heads whether a coin be tossed 
with the right hand or the left. . 

Two such unrelated attributes may be termed independent, and we 
have accordingly as the criterion of independence for A and B: 

(AB) _ (AfJ) 
(B) -; (fJ) 

If this relation ?old good, th~ corresponding relations 

(aB) (afJ) 

must also hold. 

that is, 

. (B) = (fJ) 

(AB} (aB) 

<A> =w 
(AfJ) (afJ) 
(A) = (a) 

For it follows at once from (3.1) that 

. (B)- (AB} (fJ)- (AfJ) 
(B) (fJ). 

. (aB) (afJ) 
(B) = (fJ) 

and the other two identities may be similarly deduC'ed. 

(3.1} 

The student may find it easier to grasp the nature of the relation~ stated 
if the frequencies are supposed grouped into a table with two rows and two 
columns, thus : . 

-----, 
Attribu~. 

I 
Attribute. .· Total. 

B p 
A (AB~ (APl • (A) 

I a (aB) (a/]) (a) 
I 

I 
I 

I Total (B) <P> .N 
I ) 

F 
. 

34 
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Equation (3.1) st~tes a ce~q equality .for the columns; if t~is holds 
good, the correspondmg equation· · 

(AB) (aB) 
(A) = (a) 

must hold for the rows, and so on. 

Forms of the Criterion of Independence. 
3.1. The criterion may, howevet11 be put into a somewhat different 

and theoretically more comrenient form. The equation (3.1) _expres.ses 
, (AB) in terms of (B), (/3) and a second-order frequency (A/3) ; elumnatmg 
; this second-order frequency we have: _ · 

(AB) (AB) +(A/3) · (A) 
(B) = (B)+(/3)· =_N 

i.e. in words, •; the proportion of A's amongst the B's is the same as in the 
universe at large." The student should learn lo recognise this equation at 
sight in any of the forms: .... 

(AB) (A) 
(B) =N (a) 

(AB) (B) 
(b) (A) =N 

. (AB) = (A){B) 
(3.2) 

(c) N· 
(AB) (A) (B) 
}r=N'· N.. (d) 

The equation (d) gives the important fundamental rule: If the attributet 
A and B are independent, t~ proportion of AB's in tl1e .universe ia equal to 
t~ pro~rtion of A's multiplied by tl.e proportion of B's. ·' · · 

The advantage of the forms (3.2) over the form (S.I) is that they give 
expressions for the second-order ,frequency in term!t"of the frequencies of 
the first order and the whole nun;iber of observations alone; the form (3.1) 
does not. , · 
· E:cample 3.1.-lf there are l.U .I.'s and 384 B's in 1021 observations, 

. how many AB's will there Le, A ... ~n<J.L!,.bcing ~ndependent? . 
• 

IU x38.J. 
5 102-t. = ~ 

There will therefore be 5-t. AB's •. ... 
Eorample 3.2.-If -the A's are 60 per cent., ·the D's 35 per cent., of the 

whole number of observations, what must be the percentage of AB's in 
order that we may conclude that A and IJ are independent ? 

•· ~ 
'. · 60 x3S 

1
' 

lo0""2 
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_and therefore there must be 21 per cent: (more or les'i dosely, cf. 3.8 and 3.9 
below) of AB's in the univer..e to justify the conclusion that A and Bare 
independent. · . 

3.3. It follows from 3.1 that if the relation (3.2) holds for any one of 
the four second-order frequencies, e.g. (AB), similar relations must hold 
for the remaining three. Thus we ha~·e directly from (3.1): 

(A/3) (AB) + (A/3) (A) 
(/3) = (B)+ (/3) =N 

/ 

. .· (A/3) = (A)(/3) 
. N 

and so on. This is seen at once to be true on consideration of the fourfold 
table on page 34. For if (AB) takes the value (A )(B)/N, (A{l) must take 
the value (A)(f1)/N to keep· the total of the row equal to (A), and so 
on for the other rows and columns. The fourfold table in the case of 
independence mus\ in fact have the form:· 

Attribute. I 
Attribute. Total. I 

B· p. i 
'A (Aj(.,fl)/N (A)(fJ)/Y . (..4) 

a (a)(B)jN (a)(fJ)/N (a). 

Total , (B) ({J) N' I . 

Example 3:3.-In Example 3.1 above, what would be the number of 
af1's, A and B being independent? · . 

(o.)=l02-i-Hi=880 
(/3) =102-1-38-1'=610 

( Q.) = 880 X 640 = 550 
• • Q~ 102-1 

3.4. Finally, the criterion of independ~nce may be expressed in yet a 
'third form, viz. in terms of the second-order frequencies alone. If A and 
B are independent, it follows at, once from the preceding section that 

(AB)(o.f) = (A}(B)~o.)({l) 
. '. ·-·- N ' 

' 
And evidently (ci.B)(A/3.) is equal to the san1e fraction. 

Therefore 
- (AB)(a{l);: (aB)(A{l) 

(.A B) 
(o.B) 
(AB) 
rAfl) 

. (A{J) 

(o.{J) 
(o.B} 
(~{l) 

\ 

(a)}· 
(b) 

(c) . 

• (3.3) 
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The equation (b) may be read; "The ratio of A's to a.'s am~nlt't the 
B"s is equal to the !ati_o of. A's to a.'s ~mongst ~he fJ's," .and (c) smul;uly •. _ 

• Tlus form of cntenon 1s a converuent one 1f all the four second-brder · 
frequencie!I!.Me given, enabling one to recognise almost at a glance whether 
or not the two attributes are indep<'ndent. . . 

• E:rample 3.#.-Hthe.second-order frequencies have the follolling values, 
are A and B independent or not ~ . . . 

· · (AB)=IH) (o.B)=90 ... (AfJ)=290 (o.fJ).=5IO •. 
Clearly • · · - · · " ·· - · 

(AB)(a{J) > (o.B)(A{J) 

so A and B are not independent. 

Assoeietion. 
--3.5 •. : S~ppose now that A and Bare not independent, but related in 

some wat or vther, however complicated. · · - - · : 
Then if · ·· · 

• -· (AB) > (A)(B) 
. N 

.l. and B are ~aid to be positively associated, . or sometimes· simply 
associated. IC, on the other hand, · 

. (AB) < (A)(B) 
. .N 

A and B are said to be negatinly assoclal~d or, more bi-iefiy, dis-· 
associated. 

·The student should carefully note that in statistics the word 
" a.<>sociation " has a technical meaning different from the one current in 
ordinary speech. In common language one speaks of A and B as being 
" associated " if they appear together in a number_ of cases. But in 
statistics A and B are associated only if they appear together in a greater 
number of cases than is to be expected if they are independent. Thus, 
if we consider means of land transport as dichotomised into toad and rail 
travel, we may say, in the customary use of the term, that road transport 
is associated with speed. But it does not follow that the two are statisti
cally associated, because rail transport may equally be associated with 
speed and, in fact, the attribute speed may be independent of the means 

· of travel in these two manners. 
Association, therefore, cannot be inferred from the tnire~ fact that 

•orne A's are B's, however great the proportion ; this principle is funda-
mental and should always be borne in min4._ _ · 

Complete Association and Disassociation. 
-' ' 

3.6. \\'e have now to consider in "hat drcumstances we may reg:ud 
the association of two attributes as complete. Two courses are open to 
us. Either we may say that for complde association all A's must· be 
B's and all B's must be A's, in which use it must follow that tlae A's 
and the B's occ~ in the universe in equal numbers ; or we may acfopt ~ 
rather wider me~ng and ~ay that all .A's are B's or all B's are A'lii, ·. 
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according to wh~ther the A's or the /l's are in the minority. Similarlv 
complete disasso,ciation may be taken either as the case when no A's ar; 
B's and no. a's are ff.s, or more 'Widely as the C'ase. when either of these 
statements 1s true .. · 1 

• 

We shall adopt the 'l'lider definition in the sequel. Thus two attributes 
are completely associated if one of them cannot occur without the other, 
though the other may occur without the one. • . . 

Measurement of Intensity of Association. 
3.7. It follows from the foregoing that if two attributes are com

pletely associated, (AB) must be equal to (A) or (B), "'·hichenr is the 
smaller. If they are completely disassociated, (AB} must be t>qual to 
zero or to (A)+ (B) -:-N, whichever is the greater. (AB) must in general 
lie. betwt'en these two limits. \Ye may thus regard the divergence of 
(AB) from the "independence!" value (A)(B}JN towards the limiting 
value in either direction as indicating the inte1Uitfl of asSOC'iation or dis
association, so that we may speak of attributes as being more or lns, 
highly or slightly, associated. This conception of degrees of association 
quantitatively ·expressible is important, and we return in a later section 
to consider the formulre which may·be used to measure such degrees. · 

• Samplin~ Fluctuations. 
I 

3.8. When the association is very slight, i.e. where (AB) only diff(:rs 
from (A)(B)JN by a few units or by a small pro~rtion, it may be that 
such association is not really significant of any definite relationship. To 
give an illustration, suppose that a coin is tossed a number of times, and 

. the tosses noted in pairs ; then 100 pairs ·may give such results as the 
following (taken from an actual record):~ 

First toss heads and second heads 
, , , . tails • 

First toss tails and second heads 

" " " 
. tails. 

26. ,... ' 
18. 
21 ~: 
29 
• If 1re use A to denote " heads " in the first toss, B " heads " in 

the second, we have from the above ·(A) =U, (B) =53.· Hence 

.(A)(B)/N ;= 
44 

X 
53 

=23·32. while actually (AB) is 26. I Hence there. is a 
. . . 100 . • . 

positive associat\on, in the given record, between the result of the firl>t 
throw and the result of the second. But it is fairly certain, from the 
nature of the case, that such association cannot indicate any real connec
tion between the results of the two throws ; it must therefore be due 
merely to such a complex system of causes, impossible to analyse, as leads, 
for example, to differences between small samples drawn from the same 
material. The conclusion is confirmed by the fact that, of a number of 
such records, some give a positive aSsociation (like the abon), but others 
a negative association. . · .. 

3.9. An event due, like the above occurrence of positive association, 
to an extremely complex system of causes of the general nature of which 

-- we are aware, but of the detailed operation of which we are ignorant, is 
sometimes said to be due to cham·e, or hetter to the chances or fluctua
tions of sampling. 



ASSOCIATION OF ATTRIBUTES. . 39 

A little consideration will suggest that su~h associations 9ue to the 
fluctuations of sampling must be met with.(n all classes of statn>tics. 'fo 
quote, for- instance, from 3 .I, two· illustrations there gi veri of· inde
pendent attributes; we know ·that in any actual record we would not be 
likely to find exactly the same proportion of abnormally wet seasons in 
leap years as in ordinary years, nor exactly the same proportion of male 
births when the moon is waxing as when it is waning~ But so long as the 
divergence from independence is not well marked we must regard such 
-attributes as practically independent, or dependence as at least unproved. 

The discussion of the question, how- great . the divergence must be 
before we ·can consider it as " well marked,,. must be postponed to the 
chapters dealing with the theory of sampling. At present the attention 
of the student can only be directed to 'the existence of the difficulty, and 
to the serious risk of interpreting a " chance association ., as physically 
significant. · 

The Choice of a Suitabie Form for Testing Association. . . 
3.10. The definition of 3.5 suggests that we are to test the existence 

or the intensity of association between two attributes by a comparison 
of the actual value of (AB) with its independence value (as it may be 
termed) (A)(B)/N. The procedure is from t4e theoretical standpoint 
perhaps the· most natural, but it is more usual, and is simplest and best 
in practice, to compare proportions, e.g. the proportion of A's amongst the 
B's with the proportion amongst the {J's. Such proportions are usually 
expressed in the form of percentages or proportions per thousand.· · · 

It will be evident from 3.1 and 3.2 that a large number of such com
parisons are available for the purpose, and the question arises, therefore, 
which is the best comparison to adopt ? 

3.11. Two principles should decide this point: (1) of any two com
parisons, that is the better which brings out the more clearly the degree 
of association; (2) of any two comparisons, that is the better which 
illustrates the more important aspect of the problem under discussion. 

The first condition at once suggests that comparisons of the form 

(A.Jl) (AfJ) 
(B)_> TPf 

are bett~r than comparisons of the for~ 

(8.4) 

(AB) >(A) (3.5) 
(B) , N. -«-. " ... 

For it is evident that if most of the objects or individuals in the unh·erse 
are R's, i.e. if (B)/N approaches unity, (A B)/( B) will necessarily approach 
(A)JN even though the difference between (AB)/(B) and (AfJ)/(fJ) is 
consid,erable. The second form of comparison may therefore i be mis-
leading. ~ . · 

Setting aside, then, c.omparisons of the general form (3.5), the question 
remains whether to apply the comparison of the form (3.4) to the rows or 
the columns of the table, if the data are tabulated as on page 84. This 
question must be decided with reference to the J>econd principle, i.e. with 
regard t.o the more important aspect of the problem under discussion, 
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the exact question to be answered, or the hypothesis to be tested, as illus· 
trated -by the examples below. Where no definite question has to be 
an~wcr,ed or hypothesis tested both pairs of proportions may be tabulated, 
as m Example 3.6. 

E.xample 3.5.-Ac;sociation between inoculation against cholera and 
exemption from attack._ (Data. from Greenwood and Yule, Table III, 
ref. (74 ). ) 

I 
Not att~ked. Attack~ Total. 

Inoculated -. ;;. 276 ~. 3. 279 
Not inoculated -:.~... 473.1; 66n p 539 •. . 

Total 749 69. - 818 
'. 

Here the important'question is, 'Ilow far does inoculation protect from 
attack 1 The most natural comparison is therefore--

. .. 
Percentage of inoculated who were not attacked • 

, . no,t jnoculated , , · ' • ; 

Or we might tabulate the complementary proportions-

Percentage of inocula.ted who were attacked 

" 
not inoculatt>d , .. 

.· 
98·9 

.87·8 

1·1 
12·2 

Either comparison brings out simply and clearly the fact that inocula· 
tion and e.xempt·i.on from attack are positively associated (inoculation and 
attack negatively associated). , 

\Ve are making above a comparison by rows in the notation of the table 
on page 34, comparing (AB)/(A) with (aB)/(a), or (A/1)/(A) with (a/1)/(a.). 
A comparison by columns, e.g. (AB)f(B) with (A/1)/(fJ), would serve 
equally to indicate whether there was any appreciable association, but 
would not answer directly the particular question we have in mind: 

Percentage of not-attacked who were inoculated . 36·8 
, · - attacked ,' - , . 4·3 .. 

· E.xample 3.6.-Deaf-mutism and Imbecility. · 
of 1901. Summary Tables. (Cd. 1523).) 

Total population of England and Wales • 
Number of the imbecile (or feehle-mirided) 
Number of deaf-mutes· · • • 
Number of imbecile deaf-mutes 

(l\Iaterial from Census 

82,528,000 .• 
,_ • 48,882- .... 

15,2J.6 
451 

Required, to find whether deaf-mutisnr is associated with imbecility. 

We may denote the number of the imbecile by (~). of deaf-mutes by 
(B). A comparison of (AB)/(B) with (A)/Nor of (AB)/(A) with (B)/N 
may very well be used in this case, seeing that (A)/Nand (B)f.V are both 
small. The question whether to give' the preference to the first or the 
f;econd comparison depends on the nature of the investigation we wish to 
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make. If it is desired to exhibit the conditions among deaf-mutes the fi~t 
may be used : ,_ - . , I 

Proportion of im. bec)(es among dea~-} 29."oper thousand 
, mutes= (A B)/( B) • . · • . •.. · 
Proportion of imb~ciles in the whole} 1.5 

population=(A)/N • · • • ., . " 
. . 

. If, on the other hand> it is desired to exhibit the conditions amopgst 
the imbecile, the_ ~econd will be preferable~ . · . . . 

Propo~ion '?f deaf-mutes amo~gst 1 9.2 per thousand· . 
the Jmbectle=(A,B)/(A) . · · .f · · 

Proportion. of deaf-mutes in the} 0;5 
~ · whQle population=(B)/N- • . " . . .... 
. • • j . 

Either comparison exhibits.very clearly that there exists an association 
between tlre attributes. It may be-pointed out, ho~ver, that census data 
as to such infirmities are very untrustworthy. . . . . 

Ezamp~ _3.1.-Eye-colour of father and son (material due to·· Sir 
Francis GaltQn, as given by Professor Karl Pea~on, Phil. Trans., A, voL 
195, 1900, p. 138; the classes I, 2 and 3 of the memoir treated as:ulight "). 

Fathers with light eyes and sons with light eyes (AB) , • 
, : , , not.light ,, (AfJ) : 

not light_ ~. • . , . light ·. , · ( a.B) •. · 
, , , not light , ( a.fJ) · • " 

" 

·. 4.71 
151 ' 
148 
230. 

Required to find whethe~ the colour of the ~on's eyes is associated with 
that of the father's. In cases of this kind the father is reckoned once for 
each son : e.g. a family in which the father was light-eyed, two sons light
eyed !lnd one not, would be reckoned as giving two to_ the class"A!J and one 
to the class A{J. ' · , · " · · • 

The best comparison here is-

Percentage of light~yed amongst the sons} 76 ·t 
of light-eyed fathers • • • • . per cen • 

Percentage of light-eyed amongst the sons} 39 of not-light-eyed fathers • · • • ' " ... . 
But the following is equally valid :-

Percentage of light-eyed amongst · th~} 
fathers of light-eyed sons • • • 76 ~>er. cent. 

Perc~ntage . of light-eyed a~ongst the.} 4.0 · , 
fathers of not-light-eyed sons · . 

The rcason,why the former comparison is preferable is that we usually 
wish to estimate the character of offspring from that of the parents, and not 
vice versa. Both modes of statement, however, indicate equally clearly that 
there is considerable resemblance between father and son. . . . · · 
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Eorample 3.8.-Association between inoculalimt against· <·holcra 11nd 
exemption from atta{'k, five separate epidemics (cf. Example 3.5, data from 
Tables IX, X, XXVIII, XXIX,.XXXI of ref. (74)) •. 

Not attacked. . ·Attacked. Total. 
Inoculated 192 4 196 
Not inoculated 113 :H H7 

Total 305 38 343 

Not attacked. AttackeJ. Total. 
Inoculated 5,751 27 5,778 
Not inoculated 6,351 ·198 6,549 

Total 12,102 225 12,327 

Not attacked. Attacked. Total. 
Inoculated . 4,087 5 4,092 
Not inoculated 113,856 1,14-1. 115,000 

Total 117,943 1,149 119,092 

Not attacked. Attacked. Total. 
Inoculated 8,332 8 8,310 
Not inoculated 84,444 556 85,000 

Total 92,776 564 93,340 

Not attacked. Attacked. Tot~]. 

Inoculated .. 4,870 5 ·4,875 
Not inoculated 153,096 904 15f.,OOO 

--.-
Total 157,966 909 158,87LJ 

With the tabid' of Example 3.5 the above give data for six separate 
epidemics, in all of which the same method of inoculation appears to have 
been used : the data refer to natives only, and the numbers of observations 
are sufficiently large to reduce " fluctuations of sampling " within reason
ably narrow limits. . The proportions not attaC'ked are as fo_llows :-

Proportion not Attacked. 
Not Inoculated. lnoc:.tlaied. Difference. 

1 0·8776 0·9892, 0·1116 
2 0·7687 0·9796 0·2109 
8 0·9698 0·9953 0·0255 
4 0·9901 0·9988 0·0087 
5 0·9935 0·9990 0·0055 
6 0·9941 0 0·9990 0·0019 

In each case inoculation and exemption from attack a;e "po~oitive!y 
-associated, but it will be seen that the several proportions, and the differ
ences between them, vary considerably. Evidently in a very mild 

\. 
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epidemic this difference can .only be small, and the question arises how 
far the data for the separate epidemics can be said to be consistent in: 
their indication of the " e(ficiency " of the inoculation. This i!> not a 
simple question to answer : the more advanced student is referred to the 
discussion in the original. 

The Symbols (AB)o and 8. 
3.12. The valu'es that'tl\e four second-order frequencies take in the 

case of independence, viz. ' 

(A)(B). (a)(B). ·.(A)(/1) (a)(/1) 
...v • --xr-· -r· --xr--=-
. ' ' 

are of such great theoretical importance, and of so much use as reference-
values for comparing with the actual values of the frequencies (AB), (aB), 
(A/1) and (afl), that it is often desirable to employ single symbols to denote 
them. · We shall use the symbols · · 

• (AQ)o.=(A~B)_. (a/1)~~(;,_>)/)· 
• 

·•: .. (aB)o., (a~~B) (Afl)o = (A~/1) 
. -

If 8 denote the excess of( A B) over (AB)0, then, in order to keep the totals 
of rows and columns constant, the general table (cf. the table for the case 
of independence on page 36) must be of the form 

I • ' 

Attribute. 
Attribute. Total. 

B fJ 
.A (A.B),+d • (A.fJ),-6 . (A.) 

a (aBio .. d ,' (afJ),+~ (a) 

Total (B) , I {/1) I N . 
Therefore, quite generally we ha.ve: 

(AB)- (AB)o =(a/1)- {af1)8 = (A/1)0 r- {4/1) ={aB)0 :_ (aB) 78 · 

· 3.13·. The v~ue 'of this co~mon dir?e~ence 8 may be expressed in a 
form that is useful to note. We have by definition: · . ;" • 

o =(~B)"- (_Af1)0 ~ (AB)- (A~ B) •· .. , 

Rring the te~ms on the right to a. common denominator~ and express all 
the frequencies of the numerator m terms of those of the second order ; 
thc·n we have: 

. 0 = !{(AB)[(AB) + (aBt +(A})+ (a/1)]} 
N -f(AB)+(.J,B)][(AB)+(aB)] 

. 1 ~ 

"':N{(AB)(a,B)- (aB)(Afl)} 
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That is to say, the common difference is equal to 1/Nth of the difference ' 
· of the "cross-products" (AB)(a/1) and (aB)(Afl). • 

It is evident that the difference of the cross-products may be very 
large if N be large, although 8 is really very small. In using the difference 
of the cross•products to test mentally the sign of the association in a case 
where all the four second-order frequencies are given, this should be 
remembered : the difference should be compared with N, or it will be 
liable to suggest a higher degree of association than actually exists. 

E.xample 3.9.-'the following data were observed for hybrids of Datura 
(W. Bateson and Miss Saunders, Report to the Evolution Committee of 
the Royal Society, 1902) :-

Flowers violet, fruits prickly (AB) 47 
, , smooth (A/1) 12 

Flowers white, , prickly (a B) · 21 
, , smooth'( afl).. 3 

_Investigate the association between colour of _flower and character of 
fruit. 
· Since 3x47=1~1, 12_x21=252, i.e. (AB)(a/1) < (aB)(A/1), there is 

clearly a negative ·association; 252 -141 = lll, and at first sight this 
considerable difference is apt to suggest a considerable disassociation. But 
8=111/83=1·3 only, and forms a small proportion of the frequency, so 
that in point of fact the disassociation is sm~~oll, so small that no stress can 
be laid on it as indicating anything but a fluctuation of sampling.· Work-
ing ~ut the percentages we• have: • 

Percentage of violet-flowered plants with} 80 t 
. kl f "t . per cen • pnc y rw s .' . . · . . 

P~rcentage of white-flowered plants with} 87 prickly fruits • • . • • • .. 
Coefficient of Association.· 

3.14. In the previous examples we have judged the association by· 
comparing the class-frequ~ncies with th_ose which would exist if the data 
were given by independent attributes, and we can form a rough idea of 
the strength of the association by examining the extent of the difference. 
This is sufficient for almost all practical purposes, although, if the data 
are likely to be affected seriously by fluctuations of random sampling, 
some test of the significance of the difference is also necessary. Apart 
from this question, however, it is sometimes convenient to measure the 
intensities of the associations by means of a coefficient. . 
. · It is clearly convenient if such a coefficient can be devised as to be 
zero if the attributes are independent, + ~ if they are completely assoc·iated 
and - I if they are completely disassociated. . 

3.15. Many such coefficients may be devised, but perhaps the simplest 
possible (though not necessarily the most advantageous) is the expression-

-'- (4Bj(q.f1)- (Afl)(aB) 
Q- (AB)(afl) + (Afl)(aB) 

N8 
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~-~ ~ is the symbol used in 3.12 and 3.13 f~r the .difference ' 
(AB) -(.IB)0• It is evident that Q is zero when the attributes are 
independent, fur then () is zero : it takes the value + 1 when thrre is 
complete association, for then the second term in both numerator and 
denominator of the first form of the expression is zero:. similarly it is 
-1 where there is complete disassociation, for then the fir:,;t term in both 

. numerator and deno:rninator is zero. Q may accordingly be termed a 
coefficient of association. As illustrations of the values it will take 
in certain eases, the association between deaf-mutism and imbecility, on 
the basis of the English census figures (Example 3.6), is +0·91;, between 
light eye-colour in father and in son (Example 3.7), +0·66; between 
colour of flower an<J. priekliness of fruit in Datura (Example 3.9 ), - 0·28-a· 
disassociation which, however, as already stated, is probably of no jmi.ctical 
significance and due to mere fluctuations of sampling. · . · · · 

• The student should note that if all the terms containing A are multiplied 
by a constant, the value of Q is unaltered. Similarly for a, B and {J. 
Hence Q is independent of the relative proportions of A's and a's in the 
data. This property is important, and renders such a measure of associa
tion specially adapted to eases in which the proportions are arbitrary 
(e.g. experim.~1ts ). A form possessing the same property· but certain · 
marked adva~!ages over Q is suggested in ref. (80). · 

3.16. ·The- coefficient is only mentioned here to direct the attention 
of the student io the possibility of forming such a. measure of association, 
a measure which serves a similar purpose in the case of attributes to that , 
scn·ed by certain other coefficients. in the cases of manifold classification 
(rf. Chap. S) and of variables (cf. Chap. 11, and the references to Chaps. 11, 
12 and 13). For further illustrations of the .use C?f this coefficient the 
reader is referred to ref. (78) ; for a modified form of the coefficient, 
possessing the same properties but certain advantages, to ref. (80) ;· 
and for a mode of deducing another coefficient, based on theorems in the 
theory of variables, which has come into. more general use, though in 
the opinion. of the present writers its use is of doubtful advantage, to 
ref. (76). Reference should also be made to the coefficient described in 
13.25. The question of the best coefficient to use as a measure of associa
tion is one on which statisticians differ: for a discussion the student is 
referred to refs. (74), (77) a~d (80} •.. 

A Necessary Caution. 
·. 3.17. In concluding this chapter, it may be well to repeat, for the 
sake of emphw,is, that the mere fact of 80, 90 or 99 per cent. of A's being 
B's implies nothing as to the association of A. with JJ; in the absence of 
information, we can but assume that 80, 90 or 99 per cent. of a's may also 
be D's. In order to apply the criterion of independence for two attributes 
A and ·B, it is necessary to have information concerning a's and {J's as well 
as A's and B's, or concerning a universe that includes both a's and A.'s, 
{J's and B's .. Hence an investigation as to the causal relations of un 
attribute .4 must not be confined to A's, hut must be extended to a's 
(unless, of cour~te, the necessary information as to a's is already obtainable) : 
no comparison is otherwise possible. It would be no use to obtain with 
great pains the }'esult (cf. Example 3.6) that 29·6 per thousand of deaf
mutes were imbecile unless we knew that the proportion of imbeciles in the . . . 



46 THEORY OF STATISTICS. · 

"whole population ~~ only 1·5 per thousand; nor would it contribute. 
anything to our knowledge of the heredity of deaf-mutism to find out the 
proportion of deaf-mutes amongst the offspring of deaf-mutes unless the 
proportions amongst the offspring of normal individuals were also in-
nstigated or known. · · 

SU1\n1ARY. .. 
1. Two attributes are independent if the proportion of A's among the 

B's is the same as the proportion among the not-B's. 
. 2. This definition can be expressed symbolically in numerous forms, in 

terms of either first-order or second-order frequencies. The form in which 
the data are given, and the question which is to be answered, determine 
which form is to be employed in any particular case. -

3. Attributes which are not independent are said to be positively. 
associated if 

and negatively associated if 
(AB) < (A)(B) 

N 

4. The statistical meaning of the word " associatio~ " is different from 
the meaning ascribed to it in ordinary language. · 

5. Before association may be said to indicate a definite relation 
between the· attributes, it is necessary to be satisfied that the divergence 
from independence is not due to fluctuations of sampling. - · 

· 6. The divergence· of the actual frequency from the " independence " 
frequency is de:r:toted by the symbolS, and hence 

8 = (AB)- (A)(B) 
N,-. 

7. The coefficient of association is defined by 

N8 ... , 
Q ':= (AB)(.afJ) f. (AfJ)(aB)~ 

. ' 
it. is zero if the attributes are independent, + 1 if they are completely 
associated and -1 if they are completely disassociated. There are, 
however, other forms of coefficient more advantageous in certain cases 
(ref. (80)). 

EXERCISES. 

V 3.1. At th~ census of Engl~nd and Wales in ].901 there were (to the nearest 
1000) 15,729,000 males and 16,799,000 females; 3-1.97 males were returned as 

· deaf-mutes from childhood, and 3072 females. 
State proportions exhibiting the association between deaf-mutism from child

hood and sex. How many of each sex for the same total number would have 
been deaf-mutes if there had been no association ! 

-- 3.2. Show, as briefly as possible, whether A and Bare indeiJndent, positively 
associated or negatively associated in each of the following cases:-

• 
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(a) N =5000 (A) =2350 (B) =.8100 (4B) =1600.' 
(b) (A)= 490 ·· (.4B) = 294 (a)·= 570 ( aB) = 380 I 
(c) (AB)= 256 .{aB);, 768 (A/3)=. 4S. (afJ)=, 144 ~ · 

. ·- . . . ... 
!. 3.3. (Figures derived from Darwin's "Cross- and Self-fertilisation of Plants.") 
The table below gives the numbers of plants of certain species that were above or 
below the average height, stating separately those that were derived from cross~ 
fertilised and from self-lertilised parentage. Investigate the association between 
height and cross-fertilisation of parentage, and draw attention to any special 
point~ you notice~ · 

I - Parentage r.ro.s-fer· Parentage Self-fer-
tilised. Height- tilised. Height-

Speci..;_ 
Above Below Above Below 

Average. Average. Average. Average. 

lpom.'U parp.._. . 83 10 18 66 
P.,tunir. TIOiacea 61 18 13 M 
a-Jaluta " 1 11 21 
a-Ja odorata 39 18 26 30 
Lobelia 1aljjeDa 

' 11 17 lB 2» ) 
3.4. (Figures/rom same so-~ce as Exa~ple. 3.7, p. 41, but material drtferently 

grouped; cla!iliel 7 and 8 of the memoir treated as "dark.") Investigate the 
association between darkness of eye-colour in father and son from the following 
data:- ': · 

Fathers with dark eyes and sons with dark eyes (AB) • 50 
, , , not-dark eyes (A/3) • 79 

Fathers with not-dark eyes and sons with dark eyes ( aB) .. . 89 
, \,, , . · , not-dark eyes ( a{J) 782 

Also tabulate for comparisou the frequencies that would have been obser.ved 
had there been no heredity, i.e. the values of (AB)0, (A/3)0, etc. 

3.5. (Figures from same source as above.) Investigate the associatiou between 
eye-colour of husband and eye-colour of wife ("assortative mating") from the 
data given below. · 

Husbands with light eyes aud wives with light eyes (AB) • 309 
, , · , . not-light eyes (A/3) • 214 · 

llw;bands with not-light eyes and wives with light eyes ( aB) • 132 
, , , not-light eyes( a/3) • 119 

Also tabulate for compa;ismi the frequencies that would have bee~ observed 
had there been strict independence between eye-colour of husband and eye· 
colour of wife, i.e. the values of (AB)0, etc., as in Exercise 3.4. 

3.6. (Figures from the Cen~us of England and Wales, 189i, vol. 3: the data 
cannot be regarded as trustworthy.) The figures given below show the number 
of males in succe&~~ive age-groups, together with the number of the blind (A), of 
the mentally deranged (B) and the blind mentaUy· deranged (AB). Trace the 
association between blindness and mental derangement .from childhood to old~ 
age, tabulating the proportiora of insane amongst the whole population and 
amongst the blind, and also the association coefficient Q of 3.15, Give a short 
verbal statement of your results. · .· .. .._ · 

i- u- Ji- ,.._ 
fi- 6i- 116·· 75 and 

upwards. - - -- -.--. 
N 1,104,!80 2,712,621 1,088,010 1,611,077 1,191,78i 770,124 «4,898 l61,69ll (A) ~H 1.1~( 1,lti5 1,601 1,761 1,~06 1,933 1,701 (11) 1,&:.0 .. ~~' 8,4112 8,3U 8,187 6,799 8,412 1,098 <J.B> I If 11 u 81 u u •U II 
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3.7. Show that if 
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(AB) 1 (aB)a (AP) 1 ("/Jh 
. (AB). ( aB). (A/1)1 ( afJ>. 

be two aggregates corresponding to ihc ·same values of (A), (B), (a) and (/J), 

(ABh- (AB), =(aB). -(aB)1 =(A/1)1 -(A/Jh =(ap)1 -(tJ/1)1 

• 

3.8. Show that if .. 
d=(AB) -(AB), . 

(AB)1 +(a/J)1 -(aB)1 •(Ap)1 =[(A) -(a)][(B) -(p)) +2S~-
' . . ' . 

8.9. The existence of association may. be tested either by comparison of 
proportions (e.g. (AB)/(B) with (A/1)/(/J)), as in ~.10 and 3.11, or by the value 
of d, as in 3.11 and 3.13. · Show that · 

•' 

·6 = (B)(ft){(AB) ... (Ap)} 
- N_ (B) • (fJ) • 

_ <A><a>(<AI!> _ <aB>} 
.- (N) (A) , (a} . 

. 3.10. Spence and Charles, in An Investigation into the lleaUh and Nutrition of 
·Certain of the Children of Newcastle-on-Tyne between the Age11 of One and Fir-e 

Years (City and Council of Newcastle-on-Tyne, February 1934). compared two 
groups of children~ one belonging to the professional classes, 125 in number, 
and the other belonging to the labouring classes, 124 in number. They found 
the following results:- . · · · 

Below normal weight • 
Above normal weight . 

Poor Well-to-do 
Children. Children. 
Per cer1t. Per eent. 
. 55 

11 
13 
48 

Find the coefficient of association between the weight of the children and thdr 
social status. . 

3.11. (Data from the Report on the Spahlingrr E.rprrirnents itt Xorthern 
Ireland, 1931-1934, H.M •. Stationery Office, 1935.) In experiments on the 
immunisation of cattle from tuberculosis the following results were secured:-

I Cattle.· I . Died of Unaffected or Total. I 
Tuberculosis or only slightly I very seriously 

affected. affected. 
I 

Inoculated with vaccine . . 6 \ 13- 19 
Not inoculated or inoculated with 8 ., 3 11 

control media • •. 

• . 
- Total . . 14 16 30 

(The cattle were first i.riocula.ted with protective vaccine and then deliberatt:ly 
_ infected with serious qttntities of tubercle germs.) j 

Fi.rid the coefficient of association between inoculation and exemvtion from 
serious tuberculosis. 
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3.12. Criticise the follo\\ing argument: .. ~early aU the A's are B's, :an:l 

therefore A and B must be asso<>iated,'' and state what suppressed premises 
would justify it in the following cases:- "' - • 1 . ' 

.. 99 per cent. of the people who drink lx-er die lwfore re~cbing 100 yeats of 
age •. TaerdQre drinking lwer ia ~for longevity." · 

"99 per cent. of the memhers· who, voted for the' Anny Es!imates were 
lnilitary officers~ Therefore it was unfair to suppose that the voting was 
ttnbiassed."' • • • 

•• In every country where the sale of contraceptives i~ tolerated by the 
Government the birth-rate is declining. Therefore contraception must exrrt 
an inOuence on the birth-rate." -

3.13. Write down in the fonn of tlie table of 3.1 the frequency groups when 
(I) all A.'s are B's; (2) all B's are A's; (3) aU A's are B's and aU B"s are A's; 
and the three r.imilar. tables when A and Bare completely disassociated. 



CHAPTER 4. 

PARTIAL ASSOCIATION. 

Association in Sub-universes. 
4.1. In the last chapter we considered the association of two attri

butes in a universe without regard to whether any information existed 
about other attributes in the universe. If, however, such information 
does exist and, say, we can find the frequency-classes of attributes C, D, 
etc., the question arises, What are the associations of A- and B in the 
sub-universes~ y, CD, etc.? • 

Thus, if A =standard of health and B=consumption of food, the dis
cussion of the previous chapter would enable us to examine whether health 
and food consumption were associated in any particular universe, say the 
pvpulation of Great Britaip. •But we might want to go further than this 
and examine the association between A and B among males, or among the 
poorer classes, and compare it with the association among females or among 
the well-to-do classes, respectively. Defining C =males and D =poor, this 
amounts to examining the associations of A and IJ_ in the univ~rs~s. C, y, 
D and 3.. . . . · · • 

4.2. Associations·· of this kind are of the utmost importance in 
statistical practice. As instances of the ways in which they arise kt l.lS 

consider the following two illustrations :-
(1) Suppose that we have established, in the manner of the previous 

chapter, a positive association between inoculation and exemption from 
smallpox in a universe of persons. It is natural to infer that this associa
tion is due to some causal relation between the two attributes and may be 
expected to recur in the future ; in short, that smallpox is prevented by 
vaccination. . · , 

This rather hasty conclusion might, however, meet an opponent who 
argues in this way : vaccination is accepted among the well-to-;,.do classes, 
but is looked on with suspicion by the lower classes. For this and other 
reasons most of the unvaccinated persons are drawn from the lower classes. 
But these are precisely the people whom, from the unhygienic conditions 
under which they live, one would expect to be exposed to infection and 
who, moreover, being malnourished, would be more likely to contract 
disease when they were infected. Hence the comparath·e exemption of 
the vaccinated persons is not due to the fact that they have been \'ac~inated, 
but to the fact that they belong to the well-to-do classes .. ilt i~ as it were, 
an accident that these people also happen to be from a cla~s which favotirs 

· vaccination. · '. j 
Denoting vaccination by 4, exemption from attack by B.··' ~··~.: _-.:.o~ .. :~-: 

conditi(ms by C,. this argument a.1nounts to saying that ! 
I 60 ' 
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association between .4 and B is not of itself causally dir~~t, but is due to 
the associations of both A and B with C. · , 

Now it is clear that this objection could not be lodged if the hyg*nie • 
conditions among all the members of the universe wer~ the same. If, 
therefore, we examine the association of A and B in the- sub-universe C 
and still find an association, the supposed argument would be refuted. 'Ve 
are thus led to a consideration of the association in that sub-universe. 

{2) As a second example, suppose that an association is noted between 
the presence of an attribute in the father and the presence in the son, and 
also between the presence in the grandfather and the presence in the grand
son. The question which' arises here is : Does the resemblance between 
grandfather. and grandson arise from a kind of hereditary, transmission 
which may, in the common phrase, "skip a generation,". or is it 'merely 
due to the fact that the grandfather is like the father and the father is like 
the son? · ··-

Denoting the presence of the attribute in the son, father arid grand
father by A, 1l and C, the question is : Is the association between A and C 
due to associations between A and B, and Band C? · 

If the association between A and C is observed among all the cases in 
whid1 the fathtr possesses the attribute or all those in which he does not, 
and is still sensil;lle, clearly the association between A and C cannot be due· 
to associations between A and B, B and C ; hence, as before, to resolve 
the question we are led to consider the association between A and C in the 
sub-universes Band {3. . 

4.3. Generally, a.mbiguity of the type to which we have just referred 
arises from the fact that the universe of discussion contains not merely 4 

objects possessing the third attribute alone, but a mixture of objects with 
and without it. To meet the requirements of the discussion we have to 
consider the associations in sub-universes wherein this attribute is entirely 
absent or entirely present. By this means we can go deeper into the nature 
of the underlying causes and eliminate certain possible explanations of the 
type: an association between A and B does not mean that the two are 
dire<·tly rdated, but only that each is associated with a.· third attribute C. 

Partial Associations. 

4.4. The associations between A and B in sub-universes are called 
partial associations, to distinguish them from the total associations 
between A and R in the universe at large. · _ 

As for total association, A and n are said to be positively associated 
in the universe of C's if · · · · · · • 

(ABC) LAC)(BC) 
> (C) . l~.l) 

and ne~atively associated in t.he converse case. . • 
Similarly they are positively associated in the univers~ of CIJ's if 

' ' . 

(ABCD) {ACD)(BCJ)~ 
> (CD) · '• ' (4.2) 

anq so on. These formul~ are derived fmm the formula for total associa· . 
ti01i by specifying the universe in which the partialussociation exists. 
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Alternative Forms of the Conditions for Partial Association. 
4.5. As in the case of t.otal asso<·iation, the above forms ean be 

written in many ways, adapted to the nature of the data and of the question 
which is to be answered. The partial association is most convenientlv 
tested by comparisons. of percentages or proportions in the manner of th.<' 
previous chapter, and we may quote the four most convenient comparisons 
in the case of three attributes: . .· 

(ABC) (AC) 

. (Bq) > <c:> (a) 

(ABC) (Af3C) 
(BC) > (f3C) 

(c) 

• 
"'' 

(ABC) (BC} 
(AC) > (C) 

(ABC) (aBC') 
(AC) > (a.C) 

• (b) I 
J 

(-'.3) 

(d) 

Similar formulre "may be written down for the cases of four or more 
attributes, and the methods of this chapter are applicable to such cases. 
For the sake. of simplicity we shall, however, confine ourselves to three 
attributes hereafter. 

4.6. 'Let us now consider some examples . 
. Example 4.1 . .:__(1\laterial from ref .. (69).) 

. \,-The following are the proportions per 10,000 of boys observed with 
certain classes of· defects amongst a number of school-children. (...1) 
denotes the number with development defects, (B) the- number with 
nerve signs, (D) the number of the" dull.'~ . . 

- N 10,000 (AJn 838 
(A) 877- (AD}. 338 
(B) 1,086 (BD). 455 
(D) 789 (~4BD) 153 

The' Report from which 'the figures -are drawn concludt'!s that "the conne<'t
ing link between defects of body~:and mental dulness..- is the coincident 
defect of brain which may be known by observation of abnormal nerve 
signs.'' Discuss this conclusion.) · 

The phrase " connecting link "is a little vague, but it may mean that 
the mental defects indicated bl' nerve signs B may give rise to develop
ment defects A, and also to mental dulness D ; A and D being thus 
common effects of the same cause B (or ·another attribute necessarily 

·indicated by B) and not directly influencing each other. The case is 
thus similar to that of the first illustration of 4.2 (liability to smallpox 
and to non-vaccination being held to be common effects _of the same 
circumstances}, and may be similarly treated by investigation of the • 
partial associations between A and D for the universes B and f3. As the 
ratios (A)JN, (B)JN, (D)/N are small, comparisons of the form (3.5), 
page 89, or·(4.S) (a) and (b) above, may be_ used. 

The following figures illustrate, then, the association between A and D 
for the whole universe, the B-universe and the /3-universe :-

. . 
For the entire material : 

789 
Proportion of the dull =(D)/N • =-- = 7·9 per cent. 

. 10,000 . 

., ., defectively developt>d who} = 338 =38.5 
were dull =(AD)/(.4) • . . . . 877 
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' For those _exhibiting nerve signs: ~ ... ' ~ '1 
• ,_,.,. <" ••• ' 

Proportion of .the dull =(BD)/(B) " • =-- '=""'1·9 percent. ~) 1,086 ' . 

. ,. . ., defectively developed ,.·ho} = 153 ;~-~ 
were dull =(.dBD)/(.4B) . • • 338 • . .. 

. .. ·~ .. . . :.... . .. 

}'or those not exhibiting nerve signs : 

- Proportion of the dull '9(PD)i(P) •. = 
334 ~ 3·7 .. 

. • . ' 8,914. .• 

" · " defectively developed ,.-ho} ·~ 185 · _ 34.:3 -' · . · 
were dull =(.4PD)j(A.P) • . • • t • .- 539 .- . • . .. ". 

. . . 

The results are extremely ~tri~g ; the ass~iation-between A alld D 
is high both for the matenai as a whole (the universe at large) and for 
those not exhibiting nente signs (the P-universe), but it is small for those 
who do exhibit nerve signs (the·B-universe). · · I 

. This result does not appear to be in accord with the conclusion of the 
R~port, as we ha.ve interpreted it, for the association between A anu D 
in the ft-univet~:.e should in that case have been low instead of high. 

E:rampk: 4.2.:-Eye-colour of grandparent: parent and child. (llaterial 
from Sir Francis Galton's" Naturallnherilance ".(1889), Table 20, p. 216. 
The table only gives particulars for 78 large families with not less than 
six brothers or sisters, so that the material is hardly entirely representative, 
but sen·es as a good illustration of the method.) The original data are • 
treated as in Example 3.7, page .U. Denoting a light-eyed child by A, 
parent by B, grandparent by C, every possible line of descen! is taken into 
account. Thus, taking the following two lines of the table, 

Children. .. Parents. Grandparents • . 
A. a. B. p. o. ,. 
' 

Light-eyed. Not· Light-eyed. Not- · . ""' ·. Not-
Light-eyed. Light-eyed. . L•ght-ey~. Light-eyed. 

~ 5 . 1 1 1 3 
s 4 1 1 .t.'. 0 

the first would give 4r x 1 x 1 =' to the class ABC, i x 1 x S = 12 to the 
dass ABy, -1 to Af3C, 12 to Apy, 5 to o.BC, 15 to o.By, 5 to o.PC and 
15 to o./3y: the second would give 3 x 1 x 4. = 12 to the class ABC, 12 to 
Af3C, 16 to qBC, 16 to o.f3C and none to the remainder. The class-
frequencies so derived from the wh~Je table_ are: ' 

(ABC) 
(A By) 
(A/3C) 
(APr> 

. 1928 
596 
552 
508 

(o.BC) . 303 
(o.By) _·. 225 
(afJC) 395 
(afJy) . . 501 , . 

\. 

The following comparisons indicate the association between grand
parents and parents, parents and children, and grandparents and grand
children, respectively :-
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Grandparents and Parents. 

Propo_rtio_n of light-eyed amongst the children}_ ~B~) _ 22~ _ ~0. 2 t 
of hght-eyed grandparents .• · • • - (CJ -8178 -• per cen · 

. Proportio~ of light-eyed amongst the children} =~1'.) = 82~ _ 4H 
- of not-hght-eyed grandparents • • • (y) 1830-

/ 

Parents and Children. 

Proportion of light-eyed amongst the children},. (AB) _ 2524 _ 82.7 . t 
of light-eyed parents • • • • (B) -3052 - per Ct'D • 

Proportion of light..eyed amongRt the children} _ (AfJ) _1060 S·i-2 
of not-light-eyed parents • . • • : - (fJ) -1956 "" . 1 " 

In both the above cases we are ;eally dealing with the association 
between parent and offspring, and consequently the intensity of association 
is, as rnight be expected, approximately the same; in the next case it is 
naturally lower : 

Grandparents and Grandchildren. 

Proportion of light-eyed amongst the grand-}_ (AC) _ 2480 _ 78.0 t 
children of light-eyed grandparents • • - (C) - 317S- per ccn • 

P~op~rtion of light-eyed amongst the grand-}_ (Ay) _11<» _ ~.3 ehildren of not-light-eyed grandparents • - (y) -1830- • 
.. ' - ··' .. 

We proceed now to test the partial associations between grandparents 
and grandchildren, as distinct from tpe total associations given above, in 
order b~ throw light on the real nature of the resemblance. There are 
two su~h partial associations to be tested : (1) where the parents are 
light-eyed, (2) where they are not-light-eyed. The following are the 
comparisons :- · 

·.• 

Grandparents and Grandch:ildren : Parents light-eyed. 

Proportion of light-eyed amongst the grand-}_ (ABC) _1928 _ 86... t 
children of light-eyed grandparents.. • - (BC) -2231- per cen • 

· Proportion of light-eyed amongst the grand-}_ (Ally)_ 596 _ 72.6 children of not-light-eyed grandparents . -. (B') - 821 -
J ~--

Grandparents and Grandcl~ildren : Parents twt-light-eyed. 

. Prop~rt. ion of light-eyed amongst the grsnd-} _ (A/lC) _ 552 _ •8.3 t 

.· ., children of light-eyed grandparents. . - (/lC) - 9~7 -l p~r cen • 

· Proportion of light-eyed amongst the grand-}_ (A{Jy) 508 _ •0 3 · ' .. cbild!..en of not-light-eyed grandparents - (p';·) = 1009- a , " 

In 6oth ~cp,ses the partial association is quite well marked and positive;· 
the total association between grandparents and grand(·hildren l'annot, 
then, be due wholly to the total associations between grandparents and 
parents, parents and children, respectively. There is an aneestral hiredity, 
as it is termed. as well as a·parental heredity. 

\Ve need not discuss the partial association between children and 
parents, as it is comparatively of little consequence. It may be noted, 
however, as regards the above results; that the most important featme 

·may be brought out by stating three ratios only. · 
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If A. and Bare positively associated, (A.B)/(B) >.(A.)fN. ~ .: 
IC A and Care positively associated in the universe of B's, (A.BC)/(BC) 

> (AB)/(B). Hence {A)/N, (AB)/(B) and (A.BC)/(BC) f'prm. a!l 
asC'cnding series. Thus we have from the given da~a: · 

Proportion of light-eyed amongst children in}~ · .(A.)/N = 71·6 per cent. 
general • • • . • • • 

Propo.rtion of light-eyed amongst the children}= (A.B)/(B) = 82-7 
of hght-eyed parents • . • , . " 

Prop~rtion of light-eyed amongst the children} =(A.BC)/(BC) ;., 8~.4 · 
of ltght-eyed parents and grandparents • " 

If the ~eat-grandfarents, etc., etc., were also known, the· series might 
be continued, giving A.BCD)f(BCD), (A.BCDE)J(BCDE) and so forth. 
The ·series would probably ascend continuously though with smaller 
intervals, A and D being positively associated in the universe of BC'{., 
A and E in the universe of BCD's, etc. 

Notatiort for Partial Associations. 
4.7. We now introduce a notation w.hich is analogous to that used 

for total associations. It will be remembered that in the last chapter 
we wrote: ·; 

(A.B)0 ~(A. ~B) 
3=(AB) -(A.B)0 

. We now write: \ •• 

( "B C) ~(AC)(BC) (AB. CD) = (A.CD)(BCD) } 
.1. ' 0 (C) ' ' 0 (CD) 

3AB.c =(ABC)- (AB. C)0, 8_4B.cD =(A.BCD)- (A.B. CD)~, etc. 
(4.4) 

The 8-n-~l>ers measure the divergence of the actual frequencies fron 
those winch would exist if the attributes were independent in the suh 
universe under discussion. · 

It is a!G'-' pvaJible to generalise the coefficient of association Q b3 
defining partial coefh •ients of the type . 

-' . 

(ABC)(apC)- (A.pC)(aBC)J 
_Q.u.c = (A.BC)(a.pC) + (A.pC)(a.BC) . 

. ._ (C)8AB.C 
- (AB_C)(apC) + (A.pC)(a.BC) 

(4.5 

The tstudent will notice that the formulre for the 8-numbers and fo 
the Q numbers are obtained from the expressions for total association b: 
specifying the universe in which the partial association is to be considered 
They need not therefore be memorised: · ·' 

Number of Partial Associations. 
4.8. For three attribut~& A, B, C there are three total associatiom 

namely, those of A. with B, B with C and C with· A.; and six J1arti2 
associations, namely, those of A and Bin C andy, Band C in A and· c 
and C and A. in B and p. 



56 THEORY OF STATISTICS. 

Fot four attributes there are fifty-four associations ; for we can choose 
two attributes from four in six· ways, and there are nine associations for 
each pair (one total, four partials in the sub-universes specified by one 
attribute, and four partials in the sub-uninrses specified by two). 

We state without proof that for ~ attributes there are n(n
2
-l >an-a 

associations. n(n
2
-l) of these are total and ,the remainder partial. }'or 

n > 4 this number is so large as to be almost unmanageable. For instance, 
if n. -=5 it is 270, and if n -=6 it is 1215. 

4.9. The large number of partial associations which exists might be 
thought to occasion some difficulty. \Ve may, howeTer, reassure oursel\'es 
by two considerations. 

In the first place, it is rarely necessary to innstigate in any ·practical 
instance all the partial associations which are theoretically possible. For 
instance, in Example 4.1 the total and partial associations between .-1. 
and D were alone investigated : those between A and B, B and D were 
not· essential .for· answering the question which was asked. Again, in 
Example 4..2 the three total associations and the partial associations 
:between A and C were all that were necessary. 
' 
~Relations· between P~rtial Associations. . ' . 

4.10. ·In the second place, a theoretical discussion of the partial 

~associations is assisted by the following result: The n(n - 1>an-a associa-
. . 2 

tions are all expressible in terms of 2,;- (n + 1) algebraically independent 
associations, together \\ith the class-frequencies N, (A), (B), (~~~etc. 
I In fact, ·we saw .in ·Chapter I that all the class-frequencies can be 
expressed in terms of the positive class-frequencies, which are 2" in 
number in the case of n attributes. Hence the frequencies N, t-A), (B), 
{C), etc., of which there are ( n + 1 ), together with the 2" - ( n + 1) other 
positive frequencies, completely determine the data, and hen10e d ... t,.rmine 
the associations, which are expressed in terms of tJ.;. data •• Hence th., ·-
number of algebraically independent ~sociations ,.;hich can be derived 
s only 2"- (n + 1). . . · . 

4,11.. In practice the existence of these relations is of little or no value. 
fhc ·formal relations between the ratios and the ~-numbers 11·hich express 
;he associations are, in fact, so complex that lengthy algebraic manipula
;ion is necessary to express those which are not known in terms· of those 
.vhich are. It is usually better to. evaluate the class-frequencies and 
:alculate the desired results directly from them. 

4.12. There is, however, one result which has important theoretical 
· !onsequences. 

\\'e have, by definition, 

8 =(ABC)-(AC)(BC) 
4B.C • (C) 

S4~.y=(ABy) .:_ (A~\ByJ 
' }' 
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Hence, 
1 

, . • . _j 

8.t~.c + _8~11~,-~ (AB)- (C)(?'){(Af)(B~)(~~ _+ ~Ay}(B_y~(.C)t , 

~ (AB}-: (C~( ){N(AC)(~C) ~(A)(C)(!JC.) ·- (Jl}(C)(AC) .. 
· y • · . • · +(A)(B}(C)} 

=(AB)- (A)~B)._~-{(AC)- (A}(C}}{(BC}- (B)(~)}-
.. ~ (C}(y}r . .. N ._ .. N _ 

. N·. . . . . . . . . 
,=8.t.s ---8.tc8.Ba · : (4.6) 

. :.. ·. (C)(y~ _. . . ... ,. .. 
· This J;ives us the-sum of the 8-numbers for the partial associations of A 
and B in C and y in terms of the total aSsociations between A, B and C. 

Now suppose that A and B are independent in C and y. Then we 
have: • · · · 

8.tB·.c=8.to.,=O • and .. 
8.&8 is not zero unless one or both, of 8.tc1 8Ba ar~ zero. , 

Hence, if A and B are Independent within the universes of C's and 
not-C's, they will nevertheless be associated in the universe at large \mless 
C is independent of A or B or both. . . . '\ 

Illusory .t'rsociations. 
4.13. this peculiar result indicates that, although a set of attributes 

independent of A and B will not affect the association between them, the 
existence of an attribute C with whiclr they are both associ;J.ted. may give 
an association in the universe at large which is illusory iff" the sense that 
it does not correspond to any real relationship between them. If the 

.a.':isociations between A and C, JJ and C are of the same sign; the resulting 
association between A and B will be positive : if of opposite signs, negative. 

The cases which we discussed at the beginning of this chapter are 
instances in point. In the first illustration we saw that it was possible to 
argue that the positive associations between vaccination and hygienic ctm
ditiom, exemption from attack and hygienic conditions, led to an illusory 
association between vaccination and exemption from attack. Similarly, the 
question was raised whether the positive association between grandfather 
and grandchild may not be due .to the positive associations between grand-
fathn and father, and fatlli!r and child. . · · · . · · . 

4.14. l\lislcading associations may easily arise thrQugh the mingling 
of records which a careful worker would keep distinct. . . ; · 

Take the following case, for example. Suppose there have been 
200 patients in a hospital, 100 males and IOQ females, suffering from some 
disease. Suppose, further, that the death-rate for males (the case mor-' 
ta_Iity) has been 80 per cent .• for females 60 per cent. A new treatment is 
trted on 80 per cent. of the males and 40 per cent. of the females, and the 
results puLlishcd without distinction of sex. . The three attributes, with 
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the relations or'which we are here concerned, are death, treatment and male 
se.t. The...data show that more males were treated than females, and more 
females died than males ; therefore the first attribute is associated ne"a
tively, the second positively, with the third. It follows that there wil{be 
an illusory llt'gative association bchreen the first twe>-death and treatment. 
U the treatment were completely inefficient we should, in fact, have the 
following results :......:... 

Males. Female~~. Total. 
Treated and died • 24. 24. 48-· .. and did not die • 56 16 72 
Not treated and died . 6 36 42 .. and did not die H ·24 38. • 

i.e. of the treated, only 48/120 = 40 per cent. died, while of t hnse not 
treated 42/80 =52·5 per cent. died. If this result were stated without any 
reference to the fact of the mixture of the sexes, to the different proportions 
of the two that were treated and to the different death-rates under normal 
treatment, then some value in the new treatment would appear to be 
suggested. To make a fair return, either the results for the two sexes 
should be stated separately, or the same proportion of the two sexes must 
receive the experimental treatment. Further, care would have to be taken 
in such a case to se«j that there wasno selection (perhaps unconscious) of 
the less severe cases for_ treatmept, thus introducing another source of 
fallacy (death positively associated with severity, treatment negatively 
associated with severity, giving rise to illusory negative association between 
treatment and death). 

4.15. lllusory associations may 'also arise in a different way through 
the personality of the observer or observers. If the observer's attention 
fluctuates, he may be more likely to notice the presence of' A when he 
notices the presence of B, and vice versa; in such a case A and B (so far as 
the record goes) will both be associated with the observer's attention C, 
and consequell\lv an illusory association will. be created. Again, if the 
attributes are not well defined, one observer may be more generous than 
another in deciding when to record the presence of A and also the presenee. 
of B, and even one observer may fluctuate in the generosity of his marking. 
In this case the recording of A and the recording of B will both be associated 
with the generosity of the observer in recording their presence, C, and an 
illusory association between A and B will consequently arise, as before. 

Deter~ination of Sign of Association when the Data are Incomplete.· 
4.16. It is important to notice that, though we cannot actually 

determine the partial associations unless the third-order frequency (ABC) 
is given, we can make some conjecture as to their signs from the values of 
the second-order frequencies. 

In 4.11 we have: 
~ ~ _ (AB) _ (AC)(BC) _ (Ay)(By) (-1.7 ) 
0-tB.C +o~B--r- (C) (y} • 

Hence, if the expression on the right is positive, one at least of 8.~s.c, 
8.4B.y, is positive, i.e. ·A and B are positively associated either in Cory 
or both. Similarly, if the expression is negati':e• A and B are negatively 
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associated either inC or in y or in bot~. Finally, if the e:~.-p~ic;m is 
uro, A. and B are either independent ur both C and y, or PO!fltlvely 
associated in one and negati\·ely in the other. _ I 

The expression (-1.7) may be thrown into a form more eonvenient when · 
percenta~ are gi\·en. Dh;ding through by (B) we have: 

~.u.c+~AlJ.y (AB) (AC) (BC) (Ay) (By), 
. (B) . = (B) - (C) (B) - (y) (B) 

( -1.8) 

The following emlples illu~te the method. ( 
' . . 

. Example 1.3.-(Figures eompiled from Supplement to the fifty-fifth 
Annual Report of the Registrar-Gt'nnal [C.-8.503], 1897.) The _folloWIIlg 
are the.death-rates per thousand per annum, and the proPQrtions over 
65 years of age, of occupied males in general, farmers, te:~1:ile workers and 
glass workers (over 15 years of age in each case) during the decade 1891-
1900 in England and Wales. - ·· · · 

• .. - Death-rate 
per. thousand. 

Oceupied ruales 0\·er 15 
Farmers, ., · ,,; ; 
Textile· workers, males over 15 
Glass workers, , , : 

15•8 r 0 

19·6 
15·9-
16·6 

Proportion 
per thousand 
o,·er 6.'i Yean; 
of~_ 

46 
132. 

--3-l ;-

ut :. 
Would farnurig;te::dile 'working a~d glass working seem to l'e relatively 
healthy or ur.healthy occupations, given that the death-rates among 
occupied males from 15-65 and onr 65 years of age are 11·5 and 102·3 
per thousand. respectively ! · · ~ · · ' 

IC A denote death, B the ginn occupclliun. Cold age, we have io apply 
the principle of equation (-1.8), calculate what would be the death-rate 
for each occupation on the supposition that the death-rates for occupied 
males in general (11·5, 102·3) apply to .each of its separate age-groups 
(under 65, o\·er 65 ), and st:e whether the total death-rate so calculated 

· exceeds or falls short of the actual death-rate. If it exceeds the actual 
rate, the occtipation must on the. ~·hole be healthy ; it if falls short, 
unhealthy. Thus ~·e ha\"e the follo'l';ng calculated death-rates:-

# • 

Farmers . 11·5 x 0·86&+ 102·3 x0·132 =23·S 
Textile workers 11·5 x.0·966 + 102·3 x0·03-& =1-1·6 
G:a!.S workers . J 1·5 x 0·98-1 + 1 Q2·3 x 0·016.= 13·0 

~-
The .:alculated rate for farmers largely exceeds the actual rate; farmin~ 

then must, on the "·hole, as one would expect, be a healthy occupation. 
The death-rate for either young farmers or olJ fanners, or both, must k 
less than for oc:cupied males in general (the last is actually the case); t:,,.. 
high _death-~te obsen·ed is due solely to the large proportion of the agtd. 
Textile workin~, on ~he uthc-r hand, appears to be Wlhealthy (U-6 < 15·f.t ; 
and glass working r.tlll more so {13·0 < 16·6); the actual low total dead•
rates are due merely to low proportions o{ the aged. 
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. It· is evident that age-distributions vary so largely f.rom one occupation 
to another that total death-rates are liable to be very misleading-so mis
leading, in fact, that they are not tabulated at all by the Registrar-General ; 
only death-rf!.tes for narrow limits of age (5 or 10 year age-classes) are 
worked out. Similar fallacies are liable to occur in comparisons of local 
death-rates, owing to variations not only in the relative proportions of the 
old, but ab,ojn the relative proportions of the two sexes. 
. It is hardl:/ necessary to observe that as age is a variable quantity, the 

above procedure for calculating the comparative. death-rates is e~tremely 
rough. The death-rate of those engaged in any occupation depends not 
only on the mere proportions over- and under 65, but on the relative 
numbers at every single year of age. The simpler proeedure brings out, 
however, better than a more complex one, the pature of the fallacy involved 
in assuming that crude death-rates are measures of healthiness. • . . 

Example 4.4~-Eye-colour in ~'l"andparent, parent and child. (The 
figures are those of Example 4.2.) . · 

r A,· light-eyed child ; B, light-eyed parent; C, light-eyed grand-
parent. · 

N =5008 
(A)=3584 
(B) =3052 

1 (C)=ZH78 

(AB)=252i 
(AC)=2480 
(BC)~2231 ~ 

Given· only the above data, investigate whether there is probably a 
·partial association between child and grandparent. . 

If there were no partial association we should have: . ~ . 

·(AC) ;,.·(~'iJJ)(BC) (ifJ)(fJCl 
(B) , + (/1) 

. 2524 x2231' 1060 x947 
3052 + l956 

= 1845·0 + 513·2 
=2358·2 
. . . 

Actually (AC) =2480; there inu'St, then, be partial association either in 
· the B-universe, the fJ-universe, or both. In the absence of any reason to 

the contrary, it would be natural to suppose there is a. partial assoc;iat1on 
in botp,. i.e. • that there is a partial association with the grandparent 
whether the line of descent passes through "light-eyed" or •• not-light
eyed " parents ; but this could not be proved without a knowledge of the 
class-frequency (ABC). · · 

Complete Independence.' 
4.17. The particular case in which all the 2"- (n + 1) give~ associations 

are zero -is worth some special investigation. • 
It follows, in the .first place, that all other possible associations must ?e 

zero, i.e. that a state of complete independence, as we may term 1t, 
exists. Suppose, for instance, that we are given: 
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__ .(AB);,; (A~B) 

(BC) =(B)( C) 
. N 

(AC)~(A~C) I 
( tBC> 

= (AC)(BC) ,.;{A)(B)(C) 
... . . (C)"' . N 8 

Then it follows at once that we have also: 

. (ABC)= (AB)(BC).:, (AB)(AC) 
- (B) (A) 

I . . 

i.e. A and ·c are independent in the universe of B's, and B and C in the 
universe of A's. Again, · · · 

(A By)= (AB) :_(ABC)= (A)(B)- (A)(B)(C). 
.•. . . N~. N 1 

, 

-. (A)(B)(y) _ (Ay)(By)-
-- N" - • (y) 

. . . 
Therefore•A and B are independent in' the'universe of y's. Similarly, it 
may be sho)\'ll that A and C are independent in the universe of f1's, B and 
C in the universe of a's. · . · · 

In ihe next place it is evident from the above that relations of the 
gene_ral form {to write the equation symmetrically) · - . . . · 

(ABC) (A) , (B) (C) 
--w-=N._N"N . {4.9J 

... 
. ' 

must hold for every class-frequency. · This relation is the general form of 
the equation of independence (3.2) (d), page 85. . . · . 

4.18~ It must be noted, however, that .(4.9) is not a cri~rion for the 
complete independence of A, B and C in the sense that the equatio~ 

(AB) (A) (B) 
·~r:: N. N 

is a C'riterion for the complete independence of A and B. If we are given 
N, (A) and (B), and the last relation quoted holds good, we know that 
~;imilar relations must hold for (AfJ), {a.B) and {a./3). If N, (A), (B) and 
(C)'be given, how~ver, and the equation {4.9) holds good, we can draw no 
conclusion without further information ; the data are insufticient. There 
are eight algebraically independent class-frequencies in the case of three 
attributes, while N, (A), (B), (C) are only fom: i .the equation (4.9) must 
therefore be shown to hold good for four frequencie11 of the third order 
before the L-onclusion can be drawn that it holds good for the remainder, i.e. 
tlaat a state of complete independence subsists, 'The direct verification of 
this result is left for the student. .· , . 

Quite generally, if N, (A), (B), (C), ••. be given, the rela?on 

(ABC •.. ) (A) (B) (C) 
---:N =N"N"N" · · • (4.10) 
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. . 

must be shown to hold good for 2"- (n + 1} of the nth order classes before it 
may be assumed to hold good for the remainder. It is only because 

2"-(n+l)=l 
when n = 2 that the relation 

may be treated as a criterion for the independence of A and B. If alt"the 
n (n > 2) attributes are completely independent, the relation (4.10) holds 
good; but it does not follow that if the relation (4..10) holds good they are 
all independent. · 

\ 
\ SUMMARY. 

1. The association of A and Bin sub-universes of the type C, y, CD, 
CDE, etc.- is called a partial association. · * 

2. If . 

' I 

A and B are po~'>itively associated in C; and if 

(ABC)< ~A~~~C) 

A and -B ar~gatively associated in C. • 

3 Th -n(n-1) a · · · · h "t · db • ere are 
2 

an- associations. 1n a. umverse c a rae ertse y 

n attributes; n(n
2
-

1
) ofwhi.c("~re total and ihe remainder partial. 

4. All the associations are expressible in terms of N, (A), (B), (C), 
etc.; and 2"- (n + 1) algebraically independent associations. These rrlation~ 
have, however, only a theoretical value. · · 

5. If A and B are independen~ within the universe of C's they will 
nev~rtheless be associated within the universe at large, unless C is inde~ 
pendent of either A or B or both. · · . , • 

6. In interpreting an association between A and B it must be remem
bered that this may arise owing to associations of A with C and B with 
C. To resolve this point it is necessary to consider the partial associations 
of A and B in C and y. • · · 

7. Complete independence of n attributes occurs if 2"- (n +I) algebraic
ally independent associations and hence all associations are zero. In this 
case 

(ABC'.~ . . ) (A) (B) (C) 
N · = N NN 

but this last condition is not sufficient for complete independence. 
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EXERCISES. I ' 
4.1. Take the following figures. for girls corresponding to those for boys in 

Example 4.1, page 52, and discuss them similarly, but not necessarily using 
exactly tl1e same comparisons, to see whether the conclusion that "the connect, 
ing link between defects of body and mental dulness is the coincident defect 
of brain which may be known by observation of abnormal nerve signs" seems 
to hold good. . · -

____ A, development defects; B, nerve signs; D, mental dulness. 

N 
(A) 
(B) 
(D) 

10,000 
. 682 

850 
689 

(AB) 
(AD) 
(BD) 

(ABD) 

248 
307 
863 
128 

4.2. (.l\laterial from Census of England and JVales,1891, vol. 3.) The following 
figures give the numbers of those suffering from single or combined infirmities:. 
(I) for all males; (2) fpr males of 55 years of age and over. · 

A, blindne.'l!l; B, mental derangement; C, deaf-mutism • 

• .. .. (I) (2) (1) (2) 

AKl\fales. 1\Iales sS:.. Alll\lales. .Males 55-. 

N 14,053,000 1,377',000 (AB) 183 65 
(A) 12,281 5,538 (A C) 51 :. 14 
(B) 45,892 10,309 (BC) 299 47 
(C) 7,707 746 (ABC) 11 3 

Tabulate proportions per thousand, exhibiting the total association between 
blindness and mental derangement, and the partial association between the 
same two infirmities among deaf-mutes: (1) for males in general; (2) for those of 
55 years of age and over. Give a short verbal statement of the results, and 
contrast them with those of Exercise 4.1. 
• 4.3. (Material from Supplement to Fifty-fifth Annual Report of the Regi.~trar-
~~ . 

The dt-ath-rate from cancer for O(J('upied males in general (over 15) is 0·6~5 
per thousand per annum, and for farmers 1·20 .. 

The death-rates from cancer for occupied males under aud over 45 respectively 
are 0·13 and 2·25 respectively._ Of the farmers, 46·1_per cent. are over 45. 

·would you say that farmc·rs were peculiarly liable to cancer? 
4.4. A population of_males over 15 years of age consists of 7 per cent. over 65 

year11 of a.e-e and 93 per cent. under. The dc·ath-rates are 12 per thousand per 
annum in the younger class and llO in, the older, or JR·86 in the whole population. 
The death:rate of malea (over 15) engaged in a (•ertain indu8try is 26·7 per 
thousand.; 

If the indiD;try be: not unhealthy, what must be the approximate proportion 
of those over 65 engaged in it (negkcting minor differenc·t"ll of age distribution)? 

4.5. Show tlllit if A and B are independent, while A. and C, B and C are 
associatt·d, A and B mu&t be disassociated •~ithcr iu the univenie of C's, the 
univo>rse of ,..·s, or both. 

4.6. As an illub1:ratiun of Ex('rcise 4:5, ~>how Ulat if the following were actual 
data, there would be a slight dih8ssociation between the eye-colours of ht.1sbamd 
and wife (father and mother) for the parents either of light-eyed sol!B or not
light-eyed sons, or both, although there i>l a slight po~itive assol'iation for parents 
at large. • 



64 THEORY OF STATISTICS. 

A light eye-colour in hushand, B .in wife, C in son : 

111 
(A) 
(B) 
(C) 

1000 
622 
558 
617 

(AB) 
(A C) 
(BC) 

3.)8 
471 
419 

4.7. Show that if (ABC) =(apy), (aBC) =(Apy), and so on (the case of 
"complete £'quality of contrary frequencies" of Exf'rcise 1.7, page 23), A, B 
and C are completely independent if A and B, A and C, B and C are inde-
pendent pair and pair. , 

4.8. If, in the same case of complete equality of contraries, 

(AB) -N/4=111 
(AC) -N/4=tl1 

show ihat 
(BC) -~/4 =tl3 

2[(ABC)- (AC)(BC)J =2[(AB ) - (Ay)(By)J =tl - 4"•11• 
· · (C) . y . (y) 1 N 

so that the partial associations between A and B in the ·universes C and y are 
positive or negative according as 

, > 4"·"· 
'<~-

4.9. In the simple- contests of a general election (contests in which on£' 
-Conservative opposed one Socialist and there were no other candidates) 66 per 
cent. of the winning candidates (according to the returns) spent more money 
than their opponents. Given that 63 per cent. of the winners were Conservatives, 
and that the Conservative expenditure exceeded the Socialist in 80 per cent. of 
the contests; find the percentages of elections won by Consen·atives (1) when 
.tl).ey spent more and (2) when they spent less than their opponents, and hence 
say whether you consider the above figures evidence of the influence of expendi
ture on election results or no. (Note that if the one candidate in a contest be a 
Conservative-winner-who spends 'more than his opponent, the other must necessarily 
be a Socialist-loser-who spends less-and so forth. Hence the case is one of 
complete equality of contraries.) · 

4.10. Given that (A)/N =(B)/N =(C)/N =.x, and that (AB)!N =(AC)JN =y, 
find the major and minor limits to y that enable one to infer positive association 
between B and C, i._e. (BC)/N > tr•. · 

Draw a diagram dn squared paper to illustrate your answer, taking z and y 
as co-ordinates, arid shading ~he limits within which y must lie in order to 
permit of the above inference. Point out the peculiarities in the case of in
ferring a positive association from two negative associations. 

4.11. Di<~cuss similarly the more complex case (A)/N = .x, (B)/N = 2-l, 
(C)/N =3.x: 

(I) for infening positive association between B and C given' (AB)(N 
=(AC)!N=y. 

(2) for inferring positive asso~iation between A and C given (AB),'N 
=(B(})/N=y. 

(3) for inferring positive association. between •A and B giwn (AC)jN 
=(BC)!N=y. 



CHAPTER ·5 • 
. . 

MANIFOLD CLASSIFICATION. 

Manifold Classification. 
5.1. ·Instead of dividing the universe of discourse into two parts -by 

a simple dichotomy, we may also divide it into a number of parts by a· 
similar process. For instance, we can extend the dichotomy of the 
universe of men into " those with blue eyes " and ".those not with blue 
eyes" to· a threefold division:." those with· blue eyes," "those with 
brown eyes," and "those with neither blue nor. brown eyes " ; or into a 
fourfold division by adding a fresh category, "those with grey eyes"; 
and so on. · ·· · · 

Generall~· our universe may be divided first according to's heads, 
A1, A., .• • ~A,; each. of the classes so obtained into t heads, 
B1, B., ••• 'B1; each of these into u heads, C1, C2/ •.•• c.; and 
so on. . · . · 1 ' 

This is called manifold classification. 
5.2. The general theory of manifold classifi<;ation for n. attributes is 

rather complicated,\ but its fundan:tental principles are very similar to 
those which· apply to dichotomy. A straightforward extension of the 
methods of Chapter 1 will give the following results, which we are content 
to announce without a formal proof :- · 

(a) There are s x t x u x • . • • ultimate classes. l t/ 
(b) The total number of classes, .including Nand the ultimate classes,· 

is (s+l)(t+l)(u+l) ••• _ . ~ 
(c) The data are consistent if, and only if, every ultimate class-frequencY\" 

b~~~~ . . . . 
• (d) The data are completely specified by 1 x t xu x ••• algebraically 

independent clasi-frequencies. · Even if all these.are not given, it may be 
possible to set limits to the other class-frequencies. · . · 

For example, if the population of the United Kingdom i~ classified 
geographically according to habitation in England, Wales, .Scotland and 
Northern Ireland ; by eye-colour into blue, brCiwn, grey, green and. the· 
remainder c and by hair-colour into black, fair, red tmd the remainder; , 
there will be 150 classes altogether, expressible in terms of 80 ind~endent 
class-frequencies. . · . . ·~' · . _ • . · 

5.3. Data so completely specified are very'rare, and an elaborate 
discussion of the general case would hardly be justified by its practical 
value. For the remainder of this chapter, therefore, we shall be con
cerned solely with the case of two characteristics, A and B. ' · 

Contingency Tables. 
.. 

5.4. Let us suppose that the classification of the A's is a-fold and\' 
that of the ll's is t-fold. Th~n there will be at classes· of the type A,.B,.. 

65 5 . 
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· Generalising slightly the notation of previous chapters, let the frcquen<'y 
of indi~iduals A.,. be denoted by (A,) and of individual~ A,.B. hy 
(A,.B.). The data can then be set out in the form of a table of t rows 
and 1 columns as follows :- · 

TABLE 5.1. 

Attribute .d 

A, A, - - I A,_t 

' 
..d. Totals., 

B, (.d1B1~ (A.B,) - - (A ..... ,B,) I (A.B,) (B,l I 
B.·. (A1B1 ) (A1B1 ) - - (A..-1B1) (..d.B,) (B.) .. 

- ...... ·- - ., .rl.; - ~ ... 
B, (A1B,) (A.B,) - - (..d..-,B,) (A.B,) (B,) 

Totals • (A,) (A1) - - (A.-,) (A.) ~ 1 ., ..... -.... . 
In this table the frequency of the class A,.B. is entered in the com

partment 'Common to the mth colunm and the nth row ; the totals at the 
ends of rows and at the feet of columns give the first order frequencies, 
i.e. the numbers of A.,.'s and Bn's; and finally, the grand total in tJ,e 
bottom right-hand corner gives the whole number of observations. 

Such a table is called a_ contingency table. It is a generalised form 
ofthe fourfold (2 x2-fold) table in 3.1. . 

Example 5.1.-:-In T~ble 5.2 below the classification is 3 x 4.-folJ : 
the eye-colours are classed under the three heads •• .blue," "grey or 
green" an!l •• brown,:' while the hair-colours are classed under four 
heads, ''fair," •• brown," "black" and "red." Taking the first row, 

TABLE 5.2.-Hair· and Eye-colourtl.o/6800 Males in Bade-n. 
(Ammon, Zur Anthropologie der Badent"r.) 

Hair-colour. I I 
Eye-colour. I - I TotaL I 

---------I--F-&l_·_r._
1
_B_r....:o•c...wn_. Black. I~~ ___ I 

Blue • • 
Grey or Green 
Brown 

Total 

.1768 
9411 
111; 

2829 

807 
1387 
438 

746 53 3132 
1~9 I .i . 2si1 II 

288 16 l ~7 
l-2-63_2_,_1-22_3_. l ~, ~600 1 

the table tells us that there were 2811 men with blue eyes noted, of whom 
1768 had fair hair, 807 brown hair, 189 black hair and 47 red hair. Simi
larly, from the first column, there were 2829 men with fair hair, of whom 
1768 had blue eyes, 946 grey or green eyes and 115 brown eyes. 
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Association in Contingency Tables. _ 
5.5. For the purpose of discussing the nature of the relatio~ ~ttween 

the A's and the B's, any such table may be treated on the prmc1ples of= 
the preceding chapters by reducing it in different ways to a 2 x 2-fold form, 
It then becomes possible to trace the association between any one or more 
of the A's and any one or more of the B's, either in the universe at large 

·- or in universes limited by the omission of one or more of the A's, of the 
B's, or of both. - · · · . ' 
· If, e.g., we desire to trace the association between a lack of pigmen-

tation in eyes and in 'hair, rows 1 and 2 may be pooled together as 
representing the least pigmentation of the eyes, and columns 2, 3 and 4 
may be pooled together as representing hair with a more or less marked 
degree of pigmentation. We then have: . . •. 

~ro~rti'?n of 'light-eyed with} 2~14/5943 =46 p~r cent. 
fall' ha.tr • - • -. 

Pro~rti'?n of bro\Vn-ey~ with} 115/857: ~ 13 fatr ha1r • . _. • __ • . , . - . 
The association is_ therefore well marked. For comparison we may trace 
the correspon9Jng association between the most marked degree of pigmen
tation in eyes and hair, i.e. brown eyes and black hair. Here we must add 
together rows 1 and 2 as before, an~ pool columns 1, 2 and 4--the column 
for red being really misplaced, as red represents a comparatively slight 
degree of pigmenta~ion. The figures are: · 

Proportion' of brown-eyed with} 
2881857 

-_ 
3

, - t 
black hair · . • • :-:- .., per cen · 

Proportion. of Fght-eyed with} 93515943 = 16 · black han- · . . . " 

The association is again positive and well marked, but the difference 
· between the two percentages is rather less than in the last case. . 

5.6. · The mode of treatment adopted in the preceding two paragraphs 
rests on first principles and, if fully carried out, gives us all the information 
possible about the associations of the two attributes. At the same time 
it is laborious if 1 and tare at all large. 1\loreover, in practical work we ar; 
often concerned, not with the associations of individual A's with individual 
B's, but with finding the apswer to a general question of the type : Are the 
A's on the u:hole distinctly dependent on the B's, and if so, is this depend
ence very close, .or the reverse ? . In fact, what we want is a coefficient 
which will s.ummarise the gener~ nature of the dependence. We will 

· proceed to d1scuss two such coefficients. · · 

Coefficients of Contingency. _ . 
5.7. It the A's and B's be completely independent. in the universe at I 

large, we must have for all values of m and n: · 

(A B ) .:_(A,.)( B.) (A B ) ... - N =_,.,.o (5.1) 

If, howewr, A_ and Bare not ~mpletely independent, (A,.B.)'and (A,.B,.)
0 
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will not be identical for all values of m and n. Let the diff<'rent"e ·be given 
by . 

a,.,.= (A,.B,.)- (A~~aB,.)0 (5.2) 

LC't us note in passing'thc following properties of these quantitiC's: 
. (1) In the first place, a,.,. is not equal to a,..,.. . 

(2) In the second place, the a's are not all algebraically independent. 

\Ve have, in fact~ for any particular m: 

a,.l + a .... + a ... a + • • • + a;.. .. + • • ·• +a,., 

=(A,.Bl)- (~,.»Bl) +(A,.Ba)- (A;,.»Bz) • 

=(A,.)-{~){(;1 ) +,(B11 ) + • + (B,)} . 

=0 0 

I ·, 
A similar relation is true for any particular n. 

+ (A,.B,)- (A,.»B,) 

(5.3) 

Now there are st a-quantities. In virtue of the relatioru.hip we ha,·e. 
just proved, for any particular. m only (t '-l) of the t-quantities a ..... ·are 
ind.ependent. Similarly, for any n only (s- 1) are independent. Hence 
the total number of independent a•s is (s -1 )(t- 1 ). 

5.8. These a-quantities indicate the extent of the associations, and 
we expect a summarising coefficient to be built up from them in some way. 
It would, however, be useless to add them together, for in virtue of the 
relation of the preceding paragraph the sum is zero. \Ve ~ish to construct 
a coefficient which shall be independent of the signs of the a-numbers. 
1 We therefore define 

.I\ z-s( 8' ..... ) (5.4) !. - (A,.B,.~0 . 

and call x2 the" s~re conti~e~." 
We then write: · . 

. XI 
,ps =N. (5.5) 

and call~~ the" mean square contingency." 
. · Clearly x1 and cpa, being the sums of squares, cannot be negative. 

They vanish if, and only if, every 8-number vanishes. in which ca~~1d 
~~ent. . 1 

Pearson's Coefficient of Mean Square Contin~ency. 
5.9. The quantity cfo' is not quite suitable in itself to form a coefficient, 

because its limits Yary in different cases. Kad Pearson therefore proposed 
the coefficient C, defined by 

lXI .!~ c=v N +~·=v J +~~ (5.6) 

This is called the Coeffi~ief!!~~~Q~n~cy. In general, 
no "sign should be attaClled to the root, for the coeffic1ent merely shows 
whether tW?. c~aracters are or are not in~ependent j bu~ in ce~ain case~ a 
conventional sign may be used. Thus, m Table 5.2 slight p1gmentatwn 
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of eyes and hair appear to go . together, and ·the contingency. may be 
regarded as positive. If Blighl pigmentation of eyes had been associated 
with· fiU.lrked pigmentation of hair, the contingency might ha~ -beeno 
regarded as negative. · · · ' .· · .. · :' ' · 

5.10. The coefficient C has one serious disadvantage. Although, as 
may be seen from its definition, it increases. With cfo 1 towards a limit I, it 
never reaches that limit. In fact, the maximum value which jt can attain· 
depends on 1 and t, and reaches unity only ·for an infinite number of classes. 
This may be briefly illustrated as. follows. · Replacing 8,.~ in equation· 
(5.4) by its value irt terms of (A;;.B~) and (A,.B,)0, webave: 

. /{{A. B-~.-t' ' . . 
x~=S (A:B:)~ .. ~lV •' ·.. . . -· (5.7} 

and therefore, denoting the ~u~~~y 8, ., . 

· ~8-N C= -·-
8. 

1. 

. . (5.8) 
• I 

Now suppose we have to deal with'a txt-fold classification in· which_
(A,..)= (B;.) for all v-alues of m; a.nd suppose, further, that the association ' 
between A,: and B,. is perfect; so that ·(A,.B,.) =(A,;)= (B,.) for all values ; 
of m, the remaining frequencies of the second order being zero ; all the 
frequency is then concentrated in the diagonal compartments of the table,: 
and each contributes N to the summation 8. The total value of 8 is accord• , 
ingly tN;_ and the value of C: - · · • 

C·= It -1 • 
. 'V t 

c 

This is the greatest possible value of C for a symmetl'ical t x t-fold classifica
tion, and therefore, in such a table, for: 

t =. 2, C cannot exceed 0·707 
·t =. 3. " " 0·816 
t = 4 " " 0·866 --
t = .5 .. " 0·894 
t= 6 0·913 . 

- "• " t = 7 " .. 0·926 . 
t= 8 .. .. 0·935.' 
t = 9 " ' .. 0·943 
t "= 10 " " 0·9-!9 

5.11. Hence, coefficients calculated fr~m different systems of classi
fication are not, strictly speaking, comparable. This is clearly undesirable. • 
Two coefficients calculated from the same data classified in two different · 
groupings ought not to be very different. · • 

It is as well, therefore, to restrict the use of the C-coefficient to 5 x 5 or · 
finer groupings. At the same time,. the classification must not be made too 
~e! or the value o~ the coeffici~nt i11 largely affected by casual irregularities 
ar1smg from sampling fluctuatwns. 1 . • · . . 

1 
1 Karl Pearson (ref. (86) and io several oU~.er p11pers) bus discussed a "correction",. 

to be made to C calculated from coarsely grouped data. The use of auch corrections · 
dependa to tome extent on assumptiona about the universe, and may be regarded as 
attempt& to bring the value of C closer to a putative coefficient of correlation (cf.ll.W). -

~--
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Tschuprow's Coefficient. 

5.12. To renwdy the defect to which we have just referred, T~ehuprow 
has proposed the coefficient T, defined by /' 

cfo2 
Ta = --- =--=== 

·• Y(s-l)(t::-1) . . . 
(5.9) 

•This coefficient varies between 0 and 1 in the desired manner wh~n s =t . - . 
We have 

and conversely, 

.ca=_£_ 
1 +cpa 

v(s -1 )(t -l)T2 
l+V(s-l)(t-1)T2 

_/ 

T2= cs -
· (I-C2)v(s-I)(t-1) 

Calculation of C and T. 

• (5.10) 

. (5.11) 

5.13. The calculation of C and Tis simplified by the use of equation 
(5.8), which enables' us to replace the calculation of the 3's by calculations 
based on frequencies of types (Am), (B,.) and (AmB,.). All these 
quantities are contained in the contingency tables. The following example 
will illustrate the method :-

Example 5.2.-Consider the data of Table 5.2. (The classification i~ 
only 3 x 4-fold and is therefore rather crude for calculating C, but it will 
serve as an illustration of the form of the arithmetic.) 

'Ve require first of all the quantities (AmBri)0, i.e. the" independence" 
values. These are calculated directly from their definition 

(A B ) = (Am)(B,.) . 
m n 0 N 

and thus the value for the compartment in the mth column anJ nth row 
is the product of the total frequencies in that column anJ row divided by 
the whole frequency, e.g. (A1B1 ) 0 = 282!) x 2811/6800 = 11G9, and so on. 

It is convenient to tabulate the frequencies so obtained in a sN~ond 
contingency table, as in Table 5.3. 

TABLE 5.3.-lndrpendmce Values of the Frequmcies far Table 5.2. 

I Eye colour. Fair. Brown. Black. Red. 

---------
Blue . . . . lltl9 1038 506 48'0 
Grey or Green • . . . . 1303 1212 6tl3 63'4 
Brown . . . . 357 332 154 14'6 

I 
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• • 1 1 h ·.t:. (AmBn )I 
\\e now ~a cu ate t e quanti 1es (AmB,.)o 

(1768)1/1169 . 
, (9i6)Sf1303 
(115)1/357. 
(807)1/1088 

(1387)1/1212 
(-i38)2/332 
(189)1/506 . 
(746)1/563 • 
(288)1/151 

(47)1/48·0 
(53) 2/53·4 
(16)3/H·6 

Total =8_= 
~. . . 

From equation (5.8):· _ . _ 

2673·9 
686·8 
37·0 

598·6 
1587·3 

577·8 
70·6 

988·5 
538·6 

46·0 
52·6 
17·5 

7875·2 

• c =· Is .-N = VI075·2. 
. • • . . '\j s . 't875·2 

• = v'0-1365 =0·37 
and 

T•= cz -
\ . (1-C1)v'(s-1)(t-1) 

0·1365 
= 0·8635v'6 

T=v'0·06.t.5 
0·25 

• The squares in such work may conveniently be_ taken from Barlow's 
"TaUes of Squares, CuJ,es, etc.," or logarithms may be used throughout-
five-figure logarithms are quite sufficient. . 

It will he &een that Tis lt>Ss than C. This is not always true. Which
ever coeffie.ie11t we use, however, the contingency between pigmentation 
of hair and e\'e is evident. 
. 5.14. "'bile such coefficients of contingency are a great convenience 
in many forms 6f work, their use should not lead to a neglect of the more 
detailt,d treatment of 5.5. "'hether the coefficients be calculated or no,· 
every table should always be examined with care to see if it exhibits any·. 
apparently significant peculiarities in the distribution of frequency, e.g: 
in the assoeiations subsisting between A,, and n, in limited universes. 
A good deal of caution must be used in order not to be misled by casual 
irregularities due to paucity of observation.'i in some compartments of 
the taLie, but important points that would otherwise be overlooked v.;n 
often be revealed by such a detail~d examination. . . 

5.15. Suppose, for example, that any four adjaC'f'nt f~equencies, say. 

(A,B.) (A,.+lBn) 
(A,.B,.+I) (A,.+IB•+l) -. 
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are extracted from the general cont1ngency table. IC thrst> are considered 
as a table exhibiting the assodation between A,. and B,. in a universe 
limitf"d to A,. A,.+1 B,. B,.+l alone, the association is positi,·e, negative or 
zero according as (A,.B,.)/(Am+JB,.} is greater than, less than, or equal 
to the ratio (A,.B,.+1)/(A,.+1Bn+tl· 'fhe whole of the contingency table 
can_ be analysed into a series of elementary groups of four frequencies like 
the above, each one overlapping its neighbours, so that an 1 xI-fold table 
contains (a - 1 )(t -1) such " tetrads," and the associations in them all 
can be very quickly determined by simply tabulating the ratios like 
(A,.B,.}f(A,.+lB,.), (A,.B,.+l)/(A,.+1B,.+l), etc., or perhaps better, the 
proportions (A,.B,.}f{(A,.B,.) + (A,.+1B,.)}, etc., for every pair of columns 
or of rows, as may be most convenient. Taking the figures of Table 5.2 
as· an illustration, and working from the rows, the proportions run as 
follows:- . 

For rows 1 and 2. For rows 2 and 3. 
1768/2714 0·651 946/1061 0·892 

807/2194 0·368 1387/1825 0·760 
189/935 0·202 746/1034 . 0·721 

47/100 0·470 53/69 0·768 
In both ~ases the fust three ratios form descending series; but ·the fourth 
ratio is greater than the second. The signs of the associations in the six 
tetrads are, accordingly,. · • 

+. + 
+ +. 

The negative sign in the two tetrads on the right is striking, the more so 
as other tables for hair- and eye-colour, arranged in the sa~e way, exhibit 
just the same characteristic. But the peculiarity will be removed at once 
if the fourth column be placed immediately after the first : if this be done, 
i.e. if " red " be placed between " fair " and " brown " instead of at the 
end of the colour-series, the sign of the association in all the elementary 
tetrads will be the same. The colours will then run fair, red, brown, 
black, and this would seem to be the more natural order, considering the 
depth of the pigmentation. . 

Isotropic Contingency Tables. . . 
5.16. A distribution of frequency of such a kind that the association 

in every elementary tetrad is of the s;:~.me sign, possesses several useful 
and interesting properties, as shown in the following theorems. It will be 
termed an isotropic distribution . 

. (I) In t,m isotropic distribution the B'ign of the association is the same not 
only for every elementary tetrad .of adjacent frequencies, but for et•ery set of 
four frequencies in the compartments common to two rows and _two columns, 
e.g. (A ... B,.), (A ... +~>B,.), (A.,.B,.+O), (A,.+r>B,.+O). 

For suppose that the sign of association in the elementary tetrads is 
positive, so that _ · _ 

(A,.B,.)(A ... +lB,.+l) > (A,.+lB,.)(A.,.B,.+l) ·. 
and similarly,. < 

(A,.+IB,.)(A ... +IB,.+l) > (Am+2B,.)(Am+1Bn+t) 
'fhen multiplying up and cancelling, we have: · 

(A,.B,.)(A,..+tBn+l) > (Am+2B,.)(A ... B,.+t) 
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That is to say, the association is still positive though the two columns 
A,. and A,. 11 are no longer adjacent. : j , 

(2) An isotropic distribution remains isotropic in whatever w y it may 
be condensed by grouping together adjacent rows or columns. · 

Thus from the first and third inequalities above we have, adding: 

(A.,.B,.)[(A,.+1B,.+l) + (A,.+ZB,.+l)] > (A,.B,.+l)[(A,.~1B,.) + (A,.+;B,.)] 

that is to say, the sign of the elementary ·association .is unaffected by 
throwing the ( m + 1 )th and ( m + 2 )th columns into one. . . 

(3) As the extreme case of the preceding theorem, we way suppose 
both rows .and columns grouped and ·regrouped until only a_ 2 x 2-fold 
_table is left; we then have the theorem: · "'- · 

If an isotropic distribution be reduced to a fourfold distribution in any 
way u,hatever, by addition of adjacent rou,a and columns, the. sign of the 
association in such fourfold table is the same a4 in the elementary tetrads· of 
the original table. · '1... · 
· The eJlSe of comple~e independence is a special case of isotropy, 
For if 

• (A,.B,.) = (A ... ){B,.)/N .. . - . 
for all values of m and n, the association is evidently zero for every tetrad. 
Therefore the distribution remains independent in whatever .way the 
table be grouped, or in whatever way the universe be limited by the. 
omission of rows or columns. The expression " complete independence " 
is therefore justified. · . . 

From the work of the preceding section we may say that Table 5.r 
is not isotropic as it stands, but may be regarded as a disarrangement o 
an isotropic distribution. It is best to rearrange such a table in isotropi 
order, as otherwise different reductions to fourfold form may lead tq 
associations of different sign, though of course they need not necessarily' 
do so. · 

5.17. The following will serve as an illustration of a table that is not 
isotropic, and cannot be rendered isotropic by any rearrangement oi the 
order of rows and columns :- ' • : · 

TABLE 5.4.-Showing the Fuqumcies of Different Combinations of 
· Eye-colour~ in Father and Son. • . 

(Data of Sir F. Galton, from Karl Pearson, Phil, Trans., A, vol. 195, 
· 1900, p. 138; classification condensed.) 

1. Blue. 2. Blue-green, grey. 3, Dark grey, h~zel. 4, Brown. 

Father's Eye-colour; ' 

., _~_. I_~._ 8. ,; Total. 

- -- .. 
1 J9' 70 41 80 835 
I 83 124 n 86 284 
a 25 34 65 23 137 • 66 36 43 109 2H 

I~ 
--- --- ---

Total 358 180 !98 1000 • 
I 
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The following are the ratios of the frequency in column m to the sum 
of the frequencies in columns 711 and m + 1 :-- . 

COLUMNS. 

1 and 2. 2 and 3. 3 and 4. 

0·735 0·631 0·577 
0·401 0·752 0·532 
0·424 0·382 . 0·705 
0·609 0·456 0·283 

The order in which the ratios run is different for each pair of columns, 
and it is accordingly impossible to make the table isotropic. The di-;
tribution of signs of association in the several tetrads is : 

+ + 
.+ 

+ 
The distribution is a curious one, the associations in tetrads round the 

diagonal of the whole· table being so markedly positive, and those in the 
immediately adjacent tetrads equally markedly negative. Neglecting Ute 
other signs, this is the effect that would be produced by taking an isotropic 
distribution and then increasing the frequencies in the diagonal compart
ments by a sufficient percentage. · Comparison of the given table with 
others from the same source shows that the peculiarity is common to the 
great majority of the tables, ·and accordingly its origin demands explana
tion. Were such a table treated by the method of the contingency 
coefficient, or a ~imilar summary method, alone, the peculiarity might not 
be remarked. 

Complete Independence in Contin~ency Tables. 
5.18. It may be noted that in the case of complete independence the 

distribution of frequency in every row is similar to the distribution in the 
row of totals, and the distribution in every column similar to that in the 
column of totals; for in, say, the column A,. the frequencies are given by 
the relations : · · 

and so on. This property is ot special· importance in the theory of variables. 

Homo~eneous and Hetero~eneous Classification. 
5.19. The classifications both of this and of the preceding chapters 

have one important characteristic in common, viz. that they are, so· to 
speak, "homogeneous "-:-the principle of division being tht" same for all 
the sub-classes of any one class. Thus A's and a's are both subdividt"d 
into B's and f3's, A1's, A 2's, •.• A,'s into B1's, B8's, ..• B,'s, and 
so on. Clearly this is necessary in order to render possible those compari
sons on which the discussions of associations and contingencies depend. 
If we only know that amongst the A's there is a certain perl'entage of n·s, 
and amongst the a's a certain percentage of C's, there are no data for any 
conclusion. 
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. )lanv classificati~ns ~re, how'evel~ 'essentially ~f a heterogeneous 
character. ·e.g. biological dassi..lications into orders, genera and ~pecies; 
the classifications of the causes of death in vital statistics and of:occupa
tions in the census. ·To take the last case as an illustration, the 1931 
census of England and \Yales divides occupations into 32 classes. Some 
of these are not further subdivided--t'.g ... Fishermen." Others are sub
di\ided into further general classes;· e.g. Class 1 is divided into (I) 
Employers, (2) Furnacemen, (3) Foundry Workers, (4) Smit.hs, (5) :Metal 
Machinists, (6) Fitters and (7) Other Workers. These sub-heads are 
necessarily peculiar to the class under which they occur and their number 
is arbitrary and variable, and different for each main heading ; but s0 long 
as the dassification remains purely heterogeneous, however complex it may 
become, there is no opportunity for any discussion of causatiQn within the 
limits of the matter so derived. It is only rchen a homogeneous division 
is in some rcay introduced that we can begin to speak of aasociations and 
contingeJtdes. . 

5.20 •. This may be done in various ways according to the nature of 
the case. • Thus the relative frequencies of different botanical families, 
genera or suecies may be' discussed in connection with the topographical 
characters ,,f their habitats-desert, marsh or heath-and we may observe 
statistical ~sociations between given genera and situations ·of a given 
topographical type. The causes of death may be classified according to sex, 
or age, or occupation, and it then becomes possible to discuss the associa
tion of a gi,·en cause of death \\ith one or other of the two sexes, with a 
given age-group or with a given occupation. Again, the -classifications of 
deaths and of occupations are repeated at successive intervals of time; and 
ii they have remained strictly the same, it is also possible to discuss the 
association of a given occupation or a given cause of death with the earlier 
or later year of observation~i.e. to see whether the numbers of those 
engaged in the given occupation or succumbing to the given cause of death 
have increased or decreased. But in such circumstances the greatest 
care must be taken to see that the necessary condition as to the identity of 
the classifications at the two periods is fulfilled, and· unfortunately it very 
seldom is fulfilled. All practical schemes of classification are subject to 
alterati_on and improYement from time to time, and these alterations, 
however desirable in themselves, render a certain number of comparisons 
impossible. Even where a classification has remained verbally the s~me, 
it is not necessarily really the same ; thus in the case of the causes of death, 
. improved methods of diagnosis may trausfer many deaths from one heading 
to another without any c·hange in the incidence of the disease, and so bring 
abou.t a \~rtual change in the classification. In any case, heterogeneous. 
classificahon should be regarded only as a partial process, incomplete until 
a hom?geneous di,ision is introduced either directly or indirectly, e.g. by 
repetition. · . 

Manifold Classification as a Series of Dichotomies •. 
5.21. From a theoretical point of \iew, manifold classification can be 

regarded as compounded of a series of dichotomies. Take, for example, a 
case we have already conl>idered, that of the classification of a uninrse ot 
men according to the eye-colours blue, grey, brown and green. \Ve could 
have produced this fourfold division by three dichotomies. In fact, 
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dil·iding the universe first into those 11ith blue eyes and those 11ith not-blue 
t>yes we get two classes. Then di,iding again into those 11·ith brown eye.s 
and those 11ith not-brown eyes we get four dao;ses. This operation on the 
class of blue-t>yed men, however, results in one zero class, because there are 
no men with blue eyes which are at the same time brown, and one class 
wbieh is, in fact, the class of blue-eyed men. Virtually, therefore, we have 
three classes: those with blue t>yes, those with brown eyes, and the re
mainder. U: we now dichotomise each of these into those with grey eyes 
and those with not-grey eyes, we shall again get, neglecting the zero classes, 
the four classes of the manifold classification. 

5.22. It follows from this that any manifold cla.ssification can be 
regarded as produced by a succession of divisions in which, at each stage, 
each indhidual could fall into one of two alternatives, A or not-A.' 

Put in another way, this means that the possible answers to an un
ambiguous question can be reduced to a succession of answers of either 
"yes" or" no." For instance, suppose the question is," How old are you, 
in years!" \Ve can replace this question by the succession of questions, 
.. Are you .one year old ? " "Are you two years old ? " _ • • "Are you 
120 years old!" An answer of" 47" to the first-mentioned question can 
then be expressed as ai] answer of" No" to the first 46 of these questions, 
"Yes" to the 47th and" No" to the rest. 

Similarly, an answer to the question, " What is your name!" ean be 
reduced to the qu_estions, "Is the first letter of your name A! " "Is the 
first letter B!" - : • "Is the second letter A!" and so on. Replies to 
a more general question can be reduced to the same form by a convenient 
classification ; e.g. the replies to the questiori, "Are you in favour of war?" 
ean be classified in the four forms: "Favourable without qualification," 
"Favourable with some· qualification," "Unfavourable without qualifica
tion," "Unfavourable with some qualification," and the answers to the 
questions can be reduced to answers "yes" or ''no " to the questions, " Are 
you, without qualification, in favour of war ? " and so on. 

Recording Classified Information on Punched Cards. 
5.23. The information about an individual, considered as a member 

of a universe, is information whether be does or does not fall into the 
alternative classes which, as we have just seen, compose the most general 
hQmogeneous classification of the universe. If we imagine each individual 
filling in a questionnaire about himself, the totality of answers may, by 
suitably expressing the questions, be expressed as a number of" yes's '' and 
"no's," and these replies express all the information about the individual: 

This simple fact allows us to record the data in a mO!>t com·enient way. 
Each 'individual is allotted a card, which is divided into a number of cells. 
Each cell corresponds to one of the dichotomies or simple questions the 
answers to which constitute the information. If the answer is ".Yes," a 
bole is punched in the cell; if the answer is "No," the cell is left untouched. 

The card of any individual will thus be like a complicated tram ticket, 
with holes punched in various places. The punching is usually performed 
either by hand with a ticket collector's punch, or with a machine similar 
in principle to the typewriter. The totality of punched cards forms a 
miniature of our universe-each indi,idual has a card on which is recorded 
the whole of the information about him. 
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• The use of ihis system lies in the fact that pun~hed cards are easily 
handled and sorted by machinery. II, for example, we wartt ~o know a 
particular class-frequency, we can adjust certain electrical, pneumft,tic or_ 
mechanical stops, and the machine will segregate all the cards in the class-
and count them for us. . _ • · - • 

5.24. A similar device has beet\ applied to the sorting of datA by hand. 
- A card is prepared \\ith a row of circular holes punched all the way round 

near its edge, but so that no hole is open to the edge. · Each hole corre
sponds to a dichotomy or a simple question. \Vhen preparing the card, if 

-· the individual falls into the ..4. class, or the answer to the question is "Yes," 
a· piece is clipped out of the card so that the hole is now ollen to the edge. 
II the individual falls into the not-A class, or the answer to the question is 
·" No," the hole is left alone. · 
· To separate the .A.'s from the not-A's, or the "yes" cards from the 
•• no " cards, they are arranged in a vertical plane so that corresponding 
cells are "similarly placed. A skewer is then inserted in the appropriate 
bole and lifted. The not-A cards are lifted out,- whilst the A cards fall_ 
away, since the piece of card between the hole and th~ edge has been cut. 
away. By J'('peating the operation with the skewer in the appropriate 
holes we cad ~solate the cards in any given class. These can then be counted 
and the size (>f the class-frequency determined. · · .. . 

5.25. The labour of punching cards and the expense of machinery is 
justified only when the number of individuals is large and the number of 
ultimate classes is also large. · This arises, for example, in the taking of 

· a census of population. ' · . . 
. . \ . 

Numerically Defined Attributes. 
5.26. The attributes we have instanced in the foregoing pages have 

usually been of a qualitative kind. The methods described· are, however, 
applicable to data classified on a numerical basis. Consider, for example, 
the following table :- • _ 

TABLE 5.5.-Numbn_of Familia Dejicient in Room Space in fi5 Crowded London Wards. 

(Census of 1931, liOIU'ing &port, p. xxxii.) 

[ 
--

. ' . f Standard Room Requirement (Rooms) • 

I Families deficient by 

12~91 
3 4 5 6 ...2._1 8 Total. 

-I-
I room 18,198 7,724 2,170 1M .19 .. 41,274 - --
!rooma .. 3,054 4,479 1,«8 .221· '15 1 9,218 --
3 rooma .. .. 310 508 106 . 4 1 929 - -
~ rooma .. .. .. 10 !1 4 . . 35 - - -• Total 12,999 21,252 12,513 4,136 512 42 2 51,456 . 

<·. 

. The distinction between successive rows and columns is not quite ·of th~ 
kind of Table 5.2. In the latter, for instance, we drew a line between black 
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hair and brown, a line which could be drawn by anybody who was not colour
blind, although there may be border-line cases of mixed colours which 
would present difficulty. But in Table 5.5 above the line is drawn by 
counting-a much more precise operation. 1\lore.over, the rows and 
columns have a certain natural order given by the numerical sequence. 
It would seem absurd to put the colllmn which is headed " two rooms " 
between those headed" three rooms" and" four rooms," but in Table 5.2 
there is no a priori reason for putting " black " between " brown " and 
"red." 

5.27. We might also have a contingency table in which the attributes 
.were measurable quantities, and the rows and columns of the table de
termined by ranges of those quantities. This, again, is slightly different 
from the case of the previous paragraph, for these ranges are to a large 
extent arbitrary, whereas in Table 5.5 the indivisible nature of the room 
compels us to count in units of at least one room. 
. 5.28. Finally, we may have a table which is given by one qualita

tive attribute and one quantitative attribute. Consider, for example, the 
following :- · • 

TABLE 5.6.-Weight and Mentality in a Selection of Criminals. _ 
(Data from M. H. Whiting, "On the Association of Temperature, Pulse and Respiration 

with Physique and Intelligence in Criminals," Biometrika, vol. 11, pp. 1~37.) 

·Weight (lbs.). 
I -

90-120. 120-130. 130-140. 140-150. 150 Totals. upward . 
. . 

Normal-. 21 51 94 106 124 396 

Weak 15 18 34 . 15 15 97 -
Totals. 36 69 128 121 139 493 

' 

5.29 •. The methods of the previous chapters are applicable also to such 
tables. Numerically measurable quantities may, however, be treated. by 
other methods, to which we shall come in due course. 'Ve mention the 
point here in order to remove any possible idea that the theory of attributes 
is concerned solely with qualitative classification, and is not appropriate 
to the more precise data given by a numerically assessable attribute. 

' 
SUl\11\IARY. 

1. The division of a universe according to an attribute A into a number 
of heads is called manifold classification. This is an extension of the idea 
of dichotomy, in which the universe is divided into two parts only. 

2. Manifold classification according to two attributes A and B gives 
rise to a contingency table. 

3. Association in a contingency table may be examined by reducing it 
in a number of ways to a 2 x 2 table. 

- -- 4. The general nature of the association may be summarised by a 
, coefficient. 
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s. We define 

The "square contingency" js given by: • 

1 s{ . 81
m 11 } s{(AmB,.)1

} . ~ 
X = (A,.B,.) 0 = (A,.B,.) 0 -

The "'.mean square contingency,; 'by:·· 
- x•. 

~·=:= N . 

. 6. Pears~n's " coefficient of.meah square continge~cy " is def\ned bw": 
. r:r ~ 
C='J~='Vl+rf;s. . 

7. T~huprow's '' coeffi~ie~t of contingency" is d~fined by: 

·~. T•- ~~ . 
- v'(8-l)(t-l) . 

·. i .. . ' . 
8. Certain types of table, known· as isotropic contingency tables, possess ·· 

special features of some importanc.-e. · . : . . : . .' 
. .9....Any manifold c!assifi.cation may. be _regarc:l~~ ~ -~ sq~~~sion 0~ 
dichotomies~ . 'This fliCt is the basis of the use Of puncheacards for record-
ing and analysing statistical data. . . · . . · . 

10. :Manifold classification may arise not only from an attribute which 
is specified under beads of a qualitative kind, bu.t also from a quantitative 
attribute specified !>y_counting or measurement. · · 

EXERCISES. 

5.1. (Data from Karl Pearson, "On the Inheritance of the Mental and Moral 
Characters in 1\lan," Jour. of tM Anthrop. Jnst., vol. 83, and Biometrika, vol. 3.) 
Find the coefficient of contingency (ceefficient of mean 11quare contingency) for 
the two tables below, showing the resemblance -between brothers for athletic 
capacity and between sisters for temper. Show that neither table is even 
remotely isotropic. (As stated in 5.11, the coefficient of contingency should not 
as a rule be used for tables smaUer than 5 x 5-fold: · these small tables are givt'n 
to illustrate the method, while avoiding lengthy arithmetic.) · . . ' 

A. ATHLETIC CAPACITY. 

Firat Brptl)er. 

c A.thlt>tio; Betwixt. .Non-
Total.· .athletic, 

Athletic 
. \~U 

'20 . 140 . 1066 . . ~ 
Bet\tlixt . -or; 2-.u ' 76 9 105 
Non-at.hletio . 906 9 - 370 61~ . 

; 

I 
.. 

Total . 1066 105 519 16to : 
J I . 

' C.-: 

I 
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n. TEMPER. 

Fim Sister. 

Quick. • Good· 
Sullen. TotaL I 11atured. 

-
.J Quick , • . . 198 177 '17 45~ 

Good-natured . 177 998 165 . 1338 
Sullen . . . 77 165 120 362 

Total . U2 1338 862 2152 
' 

5.2. Calculate T and C for the following table, and trace the associatim; 
between the progress of building and the urban.character of the district:-- . r 

II ousts in England and Wales. (Censu~ of 1901. Summary Table X.) 
7' (OOO'• omittl'd.) 

Inhabited. Unin· Building. ·Total. habited. 

-
.Adm. County of London . 571 40 6 818 
Other urban districts .: .. 40U 285 . 41i • 4394-
Rural districta 1 . . . 16~5- '124. 12 1151 

1-

Total for England and Wales • 6260 4411 62 6771 

5.3. Show that for a given B and t, C and T are equal for two values of ~·. 
one of which is zero; that for <f>8 between these values C > T; and that for <f.' 
greater than the higher value T > C. . · 

. 5.4. Find whether the following contingency table is isotropic, and if it i.s 
not, ascertain whether it can be arranged in an isotropic fonn :-

. r·~~~------~-----r-----.------------~-----, 

~ 
A,. . A,. A,. A,. Totals • 

-
·B, 90 17. 27 16 193 

Ba 235 

~ 
44 60 40 467 

Ba 300 54 71 48 576 

- - -
TotaL! 625 115 . 158 104 1236 

5.5. Calculate C and T for the table of the previous example. 
5.6. Show that in a positively isotropic contingency table, 

d11 d11 • o., 
--- > --- and 18 > --
(.41B,)0 (A1B,)0 (A.JJ,)o 

__ 5.7. 1000 suhj<•d,. of English, }'rench, German, Italian and Spanish 
nationality were a~;ked to name their preference among the mu,;ic of those tiv·~ 
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n .. •1tionalitics. The results were.as follows (1 =English, 2 =French, 3 =German, 
4- =Italian, 5 =Spanish):- · 

Nationality of llusic Preferred. · 

I 1. L:__ 3. 4. 5. To~Is-1 - I 1 32 16. 75 47 30 200 

2 10 61 ·42 41 40 200 

·3 12 23 101 36 22 200. 

4 16 20 ·« 76 « 200 

5 8 53 ~0 43 66 l!oo 

Totals 18 I 179 I 298 -;;-I 202 1000 
r 

-
Discuss fjte association bet~een . the nationality of the subject and the 

nationality of the mw;ic preferred. · 
: 5.8. In TaLle 5.6 calculate C and T, and discuss the light thrown by this 
table on the astlOciation between physique and intelligence in the criminals of 
the data. · 

5.9. Show that for a 2 x 2 contingency table in which the frequencies are 
(A,B,) =a, (A.B,) =b, (A1B1 ) =c and (A,B1 ) =d, . 

\ 

1
_ (a +b +c +d)( ad -be)• 

X - (a+b)(c+d)(b+d)(a+e) 

and hence find C and T in tenns of a, b, c, d. 
5.10. In a paper discussing whether laterality of hand is associated with 

laterality of eye (measured by astigmatism, acuity of vision, etc.) T. L. Woo 
c,btained the following ret;Ults (Bia~TUtrika, vol. 20A, pp. 79-US) :-

1....; .:::• 
A~ 
:1.~ 
t-8 
~-2 
~;t:l 

3:. _.c 
~"Z 
c c 
;:; ·g I 

Ocular Laterality for General .Astigmatism. 

"Left-eyed." Ambiocular. .. &;ght~yod. "I T ...... 

Left-handed • 3.& 62 • !?8 12.& 

AmbiJn.troua 21 28 20 75 

R~ht· ........ ~ 105 5! 214 

Totals . 118 195 100 413 

Show that laternlity of eye is only slightly associated with laterality of 
hand. 



CHAPTER 6. 

FREQUENCY -DISTRIBUTIONS. 
Variables. 

6.1. As we emphasised at the close of the last chapter, the methods 
of the theory of attributes are applicable to all observations, whether 
qualitativ~ .or quantitative .. \Ye have now to proceed to the considera
tion of special processes adapted to the treatment of quantitative data, 
but not as a rule available for the discussion of purely qualitative observa
tions (though there are some important exceptions to this statement, as 
suggested in 1.2). 

Numerical measurement is applied only to a quantity which can 
present more than one numerical value. Otherl'lise there would be no 
point in measuring it. Such a quantity is therefore called a variable,1 

and this section of our work may be termed the theory of variables. 
As common examples of variables which are subject to statistical 

treatment we may cite birth- and death-rates, prices, wages, barometer 
readings, rainfall records, and measurements or enumerations (e.g. of 
glands, spines or petals} on animals or plants. 

Quatltities which can take any numerical value within a certain range 
are called continuous variables. Such, for example, are birth-rates 
a:nd barometric readings. Quantities which can take only discrete values 
are called discontinuous variables. This class, for instance, would 
include data of the number of petals on flowers or the number of rooms 
in a house. 

Frequency -dfstributions •. 
6.2. If some hundreds or thousands of values of a variable have 

been noted merely in the arbitrary order in which they occur, the mind 
eannot properly grasp the significance of the record. We must condense 
the data by some method of ranking or classification before their char
acteristics can be comprehended. 

One way of doing this would be to dichotomise the data by classifying 
the individuals as A's or not-A's, according as the value of the variable 
exceeded or fell short of some given value. But this is too crude, and 
the sacrifice of information is too great. A manifold classification, 
however, avoids the crudity of the dichotomous form, since the classes 
may be made as numerous as we please. l\Ioreover, numerical measure
ments lend themseh:es with peculiar readiness to a manifold classification, 
for the class limits can be connniently and precisely defined by assigned 
values of the ,·ariable. 

6.3. For convenience, the ,·alues of the variable t·hosen to define 
the successive classes should be equidistant, so that the numbers of 
observations in different classes are comparable. 

• It is also called a variate. \Ve shall use the two tt'rms as synonymous. 
82 
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The interval chosen for--classifying is called the class.intervid, and 
the frequency in a particular class-interval is called a class-frequ~ncy. 

Thus, for measurements of stature, the class-interval might be P. inch,. 
or 2 centimetres, and the class-frequencies would be the numbers of indi~ 
viduals whose statures fell within each successive inch or each successive 
2 centimetres of the scale; returns of birth- or death-rates might be 
grouped to tfle nearest unit per thousand of the populati,on ; returns of 
wages might be classified to the nearest shilling, or, if it is desired·to obtain 
a more condensed table, to the nearest five or . ten shillings. Discon
tinuous variables to a great extent determine their own class-intervals, 
which must either be equal in width to the. unit amount of variation, 
or equal to some multiple of. it. For example, in enumeratiohs of the 
number of rooms in a house we naturally take our class-interval to be 
one room ; in enumerations of the petals on a flower we may take one 
petal, or, if the range of variation is very great, sa.y five petals or more. . 

6.4. ·'The manner in which the class-frequencies are distributed over 
the class-intervals is spoken of as the frequency-distribution of the 
variable. • ·· · · 

A few il~strations will make clearer the nature of .such frequency
distribution•, and the service which. they render in summarising a long 
and complex record. . . 

(a) Table 6.1. In this illustration the birth-rates per thousand of 
the population in 1933 of 1567 local government areas of England have 
been classified to the nearest unit; i.e; the number of 'districts has been 
counted in which the birth-rate was between 1·5 per thousand and 2·5, 
between 2·5 and 8·5, and so on. · The frequency-distribution is shown by_ 
the table. · 

TABLE 6.1.-Showing the Number of Local Government Area& in England with Specified 
Birth-rata per Thousand of Population, (Material from- the Registrar-General's 
Statistical Heview of England.and Wales for 1933.) 

- . . Number of Districts Number of Districts 
Birth-rate. with Birth-rate 

Birth-rate. with Birth-rate· 
Between Between 

- Limite Stated. Limite Stated. 
~ 

H-- 2·5 . 1'. 13·5-1H 271 . 
2·5- 3·5 2 14·5-15·5 190 
3·5- 4·5 2 15·5-16·5 127 i 
4·5- 5·5 3 16·5-17·5 89 
5·5- 6·5 7 17·5-18·5 78 
6·5- 7-fj 9 18·5-19·5 37 
7·5- 8·5 1-i 19·5-20·5 21 ·' 8·5- 9·5 - 41 20·5-21·5 17 -
9·5-10·5 83 21·5-22·5 • 4, .. ·~ 

10·5-11·5 131 22·5-23-5 , .. \ .. , . 4 
11·5-12·5 192 23-5-24·5 2 
12·5-13·5 242 

1 
Total 1567 ·'. 

-. ~,. 

Although a glance through theori~nal returns, which are spread amongst 
many other. figures over 42 pages, fa1ls to convey any definite impression, 
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a\ brief inspection of the above table brings out a number of important 
. points. Thus, we see that the birth-rates range, in round numbers, from 
2 to 24o per thousand; ·that the birth-rates in some 75 per cent. of the 
districts lie within the narrow limits 10·5 to 16·5, the rates most frequent 

· being near H ;, and so on. It may be remarked t~at some of the areas 
are very small, with no more than 10 or 20 births, and these account 
mainly for the extremely divergent rates. 

(b) Table 6.2. The numbers of stigmatic rays on a number of Shirley 
poppies were counted. As the range of variation is not great, the unit 
is taken as the class-interval. The frequency-distribution is given by 
the following table:-

TABLE 6.2.-showing the Frequencies of Seed Capsules on ce-rtain Shirley Poppies, with 
Diffe-rent Numbe-rs of Stigmatic Rays. (Cited from Bi001etrika, voL 2, 1902, P: 89.) 

j Numberof 
Stigmatic · 

Rays. 

Number or 
Capsules 

:with said 
Number of 

Stigmatic Rays. 

Nulnbcr of · 
Stigmatic · 

~ays. 

Number of 
Capsules 
with said 

Number or 
Stigmatic Raye. 

1---------1---------1·---------
6 
7 
8 
9 

10' 
11 
12 
13 

3 
11 
38 

106 
152 
238 
305 
315 

11-
15 
16 

-17 
18 
19. 
20 

3011 
234 
128 
60 
19 
a 
1 

-· ------1------1 
Tots! 1906 

The numbers of rays range ·from 6 to 20,' the most usual numbers 
being 12, 13 or 14. 

(c) Table 6.3. 206 screws were taken as they came off the lathe 
which was turning them. · Their lengths, which should have been 1 inch, 
were measured. The following table shows the screws classified by the 
number of thousandths of an inch by which they exceeded or fell short 
of 1 inch in length:-

TABLF. 6.8.-showing tl.e Frequencies of Scrt!Ws Classijietl according lo the E:denl to which 
. : they Varied in Ltmgth from the Standard ofl Inch. (Unpublished data, A. M. 

Lester.) 

Difference in Length Difference.in Length 
. 

from 1 Inch Number of from 1 Inch Number of 
(Thousandths of an Screws. (Thousandth& of an Screws. 

Inch). Inch). 

-6 to -5 1 +I to +2 34 
-5 to -4 4 +2 to +3 25 
... 4 to -3 11 +3 to +4 16 
-3 to -2 22 +4 to +5 8 
-2to-1 25 +5 to +6 1 
-I to 0 27 

Oto +1 32 - Total 206 . I 
I 



. T-· 

FREQUENCY:.. DISTRIBUTIONS. . 85 

It will be seen that the maximum frequency, i.e. 84, occurs for s~rews 
from 0·001 to 0·002 inch in excess of the standard. · About 80 p~r cent. 
lie in the range three-thousandths of an inch on either side of the s~ndard: 

../ · .6.5. Expanding slightly the brief d~scription we have giveri, tables 
setting out frequency-distributions are formed in the follo'\'ling way :-• 

{1) The magnitude of the class-interval is first fixed. In Tables 6.1, 
- 6.2 and 6.8 one unit was chosen. · · · 

(2) The position or origin of the intervals must then be determined; 
e.g. in Table 6.1 we must decide'whether to take as interval~ 9-10, 10-11, 
11-12, etc., or 9·5-10·5, 10·5-11·5, 11·5-12·5, etc; ' · · · 

(3) This choice having been made, the complete scale of intervals is 
fixed and the observations are classified accordingly. · 

( 4) The process of classification being finished, a table is drawn up on 
the general lines of Tables 6.1~.3, showing the total number of observa-
tions in ~ach class-interval. · · 

It is necessary to make a ·few remarks about each of these heads. 
~ . 

Ma~nitude of Class-interval. · · · ·. · 
6.6. ;.; already remark~ in cases where the variation proceeds by 

discrete steps of considerable magnitude as compared with the range of 
variation, there is very little choice.as regards the magnitude of the class
interval. The unit will in general· have to serve. But if the .variation 
be eontinuous, or at least take. place b~ discrete steps which are small 
in comparison with the whole range of variation, there is no such natural 
class-interval, and its choice is a matter for judgment. · 

The two conditions which guide the choice are these: (a) We desire 
to be able to treat all the values assigned to any one class, without serious 
eJTor, as if they . were equal to the mid-value of the class-interval, e.g. 
as if the birth-rate of every district in the first class of Table 6.1 were 
exactly 2·0, the birth-rate of every district in the second class 3·0, and 
so on; (b) for convenience and brevity we desire to make the interval 
as large as possible, subject to the first condition. ' These conditions will 
generally be fulfilled if the "interval be so chosen that the whole number 
of classes lies between 15 and 25. A number of classes less than, say, 
ten leads in general to very appreciable inaccuracy, and a number over; 
say, thirty makes a somewhat unwieldy table. A preliminary inspection 
of the record should accordingly be made and the highest and lowest 
values be· picked out. Dividing the difference between these by, say, 
twenty-five, we have an approximate value for the interval. The actual 
value should be the nearest integer or simp~e fraction. 

Po&ition of Intervals. 
6.7. The position or starting-point of the intervals is, as a rule, 

more or less a matter of indifference. It can therefore be ehosen as is m01ot 
conHnient for the particular case under discussion, e.g. so that the limits 
of the intervals are integers, or, as in Table 6.1, so that the mid-values are 
integers. It may also be chosen so that no limits· correspond exactly, 
to any .recorded value of the variate, in order to obviate any difficulh 
in deciding to which class a particular indi,;dual should be assigned 
(cf. 6.9). 
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The location of the intervals is, however, ·important when the values 
of the variate tend for some reason to cluster round particular \"alucs. 
Such a case arises, for instance, in age returns, Ol\ing to the tendency 
to state a round number where the true age is unknown, or a reluctance 
to· admit one's real age.1 It is also common "·herever there is some 
doubt as to the final digit in reatling a scale, and scope is given to the 
idios,·ncrasies of the observer. · · 

Table 6.-& shows results for four obsen·ers as illustrati~ns, the 
frequencies being reduced for comparability to a total of 1000. Column A 
is based on measures by G. U. Yule, on dral\ings, to the nearest tenth of 
a millimetre. It is recognised, of courSe, that measures cannot really 

TABLE 6 .•• -Fuqumcg-di•tribution• of Final Digit. in .JluuuT~nfJI by FOUT ~. 
(G. U. Yule, "On Reading a Scale," Joumal Royal SlalUiical S~ty. vol. 90, 1927, 
p. 570.) · 

Frequency of final Digit per 1000. 

Final Digit. 

·I 
.s 

. A. s, c. D • 

0 158 122 251 I 358 .. 

" 1 {17 88 37 n 
2 125 98 80 90 
3 73 eo 72 6S 
4 76 100 55 37 
5 71 112 22:1 211 
6 90 98 71 62 
7 56 99 75 70 

·8 126 101 72 u 
9 1~. 81 r 65 u . I 

Total 1001 1199 I 1000 1000 
-

Actual ob-} 
aeJT&tioos 1258 3000 I 1000 1000 

be made to such a degree of precision ; but the. measurer believed that 
he was making them carefully, and as they were made with a Zeiss scale, 
in which the di\isions are ruled on th~ under side of a piece of plate-glass, 
readings were unaffected by parallax. Nevertheless, it will be seen that 
the zeros, and also 2, 8 and 9, "·ere heavily over-emphasised-an odd 
selection of preferences! On the whole, the centre of the millimetre was 
neglected and measures piled up at the two ends. · 

. The data for columns B, C and D are all drawn from the same publi!>heJ 
report, and refer to sundry head measurements taken on the li,;ng subject. 
On the basis of a statement in the introduction to the report, it was possible 
to compile the data separately for the three assistants (B, C, D) who had 
done the actual measuring. It will be seen that B was rather good : there 
is a relatjvely slight excess at 0 and 5, but otherwise his measurements are 

• This e~t is practically the same for IIM'n as for •·onK"n. CJ. Table I in the 
Appendix to the paper cited in the heading to 'fable 6.-6 above. 
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fairly Wiiformly distributed. C was decidedly not good, rounding off!nearly · 
one measurement in two to the nearest centimetre or half-centimetre. D 
was simply outrageously. bad-so bad that it 'might have been better not 
to publish his measurements_ Nearly 57 per cent. of his measurements 
were made only to the nearest centimetre or half-centimetre-a quite 
inadequate degree of precision for head measurements often only a few 
centimetres in magnitude. . . · · . . ·, 

When there is any possibility of clustering of variate values, it is as 
well to subject the data to a close examination before finally fixing on 
·the method of classification. On the whole, the intervals should be 
arranged as far as possible so that the values round which the clustering 
occurs fall towards the interval mid-values. This procedure avoids 
sensible error in the assumption that the interval mid-value is approxi
mately representative of the values of the class. 

Classificallon. 
-·- . ' 

6.8. ~scale of intervals having been fixed, the observations may 
be classified~ .. U the number of observations is not large, it will be sufficient 
to mark the limits of successive intervals in a column down the left-hand 
side of a sheet of paper, and tranSfer the entries of the original record 
to this sheet by marking a 1 on the line corresponding to any class for 
each entry assigned thereto. It saves time in subsequent totalling if 
each fifth entry in. a class is marked by a diagonal across the preceding 
four, or by leaving a space. • 

The disadvantage in this process is. that it offers no facilities for 
checking: if a repetition of the classification leads to a different result, 
there is no means of tracing the error. If the number or' observations is 
at all considerable and accuracy is essential, it is accordingly better to· 
enter the values observed on cards, one to each observation. These are 
then dealt out into packs acoording to their classes,_ and the whole work 
checked by numing through the pack corresponding to each class, and 
verifying that no cards have been wrongly sorted. · · 

6.9. In some cases difficulties· may arise in classifying, owing to 
. the occurrence of ohser~ed values eorresponding to class-limits. Thus, in 

compiling Table 6.1 some districts "ill have been noted with birth-rates 
entered in the Registrar-General's returns as 16·5, 17·5 or 18·5, any one 
of which might at first tiight have been apparently assigned indifferently 

,to either of two adjacent classes. In such a case, however, where the 
original figures for numbers of births and population are available, the· 
ditliculty may be readily surmounted by working out the rate to another 
place of decimals: if the rate stated to be 16·5 prows to be 16·502, it 
will be sorted to the dass.l6·5-17·5; if·'16·498, to the dass 15·5-16·5. 
Birth-rates that work out to half-units exactly do not occur in this example, 
and so there is na real difficulty. . · 

In the case of Table 6.3, again, there is little difficulty in knowing the· . 
. clao;s to which an indiddual should be assigned. • • . 

Difficulties of this type may, in fact, always be avoided' if they are 
borne in mind in fixing the class-intervals, by fixing the inten:als to a 
further place of decimals or a smaller fraction than the values in the 
original record. Thus, if statures are measured to the nearest centimetre, 
the class-intervals may be taken as 150·5-l.'Jl·5, 151·5-152·5, etc.; ifto the 
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nearest eighth of an inch, the intervals may be 59}1-60}1, 60}i-f'IU, 
and so on. · 

If the difficulty is not evaded in any of these ways, it is usual to assign 
one-half of an intermediate observation to each adjacent class, with the 
result that half-units occur in the class-frequencies (cf. Table 6.9, p. 98). 
The procedure is rough; but probably good enough for practical purposes ; 
strict precision is usually unattainable, for in point of fact the odd way in 
which different individuals read a scale, for example, renders it impossible 
to assign exact limits to intervals. 

Tabulation. 
· 6.10. As regards the actual drafting of the final table there is little 

to be said, except that care should be taken to express the class-limits 
clearly and, if necessary, to say how the difficulty of intermediate values 
has been met or evaded. The class-limits are perhaps best given as in 
Tables 6.1 and 6.3, but may be more briefly indicated by the mid-values of 
the class-intervals. Thus, Ta~le 6.1 might have been given in. the form: 

Birth-rate per 1000 to ,Number of Districts with 
the Nearest Unit. said Birth-rate. 

I 

. 
2 1 
3 2 
4 2 

etc. etc. 

--

It should be noticed that the method of defining class-intervals adopted 
in Table 6.3 leaves the class-limits uncertain unless the degree of accuracy 
of the measurements is also given. Thus, in a table giving frequencies of 
men in certain height-ranges of 1 inch in width. say" 51 and less than 58," 
etc., if measurements were taken to the nearest eighth of an inch, the class
limits are really 56lf-57.H, 57H-58f:, etc.; if they were only taken to 
the nearest quarter of an inch, the limits are 56l-57i, 57i-58~, etc. With 
such a form of tabulation a statement as to the number of significant figures 
in the original record is therefore essential. It is better, perhaps, to state 
the true class-limits and avoid ambiguity. 
. 6.11. The rule that class-intervals should be all equal is one that is 

very frequently broken in official statistical publications, principally in 
order to condense an otherwise unwieldy table, thus not only saving space 
in printing but also considerable expense in compilation, or possibly, in the 
cas~ of confidential figures, to avoid giving a class which would contain 
only one or two observations, the identity of which might be guessed. It 
would hardly be legitimate, for example, to give a return of incomes relating 
to a limited district in such a form that the income of the two or three 
wealthiest rwn in the district would be clear to any intelligent reader with 
local knowledge. 
·- ·u the class-intervals be made unequal, the application of many statis- , 

tical methods is rendered awkward, or even impossible. Further, the 
relative values of the frequencies are misleading, so that the table is not 
perspicuous. Thus, consider the first two columns of Table 6.5, showing 
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the number ~f persons liable to sur-tax and super-tax classified ~ng 
to their annual income. On running the eye down the column headed 
.. X umber of Persons," the attention is at once caught by the three irregu
larities at the classes '' £3000 and not exceeding £-1000," " £8000 and 

-not exceeding £10,000,'' and "£10,000 and not exceeding £15,000." But 
these have no real significance; they are merely due to chan.,<res _in the 

. magnitude of the class-inten-al at those points. A further change occurs 
at the £30,000 and at the .£50,000 mark, although the attention is not 
directed thereto by any marked irregularity in the frequencies. 

TABLE 6.5.-8h611Ding lhe Numbers of Per-~a ill lhe UniUd Kingdom liable to SUf'-1031 
and Super-taz ill lhe 1•ear Mginning 6tA April 1931, danijied GCCOTding to lhe 
Magniooh oflheir Annual lru:ome. (From the Statistical Abstract for the United 
Kingdo~ for the YeanJ1913 and 1919-32, Cmd. 4489.) 

• Annual Income . Number of Frequency per 
(£000) •. - _ Pel'80118. £500 Interval. 

• 
• -

j and not eXCll'leding 2·5 23,988 23,988. 
!·5 .. .. 3 . 15,781 15,781 
3 .. 17,979. 8,989 .. .. .. 
' .. ... 5· 9,755 4,877 
5 .. .. 6 5,921 2,960 
6 .. , .. 7 3,729 . 1,8M 
7 .. " 

8 2,546 1,273 
8 .. .. 10 3,193 798 

10 .. .. 15 3,616 362 
15 .. .. 20 1,328 133 
20 .. .. 25 679 68 
2a .. .. 30 '378 38 
30 .. .. 40 372 19 
40 .. .. 50 192 10 
50 .. ... 75 182 . ' 75 100 57 - 1 .. .. 

100 and over 94. ! 

I Total n:mber of pe'I'IIODII j. I I 
8!1,790 -.,. 

To make the class-frequencies really comparable inter ae they must first 
be reduced to a common inten•al as basis, say .£500, by dividing the third 
and subsequent numbers by 2, the eighth by 4, and so on. This gives 
the mean frequencies tabulated in. the third column of Table 6.5. The 

. reduction is, however, impossible in the case of the last class, for we are 
told only the number of persons with an income of .£100,000 and upwards. 
Such an indefinite C'lass is in many respects a great inconvenience, and 

' should always he avoided in work not subjected to the necessary limitations 
,.. of official publications. 

6.12. The general rule that intervals should be equal must not be held . 
to bar the analysis by &mailer equal intervals of some portion of the range 
o\·er which the frequency varies very rapidly. In Table 6.11, page 100, 
for example, giving the numbers of deaths from scarlet fever at successive 
ages, it is desirable to give the numbers of deaths in each year for the first 
five years, so as to bring out the rapid rise to the maximum in the third 
year of life. 
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Graphical Representation: Frequency-polygon and Histogram. 
6.13. It is often convenient to represent the frequency-distribution 

by means of a diagram which conveys to the eye the general run of the 
observations. The following short table, giving the distribution of head· 
breadths for 1000 men, will serve as an example:-

TABLE 6.6.-Shuwir~g the Frequency-distribution of II~ud-bremlths for Stwf<'fllll at 
Cambridge. :Measurements taken to the nearest Tenth of an Inch. (Cit.ed frnrn 
,V, H. Macdonell, Biometrika, vol. 1, 1902, p. ~20.) 

Head-breadth Number of Head-breadth Nuwberof 

in Inches. !lien with said in Inches. .Men with said 
Head-breadth. Head-breadth. 

5'5 a 6•8 lUI 
.5·6. 12 6•i ~7 
6'7 43 8'5 15 
6•8 80 6'6 12 
6•9 131 6'7 3 
6•0 236 6•8 2 
s·i ' 185 
1i·2 142 Total 1000 . 

T;:tking a piec'e of squared paper ruled, say, in inches aud tenths, mark 
off along a horizontal base-line a scale representing class-inten·als ; a 
half-inch to the class-interval would be suitable. Then choose a nrtical 
scale for the class-frequencies, say 50 observations per interval to the inch, 
and mark off, on the verticals or ordinates through the points markeJ 5·5, 
5·6, 5·7, ... at the centres of the class-intervals on the base-line, heights 
representi~g on this scale the class-frequencies 3, 12, 43, ..• The diagram 
may then be completed in one of two ways: {1} as a frequency-polygon, 
by joining up the marks on the verticals by straight lines, the last points at 
each end being joined down to the base at the centre of the ne~t clas~
interval (fig. 6.1}; or {2} as a column d~agram or histogram, !>hort 
hodzontals being drawn through the marks on the verticals (fig. 6·2}, whiC'h 
no~ form the central axes of a series of rectangles representing the class
frequencies. 

6.14. The student should note that in any such diagram, of either 
form, a certain area represents a given number of obser,·ations. On the 
scales suggested, 1 inch on the horizontal represents 2 intervals, and 1 inch 
on the vertical represents 50 observations per inten·al : 1 square inch 
therefore represents 50 x 2 = 100 observations. The diagrams are, how
ever, conventional: in both cases the whole area of the figme is pro
portional to the total· number of observations, but the area over ewry 
interval is not _correct in· the (·ase of the frequency-polygon, and the 
frequency of every fraction of any interval is not the same, as suggested 
by the histogram. The area shown by the frequenq·-polygou over any 
interval with an ordinate y2 (fig. 6.3) is only correct if the tops of the three 
succcssi\·e ordinates y1, y 2, y3 lie on a line, i.e. if y2 = HY1 + y3 ), the area~ of 
the two little triangles &haLlcd in the tigure being equal. If !Ia fall !>hort of 
tllis value, the area shown by the polygon is too gn·at ; if y~ exceed it, 
the area &hown by the polygon is toq small; and if, for this rea5on, the 

• 
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frequency-polygon tends to become very misleading at any part· of the 
·range, it is better to use the histogram. 
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FIG, 6.1.-Frequency-polygon for Head-breadths of 1000 Cambridge 
Students. (Table 6.6.) 

(I -- .. 

r- r-

50 --r-

00 

-~--

-- -~ 

Lr - L - I r ,_ 
6-s ·s -·7 .., -:~ 61J •t ·z ·3 • ., ·s ., ·7 ·B 

FIG, 6.2.-HiNtogram for the same data 88 fig, 6.1. ' . . 

... 

6.15. The histogram may also be used when the class-intervals arc 
unequal. The construction of the previous section is easily adapted to 
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such cases. -All that is necessary is to describe an area equal, on the scale 
adopted, to the frequency in a particular interval; thi~ is done, as before, 
hy erecting at the centre of the interval an ordinate equal in length to 

the total frequency divided by the 

:Yz 

;y, 

width of the interval. · 
An example of this kind of con

struction is given in fig. 6.11 (Table 
6.11 ). The frequencies of deaths for 
ages over 5 years are given in 5-yearly 
periods, whereas those for ages under 
5 years are given in 1-yearly periods. 
On the scale indicated, therefore, the 
height of the cell of the histogram cor
responding to the ages 2-8 years is 
89, the class-frequency ; that of the 

_ __._..__--"---.!L--L--...L--II.~...J- - cell corresponding to the ages 5-10 is 

\ 
42·6, i.e. 213 divided by 5. Hence the 
areas of the two cells are, to the scale 

adopted, 89 and 213, respectively, so that the areas accurately represent 

FIG:6.3. 

the frequencies. ' . ~ . . 

Frequency-curves. 
6.16. If the class-intervals be made smaller, and at the same time 

the number of observations increased so that the class-frequencies may 
remain finite, the polygon and the histogram will approach more and 

FIG. 6.4. 

more closely to a smooth curve. Such an ideal limit to the polygon or ' 
the histogram is called a frequency-curve. It is a concept of supreme 
importance in statistical theory. · _ -

_-- In the frequency-curve the area between any two ordi.nates whatenr 
is proportional to the number of observations falling between the Cl~rre
sponding values of the variable. ·Thus, the number of observ9:t10ns ' 
fallino between the values of the variable x1 and :r1 in fig. 6.4 Will be 
propo"'rtional to the area of the shaded strip in the figure ; the number of 
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observed \'alues ~eater ihan ll'a will be given by lhe area of the cJ~e to 
the right of the ordinate at x1 ; ·and so on. . ' 

6.17. When v.·e come to consider the theory of sampling we shall 
regard the frequency curve as representing a universe from which the 

- actual data are a specimen. The frequency-polygon and the histogram 
will then be approximations to. the curve, but will diverge from it to 
some extent owing to fluctuations of sampling. For the present we must 
defer a closer inquiry into this subject. ·we may remark, however, th~t 
when the number of observations is considerable-say a thousand at 
least-the run of the class-frequencies is usually sufficiently .smooth to 
give a good notion of the form of the " ideal " dist.ribution. 

Some Common Types of FreqQency-distribution. 
6.18.'. The forms presented by smoothly running sets of data ·are 

almost endless in their variety, but among them we may notice a com& 
paratively small number Df simple types. Such types also form. a set 
into which .-nore complex distributions may often be analysed. For 
elementary ~1urposes it is sufficient to consider four fundamental simple 

_types, whieh: we shall call the' 1synunetrical distribution, t~_!!!oderately 
'·: ·asymmetrical or skew distribution,l the e!t-tr~mely asymmetrical or 

. ,., -~~shaped distribution and the:.l.f-shaped distribl:ltion. In the following 
·sections we give some examples· of each of these types, together with a 
few more complex distributions. 

The Symmetrical Distribution. 
6.19. In this type the class-frequencies decrease to zero symmetri

cally on either side of a 'central maximum. Fig. ~.5 illustrates the irleal 
form of the distribution. · · 

FlO. 6.5.-Ao Ideal Symmetrical Frequency-distribution. 

1 These two typea, from their shape, are frequently referred to as '.'humped," 
"cocked hat," "single peaked," and so on. . · . 
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Being a special case of the more general type described under thP 
st>cond heading, this form of distribution is comparatively rare. It 
occurs in the case of biometric, more especially anthropomt>tric, measurc
mt>nts, from which the following illustration is drawn, and is important 
in much theoretical work. Table 6.7 shows the frequency-distribution of 
statures for adult males born in the British Isles, from data published by a 

TABLE 6.7.-Siwwing the Frequnuy-di8tributioo• of Stalurts for Adult .llaks barn in 
England, Scotland, Walts and Ireland. (Final Report of the Anthropometri~? 

· Committee to the British Association.) (&port, 1883, p. 256.) As .Ueasuremn1ts 
are stated to have bt>m taken to the 11tarut lila of an Inch, 1M CW..-intnt!als are hne 
presumably 56U-57U, 57U-58ll, and so on (rf. 6.9). (See fig. 6.6.) 

Number of Men ""ithin said Limits of Height. 

Height without 
Place of Birth-

ahoes, Incbee. Total. 

England. Scotland. Wales. Ireland. 

57- 1 - 1 - .2 
68- 3 1 - - 4 
59- 12 - 1 1 14 
60- 39 2 - - 41 
61- 70 2 II 2 83 
62- 128 II 30 2 169 
63- 320 19 48 7 394 
64--- 524 47 83 ]!) 669 
65- HO 109 108 33 P90 
66- 881 . 139 145 58 1223 
67 ... 918. 210 . 128. 73 13:!9 
68- 8E6 210 i2 62 1230 
69- 7fi3 218' 52 40 1063 
70- - 4i3 115 33 25 6i6 
71- 254 102 21 15 392 
72- 117 69 6 10 2112 
73- 48 26 2 3 79 
H- 18 15 1 - 32 
75- 9 6 1 - 16 
76-- 1 . 4 - - li 

I 
i7- 1 1 - - 2 

---
Total 619! 1304 741 3,6 I 8555 

-
British Association Committ~ in 1883, the figures being given separately 
for persons bortt in England, Scotland, "'ales and lrt>land, and totalleJ 
in the last column. These frequency-distributions are approximately of 
the symmetrical type. The frequency-polygon for the totals given by 
the last column of the table is sho'\'1'11 in fig. 6.6. The student '\'\;u notice 
that an error of is inch, scarcely appreciable in the diagram on its reduct·d 
scale, is neglected in the scale shown on the base-line, the intervals beiu;:: 
treated as if they were 57-58, 58-59, etc. Diagrams should be drawn for 
comparison showing, to a good open scale, the separate distributions fur 
England, Scotland, Wales and Ireland. 

The Moderately Asymmetrical (Skew) Distribution. 
6.20. In this case the class-frequencies decrease with markt-d~y 

greater rapidity on one side of the maximum than on the other, a-; 111 
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fig. 6.7 (a) o; (b). This is the most commm1.of all smooth for~ of 
frequent>y-distribution, illustrations occurring in statistie& from almost 
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F1o. 6.8.-FrequeJ!Cf-distribution of Stature for 8585 Adult Males bom in 
. the British Isles. (Table 8.7.) . · : 

(&) (a.) 

Flo. 6.7.-ldeal Distributiona of the Moderately "'symmetrical Fonn. 

. . ' 

every so~rce. The distribution of birth-rates gh•en in Table 6.1 is slightly 
asymmetrical · · . . 

The distribution of Aw.tralian .marriages given in Table 6.8 (fig. 6.8) 
is rather more asymmetrical and is of the type (a) of fig. 6.7. The. 
frequency attains its maximum for ages between 2-i and 27 and then 
tails' off slowly. We have not drawn the tail of the curve, which is ~·ery 
dose to the .r-axis, for values of the variate above 58·5. . · 
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TABLE 6.8.-Showing .ll.'umbrriJ of JUarri(/ge., Contraclt>d in Au81mlin, 1907-1/, arran;: .: 
accordinf! to the Age of Bridegroom in 3-l"e/U" Gro11ps. (From S. J. Pretori> , 
"Skew Bivariate l:<'l'f'quency Surfaces," Biometrika, vol. 22, 10:30-31, p. 210.) (~· .. 
fig. 6.8.) . 

. I 
Age of Bridt>groorn Number of Arz.e of Bridegroom Numkrof 

I (Central Value of 3-Year Marriagt>a. (Ct>nt.ral Value of 3-Year 1\larringes. Range, in Y eara ). Range, in Yeara). 
I 
I 

16·5 294 55·5 1,6.'>5 I 
19·5 10,995 58·5 1,100 I 22·5 61,001 61·5 810 . 
25·5 73,054 64·5 649 
28·5 56,501 67·5 ' 4~7 
31·5 33,478 70·5 326 
34·5 . 20,569 73·5 2ll 
37-5 14,281 76·5 119 
40·5 9,320 79·5 73 
43·5 6,236 82·5 27 

I 46·5 4,770 85·5 u 
49·5 3,620 88·5 5 I 52·5 2,190 

I Total_, 301,785 

I 
Table 6.9 and fig. 6.9 give a biological illustration, viz. the distributiun 

of fecundity (ratio of yearling foals produced to coverings) in mar• s. 
The student should notice the difficulty of classification in this ca<t, : 
the class-interval chosen throughout the middle of the range is _1/15tl·. 
but the last interval is "29/30-1." This is not a whole interval, but it 
is more than a half, for all the cases of complete fecundity are reckone.l 
into the class. In the diagram (fig. 6.9) it has been reckoned as a who\· 
class, and this gives a smooth distribution. · -

To take an illustration from meteorology, the distribution of paromtt r 
heights at any one station over a period of time is, in general, asymmetric a'. 
the most frequent heights lying towards the upper end of the range f · t" 
stations in England and Wales. Table 6.10 and fig. 6.10 show the cL~ 
tribution for daily observations at Greenwich during the years 18-J.8-1!):.:.i 
inclusive. 

The distributions of Tabl~s 6.8-6.10 all follow more or less the typ,.. 
of fig. 6.7 (a), the frequency tailing off, at the steeper end of.the distrib•I· 
tion, in such a way as to suggest that the ideal curve is tangential to the 
base. Cases of greater asymmetry, suggesting an ideal curve that mecl' 
the base (at one end) at a finite angle, e\ren a right angle, as in fig. 6.7 (I;; 
are less frequent, but occur occasionally. The distribution of dcat i.' 
from scarlet fever, acct:ding to age, affords one sueh example of a m(•rt' 
asymmetrical kind. The actual figures for this case are ginn i '• 
Table 6.11 and illustrated by fig. 6.11; and it will be seen that th, 
frequency of deaths reaches a maximum for children aged " 2 and un. \' 
~8," the number rising very rapidly to the maximum,- and thence falli ... ; 
so slowly that there is still an appreciable frequency for persons O\ • r 
50 years of age. 
, _.Asymmetrical curves are also said to be "skew." In Chapter 'I 
.1'. 
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we shall consider skewness at some length and discuss various ways of 
measuring it. In particular we shall find that skewness has a sign, ·and 
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we may expl:•in at this &tag~ that the l>kewness is said to be positive if...,..· 
the longer tall of the curve hes to the right, or negative if it lies to the 

1 
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left; e.g. the l'Ur~e of fig. 6.8 has positive skewness, whilst those ~f figs. 6.9 
and 6.10 have negative skewness. · • . 

TABLE 6.9.-Shordng the Frl'f[fUflcy-distributiOfl of Fet:tmdity, i.e. tM Ratio of tM :oiumllt"f 
of }"earling FoaiJJ Produad w tM Numbn of Cot'rf"illglf, Jar Brood-mar~11 (Rau
haraea) CotYf'td Eigllt Timta at uast. (Pearson, Lee and Moore, Phil. TraM., A, 
voL 192, 1899, p. 803.) (See fig. 6.9.) 

Number of Number of 
1tlarea with .lllarea with 

Fecundity. Fecundity Fecundity. Fecundity 
between the between the 

Given Limite. Given Limite. 

1/30- 3/30 2 17/30-19/30 315 
3/30- 5/30 '1·5 19/31)-21/30 337 
5/30- '1/30 ll·5 21/30-23/30 293-5 
7/30- 9/30 21-5 23/30-25/30 2().& 
9/30-ll/30 55 25/30-27/30 127 

11/30-13/30 1W-5 27/30-29/30 .9 
13/30-15/30 182 29/30-1 19 
15/30-17/30 ~71·5 

Total 2000-0 
• 

:350 

30 
j/ 1\ 

v ~ . .,, 

/ \ 
20 

150 I \ 
I ' tOO i\ 

I \ 
~ v '\ 

1---
_... 

1'-.... 
0 

I o/JS ZjtS .1/IS 4/15 SjtS 6/15 1}15 ~ 'il51t',1S IIJIS Uf15 IJ/15 H/15 J 

BaliJJ or Yearling foal& prrxbM:«L ID oo~a. 

FIG. 6.9.-Frequency-distribution of Fecundity for Brood-rnare~. 
(Table 6.9.) 

The Extremely Asymmetrical, or J-shaped, Distribution •. 
6.21. In this type the class-frequencies run up to a maximum at one 

end of the range, as in fig. 6.12. 
This may be regarded as a limiting form of the previous distribution, 

and, in fact, the two cannot always be distinguished by elementary me! hods 
if the original data are not available. If, for instance, the frequencies of 
Table 6.ll had been gi\·en by five-year intervals only; they would have run 
322, 2130 70. 21, etc., thus suggesting that the maximum number of deaths 
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TABLE 6.10.-S~ng-Bilf'otMtriC 1/rif,hU al Gum~ Oft Allnnau Day&fr~ J~h-1~26. , 
(Data from S • .J. Prctorius, "Skew Bivariate Frequency Surfaces, B11m1e"':ika, 
vol. 22, 1930-:n, p. 154.) (See fig. 6.10.) · 

. 
Barometric Height Barometric Height 
(Centr&l Y alue in Number of Daya. . (Central Value in Number of Day&. 

Inch~). . Inches). . 

28·35 1 29·65. 3176 
28-45 4 29·75 3700 
28·55 . 12 29·85 3921 
28·65 43 29·95 3749 
28·75 60 30·05 2951 

.. !!8 8.) 81 30·15 1951 
~-95 189 30·25 1148 
29-()5 282 30·35. -·- 563 ; 
%9·!5 542 30·45 258 
29·25 •. 813 - 30·55 73 
211·~ 1233 30·65 13 
2!1\S 17-'>2 - 30·75 7 
29·[;3 2333 • Total 28,855 -·· . 

l/ t'-. . 

1/ I\ 
I v \ ·-J 

II 

~ v 
I 

~ 
t\ 

I I-' f\ 
f' v 0 

n ' 28JS 2855 21715 289$ ~15 2:tJ5 ~-55 N75 29-95 J0-15 . JO·J5. »55 31}?5 
lJarcrnetril:: Migf.r (IJII::iles) · ... 

FIG, 6.10.-Darometric Heigl.t at Green11·ich on Altemate Days from 
· 18~-llr.!6. (Table 6.10.) · . 

occurred at the beginning of life, i.e. that the distribution was J-shaped. 
It is only the analysis of deaths in the earlier years by one-year intervals 
which bhows that the frequencies reach a maximum in the third year and 
that therefore the di:>tribution io; of the moderately asymmetrical type. 
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TABLE 6.11.--Showing the Number of Deaths .from Scarlet Fever at Different Ages in 
England anrl Wales in 1933. (Data from Registmr-General's Statistical Review 
of England and Wales for 1933, Tablc·s, Part I, l\ledical, supplemented by informa-
tion supplied by him in correspondence.) (See fig. ti.ll.) 

Age in Years. Number of Deaths. Number per Year. 

0-
1-

I
I 2-

3-
I 4-

1 

5-
10-

I ~t 
I
' 25-

30-

I 

35-
40-
45-
50-

16 
69 
89 
74 
74 

213 
70 
27 
26 
17 
12 
11 
10 

6 
7 

I 
55-
60- ' 

I 65- I 

1--~~ ___ j ___ J ---1 
i Total I 729 [ 

If\ 
69' 
89 
74 
74 
42·6 
14·0 
5·4 
5·2 
3·4 
~.H 
2·2 
2·0 
1·2 
1--1 
HJ 

0·2 
0·2 
0·2 

----------- -------

In practical cases no hard-and-fast tulc can be drawn between the moder
ately and extremely asymmetrical types, any more than between the 
asymmetrical and the symmetrical types. 

6.22. In economic statistics this form of distribution is particularly 
characteristic of the distribution of wealth in the population at large, as 
illustrated by income tax and house valuation returns, and the curve to 
which it gives rise has been called the " Pareto line," after Vilfredo Pareto, 
who directed the attention of economists to it (vide ref. (99)). The student 
should draw the histogmm of the data of Table 6.5 in illustration of this 
point. 

Such distributions may, of course, be a very extreme case of the last 
type. It is difficult to say. But if the maximum is not absolutely at the 
lower end of the range, it is very close thereto. . . 

Official returns do not usually give the necessary analysis of the 
frequenqes at the lower end of the range to enable the exact position of the 
maximum to be determined ; and for this reason the data on which Table 
6.12 is founded, though of course very unreliable, are of some interest. It 
will be seen from the table and fig. 6.13 that with the given classification 
the distribution appears clearly assignable to the present type, the number 
of estates between zero and £100 in annual value being more than six times 
as great as the number between £100 and £200 in annuaJ value, and the 
frequency continuously falling as the value increases. A close analysis of 
the first class suggests, however, that the greatest frequency does not occur 
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actually a.t zero, but that there is a true maxin.nm frcrp1cm·y for ('~tiltes of 
about £1 15/- in annual value. The dis! ril)llti;m mi;rhc thcrdorc be lll•)l'·_· 

correctly assigned to the ~econfl type, but the p(•.~Jlion af the ~':real csl 
frequency indicates a degree of skewness wlw·h j..; :1igl <\·en cumpar<·d 
with the skewness of fig. 6.11. 

