REPOR T

ON

THE SOCIO ECONOMIC SURVEY
THE NAGARJUNA SAGAR PROJECT AREA

VOLUME - II
TECHNICRL REPORT

ANDHRA UNIVERSITY
WALTAIR.

REPORT
ON
THE SOCIO-ECONOMIC SURVEY
OF
THE NAGARJUNA SAGAR PROJECT AREA

VOLUME II
TECHNICAL REPORT

ANDHRA UNIVERSITY
,WALTAIR。

Pages.

1. 17

1-3
1.2 Background data 3
1.3 Criteria for stratification $\quad 3-5$
1.4 The objectives of the saniple survey 5 and the choice of a frame
$1.5 \begin{gathered}\text { Selection of villages and the } \\ \text { Census survey }\end{gathered}$
1.6 Design of the intensive farm surveys 9-10
1.7 Design for the survey of non-farm enterprises
$11-17$
1.8 Other surveys 17

Chapter II
Proceddures of Estimation and 18-27 Estimates
2.1 Net cultivated area in a stratum 18
2.2 Net cultivated area for the 18 - 19 Right canal side

Intensity of cropping 19-20
2.4 Gross cropped area 20-22.
$2.5 \quad$ Number of households in a stratum $22-23^{\circ}$
2.6 Number of cultivating households 23 in a stratum
$\begin{array}{ll}2.7 & \begin{array}{l}\text { Mean of per acre yield of a crop or } 23-24 \\ \text { mean of any other farm character- } \\ \text { istic in a stratum }\end{array}\end{array}$
2.8 Inputs 24
2.9 Prices -. 24
2.10 Non farm survey $\quad 24-26$

2-11 Estimates 27

Chapter III	Reliability of Estimates	28-36
3.1	Standard errors	28-30
3.2	Formulae used for computing standard errors of Ratio estimates	30-31
3.3	Other method	31-32
	Table	33-36
Chapter IV	$\frac{\text { Optimal Crop Pattern by }}{\text { Linear Programming }}$	37-89
4.1	Introduction	37
4.2	Assumptions - General	$37-38$
4.3	Assumptions - Technical	38-41
4.4	Details of the procedure followed	41-42
4.5	Right canal area ($\mathrm{S}_{1}+\mathrm{S}_{2}$)	43-48
4.6	Left canal area	48-52
4.7	Limitations of the results obtained	$53-55$
	Programming tables for the Right and Left canal areas	56-89
Appendix I	Outline of a scheme of investigation into the economic aspects of the Nagarjunasagar Project	90-98
Appendix II	Methods of evaluating farm \dot{X} assets, outputs and inputs and	99-104

CHAP TER 1

SAMP LING DESIGN OF THE SURVEY

1.1 Genesis of the Survey.

It is a special feature of the Nagarjunasagar Project that its Control Board realised the need for a survey of the Project Area even while the project work was in its early stages. This is due to the desire to achieve a rapid development of the ayacut in the case of this Project unlike what has been experienced in some of the other projects recently completed. The construction of the canals is only one aspect of a project, viz., the engineering aspect. Equally important in this connection are the factors such as the resburces and agifcultural experience and knowledge of the farmers of the area, the additional credit and transport requirements, and the like for the project to yield quick results and to progress rapidly towards reaching an optimal or near optimal stage.

With this object in view, the Contrel Board invited in 1956 suggestions from various institutions, and constituted a Technical Advisory Committee to consider these aspects from time to time and advise. Prof. B. Sarveswara Rao Head of the Economics Department, Andhra University submitted a comprehensive memorandum, ${ }^{1}$ and the Indian Council of Agric ultural Research also sent a memorandum to the Centrel Board. These were circulated to the members. of the Technical Committee consifsting of the Administrator, Chief Engineer, Nagarjunasagar Canals, Representatives of the Gokhale Institute of Politics and Economics, Representative of the Bureau of Economics and Statistics of Andhra Pradesh, Representative of the Indian Council of Agricultural Research, Director of Agriculture of Andhra Pradesh and two representlatives of the Andhra University.
--2--
The Reserve Bark of India agreed to depute Sri T.S. Rao, Deputy Chief of its Rural Credit Department for important meetings of the Committee.

The first meeting of the Technical Committee was convened in 1957, at which it was decided to have a survey of the Project region in two parts to cover the Socio-Economic and the Agre-Economic aspects. It was further decided that the Indian Councłl of Agricultural Research would be in supervisory charge of the Agro-economic Survey.

As for the Socio-Economic Survey, no institution commanding the confidence of the Centrol Board came forward to shoulder the responsibility of conducting it. So the Technical Committee desired that we should be incharge of this survey. We felt that we could supervise the Socio-Economic Survey, if the Control Board would organise the field work, but the Centrel Board expressed its inability to organise the field work. Therefore the Committee requested us to undertake the actual conduct of survey in the field also. The Andhra University was approached for approving the proposal/ permitting
both of us ... to be jointly in complete charge of the Socio-economic Survey of the Project area. Though the financial aspects were not decided in that mecting, a token sum of Rs. $3,000 /-$ was sanctioned to meet any expenses for preliminary work by way of touring the area, collecting data etc. But subsequently the Agro-economic survey was dropped and certain important aspects of it were required to be included in the Socio-economic Survey itself: This necessitated the dropping out of Urban
originelly incheded in the scepe eq Al Sorio- Economin Surwey Surveys and Employment Surveysh as it was decided not to increase the expenditure but keep it at R. 2.3 lakhs as previously decided upon.

Background data.

Before undortaking a tour of the Project region to know first hand the various problems likely to arise out of
the impact of the project on the area, Sri K.V. Satyanarayana, Research Officer, Bureau of Economic Research Andhra University, was sent round in summer, 1957 to visit the taluk Offices in the ayacut area and gather information on various aspects of the economy of this region. The Project Authorities made available the firkawise lists of villages of the proposed ayacut in May, 1957.

On the basis of these lists, Mr. Satyanarayana gathered information in respect of each village regarding population, households, acreage under crops, crop-yields, etc. Using this information, the characteristics of villages in the Project region were examined in detail.
|3 Criteria for stratification.
The latter part of the summer of 1957 was spent in going through the above data, looking for meaningful criteria to classify the villages into Strata.

After this, questions of stratification, of preparation of frames, and of sampling procedures, etc. were

... :. . vith the late Sri T.S. Rao, Dr. N.S.R. Sastry and Sri V.N. Murty of the Reserve Bank of India at Bombay and later with Mr. N.V. Sovani of the Gokhale Institute ourl Econourics
of Politics at Yoona.

The total number of towns and villages as per the delimitation of the ayacrit made by the project authori-669 ties in the year 1958 came to on the Right Canal 276 side and r on the Left Canal side. It is found that villages having different population ranges are fairly uniformly distributed over the whole area. It is also fom und thet commercial crops like chillies, groundnut, tobacco, and cotton are raised predominantly in a good number of villages situated on the Right Canal side of the prom ject. Although most of these villages raised commercial crops to a large or small extent, it was folt that the cconomy of the villages in which the area under the commercial crops is relatively high, is likely to be different from that of the villages where these crops are not so extensively cultivated, Aecordingly; the ayacut villages on the Right Canal side are divided into two strata, viz. S_{1}, the stratum in which the commercial crops are important, and S_{2} the stratum consisting of the rest of the villages. The criterion of importance of comercial crops for any villages was taken to be that the area under any one of the four commerciel crops mentioned above was at least 5CC acres, or the total area under these four Commencial crops put together was 650 acres or more. On the basis of this criterion the number of villages (excluding villages having a population exceeding 5000 each, villages uninhabited or merged with others and towns) came to 196 in S_{1}
and 305 in S_{2}. The commerciar crons of emportance in the villages on the Leit Cane? side of the project are groundnut and castor. It was round thet the zereage under these crops was more or lese evenly distributed in the se ayacut villages, and tresefore stratification of the villages on the left danal side on the basis of the importance of commercial crops was not macic. Ail th 0275 ayacut villages lying on the Left Canal side of the Project thus constituted the third stratum, S_{3}, Cbviousiry X_{3} js one compact region but S_{1} and S_{2} are not, separate nompact areas. The villages in S_{1} and S_{2} lie interspersed,

Saniple
The objectives of thef sumpey and the choics of a frame.
The Socio-economis survey cf the Project area has been undertaken firstly to serve as a bench mark in respect of the various aspects of socian conditions and economic activities in the region, and secondy উo obtain an appraisal of the regional income, the present position regarding resources, and the input-output dater for the various activities (Farm and Non-Farm) that are going on in the area. The information is intended to be collecten Stratumanse. Though we have the lists of viranges in each or these strata, we have no adequate data to go by, to arrive at the various types of appropriate frames to izaw semples from, for different types of surveys. It was fsit that this difficulty can be surmounted only by treating a somple of villages in each stratum as representative of tine stratum itself and collecting information on bssic items of intercst from every household in each of the rijuages chosen for study.

By simple random samping 8 viliages from $S_{1}, 12$ villages from S_{2} and 9 viliages from S_{3} vere seiected for purposes of this survey, But in 15se: the Project Authorities decided to exclude from the originei ayacut; a compact area
called 'Pulichintala Block'; as it was mainly a ${ }^{\text {Yirginia }}$ tobacco growing area; This resulted in our having to delete 4 of the sampled villages on the Right Canal side. In tre process of replacing these four villages; we took note of the fact that deletion of the 'Pulichintala Block' has brought down the relative size of the Right Canal area and so it was decided to reallocate the overall number of 29 villages as follows:
$S_{1}: 7 ; \quad S_{2}: 12 ; \quad S_{3}: 10$.
Accordingly, we added one randomly asmpled village to the sample villages in $S_{1}, 2$ randomly sampled villages to those in S_{2} and one randomly sampled village to those in $S_{3}{ }^{\circ}$

The sampled villages in the final list and their location are as follows:

Sampled villages

STRATUM-1. Village	Ialuk	District
1. Nemalapuri	Sattenapalli	Guntur
2. Mothadaka	Guntur	Guntur
3. Mittagudipadu	Palnad	Guntur
4. Madala	Sattenapalli	Guntur
5. Bandarupalli	Guntur	Guntur
6. Veluru	Garasaraopet	Guntur
7. Pernamitta	Ongole	Guntur
1. Gollapadu	Sattenapalli	Guntur
2. Chandalur	Darsi	Gullore
3. Bandlamudi	Ongole	Guntur
4. Lakshmipuram	Ongole	Guntur
5. Peda-Agraharam	Palnad	Guntur
6. Nagulavaram	Vinukonda	Guntur
7. Darsi	Narasaraopet	Guntur
8. Kolachenakota	Ongole	Guntur
9. Palapadu	Narasaraopet	

STKMTUM-2. Village	Tajuk	District
1C. Peddavaram	Vinukonda	Guntur
11. Kalavakur	Ongole	Guntur
12. Kamepalli	Narasaraopet	Guntur
STRATUM-3. Ir Adiviravulapadu	Nandigama	Krishna
2. Singareddipalem	Khammam	Khammam
3. Tripuravaram	Huzurnagar	Nalgonda
7. Siripuram	Jaggayyapet	Krishna
5n Wadapalli	Miriyalaguda	Nalgonda
6. Nandipahad	Miriyalaguda	Naigonda
7. Vallabhi	Khammam	Khammam
3. Pedaveedu	Huzurnagar	Nalgonda
9. Dondapadu	Huzurnagar	Nalgonda
IC. Bhimavaram	Jaggayyapet	Krishna

At the same time we selected 2 villages of the $S_{1}-$ type 2 villages of the S_{2}-type and 3 villages of the S_{3}-type which will not get the benefit of water from the project but Iie close to the ayacut region. These are intended to serve as control villages. They are included in the present survey, and a repeat survey at a later date, will indicate• the growth of the three types of villages during the period without receiving the benefit of water from the Project. The following are the Control villages.