The type is not Ycry frequent in otlwr classes"" material. imt insta1n~e.< 
occur here and there. DistribuLions of deatl1s of cent <'llrtri;•ns afford an 

r r ---; 

~===t-:-~ 
5 10 15 20 25 30 35 40 45 50 5' 

Age. in years 

Fw. (1.11.--Hi~IQgrnm of Numlwr of Deaths from Scarlet Fev('r for 
Vurivus Age~. (Table 6.11.) 

cxampl<', and <:~•.t, <:ItriollSly Clllllll.{h, rlo deaths of infants unless the da.ss
intt>rval is f''\"P.t'dim!l·· finc- a rnatt<·r of hours. It has also been sho\Yil 
that the d.ist' rhuti"' 111.:y be ',IJtained by compiling the frequencies of the 
numbn~ o,· g~~._~ra w1th 1, :!, 3, ... speCies in any biological group. 
Tabler.: :1 shu,~s f.'.H·h a distribution for the Chrysomelid beetles. . 

Tt>e ~.st:~tpcd Distribution. 

h.23 •. '~'f•i~ type <:xhibits a maximum frequency at the end~ of the 
.rapg~ aJ•<i a n1iriimum towards the centre, as in fig. <U L 

.,Th:: is a rare:bvtultf~rc~!ing form of di~tribution~ as it stands in somt-
wblir~ marked c~st to the preceding forms. Table 6.14 and fig. 6.15 
~~~ T Ji .... ·~;,. '~ -
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illustrate an example based on a considerable number of observation<;, viz:. 
the distribution of degrees of cloudiness, or estimated percentage of the sky 
covered by cloud, at Greenwich in July.. . · 
· For the purposes of the illustration we regard cloudiness as a variate 
varying from complete overcastness to clear sky, the range being divided 
into eleven equal parts. · · 

It will be seen that a sky completely or almost completely overcast at 

FIG. 6.12.-An Ideal Distribution of the Extremely Asymmetrical Form. 

the time of observation is the most common, a practically clear sky comes 
next, and the intermediates are more rare. -"' 

The remarks we made about the extreme end oi the J-shaped dis
tribution also apply to the U-shaped distribution. In psrticular cases it 
may be that the grouping is too coarse to reve:Ll thr true t·haracter of the 
frequency at the maxima, and if the data 1\·f're .more complete we might 
discover that the two arms of the U in fact were bent over. 

Truncate4 Forms. 
6.24. The four types we have het·n· <·onsidering sc.metimts •lnLlr'in 

an incomplete form. Certain limitations on the range t>! the 'ari 'te may 
result in a kind of truncation at one en.! ot the other. ('.,p,j.J, r, fur 
example, Table 6.15, p. 107. In obtaining thPse figures, twd\'e d.c~ w~re 
thrown and the occurrence of a 6 was called a sw ce,.s. Af one tl.rvw tl"·re 
could thus be any number of successes from 0 to 12. The di··e we1e t.!n·L'"' n 
4.096 times." · . ' · · 
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16 

6 

L 
,l_L_LJ_j~=x~=c~~~~ 

0 ~ 3 4 • IS 41 7.1 8 :t 10 II 12 
. Aiuuua valru u.. £100 

Fm. 6.13.-Frequency-dilltribution of the Annual Values of certain Estate~~ 
· in England in 1715; 2476 Es~te11. (Table 8.12.) / · 

Fig. 6.16 gives the frequency-polygon for this distribution. We can 
picture it as a slightly skew di~>tribution which has been cut oft on the left. 
O\\ing to the inadmissibility of negative values of the variate. .Discon· 
tinuous variates not infrequently give rise to this cUect of trl\ncation, . 

.. , . 
Complex Distributions. .· · 

6.25. TaLk 6.16 gives the number of male deaths wit-hin certain age-
. limits for Enf!and and Wales in the years 1030,-82. · . · . . 

The histogram for these data is given in fig. 6.17. I~ will be seen that 
the distribt1tion has three maxima, one for each of the (}--5, the 20-25 and. 
the 70-75 age-groups; · , . . , · · 

Without looking too closely into this mortality· curve .we can see 
that the high frequency at the beginning is undoubtedly due to. the heavy 
infantile death-u.te .. ·We can, if we choose, regard the distribution as 
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Fm. 6.14.-An Ideal Distribution of the U-shaped Form. 
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Clcu.di.ness 
F1c. 6.15.-Cloud.ine~~~t at Greenwich in July; 1715 Observations. (Table 6.U.) 
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T.u~ 6.12.-Showing the Numbera and Annual Values of Uie Esf.ates of thoJ who had 

takefl pari in the Jacobite Rising of 1715. (Compiled from Cosin's "Names of the 
· Romatt Catholic$, Nonjuror1, and other1 who RefU8ed 19 lake Uie Oaths to his late 

Majesty King George, etc."; London, 1 7-i5. Figures of very doubtful absolute value; 
St-e a note in Southey's "Commonplace Book," vol. 1, p.· 573, quoted from the 

· Memoin pf T. Hollis.) (See fig. 6.13.) 

.· 
Annual Number of Annual Number of 

Value in Estates. Value in Estates. 
£100. £100. . •, 

0- 1 . 1726·5 .17-18 1 
1-2 280. - -
2-3 140·5 20-21 4 
3-4 87 21-22 1 
4-5 46·5 22-237. - 1 . 
5-6 42·5 23-24 1 
6- 7. - 29·5 .- - -
7-8 25·5 27-28 2 
8-9 18·5 .. - -
9-10 21 31-32 1 

10-11 11·5 - - •. 

11-12 9·5 39-40 1 
.. 

12-13 4 - -
13-14 3·5 ,45-46 1 

\ 14-15 8 - -
'15-16 3 . 48-49 1 
16-17 5 

~ 

Total 2476 

made up by the superposition of three. others : a J-shaped distribution 
for the lower xears, a small one-humped distribution with its ·maximum 
about the period· ;l0-~5 years, and a skew distribution for the higher 
ages. This is an example of the fact we have already mentioned,. that 
a complex distribution can sometimes be analysed into simpler types. 
In this particular case the analysis is likely to be of real service in actuarial 
work and in inv~stigations into the causes of death. 

6.26. Finally, we give an example of a pseudo-frequency-distribution 
of a type occasionally resorted to when the data can be classified according 
to a characteristic which, though not strictly speaking measurable, can 
nevertheless be graduated in an ordei~ed sequence. Such a case arises 
fairly often in psychological work. . . . · . · ·. 

A list of 100 words was read out to each of 11 subjects. Subsequently, 
at 15-minute intervals, four fresh lists were read out which contained 25 
of the words in the original and 25 new words, the four taken together 
accounting for the whole of the original 100. The subject had to say 
whether these individual words were in the original list or not, and to 
state whether he was certain, fairly sure, doubtful but inclined one way 
or the other, or merely doubtful. • The various phases of. belief were 
then allotted numbers, and ran from -8 (certainty that a ~~rd was not 
in the original) through 0 (doubt, without inclination one way or the other) 
to + 8 (certainty that a word was in the original). The tabulation on p. 108 
sets out the results for words in the· original list (data reproduced by 
permission from the records of the Department of P~ychology, University 
of St Andrews). . ,· . 
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TABU·: 6.13.-ChryRomelid.e (b~etles). Numbers of Genera tdlh 1, 2, 3, .•. SptriP!I. 
(Compiled hy Dr .J. C. Willis, F.R.S.; cited from G. U. Yule, •• A 1\lathematkal 
Theory of Evolution based on the _Conclusions of Dr J. -C. Willis," Phil. Trans., 
B, vol. 213, 1924, p. 85.) · 

I 
Species. Genera.. Species. Genera. 8p<'Cie11. <knera. 

1 215 32 1 • 74 1 
2 90 33 1 76 1 
3 38 34 1 77 1 
4 35 35 1 79 1 
5 21 . 36 3 83 1 
6 16 37 1 84 3 
7 15 38 1 87 2 
8 14 39 z 89 1 
9 5 40 - 2 92 .2 

10 15 41 1 93 1 
11 8 43 4 110 1 
12 9 « 1 114. 1 
13 5 45 l 115 1 
14 6 46 1 128 1 

. 15 
' 8 49 2 132 1 

16 6 50 4 133 1 
17 6 52 1 146 1 
18 3 53 1 163 1 
19 4 56 1 196 1 
20 3 58 1 217 1 
21 4 59 1 227 1 
22 4 62 1 264 1 
23 5 63 3 327 1 
24 4 65 1 399 1 
25 2 66 1 417 1 
26 3 67 1 681 1 
27 1 69 1 
28 ·a 71 1 
29 3 72 I Total· 62~ 

I 30 3 73 1 

TABLE 6.14.~howing the Frequencies of Estimated Intensities of Cloudiness at Gree1111'ich 
during the l'ears 189fJ'-1901 (excluding 1901) for tM Month of July. (Data from 
Gertrude E. Pearse, Biometrika, vol. 20A, 1928, p. 836.) (See fig. ti.l5.) 

Degrees·of I Frequency.- lJt>grees of Frequeney. Cloudiness. Cloudiness. 

10 676 4 45 
9 148 3 68 
8 90 2 74 
7 65 1 129 
6 55 0 3:!0 
5 45 -

Total 1715 

- -
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TABLE 6.15.-Twelve Dice thrown 4096 Ti111es, a Throw of6 Points reckoned a& a Success 
(Weldon's data; cited by F •. Y. Edgeworth, Encyclopedia Britam1ica, 11th ed., 
vol. 22, p. 39.) (See fig. 6.16.) · 

Number of SucCesses • 

Number of 'throws 

12 

.11~ 
]·8 
'-" . 
~ . 
~ 6 

"o r 
2 

I 
I 
I 
v 

I 

0 

447 

--
I 1 I 3 4 . 5 

1145. 1181 796 380 115 

\ I 

\ -· 

. 
1\· : 

,\ -

f". 
" 

. 

"' l z 3 4 5 6 
Nwnher of tJw:cesses 

6 7 and over Total. 

---.-. 

24 8 4096 

. -· 
-

. 

7 .8 

F10. 6.16.-Frequency J>olygon of Successes witb Dice .Throwing. (Table 6.15.) 
' . 

';l'ABLE 6.16.-Showing the Number of Male Deathl in England and Wales for 1930-32'1 
· claasifietl by .Ages 'nt Death. (Data from Registrar-General's Statistical Review" 

of England and Wales, 1933, Text.) (See fig. 6.17.) . ' 

Age at Death Number of Deaths. Age at Death 
Number of Deaths. (yeara). (years). ; ·.' 

.0- ti 97,290' 55- 60' .56,639 
5-10 11,532 60- 65 68,103 

10-15 '7,305 65-,- 70 80,690 
15-20' 13,062 70- 75 84,041 
20-25 16,741 75- 80 '72,180 
25-30 16;126 80- 85 " 45,094 
30-35 15,673 85- 90 19,913 
35-40 18,345 90- 96 5,145 
40-45 23,778 95-100 767 
45-50 33,158 100 and over 48 
5()...5!; ! ., 43,1H! 

I Total 729,442 
-------------- I 
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Words in the original list were classified as: 
·In Possibly Out. 

either In 
Certain. Fairly Sure. Doubtful. or Out. DoubtfuL Fairly Sure. Certain. 

+3 +2 '+ 1 0 -1 -2 -3 
540 117 63 39 63 87 191 

These results are very curious, and are borne out by other data of a 
similar kind. In particular we see that there were more cases of certainty 
about something which was not true than of doubt without inclination. 

100 

:lso 
~ l60 
't.:.40 
"Q 

~ 
]20 
-~ 

FIG. 6.17.-Histogram of Number of Deaths at Various Ages. (Table 6.16.) 

JCO 

In this example we are clearly making _some assumption in allotting 
numbers to various degrees of belief i but it would be impossible to 
measure belief on a scale, and we have to do the best we can. The numbers 
attached to the variate in such cases are not measures, but convenient 
ordinals, ·like the numbers attached to kings of the same name. For 
this reason a frequency diagram of such data can only give a very general 
idea of their true nature. 

SU:l\IMARY. 

1. Data in which the individuals are specified by the numerical values 
of a variable, or variate, may with convenience be arranged in a table 
which gives the frequency lying within successive, preferably equal, ranges 
of the variable. Such an arrangement is called a frequency-distribution. 

2. The frequency-distribution can be represented diagran.nw.tically by 
means of a frequency-polygon or a histogram. . 

3. The. histogram is particularly appropriate to c:~-;cs in which the 
frequency changes rapidly or the class-intervals· are r.ot all uf the same 
width. 

4. As the width of the class-intervals bcconws ~ll;aller, tLr• frequency
polygon or the histogram may be imagined to <~i•l'l'h:1dt a ""1ooth curve, 
whi'ch is called the frequency-curve. -
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5. A large number of frequency distributions occurring in ~ractice 
fall into four types : the symmetrical, the moderately asymmetrical or 
skew, the extremely asymmetrical or .J-shaped and the U-shaped types. 
Certain other distributions can be analysed into constituents each of 
which belongs to one of these type~. · 

EXERCISES. 

6,1. u the diagram fig. 6.6 is redrawn to scales of 300 observations per interval 
to the inch and 4. inches of stature to the inch, what is the scale of observations 
to the square inch? · 

U the scales are 100 observations per interval to the centimetre and 2 inches 
of stature to the centimetre, what is the scale of observations to the square 
centimetre? . . 

6.2. If fig. 6.10 is redrawn to scales of 900 days to the inch and ot3 inch of 
bar:ometric "height to the inch, what is the scale of observations to the square. 
inch'/ · · . 

If the sca!t:s are 400 dayli to. the centimetre and 0·1 inch of barometric height 
to the centilhetre, what is the scale of observations to the square centimetre 'I 

6.3. If a (requency-polygon be drawn to represent the data of Table 6.1, 
what number of observations will the polygon show between bidh-rates of 16·5 
and 17 ·5 per thousand, instead of the true number 89 'I . · 

· 6.4. If a frequency-polygon be drawn to represent the data of Table 6.6, 
what number of observations will the polygon show between head-breadths 
5·1}5 and 6·05, instead of the true nwnber 236 'I ~ 

6.5. Draw frequency-polygons or histograms, as the case seems to require, 
for the following distributions, and assi1,rn them to the four types we have 
enwnerated in 6.18 :- -

(a) Siae of Firms in 1M Food, Drirtk and Tobacco Trades of Great Britain. (Final Report 
of the Fourth Census of Production, 1930, Part III.) The following table shows 
the nwn~r of firms employing on an average certain numbers of persons~ 

.. 

Size of Firm (Aver- 11-24,25-49150-99 100-
' 

200- 300- 400- 500- 750- 1000- . 1500 Total 
age Numbers Em- . . • 199 299 399 499 749 999 1499 and over 
ployed). I 

Number of Firma.~ 144.9 771 439 164 75 36 54 31 23 29 . 5316 

(b) The Per-centages of Deaf-mutell alfumg Children of Parerils One of whom at le~t was a 
Deaf·mule,fur Marriages produt'i"g Five Children or More. (Compiled from material 
in ''.Marriages of tJ1e Deaf in 4meti(a," ed. E. A. Fay, Volta Bureau, Washington, 
1808.) . . 

---
Percentage Numborof Percentage Number ~f of l'amiliee. of l<'amilit>a. Deaf-mutes. Deaf-mutes. 

-
0-20 220 60- 80 5·6 

2()...40 20·5 80-100 15 
4-0-60 12 

Tot~! 273 
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(c) l'il't.l {}/Grain in paunth fmm Plr>u nf o:l.lh Acre in a n lt~nt Field. (:\tel'{'er anrl 
Hall, "The Expcrimentul Error of f'idd Trials,'' Jaurn. Agr. Scicnu, vol. -&, Ill II. 
p. 107.) 

(d) The Frequencies of Different Number• of Petals for Thrt'e St'riu of RatJUnculu. 
· bulboiiUII. (H. de Vries, Ber. deuuch. bat. Gu., Bd. 12, 189-&, q.o. for detuils.) 

I 
Frequency. 

I 
Number I of Petals. 

I 
I 

Series A; Series B. 
I 

Series C.· 

5 312 3-15 133 
8 "17 2! 55 
7 ! 7 23 
8 2 - 7 
9 2 2 2 

10 - - i 
11 - 2 -
Total I 337 380 22.2 

6.6. A number of perfectly spherical balls, all of the same material, gh·e a 
synunetrical distribution when classified according to their diameters. Show that, 
if they are classified according to their weights, their frequency-distribution will 
be positively skew towards the higher weights. · 

In the light of this result compare the distributions of Table 6.7 with the 
distributions of the table on p. 111. · 

6.7. Toss a coin six times and note the number of heads. Repeat the 
e-,.-perinlent 100 times or mon;, and dr.1w a frequency-polygon of your results 
classified according to the number of heads at ea<:h throw. 

ct.S. Find the fref).uency-distribution of 200 bars of a waltz by Strauss classified 
according ., the number of notes in the treble clef of each bar, and compare it 
with a similar distribution from modern waltzes. 

6.9. Examine qualitatively the effect on the distribution of Table 6.8 of an 
allowance for the fact that minors tend to overstate their age when marrying. 

6.10. The distribution of a herd of cows classified according to the quantity 
of milk produced by each cow per week is symmetrical. The distribution of tl~ 
same herd classified acrording to the amount of butter-fat proJueed by each cow 
per·week is negatively bkew towards the lower quantities. Suggest a possible 
explanation for this fact. · 
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The Frcqurocy-distributiun of Wrights for Adult .\I ales born in Er~glm1d, Scotlmid, Wales and 
Ireland. (Loc. rit., Table 6.7.) Wrights wn-e takn~to the nearestpo1md,consequmtly 
the true Class-inten.•als art 89·5-99·5, 99·5-109·5, de. · 

! I 

i :X umber of ~len within given Limits of 
Weight. Place of Birth-

Weight Total. in lbs. 

England. Scotland. \\rales. Ireland. 

90- 2 - - - 2 
100- 26 1 2 5 3! 
110- 133 8 10 1 -152 
120- 338 22 23 7 390 
130- 69! 63 . 68 42 867 
HO-. 12!0 173 153 57 1623 
150- 1075 255 178 51 1559 
16V: 881 275 

I 
134 36 1326 

I 170- 492 168 102 25 787 

I 1!>0-; 304 125 I 34 13 476 

I 
190- 174 67 

I 
u 8 263 

200- 75 24 7 1 107 
210- 62 14 8 1 85 
220- 33· 7 l - 41 

I 
230- 10 4 2 - 16 
2!0- 9 I 2 - - 11 
2;;0- 3 I 4 1 - 8 

I 
260- 1 - - - 1 
270- - - - - -

I 280~ - - I - 1 

I Total 5552 1212 
i 

I 738 I 2!7 7749 



CHAPTER 7 • 

. AVERAGES AND OTHER MEASURES OF LOCATION. 

The Principal Characteristics of Frequency-distributions. 
7 .I. The condensation of data into a frequency-distribution is a first 

and necessary step in rendering a long series of observations compre
hensible. But for practical purposes it is not enough, particularly when 
we want to compare two or more different series. As a next step we wish 
to be able to define quantitatively the characteristics of a frequency
distribution in as few numbers as possible. 

7 .2. It might seem at first sight that very difficult cases of comparison 
of two distributions could arise in which, for .example, we had to contrast 
a symmetrical distribution with a J-shaped distribution. In practice, 
however, we rarely have to deal with such a case. Distributions drawn 
from similar material are usually of similar form-as, for instance, when 
we wish to compare the distributions of stature in two races of man, or 
the birth-rates in English registration districts in two successive dec.ades, 
or the numbers of wealthy people· in two different countries. The practical 
use of the various statistical quantities which we' shall discuss in this 
and the next two chapters is based on this fact. 

7.3. There are two fundamental characteristics in which similar 
frequency-distributions may differ : 

(I} They may differ markedly in position, i.e. in the value of the 
variate round which they centre, as in fig. 7.1, A. 

(2) They may differ in the extent to which the observations are dis
persed about the central value. Figs. 7.1, B and C, show cases in which 
distributions differ in dispersion only, and in both dispersion and position, 
respectively. 

· To these two characteristics we may add a third group of less import
ance, comprising differences in skewness, peakedness, and so on. 

Measures of the first character, i.e. position or location, are generally 
known as averages. l\leasures of the second are termed measures of 
dispersion. Measures of the properties in the third group have each 
their appropriate name, which we shall give when we c•)me to consider 
them in detail. • 

The present chapter -deals only with averages. Chapter 8 deals with 
measures of dispersion, whilst Chapter 9 deals with the remaining 
quantities. 

Dimensions of an Average. 
- 7.4. In whatever way an average is defined, it may be as well to 

note it is merely a certain value of the variable, and is therefore neces
sarily of the same dimen.siuns as the variable: i.e. if the variable be a 

-112 
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length. its average is a length ; ifthe variable be a percen~age, its avrrage 
is a percentage ; and so on. . ~ut there are sever~ ~tffe~ent wa'ys ?f 
approximately defi~ng the posttlo~ of a frequen~y-distrtbuhon-that 1s, 

• 
0 

. J 
I 

0 

A 

• 

c• .. 

I· 

FIG. 7.1. 

there are several differmt forms of average, and the question therefore 
arises, By what criteria are we to judge the relative merits. of different 
forms? What are, in fact, the desirable properties for an average to 
possess'! 

Desiderata for a Satisfactory Average. 
7.5. •(a) In the first place, it almost goes without saying that an 

average should b_e rig!dly_J}efined, and not left to the mere. estimation 
of the observer: An average that was merely estimated would depend 
too largely on the observer as well as the data. 

(b) An average should be Lased on all the observations made. If not, 
it is not really a characteristic ·of the whole distribution. . · 

(c) It is desirable that the average should possess some simple and 
obvious properties to render its general nature readily comprehensible : 
an average should not be of too abstract a mathematical character. 

(d) It is, of course, desirable that. an average should be calculated 
with reasonable ease and rapidity. Other things being equal,- the easier 
calculated is the better of two forms of average. At the same time 
great weight must not be attached to mere ease of. calculation, to the 
neglect of other factors. · · ·. · 

(e) It is desirable that the average should be a8 little affected as may 
be possible by what we have termed fluctuations of sampling. If different 
samples be drawn froin the same material, however carefully they may 
be taken, the averages of the different samples will rarely be quite the 
same, but one form of average may show much greater differences than 
another. Of the two forms, the more stable is the better. ·The full 
discussion of this condition must, however, be postponed to a later section 
of this l\'ork (Chap. 20). . · . 

8' 
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(f) Finally, by far the most important dcsiJeratum is this, that tlw 
measure chosen shall lend itself readily to algebrairal trratment. If, 

, e.g., two or more ~>eries of observations on similar material are given, 
; the average of the combined series should be readily expressed in terms 
of the averages of the component series; if a variable may be expressed 
as the sum of two or more others, the average of the whole should be 
readily expressed in terms of the averages of its parts. A measure for 
which simple relations of tlus kind cannot be readily detP.mined is likely 
to prove of somewhat limited application. -

7.6. There are three forms of average in common use, the arithmetic 
mean, the median and the mode, the first named being by far the 
most widely used in general statistical work. To these may be added 
the geometric· mean and th~ harmonic mean, more rarely used, but 
of service in special cases. We will consider these in the order named. 

The Arithmetic Mean. 
• 7.7. The arithmetic mean of a series of v.alues of a varlablr 

JX1; X 2, X 3, ••• Xa, N in number, is the quotient of the sum of the"' 
values by their number. That is to say, if .u be the arithmetic mean, 

. 1 . 
M ~N(X1 +X1 +X3 + ... +Xa) 

-The arithmetic mean is also denoted by placing a bar over the variate 
symbol, so that we may also write: 

- 1 -
X=N(X1 +X11 + ... +Xa) 

To express these formula! more briefly by the use of the summation 
symbolS, 

- 1 
_X.= .. U = NS(X) (7.1) 

The word mean or average alone, without qualification, is very generally 
used to denote this particular form of average; that is to say, when anyone 
speaks of" the mean " or " the average " of a series of observations, it may, 
as a rule, be assumed that the arithmetic mean is meant. 

7 .8. It is evident that the arithmetic mean fulfils the conditions laid 
I [ down in (a) and. (b) of 7 .5, for it is rigidly defined and based on all the 

observations made. Further, it fulfils condition (c), for its general nature 
is readily comprehensible. · If the wages-bill for N workmen is £P, the 
arithmetic mean wage, PJN pounds, is the amount that each would 
receive if the whole sum available were divided equally between them: 
conversely, if we are told that the mean wage is £..11, we know this means 
that the wages-bill is Nlll pounds. Sinularly, if N families possess a total 
of C children, the mean number of children per family is CJN-the number 
that each family would possess if the children were shared uniformly . 
.Conversely, if the mean number of children per family is J/, the total 
number of children inN families is NM. ~~'l'he arithmetic mean expresses, 

- in fact, a simple relation between the whole and its parts. 
The mean is also satisfactory as regards conditions (e) and (j), but we 

shall have to defer proof of this statement for the present. 
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Calculation of the Arithmetic 1\lean. 

115-~' 
J 

7.9. As regards condition (d), simplicity of calculation, the mean takes . 
a high place. In the cases just cited, it will be noted that the mean is 
actually determined without even the necessity of determining or noting 

. all the individual values of the variable: to get the mean wage we need not 
~ know the wages of eyery hand, but only the wages-bill; to get the mean · 
' number of children per family we. need not know the number in each 

family, but only the total. If this total is not given~ but we have to deal 
with a moderate number of observations-so few (say 30 or 40) that it is 
hardly worth while compiling the frequency-distribution-the arithmetic 
mean is calculated directly as suggested by the definition, i.e. all the values 
observed are added together and the total dhided by the number of 
observations. · . · · 
,p 7.10 •. But if the number of observations be large, the process of· 

{adding together all the values of the variate may be prohibitively lengthy . 
. It may be shortened considerably by forming the frequency-table and treat
ing all the vdlues in each class as if they were identieaLwith the mid-value 

_-of the class-jnterval, a process which in general gives an approxima- , 
tion that is quite sufficiently exact- for practical purposes if the class
interval has been taken moderately small. In this process each class
frequency is multiplied by the mid-value of the interval, the products 
added together, and the total divided by the number of observations. If 
f denote the frequency of any class, X the mid-value of the corresponding 
class-interval, the value of the mean so obtained may be written : · 

~~ 
,..~ (7.2) 

. 
7 .11. But this procedure is still further abbreviated in practice by 

the following artifices : (I) The class-interval is treated as the unit of 
measurement throughout the arithmetic ; (2) the difference between the 
mean and the mid-value of some arbitrarily chosen class-interval is com· 
puted instead of the absolute-value of the mean. · ..,_ 5 ..... 

If A be the arbitrarily chosen value and '\ \ '\. "'• 8' 
X=-A+l . · ~ ' (7.3) 

then 
S(JX) =S(JA) +S(fl) 

or, &ince A is a constant, 

(7.4) 

The calculation of S(JX) is therefore replaced by .the calculation of 
· S(jg~ • . The advanta~e of this is that the class-fr~quencies need only be 
mulhphed by small mtegral numbers: for A bemg the mid-value of a 
class-interval, and X the mid-value of another, and the class-interval being 
treated as_a unit, ~h~ fs must be a series of integers proceeding from zero 
at the arb1trary or1gm A. To keep the values oft as small as possible A 
!ihould be chosen ncar the middle of the range. ' 

1 1 . 
It may be mentioned here that NS(£), or NS(JO for the grouped 
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distribution, is sometimes termed the first moment of the distribution I 
about the arbitrary origin" A . 

. Example 7.1.-As an example, let us find the arithmetic mean of the 
heights in the distribution of Table 6.7. In this case the class-interval is 
a unit (1 inch), so the value of 1U- A is given directly by dividing S(jg) 
by N. The stude.6.t must notice that, measures having been made to the 
nearest eighth of an inch, the mid-values of the intervals are 57y1,, 58l~r. 
etc., and not 57·5, 58·5, etc. 

CALCULATION oF THE MEAN: Calculation of the Arithmetic Mean Stature of .Male 
Adults in the British lslu from the Figuru of Table 6.7, p. 91. 

(1) (2) (3) (4) 

Deviation 
. Height, Frequency from Arbitrary Product 

Inch ea. J. Value A A 
< 

(. ------
57- t -10 20 
58- ' - 9 38 
59- u - .8 112 
60r- 41 - 7 287 
61- 83 --6 498 
62- 169 - 5 845 
63- 394 - i 1576 
64- 669 - 3 2007 
65-. 990 - I 198() 
66-- 1223. - 1 1223 . ----
6~-,. 132~ -o~ -8584 

6s! 123() + 1 1230 
6~ 1063 + 2". 2126 
70- 646 + 3 1938 
71- 892 + 4 1568 
72- 202 + 5 1010 
73- 79 + 6 4H 
74- 32 + 7 224 
75- 16 + 8 128 
76- 5 + 9 45 
77- 2 +1~- 20 

-----
I 

--
Total 8585 I - +8763 .. 
S(/.;) = + 8763 - 8584 = + 179 
~ 179 I • I • h . _ lU -A=+ 

8585 
= +0·02 c ass-mterva s or me ea • 

• :. M=67N+0·02=67·46 inches. 
:;:J • . • • 

7.12. · As calculations of the mean constantly have to be made, the 
student should familiarise himself with the process we have just illustrated, 
and note that a check can always be effected on the arithmetic in the 
following way :~ · 

Since f (! + ~) = f~ + f 
S{f(~ + l)}=.S(fg}+S(f) l 
S{f(!"+ I)} -S(f0 =S(f) 

=Total frequency 
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Hence, if we tabulate the values ofJU + 1) as well as those ofjg and fh~d their 
totals, the difference must, if the arithmetic is c6rrect, be equal to the totar . 
frequency. . . · 

7.13. It will be evident that a classification by unequal.intervals is, 
at best, a hindrance in the calculation of the mean, and the use of an 
indefinite interval at the end of the distribution renders exact calculation 
impossible. The following example illustrates the calculation for une~aJ 
cl~ and the arithmetical check to which we have just referred:- . 

E.xample .7.2.-Data from Table 6.11, page 100. What is the average 
age at death from scarlet fever ? , · 

Here there is a change of the class-interval at the five-year point. .We 
take a year to be the unit, and the centre of the interval5-10 years as an 
arbitrary. origin, which means that A =7·5.years. · 

}. 

CAJC'l'LATION ow THE 1\IEAN: Calculation of the Arithmetic J.Uean Age of Persons Dying 
fro11& Scarlet Ftver in the United Kingdom in 1933 (Table 6.11, p. 100) · 

• .fj._ . AJP, Frequency, Deviation from ..4, 
Yeam. f. E· J~. 

• 
o- 16 -7 - 112 
1- 69 -6 - 414 
%- 89 -5' ~ 445 
3-- ,' •, '74 -4 - 296 
4- 't.~ H -3 - 222 

5-' 'ft .213 0 .-1489 - . 
r 

. < 
1C}- '70 5 1 . 350' 
15-- 27 10 . 270 
2C}- 26 15 390 
25-- 17 20 340 
3o- 12 25 300 
35-- 11 30 330 
40- 10 35 350 
45-- 6 . 40 240 
so- '7 45 315 
65- 5 50 250 
6C}- ,_ 55 -65-- 1. 60 60 
7G- 1 65 65 
71)-. 1 70 70 • 

Total 729 - +3330 

Hence, 

and 
. S(Je) =3330 -1489 = 1841 -S{J(~ + 1)} ,=8787 -1167 =2570 

and the di.!lerence 2570 -1841 =729, as it should. 
Hence, 

. 1841 . • 
M -A= 

729 
=2·525 years . and 

lU = 7·5 + 2·525 = 10·025 years 

/(~+1) • 
.. 

- 96 
- 345 
- 356 
- 222 
- 148 

i 

-1167 

213 
420. 
297 
416 
357 
312 
341 
360 
246 
322' 
255 -' 61 
66 
71 

. +3737' 

. ·;.·. 
• I 
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7.14 •. Werctum again below, in 7.16 (c), to the question of the t>rrors 
caused by the assumption that all values within the same interval may be 
treated as approximately the mid-value of the interval. '-It is sufficient to"" 
say here that the error is in _g~.Peral very small and n.f. uncertain sign for a 
distribution of the symmetrical or only moderately asymmetrical type, 
provided, of course, the (!lass-i.n.t£!y_!t) is not large. In the case of the 
•• J-shaped " or extremely asymmetricaT distribution, however, the error is 
evidently of definite sign, for in all the intervals the frequency is piled up 
at the limit lying towards the greatest frequency, i.e. the lower end of the 
range in the case of the illustrations given in Chapter 6, and is not evenly 
distributed over the interval. In distributions of such a type the intervals 
must be made very small indeed to secure an approximately accurate value 
for the mean. The student should test for himself the effect of different 
groupings in two or three different cases, so as to get some idea of the degree 
of inaccuracy to be expected. · · 

7.15. If a diagram has been drawn representing the frequency
distribution, the posit~on of the mean may conveniently be indicated by a 

\ 

MoMi-M 

FIG. 7.2.-1\lean M, Median Mi and Mode Mo of the Ideal Moderately 
Asymmetrical Distribution. 

vertical through the corresponding point on the base. In a moderately 
asymmetrical distribution the m~i~s_on_th~-~~~-of the greatest frequency 
towa.rdg...the longer ·~tail" of fhe distribution: 11Firi fig. 7.2 shows the· 
position of theniean in an ideal distribution. In a symmetrical distribu
tion the mean coincides with the centre of symmetry. \..:l'he student should 
mark the position of the mean in the diagram of every frequency-dis
tribution that he draws, and so accustom himself to thinking of the mean 
not as an abstraction, but always in relation to the frequency-distribution 
of the variable concerned. 

Properties of the Arithmetic Mean. 
'1.16. The following are important properties of the _arithmetic mean, 

and the examples illustrate the facility of its algebraic treatment :- j 

(a) The sum of the deviations from the mean, taken with their proper 
signs, is zero. . 

This follows at once from equation (7.4): for if .. u: and A are identical, 
evidently S(ff) must be zero. 
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-- .(b) If~ seri~s of N'ob~rvations of a variable X consist. of, 4~Y; two 
component series, the mean of the whole series can be readily expressed 
in terms of the means of the two components. For if we denote the values 
in the first series by X1 and in the second series by X 2,. · 

~(X) ..:S(X1) +S(X1) · : 

that is. if there be N 1 ob~€'rvations in the first series and N 1.in the second, 
and the means of the two series bt;: M 1, M 1, respectively, ~ · 

NM=NJ~U1 +N~fi . ·' ••• ·. 't. 

For example, we find from the _data of Table 6.7, · 
. . 

Mean stature of the 346 men born in Ireland =67·78 inches 
.... , , 741 ., , Wales =66·62 ,, .. 

Hence the '!lean stature of the 1087 men born in the t~o co~ntrles.is given 
by the eq1liotion . . · . . . . . 

• 10&7 M = {346 x 67·78) + (7 .n x 66·62) 
'· 

that is, M = 66·99 inches. 
It is evident that the form of the relation (7.5) is quite general:· 

if there are r 'series of observations X 1, ·x" ... X.., the mean M of the· 
whole series is related to th~ means M1, J/1, ••• ·Mr of the component 
series by the elluation · 

. • (7.6)_ 
. . 

For the convenient checking of arithmetic, it is useful to note that, if the 
same arbitrary origin ..4 for the deviations t be taken in each case, we must· 
have, denoting the component • series by the subscripts 1, 2_, , , : r as 
before, . · . · . · 

S(/l) =SUitt) +S(f.ta) + •.. +S(J~[r) • (7.7) 

The agreement of these totals accordingly checks. the work. . . 
As an important corollary to the general relation (7.6), it may be noted 

• that the approximate value for the mean obtained from any.frequency· 
diatribution is the 11ame ·whether we assume (1) that all th~ values in any 
class are identical with the mid-value of the class-interval; or (2) that the 

. mean of the values in the class is identical with the mid-value of the class··: 
interval. · · . . · . . . 

· (r) The mean of a.ll the sums or differences of corresponding observa· 
tions in two series (of equal numbers of observations) is equal to the sum 
or difference of the means of the two series, ,· 1

' : 

This folJ.,ws1most at once. For if 

1
' X=X1 ±X1 

S(X) = S(X1 ) ± S(X1) 

T·l,:J.t i~, !f i/, .\;10 M1 be the respective means, · 

Al-M1 ±.M1 • (7.8) 
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Evidently the form of this result is again quite general, so that if 

X =X1 ±Xa.± .•• ±Xr 
M=M1 ±1111 ± ... ±lllr (7.9) 

As a useful illustration of equation (7.8), consider the case of measurements 
of any kind that are subject (as indeed all measures must be) to greater or 
less errors. The actual measurement X in any· such case is the algebraic 
sum of the true measurement X 1 and an error X a- The mean of the actual 
measurements 111 is therefore the sum of the true mean ..~.U1, and the 
~~orithmetic mean of the errors 1111• If, and only if, the latter be zero, will 
the observed mean be identical with the true mean. Errors of grouping 
(7.14) are a case in point. 

The Median. 
·I 7.17. ·The median may be defined as the middlemost or central value 
'of the \'ariable when the values are ranged in order of magnitude, or as the 
value such that greater and smaller values occur with equal frequency. In 
the case of a frequency-curve,(!;he median may be defined as that value of 
the variable the vertical through which divides the area of the curve into 

.:.~~·o equal parts, as ~he vertical through llli in fig. 7.2) · 
The median, like the .mean, fulfils the conditions (b) and (c) of 7 .5, 

seeing that it is. based on all the observatio,ns made, and that it possesses 
the simple property of being the central or middlemost value, so that its 
nature is obvious. 

7.18. 'But the definition does not necessarily lead in all cases to a 
determinate value.. If there be an odd number of different values of X 
observed, say 2n +I, the ( n +I )th in order of magnitude is the only value 
fulfilling the definition. But if there be an even number, say 2n different 
values, any value between the nth and (n + I)th fulfils the conditions. In 
such a case it appears to be usual to take t.be mean of the nth and (n +I )th 
values as the median, but this is a convention supplementary to the 
definition. 

7.19. It should also be noted that in the "case of a discontinuous 
variable the second form of the definition in general breaks down : if we 
range the values in order there is always a middlemost value (provided the 
number of observations be.odd), but there is not, as a rule, any value such 
that greater and less values occur with equal frequency. Thus, in Table 
6.2 we see that 45 per cent. of the poppy capsules had I2 or fewer stigmatic 
rays, 55 per cent. had IS or more ; similarly, 6I per cent. had I8 or fev•f'r 
mys, 39 per cent. had I4 or more. There is no number of rn.ys s:wh tL..t 
the frequencies in excess and defect are equal. In theca$·~ of thf' L.Jttn
cups of Exercise 6.5 (d), page no, there is no number of petal~ that e\·en 
remotely fulfils the required condition. An analogous diffit·ulty Dl:l)' ari,c, 
it may be remarked, even in the case of an odd number of obst'n·atiu:1-; of 'I 

continuous variable if the number of observations be smallund se\· n.l cf 
the observed values identical. 
~--The median is therefore a form of average of most uncertnin rnt ru11•:;~ i11 
cases of strictly discontinuous variation, for it may be exec·t'dd by 5, i 0, 
I5 or 20 per cent. only of the observed values, instead of by 5ll per <'-I•t. ; 
its use in such cases is to be deprecated, and is perhaps be>t ~>Yo~de lin a'ly 
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case, wll\.>ther the variation b.:: r.ontinuous or discontinuo~s, in whifh small 
series of observations have to be dt:aJt with. • 

Deter~ination of the Median. 
7.20. \\nen all the values of the variate are given and the total 

frequency is small, the median· can be determined by inspection as the 
middlemost value or, if there is no such value, as the mean of the two 
middlemost values. When the distribution is given as a frequency-dis- f 
tribution, however, a certain amount of approximation is necessary, as in , . 
the ease of the calculation of the mean. . 

For the frequency-distribution of a continuous variable a sufficiently 
approximate value of the median can be obtained by interpolation, If 
the total frequency is large it is sufficient to assume that the values in each 
class are uniformly distributed throughout the interval. ' 
- E:ramp.le 7.3.-Lct us determine the median of the distribution whose 
mean we found in Example 7.1. The work may be ii).dicated t~u~: 

H~ff the total number of observations (8585) =4292·5 
Total frequency under 66lf inches ' : . =3589 . 
Difference . . • 
Frequency in next interval 

Hence we take the median to be : 
703·5 . 

66H+ 1329 xi 

=67·47 inches 

= 703·5 
=1329 

The difference between the median and mean in this case is therefore 
only about oneihundrcdth of an inch. 

Example 7.4.-To find the median of the distribution of Example 7.2. 

Half the total number of observatim1s = 364·5 
Total frequency under 5 years =822 

Difference . 
Freque.ncy in next interval 

lienee we take the median to be ; ~ · 

. 42·5 
5 + 213 X 5 

=6 .. years ·. 

= 42·5 
=213 

Here the median is very far from coinciding with the mean. 

· Graphical Determination of the Median~ · 
7.21. Graphical interpolation may, if desired, be. substituted for I 

arithmetical interpolation. Taking the figures of Example 7.1, we see 
that the number of. men with height less than 65ft is 2366, less than 
66U is 3589, tess than 67U is 4918, and less than 68U is 6148. 

Plot the numbers of men with height not exceeding each value of X . ,. 
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lo ~he corresponding value of X on squared paper, to a good large scalt'. ~ 
as m ~g. 7.3,. and dra_w a smooth curve through the points t.laus ohtainetl;. 
preferablr w1th the md of orle of the " curves," splines or flexible curves· 
sold by mstrument-makers for the purpose. The point at which the 
smooth curve so obtained cuts the horizontal line corresponding to a 

. 

/ 

. / 1-Y 

429Z·5 I 
' I 

I 
' / v • 

15 66IS Ml- 67ji .68f1 
Height (i.Ju:lzes) 

FIG. 'f.S.-Detcrmination of the Median by Gmphical Interpolation. 

total frequency N /2 = 4292·5 gives the median. In general the curve is 
so Jlat that the value obtained by this graphical method does not differ 
appreciably from that calculated arithmetically (the arithmetical proee~s 
assuming that the curve is a straight line between the points on either 
side of the median); if the curvature is considerable, the graphical value 
-assuming, of course, careful and accurate draughtsmanship-is to be 
preferred to the arithmetical value, as it does not im olve the crude 
assumption that the frequency is u.nif()rmly dh;tributed over the interval 
in which the median lies. · 

-comparison of the Mean and the Median. 
7.22. If we adopt the convention that the median of an even number 

of observations ii midway between the two central values, both the 
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~ean and the median satisfy.the first three of the desiderata we enumerated. 
in 7.5 i that is to say, they .are rigidly defined, based on all the 

1
observa-{ 

tions, and are readily comprehensible. · In the remaining three, however, 
they differ considerably. · · - · 

7.23. As regards ease of calculation, the median has distinct advan-
tages over the mean. · · . 

Whether the stability of the median under fluctuations of sampling ( 
is greater than that of the mean depends to- some extent on the 
form of the distribution which is being sampled._ In general, the mean · 
is the more stable, but cases occur in which the median is preferable 
(cf. 7.24 (d) below, and Chap. 20). · · · . 

When, however, the ease of algebraical treatment of the two. forms 
of average is compared,. the superiority lies wholly on the side o£ the mean. 
As was shown in 7.16,twhen several series of observations are combined 
into ~ single series, the mean of the resultant distribution can be simply 
expreSsed· in terms of the means. of the components.~ .. Expression of .. 
the median. of the resultant distribution ·in terms of the medians of the 
components is, however, not merely complex and difficult, but usually 
impossible :; the value of the resultant median depends on the forms of the 
component 'distributions, and not on their medians alone.) If. two. sym
metrical distributions of the same form and with the same numbers of. 
observations, but with different medians, be combined, the resultant median 
must evidently (from symmetry) coincide with the resultant mean, i.e. lie 
half-way between. the means of the components. But if the two com
ponents be asymmetrical, or (whatever their form) if the degrees of. 
dispersion or numbers of observations in the two series be different, the 
resultant median. will not coincide with the resultant mean, nor with 
any other simply assignable value. It is impossible, therefore, to give 
any theorem for medians analogous to equations (7.5) and (7.6) for 
means. It is equally impossible to give any theorem analogous to 
equations (7.8) and (7.9) of 7.16. ·(The median of- the sum or difference 
of pairs of corresponding observations in two series is not, in general, 
equal to the sum or difference of the medians of the two series }. "'the 
median value of a measurement subject to error is not necessarily identical 
with the tru(! median, even if the median error be zero, i.e. if positive 
and negative errors be equally frequent.) · 
. 7 .24. These limitations render the applications of the median· in 

any work in which theoretical considerations are necessary comparatively 
circumscribed. On the other hand, the median may have an advantage 
over the mean for special reasons. · · 

(a) It is very readily calculated; a factor to which, however, as 
already stated, too much weight ought not to be attached. 

(b) It is readily obtained, without the necessity of measuring all the 
?bjects to be obs~rved, in any c~e in which the objects can be arranged 
ln order of magrutude. If, for mstance, a number of men be ranked in 
order of stature, the stature of the middlemost is the median, and he . 
alone need be n1easured. (On the other hand, it is useless in the cases 
cited at the end of 7.8; the median wage cannot be found from the 
total of the wages-bill, and the total of the wages-bill is not known when 
the median is given.) • 

(c) It is sometimes useful as a· makeshift, when the observations are 
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so given that the calculation of the mean is impossible, O\\ing, e.g., to a 
final indefinite class. 

: (d) The median 11U1Y sometimes be preferable to the mean, owing to 
\its being less affected by abnormally large or small values of the variable. 
The stature of a giant would have no more influence on the median" 
stature of a number of men than the stature of any other man whose 
height is only just greater than the median. U a number of men enjoy 
incomes closely clustering round a median of £500 a year, the median 
"ill be no more affected by the addition to the group of a man with an 
income of £50,000 than by the addition of a man \\ith an income of £5000, 
or e\·en £600. U observations of any kind are liable to present occasional 
greally outlying values of this sort (whether real, or due to errors or 
blunders), the median will be more stable and less affected by fluctuations 
of sampling than the arithmetic mean ( cf. Chap. 20 ). 

(e) It may be added that the median is, in a certain sense, a particu
larly real and natural form of average, for the object or individuat that.., 
is the median object or individual on any one system of measuring the 
character with which we are concerned Will remain the median on any 
other method of measurement which leaves the objects in the same relative 
order.· Thus a batch of eggs representing eggs of the median price, 
when prices are reckoned at so much per dozen, will remain a batch 
representing the median price when prices are reckoned at so many eggs 
to the shilling. · 

The Mode. 
7 .25. The mode is the value of the variable corresponding to the 

maximum of the ideal curve which gives the closest possible fit to the 
actual distribution. It represents the value which is most frequent or 
typical, the value which is, in fact, the fashion (la mode).l The mode 
is sometimes denoted by writing the sign ..... over the variate symbol, e.g. 
X means the mode of the values Xi, x .. .. ~ Xa. 

There is evidently something anticipatory about this definition, for 
we have not yet defined what we mean by "closest possible fit." For 
the present the student must content himself with intuitive .ideas on this 
head. Nor have we given a method of finding the cur\·e of closest fit, 
which would be a necessary preliminary to ascertaining the mode. 

7.26. It is, in fact, difficult to determine the mode for such distribu
tions as arise in practice, particularly by elementary methods. It is no 
use giving merely the mid-value of the class-interval into which the 
greatest frequency falls, for-this is entirely dependent on the choice of 
the scale of class-intervals. · It is no use making the class-intenals very 
small to avoid error on that account, for the class-frequencies \\ill then 
become small and the distribution irregular. . What we want to arrive 
at is the mid-value of the interval for which the frequency would be a 
maximum, if the intervals could be made indefinitely small, and at the 
same time the number of obsen•ations be so increased that the class-

• Unless we titate expressly to 'the contrary, "·e shall be thinking of Bi~le-humped 
distributiona in talking of .. the" mode. When the distribution is of the complicated 

· form of fig. 6.17 there may be more than one mode.. Such distributions are therefore 
a;ometimes called multimodal The rpean and the median are still unique for such 
~butiona~ · 
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frequencies should run smoothly. As the observations cannQt, in. a 
practical case, be indefinitely increased, it is e\-ident that some' process 
of smoothing out the irregularities that occur in the actual distribution 

. must be adopted, in order to ascertain the approximate value of the mode. 
But there is only one S!lloothing process that is really satisfactory, in so 
far as every observation can be taken into account in the determination, 
and that is the method of fitting an ideal frequency-curve of given equation 
to the actual ·figures. The value of the variable corresponding to the 
maximum of the fitted curve is then taken as the mode, in accordance 
with our definition. The determination of the. mode by thiS:-the only 
strictly satisfactory-method must, however, be left to the more advanced 
student. The methods of curve-fitting which we shall discuss in Chapter 17 
are not _appropriate to the fitting of frequency-curves, but we give an 
approximate method which is of use in certain cases in 24.21. 

Empirical Relation between 1\lean, Median and 1\lode. 
. 7.27. for a .symmetrical distribution, mean, . median and mode 
coincide, ~ will be evident on a little consideration: For other distribu
tions, as a J'ule, they do not. Fig. 7.2 shows the position of the three 
in a moderately skew distribution. ... _ 

There is an approximate relation between mean, median and mode . 
which appears to hold good ~th surprising closeness for moderately 
asymmetrical distributions, approaching the ideal type of fig. 6. 7, and it 
is one that should be home in mind as giving-roughly, at all events
the relative values of these three averages for a great many cases with 
which the student will have to deal. It is expressed by the equation 

Mode =llean -3(lle~ -1\Ie~an) 

That is to say, the median lies one-third of the distance mean to mode 
from the mean towards the mode. 

The follolling table gives the true mode and the mode calculated in 
accordance with the above formula for certain skew distributions of the 
type of fig. 6.10 :-

Compari&,. of 1M A.pprozimali and Tnu :llodu ira tlte Ccue of Five Distribution& of 1M 
HeighT (J/ tM 1Jaronader Jar Daily Obanvatiom a1 1M Statiora& rumaed. (Distributions 
given by Karl J'eanon and Alice Lee, Phil. Tran&., A, voL 190,1897, p •. 423.) 

Station. I Mean. Median. Approxim&ta 
Mode. Trne Mode. 

Soutb&mpton 211•1181 30"000 30•038 30'()39 .. 
Londonderry . 29"8111 211"1115 211"1163 29•1160 
Carmarl.ben . 2>952 211"1174 80•018 30'()13 
Glasgow 29·8~6 29•906 29-946 

. 
2111167 ·-· Dundee ... . 29"870 29•890 291130 2111151 

It will be seen, that the true and approximate values are extremely 
close, except in the case of Dundee and Glasgow, where the divergence 
reaches two-hundredths of an inch. 

7 .28. Summing up the preceding paragraphs, we may say that the 
mean i11 the form of average to use for all general purposes ; it is simply 
calculated, its value is nearly always determinate, its algebraic treatment is 



126 .. THEORY OF STATISTICS. 

particularly easy, and in most cases it is rather less affected than the 
median by errors of sampling. The median is, it is true, somewhat more 
easily calculated from a given frequency-distribution than is the mean; 
it is sometimes a useful makeshift., and in a certain clas~ of cases it is 
more and not less stable than the mean; but its use is undesirable in 
cases of discontinuous variation, its value may be indeterminate, and its 
algebraic treatment is difficult and often impossible. The mode, finally, 

· is a form of average hardly suitable for elementary use,· owing to the 
difficulty of. its determination, but at the same time it represents an 
important value of the variable. The arithmetic mean should invariably 
be employed unless there is some very definite reason for the choice of 
another form of average, and the elementary student will do very well 
if he limits himself to its use. Objection is sometimes taken to the use 
of the mean in the case of asymmetrical frequency-distributions, on the 
ground that the mean is not the mode, and that its value is consequently 
misleading. But .no one in the least degree familiar with the manifold 
forms taken by f;requency-distributions would regard the two as in general 
identical ; and while the importance of the inode is a good reason for 
stating its value in addition to that of the mean, it cannot replace the 
latter. The objection; it may be noted, wollld apply with almost equal 
force to the median, for, as we have seen "(7.27), the difference between 
mode and median is' usually about two-thirds of the difference betwet'll 
mode and mean. 

The Geometric Mean. 
7.29. The geometric mean G of a series of values X 10 X 27 X 30 • • X a 

is defined by the relation 

G=(X1Xt-l'a . •. Xa)111r . (7.10} 

The _definition may also be expressed in terms of logarithms : 

1 
log G = NS(log X) • (7._11) 

: that is to say, the logarithm of the geometric mean of a series of values 
: is the arithmetic mean of their logarithms. · 
· The geometric mean of a given series of quantities is always less than 
their arithmetic mean ; the student will find a proof in most textbooks 
Of algebra, and in ref. (105}. The magnitude of the difference depends 
largely on the amount of dispersion of the variable in proportion to the 
magnitude of the mean (cf. Exercise 8.12, p. 153). It is necessarily 
zero, it should be noticed, if even a single value of X is zero, and it may 
becomeimaginary if negative values occur. 

Calculation of the Geometric Mean. 
7.30. From equation (7.11} it will be evident that the calculation of 

the geometric mean is exactly the same as that of the arithmetic meau, 
except that instead of adding the values of the variable w~ add the 
logarithms of those values. If there are many values we can draw U!) 

a frequency table for the logarithms and proceed as in Examples 7.1 
~d~~ . 
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Properties of the _Geometric Mean. : • I . 
· 7.31. The geometric mean is rigidly defined and takes account of 

all the obsen·ations. It is also fairly easily calculated, though not so 
easily as the arithmetic mean. It has, however, no simple and obvious 

~ properties which render its general nature readily comprehensible. This, 
coupled ·with its rather abstract mathematical character, has prevented 
it from coming into general use as a represeqtative average. . . 

7.32. At the same time, as the following examples show, the geo· 
metric mean possesses some important properties, ~nd is readily treated 
algebraically in certain cases. 

(a) If the series of obsen·ations X consist of r component series, there 
being N 1 observations in tP,e first, N 1 in the second, a.nd so on, the geo
metric mean G of the whole series can be readily expressed in terms of 
the geometric means G1, G2, etc., of the comwnent series. For evidently 
we have at.once (as in 7.16 (b)): 

· .\1ogG=N1logG1 +NJogG1 + ••• +NrlogGr. . (7.12) 
. . . 

(b) The t;eometric mean of the ratios of corresponding observations 
in two series !s equal to the ~atio of their geometric means. For if 

X""X1/X1 
log X :=log X 1 -log X 8 

then summing for all pairs of X 1's and X 1's: 

G=GJG1 • • (7.13) 

(c) Similarly, if a variable X is given as the pr~uct of any number of 
others, i.e. if 

X =X1X .... ¥ 1 ••• · Xr 

X 1, Xtt ••• Xr denoting corresponding observations in r different series, 
the geometric mean G of X is expressed in terms of ·the geometric means 
G1, Gtt Gr of X 1, Xtt •.• Xr. by the relation 

G=Gp,G, · ••. Gr • (7.14) . 
That is to say, the geometric mean of the product is the product of the 
geometric means. · · 

7 .33. The geometric mean finds applications in several cases where 
we have to deal with a quantity whose changes tend to be directly pro
portional to the quantity itself, e.g. populations ; or where we are dealing • 
with an average· of ratios~ as in index-numbers of prices. . Suppose, 
for instance, we wish to estimate the numbers of a population midway 
between two epochs (say two census years) at •which the population is 
known. If nothing is known concerning the increase of the population 
save that the numbers recorded at the first census were P 0 and at the 
liecond census n years later P ,., the most reasonable assumption to make 
is that the percentage increase in each year has been the same, so that 
the populations in successive years form a geometric series, Po" being 
the population a year after the first census, p or• two years after the first 
census, and so on, so that • 

• (7.15} 
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The population midway between the two censuses is therefore 

p""' =PoT .. .'a = (PoP .. )I • (7.16) 

i.e. the geometric mean of the numbers given by the two censuses. This 
result must, however, be used with discretion. The rate of increase of 
population is not necessarily, or even usually, constant over any con
siderable period of time : if it were so, a curve representing the giowth of 
population as in fig. 7.4 would be everywhere convex to the base, whether. 
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FIG. 7.4.-Showing the Populations of certain Rural Counties of England 

for Each Census Year from 1801 to 19()}, 

the population were increasing or decreasing. In th~ diagram it will be 
seen that the curves are frequently concave towards the base, and similar 
results will often be found for distri(rts in which the population is not 
increasing very rapidly, and from which there is much emigration. 
Further, the assumption is not self-consistent in any case in which the 
rate of increase is not uniform over the entire area-and almost any area 

- can be analysed into parts which are not similar in this respect. For if 
in one part of the area considered the initial population is P8 and the 
common ratio RL and in the remainder of the area the initial population 
is p 0 and the common ratio r, the population in year n is given by 

P,.+p,.=P0R".+p0r" 

This does not represent a constant rate of increa..\;e unless R = r. If then, 
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r.Jr ex~nopk a constant }l(;'l't'Cntage rate of increase be assumed for England 
and Wal.~ BS a whole, it cannot be assumed for the Counties: if ~t be 
assum~l f••r the Counties, it cannot be assumed for the country as a whole. 
The studl'Ht is referred to refs. (116) and (117) for a discussion of methods 
that may be used for the consistent_·estimation of populations in -spch 
circumstances. 

Use of the Geometric Mean in Index-numbers. 
7 .34. The property of the geometric mean illustrated by equati~m 

(7.13) renders it, in some respects, a peculiarly convenient form of average 
in dealing with ratios, i.e." index-numbers," as they are termed, of prices.1 

Let · 

.. 

Xo'• Xo"• .Yo"'• . Xo" 
Xt'• Xl"• Xl'", ... Xl" 
X2', X1", X1"', ••• X 2" 

denote the prices of N commodities in the years 0, 1, 2. . •. Further, 
let Y10 =XJJ.!:u, and so on, so that - -

-· Y{o, 

Y2o, 

lr}(), 

17;;;, 
.. 

represent the ratios of the prices of the several commodities in years 1, 2, 
... to their prices in year 0. These ratios, in practice multiplied by 100, 
are termed inde.r-numbera of the prices of the several commodities, on the 

- year 0 as base. Evidently some form of average of the Y's for any given 
year will afford an indication of the general level of prices for that year, 
provided the commodities chosen are sufficiently numerous and repre
sentative. The question is, what form of average to choose. If the 
geometric mean be chosen, and G10, G20 denote the geometric means of the 
Y's for the years 1 and 2 respectively, we have: 

y~Y'N} Yto 

(
Xa' Xa" X,"' !f-l)l/N 

= Xt' . xl•. Xt'" ... Xt" 

= (Y;l. Y2"1. Y21 ... y~)l/N 

' 
.• (7.17) 

From the first form of this equation we see that the ratio of the geometric 
mean index-number in year 2 to that in year 1 is identical with the geo· 
metric mean of the ratios for the index-numbers of the several commodities.· 
A similar property does not hold for any other form of average: the ratio 
of the arithmetic mean index-numbers is not the same as the arithmetic 
mean of the ratios, nor is the ratio of the medians the median of the ratios. 
!<'rom the second and third forms of the equation it appears further that the 
ratio of the geometric mean index-number in year 2 to that in year 1 ,is 
independent of the prices in the year first chosen as base (i.e. year 0), and 

1 'l'he literature of index-numbers is extensive und it is impossible to discuss them 
in the !imiu of this book. There is still di!Jcrence of OJlinion aa to the most &uitable 
form of an index-number, and we do not mean to prejudge this question in the above 
.section. -

.. 9 
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is identical with the geometric mean of the index-numbers for year 2, on 
year 1 as base. Again, a similar property docs not hold for any other form 
of aYerage. If arithmetic means of the index-numbers he taken, for 
example, the ratio of the mean in year 2 to the mean in vcar I will vary 
with the year\aken as La~c, and will differ more or less fror;1 the arithmeti"c 
mean ratio of the prices in year 2 to the prices of the same commodities in 
year 1; the same statement is true if medians be used. The results gi\·en 
by the use of the geometric mean possess, therefore, a certain comistency 
that is not exhibited if other forms of average are employed. It was used 
in a classical paper by Jevons (ref. (108)), though not on quite the same 
grounds, but has never been at all generally employed, although it is now 
in use for the index of wholesale prices compiled by the British Board of 
Trade. 

The Harmonic Mean. 
7.35. The harmonic mean of a series of quantities is the reciprocal of 

the arithmetic mean of their reciprocals; that is, if II be the harmonic mean, 

. (7.18) 

The following illustration will serve to show the method of ealculation:

Example 7.5,__:The table gives the number of litters of miee, in certain 
breeding experiments, with given numbers (X) in the litter. (Data from 
A. D. Darbishire, Biometrika, vol. 3, pp. 30, 31.) 

Number in Number of 
Litter. 

X. 

1 
2 
8 

' 6 
6 
7 
8 
9 

-
"'hence 

Litters. J/X. 
j. 

7 7•000 
11 li'500 
16 5•333 
17 4•250 
26 6·200 
81 6·167 
11 1"571 
1 9•125 
1 0·111 

121 34•257 
·-

. .!. = 34
"
257 =0·2831 

11 121 

11=3·532 

The arithmetic meun is 4·587, more than a unit greater. 

Reciprocal Character of Arithmetic and Harmonic Means. 
7.36. Prices may be stated in two different ways which are reciprocali_Y 

related, the resultin" arithmetic mean of the one being the harmomc 
mean of the other .. %upposing we had 100 returns of retail prices of :r;gs, 
50 returns showing twelve eggs to the shilling, 30 fourteen to the sh1llmg 
and 20 ten to the shilling ; then the mean number per shilling woul.:l be 
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12°2, equivalent to a price of 0·98td. per egg. But if the prices had been· 
quoted in the form usual for other commodities, we should have ~d 50 · 
returns showing a price of ld. per egg, 30 showing a price of 0·85Td. artd-. 
20 a price of 1·2d.: arithmetic mean 0·997d., a slightly greater value · 
than the harmonic mean of 0·98td. . · · . 

The harmonic mean of a series of quantities is always lower than the 
geometric mean of the same quantities, and a fortiori, lower than the 
arithmetic mean, the amount of difference depending largely on the 
magnitude of the dispersion relatively to the magnitude of the mean (cf. 
Exercise 8.1~, p. 153). 

SUMMARY. . ' 
1. Measures of the location or position of a frequency-distribution are_ 

called averages. 
0 

- • • 

2. There are three types of average in gener&:l use, the mean (arithmetic, 
geometric and harmonic), the meqjan and the mode. · . 0 

• 

. 3. The arithmetic mean of N .values :X1, X 1, •.•• Xil is given by 

or 

• •• 

The geometric mean is given by 

G=(Xl •... XN)1JN 
\ '1 

log G ""NS(log X) 

The harmonic mean is given by 

k=Ns(~) 
4. The median is the c~ntral value of the variable when th~ val~es are 

ranged in order of magnitude; if the number of vafues is even, the medi'an 
is conventionally taken to be the arithmetic mean of the two central values. 

5. The mode is the value of the variate corresponding to the maximum of 
the ideal curve which gives the closest possible fit to the actual distribution. 

· 6, For distributions of moderate skewness there is an empiricel relation
ship between the mean, the median and the mode expressed by the equation 

Mode =Mean -8(Mean -Median) 0 

EXERCISES. 

7.1. Verify the following meau and ~ediau_fromothe data of Table 6.7, 
page 9-t.:- · \·., ·,. · 0 

0 

!\lean • 
Median , 

Stature in Inches for Adult llalet in 

England. Scotland. Wales. 
• 67o3l 68o55 66°62 
• 67o85 68·48 66o56 

Ireland. 
67·78 
67o69 

In the ealcullltion of the means use the same arbitrary orlgin as in Example T ,),. 
and check your work by the method of 7.16 (b). · . · 
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7.2. 1'ht> mt>an of 13 numbers is 10, and the mean of 42 other numbers i" 16. 
Find the m~>an of the 55 numbers takt'n togethrr. 

7.3. Find the mean weight {1f adult males in the t:nited Kingc\l)m from the 
data in the last C'olumn of Exercise 6.6, page 111. Find the median weight, and 
hence find the approximate mode by the relation of 7.27. 

7.4. Similarly, find the mean, median and approximate ,-alne of the mode 
for the distribution of fecundity in race-horses, Table 6.9, page 91:1. 

7.5. Using a graphical method, find the median income subject to sur- or 
~;uper-tax in the financial year 1931 from the data of Table 11.5, page 89. 

7.6. F'ind the arithmetic mean ofthe first n natural numbers and show that it 
coincides with the median. · 

7.7. (Data from AgriC1lltural Statistics, Eugland and Walts, Part 2, 1!l32.) 
The figures in columns 1 arid 2 of the small table below show the index-numbers 
of prices of certain commodities in the harvest years 1926 and 1931, the years 
1911-13 being taken as 100. In column 3 have been added the ratios of the 
index-numbers in 1931 to those in 1926, the latter being taken as 100. 

Find the average ratio of prices in 1931 to those in 1926--

(1) From the arithmetic mean of the ratios in column 3. 
(2) From t;he ratio of the arithmetic ... means of columns 1 and 2. 
(3) From the ratio of the geometric means of columns 1 a~;~d 2. 
( 4) Froru. the geometric mean of the ratios of column 3. · 

Note that, by 7 .32, the last two methods must give the same result. 

I 

I Inde~-number of Price iD 

I ~ Ratios.. 

I 

Commodity. 1926. 1931. 31/26. I 

I. . 2. 3. 

1. Wheat. . 1o7 79 50·3 
2. Fat Cattle . 131 118 90·1 
3. Milk . . 163 139 85·3 I 4. Eggs . . 149 llO 73·8 
5. Fruit 165 132 

I 
80·0 

I 6. Vegetables 135 158 ll7·0 

7.8. Find the arithmetic and geometric means of the series 1, 2, 4, 8, 16, 
•• 2". Find also the harmonic mean. · 
7.9. Suppo..ing the frequencies of values 0, 1, 2, •.• of a variable to be. given 

by the terms of the binomial series 

11(n-1). 
q•, uq•-•p, ~q~-•p•, 

where p + q = 1, find the mean. 
7.10. Show that, in finding the arithmetic mean of a set of readings on a 

thermometer, it does not matter whether we measure temperature in Cent115rade 
· or Fahrenheit degrees, but that in finding the geometric mean it does matter. 

7.11. (Data from Census of 1901.) (The table below shows the population 
of the rural sanitary districts of Essex, the urban sanitary districts (other than 
the borough of West Ham), and the borough of West Ham, at the censuses 

·of 1891 and 1901. Estimate the total population of the coWlty at a date midway 
between the two censuses, (1) on the asswnption that the percentage rate of 
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increase is constant for the county as a whole ; (2) on the assumption! that the 
percentage rate of increase is constant in each group of districts and thJ borough 
of West Ham. 

Population. _ . 
Esses. 

18111. 1901. 

Rural districta . . . 232,867 240,776 
West Bam . . 204,1103 267,358 ·.•·· 
Other urban dilltricta . . 345,60,1 575,864 

Tot&! . 783,374 11,083,998 J :·· 

7.12; (Data from Agricultural Statistics, Part 2, 1932.} ·The following 
statement shows the monthly average prices of eggs in England and Wales in 
1932, as oompiled from returns from certain markets for Nationall\Iark Specials 
and English Ordinaries, First Quality, per 120 :- , 

-.. 
; 

Month. N.ll. Specials. 
English Ordinaries, 

• First Quality.· - -

a. d. B. d. 
January 18 11 15 2 
February,. . 15 0 12 11 
M&rch . . 1111 10 0 
April . . 10 10 II 2 
May . ·• . 10 II 8 9 
June . 12 0 10 0 
July . - 14 2 12 6 
August 15 6 13 II 
September 18 10 16 3 
October . 20 II 18 II 
November.· . . 24 1 21 8 
December. . 21 2 16 10 

Mean for year • . 16 2 13 10 

What would have been the mean price for the year in each case if the wholesale 
prices had been recorded as retail prices sometimes are, i.e. at so many eggs per 
shilling 't State your answer in the form of the equivalent price per 120, and 
obtain it in the shortest way by taking the harmonic mean of the above prices. 

'· 



CllAI'TEU 8. . 

MEASURES OF DISPERSION. 
Ran~ e. 

8.1. \Ye l·an now tum to a consideration vf measure• of the disper<>ioo 
of variate values about the central Yalues 'lire have diS<"U!.~ in the la'>t 
chapter. 

The simplest possible measure of dispe-rsion is the ran~e. i.~. the 
difference between the greatest and leas\ ·nlues obsen·eJ. The extreme 
ease with which this measure may be <·akulated and its ,.ery ob,ious in
terpretation have led to its use in many industrial pr&blems. There are, 
however, serious objections to the use of the range which usually more 
than offset these advantages. 

In the first place, the range is subject to fluctuations of consiJerabl~ 
magnitude from sample to sample. There are seldom real upper or lower 
limits to the ,·alue~ which a variable can take~ large or small ,·alue-s 
being only more or less infrequmt. The o<:currence of one of these in
frequent values may have quite a disproportionate effec·t on- the range. 
Suppose, for example, we consider the data of Exereise 6.6, page 111, 
sho'\11-ing the frequency-distributions of weights of a,h.Jt n.a!es in sen:ral 
parts ofthe United Kingdom.- In Wales one inJividua.llli-M vbsen·ed l'lith 
a weight of over 280 lb., the next heaviest being under 260 lb. The addition 
of this one exceptional man to 737 others has increao;ed tte range by ~me 
30 lb., or about 20 per cent. 

:!\loreowr, the range takes no acco~1t of the form of the distribution 
"ithin the range. ''"e might get the same value for the ran;;e from a 
symmetrical and a J-shaped frequency-cun·e. Clearly we eouhJ not regard 

- two such distributions as exhibiting the same disperiion •. 
8.2. _ A measure of dispersion, in fact, should ob.-y conditions- similar 

to those we laid down for t'm·asw·es of location in the last <·hapter (7 .5). 
That is to sav, it should be based on all the obserrations, should be readilv 
comprehem.ible, fairly easily <:alculated, &.ffft'ted as .little a.~ po!O!>,ble by 
fluctuations of sampling, and amenable to algtl.traical treatmt-nt. 

There are three measures of dispt-riion in geueral U'ie, the standard 
de,·iation, tLe mean de,·iation and the quartile de~·iation or semi
interquartile ran~e. 'Ye \\ill consider them in that-e:_der. 

The Standard Deviation. · L _, 

8.3. The r;tandard deviation is the Square root of the firithmetie mean 
of the sl_fuares of all deviations, deviations being mea:.ured from the ar:th
metic mean of the observations. If the stanJard de\iation be denote-d l•v 
o, and a de,iation from the arithmetic mean hr .r, tht·n the star,darJ 
<leviation is ginn by the equation 

1 
o 2 =_srS{1 2}. (8.1) 

1 "lJ • 
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' .. 

To sqt;are all the deviations may ~eem at first sight an.artificial PIJ~~edure, :· 
but it must be remembered that it would be useless to take the mere sum • 

• of the de,;a.tions, in order to obtain.a measure of dispersion, since this.isum :· 
is necessarily zt'ro if deviations be taken from the mean! . In' ordei ta. 
obtain some quantity that_shall vary with the dispersion, it.is necessary to ·, 

inverage the de,iations by a process that treats them as if they were all of 
"'the same sign, and aquaring is the simplest process for eliminating signs . 

which leads to results of algebx:aical convenience. . . .. · · ·· · : .. 
' ' . . ~ 

Root-mean-square Deviation'. . . _·· · ·. ·. . · . lft._.:. _; · 
"8.4. The standaFd. deviation is a particular case of a mor~,ge~EtaJ i 

quantity, known ~ the root-mean-square deviation, which has tl).eoretica'f · 
imporf.a:nce. . · · · · '· ' : · .. · . 
· Let A be· any arbitrary value of X, and let~ (as in 7.11) denote tM. 
deviation of X from A ; i.e. let · ·· .;~ 

'~-~~.;. ~=:~~A ~-· , 
Then we ¢ay define the root-me;~-square deviation·, from the origi1.1 A· 
by the equttion · · ' -

1 . 
a• = Nsa•> . . . c·- 1 •. · (8.2) 

. . 
·The standard deviation. is the value of the root-mean-square deviation . 

taken front the mean. ' • ._· · 
8.5. The quantities a 1 and 1 1, i.e. the squares of the standard and 

. root-mean-square deviations, tu:e sufficiently important in much theoretical· 
work to have special names. · . · . ll · · . · · 

The square of the standard deviation, a 1, is calle«,, the variance. v . 

The-quantity 1s{t1), i~e. ,a, is called the ~~c~n1d mo~~~i··about the 

value A . . W.e have already seen (7.11) that 'the q~antity NS(~) is called. 

the first moment about A, and in the next chapter we shall eonsider 
moments of higher orders. · · · . . • . . _ 

Thus, the variance is the second ~oment about the mean. 
~ . / . . . 

Relation between Standar_d and J{oot-mean-square Deviations·. 
8.6. There is a very simple relation between the standard' de\iati~n 

and the root-mean-square deviation from any other origin. . Let • · • . 

. . . .~.U- A :=td • · .: ' • ·. . : _', -~ (8_:8) 
wilid . 

. Then 
· e =iC +d. ' · : · · - · ~. ·-

" • • • (* .. ' 

t• =11'1 + 2.xd + d1 

S(E3) ~S(.x2 ) +2dS(~) +Nd3 

I , . . . . . ~. .. t 

Dut the sum of the deVIations from the mean is zero, therefore the second 
term vanishes, and accordingly _ . . . · · · c • . • • • \ 

s2 =a1 +d1 .• _(8.4) 
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Hence the root-mean-square deviation is least when deviations are 
measured from the mean, i.e. the standard deviation is the least possible ' 
root-mean-square deviation. ' 

8.7. If a and dare the two sides of a right-angled triangle, a is the 
hypotenuse. If, then, Mil be the nrtical through the mean of a frequency

B 

s 

distribution (fig. 8.1), and MS be set off 
equal ·to the standard deviation (on the 
same scale by which the variable X is 
plotted along the base), SA will he the 
root-mean-square deviation from the point 
A. This construction gives a concrete idea 
of the way in which the root-mean-square 
deviation depends on the origin from which 

· deviations are measured. It will be seen 
that for small values of d the difference of 

x-----J......,;~"----,x 8 and a will be very minute, since A will 
lie very nearly on the circle drawn through 
M with centre S and radius S.ll: slight 

. errors in the mean due to approxima-
.. tions in calculation will not, therefore, appreciably affect the value of the 

standard deviation. , 

Calculation of the Standard Deviation. 
8.8. If we have to deal with relatively few,· say thirty or. forty, 

ungrouped observations, the method of calculating the standard deviation 
. is perfectly. straightforward. - It is illustrated by the figures below giving 
Jhe minimum wage-rates for agricultural labourers in England and Wales 
at the beginning of 1936. · 

; First of all the mean is ascertained. Then we find the values of :r bv 
: subtracting the mean from all values of the variable. Each difference is 
i squared and th~ total, <S(.x2 ), obtained. This total divided by the total 
• frequency is the square of the standard deviation. 

In practice, we can simplify the arithmetic by working from an arbitrary_ 
value A instead of from the mean. Such a value is usually known as the 

; " working mean/' When we have found the mean-square deviation a2 

j about A we can easily find the value of a 1 from equation (8.-J). 

. E:rample 8.1.-Calculation of Standard Deviation for a short series of 
observations (49) ungrouped. Minimum weekly rates of wages for 
ordinary adult male agricultural workers in E!lgland and Wales as at 
1st January 1936. 

By inspection of the table opposite we see that the mean is in the neigh
bourhood of 82 shillings. We therefore take this as the working mean A. 
The column headed " Difference " is the-excess of the value of the variable 
over this value. The column headed "(Difference) 3 " is the square of 
the excess. We find · 

1 -79 
NS([) =~ = -1·612 pence 

Hence the mean =82 shillings - 1·612 pence , 
=31 shillings 10·4. pence approximately. 
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Area. 

Bedford and Huntingdon &hires 
BMbhlN • • • • -. 
Bucks • • • 
C&mbridgeshint • • • 
Cheshire • • • • 
Comwa.ll • • • 
Cumberland • 
DerbyshlN ' • • • 
Dorset·. • • 
Durham • 
E811ell: • 
Gloucest« • 
Hampshire • • • 
Hereford • 
Hertford.• • 
Kent • • 
Lancuhire f&utb) • 

.. 
Lei~r (Rest) • • • 

Lina~ (Holland) • • • 
•• (Keste-ren and Lindsey) • 

lliddleeell: • J. • • 
Monmouth • ; • • 
Norfolk • { . • , 
Northanta • 
Xorthumberland • 
Notte 
O.rlordtohire 
Rutland 
ShropshlN • 
Somel'llet 
Staffa 
Suffolk • 
8mrrey 
SUMex • 
w anricbhire 
Westmorland. 
Wiluhire . • • 
w oroel!tel' . • 

Y orb. E. Riding , 
" N. Riding , • 
., W. Riding • • 

Angle.ey and <MrnarYon · 
C&rmarthen • 
Denbigh •nd Flint • • 
Glamorgan. • • • 
Merioneth and :Montgomery 
Pembroke and Cardigan • 
R&dnor and Breeon • 

.. 
Tot&la 

. . . 

. , -· 

. ' 

Wage Rates. 

8. d. 
31 6 
31 0 
32 0 
3l 6 
3i 6 
32 0 
ae 6 
36 0 
31 6 
2i 0 
:u 0 -
31 0 
31 0 
31 0 
32 0 
33 0 
3t g..
M 6 
31 0 
3j 0 

. :u 0 
3S 8 
3S 0 
3t 6 

·31 6 
31 6 
3% 0 
3t 6 
31 6 
3! 0 
32 6 
31 6 
31 0 
32 3 
32 0. 
30 0 
31 0 
31 0 
31 0 
33 6 
33 0 
33 9. 
31 0 

. 31 6 
30 6 

. 31 6 
28 6 
31 0 
3~ 0 

Difference, 
_ E (pen~)-

- 6. 
-12 

- 6 
6 

6 
48 

- 6 
-36 
-12 
-12 
-IS 
-12 

12 
9 

64 
12 
24 

-12 
20 

- 6 
- 6 
- 6 

- 6 
- 6 

6. 
- 6 
-12 

3 

-24 
-12 
-12 
-12 

18 
12 
21 

-12 
- & 
-18 

18 
-42 
-U 
-2-i 

-'19 

.137 

I 
{Difference )1, 

. . 

E'· 

36 
144 

36 
36. 

36 
2304 

36 
1296 

. 144 
144 
144 , 
144 

'144 
81 

,-- 2916 
144 
5i6 
14-i 
400 

36 
36 
36 

36 
36 

36 
36 

144 
'9 

576 
14! 
144 
144 
324 
144 
441 
14-i 
36 

324 
324 

1764 
144 
676 

1(,539 

\ 
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Also 
Is·t·>· 1-t,53fl 
N-~

1 =---=2!16·711=8' 4 \ 49 . . . ~ 

. uS~sl-d2=2!)6·71-J.-{1·fit2Jt':.i. 
(, ·~·" =294·112. •,,·,~· 

u·=17·15 pence ~pproximat:;t'y. 

' . We would direct the student's attention to the necessity for cheeking 
·his work at each stage before proceeding to the next. If he neglects this 
warning he is likely to learn by bitter experience. how es-;ential it was. 
For instance, in the above work it would he well to check the value of 
the mean by summing the wage rates and di,;ding by 49. We get in 
this way,: . 

··-1 .·-·.'" .,.,_ 
'· l\Iean ~ 156~'~~ Sd. =3ls. 10·4d. 

which checks with the mean found from the working mean. Set·ondly, 
the squares of. differences should be checked before they are added, and 
if t;e addition is made without a machine, a check should be carried out 
by summing. first from bottom to top and then from top to · bottom, 
to avoid ·repeating enors. A further systematic check is given in 8.10 
below. 

8.9. If we have to deal with a grouped frequency-distribution the 
same artifices and approximations arc used' as in the calculation of the 
mean (7 .10 and 7 .1JL The mid-value of one of the clnss-inten·als is 
ch?~en as the arbitrary origin A from which to measure the dt·viations f, 

·the dass-interval is treated as· a unit throughout the arithmetic, and all 
the observations within any one class-interval are treated as if th~y were 
identical ~·ith-~lte B'lid:,value of the interval. If, as before, we denute the 
frequency in any one;lnterYal by f, these j observations Contribute ~~ 3 to 
th~ sum pf--th~ ~~l.~Ves of de,·i~tions, and we have : 

. . . . ·.-:..: ...... .. .. 

. t• .\ 1 . 
,, . • s2 = -S(f~a) 

.N 

The standard deviatib~ is then calculated from equation (8.4 ). 
8.10. As the· arithmetic in caleulating the standard deviation is oftt·n 

extensiye, it is as well to use some check similar to that of 7.12. In: 
this case we have : . 

(~+1)3'=t2 +2t+1 
f(t + 1)2 =fg2 +2jg +f 

.. S{f(~+1) 2}=S(f~2)+2S{fg)+N 

Hence, if we calculate S{f( t + 1 )2} as well as S{f.f2 ), the above equation 
giyes us a simple check on the accuracy of our work. The following 
examples illustrate the method:- .: ,.. · 

. Example 8.2.-Calculatiml of the Standard Dt'v·iution of stfl.t~rf> cf 
male adults in the British Isles from the. figures of Table 6. 7, page· g)', 
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(1) (2) (3) (4) (5) (6) 
. I (7) _ 

Deviation ... 
Height, Frequency. frODl Product. /(~ +i). Product. 

J<s+I>'· Inches. J. Value A. J;. J~. e. -. . 
57-- 2 -10 -. 20 - 18 200 162 
58- 4 - 9 - 36 -' 32 324 • 256 
59- u - 8 - 112 - 98 896 686 
Gl}.. 41 - 1 - 287 - 246. 2,009 1,47!J 
61- 83 - 6 - 49S - 415 2,98!t -- 2,075 
62- 169 '- 5:. - 845 - 676 4,225 2,704 
63- 394 - 4 -1,576 - i,182 6,304 3,546 
M- - 669 - 3 -2,007 ~ 1,338 6,021 2,676 ·' 
65- 990 - 2 -1,980 - 990 3,960 990 

66-
. 

1,223 - 1 -1,223 -4,995 1,223 ---
67- ... •1,329 0 -8,584 1,329 .. - 1,329 

6B- 1 -~1,!?30 + 1 . . 1,230 2,4110 1,230 4,920 
69- '1,063 + 2 2,126 3,189 4,252 9,567 . 
70- 646 + 3 

' 
1,938 2,584 5,814 ~ 10,331J 

71- 392 + 4 1,568 1,960 6,272. 9,800 
72- 2Al2 r u 

1 
1,010 1,212 li,050 . 7,272 

73- ~~\ r''\: 8 '474 553 2,844 3,871 
74- -- ., ' ., 

I 
224 .. 256 1,568 2,048 

7~ 16 + 8 128 144 1,024 1,296 
76- 5 + 9 45 50 405 500 
77- 2 +10 20 ; 22 200 242 

Total 8,585 - 8,763 13,759 56,809 65,752 

· S(/~)= 8,763 -8,584= 179 
S{J(~ + 1)} =13,759 -;-4,995 =8,76-! 

This ~s an example we have already considered when calculating 
the mean, and the work of the first. .four columns is the same as that of 
Example 7.1, page 116. 

As a check on S(f~) we have: 

S{J(E + 1)} -S(/e) =876L -179 -
=8585 
=N 

A11 a check on S(J~Z) we have: . ' 
S{J(! + 1)1

} -S(/f1) -28(/{) =65,752 ..... 56,809 -858 
""8585• . "'·-
=N 

:From previous work, M - A. = d = + 0·0209 class-intervals or inches. 
S(J~2 ) = 56,809 =

6
_
617

<> . 

N 8585 "' 
o 11 =6·6172- (0~0209)• 
. =6·6168 

.•. o = 2·57 class-intervals or inches.' 
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Example 8.3.-Let us. find the mea.n and 'standard deviation of the 
distribution of Australian marriages given in Table 6.8, page 96. 

Calculation of Standard Deviation of age of bridegroom in a distribution 
of .t\ustralian ~arriages. . . . 

Age of 
Bridegroom. Frequency. 

~. ,;. /(;+1l. ~· (Central Value, f. 
Years.) . 

16·5 . 294. -4 - 1,176 - 882 4,704 
19·5 10,995 -3 - 32,985 -21,990 . 98,955 
22·5 61,001 -2 -122,002 -61,001 244,004 
25·5 73,054 -1 - 73,054 - 73,054 
28·5 66,501 0 - 56,501 -
31·5 33,478 1 33,478 66,956 33,478 
34·5 20,569 2 41,138 61,707 82,276 
37-5 14,281 3 42,843 ·57,124 128,529 
40·5. 9,320 4 • 37,280 46,600 149,120 
43·5 6,2:16 ·s 31,180 37,416 155,900 
46·5. 4,770 6 •. 28,620 33,390 171,720 
49·5 3,620 7 25,340 28,960 177,380 . 
52·5 2,190 ' 8 17,520 19,710 1-10,160 
55·5 1,655 9 14,895 16,550 134,055 
58·5 1,100 10 11,000 12,100 110,000 
61·5 810 . n· 8,910 9,720 98,010 

. 64·5 6-19 . 12 7,788. 8,437 93,456 
67·5 487 13 6,331 6,818 82,303 
70·5 326 14 . 4,564 4,890 63,896 
73·5 2ll 15 3,~65 3,376 47,475 
76·5 119 16 1,904 2,023 30,464 
79·5 73 17 1,241 1,314 21,097 
82·5 -· 27 18 .486 513 8,, .. 8 

: 85·5 14 19 266 280 5,05-i 
88·5 5 20 100 105 2,000 

Total · 301,~85 - 88,832 390,617 2,155,838 

. ,We take a working mean A. ""28·5. ., 

As a check on S(fe) we have : 

sifce + 1)} -s(fe> =390,617 -88,832 
=301,785 
=N .. 

As a check on S(fe2) we have: 

/(.; + 1)'. 

2,646 
4:1,980 
61,001 
-

56,501 
133,912 
185,121 
228,496 
2:13,000 
224,496 
233,730 
231,680 
177,390 
165,500 
133.100 
116,640 
109,681 
95,452 
73,350 
54,016 
M,391 
23,652 
9,747 
5,600 
2,205 

2,635,287 

s{f<e + 1)ll} -s(Je•> -2S<Je> =2,635,287- 2,155,838.-177,661 
=301,785 
=N 

Then 

Jf-A =d 
88

•
832 

=0·29436 interVal 
301,785 .. 

Hence, 
= 0·88308 year 

lJl = 29·383 years 

. 

• 
~ 

! 
' 
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We have; . 
sl 

2
•
155

•
838

-=7·143622 intervals1 
301,785" •. . 

o1 =s1 -d1 intervals* 
= 7 ·056974 intei'Vals2 

a= 2·6565 intervals 
'=7·969, or 8 years approximately. 

Sheppard's Correction for Grouping. 
s.11. The student must; remember that the treatment of all the ' 

values of a variable in a class-interval as if they were concentrated at 
the centre of that intezyal is an approximation, although, for distributions 
of symmetrical or moaerately skew type and class-interva~ not greater 
than about one-twentieth of the range, the approximation may ·,be· a 
very dose one. · 

It has lieen shown that if . 

(a) the distributio~ of frequency is continuous, and 
(b) th~ frequency_ tapers off to zero in both directions, . 

the variance obtained from grouped data may with advantage be corrected. 
· for the grouping effect. by subtracting from it one-twelfth of the square 
of the class-interval ; i.e. if the class-inte~al be h units in width, a 11 the 
corrected value of the variance and a1"A the value obtained from the 
grouped data : · \ 

. ' (s:s) 

The proof of this formula lies outside the scope of this book. \Ve may 
emphaliise condition (b). The Sheppard correction is not applicable to 
1.1- or U-shaped distributions, or even to the skew form of fig. 6.7 (b), 
page 95. 

Furthermore, unless the total frequency is fairly large, the Sheppard 
correction is likely to be of secondary importance compared with fluctua
tions of sampling (see 21.13). We suggest that,. as a _general rule, 
the correction should not be made unless the frequency is at least 
1000, or the-grouping coarser than that given by intervals of about one
twentieth of the range. We give in Exercise s:1s a result which will 
convey the general magnitude of the. correction for the finer grouping. 

Example 8.4.-b Example 8.2 we have, . 

a 1
1 =6·6168 

k• . 
-=0·0833 ...... , 
12 . 

• . Corrected value at =6·5335 . 
and a corrected= 2·1)6, differing from the uncorrected value by 0·01. 

Example 8.6.-Itl: Example 8.3 we have: 

a 1 (uncorrected) =7·056974. intervals•-
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Here o 1 is expressed in terms of h1, and hence to corrt·ct it we subtract 
1\, giving 

o 1 (corrected) =6·9736H 
o = 2·6108 intervals 

=7·922 years 

RS against an uncorrected value of 7·969 years. 

Spread of Observations and Standard Deviation. 
8.12. It is a useful empirical rule to remember that a range of six 

times the standard deviation usually includes 99 per cent. or mgre of all 
the obscn•ations in the case of distributions of the symmetrical or moder
ately asymmetrical type. Thus in Example 8.2 the standard deviation 
is 2·57 in., six times this is 15·42 in., and a range from, say, 60 in. to 
75·4 in. includes all but some 86 out of 8585 individuals, i.e. about 
99·6 per cent. This rough rule serves to give a more definite and concrete 
meaning to the standard deviation, and also to check arithmetical work 
to some extent...:....Sufficiently, that is to say, to guard against very gross 
blunders. It must not be expected to hold for short series of observations : 
in Example 8.1, for instance, the actual range is a good deal less than 
six times the standard deviation. · · 

Properties of the Standard Deviation. . 
. 8.13. The standard deviation is the measure of dispersion which it 

is most easy to treat by algebraical methods, resembling in this respect 
the arithmetic mean amongst measures of position. The majority of 
illustrations of its treatment must be postponed to a later stage 
(Chap. 16), but the work of 8.6 has already served as one example. We 
showed in 7.16 that if a series of obse~"vations of which the mean is .11 
consists of two component series, of which the means are .ll1 and ,:U3 
respectively, . 

NM=N1M 1 +N~1 
N 1 and N 1 being the numbers _of observations in the two component 
series; and N =N1 +N1 the number in the entire series. Similarly, the 
standard deviation o of the whole series may be expressed in terms of 
the standard deviations o1 and o8 of the c~mponents and their respective 
means. Let · 

M 1 -.M dd1 
M 1 -.ll =dz 

Then the mean-square deviations of the component series about the mean 
111 are, by equation (8.4), v1

1 +d1
1 and o2

8 +d2
1 respectively. Therefore, 

for the whole series, 

· Na1 =N1{o1
1 +d1

1)+N1{o1
3 +d2

1) (8.6) 

If the numbers of.observations in the component series be equal and the 
means be coincident, we have as a special case : -

,• o2 =Ho~1 +a11 ) (8.7) 
. }. J 

· so that in this case the square of the standard deviation of the whole 
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series is the arithmetic inean of the squares of the standard "deviations of 
its components. . . . ! _ ·. , : 

It is evident that the form of the relation (8.6) IS qUlte general: If a· 
series of observations consists of r component series with standard de\ia
tions a 1, a., ••• a" and means· diverging from the general mean of 
the whole series by d1, d,, • . . d" the standard deviation a of the whole 
series is given (qsing m to denote any subscript) by the equation 

Na1 =S(N.a,.1)+,S(N,.d,.1 ) (8.8) 

·Again, as in 7.16, it is convenient to note, for the checking of arithmetic, 
that if the same arbitrary origin be used for the calculation of the standard 
deviations in a number of component distributions, we must have : 

S(f~2)=S(Ji~11)+S(.faE~2)+ .•• +S(Jrer1 ) • • . (8.9) 
8.14. ; As another useful illustration, let us find the standard deviation. 

of the first N natural numbers. The mean in this case is evidently 
(N + 1)/2. l'urther, as is shown in any elementary algebra, the sum of 
the squares of the first N natural numbers is __ . . ' 

.• N(N+l){2N+l) 
6 

Appl)ing equ~tion (8.4) we have that the standard ~~viation a·is gi\·en 
by 

a1 =!(N +1){2N +1) -l(N + 1)1 

that is, 
a 1 =h(N1 -1) (8.10). 

This result is of senice if the relative merit of, o·r the telative intensity 
of some character in, the different individuals of a series is recorded not 
by· means of measurements, e.g~ marks awarded on some system of 
examination, but merely by means of the respective positions ·when 
ranked in order as regards the character, in the same way ~ boys are 
numbered in ,_ class. With N individuals there are always N ranks, as 
they are termed, whatever the character, and the standard de\iation is' 
therefore always that given by equation (8.10).. '· 
• Another useful result follows at once from equation (8.10), namely, the 
standard deviation of a frequency-distribution in which all values of IX 
l'ithin a range ± l/2 on either side of the mean are equally frequeut, 
values outside these limits not occurring, so that the frequency-distribution 
may be represented by a rectangle. The basel may be supposed divided 
into a very large number N of equal elements, and the standard deviation , 
reduces to that of the first N natural numbers when N is made indefinitely 
large. The single unit then becomes negligible compared with -N, and 
consequently · · Jl ., 

a'=l2 • .\ (8.11) 

8.15. It \\ill be seen from the preceding paragraphs that the standard 
deviation possesses the majority. at least of the properties which are 
desirable in a measure of dispersion as in an average (7 .5). It is rigidly 
defined ; it is based on all the observations made; it is calculated with 
reasonable c:ase ; it lends itself readily to algebraical treatment ; and we 
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may add, though the student will have to take the stateme~t on trust 
·for the pl't"St'nt, that it is. as a rule, the measure least affec-ted bv fluctua
tipns o~ sampling. 0~ the other hand, it may be uid that it! general 
wlture_lS not very readily comprehended, and ti.:Jt the process (•f squarin~ 
de\jations and then taking the &quare root of the mean seems a little 
invoh-ed. The student will, however, soon surmount this feelin~r after a 
little practice in the calculation and use of the constant, and will realis-e, 
as he ad\·an<ft further, the advantages that it possesses. Such root
mean-square quaatities, it may be added, frequently occur in other 
branches of science. The standard deliation should alwa~ be used as 
the measure of dispersion, unless there is some Yery definite reason for 
preferring another measure, just as the arithmetic mean should be used 
as the measure of position. 

-~ote on Nomenclature. 
8.16. A great deal of confusion has been introduced into statistical 

literature by the many dilferent expressions which hue been used for 
· the standard deriation and simple derivatiHs of it. It used to be almost 

a ease of 1(}1 lwmiM• quot nomina, and as the student may meet these 
e~:ressions elsewhe~ we give a short list of them. The term .. standard 
de,iation •• is now· almost universally accepted, and in this book we shall 
use no other. , -

" llean error" (Gauss), "mean square enor" and •a error of mean 
square., (Airy) have all been used to denote the standard deliation. 

The standard deliation is not to be confused with the .. atand.ml 
error." We shall use this term in a special sense, that of the standard 
de,iation of simple sampling (rf. 19.8). 

. The standard deviation multiplied by the square root of 2 is also kno1m 
as'' the .modulus." The student will see the reason for this multiplicati<-·n 
later. The reciprocal of the modulas is called the •• precision. .. 

There is also a quantity known as the •• probable error," ..-ruch is 
defined as being 0·67-J.-19 times the standard deviation (cf. 19.9). These 
last four quanhties are partirularly important in the theory of errors of 
obserration and the theory of tiampling. • 

Finally, ..-e may remark that since we shaH me the e.IftressiOD 
.. atanJard deliation, very frequently, . we shall sometimes use the 
abbre\iation " s.d." or simply the symbol a. · 

:&lean Derlation. 
8.17. Tfe luil·e a.lready remarked that it woukl be useless to take the 

sum of de\iations from the mean as a measure of dispersion because su(h 
sum is identically uro.. We therefore rt"mo~ed the signs of the deviations 
by squaring to reach the standard de,iation. _ 

It is also possible to onrrome this difficulty by &!ding the sum 
- of de,iations taken regardless of sign. The arithmt:tic mean of thoe 

... absolute •• deriations is c-alled the mean denatioo. • 
U we write I f llo denote the de,iation from an arbitrary ,-!Jue A tal en 

as positi~e ..-hateni its actual sign, the mean deliation ~ thus defne.J as 

j (S.l:?) 
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(The expl'e'Ssion I e I is read ".mod f "-an abbreviation for" the mo!ulus 
off"). · · . 

8.18. · Just as the root-mean-square deviation is least when devia ions 
are measured from the arithmetic mean, so the mean deviation is least 
when deviations are measured from the m~qian. For suppose that, for 
_some origin exceeded by m values out of N, the mean deviation has a value 
A. Let the origin be displaced by an amount c until it. is just; exceeded by 
m -1 of the values only, i.e. until it coincides with the mth value from the 
upj>er end of the series. By this displacement of the origin the sum of 
deviations in excess of the origin is reduced by me, while the ·sum of 
deviations in defect of the mean is increased by (N - m )c. The new mean 
deviation is therefore 

(N -m)c-mc 
. A+ N 

" 
=A+N(N -2m)c . 

The new mean.deviation is accordingly. less than the old so long as 

", . m > jN 
That is to ~ay, if N be even, the mean deviation is constant for all 

origins \'rithin the range between the Nj2th and the (N/2 + 1)th observa
tions, and this value is the least; if N be odd, the mean deviation is lowest 
when the origin coincides \1\ith the (N + 1 )/2th observation. The mean 
deviation is therefore a minimum when deviations are measured from the 
median or, if the latter be indeterminate, from an origin withjn~the range 
in which it lies.. ·~ : .: · 

Calculation of the Mean De\·iation. 
8.19. The mean deviation is perhaps most easily calculated about the 

mean, which is always determinate, except in the case of distributionS with 
an indeterminate final class. As, however, it is a minimum about the 
median, we sometimes require to know the value about that point. The 
following examples will make the method of calculation clear. . . 

E:rample 8.6.-Let us fmd the mean de.viation about the mean and 
about the median in the ungrouped data of Example 8.1. · 

The data were arranged in alphabetical order of the county wage areas; 
-which makes it a little difficult to ascertain the median by inspection. On 
rearranging in order of magnitude, we find that the median is the value 
31s. 6d. . ' . 
_ The deviations from the median value are, then, in order-of magnitude · 

-86, -80, -18, -18, -12, -6 (12 times), 0 (10 times), 
6 (7 times), 9, 12, 12, 12, 15, 18, 18, 18, 24, 24,' 26, 27, 
80, 54, 60 

The sum of the negative deviations' · = ;..186 
The sum ~f the positive deviations = 401 
Hence the sum of absolute,deviations = 587 

Hence m.d. = 
587 = 12 pence approximately. 

' 49 
,10 
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To find the m.d. about the mean, 3Is. 10·4d., we note that the 27 
negative or zero deviations from the median -would be incrc'ased by 4·4 
pence on transferring to the mean, and the 22 positive deviations decreased 
by 4·4 pence. The net effect on the total absolute deviations is then an 
increase of (27 - 2~) x 4·4 pence = 22 pence. 

Hence the m.d. about the mean is : 

587 22 
49+ 49 

= ~2·43 pence 

E.xample 8.7.-Let us find the mean deviation of heights about. the 
mean in the data of Example 8.2. . . -

· In the case of a grouped frequency-distribution the sum of deviations 
should first be calculated from the centre of the class-interval in which the 
mean (or median) lies and then reduced to the mean (or median) as origin. 

In this case the mean lies in the interval67-. We found when calculat
ing it that the negative deviations totalled - 8584 and the positive devia
tions 8763. Hence the sum of absolute deviations from the centre of the 
interval is 17,347-the unit of measurement being the class-interval. 

To reduce to t\le mean as origin we note that if the number of observa
tions below the mean is N 1 and above the mean Nz, and Jl-A =d as 
before, we have to add N 1d to the sum when found and subtract N 1d. In 
this case d=0·02 class-interval, N 1 o;=4918 and N 1 =3667. . · 

Hence, we must add 

( 49i~'3667) x 0·02 = + 25 intervals 

i.e. The total of deviations= 17,372 
and 

d 
17,372 . I . . h . 

m. . = 
8

,
585 

= 2·02 mterva s or me es. 

The mean deviation from the median should be found in a similar way, 
the calculation being assisted if the class-interval in which the median lies 
is taken as origin. 

8.20. As imthe case of the standard deviation, the above calculations 
assume for certain purposes that all the values of the variable can be 
treated as if they were concentrated at the centres of class-intervals. This. 

• gives sufficient accuracy for all practical purposes· if the class-intervals are 
reasonably narrow. It has not been found possible to give any simple 
correction, such as Sheppard's correction, for errors of grouping in the 
mean deviation, but we give at the end of this chapter an exercise (8.11) as 
to the correction to be applied if the values in each interval are treated 
as if they were evenly distributed over the interval instead of being 
concentrated at its centre. 

Empirical Relation between Mean and Standard Deviations for 
Symmetrical or Modera~ely Skew Distributions. 

8.21. It is a useful rule for the student to remember that for sym
metrical or moderately skew distributions the mean deviation is about 
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f~ur~fifths .of the sta~dard de,;&tion. Thus, for the distributio~ of nmle 
statures of Examples 8.2 and 8.7, we have: .· · -

. ni.d. = 2·02 =0·79. .. : 
s.d. · 2·57. 

For the short s~ries of observations of Ex~mple 8.1: 

m.d.=~=0·72 · 
a.d. 17·15 

Quartiles.-
8.22. A natural el..-tension of the idea of the median consists in ascer

taining the variate values Q1 and Q31 such that one-quarter of the observa
tions lies below Q1 and one-quarter above· Q,. In this case clearly one- · 
quarter lies between Q1 and Mi, the median, and one-quarter between .Mi 
and Q,. . . · .. _ .. . . 

Q1 is termed the lower quartile and Q, the upper quartile. The ..J 
quartiles and the median thus di'ide the observed values of the variable 
into four cl.t!.ses of equal frequency. \ . · , · 

\Ve saw that if the number of ob&er•·ations was even, there was an 
indeterminacy in the position of the mroian which required the_ additional 
convention that in such cases the median would be taun ·to be mid-way . 
behreen the two central values. Similar indeterminacies maY" arise in 
fixing the quartiles unless the number of observations is ·one less than a 
multiple of four. Such cases are treated in an analogous way by supple
mentary conventions. which \\~ll be clear from the following examples. 

E:rample 8.8.~To determine the q~artiles of the data of Example 8.1. 

Here there are 49 observations, and so the 25th gives the median. 
We regard half the 25th observation as falling below the median and half 
above •. The lower quartile must divide into two equal parts the 24! 
ohliervations falling below the median. The obser\Ultions other than the 
median art": 

28/6, 29/-. 30/-. 30/.-. so/6, 81{~ (12 times), 31/6 (7 times). 

The lower quartile must divide the 2-ll observations into two sets of , 
121. The 12th and the 13th values are both, as it hapnens; 31/-, and Q1 
being betwet>n the two is thus 31/- also. · · 

The 2.J. observation!' between the median and the highest v~lue are: 

81/6 (twice), 32/- (7 times), 82/3, 32/6 (8 tim~s ), 82/9, 33/· (3 times), 
33/6, 83/6, 33/8, 33/9, 34/-. 36/-; 36/6. . 

. . ' 

The 12th' and 13th ob&ervations. are both 32/6, and hence this is the 
va.lue of Q1• , . •. . • 

If the 12th and 13th observations had been, say,' 82/6 and 83/-, we 
might have taken Q, to be 32/6 but regarded ·1 of the .12th observation 
as lying above that value. .. 

. , E.xample 8.9.-To determine the quartiles o! the distributi~n of 
Example 8.2. • · · - . • . . , 

Data of this kind 'are treated by simple arithmetical interpolation or 
grapllil'al interpolation on the lines of 7.20 or 7 .21. . . ' . 
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The quartiles are to diride the distribution into four equal parts. w,; 
hue, tMrefore, · 

. 8585 
.--= 21-16·25 . .. 

To the i!l_terral ~are 1376 individuals 
Difference = 770·25 

B Q · no-25 • h fro h begi .- f h · at, hi h · ent"ey 1 JS 
990 

me es m t e . nrung o t e mterv w c l'i 

6-ltf. 

Similarly. from the interval 'i'O- onwards are 137' individuals. 
Difference from 2U6·25 =772·25. · · 
Hence. 

ll -6915 772·25 
"Q- ~~- 1063 

=69·21 inches 

.It u left to the student to check the values by graphical interpolation. 

Quartile DeviatiQn. 
8.23. H Mi be the_ value of the median. in a symmetrical distJ}bution 

Mi- Q1 = ~-Jfi 

and the difference may be taken as a measure of di:.}>tt5ion. But as no 
distribution is rigidly symmetrical, it is usual to take as ~he measure 

- Q= ~-Q. . 
. . .. ~ .... ~ 2 . 

and Q is tenned the quartile de~tion, or better. the senii.:.mterquartile 
range-it is not a measure bf the deviation from any particular anrage. 

Thus. from the values calculated in Example 8.8 we have: 

Q 
= 32/6-31/- ts• 

2 2=9pence 

and from Example 8.9 we have : 1 

Q 
69·21-65·n 

1 7
_ . h 

= 
2 

= · .;, IDC es 

Empirical Relation between Quartile and Standard De-.·iations. 
8.2-1. For symmetrical and moderately skew distributions the semi-. 

interquartile range is usually about hm-thirds of the standard dt--.-iation. 
Thus. for the height cfutribution of Examples 8.2 and 8.9. 

Q = 1·75-=0·68 
a 2·57 

_For the wage statb-tics of Examples 8.1 and 8.8. 

g=-
9

-=0·52 
n 17·1.5 
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which is considerably lower. We should, however, hardly have expected 
the comparalinly few observations comprised in these data to c$form at 
all dosely to the t>mpirical rdation. . · 

8.25. It follows from this relation that a range of 6 times the standard 
deviation corresponds to a range of 9 times the -semi-interquartile range 
(and 7·5 times the mean deviation). Within these ranges we expect to 
find at least 99 per cent. of the observations in symmetrical or moderately 
skew distributions. · 

Comparison of the Three Measures of Dispersion. 
8.26. The semi-interquartile range has two advantages over the 

standard deviation and the mean deviation ; it is calculated with great 
ease, and it has a clear and simple meaning. . · . 

In almost all other respects the advantage lies with the standard 
deviation. The semi-interquartile range has no simple algebraical pro
perties, and its behaviour under fluctuations of sampling is difficult _to 
decide. ln all but the most elementary statistical work these are -over
whelming djsadvantages,- and tpe use of the semi-interquartile range. is not 
to be reco&nmended unless the calculation of the standard deviation has 
been renden,J difficult or impossible, e.g. owing to the employment of 
irregular class-frequencies or of an indefinite terminal class. 

Absolute Measures of Dispersion. 
8.27. The three measures of dispersion we have been discussing have 

all been expressed in terms of the units of the variate ;. e.g. the standard 
deviation of height-frequencies was found in inches, and thermean deviation 
of wage-frequencies in pence. It is thus impossible to compare disper· 
sions tn different universes unless they happen to be measured in the 
same units. · 

J?or this reason some statisticians have recommended the use of 
" absolute " measures of dispersion, which sh~ll be pure numbers and 
not expressible in some particular scale of units. ·such measures would 
permit of comparison between universes of very different natures. 

It is easy to construct several coefficients of the kind required. The 
standard deviation and the mean deviation have the dimensions of a. 
length, and it is only necessary to divide them by another factor which has 
the same dimensions ; e.(. · - · 

Mean deviation l\Iean deviation Standard deviation 
and 

Mean Mode • Mean 

are all of the required type. 

Coefficient of Variation. . 
8.28. The last-mentioned in the foregoing paragraph in a modified 

form is the only roefficient which has come into general use. We define 
the Coefficient of Variation, v, as 

0 
V=lOOjj . • (8.18} 

?-'h~s coefficient has b~el} used by Karl Pearso~ in comparing the relative 
vanatwns of correspondmg organs or characters 10 the two sexes, and more 
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recently by G. s; Wilson in researches on the hacteri~logical grading of 
milk (ref. (159)). 

Reduction of Frequency-distribution to Absolute Scale. 
8.29. Comparability of form may, however, be reached in a difierent 

way; \hat is to say, by regarding u itself as a unit and expressing other 
measures in terms of it. Thus, in the height distribution of Example 
8.2, u = 2·57 inches, or 1 inch= 0·889 u. Hence the intervals are 0·889 u 
in width, and run: 57 x0·889 u-., 58 x0·889 u-, etc.; i.e. 22·178 u-, 
22·562 a -, etc. . 

A distribution expressed in this way has unit standard deviation, for 

1 (tJJ)1 1 u1 

NS. ;; = uzNS(tJJI) = o• 
=1 

The distribution reduced to the 'scale of u may thus be regarded as 
expressed in "absolute ''units, and two distributions expressed in this way 
may readily be compared as regards form,·.but not as regards dispersion, 
for this has been made the same in the two· cases. · 

Deciles and Percentiles. 
8.30. We may, conclude this chapter by describing bri~fty ~ethods 

which have been much used in the past in lieu of the methods described 
in this and the preceding chapter. .. 

·_Instead of. dividing the total frequency into 4 parts by quartiles, we 
may divide it into 100 parts by what are called percentiles. Or we 
may divide into 10 parts by deciles. The theory of these quantities is 
precisely analogous to that of the quartiles: there may, for instance, 
be certain indeterminacies in their exact definition which are removed 
by supplementary conventions ; ..they can be obtained by arithmetical or 
graphical interpolation; and they have simple and obvious meanings. 

Quantities such as quartiles, deciles, etc., which divide the total fre
quency into a number of parts, are called grades, and when we speak oUhe. 
grade of an individual we mean thereby the proportion of the total frequency 
which lies below it. Conventionally, half the individual is regarded as 
lying above, and half below, the point determined by the variate value 
which it bears. . · 

8.31. The values of the percentiles may be used to draw what is 
known as Galton's ogive curve.. In fig. 8.2 we have plotted the 100 
grades along .the horizontal against the height ... corresponding to any_• 
given percentile up the vertical, for the height distribution of Example 8.2 • 
. The curve shows what percentage of the universe falls below any specified 
height. · 

8.32. An extension of the method lo the treatment of non-measurable 
-chara~ter~ has also become of some importance. For example, the 
capacity of the difierent boys in a class as regarus some school subject 
cannqt be directly measured, but it may not be very difficult for the 
master. to arrange them in order of merit as regards this character : if the 

· boys are then " numbered up " in order, the number of each boy, or his 
rank, serves as some sort of index to his capacity (cf. the remarks in 
8.14). It should be noted that rank in this sense is not quite the same as 
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grade ; if a boy ·is tenth, say, from the bottom· in a class. of ~ hundred 
his grade is 9·5, but the method i~ in principle the same as thatlof graqes 
or percentiles. The method of ranks, grades or· percentiles in ~uch a 

. case may be a very sen;ceable auxiliary, though, of course, it is better if 
possible to obtain a numerical measure. But if, in the case of a measurable 

. character, the percentiles are used not merely as constants illustrative of 

... 
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' - . . Fla. 8.2 • .:.....0give Curve for Stature (same data as fig. 6.6, p. 95). 

certain aspects of the frequency-distribution,. but entirely· to replace the 
table giving the frequency-distribution. serious inconvenience may be' 
caused, ali the application of other methods to the data is barred. Given 
the table showing the frequency-distribution. the reader can calculate 
not only the percentiles, but any form of average or measure _of dispersion 
that has yet been proposed, to a sufficiently high degree of approximation. 
But given only the percentiles, or at least so few of them as the nine 
deciles, he cannot p8.1;S back to the frequency-distribution, and thence to 
other constanh, with any degree of accuracy. In all ca.<;es of puQlished 
work, therefore, the figures of the frequency-distlibution should he given; 
they are-absolutely fundamental. . · . ' 

· SUMMARY. 

1. The standard deviation a is defined by 
. . 

. 1 · . 
. a•-_NS(x1

) .. .; ; 
• ,. -t . . • I 

where z is the deviation from the arithmetic mean. a' is,'Called 'the 
•• \"ariance." · · · · · 

2. The root-mean-square deviation 8. about a point· • .f is de?ned by-

. ··=1sa•> . 
wnere 'is the deviation from A.. 
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3. If M -A =d, then 
s 1 =a1 +d1• 

4-. For grouped data the variance should be corrected by subtracting 

~;. where h is t~e width .of the class-interval, provided that (a) the 

frequency is continuous, and (b) that it tapers off to zero in both directions. 
5. The s.d. is the minimum root-mean-square deviation. 
6. The mean deviation is defined as 

. '.1 
m.d. = NS< I f 1). 

7. The m.d. is a minimum about the median. 
8. The quartiles are the values of the variate which divide the total 

frequency into 4o equal parts ; similarly, the deciles divide it into 10 equal 
parts and the percentiles into 100 equal parts. · 
.j 9 .. The quartile. deviation, or semi;interquartile range, is defined as 

Q= Q3- Ql ·. 
2 .. 

10. For symmetrical or moderately skew distributions, 
I . 

m.d. =0·8a and Q =0·67a approximately. 

n; For the majority of such distributions 99 per cent. of the total 
frequency lies within a range of 6a, 7·5 m.d. or 9Q. 

EXERCISES. 

8.1. Verify the following for the data of Table 6.7, page 9-i (in continuation 
ofthe work of Exercise '7.1):-

Stature in Inches for Adult Malee bom in I 
England. 8Qotland. Wales. Ireland. 

Standard deviation (uncorrected) . 2·56 2·50 2·35 2-17 
Mean" deviation 2·05 1·95 1-82 1-69 
Quartile deviation . . . 1·78 1·56 1-46 1·35 
Mean deviation/standard deviation 0·80 0·78 ()-78 0·78 
Quartile deviation/standard deviation. 0·69 0·62 0·62 0·62 
Lower quartile. . 65·55 66·92 65·06 66·39 
Upper .. . 69·10 70·04 67·98 69·10 

~-

8.2. Find the standard deviation, mean deviation, quartiles and semi
interquartile range for the data in the last column of the table of Exercise 6.6, 
page 111 (in continuation of the work of Exercise 7.3). 
__ Compare the ratios of mean and quartile deviations to the standard devia
tion with those stated in 8.21 and 8.2• to be usual for moderately skew 
distributions. 
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8.3. Using, or extending if necessary, your diagram for Ex~reise 7.5, page 132, 

find the median and upper quartile for incomes subject to sur• or sup~r-tax. 
Find also the 9th decile (the value exceeded by 10 per cent. of incdmes only). 
8.4. Find the quartiles of the distribution of Australian marriages given in 

Example 8.3, and find _the semi-interquartile range. 
. 8.5. Find directly the standard deviat.ion of the natural numbers from 1 to 10,' 
and hence '·erify equation (8.10). · · . 

8.6. Show that, for any distribution, the standard deviation is not less than 
the mean deviation about the mean. 

I 8.7. Show that, for a .J-shaped distribution witli the maximum frequency 
towards the lower values of the variate, the median is nearer to Q1 than to Q3 • 

· 8.8. Firid the mean and standard deviation of the following numbers (1) with
out further grouping, (2) grouping the numbers by fives (40-, 45--, 50-, etc.), 
(3) grouping by tens (40-, 50-, etc.):- . · 
~~~~~~~~~~~~~~~~~~ 

: 69, 69, 69, 71, 75, 75, 76, 76; 78, 80, 82, 82, 82, 8~, 82, 83, 84, 
.. 86, 88, 90, 90, 91, 91, 92, 95, 102, 127~· 

8.9. ·Apply Sheppard's correction to the standard deviations Calculated in 
Exercises 8.1 and 8.2 above. · 

8.10. (Continuing Exercise 7.9, p.132.) Supposing the frequencies of values 
0, 1, 2, 3,.' • • of a variable to be given by the terms of the binomial series - ,, 

:. · n(n-1) 
q", nq,._tp, lT, .... ~p•, 

where p +q=l, find the standard deviation. 
- 8.11. (Cf. the remarks at the end of 8.20.) The sum of the deviations (with

out regard to sign) about the centre of the class-interval containing the mean 
(or median), in a grouped frequency-distribution, is .found to be S. Find the 
correction to be applied to this sum, in order to reduce it to the mean (or median) 
as origin, on the assumption that the observations are evenly distributed over 
each class-interval.· Take the number of observations below the interval 
containing the mean '(or median) to be nu in that interval n 1 and above it n 3 , 

and the dib-tance of the mean (or median) from the arbitrary origin to be d. • 
8.12. (\V, Scheibner, ."Ueber Mittelwerthe," Berj._chte der kgl. siichsischen 

GeseUschaft d. JVissenschaften, 1873, p. 564, cited by Fechner, ref, (103): the 
second form of the relation is given by G. Duncker ("Die Methode der Variations
statistik"; Leipzig,1899) as an empirical one.) Show that if deviations are small 
compared with the mean, so that (z/M)• and higher powers of ;ef~l may be 
neglected, we have approximately the relation . . , , 

G~M(1-~). 
where G is the geometric mean, lll the arjthmetic ·mean and a the standard 
deviation: and consequently to the same degree of approximation llf1 - G• = a•. 

8.13. (Scheibner, loc. cit.) Similarly, show that if deviations are small 
comvared with the mean, we have approximately 

H=M(l-~) M• 
H being the harmonic mean. . , 

8.14. l''ind the coefficients of variation of the height distributions of Exercise 
8.1 (using the uncorrected values of the s.d. as given). . · 

8.15. Show that if a range of six times the standard deviation covers at 
least 18 class-intervals, Sheppard's correction will make a difference of less than 
0·5 per cent. in the uncorrected value of the standard deviation. 



CHAPTER 9 • 

. MOMENTS AND MEASURES OF SKEWNESS 
AND KURTOSIS. . 

Moments. . . 

9.1. In considering the calculation of the. mean and the root-mean-

square deviation we have defined, in passing, the quantities ~S{f~) and 
1 . 

0 

· • I . 

NS{f~2) as the first and se~ond moments about the value A, f being as 

:·before the value X- A, i.e. the excess of the variate value X over the value 
· A. The first moment about the mean is -zero, and the second mo;nent · 
. about the mean is the variance (8.5). · 
' In generalisation of these definitions we now define the nth moment 

about A as ILn'• where 

(!>.1) 

J The moments about .the .mean, which are of particular importance, 
we write without dashes, so that 

... 
(9.2) 

From these definitions we have : 

p.0' = P.o = ~S(f) = 1 since fO and :xG = 1 J 
1) . 1 ·t 

'"" ii p./ =NS(ff) =~-A =d. 
P-1 =0 . 

1 . ~ 

~a'=NS(Jfl)=u•+da_. \ 

#La =u• ; 
These results we have already seen. 
9.2. The word "moment" derives from Statics, and we may direct 

the attention of the student who js familiar with moments of forces to the 
fact that the sum S(Js") is divided by N in the definition above. This 
amounts to a !ilight departure from the Statical practice, and some writers 
refer to what we have called "moments " as " monwnt-coefficients " in 
order to keep this fact in mind. In Statistics, however, no confusion is 

·-likely to arise from the use of the briefer form " moments." 
The expression " moments " is also used by some writers to denote 

exclusively the moments about the mean, except in the case of the first 
154 . 
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moment,·which is zero about ~h~ m~an, and !hich,_ therefore; j.s un..'aer
stood to be related to the ongm under consideration at the moment. 

·We shall not adopt this praetice. · · ' _ '-

Moments about the Mean in terms of Momi.mts about Any_Point. 
9.3. 1'"e have, by definition, 

lienee, 

and . 

~=X -A=(X -Jf)+(M -A) 
- . =•+d . 

•, 
f~"=f(z+d)• · 

S(f~") =5{/(z +d)"} 

No~, by the binomial theoretn, 

(z+d)"=.r" +"<;d.r--1 +"Cad1r"-1 +. ~ • +d• 
Hence, 

• S(ff') = S(fz") + •C1dS(Jr--1 ) + "Cad1S(j.r-1 ) + • • • + d"S(f) 

Dividin~ by N we get: 

. . (9.3) 
Similarly, 

and 
S(f.E") =S{f(E -d)•} 

, •l"d , +"C ,It I . . • ( l)"d" p.,. ""p.. - "1 p. •-1 .... p. 11-l - • • • + - (9.4) 

These useful relations txpress the moments about the mean in term8 
of those about an arbitrary point A, and vice veraa. 

In particular we have: 

Ifn=l, 
PI'""PI +d=d 
PI =PJ'-d=O . . 

· from (9.3) 
from (9.4.) -

"which are simply the relation 111-A =d ""another form. . ' 
If n =2, 

P.a' =PI + 2dJLl + dl 
. ·=p.,+d1 =a1 +d1 

• PI = JLa' - 2dJL1' + d1 

""PI' -2d1 +d' 
=PI' -d• 

The~oe are th~ relation p.,.' = a• + d•. 

If n=3, 
~·.=PI +3dJLa +3d1p. 1 +d"' 
=~ +3dPI +d' .• 

P~=PI' -3dJL1'.+3d1JL1' -dl 
=PI' - 3dJL1' + 2dl • 

·• -

from (9.3) . 

from (9.4) 

from (9.3) 

from (9.-1) 

(9.5) 

{9.6) 



156 

lfn=4, 

THEORY OF STATISTICS. 

p.,' = p., + 4dp.3 + 6d2p.1 + 4d3p.1 + d' 
= p., + 4dp.8 + 6d2p.1 + d4 • 

p., = 11-.' - 4dp.8' + 6d2p.1' - 4d3p.1' + d' 
· = p.a' - -tdp.8' + 6d2p.1' -3d' 

Calculation of Moments. 

from (9.3) 
(9.7) 

from (9.4) 
(9.8) 

9.4. The calculation of moments of the third and higher prders is 
similar to that of the first and second. For grouped data we regard the 
observations as concentrated at the mid-points of the intervals ; we choose 
a convenient arbitrary origin A, find the moments about it and use the 
relations (9.3) and (9.4} above to find the moments.about the mean; we 
use a check on the arithmetic similar to that of 8.10; and we have under 
certain conditions certain Sheppard. corrections for grouping. 

In practice we rarely require to ascertain moments higher than the 
fourth. Indeed, moments of higher orders, though important in theory, 
are so extremely sensitive to sampling fluctuations that values calculated 
for moderate numbers of observations are quite unreliable and hardly ever 
repay the labour of computation. · 

9.5. There are various checks in use for the arithmetic of calculation. 
We shall use a generalisation of the simple identities of 7.12 and 8.10. 
In fact, we have · 

and hence, 

Similarly, 

S{f(E + 1)4} =S(f{') +4S(fga) +6S(f{1) +4S(f{) +N 

and so on. . 
Thus, in calculating S(f{") we also find S{f({ + 1)"}, and this, together 

with the sums :of lower orders, will give us a ready check on the work. 
This check is sometimes known as the Charlier ~heck, after C. V. L. 

Cliarlier, the Swedish Statistician . 

. Example 9.1.-d,ntinuing .our work on the height distribution of 
Table 6.7, page 9+, let us find the third and fourth moments of the distribu-
tion about the mean. _ -

In almost all practical work we require the first and second moments 
.as a matter of course. It is therefore best to proceed systematically in 
t~ computation of the various moments by setting out the arithmetic in 
tabular form a.s on opposite page. 

From this table we have : ' 

sun = 8,763- 8,584 = 179 
S(/{1 ) 56,809 
S(f{S) = 119,391 -117,622 = 1, 769 
S(f{') = 1,182,061 
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CALCIILATlON oF FIRST 'Foua MoMENTS of the Distribution of Heigjts. 
of Table 6.1, p. tl4. . 

Height, f. ,: ft. /(HI). ft•. J.(t+l)•. · te•_. /(HI)•. It"· lnehea. 
--------------- _....__ 

, 
57- . 2 -IO - 20 - I8 ~~ 162 - 2,000 - 1,458 20,000 
58- 4. -9 - 36 _: 32 256 - 2916 : ~~g 26,244 
59- I4 - 8 - 112 -. 98 896 686 - 7:168 57,344 
60- 41 - 7 - 287 - 246 2,009 1,476 - 14,063 - 8,856 . 98,441 
6I- 83 - 6 - 498 - 415 2,988 2,075 - I7,928 -10,375 107,568 
62- 169 - 5 - 845 - 676 4,225 2,704 - 21,125 -10,8I6 I05,625 
63- 394 -4 -1,576 -1{82 6,304 3,546 - 25,216 -10,638 100,864 
64- 669 -3 -2,007 -1, 38 6,021 2,676 - I8,063 :""'· i,352 54,189 
65- 990 -2 -1,980 - 990 3,960 99Q - 7,920 - 990 15,840 

-- ---
66- 1,223 - 1 -1,223 -4,995 1,223 ~ - 1,223 -55,335 1,223 --- ·-67- 1,329 0 -8,584 1,329 - 1,329 -117,622 1,329 --66- 1,230 1 1,230 2,460 1,230 4,920 1,230 9,840 1,230 
69- 1,003 2 2,I26 3,I89 4,252 9,567 8,504 28,70I 17,008 
70- 646 3 1,938 2,584 5,814 10,336 I7,442 -41,344 52,326 
71- 39~ 4. I,568 1,960 6,272 9,800 25,088 49,000 I00,352 
72-! 2fll 5 1,010 1,212 5,050 7,272 25,250 43,632 126,250 
73- 79 6 474 553 2,844 3,871 17,064 27,097 102,384 
74- 32 7 224 256 1,568 2,048 I0,976 16,384 76,832 
75- 16 . 8 128 I44 1,024 I,296 8,I92 11,664 65,536 
76- 5 9 45 50 405 500 3,645 5,000 32,805 
77- 2 IO 20 22 . 200 242 • 2,000 2,662 20,000 

1- --· ------
Total 8,585 - \ 8,763 13,759 56,809 65,752 119,391 236,653 1,182,061 

As a check on S(/t3 ) we have: 

. S{ff8) +8S(ff1) +8S(ft) +N 
= 1,769 + 170,427 + 537 + 8,585 . 
=181,818 . 
=S{JU +l)s} 

As a check on S(ft') we have : 

S(R') +4S(ft8) +6S(ff1 ) +.4S(jg) +N 
=1,182,061 +7,076 +340,854 +716+8,585 
= 1,539,292 . 
-S{f(g +I)'} 

We have then: 
. 1 1 179 
d == p.1 = NS(fg) = 8,585 "" . 0·020,8tm,s2 

1 56,809 
Jl-a = . 8,585 

I . - 1,769 
Jl-a = 8,585. 

1 1,182,061 
p., = 8 585 .. 

' 
Jl-z = Jl-z

1 
- d• 

1=6·616,805 

6·617,239,87 
... 

0·206,057 ,08 

= 187·689,108,91 
·• 

. ' 

/(H1)'. 

I3,122. 
16,384 
33,614 
53,I36 
51,875 
•43,264 
31,914 
10,704 

990 
' -

1,329 

19,680 
86,103 

165,376 
245,000 
261,792 
189,679 
131,072 
I04,976 
50,000 
29,282 

1,539,292 
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From equation (9.6): 

'fLa = fLa' :... 8dfLa' + 2da 
=0·206,057,08 -0·413,9U,67 +0·000,018,13 

. = - 0·207,839 

From equation (9.8): 

p,, = p,,' - 4dp,3' + 6d2fL1' - 8d' 
= 137·689,108,91 - 0·017,18.f.,21 + 0·017,260,51 - 0·000,000,57 
=:= 137·689,185 

which gives us p,1, fLs• p., in unit~ based on class-intervals, i.e. inches. 

Example 9.2.-To find the moments about the mean of the distribution 
of'Australian marriages of Table 6.8, page 96. 

Until the last stage we work in class-intervals of 3 years. As in 
Example 8.3, page 140, we take a working· mean at 28·5 years. 

C..u.~uLA.TION OF THE FIRST Foua MoMENTS o/IM. Distribution of Marriagl'll 
· of Table 6.8, p. 06. · 

Hid- I value 
of f. t. /E. I /(H1). jt•. /(t+l>"· , .... /("+1)". ft'. /(t+l)'. Inter-

vals, 
Yeam. 

---- - --- ------
16·6 294 -4 - 1,176 - 882 4,704 2,646 - 18,~16 - 7,938 76,264 23,~U 
19·5 10,995 -3 - 112,985 -21,990 98,956 . 43,980 -296,865 - 87,000 89(1,596 176,920 
22·5 61,001 -2 -122,002 -61,001 244,004 61,001 -488,00ij - 61,001 976,016 8l,tJ01 

-·--
25·6 78,054. -1 - 73,064 -83,873 73,064 - - 73,064 -166,899 73,064 -----28·5 66,501 0 -1129,217 66,501 - 56,601 -876,743 66,601 - 68,5(11 - S3,'478 31-5 33,478 1 83,478 66,956 133,912 33,478 267,824 83,478 636.648 
34·5 20,669 I . ,41,138 61,707 82,276 185,121 164,652 655,363 !t~9,11)4 1,666.0!•11 
37-i 14,281 8 . 42,8·&3 67,124 128,629 228,496 385,687 913,98-i 1,l.i6,76l 3,655,~36 
40·5 9,320 4 37,280 46,600 149,12<1 233,000 596,480 1,166,000 2,385,9~0 6,8:J6,ftUO 
43·5 6,236 0 31,180 37,416 155,1100 224,496 779,500 1,346,976 s.~n.;oo 8,0Ml,Mo6 
46·5 4,770 8 28,620 83,390 171,720 233,730 1,030,320 1,6:16,110 6,1H1,920 11,4i•:t,770 
49-5 3,620 7 2o,s4o 28,960 177,3ijl) 231,680 1,241,660 1,~63,440 s,sn,s2o 14.<!27,620 
62·6 2,190 8 17,520 19,710 140,160 177,390 1,121,280 1,996,510 8,970,240 H,3ti8,o90 
65·6 .1,665 9 14,895 16,550 134,055 160,600 1,206,495 l,Oa.l,OUO 10,8od,4oa ltS,i.bll,(l(lt) 
58·5 1,100 10 11,000 12,100 110,000 133,l(J0 1,100,000 1,464,100 11,01!0,000 lb,l06,10fl 
61-1> 810 11 8,910 9,720 98,010 1U,640 1,078,110 1,399,sgo 1l,M9.210 16,N6,160 
64·ii 649 12 7,788 8,487 93,456 109,6~1 1,121,47ll 1,425,~[)3 13,457,664 18,636,0H9 
67·6 487 13 6,381 6,818 &2,303 96,452 1,069,93Y 1,336,328 13,909,207 18,7Ud,59:i 
70·6 326 14 4,890 63,896 73,350 894,644 1,100,2b0 12,523,616 16,5U3,7i>O 4,564 
73·6 211 16 3,165 3,376 47,476 54,016 71ll,l26 8ti4,256 10,tilli,87S 13,b28.U961 
76·6 119 16 1,904 1,0~3 30,464 M,39l 487,424 6M,ti47 7,798, 7M4 9,93!l.999 
79·6 73 17 1,2U 1,314 li1,U97 23,662 3o8,649 4:!0,736 6,097,033 7,6ti3.~·hJ 

82·5 27 18 486 613 8,748 9,747 167,464 1oo,193 ll,~34,3o2 3,MH,6"7 
86·6 14 19 . ll66 280 6,034 6,600 96,026 u~.ovo 1,ij24,4~4 i,2to,ovo 
88·6 6 20 100 105 2,000 ll,206 40,000 46,306 ijUO,liOO »72,405 

---- - ------ ---~ 
Totals 301,786 - 318,049 47~,490 1,166,838 2,63o,ll87 13,676,105 19,991,056 137,306,1621202,091,761 

From thi~ table we have : 

S{f~) = 318,049 -229,217 = 88,832 
S(J~I) # 2,155,838 
S{f~3 ) = 13,675,105-876,.143 =. 12,798,362 
S(J~4) · = 137,306,162 
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As a check on S(/f) we have: .•. 

S(/f) +N =88,832 +301,785 =390,617 
=S{f{f+1)} • . 

Similarly, for S(ff1): 

S(ff1) +2S(ff) +N =2,155,838 + 177',66-1 +301,785. 
. = 2,635,287 . 

=S{f(f+l)l} 

· As a check on S(f~) ; . ..._ . 

S(ff') +3S{ff1) +3S(ff)+N 
= 12,798,362 +6,467,5U +266,496 +301,785. 
=19,83-1,157 

· =S{f(f + 1)3} 

As a check on S(ft') : .. ·r 

& S(/t') +4S(Jf3) +6S(j[1 ) +4S(/t) +N 
. = 13f ,306,162 + 51,193,448 + 12,935,028 + 355,328 + 301.785 . 

=202,091,751 . • 
=S{Jlf +I)'} 

Hence, about the working mean : 

d = P-1
1 = 3~8;~825 0·294,355,253 

' 
·, . 2,155,838 71 62 115 

JLJ =· 301,785 • 43' 2' ; 
1 12,798,362 

8 873 867 l'a = 301,785 = 42"40 , ' . 

I= 137,306,162 = 454•980 071!: 1)19 
p,, 301 785 . J ~ • 

For momenta about the mean: 

JLJ = ,.,.,: -d• =7·056,977 
l'a =JLa' -3dp,; +2d'=36·151,595 
p,, = JLt - 4dp,1' + 6d•p,; -3d'= 408·738,210 

These are expressed in clas&-intervals, which are units of three yeai-s. 
If, as we rarely do, we wish to t.xpress the resulta in other. units, say ouf'· 
year, we must multiply the first moment by 3, the second by 31, thf' third' 
.by 31, the fourth by 3', and so on ; e.g. . 

JL'a"""7·056,977 x9=63·512,79· ~. · 

In this and the preceding example we have retained more di!,;.,.ls than· 
are probably necessary, but the stude1:t will find it as well to rc:·tain sevt'ral · 
more than appear to be required, ,;;ince subsequent work invoh ing nwlti
plieation or addition may otherwise throw. doubt on the final figures. 

9.6. · It will be evident that t:Le labour involved in ealeulating the 
third and fourth moments is very consid~rable. Calculating JUachines 
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or tables of powers are a great help, and certain tables for the specific 
purpose of computing moments ~-ill be found in '' TaLlu for Statistician8 
and BiQfTidriciam, Pari I." The student should familiarise himself "VV·ith 
the methods given in the hro examples above, since, although we shall not 
use them to any great extent in this book, moments are important in 
more ad,·anced theory. 

Sheppard Corrections for Moments. 
9.7. As in the case of the second moment, the effect due to grouping 

at mid-points of inten·als may be corrected for by formulre due to W. F. 
Sheppard, from whom they derive their name. The formulre for the 
second, third and fourth moments are as follows:-. 

hi 1 p.1 (corrected) = 1'-1 - - · 
12 

1'-1 (corrected) = 1'-1 J . 1 
P.t (corrected)=p.t-lh'fLt+ 210h• 

(9.9) 

where h is the width of the class-inten·al. H we are working in class
inten·als as units, h is taken to be unity. 

The use of these formulre is restricted to the cases which "VV·e mentioned 
in 8.11, i.e. tho...qJ in which (a) the frequency-distribution is continuous, " 
and (b) the distribution tapers off to zero in both directions. 

Ezample 9.3.-In Example 9.1 we found :. 

,.,.. = 6·616,805 
,.,..= ~0-207,839 
P.t = 137·689,185 

Applyil!g the abo\·e ~rrections, Ia being 1 : 

.,.,.. (COlT,) = 6·616,805 - 0·083,333 
6·533,U2 

1'-1 (corr.) = -0·207,839. 
P.t (corr.) =137·689,185 -3·308,-102 +0·029,167 

= 13-&·-109,950 . . -

EzantJ•le 9.4.-In Example 9.2 we have, in units of 3 years: 

p.1 = 7·056,977 

Thus: 

p.1 = 36·151,595 
P.t = -&08·738,21 

1'-1 (corr.) = 7·056,977-0·0S3,333 
6·973,6U 

p.1 (corr.) = 36·151,595 
P.• (corr.) =-108·738,210 -3·528,-&89 +0·029,167 

~ 405·238,888 

.. 

In units of one year the corrected mon"ients are ·given by multipl)ing 
by 9, 27 and 81 as before. · · 
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~- and ,..coefficients.- , · . , • 1 · · · . 

9.8. Certain quantities calculated from the moments about t1ie mean"v 
are of particular importance in statistical work. We define 
-------·--· -- ·- -I 

Pl=ei:. 
1-'aa 

p.~~ 
•P., 

and two further quantities : 

Yl""' +Y/Jt 
l-'4- 81-'a1 

'YI = fls - 3 = I 
. 1-'• 

(9.10) . 

(9.11) 

(9.12) 

(9.13). 

The reason for the introduction of these arbitrary-looking quantities will 
appear in the sequel.l · - · • · · - . · 

It is to be noted that these four coefficients Me all pure numbers and. 
as such. are illdependent of the scale of measurement of the variable ; for 
since p.,. has the dimensions of (variable )•, 1-'a' has the dimensions (variable )6 

and so has p.t, and hence their quotient has dimension zero, i.e. is a pure 
number 0 and similarly for the quotient of 1-'& and 1-'a•· ·-

E:rample 9.5.-Let us calculate f11 and · f11 for the distribution of 
Example 9.1. · . · · 

We have, using the corrected values of Example 9.8: 

1-'' 
/11 c: j£:• 

( - 0·207889) 8 . 

= (6·533472)8 

= 0·043197 =0·000155 
278·889 . 

p. = ~-'•. 
- 1-'a 

13.£·40!)95 
42·68662 

=3·149 

• 

Ezample 9.6.-Similarly, in the _data of Example 9.2, using correeted 
values: _ (36·151595 )ll • / 

p, = (6·973644)8 

•.. =3·854 
. 405·238888 

fla 7 ( 6·973614) a 
=8·333 

• In gc:neral, Karl Pearson ddinea r 
11 

P rs!la.+e 
aa+J =-f.la•+l 

P Jla•+• 
.,. = Jla"+l 

.\· 

11 
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It should be noted in this last example that, since the· coefficients are 
pure numbers, it does not matter whether we work in units of three years 
or of one year. · · 

Measures of Ske~ness. . 
9.9. The departure of a frequency-distribution from symmetry has a 

certain interest, and several measures have been devised to peqnit of the 
measurement of this skewness. Such Jbeasures should (a) be pure numbers, 
so as to be independent of the units in which the 'Variable is measured, and 
(b) be zero when the distribution is symmetrical. 

9.10. Three such measures deserve mention. In the first place, we 
can define 

Sk. (Qa-.Mil-(.Mi-Qt) Qt+Qa-2.Ui 
ewness . 2Q ~ 2Q 

This can be put in the form : 

( Q8 -lUi)- (.Mi..:.. Q1 ) 

Skewness ( Qa -lJJi) + (.Mi _ Q
1

) 

{9.14} 

{9.15) 

f..e. the skewness ik taken to be the difference of the quartile deviations from 
the median divided }?y their sum. It is clearly a pure number, for both 
numerator and denominator have the same dimensions, and it is zero when .,; 
the distribution is symmetrical. It varies from -1 to + 1.1 

This is a rather rough-and-ready measure which might, however, be 
useful if we were using the senti-interquartile range as a measure of dis
persion and were un~ble or unwilling to calculate the standard deviation. 

9 .11. The most common measure of skewness is Pe~rson's, defined by 

J 
1\I'ran -1\Iode 111 -111 o 

Skewness= St d d d . t' an ar eVIa 1on a 
{9.16} 

This evidently is a pure number and is zero for sy~etrical dis
tributions. 

9.12. The calculation of this coefficient of skewness is subject to the 
inconvenience of determining the position of the mode. 'Ve may circum
vent this difficulty in several ways. In the first place, for distributions 
which are obviously not too skew we may use the empirical relation of 7 .1.7. 
·\Ve then have: 

Sk . 3{1\Iean -Median) 
ewness =Standard deviation • (9.17) 

Secondly," for a large class of curves .ot, which the/ moderately skew 
humped curve is a close approximatio~ the ltkewness of equation {9.16) 
is given exactly by 

(9.18) 

· . . . . Q1 +Q3 -2Mi 
1 In the lOth and preVIous editions of this book the measure Skewness= Q 

was suggested, i.e. twice the measure (9.14). The above form has the advantage that . 
its limits are -1 and + 1. 
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'Ye may, therefore• take this to be an approximation to the valu, wven by 
equation (9.16}. - . • ·. . · . " 

It should be noted that the measures (9.U} and (9.16) are positive if. 
the longer tail of the distribution lies toward the higher values of the 
variate (the right) and negative in the contrary case. This accords with 
the anticipatory remarks of 6.20. The measure (9.18) is to be ·regarded 
as without sign. · . · · · . ' ·· . · 

-Limits of the Measures of SkeW'ness. . ·. 
9.13. _We have already remarked that the measure given by equation 

(9.U) lies between -1 and + 1. There is no limit in theory to the measure · 
(9.16) or its approximation (9.18), and this is a slight drawba9k. But 
in practice the value given by equation (9~16) is rarely very high, and for 
moderately skew single-humped curves is usually less than unity. 

- · . l\lean -Median . . . 
It has been shown that the quantity St d d d . t' lies between .. an ar ev1a wn , ·. 

the limitS -1 and + 1, JJ.nd the measure (9.17) therefore lies between -3 . 
and +3 (s~ ref. (161)). ~In practice it rarely approaches these limits. 

Ezampze 9.7.-Let us once again consider the height distribution of 
Table 6.7, v.illlch has been already discussed in this chapfer (Examples 9.1, 
9.3 and 9.5 ); · · · 

We have: 
Mean (Example 7.1, p. 116} · =67·46 inches. 

S.d. (corrected, Example 8.4, p. 141) = 2·56 inches · 
1\Iedian (Example 7.3, p. 121) . =67·47 inches 

Q1 (Example 8.9, p. 148) = 65·71 inches 
Q3 (ibid.) =69·21 inches 
Q (ibid.) = 1·75 inches 
P1 (corrected, Example 9.5, p. 161) = 0·000155 
p. (ibid.). =. 8·149 

The mea~;ure of skewness (9.14) is, then, 

Sk=g1 + Q3 -2Mi 
2Q . 

65·71 + 69·21- (2 X 67•47} 
=--- 2·x1·75 
= -0·006 

We can clearly place no. reliance on this figure. Tl~e median and 
. quartiles were obtained by methods of approximation which ,we cannt>t 
·expect to give accuracy to the second decimal place. We can only 

conclude, therefore, that so far as the measure (9.14) is "Concerned there 
is no significant skewness. · .- · ' 

The measure (9.18) gives: 
Sk= 0·012.£x6·U~ · 

2(15·745 -0·001-9) • 
0·012J. X 6·149 

2x6·7H 
=0·006 

.! 
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Here again the skewness is extremely small, and is, in fact, almost 
equal to the value given by (9.14). 

If we take the measure (9.17) we get: 

Sk = B(lll -llli) 
u 

-0·03 
= 2·56 
= -0·012 

This value is suspect because we have determined the mean and the 
median only to the second decimal place, but clearly the value is small.· 

We conclude that there is only very slight skewness. At this stage we 
cannot say whether such small skewness is significant, but it is at least 
probably attributable to sampling fluctuations 

E:xample 9.8.-For the marriage data of Examples 9.2, 9.4 and 9.6 
_ it will be found that, using the working mean as origin : 

and 

Mean = 0·2944 
Median= - 0·4018 

Ql = -1·4568 
Q8 = 1·2316 

u (corrected) (Ex. 8.5) = 2·6408 
. {31 =3·854 

{31=8·333 
The measure (9.14) is: 

Sk = ( Qa -.Mi)- (.lUi- Ql) 
( Q3 -llli) + (Mi- Q1 ) 

1·6334 - 1·0550 
1·6334 + 1·0550 
0·5784 

The measure (9.18) is: 

=2·6884 
=0·22 

V3·854(11·333) 
·Sk- 2(41·665 -23·124 -9) 

1·963 X 11·333 
2 X 9·541 

=1·17 

The two are very different, as we .might expect, but both indicate 
strong positive skewness. As a matter of interest we may compare the 
value (9.17}, which gives 

3 x0·6962 
Sk= 2·6408 -

=0·79 
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Kurtosis. · l ' : 
9.14. The coefficient {11 or its derivative Ya is used to measure a 

property of the single-humped distribution, known as. kurtosis (Kvpro,., 
humped). · · ·· · . · 

We take as the standard value of p, the number 8, for reasons which 
will appear when we study the so-called" normal" curve (10.24). ·This 

. _ cur~e is approximately of the shape given in . fig. 6.5, page 98. C~rves 
with values of {11 less than 3 will, compared with .~his, be flat-topped, 
and are called platykurtic (r~iirv'>, broad, + KVpr&,.). Curves with values · 
greater than 8 \\ill be peaked more sharply, and are called leptokurtic 1 

(.\£rT0.., narrow, +~n•pro~) •. "Student" gives an amusing mnemonic for 
these names : Platykurtic curves, like the platypus, are squat with short 
tails. Leptokurtic curves are high with long tails like the kangaroo~ 
noted for .. lepping " ! , . . · 

E:xampk 9.9.-In the height distribution of Examples 9.1, 9.3, 9.5 
and 9.7: 

• ... 
. 

/11 =8·149 
, y2 = {18 - 8 = 0·149 

Hence the eun·e is slightly leptokurtic .. 
. On the other hand, in the marriage distribution of Examples 9.2~ 

9.4, 9.6 and 9.8: 
\ . · · /11 =8·833 

ra=5·333 

and the curve is very leptokurtic. 

Seminvariants. 
9.15. We may conclude this chapter by referring briefly to a· set of 

quantities similar to moments which have some theoretical and practical 
importance. These a.re Thiele's seminvariants. · · · 
· The seminvariants are defined by a rather complicated mathematical 

·expression which we shall not here reproduce. For present purposes it 
is suffident to note that the first four seminvariants may be expressed as 
simple functions of the first four moments. In fact we have : 

(9.1Q) ... 
In particular, about the mean, .... 

• . (9.20) 

. 
1 Thes~ term~ are due to Karl Pearson and appear to have been given for the first 

tune in Bwmetr1ka, vol. 4, 1905-6, pa~e 169 et seq. By a slip le-ptokurto11i11 is there 
inadvertently applied to distributions for which (11<8. . .-
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9.16. ·These relation! are used in the calculation of the seminvariants, 
the moments being first ascertained in the manner of the earlier sections 
of this chapter. For instance, the first four seminvariants of the height 
distribution which has served us as an example are, about the mean, 

A1 =0 • 
A1 =6·616805 
A.= - 0·207839 
At= 137·689185 -3 X {6·616805)1 =6·34286 

if we take uncorrected values of the moments. 
· 9.17. The seminvariants owe their name to two very remarkable 

properties. In the first place, all seminvariants except the first are 
independent of the origin of calculation. The moments vary according 
to the point about which they are calculated, which ·makes it necessary 
to specify the origin A in speaking of them. The seminvariants, on the 
other hand, do not, so that it is unnecessary to specify any value A in 
giving their values; the sole exception to this rule is the first seminvariant, 
which is the same as the first moment. 

Secondly, if the scale of measurement; of "the variate is altered by 
multiplying all values by a constant a, the nth seminvariant is multiplied 
by a". Thus, in the height distribution, if we change our scale to centi
metres instead of inches, and so multiply all values of the variate by 2·5-1, 
the seminvariants in the previous sec~ion are to be multiplied by 2·5-1, 
2·541, 2·543, 2·544, respectively. 

Sillll\IARY. 

1. The nth mom-;;nt about the point A is defined as 

where f :oX~ A, and X is the value of the variate. 
2. The nth moment about the mean is written ~·· 

3. ~ .. =~ .. • -•c;d~~-t +"C,.d1~~-~- ••• +( -1)-+1d" 
where 

JLa = JLJ1 -3d~.· + 2d3 

~· = ~·· - 4dJLJ' + 6d1~·· -3d' 

4. Sheppard's corrections for the moments are:· 

h• 
~~ (corrected) = JLa - 12 
~(corrected)~~~ 

1 
~' (corrected)=~' -11&1~1 + 240h' 
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5. PI =/.tt 
. ~.ta' ... 

P 
' . p., -3~1 

)'a= a-3= 1 
. • . #La 

6. Pearson's ~1ea8ure of skewness is given by 

Sk _ -Mean .:.. Mode · 
-Standard deviation 

which, for a large class of curves, is equal to . · • · 

vp;_(p., +3) 

-· 2(5p1 -6P1 -9) 

1. U the standard deviation is not known, a rough measure of skewness 
is obtained by taking .. .. Sk~ Qi + Q, -2Ui 

·. 2Q . 

. 8. Distributions for which /11 > 3 are said to be leptokurtic ; those for 
which Pa < 3 are platykurtic. · . 

9. The first four seminvariants, in terms of the moments about the 
mean, are:. 

\ .\1 =0 

. -'• = /.ta 

"· = /.ta .\c = p., - 3 /.ta• 

10. -The seJllinvariants are independent of the origin of calculation, 
except the first, which is equal to the .mean. 

EXERCISES. 
. . . 

9.1. Find the first four momenta about the mean of the distribution of 
malea in the United Kingdom according to weight given in Exercise 6.6, page 111. 
(Correct your values for grouping.) · 

Hence find Pa and p. and measure the kurtosis of the distribution. 
9.2. For the same distribution find the three measures of skewness, approxi· 

mating to the mode by the empirical relation of 7.27. . , , 
9.3. Find the fin;t four momenta about the mmn, the values of Pu p., and 

the three measures of &kewness for the following distribution (llf'e table, p. 168). 
(Apply Sheppard's corrections.) . · . 

9.4.. In the data of Example 9.1, group the individuals by intervals of three 
inches (57-, 60-, etc.) and calculate. the first four momenta about the mean. 
Compare your resulta with those of Example 0.1, (a) before Sheppard's corrections 
are. applied, and (b) after Sheppard's rorre<:tions are applied. . · 

9.5. Find the third and fourth momenta about the mean of the binomial 
.series: 

r~(n-1) · . ·:. 
q•, nq•-1p, -172q-•p•,. • , . :Where p +q =l! 

(continuing the work of Exercise .s.Io, p. 153), 
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191$ Curot C/(Usiji~d acmrding lo IMir Yitld of Milk. (Data from J. F. T<X"her, "An 
InveRtigation of the 1\lilk Yield of Dairy Cows;• Bim~Ktrika, voL 20B, 1928, 
pp. 105-244.) 

Yield of Milk Yield of Milk 
(gallone per week). Number of (gallon. per week). Number of 
(Central Value of Cows. (Central Value of Co we. 

Interval.) Interval.) 

8 1 23 214 
9 6 !. 153 

10 13 25 112 
11 - 33 26: 58 
12 '71 2'7 35 
13 151 28 13 
14 I 

236 29 15 
15 339 30 4 
16 499 31 - 5 
1'7 552 32 .2 
18 . 585 33 1 
19 586 - 34 1 
20 496 
21 448 Total 4912 
22 I 284 

9.6. The first four moments of a distribution about the value 4 are - 1·5, 17, 
-30 and 108; find the moments about the mean and the origin. 

9.7. Show that for a symmetri~l distribution all moments about the mean 
of odd order are zero. . 

9.8. Show that for any distribution {11 >.I. 
9.9; Calculate the second, third and fourth seminvariants of the distribu

tion of Australian marriages of Example 9.2, (a) from the moments about the 
mean, using equation (9.20), and (b) from the moments about the value 28·5, 
using equation (9.19); and hence verify that the values of the seminvariants 
are independent of the origin of calculation. (Use uncorrected values of the 
moments.) · 

9.10. Show that 
d=A1 

a•=fi. . 
.l. ,, = al 

:t. 
Ya= la• 
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THREE · IMPORTANT THEORETICAL l>ISTRIBUTIONS
THE BINOMIAL, THE NORMAL AND THE POISSON. 

Theoretical Distributions. 
1 0.1. In the examples of frequency-distributions wb,ich we have given 

in Chapter 6 and subsequent chapters we have been careful to take 
data from observation and experiment. It is possible, however, starting 
with certain· general hypoth~es. to· deduce mathematically what the . 
frequenc~-"Jistributions of certain universes should be. Such distributions 
we shall call theoretical. , · . · · · 

JO.l. ifhere are three theoretical distributions which, from their 
historical interest as well as their intrinsic importance, occupy a position 
in the forefront of statistical theory. They are, in the order of their dis
covery, the· Binomial (due to James Bernoulli, circa 1700), the Normal 
"(due to Demoivre, but more often associated with the names of Laplace . 
and Gauss, who discussed it at the close of the eighteenth and the beginning 
of the nineteenth centuries}, and the Poisson (due to S.D. Poisson, who , 
published it in 1837). · ;' . · 
· These three are, so to speak, the classical distributions. Certain others 
were discovered during the ninE:teenth. century, but it was not until the. 
end of the century that there began the second period of stati!;tical dis
covery •·hich has since given us a wealth of theoretical distributions. Even 
this latest crop depends to some extent on the properties of the first three, 
ar1d particularly of the Normal Distribution. The three therefore form, 
historically and logically, the starting-point of the theory of particular 
distributions, and in this chapter we propose to give an account of their 
main properties. · 

The Binomial Distribution. 
10.3. If we may regard an ideal coin as a uniform. homogeneous 

circular disc, there is nothing which can make it tend to fall more often on 
the: one side than on th~ oth_er ; we ~ay ~xijt, therefore, that in any long 
senes of throws the com ~11 fall Wlt~ Cit face uppermost an approxi-
mately e!Jual number of times, or With, ·heads. uppermost approxi· 
mately half the times. Similarly, if we may regard the ideal die as a 
perfect homogeneous cube, it will tend, in any long series of throws, to fall 
with each of its six faces uppermost an approximately equal number of 
times, or with any given face uppermost one-sixth of the whole number of 
times. These results are sometimes expressed by saying that the chance 
of throwing heads (or tails) with a coin is 1/2; and the chance of tlnowin" 
six ~or anr other face) ~ith a _die is 1/6. _To avoid speaking of such 
particular mstanccs as cmns or diCe, we shall m future, using terms w hicb 
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have berome conventional, refer to an event the ch:mce of success of 
which is p and the chance of failure q. Ob,;ously p +q = 1. 

10.4. We '\\ill now assume that the events in a number of trials are 
all indep<>ndent, i.e. that the chances p and q are the same for each ennt -./ 
and remain constant throughout the trials. The case rorresponds to the 
tossing of perfect coins or the throwing of perfect ~ice. 

Suppose now we take a number of sets of n trials and count the numfx>r 
of successes in each set ; for example, we might toss a coin ten times for 
each set, and observe the number of heads in each set of ten. In general, 
there will be some sets with no successes, some with one success, some with 
two successes, and so on. Hence, if we classify the sets according to the 
number of successes which they contain we shall get a frequency-dis
tribution •. Table 6.15, page 107, gives such a distribution for some dice
throwing experiments. 'Ye shall now see how, on the assumption of 
independence of successive events to which we have just referred, the 
nature of this distribution may be theoretically determined. 

10.5. F,or the case of single events we expect in N trials to g~t Xp 
successes and Nq failures. 

Suppose now we take N pairs of events, i.e. two to the set. There will 
be X q cases in which the first event is a failure, and, in virtue of the in
dependence of the eyents, among these J.Yq there will be X q x q failures, and 
Nq xp successes, ofthe second event on the average. Similarly, of the Xp 
cases in which the first event was a success, the second event "'ill, on the 
average, be a success inN p x p and a failure in Np x q cases: Hence there 
will be Nq2 cases in which both events are failures, 2)/pq cases with one 
success and one failure, and Np" cases in which both are successes. 

If we now take N sets of three events, we see that, of the X q1 cases in 
which the first two events were failures, Nq1 x q '\\ill give a third failure 
and N q" x p one success; of the 2Npq cases, 2Npq1 will give two failures 
and a success and 2Np'q one failure and two successes; and of the Xp1 

cases, Np1q will give one failure and two successes and ]t,-p1 will give three 
successes. Hence the number of sets with 3 failures, 2 failures and 1 
success, 1 f'~lure and 2 successes, and 3 successes are, respectively, 

Nq3, 3Nq1p, · 3.Nqp1, Np1 

10.6. From these results it is evident that the frequencies of O, 1, 2, 
• successes are given 

for one event by the binomial expansion of N ( q + p) 
for bi.'O events ., ., ., X(q + p)1 

forthreeevents , · , •• :f(q+p)3 

.In general, for n events the frequencies of successes inN sets are gin•n 
by the successive terms in the binomial expansion of N(q+p)•, i.l'. 

{ 
n(n- 1) n(n- 1 )(n- 2) } 

N q• + 'UJ•-1p + q•-"p' + q"-'p3 + ••. 
. 1.2 1.2.3 

This is the so-called Binomial Distribution. 
· - -· ·Example 10.1.-If we take 100 sets of 10 tosses of a perfect coin, in 
. how many cases should we expect to get 7 heads and 3 tails 't ' 

Here P = l. 'l = l 
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Hence, the_ numbers of successes o, 1, .• _. 10 are the terms in lOf(l +!)1°, 

i.e. 1oo{(~Yo + 10. (~Y(~) + 
11°.":(~Y(~Y + •.. } . · c _ 

The term giving 7 successes and 3 failures is : 

100 X 10C7(1)7(l)3 

·10. 9. 8 1 . 
= 100 • 1 • 2 • 3 • 210 

8000 
= 256 

= 1~ approximately 

Example 10.2.-In the previous example. in how many cases should 
we expeet to get 7 heads at least'? As before, the numbers ·or successes 
are the terms in · ·· · · 

\ . .~ 100{ . 10. 9 } 
\\ - ·: 210 1 + 10 + 1:2 +. . • . 

, ~e. requir~ the sum of t~rms with 7, 8, 9, 10 successes. Our expected 
1 number is, then, 

100{toc +toea· + IOCe +toe } 
210 7 10 . . 

_100{10. 9 • 8 10. 9 10 1} 
- 21° 1. 2. 3 + 1. 2 t 1 +. 

= 100(176} 
210 

1100 
= 64. 

= 17 approximately 

General Form of the Binomial Distribution • 
../ 10.7. The form of the binomial distribution depends (1) on the vaiues 
of p and q, (2)·on the value of the exponent n . 
.,. If p and g are equal the distribution is evidently symmetrical, for p 
and g may be interchanged without altering the value of any term, and 
consequently terms· equidistant from the two ends of the series are equal. 
v If, on .the other hand, p and g are unequal, the distribution is skew, 

The following table shows the calculated distributions for n = 20 and 
values of p, proceeding by 0·1, from 0·1 to 0·5, When p =0·1, .cases of 
two successes are. the ·most. frequent, but cases of one success almost 
equally frequent : even nine successes may, however, o.ccur about once 
in 10,000 trials. Asp is increased, the position of the maximum frequency • 

i gradually advances, and the two tails of the distribution become more 
nearly equal, until p =0·5, when the distribution is symmetrical. Of 
course, if the table were continued, the distribution for p = 0·6 would be 
similar to that for q = 0·6, but reversed end for end, and so on. 
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TAJILB 10.1.-T""'-f of the Binomial &rir• 10,000 (q + p)• Jar Valur.t nf p 
from 0·1 to 0·5. (Figvrr.t gi-cm to the ~arut unit.) 

Number of p=O·l p=0·2 p=0·3 p=O·f p=0·5 
8uccesees. q=0·9 q=0·8 q=0·1 f=(}-6 f=0·5 

0 121" 115 8 - -
1 2702 576 68 5 -
2 28.'\2 -13fl9 278 '!" 31 2 
3 1001 20!'i-l 716 123 11 

I 

• 898 2182 1304 3.')0 f6 
5 319 1746 17il9 746 148 
6 89 1091 1916 1244 370 
7 20 545 1643 1659 739 
8 • 2?-> 1144 1797 1201 
9 : 1 74 6M 1597 1602 

10 - 20 308 1171 1762 
II - 5 120 710 1602 
12 - 1 39 355 1201 
13 - 10 146 739 
14 - - 2 49 370 
15 - - - 13 148 
16 - - - 3 46 
17 I - - - - II 
18 - - - - 2 
19 - - - - -
20 - - - - -

10.8. If p·=q, the effect of increasing n is to raise the mean and I !ncrease ~he dispersion. If pis ~ot equal to q,_ how~ver, not. only does an 
mcrease m n raise the mean and mcrease the d1spers10n, but 1t also lessens· 
the asymmetry ; the greater n, for the same values of p and q, the less the 
asymmetry. Thus, if we compare the first distribution of the abon table 
wit~ that given by n = 100, we have the following:-

TABLE 10.2.-T""'-f of the Bintm~ial Srriu 10,0(}(} (0·~ + 0·1)118• (Figura git-m 
to the ruaresl unit.) 

X umber Number Number 
of Frequency. of Freqllf'ncy. of Frequency. 

Sncoe&8611. Succesees. Succe88e8. 

-

I 0 8 IUS 16 193 
I 3 9 1304 11 106 
2 16 10 1319 18 54 
3 59 II 1199 19 26 
4 159 12 988 20 12 
5 339 13 743 21 5 
6 596 u 513 22 2 

I 7 889 . 15 327 23. 1 

I ! 

· The maximum frequencies now occur for 9 and 10 successes, and the two 
" tails " are much more nearly equal. If, on the other hand, n is reduced 
to 2, the distribution is : 
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Number of 
s~ 

0 
1 
2 

Frequency. 

8100 
I800. 

IOO 
and the maximum ~uency is at one end of the range. 

- •173 

The tendency towards symmetry may be seen from fig. IO.I, in which 
~r-r-r-r-r-r-r-r-r-r-r-r-.-.-~~~~~,-, 

Fla. 10.1.-Frequeocy-polyguoa ofthe Bin.om.ial (Q-9+Q-l)'l for Various Values of n. 

the binomial (D-9+0·I)• has been drawn for nrious values of n. See 
also 10.11 below. 

Constants of the Binomial Distribution. 
10.9. We proceed to find the lower moments of the distribution 

X(q +p)•. 
Taking an arbitrary origin at 0 ~ucces.es, we han the. successive 

de\·iations f as 0, I, 2, • • • n, and hence, · 
P-J1 -= (q• X 0) + (•C1q-1p X 1) + (•C:fl-l.pl X 2) + • •,_ • + (p• X n) 

=p{nq,._'+n(n-I)q•-lp+ ••• +np•-•} -
-=11p:q,._l +("-I )q•-'p + ..• + p-•} 
=llp(q+p)-1 . . 

Xow, q+p=I , 
Hence, p.1' =tip v 

That is. the mean Jl is np. ·. 
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\Ye have, further, • . . 
l£z1 =(q" xO) + ("C1q"-· 1p xi)+ ("~zqn-tpl x2 1) + ... +(p" xn2) 

3(n -I)(n -2) 
=np{q"-1+2(n-:l)q"-'p+ 

2 
q"-_apt+ ••• +np-1} 

The expression in brackets is the first moment of the binomial ( q + p )"- 1 

about origin -I, and hence is equal to (n -I)p +I. 
Hence, 

/ l'a' =np{(n -I )p +I} 

It may also be shown in a similar way (but we omit the proof) that 

l'a' =np{(n -I)(n -2)p3 +3(n -I)p +I} 
JL,., =np{(n -I)(n -2)(n -3)p8 +6(n -I}(n -2)p' +7(n -I)p +I} v 

10.10. From the~e results we may find the moments about the mean. 
-We have: 

fta = JLa' - d' 
=np{(n -I)p +I}- n1p 1 

=np(I-p) 
=npq . . 

Hence we have the important result that 

,.· ..Ar-P' .y-
•/ /. ~·... u = npfJ. • ., 

10.11 •. Similarly, it will be found that 

JLa=npq(q-p) 

JL,=3p2qln'+pqn(l-6pq) 
Hence, 

JLa' (q-p)' 
pl = ftaa = npq 

fJ "' 3 l-6pq .-..._ f 2 = fta1 = + P'l'~ , . ../ . 

(10.I) 

(I0.2) 

(10.3) 

(10.5) 

10.12. Thus the binomial distribution has mean np and standard 
deviation v' npq. It is instructive to note that {J1 and ({J1 - 3) are both of · 

order!. Hence, as n becomes larger, the distribution tends to symmetry n . 
and zero kurtosis. 
· . The values of {J1 . and fJz for some values of p and q and range~ of n are 
~hown in Tables 10.3, 10.4 and 10.5. 

From an inspection of these tables it will be seen that ewn for an 
. extremely small value of p the binomial tends to zero {J1 and zero kurtosis 
for values of n well ~thin practical limits. For the symmetrical binomial 
p =q =0·5, {11 is of course zero, and fJ1 rapidly approaches 3. 

,./ 
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TABLE 10.8.-Volun of P1 and p,Jor the Binomial rvith p=0·02, q=0·98, 
· (FromM. Greenwood, Biomdrika, voL 9, 1913, p. 69.) 1 

.; P1· p •• 

100 0·4702 3-4502 
200 0·2351 3·2251 
300 0·1567 3·1501 
400 O·ll76 3·1126 
500 o-oMO 3·0900 
600 0-Q784 3·0750 
700 0·0672 3·0643 
800 0·0588 . 3·0563 
900 o-o522 3·0500. 

1000 0·0470 3·0450 

• .... .. pl . Pr 

100. 0·0711 3·051.1 
200 0-6356 3·0256 

1000 0·0071. 3·0051 J 
TABLE 10.5:-Voi..U of P1 for the Binomial with p=O·S, q=O·S. 

- p •• .• 

"· 
4 2·5 
6 2-6667 
s· 2·75 .. 10 2·8 

·oo 2·96 
100 2·98 

1000 2·998 

Mechanical Representation_ of the Binomial Distribution. 
4 

. 

10.13. There is an interesting mechanical method of constructing A 
representation of the binomial series. The apparatus, which is ill'Jstrated 
in fig. 10.2, consists of a funnel opening into a space-6ay IL 1 inch in depth 
-between a sheet of glass and a back-board. This space is broken up by 
successive rows of wedges like 1, 2 3, 4 56, etc., which will divide up into 
streams any granular material such as shot or mustard aeed which is poured 
through the funnel "·hen the apparatus is held (lt a slope. ·At the foot. 
these wedges are replaced by verticals trips, in the spaces bet~en which the. 
material can collect. Consider the stream of material that comes from the · 
funnel and meets the wedge 1. This wedge is set so a~ to throw q parts of 
the stream to the left and p parts to the right (of the observer). The 
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wooges 2 and 8 are set so as to divide the resultant ~treams in the same 
propqrtions. Thus wedge 2 throws q1 part~ of the original material to tlw 
left and qp to the right, Wt>rlgc 3 throws pq parts of the original material 
tn the left and p 2 to the right. The streams pa.<>sing these wf'dges arc 
t hcrefore in the ratio of q2 : 2qp: p 2• The next row of wed~e~ i~ again se~ 

70 

so as to divide these streams in the 
same proportions a5 before, and the 
four streams that result wilJ bear the 
proportions q3 : 3q!p : 3qp 2 : p~. The 
final set, at the heads of the nrtieal 
strips, will gi,-e the stn~ams proportil·n" 
q' ; 4q3p : 6q 2p 2 : ~qp3 : p 4, and these 
streams will accumulate hetwel'n the 
strips and give a representation .,f th(· 
binomial by a kind of hi~tngram, a~ 
shown. Of course as mc.n,- ro·.,-s of 
wedges may be provided .;, may he 
desired. 

This kind of apparatus was origin-
ally devi5ed by Sir .Francis Galton 
(ref. (1i0)) in a form that gan roughly 
the svmmetrical binomial. a stream of 
shot Leing allowed to fall through rows 
of nails, and the resultant ~treams being 
collected in partitioned space~. Tht
apparatus was generalised by Karl 
Pearson, who used rows of wcJze~ 
fixed to movable slides, so that thev 
could be adjusted to give any ratio ~f 
q: p (ref. (174)). 

FIG. 10.2.~Tb~ Pt>ar.;·Ju-Galte>n 
Bi.r.omial \pparatus. 

10.14. It must not be for)lotten 
that although we have spoken in -10.12 
ot the skewness and kurtosis of the 

essentially discontinuous. This is a serious binomial distribution, it is 
limitation. 

Consider, for example, the frequency-distribution of the number of male 
births in batches of 10,000 births, the mean number being, say, 5100. The 
distribution will be ginn by the terms of the series (0·49 -r 0·51 )1°·000, and 
the standard de,;ation is, in round numbers, 50 births. The di!.tribution 
will therefore extend to some 150 births or more on either side of the mean 
number, and in order to obtain it we should have to calculate some 300 
terms of a binomial series with an exponent of 10,000 ! This would not 
only be practically impossible without the use of certain methods of 
approximation, but it would give the distribution in quite unnecessary 
detail: as a matter of practice, we should not have compiled a frequency
distribution by single male births, but should certainly have grouped our 
oLservations, taking probably 10 births as the class-inten·al. We want, 
therefore, to replac-e the binomial polygon by some continuous curve, 
having approximately the same ordinates, the curve being such that the 
area betweeu any two ordinates y1 and y1 will give the frequency of 
obsen·ations between the corresponding values of the variable z1 and .:r1• 
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Limitin~ Form of the Binomial for Large n. . 1 · 

10.15. When n becomes ·large, each term of the binomial 'becomes' t 

small. We are, however, concerned with the sum of t~e terms falling 
· within certain ranges, and these will not be small in general. . . . 

Let us consider first of all the case when p and g are equal~ The terms_ 
of the series are : · · • ' . ·. . · ·. 

N( 1 )"{1- .· n(n-1) n{n-1}(n-2)·.: } 
2 +n+ 1.2 .+ 1.2.3 · + • · · 

The frequency of m successes is 

N(l)" nl · 
· ml(n-m)l . . . . . 

. and the frequency of m + 1 successes is derived from thl~ by multi~lying ., 
it by (n:...m)/(m+1). The latter frequency is therefore greater than the 
former so long as· .• · 

or • 
_ .. , 

-- · n-m >m+1 

• J n·-1. 
'm<--

~. . .·. 2 

Suppase, fo; ~~~plicity, that~ is even, s~y equal to ,k.; ~hen the frequency 
. of k successes is the greatest, and its value is ·. _: · · . 

-::' . , N(l)tt(2k)J . . 
... \._Yo': • klkl · • · ·' · • • .(10.6)' 

The polygon tails off-symmetrically on either side of this greatest ordinate. 
Consider the frequency of k + 111 successes ; the value is 

-N(l)n (2k)l . . 
Y~- 1 {k+x),l(k-x)l·~ · <10•7> 

and therefore 
~-(k){"-l)(k-2) ••.• (k-11+1) 
y0 -;(k+1)(k+2)(k+3).,. (k+.x) . . 

(1-~)(1-~)(i ~I) ... (1_-~~~~~) 
. (10,8) •. 

. . 
Now let us approximate by assuming that k is very large, and indeed,. -

large compared with 111, so that (x/k)' may be neglected ·compared with 
. (xfk). This assumption does not involve any difficulty, for we n~ed not· 
consider· values of .x much greater than three times the standard devia~ion 
or 8Vk/2, hnd the ratio of this to k is 8/V2k, which is necessarily small 
if k be large. On this assumption we may apply the logarithmic series . 

. 81 ~· ~· log,(l +8)=8 -- +--~ + , .• 
. . 2 8 ' 

12 
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• to eve~ b».:~cht in the fraction (10.8), and neglect all terms heyonJ the 
first. To thi'i .:Iegree of approximation, 

.iog, ~= -~(1 +2.+3 +. 
.. ·y. k . 

zo(z -1) :z 
k -k 

• 

-- z 
.+z-1)-k 

Therefore, finally .,. .,. 
y,.=yoe -"i =yoe -,.. • (10.9) 

where, in the last e~-pression, the constant k has been replaced by the 
standard deviatioh a, for a 1 = kf2. 

10.16. The case when pis not equal to q may be treated in a some
what similar way but is slightly more complicated. 

As before, the frequency of m successes is 

N X "C.,.q"--p"' 

-N n! •-• .. 
- m!(n-m)!q P 

The frequency of (m+1) suceesses is derived by multiplying 

exp~ssion by : ~ ~ • .i· and hence is greater than the former if 

~-tn.E>1 
m+1 q 

this 
" 

or 
m < np-q 

Let us assur;ne that np is a whole number. Since n is going to tend 
to infinity, this really imposes no limitation on our work. 

The ma.."Ximum frequency is, then, 

Y -N n! q""p•• 
o- (np)! (nq)l (10.10) 

The frequency of pn + z successes is 

... -N . nl aq-& •.P+• 
y.,- (tip+z)l(tlq-z)!q p . (10.11) 

Hence, 
y.,= np! nq! -z ,. 

y0 (np +z)l (nq -.r)!q p 
(10.12) 

.. Kow, by an important theorem due to James Stirling (1780), if n be large, 
we have approximately 
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Applying this formula here : . 

y, ~np)""e-••vznq;;(nq)"lle-•llp• 
y,- V2(np +~)1r{np +z)•P+•c" ...... V2(nq -tr)7T(nq -z)"w-:"e-1+"q"' 

which reduces to 

... 

Hence, 

log. (Y·)= ~Cnp+m+i) iog. (1 + . .!.) 
• . Yo ·_. np _ 

-(nq-m+l) log. (1-.!.) 
- . . nq 

1 . 
+ terms ~f order n• and higher 

. . . . 1' ' 
Sine~ q + p = 1, we have, neglecting the terms of ·order 8 and higher, . n 

which. are small compared with the others when n is large: 
. . 

· (Y•) · ~· m1(pl+q1
) q -p( . lll

1 
) . 

· log. y
1 

= - 2npq + 4n1p 2q1 + 2npq -z + 3npq •• · (lO.Ia) 

Put, as before, npg = a 1, where a is the standard· deviation of the 
binomial. 'If n be large, the second term is small compared with the first. 

Further, since we need not COnSider values of ~ much greater 'than 3,. 
. . . 0'.'. . . . • . : 

if ~- p be small, we can neglect the whole ·of the .third te~ni.h On 
npq . . .. ' " . 

these assumptions we have : · 
fl. Ill. 

log 'Z!!..,. --
• Yo 2a• 

or 
... .. • ... 

"u•'before. 

'· .,_ 
. (IO.U) 
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Th~ expression .q1 =.f!~ is merely V{i1, and so we have in effect simply 
v npq 

assumed {31 small ; however much p and q differ we can always make 
V {31 as small as we please by increasing n sufliciently. 

10.17. Hence, whether or not pis equal to q, the binomial distribu
tion tends to the form of the continuous curve ((10.9) and (IO.U)) when 
n becomes large, at least for the material part of the range. As a matter 
of fact, the correspondence between the binomial and the curve is sur
prisingly close even for comparatively low values of n, provided that· 
p and q are fairly near equality. The student may care to draw the curve 
with the aid of the tables given at the end of this book (see below, 10.26) 
and compare it with some of the simpler binomials drawn to the same 
scale • 

. 10.18. The curve 
- ~ -- ~ y =Yfl! ,.1<0 

is called the normal curve. A universe classified according to a con
tinuous variate whose ideal frequency-distribution is a normal curve is 
called a normal universe. 

The applications of the normal curve are by no means limited to 
distributions of the binomial type. Before we refer to its many practical 
and theoretical applications, however, we shall give a short account of 
its main properties. 

Properties of the Normal Curve. 
10.19. The normal curv~ is obviously symmetrical about the point 

a: = 0, for its equation is independent of the sign of z. At this point the . 
ordinate has its maximum value. The mean, the median and the mode 
coincide, and the curve is, in fact, that drawn in fig. 6.5, page 93, and taken 
as the ideal form of the symmetrical curve. . 

10.20. The curve is specified completely by defining the mean 
(the origin of z), the standard deviation a and the value y0• · 

In actual practice, as, for example, when we are trying to fit a normal 
curve to given data, we are not given y0 itself, but have to calculate it 
from the fact that the area of the curve must be equal, on the chosen 
scale, to the total number of observations. For this reason we wish to 
find the area under the curve 

%' 

y=yue-»"" 

10.21. From 6.14 it will be seen that the area of a histogram, that is 
to say, the total number of observations which it represents, is given by 

r=• 
Area= S (/,) xh 

r=l 

where h is the ·width of the interval, f, is the frequency in the rth interval 
and there are tJ intervals: · 

As the histogram tends towards the continuous cur\:e the width of ~he 
intervals becomes smaller and the number of terms m the summation 
becomes larger. For the normal curve, which extends to in~nity on 
either side of the mean, the limit to which the sum tends as the mtervals 
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be~ome indefinitely sniall and the number of terms indefinitely! iar_ge· is 
\\ntten · J 

. [G)Yoe -::.lk . . / 
the sign I being. a conventional form of the summation sign s/~nd dx 
representing the infinitesimally small value of h. · ·. . '. 

. -. Thi~ ist~e notation of the integr~l calculus, and the ~uantity f_
11 

F(x }dx 

is said to be the integral of F(x) with respect to x between the limits -a 
and +b. In this book we shall not use the methods of the integral calculus, 
and accordingly it will be necessary for us to state certain results without 
proof: It will be sufficient if the student bears in mind that the process of 
integration is one of proceeding to the limit in cases of straightforward 
summation with which he is already familiar. · · · 
../ 10.22. ·The area ofthe curve . .. . . 

• 
. .. 

is then 

and this is eq~l to 

Hence the curve 

... 

y0a x V2;=2·506627y0a ~ ,~ .... 1 ""'".,. 

1 -~ 
Y=--=e sa• 

uV211' 

} 
• 

has unit area, ~nd for tltis reason the equation of the normal curve is usually 
written in the standard form . · ·• · . 

1 - =~ 
Y"'=--=t Sal (10.15J 
. uv'211' 

From this the form corresponding to a distribution of any given frequency 
is immediately written down.' In fact. if the frequency is N, the corre
sponding normal curve is 

N 
... 

-·a• . y=--=e • 
uV211' 

. • . (10.16) 
"' 

Constants of the Normal Curve. 
' 

1 0 .2.3. The !llean of the cu~ve is, as we have seen, located ~t the origin'. "' 
If we .WISh to wr1te the curve Wlth reference to some other pomt as origin 
we can do so in the form · ' 

1 - .!_(.t- m)• 
Y=--=e 2a• 

av'211' • 
where m is the excess ~f the mean over ~he value chosen as origin. 

(10.17~/ 
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·The standard deviation of the curve is u, and the variance is acconlinO'ly 
! ' ~ u. 

The higher moments are calculated by the processes of the integral 
calculus. Since the nth moment about the mean is given by 

\ 
\ p.,. = S(fx") 

. we:.aa~e, proceeding to the limit, that the nth n~oment of the normal cur\'e is 

If n is odd this vanishes, as it must for any symmetrical curve. If n is even 
we have: · 

and hence, 

• 

= ·L 3. 2u4= 3a' 
p., 2.2.2 

10.24. From these results it follows that 

fJ1 =r1 =o } 
Ps =3, 'Ya =0 · 

(10.18) 

(10.19) 

.. {10.20) 

i.e. the normal curve has zero kurtosis. This is, in fact, the origin of the 
choice of the apparently arbitrary value 3 in the definitions of platy- and 
lepto-kurtosis (9.14). 

\Ve may also state without proof the important result that all semin
variants of the normal curve of orders higher than the second vanish 
identically. 

10.25. The mean deviation of the normal curve is 

,. 2 ~
-

' u - =0·79788 ••• u 
7T 

This is the origin of the rule given in 8.21, that the mean deviation is 
approximately -} of the standard deviation. The result is true of the 
normal curve, and very approximately true of curves which do not differ 
markedly from the normal form. The rules that a range of 6 times the 
standard deviation includes the great majority of the observations (8.12) 
and that the quartile deviation is about i of the standard de,·iation (8.24) 
were also suggested by the properties of the normal curve (see below, 
10.28'and 10.29). 

Ordinates of the Normal Curve. 
10.26. The normal curve is. so important that tables have been 

prepared to give (1) the ordinate of the curve corresponding to any given 
1 -~ . 

value of ;x, i.e. the values of • 1-e -»,and (2) the areas of the curve to the 
. . v2w 



THE NORl\IAL DISTRIBUTION. 183 

right and the left of any given ordinat~, i.e. th~. values ·of ~} . J,. e-~d~ 
v 27T "' 

~nd _} J"' e-~dx .. Table I ofthe_Appen~gives~he~alues.oftheordinate. 
.. vh~ . · . 
for values of fl1 proceeding by steps of one-tenth of the standard deviation. 
The values are, of course, the same for positive as for negative .values 

--of a:. l\Iore extended tables will be found in "Tables for Statisticians and 
Biometricians, Part I." · · 

The ordinate of any normal curve corresponding to a specified value of 
the variate is easily obtained from the table, as may be. seen .from the 
following example :- ' · . 

E:romple 10.3.-To find __ the ordinate of the normal curve given by - . ----- . 
. 10,000 -~ 
y=-=e ss ... 

4V27T 

corresponding to the variate value' {11 = 7. 
Here• · 

' :. · N=lO,OOO, a=4 

Altering the value of a is equivalent to altering J;he. scale of m. The 
ordinate in this curve conesponding to fl1 = 7 will be the same as the or~nate 
of the curve of unit s.d. corresponding to fl1 = f = 1·75. · 

\ 
From Appendix Table 1, when . 

{11 =1·8 y =0·07895 
fl1=1·7 . y=0·09405 

Hence, by simple interpolation, when 

fl1=1·75 y=0·08650. 

The ordinate is 10,000 times this ·. · . 

=865 
. . . 

The true value, to the nearest unit, obtained by interpolation to second 
differences, or direct from more extended tables, is 863. . " · 

Area of the Normal Curve-the Probab.ility Integral. 
10.27. A table of the areas of the normal curve cut off by ordinates 

at specified values of x is given in Table' 2 of the Appendix; As in the 
case of the table of or~inates, this table is applicable to all normal curves, 
whatever the value of their standard· deviation, the· areas cut off on 

1 -~ . . . . •. . . 1 . - zO 

y= _1-e 2 byordinatesatxbeingthesameasthosecutoffony= _1-e a.;l 
V27T , ~V27T 

by ordinates at ~. l\lore extended tables will again be f~und in "Tahles for 
- a ~ . . . 

Stalisticians and Bi01netricians, Part 1." · · · · 
v The area of the normal curve to the left of the ordinate at x or, it may 
be, between the ordinates at 0 and {11-conventioils differ-is sometimes 
termed the probability integral or the error function •. These names 
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arise from the use of the function in the theory of sampling and the theory 
of errors respectively. · . 

E.xample 10.4.-Find the frequency represented by the smaller area of 
. 10 000 "" - . 

the curve y= v' -e-fi cut oH by the ordinate at IIJ=7. 
4 211' 

llere · 
•IIJ 

u=4, -=1·75 
(1 

For ~ = 1·7 the greater fraction of area = 0·9554S 
(1 . 

For ~=1·8 
" .. " 

=0·96407 
(1 

Hence, by simple interpolation, for 

~.= 1·75 the greater fraction of area =0·95975 
(1 

Hence the smaller fraction = 1 - 0·95975 

0·04025 
• 

and multiplying this by 10,000, we have the· frequency represented, i.e. 
402·5. 

More exactly, by second differences or more extended tables, the value 
is 400·6. 

Example'J0.5.-A hundred coins are thrown a number of times. How 
often approximately in 10,000 throws may (1) exactly 65 heads, (2) 85 
heads or more, .be expected ? · 

The number of heads is given by the terms iJ?- · 

10,000(! + l )100 

The standard deviation is v' 0·5 x 0·5 x 100 = 5, N = 2000, and the 
(1 

exponent is large enough for us to be able to take the distribution as 
normal. ... 

The mean number of heads is 50, and 65 -50 = 8u. The frequency of a 
deviation of 3u is given at once by Appendix Table 1 as 2000 x 0·00443 
=8-86, or nearly 9 throws in 10,000. A throw of 65 heads will therefore 
be expected about 9 times. 

The frequency of throws of 65 heads or more is given by Appendix 
Table 2, but a little caution must now be used, owing to the discontin
uity of the distribution. A throw of 65 heads is equivalent to a range 
of 64·5-65·5 on the continuous scale of the normal curve, the division 
between 64 and 65 coming at 64·5. 64·5 -50'= +2·9u, and a deviation 
of +2·9u or more will only occur, as given by the table, 187 times in 
100,000 throws, or, say, 19 times in 10,000. 

___ 10.28. From the table of areas we can find approximatdy the position 

of the quartiles. In fact, we require-the value of~ which will give us 0·7.> 
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as the greater fraction of the area. From the table we see tha~ this value 
must lie between 0·6 and 0·7. Simple interpolation gives . . · 

{ 
'2425}. . . •. 

. 0·6 +0·1-- =0·675 
8229 ' 

... 
and m~re exact interpolation gives 

Quartile deviation =0·67U8975a (10.21)' 

This is the origin of the rough rule that the semi-interquartile range is 
usually about i of the_ standard deviation. ' · 

10.29. We also observe from the table that an ordinate 3a from the 
mean cuts off an area 0·99865 of the whole. The smaller fraction left is 
therefore 0·00135 of the whole. Since the curve is'symmetrical, it follows. 
that a range of 3a on each side of the mean will cut off all but twice this, 
i.e. all but 0·00270 of the whole. This again is- the origin of the rule that 
such a range includes t_!le grea~ majority. of the observations. 

· The Normal Distribution as an Error Distribution. · 
-~ -

10.30.: We have deduced the normal ~istribution as a linuting form 
of the binomial distribution when n, the exponent, is large.-· This, however, 
is only one of the ways in· which the normal curve occurs in statistical 
literature, and Gauss was led to it by a totally different line of reasoning, . 
viz. by inquiring what law of distribution errors of observation· should 
obey in order to make the arithmetic mean of a set of measurements the 
most likely value of the " true ., magnitude. · · 

10.31. Suppose we take a universe of measurementi.of some magni
tude, and consider the universe of deviations from the true value. Let us 
further suppose that any de\iation is the result of the operation of an · 
indefinitely large number of small causes, each producing a small perturba
tion. Let us assume that the small perturbations are all equal, and that 
positive and negative perturbations are equally likely. · . ·. 

· Then it may be shown that the distribution of errors II) about the true 
value (taken as zero) is given by the law . 

~ 
1 - i:\ 

Y=-=e '" 
aV211' 

}~or, if 3 is the amount of the perturbation, and ·positive 'and neg~tive 
perturbations are equally likely, the expected frequency of m positive 
errors and n- m negative errors in N observations i~ the term (I )"'(t )"-="' 
in N(l + i)", and the actual error ismS- (n -m)8 = (2tn-n)8. ·Simi arly, 
the frequency of the actual error {2(m + 1) -n}8 is given by the term in 
(l )"*1(i ),._.,._1 ; and so on .. Proceeding to the limit, as. n becomes large, 
we get the stated result precisely as for the limiting process of 10.15. · 

10.31. In the theory of errors it is more customary to write · 

1 
~-- j 2a• 

so that the distribution becomes 
h . I 

. y- v':-·~ .. (1o.22) 
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h is called the "precision" ( cf. 8.16 ). As h increases, the normal curve 
becomes narrower and hence h measures in a sense the closeness of the 
bulk of observations to the true value. 

The Occurrence of Normal Distributions in Nature. 
10.33. It was found at an early date that error distributions followed 

.the normal law more or less closely, though it must be ad!Ditted not with 
any great exactitude. The fact that many universes, particularly bio
metrical universes such as those classified according to height and weight, 
lie distributed round the mean in a humped curve which is not unlike the 
normal curve, gave rise in the first half of the nineteenth century to keen. 
interest. · Although the term " normal " had not then been applied, there 
appears to have been a feeling that the curve was the ideal to which most 
distributions should in some degree attain, and that" an explanation was 
demanded if they did not. The normal curve was, in fact, to the early 
statisticians what the circle was to the Ptolemaic astronomers. 

10.34. Workers during the latter half of the nineteenth century were 
more careful not to let their theories outrun their facts, and as the data 
accumulated· it became evident that the normal distribution was no more 
usual than any other type. In fact, rather the reverse, so that the occur
rence of a normal distribution was to be regarded as something abnormal. 
"The reader may well ask," says Karl Pearson (ref. (502)}, "is it not 
possible to find material which obeys within probable limits the normal 
law? I reply, yes, but this law is not a universal law of nature. We must 
hunt for cases." · ·- . 

The belief in the validity of the normal law in the theory of errors died 
harder. · "As M. Lippmann once said to me," says Poincare, in his "Calcul 
des Probabilites," "Everybody believes in the law .of errors, the experi
menters because they think it is a mathematical theorem, the mathe~ 
maticians because they think it is an experimental fact." 

10.35. One must; however, be careful not to go too far in seeking to 
avoid an over-emphasis on the practical occurrence of the normal curve. 
A certain number of distributions, more particularly those relating to 
measurements on plants and animals, are approximately of the normal 
form. As an example, we may take the distribution of Table 6. 7, which 
we show in fig. 10.3 fitted with a normal curve. 

Place of the Normal Curve in~Theory. . 
. 10.36. Strangely enough, the realisation.that the normal distribution 

did not correspond to any widespread natural effect did not diminish its 
importance in statistical theory, On the contrary, the normal distribution 
has increased in importance in recent years. It is instructive to consider 
why this is so. . 

In the first place, the normal curve and the normal integral have 
numerous mathematical properties which make them attractive and com
paratively easy to manipulate. \Ve have, for instance, already seen that 
the moments and seminvariants of the normal curve are expressible in 

- simple forms. 
1 

· 

'·Now the normal form is reasonably close to many distributions of the 
humped type. If, therefore, we are ignorant ?f the exac~ natu~e of a 
humped distribution, or know the form but find It mathematiCally mtract-
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able. "'c may assume as a first appro"ximation that the distribut'ion is no~mal 
and see where this assumption leads us. It is not infrequently found that 
a universe represented in this way .is sufficiently accurately specified for the 
purposes of the inquiry. · · ' ·. . · . 

10.37. Secondly, we shall find, when we come to consider sampling 
distributions, that many of the universes which occur are of the normal 
form, either exactly or to a satisfactory degree of approximation. 

10.38. Thirdly, the theory of the normal curve has been applied to 
the graduation of curves which are not normal. The Scandinavian school, 
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FIG. 10.3.-The Di_stribution of Stature for Adult Males in the British Isles (fig. 6.6, p. 95), 
fitted with a Normal Curve. To avoid confusing the figure, the frequency-polygon 
has not been drawn in, the tops of1the~rdinates being shown by small circles. 

whose interests are mainly actuarial, have developed a technique··ror. 
expressing a given distribution in the form of an infinite series whose terms 

. . ~ . . 
depend on the quantity e -~ and certain dependent functions. · 

10.39. Fourthly, distributions which are not normal can sometimes 
be brought to a form approximating to the normal by a trans~ormation of 
the variate. A universe which is skew wit~?- respect to a variate m, for 
instance, might be normal when we take v'w as the variate. 'We gave an 
example of this kind of effect in Exercise 6.6, page 110,. where we saw that a 
universe of men classified according to their weight was skew, whereas a 
universe classified according to height (which we may take to be roughly 
proportional to the cube root of the weight) is ne~rly normal. · · · 

The Poisson Distribution. . . . .. ' . , 
10.40. We have found that the limit to the binomial would . .,he a 

normal curve even if p and q were unequal, provided that n were increased 
sufficiently to make (q - p) small compared with v' npq. '\ve now pr~pose 
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to find the limit to the same series if one of the chances, say q, becomes in
definitely small and n is increased sufficiently to keep nq finite, but not 
necessarily large-practical values are in fact usually small. 

Let us suppose that q is nry small and that qn is equal to the finite 
number m.· 

In the binomial (q +p)"; the term 

nl r ,._,. 

rl (n -r)I1.P 

n I (m)"( m),._,. 
=rl(n-rU ~ ·

1 -n 
= m"(1 -~)" x nl 

rl n "( m)" . (n -r)l n 1 :-n· 
(10.23) 

. .( m)" · Now the limit of 1 -; as n becomes lar~e =e-"'. 

Applying Stirling's approximation (10.16) when n is large, the term 

nl· 
(10.24) .. 

(n -r)l nr(1-~r. 
V21Tfl.e-"n" · 

Nowthelimitof(1-ft)" =e-", as we need not consider terms in which 

.. · · . _ ( r)r-1 ( m)" 
1' exceeds quantities of the !lrder v nq, and the limits of 1 - n • 1 - n 
are both unity. Hence the limit .of (10.24) is unity, and the limit of 
(10.23) is 

m"e-"' 
--rr-

10.41. Hence the successive terms in the binoinial are 

-./. 
e-"'rn . . m• 

e-ffl 

21' 

... ) (10.25) 
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-./ This expression_ is called Poisson's distributiop, or J?oisson's ex
ponential limit. It was first published by Poisson in 1837, f:>ut has sub
sequently been rediscovered by numero':ls writers. . 

• 
Constants of the Poisson Distribution. 

10.42. Taking an o~igin located at the first term of the distribution, 
we have:· 

( 
· m mil. 

=me-m I+-+-+ 
II· 21 

=m 

.) . 

~ta'=r•{o+m+(~; x2•)+(;; xsa)+ .j 
• 

-"-
~~~[ m +(~: ~2) +(;; x3 )+ .. ·.] 
=me-"'(I+~(I+I)+;;(2+I)+ •.. ) 

( 
m m 8 mil 

=me-m 1 +II +21 +• .. ·. Hn+rr+ 

=me-m(e"' +me"'). 
=m(m+l) 

It may also be shown that 

~ta' ;..fn.(m1 +3m +I) =m{(m + 1)• +m} 

"'' =m(m8.+6m1 +7m + 1) 
From these results we have immediately: 

Hence, 

v Meari=m·. 
~t1 =m(m+l)-m11 • 

=m 
a=v'm 

a 2 =m=mean 

.) 

(10.26) 

.(10.27) 

10.43. The third and fourth moments about the mean will be found 
to be 

·. t'. ', 

so that 

(10.28) 
(10.29) 

(10.30) 

• "'10.81) 
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These results :should be c~mpared with the expressions 

(p -g)l 
f11 = .npq--

fla=3+I-6pq 
pqn 

for the binomial. They are, at might be expe~ed, the limits of those 

expressions when q =~and n is large. 
n 

10.44. We may state without proof that all the seminvariants of the 
Poisson distribution are equal to m. . · 

, r 

10.45. Ta~les of the limit e-m~ for various values 'of m and _r_have 

been published by several authorities. One· such set will be found in 
•• Tables for Statisticians and Bimnetriciana,. Part I." · 

4~--~--~---r--~~~r---~--~--~---r--~--~~~ 

·3~--~~-+--~----+---~---+--~~--+---~---+--~~~ 

2 3 5 6 7 ]I) 

thl'ues of r 

_ FIG. 10.4.-.:...Frequency-polygons of the Poisson Series for Various Values of 111. 

The form of the frequency-polygon of the distribution (which, like the 
binomial and unlike the normal, is discontinuous) can be judged from 
fig:~0.4, in which the polygons for various values of m are drawn. It will 
be seen that for low .values of 111 the polygon is very skew, but that, for 
!arger values it t!'!nds towards a symmetrical form. . 
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10.46. The condition that p or q shall be small, np ornq t·emaining 
~nite! implies that in practice we shoul~ e~p~ct to ~d a P:~isson ~is;,rib~-

_, bon m cases where the chance of any mdtvtdual bemg a' sul!ccss was 
small. Such a case might arise, for example, in considering the deaths 
from a rare disease in a population, the chance of any individutt.l dying 
from it being small. · · · : ·· · ' ~ ~ · 

10.47.- Attention to the fact that comparatively rare events are not 
haphazard was first directed by Quetelet and von Bortk.lewicz. The 
latter's data of the number of men killed by the kick of a horse in certain 
Prussian army corps in twenty Years (1875-94) have become classical. 

The frequency-distribution of the number of deaths in .10 corps per 
army corps per annum oyer twenty years was : . . I 

DeathS. Frequency. 
0 109 

•1 65· 
2 -22. 
a a· 
4 J 

Here th~total number of deaths was 122, and hence the mean deaths per 
army corps p.er annum is 0·61. Taking this as m, we find th~_ following 
values for various numbers of deaths per annum :- · · 

Deaths. 

0 
1 
2 
3 
4 

Frequency assigned by 
Poisson's Limit. 

108·7 
66·8 
20·2 

4·1 
0·7 (4 and over) 

If we calculate u1 for the actual distribution, we find : 

u = 0·78, uS = 0·6079 

Hence, u1 is nearly equal to the mean, which is in accordance with theory • 
. The agreement is, in fact, very much closer than is usual. Many dis- . 
tributions are now available for the frequency of individuals who have met • 
with O, 1, 2, ••• accidents, e.g. in factories, during a given period of time, 
and more often than not. such distributions give a value of the variance. 
exceeding the mean. This state of affairs can be accounted for on the 
assumption that the individuals at risk have varying degrees of" acpident-,,. 
proneness," and the assumption has been corroborated by finding that · 
tho~e individuals who have the largest number of accidents in one .period 
are, on the whole, those who have most accidents during a succeeding 
period. · · . · · .. ~ . · · · . 

Another example of the Poisson distribution is give~ in Exercise.l0.17 
at the end of this chapter. The early instances of the distribution were 
nearly all demobrraphic, and for some time it remained more of a curiosity 
than a useful tool. In 1907, however, ·~Student" drew attention to a 
dass of hremacytomcter counts to which the distribution seemed appropri
ate, and since that time it has found several important biological applica
tions. It also appears in problems of controlling road and telephone traffic. . .. 
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Pearson Curves. 
10.48. The process of obtaining the normal curve as a limit of the 

binomial suggested to Karl Pearson an investigation into a series of 
analogous curves which may be regarded a.s limits to skew binomials or to 
distributions from a finite universe, e.g. by drawing r balls at a time from 
a bag which contains a finite number N. of black and white balls in given 
proportions. One such curve was of the form 

( IIJ)~· y =Yo 1 +;: f,s 
This set of curves, divided into twelve types, which were later regarded 
from rather a different standpoint, can be made to fit a large number of the 
distributions occurring in practice. . 
· In the curve given above, y, a and the origin can all be. obtained from 
the first three moments. For the other curves of Pearson's system, 
except some' degenerate types, the first four moments are necessary to 
specify the constants of the curve completely. The distributions con
sidered hitherto.have required in addition to the area (number of observa
tions), either the mean only (Poisson) or the mean and standard deviation 
(normal curve) to determine their constants ; but the principle of fitting 

·for the more general curves remains the same. The actual moments of 
the curves are equated to the moments expressed in terms of the constants, 
such as 'Y and a, which are to be found. For full details of these curves, 
the method of determining the type to choose and the method of fitting, 
the student is referred to Elderton's book (ref. (160)). 

SUMMARY. 

I. If the chance of the success of an event is p, and of its failure q, then, 
provided that the chance remains constant throughout the trials, the 
expected frequencies of 0, I, 2, • . . successes in N sets of n trials are the 
1st, 2nd, etc. terms in the binomial 

N(q+p)" 

2. The mean of the binomial is pn and its standard deviation is '\-1 npq. 
3. For the binomial : • 

- l-6pq 
Pa=3+-

. pqn 

4. Ir' neither p nor q is small,. the binomial tends for large yalues of n 
to theJorm ,.. 

Y =YoS- 2"" 

5. This curve, which may also be written 
N _ _.. 

is called the normal curve. 

y= • ~-e '"" 
O'V 21T 
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6. The standard deviation of the normal curve is a. Its t. hird rom_ e. n't 
is zer~, and the fourth moment is aut. Hence, 

Pa=3 

All seminvariants higher than the second are zero. 
7. In the theory of errors the normal universe is usually written: 

y =; :;;e-ll'z.4 

h = _1 
r.; being called the precision. 

av2 
8. The mean deviation of the normal curve is 

!1~¥_=0·79788 ••• a· .,. 
and the-.quattile deviation (semi-interquartile range) is 0·67448975 ••• a. 

9. A range 3a on each side of the mean of the normal curve contains 
0·9973 of the distribution. · · ·" 
./ 10. If p or q is small and one of pn, qn is finite and equal to m, the 
binomial distribution tends to the limit 

( 
m• · mr ) 

e- 1 +m +2f + •.• + r! -t ••• 

This is called the Poisson distribution. ..,; 
11. The mean of the Poisson distribution is m, and a 1 also equals m . 

. 12. For the Poisson distribution: 

'Q 1 
/-'1=8+m 

and all the seminv~riants are equal tom. 

EXERCISES. 

10.1. A perfect cubic dte is thrown a· large number of times in sets of 8. 
The occurrence ·of ali or a 6.is called a success. In what proportion of the sets 
would you expect 8 su~essea? · · ' . • . 

10.2. The following data, due to W. F. R. Weldon, show the results or" 
throwing 12 dice -'096 times, a throw of 4, 5 or 6 being called a success:-

Succeases. Frequency. Suece88ea. Frequency. 
0 'T . 847 

.1"1 .. 'T 8: 536. 
2 60 9 257 
8 . 198 10 'Tl 

" 430 11 11 
5 731 12 
6 948 

Total 4096 
13 
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Find the expected frequencks, and compare the actual mean and standard 
deviation with those of the expt•eted distribution. 

IO.a ln the previous examJJlc find the e<pmtion of the normal curve which 
has the saml' mean, standard dr,viation and total frequency as the observed 
distribution. 

Find the frl'quencies to be t•xpectcct if the distribution were represented 
exactly by the ordinates of this <'111'\'e ami compan: them with the actual 
frequencie>;. 

10.4. Assmuing that half the population are <lonsnmcrs of chocolate, so that 
the dmnce of an individual being :t conwmer b ~. and assuming that 100 
investig·ators each tuke ten individuals to sec whether they are consumers, how 
many investigators would you expect to report. that. t.hrE>e people or less were 
consumers·: 

lU.!i. An irregular six-faced die i~ tJm,wn, and the expeetation that in 10 
throws it will give five even nl!luhers is twice the expectation that it will give 
four even numbers. How many time~ in 10,000 set~ of 10 throws would you 
expect it to give no even numbers? 

10.6. If two normal universes have the same total frequency but the a of 
one is k times that of the other, show that the maximum frequency of the first 

is~ that of the other. 

1.0.7. Find graphically or otherwis(• tht· point of inflection of the normal 
curve, and show that it occurs at a distance a from the mean ordinate. 

10.8. Show that if np be a whole number, the mean of the binomial coincides 
with the greatest term. 

10.9. Show that if two symmetrieal hinomial dbtributions of degree n (and 
of the same number of observations) are so superposf'd that the Tth tcnn of 
the .one coincides with the (r + 1 )th term of thf' other, the distribution formed by 
adning superposed terms i~ a symnwtrical uinomial of degree (n +1). 

[Notc.-lt follows that if two normal distributions of the same area and 
standard deviation are superposed so that the difference between the means is 
small <'OIIIJlarcd with the standard deviation, the compound curve is very 
nearly nonnal.] 

10.10. Calculate the ordinates of the binomial1024 (0·5 +0·5)10, and compare 
them with those of the nonnal curve. 

lO.ll. If skulls are classified as dolichocephalic when the length-breadth 
index is under. 75, mesocephalic when the same index lies between 7'5 aud 80, 
and brachycephalic when the index is over 80, find approximately (assuming 
that the oi&tribution is normal) tl1e mean and standard deviation of a series 
in which 58 per cent. are stated to be dolichocephalic, 38 per cent. mesocephalic 
and ,j, per cent. brachycephalic. 

10.12. Find the deciles of the normal curve. 
10.13. \\'rite down the normal universe which has the saine mean and 

(uncorrected) standard deviation as that of the last column of Table 6.7, page 94, 
and find the mean deviation and quartile deviation. Compare the results with 
the corresponding quantities for the actual distribution. 

10.14. Proceed similarly for the skew universe of Table 6.8, page 96. 
10.15. In Exercise 10.4, if 1000 inv!)stigators each choose 100 individuals, 

how many would yon expect to report that more than 60 persons are consumers'! 
10.16'! Taking the universe of screws of Table 6.3, page 84, find the normal 

universe which has the same standard deviation and a mean of 1 ineh. 
Compare the frequehcies given by this tmiverse with the actual frequencies. 

10.17. The following data (Lucy Whitaker, ref. (190)) give the number of 
deaths of women over 85 published in The Times during 1910-12:-



TilE POISSON DISTRIBUTION. 

X umber of Deaths 
per day. 

0 
1 
2 
3 
.& 
5 
6 
1 

Frequenc~y. 

36-& 
376 
218 
89 
33 
13 

2 
1 

1.95 

Find the frequencies of tbe Poisson db-tribution which has tbe same mean as 
this distribution, and compare your results with tbe actual frequencies. For 
the purpose of this example, simple mterpolation in tbe tables given in •• Tabk8 
for Stati&liriau tmd Bimnetrician•"' is sufficient. • 

10.11. In tbe d3ta of tbe prn-ious exercise ealculate the first four semin
'"llriants~ • 



CHAPTER 11. 

CORRELATION. 
Bivariate Universes. 

11.1. In Chapters 6 to 10 we considered the members of a universe 
classified according to ~he values of a single variable; and we saw how· 
they could be grouped into a frequency-distribution whose character
istics could be described by certain constants. 'Ve have now· to proceed 
to the case of two variables, in which each member of the universe will 
exhibit two values, one for each of the variables under consideration. 

A universe of this kind is called a bivariate universe! One of our 
main topics will be the way in which the two variables are related in the 
universe. . 

11.2. If the corresponding values of the two variables 'are noted for 
each member, the 'IDethods of classification employed in the previous 
chapt~rs may be applied to both variables.· We can thus group our 4ata 
into a table of double entry, or contingency table (Chapter 5 ), showing 
the frequencies of pairs of values lying within given class-intervals. Six 
such tables are given below as illustrations- for the following variables : 
Table 11.1, two ·measurementS on a shell; Table 11.2, ages of husbands 
and their wives in marriages taking place in England and Wales in 1933; 
Table 11.3, statures of fathers and their sons ; Table 11.4, age and yield of 
milk in cows.; Tab!~ 11.5, the rate of discount and ratio of reserves to 
deposits in American banks; -Table 11:6, the proportion .of male to total 
births and the total numbers of births in the registration districts of 
England and Wales. · 

. . 
Arrays and Correlation Tables. 

·. 11.3. Each row in such a table gives the. frequency-distribution of the 
first variable for the members of the universe in which the second variable 
lies within the limits stated on the left of the row. Similarly for the 

. columns. As " columns " and " rows " are distinguished only by the . 
accidental circumstances of the one set running vertically a.nd· the other 
horizontally, and the difference has no statistical significance, the word 
array has been suggested as a convenient term to denote either a row or 
a columi1. • . 

If the values of X in one array are associated with values of' Y in an 
interval centred at Y ,., then Y,. is called the type of the array. 

11.4. A grouped frequency-distribution of the type of Tables 11.1 to 
11.6 may then be termed a bivariate frequency-distribution; but if we are 
particularly interested. in the relationship between the two variates it is 

. sometimes called a correlation table. The difference between a correla- . 
tion table and a contingency table lies in the fact that the latter term may 

. ~~ . 
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be. and: usually is, applied to tabl~ classifie~ according to unmeasured 
quantities or imperfectly defined intervals. . . .. I · : · 
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(2) Dorso-ventral diameter, ·mm. 

11.5. We need add very little to what was said in Chapter 6 about 
the choice and magnitude of class-intervals and the classification of data. 
When the intervals have been fixed, the table is readily compiled from the 
raw material by taking a large sheet of paper ruled with arrays properly 
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TABLr. 11.2.-CtJTTelatjot! brltlltf71 AI!'• nJ (1) 1/u.•hrmd and (2) Wif~ in Mtrrrial!'• ;,. 
Englar1d and Wale• tn 19.13. (l'i~JrE-8 in hundred~E-rtain naarria~E-S in "llhich no 
age Bp<'<'ified are omittE-d. Data from RE-gistrar-General"!! Statistical Rf'view of 
England and Wales for 1933, Table•, Part II, Civil.) 

(I) Age of Husband (Years). 

15- 20:- 25-130- 35- 40- 45- ln0- sa- 60- I I I I 
-- ------ 65-j~ 75- Tot&l.J 

I5- 33 189 56 8 2 - - - - - - - - 2RIJ 
20- 18 682 585 106 19 5 2 I - - - - - HIS 
25- 1 140 511 179 40 14 6 3 1 1 - - - 8!16 
30- - 11 75 101 42 20 10 5 2 I I - - 268 
35- - 2 IO 2-t 28 19 13 8 5 2 1 - - 112 
40- - - 1 5 9 H 12 10 6 4 2 1 - 64 
45- - - - 1 3 5 9 9 7 4 3 I - . 42 
60- - - - - . - 1 3 7 6 5 3 I - 26 
55- - - - - - - 1 3 5 ~ 3 I - 17 
f\0- - - - - - - - 1 1 4 3 2 - 11 
b5- - - - - - - - - 1 1 3 2 1 8 
70- - - . - - - - - - - 1 1 ' 1 3 ---- ------9 ,_2 :31531 Total 52 1024 1238 424 143 78 56 47 34 26 20 

, I 

headed in the same. way as the final table and entering· a small mark in 
the compartment corresponding to the variate values exhibited by each 
individual. If facility of checking be of great importance, each pair of 
recorded values may be entered on a_ separate card and these dealt into 
little packs on a board ruled in squares, or into a divided tray ; each pack 
can then be run through to see that no card has been nus-sorted. The 
difficulty as to the intermediate observations-values of the variables 
corresponding to divisions between class-intervals-will be met in the same 
way as before if the value of one variable alone be intermediate, the unit 
of frequency being divided between two adjacent compartments. If both 
values of the pair be intermediates, the observation' must be divided 
between four adjacent compartments, and thus quarte_rs as well as halves 
may occur in the table, as, e.g., in Table 11.3. In this case the statures of 
fathers and sons were measured to the nearest quarter-incJl and sub
sequently grouped by l-inch intervals: a pair in which tlie recorded 
stature of the father is 60·5 in. and that of the son 62·5 in. i, accordingly 
entered as 0·25/ to each of the four compartments -under the columns. 
59·5-60·5,. 60·5..:..61·5, and the rows 61·5-62·5, 62·5-63·5. 

Frequency-surface and Stereogram. ' 
11.6. The distribution of frequency for two variables may be repre

sented by a surface in three dimensions in the same way as the frequency
distribution for a single variable may be represented by a curve in two. 
We may imagine the surface to be obtained by erecting at the centre of 
every compartment of the correlation table a vertical of length proportion
ate to the frequency in that compartment, and joining up the tops of the 
verticals. If the compartments were made smaller and smaller while the 
class-frequencies remained finite, the irregular figure so obtained would 
approximate more and more closely towards a continuous curved ·!.urface -
-a frequency-surface-corresponding to the frequcncy-t·urn's for single 
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variables of Chapter 6. · The volume of the frequency-solid over any area 
drawn on i~ base gi\"es the frequency of pairs of values falling fvithin ~hat . . . . 

7H•-ili-6. -I Ill I lflll .. .:. .. r"ooollll! f: 
I lllll.llll:t .. -:i'!" 1~1111·1.,. 

81-5-82-1.1 i I J ~~ ;:':! .I I I I I I I I I I l I ~ 
0.00011101..... ....... 

- 110-Hl·ll., J I;~~" .... ~ ... I l I I I I I I I I I .., 
··1--~----------+,-1 

&t·l-40·6., I I~; 1 .. "~ -, I ,..I j I I I I I I I I : 

1 1 1 , .. ~ 1 1 1 1 1 1 1 .I 1 1 1 1 1 r 1 10 

.,. - (3) Stature ol Sua. ,.., .. 
area, just as the area of the frequency-curve over an interval of the base 
line gives the ft·equency of observations within that interval. · 

11.7. Similarly, a figure analogous to the frequency-polygon or the 
histogram may be constructed by drawing the ft·equency-distributions for 
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TABLE 11.4.-Com:lation between (I) Age in Years and (2) Yield of Milk per Week in 4912 Ayrshire Cows. (Data 
from J. F. Tocher," An Investigatio~ of the Milk "¥ield of Dairy Cows," Biometrika, :vol. 20B, 1928, pp.l0~244.) 

3 

~ 
e. 
~ 
l 
~ 
PI' 

I 
C5 _., 
~ 
2.. 
~ g 
e. .... 
= 

1 

---
8 
9 

10 
11 
12 
13 
14 
15 

. 16 
17 
18 
19 
20 . 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

. 34 
---I Totals 

3. 4. 

2 
3 . 5 
2 10 
2 25 
9 76 

11 76 
11 115 
15 149 
16 148 
11 146 
10 117 
8 97 
3 63. 
5 . 42 
1 19 
2 20 
3 10 

- 7 - 2 - -- -- -- -- -- -- -----
112 1129 

5. 6. 7.' 8. 

2 1 
1 1 3. 
8 7 1 -

17 9 5 4 
29 18 9 2 
57 38 23 9 
79 43 34 24 

119 74 59 23 
131 94 58 34 
132 83 73 49 
112 113 87 51 
107 79 . 69 51 
93 88 70 49 
63 49 45 32 
33 38 38 27 
23 34 27 19 
15 22 17 20 
13 7 4 15 
7 9 5 5 
2 1 4 2 
2 2 4 1 - - - 2 
2 1 - -- 2 - -- - - -- - -. ---------
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Chapln 6, fig. G.:., pac;e U:.l. Jjke the symmetric-al di~t ribution for tLc 
single Yariuhlt"', this is a \·ery rare form of <lis'ribution in eeunomie statistic·~, 
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· bnt approximate illustrations may be drawn fr0m anthropometry. Fig. 
11.1 shows the ideal form of the surface, somewhat trnneated, and fig-. ll.:J 
the distrihution of Table 11.3, whieh approximates t(> the ~amr~ type-
the diffC'renee in steepness i;,, of eour~e, merely a matter of scale. The 
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maximum frequency occurs in the centre of the whole distrib'1tion, and 
the surface is symmetrical round the Hrtical through the maximt~m, equal 
frequencies occurring at equal distances from the mode on opposite sides. 

TA.BLE 11.7.-Sho!ring 1M Monthly lnde.r-nNmber& of Prict& of (1) Anima( Feeding-stuffs 
and (2) 1lom~-grur.vn Oat. in England and Wale& for 1931-1935.· The index-numbers 
are based on prices in corresponding months of 1911-13. (Data from Agricultural 
Market Report for England and Wales.) 

Index of Index of Index of Index of 
.Month. Fet>ding-atoffs Oats Month. Feeding-stuffs Oats 

Price .. Price. Price. Price. 

.. 
1931 Jan. 78 84 1933 July 85 75 

Feb. 77 82 Aug. 83 79 
Mar: 85 82 Sept. 80 78 
Apr. 88 85 Oct. 78 78 
May 87 89 Nov. 80 76 
June 82 90 Dec. 83 75\ 
July 81 88 
Aug. • 77 92 '1934 Jan. 82 80 . 
SepU. 76 83 Feb. 83 91 
Oct.. 83 89 Mar. 85 87 
Nov. 97 98 Apr. 83 ·- 84 
Dec. 93 99 May 82 81 

June 85 83 
1932 Jan. 95 102 July 88 83 

Feb. . 97 102 • Aug .. 101 ,. 92. 
Mar. 102 105 Sept. 102 98 
Apr. 99 I 105 Oct. 98 94 
May 97 107 Nov. 96 94 
June 94 107 Dt-c. 98 95 
July 9-i 101 
Aug. 97 . 106 1935 Jan. 98 100 
Sept. 92 96 • Feb. 92 99 
Oct. 89. 90 ltlar. 92 96 
Nov. 00 85 Apr. 90 98 
Dt!o. oo· 81 May -· 88 97 . 

June . 86 911 
1!)33 Jan. 92 8t July 83 - 99 

Feb. 91 85 ··Aug. 80 92 
Mar.· 90 84 &pt. 81 . 90 
Apr. 86 81 Oct. 86 89 
.May 85 76 Nov . 83 87 
June 8.') 77 Dec. 82 83 

The next simplest type of surface corresponds to the second type of. 
frequency-curve-the moderately asymmetrical. Most, if not all, of the 
distributions of arrays are asymmetrical, and like the distributions of fig. 6. 7; 
the &urface is consequently asymmetrical, and the maximum does not lie 
in the centre of the distribution. This form is fairly cominon, and illustra· 
tions might be drawn from a variety of sources--economics, meteorology, 
anthropometry, etc. The data of Table 11.-i will serve as an example. 
The total distributions and the distributions of the majority of the arrays 
are a.'>ymmetrical, the rows being markedly so. The maximum frequency 
lies towards the upper end of the table in the compartment under the row 
headed .. 16" and column headed "4." The frequency falls off very 
rapidly towards the .lower ages, and &lowly in 'the direction of old age. 
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. Outside these two forms, it seems im~ossibl~ to deli~1it empirically any 
s1mple types. Tables 11.5 and 11.6 are_g~ven s1mply as Illustrations of two 

very divergent forms. Fig. 11.2 gives a graphical representation of the 
former by the method corresponding to the histogram of Chapter 6, the 
frequency in each compartment being represented by a square pillar. The 
distribution of frequency is very characteristic, and quite different from· 
that of ~ny of the Tables 11.1 to 11. i. · 
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The Scatter Dia~ram. . 
11.9. There is another method of representing bivariate dat~ graphic

ally which is particularly useful for ungro\lped data. Take, for instance, 
the data of Table 11. 7, giving the .index-numbers of prices of animal. 
feeding-stuffs and home-grown oats for each month of the years 1931-35. 
There are only 60 pairs of values, and the data cannot be grouped into 
a frequency-distribution with clllss-intervals of reasonable size without 
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FIG. 11.,.-Scatter Diagram of Index-numbers of Prices of (1) Animal Feeding-stuffs 
and (2) Home-grown Oats (Table 11.7). For the meaning of the straight lines., 
see Example 11.1, page 217. · ·. 

giving rise to irregular frequencies. We may. hQwever, proceed as 
follows :- · ,· .-, ~ · 

On squared paper take two axes at right angles, one axis corresponding 
to the variable X and the other to the variable Y (see fig. 11.4). To each 
member of the universe there will correspond a pair of values X, Y, which 
in turn will correspond to a point whose abscissa on the diagram is X and 
whose ordinate is Y. Thus the universe, when represented in this way, 
will give a swarm of points on the diagram, and we can interpret the ways 
in which these points cluster or scatter as properties of the relationship 
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bctwc<·n the two variab]t'<;. f'ig. 11. t. slJOWS the data or Ta hie )) '7 plnttetl 
in this way. It will be obsrrn·d that the poinh te11d to di ... trihutc them· 
s('lvcs so that high and low values of X corrcspond to high and low val11cs 
of Y respectively. · 

Such a figure is called a scatter diagram. 
11.10. We can also repre!>cnt a gr(•Uped bivariate frequ(·ncy table on 

a scatter diagram, though less satisfactorily and "1\ith some labour. For 
this purpose axes are taken as before and abscissre and ordinates drawn to 
correspond to the divisions of the frequency table. The diagram will then 
be divided into compartments corresponding to the compartments of the 
table. In each compartment we place a number of dots equal to the 
frequency in the eorresponding compartment' of the table. · We have, as a 
rule, no guide as to the dispo..,ition of these dots within their respcctive 
cclls, and hence it is usual to place them in some symmetrical arrangement 
so that they are, as nearly as may be, spread uniformly through the ('Clls. 

The difficulty of inserting the dots when the frequencies are large will 
he obvious, and, in fact, such a scatter diagram rarely tells us more than we 
can see from an inspection of the table itself. In contrast to this, the 
scatter diagram of the data of Table 11.7 gives a much better pi<:ture of the 
dependence of the two variates than can be obtained by mere inspection of 
the ungrouped data of the table. 

11.11. It is clear that a correlation table may be treated by the 
methods discussed· in Chapter 5, which are !1-PPlicable to all contingency 
tables, however formed. But the coefficient of contingency merely tells 
us whether two v-ariables are related, and if so, how clrn.ely. The methods 
we shall now discuss go much further than this. The numerical character 
of the variates and the arrangement of the correlation table in class
intervals of equal widths enable us to approach the problem of investigat
ing the relationship between the variates with additional precision. 

11.12. If the two variates in a contingency table are independent, 
· ~ the distributions in parallel arrays are similar (5.18) ; hence their averages 

and dispersions, i.e. their means and standard deviations, must be the same. 
In geBeral they will not be the same, and we are thus led to inquire into the 
relation between the values of the means and standard deviations in 
different arrays and the departure of the distribution from complete 
independence . 
. . 11.13. The mean is the most important constant, in general, and for 
the present we shall concentrate our attention upon it. Although the 
valut's in arrays are scattered about their respective means, it is in most 
cases profitable to inquire how the means of arrays &re related ; this \\ill 
throw a good deal of light on the important question whether high values 
of one variate show any tendency to be associated, on the average, with high 
values of the other variate. 

If possible, we ·also wish to know how great a divergence of one ,·ariate 
from its mean is associated "1\ith a given divergence of the other, and to 

- oLtain some idea of how closely the relation _is usually fulfilled. 

Lines of Regression. 
11.14. Let us then ('Onsider the means of arrays. Let ox, or be 

- two axes at right angles representing the scales of the two variates. As in 
the case of the scatt'er diagram we can plot the positions of the means; for 
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example, if the mean of a row whose variate value is centred at y1 is m1.": 
we can plot the point whose abscissa is 111 1 and whose ordinate is y1.l There 
will thus be one point corre'>ponding to each row and one to each column .. 
In pradice, to distinguish the two, the means of rows are denoted by small 
circles and the means of l'Olumns by small crosses. Fig. 11.8 shows such 
a diagram drawn for the data of Table ll.3. . 

The means of rows and the Rleans of columns wili, in general, lie· more 
or less closely round smooth curves. For example, in fig. ll.S they lie, 
very approximately, on straight lines, RR and CC in the figure.· Such 
curns are said to be curves of regression, and their equations with . 
reference to-the a."'(es OX and OY are called regression equations. If 
the lines of regression ar~ straight, the regression is said to be linear. In 
the contrary case it is said to be curvilinear. · . 

11.15. The term •• regression,. is not a particularly happy one from 
the etymOlogical point of view, but it is so firmly embedded in statistical 
literature that we make no attempt to replace it by an expression which , 
would more suitably express its essential properties. It was introduced by 
Galton in connection with the inheritance of stature. Galton found that 
the sons of fii\hers who deviate z inches from the mean height 'of all fa:thers 
themselves deviate from the mean height of all sons by less than :;r: inches, 
i.e. there is what Galton called a" regression to mediocrity." In gene1·al, 
the idea ordinarily attached to the word " regression " does not touch 

. upon this connotation, and it should be regarded merely as a convenient · 
term." . · -

11.16. If two variates are independent, their regression lines are ' 
straight_and at right angles, the means of rows lying on a line parallel to 
the axis 0 Y and the means of columns on a line parallel to the axis OX, 
for the distributions in parallel arrays are similar (see fig. ll.5). In any 
case drawn from actual data, of course, the means might not lie exactly on 
straight Jjnes, ol'i·ing to fluctuations of sampling. 

11.17. The cases with which the experimentalist, e.g. the chemist or 
physicist, has to deal, where the observations are all crowded closely 

.round a single line, lie at the opposite extreme from independence.· The 
entrit:s fall into a few compartments only of each array, and the means of 
rows _and of columns lie approximately on one and the same curve, like the 
line RR of fi~. 11.6. · · 

11.18. The ordinary case~ of statistics are intermediate between these 
two extremes, the liaes of means being neither perpendicular as in fig. 11.5, 
nor coinr·ident as in fig. 11.6. One problem of the statistician is to find ; 
expressions which v.ill suffice to describe the regression lines, either exactly 1 
or to a sati:>factory degree of approximation.·. · · -

In general this is a difficult problem, and the theory of curvilinear 
regrcs~>ion is as yet incomplete. \\'e can, however, make considerable:: 
progress by roufining ourselves to the cases in which the regression is linear. 
Cases of this kind are ntore frequent than might be supposed, and jn other 
cases the means of arrays lie so irregularly, owing to the paucity of the 
ol.,iiervations, that the real nature of the regression curve is not indicated 
and a straigl1t line v.ill give as good an approximation a.~ a more elaborate 
curve. 

11.19. Consider the simplest case in which the ·means- of rows lie 
exactly on a straight line RR (fig. 11.7). Let ..111 be the mean value of r, 
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and let RR cut M 'J!l', the horizontal through .~.11 2 , in M. Then it may be 
shown that the vertical through ..11 must cut OX in .111, the mean of X. 
For, let the slope of R R to the vertical, i.e. the tangent of the angle .111.11 R 
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or ratio of kl to 1.11, be b1, and let deviations from .Uy, .ll.r be denoted by :r: 
andy. . 

Then for any one ·row of type yin which the number of observations 
is n, S(:r:) =nb1y, and ;therefore for the whole table, since S(ny) =0, 
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S(.r) =b1 S(ny) =0. 1U 1 must therefore be the mean of X, and M. may 
a<'cordingly be termed the mean of the whole distribution. 1 · 

Knowing that RR passes through the mean of the distributiorl. we can 
determine it completely if we know the value of b1• · 

For any one row we have. 

' S(.ry) =yS(.r) =nb1y8 . 

_'.{'herefore for the whole table 

S(.ry) =b1S(y2)n =Nb1u,8 

Let us Write 

(11.1) 

Then· 

(1i'.2) 

Similarly, if CC be the line on which lie the. means of columns and b1 is 
the slope tb the horizontal, · 

(11.3) 

Now let us define 

(11.4) 

Then 

b 
Uz . d . b.. Uv 

1 =r- an 1 =r-
u11 Uz 

(11.5) 

an~ the equations of RR and CC, referred to the centre of the distribution, 
are .... _-v 

""-• .,, \ .--

Uz d I Uv .r =r-y an y =r-.r 
1
1 

u 11 'U~~:;· 
(11.6) 

and, referred to the origin o,'- .. 

(11.7) 
. . 

1 1.20. Let us now proceed to the case when the means of arrays are 
not situated on a straight line. This we shall treat by finding the next 
best thing--straight lines which are the closest f?.t to the means. 
· The expression " closest tit,'' as applied to the fitting of curves to points, 

is one which we deal with at length in Chapter 17, and it is only necessary 
to say at this stage that the straight line RR of closest fit to the means of 
rows, i.e. · · 

. . 
will be determined by evaluating a1 and b1 so as to make the expression 

. E = S{.r- (a1 + b1y)}t 
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(that is, the sum of the squares of the horizontal distant>e!'l of the points 
representing the observations from RR) a minimum. Here :r and y, 
as before, denote deviations from the respective means of X and r and 
the summation is taken over all values of :randy. ' 

We have, expanding E,. 

E = S(a1
1 ) -2S{a1(.r-b1y)} + S(.r- b1y)1 

The second term on the right vani&hes, since S(.x) = S(y) =0, and hence 

E = S(a1
1 ) + S(.x -b1y)' 

Now a1 and b1 can be chosen independently, and hence Eisa minimum 
only if S(a12) =0, i.e. . 

a1 =0 (11.8) 

Thus the line of closest fit. goes through the mean of the distribution. 
Hence, · · · 

• E=S(.x-bJY) 2 

=S(.x2 ) -2b1S(.ry) +b1
2S(y1 ) 

- s { 2 S(.xy) S(.x•)} 
-S(y} bl -2btS(y2) +S(y2) 

:-~<Y·>[{b~.- ~~:~~r + ~~::~ -{~~:~~rJ (11.9) . 

This is a minimum when the first term (a s.quare) is zero, i.e. when 

.. (ll.IO) 

which is the same as equation (ll.2). 

has 

\Ye may show similarly that the line of closest fit CC, given by 

y=a2+br 

a11 =0, 
S(.xy) 

b2 = S(.x2)' 

which is the same as equation (ll.3). 
If we regard the equation 

as one for estimating .r from y, we may take tr - a1 - b1y as an error of 
estimation, and E will then be the sum of the squares of such errors. The 
condition that E is.a minimum is then equivalent to the condition that the 
sum of squares of errors of estimation' shall be a minimum. This is one 
form of the so-called "Principle of Least Squares " (see Chapter 17). 
. 11.21. Equations (11.6) and (11.7) are thus of general application. 
If the regression is exactly linear they give the lines of regression. If the 
regression departs fi·om linearity, either owing to sampling effects or owing 
to real divergences, they give the "best" straight regression lines which • 
the data admit. We may regard the equations as either (a) equations for 
estimating an individual a: from its associated y (or y from its associated .x) 
in such a way that the sum of squares of errors of ~stimation is a minimum ; 
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or (b} equations for estimating the mt'an of the z's associated with a 
particular y (or the inean of y's associated ~ith a particular 11') in such a 
way that th.e sum of the squares of errors of estimation is a minimUm, 
each mean being counted proportionately to the number of observations 
on which it is based. 

Coefficient of Correlation. 
ll.ll. The coefficient r defined in equation (11.4} is of very great 

-importance. It is called the coefficient of correlation. · 
· r cannot exceed + 1 or be less than -1. 

For, from equation (11.9) we see that the value of E is 

S(z-bi!J}1 =S(zt)_{~~~~}• ;;;s(z1){1-r1} • ·_ : (11.11) 

But E is the suni of a number of·squares and cannot be negative. 
Hen~ · · 

. l-r1 > 0 
which proves the result. · · · · · · 

H r=.+1, the regression equations are identical, as may be seen from 
equations (11.6}, and hence the lines BB and CC coincide •. In this case it 
follows froiD (11.11) that for all pairs of values of the variates- · · 

z-bi!J=O 

~~- all values lie on a single straight iine. Thus to one value of z there 
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eorresponds one, and only one, value of y. This is the case we nwntioncd 
in 11.17, and since high \·alues of ;e correspond to high values of y, the 
variables may be said to be perfectly positively C"orrelated. 

Similarly, if r = -1, the pairs of values all lie on a single !>traight line as 
before, but high values of one will be associated with low values of the 
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Fm. 11.9.-Correlation between Age and Weekly Yield of Milk from Cows (Table 11.-6): 

means of rows shown by circles and means of columns by crosses: r = + 0·22. 
. . 

other .. In this case we can say that the variates are perfeetly negatively 
· correlated. 

Finally, if the variates are independent, r is zero, for b1 and b1 are zero, 
and the lines of regression are parallel to OX and OY. It does not follow, 
however, that if r is zero the variates are independent ; the fact that r is 
zero implies only that the means of arrays lie scattered around two straight 
lines which do not exhibit any definite trend away from the horizontal or 
the vertical as the case may be. Two variates for which r is zero may,· 
however, be spoken of as uncorrelated. Table ll.6 will serve as a ca5e 
where the variates are almost uncorrelated but by no means independent, 
r-being very small ( -O·OU) (see fig. ll.lO), but the coefficient of con
tingency C (for the grouping of Exercise ll.3) 0·47. Figs. ll.S and 
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11.9 a~ dr~11·n from the data of Tables 11.3 and 11.-t., for which r has 
the values + 0·51 and +0·22 respectinly. The· student should study 
such tables and diagrams closely, and endeavour .to accustOm himself 
to estima!ing the value of r from the general appearanc~ of the table. 
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Birtha per Thousand of All Birth& in Englarrd and \\'ales,.l881-90 (Table 11.6): 
meana of rows 1bown by circle8 and meana of columna by crosses: r= -o-ou. 

Coefficients of Regression. 
11.23. The two quantities 

b 
ra,. b ra,.. 

l =.,;-; .=~ 
• a,.. · a. . 

are called coefficients of regression, b1. beiog the re&rression of .x on y, or 
de\iation in :e conesponding on the average to a unit change in y, and b1 
being similarly the regresl>ion of y on :e. . . 

The coefficient of conelation is always a pure number, but the coefficients 
of regression are only pure numbers if the variates arc: the same in kind ; . . . 
for they depend on the ratio a,, and consequently ~n the units in which 

a, . . . . 
:e and y are measured. . 

Since r is not greater than unity, one of the. coefficients of regression is 

less than unity; but the other may be greater than unity, if~ or !!!' be 

large. 
a. a., 
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11 .24. The two standard de\·iations, 

•.=u.v'i"=r1, B11 =u11Vl-r1 

are of considerable importance. It follows from (11.11) that •• is the 
standard deViation of (z -b~f/), and similarly 811 is the standard deviation 
of (y -h.z). Hence we may regard •• and s11 as the standard errors (root
mean-s~uare erro!S) made. in estimating z from y and y from z by the 
respective regressiOn equations 

: z=b1y, · y=b.z 

•·· may also be regarded as a kind of average standard deviation of a row 
about RR, and 811 as an average standard deviation of a column about CC. 
In an ideal .case, where the regression is truly linear and the standard 
de,iations of all parallel arrays are equal, a case to which the distribution 
of Table 11.3 is a rough approximation, Is., is the standard deviation of the 
z-array and 8 11 the standard deviation of they-array. Hence '• and '• are 
sometimes termed the •• standard devjations of arrays." 

Calculation of the Coefficient of Correlation. 
11.25. 'Ve now proceed to the arithmetical work involved in calculat

ing the correlation cpefficient. 
For this purpose we use the formula (11.4 ), i.e. 

t . 
• r = _s (_:ry_) s ( :JJY) 

]iu.,u. ~S(z1)S(y1) . 
The ca~ulation of S(z1 ), or Uzo and of S(y1 ), or u., proceeds exactly 

as in Chapter 8. The only expression of a novel type is the quantity 
1 .. ;·- . . 

N S(.ry), which we may call the first product-moment of the distribution.' 

As in the case of univariate distributions, the form of the arithmetic is 
slightly diffe:tent· according as the observations are grouped or ungrouped. 

11.26. Our work is greatly simplified by the use of devices similar to 
those employed in calculating the means and other moments of univariate 
distributions. 

·(a) We take working means for the two variates, obtained by inspec
tion, and transfer our moments to those about the means after the bulk 
of the arithmetic has been performed. For the first product-moment 

:a Anaya in which the standard deviations are equal are sometimes said to be 
•• homoscedastic"; in the contrary case "heteroscedastic." 

a In generalisation of the definition of moments of a univariate distribution in 
Chapter 8 we may define "the product-moments of a bivariate universe as 

1 
Pr·=ifi</Z''!/') 

•·here f is the frequency. This gives us 
1 

Pu =NS(/zy) 

the quantity we have called pin equation (11.1). 
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we have, in fact, if f, "'1 are the de\<iations from the working m~ns and 
[, Tj the deviations of the true means from the working means : I , 

Hence, 
fTJ =;ry +.ly +:rij + [Tj 

- Summing for all members of the universe, since S([y) =[S(y) =0 and 
similarly S(.xTj) =0, ;e andy being devi9:tions from the true means, 

S(f'1) =S(.rfl) +N[Tj 

Hence, 
(11.12) 

This -gi\·es us the product-moment about the true means~ terms of the 
product-moment about the working means and the deviations of the true 
means from the working means • 

. (b) As II check on the rather heavy arithmetic which is frequently 
involved, i! i;s advisable to use a method similar to that of 8.~0. _ We have 

S(f+l)('l+l)=S<f'l)+S<f)+S(7J)+N • --~- (11.13) 

If. therefore, we calculate S(f + 1 )( 7J + 1) as well as S(f71 ), we shall have in 
the above equation a check on the accuracy of our work. . 

(c) We take the class-intervals as units and transfer to other units 
afterwards as desired. · . 

E:rample 11.1, Table 11.8.-Let us inve5tigate the. correlation and 
regressions of the variates of Table 11.7, the data of which are ungrouped. 
The variates are (1) the price index-number of animal feeding-stuffs, X. 
and (2) the price index-number of home-grown oats, Y. Th~ values of 
the variates themselves are shown in columns 2 and 3 of Table 11.8. 'Ye 
take a working mean at X =90 and Y =90, arid the deviations from these 
values are shown in columns 4 and 5. The remaining columns 6 to 13 
give the squares and product of the deviations together with the various 
auxiliary quantities used for checking purposes. Finally, the various 
sums are shown at the bottom of the table. 

In practice it is as 'nll to show the negative values which may occur in 
columns t., 5, 6, 7, 12 and IS (particularly the last two) in a separate column, 
so as to facilitate addition and avoid mistakes. We have refrained from 
this course for convenience of printing. · 

As check on the arithmetic we have: 

etc., and 

-118=S<f)=S<f+l)-N= -58-CO _ ~. 

292-& =S(f + 1)1 =S(f1_) +2S(f) +N =8100 ..:.236 +60 · 

2493 =S(f+ 1)(7J +1) =S(fTJ) +S(f) +S(7J) +N 

=2565 -118- u +60 

=2-&93 
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TABLE 11.8.-C~tlalion betroeen Mcmlhly lnd~.r-numbna of Prieta of (I) Animal 
· Feeding-rtujJB and (2) IIMM-grOWJI Oal8 in Ytar• 1931-3.';. 

1. 2. 3. 4. 6. 6. 7. 8. 9. 10. 11. 12. 13. 
Mont.h. · X. Y. ,, 

-'1· HI. '1+1. E'· (;+1>"· 'I"· ('1+1)•. ,,. (;+1)('1+1). 
- -- 1--

1!131 Jan. 78 84 -12 -6 -11 - 5 144 121 36 25 72 55 
Feb. 77 82 -13 -8 -12 - 7 169 144 64 49 104 84 
Mar. 85 82 - 5 -8 -4 - 7 25 16 64 49 40 28 
Apr. 88 85 -2 -5 - 1 -4 4 1 25 16 10 4 
May 87 89 - 3 - 1 -2 - 9 4 1 - 3 -June 82 90 - 8 - - 7 1 64 49 - 1 - - 7' 
July 81 88 -9 -2 -8 - 1 81 64 4 1 18 8 
Aug. 77 92 -13 2 -12 3 169 144 4 9 -26 -36 
Sept. 76 83 -14 - 7 -13 -6 196 169 49 36 98 78 
Oct. 83 89 - '1 - 1 -6 - 49 36 1 - 7 -
Nov. 97 98 7 8 8 9 49 64 64 81 M 72 
Dec. 93 99 3 9 4 10 9 16 81 100 27 40 

1932 Jan. 95 102 5 12 6 13 25 36 144 169 60 78 
Feb. 97 102 7 12 8 13 49 64 144 . 169 84 104 
!liar. 102 105 12 15 13 16 144 169 225 256 180 208 
Apr. 99 105 9 15 10 16 81 100 225 256 135 160 
May 97 107 7 17 8 18 49 64. 289 324 119 144 
June 94 107 4 17 5 18 16 25 289 324 68 90 • 
July 94 101 4 11 5 12 16 25 121 144 44 60 
Aug. 97 106 7 16 8 17 49 64 256 289 112 136 
Sept. 92 96 2 6 3 7 4 9 36 49 12 21 
Oot. 89 90 - 1 - - 1 1 - - 1 - -
Nov. 90 85 • -5 1 -4 - 1 25 16 - -4 
Dec. 90 81 - -.9 1 -8 - 1 . 81 64 - - 8 

1933 Jan. 92 84 2 -6 3 -5 4 9 .36 .25 -12 -15 
Feb. 91 85 1 -5 2 -4 . 1 4 25 16 -5 -8 
Mar. 90 84 - -6 1 -5 - 1 36 25 - -5 
Apr. 86 81 - 4 - 9 -3 -8 16 9 81 64 36 24 - May 85 76 -5 -14 -4 -13 25 16 196 169 70 52 
June 85 77 -5 -13 -4 -12 25 16 169 144 65 48 
July 85 75 -5 -15 - 4 ~14 25 16 225 196' 75 56 
Aug. 83 79 -7 -11 -6 -10 49 36 121 100 77 60 
Sept. 80 78 -10 '-12 - 9 -11 100 81 . 144 121 120 99 
Oct. 78 78 -12 -12 -11 -11 144 121 144 121 144 121 
Nov. tlO 76 ~10· -14 -9 -13 100 81 196 169 140 117 
Dec. 83 75 - 7 -15 -6 -14 49 36 225 196 105 84 

1934 Jan. 82 80 - 8 -10 -7 -9 64 49 100 81 80 63 
Feb. 83 91 - 7 1 -6 2 49 36 1 4 - 7 -12 
Mar. 85 87 -5 - 3 -4 -2 25 16 9 4 15 8 • :t.,r· 83 84 - 7 -6 .- 6 -6 49 36 36 25 42 30 

ay 82 81 - 8 -9 - 7 - 8 64 49 81 64 72 56 
June 85 83 -5 - 7 -4 -6 25 16 49 36 35 24 . ; July 88 83 -2 - 7 - 1 - 6 4 1 49 36 14 6 
Aug. 101 92 11 2 12 3 121 144 4 9 22 36 
Sept. 102 98 .12 8 13 9 144 169 64 81 96 117 
Oct. 98 94 8 4 9 5 64 81 16 25 32 45 
Nov. 96 94 6 4 7 5 36 49 16 25 24 35 
Dec. 98 95 8 5 9 6 64 81 25 36 40 54 

1935 Jan. 98 100 8 10 9 11 64 81 100 121 80 99 
Feb. 92 99 2 9 ll 10 4 9 81 100 18 30 
Mar. 92 96 2 6 3 7 4 9 36 49 12 21 
Apr. 90 98 - 8 1 9 - 1 64 81 - 9 
May 88 97 -2 T -1 8 4 1 49 64 -14 -8 
June 86 98 -4 8 :.. 3 9 16 9 64 81 -32 -27 
July 83 99 - 7 9 -6 10 49 36 81 100 -63 -60 
Aug. so 92 -10 2 ~ .9 3 100 81 4 9 -20 -27 
~ept. 81 !10 -II - -8 1 81 64 - 1 - ~ 8 
Oct. 86 89 - 4 - 1 ~3 - 16 9 1 - . " -
Nov. 83 87 - 7 - 3 -ti - 2 49 36 9 4 21 12 

-- DPC. 82 83 - 8 - 7 - 7 -6 64 49 49 3d 56 42 
--~---· --_ p~------

292-i 14814 
---

t__:__ ~~-=----1~8 ~14 -58 46 3100 4846 2565 2493 
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We have, then, about the working means: 

( = -
1~: = - 1·9667 

.;; =- u. = -0-·2838 ., 60 

. 8100 
q ·=---{1 =47•7989 U-=6·9}4, ., 60 • • 

4814 ... 
~ 1=-- -7i1 =80·1789 ql/=8·954 ' 
"II 60 "I 1 

P - S(.xy) = S(l7~)- {7J- = 42·75- 0·4589 = 42·2911 
- N N 

_ _E__ 42·2911_ ·6 
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r- u
011
u

11 
-61·9080 -.+O 8 

Further: working the regressions in the way best to avoid errors in · 
rounding offt 

-~-

b =_£_=0·527 
1 u/•. 

b1 = p• = 0·885 
q . .. . 

Thus the correlation coefficie~t is 0·68, and the regression equations, 
referred ~o the means, are : · 

tr:=0·527y 

y=0·885.1l 

If we prefer to express these equations with origin at X =0, Y =0, 
we have: . · . · 

X- (90 -1·97) =X -88·08 =0·527(Y ::.89·77) 
Y- (90 -0·23) = Y -89·77 =0·885(X -88·03) 

which reduce to 
X =0·527Y +40·72 (a) 
Y =0·885X +_11·86 ,. ~ (b) 

The lines of regression are drawn on the scatter diagram of fig. 11.4. 
The standard errors made in using these equations to estimate .the, 

index-number of oats fro~ animal feeding-stuffs, and vice versa, are: ' ' 

u~~;Vl-r1 =5:07 
. u11Vl-r1 =6·57 · 

Equation (a) tells us tlui.t a rise of one point in t~e price irrdex.numberof 
oats is accompanied on the average by a rise of 0·527 point in the price index
number of feeding-stuffs. Similarly, equation (b) tells us that a rise of one 
point in the index for feeding-stuffs is accompanied on the average by a rise 
of 0·885 point in the price of oats. . 

It is important to note that the regression equations do not tell u11 
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whether a variation in one variate is ca~Uecl by a variation in the other ; 
all we know is that the two vary together, and so far as the regression 
equations show, either the feeding-stuHs price may exert an influence on 
the oats price, or vice versa, or their common variation may be due to 
some other cause affecting both. This is only one instance of a diffi
culty which pervades the theory of correlation and regression, namely, 

· that of interpreting results in terms of causal factors. 
Example 11.2, Table 11.9.-We now consider an example based on· 

grouped data. In this we have omitted the auxiliary quantities necessary 
for checking in 6rder to save space. 

(Unpublished data; measurements by G. U. Yule.) The two variables 
are (I) X, the lep.gth of a mother-frond of duckweed (Lemna minor); 
(2) Y, the length of the daughter-frond. The mother-frond was measured 
when the daughter-frond separated from it, and the daughter-frond when 
its first daughter-frond separated. 1\leasures were taken from camera 
drawings made with the Zeiss-Abbe camera under a low power, the artual 
magnification being 24 : 1. The units of length in the tabulated measure- . 
ments are .millimetres on the drawings. 

The arbitrary origin for both X and Y was taken at 105 mm. The 
following are the values found for the constants of the single dis-
tributions :- · 

( '7 -1·058 intervals = - 6·3 mm. lJJ1 = 98·7 mm. on drawing 
· = · 4·ll mm. actual 

CTz = 2•828 intervals= 17·0 mm. ·on drawing= 0·707 mm. actual 

7j= -0·203.interval =- 1·2 mm.. J-11 =103·8 mm. on drawing 
4·32 mm. actual 

cr71 = 3·084 intervals= 18·5 mm. on drawing= 0·771 mm. actual 

To calculaie S(f7J) the value of l7J is first written in every com part· 
ment of the table against the corresponding frequency, treating the class· 
interval as unit. In Table ll.9 frequencies are shown in ordinary type 
and the values of {7] in heavj- type. In making these entries the sign 
of the product may be neglected, but it must be remembered that this 
sign will be positive in the upper left-hand and lower right-hand quadrants, 
'and negative in the two others. The frequencies are then collected, · 
according to the magnitude and sign of {1], in columns 2 and 3 of Table 
ll.IO. When columns 2 and 3 are completed they should be checked 
to see that no frequency has been dropped, which may readily be done 
by adding together the totals of the two columns and the frequenry 
in the 8th row and 8th column of Table ll.9 (the row and column for 
which f7J =0), care being taken not to count twice the frequency in the 
compartment· common to the two. This grand total must clearly be 
equal to N, the .total number of observations, which in this rase is 266~ 
The· numbers in column 4 are given by deducting the entries in column 3 
from those in column 2. The totals so obtained are multiplied by {7] 
(column 1) and the products entered in column 5 or 6 according to sign. 

__ The algebraic sum of these totals gives 

S(f7J) = + 1519·5 
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i 
TABLE 11.9.-TBEORY Ol' CoRRELAno!f: Ezample 11.2.-Corrdation bdtum (l 

of Daughtn-frortd, in Lemna minor. [l'npublished data; G. U. Yule.) 
prinwd in ordinary type. The numbers in heavy type are the de~riation· f 

(1) Length of mother-frond (mm. of camera drawlll1 enlarpt 

;l~ ~l~' l ~;; li 
eo-ee { = .~' = = . = = =· 

---~ 

6&-
71 

{ = - - 2~ 1: = - - - - = = I _, 
------,- ----------- -- -- --·1--i--l 

{ - . 1 I 1 I . I 0·1 - - - -· 
7S-78 - 262016 I 01------------f------ ----

{ - & I II I I - I 1·1 - - - -7
8-M - 24 20 18 12 8 - 0 4 - - - -

llt-80 j II --~H-.---.---.-~ -.- "--;- -~--=--
___ l,_21_ 12 9 8 • 0 • • ~-=- -
~ { 1• 1 5 e-1 &·II & & I l -

14 lJ 8 8 4 ll 0 ll • -
..; 1----J- 1---

g M-1011 { = l ··; ; ~ I ~ i 1~108 11 = I = I J I & I·': I J I ·: : I : I = I = I = I :· 
.,. { - - - & & 1·1 t - I - - --o 1os-m - - - - a 1 1 o - ll - - -
~ ------ _______ __, 
"U4-1zo{ l I •·& 1·1 & 1 tr' 
~ - - - I 4 I 0 I - I - 10 · 

1- -· 

g 120-126{ = - - - : ~ : : : : : J = 
~ 1- . f- ---

12&-182 { 1 = ..... : : ~ : J 1: 2~ : 1--- 1- ~ --1-1 
lll8{ - 1 - 1 - ! I - -

Ui- - 10 - 0 - 10 16 - -1- 1- __ ,_ 

{ --· ----.,.- 11--1 138-14i _ _ _ _ - - .- - 8 lll - - 80 
---1-- ------ -- 1-- 1-

1"-160 { = = = = = = = = = = = 2~ = ----- ---1-
{ ---------- 1--~168 - - - - - - - - - - 24 - -

1--- 1- 1--r-----r----
166-161 { = =· = = = = = = = = = = -1--------- ___ _;.. 
11!-1118 { = = = = = = = = = = = J, = 1------ ------- --1-----

Total I 7 10·1 a.·1 86·1 aa·1 U·l U·i ft 11 18 I I 
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TABLE 1110 . . 
r, I 

I. I. a. f. 5. 6. 

~ueneiee. Products. 

h-. Total. 

+ - + -Quadnnts. Quadnnta. . 
. 

I - 8"5 - 8•5 - 8"1i 
2 17 13"5 + 3·5. 7 -
I 105 9 + 1•5 4"5 -
4 13•5 6"5 +; 28 -5 2 ·o·5 · + 1"5 7•5 -6 J3·1i 5 + 8•5 51 -- 8 IS 1 +12 . 96 -;;. • • 4 + 5 45 -10 6•1i 1 + s·s · · .. 55 -12 17"5 - +17•5 210 . -14 l . - - + 1 14 -

15- 6 - + 6 90 -
lt 7 - - + 7 . 11~ -18- 2 - + 2 • 36 -20•. 8 - + 8 160 -21 2 - + 2 42 -24 6 - +I 144 -25 1 - + 1 25. -28 1 - +I 28 -80 I - +I 90 -86 I - + 1 36 -40 I - + 1 40 -42 2 - + 2 84 -60 r - + 1 60 -sa 1 - + 1 63 -

Tot&I. 145•5 49 I - +1528 -8·5 
49 - -· 8·5 
71•1i 

-I 
1519"5 

268 . 

Hence, dividing by 266, 

Hence, 

l 
.NSU'l> =5·7!2 

p =5·712 -[ij =5·712 -0·215 
=5·497 

p .. 5·497 
r = ;;-;; = 2·828 x 3·084 = + 0"63 

• • 
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I 
I 

-. 

The regression of daughter-frond on mother-frond is 0·69 (a value 
which will not be affected by altering the units of measurement for both 
mothe~ and daughter-fronds, as such an alteration 11ill affect both 
standard ~eviations equally). Hence, the regression equation giving t.he 
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average actual length (in millimetres) of daughter-fronds for mother-fronds 
of actual length X is 

Y =1·48 +0·69X 

We leave it to the student to work out the second regression equation 
giving the average length of mother-fronds for daughter-fronds of length r. 
and to check the whole work by a diagram showing the lines of regression 
and the means of arrays for the central portion of the table. 

Exa"mple 11.3, Table 11.2.-The following device is frequently useful, 
and saves a considerable amount of labour in calculating the product 
term S(.xy). · · 

We have: 
S(z- y)1 = S(x1)- 2S(.xy) + S(y1) (i) 

and 
S{x +y)t = S{x1 ) +2S{xy) + S(y1 ) (ii) 

Hence, knowing S(x11 ) and S(y1 ), we can find S(xy) if we know either 
S(x-y)ll or S(z+y)l1• These quantities are often easier to calculate than 
S(.ry) itself. . - . -

Consider the data 'of Table 11.2. In the usual way, taking a working 
mean centred in the intervals X =25- years, Y =25- years, we have, in 
units of five years: 

( = + 0·2924 ij = - 0·2353 • 
S(g1 ) = 9708 S('I'J1 ) = 7090 · 

O'z=1·730 a 11 =1·481 

Now the value of e- "fJ is constant down diagonals which run from the 
top left hand to the bottom right band ·of the table. In fact, for the 
principal diagonal, running from X= 15-, Y = 15- through X= 20-, Y = 20-, 
etc., ~- "fJ = 0, For the diagonal above this, running from X= 20-, Y = 15-
tbrough X= 25-, Y = 20-, etc., e -"' = 1, and so on. 

Let us then find the diagonal totals. We find : 

~-fl. 

-3 
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 

Frequency in 
diagonal. 

4 
34. 

280 
1398 
1051 
263 

73 
31 
12 

5 
2 

3153 
The total is the total frequency, which gives a check on the work. 
_ The value of S(g - "fJ )1 for the whole table is then obtained fr<?m ~he 
above table by squaring the values in the left-hand column, multlplymg 
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by the corresponding frequency in the right-hand column and adding. 
We get · - .

1 S(e-7]} 1 =(9x4)+(!x~4)+(1x280}+ ••• +{49x2} 
=4286 

Hence, from (i ), 
4286 = 9708 + 7090 - 2SU7J) 

• • S(g17) = 6256 

whence 

6256 F · · 
p =--- {;ij = +2·0529 

3153 

r=J!_= + 2·0529 = 0.80 
rlrPw 1·730xl•481 

The regression equations may now be obtained in the usual. manner. , 
In the above work we chose equation (i} in preference to equation (ii) 

because the frequencies are seen by inspection to run mainly from the 
top left hand to the bottom right hand of the table. Had they run from 
the top rig~t hand to the bottom left hand we should probably have 
found it b(',tter to use equation (ii}. · . . 

11.27. The student should be careful to remember the following 
points in wol:'king :_., 
. (1) To give S(e17) and {ij .their correct signs in finding the true mean· 
deviation product p. . · 

{2) To express ue and u11 in terms of the class-interval as a unit, in the 
value of r.=pfuzu11, for these are the units in terms of which p has been 
calculated. _ 

(3) To use the proper units for the standard deviations (not class
intervals in general) in calculating the coefficients of regression: in forming 

. the regression equation in terms of the absolute values of the variables, 
for example, as above, the work will be wrong unless means and standard 
deviations are expressed in the same units. 

Fluctuations of Sampling.' 
11.28. Further, it must always be ·remembered that correlation · 

coefficients, like other statistical measures, are subject to·'fiuctuations of 
sampling. We shall consider this point at some length in later chapters 
(21 and 23), since the correlation coefficient has certain individual features 
whlch make it of special interest from the sampling point of view. We. 
may, however, at this stage stress that if the numbeJ;" of observations is 
small, no significance can be attached to small, or even moderately large,. 
values of r as indicating a real correlation in the universe from which the 
observations are drawn.· For example, if N .,;,86, a value of r = ± 0·5 may 
be a chance result, though a very infrequent one, in sampling from an 
uncorrelated universe. If N = 100, r = ± 0·3 may similarly be a mere 
fluctuation of sampling, though again a very infrequent one. The student 
should therefore be careful in interpreting his coefficients. 

. " ,. - . 
Correcti~ns for Grouping. . . 

11.29. In thls connection we may mention the question whether, in 
. calculating the correlation coefficient from grouped data, any correction 
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is to be made analogous to the Sheppard correction for grouping which 
we have considered in the case of univariate data. In the exampl" 
considered in the foJ'('going we have not made such corrections. 

It appears that, when the distribution is J'('asonably symmetrical and 
obeys conditions similar to those enunciated in 8.11, page Ul, we may, 
with advantage, correct the standard deviations a., a, by applying to 
each the formula 

. . hi . 
a 1(corrected) =a•-

12 

where his the width of the interval. The product term S(.ry) needs no 
such oorrection. · 

We pointed out in 8.11, however, that sampling fluctuations usually 
obliterate any correction for·grouping unless the size of the sample is large. 
It may, as before, be suggested that unless N = 1000 or more, it is hardly 
worth while making the correction. For example, in Tabla 11.1-11.6, 
Tables 11.1, l:J.5 and 11.6 have a frequency less than 1000 and the correc
tions are not to be applied-in any case they would not be applied to 
Tables 11.5 and 11.6, which violate the conditions as. to •• tapering off." 

11.30. Finally, it should be home in mind that any coefficient, e.g. 
the coetficient of correlation or the ~fficient of contingency, gives only a 
part of the information afforded by the original data or the correlation 
table. · The correlation table.itself, or the original data if no correlation 
table has been compiled, should always be given, unless considerations of 
space or of expense absolutely preclude the adoption of such a co~. 

• SIDDIARY • 

1. A universe every member of which bears one of the values of each 
·of two variates is said to be bivariate. H the members are grouped • 
according to class-intervals of the two variables, we have a bivariate 
frequency-distribution. · · . 

2. The bivariate frequency-distribution . may be represented by a 
frequency-surface or by a stereogram. Ungrouped data (and, less _con
veniently, grouped data) can be represented on a scatter diagram. 

3. The means of arrays of a bivariate frequency-distribution may~ 
represented. as points by reference to a pair of rectangular axes along 
which are· '1neasured values of the variables. The means of rows and 
those of columns will in general lie respectively about two smooth curves, 
called lines of regression. . The equations of these curves are . called 
regression equations.l . 

-4 •. The regression equations may be regarded as expressions for 
estimating from a given value of one ,·ariate the average corresponding 
value. of the other. 

5. The coefficient of correlation (product-moment correlation co
efficient>. between !wo variables X and Y is gh·en by : 

• C~ear regression lines, like straight regression lines, may also be defined f,,, 
--ungrouped data by an extension of the principle of making IIWDII of squares of erron of 

estimate a minimum. 
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r = S(.xy) 
VS(.x2)S(y2) 

=L 
u~u11 
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where .x, y are the values of the variables measured from their respective 
S( ) . . . 

"means, and p = _!1!_. 
-- -- N 

6. The correlation coefficient r cannot be less than - 1 ·or greater 
than + 1. If r = ± 1 the variables are perfectly correlated, the points 
corresponding to pairs of values .x, y all lying on a straight line~· ·If 
r = -1 the variables are perfectly negatively correlated, low values of 
.one corresponding to high values of the other. If r = + 1 the variables. 
are perfectly_ positively correlated, high values of one corresponding to . 
high values of the other. - · . . 

7. The \inear regression equation of,X on Y (referred to axes through.: 
their respective means) is. • * . 

... ~ .X=bly 
-where 

and that of Y on X'is 

where 

b _ru~_.E.. 
1 - u

11
- u

11
8 

b 
_ru11 p 
.-----~. 

u~ u~ 

.. 

b1 and b1 being called coefficients of regression, or simply regression's. 
8. The straight lines of regression are such that the sums of squares 

of errors of estimate, S(.x -b1y)1 and S(y -ba.x)1, are a minimum. If the 
quotients of these sums by N are denoted by a,.s, a11•, _ . · 

a,8 =u.,11(1-rl) 

B11
1 =u11

2(1 -r1 ) 

.. 
EXERCISES. 

11.1. Find the correlation coefficient and the equations of regressio~ for the 
following values of X and Y :-. . · .• , 

X. 
1 
2 
3 
4 
5 

Y. 
2 
5 
3 
8 
7 
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(As a matter of practice it is never worth calculating a coJTClatinn coefficient 
f(lr so few observations: the figures are gh.-en 10lely as a short example nn 
ll-hich the student can test his knowled~e of the work.] 

11.2. (Data from W. Little: l-abour C,ommission Report, Yol. 5, Part I, 189-J, 
and Official Returns.) 

The following figures show (I) the estimated average earnings of agricultural 
labourers, X, (2) the percentage of population in receipt of poor law relief, r, 
(3) the ratio of the number of paupers receiving outdoor relief to the number 
receiving relief in workhouses, Z, for certain districts in England and Wales in 
1893. • - • + - -

Find the correlations between X and Y, Y and Z, and Z and X. Draw 
scatter diagrams to illustrate the various joint distributions. 

Estimated - Ratio of Number 

Average Earnings Percent-age of of Paupers 
Population in Receiving 

Union. of Agricultural Receipt of Outdoor Relief Labourers. 
Shillings and Poor lAw to the Number 

Relief. Receiving Relief Pence per Week. in W orkho119e8. 

8.- d. 
I. Glendale. . 20 9 2-40 6-40 
2. Wigton . 20 3 "2·29 4·0-i 
3. Garstang . . 19 8 1·39 7·90 
4. Belper . 18 6 1·92 3·31 
5. Nantwicl 17 8 2·98 7·85 
6. Atcham. . . 17 6 H7 0·-15 
7. Driffield • . 17 1 3·79 10·00 
8. Uttoxeter . 17 0 3·01 4·43 
9. Wetherby . . . 17 0 2·39 4·78 

10. Easingwold . 16 11 2·78 4·73 
11. Southwell . . 16 6 3·09 6·66 
12. Hollingbourn . 16 4 2·78 1·22 
13. Melton Mowbray . 16 3 2·61 4·27 
14. Truro . 16 3 4·33 7·50 
15. Godstone 16 0 3·02 4·« 
16. Lonth . . . 16 0 4·20 8·:U 
17. Brixworth . 15 9 1·29 6-69 
18. Crediton • 15 8 5·16 9·89 
19. Holbeach . -· 15 8 4·75 4·00 
20. Maldon . . -15 6 4·6-l 6·02 
21. Monmouth 15 4 4·26 8·27 
22. St. Neote 15 3 1·66 1·58 
23. Swaflhsm . . 15 0 5·37 16·0-i 
24. Thakeham . 15 0 3·38 1·96 
25. Thame . . 15 0 5·84 9·28 
26. Thingoe • 15 0 4·63 8·72 
27. Basingstoke 15 0 '3·93 2·97 I . 
28. Cirencester 15 0 4·54 5·38 
29. North Witchford . u 10 3·42 3·2-l 
30. Pewsey . . 14 9 5·88 7·1H 
31. Bromyard . . 14 9 4·36 5·87 
32. Wantage. . 14 9 3·85 5·50 I 
33. Stratford-on-Avon . 14 7 3·9.2 3·53 
M. Dorchester 14 6 4·48 6·93 
35. Woburn. . u 6 5·67 6·02 
36. Buntingford . u 4 4·91 4·92 
37. Pershore. . 13 6 4·34 4·6-l 
38. Langport . . 12 6 5·19 10.56 
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11.3. \"~rif)· the following data for the und~r·m~ntioned tables of this 

~hapter. C.alculate the means of ro"tn and rolumns and draw a diagram .showing 
the lines of regression for the data of Table ll.l. · (Sh~ppard·s correctfon nse4 
only in Table llA.) 

11.1. ~~--~~--·-·--1---11-.6-.---1 
lleaa ol .X • • • 55-3 mm. 

,. .. T • • • 53·1 ·., 
Staudard deriatioa ol ~ · • 1-86 .. 

.. .. T • 5-77 ·•• 
Coefficieot ol correlatioD • +()-97 

Coefficien& ol contingency} 
(for the groapin& &tated 
~ow). 

()-90 

67-70 in. 
6S-66 .. 

2·72 .. 
!-73 .. 

+()-51 

()-51 

6·22yean 
18·til galls. 
2·2lyeam 
3·37 galla. 

+&22 

()-26 

509-2 
U,500 
7-46 

18,100 
-0·01! 

()-47 

In caJculating the roefficient of contingency (roefficient of mean square 
rontin.,aency·) p.se the following group~"S, so as to a~.-oid small scattered fre. 
quencies at tile extremities of the tables and also excessh;e arithmetic~ 

Table 11.1.: Group together (I) two top ro-n_ (2} three bottom rows. (3} two 
first rolumns., (-I) four laat colUDlllSo leaving centre of table as it .-.tands.- -

Table 11.3. Regroup by2·inch inten;als. 58·5-60·5, etc., for Cather, 59·5-61·5, 
etc .. for eon. U a 3-inch grouping be used (58·5-61·5, etc .. for both Cather and · 
BOD), the coefficient of mean &quare contingency is 0·46.'i. (Both results cited 
from Peai!!On, ref. (M).) . 

Table 11.-l. For columns, group those headed 3 and 4, 5 and 6, 7 and 8, 9 and 
10, ll and onr; for rows, group those headed 8-11, 12-13, 1-l-15, 16-17,18-19, 
20-21, 2"~23. 2-1---25, 26-27, 28 and over. · . · 

Table u.a. For COIUDlllSo group an up to 49-1·5 and an o,~er 521·5, leaving 
central oolumns. Rows, ftingly up to 20: then 20-28, 28--l-l, "-56, 56 upwards. 

11.-1. (Data from Statistical R~Yiew of England and Wales for 1933, Tables, 
Part I, p. a. and Part 2, p. 6.) The following show mean annual birth and death 
rates in England and Wales for quinquennia .-.iDee 1876. Find the correlation 
between birth and death rates. 

----=J --~~ Mean Annual 
Lin Birtll Rate ·Death Rate 

. per 1000 ol Pop~tioa. per 1000 ol Population. 

1876--M 35·3 !0·8 
1881-&> 33·5 19·· 
1~90 3H. 18·9 
1891-&5 30-5 18·7 
1800-1900 29·3 11·'l. 
1901-1905 %8·2 HI·O· 
1906-1910 1!6·3 1-H 
1911-15 %3·6 1-1·3 
l9lt.-:ro !0-1 1-H . 19tl-!S 19·9 12·2 
192~ 16·7 12-1 
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11.5. The following fig1ire!t (S. Rowson, Journ. llo!J• Stat. Sue., vol. D9, 1936) 
give the relationship between the uenKity of population and RCating eapadty of 
cinemas in various districts of Great Britain. 

:Find the correlation between density of population and proportion of cinemas 
with (1) seating capacity 500 or Jess, (t) seating cavacity 2000 or more. 

--
Pereentage of Ci.lleft~&e. 

' Density of 
District, Population 

(I) (2) per &quare mile. 
Beating 500 Seating 2000 .. or lesa. or more . 

Scot.Jand • 163 I 13-4 4·3 
North Wales • 165 42·5 0·0 
West of England .. 380 38·2 2·1 
E&etern Counties .. 431 38·8 1·3 
South Wales ' . 440 22·4 

I 
1·2 

North of England . ~ 4~7 16·0 1·2 
Yorkshire and tlietrict . 59-i 15·5 3·1 
Midlands • • • 0 710 20·2 1·6 
Home Counties (excluding London) . 794 28·2 3·0 
Lancashire . ., 2157 13·5 3·6 

11.6. Show that the coefficient of correlation is th~ geometric mean of the 
coefficients of regression; verify from the data of Examples 11.1, 11.2 and 11.3 
that the arithmetic mean of the coefficients of regression is greater than the 
coefficient of correlation. . 

11.7. The tangent of the difference of angles A and B is given by 

tan A -tanB 
tan(A-B) 1+tanAtanB 

Deduce that the smaller angle between regrl'.l;sion lines is 8, given by 

t 8 
1 -1'1 e1~e1• 

an =-- --::-"----=-----:: 
f' e~.l + e~.• •· 

and interpret this result when f' =0 and f' = ± 1. 



CHAPTER '12. 

NORMAL CORRELATION. 

The Bivariate Normal Surface. 
ll.l. Our study of the normal curve in Chapter 10 may be ·e~tended 

to yield a corresponding expression for the ~requency-distriLution of pairs 
of values of two variates. This bivariate normal distribution, known also 
as "the bivariate normal surface," "the normal correlation 
surface" or simply " the normal surface",'' occupies a central position 
in th~ theory of bivariate frequency-distributions, and bears to them a 
relation siinilar to that borne ~y the normal curve to the frequency
distribution" of a single variate. 

The nOl'fllal surface is of great historical importance, as .the earlier 
work on correlation is, almost without exception, based on the assumption 
of sue~ a distribution ; though when it was recognised that the properties . 

·of the correlation coeffi.cient could be deduced, as in Chapter 11, without 
reference to the form of the distribution of. frequency, a knowledge of this 
special type of frequency-surface ceased to be so essential. But the" 
generalised normal Ia~ is of importance in the theory of sampling: it 
serves to describe \'ery approximately certain actual distributions (e.g~ of 
measurements on man) ; and if it can be assumed to hold good, some of the 
expressions in the theory of correlation, notably the standa'rd de'viations 
of arrays (and, if more than two variables are involved, the partial correla
tion coefficients), can be assigned more simple and definite meanings than 
in the general case. The student should, therefore, be familiar with the 
more fundamental properties of the distribution. • 

12.2. Consider first the case in which the two variables are com
pletely independent. Let the distributions of frequency for the. two 
variablou, awl '• oingly be gi~en b~ _ ~ f · 

Y1=Y1e ~r .. 
, - »<{ . 

112 =Ya e 

(12.1) . ' 
Then, assuming independence, the frequency-distribution of pairs'of values 
must, by the rule of independence, be given by · .· ·.. • ; 

. (~ z:) . 
-l --;;+--:- • 

. , ... ..; 
Ya =Y1ae (12.2) 

where 

(12.8) 
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'Equation '12.2) gives a normal correlation surface for one special case, the 
correlation coefficient being zero. If we put .x1 =a constant, we see that 
every section of the surface by a vertical plane parallel to the .x.-nxis, i.e. 
the distribution of any array of .x1's, is a normal dist~ibution, with the same 
mean and standard deviation as the total distribution of .x1's; and a similar 
statement holds for the arrays of .x1's; these properties must hold good, 
of course, as the two variables are assumed independent (cf. 5.18). The 
contour lines of the surface, that is to say, lines drawn on the surface at a 
constant height, arE! a series of similar ellipses with major and minor axes 
parallel to the axes of .x1 and .x1 and proportional to u1 and u2, the equations 
to. the contour lines being of the general form . . 

(12.4) 

Pairs of values of .x1 and .x1 related by an equation of this form are, therefore, 
equally frequent. . • · · · 

12.3. Now suppose we have two correlated variates .x1 and .x1, and let 
the regression of a:1 on .x2 be b11 and that of .x1 on .x1 be b21• Let r11 be the 

. coefficient of correlation between Xi ·and .x2• · 

Consider the new variates ·defined by the equations 

Xu = .xl - bt~a . 
. . Xu =X a - bal.Xl 

This is a notation which we shall later extend considerably. 
Then w1 and Wu are uncorrelated, as are w2 and w1.1• 

For 
S(w1w2.1 ) = S{x1(.:r8 - b21w1 )} · 

=S(.x1w2) -b21S(w1 ) 1 

1 \~ ruu., 
N
-S(w1wu) =r_12u.,

1
u.,1 ---'u~ .•. ·:,.. u.,l 

=0' 
~. ~· 

and similarly for S(a:2xu)· , 
Writing u1, u 8 for the standard deviations of w1, .xll> we see that the 

standard deviation u1 .11 of Wu is given by · . 
u~.a = 1s(wt1 ) =:NS(w1 -b1 aw2)' 

• 
={u~- ~bur12a1a2 +b~3a~} 

• = { u~ - 2r~llu~ + r~2ui} 
= 1!~(1 - T~3 ) 

and similarly uu the standard deviation of ll'u is given by 

u:.l = u~(l - T~ll) 

we obtained these results in" a slightly different form in 11.22 and 
11.24. . 
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12.4. Suppose further that a:l and Xu are not only uncorrelated, but· 
independent, and that each is normally distributed. 1 . 

In accordance with equation (12.2), we must have for the frequency
distribution of pairs of deviations of a:1 and xu 

(12.5) 
But 

x~ + x=.t = '( :r~ s ) -f 2( x: ll") -2rl2 ~lXa s) 
u~ u:.l u1 1 -r12 u3 1 -r12 . u1u'J 1 -rlll 

IV~ x: Xltrz 
=-2-+-2- -2ru---

ul.'J Uu ul.tuli.I 

Evidently we should also have arrived at precisely the same expression 
if we had laken the dist~bution of frequency for ;v1 and :ru, and reduced 
the expone"-t · ... 

\Ve have, therefore, the general expression: for the normal correlation 
·surface for two variables : 

( z: ~ SJ.~ ) -l -+--2rt~t--
<T~B ..:.1 "1.1.,.1.1 

(12.6) 

Further, since :r1 and :r8 .1, te1 anl :r1 .1, are independent, we must have·: 

I N 
Yu=27Tu u 

1 2.1 

N 
.· {12.7) 

Expressing uu and uu in terms of u1, u1 and r 18, we have the 
alternative form 

(12.8) 

Properties of the Normal s·urface. 
· 12.5. For any given value h1. of :r1 the distribution of the array of 
x1's is given by . . • . . 

' (r': ~ .c,~ ) ' • 
-l -+ --tr11 --

1 .. i. ooil "'1.11"1.1 . 
Yu =y,ze 
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This is a normal distribution of standard deviation a..,, ~-ith a mf.'an 

· de,;ating by r11 !~ h1 from the mean of the "·hole distribution of .r
1
's. 

era 
llcnct", since h1 may he any ,·alue, we ha\·e the important nosulh : 

(1) that the standard deviation.'l of all arrays of .r, are the same, and 
• equal to au; 

(2) that the regression of 11'1 on z1 is _strictly linear. 
Similarly, it follows that the &.d.'s of all arraY:s of .r1 are equal to au• 

and that the regression of .r1 on .r1 is linear. 
12.6. The contour lines lire. as in the case of independence, a series 

of concentric _and similar ellip~es; the major and minor axes are. however. 

.Y 

. ' 

Contoul' /ine11 ¥HI Azu of 
normal correlation :su,.face 

M =Mean of whole surfaa 
anti i$ also the summit Ill' 
lM surf~ce 
RR.CC.-Linu of mun1 

Fm. 12.1.-Principal Axes and Contour Lines of the _Nonnal 
Correlation Surface'. 

no longer parallel to the axes of .r1 and :r-1, but .make a certain anl?le with 
them. Fig. 12.1 illustrates the calculated form of the contour lines for 

·one case, RR and CC being the lines of regression. As each ~in~ of _re
gression cuts every array of z1 or of a-1 in its mean. and as the distnbubon 



NORllAL CORRELATION • 231 
• 

of every array is symmetrical about its mean, RR must bisect enry 
horizontal ehord and CC enry vf'rlical ehord, as illustrated ~y the hm · 
chords shown by dotted lines ; it also follows that RR euts all the ellipses 
in the points of contact of the horizontal tangents to the ellipses, and CC in 
the points of contaet of the vertical tangents. _ The surface or solid itself. 
somewhat truncated, is shown in fig. 11.1, page 20-1. · 

12.7. Sinee, as we see from fig.l2.1, a normal surface for two correlated 
variables may be regarded merely as a certain surface for whieh r is zero 

. -turned round through some angle, and sinee for every angle through which 
it is turned the distributions of all z1 arrays and z1 arrays are normal, it 
follows that every seetion of a normal surface by a vertical plane is a nonnal 
curve, i.e. the distributions of arrays taken at any angle aeross the surfaee 
are normal 

12.8. It alsO follows that, since the total distributions of~ and z 1 
must be ~ormal for every angle through which the surfaee is turned, the 
distributions of totals given by slices or arrays taken at any angle across a 
normal ,urface must be normal distributiOD!i. ·But these would give the .· 
distributions of functions like az,_ ± bz~ and consequently (I) the dis-.· 
tribution of any linear function of two normally distributed variables zj' ~ 
and ;r1 must also be normal ; (2) the correlation between any two linear 
fUnctions qf two normally distn'buted variables must be normal correlation. 

Result · (1) is ·very important, and may easily be extended .. to 
cover the case of n variables z1 ••• ;r.. Suppose, in faet,. we have 
n such variables each of which is normally distributed, and a linear 
function ar1 +b.r1 + •.• +liz •• Since nz1 +b.r1 is normally .distributed, 
(a.r1 +br1 ) +c.r1 is normally distributed, and hence so is (a.r1 +b.r1 +c.r3) +dr., · 
and so on. .Thus the function ar1 + ••• +hr. is normally distributed. · 

Hence, the sum of n normal variates is distributed normally i and in 
particular the mean CJf n normal variates is distributed normally. )lore 
particularly still, the mean of samples of n from a normal universe is 
normally distributed. ' · -

12.9. Returning to the normal surface, itjs interesting to inquire 
1'-hat is the angle 8 through which tlie surface has been turned from the 
position for •·hich _the correlation was zero. The major and minor axes 
of the ellipses are sometimes termed the principal axes. If l 1, f 1 be · 
the co-ordinates referred to the principal axes (the f 1-axis being the 
.r1-axis in its new position). we have for the relation between l 1, t~ ;r1, :r10 
the angle 8 being taken as positi¥e for a rotation of the z 1-axis which will 
make it, if eontinued through 90'", roincide in direction and sense with the 
;r

1
-axis, · 

[ 1 =;r1 cos·o +;r;s~n 6} {12.9 ) 
t. =:r, cos 8 -:r. &ln (J . • • 

-But, since [ 1, fa are unoorrelat~ S(t1[ 1 ) =0. ·_Hence, multiplying together 
equations (12.9) and summing, · · , •. · .. · · · 

O=(u.' -uJ') sin !8+2r11u1u1 cos 29 

t . 28- 2ruulua an - 1 1 .• 
ul -uz 

(12.10) 

It should be noticed ttat if we tkfir~e the principal axes of any distribution 
for two variables as loeing a pair of axes at right angles for which tbe 
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, variables E1,· E. are uncorrelated, equation (12.10) gives the angle that they 
make with the axes of measurement whether the distribution he normal 
or not. . 

12.10. The two standard deviations, say S1 and S2, about the 
principal axes are of some interest, for evidently from 12.2 the major and 
minor axes of the contour ellipses are proportional to these two standard 
deviations. They may be most readily determined as follows. Squaring 
the two transformation equations {12.9), summing and adding, we have: 

. S1
1 + S3

2 = u1
1 + u 2

1 • {12.11) 

Referring the surface to the axes of measurement, we have for the central . 
ordinate, by equation (12.7), · 

, N 
Yu = 27Tu u {1-ra )l 

1 8 12 

Referring ~t to the principal axes, by equation {12.3), 
:' , N 

Ya=21rS S 
1 2 

But these two values of the central ordinate must be equal; therefore 

S1S2 =u1u2(1-rf2)l {12.12) 

{12.11) and (12.12).are a pair of simultaneous equations from which sl and 
S2 may be very simply obtained in any arithmetical case. Care must, 
however, be taken to give the correct signs to the square root in solving. 
S1 + S2 is necessarily positive, and S1 - S2 also if r is positive, the major 
axes of the ellipses lying along E1 ; but if r be negative, S1 - S2 is also 
negative. It should be noted that, while we have deduced {12.12) from 
a simple consideration depending on the normality of the distribution, it 
is really of general application (like equation (12.11)), and may be obtained 
at somewhat greater length from the equations for transforming co:ordinates. 

12.11. As an example of the application of the foregoing theory to 
a practical case, we .proceed to consider the distribution of Table 11.3, 
page 199, showing the correlation between stature of father and son, and 
to test, as far as we can by elementary methods, whether a normal surface 
will fit the data. · . 

. 12.12. The first important property ·of the normal distribution is the 
linearity of regression. This was well illustrated for these data in fig. 11.8 
(p. 211 ). Subject to some investigation as to the deviations from strict 
linearity which may occur as the result of sampling fluctuations, we may. 
conclude that the regression is appreciably linear. We shall consider a 
test of linearity in later chapters (see Chapter 23). . 

12.13. The second important· property is the constancy of the 
standard deviation for all parallel arrays. - . 

The standard deviations of the ten columns from that headed 62·5-63·5 
· onwards are : ~• ·- · . 

2·56 2·60 
2·11 2·26 
2·55 2·26 
2·24 2·45 
2·23 2·33 
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the mean being 2·36. The standard deviations again only fluctuate · 
irregularly round their mean value. The mean of t~e first ·fivf is 2·3-1, of 
the second five 2·38, a difference of only O·O.J ; of the first group, two are 
greater and three ate less than the mean, and the same is true of the second 
group. There does not seem to be any indication of a general tendency 
for the..standard deviation to increase or decrease as we pass from one end 
of the table to the other. We are not yet in a position to test how far the 
differences from the· average standard 'deviation ruight have arisen in . 
sampling from a record in whic~ the distribution was strictly normal, but, 
as a f~ct, a rough test suggests that they might have done so.... -

12.14. Next we note that the distributions of all arrays of a normal 
surface should themselves be normal. . Owing, however, to the small 
numbers of observations in any array, the distributions of arrays are very 
irregular, and their normality cannot be tested in any very satisfactory 
way;- we can only say that they do not exhibit any marked or regular 
asymmetry. But we can test the allied property of a normal correlation 
table, "iz. that the totals of arrays must give a normal distribution even 
if the arrays be takeQ diagonally across the surface, and not parallel.to 
either ~"'is of measurement. From an· ordinary correlation table we 
cannot find the totals of such diagonal arrays exactly, but the totals of 
arrays at :an angle of 45° will be given with sufficient accuracy for our 
present purpose by the. totals of lines of diagonally adjacent compartments .. 
Referring again to Table 11.3, and forming the totals of such diagonals 
(running up from left to right); we find. starting at the :top left-hand cornet 
of the table, th~ following distribution :-' ~ 

0·25 78·75 
2 81·25 
8·25 66·5 
6·25 . 59·25 
8 . 42·25 
9·75 30·75 

17 29·21J 
31·5 19 
4-2 10·75 
46·25 7 
60·5 4·25 
61·5 3·5 . 
85·75 1·75 
87·25 1 
78 ,0·25 
94.·25 "· 

Total 1078 T • 

The mean of (his distribution is at 0·359 of an interval abo~e the centre of 
the interval with frequency 78; its standard deviation is 4·757 intervals, or,. 
remembering that the interval is lf'Y2 of an inch. 3·36-i inches. (This 
value _may be checked directly from the constants for the table given in 
Exercise 11.3, page 225, for we have, from the first of the transformation 
equations (12.9), 

u!==u~1 cos1 8+o1
1 sin1 8+2r11u1u1 sin Boos 8 
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·and inserting u1 =2·72, u1 a2·75, r11 co0·51, sin8-c0!48-=I/V"2, find 
u1 ... 8·861.} Drawing a diagram and fitting a nonnal cun·e, we have 
fig . .}2.2 ; the distribution is rather irregular but the fit is fair; certainly 
there is no marked asymmetry; and, so far as the graphical test goes, the 
distribution may be regarded as appreciably normal One of the greatest 

• divergences of the actual distribution from the normal curve occurs in the 
almost central interval 'VIith frequency 78 ; th-= difference between the 
observed and t'alculated frequencies is here 12 units, but nevertheless it 

. 
I' '\ 

80 

I \ 
60 If 

I \ 
l . 

4 

./ 1\ 
'J>tl / 

/ \ 
0 -- ,Y 1'- .__ 
-

FIG. 12.2.-Distribution of Frequency obtained by Addition of Table 11.3 along 
· Diagonals runnirig up from left to right. fitted with a Normal Curve. 

T 

may well have occurred as a fluctuation of sampling. In fact, anticipating 
our .discl).Ssion of the use of the standard error (standard deviation of 
simple sampling) in testing the significance of sampling fluctuations 
(19.4), we may note that the standard error in this case is Vrtpq~ where 
n is the number of observations and p and q the chances of an individual 
falling or not falling within the given interval. p may be taken as 90/1078, 
and therefore the standard error is 

I 9o 988 -~. 
"

1078
"1078. 1078 =~·1 -

The observed deviation, 12, is not much greater than this and may there
fore have occurred as a sampling fl~ctuation. We have used here the 
exact expression for the standard error, but since p is small we might· 
have used the approximation yp;i = V9o = 9·5. This last is useful as 
giving a test which can be applied on sight.-

12.15. So far, we have seen (1) that the regression is approximately 
linear; (2). that, in the &J;Tays which we have tested, the standard 
deviations are approximately constant, or at least that their differences 
are only small, irregular and ftuct~ting ; (3) that the distribution of 
totals for one set of diagonal arrays is approximately normal. These 

-results suggest, though they cannot completely prove, that the whole 
clistribution of frequency may- be reBarded as approximately normal, 
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- within the limits of fluctuations of sampling. We may therefore apply a 
more searching test, viz. the form of the contour lines and t,he closeness 
of their fit to the contour ellipses of the normal surface. It m!nhowevcr, 
be seen that no very close fit can be expected. Since the frequencies ,in 
the compartments of the table are small, the standard ·error' of any 
frequency is given approximately by its square root (19.15), and this 
implies a standard error of about 5 units at the centre of the table, 3 units 
for a frequency of 9, or 2 units for a frequency of 4 : fluctuations of these 

_ magnitudes are quite possible _and might cause wide divergences iq the 
couesponding contour lines. · · . , . 

12.1.6. Using the suffix 1 to denote the constants relating to the 
distribution <>f stature fo1 fathers, and 2 the same constants for the sons, 

· N=t078 M 1 =67·70 
a 1 = 2·72 

.M2 =68·66 
a8 = 2·75 

lienee we have from equation (12.7),-

• y;,=26·7 . . -

and the.complete expression for the fitted normal surface is 

( ~ s; -) 
y=26·7e -i Hi+:6o-w 

The equation to any contour ellipse will be given by equating the index. 
of e to a constant, but it is very much easier to draw the ellipses if we refer 
them to their principal axes. To do this we must first determine 8, S1 
and 8 2• From (12.10), - - _ · 

, tan 28 = ":"' 46·49 

whence 28=91° U', 8=45° 37', the principal axes standing very nearly 
at an angle of 45° with the axes of measurement, owing to the two standard 
deviations being very nearly equal. They should be set off on the diagram, 

·not with a protractor, but by taking tan 8 from the tables (1·022) and 
calculating points on each axis on either side of the mean. · · 

To obtain S1 and S1 we have, from (12.11) and (12.12), 

81
1 + 82

1 = 14·961 
2S1S1 = 12·868 

Adding and subtracting these equations from each other and taking the 
square root, 

S~.__ + S8 =5·275 . 
S1 -S3 =1·447 ., 

whence S1 = 8·36, S2 = 1·91 ; o'\\ing to the principal ~xes standing nearl~ 
at 45° the first value is sensibly the- same as that found for a• in 12.14. 
The equations to the contour ellipses, referred to the principal'axes, may 
therefore be written in the form - -. ' 
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the major and minor semi-axes being 3·36 x c and 1·91 x c respectively. To 
find c for any assigned value of the frequency y we have: 

Yl2 = Y~2e- jc• 

2 
2(log y~ 2 -log y12 ) 

c =----];;~----
"' 

Supposing that we desire to draw the three eontour ellipses for y = 5, 
10 and 20, we find r ~ 1·83, 1·40 and 0·76, or the following values for the 
major and minor axes of the ellipses : semi-major axes, 6·15, ·i·70, 2·55; 
semi-minor axes, 3·50, 2·67, 1·45. The ellipses drawn with these axes 
are shown in fig. 12.3, very much reduced, of course, from the original 

1' I 
63 

64 

66 

66 

i 67 

~ 68 
~ 
'c> 69 
" .. 
~ 

'il 70 
~ 

71 

7JI----+-

Statuu of Fathe1·: incites 

Fw. 12.3.-Contour Lines for the Frequencies 5, 10 and 20 of the Distribution of 
Table 11.3, and corresponding Contour Ellipses of the Fitted Normal Surface. 
P 1P 1 , P 2P 2 , principal axes; M, mean. 

drawing, one of the squares shown representing a square inch on the 
original. The actual contour lines for the same frequencies are shown 
by the irregUla_r polygons superposed on the ellipses, the points on. these 
polygons having been obtained by simple graphical interpolation between 
the frequencies in each row and each column--diagonal interpolation 
between the frequencies in a row and the frequencies in a column not 
being used. It wi~l be seen that the fit of the two lower contours is, on 
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the whole, fair, especially considering the high standard errors. In the. 
case of the central contour, y =20, lhe fit looks very poor to t1te eye, but 
if the ellipse be compared carefully with the table, the figures suggest 
that here again we have only to deal with the effects of fluctuations of· 
sampling. For father's stature = 66 in., son's stature = 70 in., there is a 
frequency of 18·75, and an increase in this much less than the standard 

· error would bring the actual contour outside the ellipse. · Again, for 
father's stature=68 in., son's stature=71-in., there is a frequency of 19, 
and an increase of a single unit would give a point on the actual contour 
below the ellipse. Taking the results as a whole, the fit must be considered 
quite as good as we could expect with such small frequencies. 

. . It is perhaps of historical interest to note that Sir Francis Galton, 
working without a knowledge of the theory of normal correlation,. sug
gested that the contour lines of a similar table for the inheritance of 
stature seemed to be closely represented by a. "'leries of concentric and 
similar ellipses (ref. (250)): the suggestion was confirmed when he handed 
the problem, in abstract terms, to a mathematician, J. D. :Hamilton 

· Dicksort (ref. (252)), asking him to investigate "the Surface of Frequency · 
of Error that would-result from these data, and the various shapes and 
other particulars of its sections that were made by horizontal planes.'.' _ 

-
IsotropiC" Character of the Normal Surface. 

12.17. The normal distribution of frequency for • two variables is 
an isotropic distribution, to which, all the t~eorems of 5.16 apply. 
For if we isolate the four compartments of the ~orrelation table common 
to the rows and columns centring round values of the variables 
:z~ ilz, ;r1', x1', we have for the ratio of the cross-products (frequency of 
;r1;r1 multiplied by frequency of ;r1';r1', divided by frequency of ;r1;r2' 

multiplied by frequency of ;r1';r1 ), · 

Assuming that ;r1' -·;r1 has been taken of the. same sign as ;r2' -;r2, the 
exponent is of the same sign as r11• Hence, the association for this group 
-of four frequencies is also of the same sign as r11, the ratio of the cross
products being unity, or the association zero, if r18 is zero. In a normal 
distribution, the association is therefore of the same sign-the sign of 
r1.--for every tetrad of frequencies in the compartments common to 
two rows and two columns ; that is to say, the distribution is· isotropic •. 
It follows that every grouping of a normal distribution is isotropic whether 
the class-intervals are equal or unequal, large or small, and t,he sign of the 
association for a normal distribution grouped down to 2 x 2-fold form 
must always be the same whatever the axes of clivision chosen. . · 
· 12.18. These theorems are of importance in the applications of the 
theory of normal eorrelation to the treatment of qualitative characters 
which are subjected to a manifold classification. The contingency tables 
for such characters are sometimes regarded as groupings of a normal 
distribution of frequency, and the coefficient of correlation is determined 
on this hypothesis by a rather lengthy procedure (see below, · 13.23, 
page 251). Before applying this procedure it is well, therefore, to see 
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whether the distribution of frequency may he regarded as approximately 
isotropic, or reducible to isotropic form by some alteration in the order 
of -rows and columns (5.16 and 5.17). If only reducible to isotropic 
form by some rearrangement, this rearrangement should be eUeded before 
grouping the table to 2- x 2-fold form for the calculation of the (·orrelation 
coefficient by the process referred to. If the table is not reducible to 
isotropic form by any rearrangement, the process of calculating the 
coefficient of correlation on the assumption of normality is to be avoided. 
Clearly, even if the table be isotropic it need not be normal, but at lea.'lt 
the test for isotropy affords a rapid and simple means for excluding certain 
distributions which are not even remotely normal. Table 5.2, page 66, 
might possibly be regarded as a grouping of normally distributed frequency 
if rearranged as suggested in 5.15-it would be worth the investigator's 
while to proceed further and compare the actual distribution with a fitted 
normal distribution-but Table 5.4 could not be regarded as normal, and 
could not be rearranged so as to give a grouping of normally distributed 
frequency. . · . · . · . 

· 12.19.: If the frequencies in a contingency table be not large, and 
also if the contingency or correlation be small, the influence of casual 

, irregularities due to· fluctuations of sampling may render it difficult to 
say _whether the distribution may be regarded as essentially isotropic or 
not. In such cases some further condensation of the table by grouping 
together adjacen~ rows and- columns; or some process of·" smoothing " 
by averaging the frequencies in adjacent compartments, may be of service. 
The. correlation table for stature in father and son (Table 11.3), for 
instance, is obviously. not strictly isotropic as it stands : we have seen, 
however, that it appears to be normal, within the limits of fluctuations 
of sampling, and it should consequently be isotropic within such limits • 
. We can apply a rough test by regrouping the table in a much coarser 
form, say with four rows and four columns : the table below exhibits such 
a grouping, the limits of rows and of columns having been so fixed as to 
include not less than 200 observations in each array. 

TABLE 12.1.-{Condensed from Table 11.8, p. 199.) ' 

I Father'• Stature (inches)~ : I 
Son's Stature 

(inches). 
Under I 

69·5) I 

65·5. 65·1Hl7·5. 67-5-69·5. and over. Total. 

' -Under 66·5 97·5 7-1·25 34·75 10·5 217 
66·5-68·5 76·5 108 85 52 321·5 
68·~70·5 33·25 64·75 95 84·5 277·5 

70·5 and over 14·75 32·5 80·75 13-1 262 

Total 222 .279·5 295·5 281 1078 

Taking the ratio of the frequency in column 1 to the sum of the frequem·ies 
in columns 1 and 2 for each successive row, and so on for the other pairs of 
columns, we find the following series of ratios :-
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T.,BLE 12.2.-Ratio ofl'r~mcy in Column,. to Frnp4m~ in Column m ~. : 
__ +FrrqunteJ in Column (111+1) of Toblc l2J. · , · · 

I ruwnns 
Ro•. I 

' I I 1 and%. 2 and 3. 3 and 4. 

I G-568 I . D-681 D-768 
! o-tla 0·560. 0·620 
3 0·339 ·I D-405 D-529 

• D-31% D-:!87 0·3j6 

These ratios decreaM: continuously as we pass from the top to the bottom _ 
of the table, and the distribution, as condensed, is therefore isotropic. · 
The student should form one· or two other condensations of the original 
table to 3- .;x 3- or 4- x f-fold form: he will probably find them either isotropic 
or dinrging so slightly from isotropy that an alteration of the frequencies, 
well \\ithin tbe margin of possible fluctuations of sampling, will render the 
distributiotl isotropi<'. 

Relationship between Contingency and Normal Porrelation. 
12.20. It was lihown by Karl Pearson that if a normal bivariate 

uni,·erse is divided into se<:tions so ac; to form a contin.,IJ('ncy table, the 
coefficient of IIK'an square contingency, C, ter.ds to the valuer in magnitude 
as the inten·als become fmer and finer, though of course it is always 
posith·e in sign. It was, in fact. the relation 

r=±~l+r/>' 
\\·here r/> 1 is the mean square rontingency, whi<'h led Pearson to identify 

.C 11ith the expression on the right. - · . .· 
The ,·alues of C and r for the dil.tributions of some of the tables of 

Chapter 11 were compared in Exercise 11.3, page 225. 

SIDUL\RY •. 

1. The equation of the normal surface is 

. . 

.-
11here a 1 is the s.d. of .:r1, a1 that CJf .:r., and r11 the Correlation between 
.:r1 and z.. - . . 

This may also be written . · 
. ~~ ~ •!} -- -i ----+-

. Nvl-rA l~.~ •• ..._, ~i1. 
~~- e . 

21Tat.lcra.l 
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where 

2. For t.wo variates normally correlated the standard de,;ations of 
parallel arrays are equal and the regressions are linear. 

3. Any section of the normal surface by a vertical plane is a normal 
curve, and a sec~ion by a horizontal plane is an ellipse. The ellipses given 
by horizontal sections are similar and similarly situated. 

4. The bivariate normal distribution is isotropic. . 
5. A linear function of vfl.riates, each of which is normally distributed. 

. is also normally distributed. 

EXERCISES. 

12.1. Deduce equation {12.12) from the equations for transformation of 
. co-ordinates without assuming the normal distribution. ~A proof will be found 
in ref. (248).). ' 

12.2. Hence show that if the pairs of observed values of z 1 and z 1 are repre
sented by points on a plane, and a straight line drawn through the mean, the 
sum of the squares of the distances of the points from this line is a minimum 
if the line is the major principal axis. 

12.3. The coefficient of correlation with reference to the principal axes bt'ing 
·zero, and with reference to other axes BOmdhing, there must be some pair of axes 
at right angles for which the correlation is a maximum. i.e. is numerically 
greatest without'regard to sign. Show that these axes make an angle of .w• 
with the principal axes, and that.the maximum ,'a}ue of the correlation is 

s.• -s.• 
±81

1 +Sa• 

12.4. (Sheppard, ref. (258).) A fourfold table is formed from a nonnal 
correlation table, taking the points of division between ..4 and a, B and p, at the 
medians, so that (A.) =(a) =(B) =(fJ) =~ J2. Show that 

r =COS (1 -2
(:)), 

12.5. Show that the points of inftection of the sections of the nonnal surface 
by vertical planes through the mean of the distribution lie on an ellipse; and 
show how: this ellipse may be used to give the standard deviations of su('h 
sections. · 

12.6. Hence find the minimum and maximum standard deviations which 
can be taken by such sections, and show that any specified value of the s..I. 
between the minimum and maximum will be given by two, and only two, 
sections. 

12.7. Find the conditions that the surface 

•=k~+J}q+tr" 

can represent a normal correlation surface whose variates are z andy. Assuming 
these conditions satisfied, express 0'10 0'1 and r11 in terms of a, A and b. 



CHAPTER 18. 

FURTHER THEORY OF CORRELATION. 

Methods of Estimating the Product-moment Correlation Coefficient. 
V13.1. The only strict method of calculating the correla.tiqn coefficient 

is that d~bed in Chapter II, from the formula · 

~ S(zy) 
r 
.. VS(.x1)S(y1 ) 

Where possible this formula. should. be employed. It someti~es happens, 
however, owing to incomplete data, that we are constrained to use some 
method of ap~J!oxima.tion. Furthermore, the large amount of arithmetical 
labour involved in applying the ordinary formula. may sometimes be 
avoided by approximations which are sufficiently accurate for the purpose 
in \'iew. We therefore proceed to give a few methods of this kind. They · 
are not recommer..ded for general use as they will, as a rule, lead to different 
results in differe':lt hands. · 

13.1. (1) 1'he means of rows and columns are plotted on a diagram, 
and lines fitted to the points by eye, say by shifting about a stretched black . 
thread until it seems to run as near as may be to all the points: H bv b1 be 
the slopes o~ these two lines to the vertical_and the horizontal respectively,. 

· r=Vb1b1 

Hence the value of r may be estimated from any such diagram as fig.ll.8 
or 11.9, in the absence of the original table. . Further, if a correlation table 
be not grouped by equal intervals, it may be difficult to calculate the 
product sum, but it may still be possible to plot approximately a diagram 
of the two lines of regression, and so determine roughly the value of.r. 
Similarly, if only the means of two rows and two columns, or of one row and 
one column in addition to the means of the two variables, are known, it will 
still be possible to estimate the slopes of RR and CC, and hence the correla ... 
tion coefficient. · · . · · . . • 

(2)"-The means of one set of arrays only, say the rows, are calculated, 
arid also the two standard deviations a. and u11• • The means are .then._ 
plotted on a diagram, using the standard deviation of each' variable as the 
unit of measurement, and a line fitted by eye. The slope of this line to the 
vertical is r. H the standard deviations be not used as the units of measure
ment in plotting, the &lope of the line to the vertical is ra./a111 and hence 
r will be obtained by diliding the slope by the ratio of the standard 
deviations. · . · . 

This method, or some variation of it, is often useful as a makeshift when 
the data are too incomplete to· permit of the proper calculation of the 

Ul 16- ~ 
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correlation, only one line of regression and the ratio of the dispersions of 
the twQ variabks being required: the ratio of the quartile de\iations, or 
other simple measures of dispersion, will serve quite well for rough purposes 
in lieu of the ratio of standard deviations. As a special case, we may note 
that if the two dispersions are approximately the same, the slope of RR to 
the vertical is r. · 

. Plotting the. medians of arrays on a diagram with the quartile delia-
lions as units, and measuring the slope of the line; was the method of 
determining the correlation coefficient ("Galton's function") used by Sir 
Francis Galton, to whom the introduction of such a coefficient is due 
(refs. {2.f.2) and (243), of. also ref. (245)). 

(3) If a., be the standard deviation of errors of estimate like z -bJ!j, 
we have, from 11.24, · 

and hence, 

r= /1_• .. : 
. 'V a., 

But if the dispersions of arrays do not differ largely, and the regression is 
nearly linear, the value of a,. may be estimated from the average of the 
·standard deviations of a few rows, and r determined~r rather estimated 
-accordingly. Thus in Table 11.3 the standard de\iations of .the ten 
columns headed' 62·5--63·5, 63·5--64·5, etc., are: 

2·56 2·26 
2·11 2·26 
2·55 2·45 
2·24 2·33. 
2·23 
2·60 Mean 2·359 

The standard deviation of the stature of all sons is 2·75 : hence approxi
. mately 

r = ~ _ (2·359)• 1 
'2·75 

=0·5U 

This is the same as the value found by the product-sum method to the 
second decimal place. It would be better to take an average by counting 
the square of each standard deviation once for each observation in the 
column (or " weighting " it l'ith the number of observations in the colunm ), 
but in the present c~e this would only lead to _a very slightly different 
result, viz. a=2·362, r=0·512: 

\/Non-linear Regression. 
13.3._ We referred in Chapter U to the fact that the treatment of 

cases when the regression is non-linear is somewhat difficult. We may, by 
the methods of Chapter 17, and other\\ise, fit cur,·es of any order to the 
means of arrays, just as we have fitted straight lines to them ; but the 
handling of these regression curves and their interpretation is far more 
complicated. 
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.. 13.4: It is therefore desirable, wherever possible, to deal with variates.·· 
which result in linear. regression. Now it sometimes happens that if a 
relation between X and Y be suggested, we may, either by theory or by 
previous experience, th~ow that rel~tion_ into the form 

t y·= A + Bc/J(X) 

where A and B are the only unknown constants to be determined. If·. 
a correlation table be then drawn up between Y and c/J(X) instead of Y . 
and X, the regression will be approximately linear. Thus in Table, 11.5, 
page 201, if X be the rate of discount· and Y the percentage of reserves 
on deposits~ a diagram of the ·curves of regression suggests that the 
relation between X and Y is approximately of the. form 

X(Y-B)=A 

A and (i being constants ; that is, . 

XY=A+BX 

. Or, if we m=ike XY a ne-w variable,'sa.y Z, 
' . 

Z=A+BX' 
.. 

. t . . . 

Hence, if we draw up a new correlation table between X "and Z the 
regression will probably be much more closely linear.· 

If the relation between the variables be of the form 

\ 

we have 
log_Y=log A +X log B · 

and hence the relation between log Y and X is linear. Similarl;l, if the 
relation be of the form 

X"Y=A 
we have 

logY =logA-n log X 
. . . 

and so the relation between log Y and log X is linear. By means of 
such artifices for obtaining correlation tables in which the regression is 
linear, it may be possible to do a good deal in difficult cases whilst using 
elementary methods only. The advanced student should refer to ret's. 
(273) and (377) for different methods of treatment. . . 
C11i'e Correlatien Ratios. 

13.5. In view of the importance of linearity of regression it is 
desiraLle to have some criterion which will enable .a }udgmept to be 
formed :wheth~r a r~gre~sion ~s, within the limits permitte~ by sampling 
fluctuations, bnear m any giVen case, \Ve now proceed to discuss a 
eoefficient designed for this purpose. · ' · . . 

Consider a bivariate frequency table, and· let a,,· be the standard 
~eviB;tion of the pth array_ of X's. Let n 11 be .the number of observ~tions 
m Hus array. · · 

•. , i : .. _ 
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(13.1) 

Then a!. is .the weighted mean of the varitnces of arrays, obtained as 
suggested in the last s~ntence_ of 13.2 (3) •. Now, let 

o'" ""a!(1 - TJ!,) (13.2) 
or 

• (13.3) 

Then TJ,., is called the correlation ratio of X on Y. Similarly, TJ • .., 
defined by 

is called the correlation ratio of Y on X. 
13.6. The correlation_ ratios may be put in another form, which is 

much more convenient for purposes of calculation. · 
. In fact, if 111. is the mean of all the X's and m,. the mean of an array, 

we have, as in equation (8.6), · 

Nu! :::sr np{s:.S+ (111,.- mF)2)] 

or, using Umz to denote the standard deviation of m,., obtained by 
" weighting " each m,,. according to n,. the number of observations in 
the array in which it :occurs, . . 

•. (13.4) 

Hence, substituting in {13.3), 

•. {13.5) 

The correlation ratio of X on Y is therefore determined when we have 
found the standard deviation of X and the standard deviation of the 

. means of its arrays. · 
13.7. In 11.22 we saw that 

1 .. 
a!(1-r1 ) =NS(z -b1y) 1 , (13.6) 

where a: - b1y .= 0 is the line of regres~ion of :i: on y, .7: ~d y being the 
values of X and Y measured from the mean of the distribution. · 

Now, for any array for which y is constant, 

1 . 1 
NS(z -b1y)1 = NS{(z -m,.,) + (m,. -b1y)}1 
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the product term vallishing since S(z -m11.,) =0. Hence, summing for all_: 
arrays of y, - . • · _ . I _ . 

- a!(1-r")=:u~+s~{(m11.,~b1y)'} -
-But 

Hence, 

(13.7} 

From thls we see that TJz, cannot be less than r in absolute value 
If TJ!, = r1, then 

i.e. 
.#. m.z-bty='O. 

for all rut~ys. · This. means that the mean m118 must be on the line of 
regression for all arrays; i.e. that the regression is line~r. . 

13.8. _.,The divergence of TJ1 from rl therefore measures the departure -. 
of the regression from linearity. It should, however, be noted that 
sampling fluctuations may cause TJ'-r1 to deviate from zero--even when 
the regression is truly linear. We give later a method of testing the 
significance of observec:I fluctuations of this kind (23.44). · 

-calculation of the Correlation Ratio. 
13.9. The table on page 246 illustrates the form of the arithmetic 

for the calculation of the correlation ratio of son's stature on father's 
stature (Table 11,3). · In the first column is given the type of the array 
(stature of father); in the second, the mean stature of sons for that array; 
in the third, the difference of the mean of the array from the mean stature _ 
of all sons. In the fourth column these differences are squared, and in 
the sixth they are multiplied by the frequency oflhe array, two decimal 
places only having been retained as sufficient for the. present purpose. 
The sum-total of the last column divided by the number of observations 
(1078} gives u:O. = 2·058, or a,.,= 1·4-3. As the standard deviation of 
the sons' stature is 2·75 in., TJ,.,=0·52~ Before taking the diffe_rences for 
the third column of such a tabl!!, it is as well to check th_e means of the 
arrays by recalculating from them the mean of the whole distribution, 
i.e. multiplying each .array-mean by its frequency, summing and dividing 
by the number of observations. The form of the arithmetic may be' 
\'aried, if desired, by working from zero as origin. instead of taking differ
ences from the true mean. The square of the mean must then be sub-
tracted from S(fm!)JN to give u!r . - · - ..., . · · , -

13.10. If the second correlation ratio for this table be worked out in 
the same way, the value will be found to be the same to the second place 

· of decimals : the two correlation ratios for this table are, therefore, very 
nearly identical, and only slightly greater. than the correlation coefficient 
( 0·51 ). Both regressions, as follows from the last section, are very nearly 
linear, a result confirmed by the diagram of the regre&sion lines (fig~ U.S, 

. page 211). On the other hand, it is evident from fig. 11.10, page 218, . . . . 
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ExAMPLE 13.1.-CAI.CULATTOM OF THE CoRRELATION RATTO: Son'• Stature on 
]<'ather's Stature: Data of Table 11.3, p.-199. 

I 1. 2. 3. •• 6. G • 
Type or :Mean or 1Jjlfei'CIIC8 
Arra.y Array from Mean Squar·e or Frequency. FI'<'I)Uencyx 

(Father's (Son's or all Sons Dilf'erence. (difference )1, 
Stature). Stature). (68'66). 

, 59 .•. • 6,•67 -8·99 16·9201 8 4i"i8 
60 65•64 -3·0:! 9·120, 8•5 31'92 
61 61!•114 ..:2-32 5·:1~24 8 43•06 
62 65•56 -3·10 9•6100 17 163•37 
63 66•68 -1 •98 3'920. 83•6. 131"33 
64 66·H -1·92 8"6864 61 •5 226•71 
e5 6i•19 -1·47 2•1r;09 95·5 206·37 
66 67•61 -1·05 1 •1025 142 156'58 
67. 67"95 -O·il 0•5041 137·5. 69•31 
68 69•07 +0•41 0"1681 154 - 25"89 
69 69'39 +0"i3 0"5329 141•6 i5•41 
70 69'74 +t·os I ·166~ 116 135•30 
71 70•50 + 1•84 . 3'3856 ·i8 264•08 
72 . ;o·s; +2•21 4"88H 49 239•32 
i3 72•00 +3"34 11•1556 

j ~-· 
317•93 

74 . 71•50 +2"84 8'0656 32"26 
75 ; 71•73 +3'0i 9•4249 5•5 51•84 

Total ... ... . .. 1078 2218"42 I 
' a!.v =2218·42/1078 =2·058 a ... =1·43 

7] • ., = 1·43/2·75 =0·52 

that we should expect the two correlation ratios for Table 11.6 to differ 
considerably from each other and from the correlation coefficient. The 
values found are TJ.,11 = 0·14, TJ11., = 0·38 (r = - 0·014): 'YJn is comparatively 
low as proportions of male births differ little in the successive arrays, 
but 'YJ~., is higher since the line of regression of Y on X is sharply curved. 
The confirmatitm of these values is left to the student. 

The student should notice that the correlation ratio only affords a 
satisfactory 'test when the number of observations is sufficiently large for 
a grouped correlation table to be formed. In the case of a short series of 

· observations such as that given in Table 11.7, page 203, the method is 
inapplicable. 

jThe Rank Correlation Coefficien~. · . ' . 
·· 13.11.. In calculating the coefficient of correlation from the product-
moment it is necessary that the data should be definitely measured. If 
they are not so measured we cannot, in general, determine the coefficient, 
though we may sometimes approximate to it by one of the inethods of 
13.2. . 

But there may be more serious obstacles than imperfect grouping in 
the way of finding the correlation between two variates. In the examples 



FURTIIER THEORY OF CORRELATION~ 247 

we have considered up to the present the qualities ~we have discussed have 
-been easily measurable, invohing such familiar concepts as height, weight, 
age and so forth. In certain types of inquiry we may have·tp deal '!rith 
qualities which are not expressible as numbers of units of an objective 
hln~ · 

. 13.12. Consider, for instance, the relation between mathematical• 
and musical ability in a class of students. " Ability," whether of a general 
or a specific kind, is a variate in the sense that it varies from one individual 
to another; and it may be a numerical variate if we can decide on SO!fl!! 

·unequivocal way of measuring it. A very common mode· of attempting 
to do so is by allotting marks to each student: But SU!!h :methods are open 
to many objections, not the least of which is that different examiners would 
give different marks to the same person. A correlation between the marks 
obtained for math.ematics and music would, therefore, be likely to depend 
to some extent on the examiner, and would not reflect accurately the 

. relationship between the two qualities. . . · · . · 
• 13.13. Difficulties of this type disappear to some extent _if we arrange 
the students in orckr of their ability, .but dq not attempt to assess it 
numerically. There will still be· some divergence of opinion between 
differeni\,~xaminers, perhaps, but it will not as a rule be so seriops. We 
then allot to each student a .number. which indicates his positi9n i~ the 
arrangem~nt· according to ability, the first being number 1,. the second 
number 2, and so on. The students are then' said to be ranked, and the 
number of a particular individual is his rank (cf. 8.32). 

13.14.. A procedure of this hlnd is useful in the treatment not only 
of data which can be ordered but not exactly measured, but of measurable 
data also. For instance, we can easily rank a number of men according 
to height without actually measuring them. It is also comparatively easy 
to rank a number of shades o( a colour, or a n'umber of countries according 
to their importance in the export.market, where precise numerical measure-
ment would be very troublesome.· · ·· · 

13.15. If we have a set of individuals rAnked according to two. 
different qualities it is naiural to inquire whether the ranks can be made 
to give us some measure of the degree of relation between the two qualities. 

Suppos~ we haven individuals, whose ranks according to quality A are 
x •. x •. XII : •• X,., and according to quality n are Y •• Y,, Ya •... Y,.,. 
where the X's and Y's · are merely permutations of the first n natural 
numbers. Let d,. =X,. - Y t· - . 

The values of d form a convenient measure of the closeness of the 
correspondence between A and B. If all the d's are zero. the correspond
ence is perfect, for an individual whose rank is Xk for A. will also be X,. for B. 
\\' e cannot, however, take the sum of the d's as a measure of correspondence, · 
because that sum is zero ; for the sum of the differences of the X's anq r•s 
is the difference of the sums of the X's and the Y's, each of which is the sum 
of the first n natural numbers. . . ~. 

A possible measure which suggests itself is the sum of the absolute values 

of the d's, i.e. Sl d j. This measure and its mean ~SId I have, i~ f~ct, been 
, n 

u~ed, but like the mean deviation (8.17) they have- certain analytical 
disadvantages. . . , , . . _ . 

13.16. A more convenient coefficient is obtained as-follows:-. -----'-
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Tbe value~ of X range from 1 to n. Their sum is ~n + 1 !, and th•·ir 
2 

. d. l n + 1 mean IS accor mg y --· 
2 

This value is also the mean of the l .. s. 

Let us denote by :r~: the value of X~:- n; 1 
'· i.~. the dive1gence of Xc 

from the mean. Similarly for Yb which we define as r ~:- n; 1. 

Write 

(13.8) 

This is the product-moment coefficient of correlation lJctwePn X and 1". 
'Ye shall call p the rank correlation coefficient. It may be cxpre~~ed 

very simply in terms of nand the d's. 

tl 8 -n 
For, as we saw in 8.14, S(.x2) is~· 

X ow, 

Hence, 

S(tf!) = S(Xt- Y~:)Z = S(x- y)s 
• =S(.xz) + S(yz) -2S(.xy) 

S(.xy)=l{na;n -S(d2)} 

and substituting in (13.8): 
6S(d!) 

p=1--. -
n3-n (13.9) 

. E:rample 13.2.-The rankings of ten students in mathematics and 
music arc as follows :-

l\Iathernatics : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
l\Iusic : 6, 5, 1, 4-, 2, 7, 8, 10, 3, 9 

Wbat is the coefficient of rank correlation ? , 

The differences dare (mathematical rank minus music·al rank) 

- 5, -3, + 2, o, +a; - 1, -1, - 2, + 6, + 1 

These add to zero, as they should. 
The squares of d are 

which add up to 90. 
Hence, from {13.9), 

25, 9, 4, 0, 9, 1, 1, 4, 36, 1 

P =1-
540 

= +0·45 
990 

13.17. The rank correlation coefficient varies from + 1 to -1. If the 
r>snk correlation is perfect, all the d'_s are zero. If, on the other hand, the 
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ranks are such that the first, second, third in one order correspond to the 
nth, (n -1 )th, (n- 2)th, ... in the other, p = -I. The proof is slig}:ltly 
different according to whdhcr n is even or ,xld. If it is odd, say =2m+ 1, 
the d'~ arc -

and 
':!tn, 2nt --2; 2, 0, -2, 

Ilene<>. 

S(d2 ) =2f(2m) 2 +(2m- 2) 2 + 

~m_S 1~1__:1- !_)( 2rn_~!:l 
6 

-(2rn-2), -2m 

If n is cveu, say o~ 2m. 

and 

S(d 2 )=2[(2m-J)2+ ... +Pj 

2m 
= 3-( 4rn 2 -- 1) 

p = - 1 as before.1 

Relationship between Rank Correlation and Product-moment 
Correlation. 

13.18. The rank eorrelation codiicicnt as we have introduced it is 
merely a measure, like the coeDieients of association, contingency and 
produc·t·!llorncnt correlation, of the concspondence between two quantities. 
Like those <"oeiftciellts, it is affected by sampling fluctuations. 

It is, however, more easily ealculated than most coefficients, and for 
this reason some writers have advocated its use as a substitute for the 
product-moment eoetlicient between the actual measurements, alld for 
e~timating the produet-mornent eoeiticient from a normal universe. \Ye 
proceed to examine this pra('tiee briefly. 

Grade Correlation. 
13. l 9. We rcf('JT(•d at the end of Chs.pter 8 to such quantities as 

quartilcs, de(·iles and pt':reentiles, which are values of the variate diYiding 
the total fr~;quc·ncy into certain specified proportions. For instance, the 
seventh decile i '> the variate value such that seven-tenths of the distribution 
lie below it, i.e. exhibit values of the variate less tha.i1 the decile. 

Generally, we may regard the grade of an individual as the proportion 
of individuals whicitlie below him (cf 8.30). If the universe is continuous, 
the range C'f grndes will also be continuous. . 
' 13.20. To each individual in a bivariate universe there will be 
attached two grade numbers, one for each variate, and if the universe is 

---------- ---·----
1 The property of varying between i- 1 and - 1 does not belong to a similar coefficient 

proposed by Spearman, and known as his "foot-rule,'' viz. R = 1 - :!.S~I d 1). 
.• n• -1 

. It may be shown in the al>ove manner that R varies from -0·5 to +1, and for this 
:reason alone R seems an undesirable coefficient. 
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correlated the grad~ will also be correlated. In fact, Karl Pearson ha~ 
sho-.rn that if the universe is normal, p., the grade correlation, and r the 
ordinary correlation (both calculated by the product-moment method), are 
relatt"d by the equation -

r""2sin (":•) • {13.10) 

13.ll. Ranks and grades are connected by a simple relation. In 
fact, if an indh;dual is of rank lc, there are lc -1 individuals below him 
(assuming that the ranking proceeds from the lowest variate value). If 
we admit, conventionally, that one-half of the individual is to be regarded 
as lying to the left of the line of division which he makes, and one-half to 
the right, his grade, g,.. is given by 

_ t~: = (k -1 >+I =k- i • (13.11) 

It follows that the correlation between ranks is the same as the correla
tion between grades. But in a universe which is finite and discontinuous 
(ana ranking is in practice applied to comparatively small universes of 

· twenty or thirty indi~duals) it don not fo~ that 

r=2sin(';:') •. • (13.12) 
f 

Equation {13.10) was obtained Ly considering grades in a continuous · 
universe, and equation {13.12} is at best an approximation, depending on 
assumptions which are often of doubtful legitimacy. This is a fact which 
has not always been appreciated: We may, perhaps. clarify the point by 
considering the data of Example 13.2. 

Ezample 13.3.-In Example 13.2 we f!>und: 

p= +0·45 

Uwe apply (13.12) we find: 

r=2 sin 13-5° 
;= +0·47 

• 

Let us consider what this means. · . 
The value r purports to he a correlation coefficient such as would ha,·e 

been obtained by the product-inoment method ifthe h·o variates had been 
measurable in the ordinary way. . Let us, for the sake of argument. agree 
that mathematical and musical abilities are capable of o1easurement. 

Now there are only ten members in this unh·erse, and it cannot be 
regarded with any degree of accuraey as a continuous normal uninrse. 
The use of (13.12) in finding the correlation in the tmit·ene often is there-
fore of doubtful nlidity, to say the least. .. 

But it is po6Sible to look at this from rather a different point of view, 
and to regard the ten students as a sample from a practirally infinite 

. universe which i., continuous and normal. The value r ts then taken to be 
__ an esti.mate of the correlation coefficient in this unh·erse. 

Th~ legitimacy oft~ procedure will depend on the extent to which th~ 
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gmde correlation in the sample can be taken to represent the grade correla
tion in the universe. It will, we think, he sufiiciently evident from the 
smallness of the sample that the two are likely to f]iverge considerably 
owing to sampling fluctuations. 

FurthcrmorP, in the comparatively small samples to which (13.12) is 
applied---the labour of calculating the rank correlation coefficient for large 
samples is very tedious-it is difficult to obtaill any sali-:factory evidence 
front tlv" data t hemscln·s that the universe can properly be regarded as 
normal; and cn·n if the distribution of each of the variates, la.ken singly, 
can be n·ndcJwl normal hy some appropriate transfurmation of the 
,-ariate \\·hich squec7.es or stretches the scale of measurement, it does not 
neccssarily follow that the correlation distribution ean in this way be 
re1ukrcd normal. 

IH pnt(•ticc, moreo\'<·r, tmu hlesome dilfieultics sometimes arise owing to 
two or more individuals !wing gi \'CB the same rank. The common procedure 
of assigning tu eaeh individual the average rank of the group, but never
theless using formula (l :l.!l), is inexact. 

U~e of p:U:!) should thndor<· be made with the utmost reserve. It 
would proha.hl~· he ll!'ltet· to aYoid it altogether and rely on the rank 
corrdation cocllieient. 

13.22. The rdationshi p helw<•cn the product-moment coetlicient and 
the rank eorrclation eocllieient might profitably be subjected to further in
vestigation, particularly for smallnurnhcrs of individuals. As we have just 
seen, with the present state of om knowledge, the use of the rank coefficient 
is not to he recommended as a brief method of estimating the product
moment coefficient. It appears, however, to be of service as a quick 
method of gauging relations between variates which are not normally 
distributed, Qr between quantities which cannot readily be measured, 
when the number of observations is small. 

Tetrachoric r. 
13.23. To complete our a<·<·ount of methods which have been devised 

as alternatives to the liS<' of the produd·monwnt correlation coefficient in 
eases where, for some· rcason, that <·o!'flki(·nt ('a.nnot he eornputed, we may 
refer to a process specially adapl(•d to the:! x:! contingency table. 

Consider such a table in thc schematic form: 

.I I ;'\;ot-A r Total i 
' I I ... ,. - !- - -· ---- ------1 

/) • 11 /; 
1

, rt+b 1 
'~- -··-- ·--- -· --- __ 1 _______ 1 

I Kot-1/ i t' · i tl 1 
C ~ d 1 

---. --- . ---·· - -1-- ----!----1 
j Total : t1 t c : /; -1·~--- -~--~---

Let us assume that our n.UriLutes A and B are, in theory, based on 
measurable quantitit·s; and l('t us suppose further that the universe would 
be normally d ist ri huted with respect to those quantities as yariates. Then 
we may regard th(• aho\"c table as the res~lt obtained by divjding a bivariate 
normal universe into four seCtions, a division of the X-variate at some 
point, say h, and a division of the ¥-variate at some point k. If we 
picture the universe as a solid figure, as in fig. 11.1, page 204, the frequencies 
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a, b, c and d will be the volumes into which the universe i~ divided by 
planes perpendicular to the X and Y axes through the points X =h 
and Y =k, respectively. 

The problem then arises, given a, b, c and d, ·what are the values of 
h and k (in terms of _the standard deviations of X and Y), and what 
is the value of r 1 

13.24. A discussion of this problem. which involves some difficult 
mathematics, is outside the scope of this book. The student may be 
referred to '-' Tables for StatisticiaTU and Biometriciana, Parts I and II," for 
a short account of the method of solution and for tables which are almost 
indispensable in working out r for any given case. 
· A value of r obtained in this way is said to be tetrachoric. -

The coefficient has often been used to obtain a value of the correlation 
(so-called) for a contingency table, using some reduction to the four-fold 
form by amalgamating adjacent arrays, or possibly making more than one 
such reduction and averaging the results. As such tables are very often 
far from normal, it is always desirable to test the normality by using more 
than one reduct~on. In any case the reader should be informed precisely • 
as to the reduction used. 

The Product-moment Correlation Coefficient for a 2 x 2 Table. 
0' 0 

13.25. The correlation epcfficient is in general only calculated for 
a table with a considerable number of rows and columns, such as those 
given in Chapter 11. In some cases, however, a theoretical value is 
obtainable for the coefficient, which holds good even for the limiting case 
when there are only two values possible for each variable (e.g~ 0 and 1) 
and consequently two rows and two columns (cf. -Exercises 13.5 .and 
13.6). It is therf!fore of some interest to obtain an expression for the 
coefficient in this case in terms of the class-frequencies. 

Using the notation of Chapters 1-4 ~e table may be written in t~ 
form': · 

Vaiuea of Values of First Variable. 
Second 

Variable. ..1"1 X' 1 Total 

x. (AB). (aB) • (B). 

.x·. (A{J) (q.p) <P> 
Total (A) (a) N 

T~king the .centre of the table as arbitrary origin .and the class-interval, 
a.S usual, as the unit, the co-ordinates of the mean are : 

1 ' 
{ =2N<(a)- (A)} 

7j = 2~{(,8) ~{B)} 
The standard deviationS o-1, o-1 are given by 

o-1
1 =0·25 -{1 ~(A)(a)JN1 

o-1
1 =0·25 -~1 =(B)(fJ)/N 1 
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. S(xy) :"'l{(AB) + (a/3)- (A/3)- (aB)} -N(ij 

(AB) ~ (A)(B)JN =8 
(as in Chapter 3) and replacing {, ij by their values, this reduces to 

S(.xy) =8 
Whence 

253 

N8 . r= . 
V(A)(a){B)(/3) 

{13.13) 

. I 

This value of r can be used as a coefficient of association, but, unlike 
. the association coefficient of Chapter 3, which "is unity if either (AB) =(A)· 

or (AB)=(B), r only becomes unity if (AB)=(A)=(B). This is the 
only case in which both frequencies (aB) add (A/3) can vanish so that 
(AB) and (afJ) correspond to the frequencies of two points, X 1 Y1, X 11 Y2 
on a line. Obviously this alone renders the numerical values of the two 
coefficients quite incomparable with each other. But further, while the 
association coefficient is the same for all tables derived from one another 
by multip'lying rows or columns by arbitrary coefficients, the correlation · 

. coefficient.(13.13) is greatest when (:A)= {a) and (B)= (fJ), i.e. when the 
table is symmetrical, and its value is lowered when the. symmetrical 
table is rendered asymmetrical by increasin~ or reducing the number of 
A's or B's. For moderate degrees of associatiOn, the association coefficient 
gives much the larger values. The two coefficients possess, in fact, 
essentially different properties, and are differ!nt measures of association 
in the same sense that the geometric and arithmetic means are different 
forms of average, or the semi-interquartile range and the standard devia-
tion different measures of dispersion. · . 

~ 13.26. The student should realise that the product-sum correlation 
and the tetrachoric correlation are also two entirely different measures 
with quite different properties. The one is in no sense an approximation 
to the other, and the-two may often differ largely;· · ; · 

lntraclass Correlation. 
13.27. We have previously· considered correlations between two 

distinct types of variate, such as age and yield of milk in cows, or stature · 
of father and stature of son ; but there occurs, mainly in bi~logical studies. 
a rather different kind of correlation which we will now 'proceed to discuss. 

Suppose we are examining the. relationship between the heights of 
brothers, and consider a pair of brothers, Our two variates will be (1) 
the height of the first brother, and {2) the height of the second brother. 
The question is, which are we to regard as the first brother and which as . 
the second ? It is not difficult to lay down rules which would enable us 
to make a distinction-for instance, we might take· the elder brother 
first, or the taller brother first, But if we did this and drew up a ·correla
tion table for all such pairs, we should not be answering the question . 
as to the relation between brothers in general, for we should only get a· 
correlation between the height of taller brothers ·and that of shorter 
brothers, or the height of elder brothers and the height of younger brothers. 

13.28. The relationship of brotherhood is in fact symmetrical; if 
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A is the brother of B, then B is the brother of A. \-Vhvn we arc eon
sidering only th<' relationship iu height iillplied by relationship of blood, 
there is no relevant eharaeter to enaLlc us to single ont one brother a~ 
the first. 

We. accordingly' treat t!te fHT•l•lem b~r taking ea('h pail' of bndhers i11 
two ways : ( 1 ) with Lhe height. of A as the first varia I e and that of B ns 
the second, anrl (2) with the height of B as the first \';Hi,Jte and that (>I' 

A as the seeomL ~imilarlv, if thcl'c arc~ lc brothers in til,: ,·nw!lv, we entc1· 
in the correlation table tite res IIi h of taking pairs i u <l.li possible ways, 
which number k(k ·-1 ). Fc.r example, if we ht>.ve a farniiy eontaiuing 
three brothers with hf'ighb .3 ft. U in., 5 ft. 10 in. aml 5 ft. ll in., they 
may be regarded as giving six pai'·" of variate Yah<.s: 

5 ft. 9 in. with .5 ft. 10 in. 5 ft. 10 in. with 5 ft. 9 in. 

5 ft. 9 in. with 5 ft. 11 in. 
5 ft. 10 in. with 5 ft. ll in. 

5 ft. ll in. with 5 l't. 9 in. 
;; ft. ll ill. with tiL. 10 in. • 

13.29. Generally, if we havf' 11 families, c~ach with k mem}Jcrs, there 
will be nk(k -1) pairs, and hence the same numhrr :;f Pn Lri(cS in the table. 

Such a table is called an intraclass correlation table, aud the 
correlation betwef'n the two Yatiatcs is called intradass correlation. 

Tables hi which all the falllilit'S have the same number are of particular 
importance, and we will consider them firi>t. It i.~, however, permissible 
to apply the term iutraelass correlation to the symmetrical table derived 
from families which have diff<"rent !lumbers of members. This case we 
shall consider in 13.33. 

'13.30. The intraclass correlation table has certain peculiarities, and 
is not of such a general type as the ordinary table which we have eon
sidered hitherto (and which, for the purpose.,; of distinction, is sometimes 
called an interclass table). 

Let the variate values in the first family he 

a: 11 m12 x v,· 
those in the second family being 

!l!21 !l!22 .r21c 

and so on, those in the nth family being 

Consider the mean of the X-variate. 
In the table the value .?"u will be associated as an X-variate with 

each of the (k -1) values x12 .•• x1k. Hence it appears (k: -- l) times. 
Similarly, every other value appears (k- 1) times. Hence the sum of 
the marginal row, corresponding to the X-Yariatc, is (k- 1 )S(m), the 
summation extending over all values. But ther(' are nk(k -1) members 
in the table. *' 

Hence, 

/ 
- 1 X=---- (k -I)S(x) 

nk(k -1) 
I 
--.,.- S(m) 
rtk 

(13.14) 
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Similarly, 

. f'" = 1k S(.r) 
n· . : . ' (1S.1~) 

. . 
i.e. the means of the variates are the same. This ~ust evidently be. the • 
case. for the table is symmetrical. 

For the variance of X we have : . . . 
. 1 -

a~•.= nk(k _ 1) {Sum of (.r -X)2
} 

and since each .r- X occurs (k -1) times, 

1 
az1 = nk S(.r- X)3 • 

the summation, as before, extending over all the values of x. · 
Similll!ly, 

• 

We therefore write 

- 1 . 
a~1 =- S(a:- :f)11 

nk · 

. 1 . -
=-S(.r-X)11 

nk 

a=az=ar · 
. . . 

13.31. For the correlation coefficient r we have 

1 . off 
air nk(k _ 1) S'(.r,1 -A)(.r;m -X) 

where the summationS' extends over all the possible pairs. 

(18.16) 

-,~·--

(13.17) 

We can put this formula into a much simpler form. . · 
Consider the terms in (13.17) for which the first term is (a:11 -X).·· They 

will be the (k -1) ~erms of the followit:tg series:- · · 

(.ru -.!)(.r~~-.1) +(a:u -X)(.rla -X)+ ••• +(.ru -_XH:V1,. -X) . 

;., (.ru -X){(.ru +xa + ... +.ruJ- (k -1)X} 

Now write 

(13.18) 

i.e: X1 is the mean of the members of the first family. T~en our expression 
becomes · : · ·. · · · 

- (.r11 - X){kX1 - .r11 ~ (k -1 )X} 
=(.r11 -Z){k(.i~-X)+X-.r11l. 
=k(X1 -X)(.r11 -X) -(.r11 ~X)• 

The sum S' of (13.17) will contain nk such term'l, 
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Hence, 
nk(k -1)a1r =kS(.f1 - .1)(.r11 -X) -S(.r11 -X)1 

the summation extending over all the nk members. 
Now, . 

kS(..f1 - ..f)(.r11 - X) · · 

=sum of n"terms like k xk(.11 -•.1)(X1 -X) 
· =k1S'(X1 -X)1 . 

s· exten<!ing over the " families; and 

Hence, from (13.19), 
S(.r11 -X)1 =nka1 

nk(k -1)a!r =k1S"(X1 -X)'- a1nk 

(18.19) 

Now! S"(X1 -X)1 is the va~i,ance of the mean~ of families about the 
n . 

mean of the whole. Calling this u,.•. we have 

. nk(k -1 )air =k'nu,. 1 - a2nk 
or 

{I +r(k-: I)}a1 =ku .. • · (13.20) 

This result gives us the intraclass correlation in terms of the variance of 
the distribution (according to either variate) and the variance of the means 
of families. · · 

E.rample 13.4.-In five families of 3 the heights of brothers are: 5' 9', 
5' 1o", 5' II"·; 5' IO', 5' II', 6' o·; 5' 1I", 6' o·. 6' I'; 6' o·. 6' I', 6' 2"; 
6' 1 ", 6' 2", 6' 3' •. Find the intraclass coefficient of correlation. 

Here the mean of the whole = 6' • 
. I . . 

·· u 1 = 
5 

x 
3 

{9 + 4 +I+ 4 +I+ I+ I+ I+ 4 + 1 + 4 + 9} 

40 8 
·:' I5 3 

1 
O'm1 = S{.f. + 1 +0 +I+ 4} ""2 

' Hence, from (I3.20), 
8 

{I +2r} 8=a x 2 

I +2r=2·25 

r= +0·625 

13.32. "'e may notice two rather unusual results which follow from 
equation (I3.20 ). · 

In the first place, since u,;.• is not negative, 

l+r(k-1)>0 
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Thus, whereas the interclass correlation coefficient ean vary from - 1 to 

+ 1, the intraclass coefficient cannot be less than - k~~~- For example, in 

families of threes the intraclass coefficient cannot be less than - t. 
St-eOIH!ly, let us eonsider the correlation within a single family, i.e. when 

11=1. 
In this <'ast·, o,.2 = 0, and hence 

1 
r= -k-1 

For k = !.!, :J, -~. • . this gives the successive Yalucs of r = -1, 
~~ ~. - i .... It is t•lear that. lhe llrst value is correct, for the two values .:v1 

and :r2 determine only two points (.:v1 .1~ 2 ) and (x2x1 ), and the slope of the line 
joining them is negntivc. 

The student !-.hould notice that a corresponding negative association 
will arise between the first and second members of the pair if all possible 
pairs are chosen from u universe in which the variates can assume only two 
Yalue-;, say 0 aud 1, or iu which only A's and not-A's are distinguished. 
We nsc this re~ult later iu 19.36. 

13.33. Hc\'crting now to the more general case, su-ppose we have n 
families whose members number k1, k2 , ••• kn. 

The ith family contributes k1(k; - 1) pairs to the intraclass table, and 
heJH'C the total number of pairs is S{k;(k; -1)}=N, say, the summation 
extending over the n families. 

],Pt. the variate values be 

Xu il'a iVlkt 

il'n Xu il'2ka 

As in 13.30, '~e see that in the intraelass table each member of the first
family appears (k1 -~ 1) timrs, each of the second (k2 -1) times, and so on. 

Hence, 

(13.21) 

the summation S' being <'nnicd over all members of the ith family and S 
on'!' all families. 

Similady, 

(13.22) 

and 

the sumnmtio11 extending over all possible pairs. 
17 
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and this, as in 13.31, reduces to 

(13.23) 

These formulre are considerably mor~ complex than (13.U ), (13.16) and 
(13.20), but reduce to those forms if k; is constant for all families. 

SU)IliARY. 

1. In cases where the data are incomplete, or fn order to avoid lengthy 
calculation, it is possible to· use various methods of approximating to the 
product-moment coefficient of correlation, provided that the regression is 
approximately .linear. · 

2. Cases in which the regression is non-linear can sometimes be reduced 
to the linear case by a suitable transformation of the variates. 

3. The correlation ratio of X on Y is gi\·en by 

s o!z 
11.rr = 1- a! 

z 

~-=a: 
where o! is the variance of X~ o!z is the weighted average of the 
variances of arrays and o!., the variance of the means of X-arrays, 
weighted according to the number of individuals in the arrays. 

4. 71!, - r 1 cannot be negative, and if it is zero the regression of X on r 
is linear. 

5. The rank correl~~otion coefficient is given by 

S(.ry) 

where m and y are the deviations of the ranks X and r from the mean 
n+1 

2 
6. If d,~:=(X~:-Y1,) 

~ 
1 

6S(d 3 ) 

p= - n3 -n 

7. The coefficient of intraclass correlation is given by 

where o is the standard deviation of X and Y, and om is the standard 
deviation of the means of families,· there being n families each of 
k members. 
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E.'XERCISES. ·I 
13.1. Find to 8 places of decimals the correlation ratio of X on Yand of lr on X 

for the distribution of cows of Table 11.-1., page 200 (r = +0·129). Hence, show 
that . - . 

'1!.- ,. =0·011 
'1:., _,. =0-()23 

13.2. Find the correlation ratios ~fthe distrib~tiOn of marriages of Table 11.2. 
13.3. In a test of ability to distinguish shades of colour, 15 discs of various 

shades; whose true· orders are I, 2, ••• 15, are arranged by a subject in the 
order 7, 4, 2, 3, 1, 10, 6, 8, 9, 5, 11, 15, 1-1, 12, 13. Find the rank correJation 
roeflicient betwt>en the real and the observed ranks. 

· 13.4. Ten competitors in a beauty contest are ranked by three judges in the 
orders 

1, 6, 5, 10, 3, 2, 4, 9, 7, 8 
3, 5, 8, 4, 7, 10, 2, 1,.- 6, g 
6, "· 9, 8, 1, 2, 3, 10, :;. 7 

rse the r.mk correlation coefficient to discuss which pair of judges have the 
nearest approach to conunon tastes in beauty. 

13.5. (C[. Pearson, ••on a Generalised Theory of Alternative_ Inheritance," 
Pliil. TraM.; vol. 203, A, 190-1., p. 53.) If we consider the correlation betwt>en 
number of recessive couplets in parent and in offspring, in a 1\Iendelian population 
breeding at random (such as would ultimately result from an initial cross between 
a pure dominant and a pure recessive), the correlation is found to be 1/3 for a 
total number of couplets n. If n =1, the only possible numbers of recessive 
couplets are 0 and 1, and the correlation table between parent and offspring 
reduces to the fonn · · -

Parent. 
OI!Bpring. -

0 1 Total 

0 6 1 • 
1 I- I 2· -Total-- •• I 8 

Verify the correlatipn, and work out the association coefficient Q. 
13.6. (C/. the above, and also Snow, Proc. Roy. Soc., vol. 83, B, 1910, Table·s, 

p. 42.) For a similar population the correlation between brothers, assuming a 
prdctically infinite size of family, is 5/12. The table is . • 

Second 
First Brother. · 

Brother. 0 I I Tot.d. 

0 n 7 {8 

I 7 II 16 

Total (8 I 1G 6( I 
Verily the correla.tion, and work out the association coefficient Q. 
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13.7. Referring to the notation of 13.25, show that we have the following 
expressions fot: the regressions in a fourfold table:-

a1 Nd '(AB) (Ap) 
ru; = (B)(p) = (B) - <P> . 
a 1 Nd (AB) (aB) 
r~=(A)(a) = (A) - (a) · 

Verify on the table\! of Exercises 13.5 and 13.6. 
13.8. In four pea-pods, each containing eight peas, the weights of the peas 

are, in hundredths of a granune: 43, 46, 48, 42, 50, 45, 45 and 49; 33, lU, 37, 89, 
32, 35, 87 and 41; 56, 52, 50, 51, 54, 52, 49 and 52; 86, 87, 88, 40, 40, 41, 44 
and 44. Find the coefficient of intraclass correlation. 

13.9. (Data from 0. H. Latter, Biometrika, vol. 4, 1905, p. 363.) • 
. • The following table shows the length of cuckoos' eggs fostered by various 
birds:-

Length of Egg (units i millimetre). 

Foster Parent . . 40 41 42 43 44 45 46 47 48 49 ~t~ 1--
Robin - 1 1 .8 3 9 13 20 6 11 2 76 

f.--

Wren . 7 ,5 14 8 9 6 3 2 - - - 54 ------1----------------
Hedge-Sparrow - - 2 5 14 13 13 3 5 - 3 58 

-----------------------
.Total!!:. 

. 
.. · 8 6 24 16 32 32 36 11 16 2 5 188 

Find the coefficient of ·intraclass correlation, and state how many entries 
there would be in the intraclass correlation table. · 



CHAPTER 14. 
i 

PARTIAL CORRELATION. 

Multiple Correlation. 
14.i. In Chapters 11 to 13 we developed the theory of the correlation 

between. a single pair of variables. But· in the case of statistics of 
attributes we found it. necessary to proceed from the theory of simple 
associatiofl for a single pair of attributes to the theory of association'for 
several attributes, in order to be able to deal with the complex causation 
characteristic of statistics ; and similarly the student will find it impossible 
to advance very far in the discussion of many problems in correlation ·· 
without some knowledge of the theory of multiple correlation, or correlation 
between several variables. 

For example,, in considering the relationship between pauperism, out
relief and the age of recipients of relief, it might be found that changes 
in pauperism were highly correlated (positively) with changes in the out
relief ratio, and also with changes in the proportion of the old i' and the 
question might arise_ how far the first correlation was due merely to a 
tendency to give out-relief more freely to the old than the young, i.e. to a· 
correlation between changes in out-relief and changes in proportion of the 
old. The question could not at the present stage b.e answered by working 
out the correlation coefficient between the last pair of variables, for we 
have as yet no guide as to how far a correlation between the variables 
1 and 2 can be accounted for by correlations between 1 and 3 and 
2 and 3. 
1 Again, a marked positiv~ correlation might be observed between, say, 

the bulk of a crop and the rainfall during a certain period, and practi
cally no correlation between the crop and the accumulated temperature 
during the same period ; and the question might arise whether the 1ast 
result might not be due merely to a negative correlation between rain and 
accumulated temperature, the crop being favourably affected by an 
increase of accumulated temperature if other things were equal, but failing 
as a rule to obtain this benefit owing to the concomitant deficiency of rain. 
In the problem of inheritance in a population, the·corresponding problem 
is of great importance, as already indicated in Chapter. 4. · It is essential 
for the discussion of possible hypotheses to know whether an observed 
correlation between, say, grandson and grandparent can or cannot be .. 
accounted for solely by observed correlations between grandson and parent, 
parent and grandparent. ' 

Partial Regressions and Correlation Coefficients. · 
. 14.2. Problems of .this type, in which it is ne~essary to consider 

simultaneously the relatiOns between at least three vanables, and possibly 
~1 . . 
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more, may be treated by a· si~1ple and natural exiension of the method 
used in the case of two variables. The latter case was discussed by form
ing li~ear equations between the two variables, assigning such values 
to the constants as to make the sum of the squares of the errors of esti
mate as low as possible : the more complicated case may be discussed by 
forming linear equations between any one of the n variables involved, 
taking each in turn, and the n -1 others, again assigning such values to 
the constants· as to make the sum of the squares of the errors of estimate 
a minimum. If the variables are X 11 X 1, X8, ••• X,, the equation will 
be of the form . -

X 1 =a+b.X8 +b3X 3 + •.• +b.,X, 

If in such a generalised regression equation we find a sensible positive 
value for any one coefficient such as b2, we know that there· must be a 

. positive correlation between X1 and X 2 that cannot be accounted for by 
mere correlations of X1 and X 2 ·with X3, X 4 or X,, for the effects of 
changes in these variables are allowed for in the remaining terms on the 
right. .The magnitude of b2 gives, in fact, the mean change in X 1 
associated with a unit change in X 2 when all the remaining variables are 
kept constant. • 

The correlation between X 1 and X 2 indicated by b1 may be termed 
a partial correlation, as corresponding with the partial association of 
Chapter 4, and it is required to deduce from the values of the coefficients 
b, which may be termed partial regressions, partial coefficients of 

- correlation giving the correlation between X 1 and X 1 or other pair of 
variables_ when the remaining variabl~s X 8 ••• X, are kept constant, or 
when changes in thes~ variables are corrected or allowed for, so far as 
this may be done with a linear equation. For examples of such generalised 
regression equations· the student may turn to the illustrations worked out 
later (pp. 270-275). -

14.3. With -this explanatory introduction, we may now proceed to 
the algebraic theory of sucp generalised regression equations and of 
multiple correlation in general. ·It will first, however, be as well to revert 

. l;>riefly to the case of two variables. In Chapter 11, to obtain the greatest 
possible simplicity of treatment. the value of the coefficient r =p/a1a1 
was deduced on the special assumption that the means of all arrays were 
strictly collinear, and the ""eaning of the coefficient in the more g~neral 
case was- subsequently investigated. Such a process is not convemently 
applicable when a number of variables are to be taken into account, and 
the problem has to be faced directly : · i.e. required, to determine the 
coefficients and constant term, if any, in a regression equation; so as to make 
the sum of the squares of the errors of estimate a minimum. 

14.4. To solve this problem we proceed as in 11.20. 
Let us measure the variates X1 ••• X., from their respective mt!ans, 

denoting the-quantities so obtained by ~r1 • • • ~r,. 
Then the regression equation of, say, 12!1 on ~r.2 ••• 12!11 may be writte? 

--1n the form · 
~r1 =a1 +b2x8 +b3x3 + ... +b,.:ll,. 

We have to find a1, b2, ••• b~ such that 

E1 =S(x1 -a1 --b2x2 - -b-,31,)1 
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1s a minimum, the summation taking place over all sets of values of 
.rl ••.• or,.. 

Now, 
E1 = S(a1

11 ) + S{.rl - bzra-
' . 

· the product term 

, ... -b,..r,.)} 

vanishing; since ~r1, etc. are measured from the niean. 
Hence we have, for the minimum value of E 10 

'· . 

· No;,, if b3 is chosen so that E1 is a minimum, the value of ;E1, when 
(b1 + 8) is substituted for b2, is increased no ma_tter how small a may be; 
~ . . . . 

S{.rt - (b1 + 8).r1 - - b,..r,.}1 > S{.r1 - btX1 - - b,.or,.)1 . - . 
Expanding the left-hand side, and neglecting a•, which can be made as 
small as we please compared with 8, . . . . --

S(.r1- htX1 - - b,.or,.)1 - 2S{.r2(.r1 -btX1 - •.•• - b,..r,.)}a: 
· > S(~r1 - bz:~Ja- ... b,..r,.)l 

or \ 

Now this is to be true for all small values of a, positive or negative. 
If S{.r2(.r1 -b,;r1 - ••• -b,.:r,.)} were not zero, this wculd be impossible, 
for if it were positive; say, we could take a positive and the inequality 
would not be satisfied. · · · 

Hence, 

Similarly, cons!dering b1 instead of b1, we have 

Sf.ra(.rl -b,;r1 - ••• -b,.or,.)}=O , 
and Sf? on, there being ( n -1) equations. These are sufficient to determine 
the (n -1) quantities hz ••• b,., and hence our problem is solved. 

Notation. 
14.5. At this point J.ve introduce a flexible notatlon which will enable 

us to consider any regression equation. · ' 
We write: ·-.. 

• +bu •. za •.. ln-u.r,. -(U.l) 

The quantities b are partial regression coefficients. The first subscript 
attached to the b is the subscript of the letter on the left (the dependent 
variable). The second subscript is that of the .x to which it is attached. 
These are called primary subscripts. · 

tArter the primatr subscripts, an~ ~eparat~d froin them by a point, 
are placed the subscnpts of the remauung variables on the riaht. These 
are called secondary subscripts. ' "' 
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Equation (14.1) is the regression equation of ~1• Similarly, in accord
ance with the rules we have just laid d~wn, we have : 

~~ =bll.l.u . .... ~, +hu.a ..... ~a+ • • • +bz,.ta ... ,,._u~ .. 
and so on. 

. It should be noted that the order in which the secondary subscripts are 
written is immaterial; but this is not true of the primary subscripts; e.g. 
b11 .8 : •• ,. and b21 .8 ••• ~ denote quite distinct coefficients, ~1 being the 
dependent variable in the first case and ~~ in the second. 

A coefficient with p secondary subscripts may be termed a regression 
of the pth order. The regressions b12, bw b13, b31, etc., obtained by 
considering two variables alone, may be regarded as of order zero, and may 
be termed total, as distinct from partial, regressions. 

14.6. If the regressio~s b12.34 ••• ,., b13.24 ••• ,., etc., be assigned the 
" best "values, as determined by the method of least squares, the difference 
between the actual value of x1 and the value assigned by the right-hand 
side of the regression equation (14.1 ), that is, the. error of estimate, will be 
denoted by X1.2a ... ,. ; i.e. as a definition we have 

xl.23 ... ,.=Xt-bu.u ... ,.xa-bl3.24 .. ·. ,.xa- ••• -bt,.23 ... lt~-Ilx" (14.2) 

where x1, x2, • • : x,. are assigned any one set of observed values. Such an 
error (or residual, as it is sometimes called), denoted by a symbol with p 
secondary suffixes,_will be termed a deviation of the pth order. . 

Finally, we will define a generalised standard deviation uua ... ,. by 
the equation · 

Nut2a, .. "=S(xt2a ... ,) (14.3) 

N being, as usual, the number of observations. · A standard deviation 
denoted by a symbol with p secondary suffixes will be termed a standard 
deviation oi the pth order, the standard deviations u1, u2, etc., being 
regarded as of order zero, the standard deviations uu, u2.1, etc., of the first 
order, and so on. · - -

14.7. In the ca~e of two variables, the correlation coefficient r12 may 
be regarded as defined by the equation 

ru = (b12b2l)i 

We shall generalise this equation in the form 

r =(b.. . b )i 12.84 , • , fl 1 ... 34 • • , R 21.34 , , , tl (14.4) 

This is at present a pure definition of a new: symbol, and it remains to be 
·shown tha~ r1u 4 ••• ,. may really be regarded as, and possesses all the pro
perti.es of, a correlation coefficient ; the name may, however, be applied 
to it, pending the proof. A correlation coeffl_cient with p secondary 
subscripts will be termed. a correlation of order p. Evidently, in the 
case of a correlation coefficient, the order in which both primary and 
secondary subscripts is written is indifferent, for the riglit-hand side of 
equation (14.4) is unaltered by writing 2 for 1 and 1 for 2. The correla
tions r12, r13, etc., may be regarded as of order zero, and spoken of as total, 
as distinct from partial, correlations. 
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The Normal Equations. 
- 14.8 •. an the quantities we have just aefined a~e expressible in terms 
of the total and partial regression coefficients, and particular importance 
therefore attaches to the equations which· give thos~ coefficients. The 
equations of 14.4 may be-written 

S(.xs.Xua ~ .. ~) =0 • ' (14.~) 

etc., there being (n- f) equations for each regression equation• 
These equations are called the normal equations. We shan· see 

below that in practical cases .it is usually more convenient. not to solve them 
directly but to proceed in stages, finding first the regressions and correla-
tions of order zero, then those of order 1, and so on. · 

14.9. If the student will follow the process by' which (14.5) was 
obtained, he will see that when the condition is expressed that b12.34 • ~ • ,. 

shall possess the " least-square ,. value; .x2 enters into the product-sum with 
.X us ... • ; when the same condition is expressed for b13.24 ••• ,., .x3 enters 
into the. product-sum, and so on. Taking each regression in turn, in fact, 
every :e the suffix of which is included in the secondary suffixes of m1.23 • , • ,. 

enters into the product-sum. The normal equations of the form (14.5) are 
therefore equivalent to the theorem: . 

The product-sum of any deviation of order zero with any deviation of higher 
order ia zero, provided the subscript of the former occur among the secondary 
subscripfs of the latter. · · 

14.10. But it follows from this that 

S(.r1.34 ... ,..xz.M .. , ,.) .= S{.xu,. : . ,.(.xa- b2u ... ~.Xa- • • • -:-ban .a& ••• ln-ll.x,.)} 
= S(.x1.a4 ... ,..xa) 

Similarly, 
S(x · x · ) - S(.x x ) I.M ••• " z.a& ••• " - 1 a. a& ••.• " 

Similarly again, 

S(xu, ... ,.xz.u , .• lt~-11) = S(m1.84 . · .. ,.Xz) 

and so on. Therefore, quite generally, 

S (xl.M ... ,..xa.lf ... ,.) = S(xl.M ... ,,._uxu, •.. ,.) . 
= S(xlxa.a4 · •.. ,.) 
= S(xl.M .•• ,.x~.~, .•• ,,_.J) 
=. 

(14.6) 

·' 

Comparing all the equal product-sums that may pe <ibtained'in this way, 
we see that the product-sum of any two deviations i.ll unaltered by omitting any 
or all of the secondary subscripta of either. which are common to the two, and, 
conversely, the product-~m o.( any deviati!ln of order J? u•ith a deviation of 
order p +q, the p subscr!pta betng the same Jn each case, r,s unoltered by adding 
to the secondary subscrtpta of the former any or all of the q utlditional sub-
scripts of the ,latter. · .. 
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It follows tht'rrfore from (1 1.5) tlwt r,my product-sum is ~rro if a/It'll' 
subscripts of the one dcl:iation occur rmm1g the secondory sul;.~cripi.~ .-~{the 
other. As the simplest cast', we nwy note that .r1 i~ uneorrelated "ith J"2.1, 
and .T2 uncorr('lated with Xu· 
. The theorems ofthis and of the preceding paragraph are of fu11damental 
Importance, and should be carefully remembered. 

14.11. We can now show that the quantities r definer! by (UA) arc 
really coefficients of correlation. In fact we ha,-e, from the results of 14.9 
and 14.10, 

0=S(.r2.34 ... n.X1.234 ... ,.) 

= S{.T2.34 ... ,.(J"l- bl2.34 ... ,.Xz- terms in .ra to .X nn 
=S(.xl.x2.s4 ..• ,.) -bl2.a4 ... ,.S(.TzXu4 ... ,.) 

= S(.Tl.s4 ... ,.x2.34 ••. ,.) - bl2.34 .•• ,.S(.x~.34 ... ~) 
That is, 

b _ S(.r~.34 ... ,..x2.34 ... ,. ) 
12.34 ... "- S( a ) 

:T2.34 ••. n 

(U.7) 

But this is the value that would have been obtained by taking a regre.,.sion 
equation of the fortn 

xl.34 .. · . " = blll.34 ... n.T2.34 ..... 

and determining b12.34 ... ,. by the method of least square~, i.r. b12_34 •.. ,. 

is the regression of .1'1.34 ..• ,. on .x2.34 ••• ,.. It follows at once from 
(14.4) that r 12.34 ... ,. is the correlation between .x1 .34 ... ,. and .r2 _34 •.• ~· 
and from (14.3) that we may write 

b -r ul.34 ... " 
u.34 ... n- 12.34 ... "ua 

34 
... ,. (U.S) 

an equation identical with the familiar relation b12 = r 12u1fu2, with the 
secondary suffixes 34 . . . n added throughout. 

To illustrate the meaning of the equation by the simplest case, if we had 
three variables only, .:I\, x2 and .r3o the value of b12 3 or r12. 3 could bl' 
determined (I) by finding the correlations r 13 and r 23 and the corresponding 
regressions b13 and b23'; (2) working out the residuals .r1 - b1:rT3 ami J"2 - b2,.,r3 
for all associated deviations;_ (3) working out the correlation between the 
residuals associated with the same values of .r3• The method would not, 
however, be a practical one, as the arithmetic would be extremely lengthy, 
much more lengthy than the method given below for expressing a correla
tion of order p in terms of correlations of order p -I. 

Expression of Standard Deviation in terms of Standard Deviations 
and Coefficients of Lower Orders. 

14.12. Any standard deviation of order p may be expressed in ter-nts of a 
standard deviation of ordt:r p -1 and a correlation of order p -I. For, 

S(xua •.. n )2 = S(.rl.23 ... ln-II'l:l.2J ... n) 

= S(J"u3 •. , ln-ll)(x1 - b1,._ 23 ... ,,._11xn -terms in X a to .r li-d 
=S(x~_23 .•. (n-1)) -bl,..23 ... ln-vS(.rl.23 ... Cn-ll.rn.23 ... 1>~-11) 
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or, dividing through by the number of observations: . 

ats3 ...• =at~s .•. (n-1)(1-btn.a.1 ... (n-llbn1.23 •.. <n-o).' 

267 

=at2s ... (A-1)(1-r~n.2S ... \"-11) (14.9) 

Tllis is again the relation of the familiar form. 
' . 

a~.n = aH1 - r~ .. ) 

with the ~econdary ~uffixes 23 • . . ( n - 1) added throughout. It is clear 
from (14.9) that r1 ~. 23 ••• <n-Ib like any correlation of order zero, cannot be 
numerically greater than unity. It also follows at once that if we have 
been estimating .r1 from or2, :r3, • • ~ x,._1, x,. will not increase the accuracy 
of estimate unless r 101 .23 ••• tn-1l (not r 1,.) differ from .zero. This condition 
is somewhat interesting, as it leads to rather unexpected results. For 
example, if r 12 = +0·8, r 18 = +0·4; r 23 = +0·5, it will not be possible to 
estimate 1'1 with any greater accuracy from .r2 and x3 than from x2 alone, 
for the value of r13.1 is zero (see· below, 14.15). 

. 14.13: It should be .noted that, in equation (14.9}, any other sub- · 
script can' be eliminated in the same way as subscript n from the suffix of 
au3 • : • ,, so that a standard deviation of order p can be expressed in·p • 
ways in terms of standard deviations of the next lower order. This is useful 

.as affording an,indepehdent check on arithmetic. Further, a 1.23 ••• tn-ll 

can be expressed in the same way in terms of au3 ••. 1"_2, and so on, so 
that we must have · 

at,3 ••• "=ai(1-r~2)(1-r~u)(l-r~4.28 ) ••• (1-r~ ... 23 • :. (,....1)) {14.l.O) 
" 

This is an extremely convenient expression for arithmetical use ; . the 
arithmetic can again be subjected to an absolute check by eliminating the 
subscripts in a different, say the inverse; order, , Apart from the algebraic 
proof, it is obvious that the values must be identical ; for if we are estimat-• 
ing one variable from n others, it is clearly indifferent in what order the 
latter are taken into account.. · · 

au3 ••• " can also be expressed in term.S of o:1 and the total correlation 
coefficients. We have · 

S(.rua ... ,.)1 =S{:rl(xua ... n)}=Na~.2s ... ,. 

lienee, expanding <rus ..• ,., 

The (n -1) normal equations involving IV1.2a ; •• " are·, 

S(.xz.r1 .23 ••• ,.) = O, etc. 

i:e. expanding, 

-a~ . 
- 1.23 ••• " 

'ztalaz-bu.a ... ,a: -bl3.a .. ··"rzaaaaa =0 
. ' 

r31a1aa -bu.a ... nTazaaaa-bu.a ..• ,.a:·. . =0, etc, 
• 

Regarding the n equations so obtained a~ equations in the quantities b 
we have, on elimination, the determinant . . . ' 
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a' -a' r ul7t 0'1 rl30'1al rltlu1a,. : 1 1.13 ... 11 

a: I 
ruazul ruasua r2,.u,a,. i 

I =0 

r n1anal r,. 1a,.a1 r,.3a,a1 
I c,. 

Dividing the sth row by u, and the tth column by a, this gin•s: 

1-~.23 •••• 
• ,111 I a' 'u 'u . 

1 

rift I 'n 1 'u =0 

r,.l r,.z '•3 
·1·1 

\Vrite w for the determinant 

1 ru • '111 I 
'n . 1 ,2,. 

r,.l r,.z . 1 

and let w11 be the minor of the term in the· first row and column. Then 

a' 1.23 ... " 0 ·w- B Wu= 
a1 . 

a~.23 . . . • (I) 
(H.ll) 

Similarly, 
a~.l3.... w 

a: mu 
and so on. 

These results exhibit a~_23 ••• ,., etc., in a symmetrical form. 

Expression of Regression Coefficients iri terms of Coefficients of 
Lower Orders. 

14.14. Any regression of order p may be expressed in terms of 
regressions of order p -1. For we have: 

(.rl.M .. ,.:rz.ac .. ,.) = S(.rl.M .. (n-t,Xua .. ,.) 
= S(.rut .. 1,._u)(.r1 - b2,..31 .. «•-Irl'•- terms in .r3 to .T11_ 1) 

= S(.rl.M .. 1•-l,Xa.at .. ~~-u)- hz,..a« .. ln-1lS(.rl.3« .. 111-ljl' ... sc .. h•-u) 

Replacing b2,..34 .• 111-ll by hn2.u .. 111-uai.ac .. <•-1)/a!.u .. <•-1) 

we have: 

bu.u .. ,.a;.u .. • = h11.u .. h•-1lai.3, .. '" -1)- h111.u .. la-uh .. a.u. .. ,,._ua;.M .. (11 -1) 
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or, from (U.9), 
b . . .. b J. 

b _ It Sl •.• ht-11- lii-M .. l11-ll"n:11.34 •• lt~-11 

u.u • · .- 1-ba...u .. 1,....ub11:11-M •• 111-11 
(U.l2) 

The student should note that this is an e~-pression of the form 

b • '....:. bu: - b1;b,., 
II-II- 1 -ba-h.! 

. with the subscripts 3-t. •.• (n -1) added throughout. The coefficient 
b11.u ... ,. may therefore. be regarded as determined from a regression 
equation of the form . 

or •. ~- ••• ho-11 =b11-M .•• ,.ora.a& •. ·• f•-11-f:b1,..!:11 •• ·, I11-1,.X•.u · ••• ,,.._11 

i.e. it is the partial regression of or1.u ••• ln-11 on .l:z.a& ••• 1•-11• a:,..M ••• cn-11 
being given. As any other secondary suffix might have been eliminated 
in lieu ofJa, we might also regard it as the partial regression of a:1•4i • • : -,. 

on a:1.u ." _;_ ., a:1 .t~~ ... ,. being given, and so on. · 

Expression of Correlation Coefficient in terms of Coefficients of 
Lower Orders. 

14.15. From equation (U.12) we may readily obtain a corresponding 
equation for correlations. For (U.12) may be written: 

b _ rll!.a& •.• l11-11-r1,..at •. : 1•-urz ... u. ... In-ti 0'1.34 ••. ln-11 
li.M ••• ,.- 1 I 

· - '2n.U ••• <• -1) O'z.a& ••• 111-11 

Hence, writing down the corresponding expression for b1u 4 ••• ,. and 
taking the square root ; · · 

r · =r11.u •.. 1 .... 11 -r .... ac ... 1n.:..i1rzn.u ••. ln-11 (U.Ia) 
1:11-M • • • " (1 ..2 · )1(1 ll · ·:..-llt -'1-.u ... <•-1> -rs-.s& ••• <•-~, 

This is, similarly, the expression for three variables : · 

, ru-rt,.rln 

ru.a = (1-~,.)1(1- ,-:,.)' 

with the secondary subscripts added throughout, and r11.3& ••• ,. can be 
assigned interpretations corresponding to those of b11.u , •• ,. above. 
Evidently equation (U.13) permits of an absolute check on the arithmetic 
in the calculation of all partial coefficients of an order higher than the 
first, for any one of the secondary suffixes of r1._34 ." •• • can be eliminated 
so as to obtain another equation of the same form as (U.l3); and the , 
value obtained for r1:a.u ..• ,. by inserting the values of the ·coefficients 
of lower order in the expression on the right must be the same in each 
case. • 

. . 

Practical Procedure. 
14.16. The equations now obtained provide all that is necessary for 

the arithmetical solution of problelllS in multiple correlation. The best 
mode of procedure on the whole, having calculated all the correlations 
and standard de\iations of order zero, is (I) to calculate the correlations . . 
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of higher order by successi,·e applications of equation (U.13); (2) to 
calculate any required standard deviations by equation (U.10); (3) to 
calculate any required regressions by equation (U.S); the use of equation 
(U.12) for calculating the regressions of suecessiye orders diredly from 
one another is comparatively clumsy. We will gil·e two illustrations. 
the first for three and the second for four variables. The introduction of 
more variables does not involn any difference in the form oft he arithmeti<', 
but rapidly increases the amount.t 
. E:rample 14.1.-ln Exercise 11.2, page 2211, we gave liOme data of (1) 

the average earnings of agricultural labourers,. (2) the percentage of the 
population in receipt of poor law relief, (3) the ratios of the numbers in 
receipt of outdoor relief to those relieved in the workhouse, for 38 rural 
districts. Required to work out the partial correlations, regressions, etc., 
for these three variables. . 

Using as our notation X 1 =average earnings, X 1 =percentage of 
population in receipt of relief, X 1 =out-relief ratio, the first constants 
determined are: · · · 

Al1 = 15·9 shillings u1 = 1·71 shillings r ~ = - ()-66 
Al1 = 3·67 per cent. u1 =1·29 per cent. r13 = -()-13 
..~.ll3 = 5·79 u1 =3·09 r11 = +0·60 

To obtain· the partial correlations, equation (U,13) is used direct in 
its simplest form:. 

The work is best done systematically and the results collected in 
tabular forin, especially if logarithms are used, as many of the logarithms 
occur repeatedly. First, it will be noted that the logarithms of (1 -r1)l 
occur in all the denominators; these had, accordingly, better be worked 
out at once and tabulated (col 2 of the table below). In column 3 the 

1. I. s. f.. li. .. 7. a. • • ! 
t .. 

OorTelatioa "' 

k1g ~'1-~.1 Prodod Numen- log log PinlaOrder. .. log VI-r' • TenD. -· Num. r-. 
. I Jog. Value. _, 

~- ------ ---

I •u= -0·66 1·87580 -0·0780 - o-:;s,. 1·764~1 I·8993g l·86.'iM r,...-CI-73 1·83~1· 
r10 = -O·IS I·9962S -0·31160 +0·!660 I·U~!-8 i·7iil~9 l·64i>~9 'u-t+C)--U I·to~67 

··= +0·60 1·90009 +0.08:;8 +O·iH:i 11·71113 l·8i:illlil l·lil..o,& ••• ,+8-69 l·aii!H6 

product term of the numerator of each partial coefficient is entered, i.e. 
the product of the two other coefficients on the remaining lines in column l; 
subtracting this from the coefficient on the same line in column 1, we have 
the numerator (col 4) and can enter its logarithm. The logarithm of the 

__ • It will be noticed from the 'preceding work that all rorrelatio~ are .~umed l? be 
determined by the product-sum formula. The method~ been applied •nth correlations 
determined in other ways, e.g. from fourfold or contingency table& or by the method of · 
ranks. In spite of the favourable result of an experimental test (Ethel lL :Se11·bold, • 
•• Notes on an Experimental Test of Errors in Partial Correlation derived from Four-_fold 
and Biserial Total Coefficients,''.Biomdrika, \-·oL 17, 1925, p. 251). the results obtamed. 
in such ways remain of doubtful value. 
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denominator (col. 6) is obtained at once by adding the two logarithms of 
( 1 - r')l on the remaining lipes of the table; and subtracting the logarithms 
of the denominators from those of the numerators, we have the logarithms 
of the correlations of the first order. - It is also. as well to. calculate at 
once, for reference in the caiculation of standard deviations of the second 
order, the values of log V1-r1 for the first-order coefficients (col. 9). 

Ilaving obtained the correlations, we can now proceed to the regressions. 
If we wish to find all the regression equations, we shall have six regressions 
to calculate from equations of the form 

bu. a =ru.aCTt.a/ua.s 

These Will involve all the six standard deviations of the first order u1.z, 

uu. u1.1, CTz.a• etc. The standard deviations of the first order are not 
in themselves of much interest, but the standard deviations of the second 
order are important, as being the standard errors or root-mean-square errors 
of estimate made in using the regression equations of the second order. 
\\·e may'~ve needless arithmetic, therefore, by replacing the standard 
deviations -of the first order by those of the. second, omitting the former 
entirely, and transforming the above equation for b12.a to the form 

bu. a =ru.sCTt.aa/ua.ta 

This transformation is a useful one and should be noted by the student. 
The values of each u may be calculated twice independently by the formulre 
of the form . 

' CT1.23 =CTt(l-~2)1{1-~u)l 
=u1(1-t13 )1{1-~u)1 -

so as to check the arithmetic ; the work is rapidly done if the values of 
log VI -r1 have been tabulated. The values found are: 

log uu1 =0·06146 u1.11 =1·15 
log CTua =I ·84581 u1.11 = 0·70 
log u1.11 =0·34571 uu1 =2·22 

From these and the logarithms of the r's we have: 

log b21 .1 =I ·64993, bzu = - 0·45 log b21.1 =I ·33917, 
logb11 .1 =0·08116, bu.a= -1·21 llogb13.1 =I·36174, 

log b31.1 =I ·9302-l, b31 .1 = + 0·85 log b31.1 = 0·33891, 

That is, the regression equations are : 

(1) .r1 = -1·2lz1 +0·23z3 
(2) .r1 = -0·!5z1 +0·22.r1· 

(3) .r1 = +0·85.r1 +2·18.r1 

or, transferring the origins to zero : 

b13.a = + 0·23 
b23.1 = + 0·22 
b8u = +2·18 

(1) Earnin~a X 1 = +19·0~1·21X,+0·23X8 
(2) Paupmam X 1 = +9·55-0·45X +0·22X 
(3) Out-rdiefratio X 1 =. -15·7 +0·85X~ +2·18X: 

The ~ts are throughout one shilling for the earnings X., 1 per cent. for the 
paupemm X 1 and 1 fo.r the out-relief ratio X

1
• 
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'"'' ''I u~ I'Xamill!~ the light thrown by these results on the relationship 
l...t \\'\Til the yariahlcs. 

The lir<;t ami secourl regression etjuations are those of most practical 
i1nportaHe''· The argument has been advanc·Pd that the giving of out
relicftends to lower earnings, and the total cocllkicnt (r1a -- - 0· 1:3) lwtween 
camings (XJ) ancl out-relief (X3 ), though n:ry small, does not seem in
consistent with such a hypothesis. The partial correlation coeffieient 
(r1 ;~, 2 = +0·44) and the regression Clluntion (1). however, indicate that in 
unions with a gic:en pel'centage of thf' pupnlation in receipt of relief (X2 ) 

the earnings are highest where the propm twtt of nut-relief is highest ; and 
this is, in so far, again~t the hypotl~t·•,i-; oi' a teuclu1cy t•) lower wages. It 
remains possible, of course, that ont-rdid may advTrscly affect the possi
bility of earning, e.g. l>y limiting the unploytncnt of the old. 

As regard~ pauperism, the argument might be advanced that the 
observed corrt:'lation (1·2a ~- r U·fiil) betwe(·n paupcrism and out-relief was 
in part due to thf' negative eorrdation (r1" ~ - 0·13) between ea1·nings and 
out-relief. S11ch 3 hypothesis mmld have little to support it in view of the 
smallness and doubtful '>ig-niikatwc ol' r 1a, and is definitely eo11tradieted 
by the positin~ partial correbtio11 r23 . 1 = -+ <Hifl and the second regression 
equation. The third regression equation shows that the proportion of 
out-relief is on the whole highest where earnings arc highest and pauperism 
greatest. It should be noticed, however, that a nPgative ratio is clearly 
impossible, and consequently the relation cannot he strictly linear; but 
the third equation gives possible (positive) average ratios for all the 
combinations of pauperism and earnings that actually occur. 

Example 14.2 (Four F ariables ).-As an illustration of tlie form of the 
\l'ork)n the case of four variables, we will take a portion of the data from 
another investigation into the causation of pauperism. 

The variables are the ratios of the values in 1891 to the values in 1881 
(taken as 100) of -

l. The percentage of the population in receipt of relief, 
2. The ratio of the numbers given outdoor relief to the numbers relieved 

in the workhouse, 
3. The percentage of the population over 65 years of age, 
4. The population itself, 

in the metropolitan group of 32 unions, and the fundamental constants 
(means, standard deviations and correlations) ar~ as follows :-

.' TABLE 14.1. 

I , ... 
1. 2. 3. 4. 

Means. Standard Correlation 
log vi-r. deviatiu11s. coefficient. 

-------
i 

1 104•7 1 I 29•2 12 +0'62 I·9316( 
II 9016 2 41"7 13 +0'41 I·96003 
8 107•7 3 5"5 H -0·14 I·99670 

• 111•8 4 23•8 23 +0"49 !·94038 
- - - - 24 +0"23 I·98820 
- - - - 34 +0"26 I·98698 
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• It is seen that the anrage changes are not great; the percentages of the 
population in receipt of relief hal·e increased on an aYerage by 4·7 per cent., 
the out-relief ratio has dropped by 9·4 per cent. and the percent~ge of 
the old has increased by 7·7 per cent., while the population of the unions 
has risen on the average by 11·3 per cent. At the same time. the 
standard deriations of the first, second and fourth variables are very large. 
As a matter of fact, while in one union the pauperism decrea~d by nearly 
50 per cent. and in others by 20 per cent., in some there were increases of 

TABLE 14.2. 

- L I. a. .. 6. 

Co~lation Prod lid ~lation 
-llicimt Termor N lUIIIIlator. eoefficient IogV!-,.r. 

(Zero Order). N ..-rator. -- (Fiftt Ordlll'). . 
-

12 .+0-li2 +0"2009 +0"3191 12"3 +0•(013 1·96187 
11 -+0"41 +0"2~48 +0"1552 13•2 +0"2084 l-99035 -
23 +O·tt +0"2132 +0'2768 23"1 +0"3553 1117070 . 
II +0-li2 -0"0322 +0-6622 }2•( +0•5731 1·91355 
u -o·a +0"1IM -0~96 U-2 -0"3123 l"9ii72 
u +0"21 -011728 +0"3028 U·I +0•3580 1117022 . 
u +O·U -0·0350 +0•(450 ll·t +O·t6t2 1"94731 
u -o·u +0"1025 -0"242~ u-a -0'2746 1118297 
:14 ~0"25 -0"0574 +0"3074 34"1 +0"340& 1"97326 

' 

n +0"41 +0"0575 +H325 23·& +0·&590 1"94563 
u +0"23 

.. 
+0·1225 +0•1075 24"3 +0•1274 1·99645 

If +0"25 +0"1127 +0•137S 14"2 +0"1618 . 1119424 
--

~: 

60, 80 and 90 per cent. ; similarly, m the case of the out-relief, in several 
uruons the ratio was decreased by 40 to 60 per cent.~ a consistent anti-out
relief policy haYing been enforced ; in others the ratio was doubled, and 
more than doubled. As regards population, the more central districts 
t.howed decreases ranging up to 20 and 25 per cent., the circumferential 
di .. -tri.cts increases of 45 to 80 per cent. The correlations of order zero are 
not large, the changes in the rate of pauperism exhibiting the highest' 
t-orrdation with changes in the out-relief ratio, slightly less with changes 
in the proportion of old and very little ~ith changes in population. 

The correl~ns of the liecond order are obtained in two steps. In the 
fir.ot place, the ~>ix coefficients of order zero are grouped in four sets of three, 
corresponding to the four liets of three variables formed by omitting each 
one of the four variable$ in turn (Table 1-1.2, col 1 ). Each of these lit'ts 

-of three coefficients is then treated in the same manner as in the last 
· example, and 60 the correlations of the first order (Table U.2, col. 4) are .· 
obtained. · The first-order coefficients are then regrouped in sets of three, 
,.-ith the same Secondary &uffix (Table 1-1.3, col I), and these are treated 
p~ecisdy in the liaJile way as the coefficients of order zero. In this way, it 
"ill be seen, the value of each coefficient of the second order is arrived at in 
two ways independently, and so the arithmetic is checked; ru.at occurs in 

. 18 
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the first and fourth lines, for instance, r13.tc in the second and seventh, and 
so on. Of eourse slight differences may occur in the last digit if a sufficient 
number of digits is not retained, and for this reason the intermediate work 
should be carried to a greater degree of accuracy than is necessary in the 
final result ; thus four places of decimals were retained throughout in the 
intermediate work of this example, and three in the final result. If he 
carries out an independent calculation, the student may differ slightly 
from the logarithms given in this and the following work, if more or fewer 
figures are retained. 

. 

TABLE 14.3. 

1. 2. 4 • 5. 

Correia tion Product . a. Correlation 
coefficient Term of Numerator. coefficient log ...;r=rr_ 

(First Order). Numerator. (Second Order). 

. 
12•4 +0•5i31 +0•2131 +0•3600 12•3f +0•457 I·94901 
13•f +0•4642 +0•2631 +0"2011 13•24 +0"276 1·98277 
23·4 +0•f590 +0"2660 . +0•193() · 2s·a +0"266 1·98408 

' 
12•3 +0"4013 -0·0350 +0•4363 12"34 +0•457 -
14•3 -0·2746 +0"0511 -0"3257 14•23 -0·359 1"97013 
24"3 +0"~274 -0·1102 +0•2376 24"13 +0"270 !·98359 

13•2 +0"208f -0·0505 +0"2589 13·u +0·2iS -
14"2 -0"3123 +0"0337 -0"3460 14"23 -0·359 -
34"2 +0•1618 - 0•0651 +0•2269 u·12 +0•244 I·BS66i 

23"1 +0·3553 +0"1219 +0"2334 23"H +0·266 -
24•1 +0•3580 +0"1209 +0•2371 2f•13 +0"270 -
84"1 +0"340f +0"1272 +0"2132 84"12 +0•244 -

· Having obtained the correlations, the regressions can be calcu_lated from 
the third-order standard deviations by equations of the form (as in the last 
example), 

so the standard deviations of lower orders need not be evaluated. Using 
equations of the form · 

we find: 

Uus' =al(1 -r~2)l(1-r~u)l(1-r~u3)l 
= a 1(1 - r~4)l(1 -r~u)l(1 - r~u4)l 

log auu = 1·357 40 
log au34 = 1·50597 
log o-8•124 =0·65773 
log iTu23 =1·329U 

Ut.2U = 22•8 
au34 = 32·1 

aa.ut = -1·55 

au23 =21·3 

All the twelve re1.1ressions of J:he second order can be readily calculated, 
given these standard deviations and the correlations, but we may confine 
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o~trselves to the equation giving the ci1anges in pauperism (X1) in ter~s of 
nther variables as the most important. It will be found to be . . 
' . or1 = 0·325.x8 + 1·383.x3 - 0·~83JJ4 

nr, transferring the origins and expressing the ~quation in te~ros of per• 
centage ratios, ' . . • ,. ' ' . 

. · X 1 =·-31·1 +0·325X1 + 1·383X3 -0·383X, 
- - . . 

or, again, in terms or' percentage changes (ratio -100): · 

Perce~tag~ change in pauperism 
='+1·4 per cent.. . . · 

+ 0·325 times the change in out-relief ratio-
+ 1·383 , . , , proportion of old 
- 0·388 , , , population 

· These rest~Its render the interpretation of the total coefficients, whi~h 
might be equally consistent with several hypotheses, more clear and definite. 
The questio11s would arise, for instance, whether the correlation of changes 
in pauperism with changes in out-r.elief might not be due to correlation of 
the latter with the other factor'S introduced, and whether the negative· 
':orrelation with changes in population might not '6e due solely to the 
eorrelation of the latter with changes in the proportion of old. As a matter 
of fa~t, the partial correlations of.changes in pauperism with changes in 
<,ut-relief and in proportion of old are slightly less than the total correla· 
tions, but the partial correlation with changes in population is numerically 
greater, the figures being: 

r11 = +0·5~ r 11.84 = +0·46 
r18 = +0·41. 
r 14 = -O·H 

r13.14 =. + 0·28 
· ru.13 = - 0·36 

So far, then, as we have taken the factorS of the case into account, there 
appears to be a true correlation between changes in pauperism and changes 
in out-relief, proportion of old and population -the latter serving, of 
<·ourse, as sotne index to changes in general prosperity.· The relative 
influences of the three factors are indicated by the regression equation 
libove. (For the full discussion of the case, cf. Jour. Roy. Stat. So~,-
vol. 62, 1899,) · • 

Aids to Calculation. 
14.17. To facilitate the computation of partial correlation 

rl'gression coefficients, various tables of such quantities as · · 
' . 

and 

1 

!1ave been prepared. See, for instance, refs. (610) a 
/ 

The Generalised Scatter Diagram, - / · .· , · · 
·. 14.~8. ~he scatter· diagram in two d~·m-. \ Js may be generalised to 
dlree d.1mens10ns, and may also be used s•, . " .• ental construct for higher 
J1menstons, though no actual model can < <~urse be made. . 

. . 
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('~nsider _the case _or th_ree_ \:ariates. The values of XI, Xs and x.~ 
assO<'lated With any gi\·cn mdtvadual may be regarded as determinina a 
poi?t. in spa<'~ 1\•hose 00-o~Iinates are X 1, X 1 and X,. The totality"' of 
mdavaduals ·w1.ll therefore g~xe us a swann of points in three-dimensional 
space.' which _will lie distributed in certain ways about planes of regression. 

Fag. U.l1s drawn from a model reprpenting the data of Example H.l. 

~ . 

' J =~ --::::~--~--~~~~ ~· •.... ---
-

B 

FIG. 14.1.-.Model Illustrating the Correlation between Three YariaLles: (1) A\·era!!e 
Weddy Earnings of Agricultural Labourers (data, Example U.l and Exercise 11.2); 
(2) Pauperism (percentage of the population in receipt of Poor Law Relit!); 
(3) Out-relief Ratio (numLers given relief in their homes to one in the workhoUSt:). 
A., front view; B, view of model tilted till the plane of regression for pauperism 
on the two remaining variables is seen as a straight line. 

Four pieces of w~ arc: fixed together like the bottom and three sides 
of a box. Supposing the open side to face the observer, a scale of pauper
ism is drawn vertically upwards along the left-hand angle at the baek of the 
"box," the scale starting from zero, as very small \·alues of pauperism 
occur; a ·scale of out-relief ratio is taken along the angle between the back 
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and bottom of the box. starting from zero at the left ; finally, the scale of 
earnin.,~ is drawn out towards the observer along the angle between the 
left-hand side and the bottom, but as earnings lower than 12s. do not occur, 
the scale may start from 12s. at the corner. Suitable scales are : pauper- . 
ism, 1 in. = 1 per cent. ; ·out-relief ratio, 1 in. =-1 unit ; earnings, 1 in. = 1s. ; 
and the inside measures of the model may then be 17 in. x 10 in. x 8 in. 
high, the dimensions of the model ·constructed. Given these three scales, 
any set of observed values determines a point within the •• box." The 
earning• and otd-relief ratio for some one union· are noted first, and the 
corresponding point marked on the baseboard ; a steel wire is then inserted 
vertically in the base at this point and cut off at the height correspond
ing, on the scale chosen, to the pauperism in the same union, being finally 
capped with a small ball or knob to mark the •• point " clearly. _ The 
model sholfS very well the general tendency of the pauperism to be 
the higher the lower the . wages_ and the higher the out-relief, for the 
highest poin\s lie towards the back and right-hand side of the modeL 
If some representation of all three equations of regression were to be 
inserted in th~ model, the result would be rather confusing ; so the most 
important equation, viz. the second, giving the average rate of pauperism 
in terms of the other variables, may be chosen. This equation represents a 
plane; the lines in which it cuts the right- and left-hand sides of the •• box " 
should be marked, holes drilled at equal intervals on these lines on the 
opposite sides of the box (the holes facing each other) and threads stretched 
through these holes, thus outlining the plane as shown in the figure. In 
the actual model the correlation diagrams corresponding to the three pairs 
of variables were drawn on the.back, sides and base: they represent, of' 
course, the elevations and plan of ~he points. 

The student possessing some skill in handicraft would find it worth· 
while to make such a model for some case of interest to himself, a~d to 
study on it thoroughly the nature of the plane or regression, and the 
relations o~ the partial and total correlations. . -

Coefficient of Multiple Correlation. 
14.19. Consider the regression equation for ll'1, 

ll'1 =b11.1 . -.. ,.t'a +ba.a ... ,.ll'a + • • • +b1a.a .. , lto-l,.r_,. 

J:.:et us write the right-hand side of this equation as e1.11 ... ., so that in 
l'irtue of (U.2), · . 

e1.za ...• =ll'l-ll'ua ... •. ,(U.U) 

. ~ow consider the correlation between ll'a and eu1 ... ,.. lVe have 
m virtue of the theorem of 14.10: . ; 

Also, 

S(.r,e •. ,. ...• ) =S{.rl(.rl -ll' •. za ...• )} , 
=S(~1) -S{.rl(z1.11 ...• )}· 
=S(.r11) -S(a-~.11 ... ,.)1 

=N(a: -u:.u ... ,.) 
• 

S(e1.a ...• )1 =S(.rl -ll'ua ...• )1 

=N(u~ -u~.JS,, • • ) 



278 TIU:ORY OF STATISTICS. 

. lienee, the corrcJation betw~en tr1 and eu3 ••• 11 

I u!' , 
0'1 - 1.13 . • • II 

a,v'~-~.2s .. ~,. 

v'o{-aru ... " 
a, 

We shall call this quantit~ R1123 ••• ,.,~· We have immediately: 

u! . ==o-!(1-R' ) • 1.21 ••• " 1 lt23 ••• 11) (14.15) 

· Ru1 •..• "' is called tlie multiple correlation coefficient between or1 
and ora. ••• tr,.. '\Ye have, similarly, multiple correlations between ~r1 and 
fewer variables. R112 ••• ,.1 is called an (n -1 )-fold multiple correlation 
coefficient.- Rt(l ••. ft-:1> would be an (n -2)-fold coefficient, and so on. 

· 14.20. The value of R may be calculated either directly from equation 
(14.15), or by substituting in that equation the value of a~_,1 •.• 11 obtained 
in {14.10), ·which gives:· · 

1-R~<n .... tl)=(1~~3·)(1-t1~.~)(1-~4.l3)\· ~. (1-t1a.ts. .. _1to_-:-1)) (1U6) 

Properties of the Multiple Correlatiok Coefficient. . 
· 14.21 •. R1123 ••• ,.1, being the corr'elation between tr1 and eus ... ,., 

measures how closely w1 can be represented by the regression equation. If 
R = 1, w1 can be perfectly represented by such an equation, i.e. is a linear 
function of w1 • • • w,.. In this case ~.113 ••• n = 0, i.e. all the residuals are 
zero. 

It may, in fact, be shown that R1123 ••• ,.1 is greater than the correlation 
between w1 and any linear function of w1 ••• IJJ,. other than that expressed 
in the regression equation, i.e. e1.23 ••• ,.. Putting this another way, the 
regression coefficients in e1.23 ••• ,. may be determined by the condition 
that th~ correlation between w1 and e1.23 ••• • is a maximum. 

R is Necessarily Positive or Zero. . 
· . 14.22. This is true, since the product term S(w1e1. 23 ••• ,.) is positive, 

being equal toN( a~- o{_23 •••• ). and we see from (14.10) that a~ > a~.;3 ••• ,.. 

Further, from 4.16), . • • 

. 1 - R~<ss .• .' ,.> < 1 - r1,· . 
i.e. R is not· numerically less than r11• Similarly, it is not numerically less 
than aq.y other total or partial correlation coefficient which can appear 
in (14.16).· Hence, R 111 ••• ,.1 is not numerically less than any possible 
constituent coejficient of correlation. 

It follows from this that if R111 ••• ,.1 =0, all the correlation coefficients 
involving w1 are zero, i.e. the \'ariate tr1 is complcwly uncorrelated n•ith the 
other variates. 

14.23. Further, even if all the variables X 1, X., •.• x. were 
strictly uncorrelated. in the original universe as. a whole, we should expect 
r11, r13•10 r14.23, etc. to e~bit values (whether posifiye or negative) differing 
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from zero in a limited sample. Hence, R will not tend. on an average 
of such samples, to be zero, but will fluctuate round some mean value. 
This mean ,-alue will be the greater the smaller the number of observations 
in the sample, and also the greater the number of variables. - When only 
a small number of observations is available it is, accordingly, little use to 
deal with a large number of variables. As a limiting case, it is evident 
that if we deal with n \'ariables and possess only n observations, all the 
partial correlations of the highest possible order will be unity~ We shall 
deal with the question of the significance of an observed value of R in a 
later chapter (23.45). 

Example 1/.3.-ln Example 14.1 we found: 

r 11 = -0·66 

ru.z= +0·4-1 
Hence. from (U.16), 

~ 1 - R~t%3) = {1 - (0-66)1}{1 - (0·4-1 )2} 

=0·455 

""·hence 

Similarly, it will be found that 

and 
R11~11 =0~8-1 _ 

Ralul =0·70 

The student may verify by inspection that these ,-alues are greater than 
the corresponding constituent values. --

Expression of Regressions and Correlations in terms- of Co-
efficients of Higher Orders. ' 

14.2-1. It is ob\ious that as equations (U.12) and (U.13) enable us to 
express regressions and correlations _of higher orders·~ terms of those of 
lower orders, we must similarly be able to express the coefficients of lower 
in terms of those of hi~ber orders. Such expressions are sometimes useful 
for theoretical work. Using the same method of expansion as in pre,ious. 
cases, we ha\·e; .. 

0 =S(zl-• ... ..rut ... 111-11) 

=S(zlza.u ... 111-11) -bu.u . .. aS(.r.za.u •.• la-_u) 
-bJa.• ... ,,._l,S(.r,.ra.u ... c---11) _ 

-That is, 
b -b +b ' " . 11-U ••• Ca-ll- li.U •. • a la.ll ••• Ca-ll"a!.U -••• C•-JI 

In this equation the coefficient on the left and the last on the right are of 
order n -3, the other two of order n - 2. w· e therefore -iish to eliminate the 
last coefficient on the right. Interchanging the suffixes 1 for n and n for 1, • 
we have: . _ , 

b - -b +b . " ·. at.U ••• (a-ll- •1-JI ••• C11-ll •1.11 , :. C•-11"11-11 ••• C•-1) 
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Substituting this \·alue for b,.u4 •.•• 1,._11 In the first equation, we have: 

b · :_ bu.at ... ,. +bt,..ta ... ln-tlbnt.JS ... ln-11 (U.17) . 
11.3t 0 • 0 ln-11 - 1 b b 

- ln.H .• •• ln-11 nl.llll ••• ho-H 

This is the required equation for the regressions ; it is the equation 

b bu ... + 6Jn . .Pn~.t 
u 1-bt,..Jl,.u . 

with secondary suffixes 84 . : . (n -1) added throughout. The corre
. sponding equation for the. correlations is obtained at once by writing down 

equation (14.17) for b21 .M ·: •• 1,._11 and taking the square root of the 
product; this gives: 

r - _ru.al: .. "+rln.23 ... ln-uTz,..J3 ... 111-ll {IUS) 
IS M •.•• (n-11- (l ll )l( 1 I )l -.ri,..2S ... (n-1) -r, ... Is ... (11-l} 

which is similarly the equation 

: Tn= (1 -r~n.ll)l(I-r~,..l)l 

with the secondary suffixes 34 • • • ( n - I) added throughout. 

Conditions of Consistence among Correlation Coefficients. 
14.25. Equations (14.13) and {14.I8) imply that certain limiting 

inequalities must hold between the correlation coefficients in the expres<>ion 
on the right in each case in order that real values (values between± I) may 

·be obtained for. the correlation coefficient on the left. These inequalities 
correspond precisely with those " conditions of consistence .. between class
frequencies with which we dealt in Chapter 2, but we propose to treat them 
only briefly here. Writing (14.I3} in its simplest form for r19•3, we must 
have r~u < I or 

that is, 

r~1 +r~3 +r:3 -~r12r13r33 <I (14.19) 
' . 

if the three r's. are consistent with one another. If we take r111, r13 as known, 
this gives as limits for r23 , · · 

rurl3 ± VI- r1,- r1s +rf2rfs 
Similarly, writing {14.18) in its simplest form for ru in terms of ru.3> 
r13.1 and r 23 .1, we must have: · 

(14.20) 

and therefore, if r11.8 and r13.1 are gi\ren, r 23.1 must lie between the limits . 
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-The follo\\:ing table gives the limits of the third coefficient, in. a few 
special cases, for the three coefficien~ of zero order and of the first 1>rder 
respectively :- · · 

Value of Limita of 

r11 orraa ruorru.. ,.. f'J.u 

·o - 0 ±1 ±1' 
+1 ±1 +1 -1 
+1 ::j:l -1 +1 
+vo·s ±vo·li 0, +1 o, -1 

I ±vo:s +'1/0;5 ll, -1 o, +l .. 1 

The sttdent 'should notice that the set of three coefficientS of order zero 
and value unity are only consistent if either one ·only, or all three, are 
positive, i~r. + 1, +I, + 1, or -1, - 1, + 1 ; but not - 1, -1, -1. On the 
other hand, • the set of three coefficients of the first order and value unity 
are only consistent if one only, or all three. are negative: the only 'con
sistent sets are + 1, + 1. -1 and ..,.1, -1, - 1. The '·alues of the two· 
given r·s need to be very high if even the sign of the third can be inferred ; 
if the two are equal. they mtlst be at ·least equal to v' 0·5 or 0·707 • • • 
Fmally. it may be noted that no two values for the known coefficients ever 
permit an inference of the value zero for the third; the fact·that 1 and 2, 
1 and 3 are uncorrelated, pair and pair~ permits no inference of any kind 

. as to the correlation between. 2 and s. which may lie anywher~ J>et"!een 
+1 and -1. · · · 

Fallacies In the Interpretation of Correlation -~oeffici~nts. 
14.26. We do'not think it necefiSarY to add to this chapter a detailed 

discussion of the nature of fallacies on which the theory of multiple correla
tion throws much light. The general nature of such fallacies is the same· 
as for the case of attributes, and was discussed fully in Chapter 4. It 
suffices to point out the principal sources of fallacy which are suggested 
at on~ by the form of the partial correlation 

(a) 

and from the fonn of the corresponding expression for r11 in t~rms ~f tlie 
partial eoefficients : · . · ·. . . · .•, , ·· 

r +r _r "' ·. 
r - 11-1 u .... 23-l u-

V(l- t1u)(l- r:u) 
.... (b) 

From the f~rm of the numerator o_f (a) it is e-rident (I) that even if r
11 

be 
zero, r11•1 \\'lll not be ze~ unless e1th~r r11 or r28~ or ~th, are zero. If r

11 
and r~ arc: of the ~~me s1gn, the parbal ~rrelation w1ll be negative; if of 
oppos1te liJgn, pos1t1ve. Thus the quanbty of a crop might appear to be 
Wl&ffected, s_ay, ~y the amount of rainfall during· some period preceding 
harvest : this nught be due merely to a correlation between rain and 
low temperature, the partial correlation. between crop and rainfall being 
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positive and.important. We may thus easily misinterpret a coellk·itnt of 
,eorrdatiorr which.is zero. {2) r11:a may be, indeed often is, of oppo~ite 
sign to r12, and tlus may lead to still more serious errors of interpretation. 

From the form of the numerator of (b), on the other hand, we see that, 
conversely, r11 will not be zero even though r 1u is zero, unless either 
r18.1 or r1u is zero. This corresponds to the theorem of 4.ll, and indicates 
a source of fallacies similar to those there discussed. · 

14.27. 'Ve have seen that r 111•3 is the correlation between tru and .ru, 
and that we might determine the value of this partial correlation by drawing 
up the actual correlation table for the two residuals in question. Suppose, 
however, that instead of drawing up a single table we drew up a series of 
tables for values of tru and tru associated with values of ;r3 l)ing within 
successive class-intervals of its range. In general, the value of r11.3 would 
not be the same (or approximately the same) for all such tables, but would 
exhibit some systematic change as the value of :r3 increased. Hence r11.1 
should be regarded, in general, as of the nature of an average correlation : 
the cases in which it measures the correlation between :ru and :ru for 
evenJvalue of :r3 (cf. below, 14.31) are probably exceptional. The process 
for qetermining partial associations (cf. Chapter 4) is, it will be remembered, 
thorough and complete, as we always obtain the actual tables exhibiting 
the association between, say, A and Bin the universe of C's and the universe 
of y's : that two such associations may differ materially is illustrated by 
Example 4.1, page 52. It might sometimes sen•e as a useful check on 
partial correlation work to reclassify the observations by the fundamental 
methods of Chapter 4. For the general case an extension of the method 
of the ·~correlation ratio" (13.5) might be useful, though exceedingly 
laborious. 

Multivariate Normal Correlation. 
14.28. The theorems and results of Chapter 12 in rt>gard to normal 

correlation can be extended to the case of n variates, which we have studied 
in this chapter. • . 

In fact, suppose we have n variates a:1, ;r;, tr3, ~ •• a:,., measured from 
their respective means, with standard deviations' u1, u2, u3, ••• u,.. Let 
us first consider the simple case in which they are normally distributed 
and each is completely-independent of the others.. · 

. Then, if 'Ill , .. ,. denote the frequency of the combination of deviations 
1111, trz, tr,., we have: 

where (U.21) 

N~w consider the vari~tes x1, tr1.1, truz, •• ·• -;r,._ 111 ••• ln-ll· "Whether 
a:1~ ;r8, • • • ;r,. are correlated or not, these variates are uncorrelated, 
in virtue of 14.10. Let us further suppose they are independent aud 
normally dis!ributed. Then their distribution is given by 

Y =yfJ e-H(ZI,Za-4. ·. • .r,..ll · • • ,,._,,)" 
11 • • • II • • • S 

(U.22) 
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where'f 

tf>(re1, re101, • 
:r' o. • 0 • + ... n. 0. {t&-1) 

· o!.a ... (t&-1) 
(14.23) 

and 
N 

yis ... ,. = --,.'------,---------0 (14.24}. 

(211)iu1u 10 1 ••• · u,.olll , •• (t&-11 . 
The expression (14.23) may be put in a more convenient form. I~ ~ay 

be shown, but we omit the proof, that · 
0 

.· .. 
xa 

n . +-,--. -----
_un.1ll ••• (n-J) 

(14.25) 

re1.r1 · . . _ re,._1re,. • 
-2rlla ..... • - •·• · -2rcn-1lta.u ••• fn-llu . u 
o u,.J3 ••• ,.u1ua: .. ~ · o n-1o1_ ..• f-s>n n.t ••• (-ll 

which exhibits the form as symmetrical in :r1 • ~ • :r,.. 
Now, we showed in 14.13 that 

etc. 
In precisely the same way i~ may be shown that 

. I : w 
O'tol8 ••• ,.uaou • : • n ru.a ••• n = - ;;;-utus 

. . . ~Ill 