Control Villages

Village	Taluk	District
Si-Tyhe 1. Katrapadu	Bapatla	Guntur
2. Koppuravuru	Guntur	Guntur
$S_{2-T y p 6}$ 1. Atmakuru	Painad	Guntur
2. Potlapadu	Darsi	Nellore
V-mirs		
\mathcal{S}_{3}-Type 1. Gottumukkala	Nandigama	Krishna
2. Madugulapalli	Miriyalaguda	Nalgonda
3. Mothe	Suryaraopet	Nalgonda

Though: these villages have been surveyed, the tabulation and analysis of the data have not been taken up, as it can be more meaningfully done at the time of the repeat survey.

Next, the question was considered about the need for the survey of some villages in the vicinity of the ayacut region which received the $b \in n \in f i t$ of canal irrigation in the last decade. The purpose of a survey of such villages was to know the problems which the farmers are likely to face in the wake of the construction of the project and the changes likely to come about after water ia made available for irrigation to the ayacut villages.

The villages are referred to as "Wet Villages". They are 4 villages in ail. All of them taken together are referred to stratumm or $S_{4}, 3$ of them which are near Vijayawada are collectively referred to as $S=4 A$ and the remaining village as $S-4 B$.

The following are the details of the wet villages
Name of Village

Stratum-4 4. 1. Rayanapadu
2. Guntupallı
3. Gollapudi

Stratum-4 B. Io Pynampalii

TEIuk	District	Sownce of
		Irrigation
Vijayawada	Krishna	The Krishna
		Coopperative
Vijayawada	Krishna	irrigation
		and Agricul-
Vijayawada	Krishna	tural Improvement Society,
		Guntupalli.
Khammam	Khammam	Palair
		Resorvoir

Information was collected for the year 58-59 during the period April to June 1959 from each of the households, in all the sampled and selected villages on
i) Land ownership
ii) Land utilisation
iii) Operational holdings
iv) Cropping pattern
v) Human population, working and non-working
population
vi) Occupational pattern
vii) Non-farm activities
viii) Cattle wealth

1x) Moricultural and nonmagricultural assets and
x) Incomes from land and other sources for the year 1953-59

For the results of this survey, the reader is referred to a separate chapter on this in the Report.

1.6. Design of the Intensive Farm-Surveys.

One main objcet of the Census Survey in each of the sampled and selected viliages was to prepare a comm plete list of the houscholds in the villages. The investigators were asked to report any discrepancies from the information on householdsfles1 related to the Population census of the villages. These discrepancies were examined and reconciled and then a finanlised list was prepared. In view of the fact that the Agro-economic aspect of the survey was dropped, it became necessary to carry out a somewhat more detailed survey of the farm activity in the villages than originally programmed. The picture of each stratum is taken as being given by the villages sampled from it. In a village itself we may broadly say a household forms a unit, The definition of a household adopted by us is the same is as in the Population census viz. all the members residing in a premises and taking food from the same kitchen. Whenever a household, any member or members of which, are engaged in cultivating any extent of land either owned or taken on lease is referred to as a cultivator or cultivating household. Thus all households are dichotomised into cultivator households and non-cultivator houscholds. This definition of cultivating houschold is irrespective of the amount of income derived from cultivation. For the study.
of the farm enterprisc in the village we havo adopted a farmer's holding as a unit. This is defined as the land actually cultivated under one management including the leased-in land but cxcluding the lased-out land. Ihis is also called an operational holding. While most of the times the management of a farm is under onc houschold, it happens occasionally that the same farm might be jointly operated by more than onc household. Thus in a village the number of cultivating houscholds is nearly the same as the number of operational holdings but may slightly exceed wherever there are joint operational holdings.

In each village the operational holdings are listed out in descending order of their extent and divided into
 from each quintile group is drawn giving a sample of 20 farms tor each of the sample village Such a sampling procedure was felt to be the best in our discussions, as it ensures representation of farmers of different sizes operating in the village. This design bears similarity to the one adopted in the Rural Credit Survey. This procedure is unit formly adopted not only in the sampled villages of the ayacut region but also in the Control villages and the wet villages. Tre survey was conducted from May '59 to April '6C. Each investigator was assigned a fixed ortom number of sampled farmers belonging to threef close by villages. He was required to be in constant contact with the farmers during a period of one complete crop year (1959-16C) and collect detailed information in then rounds as per the prescribed instructions and enter th. saunh in the schedules.

For the results of this survey the reader is referred to a separate chapter on this in the Report.

1.7. Design for the Survey of Non-farm enterprises.

On the basis of our Census information, a list of the enterprises in these villages other than cultivation was prepared. In the ayacut region 16 enterprises were found to bc at least of some importance, whereas in the wet villages, they were 18 in number.

Dairying by a cultivating household was treated as a part of farm enterprise, but it was treated as a non-farm enterprise when the household engaged in this activity was not cultivating any land. In respect of each of the nonfarm activities, a list of housenolds having this activity in each village was prepared. Often times the number of houscholds in a village in such a list was found to be small. This was anticipated even at the time of the original discussion at Bombay and Poona, and it was decided not to make village-wise frames but pool the data and prepare frames for each stratum, or frames for the entire Right Canal and List Canal regions, and if necessary a single frame for the entire ayacut area.

In each frame, the houscholds were stratified, whereever relevant, intc two strata consisting of households for which the activity is carried on as a household activity and the rest. These two groups of households were again classificd in the case of some enterprises into cultivator households and the rest. The households in each of the se sub-groups were 1isted in descending order of income from the particuiar enterprise, and further divided into sub-strata on the basis of high, medium, or low income ranges. From these sub-strata, households are drawn by simple random samiling so as to make up a sample which is not too small.

Before we give details of the regions for which different frames were made, we may draw the attention of

Abstract

the rcader to the fact that the same houschold may be simultancously ongared in cultivation and some other non-farm enterprise \neq too, and accordingly may be included in a number of frames, with the possibility of its inclusion in samples for farm studies as well as one or more non-farm studics.

From a study of the data collected in our census survey, it was found that only 16 non-farm enterprises were of any importance to the Project area. They are listed Nol. 1 in the table, below. The same table shows how the regions are pooled to arrive at frames containing households not too small in number. For rearing of sheep and goats, S_{1} and S_{2} are taken together and a frame is prepared for this cntire area, and another frang is prepared for S_{3} separately. For weaving, separate frames are prepared for cultivating households of S_{I} and for non-cultivating households of S_{1}, and similar frames have been prepared for S_{2} and also for S_{3}. In respect of carpenters the entire Project area is taken as a single region, and for this region four mutually exclusive frames are prepared as follows:
(i) frame of all cultivating households in the area where the enterprise is run as a householdf one, (ii) frame of all cultivating households which have carpentry as a nonhousehold enterprise; (iii) frame of non-cultivating households which have this enterprise as a household one, (iv) frame of non-cultivating houscholds of the area having carpentry as non-household enterprise.

In respect of goldsaithy, all relevant houscholds of all the sampled villages in the three strata are listed as a single frame.

The table No. $1 . \mid$ below shows all these details in respect of each of the $1: S$ enterprises considered.

The sample sizes in the table are either 15, 10 or 8, or 5. In the case when the size is 15, the sample has been obtained as follows:

The houscholds in the frame are arranged in descending order of incomes, and stratiffed into 3 equal parts which may $b \in$ called the strata with households of high, medium, and low incomes, and a simple random sample of size 5 is drawn from each stratum to make up the total sample of size 15.

When the sample drawn is of size IC (or 8) the procedure adopted is that the households in the frame are listed in descending order of their incomes accruing from the enterprise and stratified into two strata $\epsilon_{a} c h$ containing equal number of houscholds, so that stratification results in division into higher in-comed households and lower income households. By simple random sampling, samples of size 5 (or 4 as the case may be) from each stratum are drawn, so that a sample of size 10 (or 8 as the case may be) is finally arrived at from the frame.

Tate woll(ionts)

Other Surveys.

This section deals with certain other Surveys wherein information is collected without any sampling design.

(1)Villege $S_{\text {unvejs }}$

In respect of each of the surveyed villarges, inforlsell cirtarmed mation of general interest was gathered from the people and officers of the village in a schedule intended for the purpose.

(ii) Taluk Reriorts:

To have a general picture of the ayacut as contained in the taluks, infomation from the existing records at the Taluk offices was gathered and compiled. These are referred to as 'Taluk Reports'. They refer only to the Ayacut part of the taluk concerned. Where the ayacut area in a taluk is small, or the information scanty, the reports have not been prepared for such taluks. Data were also collected . from the Assistant Directors of Industries regarding the details of existing industries in the different taluks.

(iii) Credit, Marketing and Transport Surveys.

To understand the existing position regarding credit, marketing conditions, and transport facilities, important centres on the Right and Left Canal sides were selected, and data were gathered on the following main aspects: (a) agencies providing credit, (b) membership and capital structure of banks, (c) pattern of receiving and repayment tradens, etéd) warehousing and marketing condition of loans by $/$ - (d) warehousing and marketing conditions at these centres and (e) the way in which produce, fertilisers; etc., are transported from and to the ayacut region.

PROCEEDORES OF ESTIMATION AND ESTIMATES

arer-
In order to estimate the benefits from agriculture that will accrue due to the supply of water from the Nagarjunasagar project to the ayacut villages, we have to estimate
fornecorp prothetionn
the present income/, and for this we have to first estimate the total cultivated area in this region, the intensity of cropping, the cropping pattern, the rate of yields for the different crops; and the average prices.