~~~ being the minor in w of the term in the first row and the sec.ond 
column. , 

If we substitute these and analogous values in (14.22), we get: 1;4 

. Yu. ·-··• 
'N ---::,.-----"---e-•• 

(211')1o1u1 •• u,.v'; 
where 

J.. 1{ :r1• _ :r1
1 :r1:r1 . +2w .

0 

:r,.:r11-1} • 
'#'=- wua+wzaa+ • • · +2wu--+ • • • n.n-1 .(14.26)

0 w u, ua . u1ua u,.u"-1 

This is a form which is vecy frequently quoted. ·, -' · · · . 
14.29: From these formulre several important results follow immedi-

ately. · · " ' 
In the first place, for any fixed values h1 • • • h,. o( ~r1 • • '-. . .i,.,o the 

exponent (14.25) becomes: • 

1 
.x: - 2ruou .. ,. :r,h, - • • - 2

' 1"·' 0 

• (,.-l_rr1h,. o+cons~ant ter~ 
ulot3 •• • Uus •• ,.u,ou •. • ulo2S •• ,.u,.ol. ~ (11..:1> 

{ 
a: r h · r h }• 

0 

0 

= l - ll-ll ' " n I- , , ..__ lnol .. hs-ll 11 +COnstant term& 
u1ou •• • uaou •• • · u,.ol •• (n-11 
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lienee re1 is distributed normally about the mean, m1, ginn by 

m1 = r12.a ... "h + + r1n.2 ... ln-llh 

O't.23 ..• fl - 0'1.13- ••• fl s • • • • u,..l .•• ln-11 " 
(U.27) 

Hence every arrJly of every order is normally distributed. 
It follows in a similar way that any linear fun<"tion of the .x's is 

distributed normally. 
In particular, all deviations of any order and with any number of 

suffixes are normally distributed. 
14.30. Secondly, as will be seen from (14.27), the regression of OZ"1 on 

the other variables is linear. lt follows that the regression of any variate 
on any or all of the others· is linear. In (14.27), for instance, the ex-

pressions ra.s ..• nO'ua ..... etc. are the partial regressions b etc. 
O'z.ts ... " .' , 12.3 .' •. '" 

14.31. Finally if, in equation (14.23), any fixed values be assigned to 
.x3•11 and all the following deviations, the correlation between .x1 and OZ"29 on 
expanding .x2.1, is, as we have seen, normal correlation. Similarly, if any 
fiud· values be assigned to .x1, to .x4.123, and all the following deviations, on 
reducing .x3.12 to the stcond order we shall find that the correlation between 
.xu and .x3.1 is normal correlation, the correlation coefficient being r 23.1, and 
so on. That is to say, using k to denote any group of secondary suffixes, ( 1) 
the correlation between any two deviations .xm.k and .x,..ll: is normal correlation; 
(2) the correlation between the said deviations -is.,. mn.Tc whatever the particular 
fi.xed values assigned to the remmning deviations. The latter conclusion, it 
will be seen, renders the meaning of partial correlation coefficients much 
more definite in the case of normal correlation than in the general case. In 
the general case r mn.k represents merely the average correlation, so to speak, 
between .Xm.k and .x,..k: in the normal case Tmn.k is constant for all the sub
groups corresponding to particular assigned values of the other variables. 
Thus in the case of three variables which are normally ·correlated, if we 

. assign any given value t!> .x3, the correlation between the associated values 
of .x1 and .x2 is r12.3 : in the general case r18.3, if actually worked out for the 
various sub-groups corresponding, say, to increasing values of .x3, would 
probably exhibit some continuous change, increasing or decreasing as the 
case might be. 

SUl\IMARY. 

1. The regression· equation of .x1 on .x2, .x3, ~ .x,. is written: 

The deviation .xu3 • • • ,. is defined as 

and u1 .113 ••• ,. is the standard deviation of .ru3 ••• ,.. 

2. The equations giving the regression coefficients are: 
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S(.rtZua ... ,.) =0 

S(.r,.ru3 ••• ,.) =0 

S(.rnrt.i3 ... ,.) =0 

285 

and similar equations with .rus ... ,., etc. · • ' · 
3. The product-sum of any two deviations is unaltered by omitting any 

or all of the secondary subscripts of either which are common to the two ; 
conversely, the product-sum of any deviation of order p with a deviation 
of order p +q, the p subscripts being the same in each case, is unaltered-by 
adding to the secondary subscripts of the former any or all of the q 
additio~~ subscripts of the latter. · 

4. b -r • UJ.Sj •• • " 
• IIU ••• ,.- u.u ... "ua.u ... 

11 
· 

5. Any 1tandard de,·iation of order p can be expressed in termS of a 
standard deviation of. order p -1 and a correlation· of order p ....:.1. In faet, 

u~.:s ... " = utts ... (11 -tP - ri ... 2s ... ("-I)). 

WU I 
6. · u' =-"-

p.%3 ••• " w,, 
whl're w is the determinant 

1 ria r13 rl,. 
r 11 1 r 13 r1,. 

r,.1 r,.1 rn3 • 1 

and w,.,. is the minor of the element in the pth row and the pth column. · 
7. Any regression of order p may be expressed in terms of regressions 

of order p - 1. In faet, · 
b b . b . b _ lt-U • •• lt>-11 - ln.M ••• Ifi-ll 111 3-1 ••• ho 11 

11-M • • • ,.- 1 b b 
- ... U • •• IIl-li nl U , •• (R-U 

8. Similarly, for correlations: 

r _ rl! u ... 111-II- rtn.:u. . , . <,._urzn.s4 ••• Ifi-ll 
liM ••• •:- (1 J )*(1 S t 

- rlii.U ••• (10-I) - r,,._,. .•• (n-t)) 

9. The coefficient of multiple correlation R1113 ••• ,.1 is giveq by 

u~.u ... ,. = ~( 1 - Jri(23 ••• ,.1) -.. 
or 

Also, 

..!!!.._ =1-R' lJJ l(U ••• n) 
11 

1 - R~c2s. . . fl) =(1 ~ ri:~)(1- riuH1- '~•n) · • • (! - ri •. n ... (11-n> 
10. ll is neces~arily not less than zero. IC it is zero the variate to 

which it refers is completf'ly uncorrelated with the other variates. If 
R = 1. there is a linear relation between the variates. 
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11." The multivariate normat surface may be written: 

' N 
'!ha •.. t1 = ,. -------e-14> 

(21T)2u1d1 ••• u,. .y;;; 

_, 

EXERCISES. 

14.1. (Ref. (299).) The following means, standard deviations and correb· 
tions are found for 

X 1 =Seed-hay crops in cwts. per acre, . 
X 1 =Spring rainfaU in inches, 
X 1 =Accumulated temperature above 42° F. in spring, 

in a certain district of England during twenty years. 

. M1-= 2~·02 a1 = 4·42 T11 = +0·80 
M 1 = 4·91 a1 = 1·10 Tu= -0·40 
1U'1 =594 a1 =85 T11 = -0·56 

Find the partial correlations and the regression equation for hay-crop on sprir:g 
rainfall and accumulated temperature. · • 

14.2. In Exercise 14.1, find the multiple correlation coefficient of each variate 
on the other two. . • 

14.8. (The following figures must be ~ken as an illustratio~ only: the data 
on which they were based do not refer to uniform times or areas.) -

X 1 =Deaths of infants under 1 year per 1000 births in same year (infant:: .. 
mortality). _ 

X 8 =Numbg per thousand ~f married women occupied for gain. 
X~ =Death-rate of persons over 5 years of age per 10,000. _ 
X, =NUmber per thousand of population living two or more to a room 

(overcrowding). 

- ·Taking the figures below for thirty urban area). in England and Wales, fin.l 
the partial correlations and the regression equation for infantile mortality on 
the other factors. 

M 1 =164 
M 1 =158 
.ll-1.=143 
M,=205 

a1 = 20·0 
a1 = 74·9 
a,= 22·4 
a,=130·0 

T11 = +0·49 
T11 = +0·78 
T11 = +0·20 

r 11 = +0·15 
r 1,= -0·87 
Tu= +0·23 

14.4. In Exe~cise 14.3, find the multiple correlation coefficient of X 1 on X, 
and X 1 ; and of X 1 on the other three variates. 

14.5. (Data from ,V. F. Ogburn, "Factors in the Variation of Crime among 
Cities," Jour. Amer. Stat. Assoc., vol. 30, 1935, pp. 12-84.) 

. For certain large cities in the U.S.A.: 

X 1 ~Crime rate, being the number of known _offences per thousand t·l' 
population. · 

X 1 =Percentage of male inhabitants. 
X 1 =Percentage of total inhabitants who are foreign-born males. 
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X, =X umber of c:hilJren under 5 years of age per thousand married women 

between 15 and U years of age. 
X, =l'hurch membership, being number of church members 13 years of 

age and over per 100 of total popuiB.tion 13 years of age and over., 
ll/1 = 19·9 111 = 7·9 r 11 = +0·4-t. r .. = -0·19 
.;U,= 4.9·2 a 1 = 1·3 r 11 = -0·34 ru= -0·35 
~u.= 10·2 a 1 = 4·6 ru= -0·31 r .. = +0·4-t. 
.11,=481·4 a,=74·-l 'i•=-0·14 r 11 = +0·33 
~ll,= 41·6 a 1 =10·8 r 11 = +0·25 ru= +0·85 

Find the regression equation of X1 on the other 'four variables. Find also 
RI(2M$)• 

Find, further, r 11 . ., r u.e and r 11• ... Discuss the influence of church membership 
on crime for these data. 

14.6. Show that for n variates there are •C1 total correlation coefficients, 
(n -2)-c, correlation coefficients of order 1, -•c,-c, correlation coefficients of 
order 2, and •-ac.-c, of order B. Hence show that there are n{n -1)2•-a 
correlation rotfficients and n(n -1)2-1 regression coefficients. 

1-&.7. Firld the number of multiple correlation coefficients of order Band the 
total number ·pf such coefficients for n variables. · 

14.8. If all the correlations of order zero are equal, say =r, what are the· value!> . 
of the partial correlations of successive orders! · 

l.'nder the same conditions, what is the limiting value of r if all the equal . 
correlations are negative and ,. variables have been observed 1 

14.9. Write down from inspection the values of the partial correlations for the 
three \1lriables 

14.10. U the relation 
a.:r.1 +bz1 +c.r1 =0 

holds for all sets of values of Z 10 z 1 and Z 1 , what must the partial correlations 
be? 



CHAPTER 15. 

CORRELATION: ILLUSTRATIONS AND PRACTICAL 
METHODS. 

15.1. The student-t!specially the student of- economic statistics, to 
whom this chapter is principally addressed-should be careful to note that 
the coefficient of correlation, like an average or a measure of dispersion, 
only exhibits in a summary and comprehensible form one particular aspect 
of the facts on which it is based, and the real difficulties arise in the inter
pretation of the coefficient when obtained. The value of the coefficient 
may be consistent with some given hypothesis, but it may be equally 
consistent with others; and not only are care and judgment essential for 
the discussion of such possible hypotheses, but also a thorough knowledge 
of the facts in all other possible aspects. Further, care should be exercised 
from the commencement in the tlelection of the variables between which the 
correlation shall be determined. The variables should be defined in such a 
way as to _render the correlations as readily interpretable as possible, .and, 
if several are to be dealt with, they should afford the answers to specific and 
definite questions. Unfortunately, th~ field of choice is frequently very 
much limited, by deficiencies in the available data and so forth, and con
sequently practical possibilities as well as ideal requirements have to be 

· taken ip.to account. No general rules can be laid down, but the following 
are given as illustrations of the sort of points that have to be considered. 

15.2. Example 15.1.-It is required to throw some light on the 
variations of pauperism in the unions (unions of parishes) of England. 
(Cf. Yule, ref. (334)-investigation carried out in 1898.) 
· On the whole, it would seem best to correlate changes in pauperism with 

changes in various possible factors. If we say that a high rate of pauperism 
in some district is due to lax administration, we presumably mean that 
as administration became lax, pauperism rose, or that if administration 
were more strict, pauperism would decrease.; _if we say that the high 
pauperism is due to the depressed condition of industry, we mean that 
when industry recovers pauperism will fall .. \Vhen we say, in fact, that 
any one variable is a factor of pauperism, we mean that changes in that 

_variable are accompanied by changes in. the percentage of the population in 
receipt of relief, either_ in the same or the reverse direction. It will be 
better, therefore, to deal with changes in pauperism and possible factors. 
The next question is what factors to choose. 

-.,-. 15.3. The possible factors may. be grouped under three heads: 
(a) Administration. -Changes in the method or strictness of administra

tion of the law •. 
(b) Ent>ironment.-Changes in _economic conditions (wages, prices, 

employment), social conditions (residential or industrial character of the 
288 
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district·, density of populatioQ, nationality ot .population) or moral con
ditions (as illustrated, e.g., by the statistics of erime). 

(c) Age Distribution.-The percentage of the population between given 
age-limits in receipt of relief increases very rapidly.with old age, theactual 
figures given by one of the only two then existing returns of the age of 
paupers being: 2 per cent. under age 16, 1 per cent. over 16 but under 65, 
20 per cent. over 6~. (Return 36, 1890.) . 

It is practically impossible to deal with more than three factors, one 
from each of the above groups, or four variables altogether, including the 
pauperism itself. What shall we take, then, as representative variables, 
and how shall we best measure " pauperism " ? · ' · ·· 

15.4 •. Pauperism.-The returns give (a) cost, (b) numbers relieved. 
It seems hetter to deal with (b), as numbers are more important than cost 
from the standpoint of the moral effect of relief on the population. The 
returns, however, generally include both lunatics and vagrants in the totals · 
of persons relieved ; and as the administrative methods of dealing with these 
two classes differ entirely from the methods applicable to ordinary pauperism, 
it seems better to alter the official total by excluding them. · Returns are 
available giving the numbers in receipt of relief on 1st January and 1st July; 
there does not seem to be any special reason for taking the one return 
rather than the other, but the return for 1st January·was actually used. 
The percentage ot .the population in receipt of relief on 1st January 18711 

1881 and 1891 (the three census years), less lunatics and vagran~s, was 
therefore tabulated for each union. 

15.5. Administration.-The mo~t important point here, and one that 
lends itself readily to statistical treatment, is the relative proportion of 
indoor and outdoor relief (relief in the workhouse and relief in the appli
cant's home). The first question is, again, shall we measure this proportion 
by cost or by numbers? The latter seems, as before,. the simpler and more 
important ratio for the present purpose, though some writers have pre
ferred the statement in terms of expenditure (e.g. Charles Booth, "Aged 
Poor-Condition, 1894"). If we decide on the statement in terms of 
numbers, we still have the choice of expressing the proportion (1) as the 
ratio of numbers given out-relief to numbers in the workhouse, or (2) as 
the percentage of numbers given out-relief on the total number relieved. 
The former method was chosen, partly on the simple ground th~t it had 
already been used in an earlier investigation, partly on the ground that the 
use of the ratio separates the higher proportions of out-relief more clearly·. 
from each other, and these differences seem to have significance,- Thus a 
union with a ratio of 15 outdoor paupers to 1 indoor seems to be' materi
ally different from one with a ratio of, say, 10 to 1; but if we take, instead 
of the ratios, the percentages of outdoor to total paupers,· the figures are 
94 per cent. and 91 per cent. respectively. which are so close that they will 
probably fall into the same .array. The ratio of numbers in receipt of out-. 
door relief to the numbers in the workhouse, in every union, was therefore 
tabulated for 1st January in the cerisus years 1871. 1881. 1891. 

15.6. Euvironment.-This is the most difficult factor of all to deal 
with. In Booth's work the factors tabulated were (!)persons per acre; (2) 
percentage of population living two or more to' a room, i.e, "overcrowding,.; 
(3) rateable value per head ("Aged Poor-Condition"), The data relating 
to oyercrowding were first collected at the census of 1891, and are not 

19 
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availa.Lle for earlier )'~ars. .Some trial was made of rateable value per head, 
but With not very satisfactory results. For any given year, and for a group 
of unions of somewhat similar C'haracter, e.g. rural, the rateable value per 
head appears to be highly (negatively) correlated with the pauperism, but 

. changes in the two are not very highly C'orrelated : probably the move· 
ments of assessments are sluggish and irregular, especially in the case of 
falling assessments in rutal unions, and do not correspond at all accurately 
with the real. changes in the value of agricultural land. After some con
sideration, it was decided to use a. very simple index to the changing 
fortunes of a district, viz. the movement of the population itself. If the 
population of a district is increasing at a rate above the average, this is 
prirtyJ facie evidence that its industries are prospering ; if the population 
IS decreas~ng, or 1!-ot increasin~ as fast as the average, this strongly suggests 
that the mdustnes are suffenng from .a temporary. lack of prosperity or 
permanent decay. The population of every union was therefore tabulated 
for the censuses of 1811, 1881, 1891. 

15.7. Age Distribu#on.-As already stated, the figures that are known 
clearly indicate a very rapid rise of the percentage relieved after 65 years 
of age; 'The percentage of the population over 65 years of age was there-

. fore worked out for ~very union and t_abulated from the same three censuses. 
This· is not, of course, at all a complete index to the composition of the 
population as affecting the rate of pauperism, which is sensibly dependent 
onthe proportion of the two sexes, and the numbers of children as well. 
As the percentage in receipt of relief was, however, 20 per cent. for those 
over 65, and only 1 to 2 per cent. for those under that age, it is evidently a 
most important index. {A more complete method plight have been used 
by correcting the observed rate of pauperism to the basis of a standard 
population with given numbers of each age and sex (cf. Chap. 16, pages 
305-306).) 

15.8. The changes in each of the four quantities that had been 
tabulated for every union· were then measured by working out the ratios 
for the·intercensal decades 1871-81 and 1881-91, taking the value in the 
earlier year as 100 in each case. The percentage ratios so obtained were 
taken as the four variables. Further, as the conditions are and were very 
different for rural and for urban unions, it seemed very desirable to separate 
the unions into groups according to their character.• But this cannot be 
done with any exactness: ·the majority of unions are of a mixed character, 
consisting, say, of a small town with a considerable e:1.1:ent of the surround-· 

. ing country. It might seem best to base the classification on returns of 
occupations, e.g. the proportions of the population engaged in agriculture, 
but the statistics of occupations are not given in the census for individual 
unions. . Finally, it was decided to use a classification by density of popula-

- tion, the grouping used being-Rural, 0·3 person per acre or less ; 1\lixed, 
more than 0·3 but not more than 1 person per acre ; Urban, more than I 
person per acre. The metropolitan unions were also treated by themselves. 
The limit 0·3 for rural unions was suggested by the density of those agri-

--Cultural unions the conditions in which were investigated by _the Labour 
Comrilission which reported in 1894: the average density of these was 0·25, 
and 34 of the 38 were under 0·3. The lower limit of density for urban 
unions-1 per acre-was suggested by a grouping of Booth's (group xiv.): 
of course 1 person per acre is not a density associated with an urban district 
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in the ordinary s~nse of the term, but a country district cannot .reach this 
density unless it includes a small town or portion of a town, i.e. unless. a 
large proportion t:>f its inhabitants live under urban conditions. 

15.9. Example 15.2.-The· subject of investigation is the inheritance 
.of fertility in man .. (Cf. Pearson and others, ref. (323).) · 

Fertility in man (i.e. the number of children born to a given pair) is very 
largely influenced by the age of husband and wife at marriage (especially 
the latter), and by the duration of marriage. ~tis desired to·find whether 
it is also influenced by the heritable constitution of the parents, ~.e. whether, 
allowance being made for the effect of such disturbing causes as age and 
duration of marriage, fertility is itself a heritable character. . · . 

The effect of duration of marriage may be large~y eliminated by exclud- · 
ing all marriages which have not lasted, say, 15 years at least. This' will 
rather heavily reduce. the number of records available, but will leave a 
sufficient D.umber for discussion. It would be desirable to eliminate the 
effect of late marriages in the same way by excluding all cases in which; 
say, husbanll was over 30 years of age or wife over 25 (or even less) at th~ 
time of mahiage. But; unfortunately, this is impossible ; the age of the 

. wife--the most important factor-is only exceptionally given in peerages, 
family histories and similar works, frorn which the data must be compiled. 
All marriages lasting 15 years or more must therefore be included, whatever 
the age of the parents at marriage, and the effect of the varying age at·. 
marriage.must be estimated afterwards. · . . 

15.10. But the corre~ation between (1) number of children of a 
woman and (2) number of children of her daughter will be further affected 
according as we include in the record all her available daughters or only one. 
Suppose, e.g., the number of children in the. first generation is 5 (say the 
mother and her brothers and sisters), and the mother has three daughters 
with 0, 2 and 4 children respectively: are we to enter all three pairs ( 5, 0 ), 
( 5, 2 ), { 5, 4) in the correlation table, or only one pair 1 If the latter, which 
pair Y For theoretical simplicity the second process is distinctly the better 
(though it still further limits the available data). If it be adopted, some 
regular rule will have to .be made for the selection of the daughter whose 
fertility shall be entered in the table, so as to avoid bias :·the first daughter 
married for whom data are given, and who fulfils the conditions as to 
duration of marriage, may, for instance, ,be taken in every case. (For a 
much more detailed discussion 'of the problem, and the allied problems 
regarding the inheritance of fertility in the horse, the student is referred to . 
the original.) · . . . . •. 

15.11. Example 15.3.-The subject for investigation is the relation 
between the bulk of a crop (wheat and other cerea!R, turnips and other root 
<·rops, hay, etc.) and the weather. (Cj. Hooker, :ref. (316).) · 

Produce statistics for the more important crops of. Great Britain have 
been issued by the 1\linistry of Agriculture since 1885 : the figures are based 
on estimates of the yield furnished by ollicial local estimators all over the 
country. Estimates are published for separate counties and for groups of 
counties (divisions). The climatic conditions vary so much over the United 
Kingdom that it is best to deal with a limited area, homogeneous as far as 
possible from the meteorological standpoint. On the other hand, the area 
s~ould ~ot be too ~mall; it should be large enough to present a representa~ 
bve var1ety of soli. The group of eastern counties, consisting of Lincoln, 
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Hunts, Cambridge, Norfolk, Suffolk, Essex, Bedford and Hertford, wao; 
sell'cted as fulfilling these ~onditions. The group includes the ('ounty with 
the largest a('reage of cadi of the ten crops investigatl'd, with the single 
ext'eption of permanent grass. . -

15.12. The produce of a crop is dependent on the weather of a long 
preceding period, and it is naturally desired to find the influence of the 
weather at successive stages during this period, arid to determine, for. 

·each crop, whil'h period of the year is of most critical importance as regards 
weather. It must be remembered, however, that the times of both sowing 
and harvest are themselves very largely dependent on the weather, and 
consequently, on an average of many years, the limits of the critical period 
will not be very well defined.· If, therefore, we correlate the produce of the 
crop (X) with the characteristics of the weather "(Y) during successive 
intervals of the year, it will be as well not to make these intervals too short. 
It was accordingly decided to take_ successive gro1:1ps of 8 weeks, overlap
ping each other by 4 weeks, i.e. weeks 1-8,5-12, etc. Correlation coefficients 
were thus obtained at 4-week intervals, but based on 8 weeks' weather. 

15.13. It remains to be decided what characteristics of the weather 
are to be taken into account. The rainfall is clearly one factor of great 
importance, temperature is another, and these two will afford quite enough 
labour for a first investigation. The weekly rainfalls were averaged for 
eight stations within the area, and the average taken as the first character
istic of the weather. Temperatures were taken from the records of the 
same stations. 'J,'he average temperatures, however, do not give quite the 
sort·of information that is required: at temperatures below a certain limit 
(about 42° Fahr.) there is very little growth, and the growth increases in 
rapidity as the temperature rises above this point (within limits). It was 
therefore decided to utilise the figures for •• accumulated temperatures 
above 42° Fahr.," i.e. the total number of day-degrees above 42° during 
each of the 8-weekly periods, as the second characteristic of the weather; 
these •• accumulated temperatures," moreover, show much larger variations 
than mean temperatures. · 

The student should refer to the original for the_ full discussion as to data. 

The Variate-difference Correlation Method. 
· · 15.l4. Problems of a some!Vhat special kind arise when dealing with 

the relations between simultaneous values of two variables which have been 
observed during a considerable period of time, for the more rapid move
ments will often exhibit a fairly close consilience, while the slower changes 
show no similarity. The two following examples will serve as illustrations 
of two methods which are generally applicable to such _cases:-

Example 15.4.-Fig. 15.;1 exhibits the movements of (1) the infantile 
mortality (deaths of infants under 1 year of age per 1000 births in the same 

·year), (2) the general mortality (deaths at all ages per 1000 living);in 
England and 1\'ales during the period 1.838-1914. A very cursory in
spection of the figure shows that when the infantile mortality rose from 
one year to the next the general mortality also rose, as a rule; .P.ud similarly, 
when the infantile mortality fell, the general mortality also fell. Tlwre 
were, in fact, only seven or eight exceptions to this rule during the whole 
period under review. The correlation between the annual values of ~he 
two mortalities would nevertheless not be very high, as the general mortality 
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Flo. 15:1.-lnfantile and General Mortality in England and Wales; 1888-1914., 
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has been falling more or less steadily since 1875 or thereabouts while the 
inf~ntile ~ortality attain~d almost a record value in 1898. ·During a long 
pen?d of time the correlatl?~ between annual values may, indeed, very well 
varush, f?r the t~o mortahbes are affected by causes which are to a large 
extent different m the two cases. To exhibit, therefore, the closeness of 
the relation between infantile and general mortality,for auch cauae11 aa show 
marked changea between one year and the ne:rt, it will be best to proC'e<'d by 
correlating the annual changea, and not the annual values. The work 
would~~ arrange~ i~ the following form (only sufficient years being given 
to exhibit the pnnc1ple of the process), and the correlation worked out 
between the fig_ures of columns 3 and 5 :- · . 

1. 

Year. 

1838 
1839 
1840 
lMl 
1842 
1843 

t. 
Infantile 

.Mortality per 
l000Birth1. 

159 
151 
1M 
145 
b~ 

• 150 

.. 
Increase or 

llecreaaefrom 
Year before. 

-8 
+S -· +7 
-I 

.. 
General 

llortahty per 
lOUO living. 

H·· 
21•8 

'12·9 
!1"8 
21"7 
11•1 

-~.--, 
lncreBieor 

l>e<-nmae fr01a 
Year before. 

For the period t~ which the diagram refers, viz. 1838-1914, the follow
ing constants were found by this method· :-

Infantile mortality, mean annual change 
,. , , standard deviation 

General mortality, mean annual change 
, , , standard deviation 

Coefficient of correlation 

- 0·71 
10·76 
O·ll 
1·13 

+ 0·69 

This is a· much higher correlation than would arise from the mere fact 
that the deaths of infants form part of the general mortality, and con
sequently there must be a high correlation between the annual changes in 
the mortality of those who are over and under I year of age, respectively. 
(Cf. Exercise 16.6, page 308.) 

15.15. The procedure of the foregoing· section has been called the 
"variate-difference correlation method." By taking first differences 
instead of the variate values themselves, the slower changes of the two 
variates with time are to some extent eliminated, and we are able to stud\· 
the effect of short-term variations. To eliminate the secular changes more 
completely it may be desirable to proceed to second differences, i.e. to work 
out the successive differences of the differences in column 3 and column 5 
before correlating. It may even be desirable to proceed to third, fourth 
or higher differences before correlating. The method should, however, be 
used with caution in such cases, particularly with short series. Correlation 
coefficients obtained from higher rlifferences are not always reliable, and 

. t!leir interpretation becomes a matter of considerable difficulty. 
15.16. E:rampU: 15.5.-The two curves of fig. 15.2 show (1) the 

marriage-rate (persons married per 1000 of the population) for England and 
Wales; (2) the-values of exports and imports per head of the population 
of the United Kingdom for every year from 1855 to 1901. Inspection of 
the diagram suggests a similar relation to that of the last example, the one 
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variable showing a rise from one year to the next when the other rises, and 
a fall when the other falls. The movement of both variables is, however, 
of a much more regular kind than that of mortality, resembling a series of 
" waves " superposed on a steady general trend, and it is ·the " waves " in 
the two variables-the short-period :movements, not the slower trends
which are so clearly related. 

· 15.17. It is not diffiault, moreover, to separate the shmt-period 
oscillations, more or less approximately, from the slower movement~ 
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FIG, 15.2.-Marriage-rate and Foreign Trade, England and Wales, 1855-1904. 

Suppose the marriage-rate for each year replaced by the average of an· odd 
number of years of which it is the centre, the number ~eing as near as may 
be the same as the period of the" waves "--e.g. nine years. If these short
period averages were plotted on the diagram il}stead of the rates of the 
individual years, we should evidently obtain a smoother curve which would 
clearly exhibit the treud and be practically free from the conspicuous waves. 
The excess or defect of each annual rate above or below the trend, if plotted 
separately, would therefore give ~he " waves , apart from the slower 
changes. The figures for foreign trade may be treated in the same way as 
the marriage-rate, and we can accordingly work out the correlation between 
the waves or rapid fluctuations, undisturbed by the movements of longer 
period, however great they may be. The arithmetic may be carried out 
in the form of the following table, and the correlation worked out in the 
ordinary way between the figures of columns 4 and 7 :-

L I \l. •• 8. ' .. 6 • 7. 
I Aiarriage.ralb Nine Differ. Exporto+lm· Nine Differ·· Year, (En:z-lantl Veara• porta, £'al.er Yean' 

aud WaiOti). Average. ence. head (U. .). Average. ence. . 
1856 16'2 - - 9"86 - -· 1856 16"7 - - 11"1' - -
1>M>7 16"6 - - 111-5 - -1&58 16"0 - - 10"78 - -
1~~9 17"0 "16"6 +O·o 11•72 12"16 -0·43 
1ri<IO 17"1 16'6 +O·fi J3·os 12'94 +0•09 
liili1 16'1 16·7 -0·4 18"01 13'32 -0"51 
181;2 Ul"l 1~11 -0"7 13•40 14'17 -0'77 
18ij3 16'8 1611 -0·1 15"13 H'lll +0•32 
lbht 17"! - - 16"f8 - -1!>1\6 17"6 - - 16"H7 - -18t~ I 17'5 - - 17"72 - . -
1~67 : le-6 - - 10.7 - - . 
-- -- -- ~ .. 
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15.18. Fig. 15.3 is drawn from the figures of columns 4 and 7, and 
shows Vt>ry well how closely the oscillations of the marringe-rate are related 
to those of trade. For the period 1861-95 the correlation bet.wef'n the two 
oscillations (Hooker, ref. (314)) is 0·86. The method may obviously be 
e~tended by ~o~relating the deviation of the marriage-rate in any one year 
with the deviation of the exports and imports of the year before, or two 

1860 (J!J 10 7!1 80 BS !iO 9!1 
.. , 

(I} 0 f--t\-~'-f-t--++-+-\--+-1--\+--tc.f----\---++
-·S 

-I 
+il!:l 

+I! I 

1860 6$ 70 1!1 80 85 90 95 

FIG. 15.3.-Fluctuations in (1) l\larriage-rate and (2) Foreign Trade (Exports+ Imports 
per head) in England and Wales: the Curves show Deviations from 9-year 1\lt•ans. 
(Data of R- H. Hooker, Jour. Roy. Stat. Soc_, 1901.) 

years before, instead of the same year ; if ·a sufficient number of years Le 
taken, an estimate may be made, by interpolation, of the time-difference 
that would make the correlation a maximum if it were possible to obtain 
the figures for exports and imports for periods other than calendar years_ 
Thus Hooker found (ref. (314)) that on an average of the years 1861-95 
the correlation would be a maximum between the marriage-rate and the 
foreign trade of about one-third of a year earlier. The method is an 
extremely useful one, and is obviously applicable to any similar case. 
Reference may be made to ref. (335), in which several diagrams are 
given similar to fig. 15.3, and the nature of the relationship between the 
marriage-rate and such factors as trade, unemployment, etc., is discussed, 
it being suggested that the relation is even more complex than appears 
from the above, 



CHAPTER 16. 

MISCELLANEOUS THEOREM~ INVOLVING THE USE 
OF THE CORRELATION COEFFICIENT. 

Aigebr~ical Convenience of the Correlation Coefficient. . 
16.1. . It has already been pointed out that- a statistical measure, if 

it is to be •·idely useful, should lend itself readily to algebraical treatment. 
The arithmetic mean and the standard deviation derive their importance 
largely froqithe fact that they fulfil this requirement better than any other 
averages or Jlleasures of dispersion; and the following illustrations, while 
gi,;ng a number of results that are of value in one branch or.another 
of statistical work, suffice to show that the correlation coefficient can be 
treated ... ;th the same facility. This might indeed be expected, seeing 
that the coefficient is derived. like the mean and standard deviation, by a 
straightforward process of summation. 

The Standard Deviation of the Sum or Difference of Variables. 
16.2. Let xJ. x. be two variables, and z stand for their sum or 

difference. • · 
Let z, z1, z 1 denote _deviations of the several variables from their 

arithmetic means. Then, if 

eviden~ly 
a=z• ± Za 

Squaring both sides of the equation and summing, 

S(z1 ) =S(z1
1) +S(z1

1} ± 2S z1z1) 

That is, if r be the correlation between z, and z11 and a, u1, u1 the respective 
st.andard deviations, 

a 1 =u1
1 +u1

1 ± 2ru1u1 (16.1)· 

If z1 and ll'1 are uncorrelated. we have the important special case 

u1 =u1
1 + u1

1 (16.:01} 

The student should notice that in this case the standard' deviation of 
the sum of t>orresponding values of the two variables is the same as the 
standard deviation of their difference . 

. The same process will evidently give the standard deviation of a linear 
function of any numLer of variables. For the sum of a series of variables 
xl. x •. ... x,, we must have: 

+ .•• +2r13a1a1 +-. 
297 
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r12 being the correlation between X 1 and X 1, r13 the correlation between 
X 1 and X 8, and so on. . . 

Infl:uence of Errors of Observation on the Standard Deviation. 
. 16.3. The results of 16.2 may be applied to the theory of errors of 
observation. Let us suppose that, if any value of X be observed a large 
number of times, the arithmetic mean of the observations is approximately 
the true value, the arithmetic mean error being zero. Then, the arithmetic 

. mean error being zero for all values of X, the error, say 8, is uncorrelated 
with X. In this case if tr1 be an observed deviation from· the arithmetic . 
mean, and tr the true deviation, we have from the preceding : 

(16.3) 

The effect of errors of observation is, consequently, to increase the standard 
deviation above its true value. The student should notice that the 
assumption made does not imply the complete independence of X and 8 : he 
is quite at liberty to suppose that errors fluctuate more, for example, with 
large than with small values of X, as might very probably happen. In 
that case the contingency coefficient between X and ~ would not be zero, 
although the correlation coefficient might still vanish as supposed. 
· 16.4. If certain observations be repeated so that we have in e'·ery 

case two measures Itt and ltz of the same deviation tr, it is possible to obtain 
the true standard deviation u,.. if the further assumption is legitimate that 
the errors ~1 and ~~~ are uncorr~lated with each other. 0~ this assumption 

and accordingly 

S(tr1tr1 ) = S(m + 81)(m + 81) 

=S(m11) 

u I-S(.rtma) 
., -. N (16.4) 

(This formula is part of Spearman's formula for the correction of the 
correlation coefficient i cf. 16.6.) 

Influence of Errors of Observation on the Correlation Coefficient. 
16.5. Let .r1, y1 be the observed deviations from the arithmetic means, 

a:, y the true deviations, and ~. £ the errors of observation. Of .the four 
quantities .r, y, ~. £ we will suppose a: and y alone to be correlated. On this 
assumption 

(16.5) 

It follows at once that 

and consequently the observed correlation is less than the true correlation. 
This difference, it should be noticed, no mere increase in the number of 
observations can in any way lessen. 
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Spearman's Theorems. 
16.6. If. however, the observations of both :e andy be repeated, as 

assumed in 16.4, so that we haYe two measures~ and ;r,_. y1 and y3 of every 
value of :e and y, the true value of the correlation can be obtained by the 
use of equations (16.4) and (16.5), on assumptions similar to those made 
above. For we have: · 

r! = S(triY1)S(.rtYz) = S(z1y2)S(rs,rh) 
., S(.riza~{YIYa) . S(~za)S(Y!Ya) 

=r 6lftr rsr. =r ltlftr-. (16.6) 
.; r-rr.ft rq,.,.rwm 

oi, if we use all the four possible correlations between obser-Ved values of 
:e and observed values of 11• 

.. r #:JJnr ,_r ltlftr sva 
r = • 

··~ ., (r-r"") 
• (16.7) 

Equation (16.7) is the original form in which Spearman gave his 
correction formula (refs. (339) and (3~)). It will be seen to imply the 
assumption that, of the six quantities z, y, 81, 8,. £ 11 £11 only :e and y are 
correlated. The ·correction given by the second part of equation (16.6), 
also suggested by Spearman, seems, ·on the whole, to be safer, for it 
eliminates the assumption that the errors in z and in y, in the same series 
of observations, are uncorrelated. An insufficient though partial test of 
the correctness of the assumptions may be made by correlating z1 -il'-a with 
y1 -y1 : this correlation should vanish. Evidently, however, it may 
vanish from symmetry without thereby implying that all the correlations 
of the errors are zero. . 
1\lean and Standard Deviation of an Index. 

16.7. The means and standard deviations of non-linear functions of 
two or more variables can in general only be expressed in terms of the means 
and standard deviations of the original variables to a first approximation, 
on the assumption that deviations are small compared "ith the mean values 
of the variables. Thus, let it be required to find the mea11·and awndard 
tkvialion of a ralw or indez Z =X1/X,. in terms of the constants for X 1 and 
x.. Let 1 be the mean of Z, .Jl1 and M 1 the means of X 1 and X1• Then, 

1 =L'\(x•) =! 311s(1 + ~ )(1 +-~-J1 
• . 

• !v X1 N M1 .1J1 M1 

Exf.and the second bracket by the binomial theorem, assuming. that 
rsf.J/1 is so small that powers higher than the second can be neglected. 
Then, to this approximation, · 

1- 1 Ml[N 1 J . 1 I J -N .Ua - JJlMaS(z,z + JJ • .S(:ra ) 

That is, if r be the correlation between z1 and z.., and if r 1 =_ aJJl1, v1 = aJ Jl., 
.JJ' 

1 := .J/:(1- rv1v1 + v1
1

) (1~.8)_ 
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If s be the standard deviation of Z, we have: 

s1 +I 2 =.!-s(!!r 
N X 1 

=N ~~1:s( 1 +it Y( 1 +x'l-Y' a 1 1 

Expanding the second bracket again by the binomial theorem, and nerrled-
ing terms of all orders above the secondi "' 

s I•- 1 Jll12s( x1)'( Xz :Xza) 
s + -N.Maa 1+M1 1-2Ms+3.Ma' 

.Mlll( I 2) =Ill 2 1 + v1 - 4rv1v8 + 3v1 
a 

or from (16.8}: 

(16.9) 

Correlation between Indices. 
16.8. The following problem affords a further illustration of the use of 

the same method. Required to find approximately the correlation betu:een 
two ratios Z1 =X1/X3, Z2 =X2/X3, X1, X 2 and X3 being uncorrelated. 

Let the means of the two ratios or indices be I 1, I 2, and the standard 
deviations s1, s2 ; these are given approximately by (16.8) and (16.9) of 
the last section. The required correlation p will be given by 

Nps1s2 =s(i1 -I1)(ia -12) 
. 3 3 

=S(XtXa) -NI I x
3
s .1 a 

M1lllzs( xt )( iia )( xa \-• li.TJ I 
= .Ma• 1 + lllt 1 +Ill a 1 +Ill a) - H 1 • 

Neglecting terms of higher order than the second as before and 
remembering that all correlations are zero, we have: 

llllJlz . a I I 
ps1sa = Ill a a (I + 3t•a ) - 1 a 

_llJ1M2 I 
- JlJ I Va 

3 

where, in the last step, a term of the order t•3' has again been neglected. 
Substituting from (16.9) for s1 and s2, we have finally: 

v ll 
p-= 3 (16.10) 

V (v1• + va•Hvaa +Vas) 

This value of p is obviously positive, being equal to 0·5 if v1 =V2 =t'a; 
and hence even if X 1 and X 2 are independent, the indices formed by taking 
their ratios to a common denominator X 3 will be correlated. The value of 
p was termed by Karl Pearson the "spurious correlation." Thus, if 
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measurements be taken, say, on three bones of the human skeleton, and the· 
measurements grouped in threes absolutely at random, there will, neverthe~ 
less, be a positive correlation, probably approaching 0·5, between the 

• indices formed by the ratios of two of the measurements to the third. To 
give another illustration, if two individuals both observe the same series 
Qf magnitudes quite independently, there may be little, if any, ~or!"elation 
between their absolute errors. But if the errors be expressed as percent-, 
ages Qf the magnitude observed, there may be considerable correlation. 
It does not follow of necessity that the correlations between indices or 
ratios are misleading. If the indices are uncorrelated, there will be 
a similar " spurious " correlation between the absolute measurements 
Z1X1 =X1 and ZaXa =X2, and the answer to the question whether the 
correlation between indices or that between absolute measures is mis
leading depends on the further question whether the indices or the absolute 
measures are the quantities directly determined by the causes under · 
investigatioll' (cf. ref. (346)). . 

The cas~ considered, where X1, X11 Xa are uncorrelated, is only a 
special one ; :for the general discussion cf. ref. (345 ). For an interesting · 
study of actual illustrations cf. ref. (343). 

Correlation due to Hetero~eneity of Material. 
16.9. The following theorem offers some analogy with the theorem of 

4.11 for attributes: If X andY are uncorrelated in each of two records, they 
will tu:vertheless exh-ibit some correlation when the two records are mingled, 
unlesa the mean value of X in the second record ia identical with that in the first 
record, or the mean value of Y in the second record is identical with that in the 
first record, or both. 

This follows almost at once, for if 1Jf1, 1112 are the mean values of X in 
the two records, K1, K,. the mean values of Y, N 11 N 1 the numbers of 
observations, and 111, K the means when the two records are mingled, the 
product-sum of deviations about 111, K is . _ .. 

N 1(11l1 -11l)(K1 -K) +N1(1111 -11.t)(K1 -K) 
· Evidently the first term can only be zero if 11:1 =1111 or K =K1• 

the first condition gives · 
But· 

N 111l1 +NaJ111 _
111 

. 
. N

1 
+N

1 
- 1 

that is, 
lll1 =lll8 . 

Similarly, the second condition gives K 1 =K1• Both the first and second 
terms ~n, therefore, only vanish if M1 =1111 or K 1 =K1 •. Correlation may 
accordmgly be created by the mingling of two records in which X and Y 
vary round different means. · (For a more general form: of the theorem 
cf. ref. {323 ). ) . · · 

Reduction of Correlation due to Min~ling of Uncorrelated with 
. Correlated Pairs. 
16.10. Suppose that n1 observations of a: and y give a correlation 

coefficient 
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Now, let "• pairs be added to the material, the means and standard devia
tions of a: and y being the same as in the first serid of observations, but the 
correlation zero. The value o( S{.ry) will then be unaltered, and.we will 
have: · 

Whence 
ra "t · -=---
rl n1 +n1 

{16.11) 

Suppose, for example, that a number of bones of the human skeleton ha\·e 
been disinterred during some excavations, and a correlation r 1 is obsernd 

. between pairs of bones presumed to come from the same skeleton, this 
correlation being rather lower than might have been expected, and subject 
to some uncertainty owing to doubts as to the allocation of certain bones. 
If r 1 is. the value that would be expected from other records, the difference 
might be. accounted for on the hypothesis that, in a proportion {r1 -r1)/r1 

·of. all the pairs, the bones do not really belong to the same skeleton, and 
have b_een virtually paired at random. 

The Weighted Mean. 
16.11. The arithmetic mean .M of a series of values of a variable X 

was defined as the quotient of the sum of those values by their number N, 
or 

111 =S(X}JN 

If, on the other hand, we multiply each individual observed value of X 
by some numerical coefficient or u•eight JV, the quotient of the sum of such 
products by the sum of the weights is defined as a weighted mean of X, and 
may be denoted by lW; so that 

.M' =S(JYX)/S(JV) 

The distinction between •• weighted " and '' unweighted " means is, 
it should be noted, very often formal rather than essential, for the 
'·' weights " may be regarded as actual, estimated or virtual frequencies. 
The weighted mean then becomes simply an arithmetic mean, in which 
some new quantity is regarded as the "unit. Thus, if we are given the means 
1111, 111.,.. .M 3, . • • • lllr of r series of observations, but do not know the 
number of observations in every series, we may form a general average by 
taking the arithmetic mean of all the means, viz. S(.Jl)fr, treating the series 
as the unit. But if we know the number of obsen·ations in every series it 
will be better to form the weighted mean S(N~U)/S(N), weighting each mean 
in proportion to the number of observations in the series on which it is 
based. The second form of average would be quite correctly spoken of as 
a weighted mean of the means of the several series : at the same time, it 
is simply the arithmetic mean of all the series pooled together, i.e. t_he 

_Jnithmetic mean obtained by treating the observation and not the senes 
as the unit. • 
. 16.12. To give ari arithmetical illustration, if a conunodity is sold 
at different prices in different markets, it will be better to form an ave~ageo 
price, not by taking the arithmetic mean of the several market pnces, 
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t.reating the market as the un!t• ~ut by wei~htmg e~ch pnce ~n proport~on 
to the quantity sold at that pnce, _1f known, , .. e. treatmg t~e umt of quantity 
as the unit of frequency. Thus, If wh~at has been sold m market A ~t ~n 

• average price of 29s. 1d. per quarter, m .ma.rket B at an average pr1~e of 
27s. 7d. and in market C at an average pnce of 28s. 4d., we may, 1f no 
statement is made as to the quantities sold at these prices (as very often 
happens in the case of statements as to market prices), take the arithmetic 
mean (28s. 4d.) as the general average. ·But if we know that 23,930 qrs. 
were sold at A, only 26 qrs. at B and 3,933 qrs. at C, it will be better to take 
the weighted m.ean 

(29s. 1d. x 23,930} + (27s. 7d. x 26} + {28s. 4d. x 3,933} 29s~ 
27,889. 

to the neare~St penny. This is app~eciably higher than the ~rithmetic mean 
price, which is lowered by the undue importance attached to the small 
IDaJ'kets B artd C. 
· 16.13. 'In the case of index-numbers for exhibiting the changes in 
average price& from year to year ( cf. 7.34 }, it may make a sensible difference 
whether we take the simple arithmetic mean of the index-numbers for 
different commodities in any one ye_ar as representing the price-level in 
that year, or weight the index-numbers for the several commodities accord
ing to their importance from some point of view; and. much has been 
written as to the weights to be chosen. If, for example, our standpoint 
be that· of some average consumer, we may take as the weight for each 
commodity the sum which he spends on that commodity in an average 
year, so that the frequency· of each commodity is taken as the number of 
shillings or pounds spent thereoninstead of simply as unity. . 

16.14. Rates. or ratios like the birth-, death- or marriage-rates of a 
country may be regarded as weighted means. . For, treating the rate for 
simplicity as a fraction, and not as a rate per 1000 of.the population, 

. Total births 
Birth-rate of whole country = T" · 

1 1 
. 

ota popu atwn ., 
_ S(Birth-rate in each dis~rict x population in that distrid} 
- S(Population of e.ach district) 

'i.e. the ~ate for the whole country is the mean of the rate~ in the different 
districts, weighting each in proportion to its population, We use the· 
weighted and unweighted means of such rates as illustrations in 16.16 
below. 

16.15. It is evident that any weighted mean ·will in ger~eral differ from 
the un~eighted l!le~ of the same quantities, and it is required to fmd an 
exp!ess10n for this difference. If r be the correlation between weights and 
vanables, u111 and u. the standard deviations and ib the mean weight, we 
have at once 

whence 
S(JJ'X) =N(.Mw +ru..,u:c} 

(16.12} 



804 THEORY OF STATISTIC~. 

That is to say, if the weights and variables are posith·ely correlated the 
weighted mean is the greater ; i( negatively, the less. In some case~ r is 
very small, and then weighting makes little difference but in othen the 
difference is large and important, r having a sensible ;alue and aaa.,fw a 
large value. . . . · 

16.16. T~e difference between weighted and unweighted means of 
d~at~-ra~es, h1!th-rates or other rates on the population in different 
d1stncts 1s, for mstance, nearly always of importance. Thus we have the 
following figures for rates of pauperism (Jour. Roy. Stat. Soc. vol. 59 1896 · 
p.349):- . • • ' 

Percentagee of the PoJinlation iD 
receipt of Relief. . 

,January 1. 
Arithmetic 1Iean England and 

o( ltates in \Valeeua 
~erent Districts.. whole. 

. 
1850 

-. 
6•51 6•80 

• 1860 5"20 4-.l6 
1870 5•45 4•77 
1881 S-68 3"1!. 
1891 3"29 2"69 

In this case the weighted mean is markedly the less, and the correlation 
between the population of a district and its pauperism must therefore be 
negative, the larger (on tlie whole urban) districts having the lower per- · 
centage in receipt of relief. On the other hand, for the decade 1881-90 the 
average birth-rate for England and Wales was 32·3-i per thousand, the 
arithmetic mean of the rates for the different districts 30·3-L only. The 
weighted mean was therefore the greater, the birth-rate being higher in the 
more populous (urban) districts, in which there is a greater proportion of 
young married persons. · · . · 

For the year 1891 the average population-of a poor law district was 
found to be roughly 45,900 and the standard deviation a., 56,400 (popula
tions ranging from under 2000 to over half a million). The standard 
deviation u,. of the percentages of the population in receipt of relief was 
1·24.·. \Ve have therefore, for the correlation between pauperism and 
population, 

8·29 - 2·69 459 
' = - . 1·2-1 x 56-1 

= -0·39 

For the birth-rate, on the other hand, a.Ssuming that a"'fw is approxi
mately the same for the decade 1881-90 as in 1891, and neglecting the 
fact that in a few instances Registration Districts differ from Poor-law 
Unions, we have, a,. being 4·08, 

32·3-i - 30·3-i 459 
r= 4·08 x 56-i 
= +0·40· 
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~~fTh. c doseness of the nunwri•:al valnc' ,.f r in the two ca.<;e-. is, of course, 
~i(!r>ntal. 

• 
1 \16.17. The principle of weigl1tiug finds mw very important applica-

. h\~1,1 in the treatment of sueh rates :~s d{'ath-ratcs, which arc largely affected 
hy the age and sex composition of the population. Neglecting, for 
simplicity, the question of sex, suppose the numbers of deaths are noted 
in a ct"rtain district for, say, the age-groups 0 -, 10-, 20-, etc;, in 
which the fractions of the whole population are l'o• PI• p 2, etc., where 
S(p) = 1. LPt th<' death-rates tor the eonesponding age-groups be do; 
d~i d2, d.l'. Then lhe ordinary or crude death-rate for the district is 

D =S(dp) (16.13) 

For some other district taken as a basis of comparison, perhaps the 
country n.s a whole, the death-rates and fractions of the population in the 
se\'cral age-groups mRy he 81, 82, 83, .•• , rrl' 71'2, rr3, ., and the crude 
c]~·a.t h-rate 

(16.14) 

~ow, /) and~ differ either because the d's and 8's differ or because 
the p's and rr'~ differ, or both. It may happen that really both districts 
;i.J'C about ('fpmlly lw:Lithy, and the death-rates approximately the same 
for all age-classes, hut, owiug to a difference of weighting, the first average 
,.my be markedly higher than the second, or vice versa. If the first 
ilistrict he a rural di!>tt·ict tmd the Sf'cond urban, for instance, there will be 
a larger propllrtion of t.ltC' old in the former, and it may possibly have a 
higher crude death-rate than the second, in spite of lower d~ath-rates in 
every dass. The comparison of crude death-rat.es is therefore liable to 
lead to erroneous conclusions. The difficulty may be got over by averaging 
the age-class death-rates in the district not with the weights PI• p 2, p 3 , ••• 

given by its own population, but with the weights rr1, 71'2, 71'3, ••• given 
by the population of the standard district. The standardised death-rate 
for the district will then be 

(16.15) 

and ])' and a will he C'Omparable as regards age-distribution. There ls 
,)J,viously 110 ditliculty in taking sex into account as well as age if neces
sary. The death-rates must be noted for each sex separately in every 
age~dass and av('raged with a system of weights based on the standard 
population. The method is also of importance for comparing death-rates 

,in different (•)asses of the population, e.g. those engaged in given occupa
tions, as well as in different districts, and is used for both these purpqses 
in the publicatinns of the Registrar-General for England and Wales. 

·. 16.18. Dilli('ulty may arise- in practical cases from the fact that 
.the death-rates dl, a ... cia •••• are not known for the districts or classes 
which it is desired to compare with the standard population, but only 
the crude l'ates J) and the fractional populations of the age-classes Pv p 2 , 

.p3, ••• The difficulty may be partially obviated (cj: 4.16 and Example 
.
1
4.3, pp. 5R-~GO) by' fol'ming what is termed an index death~rate /).' for 

·the class or district, /).' being given by 

b.' = s( op) {16.16) 

i.e. the rates of the standard population averaged with the weights of' 
20 
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the district population. It is the crude death-rate that there wouloi he in 
the district if the rate in every age-class were the same as in the standard 
population. An approximate stanrlardised death-rate for the district or 
class is then given by · 

D"=D xp. 
!>.' 

D" is not necessarily, nor generally, the same as D'. 
same if 

S( d1T) · S( 31T) 
S(dp) =s(3p) 

(16.17) 

It can only he the 

This will hold good if, e.g., the death-rates in the standard population 
and the district stand to one another in the same ratio· in all age-classe", 
i.e. 31/di = 32/d2 = 33/d3 =etc. This method of standardisation was used in 
the Annual Summaries of the Registrar-General for England and Wales. 

16.19. Both methods of standardisation-that of 16.17 and that of 
16.18-are of great importance. They are obviously applicable to other 
rates besides death-rates, e.g. birth-rates. Further,.they may readily he 
extended into quite different fields. Thus it has been suggested that 
standardised average heights or standardised average weights of the children 
in different schools might he obtained on the basis of a standard school 
population of given age and sex composition, or indeed of given composi
tion as regards hair- and eye-colour as well. 

16.20. In 16.11-16.16 we have dealt only with the theory of the 
weighted arithmetic mean, but it should be noted that any form of average 
can be weighted. Thus a weighted median can be formed by finding the 
value of the variable such that the sum of the weights of lesser values is 
equal to the sum of the weights of greater values. A weighted mode 
could be formed by finding the value of the variable for which the sum 
of the weights was greatest, allo"\\ing for the smoothing of casual fluctua
tions. Similarly, a weighted geometric mean could be calculated by 
weighting the logarithms of every value of the variable before taking the 
arithmetic mean, i.e. 

l G 
_S(JVlogX) 

og rw- S(JV) 

SUMMARY. 

1. The standard deviation of the sum of variables X 1, Xa, ... X.v 
is given by 

u 1 =u1
1 +u2

2 + ... ·+uN2 +2r12u1u2 +2rtaO"tua+ · · · +2raa17217a+ · · · 
• 

2. In particular, the variance of the sum of N uncorrelated variates is 
the sum of their variances .. 

• · · X 1 X, "II • rth 3. If 4 1, X 2 and X 3 are uncorrelated, the md1ees y·· X Wl ne-.,;e e-
. • 3 3 

less be correlated in general. 
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.J. If X and r are uncorrelated in each of two separate records, they 
11;U be correlated in the sum of the two records, unless either the means 
of X or the means of Y, or both, are the same in the two records. 

5. If correlated and uncorrelated material is mingled, the correlation 
in the total is..lower than that in the correlated portion. 

. 1 . . 
6. An arithmetic mean is weighted when, in the calculation of NSCX), · 

each value of the variate is multiplied by a weight W. . 
. 7. The weighted arithmetic mean is greater or less than the unweighted 

mean according as the weights and variables are positively or negatively 
correlated. ' · · 

.I 
EXERCISES. 

16.1. {Data from the Decennial Supplements to the Annual Reports of the 
Regil;trar-Gf'neral for England and Wales.) The following particulars are found 
for 36 small registration districts in which the number of births in a decade 
ranged between 1500 and 2500:-

' 
Proportion of Male Births 

per 1000 of all Births. 
o-de. 

lleaa. Standard 
deriation. 

1881-1890 . . 508"1 12"8G 
1891-1900 . . liOS·t 10•37 

J ,-
j 

r 
It is believed, however, that a great part of the o~rved standard de\·iati~QI 

Both decades 5Q8•25 11•65 

is due to mere •• fluctuations of sampling'' of no real significance. ; · 1 
Given that the correlation between the proportions of male births in!~ 

district in the two decades is +0·36, estimate (1) the true standard deviatipn 
freed from such fluctuations of sampling; (2) the standard deviation of fluctua
tions of&ampling, i.e. of the errors produced by such fluctuations in the observtd 
proportions of male births. '. 

16.2. (1>-dta from Peai'IIOn, ref. (345).) The coefficients of variation for 
breadth, height and length of certain skulls are 3·89, 3·50 and 8·24 per cent. 
respectively. Find the .. spurious correlation,. between the breadth11ength an(l 
height/length indices, absolute measures 'being combined at random so that they 
are uncorrelated. . . 

16.3. (Data from Boas, communicated to Pean.on; ~f. Fawcett and Pearson, 
PToc. troy. Soc., vol. 62, p. 413.) From short series of measurements on American· 
Indians, the mean ooellicient of correlation found between father and son, and 
lather and daughter, for cephalic index, is 0·1-1; between mother and son, and 
mother and dau~hter, 0·33. A8suming these coefficients should be the same if it 
were not for the looseness of family relations, find the proportion of chiWren not 
due to the reputed father. • · 

16.4. Find the correlation between X 1 +X1 andX1 +X1 , XuX
1
and X

1 
being 

uncorrelated. . · 
16.5. Find the correlation between X 1 and aX1 +bX., x, and X

1 
being 

unoorrelated. 
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16.6. (ltefcrring to Example 15.4, p. 292.)· l'se the an~wer to Exl'rcise 16.;; 
to estimate, '·ery roughly, the correlation that would be found ht>t.wcen annual 
movements in infantile and general mortality if the mortality of those under 
and over 1 year of age were uncorrelated. ~ote that-- · 

General mortality per } . . . Births 
1000 of population =Infantile mortality per 1000 buths x Population 

+Deaths over_ one year per 1000 of population 

and. treat the ratio of births to population as if it were constant at a rough 
average value, say 0·032. The standard deviation of annual movements in 
infantile mortality is (loc. cit.) 10·76, and that of annual movements in mortality 
other than infantile may be taken as sensibly the same as that of general 
mortality, or, say, 1·13 units. 

16.7. If the relation 

holds for all values of Xu ;r1 and ;r1 (which are, in our usual notation, deviation'J 
from the respective arithmetic means), find the correlations between .l'u ;r1 and ;r1 

in terms of their standard deviations and. the values of a,· b and c. 
16.8. \Vhat is the effect on a weighted mean of errors in the ~·eights of the 

quantities weighted, such errors being uncorrelated with one "another, with the 
weights or with the variables: (1) if the arithmetic mean values of the errol"!! 
are zero, (2) if the arithmetic mean values of the errors are not zero? 

16.9. The following are the variances of the rainfall (1) for January to :March, 
(2) for April to December, (3) for the whole year, at Greenwich in the eighty 
years 1841-1920, the unit being a millimetre:-

\ 

.January-1\larch 
April-I>ece01ber 
Whole year 

Find the correlation between the rainfall in 
·December. 

a.• = 1,521 . 
u1

1 = 8,968 
a1 =10,75-' 

January-1\Iarch and April-



CHAPTER 17. 

SIMPLE CURVE FITTING. 
The Problem. 

17 ·1· In this chapter we turn aside somewhat from the line of 
development of previous chapters in order to study a subject of consider
able theqretical and practical importance-the representation of relation
ship between two variables by simple algebraic expressions. Our- work 
on correla\ion has already led us to fit regression lines and planes to the 
means of•arrays. \Ve now attack a rather more general problem. An 
illustratiort, will make clear the type of inquiry involved; 

, Table 17 .I shows the estimated distance and velocities of recession of 
certain nebuL-c in the outlying parts of the visible universe. · 

TABLE 11.1.-E~fimated Distance and Velocitiu of Receslrion of 10 Eortra-galactlc Nebula. 
(Edwin Hubble and 1\lilton L. Hwnason, "The Velocity-distance Relation among 
Extra-galactic Nebulre," Contributions from. Mount WilsatJ Obseroatmy, Carnegie • 
Jru;titute of Washington, No. 427; Astrophytrical Journal, 'lrol. 74, 1931, pp. 43-80). 

r 
Coru;tellation in Mean Velocity Dista.noe 

which the Nebula (kilometres per (millions of 
is eituated. aecond). '- pal'll008). 

bolated Nebufa II 630 1·20 . 
Virgo • . . 890 1·82 

!Holated Nebula I 2,350 3·31 
Peg88ua . 3,810" 7-24 
l'iacei! • 4,630 6·92 
Cancer . 4,820 9·12 
Peraeua 6,230 10·97 
Coma. . 7,600 14·45 
UrB& Major • 11,800 22·91 
Leo . . . 19,600 36·31 

-· 

A little insp~ction of the table will show that there appears to be some 
relation between distance and velocity-the greater the one, the greater 
the other, with only one exception. A diagram make¥ t!le relation clearer 
still. Iu fig. 17.1 we have taken the two varia.9f~s velocity a.nd distance~ 
as rectangular co-ordinates y and :r, and havf marked for· each. nebula: · 
a poi_nt wh?se co-ordi~ates a~e the di~tance and velocity of that nebula, ·; 
The ten pomts so ohtamed evidently he very a.r1Jroximately on a &tt-aight • 
line or, to express the same fact algehraically, the ben values of the variables • • 
are closPiy represented by an equation of the fornt, • ·,. ·:~ 

,· •. (11'.1) 
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17.2. No straight line, however, passes exactly through all the points, 
although a great many lines may be drawn which nearly do so. The 
question then arises, is there a straight line which fih the points better 
than all others, and if so, which is it ? Or, in other language, what 
,-alues of a0 and a1 in equation (17.1) must we take to get the best repre
sentation of the linear relationship between the two Yariables '! And, as 
a further question, can we devise a measure of the closeness of the fit of 
the various lines which can be drawn'! 

/v 
v 

v·/ 
+./ y.· 

L...+· 

10 20 J() 

JJistmu:e(.millioiLS of' parsecs.) 
FIG. 17.1.-Relationship between Distance and ·velocity or R~ion in 

Certain Extra-galactic Nebtilie. (Table 17.1.) 

17.3. In the foregoing illustration it is clear from the data or from 
the diagram that a linear relationship between the Yariables gives a very 
close picture of the truth. In other cases the points of the diagram \\ill 
lie more or less on a curve, and no straight line "ill give a satisfactorv 
representation. \Ve should then wish to investigate whether the depend
ence of y on z may be suitably represented by the more general equation 

y=a0 +a1z+az:r1 + .• •• +a,r•. (17.2) 

which, in the diagram, corresponds to a cun·e of the type known as 
parabolic. The number p indicates the degree of the parabola, and 
we speak of quadratic, cubic, quartic parabolas, meaning curves of type 
(17.2) with p=2, 3, 4, respectively. 

17.4. Our general problem may, then, be stated as follows: Given 
n pairs of values of two variables, X 1 1"1, X 1Ya. •.• X,.Y,., to express 
the values of one of them as nearly as may be in terms of the other by an 
equation of the form {17.2); and to measure the closeness of the approxi
mation of the values of y given by the equation to the actual values. In 
geometrical language, given n points in a plane, to fit to them a cun·e of 
the parabolic type (17.2) and to measure the ~loseness of fit. 

17.5. The representation of data in this way may serve several 
purposes. In the first place, it may present the ·relationship between 
the two \'ariables in a useful summary form. Secondly, it may be used 
to interpolate, i.e. to estimate the values of one variable which would 
correspond to specified values of the other. In fig. 17.1, for example, 
the straight line which has been drawn in, and whose equation is obtained 
below, tells us what we might expect to be the velocity of a nebula whose 
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distance is, say, 20 million parsecs, on the assumption that the linear 
relation holds good for nebul::e in general. · . , 
. 17 .6. Again, the representation may also be very suggestive to the· 
theorist. The linear form of the relationship between the variables of 
Table 17.1 means more than a convenient summary of the facts, and has 
inspired a great deal of research into the nature of the physical univers~. 
In such cases, the derived equation is regarded as the expression of a 
law of nature, and the deviations of the observed values from those given 
by it are interpreted as fluctuations arising from experimental error or 
secondary perturbations. This standpoint is common in physics, in which 
data often lie very closely about a smooth curve. 

The Method of Least ~quares •. 
17.7 •• LctussupposethatwehavenpairsofvaluesX1 Y10 ••• X,.Y,.,. 

and that we wish to represent them by an equation of the type (17.2). 
Our problem is, having fixed the value of p, to determine the constants 
a8, a1, •• • • a, in terms of the observed values X, Y, so as to get the best 
possible fit; · 

The expression "best possible fit" may be defined in more. than one 
way, and consequently there is no unique method of determining the. 
constants. ·several methods have been proposed, and our choice between 
them is determined mainly by-convenience. One way, which is suggested 
by the geometrical representation, is to choose the curve of equation 
(17.2) so that the sum of the distances (taken as positive) of the points 
from it is a minimum, the sum of the distances being regarded as a measure 
of goodness of fit, and the .. best" fit being given by the curve of specified 
degree for which that sum is least. But this method, whatever its theo
retical attractions, suffers from the disadvantage that it is difficult to apply · 
in practice· except for the straight line. 

An alternative method, which is in almost universal use at the present 
time, is that known as the Method of Least Squares, and we proceed 

. to discuss it at length. We have already used it to find regression lines 
(11.20 and 14.4). . . . . 

17.8. If we substitute the value Xr. in equation (17.2) we get a 
quantity y.., given by 

Yr,;,a0 +~Xr+a~.A?+ •.•• +a,Xr" (17.3) 
This is not in general the same as Y:ro. and we therefore define the 

residual Er as 

Er=Yr-Yr=Yr-a,.-alXr- •• • -a,Xr" {17.4) 

There will ben residuals, one for each pair X, Y, and they are all zero 
if, and only if, the curve is a perfect fit. We then fake the sum of the 
squares of residuals: . 

U=SUr1)=S(l'r-ao-alXr- .• ·.· -·~,Xr")l (17.5) 

If U is zero, each residual must be zero, and the data ar~ represented 
perfectly by t_he eguation. Except in this case, U is positive. TJ!e 
fu_rther the pomts lie fro~ the curve of equation (17.2), the greater U 
·wtll be. U therefore proVIdes one measure of the closeness of fit; From 
this standpoint, the best fit will be that for which U is least. 
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The l\ldhod of Least Squares adopts this criterion, and states that 
the constants a shall be determined so that U is a minimum. 

17 .9. The reason for taking the sum of squares of r<'siduals, rather 
than the sum of residuals simply, is akin to that which led us to prefer 
the standard deviation to the mean de,;ation as a measure of dispersion 

- (Chap. 8), namely, that the former is more convenient in theory and leads 
to equations which are easier to handle in practice. 

17.10. It was formerly the custom, and is so still in works on the 
theory of observations, to derive the method of least squares from certa.in 
theoretical considerations, the assumed normality of the distribution of 
errors of observation being one such. It is, however, more than doubtful 
whether the conditions for the theoretical validity of the method are 
realised in statistical practice, and the student would do well to regard 
the method as recommended chiefly by its comparative simplicity and by 
the fact that it has stood the test of experience. 

17.11. Consider now the quantity U, given by equation (17.5). 
a0, a1, ••• a'D are to be chosen so that this is a minimum, say U0• Let 
us imagine this done. · 

If, now, we substitute in equation (17.5) a0 +£0 for a 0, a1 +£1 for a1, 

a2 + Ez for ~. and so ,on, we shall get a quantity U 1 given by 

U1 =S{Y-(a0 +£0)-(a1+£1)X- ... -(a,+£p).P}2 

and ul is greater than Uo for all values of Eg, £1, •.. £,. 
Now, 

U1 =S{(Y-a0 -a,_X- .. .. -a,X~')-{£0 +£1X+ 
=S(Y -a0 -a1X- ... -a,XP)2 

-2S(Y -a0 -a1X- ... -a,XP){~:0 +£1X + 
+S(£0 +£1X + ... +£'DX~>)B 

The first of these terms is equal to U0• Hence, if U 1 > U0, we must have 

-2S(Y -a0 -a1X- .•. -a'DX~>)(i0 +~:1X + ... +~:».YP) 
+S(~:0 +£1X + ... +£,X~') 3 > 0 . (17.6) 

. This is to be true for all values of £0 • • • £,. Let us then take these 
quantities to be very small. The second term in equation (17.6 ), depend
ing as it does on the squares of the £'s, will be small compared with the first, 
and may be .neglected. (17.6) will then be true only if the first term 
vapishes, for otherwise the ~:'s could be so chosen in sign as to make the 
first term negative. 

Hence, 

S(Y-a0 -a1X- -aPX~')(~:0 +~:1X+ ... +£P.P)=0 (17.7) 

This is true for all small values of the ~:'s. lienee the coefficients of 
£ 0, ~:1 , ••• £"' all vanish, i.e. we have: 

S(Y) -a0n -a1S(X) 
S(YX) =-a0S(X) -a1S(X2) 
S(YXZ) -a0S(X2) -a1S(X3) 

. -apS(.P} =0} 

. -a.~~S(X~>+l) =0 
-a.~~S(X»+2) =0 

-a .~~S(X 2P) =0 

(17.8) 
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The equations (17.8) giV"e us p+1 equations in the (p+1timkno.WUs 

a. . . . a,. Hen~ they may be solnd so as to give the a's in terms of 
the calculable quantities S(X), S(X1). ••• S(..Tu). S(Y), S(YX). ••• 
S(YX•).. · · 

17.12. It will be seen that the solution of these equations depends on 
the evaluation of the various summed quantities. A first step is therefore 

· to calculate these sums, and this is done by a process very similar to_that 
used in finding the moments of a distribution. - · 

lre can, in~ express the equations in terms of moments... Dividing 

each equation by n. and remembering that p.r~ = ;s(Xr), ~e have: 

!s(Y) 
" 

. 
-:· •• _-a,p..' =0 

• 

(17.9) 
1"'(YX. • ". • ' ·~ ) -tl.p-1 -a11'2 . -tiJPa - ••• -'?I',H =0 

• . . , 

. 
Equations for Fitting a Straight Line. 

17 .13. In the simplest ease, that of a straight line, we haV"e p =I, and 
the equations (17.9) become: . 

• (17.10) 

In particular, if X and Yare measured about their means and hence 
are denoted by z, y, we haV"e: · 

and hence, from {17.10), 

so that the fitted line is 

i£1 =0 
S(y)=O 

1 
y=z-S(yz) 

"P2 . 
•. (17.11) 

i~. passes through the mnn of X and F. This is. in~-the first regression 
equation of (11.6) (p. 209) in another fonn. . 

17.1 4. In equation ( 17.2) it is customary to call z the .. independent •• · 
,·aria.ble ~nd y the .. de~ndent" ,·ariable-. In any ginn case it is, as a 
rule, posl>l~•le to n-gard e1ther of the ,·ariables under consideration as the 
independent nriable, and the other as the dependent variable.· We shall 
tht>n get two expn"Ssions, one gi\ing ,·ariable A in terms of variable B, the 
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other giving Bin terms of A; and there ·will be two curvr-s of dosest fit, 
just as there are two regression lines in the theory of correlation. 

These two curves are not, in general, the same, and the result sounds a 
li.ttle paradoxical until we examine how the two curves are derived. We 
have, in fact, two definitions of closest fit, one minimising residuals of the 
type (A -a0 -O-tB- ••. )1, the other minimising residuals of the t,n>e 
( B- a0'- o1' A- •.. )1• On a priori grounds there i'i nothing to choose 
between the two. 

17.15 •. Which of the two forms we choose will depend in practice on 
a V!lFiety of circumstances. Sometimes one variable is clearly marked out 
as the independent variable. For example, in considering the way in 
which a population varies with time, it is almost inevitable to regard the 
former. as dependent on the latter, and not vice versa. In other cases the 
choice is dictated by the purpose in view. For instance, in expres~ing the 
relationship between current and resistance in an electric circuit, an in
vestigator would probably take as the independent variable that factor 
over which he had direct control. Frequently, however, there is no guide 
of this kind, and it may be necessary to ascertain both curves. I 

Calculation. · 

17.16. The calculations necessary to fit a curve by the method of 
least squares fall into two stages. First of all, the sums of squares which 
appear in equation (17.8) must be found, or, what amounts to the same 
thing, the moments. To fit a curve of degree p it is necessary to find 2p 
sums of the type S(XA:) andp+1 sums of the type S(YX•) (including S(Y)). 
The work is best carried out systematically after the manner of Chapter 9, 
and several devices considerably shorten the arithmetical labour. 

(a) By a suitable choice of origin and unit we can often reduce the 
given values of X and Y to smaller numbers-a great help in calculatinq 
the higher powers and sums. For instance, if the values of Y were tJ25, 
650, 675, 700, we could take an origin at y = 625, and a scale of one unit 
= 25, and our new values would then be 0, 1, 2, 3. · 

(b) If the values of the independent variable proceed by equal steps, 
and particularly if there is an odd number of them, the labour of calcula
tion is enormously reduced. 'Ve shall consider this important case in 
some detail below (17.22). 

'Vhen the various sums have been ascertained, the second stage, that 
of the solution of the equations (17.8), may be carried through. For a 
curve of degree p there are p + 1 of these equations. They are linear in 
the unknowns a, and their solution offers only arithmetical difficulty. 

17.17. Before proceeding to consider some examples, we may remark 
1 In this connection we may refer to a problem for which, so far as we are aware, 

no general solution has been fot•nd. Given that the theoretical law relating y and .z 
is linear, but that the sets of values given in the data are both subject to error, what is 
the unique straight line most probably (in some sense) representing the truth? The 
least squares solutions will give us lines which, in a certain sense, are the mO&t likely lf 
the dependent variable is subject to errors normally distributed; but they do not 
yield a line which allows for errors in both variables. 