2.1. Net cultivated Area in a stratum.

ingures of the net cultivated area are available in the 'Census Survey' carried out in each' of the sample villages. These figures are totalled for the sample villages in a stratum, and the average per village obtained. This average is taken as the estimate of the net cultivated area per village for the entire stratum. If the net cultivated area in the j - th. village of the i - th. stratum is aij, $t_{1}=1,2,3$, $j=1,2, \ldots$. $n_{i}, n_{1}=7, n_{s}=12 n_{3}=10$, the estimate of the stratum average under consideration is $\bar{x} i=\left(\sum_{j=1}^{n_{i}} a_{j}\right) \div n_{i}$ 2.2. Net cultivated area for the Right danal side.

Weighting the estimate for the average per village in S_{1} by the total number of villages in the frame for S_{1} and similarly weighting the estimate for S_{2} by the total number of villages in S_{2}, an estimate of the overmall average of net cultivated area per village on the right canal side is obtained as $\frac{N_{1} \bar{x}_{1}+N_{2} \bar{x}_{2}}{N_{1}+N_{2}}$,
where N_{1} is the number of villages in the frame of villages for S_{1}, and N_{2} is the corresponding number for S_{2}. Then the estimated total net cultivated area on the kight danal side is

I The census survey here refers to collection of data on certain items from all the households of the sampled villages. This should be distinguished from the population census of India.
$\left(N_{1}+N_{2}\right) \cdot \frac{N_{1} \bar{x}_{1}+N_{2} \bar{x}_{2}}{\left(N_{1}+N_{2}\right)}=N_{1} \bar{x}_{1}+N_{2} \bar{x}_{2}$
which is simply the sum of $T_{1}=N_{1} \bar{x}_{1}$ and $T_{2}=N_{2} \bar{x}_{2}$ which are the estimated totals for S_{1} and S_{2}. The same weighted average could have been obtained by first aggregating the estimated totals T_{1} a. $\mathrm{d} \mathrm{T}_{2}$ and then dividing the sum by $\mathrm{N}_{1}+\mathrm{N}_{2}$. Λ t several stages in the work when the averages for the kight danal side, or for the entire Project area have been used, this procedure of taking the weighted average which would be equivalent to aggregating the totals; and then averaging suitably is adopted.

2.3. Intensity of Cropping.

The actual extent of land in which crops are raised, irrespective of the number of times crops are raised on a part or the whole of it in a year; is called Net Cultivated Area.

The extent of land on which crops are raised; counting every part of land as many times as the number of times
ane
crops grown on it in a year; is called Gross Cropped Area. This will not contain current fallows:

The ratio of gross cropped area to net cultivated area is known as Intensity of Crepping: This ratio is generally greater than or equal to unity, but when the extent of current fallows exceeds the area on which crops are grown for a second (and third) time in the same year; it can be less than unity. Pooling the information from the Intensive Farm Surveys relating ts all the sampled farms in the sample villages of a stratum, the intensity of cropping för these farms was obtained.

This intensity is used as the estimate for the intensity for the entire stratum:

Remarks: While, in respect of the villages listed in the frame of S_{1}, S_{2} and S_{3}, the gross cropped area is estimated using the estimates of net cultivated area, the reverse procedure has to be used in respect of towns and villages excludod from the frames,
2.4: Gross cropped Area:

There is no information regarding the gross cropped area under different crops. The ayacut area given by the project authorities is the culturable commanded area, but not the cultivated area, as the former includes some areas that can be brought into cultivation'at a future date. Village-wise or stratum-wise cultivated area under differint crops could not be worked out from the information available at the Taluk offices because of the gaps in them. The 1951 Census data was also of no avail, as the figures were average for the 5 -year period preceding 1951.

Therefore cultivated area in each stratum, could be arrived at by relying entirely on the results of survey.

The estimated net cultivated area for each stratum was multiplied by the corresponding estimate of the intensity of cropping to obtain an estimate of the gross cropped area in that stratum

Gross Cropped area when towns and villages with population over 5000 and uninhabitated villages are also included:

There are the towns, villages with population over 5000 and uninhabited villages which are not included in the frames of S_{1}, S_{2} and S_{3}. The gross cropped area for these is obtained by using the information in the Taluk Reports. To the estimated gross cropped area in any stratum, the corresponding figure for towns and villages left out of the frame is added so as to ribtain the estimate of the entire region.

21

Remark: By using the estimate of the intensity of crepping for the stratum, net cultivated area for the entire region of a stratum inclyding all towns and villages excluded from the frame was worked out.

Total area available for Cultivation:
The percentage of uncultivated area and grazing land in villages
the sampled - in S_{1}, S_{2}, and S_{j} are used as estimates for working out figures of uncultivated and grazing land in towns and villages excluded from the Irame. These extents are also available for cultivetion, besides the cropped apea. Cultivable Waste and Permanent Fallows and Forest Land in towns and villages exciuded from the frames are also worked out in a similar way using the corresponding percentage figures of such areas in sample villages.

Cropping pat \ddagger ern:
For each samplef village in a stratum, the net cultivated area obtained from the census survey is multiplied by the estimate of the intensity of cropping for the stratum ${ }^{2}$ This estimate of the gross-cropped area for the village is allocated to different crops on the percentage basis of the cropping pattern obtained by pooling the data from the intensive Farm Survey of the sample Iaims in that viliage. The area under each crop for the different sample villages are then aggregated, and the percentage distribution under crops worked out. On this percentage basis, the estimated gross cropped area of the stratum is allocated to different crops. The estimate of thel cropping pattern for the fight

[^0]danal side, and the entire project area can now be got by just aggregating, the gross cropped area under different crops for the relavent regions.

Before we clbse the section on the estimation of cropped area, it may be mentioned that we preferred the above method to other methods. For examples the data obtained by way of background information for each of the sample villages contain information on this item. But the data therein were given by the village officers, basing them on old settlement records. Nor could the informatien of the 1951 population census in respect of the cultivated area be adopted, as that also is too old. Even the latest information available at the Taluk offices could not be used, as it was not complete, and was not recorded on a uniform basis for the fight and Left canal areas of the Droject region.

Hence it was that the above procedure was finally adopted as the best under the circumstances for estimating the net cultivated area, and cropping pattern.
2. . 5.Number of households in a stratum:

For working out an estimate of the number of households it was felt that 1951 population census data could be advantageously used. Taking the total number of households in all the sample villages in a stratum as per 1951 population Census and the total number of households in the very same villages as per the present census survey far 1959, we could get reliable information on the rate of growth -f the number of households in these sample villages from 1951-59. Attributing this rate of growth to the total number - f households in the stratum as per 1951 population Census, the estimate of the number of households in the stratum for 1959 was obtained.

If $h_{i}^{(1)}$ is the number. $n f$ households in the j-th. sample
village of i-th stratum as per our census survey for 1959, $i=1,2,3$, and $h_{j}(0)$ is the corresponding population eensus figure of 1951, and $H_{i}^{(1)}$ refer to the estimated tetals for the i th. Stratum in 1959 and the actual total in 1951 we have by our assumption $\frac{\left.H_{i}^{(1)}-H_{i}^{(\dot{b}}\right)}{H_{i}^{(o)}}=\frac{\sum_{j=1}^{n_{i}} h_{i}^{(1)}-\sum_{j=1}^{n_{i}} h_{j} \text { (b) }}{\sum_{j=1}^{n_{i}}}$

As this method is based on consideration of the growth it is preferred to other methods:
2. b. Number of cultivating households in a stratum:

The number of estimated hoiseholds in the stratum was divided into the number of cul iivating households and the rest on the basis of the observed ratio f these in the Census survey for 1959 in the sample villages of the stratum under consideration. The method of using growth rates widd not be applied to estimate separately the number of cu历tivating households and the rest, because the population Census data or other available data do not give their relative sizes in 1951. This is due to the fact that the definition of a cultivating household adopted in this survey is a househ:ld cultivating any extent of land irrespective of size, Wnership or income, and there is no such classification f houscholds in Populatien, census data. But this definition has had to be adopted and used for classification, as contribution to agricultural production from farms of all sizes has to to be taken into account. .
2.. 7. Mean of per-acre-yields of a Crop, or mean of any other farm characteristicsin a stratum:
For any farm characteristic, an estimate of its mean in a stratum is obtained on the assumption that the sampled farms
in all the sample, villages in that. stratum constitute a representative sample from the entire collection of farms in the stratum. Accordingly, information on 140 sample. farms in S_{1} is pooled together and estimates are worked out for that particular farm characteristic. Similar procedures are adopted inrespect of the 240 sample fariis in S_{2} and the 200 sample farm: in S_{3}. The pooled data are frequently classified by size groups of operational holdings. .

As previously mentioned, a suitably weighted average . of the different averages in the different size groups of operatef holdings is worked out in each instance; se that the procedure becomes equivalent to aggregating the estimated totals for each size group, and then averaging over the total number of acres under the crop, or other relevant units as the case may bed

2.1.8Inputs.

The average inputs of different types for a crop are.
alse estimated by the procedure - \because mentionedabre.
2. 19 Prices: The average prices used are also weighted average, the weight usee being the quantities of yields in the sample farms corresponding to the different prices. 2. 10 Non-Farm Survey:

Ifter analysing the data contained in the schedules relating to the households in the sample for each non-farm enterprise it is found that the input-output figures relating t. only 12 enterprises will be meaningful and they have been worked out. For the non-farm study, this is the only estimation that was carried out. As sufficient care was taken th make the sample fairly representative, the inputs and outputs were arrivod ${ }^{a t}$ by giving equal weight to all the. households in the sample. The standard errors are not calculated as the information gathered was too meafgre.

The following table/gives the enterprises and the input-output relationship obtained in the survey.

Input-Output Structure in Non-Farm Enterprises.

NB. Figures in braclets are airenoges per bousehold.