Greenwood and Yule (Proc. Roy. Soc .• lledicine, voL 8, 1915, p. 113, Section of 
Epidemiology) used the principal axis (ll.9) as an empirically gQOd r.olution. This 
makes the sum of squares of perpendiculars from the points on to the line a minimum. 

The difficulty is greatly intensified if the theoretical law is a polynomial of degree 
.higher than the first. 
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on one point of theoreti~ interest. It is always possible to fit: a curve 
of degree p exactly to p +I points ; for instance, a straight line. can be 
drawn to pass exactly through two points, a cubic parabola through four 
points, and so on. Thus, if we have " points we can always find a curve 
of degree A -1 which is an exact fit. But in practice 11 is rarely less than 

_teo, and a fitted curve of degree as high as this would have no practical 
value and very little theoretical interest. It is only exceptionaHy that use 
is found for fitted curves of degree higher than the fourth. · 

\Y e will now consider some examples. 
Ez4mple 11.1.-Let us fit a straight line to the data of Table 17.1.•. To 

illustrate the method we will deal with both cases, taking first distance and 
then velocity as the independent variable. . · 

Denoting, then, distance by ~ and velocity by y, we wish to fit a curve. 
of the fqrm - -

. y=a.+~~. 
For uJs we require S(X), S(X1 ). S(Y) and S(YX). For the alternative 

case we shall also require S(Y1 ). • · . · 

The an'lhmetic is shown in Table 17.2. In successive columns we write, 
for each nebula, 1", X, X 1, YX and Y1 •. Totals are shown at the foot of 
the columns. · 

or 

Equations (17.8) then become: 
. . S(Y)-y-a1S(X}=0 

S(YX) -a.S(X) -~S(X1) =0 

61·26 -10a1 -1U·25ai =0 
·1261·.&988 -111·25a1 -2371·61~ =0 

Multipl)iog the first of th~ by 11-1·25 and the second by 10, and sub-
tracting; we get · = · ·. . . 

5616-()33 -10,663-o825a1 =0 -

and hence, 

So that 

~ :=6-527 (more accurately, 6-526,680,066) 

· a1 =6-109 (more accurately, 6-1_08,680,2-W) 

y=6-109 +0·527~ (a) 
This line is •hown in fig. 1~.1. . . 

U we wish to expt:" · :; <;lance in terms of velocity, we have, inter-
changing X and Y t1- ~ ,~..Ji.s (17.8): . , . 

or 

whence 

and 

/t/ ~=a.' +al'Y . . -
, · S(X} -a.'• -a1'S(Y) =0 \ . 

S(XY) -a.'S(Y) -a1'S(Y1) =0 · 

1U·25-10a,' -61·2661'.=0 
1261·.&988 -61·26a1' -672·8998as' A'o · 

a,• = -6-135 
a/= 1·89 

~= -6-135 + 1·89g (6) 
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. TAnLE 17.:!..-Prcu:lical Work fo-r .P·itting a Stmight Line fo the Dnta of 'l'ablc 1~·.1. 

Oonstellut ion. 

! Mean Velocity . Distance 
' (000 km. pPt: : (millions of 

se,ond ). I · parseo~). 
L .Y. .\:2. YX. P. 

_J .. - i,-

! Isolated r:ebul,; 11 ·. I' 0·6:-1 1·20 1·4400 ll-1560 () ;;(ll)!) ; 
j Virgo. . 0·8!) l·S2 3·3124 1·6198 0·7!121 1 

I 
Iwlr.ted ~ebula J 2 :L> 3·31 HHJ561 i 7·778:"i ' ,'J·5225 

l'cgasH~ . :{·~: 7·24 ;'\2·4176 27·3~44 lHi](iJ 

1 J'isccs . 4·(;:; 6·92 rd~"i(H :J:I·O:J!Jn 2l·4:Ji);) 

.I 
Canc-<>r . 4·~2 9·12 83·]744 1 4:HlGR4 2:3·2:{24· 
Per:-;f'Ut 5·~:-5 10·fli I J2t)·:J~Ofl !i7-37:~l i 27·3d2fl 
Cvm11 7·;JH l4·t~ :20tl·S<J2:; IOS·:n-.u 1>6·2:'>00 
UrsaM:~jor. IJ·.~O :Z:l·ili .->24·861ll 270·3::\80 13~•·2400 

I I,eo . I l!J·fiO ' a6·iH I 13JS·4161 . 71Hl7o(l I :.l~H·J6(il) : =~--~;~ ~-· ----~6~~~--·-i ---~~·~~~12;7:~~~~~--~~~~~~4~8~ :_~~~:9~-:/ 
Equations (a) and (b) at·c nearly identir.al, for dividing (o) hy 0·527 

and rearranging, we have : 
,?; = - 0·207 + 1·90y 

This is exceptional, and results from thl' closeness with which the points 
. lie to a straight line. The correlation between X and Y is, in fact, 0·997. 

Reduction of Data to Linear Form. 
17.18. Krample 17.2.-It sometimes happens that we may reduce 

data to a linear form by some simple transformation. Table 17.8, for 
example, shows the number of fronds of a duckweed plant on fourteen 
successive days. The nun'lber of fronds (N) clearly does not increase 
uniformly with time (;r), and the curve of growth is not linear, as may be 
seen by graphing N against x. There are theoretical reasous for inquiring 
whether the law of growth may be represented by an equation of the form 

1V =aeb:r 

A population which conformed to this equation would have the property 
thn.t its rate of inerease at any moment was proportioual to the size of 
the population at that moment--its "birth-rate," so to speak, would be a 
constant. · 

Taking logarithms, we have: 

1og. N =log. a+ b,r 

and if we now write y =loge N, we have : 

y =log. a +ba: 
which is linear in x and y. 

We l!houJi, of course, have a r~!ation of the s~me form, with differ~nt 
values of the constants a and b, 11 we took luganthms to base 10, wh1eh 
is usually th~ ~re con\l'enient proce.dure. . . . . . 

We tbel'(!f9~ t~,th~ effect of fittmg a straight hne to x (the trme) and 
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I 

log
1
.X (log numlx-r of fronds). From fig. 17.2 it will be seen that the 

fit is a close one. 
4.C 

~ / 
;( 

/'~ ~ 

··vf 
5 

' ·_/ ~ 

/+ . 
-./ 

5 
Days 

Fao. 17 .%.--Straight Line fitted to Data of Table 17 ..S. 
(Gnnrth or Duckweed.) 

TABU 17..S.~IA of DwlAr«J. (Y, IL BlaM*man, '!\"IJhln. 6th .JUDe 1!136, 
quotiug data or Amby_ and Oxlry.) 

j XamLer <II Frood&.l I _,,_ 
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J%7 
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m 
3:!3 
45! 
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918 

l¥16 
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!800 
fl.fl) 
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The preliminary work i!i !>hown in Table 17.3. We find first 1·, 
eorrcsponding to lo~10 N, then S(X), S(Y), S(.P), S( L\" ). F(lr thi~ 
particular example we do not n·quirc S(Y 1). In view of the '>implf' 
d1aracter of the values of X there is little saving in taking other origins 
or units for X and r, although, if we were fitting a curve of higher order, 
it might be an advantage to take a different origin for X. 

Equations {17.8) then become : 

or · 

whence 

and 

S(Y) -na0 -a1S{X) =0 
S( YX)- a0S(X)- a1S(X2 ) = o 

40·8683755 - 14a0 - 105a1 = 0 
340·9594891 -105a0 - 1015~ = 0 

a0 =1·785 
- a 1 =0·1514 

y = 1·785 + 0·1514.x 

Raising this to power 10, and remembering that 10 11 =N, we have: 

N = 101•785 X 1QO·lSlh • 

(a) 

(b) 

which we may also write, expressing the powers of 10 as actual numbers: 
i. ~ 

j • N =60·95 X {1·417)'" 
<-· 
· J7.19. Example 17.3.-The process of taking logarithms may be 

appliai to lioth variables. In Table 17.4 are given the costs per unit of 
-:>electricity sold ( TJ) ~nd the number of units sold per head of the population 

served by tbe Ul1dettaking (g) for 27 electricity undertakings. The data 
were taken from the_, Raurns of the Electricity Commission for 1933-34, 
~hich cover abp1~t six !1)mdred undertakings, by selecting every twenty
fifth. They are;-therefore, only a comparatively small sample, but they 
reflect· fairly' accurately the general relationship between g and 7J for the 
whole number of updertakings. 

·This relationship is illustrated by fig. 17.3, on which [ is graphed 
against TJ· It will be ·Seen that, broadly, the larger the number of units 
sold per head, the lower the cost per wut. 

The points of fig. 17.3 lie, in fact, about a curve which suggests a 
relation of the form: 

7] =ag-b 

As g becomes larger, 7J becomes smaller, and as g tends to zero, 7J tends to 
infinity. Let us try to fit a curve of this kind to the data. 

\Ye have: 
log TJ = log a - b log g 

and, putting 
y =log 7], X =log [ 

y=leg a -bx 

which is linear. We therefore proceed to fit a straight line to log 7J and 
log(. 
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The preliminary work is shown in Table 17.4. Equations (17.8) 
become. in the usual way. -

whence 

and 

From which 

or 

5·2493 -27a0 -50·1311~ =0 

7·3008 -50·13lla1 -97·U50a1 =0 

_a1 =1·31 ~ = -0·601 

y~1·31-0·60l.r 

'1 =20·42[-:•·10'-

.. 
- (a) 

(b) 

Fig. 17.4 shows the values of y plotted against those of~. The straight 
line we have found cannot be described as a good fit. but so far as the eye 
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TABLE 17.4.~REDUCTTON OF NoN-LINEAR REL.4.TTOS To I.tSI-:All FoRM: llelntion.,hit 
be~een Working CoaltJ Pff Unit and 1fl4mbff of l:nit., Sold in 27 Elt>ctricil!f l'nrla 
tnlctnp•. (Data from Return of Engineering and Finan<'ial Stati'lti<'s 103:~34--4 
Electricity CommisRiou.) . ' • 

-
I I I Unit.a Sold I . Working (excluding I 

Name ~f Undertaking. 
Costa per bulk 
Unit Sold 1uppliea) 
(pence). JIM" Head of . Population. log 'I log; 

- fJ· ~- =Y .. =X. TX. x•. 
--- ---

Aberdare . 1·53 63·1 0·18469 1·8000 0·3324 3·2400 
Barry U.D.C. .2·36 12-1 0·37291 1-0828 0·4038 H725 
Bred bury and Romiley 0·70 394·2 -0·1.5490 2·5957 -0·4021 6·7377 
Chesterfield . .. 0·56 220·5 -0·25181 2·3434 -0·5901 5·4!115 
Ear by . 1·41 52·4 0·14922 1·7193 0·2.366 '2·9560 
Grange 1·88 119·4 0·27416 2·0770 0·56! .. 4·3139 
Holmfirth • H7 181·6 0·06819 2·2591 0·1541 5·1035 
Lincoln . 0·78 293·8 -0·10791 2·4681 -0·2663 6·0915 
Mexborough H3 170·4 0·05308 2·231.'; 0·1185 4·9796 
Nuneaton .• 0·86 ISH -0·06550 2·2G51 -0·1484 5·1307 
Red car . f 1-91 68·0 0·28103 1-8325 ()-5150 3·3581 
Slaithwaite 1·40 80·7 0·14613 1·9069 0·2787 3·6363 
Tanfield 2·41 29·0 0·38202 1-4624 0·5587 2·13S6 
West Lanes R.D.C. 1·37 53·4 0·13672 1·7275 0·2362 2·!lil43 
Dumfries Corporation • HO 93·0 0·04139 1·9685 0·0815 3·8750 
Tobermory · . 4·21 19·9 0·62428 1·2989 0·81091 1-6871 
Aberayron. 8·9 25·6 0·94939 1-4082 1·3369 1·9830 
Brixham Gas and Elec' 

tric Co. - 3·13 . 30·4 0·495.54 1·4829 0·7348 !-1!190 
Chudleigh Co. 7·28 16·7 0·86213 1-2227 Hl541 l-4950 
Foots Cray Co. . • . 1·92 77·8 0·28330 1·8!HO 0·5357 3·5759 
Lewes Co •. H4 120·1 .0·05690 2·0795 0·1183 4·3243 
Newcastle Electric Light 

Co .• . 0·64 68·8 -0·19382 1·8376 -0·3562 3·3768 
Ramsgate Co. · 1-57 60·5 0·19590 1·7818 0·3490 3·1748 
Steyning Co. l-06 93·9 0·02531 1·9727 0·0499 3·8915 
West Devon Co •• 1·98 22-1 0·29667 1·3444 0·3988 HI074 
Coatbridge and Airdrie 
·'Co .. 0·68 .196·2 -0·16749 .2·2927 -0·3840 5·2565 
Skl!lmorlie Co. 2·05 60·1 0·31175 1·7789 0·5546 3·1645 

·Total . - - 5·24928 50·1311 7·3008 97-1450 

can judge it is as good as any simple curve is likely to be. It expresse!'. 
the general relation between t£ andy; but, naturally, local circumstance·. 
cause individual values to deviate appreciably from this relation. Statis
tical data which are not produced under laboratory conditions are ver) 
oft;en of this nature. ' The fitted curve expresses a general trend,. but 
individual_ cases may lie well away from it in a number of instance11. 

Fitting of More Gener!ll Curves. 
- · 17.20. Ezampk 17.4.-lVe must now consider the fitting of curve, 
of order higher than the first. 

Table 17.5 shows the percentage loss of weight (Y) for certain. tem· 
peratures (X) in experiments on the oven-drying of soils. Since X i:; 
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here the controllable factor, it is natural to take it as the_ independent 
variable .. and •e duill express r in terms of X. - - -

1-' 

] .. 
~o-s 

l 
'-.. 
0 

• 
• 

• 

• 
• • 

~-~~~----+-----~4-~~--4-~----~4 
~ . 
~ 

• 
• 

-o-51--o J-5 - uJ · %-5 ~ 
Logaritlu& cf nmnber cf llZiits sold per kaJ/. of poJ1f1latim& 

FIG. 17.A.-Suaight Line fi~ to Loprithmll of Data of Table 17.L 

The data are sho'Wll graphicaiiy in fig~ 17.5. lfe shall find su~vely 
tbe straight line, quadratic parabola and cubic parabola of closest fit. We 
shall theref~ ~uire sums of powers of X up to S(X') and sums of 
products up to S(l"XI). lfe also require, for later work, S(r1 ). 

The preliminary work is ~>bo'Wll in Table 11.5. _We might, perhaps. 
_lun abbreliated. tt.e aritlunetic slightly by taking an origin of z at 
X =100 and of y at Y ~3, but the saving would not han been large. 
Data of this kind l.-equentJy give rise to large figult!s in the higher sums. 
and a machine is a great help in the calcuhtion. · For instAnct-, with a 
machine the sums S(l"X). etc_, an be found by rontinuous addition, 
•itbout the necessity Cor writing each_ individual contribution in the 
relatin rolumn. 

For the straight line of cbest fit, t"quations (17.8) become: 
82-97 -I&Ie -26Ua1 =0 . . 

a.= 0·660 and a.= 0-o21 n 
(more &Ct"W'&tdy, G-6.39,159,78:» and o-o-n.•OS.7H) 

aud the straight line is : 
!/ = o-660 + 0-()27 'lz 

For the quadratic parabola, t"quations (17.8) are: ' 
S(l'') -~~a. -a1S(X) -a~(~¥1)=0 
S(l'X) -a.S(X) -a1S(X1)-a.S(XI)=O 
S(l"X1 ) -a.S(X1 ) -a1S(XJ) -a.StX') =0 

. (a) 



TABLE 17.5.-Curve-fitUng to express the Relationship between Temperature and Percentage~'Loss in Weight of Certain Soil Sa111plt11. 
(Data from J. R. H. Coutts, "'Single Value' Soil Properties: V. On the Changes Produced in a Soil by Oven-drying," Journal 
Agricultural Science, vol. 20, 1930, pp. 541-548.) ' 

Per- Tem- . 
centage perature Loss in 
Weight. (degrees). 

Y. X. Y•. x•. xa. x•. ·xa. xs. YX. Y.X'. Y.X•. 

3·71 100 13·7641 10,000 1,000,000 100,000,000 10,000,000,000 1,000,000,000,000 371·00 37,100·00 3,710,000·00 
3·81 105 14-5161 ll,025 1,157,625 121,550,625 12,762,815,625 ·1,340,095,640,625 400·05 42,005·25 4,410,551·25 
3·86 110 14·8996 12,100 1,331,000 146,410,000 16,105,100,000 1, 771,561,000,000 424·60 46,706·00 5,137, 760·00 

'3·93 115 15·4449 13,225 1,520,875 174,900,625 20,113,571,875 2,313,060, 765,625 451·95 51,974·25 5,977,038·75 
3·96 121 15·6816 14,641 1,771,561 214,358,881 25,937,424,601 ". 3,138,428,376,721 479·16 57,978·36 . 7,015,381-56 
4·20 132 17-6400 17,424 2.299,968 303,595,776 • 40,074,642,432 5,289,852,801,024 554·40 73,180·80 9,659,865·60 
4·34 144 18·8356 20,736 2,985,984 429,981,696 61,917,364,224 8,916,100,448,256 624·96 89,994-24 12,959,170·56 
4·51 153 20·3401 23,409 3,581,577 547,981,281 83,841,135,993 12,827,693,806,929 690·03 105,574·59 16,152,912·27 
4·73 163 22·3729 26,569 4,330,747 705,911,761 115,063,617,043 18,755,369,578,009 770·99 125,671·37 20,484,433·31 
5·35 179 28·6225 32,041 5,735,339 1,026,625,681 183,765,996,899 32,894,113,444,921 957-65 171,419·35 30,684,063·65 
6·74 191 32·9476 36,481 6,967,871 1,330,863,361 254,194,901,951 48,551,226,272,641 1,096·34 209,400·94 39,9!).;,579·54 
6·14 203 37·6996 41,209 8,365,427 1,698,181,681 344,730,881,243 69,980,368,892,329 1,246·42 253,023·26 51,363, 721·78 
6·51 212 42·3801 44,944 9,528,128 2,019,963,136 428,232,184,832 90,785,223,184,384 1,380·12 292,585·44 62,028, 113·28 
6·98 226 48·7204 1>1,076 11,543,176 2,608,757,776 589,579,257,376 133,244,912,279,976 1,577-48 356,510·48 80,571,368;48 
7·44 237 51i·3536 56,169 13,312,053 3,154,956,561 747,724,704,957 177,210,755,074,809 1,763·28 417,897·36 IIII,O·U,674·32 
7·76 251 60·2176 63,001 15,813,251 3,969,126,001 996,250,626,251 250,058,1l07,189,001 1,947·76 488,887·76 122,710,827·76 
~ 

82·97 2642 459·4363 474,050 91,244,582 18,553,164,842 3,930,294,225,302 858,077,668,755,250 14,736·19 2,819, 909·45 571,902,362·11 
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'' 

These become, on substitution, 

giving 

82·97 -16a0 7 2642a1 -474,050a1 =0 

14, 736·19 - 2642a0 - 47 4,050a1 - 91?244,582a2 ~ 0 

2,819,909·45 -47 4,050a0 - 91~244,582a1 -1~,553,164,842a1 = 0 

llg =3·551, a1 =0·00010695 

323 

(more accurately, 3·550,990,2, -0·009,291,235,7~ . and 0·000,106,954,12) 

and the parabola is : 

y =3·551-0·009291.7J +0·00010695aJ8 (b) 

For the cubic parabola, equations {17.8) are: 
- -

S(Y) -na8 -~S(X) -azS(XZ) -a,S(X3 ) =0 . -
S(YX) -a0S(X) -a1S(X1 ) -azS(X8) -a3S(X') =0 

-S(YX8 ) -auS(X1 ) -a1S(X8 ) -a8S(X') .:...a,S(X5 ) =0 
S(YX•) -agS(X•) -a1S(X') -a1S(X6 ) -a,S(X8) =~ 

which become : 
82·97 -16ao- 2642a1 -474,050a1 - 91,244,582a8 ;, 

14,736·19 - 26421lo -474,050a1 - 91,244,582a1 -18,55S,l64,842a1 = 
, 2,819,909·45 - 474,0501lo - 91,244,582a1 -18,55S,l64,842a1 - 3,930,294,225,302a8 = 
'571 ,902,362·11 - 91,244,5821lo -18,55S,l64,842a1 - 3,9S0,294,225,802a1 - 858,077,668,755,250a1 = 

. . 
It is not really necessary to write out the large numbers of the later 

equations as fully as we have done, and a certain amount of approximation 
is allowable. The student should, however, be careful not to introduce it 
too soon, as neglected quantities may become of cumulative importance 
in the solution of the equations. 

By straightforward but rather strenuous arithmetic we find 1 • 

a0 =7·783, a1 = -0·08940 · 

az =0·0005875, . aa = -0·0000009189 

(more 8.C'curately, a0 =7·782,526,861, ~ = -0·089,402,395,60 

as= o·ooo,s87,479,234,2, aa = - o·ooo,ooo,918,S91,069,8). 

The smallness of the coefficients aa and aa does not mean that they are 
of minor importance, since in the equation for y they are multiplied by 
terms in a;l and xl, which may be large. · \ · 

The cubic parabola is, then, 

y = 7·783 - 0·08940x + 0·0005875x•- 0·00~0009189xs 

which we may also write as : . 

y=7·783 -8·9401~0 -5·87s(1~0r -0·9189(1~0r: (c) 

}'ig. 17.5 shows the data graphically, wjth the straight line a~d cubic 
parabola of closest fit. · . , · 
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FIG. 17.5.-Straight Line and Cubic Parabola of Closest Fit to the 
Data of Table 17.5. 

17.21. Although a graph will usually suggest whether a straight line 
or quadratic parabola is likely to give a satisfactory fit, it will not as a rule 

. be much guide in deciding whether further terms will repay the labour 
of calculation: This can be judged, at least. roughly, by calculating 
the terms given by the polynomial (to as high a degree as it has been 
carried) for the observed values of :x, and then observing the run of the 

· residuals. If the signs run more or less at random it will hardly be 
worth while to calculate another term; but if a series of positive residuals 
is followed by a fieries of negative residuals, these by another series of · 
positive residuals, etc., it will probably be worth while to proceed further. 
Moreover, the coefficients for a parabola of order k are no guide to those 
of order k + 1. For instance,. in Example 17.4, the values of a0 for the 
straight line, square parabola and cubic parabola are 0·660, 3·551, 7·783; 
and those of a1. are 0·027 41, · ~ 0·009291, - 0·08940. From this informa
tion we could not guess even the sign of these coefficients in the parabola 
of order 4, and if we wished to fit such a c~rve five equations of the type 
"17.8) would rave to be solved ab initio. 

· " The student, therefore, should not fall into the error of thinking that 
parabolas of successive orders will resemble each other in their lower 
terms, or that the fitting of a curve of order k + 1 is merely a question of 
adding an extra term to a curve of order k. It would be a great con
venience if this were so, and, in fact, methods have been devised whereby 
one variate can be expressed in terms of certain polynomials of the other 
in such a way that this advantage is secured. The theory of these 
so-called " orthogonal " polynomials is, however, outside the scope of 
the present work, and we would refer the student who is interested to 
the references for this chapter. 



The Case when 
Steps ••. 

SUIPLE CURVE FITTING~ . ·.I s2s. . -
the Independent Variable Proceeds by Equal 

. . 17.22. When the independent variable z proceeds by steps of equal 
amount h, the arithmetical solution of equations (17.8) can be greatly 
simplified, particularly .if the number of values is odd. In such a case 
\\'e take h as the unit of z and an origin at the middle term. The values 
of z will then be -k, -(k-1), ·-(k-2), •.• -2, -1, 0, !., 2, .•• 
(k- 2), (k -1 ), k, and owing to the symmetry of this series 'the sums of 
odd powers of ~ will vanish, i.e. S(X), S(X3), S(X6 ), etc. are all zero. 
Equations {17.8) then become, taking pas odd, · 

S(Y) • -na0 -a.S(XI) -a,S(X') ••• =0) .. 

S(l"X) .• -t~tS(X1) . -~S(~')_ • .• · =~~ · . .. . . . . ~ . . f (17.12} 
S(YX~t- 1 ) -a.S(X•-•) · -as8(X'*1} • • • =0 · , 
S(YX•). .. -t~tS(X•+l) . -~S(X'*•) , . • =0 

and not mlly is the number of terms reduced, btit ·the equati_ons split · 
into two sets, one in a., ~ a,, etc., and the other in tit• ~. a50 etc.. l\lore-
0\·er, the sums of e\·en powers of X are tWice the sums of powers of the 
first lc natural numbers, which may be easily found, either from tables 
or from known formulre.. · · · · 

Example 11.5:-Table 17.6 shows the population of 'England and 
W~les in certain census years from 1811 onwards. Taking the time as 
the independent variable, we choose as the unit of X the period of ten years, 
and the origin at the mid-point of the range, 1871. The preliminary work 
for the fitting of curves up to the cubic form is shown in the table; · · _ 

For the cubic parabola, equations (U.S) are, ~~~n, · 

whence 

3U-Q9 -13a0 . -182a~ =0 
474.·77 -182a, .' -4550~ =0 · 

4520·4-5 -182a0 • . ·- 4550a1 = 0 
11,632·97 - 4550a1 -1U,342~ = o 

a 0 =23·299 
a1 = 0·06153 

a1 .;. 2·895 

~= -O·Oll47 

The parabola is, therefore, 

y = 23·299 + 2·895z +0·06153r·- O·Oll4 ~zl ·, · . 

' . 

. (a) 

}'ig. 17.6 shows the data graphically, together with this cubic.' · 
Incidentally, this example illustrates one point of some importance .. 

Over ~he years 18ll to _1931 t~e cubic gives a fair fit. and might be used . 
to estimate the populat10n at mtermediate years. Dut for extrapolation . 
it i11 of very little nlue. We could not estimate the population for 1951 
11·ith any C".onfidence by putting ~ = 8 in the cubic ; still less that for later 
years. Unless there are good reasons for sufposing that the fitted curve 
is an accurate representation of a theoretica relationship. it is dangerous 
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to' assume that a fitted parabola can be used outside the range for which 
it was ascertained. · . 

TABLE 17.6.-Curve-jitting lo Growlla of Population in En!!land and Walr•. (Data 
from . Registrar-General'• Statistical Review of England and Wales, 1933, 
Tables, Part II.) 

Population 
Year. (millions) 

Y •. :X. x•. .x•. .x•. . :x•. Y:X. YX1• YX 1• 

----
1811 10·16 -6 36 -216 1,296 46,656 -60·96 365·76 -2,194·56 
1821 12·00 .-5 25 -125 625 15,625 -60·00 300·00 -1,500·00 
1831 13·90 -4 16 - 64 256 4,096 -55·60 222·40 - 889·60 
1841 15·91 . -3 9 - 27 81 729 -47·73 143·19 - 429·57 
1851 17·93 -2 4 - 8 16 64 -35·86 71·72 - 143-44 
1861 20·07 -1 1 - 1 1 1 -20·07 20·07 - 20·07 
1871 22·71 0 0 0 - - - - -
1881 25·97 1 1 1 l 1 25·97 25·97 25·97 
1891 29·00 . 2 4 8 16 64 58·00 ll6·00 232·00 
1901 32·53 a· 9 27- 81 729 97·59 292·77 878·31 
1911 36·07 4c 16 64 . 256 4,096 144·28 577-12 2,308·48 
1921 37·89 .5 25 125 625 15,625 189·45 947·25 4,736·25 
1931 39·95 6 36 216 1,296 46,656 239·70 1,438~20 8,629·20 

----
Total 314·09 0 182 0 4;550 134,342 474·77 4,520·45 11,632·97 

. ' 
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FJG.'17.6.-Cubic Parabola fitted to.. the Data of Table 17 .6. 

It wo~d be instructive for the student to fit merely a segment of some 
~.ctual series and note how rapidly the curve calculated from the segment 
diverged from the observations outside its limits. It has been shown that 
even within th~ !imits of the fitted observations the fit tends to be worst 
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as the lircits are. approached. The higher po~ers of z be~ome 9r grea~er 
and greater effect the more we diverge from the centre of the fitted 
segment and tend. so to speak, to " \Vag the tail '' of the cnrve. . 

17.23. If the number of values of :e is even, we have a choice of two 
methOds of procedure. 'Ye can take h as unit and the origin at one of 
the two middle values; or we can take !h as unit and origin midway · 
between the two central values. ' In the first case, the sums of odd powers 
"ill no longer vanish, but they will nevertheless be easily. calculable, 
since all terms except a single outlying member in the summation will 
cancel out in pairs. In the second case the sums of odd powers wi:&. 
vanish, but the other sums will no longer be twice those of the first k 
natural numbers, but of the first k odd numbers. In either case the 'solution 
of the equations (17.8) is not difficult. 

c 

Calcula!ion of the Sum of Squares of Residuals. 
17 .24. . The eye is not a reliable guide to the closeness with which a 

given cone lies to data, and it is desirable to have some more accurate 
measure bf .the closeness .of fit. For this purpose we require to be able 
to find tM sum of the_ squares ·or residuals U.· We know by our method 
of ascertaining the cnrve that this will be less than the corresponding 
quantity for any other curve of the same degree, and our interest is .centred 
on how close this is to the ideal value zero. · 

To calculate, the sum of squares of residuals it is not necessary to 
calculate each separate residual. In fact, for the parabola of order p we 
have: , . 

U =S(Y -o0 -a1X -a.,X•- .. : -a..,XP)I 

=S{Y(Y -a0 -a1X- ••.. -apXP)} 

for the terms of the type S{a~~"(Y -o0 -a1X
virtue of equations (11.8). Hence, 

-a..,XP)} Varush in 

{17.13) 

. - The constants a and the s~. which appear. in this expression have 
already been found, with the exception of S(Y1) in some cases. With 
this additional quantity we can find U. -

Example 17.6.-Let us find U for the data of Example 17.4 for the 
straight line and the two parabolas. . . . •. 

For the line 

Here 

lienee, 

S(Y)=82•97, S(YX)=14,736·19. 

S( Y 1
) = 459·.£363, a0 = 0·659, 75.9, 789 

ot =0·027,408,722 

u =459·4363 -64·74-027 -403·900li 

r0·7959 
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For th«; quadratic parabola : 

and here 

whence 

U =S(Y1 ) -aJ)(Y) ..:.a1S(YX) -a3S(YX1 ) 

a,= 3·550,990,2 

a1 :s - O·OO:J,291~235, 7 

a1 = · 0·000,106,95-1,12 

Similarly, for the cubic 
u =0·1271 

U=0·0485 .. 
The value of U therefore decreases from 0·7959 for the straight line to 

0·0485 for the cubic. · This is what we should expect, for the addition of 
extra terms means that we have additional constants at our disposal in 
the task of minimising U. 

To obtain U with any accuracy by the foregoing method it is necessary 
· ~o ascertain the a's to a considerable numb~r of decimal places. 

Measurement of the Closeness of Fit. 
17 .25. The value of U enables us to make some sort of comparison 

between the fits of different curves to the same data ; but it is not, in itself, 
a satisfactory measure of fit, since it does not permit of the comparison 
of the fits of curves to different data. The measure Ufn, which is the 
variance of errors of estimation, suggests itself, but this, like U, is not 
absolute, being dependent on the units in which we are working. For a 
satisfactory measure some form of ratio would have to be taken. 

Such a -ratio arises in a natural way if we consider the correlation 
between the actual values of Y and those" predicted.'' by the polynomial. 

Let us, without loss of generality, suppose that the values are measured 
from their mean, and let Yr be the value given by the polynomial and Yr 
be the actual value. Then, as in 17 .24, 

S(yll) =S(Yy) 

U=S{Y(Y -y)} 

=S(Y1 ) -S(Yy) 

(17.H) 

(17.15) 

lVri~ing ur, a11 for the standard deviations of }"" and y, and R for the 
correlation between them, we get, from (17.14), 

or 

and from {17.15), 

or--· 

a11
1 =Rarrs11 

a 11 = Rar 

u 
- = ur1 - Ruyrs11 n 

(17.16) 

(17.17) 
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Hem•e, substituting for_ a. from (17.16), 

- u 
R 1 =1--· 

· na,.1 .-

. 329 

• (17.18) 

which gives the correlation in terms of the ratio of Ufn and the variance 
ar•· . • ~ - " 

- -- B is, in fact, analogous to the multiple correlation-eoeffi.cient and ~he 
correlation ratio, and the equation (17.18}- should be compared With 
equation (13.3), page 2-U, and equation (J.1.15), page 2.78 •. 

· E.rample 11.7.-In Example 11.i we have, using the .data· of Table 17.2 
ana the constants found : : . . 

a.,• = 67·28998 .:... (6·126)• 

=29·762,104. 

u ":"~·835,777,255 
R'=l 1:835,777,255 =0·993 ~31 830 

297·6210-J. • . , 

R=0·99691 -
. . 

For the soil data of Examples 17.4 and 17.6 we find: 

For the straight line R =0·98627 
. For the cubic B=o·99917 

Thus, judged by the value of B, the straight line of Example 17.1 is a 
better fit than that of Example 17.4, but a wors.e· fit than the cubic of the 
latter. .-

17 .26. As a general comment on the scope of the methods of curve
fitting described in this c~apter, we may remark that although polynomials 
can always be fitted to data,· the ~;tudent shoul<\ not assume that even the 
polynomial of closest fit will necessarily -be a •atisfactory fit. It may 
exhibit peculiarities of behaviour which are entirely absent from the data 
thelll!;elves. He may well ask, when confronted by a given set of data, 
how he is to know whether they may be satisfactorily represented by a 
polynomial The answer is that ·he must fit one and see. Some further . 
remarl& on this point are given later in 24.11, where similar questions 
arise in connection with interpolati~n and graduation. . 

. ------ - . 

SUMliARY •. 

1. A parabola of the form y=a,+a1~+a~1 + -•.• ;.,+a;,zP may be 
fitted to data by choosing the constants a so that the sum of squares of 
residuals U =S(l' -a, -~X -o.X'- ... -o,X•)1 is a minimum. 

2. This method leads to the equations · · . 

S(Y) -na0 -o~S(X) -a.S(X') - • • . -a,S(X•) =0 
S(YX) -o.S(X) -o1S(X') -a.S(X') -- ••. '-a,S(XP+')=O 

. .• > 

S(Y:X•) -aoS(X•) -a~S(X~'+_1) -tlaS(X~'+ 1 ) ~ • ; • -a_s(X~•) =0 
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. 8. Non-linear d!"ta may sometimes be reduced to the linear form by a 
s1mple transformation of one or both the variables. 

4. The sum of squares of residuals may be found from the formula 

U =S(Y1 ) -agS(Y) -a1S{YX)- •••. -a_.S(YX.P) 

5. One measure of the goodness of fit of the parabola to the data is 
given by R, the correlation between actual and " predicted " values of the 
variate. . R is given by 

where Y is the dependent variable. 

'·- EXERCISES. 

17 .1. Fit a straight line and parabolas of the seoond and third orders to the 
follo~ing data~ taking X to be the independent variable- · . 

X. ·Y. 
0 1 
1 1·8 . : 

. 2 1·3 
8 2·5 
4 6·8 

and find the sum of squares of residuals in the three cases. 
17.2. (Data quoted by P. L. Fegiz, .. Le variazioni stagionali della natalita," 

llletron, vol. 5, 1925, No.4, p. 127.) The following figures show the relation 
between duration of marriage and average number of children per marriage in 
Norway in 1920 :- · 

Duration of Marriage 
(Years). 

0- 1-
5-6 

10-11 
15-16 
20-21 
25-26 
8~1 

Average Number of 
Children. 

0·48 
2·09 
8·26 
4·88 
5·14 
5·63 

. 5·77 

By the method of least squares find equations of the first, seoond and third 
orders expressing the number of children in tenns of the duration of marriage. 
Compare the values given by these expressions for a duration of 17-18 years 
with the true value 4·67. · 

17.8. The pressure of a gas and its volume are known to be related by an 
equation of the form pv' =oonstant. _ - · 

In a certain experiment the following volumes of a quantity of the gas were 
observed for the pressures specified. Find the value of y by fitting a straight 
line to the logarithms of p and v, taking p to be the independent variable. 

p (kg. per square em.) • O·o 1·0 1·5 2-0 2·5 3·0 
v (litres) 1·62 1-()() 0·75 0·62 0·52 0·46 

17·4. (Data from the reoords of the Farm Eoonomics Branch, School of 
Agriculture, Cambridge, England.) 
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. .. . I 
The following are the gross output and the gross output per £100 of la~ur 

employed. for a selected number_of fanns :- · 

Gross Output 
(\.TJlits). 

63 
223 
755 
165 

1535 
3193 
2'>~ 
1228 
2695 

Gross Output 
per £100 Labour 

{Units). 
40 

155 
188 
78 

315 
290 
259 
231 
255 

Fit a quadratic parabola to these data, taking gross output as the independent 
variable: · .. 



CHAPTER 18. 

PRELIMINARY NOTIONS ON SAMPLING. 

The Problem·. 
18.1. In practical problems the statistician is often confronted with 

the necessity of discussing a universe of which he cannot examine every 
member. For example, an inquirer into the heights of the population 
of Great Britain 'Cannot afford the time or expense required to measure 
the height of each individual ; nor can a farmer who wants to lcnow what 
proportion of his potato crop is diseased examine every single potato. 

In such cases the best an investigator can do is to examine a limited 
number of individuals and hope that they will tell him, with reasonable 
trustworthiness, as much as he wants to know about the universe from ~ 
which they come.· }Ve are thus led naturally to the question, What 
can be said about a universe of which we can examine only a limited 
number of its members ? This question is the origin of the Theory of 
Samp_ling. · 

18.2. A sample from a universe is a selected number of indi,iduals 
each of which is a member of. the universe. As a very special case the 
sample may consist of the entire universe. 

It is a matter of common belief, founded on experience and intuition, 
that a sample .will tell. us something about the parent universe. The 
corn merchant, whose livelihood depends on his ability to ascertain 
the quality of the grain which he handles~ is content to assess it by thrust
ing a conical trowel into the middle of a sack and scrutinising the sample 
he gets. He believes that the sample will be representative of the whole, 
and experience justifies him. He buys and sells on the basis of judgment 
from samples. · · 
. It is also a matter of common belief that the larger a sample becomes 

the more likely it is to reflect accurately the conditions in the parent 
universe. . 

To these and similar beliefs the theory of sampling gives a logical 
~asis and a system of quantitative measurement. In this chapter we 
give a general survey of the fundamental ideas and the technique of 
sampling. In later chapters we shall develop these ideas and discuss their 
applications in various fields. • 

· Types of Universe. 
18.3. Before we consider sampling itself, however, it is desirabLe 

to look a little closer into the various types of universe which we shall 
have to investigate. 

By a finite universe we shall mean a universe which contains a 
finite number of members. Such, for imtancc, is the universe of inhabi
tants of Great Britain and tlfe universe of books in the British ~Iuseum. 

. 332 . 
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Similarly, by an infinite universe we shall mean a universe containi.ng 
an infinite number of members. Such, for instance, is the universe of 
pressures at ntrious points in the atmosphere, or the universe of 
possibk sizes of the wlwat crop in tons, for, although there are limits to 
the size, the actual tonnage can take any numerical value within those 
limits. 

In many cases the number of members in a universe is so large as to 
be praf'! ically infinite. Moreover, a theoretical discussion of an ·infinite 
univer'ie is frequently easier than a discussion of a fmite uniyerse, and a 
large dass of problems may be treated by assuming that the parent 
universe is infinite, without introducing any sensibk error. 

It may be worth remarking that in a few eases we may be ignorant 
whether or not the uniYcrsc of discus»ion is inlinite. 'l'!Jc universe of 
stars is an example. 

Existent and Hypothetical Universes. 
18.4. By the logical extension of the idea of' a universe of concrete 

objects, whieh we shall call an existent universe, we are able to eonstruct 
the idea of a hypothetical universe. 

Consider the throws of a die. Eaeh throw will be regarded as an 
individual. There is an infinite nnmbet' of throws whieh ean be made 
with the die, provided that it does not .. wear out. Let. us then define as 
our universe of discussion all the possible throws of the die. 

In doing so we are clearly makittg some new step ; for our universe 
is to be conceived as having no existenee in reality but oHly in imagination. 
\\' e can give actuality to some members of the universe by throwing the 
die, but we can never produce them all. Even if the die were locked 
away in a safe and never thrown at all there would still be a universe 
of possible throws. 

Such a univl'rse is called a hypothetical universe. We may define 
it formally as the aggregate of all the conceivable ways in which a specified 
event ean happen. Other examples of hypothetical universes are tlw 
universe of all values whi<'h til<' bank rate can have in ten years' time, 
and the uuin·rse of the possihk ways in which three balls can be arranged 
on a billiard table. 

18.5. A hypothfti(•;J) unin•rsc may, iu fact, he imagined around 
any observed event. We have only to pi<"ture all the cireurnstances 
before the event happens ; the unin·rse is then all the possible ways in 
which it could happen. \Vhieh of the ways it will happen does not affect 
the universl'. \\'c know that " l'rolll the ehaos of predestination and 
the night of our forebl·ing " some one individual will emerge to assume 
the mantle of reality ; but whi(·h oue that will be is another and more 
difficult question. 

18.6. The studeni of metaphysi<'S would perhaps criticise the 
thoughts expressed brielly ir, the previous two section;;, but we han no 
space to go further into the philosophical implications of the idea· of 
hypothetical universes. The problems which arise in this conu(·ction 
have, however, far more than an ahstrad interest. Thev lie at the rnot 
of a great many practical statistical problems, and most students, howeYer 
U(ilitarian their outlook, will find that a clear perception of the issues 
involved may save a lot of thought and labour at a subsequent stage. 
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The literature on this subject, unfortunately, is scattered ; but referenc~ 
may ~ith &:dva~tage be made to the works cited in refs. (388)-(390). 

Universe of Universes • 
. 18.7. Just as 8 universe may contain 8 number of sub-universes, 

so any given universe may be a member of some more widely defined 
universe. For example, the universe of inhabitants of Great Britain is 
8 member of the universe of universes, each of which consists of the 
inhabitants of some European country. 

Similarly, any existent universe may be rrgarded as one member of 8 

hypothetical universe of universes. For instance, the normal universe 
of men whose heights have 8 mean of 65 inches and standard deviation 
3 inches is a member of the hypothetical universe of all populations 
which are normally distributed with respect to height •. 

18.8. We shall sometimes have to discuss aggregates which it is 
difficult to regard as composed of individual members at all-for example, 
we may wish to sample a reservoir of water to test for pollution. In 
theory, perhaps, we could in such a case regard the reservoir as a universe 
composed of molecules each of which was an individual, but in practice, 
as we shall see, thi!j is not usually 8 convenient method of approach. 
Such universes may frequently be treated 'as composed of arbitrary units, 
e.g. the reservoir may be regarded as composed of so many pints of fluid. 
Similarly, a 280-lb. sack of flour may be regarded as composed of 4480 
ounces, and . we can, if we like, regard it as weighed out into one-ounce 
packets. • 

18.9. ·we can now turn to discuss the aims which usually underlie 
a sampling inquiry. ' · . 

Briefly, the fundamental object of sampling is to give the maximum 
information about ·the parent universe with the minimum effort. We 
must, therefore, consider the type of information we require and the 
methods by wliich it is.to be obtained. 

18.10. In sampling a universe we usually have in mind one or more 
of its variates. For instance, when "we sample the population of Great 
Britain, we are not so much interested in the individual~ as human beings 
as in one of their qualities, such as height or weight, or perhaps the correla
tion between height and weight. Our object will then be to get, from the 

_ sample, an idea of the frequency-distribution in the parent universe 
according to the chosen variates. · · 

The ideal for this purpose would be to express the distribution in some 
mathematical form such as a Pearson curve (10.48). It may be, however, 
that the parent universe will not admit of this representation, or that the 
sample is not large enough for us to venture on it with any confidence . 

. In such cases we attempt to find estimates of certain constants of the 
· parent universe. Very often this is all we need. · \Ve can, for example, 
form a very fair idea of the height distribution of the population of Great 
Britain if we know the mean and the standard deviation. If we can go 
further, and find the third and fourth moments, our idea will be better still. 

Theory of Estimation. 
18.11. Hence, a large part of the theory of sampling is devoted to 

finding from the sample estimate!!. of certain constants of the parent 
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universe. Such constants include the measures of position and of dis~ 
pcrsion, together with· the .moments and measures of skewness ; and, in 
multivariate universes, the various total and partial correlations. . · 

In general, there are more ways than one of estimating a constant from 
the data of the sample. Some of these ways will be better than others. 
The Theory of Estimation treats of these and cognate matters. It 
seeks to investigate the conditions which an estimate should obey, what are 
the best estimates to employ in given circumstances, and how good other 
estimates are in comparison. 

Precision of Estimates. _ 
18.12. It will be obvious that knowledge derived from a sample is not 

of the categorical kind customary in mathematics. If we have)OOO balls 
in a bag and draw 999 of them which till'Il out to be black, it is always 
possible that the remaining one is of some other colour. It is, however, 
so improba4Je, that in most practical cases we should be justified in con-
duding that the balls were all black. . 

If we did draw such a conclusion, and acted upon it, we should be basing 
our action, not upon certainty, but on probability. One does this kind 
of thing, of course, in nearly all everyday actions almost without noticing 
it. Some events, such as the death of a man before reaching the age of 
150, have such a high degree of probability that we never regard them as 
other than certain; other events, such as the possibility of rain to-morrow, 
are so uncertain that we should hesitate to make an important decision 
contingent upon them. 

18.13. The second aim of the theory of sampling is, therefore, to 
determine as objectively as possible what degree of confidence we can put 
in our estimates when they are obtained. · This we .do in terms of prob
ability as far as we can ; if this proves impossible, we sometimes have to . 
rely on intuitive impressions or the results of previous experience, which 
are not expressible in quantitative term'>. . 

Put in another way, we may say that our object is to determine the . 
precision ot an estimate. We attempt to do this by assigning limits to 
the prohable divergence between the estimate based on the sample and the 
true value of the estimated quantity in the universe. 

18.14. The accuracy of the estimate will depend on (a) the way in 
which the estimate is made from the data of the sample, and (b) the way 
in which the sample was obtained. Consi~eration of the first leads us 
again to the theory of estimation. The second leads us to study the· 
technique of samplin~ and the desi~n of statistical inquiries. 

Tests of Si~nificance. 
18.15. If the sample is small we cannot, as a rule, assign to the 

estimates we obtain sufliciently narrow limits to locate the universe value 
with any serviceable accuracy. For example, a correlation of +0·5 in a 
sample of twelve might arise, rather infrequently, from a normal universe 
in which the true correlation was as high as + 0·9 or as low as zero. For 
such samples our que&tions are accordingly framed in more qualitative 
terms : we do not ask, '' What is the value of the correlation in the 
universe?" but, " Is the observed value significant of the existence of any 
correlation at all in the universe, whatever its value?" In other words. 
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we ·wish to know whether the observed value could have arisen from a 
universe in which the true correlation is zero. If our conclusion is that it 
could not, we may say that the sample value is significant of correlation, 
although we cannot say with much confidence what that correlation is. 

Much of the investigation arising out of small samples is thus of a rather 
special character, and deals with tests of si~nificance. The methods 
developed for the purpose of conducting such tests can be, and not in
frequently are, applied also to large samples, either alone or supplementary 
to the direct approach of forming more or less precise estimates of the 
various quantiti~s which specify U~e parent universe. 

Types of Samplin~. · 
t8.i6. The process of forming a sample consists of choosing a pre

determined number of individuals from the parent universe. The choiee 
may be exercised in three ways: 

(a) By selecting the individuals at random (the meaning of" random" 
is discussed below). · 
_ (b) By selecting the individuals according to some purposive principle. 

. (c) By a mixture of (a) and (b) . 
. • . I 

" ·_ Thus, in taking a sample of the inhabitants of Great Britain to study 
their income we might, according to method (a), select the individuals 
at random from census returns; or according to (b) we might, kno"ing 
roughly the average incomes in various age-groups, purposely select from 
each group an individual whose income was somewhere near the average in 
that group; or (c) we might decide to take ten individuals from each group 
and select those ten by method (a). -

18.17. Sampling of type (a} is called random sainplin~. That of 
type (b) is called purposive sampling. That of type (c) is sometimes 
referred to as mixed samplin~. If the universe is divided into "strata" 
by purposive methods and then a portion of the sample i~ taken from 
each ".stratum," the s_ampling is said to be stratified. 

The application of each of these types may be affected by what is known 
as bias. This is the name given to perturbations which influence the 
·nature of the choice and make it something other than what the experi
menter intends itto be. Bias may be due to imperfect instrumt'nts, the 
personal qualiti~;s of the observer, defective technique, or other causes. 
Like experimental error, it is difficult to eliminate entirely, but usually 
may be reduced to relatively small dimensions by taking proper care. 

By an obvious extension of the nomenclature, we talk of a sample 
obtained by random sampling as a random sample, that obtained by 
purposive sampling as a purposive sample, and so on. 

Random Samplin~. 
18.18. The reader no doubt already has some_ intuitive ideas about 

randomness of choice. We may give a formal definition of random 
sampling by saying that the selection_ of an individual from a univers~ is 
random when each member of the uruverse has the same chance of bemg 
chosen. Similarly, a sample of n individuals is random when it is chosen 
in such a way that, when the choice is made, all possible samples of -n have 
an equal chance of being selected. -
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18.19. The first question arising out of this definition which 'fe ha,ve= 
to ronsider is : How are we to obtain a random sample ? · · 

This qub'tion is more difficult than it appears at first sight. It might 
be thought that any purely haphaza~ method of ~election 'YoulJ give a · 

- random sample. For example, if we WIShed to obtam a random sample of ... 
local tradesmen, one WflY ·which suggests itself is to take a Trades Directory, 

_ open it "at random" and take the first name on which the eye alights, · · 
. _repeating the process until the sample is of the required size. Or again, 

if we wished to obtain a random sample of wheat growing in a field, it might 
be thought that a satisfactory method would be to throw a hoop in the air . 
" at random ~· and select all the plants over wbich it fell· . . . · . 

18.20r That such methods are apt to be deceptive may be seen from 
the two examples we have just given. In the first, if we consulted· a Trades 
Director)" ~·hich had already been used, we should probably find that it 
opened at some pages more readily than at others; we should .therefore 
tend to ge£ the more popular tradesmen. ~[oreover, our eye might tend 
to be caught)>y long names or peculiar names. In either case some trades- . 
men would•ha\'e a greater chance of being chosen than others, and the · 
sample would. not be random. . . · . 

Again, in \he serond example, our hoop might tend to be caught by the 
taller ears of wheat, or we might tend unconsciously to throw it towards 
parts of the field where the wheat looked to be about the average height. 
These and ·other factors would destroy the · random character of the 
sampling. \ · 

Human Bias. 
• 18.21. Experience has, in fact, sho.wn that the human being is an 

/extremely poor instrument for the conduct of a random selection. \Yher-' 
ever there is any scope for personal choice or judgment on the part of the 
observer, bias is almONt certain -to creep in. Nor is this a quality which 
can be removed by (,'Onscious effort or training.· Nearly every human being 
has, as part of his psychological make-up, a tendency away from true 
randomness in his choices. · 

We may illustrate the unreliability of f~ee choice on the part of even ·a -
traint'd observer by taking an example of height measurements in samples 
of wheat plants. In the course of certain work at the Rothamsted 
Experimental Station, sets of eight wheat plants were selected for measure
ment. Six of these shoots were C'hosen by purely random methods. The 
other two were chosen •• at random .. by eye. . If, in any set, the eight . 
shoots 11·ere ranged in order of magnitude, the two chosen by eye could·. 
have any places from one to eight; and if they, iri common with the oiher 
six, were really random, they should have occupied these places with equal 
frequency in a reasonably large number of &t"ts. Table '18.1 shows the 
!'e!iulting. frequt"ncies in the ranks one to eight for 116 sets taken on 
31st May (~fore the ears of wheat l1ad formed) and 112 sets taken on 
28th June (after the ears had formed). 

}'ig. 18.1 shows the same results graphically, the dotted line giving · 
the frequ~ncies to be expected if the choice was really random. . 

The divergence of the ~tual from the expected results is very striking,· 
and clearly cannot be attnbuted to fluctuations of sampling. It will be 
seen that on 31st 1\lay, before the ·ears had formed, the observer ·was 

22 
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TABL& ~18.1.-II~ghl ltltamrt'IMJitf of Wllml. FrtfJU"'dt• o/ Plm~t. ChnH:n bg Eye 
in Rm•b 1-8. (F. Yates, ••Some Exampll'll of Biased Sampling," Annat. of 

. Eugenic•, vol. 6, 1935, p. 20:1.) 

Date. Observation. 
Allcending Order of Magnitude Rank. Eipectation 

Total. .in 
. . 

~· 
Each Clue . 

May 31 

June 28 

~hoot height 

Ear height 

30 

1>)20 .:s , 

1 

9 11 8 11 18 

9 27 23 15 10 

l- -------------------~----.. . . 

J:IO t----. 

7 8 

21 31 116 

5 f 112 

oL-~1 ~~2~-~~s~L-~4~-_~5~~6~~~7~-aB~ 
Ra:z,las 

(a) Distribution of Shoot Heights (31st May) in Ranks 1-8. 

} 

.• 

0 . l z 4 5 
/Wiles 

n-
6 1 8 

(b) DisUibution of Ear Heights (28th June) in Ranks 1-8. 

14·5 

H 

Fla.l8.1.-Distribution of Wheat Plants according to Height. (Table 18.1.) 
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strongly biased towards the taller .shoots; wherea.S in .June, after the 
ears had formed, he was biased strongly towards a central ~ition and 
avoided short and tall plants. 

18.22. Sight is not the only sense which may bias a sampling method.' 
In certain experiments counters of the samt: shape but of different colours 
were put into a bag and chosen one at a time, the counter chosen being 
put back and the bag thoroughly shaken before the next trial. On the 
face of it· this appears to be a purely random method of drawing the 
counters. · Nevertheless, there emerged a persistent bias against counters 
of one particular cOlour. After careful investigation the only explanation 
seemed to be that-these particular counters were slightly more greasy 
tlla.n the others, owing to peculiarities of the pigment, and hence slipped 
through the sampler's fingers. . 

The student may perform similar experiments for himself. One of 
the simplest is to ask a friend to recite " at random " one hundred digits, 
including zero, and then count the number of odd ones. If the numbers 

·are reallY. \andom, the number of even ones and odd ones should be about 
equal, bu"t, there will frequently be found a bias one way or the other. 
. 18.23. • Enough has been said to show that if we are to evolve a. 

satisfactory method of random sampling we must eliminate all personal 
choice. The method· of selection must, therefore, follow some code of. 
procedure which leaves nothing to the observer's idiosyncrasies. 

It may sound a little paradoxical to obtain true randomness by follow
ing rules of procedure. \Ve are reminded of Bertrand's question: "How 
can we talk of the laws of chance, which is the·negation of all law!" 
The ensuing sections will, it is hoped, remove any doubts on this head. 

Technique of Random Sampling. . 
18.24. The inethods adopted in any given case to ensure as far as 

possible that the sampling is random depend to some extent on the size 
and nature of the universe. Certain modes of procedure which are con
venient for small universes are not so for large universes. \Ve shall also 
see that sampling from a hypothetical universe has a special significance 
and special difficulties of its own. -

18.25. The criterion that every individual should have an equal 
chance -of being chosen may be put in a somewhat different form. If the 
method of selection is independent of the properties of the sampled universe 
which it is desired to investigate, there will, so far as those properties are 
concerned, be no reason why one individual should be chosen rather thari 
another. Hence all values of the properties which occur in the universe 
will have an equal chance of being chosen. If, therefore, we can produce 
a mode of procedure which bears no relation to the -properties of the 
parent universe which we are discussing, we may expect that it will give 
a random sample, so far as those properties are concerned. . 

18.26. We may now consider a few examples of the kind of procedure 
to which this rule leads. . 

Suppose we wish to take a sample of the inhabitants of a street. 
T~ey are already arranged in houses, and for the sake of simplicity we 
will take our problem to be that of seltcting a number of houses whose 
occupants will comprue our sample. , ' 

Lt:t us take as our rule of procedure the selection of every tenth house, 
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starting at some arbitrary point. Unless there are peculiar circumstance!!, 
it is. presumable _that the p~operties· we are innstigating, which may, 
for mstance, be mcome or s1ze of family, are not grouped periodically 
along the street. The method of selection is then independent of the 
properties of the universe and the sampling will be random • 

. If, however, the street were divided into blocks by cross-str~ts at 
every tenth house, so that every house in our sample was a comer house, 
and therefore, possibly, a shop, it is easy to see that the sample is no longer 
random. Shops occur, in fact, along that street with period ten, and 
since our method of selection has also that period, the method and the 
qualities under investigation are no longer independent. 

18.27. We might then fall back on· a different method. If we take 
a pack of plain cards, as similar as we can get them, we can make one card 
c~rrespond to one of the houses by writing on it the number of the house 
in the street. The pack would then be a kind of miniature of the universe 
for sampling purposes. 'We can draw a sample of houses by drawing a 
sample of cards, and if we shuffle the pack well we have every rea.o;on to 
hope that a random sample will result, for it is hard to imagine any way 
in which the method of shuffling and drawing could be dependent on the 
properties of the uni,verse. It is not impossible to make it so, however. 
For instance, if the ink with which we wrote the numbers on the cards was 
slightly adhesive, the larger numbers would not be so easy to draw out 
as the small ones, and we should tend to get houses at one end of the 
street. If such houses were of the poorer class, our sample for the purpose 
of investigating income would not be random. 

Lottery Sampling. 
18.28. The method we have just described, of constructing a minia

ture universe which is easily handled, is one of the most reliable methods 
of drawing a random sample. It is the method usually adopted in drawing 
the wiuning· numbers in sweepstakes and lotteries. In such cases the 
universe is the aggregate of persons 'owning tickets in the lottery. To 
every member of this universe there corresponds a number, the totality 
of which numbers, written on pieces of paper, comprises the miniature 
universe. In practice, these pieces are placed in similar containers, 
usually small metal cylinders, and thrown into a large rotating drum, in 
which they are thoroughly niixed or " randomised.'' 
_ 18.29. The practical difficulties of constructing the miniature 
universe and of shuffling it are, however,· severe if the parent universe is 
at all large. The method is, of course, inapplicable on theoretical grounds 
if the universe is not finite. To save the trouble of work l'lith tickets it 
is often possible to use numerical methods. _ 
· As a rather extreme case, let us consider a method of taking a random 

sample of the universe of visible stars, which is finite. We will take a 
star to be defined on the celestial sphere by latitude. and longitude, and 
will ignore difficulties arising from ·the existence of double stars or un-

- resolved objects. "'hat we want, then, is a set of random pairs of lati
tudes and longitudes. As a crude method we might take an atlas of 
the world and choose the figures set out in the index for places arranged 
alphabeti~y. But it is easy to see that this method is unsound ; for 
there "ill be more names associated _with the more populous· districts, 
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and he~ce the values given in the index will tend to clu~ter rohd_ certo.in 
points and avoid others-there ·will be none in the middle of seas or at 
the poles, so that the pole star has no chance of being selected. . · · . 

Let us then take a set of statistical tables and open it haphazardly. 
,\. e shall be confronted with a page of figures, and if we take, say, the tenth 
figure in each row we shall probably get a set of digits which are random. · 

- · Suppose the first ten digits obtained in this way were 7, 0,. 4, 7, 9, 6, 8, 
2, 9, I. \Ve might then take our star to be defined bjr latitude 70° 47·9'. 
and longitude 68° 29·I'. Another page will give us another star, and 
so on. 

Tippett's Numbers. 
18.30. The difficulty in applying the method we·have just described . 

lies in ensuring that the numbers we obtain are really random; l\[ani 
tables Qj figures, such as logarithm tables, may fail to give random digits 
because there is a relation between the figures in successive row:s. To 
obviate this difficulty certain Tables of Random Sampling Numbers have 
been coftstructed by L. H. C, Tippett, by whose name they are known 
(ref. (605}). · . · 

Tippett's numbers consist of 4I,600 digits taken .from census repmts . 
and combined by fours to give 10,400 four-figure numbers. \Ve give here 
the first forty sets as an illustration of their general appearance : 

295Z 6611 3992 9792 7919 59JI 3170 S624 
4167 9524 I545 I396 7203 5356 1300 2693 
2370' 7483 ~408 2762 3563 1089 69I8 769I 
0560 5246 1II2 6I07 6008 8I26 4233 8776. 
2754 9I48 I405 9025 7002 6III . 8816 6446 

. The reader may wonder how it was ensured that these digits are ra.ndom. 
They were chosen haphazard, but the real guara~ttee of their randomness 
lies in practical tests. We may say at once that Tippett's numbers have 
been subjected to numerous investigations which make their randomness 
for many practical cases highly probable, Their use will be apparent from 
the following examples:- · 

EJ:ampk 18.1.-To take a random sample of 10 from the "uni~erseo of 
8585 men of Table 6.7, page 94. 

Here we have 8585 individuals. We will number them from I to 8585. 
The problem of selecting ten men at random is then that of finding ten 
numhers at random between I and 8585. W'e therefore take a page" of 
Tippett's numbers and select the first ten on the page which are not 
~:reater than 8585. Thus, if our page were the one on which appear the 
!lUmbers we haYe quoted _above, our ittdividualli would be those correspond-
mg to the numbers, readmg across, · . · , 

2952, 66H, 8992, 7979, 5911, 8170, 5624, 4~67, I545, I806 ' 

If we itrutgine the n~mbe~ing to be done' in order of height, starting with 
the sLortt:st and endmg w1th the tallest, we t>ee that the first individual falls 
in the ~roup _66-•, the s~co~d. in the group ~9-•, an_d ~o on. The ~eight
ranges m whiCh the ten md1v1duals fall are, m fact, m mches; . 

66-, 69--, 67-, 71-, 68-, 6~, 68-, 67-, 65~, 65-
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Let us take their heights as being given by the centre points of these ranges, 
and find their mean.· We have: . · 

~u -l~r ... l•o-( 66 + 69 + + 65) 

=67·2 

Hence the mean is 67·6. inches, as against the true value of 67·46 inches in 
the whole universe. 

Example 18.2.-To take a sample of 5 from the distribution of screw 
lengths of Table 6.3, page 84. . . • 

Here we have 206 individuals. It would clearly be a waste to use only 
numbers from 0001 to 0206 for the screws and to neglect the rest, and we 
are able to bring, nearly all numbers into play by the following device. 
We note that 206 goes 48 times into 10,000, with a certain remainder. In 
fact, 206 x 48 ~9888. · \Ve therefore attach 48 numbers to each screw • 

. Taking them in order, beginning at the shortest, we let the first screw 
· correspond to the numbers 0001 to 0048, the second to 00 i9 to 0096, the 

third to 0097 to 0144, and so on, the 206th screw cQrresponding to the 
numbers 9841 to 9888. Numbers above 9888 we leave out of account. 
Referring to the table, we see that there is one screw in the first category 
( 5 to 6 thousandths short of an inch), four in the second ( 4 to 5 thousandths 
short of an inch), and soon. The-numbers (!9rresponding to screws in the 
different categories will then be 0001-0048, 0049-0240, 0241-0768, and 
so on; or, in tabular form, . 

Difference in Difference in 
· ·Nwnbel'll Length from Numbel'll Length from 

1 inch 
(thonsandths). 

Corresponding. 1 inch 
(thousandths) • 

Oorresponding. 

. 
-6 to:....s 0001-0048 +1 to+2 5857-7488 
-5 to-4 0049-()240 +2to+3 7489-8688 
-4to-a 0241...()768 +3to+4 8689-9-156 
-3 to-2 0769-1824 +4to+5- 9457-!IS.W 
-2to-l 1825-3024 +5to+6 9841-9888 
·-I to 0 3025-4320 

Oto+l 4321-5856 

We now ta~e five Tippett numbers from the tables. For instance, 
we might take the five in the first column of 18.30, i.e. 2952, 4167, 2370, 
0560, 2754. The screws correspondi.ng to these numbers will be 1·5, 0·5, 
1·5, 3·5 and 1·5 thousandths short of the inch respectively. 

If we had obtained two numbers, say 0001 and 0002 in the first category, 
we should have been faced with the necessity for a decision on how the 
sampling was to be regarded, for there is only one screw in this category. 
If we suppose that a sampled screw is abstracted from the universe, it can 
only be drawn once ; and hence we should have had to ignore all numbers 
in the category 0001 to 0048 subsequent to that which first occurs. If, on 
the other hand, the screw is replaced, we can draw it as often as we like. 
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E.:rample 18.3.-In Example 3.5, page 40, we had the folloWing data 
ghing the association between inoculation against cholera and exemption 
from attack in 818 subjects:-

I· X ot attacke<l. A$tacke<l. Total 

I 

Inoc~ . 2i6 3 2i9 
(0001-331%) (3313--33!8) 

Not inoculated. 4i3 . 66 539 
(33!9-9024) (9025-9816) 

I 

I Total . 749 69 818 

Let us take a sample of 10 from this universe. _ 
\\"e o,lherve th!Lt 818 goes into 10,000 twelve times, with a certain 

remainder, In fact, 10,000 = 12 x 818 + 18-&. \l" e can therefore attach 
12 Tippett numbers to each member of the universe. To the 276 inoculated- , 
not-attack~ individuals we attach the numbers 0001 to 3312 (12 x 276). 
To the 3 inoculated-attacked indi\iduals we attach the numbers 3313 to 
33.&8 (a range of 36, equal to 3 x 12). Similarly for the remaining indi
Yiduals. The Tippett numbers corresponding to the indiYiduals in the fo.ur . 
compartments of the table are shown in brackets above. . • 

We then take ten random sampling numbers from the tables, say the 
first ten. reading across, from the numbers given on page a.n. If we had 
come across a number greater than 9816 we should have ignored it. The 
first number, 2952, giv-es us an indi,·idual falling in the inoculated-not
attacked class ; the second, 66-U; gives us a member of the not-inoculated
not-attacked class ; and so on. The 10 numbers give the following 
results:- · 

I I .Sot attacked. Attacked. Total. 

! 
lnoeulat.ed ·I 2 . 0 2 
Not inoeulated • 6 2 8 

I 

I ·I 
. 

Total 8 2 10 

Ezample 18.-l.-Strictly &pe~ing, Tippett's numbf:rs are applicable 
· only to ~>&mpling from a finite universe, for we cannot attach a different 
Tippett number to each member of an infinite aggregate. But, by the 
following de,·ice, we can apply the Tippett tables to draw samples from a 
continuous (and therefore infinite) universe which is specified by a mathe
matical equation in such a way as to give us the proportion of the total 
frequency in ginn Tangt8 of the variate. -

In f~U:t, let us draw a sample from a normal universe with unit standard 
de\iation and unit total frequency. 
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Let us take ranges of 0·1 on each side of the central ordinate. Table 2 
of the Appendix will then give ·us the proportion of the frequency lying 
in these ranges. As in Example 18.1, we divide up the numbers from 
0000 to 9999 in proportion to these frequencies, and this is, in fact, a par
ticularly simple matter. All we have to do, for the positive values of the 
variate, is to take the figures 1n the second column (areas) and round them 
up to four figures. E.g. for the first interval 0·0 to 0·1, there will corre
spond the numbers 5000 to 5398; to the interval 0·1 to 0·2, the numbers 

· 5399 to 5793 ; to the interval 0·2 to 0·3, the numbers 579-1 to 6179 ; and 
so on. For the negative values of the variate '!Ve have, similarly,. for 0·0 
to - 0·1, the numbers 4601 to 4999; for - 0·1 to - 0·2, the numbers 4206 
to 4600; for- 0·2 to - 0·3, the numbers 3820 to 4205; and so on, there 
being as many numbers in any negative range as in the corresponding 
positive range. Occasionally· doubt may arise in assigning a number to a 
givep. interval owing to the difficulty of rounding up a figure ending in 5. 
In practice it is not likely to make any difference which interval we 
choose; if it threatens to do so, we can take the doubtful number to refer 
alternately to the two possible intervals. 

Having assigned numbers to the ranges, we sample from Tippett's 
tables in the ordinary way. For instance, a number 5500 will correspond 
to a member in the range 0·1 to 0·2. If we wish to ascertain the mean of a 
sample, or some similar function of the variate values, we take the variate 
value of any individual to be the centre of the interval in which it falls. 
This is an approximation, but the narrowness of the intervals justifies it in 
most practical cases. ' 

Further examples will be found in a note by Karl Pearson prefi:"C:ed 
to the tables of Tippett numbers themselves. It may be remarked that 
the tables may be used to give more than .10,400 sets of random four

- figure numbers ; we may, for example, construct additional sets by 
. reading the numbers downwards, or taking every other digit diagonally, 
and so on. 

Sampling front Infinite Universes. 
18.31. The methods we have just· been discussing are appropriate 

onry to those cases in which the universe is finite, so that it was possible 
to associate w~th each individual one or more Tippett numbers ; or to 
universes which, though infinite, can be treated by the method of Example 
18.4 owing to their complete specification according to the variate under 
discussion. The required conditions are met with in much of the material 
treated in practice, particularly in demographic and economics work ; 
but in other work the universe may be either infinite or so large as to be 
infinite for all practical purposes, and a P,ifferent technique must therefore 
be used .. 

Consider, for example, the problem of drawing a random sample from 
·a sack of flour. \Ye clearly cannot number all the particles in the sack, 
nor could we extract any given particles and examine them. We might, 
perhaps, reduce this case to that of a finite universe by weighing out the . 
flour into small, say one-ounce, packets and then sampling the packets. 
This is a kind of mixed sampling. But it is also possible to handle the 
problem by a special technique, as follows. 

First of all, we _mix the flour thoroughly. We then divide it into 
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two halve's arid select ~n~ half: (It does not matter which, bu~ for cop.-
. \'enience we may imagine two heaps, one on the right and one on the left, 
and select left and right alternately.) We then divide the half we have , 
chosen into two further halves, and again ·select one; The process is 
continued until the sample has reached a manageable size. We may 
reasonably suppose that it is random, especially if the flour is well mixed 
at each stage before being divided into two. · 

A similar technique may be used for many " continuous " substances, 
such as milk, grain, cement, etc. 

Sampling from Hypothetical Universes . 
. 18.32. The technique for dr~wing random samples brings out a 

fundamental differen~e between existent and hypothetical. universes. 
Taking ·a simple but typical case, let us· draw a sample from the universe 
of throws of a die. . . 

The methods we have previously used are quite obviously inapplicable 
here. 'Ve.cannot construct a card· universe, because ·we do not know 
the naturG of the parent universe. ·.Nor can we put all the possible throws 
in a heap, and select from it by continued· subdivision. In fact, there is 
only one tlllng we can do, and that is to. throw the die, and take. our 
results as a sample. . _ 

· 'Vhat reason have we to suppose that this is a random sample ? The 
answer lies partly in theory and partly in technique. In the first place, 
we must adapt O\lr method· of throwing so that the sampling conditions, 
so far as we can see, remain constant throughout the experimenj;. This 
is a matter of technique, and our methods can, in fact, be tested. But 
since our universe does not exist for us to examine separately, the only 
knowledge about it being derived from the sample itself,. it will be clear 
on a little reflection how difficult it is to say that every othez: possibility· . 
in the universe had an equal chance of occurring. We return to this 
point in 18.35 and 18.36 below. 

The Importance of Random Sampling.. .. 
18.33. · We have already remarked on the importance of being able 

to gauge the error of an estimate made from a sample. The practical 
use of the theory of random sampling lies largely in the fact that it allows 
us to measure objectively, in terms of probability, errors of estimation or 
the significance of a result obtained from a random sample. The purposive 
methods to which we refer below do not do this, or at least have not yet 
been made to do so. The present trend among statisticians is, therefor"e 
on the whole, in favour of the use of random sampling methods except i~ 
certain special cases. 

18.34. At this point • we may bring forward two important con-
siderations. ' · ·, 

In the first place, it must not be forgotten that random sampling may 
produce the most unrandom_-looking resl.llts. For instance, we usually 
regard a hand of cards at bndge as a random sample from the universe 
of 52 which comprise the pack ; hut it is not unknown for a hand of 
13 spades to be _dealt. T~e fact that .the sam:ple looks purposive, ther~
fore, pr(J('el nothmg. But 1~ does provtde a basts for strong presumptions . 
. How s~rong those presumptions may be the student may judge.,for himself 



346 THEORY OF STATISTICS. 

-by imagining what he would think of a card party at which he got 13 
spades twice in succession I 
. Secondly, we can never be absolute!~ c~rtain that a method of sampling 
IS random. · There are doubts on a pnon grounds because for any given 
method there are always conceivable sources of bias, and l\·e can never 
rule out entirely the possibility that some of these sources are present. 
The utmost we can do is to make their presence extremely unlikely by" 
taking great care with the experiment. 

18.35. We can, however, apply tests to judge the randomness of a 
sampling method. If we draw a single sample from a known universe, 
the result will tell us nothing about the method adopted ; but if we take 
a large number of samples they should, if the sampling is random, be 
distributed in a certain way, and for some universes we· can calculate 
mathematically what that way ought to be. If, therefore, we apply our 
sampling method to such a parent universe and find the results widely 
divergent from expectation, we have every reason to suspect our sampling 
technique. Per eontra, if the results and expectation are in accord, there 
is good ground for reliance on the sampling. . · 
· 18.36. Tests of this kind presuppose that we know the form .of the 
parent universe. In sampling from a hypothetical universe we do not 
know this, and are• forced to estimate it from the sample. Clearly, we 
cannot use this estimate to criticise the method by which the sample was 
obtained without some closer inquiry. 

Similar problems may arise for existent universes when we· do not 
know the nature of the parent universe but have to estimate some or all 
of its characteristics from the data of the sample. In such cases it is 
extremely difficult to be completely satisfied that the sampling is random. 
Frequently the best we can do is to use a method which has been found 
satisfactory for other universes and hope, in the absence of any indication 
t.o the contrary, that it will also be satisfactory for the present unh·erse. 

Purposive Sampling. 
18.37. We have already pointed out the dangers of introducing bias 

if the observer gives rein to his inclinations in choosing a sample, and 
have stressed the fact that in general there does not exist a mrthod of 
aSsessing the degree of accuracy of an estimate made from a purposive 
sample. In spite· of these handicaps, however, there are cases where 
purposive selection is a useful method. In this book we- shall not con
sider it in any great detail, because the reliance placed upon it depends 
largely on the circumstances of the case, remains to a great extent a 
matter of personal opinion, and is not capable of being discussed by 
elementary methods. Nevertheless, our brief survey would be incomplete 
without some reference to it. . 

18.38. Let us first of all consider the case of an observer who wishes 
to take a sample of two or three turnips from a cart-load. A random. 
sample might give us several very large or very small turr:Ups, though it 
is unlikely to do so. But if we allow the obserwr to run h1s eye on·r the 
"''hole load and then choose, he is most likely to take what he regards as 
average turnips-i.e. average in size, weight, shape, and whatever other 
quality may be in his mind. · . 

· It may be claimed, with some p~ausibility, that this purposive method 
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is more likely io give us a sample which is typical or representatiJe o~ the 
universe than a random method. The random sample may vary Widely 
from the average, whereas the purposive sample does not. This gives 
the latter an advantage as a rule ; but it may be pointed out-:-

(a) That as the sample becomes larger the random sample becomes 
more and more representative of the parent, whereas, owing to bias, the 
purposive sample in general does not. · · 

(b) That in many cases the object of the sample is to give us information 
about the whole of tl).e universe ; the purposive sample might tell us more 
about the mean weight of the turnips, but would probably give a worse 
idea of the variance of the weights because the observer has deliberately 
chosen values near the mean. 

18.39. If we had to choose between pure random sampling and 
purposive sampling, our choice would probably be determined by balancing 
the uncertainties of the former, which are mainly due to fluctuations of 
chance, ami the uncertainties of the latter, which are mainly due to bias. 
In practice,; however, it is often possible to combine the two methods 
in stratified sampling 11,nd gain some of the advantages of each while 
minimising their disadvantages. . · 

The essentials of this process lie in dividing the parent population into 
strata and taking a random sample from each stratum. For instance, if 
we are taking a sample of earned incomes, we might first group individuals 
into classes "earning up to £500 per annum," "earning from £500 to 
£1000 per annum," and so on, and then choose a random sample from each 
class. Or, if we wanted a sample of farms in Great Britain, we might first 
classify them roughly as " devoted mainly to arable~ crops," " devoted 
mainly to milk production," "devoted mainly to vegetable growing," etc., 
and again take a random sample from each group. 

18.40. Finally, we may also sample a universe by first of all arranging 
its individuals in groups. This amounts to taking a different sampling 
unit. For instance, in sampling the population of Great Britain we might, . 
as a matter of convenience, take· streets or local government districts 
instead of individual human beings as our unit. We have already had an 
instance of this type when ·we suggested as one way of sampling a sack of 
flour that it might be weighed out first into one-ounce packets. . The 
process is obviously more convenient when this grouping has been done 
for us, e.g., in census returns. , · . 

18.41. Each branch of science and industry presents its own ~ampling 
problems, and it would be difficult to expand the foregoing discussion so as 
to include the detailed requirements of the worker in every sphere. We 
will conclude this chapter with an example of the way1n which all the 
methods we have described may be pressed into service in order to give a 
sample which is as representative as practical limitations will allow. 

It is the practice in England for manufacturers of sugar from sugar beet 
to pay t~e g:rowers a<:cording to .the. suga_r content of their product. The 
~eet, wluch 1s not unlike a parsmp, IS dehvered to the factory in lots of at 
least several tons with a certain amount of waste material, such as earth 
adhering to it. The problem is, then, (a) to find the net weight of the beet 
when cleaned and ready for the slicing process, which is the first stage in 
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the extraction of the sugar, and (b) to ascertain the sugar content. The 
method of procedure is as follows :-

The gross weight of the load of bel'! usually is first obtained by weighing 
the lorry which contains it when full, and when empty. F'rom the mid,Ue 
of the load of beet is then abstracted about· 28 pounds, which is carefully 
weighed, and then cleaned and weighed again. The difference in the 
weights gives the " tare," that is to say, the proportion of waste matter, 
and a proportional amount is deducted from the whole load to give the 
net weight of beet. This process is equivalent to taking a random sample 
and assuming that the value of the •• tare" in the sample is the value in the 
whole universe. 

The "'l.mple Of washed beet is then laid out on a table and arranged with 
the root'> in order of size. From this sample a smaller sample is taken by 
choosing a beet every so often. This is a process of pure purposive 
selection. ' 

The reduced 'lmmple is still inconveniently large, so it is reduced by 
taking a slice from each beet. It is knctwn that the sugar in the r04"Jt is not 
distributed homogeneously (although it is roughly symmetrical about the 
axis of the root), so, trained men are employed to slice one section with a rasp, 
the section being that which would be obtained by cutting the root from 
the thick end to the tapered end into two symmetrical halves and thf>n 
repeating the process one or more times.- This selection again is pur
posive in so far as the shape of the section is based on knowledge of the 
distribution of the sugar, but random in so far as it is a_ matter of chance 
what is the longitude of the particular slice chosen. 

\\'ben each beet has been treated in this way there is given a heap of 
pulp which may be analysed. -The heap is, however, as a rule still too 
large. It is therefore well mixed and divided into four heaps. Two heaps 
are thrown away, one is reduced to 2G grammes and analysed by the factory 
and one, similarly reduced, is analysed by the grower's representative. 
This last method of selection is a random method adapted for a universe 
which cannot readily be enumerated. 

The final sample therefore appears as the result of four succes1oive 
sampling methods, two of which are rand~m, one purposive, and one a 
mixture of purposive and random. · 

SU:Ml\IARY. 
'I 

1. Sampling may be random, purposive or mi·xed. 
2. Random sampling owes its importance to the fact that we can asse1.s 

the results obtained from it in terms of probability. _ 
3. The presence of an element of choice on the part of the observer 

introduces the danger of bias, and should not be permitted where it can be 
avoided. 

4. Random samples may conveniently be drawn by the usc of card 
universes or of Tippett's numbers. • 

-------,- 5. The sampling technique adopted in any given case will depend largely 
on the circumstances of that case and the r~sources of the observt·r. At 
the present time the reliability of estimates made from samples is partly a 
matter of indh·idual opinion founded on intuitive ideas, unless the sampling 
methods are random. 
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E..XERCISES. 

18.1: Draw a random sample of 20 from the universe of men of the last 
oolumn of Exercise 6.6 (inhabitanta of the United Kingdom classified according 
to weight). Find the mean of the sample and oompare it with-the mean of 

· the unh·erse. · 
18.2. Deal yourself a hand of-13 cards from au: ordinary pack of 52 playing . 

cards and oount the number of court cards. Use' your result to estimate the 
number of oourt cards in the whole pack. 

Repeat the experiment ten times, .taking a new deal each time, and oompare .. 
the mean of your results with the true value, 12. 

18.3. Suggest a method for obtaining a random sample of words from the 
English language by the use of Tippett's numbers and a dictionary. 

18..4. Draw a sample of 30 from the universe of the last oolumn of Table 6.7, 
and find the standard de,.iation. Compare your result with the standard 
dniation of the universe •. -. 

18.5. Sug~ a pos&ible source of bias in the following:-
·(a) A balftl of apples iS sampled by taking a· handful from the top. 
(b) A mixture of sand and sawdust is sampled by "scooping up a 

quantity from the bottom. - - . 
(c) A set of digita is taken by opening a Telephone Directory at· 

random and choosing the telephone numbers in the order in 
which they appear on the page. 

(d) Readers of a newspaper are sampled by printing in it an invitation 
to them to send up their observations on some topical event. 

(e) Investigators into the size of families in a town oonduct a house
to-house inquiry (1) in the morning, (2) in the afternoon, 
ignoring those houses at which there is no reply • 

.J8.6. Draw 100 samples of 10 from a normal universe by means of Tippett's 
numbers, and form the frequency-distribution of their means. 

18.7. In the data obtained in Exercise 18.6, form the frequency-distribution 
of the root-mean-square deviations of the samples about the: mean of the parent 
uni,.·erse. . . 

18.8. Draw 100 samples of JO from the Poisson wiiverse of 10.47, page 191, 
and form the frequency-distribution of their means. . 

18.9. Draw 500 samples of -1 from the universe of Australian marriages of 
Table 6.8, page 96, and form the frequency-distribution of their range. 

18.10. Draw a sample of 50 from the universe of Table 11..4. page 200 (-1912 
dairy oows), and find the correlation in the sample between age in years and )ield 
of milk per wet-k: Compare your result with the oolftlation in the universe. 



CHAPTER 19. 

THE SAMPLING OF ATTRIBUTES-LARGE SAMPLES. 

The Problem. 
19 .1. In dealing with the theory of sampling we shall find it con

venient to preserve the formal distinction between attributes and variables 
which we drew earlier. in this hook. The theory of the sampling of 

- attributes is in many respects simpler than that of variables, and in this 
chapter we shall confine ourselves to it. We shall begin by considering 
a type of sampling which we shall call simple, involving certain limitations 
on the generality of the problem, and shall then proceed to examine the 
removal of these limitations in order to deal with the general case. 

19.2. The sampling of attributes may he regarded as the drawing 
of samples from a. universe containing A's and not-A's. The number of 
A's in each sample, or the proportio~ of A's, will form part of the data 
provided by the samples . 

. We shall find it convenient to adopt the nomenclature of 10.3 and to 
speak of the drawing of an individual on sampling as an "event." The 
appearance of the attribute A may he called a "suc<;_ess " and the non
appearance a "failure.". Thus, in sampling a human population for the 
proportions of the two sexes, we might say of a sample of 100, 45 of which 
were male, that the sample consisted of 100 events, 45 of which were 
successes and 55 failures. (It might, of course, be more convenient
and would certainly be more courteous-to reverse the names and call 
the occurrence of a female a "success" and of a male a "failure.") 

Simple Sampling. 
19.3. By simple sampling ;we mean random sampling in which each 

eve_nt has the same chance p of success, and in which the chances of 
success of different events are independent, whether previous trials have 
bee~ made or . not. These conditions hold good, for instance, in the 
throwing of a die or the tossing of a coin ; the chance of getting heads 
with a coin is not affected by what was obtained on the previous trials, 
and remains constant no matter how many trials are made, provided, of 
course, that the coin does not begin to wear or is not falsely manipulated 
by the experimenter. 

_ Simple sampling is a particular form of random sampling, as we have 
defined it in the previous chapter. Suppose, for example, we take a 
sample of two from a. universe consisting of 6 men and 4 women under 
_random sampling conditions, i.e. so that at each of the two events which 

--'!onstitute the sample every member of the universe has. an equal chance 
of being chosen. If, at the first trial, we draw a man, the chance of doing 
so being y'llr, there will be 5 men and 4 women left in the universe, and 
the chance of obtaining a man on the second trial will be t. This is not 
the same as the chance on the first trial, and hence the sampling is not 
simple, though it is random. 

350 
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Mean and Standard Deviation in Simple Sampling of Attributes. 
• 19.4. Suppose now that we takeN samples. with_ n events in each.· 

The chance of success of each event is p and of 1ts fa~lure q = 1 - p. As 
in 10.6, the frequencies of samples with 0, 1, 2, ••. successes are the 
terms in the series N(q +p) .. , i.e. -

~{q" +nq .. -Jp+ n(n2-1)qn-llpll + ••• +nqpn-1 +p"r 
As in 10.9, this distribution has mean .ftl given by 

_M=np 

and standard deviation (10.10) · 

' u=Vnpq · •• (19.1) 

- 19.5. IIY lieu of rec~~ding tlie" number of successes in each sample 

we might h~ve recorded the proportion of successes, that is, !th of the , - n 
number in ea~h sample. As this would am6unt to dividing all figures 
of the record by n, the mean proportion of successes must be p, and the 
standard deviation of the proportion of successes is given by · 

\ 8= Jij. - (19.2) 

Equations (19.1) and (19.2) are of fundamental importaf\ce. 

Example 19.1.-The following results, due to Weldon, are of interest: 
Weldon threw 12 dice 4096 times, a throw of 4, 5 or 6 being called a . 
success. We have, then, 4096 samples"of 12 from the universe consisting 
of all possible throws of the dice. -· . . 

If the dice are all true, the chance of success is i· Hence, the 
theoretical mean 1ll = 6 ; . theoretical value of the standard deviation 
u=V0·5 x0·5 x12=1·732. . 

The following was the frequency-distribution observed :-
Successes, Frequency. Successes. Frequency. • 

0 1· 847 
1 7 8 536 
2 60 9 257 
3 198 10 71 
4 430 u· 11 
5 781 12. -
6 948 

Total 4096 

Mean ..U = 6·189, standard deviation i7 = 1·712. The proportion · of 
successes is 6·189/12 =0·512 instead of 0·5. 

. E~ample 19.2.-(G. U. Yule.) The following may be take~ as an illust~a
tlon based on a smaller number of observations : Three dice were thrown 
6-18 times, and the numbers of 5's or 6's noted at each throw. p = 1/3, 
q = 2/3; theoretical mean 1; standard deviation 0·816. 
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Frequency-distribution ohser..-ed: 

Successea. F~'}ut'ncy. 

0 179 
I 298 
2 U1 
3 30 

Total 6.18 

.U = 1·034, u = 0·823. Actual proportion of suc<·e-.ses 0·345. 

19.6. The value pn is sometimes called the "expected" value of 
the number of successes in the sample. It is not only the mean value of 
all samples, but is the most probable value and is also representative, i.~. 
it bears the same·ratio p to the number in the sample as the number 
of individuals with attribute A in the universe bears to the total number 
in the universe. The divergences of the number of successes from the 
expected value in any give_n random sample give rise to what we han 
hitherto called fluctuations of random sampling. They are to be regarded 
as deviations due to the nature of the samplin~ process, and not indicati,·e 
of any real properties of the universe itself. 

19.7. Equations (19.1) and (19.2) enable us to deal with the question 
which has arisen several times in earlier chapters of tlus book, namely, 
when can we say that observed deviations from the expected ''alues in 
a sample of. attributes are due to some real effect and are not merely 
attributable to sampling fluctuations ? 

The binomial distribution, to which· samples classified according to 
the frequencies of an attribute give rise, is a single-humped type which 
approximates very closely to the normal for large values of,., the r..umber 
in· the sampl<;. It follows that the great majority of its members lie 
within a range ± 3u on each side of the mean, i.e. of ± 3 \ 1 11pq on each 
side of the value 11p. If the distribution is exa<·tly normal, 0·9973 of the 

. cun·e .lies within this range (10.29). We can therefore say that if a 
particular sample gives a value of p outside this range, the deviation from 
the·expected value is most unlikely to have arisen from fluctuations of 
simple sampling. If n is large, the chanct:s are about 3 in a thousand 
that it arose in that way. • 

It must be emphasised that the free use of the 3u rule is justified only 
if n is large. 

E:rample 19.3.-In the experiments of Example 19.1, 25,H5 throws of 
a 4, 5 or 6 were made out of 49,152 throws altogether. The chance of 
throwing"one of these numbers is !, and hence the expected value is 24,576. 
The observed number was thus 569 in excess of this. Can the de,iation 
from the expecte.d value be due to fluctuations of simple sampling ? 

The standard deviation of simple sampling is 

u=Vflii=Vl x! x49152 

=ll0·9 
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The de\'iation observed is 5·13 times this quantity, and it is therefore 
most improbable that it arose as a sampling fluctuation. w·e must there
fore seek some other explanation of the deviation, and it seems .reasonable 

- to suspect that the dice were slightly biased. 
The problem might, o£ course, have been attacked equally well from 

th~ standpoint of proportion instead of the actual numbers of suc~esses. 
This proportion Is 0·5116 instead of the expected ·o·5000, the difference in 
excess being 0•0116. The standard deviation of the proportion is -

"

1 1 1 . 
8= - x- x--=0·00226 

2 2 49152 . 

and the difference observed is 5·13 times this, which is the same ratio as 
before, as of course it ·must be. · · 

E:rample -19.4.-(Data from the Second Report of the Evolution Com~ 
mittce of the Royal Society, 1905, p. 72.) . . 

Certain crosses of the pea;, Pisum .rativum, gave 5321 yellow and 1804 
· green seeds. l'he expectation is 25 per cent. of green seeds on a Mendelian 
hypothesis. Can the divergences from the· expected values have arisen· 
from fluctuations of simple sampliiJg only? . 

The numerical difference fro~ the expected result is 23. The standard 
deviation of simple sampling is · : 

a= V.0·25 X O·r5 X 7125 =36·6 

The divergence from theory is only about 0·6 of this~ and hehce may 
very well have arisen from fluctuations of simple sampling, . · 

Standard Error. ·- . 19.8. We shall very frequently have to use the standard deviation ,pf 
sampling, and it is convenient to have a shorter name for this quantity. 
\V e shall call it the standard error .. · The use of the word error is justified 
in this connection by the fa~t that we usually regard the expected value · 
as the true value, and divergences from it as errors of estimation due to 
sampling effects ; but the student should not attach too much significance 
to the particular term "error." -__ . · 

In most of our work the term " standard error." will be applied to the -
standard deviation of simple sampling ; but it has a rather wider mearung, 
embracing this one, which we shall discuss hi considering the sampling of· 
variables (20.22, cf. also 19.31). . . · · 

We may, then, summarise the foregoing in the statement that fre- -
quencies differing from the expected frequency by more_ t}Jan 3 times the • 
standard error are almost certainly not. due to fluctuations of sempling. 
They point to some departure of the sampling from simplicity, which may 
in turn point either to some flaw in the sampling technique or to causal 
effects in the universe itself. . . 

Probable Error. 
19.9. Instead of the standard error, some authorities have used a 

quantity called the probable error, which is 0·67.f.4.9 times the standard 
error. This practice arose from the fact that in the normal curve the 

23 
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quartiks arc distant 0·67449a from the mean, so that the proba.bility that. 
a dc1•iation is in excess of the probable error is t, and is equal to the 
probability of a deviation being less than the probable error. The rule 
that the observed deviation should uot he greater than a times the standard 
error is then approxilllately cqni valent to a rule that it should not exceed 
4·5 times the probable error. 

The use oft he probable error is declining, and we recommend the student 
to csehcw it. · 

19.10. In Examples 19.1 to 19.4 we dealt with f'ases where p, the 
probability of success, wns known a priori. In many cases it is not known, 
and furtlwr consideration is necessary before we can apply equations (19.1) 
and (19.2) to such ca~es. 

To i1x the ideas, kt us suppose that \Vl' haw· a simple sample of 1000 
individuals from the iuhabitants of Great Britain, and find that 36 per cent. 
of them have blue eyes and the remaimhT have eyes of some other colour. 
What can we infer about the proportion of blue-eyed individuals in the 
wllnlc population ? 

In this instan(·e ·we do not know the proportion p of blue-E>yed in
dividuals in the pnpulation. \Yc do know that the standard error is 
,l}oOiipq. l\;cm, ll'hatcvcr p and q are, pq eannot exceed!, and hence the 
standard error eannot cx('ecd ~ \/iOOtl·: or ltJ. Hen~, \vhatever _lJ is, a 
simple sample should give a numlwr of successes within 3 times this, or 48, 
of the expected fi·eq ueney pn. This i& ·i-8 per cent. of the sample, and we 
thus may say that the proportion of bh1e-eyed people in the whole popula
tion is 36 ± 1.·8 per cent., i.e. that it lies between 31·2 and 40·8 per cent. 

19.11. "'e may, however, make a rather better estimate. We have 
seen that tltc standard error is small compared with the expected value, 
and hell(·c with the observed value. If, therefore, in calculating the 
standard error we take the observed values of p and q in the sample instead 
of the unknown true values of p and q, we shall not involve ourselves in 
very great error. 

Thus, taking p to be 0·36, q =0·64, 

a= V1pq = vo~36-;;o·6-t ~ i(iO(J 
= 15·18 

Hence, .3a = 45·5 approximately, and the limits are now 3G ± 4·6 or 31·4 
and 40·G---slightly narrower than those previously obtained. 

19.12. In this ex a 111 pie we have taken the proportion of successes in 
the sample to be an estimate of the proportion of successes in the universe, 
and have set limits to the rm~ge within which the true proportion probably 
lies. There are other reasons, of an advanced theoretical character. which 
we shall,.rwt specify, for taking p in the sample as an estimate of pin the 
universe, but the student will probably concede that it is the most reason
able thing to do in the circumstances. We must, however, look a little 
more closely i,pto the assumption that this estimate may be used incalculat-

. ing the standard error. 
19.13. The assumption is a justifiable one if n is large and neither p 

nor q is small. For in suci+ a case, the standard error of the proportion p 

is ~pq' and thi~ is small compared with p unless p itself is small. · -n . 
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-Jf, then, the standard error of pis small, the value of p-estimated from-
-the s.:unple must IX" dose to the real ,·alue. and we shall not introduce any' 
serious error by taking the fSlimated ,-alue in evaluating the formula ,- - . -
~JJf!. . .• 

·R ., i • 

19.14. -Precisely how large n must IX" _for this_ approximation to be 
nlid it is not easy to say. -Samples of 1000 are almost certainly large , 
enough, and we may often apply the foregoing procedure with considerable 
confidence to much smaller samples. say of 100. - For.samples below that 
figure it is as well to examine carefully the circumstances of any given case 
and to proceed "ith caution. · : · - - - · · · 

We shall have more to say on this matter when we consider tht; sampling 
of nriabl~ (20:17 and 20.18). • _ . · - ~ _ - · -

For the remainder of this chapter we shall assume that our samples_ 
are •• large,'J that is to say, that the approximations involved 'in our 
assumption! as to the estimate of pare ,-alid.- . _ _ 

E.rample :19.5.-A sample of 900 days is taken from metecirol~gical 
records of a et>rtain district, and 100 of them are found to be foggy. - What. 
are the ~robable limits to the percentage of foggy days in the district ? . 

Anticipating &omewhat our discussion of simple sampling, we _will 
assume that the conditions of this problem give a simple sample. . . 

lienee, · 

p=··· f=l 
Standard error of the proportion of foggy days _ 

=~~~ix;x~ 
=0·0105 

= 1·05 per cent. 

Ilene«; taking l to IX" the estimate ~r the number of fog.,uy days, we .hav~ 
that the linu~a are ll·Jl per cent.± 3·15 per cent., i.t. 8 per cent. and 
U-25 per cent. approximately.- · · -

E.rample 19.6.-A biased penny is tossed 190 tim~ and cqme5 down 
hf"ads 70 times. What are the probable limits to the probability of getting. 
a bead in a singfe trial ! - · -

We require to know the _limits of p. H we assume tlplt 100 is a large 
sample. •·e have: _ . , . . __ · 

rp;j = I__!__: x !__ .x ~ ~ 0-0~58 - · 
V~ V1oo 10 10 

The Limits are therefore 0·70 ± (3 x 0·0-ISB) 

=0..10± 0..137' 

=0·56 and 0·8-1 approximately 

If we fee) any doubt as to the nlidity of using estimates of p and 9 from a sample of 100 in calculating the standard error, we may proceed 
as follows :- · - · . _ . ~ : 
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· The standard error of p cannot exceed \ 1 TA!S x l x ~. i.t'. 0·05. Hence
the \·alue of plies almost certainly within the limits 0·70 ± 0·15, i.e. 0·5S 
and 0·85. 

If p='0·55, 

If p=0·85, 

. ~pq =0·01975 
n 

• ~pq =0·03~71 
n 

For in~ermediate v~lues of p, ~pq lies ~tween these limits .. Hence the 
• n 

maximum value of the standard error is 0·01975, and p lies between the 
limits 0·70 ± 0·14925, i.e. • 

0·55()75 and. 0·8!925 

It· will be seen that these limits are nearly equal to those obtained on 
the assumption that p = q = !, and are not very different from those we 
got by. assUming p =0·70. There would, however, be an appreciable 
difference if p had been small, say 0·10. 
. 19.15. If one of the two proportions p and q becomes ve~ small, 
equation (19.1) may be put into an approximate form that is very useful. 
Suppose p to be the p~oportion that becomes very small, so that we may 
neglect p 1 compared mth p; then · 

pq=p -p"=p approximately 

and consequently we have approximately: 

a~·vnp=vJI (19.3) 

That is to say,· if the proportion of successes be small, the standard 
deviation of the number of suc~esses is the square root of the mean number 
of successes. Hence we can find the standard error even though p be 
unknown, provided only we know that it is small. · 

This is, in fact, the case when the binomial becomes the Poisson series 
(10.40). For such distributions the rule that a range of 6a includes the 
great majority of the observations remains valid, as may be seen from 
the diagram on page 190, but the limits assigned to the standard error of 
the ~ean M may be too wide on the left of the mean. For example, if 
ltl = 1, a= 1, and a range of 3 units to the left of the me-an urries us to a 
value of -2, whereas there can be no part of the frequency with negative 
values of the variate. · 

-19.16. It will be noticed that the standard error depends only on the 
value of p and the size of the sample, and that therefore the range within 
which p probably lies is independent of the size of the universe. This 
appears a little paradoxical, because one might expect that a san1vle 
which was, say, 20 per cent. of the universe would enable closer limits 
to be set than one which was 10 per cent. of the universe. 

The explanation is to be found in the nature of !>imple sampling itself. 
\Ye shall see below that the conditions w1der which simple sampling arises 
in practice are such that either. the uni\·erse is actually or practically 
infinite, or each member drawn for a sample is put back in the universe 
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before the next is drawn. In either case the universe is inexhaustible, 
and no sample is any nearer to including all its members than another 
sample. It is, therefore, not surprising to find that the size of the universe 
does not appear in the formula for the standard error. . · 

19.17. A further notable fact is that the standard error o( p varies 
· inversely as the square root of n, and not inversely as n itself. Thus, as 

n beromes larger the standard error becomes smaller, which is what we 
should exped, but the standard error decreases. proportionately to the 
square root of n. For instance, if a sample of 100 gives us a standard 
error "of 10 per· cent., it ·will take a sample of 400 to halve that error, and 

. a sample 100 times as large, i.e.' 10,000, to reduce the error to one-tenth 
or one pj!r cent. · · 

Precisioq_. 
19.18. The standard error may fairly be taken to measure the un

reliability of an estimate of p;; the greater the standard error, the greater 
the fluctua'l:ions of the observed proportion, although the true .proporti~n 
is the same: throughout. The reciprocal of the' standard error (1/s), on 
the other hand, or some convenient. multiple of the reciprocal-c.f.·· 
8.15 and 10.32-may be regarded as a measure of reliability, or, as .it is · 
sometimes termed, precision, and consequently the reliability or· precision 
of an ob8t'n•ed proportion varies as the square root of the number ofobserva-
tion.r on which it is based. · . . , · ,. 

The Limitations of Simple Sampling. 
19.19. In order to realise the limitations on the use of the formulre of 

equations {19.1) and (19.2}, it is necessary to consider what are the Con
ditions which will give rise to simple sampling in practice. Supposing, for 
example, that we observe among groups of 1000 pers<!ns, at different times 
or in different localities, the various percentages of' indi\iduals possessing 
certain characteristic8-dark hair, or blindness, or insanity, and so forth. 

· Under what conditions should we expect the observed percentages to 
obey the law of sampling that we have found, and show a standard 
deviation given by equation (19.2) ? · 

19.20. In the first place, the condition that p, the probability of 
dra\\ing an individual. with attribute A on random sampling, remains 
constant, and in particular is the same for all samples, means that the 
proportion of individuals with attribute A iri. the universe must r~mait} 
constant'at the drawing of each sample. Consequently, if formula (19.2) 
is to hold good· in our practie.al case of sampling ther~ must not be a 
difference in any essential respect-i.e. in an:r. character that can affect 
the proportion observed-between the localities from which the samples 
are drawn, nor, if the sa_mples have been made at different epochs, must 
any essential change have taken plaee during the period over which the 
observations are spread. \rhere the causation of the character observed 
is more or less unknown, it may, of course, be difficult or impossible to 
say what differences or changes are to be regarded as essential, but where 
we have more knowledge the condition laid down en4bles us to exclude 
certain l'&>;es at once from the possible applications of formula (19.1) or 
(19.2). Thus it !-s _obvious that the theory of simple sampling canryot 
apply to the vartabons or the de~th-rate in localities with populations 
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of different age and sex. composition, or to death-rates in a mixture of 
healthy and unhealthy districts, or to death-rates in· successive years 
during a period of continuously improving sanitation. In all such cases 
variations due to definite causes are superposed on the fluctuations of 
sampling. 

19 .21. Secondly ;the proportion of individuals with attribute A must 
remain constant for 'the drawing of each individual member of the sample. 
This is again ·a very marked limitation. To revert to the case of death- · 
rates, formul:.c (19.1) and (19.2) would not apply to the numbers of persons 
dying in a series of samples of 1000 persons, even if these samples were all 
of the same age and sex composition, and living under the same sanitary 
conditions, unless, further, each sample only contained persons of one sex 

· and one age. For if each sample included persons of both sexes and differ
ent ages, the condition would be broken, the chance of death during a given 

• period not being the same for the two sexes, nor for the young and the old. 
The groups would not be homogeneous in the sense required by the con-
ditions from which our formulre have been deduced. . 

'19.22. We pointed out in 19.3 that sampling from a finite universe 
is not simple owing to the fact that the abstraction of an individual alters 
the chance of success at the next trial. In practice there are three 
important cases in which the condition for the constancy of p is satisfied: 

(a) If the individuals are replaced· at each drawing before the next 
drawing is made ; for in this case the constitution of the universe is the 
same at each trial, and hence the chance of success must also be the same. 

(b) If the universe is infinite; for in this case the withdrawal of a 
finite number of members does not affect the proportion of individuals in 
the .universe possessing the attribute in question. 

(c) If the universe is very large, p may be taken to be constant with
out sensible error; provided that the sample is not also large. This is a 
very important case, and justifies the application of the theory of simple 
sampling _to many practical data. 

Suppose, for instance, we are sampling the ·population of the United 
Kingdom for sex ratio, and decide to take a sample of 1000. Suppose 
again, for the purposes of illustration, that the whole population consists 
of 23 million women and 22 million men. The chance of getting a man at 

h fi 
. . l · .11 h b' 22,000,000 · t e rst trta w1 t en e 

45 000 000
• If we succeed in getting a man, 

. ' ' 
f . . h d . I 'II b 21,999,999 E 'f the chanc~ o domg so' at t e_secon tna WI e .u,999,999• ven 1 we 

draw 999 men· the chance of success at the thousandth trial would be 
21 999 001 . . . . 
. ' ' .. All these chances, to a close approximation, are equalt and we 
44,999,001 . 
can assume them to be so. without fear of appreciable error. The case 
would, of course, have stood differently if our sample had numbered several 

- -millions. · -
19.23. A third condition for simple sampling was explicitly stated in 

our definition in 19 .3. The individual events must be completely in
dependent of one another, like the throws of a die, or sensibly so, like the 
dra,ving of balls from a bag containing a number of balls which is large 
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'compared with the number drawn. . Reverting to the illustration. of a 
death-rate, our formulre would not apply even if the sample pcipulati~ns 
were composed of persons of one ·age and one sex, if we were dealing, :for 
example, with deaths from an· infectious or contagious disease. For if one· · 
person in a certain sample has contracted the disease in question, he has 
increased the possibility of others doing so, and hence of dying from the 
disease. T_he same thing holds good for certain classes of deaths 'from 
accident, e.g. railway accidents due to derailment, and explosions in mines : . 
if such an accident is fatal to one person it is probably fatal to others also, 
and consequently the annual retur~ show .large and more or less en·atic 
variations. · 

19.l4.- It is evident that ihese conditions very much limit the field of 
practical cases of an economic or sociological character to which.formtilre 
(19.1) artd {19.2) can apply without considerable modification. The 
formulre. appear, however, to hold to a high degree of approximation in 
certain biQlogical cas~s, notably in the proportions of offspring of different 
types obtained on crossing hybrids, and, with some limitations, to the 
proportion!# of the two sexes at birth. It is possible, accordingly, that_ in 
these cases. all the necessary eondit.ions are fulfilled, but this is , nat a 
necessary inference from the mere applicability of the 'formulre. In the 
case of the sex ratio at birth it seems doubtful whether the rule applies to 
the frequency of the sexes in individual families of given numbers, but it 
does apply fairly closely to the sex ratios of births in different localities, 
and still more closely to the ratios in one locality during successive periods. 
That is to say, if we note the number of males in ·a series of groups of 
n births each, the standard deviation of that number is approximately 
Vnpq, where pis the chance of a male .birth; or, otherwise,- Vpqfn is the 
standard deviation of the proportion of male births. · 

Applications of Simple Sampling; ~ 

19.25. We have already shown in examples how the theory of simple 
sampling can be used to gauge the precision of an estimate of the proportion 
of individuals in a universe which possess an attribute A, and to set limits 
outside which that proportion probably does not lie. We now· tlirn to 
further applications of the theory in the checking and control of the 
interpretation of statistical results. . . . · . 

19.26. Case I.-Given the expected frequency in a sample and the 
observed frequency of successes, it is desired to know whether the deviation 
of the second from the first can have arisen from fluctuations of simple 
sampling. : · , 

This is a case which we have discussed in Examples 19.3 and 19.4. 
From the expected frequency we can calculate the standard error, and if 
the deviation is more than 3 times this quantity it almost certairuy did not 
arise from fluctuations of random sampling. , . . · · . . · · · 

19.27. One caution is necessary here. If the deviation is less than 
S_ti_mes the standard cr:or, it does n~t follow that the expected frequency 
dtnded. by the nu~ber Ill t_he sampl.e 1s really the proportion of individuals 
posscs~ang t_he attnbute A m the uru~·erse. In other words, if the expected 
value IS derived from some hypothesis, such as the Mendelian hypothesis in 
the case of Example 19.-i, the fact that the deviation lies within the limits 
o~ 3 times the stan~ard error d~s not prove the hypothesis correct.~. It 
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only indicates that experiment and hypothesis are not in disagreement.. 
Furthermore, if the deviation lay without those limits, the hypothesis 
would not necessarily be disproved, for the fault might lie "·ith the 
randomness of the sampling. · 

19.28. Case 2.-Two samples from distinct materials or different 
universes give proportions of A's PI and p 8, the numbers of observations in 
the samples being ni and n1 respectively. (a) Can the difference between 
the two proportions have arisen merely as a fluctuation of simple sampling, 
the two universes being really similar as regards the proportion of A's 
therein? (b) If the difference indicated were a real one, might it vanish, 
owing to fluctuations of sampling, in other samples taken in precisely the 
same way'! This case corresponds to the testing of an association which is 
indicated by a comparison of the proportion of A's amongst B's and {J's. 

(a) We have no theoretical expectation in this case as to the proportion 
of A's in the universe from wl!icheither sample has been taken. 

. Let us find, however, whether the observed difference between PI and 
p 2 may not have arisen solely as a fluctuation of simple sampling, the 
proportion of A's being really the same in both cases, and given, let us say, 
by the (weighted) mean proportion in our two samples together, i.e. by 

.. nlPI +n2Pz 
Po= . ni +nz 

(the besf guide that we have) .. 
Let £ 1 , £ 2 be the standard e~ors in the two samples, then 

. £1 1 =Poqo/n1, Ea
1 =Poqofns 

If the samples are simple samples in the sense of the previous work, then 
the mean difference between p 1 and p 2 will be zero, and the standard error 
of the difference £ 12, the samples being independent, will be given by 

(19.4) 

· ·If the observed difference is less than some three times £ 12, it may have 
arisen as a fluctuation of simple sampling only. 

(b) If, on the other hand, the proportions of A's are not the same in the. 
material from which the two samples are drawn, but p 1 and p., are the true. 
values of the proportions, the standard errors of sampling in the two cases 
are 

and consequently 
ES _plqi +p2q2 (19.5) 

-· u- nl ns 

If the difference between p 1 and p 8 does not excee~ some three. times 
this value of £ 1llt it may be obliterated by an error of s1mp~e sampling on 
taking fresh samples in the same way from the same matenal. 

The student will note that in arriving at these results we have assumed 
that the unknown values p0, Pu Pa are given to a sufficient degree of 
approximation by estimates from the samples. This, as we have seen, is 
justified if n be large .. 
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E:rample 19.7.-(Data from .J. Gray,. "Memoir on the Pigmentation 
Survey. of Scotland," Jour. of the Royal Anthropological Institute, vol 37, 

· 1907.) The follo\\ing are extracted from the tables relating to hair-colour 
· of girls at Edinburgh and Glasgow :- · · · 

Edinburgh 
Glasgow 

Of Medium 
Hair-oolour. 

4,008 
17,529 

• Total 
observed.· 

9,743. 
. 39,764 

., .. 

Per ceilt. 
Medium. 

41·1 
4-1·1 . 

. Can the difference observed itt the percentage ~f girls of mediu~ hair
colour have arisen solely through fluctuations of sampling! · · .....__, 

In the two towns together the percentage of girls. with medium hair
colour i& 43·5 per cent.: If this were the true percentage, the ~tandard 
error .of sampling for . the difference between percentages observed ip · 
samples of the above sizes would be: · . . - . 

. · (1 1')t· 
Eu = ( 43·5 X 56·5)1 X 

9743 
+ 

39
,
764 

. 

. =0·56 per cent. 

The actual difference is 8·0 per cent., or over 5 times this, and could not 
hav.e arisen. through the chances of simple sampling. 

If we assume that the difference is a real one and calculate the standard 
error by equation (19.5), we arrive at the same value, viz. 0·56 per cent. 
With such large samples the difference could not, accordingly, be 
obliterated by the fluctuations of simple sampling alone. . 

19.29. Case 3.-Two sainples are. drawn from <listinct material or. 
different universes, as in the last case, giving proportions of A's p 1 and p 9, 

but in lieu of comparing the proportion p 1 with .. p1 it is compared with 
the proportion of A's in the two samples together, viz. p 01 where, as before, 

p _"'U't +ftzPs 
.-. nt+~ 

Requ:red to find whether the difference between p~ and p 0 can have 
arisen as a fluctuation of simple sampling, p 0 being the true proportion 
of A's in both samples. · . . . . .. : · . • : 

This case corresponds to the testing of an association which is indicalt!d 
by a comparison of the proportion of A's amongst the B's with the pro
portion of A's in the universe. The general treatment is similar to that 
of Case 2, but the work is complicated .owing to the fact that. errors in 
p 1 and p 8 are not independent. · · • · . 

If £ 01 be the standard error of the difference between p 1 aud_p01 we 
have at one~: · · . . 

E~t =Eo1 +Et1 -2rot~of"t 

=Po'Jo --. +- -2rot~=--=== { 
1 1 1 . . } 

"t +ns nl _vnlvnl +:ns . 
r01 being the correlation between errors of simple sampling in p 1 and Po· 
Uut from the above t>CJUation relating p8 to p 1 and p., writing it in terms 
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of deviations in Po· PI and Pr· multiplying by the deviation Ill PI anu 
summing, we ha\·e, !iinee errors in p 1 and p1 are uncorrelatcd: 

Therefore finally : 

roi = ~!! = ~-;,L_~· 
ni + na £o n1 + nz 

(19.6) 

Unless the difference between Po and p 1 exceed, say, some three times 
this value of £ 01, it may have arisen solely by the chances of simple 
sampling. . 

It will be observed that if n1 be very small compared with n2, £ 01 
approaches, as it should, the standard error for a sample of n1 observations. 
. \Ve omit, in this case, the allied problem whether, if the difference 

between p 1 and p 0 indicated by the samples were real, it might be wiped 
out in other samples of the same size by fluctuations of simple sampling 
alone. The solution is a little complex, a.'i we no longer have 
£o2 =Poqo/(nl +n2). 

Example 19.8.-Taking now the figures of Example 19.7, suppose 
that we had compared the proportion of girls of medil,lm hair-colour in 
Edinburgh with the proportion in Glasgow and Edinburgh together. 
The former is 41·1 per cent., the latter 43·5 per cent., difference 2·4. per cent. 
The standard error·of the difference between the percentage<> ob~;erved in 
the sub-sample of 9743 observations and the entire sample of -'9,507 
observations is, therefore, 

( 
39,76-t. )l 

£ 01 =(43·5 x56·5)t 
49

,
507 

x
9743 

=0·45 per cent. 

Th~ actual difference is over five times this (the ratio must, of course, be 
the .same as in Example 19.7), and could not have occurred as a mere 
error of sampling. 

Effect of Removing the Limitations of Simple Sampling. 
19.30. Let us now consider the effect on the standard error of the 

removal of the condition_s of simple sampling which we discussed in 
19.19 to 19.24. · 

The breakdown of the condition we discussed in 19.20, namely, that 
the proportion of A's in the universe should remain constant for all 
samples, might occur if we took a number of samples from a changing 
universe or from different strata of a universe which was not homogeneous. 

\Ve may represent such circumstances in a case of artificial chance by 
supposing that for the first f 1 throws of n dice the chance of success for 
each die is PI• for the next fa throws p 2, for the next / 3 throws p 3 , and !io 
on, the chance of success varying from time to time, just as the chance 
of death, even for individuals of the same age and sex, varies from district 
to district. Suppose, now, that the records of all these throws are pooled 
together. The mean number of successes per throw of then dice is given 
by. 
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where N = S(f) is the whole number of throws, and p, is the mean ,-alue 
S(fp)/N of the varying chance p. To find the standard deviation of the 
number of su('('('SSCS at each throw, consider that the first set of throws 
contributes to the sum of the squares o~ de'i:"tions an amount . 

,h[nplql+n'(pl-Pe)1
] 

np1q1 being the square of the standard deviation for these throws, and 
n(p1 -p,) the difference between the mean number of successes for the 
first set and the mean for all the sets together. Hence the standard 
de\iation a of the whole distribution is given by the sum of all quantities 
like the above, or · · 

Let a, }le the standard deviation of p, then the last sum is Nn3a,1, 

and substituting 1 - p for q, we have : 
• • . . a 1 =np, -np1

1 -nq,.1 +n3a,1 

• =f!Po'Je +n(n -1)a.,1 . -
. . (19·7) . 

This is the formula corresponding to equation (19.1); if we deal with 
· the standard de,iation of the proportion of successes, instead of that of 

the absolute number, we have, di"iding through by n 3, the formula 
corresponding to equation (19.2), "iz. 

P .q n-1 · 
81=_!!_!+- I • 

n n • 
. (19.8) 

19.31. If n be large· and a, be the standard error calculated from 
the mean proportion of successes p00 equation. (19.8) is sensibly of the 
form 

. •"=a,• +a.,• 

We ha\·e thus analysed a1 into two parts, a0
1 the portion due to 

de,·iations from the mean p,. and a.,1 the portion due to variations of the 
p's about their mean. The former we may regard as the contribution to· 
a1 due to chance fluctuations ; the latter as the contribution due to real 
variation of the proportions among the different strata of the universe. 

In confonnity with later work we shall continue to call • (or a if we 
are dealing with frequencies) the standard error, although the sampling 
is no longer simple. The de\iation • is still, in fact, the standard de\iation 
of the Yarious sample values of p about the mean "·alue. The term 
a, {or Vnptf10 ), on the other hand, is •·hat the standard error would ha,·e 
been if the sampling had been simple, and from the above equation we 
accordingly see that the effect of the breakdown of the first condition for 
simple sampling is to increase the standard error. · . 

The values of Va1 -a1
1 are tabulated at the foot of Table 19.1, which 

sho~·s ~ata relating to the deaths of women in childbirth in certain groups 
· of dtstn{·ts. 

The ,·alues of V •1 - a,• suggest an almost unifo~~ \"alue of a about 
0·8, in the deaths of women per 1000 births. ·i.e. that in each of the 
categories "number of births in the decade" there is real variability in 
the (•hances of indhidual women &uceumbing. . 
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TABLE 19.1.-Shmrin,e J'rt¥JIIn!riet of Rrti.drnfi,,. l>istri.:tJt ·in Eu~?land a•l'l Walt• 
trith DijJt'Ttnl Prn71ortior-. nf DraJh• in Childbirth (inrl11din,!! JHatl,, frrme l'rln'ptral 
l'l'l•rr) prr 1000 Birth. in the SarM l"ear.· (Data Crom ~~~nnial Supplt'"ment to 
Firty-fifth Annual Rl'"port of Regigtrar-Gt-neral for England and Walt'S. ~ade 
1881:-00.) . 

Dt-athR in 
Number of Births in the Decade. ·----·--' 

Childbirth per 
1500 3500 4.j()() 10,000 .IJ),OOO ao.~.., I 50,ooo 1000 Births. 
to to to to to to to 

2500. 4000. 5000. 15,000. 20,000. 50,000. 00,000. 

--1--------- --- ---
I . 

1·5- 2·0 - - 2 - - - -
2·0- 2·5 1 - 1 I - - -
2·5- 3·0 1 3 1 - - - -
3·0- 3·5 I 5. 2 4 - 1 2 
3·5- 4-() 5 6 5 8 5 5 9 
4·0- 4·5 6 5 8 23 4 9 6 . 
4·5- 5·0 . 2 5" 9 14 11 7 5 

•5·0- 5·5 I 7 3 6 14 6 8 7 
5·5- 6·0 5 3 4 5 . 2 5 4 
6·0- 6·5 1 5 I - 4 I 1 
6·5- 7·0 3 1 1 3 - 2 I 
7·0- 7·5 1 I - - - 4 -
7·5- 8·0 - - - - - I -
8·0- 8·5 - - - - I - - -
8·5- 9·0 1 1 - - 1 - -
9·0- 9·5 - - - -- - - -
9·5-10·0 ·1 - - I - - -

l 10·0-10·5 - - - - - - -
10·5-11·0 1 - - - - - -

---------------- ---
Total 36 38 40 73 33 43 35 
Mean 5·29 4·71 4·45 4·68 4·99 5·13 Hi4 

Standard de-} 1·77 1·37 1-09 1·01 0·99 H2 0·87 viation 
Tbeoreticall 

~ standard de· t 
viation corre-J 1·62 H2 0·97 0·61 0·53 0·36 0·26 
sponding to 

' mean births . 
V r -s0

1 0·71 0·80 0·51 0·80 0·84 1-07 0·83 

I 
The figures of this case also bring out clearly one important ·consequence 

of (19.8), viz. that if we make n large, a becomes sensibly equal to a,; 
while if we make n small, a becomes more nearly equal to p 0q0fn. Hence, 
.if we want to know the significant standard deviation ~f the proportion p 
-the measure of its fluctuation owing to definite causes-n should be 
made as large as possible ; if, on the other hand, we want to obtain good 
1llustrations of the theory of simple sampling, n should be made small. 
If n be very large, the actual standard error may eviJt>ntly become almost 
indefinitely large compared with the standard deviation of simple sampling. 
Thus during the twenty years 1855-71 the death-rate in England and Wales 
fluctuated round a mean value of 22·2 per tho~sand with a standard 
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de,iation .(1) of 0·86. Taking the mean .poptnation as roughly 21 millions, 
the standard de,·iation of simple sampling (s0 ) is approximately . . 

J:?2 x978 
21 

x 
10

, · 0·032 per thousand 

This is only about one twenty-seventh of the actual value. 
19.32.· Now consider the effect of altering the second conditiQn of. 

simple sampling dealt with in 19.21, viz. the circumstances that regulate 
the appearance of the character observed shall be the same for every 
individual or every sub-class in each of the universes from which samples 
are drawn. Suppose that in a group of n dice thrown the chances for 
"'t dice are p 1q1 ; for mz dice,_ p 11q2o and so on, the· chances varying for 
different .dice, but being constant throughout the e>..-periment. The case 
differs from the last, as in that the chances 'were the same for every die, 
at any oneo throw, but varied from one throw to another; now they are 
constant from throw to throw, but differ from one die to another as they 
would in any ordinary set of badly made dice. Required to find the effect 
of these differing chances. · 

For the inean number of successes we evidently have: 

U = m~p1 + ~Pa + "'aPa + 
=fiPe 

p8 being the mean chance S(mp)fn. To find the standard de'\<iation ofthe 
number of successes at each throw, it should be noted that this may be 
regarded as made up of the number of successes in the "'t dice for which the, 
chances are p1q1, together with'lhe number of successes amongst the m 1 dice 
for which the chances are p~10 and so on ; and these numbers of successes 
are all independent. Hence, · · 

u• = '"U't91 + fni!P~. + map,q, + ... 
=S(mpq) 

Substituting 1 - p for q, as before, and using ;, • to denote the standard 
de,·iation of p, . · · 

u 1 =flp(//0 -flu11
1 • (19.9). 

or if a be, as before, the standard error of the propartion of successes, 

81 =Prllo _ u • 
1 

n n ' (19.10) 

Hence·, in this case the standard error a is less than the standard error 
of simple sampling. 

19.33. The extent to which the standard error is affected may con
ceivably be considerable. To take a limiting case, if p be zero for half the 
events and unity for the remainder, Po= q0 = f, and u • = }, so that a is zero. 
'l'o take another illustration, fitill fiOmewhat extreme., if the values of p 
are uniformly distributed over the whole range between 0 and 1, p

1 
=q

0 
= l 

as before, ~ut u.1 =1/12=0·0833 (8.14, p. U3). Hence, ai=O·l667fn, 
a -0·408/V n, instead o! 0·5/Vn, the value of a if the chances are l ir) every 



366 THEORY OF STA'fiSTI{'S. 

rao;e. In mo~t pradieal eases, h~wcver, the effec-t wil1 he murh less. Thus 
the standard deviation of simple sampling for a dt>ath-rate of, say, 12 per 
thousand_in a population of uniform age and one sex is (12 x 9SR)Ii\1n 
= 109/\/ n. In a population of the age composition of that of England 
und \Vales, howe\·er, the death-rate is not, of course, uniform. but ,-aries 
from a high value in infancy (say 6-i per thousand), through very low 
values (2 to 3 ·per thousand) in childhood to continuously increasing ,-alues 
in old age ; the standa~d de,iation of the rate \\·ithin su(·h a population 
is roughly about 2-1 per thousand. But the effect of this variation on the 
standard deviation of simple sampling is quite small, for, as calculated from 
equation (19.10), · · 

as compared with 109/Vn.' 

1 
s1 =- (12 x 988- 576) 

n 

s=106fVn 

19.34. ""e have, finally, to pass to the condition referred to in 19.23, 
and to discuss the effect of a certain amount of dependence between the 
several "events" in each sample. \Ye shall suppose, however, that the 
two other conditions are fulfilled, the chances p and q being the same for 
enry event at every trial, and constant throughout the experiment. The 
standard deviation· for each event is (pq)l as before, but the events are no 

. longer independent; instead, therefore, of t~e simple expression 

·a•=npq 

we. must have (cf. 16.2, p. 297) 

+ra + ... ) . . 
where r11, r 13, etc. are the.correlations between the results of the first anJ 
second, first and third events, and so on--(!orrelations for variablM (number 
of successes) which can only take the values 0 and 1, but may neverthe
less be treated as ordinary variables. There are n(n -1),'2 correlation" 
coefficients; and if, therefore, r is the arithmetic mean of the correlations, 
we may write : 

a1 =t~pq[1 +r(n-1)] (19.11) 

The standard de\iation of simple sampling will therefore be increased or 
dimi~shed according as the average correlatian between the results of 
the single events is positive or negative, and the effect may be considerable, 
as a· may be reduced to zero or increased to n(pq)l. }'or the standard 
deviation of· the proportion of successes in each sample we have the 
equation 

(19.12) 

19.35. It should be noted that, as the means and standard de,·iations 
for our variables are all identical, t is the correlation coefli<"ient for a table 
formed by taking all possible pairs of results in the n nents of ea<"h sample. 

It should also be noted that the case when r is posith·c covers the 
departure from the rules of simple sampling discussed in 19.30-19.31; 

I 
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for if we draw r.ue~·es!>i\·e samples from diiTerent records, this introduces 
the po.,iti,·e (·orrdation at once, even although the ~~s~lts of the events _at 
each tri(ll are quite indqX>ndent of one another. Suml_arly, th~ ca~e dl~
cus.,cd in 19.32-19.33 is cO\·en·d by the <·ase when r IS negati\·e; for if 
the cham·es are not the same for every e\·ent at each trial, and the chance 
of success for some one event is above the a\·erage, the mean chance of 
success for the remainder must be below it. The present case is, however, 
bt-st kt-pt distinct from the other two, since a positive or negative correlation 
maY arise for reasons quite different from those discussed in 19.30-19.33. 

"19 .. 36. As a simple illustration, consider the important case of sam
pling from a limited universe, e.g. of drawing n balls in succession from the 
whole number rc in a bag containing Pll' white balls and q-..c black balls. 
On repeating such drawings a large number of times, we are evidently 
equally likrly to get a white ball or a black ball for the first, second or 11th 
ball of the sample; the correlation table formed from all possible pairs of 
e\·el")" sample will therefore tend in the long run to give just the same form 
of distribution as the corrdation table formed from all possible pairs of 
the w balls :in the bag. But from 13.32, page 257, we know that the 
correlation coetfl(·ient for this table is -1/(w -1 ), whence . 

( 
fl -1) a 2 =flpq 1---
w-1 

w-n 
=tipqw -1 

If n == 1, we have the obviously correct result that a= (pq)l, as in draw
ing from unlimited material; if, on the other hand, n =w, u becomes zero 
as it should, and the formula is thus checked for simple cases. For draw
ing 2 balls out of -l, a becomes 0·816(npq)l; for dra\\ing 5 balls .out of 
10, 0·7-l5(npq)l; in the case of dra\\ing half the balls out of a very large 
number, it approximates to (0·5npq)l, or 0·707(npq)l. 

19.37. In the case of contagious or infectious di!>eases, or of cet·tain 
forms of accident that are apt, if fatal at all, to result in wholesale deaths, 
r is positin~. and if n be large (as it usually is in sud1 cases), avery small 
value of r may eaJ>ily lead to a \·ery great increase in the obsen·ed standard 
deYiation. It is difficult to gi\"e a really good example from aetual statistics, 
as the <·onditions are hardly enr (·on!>tant from one year to another, but the 
following will serve to ''lustrate the point. During the twenty years 1887-
19116 there were 2107 deaths from explosion.'> of firedamp or coal-~ust in the 
coal-mines of the United Kingdom, or an average of 105 deaths per annum. 
From 19.15 it follows that this should be the square of the standard 
dcYiation of simple sampling, or the standard deviati(ln itself approxi
matdy 10·3. But the sq_uare of the actual standard de,·iation (the 
~ohmdard error) is 7178, or tts ,-alue 8!·7, the numbers of deaths rangiug 
between U (in 1003) and 317 (in 189!). This large ~otanJard de,·iation, to 
judge frorn tl.e figures, is partly, though not wholly, due to a geueral 
tendency to dcaease in the numbers of deaths from ex11losions in spite uf a 
large inc·real>e in the number of J..Crsons emplop·d; but e\"t-ll if we iCTnore 
this, the magnitude of the standard deviation (·an he aceounted for"'bv a 
'C'ry small ntlue of the correlation r, exprcs!>ive of the faet that if. an 
nplosion is sullicicntly serious to be fatal to one indi\idua), it will prubaLiy . . 
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be fat~l to others also. For if u0 denote the standard devintion of ~imple 
sampling, u the stanuard deviation of sampling given by equation (19.11 }, 
we have: 

ul-u s 
T=---0-

(n -1}u0
2 

Whence, from the above data, taking the numbers of ptrs~ns employed 
underground at a rough average of 560,000, . . · 

7073 
r 560,000 x 105 = +0 '00012 

. . 
19.38. Summarising the preceding paragraphs, 19.30-19.37, we see 

that if the cha~ces p and q differ for the various universes, districts, years, 
materials, or. whatever they may be from which the samples are drawn, 
the standard deviation observed (the standard error) will be greater than 
the standard deviation of simple sampling, as calculated from the average 

·values of the chances; if the average chances are the same for each_ universe 
from which a sample is drawn, but vary from individual to individual or 
from one sub-Class to another within the universe, the standard deviation 
observed (the .standard error) will be less than the standard deviation of 
simple sampling as calculated from the mean values of the chances; finally, 
if p and q are constant, but the events are no longer independent, the 
observed standard deviation (the standard error) will be greater or less 
than the simplest theoretical value according as the correlation between 
the results of the single events is positive or negative. These conclusions 
further emphasise the need for caution in the use of standard errors. If we 
find that the standard deviation in some case of sampling exceeds the 
standard deviation of simple sampling, tw(J interpretations are possible: 
either that p and q are different in the various universes from which samples 
have been drawn (i.e. that the variations are. more or less significant}, or 
that the results of the events are positively correlated inter se. If the 
actual standard deviation fall short of the standard deviation of simple 
sampling two interpretations are again possible : either that the chances p 
and q vary for different individuals or sub-classes in each universe, while 
approximately constant from one universe to another, or that the results 
of the events are negatively correlated inter se. Even if the actual standard 
deviation approaches closely to the standard deviation of simple sampling, 
it is only a conjectural and not a necessary inference that all the conditions 
of" simple sampling" are fulfilled. Possibly, for example, there may be a 
positive correlation r between the results of the different events, masked 
by a v_ariation of the chances p and q in sub-classes of each universe. 

An Alternative Approach. 
19.39. The results of this chapter have.been studied from a rather 

different point of view by a continental school of statisticians, among whose 
names tho~e of Lexis and Charlier are prominent. · 

-· Lexis considers a number of samples of n 'individuals in which the 
proportions of successes observed are p 1, p2, ••• p.v. and sets hiri1self 
to investigate the nature of the universe from which they were drawn
whether it is homogeneous and the samples may be regarded as obtained 
by simple sampling, whether it varies in time or place so that the samvles 
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a-re not &imple, and so on. He takes p to be the mean of the obseryed 
\·alues p 1 ••• p.~. and writes: · . ·. . : . 

r =0·614-t9~E!J . n 
II~ then defines 

R =0·67449 !S(p~c -p)' . 
. . '\f N -·1 

where t be summation extend~ over all val~es of Pi . . . p .v, and write~ 
. R ·.· 

Q=-. r 

19.40. "'Now, if the sampling is simple we may. in large samples; take 
the. mean p "to be ari estimate of the true value, and r to be an estimate of' 
the probable S!rror of simple sampling of p. Also; we may take the quantity 
R to be an fiStimate-of the probable error of p (see 23.5). . 

Hence, for large samples, R is approximately equal to r,_ and Q = 1. 
This case, which is what we have called simple sampling, Lexis calls · 
"normal dispersion." · . · · 

19.41. On the other hand, if the universe is not constant while the 
samples are drawn. or if they come from different parts of a patchy universe, 

·we get the case discussed in 19.30. · R is no longer an estimate of the 
probable error of a constant p, but may be split into two parts, one due to 
the sampling fluctuations of the observed values of p round the mean value,. 
the other due to the variations of the true values round that mean. R will 
therefore be ·greater than r, as may be seen from equation (19.8},' and. 
Q > 1. This case Lexis calls "supernorm.al dispersion." . · 

19.42. Similarly, iri the case discussed in 19.32 we get R less than r, 
and hence Q < 1. This ease Lexis calls " subnormal dispersion,~' and 
speaks of the data which give rise to it as " constrained" (gebundme}. · 

The quantity Q is analogous to a quantity x1, which we shall consider 
at some length in Chapter 22 in discussing the significance of the deviations 
uf ob!>ervcd frequencies from theoretical expectation. · 

SU:Ml\IARY. · 

I. Under simple sampling conditions, the proportion of successes in a. 
sample may be taken a.s an estimate of the proportion of successes in the 
parent universe. ·. 

2. If p is the proportion of successes in the universe, tl}e standard error 
of simple sampling of the number of successes is given by ' ' 

a,.;v'f,]Jq, 

and of the proportion of suc<'t'sscs by 

8=~pq 
n 

3. 'fhe probability that lln observed number of successes deviates from 
the expected number by more tbau three times the standard error is very 

. • 2-1-



370 TITEORY OF STATISTICS. 

small. This fact enables us to set limih to the range 111·ithin 111·hich the 
obscn·ed frequency lies when we know the tlu·oretical frequency. · 

.a. •. For large sample:-s, the obscn·ed frequency of liucc~o;es may be used 
to calculate the standard error, and this fact enables u~ to set limits to 
the range "'ll-ithin which the theoretical frequen<"y lies "·hen 111·e kno"'\· the 

. obsen·ed frequen<"y. 
5. For se\"eral samples, if the chance of SU<"Cf'SS Yaries from sample to 

. sample but remains constant "1\·ithin a sample, the standard error of the 
number of su<"cesses is given by 

a 1 =np0q0 +n(n -l)a.,1 

and of the proportion of successes by 

Pq n-l s•=....!L..!+--a I 
n n • 

where Po is the mean of the Yarying chance of success, u., is the standard 
deviation of p, and n is the number of indi,-iduals in each sample. 

If n is large. and s0 is the standard deviation calculated from the mean 
p., this last equation is approximately · 

s'1 =s0
1 +a.,1 

.. 6. If the chance of success varies between the indiYiduals of a sample 
• but· does not ':'ary as_ between the different samples, 

a• =f1Po'lo -nu.,• 
.. s•=p.q,_ u.," 

n n 

i ... It the chance. of success remains constant for f'ach member of each 
sam~le, but the events are not independent, 

a 1 =npq{l +r(n -1)} 

a1 =~l+r(n-l)} n 

where r is the mean of the correlations between the results of tht> e'·ents. 

EXERCISES. 

19.1. (Ref. (398): total of columns of all the ia tables wveo.) 
Compare the actual with the thooretical mean and &tandard deviation for 

the following record of 6500 throws of 12 dice, -1, 5 or 6 being reckoned as a 
•~success9' :- • 

s~. Frequency. Suooe&lllf8. .FrNj ueney. 
0 I 7 1351 
I u 8 8-U 
2 103 9 391 
3 302 10 117 

• 711 II 21 
5 1231 I! 3 
6 - Ull 

Tvtal 6-WiJ 
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19.2. (Quetelet, "Lettrcs ... sur Ia theorie des probabilites.") , 
Balls were drawn from a bag containing equal numbers of black and white 

balls, each ball being returned before drawing another. The records were then 
grouped by counting the number of black balls in consecutive 2's, 3's, 4's, 5's, 
etc. The following arc the distributions so derived for grouping by 5's, 6's, 
and 7's. Compare actual with theoretical means and standard deviations. 

Rnocessoa. - T -(a) Gron~lng (b) Gronping 1
1 {cJ·G~~~ing 

by Jt'ives. by Sixes. by Sevens. 
------· -------1------

0 30 17 9 
1 125 . 6ii 34 
2 H7 I 166 W4 
3 224 192 151 
·i 136 166 148 
li 27 69 95 
n 8 I 40 

-~T~;al-- Sl~=J~=~-8~~-=J=~~=(;~=-~ I 
'· 

Hl.B. The proportion of successes in the data of Exercise 19.1 is 0·5097. 
Find the standard deviation of the proportion with the given number of throws, 
and state whether you would regard the exeess of suec>csscs as probably significant 
of bias in the dice. 

19.4. In the 4091i drawings on which Exercise Hl.2 is based 2030 balls were 
black and 2066 white. J,.; this diverg·cnce probably significant of bias? 

19.5. (Data from Report I, Evolution Committee of the Royal Society, p~ 17.) 
In breeding certain stocks, 408 hairy and 126 glabrous plants were obtained·. 
If the expectation is one-fourth glabrous, is the divergence significm>t, or might 
it have occurred as a fluctuation of sampling? ,. 

19.6. ,j,OO eggs are taken at random from a large c.msigil!llent, and 50 are 
found to be bad. Estimate the percentage of ba.fl eggs in the consignment ·and 
assign limits within which the percentage probably lie~. 

19.7. In a certain association talJle (data from Excrdse a.5) the following 
frequencies were obtained:--- · 

(AB)=B09, (AtJ)=214, (aB)=lil2, (a{J)-=119 

Can the association of the table have arisen as a fluctuation of simple sampling, 
the true association hcing zero? 

I 0.8. The sex ratio at birth is sometimes given by the ratio of male to female 
l>irths, instead of the prnportion of male to total births. If Z is the ratio, i.e. 

J'-- p!q, show. that thl' standard error of z is approximately (1 +Z)~r. 
11 ht·ing lnrl{t', Ho that deviat.ionN are small compared with the mean. 

I !l.IJ. In a nuulol'll sam ph• of 500 pl'rsons fmm town A, 200 are found to be 
consumPrs of t•hf'('St'. In 11 sample of 400 from town B, 200 are also found 
to h<' <~>nsumcrs of l'ht•t•st·. l>iseuss the question whether the data reveal a 
signilii'UIII difft•rt•nce hdW!'!'Il A and n so far as the proportion of cheese
('OilSlllllt'l'S is ('lllll'!'l'llt'd, 

HUU. In a nt•wspnp~:r artit"lc of I GOO words in Engli-;h 36 per cent. of the 
words art• found to bt• of Anl{lo-Suxon origin. Assuming that simple sampling 
conditions hold. t•stiruntf' the proportion of Anglo-Saxon words in the writer's 
YOI~abulnry anti ns~if.{ll li111its to t.hut proportion. . 

Suggt'st possible mU!i<'R which might break down the three conditions for 
simple sampling. 
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19.11. If a series of random AAmples of different sizes is takl"n from the 83me 
material, show that the standard deviation of the obsen·ed proportions of 
succl'~s!"s in such sets is s, "M·hue · 

•• =T!q 
II 

and H is the harmonic mean of the numbers in the 83mples. 
19.12. Apply the result of the pre"\-;ous t'Xercise to the· following data. 

(A. D. Darbishire, Biometrika, vol. 3, p. 30), giving pt'TCentages to the neaTt'st 
unit of-albinos obtained in 121 litters from hybrids of Japanese waltzing mice 
by albinos, crossed inter se :-

Percentag~. Frequency: Percentage. Fn.-qut>ncy. 
0 40 40 3 

14 4 43 2 
17 9 50 "16 
20 9 57 1 
22 1 60 3 
25 10 67 4 

. 29 3 80 1 
33 13 100 2 .. 

Calculate the actual' standard deviation and compare it with the result given by 
the formula of the previous exercise. The eXpt'cted proportion of albinos is 
25 per cent., and the sizes of the litters are given in Example 7.5, page 130. 

1!'1.13. In a case of mi~-breeding (see reference above) the harmonic mean 
• ;....11ber in a litter was 4·735, and the e:~~.-pected proportion of albinos 50 per cent. 
Find the standard deviation of simple sampling for the proportion of albinos in a 
litter, .and state whether the actual standard deviation (21·63 per cent.) probably 
indicates any real variation, or not. 

19.14. In the data. (.lf Table 11.6, page 202, the standard deviation of the 
proportion of male births per 1000 of all births is 7·46 and the mean proportion 
of male births 509·2. The harmonic mean number of births in a district is 5070. 
Find the significant standard deviation a •• 

19.15. If for one half of n events the chance of success is p and the chance of 
failure q, whilst for the other half the chance of success is q and the chance of 
failure p, what is the standard deviation of the number of successes, the events 
being all independent? 
·. 19.16. The following are the deaths from smallpox during the twenty years 
1882-1901 in England and Wales:-

1882 1317 1892 431 
83 957 93 1457 
84. 2234 94 820 
85 2827 95 223 
86 275 96 5-J.l 
87 506 97 - 25 
88 1026 98 253 
89 23 99 174. 
90 16 1900 85 
91 49 1901 356 

__ The death-rate fro! . smallpox being very small, the rule of 19.15 may be 
applied to estimate the htandard deviation of simple sampling. Assuming that 
the excess of the actual standard de,;ation over this can be entirely aceountcd 
for by a correlation between the rt'sults of e:~~.-posure to ri'<k of the indh·iduals 
composing the population, t'stimate r. The mf>an JX•}mlation during the pt"riotl 
may be take.n in round nurnLt'rs as 29 millions. 



CHAPTER 20. 

THE SAMPLING OF VA.R.IABLES-LARGE SAl\IPLES. 

Sampling of Variables. 
20.l. We are now able to proceed from the sampling of attributes to 

the sampling of variables. Whereas in the last chapter we were iriterested 
in the qut-stion whether a member of a sample did or did not exhibit a 
particular attribute, we now have to study individuals which may take any 
of the valuts of a ,·ariable. It will no longer be possible, therefore, for us 
to classify each_ member of a sample under one of two heads, success or 
failure; in:general the values of the variate given by different trials will 
be spread over a range, ·whi<:b may be unlimited, limited by practical 
con~iderations, as in the case of height in human beings, or limited by 
theoretical considerations, as in the case of the correlation coefficient, 
·which cannot lie outside the range + 1 to -1. . 

20.2. To give concreteness to our discussions we shall occasionally find 
it useful to consider the sampling of variables as a kind of ticket sampling. 
We may picture our universe as made up of tickets, each bearing a recorded 
,-alue of some variable X. Sampling may then be. imagined to consist of 

, the drawing of tickets and the noting of the values of X which they bear~ 
In the great majority of cases with which we shall deal, X may ~ave any 
,·alue over a continuous range, and the ticket uniyerse is to be conceived 
as being actually or practically infinite. · 

20.3. AJJ in the case of attributes, our principal objects in studying 
these· samples will be (a) to compare observation with expectation and to 
ii>ee bow far de\iations of one from the other can be attributed to fluctua
tiou!J of sampling; (b) to estimate from samples some characteristic of the 
parent, such as the mean of a variate; and (c) to gauge the reliability of 
our estimates. · . . . - . 

In order to gra.<ip satisfactorily the ideas and assumptions upon which 
"·ork of this kind is bas<.-d, it is necewwy to develop some theoretical 
considerations which ha,·e already been touched upon in the last chapter. 
This we now proceed to do. . · ' 

Sampling Distributions.' ,.. •., 

20.4. If we take a number of samples from a universe and calculate 
some function, 1 such as the mean or the standard deviation, of each sample, 
we shall in general get a _series of different values, one for each sample. If 
the number of ..am pit'S as at all large, these \'a)ues JIUly be grouped in· a 
fn:qu<:nc~ di~tribu~ion ; and as the !mmber of samplc.-s· becomes larger, 
tlus d1str1buhou \nil approach the •• Ideal" form of a continuous cur\·e." 
Sut:h a distribution is called a sampling distribution. 

1 Quantitit'S BUeb as n~, llltandard d~·iations, moments, currelation coefficienb 
and ~ furth 111·ill be referred Lo geuerical.ly u • parameteo." . 

373 
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20.5. As an illustration, consider the .u.niver~e of 8j85 ~en, elaso;ified 
according to height, of Table 6.1, page 9-1. In Chapter 18 we showed how 
to draw a random sample of 10 individuals from this unh·erse, and for one 
sample we calculated the mean. The following table shows the 100 ,-alues 
of the sample mean obtained by. taking 100 such samples arranged in the 
form of a freqtlency table :- · -

TABLE 20.1.-FrtqllerK'!/ Distributima 'of ltfrom of Sampl~• ofJO from 1M Uniwr.e 
. ofiM ltul t6l11mn of Tabk 6.7, page 9-J. _ 

Value of lll~n in Number of Samplee with 
Sample (inches) specified v alllell of 

less/.inch. - the Mean. 

'6-H- 1 
64·8- -
65·2- 1 
65·6- ll 
66·0- u 
66·4-' 16 , 66·8- 22 
67·2-- 18 . 67·6- u 
68·0- 4 
68·4- 1 

•' 

Total 100 

. This distribution is not very regular, owing to the smallness of the total 
frequency.· . 

20.6. · As a second illustration we take some data obtained by random 
sampling with Tippett's numbers from a bivariate normal universe with 
correlation +0·9. 500 samples of 10 were taken and the correlation coeffi
cient of each sample worked out. The frequency distribution of the 
500 values was as follows (data adapted from P.R. Rider, •• Distribution 
of Correlation Coefficient in Small Samples," Biometrika, vol 2-1, 1932, 
p. 882) :-: . - ' . ~ ' 

TABLE 20.2.-Frequmcy Distribution of COfTdatiOfl CMJ!icimU i11 Sampla 
oflO from a Narrraal Unir:ern. 

Value of r in Sample. 
-· 

Frequency. 

-0·1~0 2 
0·6-0·1 0 
0·1~2 .• 0 
0·2-0·3 " i! 

__ , 

0·3-0·4 4 
0·4--45 7 
o-~·6 30 
0·6-47 44 
0·7-()·8 102 
0-8-&9 178 
()-~1-o 131 

Total- 500 
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Here the distribution i~ more re~lar, the number of samples being five· 
times as large. In general we ~xpect that as the number of_ samples 
increases, the distribution will tend more and more to a continuous curve: . 

Use of the Sampling Distribution. _ 
20.7. Let us suppose that we are given the sampling distribution 

of a parameter, and that the frequency (y) may be represented in terms 
of the variate (.r) by a continuous curve, , · 

y=F(.r) 

The frequency with which a given value ;r0 of the parameter occurs in 
a large number of samples will be ~:epresented by the ordinate of tbe 
curve at- the point whose abscissa is ;r0• lVe have had an· example of 
this in the normal cun•e. 

The 1'\tfmber of samples which give· a value of .r greater than ;r0 will be 
rcpresentC\i by the area to the right of the ordinate at .r0 ; the number 
gi\ing a value less than ;r0 will be represented by the remaining ar~a to 
the left, 

Hence, the chance that any sample chosen at random from all possible 
samples will give a value of .r greater than .r0 is given by the area .to the 

: right of the ordinate at .r0 divided by the total area of the curve; which 
represents the total number of samples ; and the chance that the sample 
will give a value of .r less than .r0 is given by the area to the left of the 
ordinate of_;r0 divided by the total area. · 

Similarly, the chance that a sample_ would give a value of .r lying 
between, say, .r1 and ll'1 is the area lying between the ordinates at the points 
.r1 and .r1 divided by the tutal area. 

20.8.. In 10.21 we reft'rred to the fact that. areas could be expressed 
in the notation of the integral calculus. In fact, we may wriie the area 
of the curve between .r1 and .r1 as 

J::F(.r)d.l: - . 
and hence we may express P, the probability that a sample will give a 
value between .r1 and .r1, as · . · 

•. 

where we assume the extreme limits to be ± ac as in- the normal c·urve. 
In particular, the probability that the sample will give a value of :c greater 
than ;r0 is given by - . 

. J"" F(z)h , . 
P- r, • 

- [ .. F(r)dz_ 

As ~ rule, we can <·hoose our units so that the area of the curve is uni.ty. J 
This simpliGes the above expressions; for the denominator, being equal 
to unity, may be omitted. 
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20.9: Now let us suppose that, knowing the form of the sampling 
distribution and hence being able to calculate P for any ginn rr,. ?;e take 
a sample and find that it gives a very low value of P. We are then faced 
i·ith three possibilities : either a very improbable event has occurred ; 
or the assumptions on which we obtained the sampling distribution were 
incorrect ; or there is something wrong with our sampling technique. 
Which of these explanations we adopt is to some extent a matter of choice, 
but jf we have tested our sampling, or on other grounds have no reason 
to suspect it, we shall, as a rule, be led to query the hypotheses on which 
the sampling distribution was obtained. 

This, in effect, is what we did in the previous chapter. It so happens 
that in the simple sampling of attributes we know that the exact form 
of the sampling distribution is N(q +p)", where pis the chance of success. 
\Yithout examining this distribution too. closely we can say that only a 
v~ry small part of it lies outside the range ± 3a. . Hence, if we find a 
sample giving a value outside the rang(:± 3V npq, we suspect the hypothesis' 
on which the distribution was based ; and this, tmless we prefer to suppose 
that our sampling was not in fact.simple, leads us to suspect the value of 
p, which completely determines the sampling distribution. 

20:10. In the previous chapter we regarded the probability of a 
sample giving a value differing by more than 3u from the mean value as 
so remote that in every case we should be justified in looking for some 
definite c~use of. the discrepancy. This is only a conventional range; 
based upon the empirical fact that in most single-humped universes it 
includes nearly all the members ; but it is a convenient one to take and 
we shall. use it again below. For certain purposes, however, we might 

. be prepared to use a narrower range which, though not giving such a 
small probability that a ·sample lay outside it, yet indicated considerable 
improbability in the divergence of observation· from expectation, and 
enabled us to criticise the validity of our hypotheses with some degree of 
assurance. \Ve give one or two examples below. 

20.11. In practice nearly all the sampling distributions we have to 
consider are based on simple sampling. . It is therefore convenient to 
speak briefly of a " sampling distribution," meaning thereby a sampling 
distribution obtained under simple (and random) conditions. 

Example 20.1.-The sampling distribution of a parameter is a normal 
universe "''i.th mean 3 units and standard deviation 2 units. What is 
the probability that a sample will give a value of the parameter greater 
than 6 units '! . . 

Here the value 6 is three units, i.e. 1·5a, to the right of the mean. 
The required probability is therefore the area of the normal curve to the 
right of an ordinate 1·5u to the right of the mean, divided by .the total 
area of the curve. . 

This ratio can be obtained at once from Table 2 of the Appendh:. 
_}\'e See, in fact, that the greater fraction of the area of the curve corre-

sponding to~= 1·5 is 0·93319. · The small~r fraction is therefore 0·06681, 
a . 

which gins us the required probability. 
E::rample 20.2.-lf the sampling distribution of a parameter is normal, 

with zero mean and standard deviation a, what is the value of the 
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parameter such that the chances are 99 to 1 against a sampie giving a -
value in excess of that value ! . · . · . 

We have to find t11 such that the area of the curve to the l'ight of the 
· ordinate at t11 is 0·01, or the area to the left 0·99. 

From Appendix Table 2 : 

tiJ . 
If - = 2·3, greater fraction of area= 0·98928 

·a . - . . 

and if ~=2·4 
a .. , 

" 
=0·99180 .. tiJ ; 

Hence', by simple interpolation the greater fraction is ()·99 if - = 2·33 
t;T . 

_approxintately, and hence the. required valu~ is. 2·33a. . 

Exam~le 20.3,_;.Jt.- v~cy frequently happens in sampling. inquiries 
that we are interested in ·the probability that a: sample vah_Je exceeds a 
given value ~r0 in absolute value, i.e. that it is greater than. x0 or less than 
-x0• We can ascertain this probability without much trouble from the 

ordinary· table of areas ·of the normal curve if the distribution is normal. 
· Consider, for instance, the data of Example 20.1.. Here we found the 

probability that a sample would give a value greater than 1·5a. If we 
want the probability that it would give a value greater than 1·5a in 
absolute value, we have: 

P =Area to right of ordinate at 1·5a 
+Area to left of ordinate at -1·5a 

Since the curve is symmetrical, the two areas in question are equal, and 

P=2(1-0·93319) 
=0·13362 

For convenience, however, we have given in Table 3 of the Appendix 

the values of this probability directly .in terms of 1!!, From this table . . a 
tiJ 

• we have at once, for - = 1·5, 
U• 

P=0·13361 

the difference in the last place being due merely to-our having multiplied 
by 2 in the former value of P a quantity which was rounded up to the.· 

· nearest figure, whereas Pin the latter case was calculated more accurately. 
2.0.12.. To apply. the results of 2~.7to 20.11 in practice for the purpose 

of ~hscussmg the umverse from wh1ch the samples came, we require to 
know two things : (a) What i11 the relation between the sampling dis
tribution and the parent distribution, and (b) what is the form, at least 
approxin~ately, of the sampling distribution of a giyen parameter from a 
gtven umverse ! . 

20.13. If the sampling is to be of much use in enabling us to estimate 
th~ value of a parameter in the parf'nt, we should expect most ~of our 
estunates to ~ somewhere ncar the mark, and only comparatively· few to 
be very far from the true v~lue of the quantity estimate~ ; and further, we 
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exp~ct that, in gt>neral, t}lc further the estimates are front the truth the 
fewer there will be of them . 

.. To put this more formally, we expect that the sampling distribution 
will have a peak somewht>re close to the value of the parameter which 
conesponds to the true value in the parent. If it docs not, the distribution 
is probably biased and our samples are likely to be misleading. 

The first desideratum in our sampling is, therefore, that it shall not lead 
to a biased distribution. We haYe seen in Chapter 18 the difficulties of 
eliminating bias in the sampling process itself. Where, therefore, the more 
practical considerations alluded to in that chapter impose no limitation, we 
must use unbiased sampling ; and this means that our sampling must be 
random. In this connection it must be remembered that we eannot jwlge 
from the samples themselves whether the sampling is random or not, 
. though we may suspect it. Separate tests, or the usc of some acereditcd 
method, are to be recommended where practicable. 

20.14. Knowledge of the form of the sampling distribution of a para
meter, even of an approximate kind, is by no means easy to secure-. 'Yc 
saw that in the case of the simple sampling of attributes it was possible to 
deduce the sampling distribution in an exact form. 1Ye are not always in 
this fortunate position here-in faet, rarely so. The principal difficulties 
are: 

(a) The form of the parent universe frequently is unknovm. 
(b) _Even if the form of the parent is known, certain of its constants may 

be unknown ; for instance, we may know that a universe is normal but be 
ignorant of its mean and standard deviation. 

(c) If the parent is completely known, the form of the sampling dis
tribution can be deduced theoretically in certain circumstances, and in 
particular if the sampling is simple ; but in practice the mathematical 
problems which arise usually are very complex, and even if they are 
tractable may be of no use owing to the enormous arithmetical labour 
involved in expressing a solution in serviceable form. 

20.15. If the samples are small these difficulties are formidable, en·n 
for simple sampling. With large samples, however, we are able to make 
certain legitimate approximations and assumptions which greatly simplify 
the problem. For the rest of this chapter and in the next we shall be 
concerned solely with large samples. 

Simple Sampling of Variables. 
20.16. We shall also be thinking tnai;1ly in terms of simple sampling 

(19.3). It is unnecessary to recapitulate here the discussion of simple 
sampling which we gave in the previous chapter. The assumptions which 
we considered in 19.19 to 19.24 apply mutatis mutandis to the simple 
sampling of variables . 

. (a) 'Ve assume that we are drawing from precisely the same record 
during the whole of the sampling; if we picture our pa.reut universe as a 
card universe, the chance of drawing a card with any gi,·en value X is the 
same for eaeh sample. 

(b) We assume not only that we are drawing from the same record 
throughout, but that each of our cards at eaeh drawing may bt> regarded 
quite strictly as drawn from the same record (or from identically simila1· 
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n·<·ord:-.) : r.g. if our card t·ecord is contained in a :-wri<oS of bundles, we must 
not make it a praetiec to take the first card from bundle m1mber I, the 
ser·ond <·ani froni. bundle numhoe·r 2, and so on, or else Llw <·hanec of drawing 
a !'an! with a gin·n nduc of X, or a Yalue ·within as.~igncd limits, may not 
be the same fot· eaeh indtFidual card at c·a('h dn:nviog. 