Table No． 2.1 （Contd．）
Input－Output Structure in Non－Farm Enterprises（Contd．）

Name of Ențerprise．	Wages paid for hired bisour Gin 2	$\begin{aligned} & \text { Deprecia- } \\ & \text { tion } \end{aligned}$	Maintenance or repairs un	Other Payments （至象）	Total Cost （wAs）	Net Income （为为）	Net Income per househcld． （lincs）
－	（9）	（10）	（11）	（12）	（13）	（14）	（15）
1．Wearing	245.00	209.50	4.50 .00	1333.00	$\begin{gathered} 18246.60 \\ (405.48) \end{gathered}$	7760.40	172：45
2．Ambercharka		\％ 18.00	12.00	－－	$\begin{array}{r} 45.56 \\ (15.19) \end{array}$	－2．56	－0．85
3．Tailoring	－－	159.66	280.00	24.12	$\begin{aligned} & 790.47 \\ & (56.46) \end{aligned}$	3110.40	222.17
4．Cobblery	－－	4.66	66.00	－－	$\begin{array}{r} 1470.84 \\ (66.86) \end{array}$	501.66	22.80
－5．Golasmitily	－	25.89	27.00	76.00	$\begin{aligned} & 399.97 \\ & (44.44) \end{aligned}$	1932.03	214.67
6．Be．sket Making	ε	2.39	42.00	－2．33	$\begin{aligned} & 729.22 \\ & (52.09) \end{aligned}$	1666．16	119.01
7．Pottery	－	21.24	42.00	22.00	$\begin{aligned} & 590.29 \\ & (42.16) \end{aligned}$	1464．85	104．63
8．Blacksmithy	78.75	135.34	80.00	－－	$\begin{aligned} & 508.09 \\ & (37.76) \end{aligned}$	6065.91	379.12
9．Carpentry	825.00	117.82	140.00	343.00	$\begin{aligned} & 1564.82 \\ & (55.89) \end{aligned}$	11907．42	425.27
10．Transport	－－	140.93	200.00	1818.44	$\begin{aligned} & 3400.62 \\ & (340.06) \end{aligned}$	4039.38	403.94
11．LLaundry	－	5.41	30.00	－－	$\begin{aligned} & 301.54 \\ & (30.15) \end{aligned}$	2487.46	248.75
12．Milis	1450.00	966．34	300．00	141.00	$\begin{gathered} 3809.84 \\ (1269.95) \end{gathered}$	386.16	112.05

2. M Estimates.

The actual values of the estimates obtained in the survey are all given in Chapters Iv, V and VI of Volume I, excepting estimates f farm resources which are given in Chapter II. if the same volume. We may mention here that estimates furious types of income obtainable from the Input-0utput data are al se presented, in Chapter V of the Same Volume. Net incomes arising from various agricultural and non-agricultural occupations are given in Chapter II of this volume. However, ne mention n is made of the procedure of estimation in the case of these net incomes as they are worked out by simple averaging.

The estimates relating to the servery of now -fern enterprises ane presented in tate No 2.1 above.

Standard errors.
In large sample methods, the standard error is used for appraisal of precision. The basis for this is that the estimates in such samples are approximately normally distributed under fairly general conditions which are assumed to hold good. We shail here refer to the standard error, expressed as a percentage of the corresponding estimate, as the "Coefficient, of Variability", and we shall use this as a convenient measure of the reliability of the estimate.

In this survey, there are several difficulties in the computation of standard errors and the Coefficients of Variability. This fact was realised even in the first neeting of the Technical Committee of the Nagarjuna Sazar Project. At this meeting it was decided to divide the survey into a purely Agro-economic part, to be carried out by the Iidian Counci工 of Arsicultural Research over a period of 3 years, with a view to make firm estimates, and a Socio-6conomic part to be carried out by the Andhra University, wherein data are to be collected over a wide range of social and economic activities of the people of the Project Area without much stress on the calculation Standand of ${ }^{\text {er }}$

Later on, there was a considerable reduction in the amount sanctioned for the sociomeconomic survey with the result that the scope of the survey became considerably restricted. Further, the agro-economic survey was also dropped for want of funds and its main features had to be incorporated in the present survey itself, without the sanction of any additional expenditure. So it has come about that the agricultural part of the survey originally intended to be carried out over a period of 3 years was done for only one year. Necessarily, there is bound to be some loss of precision due to the realuction of time.

In many surveys of this type work relating to the appraisal of precision is cither usually taken up at a very late stase or not taken up at aile In the present case considerable effort has been put. into the conputation of standard errors of at least some of the important estimates. The Ratio Method of Estination has been nainly employed in the present survey, The standard errors of Net Cultivated area, Gross Cultivated derca, Total Number of Households, Average liumber of Households per villase, Per-acre inputs of Human labour, Bullock labour and Other Variable Inputs for inportant crops for each of the three strata have been caiculated. Some of the cases where computations were heavier were left out. Since the purpose is to have an idea or the extent of variability in our estimates, the computation of standard errors in some typical cases would generally suffice。

For some estimates the Coefricients of variability are conportably low, while for some others, they are in the neighbourhood of 10% which is also good enough. However, in the case of inputs for irrigated paddy as now grown in the Project area the variability is much higmer. This crop secms to be grown under widely varying conditions under wells and tanks. If the survey had extended over
3 years, smaller standard ervors would have been obtained.
Before proceeding to give details of the formulae used for calculating standard errors and ziving the values obtained by ther, it may be pointed out at this stage that standard errors are not helpfui for forecasting purposes, What the Project region will become like can be guessed only by studying the econony of the regions of this type which have come under canal irrigation.

The main purpose of worizing out the estinates and their standard errors is to rrovide bench mark data for future repeat surveys of this area, which is one of the objectives of this survey.

When we compare the results of adopting the optinal cropping pattern with the present position given by this Bench prk, we are obliged to consider the question of precision attained in the present survey. Taking the entire agricultural activity in the rogion as an industry going on at constant returns to scale, it seems reasonable to suppose that the output (as also the value added) is subject to the same order of variability as thedinputs.

We now proceed to give details of the standard errors which have been worked out.

Formulae used for computing Standard Frrors of Ratio estinates

In the case of estimation of the S_{t} andard fror of the estimated total number of households in a stratum the formula used is
$\sqrt{V\left(\hat{Y}_{R_{i}}\right)}=\sqrt{\frac{N_{i}\left(N_{i}-n_{j}\right)}{n_{i}\left(n_{i}-1\right)}\left(\sum Y_{i j}^{2}+\hat{R}_{i}^{2} \sum X_{i j}^{2}-2 \hat{R}_{i} \sum Y_{i j} X_{i j}\right)}$
where $\quad \hat{Y}_{R_{i}}$ is the ratio estimate of the total number of households in ith stratum, $V\left(\hat{Y}_{R_{i}}\right)$ is the variance of $\hat{\mathrm{Y}}_{\mathrm{R}_{1}}$ $Y_{i j}$ is the number of households in 1959 of the jth village in k ith stratum
$X_{i j}$ is the number of households in 1951 of the j th village in ith stratum

$$
\hat{R}_{i}=\frac{\sum_{j} Y_{i j}}{\sum_{j} X_{i j}}
$$

N_{i} is the number of villages in the frame of ith stratum n_{i} is the number of sample villages in the ith stratum

Also the Suandard error of the mean number of households per village in 1959 in a stratum is obtained

$$
\text { as } \sqrt{V\left(\hat{Y}_{R}\right)} \div N_{i}
$$

In the case of the estimation of the Standard Error of the ratio estimates of value inputs (human labour, bullock
habour and other variable inputs) in crop production, as fobtained from the intensive farm surveys undertaken during 1959-6C, the formulat used is

$Y_{i j k}$ is the input in value terms(human labour or bullock labour or other variable inputs) of $K^{\text {th }}$ farmer in the production of j th crop in ith stratum, $X_{i j k}$ is the area in acres on which jth crop is grown by Kth farmer in ith stratum, $\hat{R}_{i j}$ is the ratio estimate of the input per acre of j th crop, W_{i} is the number of sample farners in ith stratum, $n_{i j}$ is the number of sample farmers growing j th crop in ith stratum

$$
\overline{x_{n i j}}=\frac{\sum_{k} x_{i j k}}{n_{i j}}
$$

Other nethod.
Besides the ratio estimate discussed above, we have also made use of the method of simple arithematic mean in the estination of certain characteristics. In the case of estimation of the net cultivated area and gross cultivated arca per village this method is followed. Its standard grror is found out by using the following formula

Standard Error of mean net cultivated

$$
\text { area per village }=\sqrt{\frac{\frac{1}{t_{i}} \sum_{j} x_{i j}^{2}-\bar{x}_{i}^{2}}{n_{i}}}
$$

where $X_{i j}$ is the net cultivated area in j th village in ith stratum, \mathcal{K}_{i} is the number of sample villages in 1 th stratum and

$$
\vec{x}_{i}=\sum_{j} x_{i j} / M_{i}
$$

32

The standard error of the gross cultivated area per village is obtained by multiplying the above by the intensity of cropping. Wo now give estimates of important chara. cteristics, their standard errors and their Coefficients of varlation in table,

Tablc 1 NO . 3.1

EST MMATES, THEIR STANDLRD GHFORS AND COEFFIC IENTS OF VARIABILITY

(*) $\hat{i}^{\text {Characteristic }}$	Stratum 1			Stratum 2			Stratum 3		
	Est.	S.E.	${ }^{\text {Cob }}$ - ${ }_{0}$.	Est.	S.E.	${ }_{4} 0_{0} \mathrm{P}_{0}$	Est.	S.E.	$\left.{ }^{C}\right)^{\text {V. }}$
	Cl^{2}	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
I. Based on the Ratio met'zoc'									
\therefore of estimation	.			.		.			
1. Total number of householas	$1,21,761$	3,142	2.58	$1,23,454$	2,758	2.23	7I,563	2,780	4.01
2. Average number of huuseh.olds per viliage.	621	16	2. 58	321	7	2.20	260	10	. 4.01
3. Value tof human labour in:ut per acre of (in F_{o})									
i) Virginia tobacco	97.28	7.40	7.61	92.50	9.62	10.40	-	-	-
ii) Country tobacco	48.53	4.05	8.35	-	-	-	-	$1-$	-
iii) Chillies	48.55	4.999	10.28	110.43	30.90	27.98	\cdots	-	-
iv) Groundnut	32.52	2.11	6.49	32.22	1.79	5.56	-	\square	-
v) Variga	24.39	1.57	6.44	27.72	1.18	4.26	16.56	1.87	11.29
vi) Irrigated paddy	74.00	14.97	20,23	77.82	11. 59	14.39	-	-	. -
vii) Bajra	22.67	1.49	6.57	32.41	3.61	11.14	-	-	-
viii) Jowar	24.39	1.54	6.31.	\cdots	-	-	-	-	-
- 1x) Jowar + Redgram	25.18	2.48	9,85	22.46	3.35	6.01	\cdots	-	-
x) Ragi	\cdots	-	\cdots	331,34	10.18	7.75	-	-	$=$
xi) Castor	-	-	\cdots	14.54	1.99	13.69	\cdots	\cdots	-
								(Cont	

Characteristic	Stratum 1			Stratum 2			Stratum 3		
	Est.	S.E.	C. ${ }^{\text {c }}$ -	Est.	S.E.	C. ${ }^{\text {V }}$.	Est.	S.E.-	C.V.
3. Value of human la3nur in ut						.		-	;
xii) Variga + Jowar	-	\cdots	-	32.61	1.49	4.57	-	-	-
xiii) Korra	-	-	-	-	\cdots	-	9.09	1.91	21.01
xiv) Jowar + Cucuminer	-	-	-	-	-	-	25.14	1.77	7.04
xv) Groundnut + Rodgram	-	-	-	-	-	-	32.56	3.33	10.23
4. Value of bullock Iebour input per acre of (i2 BS									
i) Virginia tobaceo	44.10	4.80	10.88	25,81	5.37	20.81	-	-	-
ii) Country tobacco	26.77	3.84	14.34.	-	-	-	-	-	-
iii) Chillies	22.69	3.09	13.62	29.24	10.38	35.50	-	-	-
iv) Groundnut	12.20	1.38	11.31	20.52	1.72	8.38	-		-
v) Variga	40.18	8.41	2 C .93	33.45	2.45	7.32	20.24	2.73	13.49
vi) Irrizated paddy	44.96	16.14	35.90	48.87	21.05	43.07	-	\cdots	-
vii) Bajra	24.32	4.18	17.19	30.18	4.53	15.01	-	-	-
viii) Jowar	28.32	3.81	13.45	-	-	-	-	-	-
ix) Jowar + Redsiam	18.57	3.06	16.48	15.53	1.49	9.59	-	-	-
x) Regi	-	-	-	87.83	11.02	12.55	-	-	-
.									