(c) Wl" assume that the dmwiug of f.•neh <'ard i•; cntirclv indepe11dent 
of that of cYery other, so that the yaJue of X recorded on ~ard I, at each 
drawing, is uncorrclatl'd with the value of X r•·rordul Ott card 2, 3, c1-, and 
so on. It i-; for this n·asoll that we spoke of the n'<'0L'd, i11 20.2, as contain
ing a pmdica.lly infi!lih· tH!lnhcr of <·ards, for otherwise the successive 
drawings at t:neh sampling would nol he indq;('llllenl: if the bag contains 
ten tickets only, bearing thE. nnrnlwrs 1 to 10, and we draw the card hearing 
I. the avernge of the followiug cards dra"-u \\ill b(· higher than the mean of 
all cards drawn ; if, on the other hand, we draw t lw I 0. the average of the 
following cards will be lower than the mchll of all eard~ i.e. there will be 
a rH·gati,·c <'<lrrdation between the nnmhcr on the enrd taken at any one 
drawing and the card taken at. any other drawing. \Vitl;ollt. making the 
lttlllllwr of cards i11 the bag iudelinitdy large, we can, as already pointed out. 
l'or tlw ··~1se ol' attributes, eliminate this correlation hy repla!'ing <'ach c;•.rd 
IH'fnn· drawi11g the next. 

Approximations in the Theory of Large Samples. 

20.17. \\'c can now r'Onsider the approximaiiiJns whi<'h arc possible 
in the theory of large samples. ·· 

In the first phtce, since we have supposerl bins to he eliminated, the 
sample values of a parameter will he grouped aho•tt the true value, and 
if the ~amplcs are large, will differ by con•parnt i Hly small quantities 
from that value. Hence, we may take a sample value· as an estimate 
of the true ndue. That is to say, if we have a large sarnple (which may 
eon•.ist of a number of ~amples rnn together), ~·e may calculate the para
meter frotH it pre<'isely ns we should proceed 1f we were ealcniating the 
paramclt·r i'or the universe as a whole, and take that value as onr estimate. 
TliJis, llw mean of the sample may be taken as an estimate of the mean of 
1 lie uni \'ITS!', 

20.18. This ml<· is not quite so obvious as it appears. Suppose, for 
example, that we are estimatiug the standard deviation of a. universe. 
lu R<'<·ordalH'<' with the previous paragraph we should take the standard 
de,·intion of t.ht• sample. Hut in ealeulating this quantity we should have 
to ust• dl'viations, not from the true mean, but from the mean in the sample, 
whi<·h may differ from tht~ true mean and to that extent affeet the value 
of thf' cstimut.r. \\'t• shall, in fnd, see later that if x1, .v2, ••• a;n are 
the vnhu~11 in the 1mmplc and~ their mean, there arc reasons for preferring 

tlwcslimatrs1 .. -·!-·S(;r-.f) 1 to the estimate s2=!S(x-Ji)2 for the 
n-1 n 

varianee. If n is larg<', however, the difference is unimportant ; we ean 
ignor1• it until wt• <·omc to d('al with ~mall santples. 

20.1<), St~t·ondly, n.s in lht• <·asc of attributes, we can use these 
estimates in <•alt·ulati ng the <·onstants of the sampling distribution, since 
they differ only by small quantities from the real values. We saw, for 
instance, that we were justified in taking the value of p in a larg-e sample 
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in calculating the standard deviation v'npq of the sampling distrilmtion. 
We shall find that the standard deviation of the sampling distributiun of 
the mean of samples from a normal universe involves the standard devia
tion of the parent; and in this t·ase we can evaluate that quantity by using 
the standard deviation of the sample in place. of the unknown standard 
deviation of the parent. · 

20.20. Finally, it is a very remarkable fact that the sampling di<;
tributions of many parameters, obtained under simple sampling conditions, 
tend for large samples to a single-humped form either exactly or very 

.closely normal. The evidence for this statement is partly theoretical, 
partly experimental. It may be shown that, for simple samples from a 
normal universe, the sampling distributions of most parameters are exactly 
normal for large samples-some, in fact, are normal for small samples. 
Following up this work, a number of experiments has been carried out on 
universes which are not normal ; and it appears that the parent c.an deviate 
quite markedly from the normal form without affecting the normality of 
the sampling distribution to any great extent provided, as before, that the 
samples are large. 

In most of our work we shall not require to assume that the sampling 
distribution is normal. It will be sufficient to assume that a range of 3a 
on each side of the mean includes the major portion of the distribution, 
and we can confidently take this to be so unless the parent exhibits very 
marked skewness. 

20.21. ·It will now be apparent that the difficulties we specified in 
20.14 have to a great extent been met. Provided that we know the 
parent distribution to be not unduly skew, we need not know its exact 
form; and the sampling distribution can be represented satisfactorily, if 
not exactly specified, by a mean and standard deviation which may be 
estimated from the data of the sample. 

Standard Error. 
20.22. As in the last chapter, we shall refer to the standard deviation 

of the sampling distribution as the standard error. In most cases we 
shall be dealing with simple sampling distributions, but it is convenient 
to· use the term in this wider sense, although the word "error " is not 
altogether appropriate· in some instances. In general, as we have seen, 
we are justified in taking a range of± 3 times the standard error as deter
mining limits outside which the value of the parameter giYen by a sample 
probably does not lie. 'Ve can therefore use the standard error, as we 
have already used it for attributes, to gauge the precision of an estimate 
or to permit a judgment being made of the dive.rgenee between expected 
and observed values. 

In the remainder of this chapter, and in the next, we. shall therefore 
be concerned mainly in finding expressions for the standard errors of 
the various parameters which we have to estimate. Their use we shall 
illustrate in examples as we go along. In certain (•ases we shall also 
consider the effect of a breakdown in the conditions of simple sampling. 

Standard Error of a Percentile, Quartile and Median • 
. 20.23. Let us first of all consider the case of percentiles, which is 

intimately related to that of attributes. 
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Consider the distribution of a variate X iii an indefinitely large sample. 
(This is not necessarily the same as the distribution in the parent, owing 

. to the possible presence of bias ; but if bias is excluded, and the sampling 
is simple, it is the same as the parent form.) . . 

Let X, be a value of X such that pN va..lues of X in this distribution 
_ lie above it and. qN below it. Thus, if the sampling is unbiased, p = fi 

would give us the upper decile in the indefinitely large sample, p = l the 
median, and so on. 

A sample of n will contain various values of X. Let the proportion 
of values above X, be P'+ a; and let E be the adjustment to be made in 
X., so that the proportion of values of X above X, +E is p, The values 
a and ~ may be regarded as sampling fluctuations. 

Considering now the sample of n; w«: have that 

the proportion of values above X., . =p +8 

• .. " " X,+E=p·· 
Hence, 

a =proportion of values between X, and x, +E 

No~ if n be large, the proportion of values between X, and X,+ E in 
the sample will, to a close approximation, be the proportion of values 
between those quantities in the distribution of an indefinitely . large 
sample. Consider then this distribution and let the standard deviation 
of X in it be u. If we take the distribution as drawn to scale with unit 
standard deviation and unit area, the proportion of values between X 21 
and X 11 + E is the area of the curve between ordinates· at the points 
X,. d X,+E . 
-an --· 

(T (T 

Now if n be large, E will be small, for the value of a parameter in the 
sample of n will lie close to the value in the indefinitely large sample. 

Hence the area between X" and X" + E is approximately rectangular, and 
a a 

if ~e call the X, ordinate y~, the area will bey, x ~-
a a 

Hence, 

or 

. E. 
a=y,x

·a 

E=~a y, 
•·. 

Now a is the deviation ?f the observed proportion~ from the. value p; 
and from our study of attr1butes we know that the observed proportions 

p +a wiu centre round. the. mean p with standard deviation -Jpq. 
n 

Hence 8 centres round zero mean with stand~rd deviation ,Jr!J.. · Since 
n 
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£ bears a constant ratio _f!_ to ~. it follows that £ will he distribute•) about y, 
zero mean with ~;tandard deviation 

(20.1) 

20.24. If the distribution in an indefinitely large sample he normal, 
we can take the values of y., from the tables of the ordinate of the normal 
curve (Appendix Table 1 ). From tables carried to further plaees of 
decimals we have, for the various values of p which correspond to the 

. deciles, 

Median 
Deciles 4 and 6 

, 3 and 7 
., 2 and 8 
, 1 and 9 

Quartiles 

Value of y •• 

0·3989~23 

0·3863125 
0·3476!)26 
0·2799619 
0·1754983 
0·3177766 

Inserting these values of y., in equation (20.1 ), we have the following 
values for the standard errors of the median, deciles, etc. :-

Median. 
• Deciles 4 and 6 

, 3 and 7. 
, 2and8 
, 1 and 9 

Quartiles 

Standard error is 
aJVn multiplied by 

-1·25331 
1·26804 
1·31800 
1·42877 
1·70942 
1·36263 

It will be seen that the influence of fluctuations of sampling on the 
several percentiles increases· as we depart from the median : the standard 
error of the quartiles is nearly one-tenth greater than that of the median, 
and the standard error of the first .or ninth decile more than one-third 
greater. 

20.25. Consider further the influence of the form of the frequency
distribution on the standard error of the median, as this is an important 
form of average. For a distribution with a given number of observations 
and a given standard deviation the standard error varies inversely as y P" 

Hence for a distribution in which y., is small, for example a U-shaped 
· distribution, the standard error of the median will be relatively high, and 
it will, in so far, be an unde~;irable form of average to employ. On the 
other hand, in the case of a distribution which has a high ptak in the 
centre, so as to exhibit a value of yJ) large compared with the standard 
deviation, the standard error of the median will be relatively low. \\"e 
can create such a " peaked " ~istribution by superposing a normal ('Urve 
with a small standard deviation on a normal curve with the same mean 
and a relatively Jarge standard deviation .. To give some idea of the 
reduction in the standard error of the median th;1t may be effe<·tcd by a 
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moderate change in tl~e form of the distribution, let. us find for what 
ratio of the standard deviations of two such curves, havtng the same area, 
the standard error of the n~edian reduces to ufVn, where u is of coU!''~e 
the standard de\iation of the compound distribution. · . · 

Let u
1
, u1 be the standard deviations of the two distributions, and let 

there be n/2 observations in each. Then 

On the other hand, the value of YP is 

. 
Hence, the standard error of the median is . 

• • 

(20.4) is equal to u/Vn if 

{u1 +u1)V u1
1 +uz1 

1 
2V 1ru1u1 

and writiiag u1/u1 = p, that is if 

or 

{1 +p)~l +p_1 ~1 
2v' 1rp 

p'+2p1 +(2 -b)p1 +2p + 1 =0 

(20.2) 

(20.3} 

• (20.4) 

This equation may be reduced to a quadratic and solved by taking 

p +! as a new variable. · The roots found give p = 2·2360 ••• or 
p . 

O·f-4.72 ••• , the one root being merely the reciprocal of the other. The 
r.tandard error of the median will therefore be ufv'1i, in such a compound 
distribution, if the standard deviation of the one normal curve is, in round 
numbers, about 21 times that of the other. If the ratio be. greater, the 
standard error of the median will be less than afVn. ·The distribution 
for which the &tandard error of the median is exactly equal to. u/Vn is· 
shown in fig. 20.1; ·it will be seen that it is by no means a very striking 
form of distribution ; at a hasty glance it might almost be taken as normal. 
In the case of distributions of a form more or less similar to that shown, 
it is evident that we cannot at all safely estimate by eye alone the relative 
standard error of the median as compared with u/Vn. . · 

20.26. In the case of a grouped frequency-distribution in which th« 
number of observations is large enough to give a fairly smooth distribution, 
we can use an alternative form which does not involve a, knowledge of the 
standard deviation of the distribution in a very large sample. In fact. in 
sueh a case the sample itself is large enough to give us . a satisfactory 
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approximation to the distribution in an indcfmitely large sarn]Jl.:. Lt't /, 
he the frequency per dass-inten·al at the given r('reentill'--~imp)(' iutt-r
polation will give us the Yalue with quite sufllcient necura<·y for pnwtit·al 

I 

' ,, 
I 

__ .. ,' 

FIG. 20.1. 

Vnpq u.,,=h. 

purpose~, and if the figun·'> 
run irregularly they may 
he smoothed. Let u be 
the value of the stan
dard de\·iation expressed in 
dao;s-intervals, and let 11 

be the. number of obser
vations as before. Then, 
since y 11 is the ordinate of 
the frequency-distributiou 
when drawn with unit 
standard deviation and unit 
area, we must have 

(T 

y»=:;,/p 

But this gives at once for 
the standard errore:rpressed 
in terms of the da~.<J-interral 
as unit 

(20.5) 

Example 20.4.__:__consider the data of Table 6.7, page 9-1-, ~iving the 
distribution of 8585 men according to height. · Let us take these data to 
be a sample from the uniYerse of men in the United Kingdom at that. time. 
The number of observations is 8585, and the standard deviation 2·5i in., 
the distribution being approximately normal: . ufvii =0·0?.7737, and, 
multipl)'ing by the factor 1·253 ... given in the table in 20.24, this gives· 
0·0318 as the standard error of the median, on the assumption of normaU.y 

·of the distribution. 
Using the direct method of equation (20.5), we find the median to be 

67·47 (7.20), which is very nearly at the centre of the interval with a 
frequency 1329. Taking this as being, ";th sufficient accuracy for our 
present purpose, the frequency per interval at the nwtlian, the standard 
error is 

1~8585 
=0·0319 

I 1329 

As we should expect,' the value is practically the same as that obtaine-d 
from the value of the standard de,;ation on the assumption of normality. 

Three times the standard error is 0·1047, and we accordingly cundude 
--that the median in the univer:<>e lies within about 0·1 inch of 67·J,i, the 

sample value, provided that the sampling is simple. 
Example 20.5.-Let us find the standard error of thl' fir~t and ninth 

deciles as another illustration. On the assumption that the. distribution 
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is normal, these standard errors 'are the same, and equal to 0·027737 · ·. 
x 1·70942 -0-01.7-J.. Using the direct method, we find by simple inter~ 

polation the approximate frequencies per interval at the first and ninth. 
d('('i)es respedively to be 5!>0 and 570, giving standard errors of O·O.J.71 
nnd 0·0488, mean 0·0479, slightly in excess of that found on the assumption 
that the frequency is given by the normal curve. The student should · 
notice that the class-interval is, in 'this case, identical with the unit of 
measurement, and consequently the answer given by equation (20.5) does 
not require to be multiplied by the magnitude of the interval. · 

Correlation between Errors of Percentiles •. · 
20.27 ~ In finding the standard error of the difference between two 

percentile& in the same distribution, the student must be careful to note 
that the errors in two sucli percentiles 11-re not independent. Consider the 
two percentiles for which the values of p and q are p1 q1, p., q2, respectively, 
the first named being the lower of the two percentiles. These two per-· 
centiles divi!e the whole area of the frequency curve into three parts, the 
areas of which are proportional to q1, 1 - q1 - p 2, and p 1• Further, since 
the errors in the first percentile are directly proportional to the errors in q1, 

and the errors in the second percentile are directly proportional but of 
opposite sign to the errors in p 2, the correlation between errors in the two 
percentiles will be the same as the correlation between errors in q1 and p 2: 

but of opposite sign. - But if there be a deficiency of observations below the -. 
lower percentile, producing an error a. in q., the missing observations will 
tend to be spread over the two other sections of the curve in proportion to 
their respective areas, and will therefore tend to produce an error · ·. 

8a= _P281 
Pt 

in p 1• If, -then, r be the correlation between errors in q1 and p,. £ 1 and £ 1 
the respective standard errors, we have: · • - · . 

.. 
. . ' 

r~= _Pa 
£1 . P1 

Or, inserting the values of the standard errors, 

r= -,JPaqt 
· q2P1 

.The .correlation between the percentiles is the same in magnitude b~t .. 
opposite in sign; it is obviously positive, and consequently , · . 

Correlation between errors} -~p q ·. 
= + s 1 ·ii. '• (20 6) 

in two percentiles . q.,p~ · 

· If the two percentiles approach very dose together, q1 and q.,. p~ and Pa 
become scnsihly equal to one anotbcr,·and the correlation becomcs unity, . 
ao; we should expect. 

Standard Error of Semi-interquartile Range. . 
20.28. Let us. apply .the above value of the correlation between 

percentiles to find the standard error of the semi-interquartile range for the. 
normal curve. ln!>erting q1 = Pa"" 1, q1 = p 1 = f, we fmd r = l· lienee the 

. 25 
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standard error of the interquartile range is, applying the ordinary formula 
for the standard deviation of a difference, 2/Vi times the standard error 
of either quartile, 'or the standard error of the semi-interquartile range 
1/Va times the standard error of a quartile. Taking the value of the 
standard error of a quartile from the table in 20.24, we have, finally, 

Standard error of the semi-} a 
. interquartile range in a =0·78672. r (20~7) 

normal distribution v n 

Of course the _standard deviation of the interquartile, or semi-inter
quartile, range can readily be worked out in any particular case, using 
equation (20.5) and the value of the correlation given above; it is best to 
work out such standard errors from first principles, applying the usual 
formula for ·the st~dard deviation of the difference of two correlated 
variables (16.2). . 

20.29. If there is any failure of the conditions of simple sampling, 
the formulre of the preceding sections cease, of course, to hold good. We 
need not, however, enter again into a discussion ·of the effect of removing 
the several restrictions, for the effect on the standard error of p was con
sidered in detail in Chapter 19, and the standard error of any percentile is 
directly proportional to the standard error of p. · 

• 
Standard Error of the Arithmetic Mean. 

20.30 •• Let us now determine the standard error of the arithmetic mean. 
Suppose we note. separately at each drawing the value recorded on the 

first, second, third ..• and nth card of our-_ sample. The standard 
deviation of the values on each separate card will tend in the long run to be 
the same, and identical with the standard deviation a of x in an indefinitely 
large sample, drawn under the same ·conditions. Further, the value 
recorded on each card is. (as we assume) uncorrelated with that on every 
other. The standard deviation of the sum of the values .recorded on the 
n cards is therefore Vna, and the standard deviation of the mean of the 
sample is consequently 1/nth of this ; or, • 

(20.8) 

This is a most important and frequently cited formula, and the student 
should note that it has been obtained without any reference to the size of 
the sample or to the form of the frequency-distribution. It is therefore 
of perfectly general application, if a be known. We can verify it against 
our fo:rmula for the standard deviation of sampling in the case of attributes. 
The standard deviation of the number of successes in a sample of m observa
tions is V' mpq : the standard deviation of the total number of successes 
in n samples of m observations each is therefore V nmpq : dividing by n we 
have the standard deviation of the mean number of successes in the n 

-samples, viz. VmpqfVn, agreeing with equation (20.8). 

Example 20.6.-In the height distribution considered in Examples 
20.4 a~d 20.5 we found that af.Vn = 0·0277 approximately. This is then 
the standard error of the mean of the distribution. 
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If ~·e regard the data as a simple sample from the universe of men in 
the United Kingdo~ we may take the mean, i.e. 67·46 inches, as an 
estimate of the mean in the universe. Three timeS the standard error is very 
small. 0·083 in<:h, and we can therefore locate the mean in the universe 
with considerable accuracy. . . 
.. The standard error in this case, however, gives a misleading idea as 
to the accuracy attained in determining the average stature in the United 
Kingdom ; the sample was not chostn und~r conditions which gave every 
individual an equal chance of being chosen. 

Comp:iirison ·of the Standard Errors of the Median and the Mean! · 
20.31. For a normal curve the standard error of the mean is·to the 

standard error of the median approximately as 100 to 125 (cf. 20.24), 
and in general the standard errors of the two stand in a somewhat similar 
ratio for g distribution not differing largely from the normal form. For 
the distribution of statures used as an illustration in Example 20.4, the 
standard etror of the median was found to be 0·0349 ; the standard error 
of the meal\ is only 0·0277. The distribution being very approximately 
normal. the'ratio of the two standard errors, viz. 1·26, assumes almost 
exactly the theoretical magnitude. 

As such cases as these seem on the whole to be more common and 
typical, we stated in 7.23 that the mean is in general less affected than . 
the median by errors of sampling .. At the same time we also indicated the 
exceptional e&'>es in which the median might be the more stable-cases in 
which the mean might, for example, be affected considerably by small 
groups of widely outlying observations, or in which the frequency-distribu- . 
tion assumed a form resembling fig. 20.1, but even more exaggerated 
as regards the height of the central " peak " and the relative length of 
the " tails." Such distributions are not uncommon in some economic 
statistics, and they might be expected to characterise som:e forms of ex
perimental error. If, in these cases, the greater stability of the median 
is sufficiently marked to outweigh its disadvantages in other respects, the 
median may be the better form of average to use. Fig. 20.1 represents 
a distribution in which the standard errors of the mean and of the median 
are the same. Further, in some experimental cases it is conceivable that 
the m~n may be less affected by definite experimental errors, the average 
of whi<:h does not tend to be zero, than is the mean-this is, of course a 
point quite distinct from that of errors of sampling. · · ' .. 

Means of Two Samples. . 
20.32. When we have two samples from some record which exhibit 

different means, a \'ery common question which we wish to ask is : Can 
the difference be accounted for by sampling fluctuations, i.e. can the two 
samples have come from the same universe ? · · 

If the two samples are independent and come from the same universe 
under simple conditions, evidently £ 11, the standard error of the difference 
of their means, is given by 

E~a=u'(!+.!.) (20.9}_ 
fit fls 

If. an observ~ difference exceed. three times the. value of £u given by 
this formula, 1t can hardly be ascnbed to fluctuations of sampling. If, in 
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a practical case, the Yalue of u is not known a priori, we must suL~titute 
an observed value, and it would seem natural to take a~ thi~ value the 
standard deviation in the two samples thrown together. Jr, howt·nr, the 
standard de\·iations of the two samples themselves diUer mor£' than can 
be accounted for on the basis of fluetuations of sampling alone (see below, 

.21.14), we evidently £·annot assume that both samples have been drawn 
from the same record: the one sample must have been drawn from a 
record or a universe exhibiting a greater standard deviation than the 
other. If two samples be drawn quite independently from different 
unive.rses, indefinitely large samples from which exhibit the standard 
deviations rr1 and rr2, the standard error of the difference of their means 
"ill be given by 

(20.10) 

This is, indeed, the fonriula usually employed for testing the sigillfican£'e 
of the difference between two means in any case ; seeing that the standard 
error of the mean depends on the standard deviation only, and not on the 
mean, of the distribution, we can inquire whether the two universes from 
which samples have been drawn differ in mean apart fr()Tn any difference in 
disper~ion. . · 

20.33. If two quite independent samples· be drawn from the same 
universe, but instead of comparing the mean of the one with the mean 
of the other we compare the mean m1 of the first with the mean m0 of 
both samples together, the use of (20.9) or (20.10) is not justified, for 
errors in the mean of the one sample are correlated with errors in the mean 
of the two together. Follo"ing precisely the lines of the similar problem 
in 19.29, we find that this correlation is·Vn1J(n. +n1), and hence 

(20.11) 

(For a complete treatment of this problem in the case of large samples 
drawn from two different universes, cf. ref. (4-63).) 

Effect on Standard Error of Mean of Breakdown of Conditions for 
Simple Sampling • 

. :i0.34. Let us consider briefly the effect on the standard t'rror of the 
mean if the conditions of simple sampling as laid down in 20.16 cease 
to apply. 

If we do not draw from the same record all the time, but first draw a 
series of samples from one record, then another series from another record 
"ith a somewhat different mean and standard de\iation, and so on, or if 
we draw the successh·e samples from essentially different parts of the same 
record the standard error will be greatly increased. 

Fo; suppose we draw k1 samples from the first record, for which the 
· standard deviation (in an indefinitely large sample) is rr1, and the mean 

differs by d1 from the mean of all the rt'cords together (as ascertained by 
large samples in numbers proportionate to those now taken), k1 samples 
from the second record, for which the standard deviation is cr2, and the 
mean differs by d1 from the mean of all the records together, and so on. 
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. . . 
TI}(·n for the samples drawn from the fin.t record the standard error of the 
mean will be a 1/ ,t;a, but the distribution will centre ro~nd a ,-alue differing 
by d1 from the mean for all the records together i and so on for the samples 
drall"ll from the other records. Hence, if a. be the standard error of the 
mean in all the records taken together, N the total number of samples, · 

A· a.• =S( k:
1

) +S(kd1
) 

But the standard de\iation a• for aU the records together is given by.· 

X a•' =S(ka1 )+S(kd1 ) 

Hence, Jwriting S(kd1) =Xs.•, 

• 
a.• n-1 

a •=~-+~• a 
- ft ,. -

(20.12) . . . . 
This equatipn <'Orresponds p~ly to equation (19.8), page 363. The 
standard error of the mean, if our samples are drawn from different records 
or from ~ntially differe11t parts of the entire record, may be increased 
indefinitely as <'Ompared with the value it would have in the case of 

. simple sampling. If, for example, we take the stat~ of samples of 
n men in a numlwr of different districts of England, and the standard .. 
de,·iation of all the statures obsen-ed is a~ the standard deviation of the 
means for the different distrirls will not be a.fVii, but will have some 
greater valut", dept"ndent on the real ,-ariation in mean stature from 
district to district. 

20..35. If we are drall-ing from the same record throughout, but 
alll·ays draw the first .l'&rd from one part of that l'f'rord, the second card 
from anotheT part, and .so on, and tht"Se parts differ more or }t"SS, the 
standard t>rror of the mean will be decreased. For if. in large samples 
drawn {rom the liubsidiary parts of the record from which the several 
cards are taken, the standard de\iations are a 1, a,. ••• a., and the 
means differ by d,_, d!> ••• d. from the mean for a large sample from 
the entire record, we lun·e : . 

JieuC't', 

a.• ""';s(a1
) + ;s(d1) 

a 1 = _!-S( a 1) - ,.. 
a I 6 I 

=-·--...!'!_ 
" fl 

(20.13) 
' 

The last equation again <'Orrespond<i pn-cisely llith that gi\·en for the 
same ~eparture from the rules £>( ~>imple 5ampliug in the t'ase of attributes 
(equatxun (19.10), p. 3GS). If, to ury our previous illtbtration, we 
had measured the t>latures or men in ea£·b of " different districts, and 
tlaE-n_JJJ'tX'ft.-dctl to form a set of samplt-S by taking one man from each 
(h;,l ru·t fur the fir..t sample, one man from each distriet for the set:ond 
~>amy,le, and liO on, the atan~anl de,·iation of the means or the samples 
liO formed would be apr rec1ahly less than the standard error of simple 

. . .. 
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sampling u0/ v'fi. As a limiting case, it is evident that if the men in each 
district were all of precisely the same stature, the means of all the samples 
so compounded would be identical; in such a case, in fact, u0 =•,, and 
consequently u,. ""0. To give another illustration, if the cards from which 
we were drawing samples had been arranged in order of the magnitude of 
X recorded on each,' we would get a much more stable sample by drawing 
one card from· each successive nth part of the record than by taking the 
sample according to our previous rules-e.g. shaking them up in a bag 
and taking out cards blindfold, or using some equivalent process. 

The result is perhaps of some practical interest. It shows that, if we 
are actually taking samples from a large area, different districts of which 
exhibit markedly different means for the variable under consideration, and 
are limited to a sample of n observations, if we break up the whole area 
into n sub-districts, each as homogeneous as possible, and take a contribu
tion to the sample from each, we will obtain !' m.ore stable mean hy this 
orderly procedure than will be given, for the same number of observations, 
by any process of selecting the districts from which samples shall be taken 
hy chance. There may, however, be a greater risk of biased error. These 
conclusions seeni in accord with common sense. · 

20.36. Finally, suppose .that, while our conditions (a) and (b) of 
20.16 hold good, the magnitude- of .the variable recorded on one card 
drawn is no longer independent of the magnitude recorded on another card, 
e.g. that if the first card drawn at any sampling bears a high value, the next 
and following cards of the same sample are likely to bear high values also. 
In these circumstances, ~f f'1,. denote the correlation between the values 
on the first and second cards, and so on, 

u 1 u 1 · 
. - a,.~== fi +2na(ru +f''J.ll + ... +f'~· +. ••• ) 

There are n( n -1 )/2 correlations ; and if, therefore, f'. is the arithmetic 
mean of them all, we may write : 

u• 
u,.ll=n[1+f'(n-1)] (20.14) 

AS the·means and standard deviations of or1, :r,. or,. are all identical, 
f' may more simply be regarded as the correlation coefficient for a table 
formed by taking all possible pairs of the n values in every sample. - If this 
correlation be positive, the standard error of the mean will be increased, 

. and for a given value off' the increase will be the greater, the greater the 
size of the samples. Iff' be negative, on the oth~r hand, the standard error 
will be diminished. Equation (20.14) corresponds pr~cisely to equation 
(19.12), page 366. • 

As was pointed out in 19 .35, the case whe~ f' is positive covers 
the case discussed in 20.34; for if we draw successive samples from 
different records, s~ch a positive correlation is at once introduced, although 

·-the drawings of the several cards at each sampling are quite independent of 
one another. Similarly, the case discussed in 20.35 is covered by the case 
of negative correlation, for if each card is always drawn from a separate 
and distinct part of the record, the correlation between any two or's will 
on the average be negative; if some one card be always drawn from a part 
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of the record eontaining low values of the variable, the others must on. an 
average be drawn from parts containing relatively high values. It is as 
well. however, to keep the three cases distinct, since a positive or negative· 
correlation may ariSe for reasons quite different from those considered in 
20.34 and 20.35. · · · 

SUlll\IARY. 

1. A knowledge of the sampling distribution of a parameter enables us _ 
to ascertain the probability that a given sample will exhibit a value of the 
parameter between specified limits. · . · 

2. The sampling distribution of many parameters tends to the normal 
form, or at least a single-humped form, for large values of n, the number in 
the sample. if the sampling is simple. · - · ' 

3. This fact enables us to take a range of ± 3 times the standard error 
as providi11.g limits within which a sample value of the parameter will 
probably !ie ; with the further assumption of normality of the sampling . 
distributioq we can determine the probability that a sample value will lie · 
within any specified limits. . · -- - . · 

4. In a large sample the values of parameters in the sample may be 
taken to be estimates of the values in the universe, if the sample is simple. 
Further, these value~tay be used instead of the values in the universe in 
('alculating the stantJd errors of the parameters. . - _ · 

5. The standard error of the median of a normal distribution is given by 
• u 

s.e. = 1·25331 vn 
where u is the standard deviation in an indefinitely large sample and n 
is the number in the sample. -

6. 'Yith the same notation the standard error of the arithmetic mean is 

u s.e. =:_ 
1

_ 
· ·Vft 

whatever the form of the distribution. 
7. If a serit$ of samples of n is drawn from different universes or from 

different parts of a non-homogeneous_ universe, 

u 1 n-1 · 
U ·=-0-+--8 I . 

"' n n "' 

where u.,. is the standard error of the mean, u0 is the siandard deviation 
in all the samples taken together, and •,. is the standard deviation of means 
of indefinitely large samples about the mean of all samples. . • 

8. If samples are drawn so that each member comes from a different 
section of a non-homogeneous universe, 

. uo• • ·• 
u ·=---!'!... ,. n n 

where u,.. u0 and a,. are defined as before. 
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9. If there is a correlation between the results or the drawing of 
successive individuals, 

where am is the standard error of the mean, o the standard deviation in 
an indefinitely large sample, and r is the mean correlation between the 
results of pairs of individuals. 

EXERCISES. 

20:1. If the sampling distribution of a parameter is normal, fmd the prob· 
ability that a sample value will differ from the central value by more than twice 
the probable error. · 

_ 20.2. In the height distribution of the United Kingdom given in Table 6.7, 
pa~e lH, assumed to be normal, with mean 67·46-inches and standard deviation 
2·57 inches, find the probability that an individual chosen in the same way as 
the members of the distributiQn will be between 5 and 6 feet in height • 

. 20.3. For the data of the last coliunn of Exercise 6.6, page Ill, find the 
·standard error of the median (154·7 lbs.) and the stanrlard errors of the two 

quartiles (142·5 lbs, and 168·4 lbs.). · 
20.4. For the same distribution find the standard error of the semi-inter· 

.. quartile range. 
20.5. The standard deviation of the same distribution is 21.3 lbs. Find the 

standard error of the mean and compare it with the standard error of the median 
(Exercise 20.~). · . 

20.6. Taking the values of the median and the quartiles of the marriage 
distribution of. Table 6.8, page 96, from Example 9.8, page 164, find their 
standard errors. 

20.7. In the same distribution the mean is 29·4 years and the standard 
deviation 8 years, approximately. Find the standard error of the mean and 
compare it with that of the median. 

20.8. For the same distribution find. the standard error of the quartiles, 
assuming it to be normal with mean 29·4 years and standard deyiation 8 years, 
and compare your results with those obtained in Exercise 20.6. 

20.9. Find the standard error of the 27th percentile of the normal 
distribution. 

20.10. (Imaginary data.) A random sample of 1000 men from the North of 
England shows their mean wage to be £2 7s. per week, with a standard deviation 
of £1 8s. A sample of 1500 men from the South of England gives a mean wage of 
£2 9s. per week, with a standard deviation of £2. Discuss the suggestion that the 
mean rate of wages yaries as between the two regions·. . 

20.11. Two universes have the same mean but the standard deviation of 
one is twice that of ihe other. Show that in samples of 500 from each drawn 
under simple random conditions the difference of the means will in all probability 

·not exceed 0·317, where 17 is the smaller standard deviation; and assuming the 
distribution of the difference of means to be normal, find the probability that it 
exceeds half that amount. 

. 20.12. A random sample of 1000 farms in a certain year gives an average 
yield of wheat of 2000 lbs. per acre, with a standard deviation of 192 lbs. A 

_ random sample of 1000 fanns in the following year gives an average );eld of 
2100 lbs. per acre, with a standard deviation of 22.j, lbs. Show that these data 
are consistent with the hypothesis that the awr<~ge yields in the eo\mtry as a 
whole were the same in the two years. . 

\Vould you modify this conclusion if the farms in the sceond sample were the 
10ame as those in the first 1 · 
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20.13. Find the mean and median of the U-shaped distribution of ~able 6:14, 
page 106, and compare their standard errors. (For the purpose of this exercise 
the median frequency may be found by simple interpolation, but this gives a 
value on the high side.) . · 

20.14. The mean of a certain normal distribution is equal to the standard 
error of the mean of samples of 100 from that distribution. Find the probability 
that the mean of a sample of 25 from the distribution will be negative. 

20.15. If it costs a shilling to draw one member of a sample, how much would · 
it cost, in sampling from a universe with mean 100 and standard deviation 10, 
to take sufficient members to ensure that the mean of the sample in all prob
ability would be within 0·01 per cent. of the true value? Find the extra cost 
necessary to double the precision. · 

20.16. Consider the data of Table 6.7, page 94, giving the distribution of men 
by height in each of the four countries which then formed part of the United 
Kingdom. The means and standard deviations of the four distributions are 
given in Exercise 7.1, pag-e 131, and Exercise 8.1, page 152. 

What is the standard error of the mean of a sample which consists of 400 
men, 100 cvosen at random from each of the four countries? 



. . 
with an expected "Value y. and a standard deviation 

u ~ 1n~(l-~) -. 'V n n .... 
-·-- Now, if the sample is large, we can take the observed frequency in the 
sth group in calculating the standard ~rror of the frequency of that group. 

' The student whose main interest lies in the practical application of the results of 
this chapter may prefer to omit paragraphs 21.2 to 21.8. 

394 
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Taking this observed frequency as our estimate of Y~n its standard error, 
u., is given by • 

u• =y (1-~) 
•• • n 

(21.1) 

- ·· This, in another form, is our familiar result for the . sampling of 
attributes. _ 

21.3. ··we may now find the correlation between errors in y, and errors 
in another group-frequency, say Yt· It is evident that such a correlation 
will exist,. for if y, falls below its expected value, some other frequencies 
must be increased. . , 

We shall write a deviation of y, as 8y,. (The symbol 8 is not to be 
regarded as a number multiplying Y~n but is to be read together withy, so 
that 8y, is a single symbol representing a single quantity.) · 

Since • 
• .... S(y) =Y1 +Ya +. • • • +Ym =n 

S(Sy)=8y1+8ya+ ••• +8ym~O 

for the sum of deviations from the expected values must be zero. . . 
We may now assume that, on the average, a deficiency 8y, in y, will be 

spread over the remaining groups in proportion to the expected frequencies 
in those groups, i.e. that · 

Hence, 

Sy1= -8y, __JfJ_ 
n-y, 

- y 
Sy,Sy, = - (Sy,)1-'n-y, 

(21.2) 

Now let us sum both sides of this equation for all -values of the deviations 
Sy, and Sy,. By definition we shall get . . 

= - a • __11.!_ u11,u11,r11, 111 111 n -y, 

yrhere r ,,., is the coefficient of correlation between 8y, and Sy,. 
Hence, in virtue of (21.1 ), 

{21.8) 

This is a more general case·ofthe correlation between percentiles, which 
we considered in 20.27; · .-, 

Standard Error of the qth Moment abo~t a Fixe'd Point. . 
21.4. By definition, the qth moment about an arbitrary p~int is p.,/, 

where · · · 
f'lJLg' = S(.r,t~y,) 

.r being the variate metUured from the arbitrary point. · · · 
Hence, writing as before, SJLg' for the deviation in p.11' due to deviations 

Sy,. we have: 
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Squal;ing both sides, 

n•(SJJ,r')2 = (xlvSyl +:rav8yl + ... +z,.u&yn)2 
= S{.r,h( Sy,)2} + 2S' (.r,q.r,qSy,Sy1) 

where S' denotes summation over all values of a and t except those for 
which 8 =t. 

This equation holds for any one sample, and we have to sum it for all 
samples. Carrying out this summation first (in which 8 and t are fixed), 
and substituting from equations (21.1) and (21.3) on the right-hand side, 
we have: 

Hence, 

(21.4) 

Ezample 21.1.-Let us find the standard error of the first il10ment, 
or mean h. · 

We have, from (21.4}: 

Now p,3' -h1 is the'second moment p,3 about the mean, i.e. is a 1• 

Hence, · 
- faa a 

u,. •=uA='V -=--=-
1 n Vn 

which is the result we have already found in 20.30. 

Correlation between Errors in the qth and rth Moments, both 
about the Same Fixed Point.· 

21.5. As in 21.4 we have: 

Multiplying, 

n8p,a' =S(.r,q8y,} 

n8p,r' = S(.r,r8y,) 

n 28p,.,_'8p,/ =S(x,v+r8y,1 ) + S'{(.r,q.r,r +.x~'.r1V}(8y,8y,)} 

and summin~ for all samples, 

n1u,.q'u,.,~,.,/,.,' = S(.:r,v+ru~,) + S'{(:r,q.r,' + .:r:J',v)( uu,a11 l u,111)} 
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. I 

On substitution for 17;, and 171111711{"s"t from (21.1) and (21.3), the right-

hand side reduces to 1fp;+r- np.;p.;, and hence, 

' ' ' P.v +r - /Lq,ur 
17,_v•I7,_,,-P-q'1Lr' = ~ n . (21.5) 

Standard Errors of the Moments about the Mean. 
21.6. In 21.4 and 21.5 we have cohsidered moments about a fixed 

point. In practice we have to deal more usually with moments about' 
the mean of the sample. Since this mean is itself subject to sampling 
fluctuations, the standard errors of moments about the mean will not in 
general be the same as those about a fixed point. 

If h is the mean we have, by definition, 

• np.11 =S{(.r, -h)"y,} 
=S(.r,"y,)- qhS(.x,"-Ly,) + T 

where T is written generally for an expression involving h 2 and higher 
powers of h. _ 

Now let h vary to h + Sh, y. vary to y, + Sy., and p.11 vary to p.., + Sp..,. 
We have: -

n(p.q + Sp..,) =S{.r,"(y, + Sy.)} -q(h + Sh )S{.r,"-1(y, :t- Sy,)} + T _ 

Subtracting the equation for np.11 , 

nSp.11 =S(.r/Sy,) - qohS(.r,t-1y,)- qS(.r,"-1ohoy,) + U 
=nop; .:_ tlqp;_ 1M..,. nqoltop.;_ 1 + U 

where U will involve hand higher powers. We may neglect the term in 
Shop.,'_ 1 as being small compared with the remairung terms. Squaring 
and summing for all samples, 

I 2 J '2 J 2 I u 17,_'1=17,_'l,+q /Lq-ll7h- qf-L9 _ 117hl7,.q'r,,,'l,+ 

Substituting for 17!q'' etc., from (21.4) and (21.5), 
, '2 2 , 'I , I , 

171 =/L2g- {-Lq + q P.2Jlq-1- 2qf-Lq-1f-Lg+! + u 
~'-'1 n 

Now put h =0. U vanishes and the moments become moments about 
t11e mean and may therefore be written without dashes. lienee, 

17 
= / 1-'211 -p.l + q2P.21-'Lt - 2qP.a-11-'a+1 

~'-g \( n (21.6) 

Correlation between Two Moments Both Measured about the 
Mean. 

21.7. In a similar way it may be shqwn that 

17.,_ a,_,r ,_ .. =1-'a+r -1!--d!-r +qrp._21-'a-11-'r-t- rp.o+l/Lr-t- qp.q-tfLr+l 
q v, n (21.7) 

We omit the algebra for the &ake of brevity. 
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Correlation between Errors in a Moment about a Fixed Point and 
.in .a Moment about the Mean. • 

21.8. Let us first of all find the correlation betwt'Cn deviations in a 
group-frequency y, and the moment p.; about!' fixed point. We have: 

Hence, 
,,I,'-= S(.r/y,) 

n8p.,'8y, = 8y,S(.r, vag,) 
. - =.r,'(8y,)1 +S'(.r,'8y~y,) 

the suinmation S' being taken over all values of • except·•=t. 
. . Hence, summing for all samples, · 
~ . 

. nafly-a,{,.,.,,=·.r,9y,(l-~) -s'(.r.';.Y•)-

. =_y,{ .r,• - se~y,)} 

Hence, 
=y,{.r,•-P.r 1 . 

. I 
•. (21.8) 

Similarly, for the product-sum of deviations in y, and the moment p., • 
about the mean, we have: · 

Yr( r · ') qy,( L) ' a,.,a,{ll.q'l,=n .r, -p.q --n .r,-,. P..-1 

·:·+terms in A and higher powers 

Putting h = 0, the right-hand side reduces to 

1l.!c.r,•-~ - q.r,p.._1l • 
n. . 

(21.9) 

. For the product-sum of errors in p..' and JLr, 

·' ~8p.; =S(z.v8y~) 
· 8p.r=8p.r' -r8Ap.;_1 + U 

where U, as before, denotes an expression involviog h and higher powers. 
Hence, _. . 

n8p..'8P.r =S(.r.•8y.8p.r')- S(.r.•8y;8Ap.;_1) + U 
S~mming for all deViations, 

a,.,,aw,.,'l'? =S(.r,•a,,al'r.,.,.,.,.,) -S(.r • .,.p.~_1a11ah7',~) + U 

and substituting from {21.8) and .(21.9) the right-hand side becomes 
# , , ,., 

flltr- P.r P.r - rp.,+lJl-r-1 + u 
n n 

Put 1&=0. Then, 
a a .. r _P.nr-p.,Jlor-rp.lltJJLr-1 
. ,.,, l"f' fly'~'?- ,. . {21.10)-
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Use of Sheppard's Corrections in Evaluating Standard Err~rs. 
21.9. Theoretically, Sheppard's corrections for grouping are not to be 

used in e\·aluating the moments which enter into the general equations for 
standard errors obtained in the previous sections. For, as the corrected 
values differ from the uncorrected values only by_ constants depending on 
the width of the interval, the sampling deviations of corrected and un
corrected moments are equal, and hence so are their standard errors. But 
the standard errors of uncorrected moments are given by the equations we 
ha,·e obtained in the foregoing section, and hence those equations are 
applicable to corrected moments provided that the uncorrected values are 
used in them. · 

In practice, however, it seems to make very little difference which 
moments we use, unless the sample is very large indeed. But as the 
uncorrected values have to be obtained before the corrected values can be 
calculated, and are therefore usually available, it is as well to use the 
uncorrected. values wherever possible. 

Standard 'Error of the Variance. 
21.10. Armed with the general results of the foregoing sections, the 

methods of which are due to Karl Pearson (ref. (460)), we can discuss the 
standard errors of a large class of parameters. 

From equation (21.6), putting q =2, we have, since P.I =0, 

al' = ~~~-1hz 
• 'I n . 

which gives the standard error of the variance p.2• 

If the parent universe is normal, . 

and hence, 
p.4 =3a4 (10.23) 

_ /aut -at_ ~~ 
a~'-1 -'J -a -

n- n 

12 
=p.z'Jn 

Standard Error of the Standard Devi'ation. 
21.11. If p.2 is the variance, we have: 

lienee, 
P.z =az 

p.1 + Sp.2 =(a+ Sa) 2 

=a2 +2aSa+(Sa) 2 

l'\eglccting Sa2 in comparison with Sa, 

Sp.2 =2aSa 

Squaring and summing for all samples, 

a 1 =4a2a 1 
~'-• . 

(21.11) 

(21.12) 
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IJ_CIH'C, ,--·-1 i p.~ - It·•~ 
a~= ·a =\- ·· · 

2a "• 4p.2n 

If the parent distribution is uorrnal this reduces to 

a 
a.,=\12~ (2l.H) 

21.12. The form of equation {21.H) has J)(.'(•Jl wirldy liSl·d for the 
standard error of a without due regard to the nature of the parent univcr,.e, 
and the student should guard against this mistake. 

We have, in fact, from (21.13): 

;-;-
a ~ '\ p. 2 \ !.( .. &_ -1) 

" V2n 2' P.a2 

= _!!__(1 + f3z- 3)1 
V2n 2 

How far a, can be taken to be the value {2I.U) therefore depends on 
. f3 l . 

how close the factor ( 1 + 2 
;

3
) is to unity, i.~. depends on the kurto,is 

of the parent distribution. 
The following table shows the value of this factor for various val<~cs 

of {32 :-

p. (t+P.;3)1 

2 0·7071 
3 1·0000 
4 1·2247 
5 1·4142 
6 1·58ll 
7 1·7321 
8 1·8708 
9 2·0000 

It thus appears tliat if the universe is leptokurtic the real standard 
error is greater than that gin'n by the assumption of normality, and may 
be twice as great or even more. If the universe is platykurtic the real 
standard error is less than the "normal" value. 

f3 - 3 ( {32 - 3)1 {3. - a If - 2
- is small, the factor 1 + -- is approximately 1 + -"---. 
2 2 . 4 

This differs from unity by more than 5 per cent. if f3~ is less than 2·8 or 
more than 3·2. Hence, values of {32 lying outside the ran~e 2·8 to 3·2 (<1nd 

. they are more common than not in practice) will give an t-rror of more than 
5 per cent. if the universe is assumed to be normal. 

E.rample 21.2.-}'or the height distribution of TaLle 6.7, page tH, we 
ha\·e found that a= 2·57 inches, n = 8585. The universe may be taken to 
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be normal, for {J2 from the sample is 3·H~ (E-.:ample 9.9, page 165) and 
. 2·57 . . . . 

hence the standard error of a=. 1 _ -=' ""O·O:l approximately. 
v 2 x8585 

· - Hence, we may say that th.e s.d. in the universe almost certainly lies ' 
in the range 2·57 ± 0·06, assuming that the sampling is simple. _ 
- . - E.rample 21.3.-The distribution of Australian marriages of Table 6.8, 
page 96, has ~..mcorrect«_:d moments JLs and p.,, in class-intervals, as follows: 

Hence_, 

. . 

p.2 =7·0570 
P.&. = 408·7382 

a= V p.1 =2·6.1)65 

(Example 9.2, page 159.) 

The stand~rd err~r of a~ I ,.,.,4- P.a' . 
-•· 'V P-an-

~ = ~-40-8--7-3-8'-2 ---(7-·-05_7_0.,...,) 8 

4 x7·0570 x301,785 · 
=0·00649 class-intervals 

As we should expect from su~h a large sample, the standard .error is 
very small, and we conclude that the standard deviation of the parent 
lies in the range 2·6565 ± 0·0195. _ · . 

It may be pointed out _that if we take these data as a sample of 
Australian marriages in general, we may be liolating the conditions of 
simple sampling, for the distribution most likely changes from year to 
year. · -

Example 21.4.-In the- previous example we ·worked throughout with 
uncorrected values. The corrected moments (Example 9.4, page 160) are: 

p.2 =6·9736 
p., = 405·2389 . 

We then have, for the corre~ted value of a, 

a=V6·9736 
=2·6U 

. . 
But the standard error of a is 0·00649 as in the previous example, for we 

must use the uncorrected valuf's in· calculating it.. . •, _ · 

·-

As a matter of fact,· if we had used the corrected values we should 
have found the value 0·00654--a practically negligible difference even for a _ 
sample of this size. · . · 

.Finally, let us compare this value with that given by the assumption, .. 
of normality. We have: _ - · · 

a 2·6565 
a,=--= 

Y2n :v'6o3,570 

= 0·0034-2 class-intervals 
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i.e. only about half the true value. This is in accordance with the table 
of page 400, for {11 is over 8. ' 

Comparative Effects of Sampling Fluctuations and Corrections 
for Grouping. 

21.13. Writing temporarily a1
1 for the uncorrected value of the 

variance and a 2
1 for the· corrected value, we have: . . 

or 

h• 
a 1 -a 1 --2 - 1 12 

0' I 1 hi 
....!_=1---
0'ta 12 ala. 

If the class-interval is chosen so as to make the number of intervals d, 
.... h . 6 

then 6a1 would be about dh and - about :1· Hence, 
. . O't ... 

. I 

. 3 . 11 or, smce d• 1s sma , 

0'22=1-!_ 
O'tz d2 

aa=1-~ 
O't 2dl 

\ .. 

For· instance, if d is 20, the corrected value is about 0·37~ per cent. less 
than the uncorrected value. 

Now, for a normal universe, 
0' 

a.;==: V2n 

and if n is, say, 1000, the "standard error is 44~72 = 0·02240' = 2·2-lo per cent • 

. of a. Thus Sheppard's correction amounts to .no more than about one
sixth of the standard error, and to make it gives ·an almost misleading 
idea of precision in most practical cases. 

· It was for this reason that we recommended (8.11 and 11.29) that the 
Sheppard corrections should not be applied if the total frequency is less 
than 1000. On the other hand, in Examples 21.3 and 21.4 the correction 
is large compared with the standard error and can reasonably be made, 
owing to

1
the larg~ness of the_ sample .. 

Comparison of Standard Deviations of Two Samples. 
21.14. As in 20.32, where we considered the comparison of the means 

of two samples, if the samples are independent and come from the same 
universe the standard error of the difference of their standard deviations 
is given by 

(21.15) 
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where fil,"na are the numbers in the samples, or, if the uni~er_se be normal, 

Eu=-\-+- • {21.16) , o 1 
( 1 1} · 

· 2 l~ n1 ... 

If the two samples are drawn from different universes with constants 
fL%0 /Lt and Vz, v4, the Standard error of the difference Of the Standard · 
deviations is given by · - . 

E~s ·="''- p.,s + v, - Vsl (21.17) 
4p.1~ 4v1n 21 

or 

(21.18) .. 
if the uninrse be normal. 

Again, if the standard deviation of one sample: is compared with the 
standard deviation of the two·samples when pooled, the standard en;or of 
the difference is, if the distribution be normal, · · 

{21.19) . 

These results can be used to test the significance of differences between 
standard deviations precisely as the equations of 20.32 and 20.33 were 
used to test the significance of differences between means. 

Standard Error of Third and Fourth Moments about the Mean. 
21.15. From equation (21.6), putting q=8,. · 

If the distribution is normal, 

lienee, 
I"• =15o', 

ol ~-
O'JI. =_rV15...:.18+9=ol ~ 

· • vn · . n 

Similarly, from equation (21.6), putting q = 4; , 

_ /p.,-p.,1 -8p.sJLa+l6p.zJLs"i ·:. ~ 
o~',-" n 

If the distribution is normal, fts = 105a', ftr. = 0. 
Hence, 

o' _,-
O'JI. =. r- v 105-9 

' vn 

(21.2~) 

(21.2ll 

(21.2~) ~ 
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E.rample 21.5.-For the height distribution of Table 6.7' we have 
(Example 9.1, page 156): . . · 

f&t (uncorrected)= 6·6168 

f&t (uncorrected)= -0·2078 
p.8 (uncorrected)= 137·6892 

and from Example 9.3, page 160: 

, . 

f&t (corrected)= 6·5335 

f&t (corrected) = .:.... 0·2078 

p., (corrected)= 131·4.100 

\Ve did not calculate higher· moments, and hence cannot use equations 
(21.20) and (21.22) with these data. The· distribution is, however, 
approximately normal. Hence, from (21.21 ), 

l . 

f 

. The value of f£s cannot therefore be judged significantly different from 
zero; which is what we should expect, for we have assumed the universe to 
~~~ ' . 

From (21.23) we have: 
· -a' I 96 u,..,- v 8585 

. .=4·63 approximately 

These • are- calculated from the un~orrected ~alue of u. . We may infer 
that p., (corrected) lies within the range 13i·41± 13·89. The Sheppard 
correction is only 3·28, and is submerged in the possible sampling deviation, 
even for a sample of 8585. What we have said in 21.13 applies, in fact, 
a fortiori to the higher moments. 

;u.16. · It will be evident that the standard· errors of moments of high 
order are very large ; for the moments increase rapidly, and the standard 
error of the moment of order q depends on the moment of order 2q. For 
example, in the normal distribution, for q = 6, "- = 10,395u11 and u,.., will 

100u8 · 
be of the or~er ~ n , whereas p.. = 15a-S. Unless, therefore, n is at le&l;t 

400, the range 3u,.. will be greater than the value of p.~, and hence we • cannot locate the value of p.8 in the universe with any exactness. Our 
approximations, in fact, break down if the de\iations are large. 

The large sampling errors of moments of high orders prevent the use 
of moments higher than the fourth in most practical problems. 

Correlation between Errors in Mean and Standard Deviation. 
21.17. From equation (21.10), putting q=l, r=2, and remembering 

that p.1 =0, we have: 
0' f£s -rr r,.,.. =-Vn "• • n 
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Hence, if IL3 = 0, errors in· the mean and variance, and hence in the 
ml·an and s.d., are uncorrelated. In particular, we have the important result 
that errors in the mean and s.d. in a normal universe are uncorrelated. 

Standard Error of the Coefficient of Variation. 
21.18 • The coefficient of variation V is defined as 

l'" = IOOu 
h 

Joov,:;; 
= h 

Hen<:e, 

• -· 

:Seglecting qUfintities small compared with aJ.LJ and ah, this beComes 
I 

. J'{l + aJ.La-~} . 
· 2J.L1 h 

Hence, 
Slr af-Lz ~h 
v-=2~-h 

(8ll1 =<at-L2l1 (Sh)1 
_ _!_ 8 s.h 

p 4 J.Lz I + hI JLah J.Ltu 

Summing for all samples we have: 

... 
If the distribution is normal: 

and r,.
1
,.':""0 (l1.17). 

Hence, 

Ilcnre, 

1 2u• 
u ="• ,. . 

{21.2-&) 
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In many practical cases the :.econd term differs little from unity aud 
l" "II . ffi . I · _,-WI g.ve a su c1ent y pre('lse result. 

v2n . 
Standard Error of /31 and /31• 

:U.I9. The standard errors of {J1 and {J1 can be deduced in a similar 
manner. 

In fact, 
P-31 

{J. = P-21 

(JL3 +~f'-3)1 
{Jl +~{Jl = (JLz+~JL,)• 

which, after some reduction, gil·es 

~p = 2JL3FJJLa _ 3JL31~ 
1 P-21 f'-a• f'-z 

Squaring and summing for all samples : 

4JL31 9JL3• 12J£a1 
~=--~+-a' ---u u r 

1\ P-t. s "• f'-z 8 "• f'-z 7 "• "• "'• 

4JL31 
n~ =-6- (p.1 - p.,'~- 6p..p.z + g#l-2s) 

1 1-'-t. 

9fta• 12fta:s 
+-8- CP.t- f'-a1

) --7- (p.i -4p.tJ':I) 
P-2 JLa 

In terms of {11, [1., {J3 and Pt (see p. 161, footnote, for definition of the 
higher {J's), . · 

~ = {J1{4{J1 -2.1{11 +36 +9{11{11 -12{11 +35fJ.} (21.25) 
"• n 

Similarly, 

u!, = ;ttJ6 - 4{12{14 + 4{11
1 - {1.,1 + 16{12{11 - 8{13 + 16{11} (21.26) 

The labour of evaluating these ·quantities may be ob,iated by the use 
of tables given in •• Tables for Stalisticiam and Biometricians, Part I.,. 

21.20. There is here one important point to be noted. In equation 
(21.24 ), if V = 0, u v = 0. Similarly, in equation (21.25 ), if {J1 = 0, u 'I= 0. 
It might be thought from this that if in a large sample we find in the one 
case that l" = 0 (and hence that u = 0 ), or in the other case that the distri
bution is symmetrical, then l,.. = 0 or {J1 = 0 in the uniYerse. This is not 
necessarily true. 

V will vanish only if all members of the sample give the same value 
of the variate. If the sample is large, it \\ill be e\ident that if there is 
any variation in the parent it must be small ; but it is not impossible 
that members should exist showing de,iations from the observed ,-alue. 
The explanation is to be found in the terms which we have neglected 
in our approximations. These, though in general small ('ompared with 
the terms retained, may be important if the terms retained themselves 



. SAMPLING OF VARIABLES-LARGE SAMPLES, CON1D. 4?7 

vanish. Furthermore, our assumption that the sample value may be 
assumed to be the parent value may be unjustified if both are very small 
compared with their difference. Equations such as (21.24} and (21.25} 
must, therefore, be· treated carefully in the neighbourhood of values which 
cause them to vanish. 

21.21. From_ the foregoing work the student will have no difficulty 
in accepting the statement that' it is possible to calculate the standard 
error of any quantity which is expressible as a function of the moments. 
Such a standard error would, however,- be applicable only to a value 
which had actually been calculated from the moments, and not arrived 
at by some other means. We shall not pursue the subject further in this 
book, but we may point out that the standard errors of certain quantities, 
such as an approximation to the Pearson measure of skewness (9.12}, have_ 
been tabulated in" Tables for Statisticians and Biometricians" for different 
values of /]1 and fJ,.. The same tables also contain some results of interest · 
in conneciion with the sampling distributions of range. . 

\Ve now turn to the parameters of multivariate universes, the correla
tion coefficients, regression coefficients, and some of the measures of 
association. 

Standard Error of the Correlation Coefficient. 
~1.22. For samples from a normal universe the standard error of 

the correlation coefficient is given by 

1-r1 

u,= v'n (21.27) 

A proof of this result would take us beyond the scope of the present 
work. The student who is acquainted with the differential and integral 
calculus may refer to ref. (459}. . . · · 

The formula applies also to partial correlations. . _ · 
21.23. Formula (21.27) is sometimes used to estimate the precision 

of correlation coefficients obtained by the use of the product-moment 
formula without reference to the nature of the universe. This practice 
is hardly to be commended, although sometimes there is nothing better 
to do. It is, however, possible to generalise the procedure of sections 

· 21.2 to 21.8 to the bivariate case, and it may be shown that 

u,' =!{~2~+! IL411+! ~ +! P-22 · _ _i!:n_. _ _l:!:!L} (21.28)" 
r• n JLrt 4 JL:O 4 JL~a 2 JLaoJLoa . JLuJLao P.uJLoa • 

(For the definition of the bivariate moments, see footnote, p. 214.) . 
In additio'n, if the regression is linear, denoting the {38's of the· two 

\'ariatcs considered separately by {32, /]8', • . . • 
' . . 

(I -r•) 2
{ r 1 

, } u,• = --n- 1...- 4-(l _,2)(f3a -3 + fJa -3) . · (21.29) 

which reduces to (21.27) if the kurtosis is zero. 
If the distribution is not normal and r is not small, the difference between 

the values given by (21.27) and (21.29) may be considerable; but it may 
be noticed that the value given by (21.27) is less than that given by (21.29) 
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if the distribution i.9 platykurtic for both variates, and grt."atcr if the 
di!>tribution is leptokurtic for both variates. 

21.24. In particular, it may be shown that for a 2 x 2 table in which 
the frequencies are (AB), (Afi), (aB) and (afi), the standard error of the 
correlation coefficient calculated by the product-moment method on the 
assumption that the frequencies are concentrated at points is given by 

u I= !{t -r~ + (r +ira)[( A)- (a)][(B)- (fi)] 
r n V(A)(a)(B)(fi) 

_ 11 2[[(A)- (a)]2 [(B)~)]1J} 
47 (A)(a) + (B)(fi) 

{21.30) 

21.25. The standard error of tetrachoric r, as calculated in the 
manner of 13.23, is given by very complicated expressions which we do 
not reproduce. The student may be referred to ref. (465) for an approxi
mate form and certain tables to facilitate the arithmetic. 

Example 21.6.-ln the data of Table 11.3, page 199, we found that 
the correlation between the stature of the father and the stature of the 
son was 0·51. Reg~rding these data as a sample of 1078 from the universe 
of fathers and sons, we have: · 

Standard error of r= 1~~~~ = 1 ~(0·51 )' 
. vn 1078 

= 0·023 approximately 

Hence, if the sampling was simple, the correlation in the universe 
most prpbably lies within O·U an.d 0·58. It is thus undoubtedly real. • 

Example 21.7.-In considering data: from 14,416 cows, J. F. Tocher 
found a negative correlation of 0·0796 between yield of milk per week and 
percentage of butter fat. Is this significant, i.e. could it have arisen from 
an uncorrelated universe by sampling fluctuations ! 

If r=O~ 
1 1 

O'r=~= 

Vn v'U,416 

=0·008 

The correlation observed is ten times this, and small though it is, 
could not have arisen from sampling fluctuations. 

In this example we may reiterate the caution to be observed in 
inferring from the sample anything about the universe (cows in the 
United Kingdom) as a whole. The records were, in fact, taken by the 
Scottish l\Iilk Records Association from constituent associations at various 
years between 1908 and 1923. The conditions of simple sampling may, 
therefore, have been violated both in regard to time and in regard to 
place~ 

Standard Error of the Coefficient of Regression . 
. 21.26. The standard error of the coetficient of regression from a 

normal universe is given by 
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' '(21.31) 

This again applies to- a regression cc;>efficient of. any ~rder, to!al or_ 
partial, i.e. in terms of our general notatwn:, k ·denotmg any collectwp_ of-
secondary su~scripts other than 1 or 2, -

' Standard error of b11u } __:_ u1.zt • 

for a normal distribution - O'z.t vn 
The Correlation Ratio and Coefficient of Multiple.Correlation. 

21.27. It has been shown that the sampling distributions of the 
correlation ratio and the multiple correlation coefficient from normal 
universes· do not tend to the normal form for large samples, although they 
do give single-humped distributions. The use of a standard error in such 
cases must"be made with great caution, and it is probably better to apply 
one of the tests of significance which we shall consider later in connection 
with the theory of small samples. The formula usually gj.ven for the 
standard error of the correlation ratio is an approximate one : ---

\ 

1 ~"1· u.,= • r
vn • 

(21.32) 

21.28. Somewhat similar remarks apply to the coefficient '='IJ'- rl 

which, as we saw in 13.8, may be used to test the linearity of regression. 
The use of a standard error for ' in an attempt to gauge the significance of 
a dt>parture from linearity has been subjected to very damaging criticism 
by R. A. Fisher. 

E:cample 21.8.-Consider the data of Example 14.2, page 272 (relation 
between pauperism, age of population and number of population). 

We found: 
:£1 = 0·325z1 + 1·383:£8 - 0·383z, · 

Taking this to be given by a random sample from a normal universe, is 
the value 0·325 significant 'l _ 

We have: 

22·sv1 -o·-t.57• 

a2-1 v'a2 
=0·11 

The coefficient b11 _u is therefore significant. - · 
. lu this example the number. in the sample is not as large as one might 

w1sh an~ th~ ~tanda~d error ts probably un_derestimated ; but if any 
doubt ex1sts tt 1s possible to make more defimte tests by the methods of 
Chapter 23. 

• 
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Standard Error of Coefficient of Association. 
4 21.29. We may refer briefly to the quantities treated in Chapters 3 

~4o,and 5 in considering the association of attributes. ' 
.. The coefficient of association, Q, defined in 3.15, has a standard error 
~nn~. . . 

1-Q·~ 1 1 1 1 
0? = 2 (AB) + (A/3) + (aB) + (a/3) • - ~ (21·33) 

This quantity is not infinite, as might at first si<1ht appear, if one of 
the cell frequencies vanishes, because in that case 1 -"" Q1 also vanishes • in 
fact, in such an event, o Q = 0. · ' 

Standar~ Error of the Coefficient of Mean Square Contingency. 
21.30. The determination of the standa~d error of the coefficient of 

mean square contingency is a matter of considerable mathematical com
plexity, and even when approximations are employed, leads to expressions 
which are tedious to calculate in practice. For a detailed discussion we 
must refer t~e student to the ori~nal memoirs (refs. (448) and (489)}. 

The Rank Correlation Coefficient. . ' . 
21.31. Unlike most of the parameters we have been co~sidering, 

the distribution of the rank· correlation coefficient is discontinuous, and 
to that extent resembles the binQmial. Very little is known about the 
distribution except in the important case when the correlation in the 
universe is zero. The other ·cases are sometimes treated by assuming a 
normal continuous distribution in the parent and working from ranks to 
grades and thence to.,the product-moment coefficient of correlation by 
the equations (13.11) and (13.12) of 13.21 ; but this procedure is hardly 
to be recommended. 

The case when the correlation in the universe is zero, i.e. when all 
possible permutations of the ranks occur with equal frequency, has to some 
extent been investigated. It was. shown by "Sfudent" in 1907 that the 
standard deviation of the rank correlation coefficient is ~ven by the simple 
~quation 

. . (21.3~) 

This cannot be ·taken to be a standard error in the ordinary way, 
because the distribution is not normal for small samples. But it has been 
shown by Hotelling and Pabst (ref. (540)) that for .large samples the 
distribution may be taken to be continuous and normal, whether the 
universe c~n be regarded as classified according to a continuous variate or 
not. The appearan.ce of the normal curve in this connection is peculiar 
and unexpected, for the distribution in small samples might lead one to 
e:x"Pect a bimodal distribution. . 

21.;J2. Unfortunately, the rank correlation coefficient is mostly used 
:for samples of 10 to 501 and it is not yet clear whether the latter number is 
large enough for the normality of the distribution in large samples to be 
used. It would appear that for samples of to or 20, at least, the distribu
tion itself should be obtained, and further research on this subject would 
be useful. • · 
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SUM:l\IARY. 

1. The following are the standard errors of the parameters named, the 
parent universe being assumed normal:-

Variance 

Standard deviation 
(T 

V'~ 

Coefficient of variation v I 2V2 
V2n VI+ 104 

Correlation coefficient 

Regression coefficient 

2. The standard error of the qth moment measured about the mean is 
given by 

3. The correlation between errors in the qth and rth moments, both 
measured about the mean, is given by 

4. From the results of (2) and (3), and similar results for moments 
about a fixed point, it is possible to calculate the standard error of any 
function of the moments. 

5. In the normal universe, errors in the mean and standard deviation 
are uneorrelated. 

6. In calculating the standard errors of moments the uncorrected 
values should be used. 

7. It is unsafe to use the formulre for standard errors appropriate to the 
uormal universe in cases where the universe is suspecterl to differ from the 
normal form ; in particular, the formula for the standard error of the 

standard de,iation, _~.should not be used for parent universes which are 
v2n . 

markedly lepto- or platy-kurtic. 
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EXERCISES. 

21.1. In the weight dh.tribution of Exl'rt'i~e- 6.6, page 111, last column, find 
the standard error of the standard deviation. Compare it with the value 
obtainC'd on the assumption that the parent distribution i<J normal. 

21.2. In the same data, compare the ratio of the s.e. of the 8.d. to the ul. 
with th~ ratio of the s.e. of the IK'mi-interqtmrtile range to the semi-interquartile 
range. · _ 

. 21.3. Show that for a normal universe the standard error of the s.d. is less 
than the standard error of the semi-interquartile range. 

21.4.. In a sample of 1000 the mean is found to be 17·5 and the standard 
deviation 2·5. In another sample of 800 the mean is 18 and the fotandard 
deviation 2·7. Assuming that the· samples are independent, discu~s whPther 
the two sample.s. can have come from universes which have the same standard 
deviation. · ~ 

21.5. Find the correlation between errors in the mean and standard deviation 
for the height distribution of 8585 men of Table 6.7, page 9-&, and do the same 
for the marriage distribution of Table 6.8, page 96. 

21.6. Find the standard errors of the first four seminvariants as calculated 
from the moments. 

21.7. Samples of,IO,OOO are taken from a normal universe. For what even 
moments does the standard error of the moment lie within 10 per cent. of the 
value of that moment? 

21.8. For samples of (a) 100, (b) 1000, draw a graph showing how the 
standard error of the correlation coeflicient from a normal universe varies with r. 

21.9. (Data quoted by 1\1. F. Hoadley, .. Note on the Association of Relative 
Laterality of Hand and Eye from the Cambridge Anthropometric Data," 
Bimnetrika, vol. 20B, 1928, p. 401.) 

Three experiments were 'COnducted to determine the relationship between 
laterality of hand and laterality of eye. The correlations between (1) difJert'nce 
of strength of grip and (2) difference in visual acuity were : 

-0·02-&10 (323-& subjects) 
-0·00738 (4003 subjects) 

- +0·02962 (14-47 subjects) 

Find the standard errors of the three correlation coefficients, and hence show 
that it cannot be concluded that there is any significant correlation between 
laterality of hand and lateraiity of eye. . 

21.10. Find the standard errors of the partial correlation coefficients of 
Example 14.1, page 270. Hence -state wkether any one- is not significantly 

· different from zero, and if so, which. For the purpose of this exercise normality 
may be asswned, although in all probability the adual data do not emanate 
from a normal universe. 
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THE x• DISTRIBUTION. 

22.1. In Chapters 19 to 21 we have seen that a knowledge of the 
sampling distribution of a parameter gives us a means of i';ldging fro~ 
samples the relationship between fact and theory. For Instance, m 
Example·t9.3, page 852, we were able to infer from a knowledge of the 
binomial distribution that the dice which provided the data were probably 
biased ; ~rid in Example 20.6, page 386, we could apply a knowledge of 
the distribution of the mean of samples from a normal population to reject 
the hypothesis that the mean in the universe was less than 67 ~ches. 

In the present chapter we shall discuss a particular sampling distribu~ 
tion of profound importance in statistical theory, and shall note its 
applications to the testing of accordance between fact and hypothesis i'" 
a "Yiide range of cases. · · '· 

Cells. 
22.2. In what follows we shall consider only daia giving the fre

quencies of individuals falling within various categories. Statistical data, 
as Will haYe been e\;dent from the examples already given in this book, 
are n-ry often of this type. 

Such data. whether relating to attributes or to continuous variates 
or to a mixture of both, will in practice be arranged in compartments. 
For example, in the association table on page 40 there are four com-. 
partments, corresponding to the four ultimate classes. In the table of 
frequencies within \'arious height ranges (Table 6.7, p. 9.J.), each range 
determines a compartment, and the data consist of 8585 individuals 
di~tributed in 21 groups. . 

It is convenient to have a name for these compartments. \Ve shall 
. call them cells. The frequency falling in a cell will be referred to as the 
cell frequency. · 

One and the same table may contain frequencies of more than one 
order, and frequencies of different orders must be kept di~>tinct. Thus 
an association table has four cells with frequell<·ies o~ the second order 
and two sets of two (the border frequencies) of the first order. A p xq 
contingency table has pq cells of the second order (to condense our ter- · 
m.inology) and a ~;et of p and a set of q of the first order. Each such set 
must Le cmu.idered by itself. Th~ tests of this chapter are applicable 
to any homogeneous set, but not to a .. mixed " set comprising cells of 
different orders. 

22.3. We shall denote the number of cells in the presentation of a 
set of ~ata by fl, and the cell frequency occurring in the rth cell by tii,. 

• Thus, 111 the table of page 9.J. we ha\·e, numbering the cells downwards: 
413 



414 THEORY OF STATISTICS. 

m1 =2 
1n2 = 4 
»i1 =U 

. 'liin=2 
22.4. In the class of cases we !ihall consider, we wish to compare 

the actual values m with the cell frequencies which would exist if a 
particular hypothesis H were exactly verified. These latter values we 
shall denote by the letter m, so that the theoretical frequency in the rth 
cell ism,. 

The cell frequencies m, are sometimes referred to as the "' expected " 
values on the hypothesis H. This is rather a special use of the word 
"expected," in the ·sense we have already given, namely, that the m;s 
assume the values which they would take if the hypothesis were exactly 
verified for the particular set of data. 

We shall write: 
a:,=m,-m, (~2.1) 

so that th~ a:,'s are the excesses of the actual over the expected frequencies. 
Clearly the quantities a: embody all the information in the data about 

the discrepanCies between theory and fact. H the a:'s are all zero, fact 
and theory are in perfect agreement. H the a:'s are large, the agreement 
is poor. · 

Example 22.1.-As a simple example let us consider the ~ x 2 con
tingency table of Example 8.5, page 40 .. Numbering the cells from left 
to right we have : 

ml =276,. tiis=8 
. ma=478, m,~66 

Now let our hypothesis H be that inoculation and exemption from attack 
are independent. If this be so, the expected frequencies are: 

1nJ. =255·5, m11 =28·5 
m3 =498·5,. m4 =45·5 

and hence we have:. 
X1 =~-1~=20·5, Xa=--20·5 
a:3 = - 20·5, · a:,= 20·5 · · 

The a:'s are, in. fact, in this particular case, the numbe~ we-referred to in 
·Chapter 8 as 8-numbers. We have already considered them as reflecting 
the divergence of fact from theory. · 
Constraints. 

22.5; In the example we have just considered,- one important effect 
is to be noted, viz. that when we have calculated one independent 
frequency, say m1, the other three follow arithmetically from the fact 
that the two frequencies in any row or column must add up to the border 

.frequency in that row or column. · 
In fact, we have: 

;xl +Xz=Ol 
a:l +rea =Of 
a:1 +a:, =0 

(22.2) 
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We need not add J'3 +:r4 =0, since this is given by the last two equations 
in co11junction with the first. There are only three independent equations. 

Thus, whatever our hypothesis H may be, the. conditions of the 
problem impose limitations, expre~sed by the equatwns {22.2), on the 
way in which the m's and the x's may be chosen. If one m or one x 
is ilxed hy II, the other three are determinate in accordance with the 
conditions of the data themseh·es. 

Similarly, suppose we ·wished to examine the height data of page 94 
in the light of the hypothesis that the parent distribution, of which this 
is a sample, is normal· with given mean and standard deviation. ·with 
the aid of the table of the probability integral we can determine the cell 
frequencies on this hypothesis ; but again the problem imposes a limita
tion on the way in which the theoretical cell frequencies are assigned, 
namely, that they must add up to the total number 8585 of the sample. 
When 20 frequencies are fixed, the other is determined by mere arithmetic. 

22.6. In general, when the conditions of the problem impose limita
tions of this .kind on the number of cell frequencies which may be fixed 
by II we sll)', borrowing an expression from Statics, that they impose 
constraints.: In the example of the 2 x 2 contingency table there were 
three independent constraints, expressed by the equations (22.2). In the 
case of the height distribution .there is one constraint expressed by the . 
fact that the sum of the cell frequencies must be 8585. · 

Linear Constraints. 
22.7. Constraints which involve linear equations in the cell frequencies 

(i.e. equations containing no squares or higher powers of the frequencies) 
are called linear constraints. The two instances above are of this 
type. Linear constraints are of paramount importance, and we shall 
,.;hortly confine our attention to them alone. 

Degrees of Freedom. 
22.8. We denote the number c.if independent constraints in a set 

of data by K. We then define the number 11 by the simple equation 

11 =n -If 

and call 11 the number of degrees of freedom of the aggregate of cells. 
It is the number of cell frequencies which can be assigned at will, the ' 
remaining K following from the conditions to which the data are subject. 

Thus, for the 2 x 2 table K = 3 and 11 = 1, for, as we have seen, the fixing 
of one cell frequency fixes them all. For the height distribution K = 1, 
11=20. 

E.xample 22.2.-Let us find the number of degrees of freedom of a 
p x q contingeucy table. · 

The constraints of such a table are similar to those of the 2 x 2 table. 
Thu<> the sum of the cell frequencies in each row is determined as bPing 
tl1e border frequency in that row, and ~imilarly for the columns. Hence 
each of the p columns and q rows imposes a constraint. From the total 
p + q constraints we must., however, suLtract one, for they are not 
algl'braically independent; there is one relation between them, expressed 
by the fact that the sum of the border column equals the sum of the 
Lordt:"r row, namely, the total·frequency N. 
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. lienee there arc p + q -1 in~lependent linear <·on~tmirot'i. Ilerwe, 

v=lt-1( 

=pq-(p+q-1) 

= (p - I )( q - 1 ) 

lVe might have got this result more directly by considering that tlw 
cell frequencies in the first p- 1 columns and q -I rows are determinable 
at will, the rest following automatically from the border frcf]uencics. 
Hence the number of degrees of freedom, being the number of cdls which 
can be so filled, is (p - 1 )( q - 1) as before. 

22.9. :Now let us consider a set of data arranged in n cello;, the total 
frequency being N. 

The theoretical frequency in the rth cell is nir This means that the 

chance of an indi\'idual falling into this cell is ";;. and the chance of its 

t d . . ( n~,) no omg so IS 1 - N . ""e may regard the actual frequencies 1n as 

having been arrived at by distributing the N individual-; among the 
n cells in such a way that the chance of an indiYidual falling into the 

7th cell is ");. Hence the. probability that of the N individuals, 1ii, fall 

into the rth cell and the remainder elsewhere is the term 

in the binomial 

Thus, this binolnial will give us the relative frequencies of the various 
values which m, can take in different samples, of whieh the adual data 
form one. · 

IfN is fairly large and ;; is not small, this distribution is approxi

mately normal with mean m,. That is to say, ·1ii, is distributed normally 
about a mean m., or :r:, is distributed normally about zero mean. 

Definition of x2 • 

22.10. We now define the quantity x3 by the equation 

xa =S( :r:,z) =Sf(1ii,- m,)2} 
m, l m, 

(22.3) 

the summation being taken over the n cells. 
The st\J(}ent can verify for himself that this definition i3 eonsistcnt 

with that given in equation (5.4), page 6~, for tlw parti(·ular ca~<> of 
divergence from independenc-e in a contingency table. 
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We can write X:a i.n a &lightly different form. For 

x• =~f(tiir -·rn,.)!} =s(»i,.1
) _ 28(m.,.m,.) +S('n,.:') 

\ 1nr , m,. tnr • m,. 

'(171 t) =S _,. -2S(n1,.) +S(mr) 
tn,. 

(22.4) 

Tlus corresponds to equation (5.7), page 69. . 
22.U. If x1 =0 all the,.r's are zero, and hence the actual cell fre

quencies coincide with the e..xpected cell frequencies. On the o~her hand, 
if some or all of the .r's are large, x1 will be large. · · . 

It will thus be e\ident that x• affords a measure of the correspondence 1 
between fact and theory. It must not be forgotten, however, that it 
ignores the signs of the z's and hence takes no cognisance f?C certain 
information -c~·hich those signs may convey. We shall take upthis point 
again later. · _ · ·-

22.12. If the use of x• is to be satisfactory, we must be able to dis
tinguish significant values from those which may have arisen by sampling 
fluctuations. This leads us to inquire what is the probability of getting · 
a particular value of x• from a set of 11"ir's chosen at random, and this in 
turn leads to the question: What is the sampling distribution of x•? 

We shall not gi\'e a proof here of the important answer to this question, 
but shall content ourselves with quoting it and indicating briefly the 
method by wJJ..ich it is obtained. 

We ha,·e already seen that the sum of n normally distributed variates 
is itself normally distributed (12.8). The sum of the squares of n normal 
variates is not so diz;.tributed, however. In fact, the sum of the squares 
of n normal variates, drawn from a universe with unit standard deviation, 
is distributed in a form given by the equation -· 

(22.5) 

where k 1 is the sum in question. 
!\ow it has alrt.>ady been shown that under the conditions assume~ 

the z's are each distributed normally about zero mean, and it may be 
&hown further that x• may be regarded as .the sum of the squares of v·. 

· ,-ariates ea<·h distributed normally with unit s.d. and about a zero mean. 
Hence the distribution of x• is given by . . . 

/ (22.6) • 

21.13. It follows, a:; in 20.8, that if we take a random set of 1ii's 
a.uJ c·aleulate x' from them, the probability of getting a value of x' as 
grc:·at w., or greater than, this observed value x0

1, is the area of the curve 
(:.!:?.6) to tl•e right of the ordinate at Xo divided by the total area of the 
eun·c; or, in the language of the integral calculus, 

27 
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[voe-~x·.-lJx 
p = ~~~·---=-.. r Yoe -tx·-tdx 

(22.7) 1 

The curve, as we shall sec later, extends from 0 to + ao, which accounts 
for the limits of the integral in the denominator of the above expression. 

Tabulation of P for the x" Distribution. 
22.14. The rather formidable result <;>f equation (22.7) need occasion 

no alarm to the student who is unacquainted with the notation and 
methods of the integral calculus. The function P has been tabulated 
for certain ranges of v and x1 in the same way as the probability for the 
normal curve, and the tables are in most cases sufficient for the practical 
application of the results of the present chapter. 

'{abies for v = 1 are given at the end of this book (Appendix Tables 
4A and 4B ). Tables for v = 2 to v = 29 are given in "Tables for Statisticians 
and Biometricians, Part 1," ·and in the same book are supplementary 
tables for ranges outside those limits. 8 

For most practical purposes it is not necessary to calculate P to any 
great degree of accuracy, and the diagram in the Appendix has been drawn 
to obviate the use of the tables. In this diagram (fig. AI) curves have 
been drawn to show the relationship between v and x1 for various values 
of P. The use of the diagram will be apparent from the examples pelow. 

22.15. It is desirable to ·point out that other writers have userl 
different letters to denote the number of . degrees oi freedom. Karl 
Pearson, in the tables to which we have just referred, used the number 
n', which is one more \han our v. R. A. Fisher writes n instead of our v, 
so that we have : 

· v =n' -1 {Pearson) =n (Fisher) 

\Ve have thought it desirable to introduce the symbol v in order to avoid 
confusion with the use of n' and n as numbers in a sample or in a universe. 

The x" Test of Significance when the Theoretical Cell Frequencies 
are known a priori. 

22.16. Armed ~th the tables of P, or the diagram of the Appendix, 
we can now proceed as follows :-

1 The actual values of P are, expanding this integral, 

P= -'~J"" e -b'dx+ .l~e -ill'(! +K+~ + •.. + x•-a ) . 'V 'If ]( 'V 'If 1 1.8 1.3.5 1.8.5 .•. (11-2) 
.. if11isodd 

-ix'( X1 x' x• x•-s ) = e 1 +-+-+-- + . . . + :::-:,....-;c-"---:--= 
2 2.4 2.4.6 2.4.6 ••• (11-2) 

if 11 is even 

The first term of the first series may be obtained from the probability integral. 
• The work in the introduction to these Tables is inaccurate in some cases, par· 

ticularly in the treatment of contingency tables, owing to the use of the wrong number 
of degrees of freedom. . · 
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Having' decided on the hypothesis to be tested, we cal~ulate from it 
the theoretical frequencies tnr (For the present we assume that this can 
be done without refert'nee io the observed frequencies mr . The contrary 
case will be considered later.) 

· From the mr's and the 1iir's we calculate x' according to_ (22.3) or (22.4). 
\Ve also ascertain v. . 

Then, from the tables, we find the value of P corresponding to these 
~~~~~~- . . . . 

The value P gives us the probability that on random sampling we should 
get a value of x2 as great as, or greater than, the value actually obtained. 

· Now, if Pis small, our data give us an improbable value of x1 •. Thus 
we have the alternative conclusions that either (a) an improbable event 
has occurred, or (b) that the divergence of fact from theory is significant 
of so~e real effect and cannot be attributed to fluctuations of sampling. 
Tlie smaller P is, the more we incline to the latter alternative ; if we do · 

·decide to adopt it, the inferences we draw will depend on the nature of the 
problem. • Sometimes it will lead us to reject our hypothesis. '.Sometimes 
it will lead. us to suspect our sampling technique. 1 · 

The following examples will illustrate the type of reasoning involved in 
. applying the x' test. . ': . 

Example 22.3.-In some experiments on dice-throwing W. F. R. Weldon 
rolled 12 dice 26,306 times, observing at each throw the number of dice 
recording a 5 or a 6. 

If the dice are unbiased, the chance of getting a 5 or. a 6 with one die 
is }. Hence the chances with 12 dice of getting 12 5's or 6's, 11 5's ·or 6's, 
ete., are the successive terms in the binomial (l + i )11• Hence the theo
retical frequencies in 26,306 lhrows are the terms in 26,806 (! + j )lll. 
These are our m/s. 

The following table shows the ad:ual (m.) and the theoretical (m.) 
frequencies, together with the values ~f em.. -m.)ll :-· ' ., 

mr 

TABLE 22.1.-IZ Pice thr(IWn 26,306 Times, a Thr(IW o/6 or 6 reclwntd a Succtss. 

Number of Observed Theoretical m:,..m (_!!J- m)•. 
Sut"oeasea. Frequency Frequency 

(:r). (rh). (m). m 

0 185 203. - 18 1·596 
J 1,149 1,217 - 68 3·800. 
2 3,265 3.345 - 80 1-913 
3 5,475 5,576 -101 ··. 1·829 • 6,114 6,273 -159 4·030 
5 5,194 5,018 +176 6·173 
6 3,067 2,927 +140 6·696 
7 1,331 1,2~ +77 . 4·728 
8 403 392 +11 0·309 • 105 87 + 18 3·724 

10 and over 18 14 + • 1-143 

Totala I 26,306 26,306 0 35·941 

Hence x1 =85·9-U, and ., =one less than the number of cells= 10. 
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- From the "Tables for Statisticians and Biom~tricia ns" we have when 
v=10 (n' =11), . · ' 

. p = 0·000857 for x2 ,;, 30 
p = 0·000017 for x• = 40 

Evidently when x1 = 35·941, P. will be extremely small. If we want to 
evaluate it exactly we can proceed by the methods given in the Tables. 
In fact P =0·000086. . 

Alternatively, from the diagram we see that when x• =35·94 and v = 10, 
the value of Plies slightly below 0·0001, for the point with ordinate 10 and 
abscissa 35·94 lies close to, but below, the curve labelled P = 0·0001. 
· Thus the( probability that, on random sampling, we .should get an 

equally or less-close approach to the observed value of x• is less than one 
·in 10,000. · 

\Ve may therefore say· that the correspondence between theory and 
fact is very poor. The extreme improbability of the observed event 
enables us to say with some confidence that the divergence between the 
two is significant, and hence that either our sampling technique or our 

· hypothesis is at fault .. Now in this experiment Weldon took particular 
care with the dic~-throwing, and we may regard it as unlikely that there' 
was anything seriously wrong with the randomness of the sampling. We 
are therefore led to doubt our hypothesis that the dice were unbiased. 

Briefly, then, the x11 test suggests that the dice were biased. 
Example 22.4.~(Data from ref; {74).) The following table shows the 

result of inoculation against cholera on a certain tea estate :-

TABLE 22.2. 

Not-attacked. Attacked. Total. 

Inoculated 
., ( 431 5 436 

...... . \ (427·7) (8·3) 

Not-inoculated. ·{ 291 9 300 
(294·3) (5·7) 

-

Total 722 14 736 

We shall explain the figu~es in brackets pres~nt~y. The qu~st~on on which 
we want to throw light 1s : Is there any s1gmficant association between 
inoculation and attack ? 

To answer this, let us take for our hypothesis H the supposition that 
they are independent. If this is so, th~ exp~cted frequencies, calculated 
in the manner of Chapter 3, are those g~ven m brackets. These we take 
to be the m/s, the 7ii,/s being the actual frequencies. \Ve then have: 

. {1 1 1 1\ 
vll=(3·3)1l --+-+--+-J =3·27 
A 427•7 8•3 294·3 5·7 

and 
v=1 

From Appendix Table 4B, P = 0·0706. 



THE ,X~_DISTRIBUTION. - j . ·4~1-
Thus if H is true, out: data give a result which would be obtained about 

seven times in a hundred trials. This is infrequent, but not very in
frequent. 'Moreo\·er, the theoretical frequencies in the "' attacked " 
rolumn are not ,-ery large. We should therefore be unjustified in rejecting 
H on this e\-idence, but we can say that the data lend some colour to the 
supposition that H is not correct. · · 

To sum up, the .x• test s]:lows that the data incline us, though not 
strongly, to the belief that inoculation and attack are associated. 

. Eznmple 22.5.-(Imaginary data.) An im·estigator. into chorolate 
ronsumption divided the United Kingdom into eight areas and took a 
random sample from each, the individuals so obtained being classified as 
consumers or non-consumers of chorolate. His results were as follows :-

TABLE 22.3. 

! Are4 N~ber • 11-----il. 1,_2. ,_· 3. ti-:"'1 1----5. -1-1 6. -~:-7._,__, 8-'--1-. I T-lotal. 

I Cooaumere .• • 56 87 142 71 88 . 72 100 142 · 758 
(55) (81) (152) (69) (90) (72) (95) (144) 

!---------------J----J---r----:-----~---~--~~-~---+-----1 
Noa-oonsumere 17 20 58 20 31 23 25 .s 2{2 

(18) (26) (.S) (22) (29) (23) (30) (.S) 

Total- • 73- 107 200 91 
1

119 I_ 95 125 190 1000 

Do these results suggest that the ~nsumption . of chocolate· varies 
from place to place! 

Let us take as our hypothesis H the supposition that it does not, i.e. 
that the two attributes in the above table are independent. The theo
retical frequencies m': are then those shown in brackets, a~d we have: 

•• 61 
_x1 =55 + Sl + U similar terms 

=6·28 

The table has two rows and eight cOiumns, and hence.,= (2 -1 )(8 -1) ... 7. 
}'rom the diagram of the Appendix, the JlOint whose abscissa is 6·28 and 
ordinate 'flies between the lines P =0·75 andP =0·5, \"ery near the latter; 
or altemath·ely, from the "Tahlu for StatisticiaJU and Biometriciaw "' 
for v=7 (n' =8), 

if x• =6, 

if x• ='1, 
P=0·539750 

P=0·428880 

lit-nee, for x'=.6·28, P=0·51 approximately._ · 
Thus there as no cause to suspect our hypothesis, and the data do not 

suggest that the consumption of chocolate varies from place to place, at 
least so far as this test is concerned. 
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Propertles of the x• Distribution. 
22.17. · The curves ' 

and the probability function P derived from them, hne several interesting 
properties which are worth noticing. As x• is ~tially positive, we 
consider only posith·e values of the variate. · 

(a) In the first piace, it will be seen that when •=1 the C"Un""e is the 
normal curve with unit standard deviation, for positin values of the 
nriate. Thus the test for •= 1 may be reduced to testing the significaDce 
of deviations of a normally distributed variate. 
· ·(b) When • :> 1 the curve is of the single-humped type. It is tangential 
tothe%-axis at the origin (x1 =0), rises to a maximum where x'=• -1 and 

. then falls more slowly to zero as x• increases indefinitely. It is thus skew 
to the right. . ' ' 

(c) As • increases. the curve becomes more and more symmetricaL In 
fact, when • is Jarie, Y2Xi is distnouted approximately normally about a 
mean V2•-1 with unit standard deviation. This result, doe toR. A. 

. FISher, enables us \o dispense with tables of P for large valaes of "• say 
• > 30, and to use. the probability integr.ll instead.. In practi<:e ~ 
values of " are rather infrequent. · 

Eazmple 22.6.-To find P when x'=M and •='L 
We know that V2x1 is distributed normally about mean V82 -1 "'9 

with. unit -standard deviation. When x1 =6-&, V2x1 =11·31-&, which 
therefore has a deviation 2·31-1 to the right of the mean. Hence we have 
to find the area of the probability curve to the right of the ordinate which 
is 2·31-1 units to the. right of the mean. From Appendix Table 2 this is 
seen to be 0-DI0-1 approximately. 

Conditions for the Application of the x• Test. . 
. 22.18. We may conveniently bring together at. this point the various 

precautions which should be observed in applying the x• distribution to a 
test of significance. · 
. (a) _In the first place, N must be rea.Sonably large. Otherwise the z's 
are not normally distnouW. 

This is a oondition which is almost always fulfilled in practice.· It is 
difficult to say euctly what constitutes largeness. but as an arbitrary 
figure we may say that N should be at least 50, howey-er few the number 
of cells...· 

(b) No theoretical cell frequency should be smalL Here again it is 
bard to say what ~nstitutes smallness. but 5 ~;hould be regarded as the 
very minimum, and 10 is better. . -

In practice, data not infrequently ~nt.ain eeil frequencies below these 
__ limits. As a rule the difficulty may be met by amalgamating such cells 

into a single celL Thus. in Example 2!..3 above, the theoreti("a} numbers 
of throws with 10, 11 and 1! successes are (to the nearest integer) 13, 1 
and 0. Instead of putting each into a separate cell we have run them 
loge~ into one cell" 10 and over." 
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(c) The constraints must. be linear. The rea~on for this condition has 
not t>mergecl £>xplicitly in the foregoing because we omitted the stage in 
the proof of the x2 distribution at which it occurs. 

22.19. To these three c•onclitions we may add the following remarks, 
which should also bC' home in mind when the x2 test is being used. 

(a) The x2 test. tells us the probability of getting, on a random sample,' 
a vahw of x2 equal to or higher than the .actual value. If this probability is " 
small we are justified in suspecting a significant divergence between theory 
and expe1·iment. 

We cannot proceed, however, in the r<·vprsc direetion and say that if P 
is not small our hypothesis is proved Porrcct. All that we can say is that 
the test reveals no grounds for supposing the hypothesis incorrect; or . 
alternatively, that so far as the x2 test is concerned, data and hypothesis 
are in agreement. 

(b) Nor clo on!~- small values of Plead us to suspect our hypothesis or 
our sampling technique. A value of P very near to unity may also 
do so. 

Thi'> Tather surprising rc-:,llt a.riscs in this way : a large value of P 
normally corresponds to a smnll value of x2, that is to say a very close 
agreement between theory and fil.d. ~ow such agreements are rare
almost as rare as great di vcrg-enc<~S. 

'Ve arc just as unlikely to g("t very good cOJTE'SlYmc1enee between fact 
and theOt"y as we are t.o get very had correspondence and, for precisely the 
sanw reason~, we must suspect our sampling technique if we do. In short;-' 
vcr.~ dose correspondence is too good to be true. 

The stnrll'nt wbo feels some hesitation about this statement may like to 
reassure himself with the following example. An inYestigator says that he 
threw a die 600 times and got exactly 100 of each numbrr f~;om 1 to 6. 
This is the t heorctieal expectation, x2 = o and P = 1, but should we believe . 
him? W0 might, if we knew him very well, but we should probably 
regard him as somewhat lucky, which is only another way of saying that 
he-has bmught off a very improbable cveut. 

22.20. At this point we can resume a topic which we lai:! on one side 
in 22.11, namely the signs of the a·'s, which are ignore~ by x2• 

It may happen that x2 has quite a moderate vaiue and P is not small 
when all the positive ,r's F.rc on onP. side of the mode of the theoretical 
distrihution ~md all the negative x's on the other. There will thus be a 
consistent " shift " of t~e ni's one way or the other from the m's. This 
may give us a value of the mean quite outside the limits of sampling.
Again, if the x's are all negative in the cells farthest removed from the 
mean, the standa~tion may show an almost impossible divergence 
from expectation. 

Thus, although the x2 test may reveal no cause to suspect the hypothesis, 
a eloser examination of the ,v's may. 

Example 22.'1.-Consider the following dice data (Table 22.4) (Weldon, 
see p. :i51 ). 

Now, in this example, all the x's are negativ,e up to 5 successes, positive 
from 6 to 10 successes, and negative again for 11 to 12 successes. This is 
almost one ·of the cases we referred to earlier in this section. 

We have, in fact, already found (Example 19.3, page 352) that the 
mean deviates from the expected value ·by 5•13 times the standard error, 
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TABLE 22.f.-12 Diu lhrrnrra. 40961imu, a Throul of4, 6 or 6'Puinu 
_ rn:kmt«l • sua:-. -

Number of Ob&erved E:rpected I 
Frequency Frequency --- (oi-M)I 

Succf!88ell. · 
(m). (m). (z). tit 

4096( l + lJll . 

0 
# 

0 1 - 1 1-oooo 
1 7 12 -- 5 2-()833 
2 60 66 - 6 O·M55 
3 198 220 -22 2·2000 
4 430 495 -6.'i 8·535-i 
5 731 792 -61 : 4·6982. 
6 948 924 2-l 0·623-l 
7 847 792 55 3·8194 
8 .536 495 • 41 .. 3·3960 
9 257 220 37 6·2227 

10 71 66 5 0·3788 
11 ~~}n li}13 - 1}-2 0.3077 12 - 1 

. Totals I 4096 4096 0 ~3·8104=z" .. 
, 

From the tables we find: 

, "' x• p. 
12 13 30 0·002792 
12 13 40 0-()()0072 

Hence, by_simple interpolation for x• =33·8104, P=0·0018. . . 
· As & matter of fact, &imple interpolation is of very lit.tle value for small v&lUPA 

of P (ef.l4.ll), and this value is wide of the mark, the true yaJue being Q-000i2 • 
. A better idea is to be gained from the Appendi:r diagram, from which it ia aeen 
that Plies between 0·001 and 0·0001. In any case, the value of Pia amall. but no' 
overwhelmingly small. . . 

From the extended tables of the normal integral in "Tahle8for Stati&ticiaru 
. and Biometricians, Part I," we have: 

Greater fraction of the area of a normal 
curve for a deviation 5·13 • 0·9999998551 

Area in the tail of the curve O·OOOOOOH49 
Area in both tails • 0·0000002898 

so that the probability of getting such a deviation ( + or - ) on random 
sampling is only about 3 in 10,000,000. 

Comparing this with the value of P, we see that the data are really more 
divergent from theory than the x' test woqld lead us to suppose. . 

22.21. Hence, if the signs «?f the .r's show any marked peculiarities, 
it is as well to apply as many supplementary tests as are available, and 
not to rely on the x1 test alone. Such tests would include those for the 
significance of the mean and standard deviation, which we have already 

__ discussed. 

Levels of Significance. 
22.22. In the examples we have given above, our judgment )'l·hether P 

~as small enough to justify us in suspecting a significant difference between 
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fact and theory has been more or less intuitive. 1\Iost people would agre~
in Example "22.3, that a probability of only 0·0001 is so sn1all that the 
evidence is very much in favour of the supposition that the dice were biased.· 
But we shall not always•'get such a decisive result. Suppose we had 
obtained P = 0·1, so that the odds against the event are nine to one. Is 
this value small enough to lead us to suspect the dice ? If it is not, would 
P =0·01 be small enough! 'Where, if anywhere,-can we draw the line? 

The odds against the observed event which influence a decision one 
way or the other depend to some extent on the caution of the investigator. 
Some people (not necessarily statisticians) would re~ard odds of ten to one 
as sufficient. Others would be more conservative and reserve judgment 
until the odds were much greater. It is a matter of personal taste. 

2.2.23. There are, however, two values of P which are widely used to 
provide q. rough line of demarcation between acceptance and· rejection of 
the significance of observed deviations. These values are P = 0·05 and· 
P = 0·01, a&d are said to define 5 per cent. and 1 per cent. levels of significance. 
The valu~ P = 0·001, i.e. the 0·1 per cent. level, is also u~ed. If we choose 
to adopt tbese levels, our attention will be focused, not as heretofore on 
the actual value of P, but on the fact whether it falls above or below the 
levels of significance. To facilitate the investigation of this aspect of the 
matter, R. A. Fisher has prepared tables (published in his "Statistical 
Methoth for Research TV orkera ") in a different form from those of •• Tables 
for Statisticians and Biometriciana," 1which are due to W. Palin Elderton. 
The latter, as we have -mentioned, give the values of P corresponding to 
given values of x1 and v. Fisher's tables give x• corresponding to given 
values of v and P, and ~mong those values are P =0·05 and P ::0·01-the 
significance levels. · 

The diagram of the Appendix expresses a similar point of view, and gives 
the curves of relationship between xa and v for constant values of P, or, in 
short, the contour lines of the surface · : -

P=F(x•. v). 
The diagram gives the 5 per -~ent. and 1 per cent. lines and also those. 
corresponding to the smaller probabilities P =0·001 and 0·0001, i.e. the 
0·1 per cent. and the 0·01 per cent •. levels. 

A value of Pless than 0·05 will be said to fall below the 5 per cent. level 
of significance, and so on. • . · ' · · 

Example 22.8.-Let us consider the data of Exercise 8.11. In e~peri· 
ments on the Spahlinger anti-tuberculosis vaccine the following results were 
obtained. (As before, the figures in brackets are the independence values.) 

Died or Seriously Unaffected or Not Tot&!. Affected. Seriously Affected. 

Inoculated ·{ 6 ·13 19 
(8·87) . (10·13) 

Not inoculated or inO<"u-{ 8 3 11 
Ia ted with control media (5·13) (5·87) 

L Total 14 16 30 
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Here, x1 =4·75 and v=1 
From Appendix Table 4B we have P=0·029 approximately. 

Alternatively, from Fisher's table we have, tyhen v = 1, 

forP=0·05 x1 =3·8.U 

for P=O·Ol x1 =6·635 and 

so that, from either table, Plies between the 5 per cent. level of significance 
and the 1 per cent. level. 

If, therefore, we take the 5 per cent. level as appropriate to this ease, 
· the results are ~ignificant ; but if we are more conservative and take the 

1 per cent. level, .the results are not significant. In this particular case 
the position: is ~omplicated by the relative smallness of the theoretical cell 
frequencies. · · 

The Additive Property of x•· 
22.24. It sometimes happens, by the repetition of experiments or 

otherwise, that we have a number of tables for similar data from different 
fields. The values of P for each may not be entirely conclusive. The 
question then arises whether we cannot obtain a value of P for the aggre
gate, telling us what is the probability of getting, by random sampling, a 
series of divergences from theory as great as or greater than those observed. 

The question is usually answered by pooling the results to form a single 
table._ But, apart from the fact that this is not a,lways possible, we have 
already seen (Chapter 4) that pooling is likely to introduce fallacies. A 

. better method is to proceed in accordance with the following general rule. 
22.25 .. Suppose we have a number of groups of data, each furnishing a 

x' and a v, Add together all the x11's to form a single value x1
1, and all 

the v's to form a single value v1• The x3 test may then be applied to x1
1 

and vl as if they came from a "single set of cells. 
The validity of this rule will be evident when we consider how the x• 

test was arrived at. The variate x in every cell is normally distributed 
about a mean m, and x1

11 is the sum of the squares of quantities like 
I . . 

~- just as x3 was. This, together with the linearity of the constraints, m . 
which remains, was the essential p3;rt of the proof of the x11 distribution, 
and hence the test remains true for x1

1 and v1• · 

Example 22.9.-In Example 22.4 (inoculation against cholera on a 
certain tea estate) we saw that the x• test, although suggesting that 
inoculation had some effect in immunising, did not allow us to place any 
great confidence in such a conclusion. The following data give x11 and P 
for six estates, including the one we have already discussed :-

x•· P • . 
9·34 0·0022 
6·08 0·014 
2·51 0·11 
3·27 0·071 
5·61 0·018 
1·59 0·21 

Total 28·40 · 
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Here only one value of Pis less than 0·01, and we might be inclined to 
doubt whether the association between inoculation and immunity is real.· 
Let us, however, add the values. of x• and of v •. We get XI2 =28·40 and 
v1 = 6, there being one degree of freed~m from each of the six tables. . 

From the diagram of the AppendiX we se~ that for ti;Iese values P IS 

slightly below the value 0·0001. If we requirl! greater accuracy, from. the 
tables we have: · · 

Xs· P. 
28 0·000094 
29 0·000061 

Whence by interpolation P =0·00008 approxirqately, i.e. ~e should expect 
to get a xll as great as this only 80 times in a million. We can, therefore, 
regard the.. results, taken together, as significant with a high degree of 
confidence. · 

• 
Estimation _of Theoretical Frequencies from the Data. 

22.26. Our theoretical frequencies m may be calculated partly on 
the basis of information from the data, partly on a prim·i grounds: · Thus, 
in the dice-throwing data of Example 22.3, our hypothesis that the dice 
were unbiased enabled us to say that the chance of getting a 5 or a 6 .was 
l, and hf'nce that the chances with 12 dice were the terms in 26,306 (i + !)11• 

Here we take only the value of N, the total frequency, from the data. 
In the association and contingency tables, the values of row and 

eolumn totals, as well as N, are taken from tl_le data and we assume 
a priori that the attributes are independent. 

It may be, however, that we draw further information. from the 
data themselves in fixing the theoretical frequencies. In such cases an 
important modification is necessary in the previous. methods of work, for 
the number of degrees of freedom is further restricted by each piece of 
information drawn from the data, as we have already seen for contingency 
tables. · · 

22.27. Consider, for example, the dice-throwing data of Example 22.8. 
We have already seen that the dice were probably biased, so that the chance 
of a success was not l· What, then, was it ? · 

To answer this question we ean only appeal to the data. The pro
portion of 5's and 6's in the total number of throws of individual dice 
(26,806 x 12) was 0·8877. Le~ us therefore take this to be an estimate of 
the true probability. We can be eonfident that it will be somewhere 
very close, owing to the large number in the sample. The theoretical 
frequencies will then be the terms in 26,806 (0·6623 +0·8.177)11, · 

To take a second case: consider the height distribution of Table 6.7, 
page 94-. \Ve have already had reason to suspect that this is a sample 
from a normal population. If we suppose this hypothesis to be correct, 
the question arises, What is the mean and standard deviation of the 
universe? Here again we must estimate these quantities from the data, 
in the manner of Chapter 20. . 

21.28. We shall denote values of the theoretical frequencies which are 
calculatt:d from parameters estimated from the data by the letter m', and 
the value of x• calculated from them by x·•, so that we have: 
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, 1 =S{(m- m')•} 
X m' 

Now, x' 2 is an estimate of x• and, if the m"s are clost> to the m's, x'• will 
' be·close to x'· x' 1 is made up of two parts, one measuring the dinrgence 

between theory and fact, tlle other due to errors of estimation of x•. If 
the second is small compared with the first, we may expect that the x• 
test, applied with x' 1 instead of the unknown x•. will continue to reveal 
significant differences between theory and fact where such exist. 

22.29. ·The question as to the precise conditions under which the 
test is applicable for such cases has not been completely answered, but 
it has been shown that, if the cell frequencies are large, the test still 
applies subject to the following conditions :-

(a) The number of degrees of freedom must be reduced by unity for 
each constant of the universe which is estimated from the data. 

(b) The estimates must be of the type known as "efficient." 
We shall not be able in this Introduction to go into the theory of this 

important class of estimate, but it will be sufficient if we indicate that the 
estimates of the mean of a normal universe, and the parameter m of the 
Poisson distribution, are "efficient" if calculated in the ordinary way, 
i.e. by taking the value of the parameter in the sample to be the value of 
the parameter in the universe. · 

Example 22.10.-Reverting _to the data of Example 22.3, let us 
estimate the true chance of getting a 5 or a 6 from the data themselves. 
The frequency of the successful event is 0·3377 of the whole. This is 
an " efficient " estimate of the chance. The following table gives the 
observed frequencies and the theoretical frequencies calculated from the 
formula 26,306 (0·6623 + 0·3377)11 :-

TABLE 22.5.-12 Dice thrown 26,306 Times, a Thruw of 5 or fJ recl«tned a Succes•. 

Number of Observed Theoretical (m -m')1 

Successes. Frequency Frequency m-m'. ----;;;;--
(m). (m'). 

0 185 187 - 2 0·021 
1 1,149 1,146 3 0·008 
2 3,265 3,215 50 0·778 
3 5,475 5,465 10 0·018 
4 6,114 6,269 -155 3·832 
5 5,194 5,115 79 1·220 
6 3,067 3,043 24 0·189 
7 1,331 1,330 I 0·001 
8 403 424 - 21 1·040 
9 105 96 9 0·844 

10 and o>er 18 16 2 0·250 

Total . 26,306 26,306 0 8·201 

Thus x1 =8·201. There are 11 cells, with one linear constraint. We have 
also fitted one constant from the data, and hence we must take v = 9. 
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' l . 

From the diagram of the Appendix we then see that P is very close., 
to 0·50. · 

From the tables, for v = 9 or n' = 10, we have: 

z'. P. 

8 0·53U 
9 0·4373 

so that P=0·51 approximately. 
Thus our hypothesis is now, so far as the x1 test is concerned, in

agreement with experiment. · 

Experiments on the x' Distribution. . 
. 22.30 •• ·several statisticians have conducted . experiments" to verify 
the theory which we have discussed in the foregoing sections. A certain 
amount of ~ork in this field remains to be done; but generally it may 
be said that _experiment supports the theory.. So far as cases where the .. 
m's are calculated a priori are concerned there is tttle doubt of its 
correctness. · · · ·-- · 

In one set of experiments (ref. (511)) 200 beans ·were thrown into. 
a revolving circular tray With 16 equal radial compartments and the' 
number of beans falling into each crimpartme~t was countd. The 16_ 
frequencies so obtained were arranged (l) in a 4 x4 table, anJ (2} in a 
2 X 8 table. XI Was calculated from the independence frequencit'S, as in 
Example 22.5. . · · · 

The experiment and the calculations were repeated 100 times. ·.' The 
following table exhibits the actual and the theoretical distribution 
of x•:- ' 

TABLE 22.6.-TMoutkal DiBfribution of z', ealculakd from Irulependmce Yaluu, in 
Tabla ~lla 16 Cmnparlmenta, compared ~1/a 1M Actual Distri.butions givm by 100 
Ezperimmtal Tabla. In 1M jim catte • mwt be takna as 9, ill 1M ICrofld as 1. . 

' Bon, ' ColllDUIII. 2 Rows, I ColllDUI8. 

x-
ExpeetatiOD. Ob&ervation. E.zpec:tation. Obeenat.ion. 

0-1 u·e . l7 34"0 . 29•5 
6-10 48•, 

.. u 47"1 5&·6 
10-15 ts·O 12 15"1 10 
16-20 7"1 • 111 8 
20- 1"8 1 o·e 1 

Total 100•1 100 100·0 100 

In a second experiment with 2 x 2 tables 3SO experimental tables c.f 
100 observations each were available. Table 22.7 shows the actual and 
theoretical distributions in this case. 
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TABLE ~2.7.-Theorelical Di.¥tributio11 of x1 for a Table n:ith 2 Rmn and 2 Column.t, rvhm 
l" t8 calculated fmm the lndcpendmct: J'al11u, ccnnpartd rrith the Act11al Rault.t for 
350 Experimental Tables. 

Number or Tables. 
Value ot x;'. 

Expected. Obsened. 

0 -0'25 . 134'02 122 
0'25-0•50 48'15 54 
0•60-0•75 32"66 41 
0·75-1"00 24'21 24 . 
1 -2 66'00 C52 
2 -3 25"91 18 
3 -4 13'22 13 
4 -5 7•05 6 
5 -6 3'86 r; 
6- .5"01 6 

•Total . 349"99 360 

It is interesting to see what happens if we apply the x2 test to these · 
tables. · 

In Table 22.6, grouping together the frequencies from XI= 15 upwarus, 
SO that V = 3, X2 is found to be 2·27 for the 4 X 4 tables and 4·36 for the 
2 x 8 tnbks, giving P =0·52 in the first case and 0·22 in the second. 

In Table 22.7, x2 =7·,53, v=9, P=0·58. 

Goodness of Fit. 
22.31. The x2 distribution, as we have seen, leads to tests of. the-. 

correspondence between theory and fact, and this and other reasons have 
led to its being described as a test of the "goodness of fit." This expres
sion may be used in two ways. In the first place, it may describe the 
·" f1t" of observed and hypothetical data. In the second, it may be used 
without reference to a hypothesis merely to provide an objective method 
of estimating the merits of a particular formula or a particular curve in 
graduating a. set of values or a series of points. 

The arithmetic in the second class of cases is exactly the same as in 
the first. Conventionally, we regard very low values of P as denoting 
a poor fit, and moderate values as denoting a feasonably good fit. High 
values· show an excellent fit, and in considering them we take no heed of 
the point discussed in 22.19 (b), since we are assessing the closeness of 
the curve to the data, not the probability that the first represents a universe 
from which the second was derived by random sampling. 
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SUMMARY. 

1. -x'=S{-'-(m_--_m__,_)~} 
. m· 

~s('~')-iv 
where tn refers to the observed and m to the theoretical frequencies. 

2. The number of degrees of freedom of an aggregate of cells is denoted 
by v, and is equal to the number of cells whose frequencies can be deter
mined at will. · l\Then v cell frequencies are determined, the remainder are 
calculable directly from the conditions to which the cell frequencies are 
subjected by the nature of the data. 

3. The fr~uency-distribution of x' is given .by 

- "" 
Y=Yr!!-1 x"- 1 

.... 

;4. From this it is possible to ascertain the probability P that ori 
random sampling we should get a ;value of x• as great as or greater than 
a given value. Tables have been constructed for this purpose. 

5. The x' distribution may be applied to data grouped in cells provided 
(a) that the total number N in the sample is large, (b) that no theoretical 
cell frequency is small. and (c) that the constraints are linear. · 

6. The value of P for any given case enables us tQ judge of the corre-
spondence between hypothesis and data. · 

7. When the theoretical cell frequencies have to be calculated from 
. parameters estimated from the data, the x• test can be applied with 

( - ')' •s-s m-m 
X - rn' 

instead of x•. provided that the cell frequencies are large, the estimates 
are •• efficient," and the number of degrees of freedom used in ascertaining 
P is reduced by unity fol' every parameter which is estimated. 

8. The value of P can also be used to give an objective criterion of the 
''goodness of fit" of a curve to a set of points or of a formula to a set of 
values. 

EXERCISES. 

22.1. The following table (Weldon) gives the 'results of. a dice-throwing 
experiment:-

lZ Dice lhrOWfl 4096 TirM&, Cl ThrUrD of6 reckoned 11 Succu&. 

Number of SuC0088ell • 
0 ~~2· 3 1-4 ~~~7 andover~~ 

Frequenc;r . . 447 1145 1181 796 380 115 .2-i . 8 4096 

Find x• on the hypothesis that the dice were unbiased and hence show that 
the data are consistent with this hypothesis so far as the x• test is concerned. . 
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· . 22.2. l'erfonn an experiment by throwing a rlie noo tim<·'i an<.l o .. tin" the 
·. ntimber of J>oints at each throw. UHe tlu·o;e data to inquire whetlwr tl~ dit

is biased. 
22.3. 200 digils were chosen at random from a. s•·t of table~. The frCIJHenei!'!l 

of the digits were : 

Use the x• test to assess the correctness of the hypothesis that the di:.;itot 
were distributed in equal numbers in the tables 'from which these were chosen . 

. 22.4. Perform an experiment on the lines of Exercise 22.3 by taking, say, the 
last figure in 200 logarithms taken from a set of five-figure logarithm tables. 
· 22.5. (Data: Yule, ref. (93).) Sixteen piecef! of photographic paper '9\'t-re 
printed down to different depths of colour from nearly white to a very deep 
blackish brown. Small scraps were cut from each sheet and pa:<ted on cards, 
two scraps o,n each card one above the other, combining scraps f_!()m the several 
sheets in all possible ways, so that there were 256 cards in the pack. Twenty 

.. observers then went through the pack independently, each one naming t-ach tint 
either "light," "medium" or "dark." 

The following, table shows the name assigned to each of the two pieces of 
paper:-

Name a8signed to Upper Tint. I 
Name assigned to I Lower Tint. T9tal. 

Light. l\Iedium. I Dark. I 
Light 850 571 580 I 2001 I 
Medium. 618 593 45.> I 16G6 I 

' 
Dark 540 456 I 4.>7 1453 i 

Total 2008 1620 I 14!12 5120 I 
Show that there is a significant association between the name assigned to 

one piece and the name assigned to the other. 
22.6. Apply the x• test to the data of Example 3.9, page 44, and examine 

the justification for the conclusions there drawn. 
22.7. Show that, if, is large, Pis below the 5 per cent. level of significance if 

V2z"- V2v -1 > 1·65 

and he low ~e 1 per cent. level of significance if 

V2z1 - v2v -1 > 2·33 

22.8. Table 5.6, page 78, gives the uwnber of ~rimi.nals of normal and weak 
intellect for various ranges of weight. . -

Assuming this to be a random sample of criminals, do the data support the 
suggestion that weak-minded crin1in~ls are not underwl'i?ht 't 

22.9. Show that in a 2 x 2 contmgency table wherem the frequencies are 

alb 'd d "f .. ejd' XI calculated, from the "m epen ence requenCJes IS 

(a +b +c +d)( ad -be)• 
(a +b)(c +dl(b +d)( a +C) 
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22.10. Show similarly that for a 2 x n table. 

. fN,N1(11 ''-~¥)•t 
z•=S•l N, ·'• j 

P1r +Par 

433 

where p,.,,, .. are the 2 frequencies in the rth rolumn and N 1, N 1 are the marginal 
sums of the 2 rows. · 

2"2.11. Two investigators draw samples from the same town in order to 
estimate the number of persons falling in the income groups "poorer," "middle 
class;• .. well to do." (The limits of the groups are defined in terms of money 
and are the &ame for both investigators.) Their results are as follows:-

l 
Income Group. I 

Inveatigator. 

"Poorer."! "Middle Class." 

I 

"Well to do." 

I 
Totals. 

• -
A: 8E 100 

15 I 255 

B 

I 
50 20 I 210-

Totals 150 35 I 465 I 280 -
Show' that the sampling technique of at least one of the investigators is 

suspect. · 
2"2.12. Exercise 10.17 gives the number of deaths per day of women over 85 

published in TM Tim~~ during 191~12. Using the theoretical frequencies 
obtained in that exercise on the hypothesis that the numbers are distributed in 
a Poisson series, employ the z1 test to estimate the correctness of this hypOthesis. 

22.13. Design and execute an experiment involving the z1 test to test the 
randomicity of Tippett's numbers. · 

22.U. (Data: G. :Mendel's classical paper on .. Experiments in Plant
Hybridisation"-quoted in translation in W. Bateson's'' .\lendd's Principks of 
lleredity.") 

In experiments on pea-breeding, 1\[endel obtained the following frequencies 
of seeds: 315 round and yellow; 101 wrinkled and yellow; 108 round and 
green; 32 wrinkled and green. Total, 556. 

Theory predicts that the frequencies should be in the proportions 9 : 3 : 3 : I. 
· Examine the correspondence between theory and experiment, calculating P 

either directly (page 418, footnote) or by interpolation from tables. 
22.15. A particular experiment gives, on hypothesis H, z1 =9, , =8; when" · 

repeated it gi\"e& the same result. Show that the two results taken together do 
not gi\·e the same confidence in Has either taken separately. 

28 



.. CHAPTER 23. 

'I'HE SAMPLING OF VARIABLES-SMALL SAMPLES. 

The Problem. · 
23.1. 'Ve now proceed to examine the theory of samples which are. 

not large enough to warrant the assumptions underlying the work of 
Chapters 19 to 21. In particular, it will no longer be open to us to 
assume (a) that the random sampling distribution of a parameter is 
approximately normal, or even single-humped, or (b) that values given 
by the data are sufficiently close to the universe values for us to be able 
to use them in gauging the precision of our estimates. 

The removaL of these assumptions imposes severe restriction on our 
work, and, as we shall see, an entirely new technique is necessary to deal 
with the problems for which they are not permissible. The division 
between the theories of large and small samples is therefore a very, real 
one, though it is .not always easy to draw a precise line of demarcation. 
'Ve should point out, however, that as a ru).e the methods of the theory 
of small samples are applicable to large samples, though the reverse is 
not true. · · 

Estimates. 
23.2. In the theor~ of large samples we were able to take the value 

of a parameter in a sample to be an estimate of that parameter in the 
universe. This procedure, obvious ·though it seems, is not in general 
valid for small samples. ·we must therefore discuss briefly the basis on 
wlftch estimates of given parameters are to be made. 

A full investigation of this question would take us far beyond the limits 
· of this book.' It involves matters of considerable mathematical and 
philosophical complexity, some of which still form the subject of dispute 
among statisticians. But in the theory of small samples the main para
meters of interest are the mean and the standard deviation (or the 
variance); and we will proceed to consider these two. · 

Estimates of the Arithmetic Mean. 
23.3. We shall take as the estimate of the arithmetic mean the value 

of the sample mean. That is to say, if we have n sample values x1, 

Xz, • • • X.., our estimate ii of the mean in the universe is- .. 

(23.1) 

For estimates of the mean, therefore, the practice is the same for small 
samples as for large. . . 

It may be shown that for samples from a normal universe an estimate 
434 
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obtained in this way is the " best " in the sense that its sampling variance 
is less than that of any other estimate of the mean. · 

Estimates of the Variance. 
23.4. Let us denote the variance in the universe by uu3 and the 

mean bym. . 
If m is known, we take as an estimate of the variance the mean square 

deviation of the sample about m; i.e~ the. estimate, which we write as u, I,_ 
is given by 

1 u.' =-S{x-m)1 
n 

(23.2) 

. In g~neral, ho~ever, we do not know the value of m, which will itself 
have to be estimated. In this case equation (23.2) is no longer applicable. 

23.5. If m is the universe mean and xis the sample mean, we have: 
• 
.. 

Hence, 

S{x-m)i=S{.r -x+x -m)1 

=8{3! -x)1 +S{x -m)t 
=~{.r ~x) 1 +n{x -;-m)1 

o-,1 ~ !.sc.r -xf1 +(z -m)1 
n 

• 

The term !s{3J·-i)1 is the variance of the sample.· We see that 
n 

it differs from o-,1 by the term (z -m)l. . 
Now this term will not, in general, vanish ; nor will it vanish on the 

average in a large number of cases, for it is essentially positive. Hence, 
if we take the variance of the sample to be an estimate of the variance 
of the universe we shall involve ~urselves in a systematic error of magni
tude (z -m) 1• 

Tlus term is the square of the deviation of the mean of the sample 
from the mean of the universe, and its average. value in a large number of 

·Z 
samples is the variance of the mean, which we know to be equal to ~. 

n 
It seems reasonable, therefore, instead of ignoring the presence of the 

. I 

term {z -m)1, to take it as equal to Uu • \Ye will attempt, on this basis, . n . 
a new estimate, which we shall write co-,1• \Ve have then: 

I IS{ uu• . 
eUa =- 3J-Z)1 +-

n n 
-. . ,. 

The value of u. is unknown, but we may, as an approximation, write cU• 

in1.tead. If we do so we get: • · _ 
I 1· 

o- 1 =-S(.r -z) 1 +- o- 1 
e • n nc • 

I . 
(1 I =--S(3J -.f:)l 

c ' n -1 (23.3) 
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The cffert of taking .a.'• given by equation (:.!3.3), .. in!>tead of the 
varianre of the sample, will thus be to eliminate the sy~tematic error of 
estimation to which we have just referred. 

23.6. We may look at this in a slightly diffl'rent way. Suppose we 
take a large number of estimates of the variance of a universe compiled 
according to equation (23.2), m being assumed known. These estimates 
will fall into a distribution which is the sampling distribution of the 
variance in samples of n. If, as will usually be the case, it is of the single
humped type, we expect it to have a mean located at the true value of 
the variance in the universe. 

Now if we take as estimates of the variance the variance of the samples 
(each about its own sample mean), the above will not be true, owing to 
the small systematic shift represented by the term (.X - m )1 ; but it will 
be true of the estimates given by equation (23.3), and this is therefore 
a preferable estimate to take. 

23.7. Equation. (23.3) was obtained by reasoning which does not 
depend on the size of n, and strictly speaking we should take it as applicable 
also to large samples. But if n is large, n and n - 1 are for all practical 
purposes equal. W~th such samples our results are true only within the 

. . 1 
range of the standard error, which is usually of order v'n' and there is 

.little point in straining after an illusory refinement by taking n - 1 instead 
of n in calcUlating the variance. 

From a similar point of view .it might be thought that since the term 
I . 

~is generally less than the square-of the standard error of the varianee, n . 
it is equally idle to make allowance for it in estimating the variance. 
This would be true if the term were zero on the average ; but in fact it 
is not, being a biased error; and we are justified in the long run in allowing 
for it. 

Furthermore, we may point out that the use of .a.1, the corrected 
I . 

value obtained by allowing for the term au , is only valid on the m·eragr. 
n 

If, on random sampling, we get a sample variance greater than the univer"e 
variance, the correction only makes_matters worse, and may even lead to 
an absUl'd result. An instance happens to occur in 23.33 below. 

Degrees of Freedom of an Estimate. 
23.8. In discussing the x11 test we introduced the notion of number 

of degrees of freedom, being the number of cells in an aggregate whose 
frequency could be assigned at will. \Ve may conveniently extend this 
nomenclature to estimates of parameters and particularly of variance. 

We shall refer to the divisor in the estimates of equations (23.1 ), 
(23.2) and (23.3) as the number of degrees of freedom of the estimates, 
and shall write it as v. Thus, v in equation (23.2) is n, and in €'quation 
(23.3) is n -1. 

That this convention conforms to that adopted for the x2 test may 
easily be seen. \Ve saw that vis the number of cells, that is, the number 
of terms contributing to the x' sum, less 011e for eac·h constraint anrl one 
for each parameter which had been estimated from the data. In the 
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quantity S(z -:11)1 there are n independent contributions of the type . 
(z- m )1, and hence we may say that n is the number of degrees of freedom · 
of that estimate; but in the quantity S(z -.f)Z we have used the data to 
estimate .f, and hence the number of degrees of freedom is lowered by 
unity, i.e. equals n -1. 

Tests of Significance. . . 
23.9. It cannot be over-emphasised that estimates from small samples 

are of little value in indicating the true value of the parameter which is 
estimated. Some estimates will be better than others, but no estimate is 
very reliable. In the present state of.o()ur knowledge this is particularly 
true of samples from universes which are suspected not to be normal. 

Nevertheless, circumstances sometimes drive_ us to base inferences, 
however tentatively, on scanty data. In such cases we can rarely, if ever, 
make any confident attempt at locating the value of a parameter within 
seniceablY. "harrow limits. For this reason we are usually concerned, in 
the theory• of small samples, not with estimating the actual value of a 
parameter, but in ~certaining whether observed values can have arisen 
by sampling fluctuations from some value given in advance~ For example, 

· if a sample of ten gives a correlation coefficient of + 0·1, we shall inquire, · 
not the value of the correlation in the parent universe, but, more generally, 
whether this value can have arisen from an uncorrelated .universe, i.e. 
whether it is significant of correlation in the parent. . 

23.10. The remainder of this chapter will accordingly be devoted to a 
brief discussion of various tests of significance. Within this book we 
shall not have space to deal with these tests as fully as we should like ; but 
our account of sampling methods would be incomplete without some 
reference to sundry results of great intrinsic interest and importance in 
the field of small samples. 

The Assumption of Normality. 
23.11. We ~ve already considered· one test of significance, that 

given by the distribution of 'X.a• This is one of the simplest and most 
general tests known ; but the student will recall that it depends on the 
assumption that the theoretical distribution of cell frequencies in eac~ cell 
is normal. This is justified under the conditions laid down in 22.18. 

In the tests whi~h we shall now discuss we are similarly compelled tc} 
make some assumptiOn about the nature of the parent universe, although 
we shall no longer be able to lay down analogous conditions on the arrange
ment of the data under which the assumption is justified. We shall 
specifically assume that the. parent universe is normal'unless otherwise 
stated. · 

23.12. Our results will, therefore, be strictly true only for the normal 
unin·~e. Some experiments have been made to thr9w light on the 
question whether they are true for other types of universe. It appears 
that, provided. the div~rgt>nce of the parent from normality is not too great, 
the results wluch are g1ven below as true for normal unil'erses are true to a 
large extent for other uninrses. But the whole situation is obscure and 
it is to be hoped that in time investigators will be able to engage i~ the 
labour of a closer inquiry. In any case, if ~here is any good reason to 
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s-uspect that the parent is markedly skew, e.g. U- or .1-shaped, the methods 
of the succeeding sections cannot be applied with any confidence. 

23.13. We may direct attention to one further point on which caution 
is necessary. In the theory of large samples we recommended the student 
to base. his conclusions on a range of six times the standard error, and 
pointed out that for normal universes the probability of deviations from 
the true value outside this range was 'less. than 3 in 1000. One can feel 
great confidence in conclusions supported by probabilities of this order. 
But in the theory of small samples it is, as a rule, necessary to use larger 
probabilities, say, of one in 20 or one in 100, e.g. the 1 per cent. and 5 per 
cent. levels of P in the x• test. The force of inferences based on prob
abilities of this order is not so great as before, and the student should bear 
this fact in mind- ' · 

23.14. For a known parent universe, and in particular for a norm~l 
parent, -it is not difficult to find expressions for the random sampling 
distribution of the commoner parameters such as the mean and standard 
deviation.- But these distributions, even when mathematically tractable, 
will in general contain certain parent values. For instance, the sampling 
distribution of the means of samples of n from a normal universe with 
mean m and standard deviation a is also normal with mean m and standard 

~e"iation ;,n In the cases which we wish to conSider, n is not large 

enough for us to take estimates of m and a from the sample to find the 
sampling distribution to any close -degree of approximation_ 

It is, however, a remarkable fact that we can construct certain para
meters whose sampling distributions are either independent of, or dependent 
on only one of, the constants of the parent. \Ve will proceed to consider two 
important distributions of this kind, the so-called t-distribution, due to 
"Student," and the z-distribution, ~ue toR. A. Fisher. · 

The t-Distribution. 
23.15. Writing, as before, 

z=!S(z) • 
n 

a 1=-
1
-S(z-.f)1 

ca f&- 1 

let us define a new parameter t by the equation 

where v =n -1 and m is the mean of the universe. 
\Ye shall refer to vas the number of degrees of freedom of f. 

(23.-i) 

Then it may be shown that, for samples of n from a normal population, 
-the distribution of I is given by - . 

(23.5) 
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• 23.16. We "ill imagine y0 chosen-so that the area of the cJve .given 
by equation (23.5) is unity. Then, prec~sely as for the x1 distribution, 
the probability P s that, on random sampling, we shall get a value of t not 
greater than some value t0 is the area of the curve to the left of .the ordinate· 
at the point 10• We may write this . . • · 

J'• . Yodi. 
Pa= · ~+l • • • 

. ~ .. (1+~)~ 
(23.6) 

Similarly, the probability that we get a value of t betwee_n the limits 
t1 and 11 is given by · · , . . r• Yodt . Pa= r+l 

,.( '')-ll 1+-
" 

(23.7) 

Form oft; Student's" Distribution. 
23.17. :The curves given by equation {23.5) are easy to study. Clearly 

they are symmetrical about t =0, since only even powers oft appear in their 

equation~ Further, since ( 
1

11 decreaseS as t increases,,the c':Uves' will 
. ' 1+-) . . . . 

' . v ' .-. . ' 
have a mode (coincidiug, of course. with the mean) at t =0, and will tail off 
to infinity on each side. They will, in fact, be symmetrical single-humped
curves rather like the normal curve, only more leptokurtic. 

1 . ~ 

As v tends to infinity, ~+ 1 tends toe-1, and hence tis distributed 
. ( till).-. . . 1+- . . v 

normally. This fact enables tis to ~e the tables of the normal integral to 
evaluate P approximately when vis large. 

23.18. At the end of this book we reproduce by permission tables of 
the integral {23.6) calculated by ""Student" himself (Appendix Table 5). 
These have been reduced to three places of decimals from the original four. 

Tables of rather a different form have been given in " Tabka for 
StatisticiaM a·nd Biometriciam, Part I," and by R: A. Fisher, and to 
avoid possible confusion we point out where these tables differ. • 

. " Tabka for Statisticiam, etc.," gives the values of 

=P r• ygdz . • .. ,. . 1'+1 ... -· -(1 +zl) I 
t ' 

where z =-;=, for v from 1 to 9. These .values (which were also ~alcu-
'\ " 

lateJ by "Student") are of the same kind as, but more limited in range 
than, those of our table. . · 

U. A. F~her, in his •• Statistical 3lethotb for Research Workers," adopt~ 
the standpomt we have already noticed in discussing th~ x1 distribution . ' 
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(Chapter 22), and gives values of t corresponding to various values of v 
and the 5 per cent. and 1 p£'r cent. levels of a third probability P,. 

P 8 and PF are simply related. P~ is the probability thnt an observed 
value will not exce£'d t0• P~- is the probability that an observ£'d value oft, 
regardless of sign, will exc£'£'d t0• 

lienee, · 

P 8 = Ar£'a of curve to the left of ordinate t0 

P, =Area to right of t0 + ar£'a to left of - t0 

=2 (Area to right of t0 ) (since the curve is symmetrical) 
=2 (1'-P8 ) (23.8) 

The student should keep these relations in mind, particularly when 
thinking of levels of significance. In :Fisher's sense a value of P, will fall 
below the 5 per cent. level if P ¥ is less than 0·05. This implies that P • is 
greater than 0·975, not 0·95.1 

Applications of " Student's " Distribution . 
. 23.19. \Ve proceed to give one or two examples of the way in which 

the " Student " distribution is generally used to test the significance of 
various results obt,ained from small samples. _ 

Example 23.1.-=-Ten individuals are chosen at random from a popula
tion and their heights are found to be, in inches, 63, 63, 66, 61, 68, 69, 
70, 70, 71 and 71. In the light of these data, to .discuss the sugg£'stion 
that the mean height in the universe is 66 inches. 

In the first place, let us note that the universe is likely to be 
approximately normal, from our knowledge of height distributions, and 
the sampling is random. 

In the sample we find that 

• .X = 67 ·8 inches 
and 

cO's = 3·011 inches 

Let us now calculate t from equation (23.4 ), taking m to be 66 inch£'s. 
lVc have: 

67·8 -66-v--
t = 3·011 . 10 = 1·89 

From the Appendix Table 5 (column v=9): 

for t=1·8, P=0·947 
for t=1·9, P=0·955 

Il£'nce, 
for t=1·89, P=0·954 

1 A comparison of the tables is not made any easier by the fact that "Student" 
and Fisher use n to denote the degrees of freedom, whereas " Tabft•s for Stalistit"im1s " uses 

.. it to denote the number in the sample. \\'e noted the same (.'()llflict in the x• tables. 
\\'e hnpe here that the use of a separate symbol ,. will remove a good dt'al of the 
confusion. 

The distinction between Ps and p,. did not arise in Chapter 22 because x• is l.'ssentially 
positive. · 

.. 
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Thus the· chance of getting a. value oft greater than that observed is 
1 -0·95J, i.e. 0·046, or about one in twenty. The probabilityof getting t 
greater in absolute t•alue is· 0·092~ or about one in ten. 'Ve should hardly 

- regard tllis as significant; but if we did, we should argue that as the 
observed '~ahie of t is improbable, the initial assumptions on which we' 
obtained it were incorrect ; and this in turn suggests that there is som~ 
doubt about the true mean being 66 inches. · 

E.rample 23.2.-(Voelcker's data quoted by. "Student," Biometrika, 
,·ol. 6, 1908-9, p. 19.) . . · • 

Voelcker grew certain crops of potatoes dressed (a) with sulphate of 
potash, and (b) with kainite. In four experiments, two o£ each of 1904 
and .1905, the differences in yields per acre (sulphate plot less kainite' 
plot) were : • 

• ... 
· 0·5464. ton 

0:3013- " 

1·52-U .. 

0·6786 , ... 

This suggests that sulphate of potash is a better manure than kainite. 
Required to discuss the _question. 

From our knowledge of crop yields we expect them to be distributed 
in a single-humped form not very far removed from the normal. Let us 
suppose that the two manures have the same effect on yield. Then the 
differences of plots will be distributed in an approximately r..ormal form 
about zero mean. . · -

The mean of the four differences is 0·7626 ton, and we find .0.. = 0·5312 • 
. lienee, · - • , 

- 0·7626 -0~ r: 
'- 0·5312 y 4. 

'=2·871 

From the tables, for ., =3, P =0·968 approximately. 
Hence the chance P of getting a value of I greater than that obsen·ed 

is about 1 in 33. The chance of getting a value greater absolutely than 
the observed value is 0·06. If we choose to regard this as significant, 
we are led to suspect our hypothesis. that the two manures exert equal 
influences on yield, and hence to suppose, though with little confidence 
so far as these data are concerned, that sulphate of potash is the better 
manure. · · ·· 

23.20. The student who "ishes to" apply. the t-distribution for 
llimself is a(hised to make a careful study of tl1e Iogie of the argument 
underlying the inferences we have drawn in the foregoing two examples. 

In Example 23.1 ·we saw that the c·hance of getting a value of t Jess 
than 1·89 is app_r?ximatcly 0·~5~. · '!his is not the same 'thing as saying 
that. the probab1hty of a denahon m the sample mean of 1·8 inches Qr 
less ts 0·~51. In fact, we do not know this probability, and the smallne!iS 
of the sample prevents us from approximating to it with any closeness. 
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It. might happen that a in the unin·rse was sud1 that a deviation of 
1·8 inches was not at all improbable. The relative improbability of t 
.would then be due to deviations of ra, from a,.. 

Comparison of Two Samples •. 
23.21. Suppose we have two samples :r1• :r2> ••• .x.1 and 

.r1', ••• a:~.. Let us, as before, define 

.. (23.9) 

Let us further define 

.a, 2 = 
1 

2
{S(x- .f1 ) 2 + S(x' - .f2)!} 

~+nz-
• (23.10) 

lfthe two samples come from the same universe, .a,1 "-ill be an estimate 
of u,.1• It has, as we might expect, ~ + n1 - 2 degrees of freedom, since 
both .f1 and .f2 are calculated from the data. 

Let us write 
. (23.11) 

and define 

(23.12) 

Then it may be shown that t, as so defined, is .distributed according to 
the form o_f equat}on (23.5) with v degrees of freedom. 

Example 23.3.-(Data from R. A. Fisher, .Uetron, vol. 5, 1925, p. 95.) 
Eight pots growing three barley plants each were exposed to a high 

tension discharge, while nine similar pots were enclosed in an earthed 
"-ire cage. The numbers of tillers in each pot were as follows :-

Caged. 
Electrified 

17, 27, 18, 25, 27, 29, 27, 2:3, 17 

16, 16, 20, 16, 20, 17, 15, 21 

• \Ye are interested in the que~tion whether electrification exercises any 
real effect on the tillering. 



SAMPLING OF VARIA.BLES-S~IALL SAMPLES., 

We find 
.f1 =17·625 · 

.fl -.f.=5·708 
. 1 

Ca•=-221·875=U·7916 .• a,=3·846 • 15 

t= 5·708 /s x_!= 3.05 
3·846 'V 17 

•=8+9-2=15 

From the tables we find that P,.=0·996. . 
Hence. if the samples came from the same-- universe, they furnish a 

,-alue of t which is improbable-an absolutely greater value would arise 
only 8 times in a thousand. We therefore suspect that the universes are 
different.·~~e. that electrification does exert some effect on the tillering. 

23.22.: In applying the 1-distribution to two samples as in the preceding 
example one further point should be borne in mind. It does not follow 
from a significant value of t that the samples come from universes' which 
have different means. Samples from two universes with the same means 
and different standard deviations would also furnish significant fs on 
occasion. We can test whether this is so by the method of 23.24 below. 

Significance of Regression Coefficients. 
23.23. R. A. Fisher has shown that the " Student " distribution can 

be applied to test the significance of regression coefficients and also of 
certain cunilinear regressions. \Ve have not the space here to give a dis
cussion of these results, but the reader is referred to ref. (536} for further 
particulars. A test of the significance of correlation coefficients is given 
below (23..34 to 23.39). . . · 

Fisher'• .&'•Distribution~ 
23.24. Suppose that we have two samples, as in 23.21, with estimated 

,-ariance.s .0: and ,a: as defined in equation (23.9 ). , 
Put I I 

(23:13) 

and write 

(23.14) 

so that •1 and v1 are the degrees of freedom of the estimates cO: and.~. 
Then R. A. Fi!>her has shown that. if the samples come from the ~rune 

universe and that universe is normal, z is distributed accordina to the law 
. G 

(23.15) 
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As usual, 1\"e take Yo so that the area of the curve is unity, and the 
probability that we get a given value ::0 or g-reater on random sampling 
will be ¢\·en by the area to the right of the orrlinate at z0• 

23.25. This probability is not easy to tabulate owing to the fact that 
it depends upon the two numbers J•1 and v2• }'isher has therefore pre
pared tables showing the S per cent. and 1 per cent. significance points of z, 
and a further table of the 0·1 per cent. points has been given by Colcord and 
Deming. These tables are reproduced by permission in Appendix Tables 
6A, 6B and 6C. For practical purposes they are sufficient to enable the 
significance of an observed value of z to be gauged. . If the exact value of 
the probability of obtaining a given value of z or greater is required, use 
may sometimes be made of the tables of the incomplete beta-function 
(ref. (600}). 

Krample 23.4:--C.onsider again the data of Example 23.3. 
Here, as always, it is convenient to take the suffu 1 t.o refer to the 

larger of the two estimates of variance. 

'Ye have: 

'=18-1 =23 P., 8 

23 
Z=! log.5·.U07 

=0·72-1 
v1 =8, v1 =:_7 

From Appendix Table 6A we see that for these degrees of freedom the 
5 per cent. significance value of z is 0·6576. From Table 6B the 1 per cent. 
value is 0·96U. 

The observed z lies between theSe two and is thus of rather doubtful 
significance. · 

The Analysis of Variance. 
23.26. This is the name given to a process now frequently applied, 

mainly in agricultural experiments. For a full treatment we must rtfer 
the reader to those works dealing with the latter subject ; here we will do 
no more than attempt to explain the genercll principles of the method. 

Suppose we haven varieties of barley and desire to determine whether 
they differ significantly in yield per acre. It would be no good growing 
just one plot of each and comparing yields, for soil is very variable and we 
should have no idea whether any observed differences in yield were due to 
differences in variety or to differences in soil or some other such factor. 

Let us then grow k plots of the same size for each variety. \Ye shall 
then have data to determine the standard error of the mean vield for each 
variety and so the standard error of eaeh differc11ce of mean yield. But 
the process may be simplified. If we scatter the plots well in amon~r-t one 
another, preferably at random, we may expect that fluctuations in soil 
from plot to plot \\ill affect all varieties to about the same extent, and 
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consequently the standard deviations of the varieties will not d~ffer signi-
ficantly owing to soil influences. · - • · · 

Let u1, u2, ••• u,, •• , u,. be the standard deviations of the yields 
of the several varieties and 

(23.16) 
. . 

Supposing for simplicity that n is large enough for us to be abte to ignore 
the correction of equation (23.3), we may, on the hypothesis that the 
yields of different varieties are equal, take u,2 to be an estimate of the value 
of the variance of a variety. . 

Also, if ii be the general mean of all yields and .i\, ii2, iiP, .i,. 
be the means of the several varieties, the variance of the means is given by 

O'm•= S(.fp -ii)l (23.17) 
n 

. 2 

Now tbe variance of the distribution of mean~ of samples of k is uk . 
He~ce, ir" 

or 

0' I 
0' ll>_!_ 

m k 

kum2 >. u.,2 (23.18) 
significantly, we may take it that the varieties do differ significantly in 
yield. . .. 

23.27. If u,1 be the variance of yield of all the plots taken together 
without regard to variety, we haye a simple relatimi between·u11

2, um 2 

aud u 01• 

· , In fact, for any one variety, the sum of squares of deviations from the 
general mean is · 

· k{u11
8 + (.f, -ii)1} 

and hence, summing for all varieties and dividing by nk; we have: 
0'11

1 = u.,1 + O'm8 • . (28.19) 
In this way we have analysed the variance of the total into two com

ponents, the variance of the means and the variance within the varieties. 
23.28. It is convenient to arrange the results we have just obtained 

in the form of a table. The student will have no difficulty in recognising 
that, although we have talked of plots of barley to fix the ideas, simjlar 
analysis applies to any data in which we have n classes each of k members. 

Since we want finally to compare u,a with kum1, and not with u,,. 2, it 
will be more convenient to put kume rather than um• itself in a summary 
table (Table 23.1, page 446). . · 

In the second sum of column 8, the summation is understood to relate 
to the squares of deviations of individuals from the mean of classes in 

r=M · 
. which they occur, i.e. S (.rr -ii ... )8 is an abbreviation for 

r=l 

"'sn{rst (.rrp- iip)'} 
fl=l r=l 

.t'rp being the rth member of the pth class. 
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TABLF. 23.1. 

·-
.~----, ~~ 1. 2. 3. 

Sums relating to Variation. Divisor. Sums. Quotients. 

I 
p=ll I 

Between cl&BB means. " ~:s (z.- z)• J:u.• 
p=l 

r="l: 
Within cl.&sses nk S (z. -i'.)1 

r=l 
u.• 

r=nl: I Totsl nk s (z.- .i)• u.• 

I r=l 

As a check, we note that the first two items in column 3 must add up 
to the third. In actual practice it is customary to use this fact to deduce 
the second from the other two, and not work them out independently. 

23.29. Let us take the following data as an illustration-an illustra
tion only, for (I) n is not large, and (2) the data are a mere extract from an 
experiment on a much larger scale with 18, not 6, plots to each Yariety. 

TABLE 23.2.-Yield of Grain in grammu on Plots of Barley of One Sq11are rard, thn-e 
being Five. Varieties and Six Plots of Each. (Data quoted by Engledow and Yule, 
"The Principles and Practiee of Yield Trials," 1926.) 

(The tabular arrangement does not, of course, represent the physical 
lay-out of the plots.) 

\.J 
Variety. 

Plot 
Number. :Mean. 

1 2 3 4 I 5 

1 387 372 350 3!0 398 369·4 

2 420 455 417 360 358 I 402·0 

3 353 375 400 358 334 I 364·0 

4 331 328 325 370 340 338·8 

5 358 383 378 395 320 36o·8 

6 400 308 I 275 375 430 3.37·6 

:Mean 374·8 370·2 
I 

357·5 366·3 I 363·3 I 366·4 

I 
I 
! 
I 
i 
I 

i 

I 
I 
I 
I 
I 

I 
I 

The mean of the whole~ !i, is 366·-i. The sums of squares of de,;ations 
from this mean may be found in the usual way, and the calculation 
simplified by taking a working mean at, say, 366. 
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\Ve find, to the nearest unit, 

Similarly, 

r=nk 
S (.r.r-.f)3=43,934. 

r=l · 

p=n 
s (.f.P -.f)2 = 1,043 
"':'1. . . 

~Ience the table of the analysis is as follows :-

TABLE 23.8. 
-

1. 2. 3. 
·-

Sums relating to V a.riation. Divisor. Sums. 
... . - -.. 

Between class means. . 5 1,043 
within ckssei . . 30 42,891 

Total . .. 30 43,934 

• 

4. I 5. 

Quotients. 

ka,.• = 209 

a.• =1,430 . . -··-
a, .. 
• =1,464 

447 

-, 

-j 
I 

' 
. We see that u~' is very much greater than kum2, and th:e.magnitud~ of 

the difference suggests that it is due to some real cause.· · 
\Ve should probably infer that, since the variability within a variety . 

is greater than that between mean.s of· varieties, no significance can be · 
attached to differences between the latter. · 

23.30. But the process of the previous section is not very ·accurate 
with samples so small as those with which we have been dealing. The 
corrected variances, based on degrees of freedom, "not the number . of 
observations, should be used (cf. equation (23.8)). · This gives a more 
complex appearance to the arithmetic, but the principles are similar. The 
student will probably find the.determination ·of tM degrees of freedom his 
principal difficulty. · 

There ar~ n class means, so that the number of degrees of freedom in 
the variance between class means is n -1. There are k members in each 
class (degrees of freedom k -1 ), and n classes, total n( k -I) degrees of 
freedom in the variance within varieties. For all classes together there 
are nk observations and hence nk -1 degrees of freedom. 

But - · . 
(nk -1) =(n -1) +n(k -1) 

and hence the degrees of freedom check by addition ~n the same way as 
the sums of squares. . · , '· ' • 

23 .31. Our general table now takes the form of Table 23.4, page 448, 
where We have used the Symbols cU,..11 cU0

1
1 ·0u11

1 to denote the VarianCeS 
corrected as in equation {23.3). ·· · .· · 

The student should note that these corrected variances are not additive. 
Nevertheless, it is common to refer to a process of analysis such as this 
as_ the " analysis of variance." Strictly speaking, perhaps, this is a 
nusnomcr. It is only the sum of column 3 which is analysed into com
ponent sums. 

·-
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TABLE 23.4. 

I. I l 
2. 3. 4. 5. ! 

I -----
I Divisor 

. 
Sums relating"to Variation. (Degreea of Sums of Quotient.. 

Freedom). Squares. 

J>=• I 
Between class meana . 

""" 1 
kS (z.-i)• k,a.• 

p=l 

Within cla.ssea • · 
ro=b . . n(A: -1) s (z,-z.r .a.• 

I 
r=l 

r=b 
Total . nJ:-1 B (z, -i)1 

r=l 
.a.• 

23.32. In small samples the significance of the difference of k.u,.' 
and cu,,l can be ascertained by the. z test, the appropriate degrees of 
freedom being those of column 2. · 

In fact; if the classes exercise no effect on the variate values of their 
members, so that the nk members can be regarded as a homogeneous 
set" grouped at random into n classes, k.um' and .u.1 will be estimates 
of the variance ip. the universe. Further, if the parent universe is normal 

. these estimates will be independent, for errors of estimation in the means 
of classes will be independent of errors in the variances within classes. I 
All the conditions for the application of the z test therefore obtain. · If 
the test reveals no significance in the difference between k.u,.1 and .u.'1, 

we conclude that, so. far as this approach shows, the class does not exert 
any distinguishing effect Qn its members. If, on the ·other hand, the 
difference is shown to be significant, the Class does exert some influence . 

. Two cases may arise, according as k.u,.• is less than, or greater than, 
,uu1• It may be shown that t~ese cases correspond to the existence of 

. positive or negative intraclass correlation (13.29). 
23.33. Table 23.3, with corrected variances, now becomes : .. 

TABLE 23.5. 

I 
-; 

·'· "1: •• 2. - . 3. 5. 

Degreea of 
-

SUms of Sums relating to Variation. Freedom. Squares. Quotient&. 

Between class meana ' 1,043 k,a.• 261 

Within classes • 25 42,891 .a.• 1,716 

Total . . 29 ,3,934 .a.• 1,515 

' \\"e proved on page 405 that for ·large samples errors in the mean and s.d. are 
uncorrelated in a symmetrical universe. It may be shown genc.·rally that for :mmples 
of any size from a normal universe the errors are independer•t. .: 
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We see at once that since the corrected variance within "VaJeties is 
greater than that between varieties, any intraclass correlation must be 
negath·t"~ To test its significance we have= 

Vt=25 

1716 
z=llog. 261 

=0·9-12 

From the Appendix Tables we see that the 5 per cent. point is about 
0·876 and the 1 per cent. point 1·31. The result thus is barely significant. 

It is instructive to note that the rorrection of the variances happens 
in this case to give an absurd result. such as was noted in 23.7 might 
occur; the variance within classes is made to appear greater. than the 
total variance. 11rhich is impossible. · 

Correlatio~·Coefficient in Small Samples. 
23.34. Although the distribution of the correlation coefficient in 

samples from a bivariate normal universe tends to the normal form as 
the size of the sample increases, a fact which justifies the use of the 
standard error for large n_ the distribution diverges very remarkably 
from the normal when n is small, and even "·hen n is moderately large 
if the correlation in the parent universe is high. Further investigation 
is therefore necessary before we can assess the significance of correlation 
coefficients obtained from small samples. . . 

23.35. The distribution of the rorrelation coefficient in samples 
from a bh·ariate normal universe was· obtained in an exact form by 
R. A. Fisher in 1915. Ordinates of the frequency-curves which give the 
distribution have been worked out for various values .of n and p, the 
correlation in the universe, and are tabulated in "Tahlu for Stati.sticiaM 
and Biomrlriciaru, Part 2," and more fully in ref. (577). The general form 
of these curves is illustrated in fig. 23.1, which shows the curves for p = + 0·6 
and various ,·alues of n. , . 

A glance at tills figure will show that even for a moderate value of p, 
r;uch as + O·G, the distribution of the coefficient is U-shaped for n = 3, 
and, although single-humped. distinctly skew to the eye even for n = 20. 
For high values of p, such as +0·9, the distribution is skew for higher 
values of n. 

As a result it is safe to say that the values of correlation coefficients 
calculated from samples of less than five will throw no light on the exist
ence of correlation in the universe. For samples of 20 or 30 we cannot 
apply the standard error "ith much ronfidence if·the correlation in the 
universe.. is likely to be very high, whether positive or negative. ·50 
seems to be the minimum number in the sample for the application of 
the standard error if p is very high, and 100 is wer. . 

23.36. O'Aing to the complexity of the equation 1rhich gives the 
distribution of the correlation coefficient. no tables ha,·e been publi,!Jed 
sho'Aing the art-as of the frequency curves cut o!I by various ordinates. I 

1 Such t..hlee &ft. bow~ver, promi&ed from the BioDHtric Laboratory, l:n.iversity 
.College, London, aod ahould be puLI.iahed during u~a7. . 

29 
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There are, therefor~, no. practical methods of assessing the reliability of 
an observed coefficient m small samples, such as we have been able to 
u.se for the normal curve, the x1-distribution, and the t- and z-distJibu
bons. 'Ve shall have to fall back on a procedure of transformation due 
to R. A. Fisher. 

4 

3 

I 

-I·O -0·5 . 0 . 
Va.ltu ofr 

+0·5 

• 
'FIG. !13.1.-Frequency Distribution of the Correlation Coefficient in Samples from a 

Normal Universe with Correlation +0·6 for Various Values of the Number in the 
Sample n. (In each case the total frequency, i.e. the area under the curve, is 
unity.) 

23.37 •. Before we discuss this process, however, it is desirable to 
point out the degree of applicability of our results. 

(I) In the first place, it has been shown that the distribution of partial 
correlation coefficients in samples of n is of the same form as that of total 
correlation coefficients in samples of n - p, where p is. the number of 
secondary subscripts in the partial coefficient. 

(2) Secondly, our results are strictly true only for normal universes. 
There is some experimental evidence to show that they are true for all 
practical purposes even if the parent is moderately skew but remains of 
the single-humped type ; but if there is any reason to suppose that the 
parent is J- or U-shaped according to one or more variates, the student 
should d'raw his conclusions with the utmo&t reserve. 
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Fisher's Transformation. 
23.38. If rand pare the correiations in the sample and the universe 

respectively, let us put · 

So that . 
r=tanh z p=tanh' 

· 1+r} z• =llog,1-r 

1 . 
C=llog,

1 
+p 
-p 

(23.20) 

Then it may be shown that z is, to a close approximation, distributed 

normally about mean C with standard deviation • 1 

1 
· 

vn-3 
In faci, the mean of z is given by 

.: - 1" p t . 1 t z=!t + 2 (n _ 1) + erms m (n _ 1)1, e c. 

and, for the z-distribution, about the mean 

pi . . 1 
,81 = (n _ 1 )8(p1

- I\) +terms m (n _ 1)1, etc. 

32 -3p• . 1 
,81 =3 + 16(n _ 1) +terms m (n _ 1)2, etc. 

(23.21) ~. 

(23.22) 

(23.23) 

For n = 11, say, ,81 is of the order of 0·001 even if pis high, which shows 
how closely the a-distribution lies to the symmetrical ; and ,81 -3 is of the 
order of 0·2, which shows that the distribution has nearly normal kurtosis. 
In such a case i would differ from C by 0·05, whic~_is not large, but might 

be important in some cases. The standard error of z is, however, • I 
1 

• 
· · vn-8 

and the factor 
2
(:- 1) may, as a rule, be neglected in comparisqp. Thls i~ 

the basis of the statement above that z is normally distributed about 
mean{. · . 

We now give some examples of the use of the z-transformation in 
testing the significance of an observed r. , 

· Ezample 23.5.-In Example 11.1, page 215, we found that the correla
tion between the price indices of animal feeding-stuffs and home-grown 
oats is 0·68, the sample consisting of 60 members. ·.. · . 

This sample is large enough for us to use the standard error. if we do 
so we get 

1- (0·68)1 
ur= _1 =0·07 approximately 

v60 · 

The correlation thus is undoubtedly significant. 

• This 1 is to be distinguished from the 1 of Fisher'• distribution of l3.:Zf.: 
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\Ve might, alternatively, use the "test, thus, to answer the question, 
.. Could the obll'"rved value have arisen from an uncorrelated universe? .. 

On this hypothesis 

We have: 
p=O and C=O 

1·68 
"==llog. 0·82 

-=0·829 

The standard error of " is v'1 = 0·18. 
' 51 . -

The deviation of s from C is more than six times this, and we conclude 
that our hypothesis was incorrect, i.e. that the universe is correlated. 

Example 23.6.-Continuing the pre~ious example, could the observed 
correlation have aris~n from a universe in which p =- + 0·8 ? 

Here 

I 

1+p 
· C=llog.--=1·099 

1-p 

The.devi~tion of z from Cis, therefore, 

1·099 - 0·829 = 0·270 

This is about.twice the standard error of z. It might arise, though 
rarely, as a sampling fluctuation, and we conclude that p is likely to be less 
than+O·S. 