Characteristic	Stratum 1.			Stratum 2			Stratum 3		
	Est.	S.E.	${ }_{\%}{ }_{8}{ }^{\text {b }}$	Est.	S.E.	${ }^{\text {C. }} \mathrm{F}$.	Est.	S.E.	${ }^{\text {C }}$ \% ${ }^{\text {P }}$
- (1)	(2)	(3)	(4)	(5)	(b)	(7)	(8)	(9)	(10)
4. Value of bullock lab inout per acra of (in (Contd)									
xi) Castor	-	-	-	19.26	3.37	20.09	-	-	-
xii) Variga + Jowar	-	-	-	48.53	4.09	8.42	-	-	-
xiii) Korra	-	-	-	-	-	-	9. 25	3.08	33.30
xiv) Jowar + Cucumber	-	-	-	-	-	-	21.30	2.29	10.75
xv) Groundnut + Red gram	-	-	-	-	-	-	14.98	2.01	13.42
5. Value of othcr varibain									
i) Virginia tobacco	$\begin{aligned} & 103.40 \\ & 47.72 \end{aligned}$	1 C .16	9.33	79.31	8.44	10.53	-	-	-
ii) Country tobacco	7%	5.90	11.37	-	-	-	-	-	-
1ii) Chillies	79.44	7.81	9.83	180.87	85.94	47.51	-	-	-
iv) Groundnut	34.90	3.95	11.32	37.23	3.84	10.30	-	-	-
v) Variga	42.83	3.17	19,05	29.99	3.08	10.27	15.66	5.01	31.99
vi) Irrigated paddy	104.18	27.68	26.57	64.59	11.74	18.18	-	-	-
vii) Bajra	13.14	5.79	44.06	16.23	3.70	22.78	-	-	-
viii) Jowar	20.57	2.79	13.56	-	6	9.28			
ix) Jowar + Redgram	5.11	0.76	14.87	3.88	0.36	9.28	-	-	-
x) Ragi	-	-	-	43.09	6.52	15.13	-	-	

NB. EGt $=$ Estimate. $S E$ = Standand error: C.V: Cofficient of vanialility,

CHAPLITIV IV

OPI TMAL CROP PAITYRRI BY LIHCAR PHOGAREILIG

11.1

 Introduction:The completion of the Nagar junasagar Dam on the river Krishna will make water available for irrigation in the First Phase for nearly 20.0 lakhs of acres in parts of Guntur, Narasaraopet, Sattenapalli, Vonukonda, Palnad, Ongole and

Markapur taluk of Kurnool district, and Darsi taluk of Nellore Bapatla taluks of Guntur District/on the right canal side, and distri, parts of Nandigama and Jaggayyapet taluks of Krishna District, Huzurnagar, Khammam and Miriyalaguda taluks of Nalagonda district on the left canal side. Among various programmes of agricultural development that should be undertaken, adoption of a crop pattern, which ensures utilisation of water and other farm resources yielding the maximum benefit, is of utmost importance. In what follows on attempt is made, using Linear Programming technique, to work out an optimal crop pattern which can be adopted in the ayeut villages soon after water becomes available for irrigation without bringing about any appreciable change in the current agricultural practices. Incidentally, on the basis of the suggested optimal crop pattern which is readily feasible under conditions of increased farm resources; an estimate of the direct benefit from the project is also obtained.

4.2. Assumptions : General.

In order to find out the optimal crop pattern in the Nagarjunasagar project area by using Linear Programming technique, we must know the nature of crops that will be grown under eanal-irrigated conditions and their input-output coeffisients. Projections of input-output coefficients for the crops to be grown in future are made on the following assumptions.

Though water will be supplied for irrigation as soon as the construction of the dem is completed, still the change from dry to wet eultivation will not become eomplete, because it takes time for agriculture to adapt itself to new conditions.

The farmers have to take to new methods of farming, $\begin{gathered}\text { growing of } \\ \text { new }\end{gathered}$ ete., and make the necessary investment. In order to increase investiment in agriculture, they should have increased incomes. In view of the time factor involved in the change-over, it is appropriate to discuss the crop pattern in two relevant periods, viz: the short-pun period in which the techniques or methods of cultivation will not chenge, and the long-run period in which the techniques of cultivation change. The short run period in agriculture may be taken as 10 years and the longrun as 25 years. We shall now concern ourselves with the guestion of what best can be done straight-away in the short-run. In this shortrrun period of 10 years we assume that the farmers grow only those crops with which they are familiar, and continue to employ more or less the same methods of cultuvation as hitherto. But we ean assume that the farmers will. not feel it as a change to use more of materixal inputs than at present in the shape of bullock power, manures and fertilisers as well as better.seed. It is found that thememabiory of farmers in the project area are so poor that they cannot afford to use more of material inputs in crop production the 2 at present. Therefore we suppose that the Government will come forward to help farmers to secure the required additional materidal inputs and the improved seed by granting loans to them, and wherever possible, make the materidals directly available to them through the ageneies of eommunity development, cooperetive societies and the like. On this assumption, we worked out the amount of additional requirments of the farmers in the project area to adopt the optimal erop pattern without any change in technology during the short-run period.
|4.3. Assumptions: Technical:
A farmer has a limited amount of land, and other resources which he can employ in any given period to grow some pr all of a
finite number of crops which can be grown. He can allocate his land ond other resources to these crops in a number of alternative ways, based on his experience, we may generally assume that he will try to grow the most profitable combination of crops. This may not be obtained by allocating resources so as to grow the maximum possible quantity of the maximum profitfetching crpp. Such a procedure generally leaves parts $-f$ s me of the res urces unused. By releasing frr an-ther crop a fraction \sim an entirely used-up resfurce, corresponding fractions f ther resources would als : be released. The newly released res?urces t-gether with ther unused amounts of the resources might make it possible t? $g r o w$ another crop so that the total profit exceeds the profit t. be gat by growing only the most profitable of the crops on the maximum possible extent of the farm. In this way it is easily seen that the pest way $\cap \mathrm{f} \cdot \mathrm{all} \mathrm{D}^{-}$ cating resources to different cr^ps will be such a crmbination ' C ' of these that evan when any fraction of one or more of the resnurces used up in that combination are released and diverted to. growing other craps, the tatal gain would still be less α that for ' C. Such a combination ' C ' is called an optimal combination. The process of farm budgetting done by experience dnes not often lead us to this optimal choice. The mathematical solution of the optimal eombination under the given limitations on the factors is generally obtainable by the ${ }^{3}$ Simplex Method ${ }^{1}$ in Rinear Programming。

The following are the assumptions for the applicability of the Linear Programming method:

1) The function to be maximised which is here taken as the value added to the materials is a linear cominination of variables (resources or inputs)
ii) The restrictive conditions are in the form of inequalities or equalities involving linear combinations of the above variables.
1ii) The variables vary cnntinu us $\notin 1 y$.

The first $\rightarrow f$ these assumptions is satisfied if we regerd fach crop of a given variety and grown under a given technology as a separate activity, and the total product as the agoregate of the Individual outputs. Even fir the same crop, if the inputs are different in two methods, each of the methods of growing the crap must be considered as a separate activity. Further, we consider nuly a finite number of producti-n processes or activities, each going on at consłant returns to seale.

The nature of the second assumption is clear enough. Each quantity of any available resource is non-negative, and when not unlimited, can only be used at a level not higher than available.

The third restriction implies divisibility \boldsymbol{f} resources and outputs in any manner, and accordingly, the divisibility of the magnitude of any of the activities is assumed.

The above assumptions are realistic in respect of crop production in the Nagarjunasagar Project Area in the short-run period.

Now the problem is to obtain the 'Cptimum' combination of the activities. An optimum combination may contain only ane or two or all the activities. A little reflection mekes it clear that, if $f \circ r$ a unit of desired gein each of the inputs is individually more for activity ' I ' than for activity 'S' then activity 'I' can be advantageously replaced by activity 'S'. The result is that 'I' will not occur in the optimum combinatinn. Aetivity 'I' is said to be inefficient or inferior when compared to activity 'S'. For convenience, we shall hereafter refer to any activity which is not inefficient as efficient.

The problem of maximising the gain which is linear in the rates of gain for different activities each of which is in turn linear in the levels f inputs under given conditions of resourcex limitations is methematically the same, as the problem of
miniwising the resource requirment for attaining a given value of gain by choosing the 'most economical' combination of the activities.

In any optimel solution it may happen that some parts of the resjurces are left unutilised, fer, to utilise them we may have to go in for activities which are either inferior, or reduce the tatal gain. It is clear that Linear Programming will have t.: be worked out with activities which have been designated above as efficient. However, it can happen that s?me of them get knncked out in the programming process, and do not occur in the optimal combination that finally emerges.

For the 'Simplex' method of solutin of the Linear Programming problem the reader may refer to books on Linear Programming.

4.4. Details of the procedure followed:

For purposes of programming we have to know hou the human labour, bullock labour, other variable inputs and yields in existing cultivation are likely ti change when the crops are irrigated under canals. Irrigated crops need more of labour in uuts than unirrigated crops, because of the additional operation of irrigation, and of the increased yields due to irrigation requiring mire of threshing labour etc. Labsur input requirment will also vary widely depending on the source of irrigation. For instance, well irrigation needs more of labour inputs when compared to canal irrigation.