Example 23.7.-In Example 14.1, page 270, we found a partial correia
tion of -0·73 (88 unions) between earnings of agricultural labourers and 
the percentage of the population in receipt of relief, when the ratio of 
numbers in receipt of outdoor relief to those relieved in the workhouse was 
constant. Is this significant, and can it have arisen from a universe in 
which the real.correlation is -0-667? · 

-· Here 
0·27 

"=llog.l·73 . 

= -0·929" 

C for an uncorrelated universe= 0 

. .. 0·333 
t. •f p = - 0·667 =!log. 1.667 

= -0·805 

There is one secondary subscript in the partial correlation. Hence, the 
1 

standard error of z = -v'J==== 
38-1-3 

0·1715. 
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· If C =0, the deviation is more than five times the standard f,rror and 
·is undoubtedly significant. If p = -0·667, the deviation is less,than the 
standard error and hence may very well have arisen from sampling 
fluctuations · 

Application of" Student~s" Distribution to Correlation Coefficients. 

23.39. The test we have just given is of general application, but" it 
is worth noticing that if p = 0, the distribution of the correlation coefficient· 
in small samples from a normal universe may be tested by the " Student " 
distribution. . · 

In fact, the distribution of the correlation coefficient assumes a par
ticularly simple form for such uncorrelated universes, namely,· 

If we 'put 

• • . . 

__ , 
y =Yo(l-:-rl)-a .. (23.24) 

(23.25) 

then it may be shown that tis distributed in the_" Student;, 'form ':Vith 
n- 2 degrees of freedom, and its significance may be tested accordingly. 

Significance of the Correlation Ratio. 

23.40. The distribution of 7J1 in samples from an uncorrelated normal 
universe may be derived from Fisher's ,:&-distribution.- Hence we may test 
whether an observed value of 71 1 is significant of the existence of correlation . 
in the parent, assumed normal or approximately so. • . · . 

\Vhen considering the correlation ratio in 13.6 we saw that for the 
arrays of (I)'s · · 

where 
a! is the variance of the whole. 

a!z is the variance within arrays 
a~ is the variance of array means 

• 

If there are p arrays and n,; is the number of members in the pth array, 
we may write this: · _ . · 

~ .. 
.. 

(~3.26) 

Now let us regard the arrays as classes, and the items 'of the arrays 
as class-members. Equation (23.26) is then an analysis of the sums of 
squares of the type which we have studied in. the analysis· of variance. 
The numbers "• are not constant in each class, as was k, but this makes no 
materi.al difference," and we may apply the results of 23.30 to 23.33, 

Usmg the corrected variances, we may write the analysis in the following 
tabular form. . 
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TABLE 23.6. 

1. 2. 3. '-.· I 5. 

Diviaor SUDll of SUDll relating to Variation. (Degrees of Squares. Quotients. 
Freedom). 

-
Between class means • 

f'=:P N~TJ' p-1 s {n,.(z.,-z)1J ""' .P=l p-1 

r=N Na!c1- TJ!,) Within classes N-p . s (:r:, -z,.)• · . r"'l N-p . ~ .. I 
r=N 

Total N-..1 I s (:r:, -z)• 
r=l 

In column 5 we have anticipated results which are easily proved as 
follows:- · · 

By definition, . 
. ' S(a: -.f)2 =N~! 

S(a: -.ffl)1 = Nu!, =N p-!(1 -'7}!,) .. -

Hence, S{nfl{.ffl-.f)2}=Nu!7J!, 
Dividing the sums of squares by the appropriate number of degrees of 

freedom, we get the results of column 5. . · · 
. . Now, if . the universe is normal and uncorrelated, the two items 
in column 5 are not significantly different ; for they are independent 
estimates of the variance of a: in the universe, all arrays having the same 
mean and standard deviation.t We may test the significance of their 
difference by J;he z-distribution~ We have: 

Nuz87J"/Nu,.8(1-'7}1
) z = i log. --

1
- --'2N~---'--' 

p- . -p 
• 'I'J• N -p 
=llog.1 _7J8 • p- 1 (23.27) 

11
1 =p - 1 } . {23.28} 

va=N :-P 
In equation {23.27) we have omitted the suffix a:y in writing 7J"· 

Clearly a similar test may be applied to 7J:S. p in this case referring to the 
number of y-arrays.. ·. . · 

23.41. From the relation (23.27) between z and 7J 1 it may be shown 
that the distribution of 7J 1, corresponding to that of z given by equation 
(23.15), is 

(23.29) 

. l Strictly speaking, this is only approximately true of arrays of finite width. If the 
ranges defining the arrays are very broad, the test must ~e used with reserve. 
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It will be seen that this involves the number p, i.e. depends on the 
number of arrays into which the data are grouped. This fact is.i.mportant, 

· I I · -

and reveals that the use of the standard error 
1 ;.~ , given in 21.27,: can 

be no more than an approximation at the best ; for that formula does not 
contain p. · · 

23.42. The tables of the significance points of a are designed mainly 
for small samples. If the_ data are grouped, as they must be for the 
calculation of 7]1 to be possibl~ at least one of v1, v1 is likely to be large. 
In such cases, however, interpolation Will usually give results accurate 
enough for the purpose in view. But special tables have been prepared 
by T. L. Woo and appear in •• Table& for Statisticians and Biometricians, 
Part 2," to enable closer approximations io be made without arithmetical 
labour. 
. 23.43. It is interesting to note that, since 7]1 is positive, its mean 
value "ill not be zero. The mean value (which differs from the square of 
the mean value of 7]) is given by . · 

: {7]1)=p-1 (23.30) 
N-1 

E:eample 23.8.-Let us consider the data of Table 11.3 (correlation 
between stature of father and stature of son), in which 7Jn=7Jwz=0·52. 
We know that the distribution is approximately normal, a fact which is 
borne out by the approximate equality of the two correlation ratios, and 
hence we may apply the foregoing theory with considerable confidence. 

'Ye have, for 7Jwa: · 
Jll =p -1 =16 
v1 =N -p=1078 -17=1061 

z=.llo (0·52)1 .1061 = 1.60 
I g,1- (0·52)1 16 

From Appendix Table 6C we see that the 0·1 per cent. significance 
points are as follows :-

,1 =12 
0·5992 
0·50-t.-i 

Jll =2-i 
0·4955 
0·3786 

The observed z is therefore very strongly significant of correlation in 
the universe. · .., . • . 

Test of Linearity of Regression. 
23.44. In 13.7 we saw that the regression of yon re was linear if, and 

only if. 7]:.- r1 = 0. An important question to decide is, therefore, can 
an observed value of 7]1-r1 have arisen from a universe in which the 
regression is linear, i.e. the true value is zero 'l · 

This question can be decided by the z test in a similar manner to that 
of 23.40 and 23.41. We consider the analysis of the sums of squares of 
deviations from the regression line into two parts : (1) de,;ations within 
arrays, and (2) deviations of means of arrays from the regression line, lq 
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tlus way it may be shown that the linearity may be tested Ly taking 

'1•- ,s N -p 
z=Jlog,--1 • -- (23.31) 

1-1) p-2 

. v1 = p -2} 
Vt=N -p 

(23.32) 

E.rample 23.9.-In considering the correlation between old age, 
pauperism (.r) and the proportion of out-relief (y), Yule found ("Economic 
Journal," vol. 6, 1896, p. 613) 

N=235 
r= +0·3-1 

1).,. = 0·46 
1)11z= • 0·39 

for a grouping of 19 .r-arrays and 8 y-arrays. Can the regressions be 
supposed linear ! · 

For the .r-arrays, N -p=216,_ p-2=17 

7] 1 -r1 {0·46) 1 -{0·31)1 

1-7]1= 1-(0·46)1 =0·12177 

z =!log. ( 0·12177 x 
2
1
1

7
6

) 

=0·218 

The 5 per_ cent. point for v1 = 17, v1 = ao, is about 0·25, and there is thus 
no rea.son to suppose from the observed z that the regression is not linear. 

For the y-arrays, similarly, p - 2 = 6. 

- ((0·39)1 -(0·3!)1 .227) 
z-!log, 1-(0·39)1 6 

=0·2-l-1 

This also will be foupd to lie withln the sampling limits, and the test 
therefore does not reject the linearity of either regression. 

Significance of the Multiple Correlation Coefficient. 

23.45. The multiple correlation coefficient is in many ways aJ.alogous 
to the correlation ratio, and we may test its significance by a proeedure 
very similar to that used for the significance of the correlation ratio and 
regressions. 

Consider the regression equation with p Yariates, 

.l't=bzXa+b3.ra+ · • • +b,.r. 
the variates being measured from their means. 

'Ve may regard the deviations of obsen·ed values of .r1 as composed of 
two parts : (1) de,;ations from the values of .r1 gi n·n by the re!!ression 
equation, and (2) deviations of the latter from the mean of .rl" Tl1<." sum 
9f squares can be analysed accordiugly. 



SAMPLING OF VARIABLES-SMALL ,SAMPLES.· 457 
~ . 

The sum of squares of deviations of observed values of x1 from the 
mean of ~r1 =Na1

1, by definition, and has N -1 degrees of freedqm. 
The sum of squares of deviations of observed x1's from the lxegression 

values is N af-1 ••• 11 ~hich, by the definition o( R 111 ••• 11,, is equal to 
Na1

1(1-mc1 ••• 111 ). This has N -p degrees of freedom;_ for a 1
1 

has N -1 degrees of freedom, at1 has N -2 degrees, -and so on. Writing 
R for RlC; ... 111, we may express the analysis in the following tabular 
form:- · 

TABLE 23.7. 

1. 2. 3. •• I 5. 

Suma relating to V a.ria.tion. Degreils of Suma of Quotients. Freedom. Squares. 
_J . 

.. • Ri 
Between ·claaa means p-1 R'Nth1 -·Nql• 

(Regression valuee from- .P -1 
mean.) • 

I~R' . . 
N-p . Within cl&asee • - (1 -B1)Na1

1 --·Na1
1 

( Devia.ti<ipa from regres- - N-p 
sion values.) 

Total . N-1 Na1
1 

- Now if the universe value of R is zero, the corrected varia~ces of column 5 
should not differ significantly:· for x1 ·and bpf1J1 + ... · +b.xp .are then 
uncorrelated, and hence deviations of x from the regression values are 
uncorrelated with, and independent of, deviations of..the regression values . 
from the mean, the universe being normal. .__,-- · _ · 

Hence we may test the significance of R by putfing . · · . 
R• N-p 

Z=_Jlog. 1 _R8 • p- 1 -- • •(23.B3) 

.... 1 =p -l } {23·34.) 
· v1 =N-p 

It will be seen that equation {23.83) is of the same form as equation 
(23.27). The distributions of R1 and 7] 1 are formally identical, and we have, 
for instance, corresponding to equation (23.30),· · 

(fll) = p - 1 
' (23.:~5) 

. N-l 
Example 23.iO.-In Example U.S, page 279, we found ·R11231 =0·74. 

Is this significant Y . ·• 
\Ve have: .· ..,_ ·· 

p=3, -N=38 
... 1 =2, ... =85 

( 
(0·'7'4)1 85) 

%=Jlog. 1-(0·74-)1 '2 
-1·53 
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. For v1 = 2, the 0·1 per cent. significance points are : 

v1 = 80 1·0859 

v1 = 40 1·0552 

The observed z is well above these values and hence R is significant. 

SUMMARY. 

1. As an estimate of the mean of the universe we may take the mean 
of the sample, whether large or small. 

2. If the mean of the universe is known, we may take the mean 
square deviation about that mean as an estimate of the variance of the 
universe; i.e. the estimate is given by 

1 
u,2 =-S(.x-m) 2 

n 

8. If the mean of the universe is not known, a preferable estimate of 
the universe variance is the " corrected " variance of the sample, given by 

1 . 
u2=--S(.x-.f)2 

• • n -1 

4. This estimate is said to have n -1 degrees of freedom. 
5. In samples from a normal universe the parameter t, given by 

.X -m. ,--
t=--vv+1 .u. 

where v =n -1, is distributed according to the law (due to" Student") 

Yo 
y= v+l 

(1 +~)-~-
This distribution may be used to give the probability of getting a value 
oft between specified limits on random sampling. 

6. 'Vith two samples, .x1, ••• .x,.
1 

and .x1', ••• .x,.:. from the same 
normal universe, the parameter t defined by 

.i'1 -.Xz I n1n2 t=--v--.u, n 1 +n2 

where 

and 

is also distributed according to the above law, with v degrees of freedom. 
7. 'Vith two samples, as before, with estimated variances 
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the parameter 

is distributed according to the law (due toR. A. Fisher) 

Y=Yo 1'1+ .. 
( vle!• + v2)_ll __ 

where 

As usual, this distribution may be used to give the probability of 
getting a value of z between specified limits on random sampling. . ~ 

8. If the data are arranged in n classes of k members each, the signifi
cance' of differences between the classes may be tested by comparing 
kum• with u,.1, where am• is the variance of class means about the mean 
of the whole, and u,.1 is the average of the variances within 'classes. 

If the. sample is small, the comparison may be carried out by applying 
the z test to the "corrected •• variances eum1 and euv1 with n -1 and 
n(k -1) dt-grees of freedom respectively, the parent universe being assumed 
normal. ': · · 

9. The distribution of the correlation coefficient in samples from a 
normal bivariate universe is not normal. However, putting 

1 +r 
z=Jlog.1 _r 

C=!log.1
1 

+p 
' -p 

where p is the correlation i~ the· universe, 
approXImately normally distributed about 

~· n being th~ number in the sample. 

it may be shown that z is 
C with standard deviation 

10. This result remains true of partial correlation coefficients, but in 
the above formulre n must be taken to be the number in the sample less 
the number of secondary subscripts in the coefficient tested. · . ~._, · 

11. In samples from an uncorrelated normal universe the.distributioil,_ 
of r is given by 

- ,._, 
y =yo(1 -r•)-ll 

The parameter t, defined by 

t=V r Vn-2 
1-r• 

•, 

... 
'·. 

is distributed in the " Student " form in such ~ases with n - 2 degrees of 
freedom. 

12. The significance of 7J1 from an uncorrelated normal population may 
be tested in Fisher's distribution by putting 
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Z=Jlog _y_. N -p 
'1-']1 p -1 

v1 =p -1, v1 =N -p -

where N is the tOtal number in the sample and there are p arrays. 
13. ~he same formulre give a test for the multiple correlation coefficient 

R, from a normal uninrse, if R' be substituted for '1'• p being the total 
ttumber of subscripts to R. 

U. The linearity of regression in a normal universe, as judged from 
the value of '1'- r1, may similarly be tested in the z distribution by putting 

.a=Jlog "]
1
-r

1
• N -p 

·1-']1 p-2 

EXERCISES.· · 

23.1. Find .. Student's" t for the following variate values in a sample of 10: 
- G, - .&, -3, - 2, - 2, 0, 1, 1, 3, 5, taking 1ft to be zero, and find from the tables 
the probability of getting a value of t as great or greater on random sampling 
from a nonnal universe. • 

23.2. A farmer grows crops on two fields. A and B. On A he puts 11 worth · 
. bf manure per acre and on B £2 worth. The net returns per acre. exclusive of 
· the cost of manure, on the two fields in five years are : 

! 
Yeal'. F"~eld A, £ per Acre. Field B,. £ per Acre.. 

1 17 18 
% ll 16-5 
3 !1 H 
4 18·5 19 
5 !% 25 

-Other things being equal, discuss the question -whether it is likely to pay the 
fanner to continue the more expensive dressing. State ckarly the assumptions 
which you make. 

23.3. The heights of six randomly chosen sailors are, in in<'he& : 63, 65, 68, 
69, 71 and 72. :J.'hose of ten randomly chosen soldiers are: 61, 62, 65, 66, 69, 69, 
70. '11, 72 and 73. Discuss the light that these data throw on the truggestion 
that soldiers are, on the average, taller than sailors. ' 

23.4.. In the data of Exercise 23.3, use the z-di:.-tn"bution to discuss wht-ther 
the samples can have come from unh"erses which are identical so far as height 
distribution is concerned. · 

23.5. In three samplt'S of 50 lines f'8Ch from Shakespeare's ••Romeo and 
.Juliet" (an early play), the following numbers of wesk endings -.vere obsen-ed: 
'1, 9, 10. In three similar samplt'S from ''Cymbeline" (late), the numbers of 
-.veak endings were 15, 11, 12. Discuss the suggestion that Shakespeare"& 
prosody, as judged by the number of weak endings, chan....OO w1th a~hancing 
years. · 
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23.6. A random sample of 15 m;m a nonnal unh-erse gives a correlation 
coefficient of -0·5. Is this significant of the existence of correlation in the 
unh-erse! I . -

23.7. Show that in samples of four from an rmcorrelated normal universe 
all ,-.lues of the correlatio11 coefficient are equally· probable; and that for 
samples of less than four a zero coefficient is the most improbable. · · 

23.8. What is the probability that a correlatio11 coefficient of +0·75 or less 
can arise in a sample of 30 from a normal universe in which the true correlatio11 
is +0·97 Compare this with the :result give11 by assuming the sampling dis-

tributioll normal with stalldard deViatioll 
1
_--:: . 

• Vft 

23.9. Test the significance of the partial correlation coefficimts of Example 
U.1, page 270. 

23.10. Test the r;ignificance of the two multiple correlation coefficients of 
Example 1-1.3, page 279, other tha11 the one tested in Example 23.10. . . 

23.1 h Show that in samples of 25 from an uncorrelated normal universe the . 
clumce is 1 in 100 that r is greater than about 0·-13. 

23.12. Referring to Exercise 13.1, test the linearity of the regressions of the 
distribution of cows in Table llA, page 200. · · 

• .. 



CHAPTER 24. 

INTERPOLATION M"D GRADUATION • ..... 
Simple Interpolation. 

_' - 24.1. If the value of a function of a single variable r, say "• baa 
been tabulated for equidistant values of the variable ~ z +A, z + 21, ete., 
we often require to find the value of the function corresponding to an 
intermediate value of the variable. Functions in very general use. such 
as common logarithms, have usually been tabulated with intervals so small 
that eYen over a range of several intervals the relation between "• and • 
may be assumed to be effectively ~ear, ~ is of the form 

v.=a.+GtZ • {U.l) 

as is shown by the constancy of the differences between successive values 
of v. For example;. · 

. T.&BI.B KL 

Number. Llgarithm.. DiifereDee ( +). 

3059'1 f-485678& 
CHXIOOIU -

30598 f~ 
CHXIOOIU 

30599 «85707S 
CHXIOOIU 

30600 4-4.857!U 
CHXIOOIU 

30601 f-4BS73.36 
CHXIOOIU 

30603 -~""'7U8 

If we then require, say, the value of Jog 30600-3, it is sufficient to use the 
familiar process of simple interpolation: · · 

log 30600 j·-l8572U. 
0·3 x 0-GOOOU2 43 

-l-W7257 

The little multiplication sum is, in most tables, already done for us in the 
margin. 

Differences. 
- 24.2. For any function which has been tabuJated to sufficiently ~e 
intervals (within certain limitations) simple inlW]X>lation can be~ m 

46% 
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this way~it is only a question of making the intervals sufficiently small 
(see below, 24.16). But many functions have not been tabulated ill; such· 
detail, successive differences are . not equal, and consequently su~pl~ 
interpolation cannot give an accurate result. ',l'he problem then anses, 
how are we to interpolate with reasonal:>le precision? And the answer is 
given by proceeding to higher orders of differences, as they are termed; i.e. 
instead of considering only the differences 

liol=ul -uo 
·a~~=ua -u~ 
li:l=u3 -u1 

etc., we also consider the second differences 

lio• =lill-liol 
!il•=lia1-li11 

lia" =lial -lial 

etc., or ev~n the third differences, fourth differences, etc. 
24.3. To take an actual example, Table 24.2 shows the squares of 

the first fe\\' natural numbers, together with their first and second ·differ
ences. Following. a practice which is convenient for printing and for most 
purposes of practical work, each difference is printed, not on a line between 
the two figures to which it relates, as with the logarithms in Table 24.1 
above, but on the same line as the upper figure of the two concerned-the 
line of the figure subtracted ; and as the signs of the differences are 
constant for each column this sign is sim~ly stated at the top. 

TABLE 24.2. 

Number. Square. First Diff. Second Diff. Third Diff. 
z. .. .. A'(+). A• ( +). A•. 

0 0 1 2 0 
1 1 3 2 0 
2 • 5 2 0 -
3 9 7 2 -• 16 9 - -
5 25 - - -

. 
Here we see that the first differences-the. only ones with which we 

have been concerned hitherto-are no longer constant ; but they follow a 
simple .rule, in that they are an arithmetic series, a linear function of a:. 
As a result, the second differences are constant, actually + 2, and con-
sequently the third differences vanish. · 

24.4. The figures on the first line of such a table are called the leading 
term (0) and the leading differences ( +1, +2, 0), and it is evident 
that, given the leading term and the leading differences, the whole table 
could b~ built up by successive addition as far as we pleased, without 
calculatmg any square directly except for checking. The series of first 
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diUerences would be obtained by adding 2 over and over again, starting 
from the leading diUerence 1, i.e. 1 +2 =3, 3 +2 =5, etc. The squares 
would be given then by adding these differences in succession to the 
leading term 0 : 0 + 1 = 1 : 1 + 8 = 4 : 4 + 5 = 9, etc. 

Differences of a Polynomial. • 
24.5. From these results we may conclude quite generally that the 

second differences of any polynomial of the second degree, · 

u..,=a0 +a1a:+ar:1 • (2.1.2) 

are constant and the third diUerences vanish. For, if we multiply all the 
squares in Table 24.2 by any factor a2, we merely multiply all the differences 
of every order by the same factor ; and the linear part of the function, 
a.0 + a1a:, cannot contribute to second differences. . 

Below we give a similar table, Table 24.3, for the cubes of the first few 
natural numbers, and here it will be seen that third differences are constant 

TABLE 24.3 • 

• 
Number. Cube. First Dill. Second Dill. Third Dill. Fourth Dill . 

11:. "·· .,_ ~'(+). ~·' + ). ~· ( +). ~·--
• -

0 0 1 6 6 0 
1 1 .7 12 6 0 
2 8 19 18 6 -
3 27 37 24 - -
4 64 61 - - -
5 125 - - - -

and foUrth differences vanish. By similar reasoning we may conclude that 
the third differences of any polynomial of the third degree, 

u.., =a0 +a1a: +as.:z:1 +tzax3 (2-1.3) 

are constant and the fourth differences vanish. The student will be quite 
correct if he draws the general conclusion that for a polynomial of the rth 
degree, .• 

u..,=a0 +a1a:+ar:1 + ••• +a,.rr (2-1.4) 

·the rth differences are constant and the (r + 1 )th differences vanish. To 
prove this it is onlf necessary to note that each successive differencing 
lowers the degree o a polynomial by unity, for the difference of any term 
~~ . -

(a:+ 1)t -a:~~ =kxt-t + k(k -l).:z:t-1 + ... + 1 
1.2 

which is a polynomial of degree (k -1). 

Newton's Formula. 
24.6. Evidently these results hold out some possibility of generalising 

- our method of interpolation. IC, instead of only considering two successive 
values of u., say u 0 and flt, and using the linear relation between u., and a: 
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that will reproduce these values to give any required intermediate value 
· of u.,. we can use the polynomial of the second degree which will r~produce 

three adjacent values, u0, u1, u2, or that of the. third degree which will 
reproduce four, u0, u1, u2, u3, and evidently we shall be likely to get much 
more precise results. But to do this we must be able to obtain the required 
polynomials in terms of the differences. We shall use the notation already 

· introduced, i.e. · 

1. 

:1! 

0 

I 

2 

3 

4 

z. Funciion. First Dills.' Second Ditis. Third Ditis. Fourth Ditis. 
I . 

0 u, ~· Ao1 Ao1 f:,.• o. 
I "• All Al· Al' -
2 "• Aol Aa• - -
3. fla Al - - -I . • u, - - • - -

' . Further, the common interval for the values of m will be taken as unity, 
as shown ; ;n practical work this is always treated as the unit until the 
end of the"work, just as the class-interval is so treated when calculating 
the moments of a frequency-distribution . 

. 24.7. Now write down the leading term and leading differences at 
the head of a table with spacious columns, as below, up to the leading 
fourth difference, and fill in the rest of the table working back from right to 
left. In column 5 for third differences we can fill in only the second 
space, Ji0

1 +li0'. In column 4 for second differences the second term 
will be Ji0

1 +li0
8 (always adding from the line above to the right);· the 

third term will be Ji0
1 +2Ji0

8 +li0'. We leave the student to supply the 
remainder. · 

. 2. 3. 4. 5. . 6. 

u •. Firat Diffs. second Ditis. Third Fourth 
Ditis. Diffs. 

··=tte Aol A.o· ··Ao1 A' 0. 

"t =fle + Ao1 Ao1 +Ao1 Ao1 +Ao1 Ao•+Ao• -
fla=lle +2A.I +A. I Ae1 +2A8

1 +A .. Ao1 +2Ao1 +Ao' - -
"•"'"• +3Ae1 +3Ao1 +Ao1 Ao1 +3Ao1 +3A0

1 +A0' - - --v1 =v8 +4Ao1 +6A.1 +4Ae1 +A0' - - - .._ 

Now look at the numerical coefficients in the expressions for u0, u1, u1, 

etc. ; they run · · · •. · 
1 
1 +1 
1 +2+1 
1+3+8+1 
1+4+6+4+1 

,. ' 

80 
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These are familiar figures ; they are the terms iri the binomial expansions 
of (1 + 1}1, (1 + 1)1, (1 + 1}1, (1 + 1}1, etc. We then ha\·e, gcrterally, 

. 1 i1'{~-1) I i1'(~-1){z-2) I 
u .... u,+.TA. + 1. 2 A,+. 1. 2 •3 A.+ ... · (2-1.5} 

where the series of differences may be continued so far as is necessary to 
give a result of the precision desired. This important equation is kno"-n 
as Newton's Rul~ o~ Newton's Formula. It may be repeated that 
in this form of the equation the unit of tte is the interval. There are many 
other formulre of .interpolation, but we propose to limit ourselves to this 
and illustrate its uses. · 

24.8. It will be seen that, if the series on the right of (2.&.5) is termin
ated at Aori the expression is a polynomial of the rth degree in ~. though it 
is not arranged according to powers of tte but according to the successive 
orders of difference, which is more convenient Cot our present pin-pose. 
This polynomial passes through the r + 1 successive points ( 0, u,), (1, u.), 
(2, u.a) •••• (r, ur)• In particular, if the series terminates at A.1, we 
~ve simple interpolation and the polynomial reduces to the straight line 
passing through (0, Ue) and (1, flt). Hit terminates at A.1, the series 
represents a parabola of the second degree passing throvgh the three points 
(0, flo), (1, u.), (2, u.a). Hit terminates at Ao1, it represents a polynomial 
of the third degree passing through the four points (0, u.). (I, u.). (2, u.a). 
(3, u.); and so on. But the student must remember that even though 
the polynomial reproduces the values of the function at 0, 1, 2 and 3, it 
does not necessarily closely reproduce the function at interme<,liate ,-alues 
of :t:. The whole utility of the formula is dependent on the closeness "ith 
which the variable can be represented locally by a polynomial of fairly low 
degree. :1\Iost ordinary functions satisfy this condition when tabulated 
for small intervals, but occasionally the student may find himself in 
difficulties. We will give some examples in later sections. 

We now .Proceed to some illustrations, and will give a warning at 
_once: t.M_student m~ be very careful as to signs. . -

E:t:ample 2l.1.-Given the cubes below, required to find the cube 
of32·4. 

We give this first as an example in which the interpolation is e.ract, 
for the third differences are constant, so that we need not proceed further. 

Number. Cube. .1\1( +). A•( +). A•(+).. 
·-

31 29791 2977 192 I 
32 32768 3169 198 I 
33 35937 3367 !Oi -
3' 3930-l 3571 -

-I 
-

•35 42875 - - -.. 
, As interpolation is exact, it does not matter "·hich term we take as 

c;. Supposing we take 32. Thus for 32·4, z = 0·4, and we have : 
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. ~" 1 (0·4)( -0·6)" 1 (0·4)( -0·6)( -1·6)~ 1 
flo.,=Uo+O·~o + 1.2 uo. + 1.2.3. ol 

=32768 +0·4(3169) -0·12(198) +0·064.(6) 

= 32768 + 1267 ·6 - 23·76 + 0·384 

=34012·224. 

This may be verified by direct ~ultiplication. or from Barlow's Tables : 
the student is recommended to carry out a check by taking 31 as U0 • 

. E.rample 24.2.-Given the following cube roots, find the cube root of 
102·5. The differences have been written, as is frequently done, without 
the insertion of the decimal point.. ' 

Number: Cube Root. f11( +). f1t (- ). f11 ( + ). 

• 101 4·6570095 153192 997 14 
102 4·6723287 152195 .983 -

•. 103. 4·6875482 151212 - -
: 104 4·7026694 - - -

""" Here, if we wish to attain the greatest possible precision and include the 
third difference, we can only fake. 101 as u0 ; {I) is the~ 1·5, and ' 

u 1•5 =flo+ 1·5~01 +0·375~01 -0·0625~08 

=4·6570095 +0·02297880 -0·00003739 -0·00000009 

= 4·67995082 

'Here we have retained an extra place of decimals throughout the arith
metic in order to get the seventh place correct in the final result~ and must 
round this off to 4·6799508. Even so, we cannot avoid the effect of errors 
in our data, viz. the errors of rounding off, in the seventh place of decimals, 
the tabulated cube roots : the seventh place in our answer is still ~able 
to an error of + 1 to.+ 2 for this reason. I 

It may be-noted-that, as differences converge so rapidiy in this 
example, simple interpolation would give an error of little more than a 
unit in the fifth place of decimals. · 

Example 24.3.-From the table of Ordinates of. the Normal Curie 
(Appendix Table 1) find the value of the ordinate at {I)/a= 0·045. · 

We give this example partly as a warning to the student to see that 
. his differences are converging so as to be likely to give a good result. 
The second difference is numerically much larger than . the first, viz( 
892 against 199; he must then look at the third as well; if this be large 
also, he may have to go to a high· order of differences to get precision, 
Dut the third difJerence is only + 18 and the fourth difference smaller 
still, so third differences will suffice for the highest precision attainable 
with the five-figure table. Note that the first difference is negative, the 
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second negative, the third positive, and . since the interval is 0·1, z = 0·45, 
not 0·045. 

In the difference terms we have retained two decimals beyond the 
five during the work ~parated by a comma) : 

u0.15 =U0 +0·45~01 -0·12375~01 +0·0639375~01 
=0·39894 ..:0·00089,55 +0·00048,51 +0·00001,15 

· = 0·89854 rounded off to the fifth place 

Interpolating in the seven-figure table, Table II in "Tabka for Statisticians 
and Biometricians," this is found correct to the last place. It may be 
noted that, if a calculating machine is used, the products given by succes-
sive terms can be cumulated on the machine. · 

Interpolation of Statistical Series. 

24.9. so' far we· have dealt with straightforward interpolation of 
tabulated mathematical functions. · But interpolation may also be 
employed· on statistical series, or series of figures founded on statistics, 
provided at least that they run tolerably smoothly. No statistical series 
or series founded on statistics does, however, run absolutely smoothly, 
like a mathematical function, unless of course it has been deliberately 
"graduated" to'do so. It must be recognised, therefore, in such cases 
that we are merely using interpolation as a method of estimating the truth ; 
and the truth in all probability would not and could not be given by any 
process of interpolation.. . . 

The following is an illustration of a series based. on statistics. - . . 

Example 24.4.-I~ Part II of the Supplement to the 75th Report 
of the Registrar-General for England and Wales, abridged life-tables 
were· given for a number of counties, etc. The table below shows the 
expectation of life at ages 25, 35, etc. to 85, ·based on the mortality of 
males in Cambridgeshire in 1910-12, i.e. the average number of years 
that individuals would have lived from the given age onwards, if subjected 
at each age to the mortality mentioned. Required, to interpolate values 
for the expectation of life a~ ages 30, 40, etc. 

Age. 
Expectation 

of Life /).1, ll.•. ll.•. 
(Males). 

25 42·21 - 824 + 20 + 34 
35 33·97 - 804 +54 + 27 
45 - 25·93 - 750 + 81 + 76 
65 18·43 - 669 +157 - 3 
65 11·74 - 512 +154 -
75 6·62 - 358 - -
85 3·04 - - -

Total . - -3917 .+466 +134 

Bottom figures less top -39-17 + 466 +134 - I 
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Table~r of mathematical functions will often give the differf!nces, but 
in dealing with data of this kind the student will certainly hate to form 
them himself, and should carry out the check shown. Having formed the 
column of first differences, he should take the total, of course paying 
attention to signs. In this case the total of first differences is -3917, 
or inserting the decimal point, -39·17. This obviously must be equal 
to the difference between the bottom figure and the top. figure in the 
preceding column, as we see is. the case. The following columns must 
be checked similarly. _ · · 

The second differences are considerably smaller than the first differ
ences. Third differences are also small, but rather irregUlar ; it will be 
found, however, that the contributions of the third differences· affect only 
the second place .of decimals in the function, so we ought to attain a very 
fair result. · 

To get the figures for ages 30 and 40 we have not much choice. and must 
use the _known values at ages 25. to 55. On general grounds it seems 
best to keep the value of m for which we require u 111 near the centre of the 
values us~ for interpolation. So the expectation at 50 was determined 
from the.values at 35 to 65, that at 60 from the values at 4!1 to 75, and 
that at 70 from the values at 55 to 85. The expectation at 80 was 
determined with the use of the second difference only from the values at 
65, 75, 85. 

The work is quite straightforward and the results were : 30, 38·09 ; 
40, 29·90; 50, 22·10; 60, 14·94.; 70, 8·99; 80, 4·64. The student 
may find it instructive to draw a chart. · · 

But some qualms were felt as to how far the results could be trusted. 
A polynomial is not a very good function to represent an empirical function 
of the present kind which is slowly dropping to zero (see below, 24.12). 
It might possibly be more appropriate to take logarithms of the expecta
tions, interpolate between the logarithms and then convert back into 
numbers. The test was carried out as a control. The following are then 
the data and the differences :- . . -- ·· 

Age. log (Expectation). ,:11, .:1•. .:1•. 

25 1·62542 -0·09432 -0·02298 -0·00799 
35 1·53110 -0·11730 -0·03097 .-0·01662 
45 1-41380 -0·14827 -0·04759 -0·00536 
65 1·26553 -0·19586 -0·05295 -0·03623 
65 l-06967 -0·24881 -0·08918 . . 
75 0·82086 -0·33799 - -85 0·48287 - - -

Tota.l ...- -1·14255 -0·24367 -0·06620 

Bottom figures leas top -1·14255 -0·24367 -0·06620 -

. The wor~ was <;Jone exact~y as before, except that the expectation at 
80 was obtamed With three d1fferences from the given values at 55 to 85. 
The results differed only very slightly from those obtained before the 
following table giving a complete comparison:- · ' 
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Interpolation. 
Age. Difference. 

Direct. Log&rithmic. 

25 . 42·21 42·21 . ·-
30 38·09 38·07 -0·02 
35 33·97 33·97 -
40 29·90 29·91 +0·01 
45 25·93 25·93 -
50 22-10 22·ll +0·01 
05 18 43 18-43 
60 14·94 14-92 L lJ2 
65 11·74 11·74 -
70 8·99 9·00 +0·01 

. 75 6·62 6·62 -
80 4·64 4·63 -0·01 
85 3·04 3·04 -

The differences are almost immateii.al. 

Notes on the Practical Work. 
24.10. Number of Differences to Use.-Provided differences converge 

fairly rapidly and continuously, there is little difficulty in coming to a 
decision. The student-knows to how many digits he desires to be accurate, 
and it is no use his going on to higher orders of difference which 
affect only pla,ces beyond this; if he wants four-figure accuracy, it is no 
good his going on to differences which affect only the sixth and seventh. 
places. To enable him to see more quickly the approximate contribution 
that a difference of any order will giye, th«J following table of the binomial 
coefficients may be useful ;_:_ 

·TABLE 24.4.-Table of the Binomial CoefficiC11ts in Newton'• FQT111ulafrcma 
a: =0 to :r:=2 by Intervals of 0·1. 

·z 
z(z -1) z(z-1)(z-2) z(z -1)(z- 2)(z- 3) 
---.:2 1.2.3 1.2.3.4 .. 

0 0 0 0 
0·1 -0·045 +0·0285 -0·0206625 
0·2 -0·08 +0·048 -0·0336 
0·3 -0·105 +0·0595 -0·04016.25 
0·4 -0·12 +0·064 -0·0416 
0·5 -0·125 +0·0625 -0·0390625 
0·6 -0·12 +0·056 -0·0336 
0·7 -O·:W5 +0·0455 -0·0261625 
0·8 -0·08 +0·032 -0·0176 
0·9 -0·045 . +0·0165 -0·0086625 . 
1·0 0 0 • 0 
H +0·055 -0·0165 +0·0078373 
1·2 +0·12 -0·032 +0·0144 . 
1·3 +0·195 -0·0455 +0·0193375 
H +0·28 -0·056 +0·0224 
1·5 +0·375 -0·0625 +0·0234375 
1·6 +0·4S -0·064 +0·0224 
1-7 +0·595 -0·0595 +0·0193375 
-1·8 +0·72 -0·048 +0·0144 
1·9 +0·855 -0·0285 +0·0078375 
2·0 +1 0 0 . 
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A word of warning may, however, be desirable. Because the. use .of the 
(r + l)th difference would not aff~ct the result in the kth figure, it .does 
not necessarily follow that this polynomial value will agree with the true 
value of the function to the kth figure. 

If differences do not converge rapidly and continuously, this is in 
itself evidence that a "polynomial of moderately high .order does. not fit 
the function well and high precision cannot be expected. The student 

.may occasionally find himself faced by cases more difficult than those of 
the foregoing .illustrations. For example, here are the initial values of 
P for value& of x' proceeding by unity,. and degrees of freedom v=6 
(n' =7), from ·Table _XII in "Tables for Statisticians, etc., Part I": ' 

X"· P. X"· P. 

0 1·000000 5 . 0·543813 
1 0·985612 6 0·423190 
2 . 0·919699 7 0·320847 
3 0·808847 8 0·238103 ... 4 ()-676676 9 0·173578 

If we .)Vish to find by interpolation the value at, say; 0·5, apparently we 
have no choice but to take our u 0 at zero, for the table starts there. · If 
the student begins work accordingly, he will find his differences not 

- behaving at all nicely; the second leading difference is much greater than 
the first ; the third is a good deal less, but the fourth, fiith and sixth 
much larger than the third, .and it is not until the seventh and higher 
differences that definite convergence seems to be setting in. If he 

. • laboriously works step by step, getting successive approximations to the 
value of P a't 0·5 by using one difference, two differences and so on, he 
will get a series of very slowly converging values : · 

1. 0·992806 . 
2. 0·999247 

•• 3. . 0·990658 
4. 0·998993 
5. 0·998445 
6. 0·998181 
7. 0·997973 
8. 0·997899 
9. 0·997865 

The true-value is 0·997839, and he could have obtained this much quicker 
by direct calculation ; even with th~ nine differences he has got only four
figure accuracy. But he ought not to have rxpected a good result if he 
had taken the trouble to look at the run of the differences.. The figures 
give another useful warning. Using three differences, we have a worse 
result than when using two only. Increasing the number of differences by 
one step does not necessarily increase precisiOn. . 

Limitation of the number of differences suitable for use~ owing to the 
effect on differences of errors of rounding off, is considered below (24.1" 
and 24.15), · · 
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24.11. ChoU:e of the Set of u: •. -To interpolate, say, at .r =2·5, using 
third differences, one might employ either the u's at 0, 1, 2, 3, or those 
at 1, 2, 3, 4-, or those at 2, 3, 4-, 5; one would not go outside these limits or 
one would have to extrapolate for the value at 2·5, and that would obviously 
be unsafe. Which set is it best to choose ? Advice cannot be absolutely 
definite, but it would seem that usually (but not necessarily) values about 
equidistant from that sought should be equally valuable as guides, and on 
this principle we should try and keep the value sought so far as possible 
central to the set of u's employed. ' 

This suggests that one reason for our getting so poor a result above was 
that we used such a lop-si4ed set of u's, with the value sought apparently 
unavoidably ne&~;,.one end. Let us avoid this by a device. Repeat the 
value of P for+ 1 at -1 on the other side of zero. (It is true that this has 
no physical meaning, but the function might conceivably run symmetric
ally on either side of zero, and its graph has clearly high-order contact with 
a horizontal tangent at zero.) Now take the four values at -1, 0, + 1, + 2 
and interpolate, using the resulting three differences only : 

X"· P. .11•. .11• • .11• • 
·. 

-1 0·98~612 +0·014388 -0·028776 -0-{)22749 
·0 1 -0·014388 -0·051525 -

1 
+I 0·985612 -0·065913 - -
+.2 0·919699 - - -

Interpolat~ng for the value of U1-5, we have: 

UI·r;=u0 + 1·5A0
1 +0·375A0

1 -0·0625A0
1 

=0·997825 

The true value, as stated above, is 0·997839, and we have got a doser 
result by this rearrangement, using third differences only, than we did by 
using nine differences before. 

24.12. Possible Forms of Polynomials.-The student may also get 
into difficulties if he does not bear in mind the forms that polynmnials can, 
and cannot, take ; and if he attempts to use this method of interpolation 
where the polynomial is unlikely to represent the function well even over 
a moderate range. A polynomial (parabola) of the second order can take 
only the form (a) in fig. 24..1. A polynomial of the third order can take the 
form (b), or the form (c) with a wave in the centre. A polynomial of the 
fourth order can take a form very much resembling (b), but flatter in the 
centre, or a form like (c), but with three instead of two half-waves in the 
middle; and so on. A polynomial cannot take the form (1) of a curve 
tangential or asymptotic to the vertical, like the end near zero of an ideal 
frequency-curve of the distribution-of-wealth type, or (2) of a curve 
slowly dropping asymptotically to the horizontal, like a logarithmic curve 
or the tail of the normal cun·e-and such functions, mathematical or 
empirical, are very frequent in statistics. In this latter case it would be 
more probable that the function could be represented by a function of the 
form · 
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Then taking log!i we· have : 1 
. u =log. y =a11 +a1~ +azX1 + • • • ' 

that is to say, we come back to ihe polynomial Hence, if the function_.....
we are dealing with is tailing slowly away to zero, it is probably best_ t~ 
take logarithms and then interpolate on the logarithms. Thatjs 'why in 
Example 24.4 we carried out a check in that way. There, as it happened, 
the direct method did not lead to bad results, but it is quite possible for it to 

· give a completely nonsensical answer. For example, at the extreme end 
of the x• table for v=28 (n' =29), we are given only the values of P 
corresponding to the following values of x• :- · · 

• '1.·· P • AI. A•. A•. 

-40 0·06612~ -O-o5966l +0·053601 -0·047929 
50 0·006467 -0·006060 +0·006672 -
60 0-ooo407 -0·000388 - -
70 O·opo()l9 - - - -• 

Taking differences as shown and interpolating to get an estimate of the 
value of Pfor x1 =55, i.e. u1 . ., we have: 

u1•5 =u0 +1·5~1 +0·375A0
1 -0·0625Ao' 

= - 0·000268 . : 
But this is nonsense, for P cannot be negative. The polynomial has. done 
its best : it reproduces the values at 4.0, 50, 60 and 70--but it can only do 
this by taking a form like ( c} of 
fig. 24.1 (reversed) with a wave in · · · · 
the centre. It has, as a matter of 
fact, a minimum at ·x• =56·6 and a 
maximum at x• = 65·8, or at 1·66 
and 2·58 on the scale of u's with 40 
as zero and 10 as the unit interval 

If, instead, we take logarithms 
of the above values of P, inter
polate to third differences and then 
convert back to numbers, as in 
Example 2-t..i, we find 0·001699 for 
the required value of P-e. value 
which is rational and is probably 
not far from the truth. For x• c 
= 30, P = 0·863218. Even bringing 
in this much larger value and. using 
logarithmic interpolation with four Fro. ~4·1 • 

b 

c 

differences, we find 0·0017 4.6 for the value of P at x• =55. This suggests 
that at least we may trust the value to two figures as 0·0017 which 
would be sufficient for practice ; but the value has not been che~ked by 
direct calculation. · · 

Effect of Errors in u on the Differences. 
· 24.13.~The student may notice and be tr~ubled by the fact that in 
the Normal Curve Tables in the Appendix, second differences appe~ to 
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get a little irregular towards the tail of the curve; the phenomenon will 
become much more evident if he continues the second difference~ rather 
further than they have been entered, and still more so in the higher <liffcr
ences if he proceeds to write them ollt. The irregularities in question are 
due solely to the errors of rounding off in the lllst decimal place of the 
function. Before proceeding to consider the total effect of such a system 
of errors it may be best to consider the effect of a single error. 

24.14. Effect of an Error in a Single ·value of u.-If u =v + u•, 
~1u =~lv +~1w, and so on for all orders of differences. Hence, ifv represents 
the true value of u and w represents an error, the differences of the error 
will simply be superposed on the differences of u, and we may consider the 
former by themselves. We may then, as below, take the true values of u 
as zero, and insert an error only at one point, say +e. 

u. ~~- ~~- ~a. ~·. ~6. ~·. I 
0 0 0 0 0 

I 
0 + e 

0 0 0 0 0 + e - 6e 
0 0 0 0 + e - 5e + 15e 
0 0 0 + e -4e +lOe -20e 
0 o. + e -3e +6e -lOe + l.~e 
0 +e -2e +3e -4e + 5e - 6e 

+e -e + e - e + e ·- e + e 
0 0 0 0 0 0 0 

I 
The resulting differences are written down above, up to those of the sixth 
order, and it is e~dent that the numerical coefficients of e in the differences 
of order r are given by the terms of (1 -1 y. The effect of the initial 
error is therefore very rapid1y increased as we proceed to higher and higher 
orders of difference, especially after the first three differences are past. An 
error of+ e in u can produce an error of+ 3e or - 3e in the third differences, 
of 6e in the fourth differences, of 10e in the fifth and of 20e in the sixth. 
The maximum numerical coefficient for order r is derived from that for 
order r -1 by multiplying the latter by 2 if r is even, or by 2rf(r + 1) if 
·Tis odd. 

This magnification of the· error renders differencing a very useful 
method of checking the calculated table of a function, and it is often 
employed for that purpose. The matter is not quite simple, for the effects 
of errors of rounding off in the last decimal place will be superposed on the 
effects of any actual mistake, but nevertheless the effects of the mistake 
are likely to show themselves clearly in, say, third or fourth differences. 
In the following table of square roots, for example, nothing is obviously 
wrong, but an error of 2 units in the last place has been introduced into the 
square root of 15, which should read 3·87298 (or more precisely, 3·8729833). 
\\'hen we proceed to take differences, howe\·er, a suspicious irregularity 
shows itself in the third differences, and in the fourth differenees it is clear 
that something is wrong. Since the position of the " peak " rises half a 
line at each differencing, the peak + 2 shows that the mistake is in the 
root of 15. \Ve can even estimate the magnitude of the error. If the fifth 
differences may be taken as approximately constant, we ought to get a fair 
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... 
Number. Square Root. At(+). 

. 
A•(- ). A'(+). I jA' •. 

10 3·16228 0·15434 ~ 686 83 -14 
11 3·31662 0·14748 603 69 -12 
12 3·45410 0·14145 . 534 57 -14 
13 3·60555 0·13611 477 43 + 2 
14 3·74166 0·13134 434 . 45 --14 
15 3·87300. 0·12700 389. 31 0 
16 4 0·12311 358 31 : - 6 
.}7 4-12311 0·11953 327 25 -
18 4·24264 0·11626 302. - -
19 4·35890 0·11324 - - __, 
20 4·47214 - - - ..._ 

esti~te' of the true fourth difference at the peak +.2 by adding together 
that difference and the two on either side of it, the total effect of the error 
e thus averaging out---compare the scheme showing the effect of the single 
error given above. This average is -7·6. We then have: · . .... 

• · 6e ..; + 2 - ( - 7 ·6) 
e= +1·6 · 

This is very_ near the correct value, which, as will be seen from the true 
value of the root stated, is 800- 298·88 or 1·67, the unit in the fl.4. column 
being the .last place of decimals of the function. 

24.15. Effect of a Seriea of Random Errora in u.-Suppose these errors 
to be a, b, c, d, e, as below. Writing down their differences, we have the 
following results :-

Error. At. A•. A•. A'. 

-
G 6-G c-26+a 4-3c+36-G e -4d +& -4/Ho 
6 c-6 4-2c+6 e-,3t1+3c-6 -- c 4-c e-24+6 - -
4 •-4 - - -· -• - - - - -

The general result is obvious.· In differences ~f the rth ordet, the resultant 
error in any one difference is the sum of r + 1 of the original errors multiplied 
in succession by the terms in the binomial expansion of (1 -1 y, ·or is 
of the form · 

· · r(r-1) r(r-1)(r-2) 
el -rea+ 1":2ea- 1. 2 • 3 e,_+ ·: • •• 

• 
•. (24.6) 

If the c;rors e are distributed in a purely random way,· so that e,. is un ... · 
. correlated with e,.+,. and if it may be assumed that the mean error is zero, 
th~n the mean error in the difference of the tth order will also in a long 
senes tend to zero, and the standard deviation, a,, of the above quantity 
(24.6) is given by · · 

{24.7) 
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where s0 is the s.d. of the original errors e,-and F(r) is the sum of the squares 
of the terms in the binomial expansion of (1 - 1 )". 

F(r) increases very rapidly with r. The following table gives the value 
of F(r) and of its square root from r = 1 tor= 6:- _ 

r. F(r). VF(r), 

1 2 Hl 
2 6 2·45 
3 20 4-n 
4 70 8·37 
5 252 )5·87 
6 924 30·40 

/ 

The standard deviation of errors in the fourth differences is therefore over 
eight times, and in the sixth differences over thirty times, the s.d. of the 
errors affecting u. 

If the decimal place in u be· regarded as following the last figure 
retained, the errors of rounding off that figure may be regarded as uniformly 
distributed over a range± 0·5, and_ their standard deviation, s,. is therefore 
Vl/12 or 0·288675. This gives the following figures for the s.d. of errors _ 
in the successive oraers of difference owing to the errors ot rounding off 
inu:-

Order of Difference. S.d. of Errors. 

1 O·U 
2 ()-71 
3 1-29 
4 2·42 
5 4·58 
6 8·'17 -

The effect of the errors of rounding off evidently increases very rapidly 
with the order of difference. \Vith a mathematical function for which 
the true differences rapidly and continuously converge, the effect of the 

· errors will in fact soon, so to speak, " take charge " ; the observed differ
ences will ra,pidly and steadily diverge, growing larger-with each successive 
differencing. At the same time two other phenomena will show them
selves. Looking back at the scheme showing the effect of the errors 
a, b, c, d, e, it will be seen that in any one column the same error enters 
int_o successive differences with sign reversed. Also in any one line 
the same error enters into successive differences 11ith sign- reversed. 
Hence, as the effect of errors of rounding off becomes overwhelmingly 
great, (1) the differences of the same order tend to alternate- in sign, (2) 
differences of successive orders on the same line tend to alternate in sign. 
If these phenomena start to show themselves, the student may well 
suspect he has gone too far in his differencing. It is_ evidently no use 
proceeding to an order of differences mainly significant of errors. 
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These results for the effect on differences of a random series of errors · 
have an ·application, not only to the effect of errors of rom~p.ing off !n 
mathematical tables, but also to the theory of the method of differences m 
correlation (ref. (331 )). · 

Effect on Differences of Subdividing an Interval_. 
24.16. We mentioned early in this chapter (24.2) that, in general, 

it would become possible to use simple interpolation alone on a table of 
a mathematical function provided intervals were ·made sufficiently fine, 
but this was not proved. Let us consider the effect on the differences 
of subdividing an i~terval; it will suffice to take the case of halving it, 
and for brevity let us confine ourselves to the first three differences. 

In terms of Newton's formula the values of_ u at 0, 0·5, ~. 1·5, are 

.:.: ::: +0·5~0l-::~:125~01 +~·0625~08} 
~=Uo+~o1 ' 

-~.6 =U0 + 1·5~01 +0·375~01 -0·0625~08 
(24.8) 

• 
If the student will write down these expressions at the left of a sheet 
of foolscap placed lengthwise, and take the differences in the ordinary 
way, he will find that the new leading differences for the subdivided 
series "\\ith intervals of half the original interval are given by 

80
1 = 0·5~01 - 0·125.1.0

1 + ?·0625~08} 
80

1 =0·2M08 -0·12M0
8 . · • 

S08 =0·125~08 · 

.. (24.9) 

If the ~·s of the original series converge rapidly, an assumption really 
implied by the fact that we stopped at the_ third difference, so that we 
can regard the successive ~·s as of different orders of magnitude, it will 
be seen that 801 is of the order of magnitude 0·5~01, S0

1 is of the order of 
magnitude 0·25.:10

1, and S0
1 of the order of magnitude _0·125~01• That 

is to say, the new ·differ~nces are not only smaller than the original 
differences, but converge much more rapidly. 

If we had divided the original interval into ten instead of only two 
. parts, we could have found the new leading differences in precisely the 

same way, and would then have obtained the result that 80
1 was of the 

order of magnitude 0·1~01, 80
1 of the order of magnitude 0·01~01, and 

so on, the general rule being obvious. Hence it is only necessary to 
subdivide the interval sufficiently in order to render the di_fferences so 
rapidly convergent that first differences alone can be used. · 

In works on the method of differences, tables will usually be found 
giving for various values of the number of subdivisions the formul:r 
rdating the 8's to the ~·s. 

We now turn_ to some statistical problems. 

Breaking up a Group. 
24.1?. Supp<?se we are gi'ven the numbers living, or the numbers of 

deaths, m su~ess1ve ten-year age-groups, we may often desire to estimate 
the numbers m smaller, e.g. five-year, age-groups, or even at single years 



478 THEORY OF STATISTICS. 

of age. The initial difficulty and the method of procedure will best be 
shown by an illustration. 

E:rample 24.5.-The following are the numbers of deaths in four 
successive ten-year age-groups. H.equired to estimate the numbers of 
deaths at 45-50 and 50-55. . 

Age-group. D<-aths. 

25- 13,229 
35- 18,139 
45- 24,225 
55- 31,496 

Now evidently interpolating directly between these figures will not help 
us. If we interpolated directly between the figure for 35- and the figure 
for 45- (half-way between), we would only have an estimate of the numbers 
in the ten-year age-group 40-50. We must proceed as follows. Add 
up the given numbers step by step; this will give us a new set of figures 
showing the numbers over 25 but less than 35, over 25 but less than 45, 
over 25 but less than 55, and over 25 but less than 65. Interpolate in 
this new series to find the number over 25 but less than 50, and the differ
ences from the numbers next above and below will give the answer 
desired. The work is as follows :-

1. 2. 3. 4. 5. I 
Sum of Deaths 

Exact Age. from 25 to Age /11, t::.•. 11'. 
Stated. 

25 0 +13,229 +4,910 + 1,176 
35 13,229 +18,139 +6,086 +1,185 
45 31,368 +24,225 +7,271 -
55 55,593 +31,496 - -
65 87,089 - < - -

. 
Column 2 gives the numbers from age 25 up to each age stated ; 
column 3 the first differences, reproducing the numbers in the age-groups ; 
columns 4 and 5 the second and third differences. Since the two third 
differences are very nearly equal, working to third differences ought to 

• give us a very fair result. We can accordingly take age 35 as our zero, 
and age 50 will be 1·5 on the seal!! with the interval as unit. We have 
accordingly, 

U1-5 =Uo + 1·5~01 + 0·375~01 - 0·0625~03 
= 13,229 + 1·5(18,139) +0·375(6,086}- 0·0625(1,185) 
=42,645·7 

or 42,646 to the nearest unit. Subtracting 31,368 from 42,646, and 
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42,646 from 55,593, we then have for our estimates of the numbers of 
~~= . . . 

45:_50 11,278 
50-55 . 12,947 

As a matter of fact, the numbers in quinquennial groups were given, and 
for 45-50, 50-55, were actually 11,404 and 12,821; the error of our 
estimates accordingly is only of the order of_ 1 per cent. 

E:xample 24.6.-From the same ·data; estimate the number of deaths . 
in the year of age 50-51. · 

The limits of this group on our scale of intervals are, with 35 as origin, . 
1·5 and 1·6. We have already found the number .up to 1·5 in Example 24.5, 
and it remains only to determine the number up to 1·6, the difference
between the two figures then giving the answer sought : 

· f.tJ.·e =Uo + 1·6~01 +0·48~01 -0·064~03 
-- = 13,229 + 1·6{18,139) +0·48{6,086) -0·064(1,185) 

... = 45,096·8 . 
or 45,097 to the nearest unit. ·Hence the answer is 45,097 - 42~646, or 
2451. • -•-
Simple Forynula for Halving a Group. 

24.18. The problem of estimating the numbers in the two five~year 
groups of which a ten-year group is composed occurs so often, that it is· 
worth while deriving a simple second-difference formula for the purpose. 
Let u's denote numbers in five-year gxyups, w's numbers in ten-year 
groups ; and let 8's and ~·s denote the corresponding differences. For 
second differences we need only consider three consecutive ten-year groups. 
From Newton's formula we have : · 

Uo= Uo 
ut= Uo+8o1 

w0 =2u0 +8l 

Ua= ·uo+28o1+ So• 
u8 = u0 + 380

1 + 380 a 

. r.v1 = 2u0 + 580
1 + 480

1 

u,= u0 +480
1+ 680

1 •• 

u 6 = u0 +580
1+1080

8 

r.v1 =2u0 +980
1 +1680

1 · 

Now write down these values of thew's and difference: 

z. w •• ~~. ~·. 

0 2u. +<V 4d0
1 +4d0

1 M.•/ 
1 2u, +5601 +4d,l· 4<50

1 +12d0
1 • 

I 2 2u.+fl60
1 +16 0

1 . 



Whence 

or 
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~.· = •<o.• + o,'> 
~.~ =8o0

1 

8o' = ~~.• 
a.• = 1~.· -~~.~ 

u1 =u0 +200
1 +o0

1 

=Ue+!~l-!~o1 

"•- !wt = -l~o1 -l\~o1 

= -l~(~l +~o1) 

It will be convenient for practical work to express this directly in terms 
of thew's: 

Whence finally, 

=2zct -2zco 
=U'z-2ZL't + tr8 

2~o1 +~o1 = 

Uz=Hzc1 +!(zc0 -tr1)} (2.UO) 

Thus, taking the figures and problem of Example 2-1.5 again, we have: 
zc0 =18,139 
w1 =24,225 
tr1 =31,496 

!(w0 -w!) = - 1,669·6 
U't 2-1,225 

22,555·-i 
and half.this gives 

u1 =11,278 

to the nearest unit, as before. For~. of course, we have also, as before, 
24,225 -11,278 = 12,9-17. Equation (2-1.10) is really equivalent to the 
method of Example 24.5, though in that illustration we used three differ
ences. But the third differences of the numbers " aged over 25 but 
under ;x " are equivalent to the second differences of the numbers in the 
successive age-groups. · 

Graduation. 
24.19. If a graph is drawn· showing the numbers of either sex li,·ing 

at each single year of age, as given in any census which provides data in 
such detail, it ·will be found anything but smooth, showing the oddest 
peaks and hollows which repeat themselves, once adult life is reached, at 
ages showing the same final digits. Thus, in the Census of England and 
""ales there are conspicuous peaks at the round-numbered ages SO, 40, 50, 
t:tc. (last birthday), and hollows or deficiencies at the ages ending with 1 
and, less emphatically, at the ages ending with 7. With rdurns from less 
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educated populations, the phenomenon may become almost ludicrous, e.g. 
in a eertain Indian census sample-count : · . • j . _ · 

Age Last Birthday. Number of Males. 

29 927 
30 12,294 
31 652 
32 2,058 
33 672. 
3-l 892 
35 7,723 .,. 36 1,437 
37 870 
38 1,362 
39 467 
40 10,391 
41 460 --- • 

Now v.·hateYer irregularities might occur in the true figures, we may be 
quite certain that they should tWt show errors that are simply a function 
of the final digit of the age. We would prefer, therefore, to eliminate these 
errors. We could do so, somewhat roughly, by drawing a graph as 
suggested and sweeping a clean curve through the rather scattered. and· 
irregular points given by the data, subsequently reading off smoothed or. 
graduated figures from the curve. The graphic process has many points to 
recommend it, but is very dependent on personal skill and judgment. It 
would be convenient to use a more " mechanical " process that anyone 
could apply and be sure of obtaining the same results if he used the same 
process. It would be quite possible to fit polynomials to the data by the 
methods of Chapter 17, but this would in general entail a great deal of 
labour and would not necessarily lead to satisfactory results, e.g. with such 
highly erratic data as those above. 1\Iore suitable processes can be 
founded on the method of differences, and the general idea of them all is 
quite simple, though the details may vary greatly and the practical working 
of some of them become rather complex. All methods begin by assuming 
that the rotal8 of certain age-groups--five-year or ten-year age-groups as 
a rule-are reasonably accurate. These totals can then be redistributed 
m·er single years of age by the elementary process of Examples 2-1.5 and 
24.6, or the procedure can be in some way elaborated. We shall illustrate 
only the simple process. • · 

E:rample 2.J.1.-The English Census of 1911 gives the following numbers 
of males in the three age-groups stated. Obtain graduated numbers at 
singlt! years of age for the decade 40 to 49. 

Age-group. Number. 

30- 2,637,30-l 
40- 2,001,178 
60- 1,376,236 

81 
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As before, we form the sum of these numbers step by step from the 
top and then take differences. · · · . 

Exact ·Sum of 

Age. Numbers. .111( + ). .11'(- ). .11'( + ). 
from 30. 

30 0 2,637,304 636,126 11,184 
40 2,637,304 2,001,178 624,942 -
60 4,638,482 1,376,236 - -
60 6,014,718 - - -

We now, taking 30 as our zero, require to interpolate at 1·1, 1·2,1·3, etc. 
to 1·9. The coefficients of the several differences in the successive applica
tions of Newton's formula are: 

~ 

.111. .c1i. A•.~ 
+H +0·055 -0·0165 
+1·2 +0·12 -0·032 
+1·3 +0·195 -0·0455 
+1·4 +0·28 .:.o·056 . +1·5 +0·375 -0·0625 
+1·6 +0·48 -0·064 
+1·7 +0·595 -0·0595 
+1·8 +0·72 -0·048 
+1·9 +0·855 _.:.0·0285 

•. The results, with the known numbers to age 40 and to age 50 added, 
are as given in the second column below, and in the fourth column they 
are differenced to obtain the graduated numbers at each year of age, the 
total of which must agree with the observed total in the ten-year group. 

l: 2. 3. 4. 

Exact Sum of Population Age Graduated 
Age. from 30 to Age Last Number. Stated. Birthday. 

40 2,637,304 40 228,559 
41 2,865,863 41 222,209 
42 3,088,072 42 - 215,870 
43 3,303,942 43 209,542 
44 3,513,484 44 203,226 
45 3,716,710 45 196,920 
46 3,913,630 46 190,626 
47 4,104,256 47 -- 184,344 
48 4,288,600 48 178,071 
49 4,466,671 49 171,811 
50 4,638,482 

Total - - 2,001,178 
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Below, these figures are rompared with the actual returns .~t th~ sing~e 
years of &ge and with two other graduations: (I) A graduatiqn g~.ven ~n 
the Census report and prepared by 1\lr Geo!ge Ki!lg, F.I.A., based on certrun 
quinquennial age-groups. (2) A graduation usmg analogous methods, but 
based on ten-year age-groups, made at a later date in the Government 
Actuary's Department, and reproduced by permission. The methods are 
described in rather more detail below. . 

I. 2. 3. ~- 5. 

Age . 
Census Graduation King's Graduation 

Last Numbers. Above. 
Graduation, · K,.. 

Birthday. K1. 

40 262,690 228,559 - 231,070 231,397 
• 41 198,344 222,209 223,721 225,456 
~ 226,889 215,870 216,556 219,233 
~3 196,204 209,542 209,314 212,785 

·« 190,949 203,226 202,143 206,169 
45 202,458 196,920 195,193 199,442 
~ 184,881 190,626 188,610 192,661 
47• 176,713 184,344 182,577 "185,883 . 
48 189,271 178,071 176,994 179,165 
49 172,779 171,811 171,589 172,564 . 

Total 2,001,178 2,001,178 1,997,767 2,024,755 

H we compare the closeness of fit_ h f the several graduations to th~ 
Census returns by adding up the differ~ces, observed number less gradu
ated number, without regard to their sign, and expressing this total as a 
percentage of the population (2,001,178 ), -it will be found that our gradua
tion 'gives a percentage deviation of 6·28, King':; graduation (K1 ) a per
centage deviation of 6·09, and the graduation K 1 a percentage deviation of 
6·40-figures which do not differ very largely. It will be noticed, how
ever, that both the K graduations give, over the range considered, a small 
biased error, the total population over the ten years being too small for 
K 1 and too large for K 1• As regards the deviations of the several gradua
tions from one another, the percentage deviation of our graduation from 
K 1 is 0·64 and from K 1 1·18, reckoned in each case on the true total popula
tion, and the percentage deviation of K 1 from K 1 is 1·85, reckoned on the 
K 1 total. At some individual ages the differences run up to nearly 2 per 
cent. This is a warning to the student that while it is true that the use 
of any one of these methods by different workers must, unlike the use of the 
graphic method, lead to the same result, yet the choice of different methods 
may lead to results almost, if not quite, as divergent as those obtained by 
different users of the graphic process. . Graduated numbers of hundreds of 
thousands carried to the last unit suggest a degree of precision much · 
higher than exists. . · . 
· There is evidently a certain imperfection in the elementary method we 
have used. H we employed the same method to graduate the numbers at ages 1 

80 to 89, using the numbers in the three ten-year age-groups 20-, 80-, 40-, 
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there would be a discontinuity at 40, Cor the two graduated series would 
be given by arcs of distinct polynomials. The discontinuity might not 
be conspicuous, but it would be there and would probably be brought out 
by differencing. To get over this, at least in part. a ~<imple adju!>tlllf'nt 
can be used. Continue the graduated series for 30 to 39 over the next few 
years of age, say to 42. Also continue our series for 40 to -19 backwards to 
37. Over the six years 37 to 42 we then have two graduated values at 
each age, and these may then be averaged with weights which gradually 
throw the weight from the earlier series on to the later-uy such simple 
weights as 6 to 1, 5 to 2, 4. to 3, 3 to 4., 2 to 5, 1 to 6. We han also paid no 
particular attention tO the choice of the limits of our ten-year age-group. 
Of course it might happen that the numbers were only compiled in ten
year groups like 2o-, so-, 4.G-," etc., and then there would be no choice • 

. But if the figures are given at single years, the choice is at our disposal. 
and it may be that we haYe not chosen wisely. Part of the excess at the 
peak figure is probably drawn from lower ages, and it might hal·e been 
better to keep the •• peak " at the round-number ages well inside the group, 
e.g. by compiling totals for the decades 35-, 45-, etc., rather than those used. 

Mr King, in the Census graduation. used fil·e-year age-groups as his 
basis, and chose the limits 4--8, 9-13, U-18, etc., as probably gi\ing the 
totals nearest the truth. Taking these five-year totals in successive sets 
of three, he used the precise procedure of our Example 2-1.6 to determine 

• a graduated figure for the central year of the fifteen-e.g. the three groups 
covering ages 4.-18 would give a graduated number at age 11, the three 
COYering ages 9 to 23 would give a graduated number at age 16, and so 
on. But here his process broke away. Taking four consecutive graduated 
numbers five years. apart and determined in this way as •• ph·otal values," 
he used the method of differences to determine a polynomial of the third 
order not passing through the four points u .. ~. ~ ~ but subjected to 
the four conditions (I) that it should pass through the t-.co points "t 
and~ (2) that at~ and u, it should have a common tangent 'Wiith the 
corresponding are deter~ed from the next (overlapping) set of pivotal 
values. In this way continuity was assured, but equality of obsened 
and graduated totals for the five-year groups was lost. (The process 
used was a simplification of the process of osculatory interpolation. by which 
two arcs meeting at a point are given not only a common tangent but also 
a· common radius of curvature. It might be called " tangential inter
polation.") The desirability of using five-year groupS may be questioned.. 
It is true that ten-year groups are rather large, but the errors that we are 
trying to eliminate are definitely functions of the ten final digits, and 
however the limits are chosen there is likely to remain a· systematic 
difference between the adjacent groups of successive pairs if five-year 
groups are used. . 

The test of K., in which an analogous process was used but based 
on the ten-year age-groups 5-U, 15-2-1, etc., was therefore of interest. 
Over the range of ao-so years the differences between K 1 and K 1 gave a 
smoothly running cyclical curve 'Wiith a tendency towards a period of 
ten years, as might have been expected.' 
. The simple process given in Example 2-1.7 is applicable throughout 
the bulk of life, but not' at the two ends of the series, where special tricks 
of the trade have to be employed. The difficulty of interpolating in a 
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•• tail," where the numbers are slowly approaching zero, has already been 
pointed out. For graduation these difficulties are increased, and it is 
often best to drop· the method ·of differences altogether and use some 
special process, such as assuming a law of decrease or fitting the tail of a 
frequency-distribution. · 

Inverse Interpolation. 
24.20_- By interpolation we determine the value of the function for 

a given value of the variable. H we are given the value of the function 
and find the corresponding value of the variable, we are performing 
inverse interpolation. The student has carried out the process, in a · 
form corresponding to simple interpolation, whenever he has determined 
the number corresponding to a given logarithm by the use of a table of 
logarithms-not a table of antilogarithms. H we need only take first 
differences into consideration, the process is, in fact, very simple. From 
Newton's formula we have 

whence • ... 
..~u.,-u0 
.., lio' . (24.11) 

where u0 will naturally be taken as the tabulate!~ value next below u.,. 
H we must take second differences .also into account, we have 

U =U +~!i l+a;(z-1)!1 I 
• 0 0 1.2 . 0 

which gives the quadratic for m 
llio111l1 + (lio1 -lli0

1)z- (u., -u0 ) =0 (24..12) 
or, ~ving, 

= _ 2!10
1 -!10

1 + _,J2(u,. -u0 ) (2!10
1 -!10

1
) 1 

Ill 2!1 I - . A I + . 2" I (24.13) 
o . .u.o uo 

The sign to be taken for. the square root will be evident' on carrying out 
the arithmetic. . 

This is not always a very convenient expressi~n to use, the solution 
(~ompare Example 2-1.8 below) being given as a comparatively small 
difference between two large quantities. H a;1 is the approximate solution.. 
given by first differences, we can replace min equation (24.12) by 11:1 +h 
an~ so!ve for the correction h on the assumption that hi may be neglected. 
This gaves . . · 

h lll1(1 -mt)lio1 

2~~:1!101 + 2!10
1 -!10

1 

_ a:1(l -m~)p' 

where 
-2 +(2~~:, -l)p 

p=~~. 
If we may further assume that pis small, this reduces to· 

h = 1~~:1(1 -z1)p • 

(2·'-15) 

(24..16) 
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Obtaining a first approximation from first differences, we can me (2t..16) 
to get a second approximation, then insert this second approxiruation in 
(24.16) and get a third approximation, and so on until the process of 
approximation makes no further diflerence. But note the assumption 
made that p is small. 

Example 24.8.-To find from the area-table of the normal curve 
(Appendix Table 2, p. 532) the approximate. yalue of the quartile 
deviation, i.e. the value of :rfu for which A =0·75. 

The data are : 

Hence, 

xfa. 
0·6 

A. 
0·72575 

u., - u0 = 0·02425 

t:..•. 
-0·00219 

and the first approximation to x by first differences only is 

0·02425 . 
x1 = + 

0
.
03229 

= + 0·7510 mterval 

= +0·07510 

or measured from the zero of the scale, the first approximation to the 
quartile deviation is 0·67510. 

Turning now to the quadratic (24.13), the solution is 

tv= 15·2443 -14·4997 
= 0·7446 interval 
= 0·07446 

the sign of the root having evidently to be taken as negative. Using 
second differences, then, our approximation to the quartile deviation is 

0·67446 

The true value to five places is 
0·67449 

so the use of second differences only has left an error in the last digit. 
· Let us see how the suggested process of approximation would have 

worked. From (24.16): 

h= -0·0339114 x0·751 x0·2.J.9 
= -0·00634. 

trl = 0·751 

x 2 = 0·74466 

Now taking x2 as the second approximation: 

h= -0·0339114 x0·74466 x0·2553J. 
= -0·00645 

trl = 0·751 

x 3 = 0·74455 
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U we repeat the same process again. .rt=0·7U55, which is the ;;arne as .r11 
so it is no use going further, and 0·67U6 is as close as we can get. ~ 

U third and higher orders of difference are brought into account, we 
have an equation of higher degree than the second, which can be solved 
by Newton's method of approximation. but the student will find more 
direct methods given in adYanced works: 

Estimation of the Position of a Maximum. 
· 24.21. In this and the following problem an elementary knowledge 

of the calculus is assumed ; the student who does not know the calculus 
may neYertheless find the results usefuL 

Suppose we are given three equidistant ordinates u., ~. Us. at 0, 1 
and 2. Required to find the position of the maximum of the paraoola 
passing through the tops of the ordinates. We have: 

II =•L..+-' 1+.r(~-1)A .-
• -. "'"1 1.2 ........ . 

Differentiating with respect to z and equating to zero, the abscissa of the 
maximum is given by 

_ .. 
or 

A.l 
~=0·5-

. . fie• -· (2-1.17) 

Very often. perhaps most-frequently, our data are not ordinates but_ 
rather areas ; e.g. if we want to estimate roughly the position of the mode, 
our data will be the total frequencies in three successive class-intervals
fWt the central ordinates of those intervals. We should then. as in Example 
2J.5, form the sum of these data step by step and take the ucond differential 
of the polynomial passing through the resultant points in order to deter-
mine the mode. Thus, calling the swq m : . 

z. .. .. Sumv. 

0 .. -o-5 0 
1 -.•.1.· +6-5 .. 
2 .. +24.•+4.• +1·5 ! ... +4.• 

+2·5 3 ... +3A.1 +4.1 

It must be remembered"that the sum fD starts at half an interval below -
zero, as shown. Using a• a to denote the differences of m : 

8,1=t; 
a,• =fiel 
a,•=fie• 

_ .r(z-1)_. 1 .r(z-1)(~-2)" 1 fD.-rr,+,ru.+ --2-ao + 6 ....._ 

d-~~·=fie1 + (z -1).11
1 =Q ..,.r . 



488 

or 
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~1 
m=1--0-. ~0· 

Since tz is now measured from - i, this is the same answer as before. If 
we are concerned only with 1econd differences of the data, and not with 
differences of any higher order, it does not matter whether our data are 
ordinates or areas. 

The method must be used with caution : obviously it cannot give at all 
a precise result unless the data run smOQthly, and if it be used for determin
ing the mode, may easily give an answer appreciably divergent from that 
obtained ~y fitting a freq,uency-curve. The following illustration will serve 
as a warrung :-

· Etzample 24.9.-The following are the frequencies near the mode in a 
distribution of barometer heights. Estimate the position of the mode, (1) 
from the first t~ee, (2) from the last thre~. ' · 

Height (inches); Freq~cy. 

29·9 339·5 
30·0 382·5 
30·1 395·5 
30·2. 315 

Differencing : 

Height Frequency. /11. A• •. 
(inches). 

29·9 339·5 +43 -30 
30·0 382·5 +13 -93·5 

. 30·1 395·5 -80·5 -
30·2 315 - -

·Taking the first three frequencies and their differences: 

tz =0·5 + 
43 = 1·933 intervals =0·193 inch 
30 

•·• Estimated mode,.. 30·093 

--~--

Taking the second three frequencies and their differences : 

' 13 . 1 06' . h a:=0·5 +--=0·639 mterva =0· .. me 
. 93·5 • 

• ••• Estimated mode =30·06-ir 

Our two answers therefore differ sensibly from each other, and also 
from the value given by a fitted Pearson curve, Yiz. 30·039. 
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Modifying Central Ordinates to Equivalent Areas. 
. 24.22. S~pposing we fit a theoretical frequency-curve to fm act~al 
distribution, and want to determine the .. goodness of fit , by the X1 

method. \\Te would usually proceed by calculatin~, from the c~e 
determined, the ordinates at the centre of each class-mterval and taking 
these as the frequencies. But this procedure is not exact, for the. central • 
ordinates are not precise measures of the areas. In a class-mterval 

_ centred exactly on the mode, for example, the central (maximum) ~rdinate 
obviously gives too large a value for the area. . Required, to obtam some . 
simple forpmla for modifying the central ordinates so as to give the areas. 

\Ve have, by Newton's formula, 

u.=Uo +lrA.1 + l(.x•-.x)~o1 

=Uo + (~1 -l~o•).x + ~~o•.xa 

Integrate· this expression for the interval round Ut• i.e. between the 
limits 0·5 and 1·5, and we will have an expression for the_ equivalent area, 
say r.o1 : .: 

(24.18) 

The first form of. the formula is, in general, the more convenient, but the 
second may be the better if correction is wanted only to a single value of u. 

E.xampk 2l.10.-Table' 2.J.5 (p. 490} gives in column 2 the calculated 
ordinates of a Pearson curve at the centres of the class-intervals. In 
columns 8 and 4 are given the first and second differences, and in column S 
are given the corrections ~01/24, shifted one line down so as to be on the 
same line as the ordinate to be corrected. ·Finally, in column 6 we have the 
sum of the ordinate and the correction, or the area. The totals given at 
the foot are simply for the purpose of checking ; since columns 2 and 3 
both bf'gin and end with zero, the sums of both first and second differences 
must be zero. Since column S is derived from column 4 by dividing 
by 2.J, its sum should also be zero, but errors of rounding off have made 
a very small negative excess. All the corrections are very small ; they 
are necessarily greatest where the curvature is greatest. · · 

24.23. A few words in conclusion. The process of interpolation, and 
still more that of graduation, is almost as much artistic as scientific. No 
absolute rules can be laid down, judgment must be used, and it is the 
experienced craftsman who is likely to get the best results. with the least 
labour. If the student turns up his Latin dictionary he will find that 
interpulare means not only •• to polish up" (poUre, to polish~o that 
graduation is really the implication of the word-but hence "to corrupt, 
to falsify." It '\\;ll do him no harm to bear this etymological meaning in 
mind, and keep a look-out accordingly. 
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TABLB 24.5, 

1. 2. 3. 4. 5. 6. 

Claes- · Central At. A•. Correction. Area. interval. Ordinate. 

. - - 0·00 + 0·08 - -.. 0 0·00 + 0·08 + 0·70 +0·00 0·00 
1 0·08 + 0·78 + 3·08 +0·03 0·11 
2 0·86 + 3·86 + 6·91 +0·13 0·99 
3 4·72 +10·77 + 7-18 +0·29 5·01 
4 15·49 +17·95 - 0·55 +0·30 15·79 
5 . 33·44 +17·40 -10·76 -0·02 33-42 
6 50·84 + 6·64 -13·70 -0·45 60·39 
7 57·48 - 7·06 - 7·88 -0·57 56·91 
8 50·42 -14·94 +.0·06 ·-0·33 50·09 
9 35-48 -14·88 + 4·37 +0·00 35·48 

10 20·60 -10·51 + 4·67 +0·18 2()-78 
11 10·09 - 5·84 + 3·15 +0·19 10·28 
12 4·25 • - 2·69 + 1·64 +0·13 4·38 

. 13 1-56 - 1·05 + 0·69 +0·07 H3 
14 '0·51 - 0·36 + 0·25 +0·03 0·54 
15 0·15 • - 0·11 + 0·08 +0·01 0·16 
16 - 0·04 - 0·03 + 0·02 +0·00 0·04 
17 0·01 - 0·01 + 0·01· +0·00 0·01 
18 0·00 0·00 0·00 +0·00 0·00 

286·02 +57·48 +32·89 +1·36 286·01 
.. -57·48 -32·89 -1·37 

SUMMARY. 

I. The first, second, third, . ·• • differences of a function u11 are defined 
by the equations 

dol=~ -:Uo 
do• =dll -dol 
do8 =d18 -do8 

etc. 

the intervals between successive values of the variable {I) being equal. 
2. By means of Newton's formula, 

- 1 {IJ({IJ-1) I {1)({1)-1){{1)-2) 8 
U:r-Uo+{l)do + 1. 2 do + 1. 2 • 3 do + • .. 

we can interpolate for the value of u,.,. · 
8. Errors in. the values of u become of increasing importance as the 

order of the differences increases. 
4. For inverse interpolation 

for first differences ; 

{IJ_u.,-u0 
- dol 
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__ 2~01 -~01 + /2(u,- u0 ) _ (2~01 -~01)1 

:r- 2~1 - '\ ~~ 2~011 

for second differences. . . 

491 

We can also proceed by successive approximation. If :r1 is the approxi
mate solution by first differences, a closer approximation is :r1 +h, where 

EXERCISES. 

24.1. In J;he area table of the normal curve, Appendix Table 2, find the 
value of A. for- zfa=1·5.J., noting the successive approximations up to third 
differences. :Take u 1 at 1·4. · 

2-1.2. Find as closely as possible the value of P for z1 = 11·7 from the following 
entries in the ~ table(" Tabla /01' Statisticiam"): ,. =17 (n' =18).- Note the 
successive approximations and the number of places to which your final answer 
is probably trustworthy. 

z•. P, 

10 0·903610 
11 0·856564 
12 0·800136 
13 0·736186 

2-1.3. From the following entries in the same table for,. =24 (n' =25), estimate 
as closely as you can the value of P for z• =43. Similarly, estimate the closeness 
of your approximation. 

z-. P. 

30 0·184752 
40 0·021387 
50 0·001416 
60 0·000064 

2-1.4. 1'he following (p. 4!J2) were the deaths of males registered in England and 
Wales during the three years 1930, 1931, 1932, at the ages stated. The figures 
on the right give the totals of the quinquennial groups which were, on this 
occasion, held to give the best totals for determining quinquennial "pivotal 
values." Find graduated numbers for the ages 40 to 4-i inclusive. ·-
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I Age. Numbers. Quinquennial Tota18. 

. 
35 3394 
36 3505 
37 3501 
38 3947 
39 3998 18,345 
40 4220 
41 4281 
42 - 5024 
43 4993 
44' 5260 23,778 
45 5998 

• 46 6113 
47 6463 
48 6921 
49 7663 33,158 

24.5. Let u 0, Uu u 1, • • • U 16 be the numbers in fifteen consecutive years of 
age, as in Exercise 24.4, and w0, w" w10 the totals in the. three quinquennial groups. 
Sh9w that .if we want only,the graduated figur! for u, as a "pivotal value," this 
may be wntten down at once from the equation 

(King's formula). Verify by oomparison with your answer to Exercise 24.4. 
24.6. Generalising the above result, show that if w0, w., War· are three suc

cessive age-groups of r years each, we have for the graduated central value 

w •• ..:.1 = w. _ r 1 -1a•(w0) 

2 r 24T1 r · 

and hence if r become indefinitely great, the central ordinate of the middle group 
of three, with areas 'W'0; Wu w 1 and common base c, is given by 

W1 _.!.aa(Wo) 
c 24 c 

Verify by finding approximately the central ordinate of the normal curve from 
the areas between -0·3 and -0·1, -0·1 and +0·1, +0·1 and +0·3 :~:fa. 

24.7. From the following (abbreviated) entries in the x• table, • =9 (n' = 10), 
estimate the value of x• for which P =0·25 :-

x•- P. 

11 0·2757 
12 0·2133 
13 0·1626 

24.8. The next table shows a frequency-distribution of 1000 observations, 
. and also gives the frequencies summed from the top. Estimate (I) the median, 

(2) the first decile, (3) the ninth decile, (a) as usual by simple interpolation, 
(b) bY: bringing second differences'also into account. · , . .. 
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Sum of 
Interval. Frequency. z. Frequencies 

from 0 to z . . 

o-1 28 1 28 
1-2 76- 2 104 
.?r-3 11~ 3 218 
3-4 141 ~ 359 
4-6 158 5 517 
6-6 1~2. 6 659 
~7 119 7 778 
7-8 95 8 873 
8--9 63 9 936 
9-10 33 10 969 

10..11 18 11 987 
11-12 ·8 12 995 
12-13 2 13 997:. 
13-1~ 2 1~ 999 
1._15 - 15 999 
15-16 1 16 1000. 

• 
Total 1000 - -

24.9. The· following are the mean temperatures (Fahrenheit) at Greenwich 
on three days 30 days apart round the periods of summer maximum and winter 
minimum. Estimate the approximate dates and values of the maximum and 
minimum. 

Day. Date. Temp. Date. Tem.P• 

0 15th June 58·8 16th Deo. ~-7 
30 15th July 63-4 15th Jan. 38·1 
60 14th Aug. 62·5 . l~th Feb. 39·3 

. . 
24.10. Taking the value of the central ordinate of the normal curve from 

Appendix Table 1, e~;timate the area between the limits ± O·l:eja, and verify 
your answer from the area table. 
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SINCE the publication of the first edition of this book the literature of 
Statistics has grown to such an extent that considerations of space alone 
would prohibit the inclusion of a complete Bibliography in "the present 
edition. Fortunately, there now appear, from time to time, two reviews 
of recent advances in Theoretical Statistics, one by J. 0. Irwin and others 
in the Jo·urnal of the Royal Statistical Society, the· other \>y P. R. Rider 
in the Journal of the American Statistical Association. Both these reviews 
conclude with lists of references. 

In the following lists we have, therefore, attempted to give references 
to more important Papers published prior to 1932 on subjects· mentioned 
in the text. Some later Papers of special interest, and recent books, have 
also been in<:Juded. For subsequent years the student is referred to the 
reviews by Itwin and Rider mentioned above. · 

The references are arranged in the following manner : First are given 
works of general interest on the Theory of Statistics; Probability and 
related subjects. Then the chapters of the book are dealt with seriatim. 
(This involves certain Papers appearing more than once in the references.) 
Next come references to certain tables which facilitate calculation, and 
to tables of functions useful in statistical work. Finally some references 
are given to Italian statistical literature. 

Most of the works cited are to be found in the library of the Royal 
Statistical Society. 

Books on the Theory of Probability. 
The student who wishes to proceed to the more advanced theory of 

statistics will find it necessary to h~ve a good working knowledge of the 
theory of probability, which lies at the root of most statistical inferen<;e 
from samples. A comprehensive bibliography of the earlier writings on 
the subject is given in J. :a-1. Keynes' book, No. (8), below. • . 
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· 2nd Ed., Enlarged, 1922. · 
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(28) TscBUPROW, A. A~, GrundbegriJlc und lkundproblerne t/6 Korulatit~Mthcoric; 
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Books o~ Statistical Method. 
In certain cases the foregoing references also deal with statistical 

method. See particularly references (17) and (20). 
During recent years interest.in statistical method has been e'\idenced 

by the issue of a rapidly increasing number of books on the subject. 
Those in the following list will be found useful as supplementing the · 
present volume :-

(30) DAY, ED:rroND E., Statistical Analym; The .!Uacmillan Co •• New York, 1925. 
(31) FISHER, R. A., Stati&tieal Metlwds for Rucard& Wurma; Oliver .I; Boyd, Edin

burgh and London, 6th Ed., 1936. 
(32) KELLEY, TRUJIA!f L., SWIUtieal Mellwd; The Macmillan Co., New York, 1923. 
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(35) PEARSON, E. S., The Applicatiom of Stati&tieal Mdlwds to Industrial Standardi&a

eion and Control; British Standards Institution, 1936 • 
. (36) RIETZ, H. L., };lat.hmiatical Stati&tiel; Open Court Publishing Co., Chicago, 1~27. 

(A small work, one of a series intended for th011e who have some mathematical 
knowledge but are not specialists. Useful references.) 
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(37) RIETZ, II. L. (edited by), llandboolc of Mathmaatical Statistic&; Houghton Mifftin 

· Co., Boston, 192-'.. · 1 
(38) SnKWBAIIT, W. A., Tlu Eronomic Control of Quality oflhe Manufaduwi,Prodtu:t; 

D. vao Nostrand Co., New York, 1931; 1\lacmillan, London. 
(39) TIPPIMT, L. H. C., Tlu Methods of Statistia; Williams & Norgate, Ltd., London, 

1931. (Useful to the student already possessing some knowledge but.who 
wants an introduction to the methods of R. A. Fisher, analysis of variance, etc. 
lllustratiooa mainly biological.) 

(-&O) WESTEaG.u:ao, H., and H. C. NYBsLLB, Gmndzuge tkr Theone tkr Statistik; 
F'ischer, Jena, 1928. 

Vital Statistics. 
(41) NEWSBOUIE, Sir ABTirell, Tlu ElemenU of Vital Statis_tics, Revised Edition> 

Allen & Unwin, London, 1923. . . 
(42) PEARt.. R., Introdwtion to Medical Biomdry and Statistics; W. B. Saunders Co., 

Philadelphia and London, 2nd Ed:, Enlarged, 1930. 
(43) WHIPPLE, G. C., Yital Statistics, 2nd Ed.; Wiley & Sooa, New York; Chapman & 

Hall, London, 1923. 
(U) Wooos, Hu.o..t. .1\1., and W. T. RussELL, All Introduction to Medical Statistics; 

· P. S. King & Son, Ltd., London, 1931. (Elementary introduction with reference 
to statistical methods in general) 

Applicatlons of Statistical Method to Engineering Problems. 
This is alSo a branch on which much work has ·been done of recent 

years, but it is one "ith which we are so wholly unfamiliar that we cannot 
undertake to give any detailed bibliography. _ The following books may 
be found useful, and will give references:- · 

(45) BECKER, R., H. PL..t.UT aod I. RUNGE, Anulendungm tkr mathemalisclun Statistik;· 
auf Probkme tkr Jlaumfabrikation; Julius Springer, Berlin, 1927. (Reprint, 
1930.) 

(46) FaY, T. C., Probability and il8 Enginemng Usu; London, Macmillan & Co.; 
New York, D. vao Nostrand Co., 1928. 

(47) KoBLWEILE&, E)(lr.. Statistilc im Dienste tkr Technilc; R. Oldenbou;g, Miincheo 
and Berlin. 1931. 

The .. Reprin-\.11" of the Bell Telephone Laboratories, Incorporated, New 
York, include a 1n1mber coming under the present head. Mention may 
he made in particular of Reprint B-297 (reprinted from the Journal of flu 
Franklin Institute, vol205, 1928): .. Economic Aspects of Engineering Applica
tions of Statistical Methods," by W. A. Shew hart, with a bibliography. 

See also the series of Supplements to the Journal of the Royal Statistical . 
Society (Industrial and Agricultural Research Section). . 

Applications of Statistical Method to Agricultural Experiment. 
The literature on this subject is enormq_us. For the general principles 

of the technique developed in recent years, see- ~ 

(48) WJSKA.llT, J., and H. G. SA.NDEBS, Principia and Practice of Fuld Ezperimmtation; 
·Empire Cotton Growing Corporation, London, 1935. 

Reference may also be made toR. A. Fisher's book~ ~f, (Bl) above, and his 
article on ••The Arrangement of l''ield Experiments" in the Journal of the 
Jliniatry of Agrieulture, vol 83, 192~27, p. 503. . 

See also the series of Supplements to the Joumol oflhe &yal Statistical 
Society (Industrial and Agricultural Research Section). · 
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INTRODUCTION. 

The History of the Words "Statistics," .. Statistical." 
(49) JoHN, V., Dn·l'tame Stati•tik; Weias, Berne, 1883. A tmnslation in Jt>t~T. Reg. 

Stat. Soc. for same year. 
(50) YtTLE, G. U., "The Introduction of the Words 'StatistiMJ,' 'Statistical,' into the 

. English Language." Jour. Roy. Stat. Soc., vot 68, 1905, p. 891. 

The History of Statistics In General. 
Seveml works on theory of statistics include short hi..Wriea, e.f!. JL Wester

gaard's Die Grtmdziige dn TMorie dn Sla&tik (Fischer, Jena, 18110), and P. A. 
l\leitzen 's Gt'.IJChkhU, TMflrie und Trclmik dn Stati•tik (new ed., I 003; Americ-an 
translation by R. P. Falkner, 1891). There ill no detailed history in English, 
but the article "Statistics" in the Encyclop«dia Brilamtua (lith ed.) gives a 
very slight sketch, and the biographical articles in Palgrave"• Dictimamy of 
Polilical Economy are usefuL Reference may also be made to--

(51) GABAGLIO, ANTONIO, Teoria gennak tklla akllistW, 2 vols.; Hoepli, Milano, 
· 2nd Ed., 1888. (VoL 1, Parte atorica.) 

(52) HOTELLING, H., "British S_tatistics and Statisticians Today," Jor"· Allin'. Stat.. 
. . · A8SOC., vol 25, 1930,.p. 186. . 

(53) Ht:U., C. H., The &mwmic Writings of Sir William Pdty, klgd}an ~tA tJ.e ObM-rt:a
tiOM on lluJ Billll of Martality more probably by Caplairt Johrt Graunt; .Cambridge 

. University Press, 2 vols., 1899 • 
. (54) JoHN, V., GQchichte dn Statistik, 11e Teil, bill auf.Quetelet; Enke, Stuttgart, 

188-&.. (All "published; the author died in 1900. By Car the best "history of 
statistics down to the early years of the nineteenth century.) 

(55) KoREN, JoHN, The History of Stati.stk•,IMir Progre.u and Dn.-elopmnll i11 3lany 
Countriu; Macmillan Co. (New York), 1918. · 