For all the crops eonsidered $f \sim r$ programing the inputs and sutputs (including by products) under irrigated conditions as assumed by us are presented in Tables No. $3-\mathrm{PT}-3$ and $\mathrm{PT}-13$ for the right and left canal areas. For the purpose of obtaining an optimal crop pattern on the right canal side, Strata I and 2 are combined, as it is felt that, since both the strata are contiguous and interpenetrating areas, there is $n=$ ned to
getting canal water for
differentiate between them efter/irrigation. The left canal area 1.e. Stratum-3 which is a compact area is taken as the other when there is the facility of
 crops, as assumed by us after irrigation, are based on the data given in Farm-Management Studies in . Andhra Pradesh, Madras, Madhya Pradesh and Punjab, Seas n and orop Reports of Andhra Praddesh, Cropwcutting experiments conducted by the Bureau of Economics and Statistics of Andhra Pradesh and the Technomeonomic Survey of Andhra Pradesh. This information is furnished in Tables No. l and 2. It may be noted here that the main product and by-product of different crops after irrigation on the right canal side and the left canal side are valued at the average prices of products prevailing in the respective areas in 1959-60. These are given in Tables No.3-PT-3 and PT-13. The inputs after irrigation are also valued at the same constant prices of 1959-60, used for evaluation of. the present inpuh as regards the resources which will be getting facilities for available with the farmers, after/irrigation for growingerops we assumed reasonable increases in the resources now available. In some cases the increase assumed is of the same order as the natural growth of the resource that can be normally expected. But in other eases, the assumed increase is far above the natural growth. In such cases, we expect that proper measures will be taken by the State Government to fill in the gaps. The resnurces available at present and assumed to become soon agetting facilities available/after/irrigation/for different types of farmers are presented in Table No. 4-PT~4 and PT-14.

The concept of income which is here adopted, for the maximisation of which we are now going to employ Linear Programming technique, is the crass value added to material inputs. Costs of bullock labour, seed, manures and fertilisers, irrigation eharges, hire-charges for implements are considered as costs of material inputs. Gross value added, in effect, represents the return to human labour, fixed capital and land.

43

4.5. Right Canal side $\left(S_{1}+S_{2}\right.$ 最

According to the Nagarjunasagar Project Authorities, nearly 11.24 lakhs of acres will be irrigated in the first phase. . Out of this, $1 / 3$ of the area will be under wet irrigation, and $2 / 3$ under dry irrigation. The idea in formulating such a policy of irrigation is to give the benefit of irrigation to as large an extent as possible and thus to eliminate the uncertainties of rain-fall, the failure of which has often been the reason for frequent draughts and famines in the project area.

We have divided all farms into four size groups, namely, (i) 0.01-2.50 acres, (ii) 2.51-7.50 acres, (iii) $7.51-15.00$ acres, and (iv) above 15.00 acres.

The estimated area under cultivation in S_{1} and S_{2} taken together comes to 12,11 lakhs of acress. It is also * estimated the additional extent of 1.53 lakhs of acres of oultivable land exists in the Project Area; but we have assumed that it will be used up as land covered by canais', tributaries and field channels, as grazing lands, and as land around villages te; be left out of cultivation as precautionary measure against malaria. As the Government has proposed to give water only to 11.24 lakhs of acres, we have accepted this figure as final for purposes of arriving at an eptimal crop pattern. This will mean that the balance of about 87,000 acres of land will have to remain under virginia tobacco and other unirrigated

Average gize of the Farm:

One method of programming for irrigated erops to be grown over 11.24 lakhs of acres will be to treat the entire area as a single farm. This aggregative approach is not quite realistio. Therefore, it is decided to consider the faris of different sizes, derive the best pattern for the region by aggregating the areas under each crop for the various farms. For convenience we have assumed four sizes of farms viz. 1.26 acres, 4.83 brje-goups.

The sizes of these four typical farms are not the mid values of the ranges, but they are the averages of the farms in those ranges as revealed by the Census Survey. Among these four sizes, the area of 11.24 bakte. for which water will be given is allocated in the proportion of the existing cultivated area in the corresponding four size groups. For each of these feur types oi farms the optimal crop pattern is worked out, and the aggregates for 11.24 lakhs of acres are -btained.

This will mean that the balance of 87,000 acres of land which will not get water will grow virginia tobacce and other unirrigated crops.

45

Before proceeding to the details of programming for optimal crop-pattern, it should be noted that the entire discussion is in respect of oniy one crop in the year.

Ad hoc allocations for C'hillies and Country tobacco:

Under dry irrigated conditions: th: crop of ehillies would become the most profitable crop. But it does not appear reasonable to suppose that Chillies will be raised on too extensive an areag as it is not a food crop. The same consideration has weighted with us in respeci of the next important crop, namely, Country tobanco. Accoidingly, in each typical farm, extents are set $\overline{\text { ápart }}$ fro éhillies and Country tobacco, and the total area under these crops fixed at 1.5 lakhs and 1.0 lakh of acres rospectively on an ad hoc basis. Though, the extents are fixed arbitrarily, tiney are felt to be reasonabl:.

Coming to the question of actually setting aprt extents for Chillies in the 4 jypical farms. 1.5 lakhs of acres are allocated to them in the proporticii of the total cultivated area in these size groups: 1941.70, 7384.76, 10801.79, 16396. 86 which works out in percentages to $5,30,20.17$, 29.75, 44.78. The one lakr of acies set apart for Country tobacco is also allocated in the same proportion. After doing this, the extents oi land set apart Ior Cinillies and Country tobacco in each typicel farm are arrivec at。

Paddy:

Also, $1 / 3$ of the extent of each typical farm is set apart for paddy, since $1 / 3$ of the ayacut on the right canal side will be given wet irrigation facilities.

Res sources:

The res sources: are classified into four eateg ${ }^{\text {fries }}$, viz. (i) land, (ii) human labour, (iii) Bullock labour, and (iv) other variable inputs. The last category comprises of seed, manures, fertilisers, hire charges for implements and interest on crop loans. A_{s} this is a lumped resource containing different types of items, its aggregated money value is used for representing its magnitude.

The first three resources available now are calculated for each of the 4 size groups $\cap \mathrm{n}$ the basis of the data obtained in our Census Surveys of the sampled villages, and the fourth resource from the intensive Farm Surveys.

In passing, we may mention at this stage that, our procedure is equivalent to using weighted averages of Stratum 1 and Stratum 2 for factors, resources, prices, etc.

Regarding the resources that will become available in
that tor tull utilisation of land resource

1) kirman labour is not a limitational factor;
ii) 50 percent more of bullock labour than at present for the peak month of Jund/July or Sept./oct. will become available.
iii) As regards other variable inputs, the amount which will become available for the farms is assumed to much
be. much tore than what is available now. Them assumed additional resources range tron
 tangos y $_{1}, 1,1$
in e These details are presented
in Table No.4-PT-4.
Though ad hoc percentage increases over the existing resources in respect of bullock labour and other variable
input\$-resjurces are assumed as mentioned above sa as ty leave n land unutilised in programming, they weed n bet the
 pleting the programming work. However, et has so happoud the t the sim
 Pritiminarng trial sane completaly used up in all lew opts after s opal comitrinal. programing with efficient activities: ont the Rigul-Comalsede. The actual requirements one pres embed we Table No. 10-PT-1
Of the 14 activities considered for proramming, some activities got eliminated, being inefficient in the sense that they require more of each input than any other activity to give the same income. The details showing the efficiencies of all the above activities are presented in Table No. 5-PT-5. From this table, it can be seen that Cotton, groundnut, oil-xa seeds - I, \ddagger fodders, Vegetables, fowar + Redgram, KagimII turn of the optimal crop pattern from among the efficient out to be efficient crops. The workingout/crops by the simplex Method is separately shown for each of the 4 typical farms in Table No.6-PT-6.

The optimal crop patterns obtained are presented in Table Nq.7-PTm for the 4 typical farms. Only two activities viz. Ragi II and Jowartiedgram have come into the final optimal pattern in all the typical farms after programming. The acátual extents under these two activities which came out in the programme are given in Table No.7-PT-7 for the 4 typical farms. The overall crop pattern for the entire $\mathrm{Fight}^{\text {fig h }}$ Canal side (i.edohl. 24 lakhs of acres) is presented in Table No. 8-PT-8. The breakdown of the total acreage is as follows:

Crop

Acreage

1. Chillies
2. Country tobacco
3. Paddy
4. Ragi - II
5. Jowarthedgram

$$
\begin{aligned}
& 1,50,000,00 \\
& 1,00,000,00 \\
& 3,74,591.03 \\
& 3,38,679.52 \\
& 1,60,729.45 \\
& \hline 11,24,000.00 \\
& \hline
\end{aligned}
$$

The total requirments of resources for adnpting the overall optimal crop pattern are given resource-wide and crop-wise in Tables $N 0.9$ and 10 - PT~9 and PT-10 respectively.

The resources that have to be increased far edopting the aptimal crop pattern on the ri ht canal side are sept./oct. bullock power and other variable inputs. The required per: centage increases in these resources are 14.32 and 96.48 respectively as can be seen from Table N..9-PTT-9.

It will be seen from Tables No.11-PT-11 that, after getting facilities, irrigation/the gross value added per ecre in the typical farms on the Right danal side will increase by percentages renging fr$\sim \mathrm{m} 313$ th 566.

The overall increase in the total gross value added f $\cap \mathrm{r}$ the entire Right Chanal area will be more than 300 per centz as can be seen from Table No. 12-PT-12 and PT-22. The corresponding figure for the left canal side is more than 500. For the entire project area the increase in the gross value added works sut t= a gigure only slightly less than 4 00 per cent.

4.6. Left Canal irea $\left(S_{3}\right)$

Stratum 3 is treated as one homogeneous unit for working out an optimal crop pettern. The input-output eoefficients of crops as assumed by us under irrigated eonditions are presented in Table No. 3-PT-13. A.s stated earlier, they are based on the date on irrigated crop-yields and their input requirments as nbtained from various sources.

Nearly 8.0 lakhs of acres on the left canal side of the Nager junasagar project area will be irrigated. So, an optimal
crop pattern is worked nut for 8.0 lakhs of acres. This area of 8.0 lakhs of acres comes close to the cultivable ares as estimated by us on the basis of the information obtainet in our survey. The cultivable area comprises not only the actually cultivated orea but elso fallow lands, pastures.. and forests.