(56) Mom., RoBERT voN, Gt'3ChiehU und Littnatur dn S~lwfft'ft, 3 vols.; 
Enke, Erlangen. 185$-58. (For history of statistics see principally latter half 
~~~ . 

(57) W ALKEB, HELEN .M., Studies ira lluJ History of Statistical :!ldlwd o,. Baltimore, 
Williams & Wilkins Co., 1929. (liO&t detailed on recent history: chapters on 
the Nonnal Curve,l'tloments, Percentiles, Conelation, Speannan'a Theory of 
Two Factors for Intelligence, Statistics as a Subject of.Inortructioo in American 
Universities, and the Origin of certain Trchnical Tenns. l.'seful bibliographies.) 

(57 a) WESTERGA.ABD, H.; Contributions to lluJ History of Stmistiu, P. S. King & Sons, 
1932. 

History of Theory of Statistics. 
Somewhat slight information is gi:ven in the general works cited. 

·From the purely mathematical side the following are important:-
(S8) PEA.RsoN, KAlu., "Historical Note on the Origin of the Normal Curve of Errors," 

Bfumdrika, vol U, 192-&, p. 402. 
(59) PEA.BSON, KABL. "Notes on the History of Correlation," BW.Uirika, voL 13, 

1920, p. 25. 
(60) PEARSON, KARL, "The Contribution of Giovanni Plana to the Nonnal Bivariate 

Frequency Surface," BiQmt>trika, vol. 20A, 1928, p. 29S. 
(61) PEARSoN, KA.Iu., "James Bernouilli's Theorem," Bwmdrika, voL 17,1923, p. 201. 
(62) PEARSON, KABL, "Historical Note on the Distributions of Standard De'iations of 

Samples," Biomdrika, vol. 23, 1931, p. 416. 
(63) ToDHUNTER, I., A History of the JlaiMtllatical Tll«<ry of Probability Jr0116 tlut tinw: 

of PlUcallo thai of lAplace; Macmillan, IS65. 
See also Karl Pearson, The Lijf', Later• and LaOOun of Franci3 Gallun. ,-oL 2, 

Chapter 13; Cambridge University Press, 1935; and voL Sa, Chapter H •. 
A classified survey of the statistical work of the late Karl Pearson wrll be 

found in the Obituary by G. Udny Yule: "Obituary Noti<.-es of Fellow• of the 
Royal Society,'' No.5, December 1936. 
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History of Official Statistics. I 
(M) BEanLLON, J., Coun ilifnmlaire de statistique; Sodete d'editions scientifiques, 

1895. (Gives an exceedingly useful outline of the history of official statistics 
in different countries.) See also (55). · 

CHAPTER I. Theory of Attributes-Notation and Terminology. 
(65) JEvoNs, \V. STANLEY, "On a General System of Numerically Definite Reasoning," 

Mmwirs of the MancMsln Lit. and Phil. Soc., 1870. Reprinted in Pure Logic 
and olhn .Uinor JJ'orb; Macmillan, 1890. · ' 

(66) YuLE, G. U., .. On the Assoeiation of Attributes in Statistics, etc.," Phil. Tra718. 
· Roy. Soc., Series A, vol. II», 1900, p. 257. · 
(67) YuLE, G. U., "On the Theory of Consistence of Logical Class-frequencies and its 

Geometrical Representation," Phil. Tra718. Roy. Soc., Series A, voL 197, 1901, 
p. 91. . . 

(68) Yt.'LE, G. U., .. Notes on the Theory of Association of Attributes in Statistics," 
Biomdrika, vol. 2, 1903, p.l21. (The first three sections of(68) are an abstract 
of (66) and (67). The remarks made as regards the tabulation of class-fre
quencies at the end of (66) should be read in connection with the remarks made 
at the beginning of (67) and in this chapter: cJ. footnote on p. I» of (67).) 

l>Jaterial has been cited from, and reference made to the notation used in
(69) \V.&IIUfER, F., and Others, "Report on the Scientific Study of the Mental and 

Physical Conditiona of Childhood"; published by the Committee, Parkes 
· Museum, 1895. . 

(70) WARNER, F., "Mental and Physical Conditions among Fifty Thousand Children, 
~.c .. " Jour. Roy. Stat. Soc., voL 59, 1896, p. 125. 

CHAPTER 2. Consistence of Data. 
(71) BooLE, G., Lams of Thought, 185-t (chapter 19, "Of Statistical Conditiona"). 
(72) MoaG.ur, A. DE, Furmal Logic, 1847 (chapter 8, "On the Numerically Definite 

Syllogism"). · 
Refs. (71) and (72), together with (65), are the classical works with l't'Spect 

to the general theory of numerical consistence. The student will- find the two 
above difficult to follow on account of their special notation, and, in the case of 
Boote's work, the special method employed. 

(73) YuLE, G. U., "On the Theory of Consistence of Logioal Class-frequencies and its 
Geometrical RPpresentation," Phil. Trans., Series A, vol.l97, 1901, p. 91. (DPals 

· · at length with the theory of consistence for any number of attributes, using the 
notation of the present chapters.) 

CHAPTER 3. Association of Attributes.· 
(7-&) GREENWOOD, ll., and G. U. YuLE, "The Statistics of Anti-typhoid and Anti

cholera Inoculations, and the Interpretation of Such Statistics in General," 
Proc. Roy. Soc. of Medicine, vol. 8, 1915, p. liS. (Cited for the discussion of 
association coefficients in f4, and the conclusion that none of these coefficients 
is of much value for comparative purposes in interpreting statistics of the type 
considered.) . 

(75) LJrrs, G. F., ''Die Bestimmung der Abhingigkeit zwischen den lllerkmalen eines 
Gegenstandes," Berichk d. matli.-phys. Kla&Be d. kgl. 11Jchsischen Gutllschafl d. 
Wiuenschaf~; ·Leipzig, Feb. 1905. (Deals with the general theory .of the 
dependence bt-tween two characten, however classified; the coefficient of 
association of 3.15 is suggested independently.) · 

(76) PEAilSON, KARL, ••on the Correlation of Characters not Quantitatively llleasur
able," Phil. Tram. Roy. Soc., Series A, vol. 195, 1900, p. I. 

(77) P.EAIISON, KA&L, and DAviD HEaoN, ••on Theories of Association," Biometrika, 
voL 9, 1913, pp. 159-332 •. (A reply to criticisms in ref. (80).) 

(78) Yuu:, G. U., "On the Association of Attributes in Statistics," Phil. Trans. Roy. 
Soc., Series A, vol. I!», 11100, p. 257. (Deals fully with the theory of assocU.tion: 
U1e assocU.tion coefficient of 3.15 suggested.) . ' 
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(79) YULE, G. U., "Notes on the Theory of As!!OCiation of Attributes in" Statistics," 
Biometrika, vol. 2, 1903, p. 121. (Contains an abstract of the principal portio01 
of (78) and other matter.) 

(So)· YuLE, G. U., "On the 1\lethods of Measuring the AA!lOeiation betwl't'n Two Attri· 
butes," Jour; Roy. Stat. Soc., vol. 75, 1912, pp. 579-642. (A critical survey of 
the various coeOieiehts that have been suggested for meWiuring a.'sociation and 
their properties.) 

CHAPTER 4. Partial Association. 
(81) YULE, G. U., "On the Association or" Attributes in Statistics," Phil. Trans. Roy. 

Soc., Series A, vol. 194, 1000, p. 257. (Deals fully with the theory of partial as 
well 88 of total 88SOciation, with numerous illustrations: a notation suggested 

. for the partial coefficients.) . 
(82) YuLE, G. U., "Note11 on the Theory of Association of Attributes in Statistics," 

Biometrika, vol. 2, 1903, p. 121: (CJ. especially §§4 and 5 on the theory of 
complete independence, and the fallacies due to mixing of records.) 

CHAPTER 5. Manifold Classification. 

Contingency • 
(83) LIPPS, G. F., "Die Bestimmung der Abhii.ngigkeit zwischen den 1\lerkmalen eines 

Gegenstandes," Berichte der math.-phys. Klasse der kgl. silchsischm Gesellschajl 
der Wissenschajtm; Leipzig, 1905. (A general discussion of the problems of 
association and contingency.) , 

(84) PEARSON,-KARL, "On the Theory of Contingency and its Relation to Association 
and Normal Correlation," Drapers' Company Research Memoirs, Biometric 
Series I; Dulau & Co., London, 1904. (The memoir in which the coefficient of 
contingency is proposed.) 

(85) PEARSON, KARL; "On a Coefficient of Class Heterogeneity or Divergence,'' 
Biometrika, vol. 5, 1906, p. 198. (An application of the contingency coefficient 
to the measurement of heterogeneity, e.g. in different districts of a country, by 
treating the observed frequencies of some quality A 1, A1 , • • • AN in the different 
diStricts as rows of a contingency table and working out the coefficient: the 
same principle is also applicable to the comparison of JA single district with the 
rest of the country.) · 

(86) PEARSON, KARL, "On the Measurement of the Influence of Broad Categories on 
Correlation,'' Biometrika, vol. 9, 1913, p. 116. 

(87) PEARSON, KARL, "On the General Theory of Multiple Contingency, with Special 
Reference to Partial Contingency," Biometrika, vol. 11, 1915-17, p. 145. 

(88) PEARSON, IURL, and J. F. TocHER, "On Criteria for the Existence of Differential 
Death-rates," Biometrika, vol. 11, 1916, p. 159. 

(89) PEARsoN, KARL, and E. S. PEARSON, "On Polychoric Coefficients of Correlation," 
· Biometrika, vol. 14, 1922, p. 127. · 

(90) RITCHIE-SC01T, A., "The Correlation Coefficient of a Polychoric Table,'' Bio
metrika, vol. 12, 1918, p. 93. (Considers various methods of. measuring 
association with special reference to 4 x 3-fold classifications.) 

(91) ROYER, E. B., "A Simple Method for Calculating Mean Square Contingency,'' 
. . Annals Math. Slats., vol. 4, 1933, p. 75. -· 

Isotropy. 
(92) YULF., G. U., "On a Property which Holds Good for All Groupings of a Normal 

Distribution of Frequency for Two Variables, with application• to the Study 
of Contingency Tables for the Inheritance of Unmeasured Qualities,'' Proc. 
Roy. Soc., Series A, vol. 77, 1006, p. 324. (On the property of isotropy and 
some applications.) 

. (93) YuLE, G. U., "On the Influence of Bias and of Personal Equation in Statistics 
of Ill-defined Qualities,'' Jour. Anthrop. lnst., vol. 36, 1006, p. 325. (Includes 
an investigation 88 to the influence of bias and of personal rquation in creating 
divergences from isotropy in contingency tables.) 
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Contingency Tables of Two .Rows Only. 
(9-l) PEARSos, KARL. .. On a New Method of Detennining Correlation between a· 

!\leasured Character A. and a Character B of which only the Percentage of 
Cases wherein B exeeeds (or falls short of) a Given Intensity is recorded for 
each Grade of A.'' Biomdrika, voL 7, 1909, p. 96. (Deals with a measure of 
dependence for a oommon type of table, e.g. a table .showing the numbers of 
candidates ,.·ho passed or failed at an examination, for each year of age. The 
table of such a type stands between the· contingency tables for unmeasured 
characters and the oorrelation table (chap. 11) for variables. Pearson's method 
is based on that adopted for the oorrelation table, and assumes a normal 
distribution of frequency (chap. 12) for B.) 

(95) PEARSON, KAiu.. "On a New Method of Determining Correlation, when one 
Yariable is given by Alternative and the other by Multiple Categories," 
Biomdrika, voL 7, 1910, p. 248. (The similar problem for the case in which 
the variable is replaced by an unmeasured quality.) · 

CHAPTER 6. Frequency-Distributions •. 
(96) PEABSOs, K.uu., .. Skew Variation in Homogeneous Material." Phil.· Tram. 

Roy. Soe., Series A, vol. 166, 1895, pp. Ma-414. 
(117) PEARSON, KARL. "Cloudiness: Note on a Novel Case of Frequency," Proc. Roy. 

Soc., voL 62, 1897, p. 287. 
(98) PEARSON, KARL. ''Supplement to a Memoir on Skew Variation," Phil. Tram. 

Roy. Soe., Series A. voL 197, 1901, pp. ~59, and Seoond Supplement, 
. vol. 206, 1916, p. 429. 
{99) P.A.IlETO, VILFB.EDO, Courul'konomie politiqtu, 2 vols.; Lausanne,1896-97. See 

~pecially tome 2, livre 8, chapter I, •La oourbe des revenus." 
The first four memoirs above are mathematical memoirs on the theory 

of ideal frequency-curves, the first being the fundamental memoir, and the 
third and fourth supplementary. The elementary student may, however, 
l'f'fer to them with advantage, on account of the large oollection of frequency
distributions "·hich is given. Without attempting to follow the mathematics, 
be may also note that each of our rough empirical types may be divided into 
several sub-types, the theoretical division into types being made on dilferent 
grounds. 

Tbe fifth work (99) is cited on account of the author's discU88ion of the 
distribution of wealth in a oommunity, to which reference was made in 6.ll. 

A number of curious distributions wiU also be found in-
(100) NIC.EFOao, Al.n.EDO, La misura ddUJ vita; Turin, Fratelli Bocca, 1928. 

In oonnect.ion with the remarks in 6.7 on the grouping of ages, reference 
may be made to the following in which a di.frerent conclusion is drawn as to 
the best grouping:-

(101) YoUNo, ALLYN A.," A Di&cU88ion of Age Statistics," Ct:ns1U Bulletin 13, Bureau 
of the Census, W uhington, U.S.A., 1004. 

CHAPTER 7. Averages and Other Measures of Location. 

General. 
(102) FECHNER, G. T., "Ueber den Ausgangswerth der kleini!ten Abweichungssumme, 

dessen Bestimmung, Verwendung und Verallgemeinerung," A.bh. d. kgl. 
•tL-Mi&chnt Gatll&clwfl d. Wi&&mM:haftna, vol. 18 (also numbered 11 of the 
AU&. d. fiiOih.-phy•. Kl<uu); Leipzig, 1878, p. 1. (The average defined aa 
the origin from 11·hich the dispersion, measured irr on·e way or another is a 
minimurn: geometric mean dealt with incidentally, pp. 13-16.) ' 

(103) FE.c~sE_a, G. T., Kolkktil'fiUIJIIIkhrt, herausgegeben von G. F. Lipps; Engelmann, 
Le1pz1g, 1897. (Posthumously published: deala with frequency-distributioDB, 
their forma, averages and measures of dispersion in general: includes much 
of the matter of (102).) . • 
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· (104) ZrzEK, FRANZ, DU alali.!lischen Mittelwcrtht; Duncker und llumblot, Leipzig, 
1908: English translation, Statistical Averagl'~, translated with additional 
notes, etc., by W,l\1. Persons; Holt & Co., New York, 1913. (Non·mothe-
matical, but us~ful to the economics student for references cited.) . 

The Geometric Mean. 
(105) CRAWFORD, G. E., "An Elementary Proof that the Arithmetic Mean of any 

number of Positive Quantities is Greater than the Geometric Mean," Proo. 
Edin. Math. Soo., vol. 18, 1899-1900. 

(106) EDGEWORTH, F. Y., "On the Method of ascertaining a Change in the Value of 
Gold," Jour, Roy. Stat. Soo., vol. 46, 1883, p. 714. (Some criticism of the 
reasons assigned by Jevons for the use of the geometric mean.) 

(107) GALTON, FRANCis, "The Geometric Mean in Vital and Social Statistics," Proo. 
Roy. Soc., vol. 29, 1879, p. 865, 

(108) JEVONS, W. STANLEY, A Serious Fall in lht Value of Gold ascertained and it8 
Social Effects set forth; Stanford, London, 1863. Reprinted in Investigation. 
in Currency and Finance; Macmillan, London, 1884. , (The geometric mean 
applied to the measurement of price changes.) · .. 

(109) JEVONB, W. STANLEY, "On the Vari~~tion of Prices and the Value of the Currency 
since 1782," Jour. Roy. Stat. Soc.~ voJ. 28, 1865. Also reprinted in volume 
cited above. · . 

(110) KAPTEYN, J. C., Skew ·Frequency-curves in Biology and Stalistici; Noordhoff, 
· Groningen, and Wm. Dawson, London, 1903. (Contains, amongst other forms, 

· a ·generalisation of McAlister's law; see ref. (111).) 
(111) 1\fcALisTER, DoNALD, "The Law of the Geometric Mean," Proo. Roy. Soo., voL 29, 

1879, p. 367. (The law of frequency to which the use of the geometric mean 
would be appropriate.) 

The Mode. 
(112) DooDSON, ARTHUR T., "Relation of the Mode, Median and Mean in Frequency 

Curves," Biometrika, vol. 9, 1916-17, p. 429. (Gives a proof of the relation 
· noted in 7 .27.) 

(113) PEARSON, KARL, ''On'the Modal Value of an Organ or Character," Biometrika, 
vol. 1, 1902, p. 260. (A warning as to the inadequacy of mere inspe<-"tion for 

. determining the mode.) · 
• (114) PEARsoN, KARL, ••skew Variation in Homogeneous :Material," Phil. Tram. 

Roy. Soc., Series A, vol. 186, 1895, p. 343. (Definition of mode, p. 345.) 
(115) YuLE, G. U., "Notes on the History of Pauperism in England and Wales, etc.: 

Supplementary Note on the Determination of the 1\lode," Jour; Roy. Stat. 
Soo., vol. 59, 1896, p. 843. (The note deals with elementary methods of 
approximately determining the mode: the one-third rule and one other.) 

Estimates of Population. 
(116) WATERS, A. C., "A Method for estimating l\lean Populations in the last Inter

censal Period," Jour. Roy. Stat. Soc., vol. 64, 1901, p. 293 •... 
(117) WATERS, A. C., Estimates of Population: Supplement lo Annual Reporl of the 

Registrar-Generalft1r England and Wales (Cd. 2618, 1907, p. cxvii). 
For the methods formerly used, see the Reports of the Registrar-General of 

England and Wales for 1907, pp. cxxxii-cxxxiv, and for 1910, pp. xi-xii. 
Estimates are now based on statistics of births, deaths and migrations. Cf. 
SNow, ref. (300); for a different method based on the symptoms of growth 
such as numbers of births or o~ houses. 

Index-numbers. 
These were incidentally referred to in 7 .34. The general theory of 

index-numbers and the different methods in which they may be forme9 
are not considered in the present work,. The student will find copious 
references to the literature in the following:-
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(118) BENNETT, T. L., "The Theory of Measurement of Changes in the Cost of Living," 
· Juur. Roy. Stat. Soc., vol. 83, 1920, p. 455. I 

(119) BoWLEY, A. L., "The Influence on the Precision of Index-numbers of the Correla
tion between the Prices of Commodities," Jour. Roy. Stat. Soc., vol. 89, 1926, 
p. 300. . .• 

{120} BoWLEY, A. L., Prices and Wages in the United Kingdom, 1914-20; Oxford,1920 
(Clarendon Press). 

(121) BoWLEY, A. L., "The Measurement of Changes in Cost of Living," Jour. Roy. 
Stat. Soc., vol. 82, 1919, p. 843. . · 

(122) EDGEWORTH, F. Y., "Reports of the Committee appointed for the purpose of 
~ investigating the best methods of ascertaining and measuring Variations in 

the Value of the Monetary Standard," British Association Reports,1887 (p. 247), 
1888 (p. 181), 1889 (p. 138), and 1890 (p. 485). · 

(123) EDGEWORTH, F. Y., Article "Index-numbers" in Palgrave's Dictionary of Political 
Economy, vol. 2; Macmillan, 1925. . 

(124) EDGEWORTH, F. Y., "The Plurality of Index-numbers," Economic Journal, 
vol. 35, 1925, p. 379. · 

(125) EDGEWORTH, F. Y., "The Element of Probab,Iity in Index-numbers," Jour. 
Roy. Stat. Soc., vol. 88, 1925, p. 557. · 

(126) FisHER, IRVING, "The Best Form of Index-number," Quart. Pub. Amer. Stat. 
Assoc., March 1921, p. 533. 

(127) FISHER, IRVING, The Making ofindea:-numbers; Houghton Mifflin Co., Boston and 
New York, 1922. (Useful as a repertory of formulre; with tests of the results 
gilVen on certain American data;. otherwise, cf. reviews in Economic Journal, 
vol. 38, pp. 90 and 246, and Jour. Roy. Stat. Soc., vol. 86, 1928, p. 424, and 
vol, 87, 1924, p. 89.) 

(128) FLux, A. W., "The Measurement of Price Changes," Jour. Roy. Stat; Soc., vol. 84, 
1921, p. 167. 

(129) FoUNTAIN, H., "Memorandum on the Construction of Index-numbers of Prices," 
Board of Trade Report on Wholesale and Retail Prices in the United Kingdom, 
1903. . 

(130) GINI, C., ''Quelques considerations au sujet de Ia construction des nombres 
indices des prix, etc.," Metron, vol. 4, 1924, p. 3. 

{131) KNmas, G. H., "Prices, Price-indexes, and Cost of Living in Australia," Common
wealth of Australia, Labour and Industrial Branch, Report No.1, 1912. 

(132) MARCH, L., "Rapport sur les indices de Ia situation economique," Bulletin de 
• l'lnstitut International de Statistique, t. 21, 1924, pt. 2, p. 8. 

(133) MARcH, L., "Les modes de mesure du mouvement general des prix," Metron, 
vol. 1, No.4, 1921, p. 40. 

(134) MARSHALL, A., l'.loney, Credit and Commerce, Macmillan, London, 1923. 
{135) PERSONS, W. M., "Fisher'11 Formula for Index-numbers," Rev. Econ. Statistics, 

vol. 8, 1921, p. 103. . 
(136) Woon, FRANCES, "The Course of Real Wages in London, 1900-12," Jour, Roy. 

Stat. Soc., vol. 77, 1913-14, p. 1. ·· 
(137) WORKING CLASSES, CosT OF LIVING COMMITTEE, 1918, Report (Cd, 8980, 1918), 

H.M. Stationery Office. 

For the student of the cost of living in Great Britain the following are 
useful:-

(138) "Labour Gazette Index-number: Scope and Method of Compilation," Lab, Gaz., 
March 1920 and Feb. 1921. . · 

{139) "Final Report on the Cost of Living of the Parliamentary Committee of the 
Trades Union Congress" (The Committee, 82 Eccleston Sq., London, 1921); 
critical notices of the same in the Labour Gazette, Aug. and Sept. 1921; and 
review by A. L. Bowley, Econ. Jour., Sept. 1921. · • 

CHAPTER 8. Measures of Dispersion. 

General. 
(140) FF.CHNEB, G. T., "Ueber den Ausgangswerth der klcinsten Abweichungssummc; 

dessen Bestimmung, Verwendung und Verallgemeinerung,'' Abh. d. kgl. sachs. 
G~s. d. Wiss~ns~hajten, vol. 18 (also numbered vol. 11 ·of the Abh. d. math.-phys. 
Klusse); Leipzig, 1878, p. 1. 
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Standard Deviation. 
(141) I'EARSON, KARL, "Contributions to the .Mathematical Theory of Evolution 

(i. On the Di~section of Asymmetrical Frequency-curves)," Phil. Trans. lloy • 
. Soc., Series A, vol. 185, 1894, p. 71. (Introduction of the term "standard 
deviation," p. 80.) 

Mean Deviation. 
( 142} LAPLACE, PIERRE SIMON, Marquis de, Thiurie analytique du probabilitis: Z"'• 

supplement, 1818. (Proof that the mean deviation is a minimum when taken 
about the median.) . 

(143) TRACHTENBERG, M. I., "A Note on a Property of the Median," Jour. Roy. Stat. 
. Soc., vol. 'r8, 1915, p. 454. (A very simple proof of the same property.) 

(144) 

(145) 

Method of Percentiles, including Quartiles, etc. 
GALTON, FRANCIS, "Statistics by Intercomparlson, with Remarks on the Law of 

Frequency of Error," l:'hil. Mag., vol. 49 (4th Series), 1875, pp. 33-46. 
GALTON, FRANCIS, Natural Inheritance; Macmillan, 1889. (The method of 

percentiles is used throughout, with the quartile deviation 88 the measure of 
dispersion.) · 

Relative Dispersion. 
(146) PEARSON, KARL, "Regression, Heredity and Panmixia," Phil. Trans. RmJ. Soc., 

· Series :A, vol. 187, 1896, p. 253. ·(Introduction of "coefficient of variation," 
pp. 276-277.) . 

(147) VERSCHAEFFEL'rJ E., "Ueber graduelle Variabilitiit von pftanzlichen Eigen-
- schaften," Ber. deutsch. bot. Ges., Bd. 12, 1894, pp. 850--355. 

Calculation of Mean, Standard Deviation, or of the General 
Moments of a Grouped Distribution. 

We have given a direct•method that seems the simplest and best for 
the elementary student. A process of successive summation that has 
some advantages can, however, be used instead. The student will find 
a convenient description with illustrations in-. . 

(148) ELDERTON, W. PALIN, Frequency-curoes and Correlation; C. & E. Layton, London, 
2nd Ed., 1927. 

Effect of Grouping Observations. 
(149) BATEN, W. D., "Corrections for Moments of a Frequency-distribution in Two 

Variables," Ann. 11-lath. Slats., vol. 2, 1931, p. 309. 
(ISO) ELDERTON, W. PALIN, "Adjustments for the Moments of .J-shaped Curve's," 

Biometrika, vol. 25, 1933, p. 179; followed by KARL PEARSON, "Note on l\fr 
Palin Elderton's Corrections to the Moments of .J-curves," ibid., p. 180. 

(151) .l\1ARTIN, E, S., "On the Correction for the Moment Coetncients of Frequency
distributions when the Start of the Frequency is one of the Characteristics to 
be Determined," Biometrika, vol. 26, 1934, p. 12. 

(152) PAIRMAN, ELEANOR, and KARL PEARSON, "On Corrections for the Moment Co
efficients of Limited Range Frequen~y-distributions when there are Finite or 
Infinite Ordinates and any Slopes at the Terminals of the Range," Biometrika, 
vol. 12, 1918-19, p. 231. 

(153) PEARSE, G. E., "On Corrections for the Moment Coefficients of Frequf'n<'y-dis
tributions when there are Infinite Ordinates at One or Both Terminals of the 
Range," Biometrika, vol. 20A, 1928, p. 314. 

(154) PEARSON, KARL, and Others (editorial), "On an Elementary Proof of Sheppard's 
Formulre for Correcting Raw 1\iomf'nts, and on other allied points," Biometrika, 
vol. 3, 1904, p. 308. 

(155) PEARSON, KARL, !'On the Influence of 'Broad Categories' on Correlation," 
Biometrika, vol. 9, 1913, pp. 116-139. 
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(156) SnJ::PPARD, \V. F., "On the Calculation of t.he Average Square, Cube, etc.~ of a 
· large numher of 1\lagnitudl"s," Jour. Roy. Stat. Soc., vol. 60, 1897, p. 698. 

(157) SHEPPARD, \V. F., "On the Calculation of the most probable Values ef Frequency 
Constants for Data arranged according to Equidistant Divisions' of a Scale," 
Proc. Ltmd. Malh. Soc., vol. 29, p. 853. · 

(158) SHEPPARD, \V. F., "The CalcuU&tion of 1\Ioments of a Frequency-distribution," 
Biometrika, vol. 5, 1907, p. 450. 

Coefficient of Va.riation. 
See ref. (146) abo~·e~ and 

(159) Wn..soN, G. S., and Others, "The Bacteriological Grading of Milk," Special 
H.eport 206 of the llledical.&uarcl& Council, 1935. 

t.:HAPTER 9. Moments and Measures of Skewness · 
and Kurtosis. 

Moments. 
For· the introduction of moments and related coefficients and their 

use in fitting curves to frequency-distributions, see refs. {216), (217) and 
(218) of Chapter 10. · 

For methods of calculation of moments, see-

(160) ELDE~ToN, W. PALIN, Frequency-curves and Correlation; C. & E. Layton~ London, 
2nd Ed., 1927. 

For correetions to the moments, see refs. (149H158) of Chapter 8. 

Skewness.· 
See refs. (216), (217) and (2i8) of Chapter 10, and aJso:..-

(161) HOTELLING, H., and L. l\1. SoLOMoNs, "The Limits of a Measure of Skewness," 
Ann. Math. Stau., vol. 3, 1932, p. 141. 

Seminvariants. 
(162) CRAIG, C. C., "On a Property of the Seminvariants of Thiele~" Ann. ~lath. Slats., 

voL 2, 1931, p. 154. . . ' · · 
(1!13) TniELE, T. N,, "Theory of Observations" (English version reprinted in Ann. 

JJlath. Stats., vol. 2, 1!131, p. 165). 

See also refs. (416), (424) and (513). 

CHAPTER 10. Three Important Theoretical Distributions
the Binomial, the Normal and the Poisson. 

(164) AITKEN, A. C., "Some Applications of Generating Functions to Normal l<'re
quenry," Qllart. Jour. lllalh., vol. 2, 1031, p. 130.-

(165) Bt:RNoULLI, J., Ar1 conjectandi, opus posthumum: Accedit tTactatU8 tk seriebru 
i11jiniti6, d episwla palli~~ scripta tk ludo pilae reticularis, 1718. (A German 
translation in Ostwald'& Kla&Bikn tkr e:raktm Wi&semchaftrn, Nos. 107 and 108.) 

1-'or tl•e early classical memoirs on the normal curve or law of error by 
Laplace, Gauss and othen, see Todhunter's llistory, ret. (63). . 

(166) CAMP, B. II., "The Normal HypotheHis," Jour. Amer. Stat, Assoc., vol. 26,1\larch 
Supplement, 1931, pp. 2::!2-226. . 

(167) Czrat:a, E., Wahrscheirllichkeit8Techrw11g; Teubner, Leipzig. (Deduction of 
Law of Erron.) 

(168) EDGEWO!'Tn, F. Y., Article on the "Law (lfError" in the EncyclopcediaBritannica, 
lOth Ed., vol. 28, 1902, p. 2HO. . 
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THEORY OF STATISTICS. 

EDGEWORTH, F. Y., "The Law of Error," Cambridge Phil. Trans., vol. 20. 1904, 
pp. 36--65, 113-141 (and an Appendix, pp. 1-14, not printed in the Cambrid~e 
Phil. Trans., but issued with Heprints). " 

GALTON, FRANCIS, Natural Inheritance; Macmillan & Co., London, 18R9. pled111 ni
cal method of forming a binomial or normal distribution, chap. 5, p. 63. For 
Pearson's generalised machine, see below, ref. (174).) 

GuMBEL, E. J., "La distribuzione dei decessi secondo Ia Iegge di Gauss," GiOTn. 
dell' 1st. llal. degli Att., vol. 3, 1932, pp. 311-342. 

NixoN, J. \V., "An Experimental Test of the Normal Law of Error," Jour. 
Roy. Stat. Soc., vol. 76, 1913, pp. 702-706. 

PEARSON, KARL, "Historieal Note on the Origin of the Normal Curve of Errors," 
Biometrika, vol. 14, 1924, p. 402. 

PEARSON, KARL, "Skew Variation in Homogeneous 1\laterial," Phil. Tran.9. 
Roy. Soc., Series A, vol. 186, 1895, p. 343. 

For the generalised binomial machine, see § 1. The memoir deals with 
. curves derived from the general binomial, and from a somewhat analogous 
series derived from the case of sampling from limited material. Supplement 
to the memoir, ibid., vol. 197, 1901, p. 443. Second Supplement, ibid., vol. 
216, 1916, p. 429. For a derivation of the same curves from a modified stand
point, ignoring the binomial and analogous distributions, cf. ref. (354), 

SHEPPARD, W. F., "On the Application of the Theory of Error to Cases of Normal 
Distribution and Normal Correlation," Phil. Trans. Roy. Soc., Series A, vol. 
192, 1898, p. 101. (Includes a geometrical treatment of the normal curve.) 

YULE, G. U ., "On the Distribution of Deaths with Age when the Causes of Death 
act cumulatively, and similar Frequency-distributions," Jour. Rny. Slat. Soc., 
vol. 73, 1910, p. 26. (A binomial distribution with negative index, and the 
related curve, ~.e. a special case of one of Pearson's curves, ref. (174).) 

Poisson's Distribution. 
BoRTKIEWicz, L. voN, Das Gesetz der kleinen Zahlen; Teubner, Leipzig, 18!18. 
BoRTKIEWicz, L. voN, "Ueber die Zeitfolge Zufalliger Ereignisse," Bull. de 

l'lnstitut Int. de Stat., tome 20, 2• livre, 1915. 
BoRTKIEWICz, L. VON, "Realismus und Formalismus in der mathematischer 

Statistik," Allgemein. Stat. Arch., vol. 9, 1916, p. 225. (Continues the dis
cussion initiated by the paper of Miss Whitaker, ref. (190).) 

GREENWOOD, M., and G. UDNY YuLE, "On the Statistical Interpretation of some 
Bacteriological Methods employed in \Yater Analysis," Journal of Hygiene, 
vol. 21, 1917, p. 36. (Applies a criterion developed from Poisson's limit to 
the discrimination of water analyses; numerous arithmetical examples.) 

GREENWOOD, M., and G. U. YULE, "An Enquiry into the Nature of· Frequency
distributions representative of Multiple Happenings, with particular reference 
to the Occurrence of Multiple Attacks of Disease or of Repeated Accidents," 
Jour. Roy. Stat. Soc., vol. 83, 1920, p. 255. 

MoRANT, G., "On Random Occurrences in Space and Time when followed by a 
Closed Interval," Biometrika, vol. 13, 1921, p. 309. 

NEWBOLD, ETHEL l\1., "A Contribution to the Study of the Human Factor in 
the Causation of Accidents," Industrial Fatigue Research Board, Report No. 34, 
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NEWBOLD, ETHEL l\1., "Practical Applications of the Statistics of Repeated 
Events, particularly to Industrial Accidents," Jour. Roy. Stat. Soc., vol. 90, 
1927, p. 487. 

PmssoN, S. D., Recherches sur la probabiliti des jugemeuls, etc.; Paris, 1837. 
(Pp. 205-207.) 

RuTHERFORD, E., and H. GEIGER, with a note by H. BATEMAN, "The Probability 
Variations in the distribution of a-particles," Pllil. Jllag., Series 6, vol. 20, 
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SOPER, H. E., "Tables of Poisson's Exponential Binomial Limit," B-iometrika, 
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CHAPTER 18. Preliminary Notions on Sampling. 
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of Symmdrical Frequmry-curyes in the ease of Lower Power~~ such aa arise 
in the Theory of Small bamples," Biometrika, voL 22, 1931, p. 253.. 
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(582) ·TSCHUPaow, A. A., ''On the Asymptotic Frequency-distributions of tbe Arith

metic Means of n Correlated Observatious for Very Great \'alue11 of flo" Jotu'. 
&y. Stat. Soc., voL 88, 1925, p. 91. · 

( 583) _WILKS, S. S., "Certain Generalisatious in the Analysis of V a~," Biorrerlrilr.a, 
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CHAPTER 24. Interpolation and Graduation. 
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The student "·ho wishes to proceed further with the subject .-ill probably 

find the last work cited the best for general use: it includes, of course, much 
besides interpolation. But (590) is very valuable for the advanced worker. 
All students are recommended to ftad the IICCIOnd lecture in the small work 
given under (589). · 

One can hardly give specific references, but the student will find much that 
is useful in the official publications of our own and other countries dealing with 
the construction of life-tables. 

TABLES. 

A. Tables Useful in Calculation. 
(592) BABLOW's Table~ of Squaru, Cuba, Square-roou, ~rool6 and R«iprocau of 

aU ln~ger 1•umbn-a 11p lo 10,000; E. & F. N. Spon. London and New York; 
new edition. 1930. 

(593) CoTSwoaTB, AI. B., The Direct Calculator, Seriea 0. (Product table to 10UO x 
1000.) M'Corquodale & Co., London. 
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(594) CaELLE, A. L., ll«h~tnfeln. (Multiplication table giving all -products up to 

_ 1000 x 1000.) Can be obtained with explanatory introduction in Gennan or 
in .English. G. Rf'imer, Berlin. · I -

(595) ELDERTON, \\". P. ••Tables of Powers of Natural Numbers, and of the Sums of 
Powers of the Natural Numbers from 1 to 100 .. (gives powero. ~p to seventh), 
Biomt:tril•a, vol. 2, p. 47-'--reproduced in (598). - _ 

(596) PETERS, J., !lo"nu R«hentafelnfur M .. ltiplikalion und Dn>Uion.- (Gives products 
up to 100 x 10,000: more convenient than Crelle for fonning four-figure pro
ducts.' Introduction in English, French or Gemian.) G. Reimer, Berlin. 

(597) ZuoaiUIANN, H., Rechentafel, nebst Sammluog haufig gebrauchter Zahlenwerthe. 
- (Products of all numbers up to I 00 x 1000: subsidiary tables of squares, cubes, 

square-roots, cube-roots and reciprocals, etc. for all numbers up to 1000 at the 
foot of the page.) W. Ernst & Son, Berlin; English edition, Asher & Co., 
Londo~ _ 

A nuo1ber of useful tables will be found in the series ~Tracts for Computers.'' 
published by the Cambridge University Press for the Department of Applied 
Statistics. L"niversity College, London. A list is usually given in the advertise
ment pages of the current issue of Biometrika. 

B. Tables Useful in Statistical Work. 
The more advanced student will probably find it indispensable to possess

(598) Tabwa for Statuticiana and BiMMtrician&, Part I (edited by Karl Pearson), 
price 15s., from the Biomdrika Office. Univenity College. London, W.C. 1. 

(599) Part- II, price 308., obtainable from the same address, contains tables of a 
_ mdre advanced chamcter. • - - -

The following tables also contain much that is useful for modem statistical 
York:-

{600) Tabka of the CAnnpkk and lnrompkte P-Functitna (edited by Karl Pearson), price 
55s. • 

(601) Tabla of the lncompkk r-Punction (edited by Karl Pearson), price 42s. 
(602) Tabla of the ~ompkk and Inrompkte EUiptic lt~Ugrala, price 12s. 6d. 

The above are obtainable from the Biometrika Office. University College, 
London, W .C. 1. · 

(603) Tracu for CAnnputna, ]l."o. l, Tabla of the DigamrruJ and TrigamrruJ Functiona, 
price8s. 

(604) Tractafor Computer•, Noa.l, Band 9, Logarithma of the Compkte r-Punction. 
(605) Tracu for CAnnputer•, No. 15, Random Sampling Number•, by L. H. C. Tippett, 

price 8s. 9d. 
(606) Brilul& Auodation !klathematical Tabla, voL 1, London, 1931; Office of the 

British Aasociution, Burlington House, London, W. I, price lOs., post free. 
(Circular and llyperbolic Functions; Exponential Sine and Cosine Integrals; 
}'actorial (Gamma) and Derived Functions; Integrals of Probability Integral.) 

(607) Britial& Auvciation lllatltematical Tabka, voL 8, London, 1936, price 408. Bessel 
Functions, Part I, Functions of Order 0 and I. 

(608) Tabla of the 1/igher JlaiMmatical Functioru (edited by H. T. Davis), Principia 
Pl't'88, Bloomington, Indiana. (London: Williams & Norgate). 

Purl l, price 25s. (Historical Introduction, Tables of 1'- and Digan1ma· 
1-'unctions.) · 

(609) Part t, price 25s. (Tables of the Trigamma, Tetraganuna, Pentaganuna and 
Hexagamma Functions, of Bernoulli and Euler Numbers, of certain numbers
facilitating the fitting of a polynomial.) 

(GlO) KELLEY, T. L., "Tables to fau:·ilitate the Cal"ulation of Partial Coefficients of 
Correlation and Regression Equations," Bulldin of the Uniwr6ity of Taaa, 
No. 27, 1916. (Tables giving th~ values of l/V(l-r~aX1-r:a> and 
rur..JV(I-r:1)(1 -r.J.) 

(611) lhNER, 3. R., Tabla of Vl -r' and l -r' fvr we in Partial Correlation, ete.; The 
Johna Hopkins Pre;;s, Baltimore, 1922. (Sis-figure tables.) 

(612) S..u.vos.&, L. R., .. Tables of Pf'IU'80n's Type 111 J.'unction," Ann. Math. Stnla., 
vol. l, 1930, p. 191. 
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References to Italian Literature. 
. In some respects the method~ dcv·eloped by the active school of Italian 
writers have diverged a good deal from those of English and American 
writers. The following bibli0graphy, prepared by the ki11dness of Dr 
Silvio Orlandi, Manager of Aletron, will serve as a guide to the student 
who wishes to broaden his outlook by making himself acquainted with 
such methods. 

Books. 
(613) BENl.NI, R., Principi di slali&tica tMlOOolcgica; Unione Tipografica Editrice 

Torinese, Torino, 1926. 
(614) BoLDRINI, M., Stati&l'ica-Appunti per gli studroti, voll. 2; GinlJre, Milano, 

1934-35. 
(615) GINI, C., Appunti di stati,ffica wutodclogica; Libreria Castellani, Roma, 193(h'H. 

Traduzione spagnola: "Curso de Estadistica" (con nn apt"ndice mat .. matieo 
por L. Galvani), Eru:iclopedia tk Ciencill8 l'uridicll8 11 Sociaks, Bditorial Labour 
S.A., Barcelona, 1935. • 

· {616) Llvi, L., Elef~Unti di statistica; "Cedarn," Padova, 1929. 
(617) ltloRTARA, G., "Lezioni di statistica metodologica," F..dite dal Giomale .Ugli 

Econcmi&ti e Rivi&ta di Stati&tica, Citti& di Castello, 1922. 
(618) NICEFORO, A., ll metoda stati..tico; !\lessina. French translation, La Jlit.hode 

slati&tiqtte; lila reel Giard, Paris, 1925. 
(619) PIETRA, G., Slali&tica, voll. 1 e 2; Giuffre, Milano, 19M. 

See also • 
I 

(620) TraUato Elef~Untare di Statistica, diretto da C. Gini; GiulJre,lllilano, 1936. Yol. I, 
Slali&tica Metodvlogica; Vol. II, Drnwgrajia; Vol. Ill, At~tropomdria e Rio
metria; VoL IV, Statistica EcQfiCmica; VoL V, Stati&tica Ecorunnica; Yot \·1, 
Btatistica sociale. 

General. 

(621) GINI, C., "The Contributions of Italy to l\Iodem Statistical Methods," Journfll of 
the Royal Slali.stical Society, London, 1926. 

(622) GINI, C., "Present Conditions and Future Progress of Statistit:s," Journal of ll•e 
American Slali&ticid Association, 1930. 

Graphical Representation. 
(623) GINI, C., "Sull' utiliti& delle rappresentazioni grafiche," Giornale tkgli Eco11omisti 

e Rivi,da di Statistica, 1914. 
(624) GINI, C., "Two Remarks on Graphs," The Indian Journal of Statistics, vol. I, 

August I 934.. 

Interpolation and Extrapolation. 
(625) CANTELLI, F. P.,.SuU' adattan.nJto di t."uroe ad una serie di misure o di OIIMn.•a::ioni, 

Roma, 1905. 
(626) GiNI, C., "Considcrazioni sull' interpolazione e Ia perequa:r.ione delle llf'rie 

statistiche,'' l'oletTon, vol. 1, fasc. 1, 1921. -
{627) GJNI, C., "Sull' interpola:r.ione di una retta quando i valori della variabile indi

pendente sono alJetti da errori accidentali," .lUdron, vol. 1, fasc. 4., 1921. 
(628) GINI, C., "Ricerche sperimentali nel campo ddla interpola:&ione di serie 

statistiche,'' AUi dd H. lstituto V~to di Sciffiu, Ltltere ed Arti, 1923. 
(629) lttloGNO, R., "Di un mctodo di interpolazione statistics,'' .MelTon, vol. 12, fasc. 2, 

19M. 
(630) PIETRA, G., "Intt"rpolating Plane Curves," J1letron, '\·ol. 8, fasc. 3-4, 1924.. 
(631) PIETBA, G., ••nell' interpola:r.ione parabolica nel caso in cui entrambi i valori delle 

variabili sono alJetti da errori accidentali, .llletron, vol. 9, fasc. 3-4, 1932. 
(632) SALVEMINI, T., "Ricerche sperimentali sull' interpolazione gratica di istogrammi," 

JJ,letron, voL 11, fasc. 4., 19M. 
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(633) TEDESCHI, B., "Nuovo contrilmto al pl'Oblcma della interpolnzione linearc," 
Oiornale dell' Istituto Italiano degli Attum·i, vol. 5, n. 2-3, 1034. 

(634) VERONESE, G., Contrib11lo alle ·ricerche sperirnentari nel campo dell' interpolazione 
>~latistica; Padova. 

(ll115) 

(636) 

(637) 

(638) 

(639) 

(640) 
(6U) 

(642) 

Means, etc. 
GAr.VANI, L., "Sulla determinazioue del ce1;1tro di gravita e del centro mcdiano 

di una popolazione, con applicazione alia popolazionc italiana censita al 
1° diccmbre 1921," 1Uetron, vol. 11, n. 3, 193:1. 

GINI, C., and L. GALV.\NI, "Di talune estensioni del coneetto di media ai caratteri 
qualitativi," .'Uetron, vol. 8, n. 1-2. . 

GINr, C., M. BoLDRINI and A. VENERE, "Sui ccntri della popolazione e snlle !oro 
applicazioni," 1lfetron, vol. 11, n. 2. 

Frequency and Probability. 
CANTELI.I, F. P., "Sulla Iegge dei grandi numcri," Memori,e della R. Accad. dei 

Liucei, Hll6. . 
CaNTELLI, F. P., "Sulla proln1bilita come limite della frequcnza," Remlicouti della 

R. Accad. d~i L·incei, 1917. · 
GrNI, C.," Che oos'e Ia Jlrobabilita," Rivista di Scienza, 1908. 
GINI, C., "II scsso dal punto di vista statistieo," Cap. IV, pagg. 76-120,12.3-131, 

Istituto dl Stalistica della R. Univcrsita di Roma. 
GINI, C., "Considerazioni sulle probabilita a posteriori e applicazionc al rapporto 

dei sessi nclle nascite nmane," Studi Economico-Oiuridici della R. Uu-ivnsitii 
di Caglim·i, 1911. 

Variation and Concentration-" Transvariazione." 
(643) CANTELU, F. P., "Sulla differenza media con ripetizione," Giornale 11<'gli Econornisti 

e Rivi~ta di Statistica, February 1913. 
(644.) CAS1EL'LAKO, V., "Sulle relazioni fra curve di frequenza e curve di concentrazione 

e sui rapporti di concentrazione corrispondenti a deten11inate distribuzioni," 
2\letron, vol. 10, n. 4, 1933. 

(645) CASTELLAKO, Y., ''Sugli indici relativi di variabilita e sulla concentrazione dei 
caratteri con segno," Metron, vol. 13, n. 1. 

(646) "DE FINETTI, B., "Sui metodi proposti per il caleolo della diffcrenza media," 
MelTon, vol. 9, n. 1, 1931. 

( 647) DE FrNETTI, B., and PACIELLO, U ., "Cal colo della differenza media," JH etron, vol. 8, 
n. 3, 1930. 

(648) DE VEHGOTTINI, J\1., Relazioni frn Jili indici di variabilita dei fenomeni collettivi 
wmpos11: e quelli dei fenomeni collett-ivi semplici; Failli, Roma, 1936. 

(6+9) GALVANI, L., "Contributi alla determinazione degli indici di variabilita per alcuni 
tipi eli distribuzione," ll!etron, vo). 9, n. 1, 1931. 

(650) GALVAN!, L., "Sulle curve di concentrazione relative a caratteri limitati e non 
limitati," 1Uetron, vol. 10, n. a, 1932. 

(fi51) GINI, C., "Variabilita e l\lutabilita, contributo allo studio delle distribuzioni e 
relazioni statistiche," Studi Economico-Giurid,ici della R. Vniversitil di Cagliari, 
1912. . . 

(652) GINI, C., "Indici di conc~ntrazione e di dipendenza," Biblioteca ddl' Economista, 
5~> serie, 1910. · 

(653) GrNI, C., "Sulla misura della concentrazionc e della variabilita dei carattcri,'' 
Atti del R. Istituto Veneto di Scienze, Le.ttere ed Arti, 1914. · . 

( 654) GINI, C., "II concctto eli transvm-iazione e I~ sue prime applicazioni," Givrnalc 
dcgli Economisti e Rivista.di Statistica, 19Hl. 

(655) GINI, C., "Di una estensione del concetto di scostamento medio e di alcune appli
cazioni alia misura della variabilita di caratteri qnalitativi," Atti delll. lstituto 
Veneto di Scienze, Lettere ed Arti, 1918. 

(656) GINI, C.," Sui massimo dcgli indici di variabilita assoluta c sulle sue applieazioni 
agli indici di variabilita rclativa e al rapporto di concentrazione," llletron, vol. 
8, n. 3, 1930. 

(6;i7) GrNI, C., "Intorno aile curve di concentmzione," 2\:letron, vol. !>, n. 3:-4, 1932. 
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(6ii8) Gisl, C., "Sull' inHuPnza ehe il l'll!!!!n•ppamf'nto drlle sin(!ole modalitit l"'«'l"('ita 
sui ,·alore di aleuni indiei statistiei nf'l easo di st>rie !W'onnP~'it',"' Jlftron, 
'"ol. 12. n. 4, 19:Sfi. 

(6.39) Pu!:TRA, G., Appunti irzlorno allfl mi•nra della l"tzriabilita t tid/a nmuntra;imze dri 
caralleri; Ht>rlt>ro, Roma, Jill.>. 

(660) PIETRA, G., "Delle relazioni trn gli indiei di ,·ariahilita," Alii del Tr. I<lillllo J"mclo 
di Scirnu, ullere ed Arti. 1914-15, Parti I e II. 

(661) PIETRA, G., "Intomo alia dis<'Ordanza tra gli indid di variaLilita e di C'onrt>nlrn
zione," XXI I 8cssione d.-11' Istitnto Internazionale di Stati . .tica. umrlra. 19:1~. 

(662) SAVORGNAN, F., "Intorno all' approssimazione di aleuni indid ddla di•trilmzione 
dei redditi," Atti delll. Istituto Veneto di Scienu, uNrre rd Arti, 191.5. 

(663) VINCI, F., "Sui coeffieicnti di variabilita," .Uelron, vol. 1, n. 1, 1920. 

Index-numbers and Other Statistical 1\leasures. 
(664) GINI, C., "Intomo al metodo dei residui dello Stuart !\till," Sludi Economico

Giuridici deUa ll. Univeraita di Cagliari, 1910. 
(665) GINI, C., "Quelques considerations au sujet de Ia construction dt>S nombrt>s 

indices des prix et des questions analogues. Contribution a !"etude des 
methodes d'eliminatioo," ltielron, vol 3, n. 1, 1924. 

(666) GINI, C., "On the Circular Test of Index-numbers," .Urlron, vol. 9, n. 2. 1931. 
(667) GINI, C., "Tavole di mortalita della popolazione italians" (in collaborozione con 

L. Galvani), Annali di Stati.stica, Serie 6, Yol 8, 1931. 
(668) GINI, C.; "Sur une methode pour determiner le nombre mo~·en d...s cnfants 

legitimes par mariages," RevlU de l'Instilut International de Slalistiqru, 19~. 
(669) GINI, C., "Sur Ia mesure de Ia fecondite des mariages," Bulldin dr l"Irzstitut 

International de Statistique, 1934. 
(670) GINI, C., "On a l\lethod for Calculating the Infantile Death-rate according to 

the 1\Ionth of Death," llevue de l'Institut International de Statisliqru, 19~. 
(671) GINI, C., "Su Ia determinazione dei quozienti di eliminazione e in partieolare sui 

metodi delle durate esatte e delle durate medie nella ipotesi di saggi istantanei 
di eliminazione costanti," ltletron, Yol. 12, n. 3, 1935. 

(672) GINI, C., "1\Iethods of Eliminating the Influence of Several Groups of Factors," 

(673) 

(674) 

(675) 

(676) 

(677) 

(678) 

(679) 

(680) 

Ecorwmetrica, January 1937. • • 

Statistical Relations. 
GINI, C., "Di una misura della dissomiglia112.a tra due gruppi di qu .. ntita e delle 

sue applicazioni allo studio delle relazioni statistiebe," Atti del R. Istitulo Veneto 
di Scienu, Lettere ed Arli, 1914. 

GINI, C., "Nuovi contributi alla teoria delle relazioni statistiche," Alii del R. 
l.~tiluto J'enelo di Scirnu, Lettere ed Arti, 1915. 

GI!'I, C., "Indici di omofilia e di rassomiglia112.a e loro relazioni col coeffieiente ui 
correlazione e con gli indici di attrazione," ANi dt'l R. Istitulo J"melo di Scierlu, 
Lettere ed Arti, 1915. 

GINI, .C., "Sui criteria di concordanza tra due caratteri," AUi del R. btitulo 
Veneto di Scienu, uttere td Arti, 19!6. 

GINI, C., "Indici di concordanza," Alii del R. Istilulo J" enclo di Scienu, Ltllrre 
ed Arti, 1916. 

Gnn, C., "Sulle relazioni tra le intensita cograduate di due caratteri," Atti dt'l R. 
Istituto Vent'lo di Scienu, Lettere ed Arti, 1917. 

GINI, C., "Sull' influenza che il raggruppamento delle singole modalita t>St>rcita 
sui valore di aleuni indici statistici nel easo di St>rie sconnesse," ]Jelron, vol. 12, 
n. 4, 1936. 

PIETRA, G., "The Theory of Statistical Relations, with Special Reference to 
Cyclical Series," J.Ietror1, vol. 4, o. 3-4, 192.5. 
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APPENDIX TABLE 1. 

Normal Curve. Ordinates of the Normal Curve of Errors of Unit Area at tlVtlTIJ Tenth of 
the Standard Deviation, with First and Second Differences. The value of the central 
ordinate a1 zuo is t/V2tr. 

:efa. 11· al(- >· a•. :efa. 11· ate->· a• .. 

0·0 0·39894 199 -392 2·5 0·01753 395 + 79 
0·1 ·39695 591 -374 2·6 ·01358 316 + 66 
0·2 ·39104 965 -347 2·7 ·01042 250 + 53 
0·3 ·38139 1312 -308 2·8 ·00792 197 + 45 
0·4 ·36827 1620 -265 2·9 ·00595. 152 + 36 

' 

0·5 ·35207 . 1885 -212 3·0 ·00443 116 + 27 
0·6 ·33322 2097 --159 3-1 ·00327 89 + 23 
0·7 • ·31225 2256 -104" 3·2 ·00238 66 + 17 . 
0·8 ·28969 2360 - 52 3·3 ·00172 49 + 13 
0·9 -: ·26609 2412 0 3·4 ·00123 36 + 10 

1·0 . ·24197 2412 +46 3·5 ·00087 26 + 7. 
l-1 ·21785 2366 + 84 3·6 ·00061 19 + 6 
1·2 ·19419 2282 +118 3·7 ·00042. 13 + 4 
1·3 ·17137 2164 +143 3·8 ·00029 9 + 2 
1-4 ·14973 2021 +161 3·9 . ·00020 7 + 3 

1·5 ·12952 1860 +173 4·0 ·00013 4 -
1·6 ·11092 1687 +177 4-1 ·00009 3 ·-
l-7 ·09405 1510 +177 4·2 ·00006 2 -
1·8 {)7895 1333 +170 4·3 ·00004 .2 -
1·9 {)6562 1163 +162 4·4 ·00002 - -

. , 
2·0 ·05399 1001 +150 4·5 ·00002 - -
2·1 -o4398 851 +137 4·6 ·00001 - -
2·2 {)3547 714 +120 4·7 -ooool - -
2·3 ·02833 594 +108 4·8 ·00000 - -
2·4 -o2239 486 + 91 

Precision of lnteTpolation.-Owing to the magnitude of the second differences, 
simple interpolation near the beginning of the table may give an error up to 5 
in the fourth place ; the use of second differences will bring this down to 1 or 2 

. in the last place, third differences being small. Where third differences . are 
greatest, in the neighbourhood of ~E/a=0·6, the error may be as large as 3 in 
the last place unless the third difference is used.· 
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APPENDIX TABLE 2. 

Normal Curve. TM Pmportion, A, oftM Whole Area nftM Xormfll Crm:( l1Jillf! to the 
Left of the Ordi nat~ atlJn.tiation :r: u, tabulated at n.·ery Tenth of the Standard IJn:iation. 
uilh Fir61 and Second Differmca. 

rzja. A. I ~'(+). ~'( -). zfa. A. 6'(+). I ~·( -). 

0·0 0·50000 3983 40 2·5 0·99379 155 311 I 
0·1 ·53983 3943 78 2·6 ·99534 119 28 I 0·2 ·57926 3865 114 2·7 ·99653 91 22 
0·3 ·61791 3751 147 2·8 ·99744 69 17 I 

I 
0·4 ·65542 300! 175 2·9 ·99813 52 I u ; . 
0·5 ·69146 3429 200 3·0 ·9~1865 3~ 

I 
10 I 

0·6 ·72575 3229 219 3·1 ·99903 28 
I 

7 I 
0·7 ·75804 3010 230 3·2 ·9!1931 • 21 I 7 
0·8 ·78814 2780 240 3·3 ·99952 14 I 3 

I 0·9 ·81594 2540 241 3·4 ·99966 ll 4 

I 
I 

1·0 ·84134 2299 239 3·5 ·999i7 7 - I 
I I l-1 ·86433 2060 233 3·6 ·99984 I 5 -

1·2 ·88493 1827 223 3·7 ·99989 4 - ! 1·3 ·90320 1604 209 3·8 ·99993 2 - I 
1·4 ·91924 1395 194 3·9 ·99995 2 - I 
1·5 ·93319 . 1201 178 4·0 ·99997 I.· 

I 
- I 

1·6 ·94520 1023. 159 4·1 ·9!1998 1 - ! 
i·7 ·95543 

. 
864 143 4·2 ·99999 i - -

1·8 ·96407 . 721 124 4·3 ·9tl999 ~ 

j 
-

I 
1·9 ·97128 597 108 4·4 ·999!19 - -
20 ·97725 489 93 I 2·1 ·98214 396 78 I 2·2 ·98610 318 66 l 2·3 ·98928 252 53 I 

2·4 ·99180 199 44 I 

I ! 
.l attains the exact Ya1ue 0·99999 between 4·26 and 4·27. 

Precision of Interpolation.-Simple interpolation may lead. to all error of 3 
or 4 at most in the fourth place of de(•imals in the region where ~econd diff,·rences 
are large; the use of the &econd difference will bring- this down to 2 or 3 in the 
last place, the largest errors tending to occur at the beginnin.l{ of the table, where 
the third difference may be used if the greatest possii.Jle prec-ision is desire,l. 
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APPENDIX TABLE 3. 

Normal Curve. The Probability, P, of an Observation lying Outside the Limits ±11)/rt in 
the Normal Curve of Errors. P=2(1-A), where A is the area given by the preceding. 
table. 

zfa. ·· P. ,:11(- ). ,:1•( + ). zfa. P. ,:11(- ). ,:11( +). 

---
0·0 1·00000 7966 80 2·5 ·01242 310 71 
0·1 0·92034 7886 156 2·6 ·00932 239 57 
0·2 ·84148 7730 228 2·7 ·00693 182 44 
0·3 ·76418 7502 294 2·8 ·005ll 138 35 
0·4 ·68916 7208 351 2·9 ·00373 103 27 . 
Q·5 ·61708 . 6857 399 3·0 ·00270 76 19 
0·6 ·54851 6458 436 3·1 ·00194 57 17 
0·7 • ·48393 6022 463 3·2 ·00137 40 10 
0·8 ·42371 5559 478 3·3 ·00097 30 10 
0·9 ·36812 5081 483 H ·00067 20 .5 

1·0 ·31731 4598 479 3·5 ·00047 15 -
H ·27133 4119 465 3·6 ·00032 10 -
1-2 ·23014 3654 445 3·7 ·00022 8 -
1·3 ·19360 3209 419 3·8 ·00014 4 -
H ·16151 2790 389 3·9 ·00010 4 -... 
Hi ·13361 2~1 354 4·0 ·00006 2 -
1·6 ·10960 2047 320 H ·00004 1 -
1·7 ·08913 1727 284 4-2 ·00003 ·1 -
1·8 -()7186 1443 250 4·3 ·00002 1 
1·9 ·05743 1193 216 4·4 ·00001 - -

4·5 ·00001 -
2·0 ·04550 . 977 185 
2·1 ·03573 792 156 
2·2 ·02781 636 131 
2·3 ·02145 505 107 
2-4 ·01640 398 88 

• P attains the exact value 0·00001 between 4·41 and 4·42. 

Precision of lnterpolation.-Simple interpolation may lead to errors of 5 
or 6 in the fourth place of decimals, where second differences are large. ,Using 
second differences as well, the error will not exceed about 5 in the last place, 
near the beginning of the table, where the third difference may be brought in 

· if desired. ' 
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APPENDIX TABLE 4A. 
J"aluu of the x• lnt~gral /OT (),u Drgru of FrttdlmlfOT J"allla ofl• 

. from x• =0 lo x• =1 by lltpl of 0·01. 

a:• p • l' p • 
0\ 1·ooooo 79611 0•60 0•47950 435 
Q,'01 o·no34 3280 o·n o·Hsa 430 
o·oz 0•88754 2505 O·fi2 0•47084 423 
o•o3 0•86249 2101 o·s3 0·4SG61 us 
0"04 o·8,H8 1842 o·54 0"46243 411 
o·os 0·82306 16511 0•55 0"45832 4011 
o·o6 0"80650 1511 0•56 0·45426 400 
0"07 e·79134 1404 0 57 0"45026 395 
o·os o·777SO 1312 o·s8 0•4t631 389 
o·og 0·76418 1235 0•59 o·u2n 384 
0·10 0•75183 1169 o·eo 0•43858 379 
o·u 0'74014 1111 o·n 0•43479 374 
0•12 o·72!iiOS 1060 O·G~ 0"43105 3(.9 
o·u 0•71843 1015 0•63 0"42736 365 
o·u 0·70828 1174 0"64 . 0"42371 360 
0"15 0"69854 938 0·6!» 0·4~011 355 
0"16 o·o8916 905 0·66 o·u656 3!>1 
o·u 0•68011 874 0•67 0"41305 346 
0•18 0"117137 845 0•68 0"40&59 343 
o·u 0•66292 820 0·£9 0"40616 338 
0•20 o·65472 795 0•70 0"40278 334 
0"21 0"64677 773 o·n 0"31l9H 331J 
0"22 o·6390t 752 0•72 o·39o14 326 
0"23 0"63152 731 0•73 0"39:!83 3:!2 
0"24 0 62421 713 O·H o·359u8 318 
0"25 o·61708 696 • o·n 0"386(8 315 
o·2o 0•61012 679 0•76 0•38333 311 
0"27 0"60333 663 0"77 0•38~22 308 
0"28 0"5!1670 648 0•78 0•37714 304 
0"29 0"59022 634 0•79 o·37410 SOl 
0·31l · 0 58388 620 o·so 0•37109 2!il7 
0"31 0"577118 6(17 0•81 0•36512 294 
0"32 0 57161 595 o·s:a o·so518 291 
o·s3 0"56566 583 o·ss 0"362!:!7 287 
o·u 0"55983 572 0·1!4 o·S5940 285 
o·35 o·55nt 560 O·fl5 0"35655 2Sl 
0"36 o·5tS51 551 0·8G o·353H 27il 
0 37 0"54800 5!0 0·87 o·s~o96 276 
0"38 o·5S760 530 o·s8 o·US:!O 27~ 
o·s9 0"53230 fi21 0·89 0 "3454~ 270 
0 tO 0•527011 512 0·91) o·u2;8 267 
0•41 0•52197 fi03 0"91 o·stull 264 

• O·f2 o·fii6fl4 495 092 0 33747 261 
0•43 0•51199 487 0•93 o·334l5 258 
0"44 0•50712 479 0"84 0·33228 256 
0•45 O·fi0233 471 o·s-5 0 32972 253 
O·t6 o·0762 463 0"96 0•3:.!719 251 
o·n 0"492911 457 0•97 0·32468 248 
o·t8 0·4684Z 449 OSI8 0 32220 246 
0"49 0"48393 443 0"'99 0·31fiH 248 
O·fiO Cl"4i850 438 11)<) 0 3li31 241 



. . 
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APPENDIX TABLE 4B. 

J" al•~e• of the x• lnJ~gral for Oru: Ikgru of Frndom for J' al~s of :t1 

from A.' =1 16 z• =10 by atryl of 0·1. 

ll" p • Ill p A 

1'() 0·31731 2304 fi·5 0'01902 106 
H 0·29427 2095 5'8 0'01796 911 
1"2 0•27332 1911 5'7 Oill697 94 
1'3 0·25421 1749 5•8 0"01603 811 
1"4 0•23672 1605 5•9 0'01514 83 
l"li 0•22()67 1477 6·o O·OH31 79 
1•6 0•205110 1361 6•1 0'01352 74 
1"7 0"19229 1258 ··2 0"01278 71 
1'8 0'17971 1163 6•3 0'01207 . 66 
1"9 0"16808 1078 6·f . o-onn . 62 
2'0 0"15730 1000 6•5 0"010711 59 
2'1 O·U730 929 611 0"01020 56 
22 0"13801 864 6 7 0"00964 52 
2"3 0"12937 803 6•8 0"00912 50 
1"4 O·l213f 749 69 0'00862 47 
2"5 0•11385 • G99 • 7'() 0"00815 - 44 
2'6 0•10686 651 7•1 0'00771 f2 
2"7 0'10035 609 7·2 0'00729 39 
2'8 0'()9426 568 . 7·3 0 00590 38 
2'9 0•08858 532 7•4 0'0065:! 35 
s·o 0'08326 497 7"5 0"00617 31 
s·1 0'07829 455 7•6 0'00584 32 
8"2 o·ont~4 f36 7'7 0'00552 30 
3'3 . 0•06!1:!8 408 7'8 0"00522 28 
a·t 0·065t0 383 7•9 0'00491 26 
3'5 o·otn37 859 8·o 0 00468 25 
s·s, 0•05778 837 a·1 0"00H3 24 
1'7 0·05U1 316 8'2 0"00419 23 
s·a 0•05125 296 a-a 0"008:16 21 
1'9 0·0~829 279 8·f 0'00375 20 
t·O 0·04550 262 8•5 0"00355 19 
c·t O·Of2S8 248 a·8 0•00338 18 
f•2 O·OCWl 231 8·7 0·0031!1 17 
f'3 0·03811 217 8'8 0•00301 16 ,., 0·03591 205 a·9 0•00285 15 
4·S 0'()3389 192 9·0 0"00270 If 
c·8 0 03197 181 9"1 0•00258 H 
u O·OJ018 1iO 9·2 0·00242 13 
•·a 0·02845 160 9•1 o·oo229 12 
f·9 0 (,2886 . 151 II·& 0·00217 12 
5·0 0•02535 lU 9·6 0•00205 10 
5•1 0·02393 134 9"6 0·00195 11 
5•2 0•02~511 1~6 9·7 0·00184 10 
5·3 0·02133 119 9•8 0"00174 9 
6"f 0"()2014 112 9•9 0·00185 8 
fi•5 0•01902 lOll 10 0 0·001fi7 8 -

535 
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t-Table. · The Prnpartion of the Ar~a of the Curve y 11• r+i of L'nil Arta lyi11g to 

t. 

0 
0·1 

·2 
·3 
·4 
·5 
·6 
·7 
·8 
·9 

1·0 
H 
1-2 
1·3 
1·4 
1·5 
1·6 
1·7 
1·8 
1·9 
2·0 
2·l 
2·2 
2·3 
2·4 
2·5 
2·6 
2·7 
2·8 
2·9 
3·0 
3-1 
3·2 
3·3 
3·4 

. 3·5 
3·6 
3·7 
3·8 
3·9 
4·0 
4-1 
4·2 
4·3 
4·4 
4·5 
4·6 
4·7 
4·8 
4·9 
5·0 
5·1 
5·2 
5·3 
5·4 
5·5 
5·6 
5·7 
5·8 
5·9 

(1+;)-1 
0 to 6, and far 'C'alua 

(Condensed to three figures from the four-fij!ure tables by" Student" in :Mttron, 
"Student," who ha11 also very kindly supplied 

v=l. 2. 3. 4. 5. 6. 7. _8._1_9._ 10. I 

0·500 0·500 0·500 0·500 0·500 0·500 0·500 0·500 0·500 0·501) 
·532 ·535 ·537 ·n37 ·538 ·538 ·fi38 ·539 ·539 -;.39 
·563 ·570 ·573 '574 ·575 ·576 ·576 ·577 ·577 ·577 
·593 ·604 ·608 ·610 ·612 ·613 ·614 ·614 ·6141 ·615 
·621 ·636 ·642 ·645 ·647 ·6485 ·6491 ·6;)() ·651 ·6;)1 
·648 ·667 ·674 ·678 ·681 ·683 ·684 ·685 ·68.51 ·686 
·672 ·695 ·705 ·710 ·713 ·715 ·716 ·717 ·718 ·719 
·694 ·722 ·733 ·739 ·742 ·745 ·747 ·748 ·749 -7;,0 
·715 ·746 ·759 ·766 ·770 ·773 ·775 ·777 ·778 ·7i9 
-'733 ·768 ·783 ·7905 ·795 ·799 ·801 ·803 ·804 ·80.') 
·750 ·789 ·804' ·813 ·818 ·822 ·825 ·827 ·828 ·830 
·765 ·807 ·824 ·833' ·839 ·843 ·846 ·848 ·8.'>0 ·8.';} 
·779 ·823' ·842 ·852 ·858 ·862 ·865 ·868 ·870 ·871 
·791 ·838 ·858 ·868 ·875 ·879 ·883 ·885 ·887 ·!;89 
·803 ·852 ·872 ·883 ·890 ·8946 ·898 ·900' ·9025 ·!1(14 
·813 ·864 ·885 ·896 ·903 ·908 ·911 ·914 ·916 ·918 
·822 ·875 ·896 ·908 ·915 ·920 ·923 ·926 ·928 ·931) 
·831 ·884 ·906 ·918 ·925 ·930 ·933' ·936 ·938 ·940 
·839 ·893 ·915 ·927 ·934 ·939 ·943 ·945 ·947 ·949 
·846 ·901 ·923 ·935 ·942 ·947 ·950 ·953 ·955 ·957 
·852 ·908 ·930 ·942 ·949 ·954 ·957 ·960 ·962 ·963 
·8585 ·915 ·937 ·948 ·955 ·960 ·963 ·9655 ·967 ·969 
·864 ·921 ·942 ·954 ·9606 ·965 ·968 ·9705 ·972 ·974 
·8695 ·926 ·9476 ·9585 ·965 ·969 ·9725 ·975 ·976' ·978 
·874 ·931 ·952 ·963 ·969 ·973 ·976 ·978 ·980 ·981 
·879 ·935 ·956 ·967 ·973 ·977 ·979' ·981' ·983 ·984 
·883 ·939 ·960 ·970 ·976 ·980 ·982 ·984 ·986 ·987 
·887. ·943 ·963 ·973 ·979 ·982 ·985 ·986' ·988 ·989 
·891 ·946 ·966 ·976 ·981 ·984 ·987 ·988 ·990 ·991 
·894 ·949 ·969 ·978 ·983 ·986 ·988• ·9(1() ·991 ·992 
·898 ·952 ·971 ·980 ·985 ·988 ·990 ·991 5 ·992• ·993 
·901 ·955 ·973 ·982 ·987 ·989 ·991 ·993 ·994 ·994 
·904 ·957 ·975 ·9835 ·988 ·991 ·992' ·994 ·995 ·995 
·906 ·960 ·977 ·985 ·989 ·992 ·993 ·995 ·995 ·996 
·909 ·962 ·979 ·986 ·990 ·993 ·994 ·995 ·996 ·997 
·911 ·964 ·980 ·988 ·991 ·994 ·995 ·996 ·997 ·997 
·914 ·965 ·982 ·989 ·992 ·994 ·996 ·9965 ·997 ·998 
·916 ·967 ·983 ·990 ·993 ·995 ·996 ·997 ·997' ·9!o!8 
·918 ·969 ·984 ·990 ·994 ·9955 ·997 ·997 ·998 ·998 
·920 ·970 ·985 ·991 ·994 ·996 ·997 ·998 ·998 ·998' 
·922 ·971 ·986 ·992 ·995 ·996 ·997 ·998 ·998 ·9\19 
·924 ·973 ·987 ·993 ·995 ·997 ·998 ·998 ·999. ·999 
·926 ·974 ·988 ·993 ·996 ·997 ·998 ·9985 ·999 ·999 
·927 ·975 ·988 ·994 ·996 ·9975 ·998 ·999 ·999 ·999 
·929 ·976 ·989 ·994 ·9965 ·998 ·998 ·9fl9 ·9::19 ·999 
·930 ·977 ·990 ·995 ·997 ·998 ·999 ·999 ·999 ·9\J9 
·932 ·978 ·990 ·995 ·997 ·998 ·9(19 ·999 ·999 ·9!195 

·933 ·979 ·991 ·9!15 ·997 ·998 ·9ll9 ·\199 ·9!19 1·000 
·935 ·980 ·991 ·996 ·998 ·9!185 ·999 ·9\19 ·9!1!1' 
·936 ·980 ·9\12 ·9\16 ·9ll8 ·999 ·999 ··\199 1-000 
·937 ·981 ·992 ·996 ·998 ·999 ·999 ·9995 

·938 ·982 ·993 ·9965 ·998 ·999 ·999 ·9995 

·9395 ·!182' ·993 ·997 ·998 ·999 ·999 1·000 
·941 ·983 ·9H3 ·9ll7 ·998 ·\1\19 ·999 
·942 ·984 ·994 ·997 ·991!5 ·999 ·99(15 

·943 ·984 ·994 ·997 ·999 ·999 ·9995 

·944 ·9!l-5 ·994 ·9975 ·9!19 ·999 1·000 
·945 ·985 ·995 ·998 ·999 ·999 
·946 ·986 ·995 ·998 ·999 ·999 
·947 ·986 ·995 ·998 ·999 ·999• 

- - -- - --- - --- --- - --- -



TABLE 5. 
the ufl of the Ordinate of Deviation I, for valutll of I proeeeding by 'intervals of 0·1 from 

of • from 1 to 20. . 
vol. 5, 1925, and published by pennission of the proprietors of llletron and 
a few corrections to the original tables.) 

t. 11 •. 12. 13. 14. 15. 16. 17. 18. 19. 
---------------------

0 0·500 0·500 0·500 0·500 0·500 0·500 0·500 0·500· 0·500 
0·1 ·539 ·539 ·539 ·539 ·539 ·539 ·539 ·539 ··539 

·2 ·577 ·578 ·578 ·578 ·578 ·578 ·578 ·578 ·578 
·3 ·615 ·615 ·6151 ·616 ·616 ·616 ·616 ·616 ·616 
·4 '652 ·652 ·652 ·652 ·653 ·653 ·653 ·653 ·653 
·5 ·6!165 ·687 ·687 ·688 ·688 ·688 ·688 ·688 ·689 
·6 ·720 ·720 ·721 ·721 ·721 ·7211 ·722 ·722 ·722 
·7 ·751 ·751 ·752 ·752 ·753 ·753 ·753 ·754- ·754-
·8 ·780 ·780 ·781 ·7815 ·782 ·782 ·783 ·783 ·783 
·9 ·806 ·807 ·808 ·808 ·809 ·809 ·810 ·810 ·810 

I 10 -s:n ·8311 ·832 ·833 ·833 ·834- ·834- ·835 ·835 
1·1 ·853 ·8531 ·854- ·855 ·856 ·856. . ·857. ·857 ·8571 

1·2 '·872 ·873 ·874- ·875 ·876 ·876 ·877 ·877 ·878 
1·3 ·890 ·891 ·892 ·893 ·893 ·894 ·894' ·895 ·895 
1·4- ·!105' ·907 ·9071 ·908 ·909 ·910 ·910 ·911 ·911 
1·5 .. 919 ·920 ·921 ·922 ·923 ·9236 ·924 ·92411 ·925 
1·6 ·931 ·932 ·933 ·934 ·935 •935 ·936 ·9361 ·937 
1·7 ·941 ·943 ·9431 ·944 ·945 ·946 ·946 ·947 ·947 
1·8 ·950 ·9511 ·952' ·953 ·954 ·955 ·955 ·956 ·956 
1·9 ·958 ·959 ·960 --961" ·962 ·962 ·963 ·963 ·964 
2·0 ·965 ·966 ·967 ·967 ·968 ·969 ·969 ·970 ·970 
2·1 ·970 ·971 ·972 ·973 ·9736 ·974 ·9741 ·975 ·975 
2·2 ·975 ·976 ·977 ·977 ·978 ·979 ·979 ·979 ·980 
2·3 ·9i9 ·980 ·981 ·981 ·982 ·982 ·983 ·983 ·9831 

2·4 ·982 
I 

·983 ·984 ·985 ·985 ·9851 ·986 ·986 ·987 
2·5 ·985 ·986 ·987 ·987 •988 ·988 ·9886 ·989 ·989 
2·6 ·988 ·988 ·989 ·9891 ·990 ·990 ·991 ·991 ·991 
2·7 ·990 ·990 ·991 ·991 ·992 ·992 ·992 ·993 ·993 
2·8 ·991 ·992 ·9926 ·993 ·993 ·994- ·994 ·994- ·994 
2·9 ·993 ·993 ·994 ·994 ·9941 ·9941 ·995 ·995 ·995 
3-o ·994 ·9941 ·995 ·995 ·995' ·996 ·996 ·996 ·996 
:n ·9'J5 ·995 ·996 ·996 ·996 ·997 ·997 ·997 ·997 
3·2 ·996 ·996 ·9961 ·997 ·997 ·997 ·997 ·9971 ·998 
3·3 ·996' ·997 ·997 ·997 ·998 ·998 ·998 . ·998 ·998 
3·4 ·997 ·997 ·998 •998 ·998 ·998 ·998 ·998 ·9981 

3·5 ·997' ·998 ·998 ·998" ·998 ·9981 ·999 ·999 ·999 
3·6 ·998 ·998 ·998 ·999 ·999 ·999 ·999 ·999 ·999 
3·7 ·998 ·9981 ·999 ·999 ·999 ·999 •999 ·999 ·999 
3·8 ·998' ·999 ·999 ·999 ·999 ·999 ·999 ·999 ·999 
3·9 ·9!19 ·999 ·999 ·999 ·999 ·999 ·999 ·9991 ·9991 

4·0 ·999 ·999 ·999 ·999 ·999 ·9991 ·9991 1·000 1·000 
4·1 ·999 ·999 ·999 ·999' ·9991 1·000 1·000 
4·2 ·999 ·999 ·999' 1·000 1·000 
4·3 ·999 ·9991 1·000. 
4·4 ·fJ99' 1·000 
4·5 ·9fJ91 

4·6 1·000 

20. --
0·500 

·539 
·57il 
·Cil6 
·653 
·689 
·722 
·754 
·783 
·811 
·835 
·858 
·878 
·896 
·912 
·925 
·937 
·948 
·9566 

·964 
·970 
·976 
·980 
·984 
·987 
·989 
·991 
·993 
·9941 

·996 
·9966 

·997 
·998 
·998 
·999 
·999 
·999 
·999 
·999 

1-ooo 

-

1\'ote.-The methods by which "Student'' calculated the llletron tables are 
explained in notes by him and R. A. Fisher in that journal, vol. 5, part 3, 1925, 
pp. 18-24. The fuur figures of those values have been rounded up to three in 
the above table, exC'~pt when the four-figure \'alue concluded with a 5, in whiC'h 
case it is shown in full. In columns in which values greater than 0·9905 OL>cur 
the first is written 1-ooo and the remainder left blank. 
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' 

APPENDIX TABLE 6A. 
(Reproduced by kind permission of Prof. R. A. Fisher and 1\lc,srs Oliver & Boyd 

from the former's" Statistical !llethods fur Research Workers."> 

5 PER CENT. POINTS OF THE DISTRIBUTION OF %. 

Values of v1• 

1. 2. 3. 4. 5. 6. 8. 12. 24. ao. 

---------------------------
I 2·5421 2·6479 2·6870 2·7071 2·71!14 2·7276 2·7380 2·7484 2·7588 2·7693 
2 1-4592 1·4722 1-4765 1·4787 1·4800 l-4808 1-4819 1·4830 1·4840 1·48.~1 
3 1-1577 1·1284 1-1137 1-1051 1·0994 1-0953 1-0899 1-0842 1·0781 1-0716 
4 1-0212 ·9690 ·9429 ·9272 ·9168 ·9093 ·8993 ·8885 ·8767 ·8639 
5 ·9441 ·8777 ·8441 ·8236 ·8097 ·7997 ·7862 ·7714 ·7550 ·7368 
6 ·8948 ·8188 ·7798 ·7558 ·7394 ·7274 ·7112 ·6931 ·6729 ·6..199 
7 ·8606 ·7777 ·7347 ·7080 ·6896 ·6761 ·6576 ·6369 ·6134 ·5862 
8 ·8355 ·7475 ·7014 ·6725 ·6525 ·6378 ·6175 ·5945 ·5682 ·5371 
9 ·8163 ·7242 ·6757 ·6450 ·6238 ·6080 ·5862 ·5613 ·5324 ·4979 

10 ·8012 ·7058 ·6553 ·6232 ·6009 •58..13 ·5611 ·5346 ·5035 ·4657 

11 ·7889 ·6909 ·6387 ·6055 ·5822 ·5648 ·5406 ·5126 ·4795 ·4387 
12 ·7788 ·6786 ·6250 ·5907 ·5666 ·5487 ·523..1 ·4941 ·4592 ·4156 
13 ·7703 ·6682 ·6134 ·5783 ·5535 ·5350 ·6089 ·4785 ·4419 ·3957 
14 ·7630 ·6594 ·6036 ·5677 ·5423 ·5233 ·4964 ·..1649 ·4269 ·3782 

~ 15 ·7568 ·6518 ·5950 ·5585 ·5326 ·5131 ·4855 ·4532 ·4138 ·3628 
16 ·7514 ·6451 ·5876 ·5505 ·5241 ·5042 ·4760 ·4428 ·4022 ·3490 'S 17 ·7466 ·6393 ·5811 ·5434 ·5166 ·4964 ·4676 ·4337 ·3919 ·3:166 ... 
18 ·7424 ·6341 ·5753 ·5371 ·5099 ·4894 ·4602 ·4255 ·3827 ·3253 ., 

~ 19 ·7386 ·6295 ·5701 ·5315 ·5040 ·4832 ·4535 ·4182 ·37..13 ·31.51 
~ 20 ·7352 ·6254 ·5654 ·5265 ·4986 ·4776 ·4474 ·4116 ·3668 ·3057 

21 ·7322 ·6216 ·5612 ·5219 ·4938 ·4725 ·4420 ·4055 ·3599 ·2971 
22 ·7294 ·6182 ·5574 ·5178 ·4894 ·4679 ·4370 ·4001 ·3536 ·2892 
23 ·7269 ·6151 ·5540 ·5140 ·4854 ·4636 ·4325 ·3950 ·3478 ·2818 
24 ·7246 ·6123 ·5508 ·5106 ·4817 ·4598 ·4283 ·3904 ·342.1 ·2749 
25 ·7225 ·6097 ·5478 ·5074 ·4783 ·4562 ·4244 ·3862 ·3376 ·2685 
26 ·7205 ·6073 ·5451 ·50..15 ·4752 ·4529 ·4209 ·3823 ·3330 ·2625 
27 ·7187 ·6051 ·5427 ·5017 ·4723 ·4..199 ·4176 ·3786 ·3287 ·2.i69 
28 ·7171 ·6030 ·5403 ·4992 ·4696 ·4471 ·4146 ·3752 ·32..18 ·2516 
29 ·7155 ·6011 ·5382 ·4969 ·4671 ·4444 ·4117 ·3720 ·3211 ·2461) 
30 ·7141 ·5994 ·5362 ·4947 ·4648 ·4420 ·4090 ·3691 ·3176 ·2419 

60 ·6933 ·5738 ·5073 ·4632 ·4311 ·4064 ·3702 ·32.15 ·2654 ·1644 

QO ·6729 ·5486 ·4787 ·4319 ·397! ·3706 ·3309 ·2804 ·2085 0 
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APPENDIX TABLE 6B. 
(Reproduced by kind pemrission of Prof. R. A. Fisher and l\lessrs Oliver & Boyd · 

from the fom1er"a "Statistical !l!etlwds for Research Workers.") 

1 PER CENT. POINTS OP THE D!STBIBUTIO!<f OP z. . 
Valuee of "•· 

.. 
1. 2. 3. 4. 5. 6. 8. 12. 24. ao. 

---
1 H535 4·2585 4·2974 4·3175 4·3297 4·3379 4·3482 4·3585 4·3689 4·3794 
2 2·2950 2·2976 2·2984 2·2988 2·2991 2·2992 2·2994 2·2997 2·2999 2·3001 
3 1·7649 1·7140 1·6915 1-6786 1·6703 1·6645 1·6569 1·6489 1·6404 1·6314 • 1·5270 1·4452 1-4075 1·3856 1·3711 1·3609 1·3473 1·3327 1·3170 1-3000 
5 1·3943 1·2929 1·2449 l-2164 l-1974 1·1838 1·1656 l-1457 1-1239 1-0997 
6 1-5103 l-1955 l-1401 1-1068 1·0843 1-0680 1-6460 1-0218 ·9948 ·9643 
7 1·2526 l-1281 Hl672 1-()300 1-()048 ·9864 ·9614 ·9335 ·9020 ·8658 
8 1·2'106 1-0787 1-()135 ·9734 ·\1459 ·9259 • ·8983 ·8673 ·8319 ·7904 
9 1·1786 1·0411 ·9724 ·9299 ·9006 ·8791 ·8494 ·8157 ··7769 ·7305 

10 l-1535 1·0114 ·9399 ·8954 ·8646 ·8419 ·8104 ·7744 ·7324 ·6816 

11 1·1333 ·9874 ·9136 ·8674 ·8354 ·8116 ·7785 ·7405 ·6958 ·6408 
12 1-1166 ·9677 ·8919 ·8443 ·8111 ·7864 ·7520 ·7122 ·6649 ·6061 
13 1-1027 ·9511 ·8737 •8248 ·7907 ·7652 ·7295 ·6882 ·6386 ·5761 
14 I-(YJ09 ·9370 ·8581 ·8082 ·7732 ·7471 ·7103 ·6675 ·6159 ·5000 

:: 15 1-0807 ·9249 ·8448 ·7939 ·7582 ·7314 ·6937 ·6496 ·5961 ·5269 
16 1-0719 ·9144 ·8331 ·7814 ·7450 ·7177 ·6791 . ·6339 ·5786 ·5064 "0 17 HIM I -9051 ·8229 ·7705 ·7335 ·7057 ·6663 ·6199 ·5630 ·4879 

"' 18 1-()572 ·8970 ·8138 ·7607 ·7232 ·6950 ·6549 ·6075 ·5491 ·4712 .. 
= 19 1·05ll ·8897 ·8057 ·7521 ·7140 ·6854 ·6447 ·5964 ·5366 ·4560 .... .... 20 1·0457 -.s831 ·7985 ·7443 ·7058 ·6768 ·6355 ·5864 ·5253 ·4421 

21 1-o408 ·8772 ·7920 ·7372 ·6984 -6690 '•6272 ·5773 ·5150 ·4294 
22 1·0363 ·8719 ·7860 ·7309 ·6916 < ·6620 ·619d ·5691 ·5056 ·4176 
23 1·0322 ·8670 ·7806 ·7251 ·6855 ·6555 ·6127 ·5615 ·4969 ·4068 
24 1-0285 ·8626 ·7757 ·7197 ·6799 ·6496 ·6064 ·5545 -4800 ·3967 
25 l-()251 ·851i5 . ·7712 ·7148 ·6747 ·6442 ·6006 ·5481 -4816 ·3872 
26 1-()220 ·8548 ·7670 ·7103 ·6699 ·6392 ·5952 ·5422 ·4748 ·3784 
27 1-()191 ·8513 ·7631 ·7062 :6655 ·6346 ·5902 ·5367 ·4685 < ·3701 
28 1·0164 ·8481 ·7595 •7023 ·6614 ·6303 ·5856 ·5316 ·4626 ·3624 
29 1·0139 ·8451 ·7562 ·6987 ·6576 ·6263 ·5813 ·5269 ·4570 ·3550 
30 1-()116 ·8423 ·7531 ·6954 ·6540 ·6226 ·5773 ·5224 ·4519 ·3481 

60 ·9784 ·8025 ·7086 ·6472 ·6028 •5687 ·5189 ·4574 ·3746 ·2352 

ao ·9462 ·7636 ·6651 ·5999 ·5522 ·5152 ·4604 ·3908 ·2913 0 
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APPEl\'DIX TABLE 6C.··. . 
.~ 

(Reproduced by kind permission of Prof. R. A. Fisher, Dr W. F ... Deming and l\les8rs 
. Oliver & Boyd from Prof. Fisher's "Swti.sticallUtthorb ftW Rucorcla W orker1. ") 

0·1 PEa CENT. PoiNTS OF THE DISTRIBUTI02l. oF -. 

Values of P1• . . 

1. 2. 3. 4. 6. 6. 8. 12. 2-1. CD, 

--------------'-----
1 6·4577 6·5612 6·5966 6·6201 6·6323 6·6405 6·6.508 6·6611 6·6715 6·6819 
2 3·4531 3·4534 3·4535 3·4535 3·4535 3·4.535 3·4.'>36 3·4537 3·4536 3·4536 
3 2·5604 2·5003 2·4748 2·4603 2·4511 2·4«6 2·43tll 2·4272 2·4179 2·ft>81 
4 2·1529 2·0574 2·0143 1·9892 1·9728 1·9612 1·9459 1·9!!94 1·9ll8 1·89~7 
6 1·9255 1·8002 1·7513 1·7184 1·6964 1·6808 1·6596 1·6370 1-15123 1·58451 6 1·7849 1·6479 1·5828 1·5433 1·5177 1·4986 1-4730 1-4449 1-4134 1·3783 
7 1·6874 1·5384 1·4662 1-4221 1·3927 1·3711 1·3417 1·3000 1·2721 1·2296 
8 1·6177 1-4587 1·3809 1·3332 1·3008 1·2770 1·2443 1·2077 1-1662 1-11691 
9 1·5646 1-3982 1·3160 1·2653 1·2304 1·2047 1·169-1 1·1293 1-()830 1·0279 

10 1·5232 1·3509 1·2650 1-2116 1-1748 1-1475 1-1098 1-oc568 1·0165 ·95571 • 
11 1-4900 1·3128 1·2238 1-1683 1-1297 1-1012 1-0614 1-0157 ·9619 . ·8~-571 
12 1·4627 1·2814 l-1900 1-1326 1·0926 1·0628 1·0213 ·9733 ·9162 ·S-150 
13 1·4400 1·2553 1-1616 1-1026 1-()614 1-0306 ·9875 ·9374 ·8774 ·80141 
14 1·4208 1·2332 1-1376 1-0772 1·0348 1·0031 ·9586 ·9066 ·S-139 ·7635! 
15 1-4043 1·2141 l-1169 1·0553 1·0119 ·9795 ·9336 ·8800 ·8147 ·73011 

j 16 1·3900 l-1976 1-0989 1·0362 ·9920 ·9588 ·9119 ·8567 ·7891 ·7005 - 17 1·3775 1-1832 1·0832 1·0195 ·9745 ·9407 ·8927 ·8361 ·7664 -6740 I 
0 18 1·3665 l-1704 1·0693 1·0047 ·9590 ·9246 ·8757 . ·8178 ·7462 ·6502 • 19 1·3567 l-1591 1·0569 ·9915 ·9442 ·9103 ·8605 ·8014 ·7277 ·62851 ., 
::t 

20 1·3480 1-1489 1·0458 ·9798 ·9329 ·8974 ·S-169 ·7~67 ·7115 :! ·60861 

21 1·3401 l-1398 1·0358 ·9691 ·9217 ·8858 ·8346 ·7735 ·696.& ·5904 
22 1·3329 l-1315 1·0268 ·9595 ·9116 ·8753 ·8234 ·7612 ·6828 ·5738 
23 1·3264 1-1240 1-0186 ·9507 ·9024 ·8657 ·8132 ·7501 ·6704 ·5583j 
24 1·3205 1·1171 1·0111 ·9427 ·8939 ·8569 ·8038 ·7400 ·6589 ·5440 I 
25 1·3151 1-110.8 1·0041 ·9354 ·8862 ·8489 . ·7953 ·7306 ·6483 ·5307 
26 1·3101 1-1050 ·9978 ·9286 ·8791 ·8415 ·7873 ·7220 ·6385 ·51831 
27 1·3055 1·0997 ·9920 ·9223 ·8725 ·8346 ·7800 ·7140 ·6~94 ·51)66 
28 1·3013 1·0947 ·9866 ·9165 ·8664 ·8282 ·7732 ·7066 ·6209 ·4!l.l7 
29 1·2973 1·0903 ·9815 ·9112 ·8607 ·8223 ·7679 ·6997 ·6129 -41.\53 
30 1·2936 1-0859 ·9768 ·9061 ·8554 ·8168 ·7610 ·6932 ;6056 ·4750 I 

I 
40 1·2674 1·0552 ·9-135 ·8701 ·8174 ·7771 ·7184 ·6.&63 ·5513 ·40161 

• 
60 1·2413 1-0248 ·9100 ·8345 ·7798 ·7377 

·6700 I ·5992 ·49.>5 ·3198 

CD l-1910 ·9663 ·8453 ·7648 ·7059 ·6599 ·5917 ·WU ·3786 0 I 



ANS\VERS 

TO Ml> HTh'TS ON THE SOLUTION OF, '.1'1-IE EXERCISES 
• GIVEN IN THE VAR-IOUS CHAPTERS. . 

1.1. N - 26,287 (AB) 887 
(.4) 2,308 (A C) '874 
(B) 2,853 (BC} 853 
(C) 749 (ABC) 149 

1.2. (ABC) 156 (aBC) 179 
. (ABy) _ 431 (aBr> 1,249 

·, (APC) 272 (af3C) 163 
(A{3y) 759 - (af3y) 20,504 

, 1.8. The frequencies not given in the question itself are : 

(a) (AB) 107 (AC) 405 (BC) 525. 
(b) (Apy) 22,980 (aBy) 13,585 . (af3C) 96,478 

1.4. 

tl•o.t is 

that is 

(AB) (B) (AB) (B) 
(A/3) > (/3J • • (AB) +(A/3) >(B) +(/3) 

(AB) (A) that is (AB) (A) 
(B) > N' (B) -(AB) > N -(A) 

(AB) (A) 
(aB) >(a) 

( apy) 28,868,495. 

1.5. (AB) + (BC) -(B), i.e. the sum of the excesses of (AB) and (BC) over 
(IJ)/2 • 

. 1.8. 160. Take A =husband exceeding wife in first measurement, B =hus-
J.,,md ex~eding wife in seoond measurement, and find ( a/3). · 

· 1.9. 88. If A, B, C denote passing first, second and third examinations, 
(q, (a{JC) and (ABy) are aU that is necessary to answer tb.e question. The oUler 
live frequencies (including N) are redundant. 

Fwther, N -(a/3(') .:.(a/ty) =(A) +(B) -(A.BC) -(ABy), i.e. there is a linear 
rdation between the given frequencies and the ultimate frequencies are therefore 
indetem1inate. · • • 

. 1.10. 10 per cent. 

CHAPTER 2. 

2.1. 80/263 or 304 per thousand. 
2.2. 55/85 or 65 per cent. 

· 2.3, 32 per cent. and 80 per cent. 
2.4. 117. 
2.5.- 108. 
2.8. P::!>l (1-2q), P-t::l (1 +2q), i.e. p must lie betwee~ 0 and l (1 -2q) or 

l.dween l (1 +2q) and I· . 
Ml 
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2.9. As a hint, rememher the condition that.---

(BC)<t:.(JJ) +(C)- N 
I' 

2.10. If A, B, C denot<• liking chocolates, toffee or boiled swcd.", ( a/3y) :is 
negative. 

CIIAPTER 3. 
.. 3.l:· Deaf-mutes from childhood per million among m.aks 2:22: a•ur)ng 
females 183; there is therefore pnsitive assoeiation between dt:af-tnndsm tlOd 
male sex: if there had been no assoeiatiun between deaf-mutism and .;ex, ilttrrc · 
would have bePJt 3176 male and 31l93 female deaf-mutes. · 

3.2. (a) Positive association, since (AB)" =1457. 
(b) Negative association, since 294/-t90 =3/5, 380/570 =2,':3. 
(c) Independence, since 25G/768 =1/B, 48j14t = 1/B. 

3.3. Percentage of Plants ahov<' tl•e ,\ vcr,lge IIr·ig·llt. 

Parentage Crossed. ::ielf-fertilised-
86 per cent. 25 per cent.. 
79 17 
78 M 
71 45 

a5 

I pomrea purpurea 
Petunia violaeea 
Heseda lutea . 
Heseda odor.1ta 
Lobelia fulgcns. ,_ 

The association is much less for the species at the end than for those at 1!l1e 
beginning of the list. ~·-

50 

3.4. Pereentage of dark-eyed amongst the suns of dark-eyc•l fathers 39 f)Cr 
~. . 

Percentage of dark-eyed amongst the sons of not d.ark-eycd fathers 10 I~er 
cent. , 

If there had been no heredity, the frequencies to the nearest unit wotY:d 
have been (AB)0 18, (A{3) 0 111, (aB)0 121, (a{J)0 750. ;; . 

• 3.5. Percentage of light-eyed amongst the wives of light-eyed husbandsr-6'9 

.per ;:~:~ntage of light-eyed amo:gst the wives of not light-eyed h:1sbands (t~ 
per cent. ~5' 
. If there had been no association: (AB)0 =298, (Ap) 0 =225, (aB).=1~/ 
.( a,8)0 = 108. . ~\: : . 

3.6. The following are the proport!ons o~ the insane per thousand in' succes~_iJe 
age-groups:-- · · 

.'In general population: 0·9, 2·3, 4·1, 5·7, 6·9, 7·5, 7·7, 6·8 l{ 
Amongst the blind: 20·1, 16·0, 16·3, 20·7, 18·3, 17·8, 11·4, 5·3 

Note the diminishing association, which is especially clear in the age-grou-p . 
6!)-:--, a~d the negative associat~on in the last age-group. 'fhc associat'."oll 
cOefficient gives the values below?)vhich decrease continuously: f:'! 

Association coefficiep.t: +0·92, +0·75, +0·61, +0·57, +0·46, +0~-'S'' 
+0·20, -0·13. . 

3.10. + 0·90. 
-t!·ll· -Q;,[O. . · · · 

. · 8.13,. Thl!"trequencies are, for association: 
""'"· <>· (1) (AB) 

(3) 

(aB) 
(AB) 

0 
(AB) 

0 

0 
(a ,B) 
(A ,B) 
( a{J) 

0 
(a8) 
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and for disassociation: 
(1) 

(2) 

(3) 

·ANSWERS. 

0 
(aB) 
(AB) 
(aB) 

0 
(aB) 

(A/1) 
(afJ) 
(A/1) 

0 

(A/1) 
0 

CHAPTER_ 4. 

543 

4.1. . (D)/N = 6·9 per cent • (A)/N 6·8 per cent. 
(AD)/(A) =45·0 " 

(AD)/(D) =44·6 " 
(fJD)/(/1) = 3·6 " 

(A/1)/(/1) = 4·7 .. 
(AfJD)J(AfJ) =·U·2 ... (AfJD)/(fJD) =54·9 .. 

(BD)/(B) =42·7 " 
(AB)/(B) =29·2 .. 

(ABD)/(AB) =51·6 " 
(ABD)/(BD) =35·3 " 

The above give two legitimate comparisons: The general results are the same 
. as for the ,boys, i.e. a very small association between development defects and 
· dulness amongst tho8e exhibiting nerve signs, as compared with those who do 
not exhibit. nerve signs, or with the girls in general. As the association amongst 

. those who do not exhibit nerve signs is quite as high as for the girls in general, 
':_ the •• conclusion" quoted does not seem valid. · ' . 
. -&.2. . (I) (2) 

(B)/N 
(AB)/(A) 
(BC)/(C). 

{ABC)j(AC) 

Per Per 
thousand. thousand. 

3·2 7·5 
14·9 11-7 
38·8 63·0 
216 214 

(A)/N 
{AB)/(B) 
(AC)/(C) 

(ABC)J(BC) 

(I) 
Per 

thousand. 
0·9 
4·0 
6·6 

36·8 

(2) 
Per 

thousand. 
4·0 
6·3 

18·8 
63·8 

, 

. The above give the t,;.o simplest comparisons, either of which is sufficient to· 
! show that there is a high association between blindness and mental derangement 
·amongst the deaf-mutes as well as association in the general population; amongst 
-the old, the association is, in fact, small for the general population, but well· 
marked for deaf-mutes. This result stands in direct contrast with that of 

.Exercise 4.1, where the association between the two defects A and D w~s much 
smaller in the defective universe p than in the universe at large. As previously 
stated, no great reliance can be placed on the census data as to these infirmities. 

-&.3. It the cancer death-rates for farmers over 45 and under 45 respectively 
were the same as for the population at large, the rate for all farmers 1~ would 
be l·ll. This is slightly less than the actual rate 1·20, but the excess would not 
justify the statement that "farmers were peculiarly liable to cancer.'' It is, in 
point of fact, ~ue to the further differences of age-distribution that we have 
neglected, e.g. amongst those over 45 there are more over 55 amongst farmers 
than amongst the general population, and so on. · 

4.4.. 15 per cent. . •. ' · • . 
. ·.' 4.6. It A and B were independent in both C and y universes, we would have 
(AB)equalto . 

- 411 )( 419 151 )( 139 =374·7 . . . . 
617. + 883 

Actually (AB) is only 858. Therefore A and B must be disassociated in one 
partial universe or both •. 
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4.9. (1) 68·1 per cent. (2) 42·5 per cent. The pos.~ible fallacy that a total 
association between "spending more than one·s oppon<'nt" and "winning" only. 
meant that Conservatives spent more and that Conservative prindvles rnrried 
the day is now avoided, and there seems no reason for declining to con~ider this 
as evidence of the effect of expenditure on election results. 

4.10. The limits to y are 
y < l(3z -.r' -1) 

> i(z +.r') 

subject to the conditions y :)- z, y < 0, y < 2z - 1. No inference of a positive 
association from two negatives is possible unless z lies between the limits 
0·382 ... ' 0·618 ... 

4.11. The limits toy are 

(I) y < l(6z -6z'-1) 
> i(z +6.r') 

subject to conditions y < 0, < 4-l-1, :)- z. 
An inference is only possible from positive associations of .AB and AC iC z > l; 

an inference is only possible from two negative associations if z lie between 
0·211 ... and 0·274. • . Note that z cannot exceed l· 

(2) y < !(6z -3z' -1) 
> l(2z +3z') 

subject to conditions y < 0, -t 5z -1, :)- z. 
No inference is possible from positive associations of AB and BC. 

(3) 

An inference is only possible from negative associations if z lie between 0·183 
. and 0·215 . . . Note that z cannot exceed i· 

y < f(6z -2z1 -1) 
> !(3z +2z') 

subject to the conditions y -t 0, -t 5z -1, :)- z. 
As in (2), no inference is possible from posith;e associations of AC and BC; 

an inference is possible from negative associations iC z lie between 0·177 .. 
and 0·224 . . . Note that z cannot exceed 1· 

CHAPTER 5. 
5.1. .A, 0·68; B, 0·36. 
5.2. C=0·02, T=O·OI. 
5.4. The table is not isotropic as it stands. It becomes positively so if the 

columns are arranged in the order .A 1, A 1, A., A., A,, and the rows in or..It>r (from 
top to bottom) n •• n •. B,. 

5.5. C =0·05, T =0·03. 
5.7. C;:b·40. For a large number such as 1000 this is probably &i;;nifirnnt, 

i.e. not due to fluctuations of sampling. From inspectiDn of the taLles the 
contingency is positive, i.e. this evidence would suggest that persons tt>nd~ on 
the whole to prefer music of their own nationality. But there are exceptions, 
e.g. the English. 

In any case these data are purely imaginary, and it is not suggested that they 
reflect in any way the true state of affairs. 

5.8. C=0·23, T=0·17, suggestive of slight association. 
5.10. C=0·10. 



6.1. 1200, 200. 
6.2. 270, 40. 
6.3. 95·75. 
6.4. 216·5. . . 

ANSWERS • 545 

• 
CHAPTER 6. 

6.5. (a) .J-shaped; (b) U-shaped; (c) single-humped moderately asymmetrical; 
(d) .J-shaped in aU three cases. · · 

CHAPTER 7. 
7.2. 14•58. 
7.3. M:ean, 156·73lb. 1\ledian, 154·67 lb. M:ode (approx.), 150·6 lb. (Note 

that the mean and the median should be taken to a place of decimals further than 
is desired for the mode ; the true mode, found by fitting a theoretical frequency 
curve, i~ 151·1lb.) 

7 .4. l\Iean, 0·6330. Median, 0·6391 •. Mode (approx.), 0·651. (T~e mode 
is 0·653.) 

7.5. About £3250. 
· "n+1 

7.6. l\le.an=~· 

7.7. (1~ 82·75, (2) 81·78, (3) 80·25, (4) 80·25. 

7.8. Ariirunetic mean =_!_
1
(2"+1-1) 

n+ 
n 

Geometric mean =22. 

n+1 \ 
Ham1onic mean 

2(1-2,.1+1)" 

7.9. Mean =np. If the tenns 'of the given binomial series are multiplied by 
0, 1,. 2, ••• , note that the resulting series is also a binomial when. a common 
factor is removed. (A full proof is given in Chapter 10.) · 

7.11. (1) 921,507, (2) 916,963. . 
7.12. For N.l\1. specials, 15s. 1d. per 120; f~r ordinaries, 12s. 9d. per 120. 

CIIAPTEH. 8. 

8.2. Standard deviation 21·3 lb. Mean deviation 16·4 lb. Lower quartile 
142·5, upper quartile 168·4; whence Q =12·95. Ratios: m.d.fs.d. =0·77, 
Qjs.d. =0·61. 
· 8.3. Median =£3250, upper quartile =£5000, 9th decile =£8600 approxi

"inately. 
8.4. Q, =24·13 years. Median =27·29 years. Q. =32·19 years. Q =4·08 

years. 
8.5. 2·872. 
8.6. This proposition is equivalent to the one that the.sqnare of the mean of 

a set of positive numbers is less than the mean of the sqURres .. This is proved in 
most text-books on Algebra. , · 

8.8. (1) M=73·2, a=17·3; (2) 111=73·2, a=17·5; (3} 111=73·2, a=18·0. 
(Note that while the mean is unaffected in 'the first place of decimals, the 
~;tandard deviation is higher the coarser the gTouping.) · · • , 

8.9. England, 11=2·55; Scotland, 11=2·48; Wales, 11=2·33; Ireland, 
11=2·15 inches. For the weight distribution a=21·U lb.· 

8.10. V11pq. The proof is given in Chapter 10. 
'35 
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8.11. The assmnption that ohM-n-ations are rvPnly distributed o"'er the 
inten-als does not affect the sum of deviations, exct>pt for the intt-n-al in which 
the mean or median lies; for that interval the sum is ".(0·25 + d'), hence the 
entire correction is 

d(n1 - n1) + n.(0·25 + d') 

In this expression d is, of course, expressed as a fraction of the class-inten-al, 
and is gi"'en its proper sign. 

8.1-i. 3·80, 3·65. 3·53, 8·20. . , 

CHAPTER 9. 
9.1. In class-intervals oliO lb. 

p 1 =4·470, Pa =6·927, p, =89·119; {11 =&537, Pa =-1·-'61. 
Curve leptokurtic. . 

9.2. 0·06, &29, 0·27. 
9.3. p. = 11·375, Pa = 12·705, p, =428·708, in class-inten·als of I gallon. 

{11 =O·UO, {11 =3·313. 
:Aieasures of skewness are 0·027, Q-14, &15. The second is obtained by 

approximating to the mode in the manner of 7 .l6. 
· 9.4.-Beforecorrections, p 1 =7·301, p.=&166, p 1 =163·-'65; 

After corrections, p 1 =6·551, Pa =0·166, p, =132·975. 
· Note that the small negative p.1 in the finer grouping becom~ positin in the 

ooarser grouping. 
9.5. p.1 =npq(q.ip). 

"' =3p'qln1 + pqn(1-6pq). . 
9.6. About the mean, p 1 = 14·75, p 1 =39·75, p, = 1-&2·3125. 

About the origin, p 1 ' =21, isa' =166, p.' = 1132. 
9.8. This proposition is equivalent to that of Exercise 8.6. For U-r.haped 

universes {11 < 2. 
9.9. 1.=7·057, 1.=36·152, Aa=259·335. 

CHAPTER 10. 
10.1. 27·31 per cent. 
10.2. Expected frequencies are: 1, 12, 66, 220, 495, 792, 92-1, 792, 495, 220, 

66,"12, I. 
Expected mean =6; expected a=l·732. 
Actual mean =6·139; actual a=l·712. 

1 
4096 -l!(l·7ul.c-I·U9)1 

Io.a. y I·712V2: 

Ell.-pected frequencies, to nearest unit, are: 2, 11, 51, 178, 438, 765, 951,841, 
529, 236, 75, 17, 3, totalling 4097; (these are oLtainro by simple interpolation in 
Appendix Table 1). 

10.4. 17. 
10.5. If p is -the expectation of getting an enn number, 

"CJJ"rr =2 x •acUJv 
Hence, p =f, and the number of times is 10,000( f)'• =once. 

10.8. The frequency of r successes is greater than tba' of r -1 so k•ng as 
r<np + p; if up is an integer, r =np gives the great~t tenn and &190 the mean .. 

10.9. This follows at once from a consider-ation of the Galton-Pearwn 
apparatus. 



10.10. 

ANSWERS. 

Binomial. 
1 

10 
45 

120 
210 
252 
210 
etc. 

Normal Curv,. 

1·7 
10·.5 
42·7 

116·1. 
211·5 
258·4 
211·5 
etc. 

10.11. l\Iean 74·3, standard deviation 3·23. 
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10.12. About zero mean the deciles are: 0, 0·2533, 0·5244, 0·8416, 1·2816, 
and the Corresponding negative values. . · 

1 . 
- 8585 - 2(2-6 i)l(z- 87-46)l 

10.13. Y-2·57V2/ 

Calculated mean and quartile deviations, 2·05 and 1·73 (observed, 2·02 and 
1·75). These figures are in units of one inch. · · 

10.1-1. Calculated mean and quartile deviations (years), 6·37 and 5·38 
(observed, 5·44 and 4·03). · 

10.15 •• 18. 
10.1~ a=2·267 (uncorrected). 
Theoretical frequencies, 2, 5, 11, 20, 29,.;J5, 35, etc. 
10.17.•Theoretical frequencies, 336·5, 397·1, 234·6, 92·5, 27·3, 6·5, 1·3, 0·2. 
10.18. 11 =1·362, A.=1·766, 1,=2·510. 

CHAPTER 11. 

11.1. a.= 1·414, a. =2·280, r = +0·81. 
X=0·5Y+0·5, Y=1·3X+1·1. 

11.2. r (between X and 11= -0·66; between Y and Z=0·60; between 
Z and X= -0·13. 

11.4.. r= +0·96. 
11.5. (1) -0·41, (2) +0·40. 

CHAPTER 12. 

12.3. From equations (12.11) and (12.12) replace a 1 and a 1 by S1 and S, in 
equation (12.10). Regarding this as an equation for r, note that r1 is a maximwn 
when tan 211 is infinite, or 8 =45°. . • . 

12.4. In fig. 12.1 suppose every horizontal array to be given a slide to the right 
until its mean lies on the vertical axis through the mean of the whole distribu
tion; then suppose the ellipses to be squeezed in the direction of this vertical 
axis until they become circles. The original quadrant has now become a sector 
with an angle between one and two right angles, and the question is solved on 
detem1ining its magnitude. 

12.5. The ellipse is a horizontal section of the surface. Its equation is 

z 1 2rxy y1 · 

1 ---+-.=1-r• 
a1 a 1a 1 a1 

and the standard deviations of sections are the square roots .of the lengths of 
r.1dii vectors of the ellipse. 

12.6. The maximwn and minimum s.d.'s are given by the principal axes, 
wWch leads to equations (12.11) and (12.12). 

For an intermediate value there are two radii \'ectors and hence two sections. 
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12.7. a and b must be n;gative, and ab- h• > 0. 

a •- -1-b- • I a 1 - ab-h•' • a,=- ab-h1 

h 
r=--

v'(lb 

CHAPTER 13. 
13.1. '1 .. = 0-242, '1·· = 0-266. 
13.2. fJ.,, =0·82, fJ •• =0·80. 
13.3. p = + 0·79. 
13.4. If the judges be denoted by I, 2, 3, 

Pu= -0·21, P11 = -0·30, . Pu = +O·M 

This suggests that judges I and 3 have tastes in common, but neither has 
much in common with judge 2. , 

13.5. Q =2/8. 
13.6. Q=0·77. 
13.8. f" = +0·83. 
13.9. f"= +0·22, 11,868 entries. 

CHAPTER 14. 

14.1. 1"11•1 = +~759, 7"11•1 = +0·097, 1"11. 1 = -0·436. 
a1 •13 =2·64, a1 •11 =0·594, a1 . 11 =70·1. 

X 1 =9·31 +3·37X, +0·00364X1 • 

14.2. Ruoal =0·80, R 11111 =0·84, R 31111 =0·57. 
14.3. 1'u.u= +0·680, f"u.u = +0·803, f"u. 11 = +0·397. 

f"u.u= -0·433, 1"11.18= -0·553, ru.u=--0·149 •• 
a 1 • 111 =9·17, a 1 •131 =49·2, a 3• 114 =12·5, 171 , 111 =105·4. 

X 1 =53 +0·127X1 +0·587X1 +0·0345X1 • 

14.4. R 11131 =0·64, R 111811 =0·72. 
14.5. (X1- 19·9) = 4·51(X8 - 49·2)- 0·88(X1 - 30·2) 

'a&. I = - 0·03. 
1"15•1 = + 0·25. 
f"n.aa= +0-23. 

Raliaaal = 0·77 • 
14.7. Numberoforders=n x•-1C, 

- 0·072(X,- 48H)+0·63(X1 - 41·6). 

Total number , = n(2•-1 -1} . 
This includes coefficients of type R 1111 and CO\Wts R 1111 as different from R 1111 • 

14.8. The correlation of the pth order is r/(1 +PT)· Hence if r be negative, 
the correlation of order n - 2 cannot be numerically greater than unity and r 
cannot exceed (numerically) 1/(n -1). 

14.9. f"u.a= -1, ru.a=f"oa.a= +1. 
14.10. f"u.a =f"u.a =f"aa.a = -1. 

CHAPTER ·16. 

16.1. Estimated true standard deviation 6·91; standard deviation of fluctua
tions of sampling 9·38. (The latter, which can be independently calculated, is 
too low, and the former consequently probably too high. Cf. 19.30.) 

16.2. 0·43. 
16.3. 58 per cent. 
16.4. 17

1
1 /'Y (,--17-1~1 _+_17_

1 
•"'")7( 17-.-=-,-+-17-,:::,) 



16.5.- ' aqt 

"a•ql• +b'q•' 
16.6. 0·29. 

A~SWERS. 

1 
16.7. r =---( -a'11 1 -b111 1 +c'q •) 

11 2abl7111t .1 I I 
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The others may be written down from symmetry. 
16.8. (1) ~o effect at all. (2) If the mean value of the errors in variables is 

d, and in the weights e, the ,--aiue found for the weighted mean is : 

e 
The true value +d -r.o-•• 11,. -(w ) 

u; +t' 

If r is small, d is the important term, and hence errors in the quantities are 
usually of mvre importance than errors in the weights. If r become considerable, 
errors in the weights may be of consequence, but it does not seem -probable that 
the lill'"COnd term would become the mo!>-t important in practical cases. · 

16.9. r= +9·036. · 

• CHAPTER 17 . 
• 

17.1. J.ine: 1"=2·58 +1·13(X -2) 
Quadratic: Y =1·48 +1·13(X -2) +0·55(X -2)1 

Cubic: Y =1·48 +0·025(X -2) +0·55(X -2)1 +0·325(X -2)1 

Sums of squares of residuals: 5·819, 1·584, 0·063. 
17.2. If r is the anrage nwnber of children for the duration X to X +I 

years: 

Line: 1' =3·8U +0·887( ~ -3) 
( X ) !U.(X )

1 

Quadratic: Y =-&·351 +0·887 5 -3 -0·1~\S -3 

Cubic: Y=-1·351 +0·36~(~ -3) -0·1:u{~ -3 )' -0·00361(~ -s)' 
., 

l'or X =11 the three \-alues are 4-11; 4·68, -&·69. 
17 .3. , = 1·42. 
17.4. X =Gross output per £100 labour, Y =gross output. 

1' =48·33 + 0 2375X - 0·00005546X• 

CHAPTER 19. 

19.1. Tbeo. Jl=6, o-=1·732: Actuat"111=6·116, a=1·732. 
19.2. (a) Theo.11J =2·5, a=1·118: Actual lit =2·48, a =1·14. 

(b) 111=8, o-=1·225: , 111=2·97, o-=1·26 .• 
(l') , lll=3·5, a=l·323: , llf=3·-&7, o-=1·•1-0. 

19.3. The ~>tandard deviation of the proportion is 0·00179, and the actual 
divergence is 5·-t. times this, and therefore almost certainly signifiC~<nt. -

19.4. The standard de,·iation of the number drawn is 32, aml the actual 
difference from expectation 18. There is no &ignificance. 

19.5. Diffen·nce from expectation 7·5; standard error 10·0. The di!Terl'nce 
might thert:fore oc-.cur frequently as a fluctuation of sampling. · 

19.6. Standard error of proportion of bad eggs= 1·6536 per cc~t. A r-.mge of 
three tin1e11 this gi\·e11 range of 7·5 per cent. to 17·5 per cent. Bf>pro"ximately. 



550 THEORY OF STATISTICS. 

19.7. The test can be applied either by the formurre of Case '2 (19.28) or 
those of (;ase 8 (19.29). Case 2 is taken as the simplest. 

(AB)/(B) =70·1 per cent.; (AP)/(P) =6-i-3 per cent. 
Difference 5·8 per cent. (A)/N =67·6 per cent. and thence Eu =8·40 per 

cent. The actual difference is 1·7 times this and might, rather infrequently, 
occur as a fluctuation of sampling. . ·. 

19.9. Difference of proportions =,-\r, Eu =0·033. Difference significant. 
Similar conclusions follow if the formulre of Case 8 (19.29) are applied. 

19.10. Proportion =86 per cent. Limits 82·4- 89·6 per cent. The sampling 
is almost certainly not simple. Possible cuuses are: (a) nature of subject-matter 
might require words of cert!'in type, e.g. scientific words probably would not be 
Anglo-Saxon; (b) the occurrence of one word influences the occurrence of the 
next. 

19.11. If there are / 1 samples of n 1 individuals each, / 1 of n 1, etc., 

~s•=pq(h+f!+ .) 
. n 1 n 1 

a• =1?!! 
II 

19.12. Standard error of expected proportion =23·05 per cent. 
Standard deviation of actual distribution =23·09 per cent. 

19.13. Standard deviation of simple sampling 23·0 per cent. The actual 
standard deviation does not, therefore, seem to indicate any real variation, but . 
only fluctuations of sempling. -

19.14. 8 0 =7·02, and aP =2·5 units. . 
19.15. a• =npq as if the chance of success were p in all cases (but the mean 

is nf2, not pn). . · 
19.16. Mean number of.deaths per annum=a0

1 =680, 

20.1. P=0·1773. 
20.2. p =0·9595. 

a• =566,582 r =0·000029. 

CHAPTER 20. 

20.3. Median: Estimated frequency= 1554. Standard error 0·28 lb. 
Lower Q: frequency 1472. Standard error 0·26 lb. 
Upper Q: frequency 1116. Standard error 0·34 lb. 

20.4. 0·18 lb. • 
20.5. 0·24 lb., 14 per cent. less than the s.e. of the median. 

· 20.6. Estimated frequencies: Q1 =67,548, Mi=63,152, Q3 =30,48S. 
Standard errors (years) 0·011, 0·013, 0·023. 

20.7. Standard error ofmean=0·015 years. 
20.8. Standard error of quartiles 0·020 years. 

(J 

20.9. vii x 1·34270. 

20.10. £ 11 =1-36 shillings. Difference of means 2 shillings. Difference 
hardly suggestive of real effect.. .• 
· 20.12. Yes, one might, because the results on farms in successive years are 
correlated. 

20.13. Mean = 5·613; s.e. of mean 0·10. · 
1\ledian =8·128; s.e. of median 0·21. · 

20.14. p =0·309. 
20.15. £450,000; £1,350,000. 
20.16. 0·72 inch. 



ANSWERS. 

CHAPTER 21. 

21.1. Standard t>rror =0°223 lb. 
On basis of normal distribution = Ool70 lb. 

21.2. Oo011, OoOU. 
0" 

21.3. S.e; of s.d. =0·707--r-
0 Vn 

0" 
S.e. of Q =0·787. r 

vn 
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21.4. Difference of s.d.'s Oo2. On the assumption of normality Eu =0·088. 
Difference might therefore arise, rather infrequently, as sampling fluctuation. 

21.5. r= - 0·008 for height distribution, r= + 0·71 for marriage distribution • 

• 0"~ = l'c -I' a= 2ue for normal crnve. 
~• n n 

:1 Jl -tt 1 -6p !11+9p
10 

6uC . 
u = c • • • =- for normal curve • 
• Aa n . n 

•• 1 • 
• o-Aa =:'n!36p."(l'c- 1'•1

) +(Jie- l'c1 -8p,p,) 

24o4 =-- for normal curve. n 

+ 16J.1al'a1 -12pa(Pe -P•I'• -41'a1H 

21.7. For the 6th and lower moments. 
21.9. Standard errors are 0·0176, Oo0158, Oo0263, ·and resl,llts might all have 

arisen from an uncorrelated universe; if the universe were actually uncorrelated, 
the standard errors would be the same to the number of places given, owing 
to the smallness of r. . · 0 

- 21.10. Standard errors Oo0758, 0°1308; 0·0850, and the correlations are all 
significant. 

CHAPTER 22. 

22.1. x• =5·811, , =7, P =0·56. 
22.3. z• =4·3, "=9, P =0·89. The hypothesis seems reasonable. 
22.5. x• =27·94, "=4, P =0°000012. The association is significant. 
22.6. z 1 =0°7080, "= 1, P =0·400. The diverge.nces from expectation may 

well have arisen by sampling fluctuations. · ' . 
22.7. Use the result that for large n, z1 is distributed approximately normally. 
22.8. z•=27·68, •=4, P=O·OOOOI. The data are very suggestive of 

association. , 
22.11. x• =13ol5, • =2, P =0°0014. This is rather low and we suspect the 

sampling to be non-random. 0 

22.12. x• =9o993, • =3, P =0°018. Not a very good fit. (In this Exercise 
the last four frequencies have been grouped together and 11 reduced by unit] to 
allow for the estimation of the mean of the Poisl>{ln distribution.) 

22.14. X,1 =0°4700, II =3, p =0°943 (by direct calculation). 
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CHAPTER 23. 

28.1. I= -0·664, •=9, P=0·738. 
The probability that we should get a ,·alue of I great~r in ab1t0lute l'I.IIue is 

0·524. 
23.2. The differences in the returns, including rost of manure, have mean= 1, 

.a.• =1·375, I =1·907, • =4, P=0·935. Assuming that distribution of differences 
is normal, a greater Yalue would arise about 65 times in 1000. There is some 
reason for supposing that the increased rrturns on the betrer manur!"d vlot are 
real. and that it would therefore pay to continue the more expt"nsive dresl-ing.. 

23.3. Applying the I rest for two samples, 
J=0·0991, •=U,, P=O·M 

There is nothing in this test to suggest that unh·enes were unlike as regards 
height. 

23.4. %=0·1761, 111 =9, • 1 =5. The dif!'erence of standard deYiations is not 
significant. C.C>upled with Exercise 23.3, we conclude that there is no ground for 
supposing the two universes different as regards height. 

23.5. Applying the t test for two samples, 
1=2·683, •=4, P=0·972 

The difference of means is likely to be significant, which supports the 
suggestion. 

. 1+r 1 
23.6. ,z =!log. 1 _ r = - 0·5-'9 a=-= =0·2887 v12 

' The observed de,iation is suggestive, but not decish·e. 
23.8. P=0·0048. For the standard error formula P=0·()0()()()78. 
23.9. All significant. 
23.10. All significant. 
23.12. Significantly non-linear. 

CIL\PTER 2-l.. 

2-U. 0·93877, 0·93823, 0·93822. 
2-'.2. 0·823632, 0·818050, 0·817939. The inclusion of the third difference 

affects only the fourth place by a single unit, so ·we can probably trust the 
answer to four figures. 

21.3. Using logarithmic interpolation, the successive approximations are: 
0·11200, 0·10044, 0·09963. Second difference interpolation using the last three 
data only gives 0·09859. It looks as if we could trust the figure as about 0·100 
or 0·099. 

24.4. 4195, 4443, 472-', 5036, 5380. 
2-'.7. 11·388 approximately. 
24.8. Median 4·892-i, 4·8869. First decile 1·94 74, 1·9572. ~inth decile 

8-4286, 8·3733. As we would probably state such figures only to two decimal 
places, the median would not be appreciably affected by taking second differ
ences into account, but the deciles would be slightly corrected. 

24.9. 1\laximum at 1·336, or day 40, 25th July, '-alue 63·7. 
Minimum at 1·18-J,, or day 35·5, 2oth-21f.t January, \"Blue 38·0. 

. These es;timates are very poor. The maximum is actually 63·4 on 15th-lith 
July, and the minimum 37·9 on 8th-12th January. 
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ABILITY, General, refs., 513. 
Absolute measures of dispersion, 149. 
Accidents, Deaths from (Poisson distribu· 

tion), 191. 
-, Frequ~ncy- distributions, refs., 506, 

508 •• 
AchenwaJJ., Gottfried, Abriss der Staats· 

u-iumsc1•aft, footnote, 5. 
Additive property of x",·426-427. 
Adyanthaya, N. K., refs., Sampling, 523. 
Ages at death from IIC&rlet fever (Table 

6.11), 100; (fig. 6.11), 101. 
- of cows correlated with milk-yield; su 

llilk-yield. 
-of husband and wife (Table 11.2),198; 

constants, 220-221; correlation ratios 
{Ex. 13.2), 259. 

Aggregate_ of classes, 14. 
Agricultural labourers' earnings; see 

Earnings; minimum wage-rates, 137; 
calculation of mean and standard 
deviation, 136-138; of median and 
mean deviation, 145-l.W; of quartiles, 
147. 

Agricultural !llarket Report, data cited 
from (Table 11.7), 203. 

Airy, Sir G. B., Use of term "error of 
mean square," 144. 

Aitken, A. C., refs., Applications of gener· 
ating functions to normal frequency, 
505; fitting polynomials, 514, 515. 

Allan, F. E., refll., Jo'itting polynomials, 
515. 

Ammon, 0., Hair· and eye-colour data 
cited from (Table 5.2), 66. 

Analysis of variance, ~9; use in 
testing significance of correlation ratios, 
453--4.55; of linearity of regression, 
455-456; of multiple correlation co
elficit>nt, 456-458. 

Analysis Situs, refs., Uotelling, 512. 
Anderson, 0., refs., Einfiihrung in die 

,UJtllnnatiJ<cl.e Stnlistik, 496; KQf'Ttla
tiorutrtchnung, 512:, correlaijon, 512. 

Animal feeding-stuffs, Index numbers of 
prices of, correlated with price-index of 
home-grown oats (Table 11.7), 203; 
215-218. 

Annual value of estates in 1713 (Table 
6.12), 105; (fig. 6.13), 103. 

. Approximations in the theory .of large 
samples, 379-380. 

Arithmetic mean; set Mean, Arithmetic. 
Array, Def., 196; type of, 196; standard 

deviation of, 206, 214, 242, 266-268; 
homo- and betero-scedasticity, footnote, 
214; in normal correlation, 230, 232, 284. 

Association-generally,· 34-64; def., 37; 
degrees of, 88; testing by comparison 
of percentages, 39-43; constancy of 
difference from independence values 
for the second-order frequencies, 43; 
coefficients of, .f..i-45; illusory or mis
leading, 57-58; total possible number of 
associations for n attributes, 55-56; 
case of complete independence, 60-62; 
use of ordinary correlation coefficient 
as measure of association, 252-253; 
tetrachoric r as coetncient of association, 
251-252, 253;. refs., 499-500, 510. 

Association, Partial-generally, 5()...6.i; 
total and partial, def., 50-51; arith· 
metical treatment, 52-55; number of 
partial ·associations for n attributes, 
55-56; testing, in ignorance of third
order frequencies, 58-60; refs., sop, ~ 

-, Examples: inoculation against cholera, 
40, 42-43; deaths and occupations, 
59-60; deaf-mutism and imbecility, 
40-41 ; eye-colour of father and son, 41; 
eye-colour of grandparent, parent and 
offspring, 53-55, 60; colour and prickli· 
ness of Datura fruits, 4'; defects in 
school-children, 52-53. 

Asymmetrical frequency-distributions, 94-
101; relative positions of mean, median 
and mode in, 125; diagram, liS; see 
ahof'requency-distributions; Skewness. 

553. 
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Attributt>s-theory of, generally, 11-81; 
deC., 11; numerically defined, 77-78; 
notation, 1~-14; positive and nt>11ative, 
13; ordt>r and aggregate of classt>s, 14; 
ultimatt>classt>s, 15-16; positive classes, 

. 17; consistence of class-frequencies, 
l!tl--31 (.,ee also Consistence); associa
tion of, 84-49 (see also Association); 
sampling of, 850-372 (see also Sampling 
of attributes). · 

A~JStralian marriages, Di~tribution of, 96; 
lfig. 6.8), 97; calculatiOn of mean and 
standard deviation, 14G-141, 142; of 
third and fourth moments, 158-159, 
160; of {31 and {32, 161; median and 
quartiles given, 164; calculation of 
skewness, 164; of kurtosis, 165; stan
dard error of mean (Ex. 20.7), 392; of 
median and quartiles (Exs. 20.6 and 
20.8), 392; of standard deviation, 401; 
correlation between errors in mean and 
standard deviation (Ex. 21.5), 412. 

Averages-generally, 112-114; def., 112~ 
desirable properties of, 113-114; forms 
of, 114; average in sense of arithmetic 
mean, 114; refs., 501-502. See also 
MeanfMcdian, Mode. 

Axes, Principal, in correlation, 231-232; 
in fitting straight lines to data, footnote, 
314. ' 

BACHELlER, L., refs., Calcul des prob-· 
abilitis, 495; Le jeu, · la chance et le 
hasard, 495. 

Baker, G. A., refs., Sampling of variables, 
517, 521; of correlation coefficient, 521. 

Barlow, P., Tables of squares, etc., 71; 
refs., 524. · 

Barometer heights (Table 6.10), 99; (fig. 
6.10), 99; means, medians and modes of, 
125; modes of, 488. 

Bartlett, l\1. S., refs., Sampling (under 
Wishart), 520. 

Bateman, H., refs., Poisson distribution 
(under Rutherford), 506. 

Baten, W. D., refs., Moments, 504, 509; 
frequency-distributions, 507. 

Batt'son, \V., Data citl'd from, 44. 
Bayes, T., refs., Doctrine of chances, 521. 
Becker, R., refs., Anwendung der math. 

Statistik auf Probleme der .Massen
fabrikation, 497. 

Bet'tles (ChrysomelidC£), Sizes of gent'ra 
(Table 6.18), 106. 

Benini, R., refs., Principi di. Statistica 
JUetodologica, 526. 

Bennett, T. L., refs., Cost of living, 503. 
Berkson, J., refs., Bayes' theorem, 521. 
Bernoulli, James, Binomial distribution, 

169; refs., ATB Ctmjeclandi, 505. 
Bertillon, J., refs., Cours elCmentaire de 

sUitistique, 499. ~ 
Bertrand, J. L. F., Quotation on chance, 

839; refs., Calcul des probabilitts, 495. 

"Best fit," of rel(res~ion linf'~ and poly
nomials, R8 given by mP.thod of lt>nst 
squares, 209-210, 202-264, 811, 813--
314. 

Beta-function, 444; tablt'~, rf'fR., 525 • 
Bias in sampling, 8!16, 337-8:19, a.t6--3-l7; 

human bia~t, 3::17-!l!l!). 
-in scale reading (Table 6.4.), 86. 
Di<·lfeld, Baron J. F. von, t:se of word 

"statistics," 4. 
Binomial distrihution, 169-180; genl'sis 

of, in numbers of trials of events, 169--
170; calculated series for certain vnlu,.s 
of p and n (Tables 10.1 and 10.2), 172; 
general form of, 171-173: mt'an and 
standard deviation of, 173-174; third 
and fourth momt'nts of. 17 4.; {1-
coefficients of, 174--175 (Tables 10.3-
10.5); mt'chanical representation of, 
175-176; dt'duction of normal curve 
from, 177-180; of Poisson distribution 
from, 187-189; in sampling of attri
butes, 351, see Sampling of attributt>s; 
refs., 505-508. 

Birge, R. T., refs., Fitting polynomial>~, 
515. 

Birth-rate, Data on (Tahle 6.1), 83; 
standardisation of,-306; rt'fli., 5U. 

Bispham, J. \V., refs., Sampling of partial 
correlations, 517 • 

. Bivariate distributions, 196; normal sur
face, 227-228. 

Blackman, V. H., quoting data of Ashby 
and Oxley on duckweed (Table 17.3), 
317. 

Blakeman, J., refs., Tests for linearity of 
regression, 514, 517; probable l'rror of 
contingency coefticit'nt, 517. 

Boldrini, 1\I., refs., Variation, 527; Stal-
istica, 526 .. 

Booll', G., refs., Laws of Thought, -1.99. 
Booth, Charles, on pauperism, 289-290. 
Bortkiewicz, L. von, Data of deaths from 

kicks by a horse, as Poisson distribution, 
191; refs., Poisson distribution, 506; 
sampling, 517. 

Bowll'y, A. L., refs., Cost of living, 503; 
index-numbers, 503; Prices and Wa~es, 
503; sampling methods, 516; effect 
of errors on an average, 520; test 
of correspondence bt'twl'en statistical 
grouping and fonnulre, 520; Edge· 
worth's contributions to mathematical 
statistics, 521. 

Bravais, A., refs., Correlation, 509. 
Breaking-up a group, in interpolation, 

477-479. 
British Association, Data cited from, 

Stature (Table 6.7), 114; weight (Ex. 
6.6), UG-111; see Stature; Weh:ht; 
refs., Rt'ports on Index-1mmbers, 5113; 
mathematical tablt's, 525. 

Brown, J. \V., refs., Index-correlations, 
511, 513. 
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Brown, ,V., refs., Effect of t"xpf"rimental 
f'rwrs on the rorrelation coefficient, 513; 
The El!stnlial.~ of .Uental .llefl8urement, 
4!16. 

Brownlee, J ., refs., Fl'f'quency ·curves 
(epidemiology and random migration), 
508. 

Bruns, H., l'f>fs., Wa.'trsclieinlichkeitsrech
nmrg und Kollektit·ma.•&lehre, 495. 

Brunt, D., refs., 7'he Combination of 
Obsl!TI.·atimls, 4!16. 

Burnside, W., refs., Thtory of Probability, 
495. 

C AMBRIDGESIUBE, Mortality in, 468. 
Camp, B. H., refs., Normal hypothesis, 

50J; integrals for point binomial and 
hypergeometric st"ries, 507; corl't"lation, 
511 ; Tchebycheff's inequality, 521; 
sampling, 521. 

Cantelli, F., refs., Interpolation, 526; 
probahility •. 527; variation, 527. 

Cards, Punched, for recording of data, 
76-77; for sampling, 840. 

Carroll, Lewis (pseudonym), Ex. 1.10 
dted from, 24. 

Carver, H. ~ .• refs., Sampling, 518. 
Ca8tellano, V., refs., Variation and con

centration, 527. 
Cause and effect, 2-3. 
Cave, Beatri<'e 1\l., refs., Correlation, 

512. 
Cave-Browne-Cal'e, F. E., refs., Correla

tion, 512. 
Cells, in x• test, 413-414. 
Census (England ami Wales), Tabulation 

of infirmities in older, 22; data as to 
infirmiti~ cited from, 40; classifica
tion of occupations, as exaiJlple of a 
hetero:r<'nf'Ous classification, 75; data 
aa to deficiency in room space, quoted 
from Housing Report, 77; classitieation 
of ages, 86; data as to number of males 
cited from, 481 ; refs., 501. 

Chant.oe, in sense of complex causation, 38; 
of succ·e~s or failure of an el'cot, 169-
170, a:;o; in definition of "random
ness," 336. 

("J.an.'es, Small, 191; Bee Poisson distribu
tion. 

Charlier, C. V. L., Cbeck, in calculation of 
mo111ents, 13'6; alternative approad1 
in sampling of attributes, am~-3U9; 
ref ... , Theory of frequency curves, 
r<'~olution of a compound normal curve, 
507. 

Cht:bychelf, Chebyshelf, aee Tchebychelf. 
l'hesllil'f', L., refR., Sampling of col'l'(')ation 

coetlieient, 5~2. 
Clri·S'JUarerl, /lee x•. 
Childbirth, DeathFI in, Applimtion of 

theory of sampling (TaMe 19.1), 364, 
31!3-36,';. 

Chokhate, J., Bet: Shohat, J. 

Cholera and inoculations, Illustrations, 
40,42,420,426-427. 

Chotimsky, V., refs., Curve fitting, 515. 
ChrysomelidCP, Distribution i of size of 

genus (Table 6.13), 106. 
Chuproff, Chuprow, see Tschuprow. 
Church, A. E. R., refs., Sampling from 

U-shaped population (under Holzinger), 
518; sampling moments, 522. 

Class, in theory of attributes, 12; class 
symbol, 12; class-frequency, 13; posi
tive and negative classes, 13-14; order 
of a class,14; ultimate classes, 15-16. 

Class-interval, Def., 82-83; choice of 
magnitu'de and position, 85-86; desir· 
ability of equality of intervals, 82, 88-
89; influence of ma!,'llitude on mean, 
118, 119-120; on standard deviation, 
141; on third and fourth moments, 
160. 

. ·classification-generally, 11-12; by di
chotomy, def., 12; manifold, 65-81; 
homogeneous and heterogeneous, 7 4-7 5: 
as a series of dichotomies, 75-76; of 
data on punched cards, 76-77; of a 
variable for frequency-distribution or 
correlation table, 82-88, 197-198. 

Closeness of fit, see Fit, xz. · 
Cloudiness at Greenwich (Table 6.14), 

106; (fig. 6.15), 104. 
Coefficient. of association, 44, 45, 55, 

(standard error) 410; of contingency 
(Pearson's), 68-69, (standard error) 410, 
(Tschuprow's) 70; of variation, 149-
150, (standard error) 405-406; of rank 
correlation, 246-249, (standard error) 
410; of correlation, partial correlation, 
multiple <'Orrelation, Bee Correlation. 

Colcord, C. G., Bee Deming. 
Coloul'8, Naming a pair, Example of 

contingency (Ex. 22.5), 432. 
Complete beta-function, refs., Tables, 525. 
- elliptic integrals, refij., Tables, 525. -
Complex frcquen<'y-distributions, 103," 105. 
Concentration, refs., 527. 
Condon, E., refs., Curve fitting, 515. 
Connor, R. L., refs., Tests of correspond-

ence between statistical grouping and 
forrnul~e (under Bowley), .520. 

Consistence of class-frequencies- gener
ally, 26-81; def., 26; conditions for, 27; 
conditions for, in the case of positive 
claHs·frequendes, 27-20; refs., 499. 

Consistence of correlation coefficients, 
280-281. . 

Constrained data, in Lexis' sense, 809. 
Constraints, in x• distribution, 414-415; 

linear con~StraintR, 415. 
Coutingeney, Cot:flicient of (Pearson's), 
68~9; (Tschuprow's), 70; relationship 
with normul correlation, 239; standard 
error of, 410: refs., 500-501, 517-52!1. 

Contingency tables, Def., 65-66; treat
ment of, by elementary methods, 67; 
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isotropy, 72-7-', 237-239; dcgrPes of 
frl'('dom in, 415-416; testing of diverg
enee from independrnce, 418--421. 

Contrary classes and frequencies, for 
attributes, 13; case of equality of 
contrary frequencies (Exs. 1.6 and 1.7), 
23; (Ex. 2.8), 32; (Exs. 4.7, 4.8 and 
4.9), 04. 

Correction of correlation coefficients for 
error~~ of observation, 298-299; for 

. grouping, 221-222. 
- of dcath-rates, etc., for age and aex 
. distributions, 305-306; refs., 514. 
-of standard deviation, for grouping of 

observations, 141; of moments, 160, 
399; comparison of corrections with 
sampling effects, 402; refs., 504-505. 

Correlation-generally, 196-808; con
struction of tables, 106-198; repre· 
scntation of bivariate frequency-dis
tribution by surface and stereogram,. 
198-204, by scatter diagram, 205-206; 
treatment of table by coefficient of 
-contingency, 206. · 

Product-moment correlation co-effici
ent, 209-213; def., 209; equations and 
lines of regression, 206-211 ; lin<."ar and 
curvilinear· regression, 207, 2-12-248; 
coefficients of regression, 218; standard 
deviations of arrays, 214, 242; calcula
tion of correlation coefficient for un
grouped data, 214-215, 215-218; for 
grouped data, 218-221; effect of fluctua
tions of sampling on, 221 ; correction for 
grouping, 221; elementary methods for 
cases of curvilinear regression, 242-
248; rough methods for estimating 
coefficient, 241-242; correlation ratios, 
243-246; effect of errors of observation 
on the coefficient, 298-209. 

Rank correlation coefficient, 246-
251; relationship with product-moment 
coefficient, 249 ; grade correlation, 249-
251; tetrachoric r, 251-252; coefficient 
for a fourfold table, direct, 252; intra
class correlation, 253-258; expression 
for coefficient, 256-258 ; limits to 
negative values of, 256-257; correlation 
between indices, 30~01; correlation 
due to heterogeneity of material, 301 ; 
effect of adding uncorrelated pairs to 
a given table, 301-802; application to 
theory of weighted mean, 302-305; 
correlation coefficient in theory of 
sampling, 407-408; small samples, 
449--453; refs., 509-514, 517-524; for 
Illustrations, Normal, Partial, Ratio, see 
below. 

Correlation, Illustrations and Examples. 
Correlation between: 

Two diameters of a shell (Pectm)," 
(Table 11.1), 197; constants (Ex. 11.3), 

- 2:.!5. 
Ages of husband and wife (Table 

11.2), 1118; conAtants, 220-221; corre
lation ratios (Ex. 13.2), 2.>9. 

Statures of father and son (Table 
11.3), l!l!l; (fiJt. 11.3), fnring 204; (li,r. 
11.8), 211; COI!Rfants (Ex. ll.R), 2:!j; 
correlation ratio~, 246; te~tin~t nor
mality of taiJir, :!:J2--2!39; dial,!ram of 
diagonal distribution (fig. 12.2), 23-', 
of contour line'! fitted with t>llip~cs of 
normal surfare (fig. 12.3), 2:l0 . 

Age and yield of milk in cows (Table 
11.4), 200; (fit,!. 11.9), 212; conRtant 
(Ex. 11.3), 225; correlation ratios 
(Ex. 13.1 ), 250. 

Discount rates and percentage of 
reserves on deposit (Table 11.5), 201; 
(fig. 11.2),facing 204. 

Sex-ratio and numbers of births in 
different districts (T11ble 1l.fl), 202; 
(fig. 11.10), 213; ·constants (Ex. ll.li), 
22ii; correlation ratios, 246. 

Monthly index-numbers of prices of 
animal feeding-stuffs and home-grown 
oats (Table 11.7), 203; scatter dia1Jram 
(fig. 11.4), 205; constants, 2la-2IIi. 

Length of mother- and daughter
frond in Lt>~nna minor, 218-220. 

\Veather and crops, 291-292. 
1\Iovements of infantile and general 

mortality, 292-291. 
Movements of marriage rate and 

foreign trade, 291--296. 
Earnings of agricultural labourers, 

pauperism and out-relief (Ex. 11.2), · 
'224; partial correlations, 27()-272; 
geometrical representation (fig. H.1 ), 
276. 

Changes in pauperism, out-relief, pro
portion of old and population, 2M8-291 ; 
partial correlations, 272-27.;. 

Correlation, Normal, 227-2-10, 282-2!'16; 
deduction of expression for two Yari
ables, 227-220; homoscedastieity and 
linearity of regression, 229--231; con
tour lines, 28()-231; normality (Jf linear 
functions of normallv distributed vari
ates, 231; principal axes, :!:H-232; 
testing of correlation table for stature, 
232-237; isotropy of normal correlation 
table, 237-2:19; relationship with con
tingency, 239; outline of theory for 
any number of variabl<•s,. 2M2-2~6; 
coefficient for a normal dtstnbutJOn 
grouped to a fourfold form round the 
median& (Sheppard's theorem), (Ex. 
12.4), 2-10; refs., 50!1-511. • 

Correlation, Partial, 261-287; the prob
lem, partial regressions· and coryela· 
tions, 261-262; notation and definitiOns, 
263-2t>4; normal equations, funda
mental theorPms on product-sums, 2ti:.!-
263, 265--266; meaninj;! of generalised 
regressions and correlations, 2ti6; re
duction of standard deviation, 266-268, 
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of reg-ression, 268-269, of correlation, 
269; arithmetical treatment, 269-275; 
representation by a model, 275--277; 
coeftident of multiple correlation, 277-
279; expression of correlations and 
regressions in terms of those of higher 
order, 279-280; consistence of co
efticients, 2~281; fallacies, 281-282; 
limitations in interpretation of the 
partial correlation coefficient, partial 
8Sil<X'iation and partial correlation, 282; 
partial correlation in the·case of normal 
distribution of frequency, 284; refs., 
511-512. 

Correlation-ratios, 243--246; relation with 
· measure of closeness of fit of simple 

curves, 329; standard error, 409; test 
. of significance of, 453-455; partial, 282; 
refs., 510, 511, 514. 

C.osin, Values of estates in 1715 (Table 
6.12). 105. 

Cost or living, refs., 503. 
-per unit of ele..-tricity, s~e Electricity. 
Cotswortb, ~~- B., refs., . Multiplication 

table, 524. 
Coutts, J. R. H., Data quoted from (Table 

17.5), 32Z. 
Cows, Distribution according to age and 

milk-yield, su 1\lilk-yield. 
Craig, C. C., refs., Seminvariants, 505, 518; 

sampling, 518, 522. 
Cramer, H., refs., Series used in mathe

matical statistics, 507. 
Crall1'ord, G. E., refs., Proof that arith

metic mean exceeds geometric mean, 502. 
Crelle, A. L., refs., 1\lultiplication tables, 

525. 
Criminals, Relation between weight and 

mentality (Table 5.6), 78. 
Crops and weather, Correlation, 291-292. 
Cunningham, E., refs., Om~ga-functions, 

507. 
Cun·e- fitting, General, 309-331; the 

problem, 309-311; mt>thod of lt>ast 
ttquares, 311-313; equations for fitting 
polynomials, 312-313; equations for 
straight lint>, 313-314; calculation, 
::11-l--315; reduction of data to linear 
form, 316-320; fitting of more general 
polynomials, 320-324; case when indt>
pt'ndt>nt variable proceeds by equal 
~ott'ps, 325-327; calculation of sum of 
squarl'tl of rl'lliduals, 327-328; mt>asure
ment of closeness of fit, 328--329; 
rel<>tion~hip of measure with correlation 
ratio and nmltiple correlation coellicicnt, 
a29; general rt>marks, 324, 329; refs., 
51-'--515. 

Curvt> fitting,lllustrations and Exampll'tl: 
Estimated distance and vt>locitv of 

rE'<'t>ssion of extra-galactic nebulre (Table 
17.1 ), 309-310; (fig.l7.1), 310; straight 
line fitted to, 315-316; measure of lit, 
329. 

Growth of duckweed (Table 17.:!). 317; 
(fig. 17.2), 317; logarithmic curve fitkd 
to, 316-318. 

Working costs per unit. and units 
sold per head of population in certain 
Electricity l'ndertakings (Table 17.4), 
320; curve fitted logarithmically, 318-
321; (figs. 17.3 and 17.4), 319 and 
321. 

Temperature and loss in weight in 
soil (Table 17.5), 322; parabolas fitted 
to, 320-32-'; (fig. 17.5), 324; sum of 
squares of residuals, 327-328; closeness 
of fit, 329. 

Growth of population in England and 
Wales (Table 17.6), 326; parabola 
fitted to, 325; (fig. 17 .6), 326. 

Curvilinear reg-ression, su Regressions . 
Czuber, E., refs., WahrscheinlichkeitSTtch

nung, 496, 505; Die statistische Forti· 
chungsm~Uwde, 496. 

DARBISHIRE, A. D., Data cited from, 130, . 
(Exs. 19.12 and 19.13), 372; refs., illus
trations of correlation, 509, 516. 

Darmois, G., refs., Time series, 512; 
Statistiqtu mathimatiqtu, 496. 

Data, Remarks on collection of, 6-7; on 
treatment of, 7; on summarisation of, 
7-8; on analysis of, 8-9. 

Datura, Association between. colour and 
prickliness of fruit, 44, 432 (Ex. 22.6). 

Davenport, C. B., Data a.s to Pecten cited 
from (Table ll.1), 197. 

David, Census of Israelites, footnote, 2. 
Davis, H. T., refs., Curve fitting, 515; 

(Editor) Tables of Higher lUatlu-matical 
Functiom, 525. 

Day, E. E., refs., Statistical Analysis, 496. 
De Finetti, B., refs., Variation, 527. 
De Jllorgan, refs., Formal Logic, 499. 
De Vergottini, 1\1., refs., Variation, 527~ 
De Vries, H., Data cited from (Ex. 6.5 

(d)), 110. 
Deaf-mutism, Association with imbecility. 

40-41, 45; frequency among offspring 
of dt>af-mutes (Ex. 6.5 (b)), 109. 

Deaths or death-rates, Association with 
occupation (partial correction for age
distribution), 59410; from IK'arlet fever 
(Table 6.11), 100; (fig. 6.11), 101; 
infantile and gt>neral, correlation of 
movemt>nts, 29~294; standardio;ation 
of, for age- and sex-distribution, 59--60, 
305--306, refs., 5U; application of 
theory of sampling, deaths from acci
dent, 359; deaths in childbirth, 363-
365, (Table 19.1), 364; deaths from 
explosions in mines, 367-368; inapplic
ability of the theory of simple sampling. 
to, 357-359; mortality in Cambridge
shire, 468. 

Decile&, 150-151; sta'n~rd error of, 
380-382. 
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Dcfrcts, In echool-cllildren, B!IIIOCiation of, 
16, 52-53, refs., 499. 

Degr.re of a fitted curve, 310. 
Degret>s of freedom, in x• test, 415-416; 
·. In estimates from small samples, 436-
··· 437 •• 

. 

Deming, W. E., Lola S. Deming and C. G. 
Colcord, Tables of •-integral, 444, and 
Appendix Table 6C. 

Demoivre, A., Discoverer of normal dia
tributiort, 169. 

Dept"ndent \'ariable, in curve fitting, 
813-314. 

Design of statistical inquiries, in sampling, 
835. 

Detlefson, J. A., refs., Fluctuations of 
sampling in Mendelian population, 516. 

Deviation, Mean, 134; generally, 144-147; 
def., 144; is least round the median, 
145; calculation of, 147, (Ex. 8.11),153; 
comparison of magnitude with standard 
deviation, 146-147, 182; of normal 
curve, 182 •. 

-, Quartile; see Quartile&. 
~. Root-mean-square; see Deviation, 

Standard. 
-,Standard, 134; def., 13-'-135; rela

:ti<m to root-mean-square deviation 
about any origin, 135-136; is least 
possible root-mean-square deviation, 
136; little affected by small errors in 
the mean, 136; calculation from un
grouped data, 135-138; fo'r grouped 
data, .138-141; influence of grouping, 
141 ; . range of six times the s.d. includes 
the bulk of the observations, 142; of a 
series compounded of others, 142-143; 
of N consecutive natural numbers, 143; 
of rectangular distribution, 143; of 
arrays in theory of correlation, 206, 214o, 
242; of generalised deviations (arrays), 
264, 266-267; other names for, 144; 
of a sum or difference, 297-298; effect 
of errors of observation on, 298; of 
an index, 299-300; of binomial series, 
174; of Poisson distribution, 189. For 
standard deviations of sampling, see 
Error, Standard .. · 

Dice, Records of throwing (Table 6.15 and 
fig. 6.16), 107, (Ex. 10.2), 193; testing 
for . significance of divergence from 
theory, 351-353, 419-420, 423-424; 
refs., 516-517. 

Dickson, J. D. Hamilton, Normal corre
lation surface, 237; refs., normal 
correlation, 509. . 

Difference method in correlation, 292-296, 
477; refs., 512-513. 

Differences, in interpolation, 462-464; 
· effect of errors in u on, 473-477; effect 

of subdividing an interval on, 4-77. 
Discounts and reserves in American banks 

(Table 11.5), 201; (fig. 11.2),/acing 204. 
_ Pispersion, Measures of, 112, 13"-1.i3; 

absolute mea,.ures of, 1 &9; ran;te a.~ a . 
measure, 184; in Lexis' sensP, normal, 
subnormal and RUpt'mormal, 869; refs., 
503-505. Ste Deviation, Mean; Devia- · 
tion, Standard; Quartiles. 

Distance-velocity relation in f'Xtra-gal
actic nebulre, 809-810, (Tahle 17.1), 309, : 
(fig. 17.1), 810; straight line fitted to, . 
815-816. . 

Di..tribution of frequency; ue Frequency·, 
distributions; aampling, see Samplin2. · 

Dodd, E. L., refs., Frequency-curves, 507; j 
sampling, 518, 522. ' 

Doodson, A; T., refs., 1\lode, median and ; 
mean, 502. 

Duckweed, Correlation betwt'f'n mother- : 
and daughter-frond, 218-220; growth 
of, curve fitted to, 816-318. 

Duncker, G., Relation between geometric 
and arithmetic mean (Ex. 8.12), 153. 

Dunlap, H. F., refs., Samvling from 
rectangular populations, 518. j 

EABNINGS of agricultural labourers, -eM"" 1 

relation with paupt'rism and out-relief, I 
data (Ex. 11.2), 22-i; partial correla· . 
tions, 270-272; diagram of model (fig. 
14.1), 276. 

Edgeworth, F. Y., Dice-throwing 
(Weldon), 107; refs., geometric mean, 
502; index-numbers, 503; normal Jaw 
and frequency-curves generally, 505, 
506, 507, 508; · dissection of nonnal 
curve, 508;· correlation, 509-511; 
theory of sampling, probable errors, 
etc., 516-518; Edgeworth's l'ontribu
tions to mathematical statistil'!l, see 
Bowley. 

Effil'ient estimates, 428. 
Elderton, E. l\1., refs., Variate difference 

correlation method (undn Pearson), 
513; .sampling, (under Pearson), 523. 

Elderton, \V. P., Tables of x•, 425; refs., 
calculation of moments, 504; table of 
powers, 525; Fuqi.U!71C!J Curees and 
COTTelation, 496, 5<», 505. 

Electricity Commission, Data quoted from 
returns for 1933-M (Table 17.-i), 320. 

Electricity, Curve fitted to rosts per unit 
and number of units sold per bead of 
population for certain Undertakings, 
318-320, (TaLle 17.4), 320, (figs. 17.3 
and 17.4), 319, 321. 

Elliptic integrals, Tables of, refs., 525. 
Engineering, Applications of statistical 

method, refs., 497. 
Engledow, F. L., Data cited from, (Table 

23.2), 446. 
Epidemiology, Applications '!f>f statistical 

method to, refs., 508. 
Error function, 183; see Nom1al dis

tribution. 
Error, Law of; errors, curve of, 1ee Xormal ' 

distribution. ' 
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Error, Mean, 1-14. 
-, Mean square, 1-U. 
- of mt"SJ\ aquare, 14-i. 
Error, Probable, in theory of sampling, 

353-85-6. For general references, su 
Error, Standard. · 

Error, Standard, def., 353, 380; of number 
or proportion of suecesses in " events, 
351; when numbers in &amples vary 
(Ex.19.11), 372; when chance of su«'cess 
or failure is small, 356; of percentiles, 
median, quartiles, etc., 3sa-382; of 
semi-interquartile range, 3~86; of 
arithme~ic mean, 386; of variance, 399; 
of standard de,iation, 899-402; of 
coefficient of variation, 405-406; of 
moments about fixed point, 395-396; 
of moments about the mean, 397; of 
third and fourth moments about the 
mean, 40~; of fJ1 and {J1 , +06; 
of coefficients of correlation and regres
sion, 407-409: approxinlate formula for 
correlation ratio and caution in case of 
multiple correlation coefficient, 409; 
of co.:lllcient of association, 410; of 

• coeffident of mean square contingency, 
410; a~sence of, in certain cases for 
rank correlation coefficient, 410; refs., 
516-520. &e also Sampling, Theory of. 

Error, Theory of; su Sampling, Theory of. 
Estates, Value of, in 1715; su Value. 
Estimates, Pre-<>ision of, 335; efficient, 
4~; in small samples, 434; of arith
metic mean, 434--435; of variance, 435-
436; degrees of freedom of, 436-437 •. 

Estimation, Theory of, 834.-835; of 
theoretical frequencies in the. x• test, 
427-428; of position of maltimnm, 
4117-488, 

Exclusive and inclusive notations for 
statistics of attributes, 22. 

Existent universes, 333. 
Experiments on x• test, 42~0. 
Explosions in coal r. ines, Deatba from, 

as illustrating theory of eampling, 
367-868. 

Eye-colour, Association between father 
and son, 41, 45, 73-74; association 
between jmindparent, parent and 
child, 53-55, 60; contingency with hair
colour, 66-67, 70-71; non-isotropy of 
contingency table for father and son, 
73-74. 

Ezekiel, !II., refs., C,orrelation, 511; 
eamplin~ and t>urvilinear regression, 
522; ltlelhoiU of Correlation Analysis, 
496. 

FALK."'ER, R. P., refs., Translation of 
Meitzen"s "TiaeorU dn Statutik, 498. 

Fallacies in interpreting 8880Ciations, 
Theonm on, 56-57, illustrations, 57-58, 
owing to changes of ciBtiliification, actual 
or virtual, 7 5; i;o interpreting correla-

lions, 281-282; "spurious" co>r•rlutlm\ 
between indices, 800-301, corttlation 
due to heterogeneity of material, 301. 

Farm Economics Branch, Sqhool of Agri
culture, Cambridge, data cited from 
records of, (Ex. 17.4), 330. 

Fay, E. A., Data cited from Marriages of 
tlu Dtaf ift AmtTica, (Ex. 6.5 (b)), 
109. . 

Fet>hner, G. T., refs., Frequency-distribu
tions, averages, measures of dispersion, 
etc., 501, 503; KoUeeCivmasslehre, 501. 

Fecundity of brood-mares (Table 6.9), 98, 
(fig. 6.9), 98; mean, median and mode 
(Ex. 7.4), 132; inheritance, refs., 513. 

Fegiz, P. L., Data" cited from, (Ex. 17.2), 
330. -

Feldman, H. M., refs., Sampling, 518; 
Field experiments, refs., 497. 
Fieller, E. C., refs., Sampling distribution 

of an index, 518. 
Filon,L. N. G., refs., Probable errors,(under 

Pearson), 519. 
Finite and infinite universes, 332-333. 
Fisher, A., refs., Mathematical Theory of 

Probabilities, 496. 
Fisher, Irving, refs., Index-numbers, 503. 
FISher, R. A., Criticism of use of standard 

error in test of linearity of ngression, 
409; tables of x•. 418, 425;. normality 
of x• for large"· 422; tables of'· 439-· 
440; data cited from, 442-443; ap
plication of 1-distribution to regressions, 
443; distribution of correlation co- · 
efficient, 449; transformation of, 451 ; 
refs., goodne88 of fit of regression 
lines, 510; curve fitting, 515; sampling 
of correlation coefficient, 518, 522; 
moments of sampling distributions, 
518; x• distribution, 520-521; tests of 
agreement between obsen·ation and 
hypothHia, 521; eampling theory, 522; 
extremes of sample, 522; statistical 
estimation, 522; 1-distribution, 522; 
StatisticalllleUwds for Research JV orktTs, 
496. 

Fisher'& •-distribution, 443-444; Tables, 
444, and Appendix Tables 6; use in 
analysis of variance, 448; in testing 
significance of correlation ratios, 453-
4S5; significance of linearity of regres
&ion, 455-456; significance of multiple 
correlation coefficient, 456-458 •• 

Fit of &imple curves to data; aee Curve 
fitting; ·measure of closeness of fit, 
for simple curves, 328-829; "best" fit, 
"closest" fit, as given by method of 
lellllt squares, 209-210, 262-2M, 811-
314; goodness of fit, BU X' distribution. 

Flux, Sir A. \V., refs., 1\lcasurement of 
price-changes, 503. 

Food, Drink and Tobacco Trades, Data on 
aize of firma in, (Ex. 8.5 (a)), 109. 

Footrule, Spearman's, footnote, 249, 
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FoiTher, H., refs., Die slatislicM ,Uelhodt 
ala selb.~tiindil!e Wis!lenschaft, -lfl6. 

Fount~in, Sir Henrv, refs., Index-numbers 
of prices, 503. • 

FranC'e, Anatole, Remark about the 
Chinese, 2. 

Freedom, Degrees of; Bte Degrees or 
freedom. 

Frequency of a class, 13, 83. 
Frequency-curve, DeC., 112-93; ideal 

Corms of, 93-10-1; rets., 501, 507-508; 
see Normal distribution. 

Frequency-distributions, 82---83; forma
tion of, 85--89; graphic representation 
of, 90-92; ideal forms, symmetrical, 
93--94, moderately asymmetrical, 94--98, 
ell:tremely asymmetrical (.J-shaped), 98-
101, ( U-shaped), 101-102; truncated 
distributions, 102--103; complex dis
tributions, 103--104; pseudo-frequency 
distributions, 104, 108; reduction to 
absolute scale, 150; theoretical, 169; 
binomial distribution, 169, 169-180; 
normal distribution, 18()-.187; Poisson 
distribution, 187-191; refs., SOl, 507-
508. See also Binomial distribution; 
Normal distribution; Poisson distribu
tion; Pearson curves; Correlation, 
Normal. 

Frequency- distributions, Illustrations: 
Birth-rates in England and Wales, 83; 
stigmatic rays on poppies, 8-1; lengths 
of screws, S4; final digits in measure
ments, 86; persons liable to sur- and 
super-tax in the United Kingdom, 89; 
head-breadths of Cambridge students, 
90; statures of males in the United 
Kingdom. 9-1; Australian marriages, 
96; fecundity of brood - mares, 98 ; 
barometer heights at Greenwich, 99; 
ages at death from scarlet fever, 100; 
annual value of estates in 1715, 105; 
degrees of cloudiness at Greenwich, 
106; sizes of genera in Chrysomelidrr, 
106; dice-throwing, 107; male deaths 
in England and Wales, 107-108; size 
of firms in Food, Drink and Tobacco 
'I;'rades (Ex. 6.5 (a)), Hl9; percentage 
of deaf-mutes in offspring of deaf-mutes 
(Ex. 6.5 (b)), 109; yield of grain (Ex. 
6.5 (c)), 110; petals in the buttercup, 
Ranunculus bulbo8U8 (Ex. 6.5 (d)), 110; 
weights of males in the United Kingdom 
(Ex. 6.6), 110; wheat shoots (Table 
18.1 ), 338. See also Correlation, Jllus
trations and examples. 

Frequency-polygon, Construction of, 90. 
Frequency-surface, Forms and examples 

of, 196--202;- (figs. 11.1, 11.2. and 11.3), 
204, and facing 204; see Correlation, 
Normal. 

Frisch, R., refs., Difference equations and 
frequency- distributions, 507; correla
tion, 509; time series, 512. 

Fry, T. C., refs., Prr.bflbility and ib Engin
eering l.'si'B, 4!17. 

Fundamental set~, Specifying data, 17. 

GABAGUO, A., refs., Teoria gnlt'rale ilella 
st.atistirtl, -1911. 

Galton, Sir Francis, Ogh·e curve, 1 :i0--1 S 1 ; 
binomial apparatus, 175-176; regN•
sion, 207; Galton's funetion (cor,..-.Ja
tion coefficient), 2i2; normal conela
tion, 237; data cited from, 41, 53, 73; 
refs., geometric mean, 502; percentiles, 
504; binomial machine, 506; conela
tion, 509; conelation betwel'n indicM, 
513; Naturallnheritaru:e, 50-1, 5H6. 

Galvani, L., refs., !\leans, 527; variation 
and concentration, 527. 

Gamma-functions, refs., Tables, 523. 
Gauss, C. F., Normal distribution, 169; 

use of term "mean error," 14-1. 
Geary, R. C., refs., Frequency-di~tribu

tions, 507. 
Geiger, H., refs., Poisson distribution 

(under Rutherford), 506. 
Geometric mean; see 1\lean, Geometric. 
Gibson, \\'inifred, refs., Tables for comput-

ing probable errors, 518. · 
Gini, C., refs., Index-numbers, 503; curve 

fitting, 515; general, 526; interpolation, 
526; means, 527; probability, 527; 
variability, 527; index-numbers, 528; 
statistical relations, 5211; Apprmli di 
Slali.stica .~.lletodologica, 526; (Ed.) Trat
tato Elmu>nlare di Slalistica, 526. 

Goodness of fit, 430; Brt z• distribution. 
Grades, 150; grade correlation, 2-19-251; 

relationship with ranks and rank 
correlation, 2-19-251; see Ranks. 

Graduation, 48()-.-185; see Interpolation. 
Gram, J.P., refs., Expression of functions 

in series by least squares, 515. 
Graphic method of representing frequency

distribution, 90-92; of interpolating 
for median and percentiles, 121-122, 
150; ofrepresentingconelation bt:tween 
two variables, 205-206; of estimating 
correlation coefficient, 241-2-12; refs. 
(Italian), 526. 

Graunt, John, refs., Obs,.n:ati<llls on the 
Bills of Mortality, (under Hull, C. H.), 
498. 

Gray, John, Data cited from, 361. 
Greatest and least value of sample, refs., 

522 (Dodd), 522 (Fisher and Tippett). 
Greenleaf, H. E. H., refs., Curve fitting, 

515. 
Greenwood, !\I., Data cited from, 40, -12, 

(Table 10.3), 175; use of principal axis 
in curve fitting, footnote, 31-1; refs., 
inoculation statistics and assodation, 
499; Poisson distribution, 506; multiple 
happenings, 508; index correlations 
(under Brown), 511, 513; errors of 
sampling, 516, 
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Gruup, Rrmkinj!·Up of, in interpolation, 
47;-478: formula for hahing of, 479-
4~<0. 

GruuiJing of <•bservations to fom1 a 
frequency-distribution, Choice of da&s, 
interval, S2-S3; inHuence of grouping 
on nwan, 118, 119-120; inHuence on 
standard deviation, 141; inHuence on 
hi!!her moments, 160. 

Growth of duckweed (Table 17.3), 317; 
curve tit ted to data, 316-318; (fig. 

· 17.2), 817; of population (Table 17.6), 
326; eun·e .fitted to data, 325; (fig. 
17.6), 3:!1). 

llArR-<.'OLO\'B and eye-eolour, Example of 
eontingenc·y, 66-67, 7Q-71; non-iso 
tropy, 71-72; theory of sampling 
apphed to l:"ertain data, 361-362. 

Hall, Sir A. D., Data cited from, (Ex. 6.5 
(1')1, 110. 

Hall, l'hilip, ref~ .• Partial correlation, 511; 
diotribution of means from rectangular 
unh·er-~, 522. 

Hal\·ing 'Q group, in interpolation, "7:}-
480. • . 

Ham10nic'mean; au ~lean, Harmonic. 
Harris, J. A., r<>fs., Short method of cal

culating c·oellieient of correlation, 5H; 
intradass coeHicients, 514; correlation, 
miscellaneous, 512. 

Hart, B., refs., Effect of errors on correla
tion, 513. 

Head-breadths of Cambridge students 
(Table 6.6), 00; (figs. 6.1 and 6.2), 91. 

Height, Distribution of men according to; 
are Stature. 

-· distrilJUtion of ,.·heat plants (Table 
18.1), ::!3!1. 

Helguero, F. de, refs., Dissecting norinal 
cun·"· 508. 

Hendri<·ks, \V. A., refs., Curve fitting, 515. 
Henry, A., .refs., Calculus and PTububility, 

495 •. 
Heron, IJ., ref~.. Association ( •mdcr 

PPan;on), 499; relation between fer
tility lind &O('ial &tatus, 512; defective 
J•hysique and intelligence, application 
of c"Orreetion for age-distribution, 51~; 
abac for giving probable errors of 
corrt:lation eoetlicients, 518; probable 
error of partial correlation coeflicient, 
518. 

Heteroscedastie arrays, !ootuote, 21~. 
lLlton, John, refs., Sampling inquiry, 516. 
Hi~;togram, Coru;truction of, DQ-IH. 
History of statistics generally, -&-5; refs., 

49!1. 
llojo, T., refR., Sampling distrib11tion of 

medians, quartilt·fi, etc., 518. 
Hollis, T., cited re Co~in'a "Namt'B of the 

lioma11 Catholic•, rtr.," 105. 
Holzinger, K. S., refs., Sampling from 

U-o!Japed universe, 518. 

Homoscedastic arrays, footnote, 214. 
Hooker, R. H., Correlation between 

weather and crops, 291-!92; between 
movements of two variables, 294.-296; 
refs., theory '()f partial correlation, 511; 
correlation between movements of two 
variables, 512; between weather and 
crops, 512; between marriage rate and · 
trade, 512. 

Horst, P., refs., Evaluation of multiple 
regression coefficients, 511. · 

Hotelling, H., refs., History, 498; limits 
to skewness, 505; analysis situs, 512; 
time series (undl"'' \Vorking), 513; 
sampling of correlation ratio, 518; 
optimum statistics, 518; generalisation 
of" Student's" distribution, 522; samp
ling of rank correlation coefficient, 522. 

Houses, Inhabited and uninhabited, in 
rural and urban districts (Ex. 5.2), !10. 

Hubble, Edwin, Data cited from, (Table 
17.1), 309. 

Hull, C. H., refs., The Economic .Writings 
of Sir William Petty, together with 
Ubsl"''vations on the Billa of MOTtality 
more prubably by Captain Graunt, 498. 

Human bias, in sampling, 337--:!39. 
Humason, 1\1. L., Data cited from, (Table 

17.1), 309. 
Husbands and wives, Correlation between 

ages of (Table 11.2), 198 ;_ c·onstants, 
22Q-221~ correlation ratios (Ex. 13.2), 
259. 

Hypergeometric series, refs. (Karl Pear
son), 506; (Camp) 507. 

Hypothetical universe, 333; sampling 
from, S·iS-346. 

ILLUSORY associations, 57:-58. 
Imbecility, Association with deaf-mutism, 

40-n, 45. 
Inclusive and exelush·e notations for 

statistics of attributes, 22. 
lneomes liable to sur- and super-tax; see 

Sur- and super-tax. 
IncomJJlt>te bela-function, tables, ref~ .• 

525; gamma-fum.'tion, tables, refs., 52:>; 
elliptic integrals, tables, refs., 525. 

Independence, Criterion of, for attributes, 
34-3:>; case of complete, for attributes, 
6Q-62; form of contingency or correla· 
tion table in case of, 74; x• test for, 
411!-430. 

lndept-ndcnt variable in curve fitting, 
:aa-1114. 

Index-numbers of price&, 129-130; use of 
geometric mean for, 129-1:JO; of animal 
i'f'eding-stutrs and home-grown oats 

• (Table 11.7), 203; eorrelatiou betweef!, 
215-218; refs., 502-503, 52ri. 

Indices, Correlation between, 800-801 ;" 
refs., 513-514. 

Infinite lind finite universes, 332-·333; 
sampling from, 344-3~5. 

86 
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lnO<'ulation agl\inst cholera, Examples, 
40,42-43,420,426-427. 

Inoculation Bl!'llinst tuberculosis in cattle, 
Example, 42.'>--426. 

Interclass correlation, 234; ttU Correla-
tion. · · · 

Intennediate observations in a freqnell<'y
distribution, Classific.ation of, 85, 87-88; 
in correlation table,197-198. 

Interpolation and graduation-generally, 
46~93; simple interpolation, 462; 
differences, 462-464; Newton'sfonnula, 
4().i.-468; interpolation of statistical 
series, 468-470; practical work, 47Q-
473; number of differences to use, 
470-171; · choice of set of u's, 472; 
possible fonns of pol~-nomials, 47~73; 
effect of errors on differences, 473-477; 
effect on differences of subdividing an 
interval, 477; breaking-up. a group, 
477-479; fonnula for hah·ing a group, 
479-180; graduation, 480-185; inverse 
interpolation, 485-487; estimation of 
the position of a maximum, 487-488; 
modif)ing central ordinates to equiva
lent areas, 489;• refs., 524, (Italian) 
526--527. 

Interval, Subdivision of, 477. 
Intraclass correlation, '253-258; coefficient 

of, 255-258; limits to negative values 
of coefticient, 256--257; in analysis of 
variance, 448. 

Inverse interpolation, 485-187. 
Irwin, J. 0., refs., Recent advances, 495; 

sampling distribution of means, 518; 
x• test, 521; analysis of variance, 522; 
frequency-distribution of means of 
samples, 522. 

Isotropy, Def., 72; generally, 71-74; of 
nonnal correlation table, 237-239; 
refs., 500. . . - - • 

Isserlis, L., refs., Partial correlation ratios, 
511; conditions for real significance of 
probable errors, 519; fitting poly
nomials (Tchebycheff), 515; probable 
error of mean, 522; small samples 

. (under Greenwood), 522. 

.JACOB, S. ll., refs., Crops and rainfall, 
512-513. 

Jeffery, G. B., refs., Sampling (undeT 
Pearson), 523. 

Jeffreys, H., refs., Scientific l11jerence, 
495. 

Jensen, A., refs., Sampling methods, 516. 
·. Je\·ons, \V. S., t:se of geometric mean, 

130; refs., system of numerically 
definite reasoning (theory of attributes), 
499; Pure Logic and other .llirwr Work8, 

• 4'J9; Investigati.uM in CurreiiC'!J ar~d 
J'iiiWICe, 502. 

John, V., refs., Der Xame Statistik, 498; 
""- GescJ.ichk der St8tistik, 498. 
Jordan, C., refs.; Time .series, 512; cun·e 

fittinJ!, 515; Stalilftiq•re fflathimnliqllr, 
496,515. 

.J-shaped frequency-distributions, 98-101. 

MPTEYN, J. C., refs., Sknr Fr~lln•r•t
t"lll't"e/1 irt Biology and Stnli11ti~, 54rZ, 54J7. 

Kelley, T. L., ·refs., Correlation. 511: 
tables to facilitate the computation of 
correlation coefficienu, 525; Stal~tical 
lUrlhod, 496. 

Kelvin, Lord, Dictum on mea<~urement 
and knowledge, 1. 

Kt>ynes, J. l\1., refs., A TrtatiiJe ort Prob
ability, 495, 516. 

Khotimsky; IJU Chotimsky. 
Kick of a horse, Deaths from, foUowi!lg 

Pois.'!On distribution, 191. 
Kin!!, George, Graduation of age statistics, 

41J3.-483. 
Kiser, C. V., refs., Bias in ~~amplin!!'. 51 fl. 
Knibbs, Sir G. H., refs., Price· index
. numbers, 503; frequency~un;es, 508.· 
Kohlweiler, E., refs., Stalistik im Dim.rle 

der Ttchnik, 491. 
Kohn, S., refs.,TMory of Stal~tkal Jldhod, 

496. 
Kondo, T., refs., Standard error of rnl"an 

square contingency, 519; of standard 
de,iation, 51~. 

.Koren, J., refs., History of Statistir~, 498. 
Kurtosis, Def., 165; ealc-ulation of, 165; 

of binomial series, 174; of Poisson 
distribution, 189-190; effl"ct on stan
dard error of standard deviation, 400. 

LabQIIT Gautk, Index-number, refs., 50.'!. 
Labourers, Agricultural, llinimum wa~ 

rates of; see Agricultur.il labouren' 
earnings; see abro Earnings. 

Laplace, Pierre Simon, llarquis de, 
Nonnal distribution, 169; refs., Thi•A'ie 

· analytiq~ da-Probabilitis, 504, 519. 
Latshaw, V. V., refs., Curve fitting (urJ<kr 

Davis), 515. . 
Le Roux, J. ll., refs.; Sampling, 522. 
Leading term and leading differences, 463. 
Least squares, .Method of, in fitting 

regression lines, 209-210, 262-263; in 
fitting curves generally, 309--331; equa
tions, 312-313. 

Lee, Alice, Data cited from, (Table 6.9), 
98,125, (Table 11.3),199; refs., gl"neral· 
io;ed probable error in multiple correla
tion (under Pearson), 510; inheritanee of 
fecundity and fertility (under Pt'arson), 
513. -

Lemrw minor, Corn-lation between lc~M.hs 
of mother- and daughter-frond in, 218-
221; rate of !!'ro•"th of, 316--318. 

Leptokurtic curve.i, 165. 
Lester, A. ll., L'npublished data on S(·rew 

measurements, (Table 6.31, !> ... 
Levels of significance, in x• t«.>St, 4:!4-&23; 

in 1-test, 440; in z-test, •u. 
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l.,evy, H., refs.,Elrmn1/s of Probability, 495. 
Lexis, \V., Use of term "precision," 144; 

alternative approach in sampling of 
attributes, 368-3r.9; refs., Abhand· 
lungen :wr Thror J. dtr Bevolkt>rungs
und .Uoralstati.stik, 496, 516; Thtorie 
der .Uassmerschtimmgtn, 516. 

Linear constraints, 415. 
Linearity of regression, 207; tests for, 

2-i5, 409, 455-456. . 
Lipps, G. F., refs.,l\leasures of dependence 

(association, correlation, contingeJJcy, 
etc.), 499, 500; Fechner's Kollectit•mass
lehre, 501, 

Little, W., Data as to agricultural 
labourers' earnings cited from (Ex. 
11.2), 224. 

Livi, L., refs., Elementi di Stalistica, 526. 
Logarithmic increase in population,_ 127-

129: in duckweed, 816-318. 
Loss in weight in soils, Percentage; srt 
· Percentage. . 

·Lottery sauipling, 340-341. 

1\IACA_ULt~·, F. G., refs., Smoothing time 
sertes, ... 12. 

l\laedonelt1 W. R., Data cited from (Table 
6.6), 90. 

l\lanifold classification; see Classification. 
· lllarch, L., refs., Index-numbers, 503; 

correlation, 512. 
1\Iarriage rate and trade, Correlation of 

movements, 294-296. 
Marriages, Australian; see under 

Australian. • 
Marshall, A., refs., Jlloney, Credit and 

Commerce, 503. 
Martin, E. S., . refs., Corrections to 

moments, 504. 
Maximum, Estimation of position of, 

487-488. 
!\IcAlistt>r, Sir Donald, refs., Law of 

geometric mean, 502. 
McKay, A. T., refs., Sampling distribu-

.tion of correlation coefficient, 519. 
McNemar, Q., refs., Partial correlation 
· (under Kelley), 511. 
1\lean, Arithmetic-generally, 114-120; 

def., 114;. nature of, 114; 'calculation 
of, for a groupe4'distribution, 115-118; 
inHuence of grouping, 118, 119-120; 
position ·relativt>ly to mode and median, 
125; diagram (fig. 7.2), 118; sum of 
deviations from, is zero, 118; of series 
C'Oill.pounded of others, 119; of sum or 
difference, 119-120; comparison with 
median, 122-124, 887; -summary com
parison with median and mode, mean is 
best for all general purposes, 125-126; 
reciprocal character compared with 
harmonic mean, 130-131; of binomial 
diatribution, 178; of Poisson distribu
tion, 189; weighting of; 302-306; 
standard error of, ~86-387,. 388-:891; 

means of two samples, 3S7-38S, (small 
samples) 442-443; estimates of, 434-
435; refs., 501-502, 517-520, 521-52,j,, 
(Italian) 527. ~ 

l\Iean deviation; see Deviation, Mean. 
-error,, 144; see Error, Standard; 

· Deviatiofi. Standard. . 
l\Iean, Geometric,114; generally, 126-130; 

def., 126; calculation, 126; less than 
arithmetic mean, 126; difference from 
arithmetic mean in terms of dispersion, 
(Ex. 8.12), 153; of series compounded 
of others, 127; of series of ratios or. 
products, 127; - in estimating inter· 
censal populations, _ta7-129; conveni
ence for index-numbers, 129-130; 
weighting of, 306. · 

Mean, Harmonic, 114; generally, 130-
131 ;' de f., 130; ··calculation, 130; is 
less than arithmetic and geometric 
meanlfJ 131; difference from arithmetic 
mean in terms of dispersion (Ex. 8.13), 
158; reciprocal character compared 
with arithmetic mean, 130-131; in 
theory of sampling, when numbers in 
samples vary (Ex. 19.11),-372. 

l\Iean square error, 144. 
-,Weighted, 302-306; def., 302; differ

ence between weighted and unweighted · 
means, 303-304; applications of weight
ing to correc-tions of death-rates, etc., 
for age· and sex-distribution, 305-306 ;. 
refs., 514. 

Median, 114; generally, 120-124; def., 
120; indeterminate in certain cases, 
120; unsuited to discontinuous ob
servations and small series, 120-121; 
calculation of, 121; graphica~ deter
mination of, 121-122; comparison with 
arithmetic mean, 122-124, 381; ad
vantages in . special cases, 128-124; 
slight influence of outlying values on, 
12.&; position relative to mean and 
mode, 125, (fig. 7.2), 118; weighting of, 
806; standard error of, 380-885 ; refs., 
517-520. 

Meidell, II. B., refs., Sampling, 519, 523. 
1\leit.zen, P. A., refs., Geschichte, Thl'orie 

u11d TechTtik der Statistik, 498. 
Mendelian breeding experiments as illus

trations, 44, 180, 358; refs., fluctua
tions of sampling in, 516-517. 

Mentality, Relationship with weight in a 
selection of criminals (Table 5.6), 78. 

Mercer, W. B., Data cited from (Ex. 6.5 
(c)), no. 

1\lethod of least squares; see Least squares. 
Methods, Statistical, Purport of, 8; def., 

3. 
Mice, Numbers in Utters, Jfarmonic.mean,' 

130; proportions of albinos ·in litter~~o 
fluctuations compared with theory of 
sampling (Exs. 19.12 and 19.13), 372. 

Migration, Random, refs., 508. 
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ililk-yield in cows, Correlation with age 
(Table 11.4), 200; (fig. 11.9), 212; 
constants (Ex. 11.8), 225; correlation 
ratios (Ex. 19.1), 259. 

Milton, John, Use of word "statist," 4. 
Miner, J. R., Tables for calculation of 

correlation coefficients, 525. 
Mises, R. von, refs., W ahrscheinlichkeit, 

Statistik tmd. Wahrheit, 495; W ahr· 
scheinlichkritsrechnung; 496. 

Mixed sampling, 836, 347-848, 
Mode-generally, 124-125; def., 124; 

approximate determination from mean 
and median, 125; diagram showing 
position relative to ·mean and median 
(fig. 7.2), 118; weighting of, 306; refs., 
502. 

Modifying central ordinates, 489. 
Modulus as measure of dispersion, 144; 

see Precision. 
Mogno, R., refs., Interpolation, 526. 
Mohl, R. von, refs., Geschichte und 

Literatur der Staatswissenschaft, 498, 
Moir, H., refs., Frequency-curves (mor

tality), 508. 
Molina, E. C., . refs., Bayes' theorem, 

523. 
Moments-first, def., 116; second, def., 

135; general, def., 154; expression of 
moments about mean in terms of those 
round an arbitrary point, 155-156; · 
calculation of, 156-159; Sheppard's 
corrections for, 160; of bivariate dis
tribution, footnote, . 214; standard 
errors of, 394-404; correlation between 
errors in, 394-404; refs., 505, 517-520. 

Moments, Examples of, Height distribu
tion, 156-158, 160; marriage distribu
tion, 158-159, 160; weight distribution 
(Ex. 9.1), 167; milk yield distribution 
(Ex. 9.5), 167-168. 

Montessus de Btlllore, R. de, refs., Prob
abilites et Statistiques, 496. 

Moore, L. Bramley, Data cited from, 
(Table . 6.9), 98; refs., .inheritance of 

. fertility and fecundity (under Pearson), 
513. 

Morant, G., refs., Poisson distribution, 
506. 

Mortality; see Death-rates. 
1\lortara, G., refs., Lezioni di Statistica 

Metodalogica, 526. 
Movements, Correlation, in 'two variables, 

Methods, 292--296; refs., 512--513. 
l\Iultiple correlation coefficient, 277-279; 

calculation of, 278; relation with 
measure of closeness of fit for simple" 
curves, 329; use of standard error in 
judging significance of, 409; testing 
significance of, 456-458; _see Correlation. 

NEGATIVE classes and attributes, 13. 
Newbold, EthelM., Application of partial 

correlation methods to coefficients not 

determined by produc-t-moment met hod, 
footnote, 270; refs., frequency-distribu· 
tions, accidents, 506. 

Newsholme, Sir A., rtfs., Birth-ratt's, 
• correction for age·distribution, 514; 
-Vital Statistic.,, 497, 

Newton's formula, in Interpolation, 464--
468; binomial coefficients in (Table 
24.4), 470. 

Neyman, J., refs., Representative method 
in sampling, 516; use and interpreta
tion of test criteria, 521, 523; x• dis
tribution, 521 ; small samples, 523. 

Niceforo, A., refs., La J.Uthode statistique, 
496, (ll Metoda· Statistuo, !>26); La 
Misura della J"ita, 501. 

Nixon, J. W,. refs., Experimental test of 
normal law, 506, 507. 

Normal dispersion, in Lexis' sense, 369. 
Normal distribution, 169; generally, 

180--187; deduction from binomial 
distribution, 177-180; ordinates, 182--
183; table of ordinates, Appendix 
Table 1; areas, 183-184; table of 
areas, Appendix Tables 2 and 3; 
standard deviation, 182; mean devia
tion,.182; moments, 182; {J1 and {J1, 

182; seminvariants, 182; fitted to a 
given distribution (fig. 10.3), 187; 
quartile deviation, 184-185; range ± 30' 
cuts off all but small fraction of whole, 
185; as an error distribution, 185-186; 
occurrence of, in Nature, 186; place of, 
in theory, 186-187; numerical examples 
of use of tables, 183-184; normality 
of · sampling distributions, 437-438; 
refs., general, 505-506; dissection of 
compound curve, 508. For normal 
correlation, normal surface, see Correla
tion, Normal. 

Norton; J.P., Data cited from (Table 11.5), 
201; refs., Statistical Studies in the 
New York J.loney Market, 512. 

Numerical data, Statistics concerned with, 
2. 

Nybolle, H. C., refs., Theorie der Stalislik, 
497. 

OATS, Hom~~grown, Index-numbt'r' of 
. prices of, Correlated with price index of 

animal feeding-stuffs (Table 11.7), 203, 
215-218. . 

'bgive curve, Galton's, 150--151. · 
Oldis, E., refs., Sampling of correlation 

coefficient (under Cheshire), 522. 
Oppenheim, A., refs., Charlier's form of 

the frequency function (ut1der Aitken), 
515. 

Order of a class, 14; of generalised corre· 
· lations, rt'gressions, deviations, and 

standard deviations, 264; of multiple 
correlation coelticient, 278. 

Orthogonal polynomials, 32-J.. 
Osculatory interpolation, 484. 
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PABST, l\1., refs., Sampling of rank cor• 
relation coefficient (undn Hotelling), 
522. 

Paciello, U., refs., Variation, 527. 
Pairman, E., refs., Corrections to moments, 

504. 
Palgrave, Sir R. II. I., Dictionary of 

Political Eronomy, 498. 
Parabolas, f"itting of, to data, 309-331; 

def., 310; degree of, 310. 
Parameters, lStatistical. def., footnote, 

373. . 
Pe.reto, V., refs., Cours d'iconomie poli

tiqtu~, ~01. 
Parkes, A. S., refs., Sampling of attri

butes, 516. 
Partial association; see Association, 

Partial. 
- eorrelation ; Bte Correlation, Partial. 
Pauperism, Correlation with earnings and 

out-relief (Ex. 11.2), 224, 27Q-272; 
with out-relief, proportion of aged, etc., 
272-275, 288-291. 

Pearl, R., refs., Probable errors, 519; 
Introdrtction to .l'tledical Biometry, 497. 

Pearse, •G. E., Data cited from, (Table 
6.14),106; refs., corrections to moments, 
50-i. • 

Pearson, E. S., refs., The Application of 
Statistical Method& to Industrial Stond
ardisation, 496; tests for normality, 
519; probable errors, 519; distribution 
of range, 519; polychoric coefficients, 
500; ls test, 521; use and interpret&• 
tion o test criteria, 521, 523; sampling 
distribution of correlation coefficient, 
521, 522, 523; small samples generally, 
523. . 

Pearson, Karl--contingency, 68-69; ''cor· 
rection" to coefticient of contingency, 
footnote, 69; coefficient of variation, 
149; definition of {J's, footnote, 161; 
skewne~s, 162; binomial apparatus, 
176; system of curves, 192; relation· 
ship between nom1al correlation and 
eontingency, 239; sampling methods, 
399; data. cited from, 73, (Ex. 5.1), 
79-80, 98, 125, . 199; refs., historical 
notes, 498; biography of Galton, 498; 
obituary of Pearson by Yule, 498; 
correlation of characters not quantita· 
tively measurable, 499; contingency, 
t'tt!., 500, 501; mode, 502; standard 
deviation, 504; COt'fficient of variation, 
50-i; correction to moments, 504; 
influence of broad categories on corre
lation, 504; frequency curves and 
eorrehition, 506-507; binomial dis
tribution and machine, 507; hyper
geometric series, 507, 517; dissection of 
compound normal curve, 508; general 
methods of curve fitting, 507; correla• 
tion and correlation ratio, 509, 510, 511, 
512, 514; fitting of principal axes and 

planes, 510, 515; testing fit of regres
sion and other curves, 510; inheritance 
of fertility, 513; correlation between 
indices, 514; weighted• mean, repro
ductive selection, 514; ' curve fitting, 
515; sampling of attributes, 516-517; 
probable errors, 519-520; sampling 
generally, 519, 523; tables of prob
ability integrals for small samples, 519, 
523; x• distribution, 521 ; small 
samples, 523; (Editor) Tracts for 
Computers, 525; Tables for Statis
ticians and Biometricians, 525; • Tables 
of B-fu'nction, 525; ·Tables of Gamma
l'unction, 525; Tables of Elliptic Integ
rals, 525. 

Pearson curves, 192. 
Peas, Applications of 'theory of sampling 

to experiments in crossing, 353. 
Pecten, Correlation between two diameters 

of shell, 197; constants (Ex. 11.3), 225. 
Pepper, J., refs., Sampling, 519, 520. 
Percentage loss in weight, Relation with 

temperature, for certain soils (Table 
17.5), 322; curve fitted to data, 32Q-
323; diagram (fig. 17.5), 324. 

Percentage, Standard error of, 351; when 
numbers in samples vary (Ex. 19.11), 
372; see also Sampling of attributes. 

Percentiles, 15Q-151; def., 150; ad van· 
tages and disadvantages, 151; use for 
unmeasured characteristics, 15Q-151; 
standard errors of, 38Q-382; correla· 
tion between errors of sampling in, 
385; refs., 504, 517-520. 

Perozzo, L., refs., Applications of theory 
of probability to correlation of ages at 
marriage, 508. 

Persons, W.l\1., refs., Indlx-numbers, 503. 
Petals of Ranunculus bulbosus, Frequency 

of (Ex. 6.5 (d)), 110; unsuitability of 
median- in case of such a distribution, 
120. . •• 

Peters, J., refs., Multiplication tables, 524. 
Petty, Sir William, refs. (under 'Hull), 

Economic Writings, 498. 
Pietra, G., refs., Interpolating plane curve, 

515; Statistica, 526·; interpolation, 
526; variation, 528; statistical rela· 
tions, 528. · 

Platykurtic curves, 165. 
Plaut, H., refs., Anwendungen de;r..-math, 

Statistik auf Probleme der Massen
fabrikation, 497. 

Poincare, H., refs., Calcul des Probabilitis, 
495,516. 

Poisson, S.D., 169; refs., Sex-ratio, 517; 
Rechert;hes sur la Probabilite des Juge
ments, 506. 

Poisson distribution, 169, 187-191; mean, 
atandard deviation, third and fourth 
moments,l89-190; &eminvarianbi,190; 
frequency polygons (fig. 10.4), 190; 
illustrations, 191; ref. to tables of, 190, 
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Polynomials, :Fitting of, to d:lta, 309-.131; · 
dl'grt>e of, 310: shortcomin~s of, 329; 
orthouonal, 8'H: difference& of, 464; 
po~•il ·le r ..... ll nf. in interpolation, 472-
4 i:J: M' l urve fitting; Interpolation. 

Poppll',, Stigmatic rays on, I<'requency 
(Table 6.2), 84; unsuitability of median 
in ('ase of such a distribution, 120. 

Population, Estimation of, behreen ('en· 
suses, 127-129; curve fitted to growth 
of, in England and Wales, 325-327; 
rt-fs., 502. . 

Posith·e classes and attributes, Def., 13; 
number of positive classt>s, 17; suffi
ciency of, for tabulation, 17; expression 
of other frt>quencies in terms of, 20-21. 

Precision, 144; def .• 186; of estimates, 
335; varies with square root of number 
of observations, 857. 

Pretnrius, S. J., Data cited from, (Table 
6.8), 96, (Table 6.10), 99; refs., skew 
frequency surfaces, 511. 

Prices, Index-numbers of, 129-130; use 
of geometric mean in, 129-130; refs., 
502-503. 

Principal axes, in correlation, 231; in 
fitting straight lines, footnote, 314. 

Probability, and statistical inference, 9-10, 
335; use of, in sampling distributions, 
375-376; refs., 516, (Italian) 527. 

'-integral, 183; see Normal distribution. 
Probable error; see Error, Standard. 
Pseudo frequency-distributions, 105, 108. 
Punched cards, Recording of infol'II\ation 

on, 76-77. 
Purposive sampl.i.D.g, 336, 346-348. 

QuARTILE deviation; see Quartiles • 
. Quartiles, quartile deviation and semi

interquartile range, 147-148; gener
ally, 147-149; defs., 147, 148; deter
mination of, 147-148; ratio of q.d. to 
standard deviation, 148, 149; advan
tages of q.d. as measure of dispersion, 
149; difference between deviaf:ions of 
quartiles from median as measure of 
skewness, 162; q.d. of normal·curve, 
184-185; standard errors, 380-382, 
385-386; refs., 504, 517-520. 

Quetelet, L. A. J ., Lettres sur la thiorie des 
probabilitis (Ex. 19.2), 371. 

RANDOM sampling, 336-345; technique 
of, 839-345; numbers (Tippett's), 341-
344; importance of, 345-346; · see 
Sampling; Simple sampling. 

Range, as measure of dispersion, 134. 
Ranks, 150-151; rank correlation, 246-

249; relationship with grades and 
grade correlation, 249-251; sampling 
of rank correlation coefficient, 410. 

Ranunculus brllbos1u, Frequency of petals 
(Ex. 6.5 (d)), 110; unsuitability of 
median for such distributions, 120. 

Ret-d, L. F., refs., Cunre fittin~r. 51.;, 
Hegi•trar-Genl'rnl: l'orn•ction. nr stan<t

arrlisation of death-ratP~, :'10.3, ref•., 
51-1: estimatt>s of population, ro·fA., 
.'i02; data cited from Report.~ of. 40-41, 
59-60, 83, 100, 1118, 292-214, 2!14-2!15, 
304,(Table 17.6),3211,(Table 19.1),3~, 
864-865, 865-3fl6, 4G8. 

RPgressions-gl'nerally, 206-2]] ; c:l.-f., 
curves of, 207, ('Oetlicients of, 213; 
total and partial, 2112-263; curvilinPar, 
207; test of curvilinearity, 2-l,j, 409; 
reduction to linear form in certain 
cases, 242-243; standard erroA of 
coellicients, 408-40!1; test of ~ignifiran<'e 
of, 443; test of linearity of, 455-4.-;6; 
refs., 510-511, 514--515. 

Reserves and discounts in Ameri<'an 
banks, Correlation (Table 11.5), 2()1, 
(fig. 11.2), facing 204. 

Residuals, 311; sum of squareJ~ miuimised 
by method of least squares, 8ll-312; 
calculation of sum of squares of, 327-
328. 

Rhind, A., refs., Tables for computing 
probable errors, 520. 

Rhodes, E. C., refs., Law of error, 508; 
fitting polynomials, 515; sampling, 517, 
520. 

Rider, P.R., Data cited from, 374; refs., 
recent advances, 495; small samples, 
523. -

Rietz, H. L., refs., Frequency-distribu
tions, 508; small samples, 523; ;uathl'
matical Statistic.!, 496; (Ed.) Jlandbook 
of lllathematical Statislit·s, 497. 

Ritchie-Scott, A., refs., Correlation of 
polychoric table, 500. 

Robinson, G., refs., Calculus of Ob-~en:a
tions, 496, 515, 524. 

Robinson, S., refs., Experiments on the 
X1 test, 521. 

Roll)anovsky, V., refs., Frequency-curves, 
508; multiple regressions, 511; curve 
fitting, 515; sampling, 523, 524. 

Room space, Defidency in, data from 1931 
Census Housing Report (Table 5.5), 77. 

Ross, Sir R., refs., Frequency-curves 
(Epidemiology), 508. 

Roth, L., refs., Elemmts of Probability, 
495. . 

Royer, E. B., refs., Contingency, i:iOO •. 
Russell, \V. T., refs., :Medical St11tistics, 

497. 
Rutherford, Lord, refs., Poisson dionribu

tion, 506. 

·SALISBt:RY, F. S., refs., Correlation, 511 
(under 1\:elley ). 

Salvemini, T., refs., Interpolation, 526. 
Salvosa, L. R., refs., Tables of Pearson's 

Type Ill Function, 52~. 
Sampling, . Theory of-mtroductory re

marks, 9-10; preliminary notions, 
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generally, 832-3·'8; types of sampled 
universe, 332-33-t.; estimation from 
samples,· 33~35; precision of estim
ates, 335; t~'J't"S of sampling, 336; 
random sampling, 336-346; bias, 337-
339; technique of random sampling, 
339-3-10; lottery sampling, 340-341; 
Tippett"s numbers, 341-844; sampling 
from infinite universes, 8~45; from 
hypothetical universes, 845; import
ance of random sampling, 845-346; 
purposive sampling, 836, 3.J,6-347; 
ri1ixed sampling, 336, 844, 347-348; 
stratified sampling, 336, 847-348; 
simple sampling, 350; sampling dis
tributions, 878-877; refs., 516. 

Sampling of attributes-conditions 
assumed in simple sampling, 350; 
standard deviation of number or pro
portion of successes in n events, 350-
852; eXJ&mples from artificial chance, 
352-353; standard error, 353; probable 
error,"358-354; case when propOrtion 
of successes is estimated from the data, 
35.._85!; examples, 855-356; case 
when \'. hance of success or failure is 
small, 356; standard error independent 
of size of universe, 856-357; precision, 
357; limitations of simple sampling, 
357-358; comparing If sample with 
theory, 859-360; comparing one sample 
with another independent thereof, 
360-361; comparing one sample with 
another combined with it, 361-362; 
effect of removing conditions of simple 
sampling, 862-368; application to sex
ratio, 863-865; sampling from limited 
material, 867; alternative approach, 
868-369; refs., 516-517. Su also 
Binomial distribution; Nonnal dis
tribution; Correlation, Normal. 

Sampling of variables, Large samples
j!'t-nerally, 378-412; sampling distribu
tions, 373-875; use of, 875-377; simple 
sampling, 378-379; approximations in 
theory of large samples, 879-380; 
litandard error, 380; for standard error 
of particular parameters, see under 
Error, Standard, or under the particular 
parameter; comparison of two samples, 
:187-388, 402-403; effect of breakdown 
of simple sampling conditions on 
standard error of mean, 388-391; 
general theorems on standard errors of 
moments, 39·io-898; effect of Sheppard'• 
corrections on 1tandard errors, 399; 
n:fs., 517-520. 

Sampling of ,·ariaLies, Small samples
generally, 4-3~61; estimates, 434; 
of arithmetic mean, 434-435; of vari
an~e, !:!5-4-36; degrees of freedom of 
eb11matea, 436-487; tests of signifi
cance, 437; assumption of normal
ity, 437-4:38; t-distribution, 4-38--4.4.2; 

applied to two samples, 442-443; to 
significance of regression· coefficients, 
443; :~:-distribution, 443-444; analysis 
of variance, 444-449; significance of 
rorrelation coefficient, • 449- 453; 
Fisher's transformation for, 451-453; 
t-test for, 453; significance of correlation 
ratio in uncorrelated universe, 458-455; 
of measure of linearity of regression, 
455-456; of multiple correlation co
efficient, 456-458; refs., 521-52~. 

Sandt;rs, H. G., refs., Field Experimenta-
tion, 497. · "' 

Saunders, l\liss E. R., Data cited from, 44. 
Savorgnan, F., refs., Variation, 528. 
Scale reading, Bias in, 86-87. · 
Scarlet fever, Ages at death from, (Table 

6.11), 100; (fig. 6.11), 101; mean, 117; 
median, 121. · 

Scatter diagrain, 205-206; generalised, 
275-277. . 

Scheibner, \V., Difference betW"Cen arith· 
metic and geometric, arithmetie and 
hannonic means (Exs. 8.12 and 8.18), 
153. 

Scottish l\lilk Records Association, 408. 
Screws, Measurements on (Table 6.8), 8-i. 
Semi-interquartile range; see Quartiles. 
Seminvariants, Def., 165; calculation of, 

166; .of normal distribution, 182; of 
Poisson distribution, 190; standard 
errors (Ex. 21.6), 412. 

Sex-ratio of births, Correlation with total 
births (Table 11.6), 202,212, (fig. 11.10), 
213, 245-246; constants (Ex. 11.8), 
225; applications of theory of sampling 
to, 368-365; refs. (under Vigor), 517; 
standard error of ratio of male to 
female births (Ex. 19.8).. 871. 

Shakespeare, W ., Use of the·. word 
..statist, .. 4. 

Shea, J. D., refs., Fitting polynomials, 
(under Birgs), 515. 

Sheppard, W. F., Correction of standard 
deviation and higher moments. for 
grouping, 160, 399; theorem on cor
relation of nonnal distribution grouped 
around medians (Ex. 12.4), 240; refs., 
calculation and correction of moments, 
505; normal curve and correlation, 506; 
theory of sampling, 510, 520. 

Shewhart, W. A., refs., Engir1eering 
Applications of StatiJ~IicallUelllod, 497; 
Economic Control of Quality of Manu
factured Product, 497; small samples, 
524. 

Shohat, J. (Chokhate, J.), refs., Sampling, 
524. ' 

Significance,Levels of; see Levela of signific-
ance; tests of &ignificance, 835-836, 437. 

Simple curve fitting; ~~~~ Curve fitting. 
Simple interpolation, 462. 
Simple sampling of attributes, 850-853; 

limitations of, 357-359; applications of, 
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• · 859-362; effect of removing limits· 
_:,tiona of, 362-868; simple samplin~ of 

·varinbka,.878-379; eft'cct on trtandard 
• error of mean of remo,•ing limitations, 

... 388-391. . . 
!:iinclair, Sir John, Use of words "statiati· 

c~l,'~ "statistics," 4-5. 
Sip<>s, A., refs., Time series, 513. 
Skew or BSymmetrical frequency-distribu

tions, 9"-98; see abo .t'requency-di.- . 
tributions. 

Skewness, 96, 98; measures of, 162-164.; 
standard~rror of Pearson's measure of, 
407. . 

.Small chanCl's, 191; see Poisson distribu
tion. 

- samples; see Sampling of variables, 
Small samples. 

Smith, B. B., refs., Time correlation, 513. 
Smith, C. D., refs., Tchebycheff inequali

ties, 524. 
Sncdecor, G. W., refs., Calculation and 

Interpretation of Analysis of Variance, 
524. . 

Snow, E. C., refs., Estimates of popula· 
tion, 512; tines and planes of closest fit, 
515. 

Soil, Relationship between temperature 
and. percentage loss in weight; see 
Percentage loss in weight. 

Solomons, L. l\1., refs., Limits to a measure 
of skewness, 505. _ 

Soper, H. E., refs.; Tables of Poisson 
Distribution, 506; Frequency Arrays, 
508; probable error of correlation 

·coefficient, 520; of bi-serial expression 
for correlation coefficient, 520; sam· 
pling, 520, 524. . 

"Sophister ~· (pseudo'nym), refs., Small 
· samples, 524. 
Southey, Robert, cited re Cosio's" Names 
- of the Roman Catholics, etc.," 105. 

Spahlinger vaccine for tuberculosis in 
cattle, Example, 425-426. 

Spearman, C., "Foot-rule" coefficient of 
rank correlation, footnote, 249; effect 
of errors of observation .on the standard 
deviation and correlation coefficient, 
298-299; refs., effect of errors of 
·observation, 513; rank method of 
correlation, 510, 518. ~-

Spurious correlatioo of imlices, 3()()-301 ; 
refs., 518-514. 

Standard deviation; see Deviation, Stand· 
a rd. 

-error; suError,Standard; for standard 
error of a particular parameter, see 

· under that parameter or under Error, 
Standard. 

Standardisation of death-rates, 805-306; 
refs., 514. · 

"Statiijt," Occurrence of the word in 
Shakespeare and Milton, 4. 

"Statistic," Use of singular form, 8-4. 

StatiAtif'RI, IntTOduetion and denlopmf'nt 
in mt>aning of the word, • -5; Sta/i.•tical 
Acc<»mt of Scotland. 4; Royal Stati"tif'al 
Society, 5; 11eope of statistical methods, 
2-10; design of statistical ill<JUiries, 33;;, 

Statistical llf'ries, Interpolation of, 41!8- • 
470. . . 

Statistic•, Introduction and development 
in meaning of word, 4-6; def., 3; 
theory of, dcf., 8; sketch of fidd of, 
~10; p<>pular attitude towards, 10. 

Stature, Corrt'lation of, for father and !IOn: 
(Table 1UJ), 1119;· diajZr.lml (fill. 11.8), 
facing 204, and (ftg. 11.8), 21J; con· 
stants (Ex. 11.8), 22.>; correlation 
ratios, 245; testing for normality, 2:i2-
2::17; for isotropy, 238-2:i9; diagonal 
distribution (fig. 12.2), 23'; contour 
lines (fig. 12.3), 236. 

Stature of males in the t:nited KinjZdom: 
(Table 6.7), 9-', (fig. 6.6), 95; calcula· 
tion of mean, 117. and of mf'dian, 121; 
of means and medians of individual 
countries (Ex •• 7.1), 131: of standard 
deviation, 138-139; of percentiles, 1.>1; 
of mean deviation, U6; of s.d., m.d. 
and quartiles of indh·idual t'ountries 
(Ex. 8.1), 152; of third 'and fourth 
moments, 156-158, 160; of p, and {1 •• 
161: of skewness, 163-164; distrit.u· 
tion fitted to normal curve (fig. 10.3), 
187; standard errors of mean and 
median, 381; of first to ninth dt'<'iles, 
385; of standard deviation, 400-401; 
of third and fourth moments, 40-'; 
correlation between errors in mean and 
11.d., (Ex. 21.5), 412. 

Stead, H. G., refs., Correlation codlicients, 
513. 

Steffensen, J. F., refs., Recent Rt!ltarchrs, 
496, 524; interpolation, 524. 

Stevenson, T. H. C., refs., Birth-ratf's, 
t'orrection of, for age distribution ( rmder 
Newsholme), 514. 

Stigmatic rays on poppiell, Frequency; 
see 11oppies. 

Stirling, James, Expression for factorials 
of large numbers, l78. 

Stoessiger, B., refs., Probability integrals 
for· small samples (unda Pearson), 519, 
528. . 

Straight line fitted to data, 813; reduc
tion of non-linear data to linear form, 
816-320. 

Stratified sampling, 336, 347-848. 
"Student" (pseudonym), .Mnemonic for 

platy- and lepto-kurtosis, 165; stand· 
ard deviation of distribution of rank 
correlation t'Oefficient, 410; refs., 
Poisson distribution, 506; elimination 
of spurioWI ('orrelatiOll due to position 
in time or space. 518; probable errors, 
520; distribution of means of ~amples 
not drawn at random, 520; probable 
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error of mean (t-distribution), 524; 
small sampll"s, 52-i. 

.. Student's" t-di~tribution, 438-443; fonn 
of, 4:i9; tabks of, 4:~9-440, and 
ApPI."ndix Table 5; applications of, 
44V-4-&2; comparison of two samples, 
442; significance of regression co
efficients, 443; significance of correla
tion eoefficil"nt, 4.i3. 

Subdivision of intervals, in interpoL'ltion, 
477. 

Subnormal dispersion, in Lexis' sense, 369. 
Sugar beet, Detem1ination of sugar con

tent, as illustration of sampling tech
nique, 347-348. 

Supernormal displ."rsion, in Lexis' sense, 
3tl9. 

Sur- and suPI."r-tax, Data on incomes 
liable to, (Table 6.5), 89; median, 
upver quartile and ninth decile (Ex. 
8.3), 153. 

t-DI"TRIBunos; see "Student's" t-dis
tribution. 

Tables of functions, etc., refs., 524--525; 
see also'under subject headings. 

Tabulation ~f statistics of attributes, 14, 
22; of a frt"queney-distribution, 88-89; 
of a correlation table, 197-198. 

Tangential interpolation, 484. 
Tappun, l\1., refs., Partial correlation, 511. 
Tchcbycheff, rt:fs., Fitting polynomials 

(St't Issl"rlis), 515; means, 520; in
equality (undn Camp), 521, (under 
Smith, C. D.), 524. 

Tt:houproff, Tdmprow, etc., see Tschup
row. 

Tedeschi, T., refs., Interpolation, 527. 
Temperature and pereentage loss in 

weight of certain soils; Bt'e Percentage 
loss in weight. 

Tests of signilicauce, 33.>-3:!6; with X"• 
418-'421; small samples, 437. See also 
Sampling of variables, Small samples. 

Tetrachoric r, 251-2.52; differs from pro
duct-moment correlation coefficient, 
2ii3; ~tandard error of, 408. 

Thiele, T. N., refs., Tht Theory of Observa· 
tiort.Y, 505. 

Thomson, G. H., refs., Th~ Essentials of 
lUental Jleasure1nent, 496; computation 
of n·1-oression coefficient, etc., 511. 

Thorndike, E. L., refs., Methods of 
measuring correlation, 510. 

Ticket sampling, 340. • . 
Tirne-eorrelation problem, 292-296; refs., 

512-513. 
Tippett. L. H. C., Sampling numbers, 

341-344; sampling distributions ob
tainl."d by use of, 374-375; refs., ex
tremes of samples (under Fisher), 522; 
Tlte .Uellwds of !}'tutislics, 497. 

'foehl."r, J. F., Data cited from, (Ex. 9.3), 
167, HIS; (Table 11.4), 200; correlation 

of milk-yield and butter fat, 408; refs., 
contingl."ncy (tmder Pearson), 500. 

Todhunter, I., refs., History of the JUafht· 
tnatical Theory of Probability, 498. 

Trachtenberg, III. I., refs., Property of 
the median, 504. 

Transvariazione, refs. (Italian), 527-528. 
Truncated frequency-distributions, 102-

103. 
Tschebycheff, P. L.; see Tchebycheff. · 
Tsehuprow, A. A., Coefficient of contin

geney, 70-71; refs., Korrelatumstheorie, 
496; partial correlations, 511 ; mathe
matical expectations of moments, 520; 
distribution of means, 524. 

Tuberculosis in cattle, Vaccine for, 
Example, 425-426. 

Type of array, Dcf., 196. 
Types of universe, 332-334; of sampling, 

336. 

ULTili.-\TE classes and frequencies, Def., 
15-16; sufficieney of, for tabulation, 16. 

Undertakings, Electricity; see Electricity. 
Universe, Def., 25; specification of, 26; 

t~-pes of universe for sampling purposes, 
332-334; finite and infinite universes, 
332--833; universe of universes, 334. 

U-shaped frequency-distributions, 101-
102, 104. 

VALUE of estates in 1715 (Table 6.12), 105, 
(fig. 6.18), 103. . 

Variables, Theory of, Generally, 82-308; 
sampling of, generally, 373-461; see 
Sampling of variables. 

Variance, for square of standard devia
tion, 135; standard error of, 399; 
estimates of, 434-435; analysis of, 
St't Analvsis. 

Variate, Def., footnote, 82; see Variables. 
Variate-difference correlation method, 

292-296, 477; refs., 512-513. 
Variation, Coefficient of, 149-150; stand

ard error of, 405-406. 
Variation, refs. (Italian), 527. 
Velocity-distance relation among extra

galaetic nebula!, (Table 17.1), 309-310; 
straight line fitted to, (fig. 17.1), 310, 
815-:H6. 

\'enl"re, A., refs., !\leans, etc. (under Gini), 
527. • 

Venn, John, refs., Logic of Chance,· 495, 
516, 517. . 

Veronese, G., refs., Interpolation, 527. 
Verschaeffelt, E., refs.,l\Jeasure of relative 

dispersion, 504. 
Vigor, H. D., Data dted from, (Table 11.6), 

202; refs., sex-ratio, 517. 
Vinci, F., refs., Variation, 528. 

\VAGt:s, l\linimum rates for agricultural 
labourers, see Agricultural labourers; 
of agricultunll labourers, correlated 
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__ . with .out-n'lief, panperisrn, et<'., ue I 
Eamings. 

-, Real, rt'fs., 503. 
\Valker, llelrn l\1., refs., lliBtvry of 

~lati.&ticnl 11/dhod, 4~8. . 
\Yarner, F., refs., Defects in ~~ehool· 

children, notation for atatiRti<'& of attri· 
.butes, 4D9. 

\Yater analysis, lllethod~ of, refs., 506. 
\Yalers, A. C., refs., Estimating inter
~sal populations, 502. 

"-eather and <'rops, Correlation, 291-292; 
refs.; 512. · 

Weight of criminals, Relation with 
mentality (Table 5.6 ), 78. 

-of· males in the United Kingdom 
(Ex. 6.6), Ill; mean, mf'dian and mode 
(Ex. 7.3), 132; standard deviation, 
mean deviation and quartiles (Ex. 8.2), 
152; mqments, p,, {11 and skewnf'RS 
(Exs. 9.1 and 9.2), 167; standard 
error of mean {Ex. 20.5 ). 392; of median 
and quartile& {Ex. 20.3), 392; of 
11tandard deviation (Ex. 21.1), 412. 

\Yeighted mean; su Mean, Arithmetic; 
· aiBo !\lean, Geometric; -Median; 1\lode. 

. Weldon, W. F. R., Dice-throwing, (Table 
6.15), 107, 351, 419, 423-424. 

\Yestergaard, H., refs., The~ der StatiJitik, 
497; Contributions, to th~ History of 
Stati.&tia, 498. 

'Yheat-ghoots, Distribution of (Table 
18.1), 338. 

\\"hippie, G. C., refs., J'ital Statistia, 497. 
\Yhitaker, Lucy, Data cited from, (Ex. 

10.17), 194--195; refs., Poisson distri
bution, 507. 

Whiting, l\1. H., Data cited from, (Table 
5.6), 78 •. 

\Yhittaker, E. T., refs., Calculus of Obser· 
vations, 496, 515, 52-i. 

\Yicksell, S. D., refs., Correlation, 513; 
in case of non-linear regression, 511. • 

\\"ilks, S. S., refs., Analysis of variance, 524. 
\\'ill, H. S., refs., Curve fitting, 513. 
Willcox, W. F., Citation of Bielfeld, 4. 
Willis, J. C., Data regarding CArysomelida 

(Table 6.13), 106. 
""ilson, G. S., and others, Use of coefficient 

of variation, 150; refs., T~ Bactnio
logical Grading of Milk, 505. 

''\'inters, F. \V., refs., Small samples (under 
Shewhart), 524. 

"'ishart, John, refs., Fit>ld E:rperirrumta
. tion, 497; sampling distributions, 520, 

524. 
\Volfenden, H. H., refs., 1\Iortalities and 

death-rates, 514. 
Woo, T. L., Relationship between later

ality of hand and laterality of eye (Ex. 
5.10), 81; tables for testing significance 
of correlation ratio and multiple cor
relation coefficient, 455, and refs., 52 ... 

__ \Yoods, Frances, refs., Index-numbers, 

503; index-<-<•rrelationll (•mdt>r Crown). 
511, 513. . 

Woods, Hilda ~I., refs., Jltdit"al SlotiJrtic•, 
497. 

\\"orkin~. II., rt'ls., Time ~rif>ll, 513. 
Working da.•-, C:O..t olli~;ng, refs., 503 •. 

YATE.'I, F., Data citffl from, (Table 18-1).. 
8:~8; refs., Lia• in II&IIlpling, 516. 

Yield of Jrmin, Data on, (Ex. 6.S (c)), 110, 
(Table 23.2), ~-

- of milk, Correlated with age in rows; 
•~e !llilk-'\·ield. . 

Young, A. A., rPf8., Al!e statisti<'l, 501. 
Yule, G. tJdny, Problem of pouperi'>m, 

288--291; U!le of principal &Xi'l in <'Un•e 
fittin~, footnote, 3I-'; data cited from, 
40, 42, 86,106, (Table 11.111,202, (Table 
11.9).. facing 218, 351-3.'i:!, -'46, 456; 
refs., history of words "statistics." 
"statisti<.-al," 4~8; obituary of Karl 
Pearson, 498; attributes, as.~iation, 

· ronsistence. etc., 499, 500; isotropy, 
influence of bias in statisti<'B of I]Ualiti..-s, 
500; determination of mode, 502; 
frequency curves, 506; application of 
Poisson distribution, 506; correlation, 
509,510,511, 520; pauperism. 512, 513; 
birth-rates, 513, 5U; time correlation 
problem, 513; correlation between 
indices, SU; sex-ratio, 517; fluctuation 
of sampling in ~lendelian ratios, 517; 
probable errors, 520; x• in c.-ase of 
association and continger..~y tables, 521. 

z-DISTRmL-no:o.-, su Fisher's z-distribution. 
Zimmerman, E. A. \\"., rse of word!l 

••statistics," ''statistical," in Englil<h, 4. 
Zimmerman, H., refs., ~lultipiication 

tables, 525. 
Zizek. F., refs., Die statisti.c~n .\litUl

u:erthe and translat;Wn, 50:!. 

{J-COEFFICIE:NTS; 161 j standard errors of, 
406. -

B-function, Tables of, refs., 525; use of, 
in s-test, "-"· 

,.-coelticients, 161. 
f-function, Tables of, refs •• 52.'i. 
z.__~nerally, 413-433; analogy •.-ith 

Lexis' Q, 369; def •• _.1~17; distribu
tion. 417; tabulation of P for, _.Iii, 425; 
cf. also Appendix Table 4 and diaj!T&m 
Al; use MS test of significance-, ,.-hen. 
cell frequencies are kno,.-n • priori, 
418-421; properties of the distribution, 
422; nom•ality for large •· 42:!; eon
ditions oo appli<'ation of test, 422-423; 
effectoftaking into a<'COuntsignsof de,·i
ations, 423-424; levels of siguifican<'f', 
-&2.._..25; additive property or. 426-427; 
estimation of theoretical frequencies 
from data, 427-429; experimeutson,421J
-'30; goodness offit, 430; refs.,_5:!0-521. 

' 