The area of 8.0 lakhs of acres has been allocated to 4 size groups of farms viz: (i) 0:01-2.50 acres (ii) 2.51-7.50 acres (iii) 7.51-15.00 ecres and (iv) above 15.00 ecres, on the basis of the proportion of the existing cultivated areas in these groups as obtained in our Census Survey of sampleqf villages.

Lverage Bize of the Farm:

The average size of farms used in the programming in the four size groups are not the mid values but the averoges obtained in the Census Survey of the Samplef vililages. The average sizes are: $1.47 ; 5.00,10.69$ and 27.62 acres, and these constitute the typicel farms on the left, aide.
Ad hoc allocation for Chillies, Country obacco and Vegetables:
As in the case of the right canal side, here als? it is decided to set apert extents in each of the 4 typical farms for chillies and country tobeco. There is another feature present on the left canel side, nemely, the growing of " vegetables on the f arms. f.ccordingly, we have set apart some exfent of the farm for vegetables also. The areas allscated to Ghillies, country tobace?, and vegetables are $10,000,5,000$, and 10,000/respectively. The extents set apart in the typical
 total ting proportion $2 f$ the foxal extents in the size groups i.e.. in the ratio of 651.47 to 3968.22 to 5588.53 to 11353.44 which in percentages crmes to $3.02,18.40,25.92,52.66$.

Paddy:

> Further, in each size group, $\frac{6.5}{8}=.81$ of the average size of the farm is set apr for Poddy; for, out of 8.0 lakhs of acres fo the left canal side, 6.5 lakhs of acres will be under wet irrigation, and the remaining 1.5 lakhs of acres will be under dry irrigation.

Resources:

The resources considered for the 4 typical forms here are (i) land (ii) human labour (iii) bullock labour and (iv) other variable facilities the resources for
/ether typical farms are assumed to become available as follows:
(i) Human labour is nat considered a limitational factor so far as the first two size groups are concerned.
(ii) To ensure that land is fully utilised, it has been assumed for programming purposes that human labour will become available in the peak season of June/July in the 3 rd and 4 th size groups at levels which are 40 percent and 220 percent more than the farm family labour now existing. Gwen if hireschotels with
osman ew-plospument we assume that non-cultivating/agricultural labour as well as the surplus farm family labour (of cultivating households) from the first two sizemgroups will also be available in will be serious this season for agricultural operations, there. shortage in the human labour resource for adopting the optimal croppattern. This may be seem frow table No 9-PT- F.
iii) In respect of bullock labour for the peak month of June/July, 50 percent more than what is actually existing at present is assumed to beeomeavailable in the first three size groups of farms. But in the case \boldsymbol{f} the 4 th typical farm, this increase of 50 percent is found to be inadequate and hence this resource is assumed to become available at a level 60 percent more than at present.
(iv) As Negaras other variabte imputs, the amorint winis-wit cent, 100 percent, 150 percent ond 200 percent more in the 1st; 2ní; 3rd and 4th size group, flarms respectively. These different increases in the resources are assumed to ensure that land is fully utilised. These are presented in Table No.4-PT-14.

Though nu nce percentege increases over the existing resources in respect of bullock labour and other variables inputs resources are essumed as mentioned above so as to leave no land unutilised in progremming, these are not the actual requirments. \quad are $\quad \therefore \quad$ The actual requirments which/is essessed, after completing the programming

Prngramming with efficient activities:

There are 7 important activities nn the left canal side; but among these, only groundnut; fowar+Cucumber; Groundnut+ Redgram; and other;mixtures are found to be efficient. The reluting to details.. , the efficient activities are presented in Table No.5-PT-15: Programming is carried out with these efficient crops only§ The working sut of the optimal crop pattern by the 'Simplex' method is separately shown for the 4 typical ferms in Table No. 6mPT-16.

The optimal cr^p pattern finally obtained is presented in Thble No.7-PTIZ for the 4 typical farms.

W When programming is done for the balance of land left after ad hoc allotments are made for chillies; Country tobaceó peddy and vegetables, only three crops emerged in the final optimal crop patterns for the four typical farms; Groundnut+ Redgram came ints the final/patterns of all/typical farms, while Jowarfcueumber appears in the two size groups 7.51 -
a.coses -only 15.00 and above 15.00 ecres, and. other-mixtures figured/in
of
the size group/2.51-7.50 acres. The overall crop pattern for the entire left canzl side (ice. for 8.0 lakhs of acres) is given in Table No.8-PT-18.

Results of programming:

The total requirments of resources for adopting the overall optimal crop pattern are given resourcewise and cropwise in Tables No. 9 and 10-PT-19 and 20.

The adoption of the optimal crop pattern would require additional resources in respect/bullock power and other variables inputs. The additional requirments (s given in
140.76% in the case of June/ July heesnan lal-oun Table No. 9-PT-19) are $30-7$ percent in Respect of June/July bullock labour A90.71
/BL and of the present

It may be seen from Table No. 11-PT-21 that, if the optimal crop pattern is adopted, the increase in the gross value added will be between 307 and 619 percentgdepending on the size of the typical farm.

The overall increase in the gross value acceded for the entire left canal side will be nearly 513 percent.

4.7 Limitations of the results obtained:

(i) The pattern of crops obtained by programming depends firstly on the input-output relationships and the relative price-structure of the inputs and yields. In course of time, when improved methods of agriculture come to be adopted, and the pace of development of the region gathers momentum, the input-output relationships will naturally change in a marked way. Consequently; the optimal crop pattern will also change correspondingly.

Again, as time passes, the relative price structure will vary and therefore induce an alteration in the optimal pattern of crops.

Thus, our programming results will generally hold as long as there is no appreciable change in the price structure from what it was in the Project Area in 1959, and the input-output pattern remains close to the one used in the programming work.
(ii) The optimal pattern obtained by usf does not have sufficient diversification of crops. The farmers may like to grow a few other crops which have not come into the final pattern obtained by programming.
(iii) The suitability of soils to crops to the extent that will be required for the adoption of the optimal combination of crops, could not be examined. It is hoped that deficiencies $r_{\text {. }}$ on this account will be of a marginal nature.
(iv) Allotment of extents in each typical farm to Chillies, Country tobacco, Vegetables, and in a sense

Paddy too is on an ad-hoc basis. A part of the gap in the value added as given by the programme and as is realised later on will be naturally due to this arbitrary allocation of extents to the above crops.
(v) When it is said that this programme is feasible in the short-run period of 10 years, what is meant by it is that, if the gaps in resources are made available to the farmers by" the Government during this period, the optimal crop pattern can be adopted at least by the end of the lomyearf-period, commencing from the time of supply of project waters for irrigation for the entire ayacut proposed.
(vi) On the left canal side there is at present a large area under cotton. The yields are low and the quality is poor. From the present state of
exferivmenat
knowledge of results on irrigated cotton crop at the research centres, it appears to be difficult to judge, even approximately, what the input-output relationship will be like when it is grown as a dry irrigated crop on the farmers' own fields. It is probable that, in the long run, good varieties of cotton can be profitably grown under irrigated conditions on the left canal side. Then its input-output pattern may change favourably enough for appearing in the optimal programme.
(vii) Even by the end of the 10 year period, the almat-400 parcenel-and results of 500 per cent as the value added (which is the remuneration to human labour, land and fixed capital) may not be fully achieved due to the various limitations. But it is certainly indicative of the attainable potential if effective steps are taken

In conclusion, it shoúld be emphasised that it is essential to review the position from time to time, and carry out fresh programming work, using• the latest input-output data and incorporating into the work the changes in the relative price structure, and then pass on the results to the farmers by effective extension service.

INPUTS PER ACRE OF IFRIGATED CROPS FROM VARIOUS SOURCES ($2(1 P \mathrm{M})$)

S. No.	Crop	Human labour (in 8 hr . days)	Bullock labour (in $8 \mathrm{hr} \cdot$ pair	Source
(1)	(2)	(3)	(4)	(5)
4.	Bajrn (Cumla)	$\begin{aligned} & 31.5 \\ & 36.9 \end{aligned}$	14.8	$\begin{aligned} & \text { F.M.S. (Madras) } \\ & \text { N.S.P. (Sy-Well irrigation) } \end{aligned}$
5.	Grorndnut	50.0	8.0	T.E.S. (Andhra Pradesh)
6.	Chillias	92.0	6.0	T.E.S. (Andhra Pradesh)
7.	Ragd	87.9	28.8	N.S.P. (S_{2}-Well irrigation)
8.	Korra	36.4	12.8	N.S.P. (S_{2}-Well 1 Irrigation)

Note:- 1) F.M.S. stands for Farm Management Studies
2) !.E.S. stands for Techno-Economic Survey
3) if.S.P. stands for the Intensive Farm Surveys in the Nagarjunasagar Project Area.

[^1]

N. B:- $-\frac{2}{2} / 7 \mathrm{lbs}$. $=1$ md.

$\text { S.No. } \quad \begin{gathered} \text { Name of } \\ \text { crop } \end{gathered}$	$8 \mathrm{hr}$	$\begin{aligned} & \frac{\text { ghr }}{\text { June/ }} \\ & \text { July } \end{aligned}$	$\begin{aligned} & \text { bul] } \\ & \text { Sept } \\ & \text { Oct } \end{aligned}$	pai	days．re Value ${ }^{3} .68$ bullo pai． 3 in BS	Valu of ot inpu （in	Value materi inputs （in Rs．	$\begin{aligned} & \text { Weigh } \\ & \text { in mo } \end{aligned}$	$\begin{aligned} & \text { Leld } \\ & \text { Price } \\ & \text { formd } \\ & \text { (in } \mathrm{Rs} \text {) } \end{aligned}$	$\begin{aligned} & \text { Value } \\ & \text { (in } \left.R_{s}\right) \end{aligned}$	$\begin{aligned} & \text { alue } \\ & \text { f by } \\ & \text { ro- } \\ & \text { uct } \\ & \text { in } \text { BS } \end{aligned}$	Value of total ou put át 59－60 prices in B ）	Gross value added （in Rs ） Col．（14） Col. (s)
（1）（2）	（3）	（4）	（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）	14）	（15）
1．Paddy	200	4	－	8	37.04	50	87.04	24.00	13.12	314.88	45.00	359.88	272.84
2．Black Paddy	37	3	\square	6	27.78	40	67.78	14.00	11.70	163.80	26.00	189.80	122.02
3．Ragi ¢	30	－	3	6	27.78	40	67.78	16.00	13.35	213.76	45.00	258.106	164．65
4．Jowar	25	3.5	－	7	32.41	30	62.41	12.00	13.86	166．32	28.74	172.24	90．20
5．Variga	25	4	－	8	37.04	45	82.04	12.00	12.03	144.67	28.00	147.67	109.15
6．Bajra	30	2	－	4	18.52	20	38.52	$\begin{array}{r}9.00 \\ \hline 12.00\end{array}$	13．16	121.89	25.00	146.80	108.28
7．Korra	25	2	－	4	18．52	20	38.58	12.00	10.73	104.76	30.00	134.70	96.98
8．Varagulu	22	3	－	6	27.78	10	37.78	12．00	8.8	166.74	5.81	172．55	109.77
9．Coriander	20	3	\square	6	27.78	$\begin{array}{r}35 \\ \hline\end{array}$	62.78 152.41	1600	40.90	1446．72	2.00	1448.72	1296.31
10．Chillies	60	\cdots	3.5	7	32.41	120	152.41	1600	39.73	238．38		238.38	141.34
11．Countrystobacco	－ 30	\square	4	8	37.04	60	97．04	6.00	39．00	238．38 ${ }^{13}$	4.67	134.67	88，89
12．Cetton	30	3	－	6	27.78	18	45.78	4001 l	19.18	210.93	7.00	217.98	フィニ．40
13．Groundnut	50	2		4	18.52	50	68.52	11.00	15.68	62.72		62.72	29.67
14．Castor	I5	2.5	－	5	23.15	10	33.15 28.52	4.00 5.00	15.68 30.94	154.70	－	154.10	126.18
15．Gingelly	15	2	－	4	18.52	10	28.52 20.26	5.00	30.94	154.70		39.67	19.41
16．Fodders	21	\square	－	2	9.26	71	20.26		，		2ワッ゙ッ	？ 128.88	36.62
17．Vegetables	70	3		2	9．26	78	87.26						
18．Jowar．Redgram	37	2	－	4	18.52	10	28.52	－	3－－＊	143：50	37.24 27.00	1848． 56	109.41
19．Other mixtures	38	2.5	－	5	23.15	16	39.15	－	\cdots	121．50	27.00	248.	109．41

RESOURCE AVAILABILITY PRR FARM
(AS OBTAINED FROM THE CRNSUS SURVEY)

IV.B:- In the Fight Canal area human labour is not found to be a limitational factor.

* The increase ascumed over the present level of availability of this resource is 50 yer cent.


```
IUHTY CANAL ARBA (SI + S S
```


(AS OBTALINE FRUM LNTHISIVE FARM SURVEYS)

$\begin{aligned} & \text { Size group } \\ & \text { (in acres) } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { size } \end{gathered}$	sesource at present availeble	$\begin{gathered} \text { Assumed } \\ \text { available } \end{gathered}$	Set apart for selected crops			Balance available for programming
				Chillies	Country tobacco	Paddy	
	(1)	118 ($\frac{1}{1 / 2}$)	(15)	(218)	(17)	(19)	(29)
0.01-2.50	1.26	45.76	64.82	20.40	. 6.60	21.50	16.32
2.51-7.50	4.83	129.01	245.34	76.80	25.80	82.50	60.24
$7.51-15.00$	10.6]	380.52	449.59 *	174.40	57.00	132.50	9.69
Above 15.00	34.81	632.41	1385.73	397.20	132.60	425.00	430.93

* The increase assumed over the present level of availability of this resource ranges Irom 40 to 125 percent in different size groups.

Mighil Canal nki $\left(S_{1}+S_{2}\right)$

BS. 100 of THE GROSS VALUE AUDED

S.No. Crop	$\begin{gathered} \text { Land } \\ \text { (in acres) } \end{gathered}$	June/July Bullock labour (in 8 hr days) pair	September / October Bullock labour (in 8 hr . pair days)	Other variable inputs (in Bs_{s})
(1) (2)	(3)	(4)	(5)	(6)
1. *Cotton	1.12	3.37	-	20.25
2. *Groundnut	0.67	1.34	-	33.41
	O. 82	1. 2.57	=	22.94
5. Black Paddy	0.82	2.46	-	32.80
6. Coriander	0.91	${ }^{-1}$	2.73	28.68
8. **il staeds-I	$\frac{1}{5} .32$	3.31	.	13.20
9. *Vectables	2.73	-	$=$	213.00
10. *JowartRedgram	0.63	1.26	-	${ }^{1} 6.30$
11. Other mixtures	0.91	2.28		14.56
12. *Ragi-II	0.52		1.57	20.54
14. Pulses other than recu ram	2.50 0.89	-	2.75 2.66	37.43 22.15

H.B.:- (i) Crops marked with an asterisk have turned out to be efficient crops; (ii) Other cereals are Jowar, Bajra, Vixija, Korra; (iii) Oil seeds-I are those oile seed crops sown in Junefouly; (iv) other mixtures Grexaiset: (v) Ragi-i isthe ragi crop auring June and September; (vi) Ragi-II is the ragi crop raised during September and Decenter; (vii) Oil seeds-II are those oile seed crops sown in September or October; (viii) Human labour is not considered here.
fowner + greangrame + reagram and korpa + collon.

Size sroup: $\frac{P T-6}{0.01-2.50 ~ a c r e s ~}$ Typical farm size is 1.26 acres

N.B:- J.B.I. $=$ June bullock labour; O.B. I. $=$ October bullock labour; O.V.I. $=$ Other variable inputs; Gint = Groundnut: $J+R g$. Jowart Redgram.
$P \mathrm{P}-6$

$\frac{\text { Size rroup: } 2 \text { 2 } 51-7.50 \text { acres }}{\text { Typical farm size is } 4.33 \text { acres }}$

N.B:- J.B. L. $=$ June bullock labour; O.B.L. $=$ October bullock labour; O.V.I. $=$ Other variable inputs G^{\prime} nut $=$ Froundnvt; $J+$ Rg. $=$ Jowar + Redgram.

$$
\begin{array}{r}
x>(D 26) \cdot 218 \mathrm{RK} \cdot \mathrm{NH} 4 \\
133330 \mathrm{kY} \cdot 2
\end{array}
$$

IV.B:- J.B.I. =June oullock labour; O.B.L. $=$ October bullock labour; O.V.I. = Other Varibale inputs; $J+R_{G}=$ Jowar + Z \in g̀gram .

N.B.:-J.B.I. $=J_{\text {une }}$ bullock labour; O.B.I. $=$ October bullock labour; O.V.I. $=$ Other variable inputs G'nut. $=$ Groundi.ut; $J+R g .=$ Jowar + Redgram.

```
1 GuR MROGREMTVG
EIHHP CLITAL AREA (S S +3?}
```

OPTIML CROP PATTERNGFOR IUUIVIDUAL FARMISS OF DIFFERUNT SIZE GROUPS

Size-group (in acres)	Totr 1 acreage	NO, ot frods	Chillies	Country tobacco	Paddy	Ragi-II J	Jowar+Wedgram
(1)	(2)	(3)	(7)	(\$)	(5)	(b)	($\overline{\text {) }}$
0.01-2.50	39,57\%.00	47.375	7,950.00	5,3000.00	19,853.61.	17,014.07	9,454.32
2.51-7.50	2,26,710.00	$40_{2}: 33$	30,255:.00	20,170,00	75,485.58	60,483.66	40,316.56
7.51-15.00	2,31,390.80	31.3	44,625.00	29,750.00	$1,11,468.43$	34,280.55	1,04,266.02
Above 15.00	5,03,327.20	SO.	67,170.00	44,780.00	1,67,783.41	2,16,901.24	6,692. 55
Total	$11,24,000.00$	1, $\because \therefore$ C	$1,50,000.00$	100,000.00	3,74,591.03	3,38,679.52	1,60,729.45

EIGHT CANAL AREA $\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right)$
RESOURUE AVAILABILITY AND REOUREMEITS FOR ADOPTING THE OVERALL OPT IMAL CROP PATT ERN

RIGHT CAML $A R E\left(S_{1}+S_{2}\right)$
LCTUL REQLIRMM NTS OF BULLOCK LABOUR AND OTHER VAKIEBLE INPUTS FOL IDOPT ING THE PROPOSED OPTIMAL CROP PROGRAMME E ECP HBL

S. NO.	Crof	Bullock labour (in 8 hr (pair days)			$\begin{aligned} & \text { Other variable inputs } \\ & (\text { in } \mathrm{Rs} \text {. }) \end{aligned}$
		Total	June/Juxy	September/ October	
(1)	(?)	(3)	(4)	(5)	(6)
1.	Chillies	10,50,000.00	-	5,25,000.00	$1,30,00,000.00$
2.	Country tobaceo	8,00,000.00	-	4,00,000.00	60,00,000.00
3.	Paddy	29,96,723.24	14,90,364.12	-	$1,37,29,551.50$
4.	Ragi	20,32,077.12	-	10,16,033.56	$1,35,47,180.30$
5.	Jowar + Yady	6,42,91'7.80	3,21,453.90	-	16,07,294.50
	Total	75,21,723.16	$18,19,823.02$	13,41,033.56	5,73,84,026.30

ATPAESENT
GROSS VALUE ALDED PER MRM BEFOR AND AFTER IRRINATION FOR THE FOUGE MYPICAL FHRMERS

$\begin{aligned} & \text { Size group } \\ & (\text { in aurs }) \end{aligned}$	Average size of farm	Gross value added at present	Gross value added after irrigation*	Percentage increase
(1)	(2)	(3)	(4)	(5)
0.01-3.50	1.26	92.13	450.99	390
2.51-7.50	4.83	256.96	1712.46	566
7.51 - 7.0 .00	10.66	905.04	3739.52	313
A bove 15.00	24.81	2154.75	3953.46	316

* Erass value ideded cyter ivorigation is calculc ted on the assumprion hatthe intansity of croppinf is unily.

VALUE OF OUTFUT, MATERIAL INPUTS AND GROSS VALUE ADDED IF THE OPTIMAL CROP PATTRRN IS ADDED

S.No. Crop	Acreage	Main Product		Value of byproduct (in Rs.)	Value of the total oupput (in Rso)	Cost of	Value added (in Rs $)$
		Yield in tonnes	Value in			material inputs (_in Rso)	
(1) (2)	'3)	(4)	(5)	(6)	(7)	(8)	(9)
1. Chillies	1,50, 000.00	1,08,864.00	21,70,08,000.00	3,00,000.00	21,73,08,000.00	2,28,61,500.00	19,44,46,500.c0
2. Country tobacco	1,00, 50.00	22,395.00	2,38,38,000.00	--	2,38,38,000.00	97,04,000.00	1,41,34,000.00
3. Paddy	3,7^,591.03	3,35,558.65	11,79,51,223.53	1,68,56,596.35	13,48,07,819.88	3,26,04,403.25	10,22,03,416.63.
4. Ragi	3,38,679.52	2,02,259.41	7,23,96,134.20	1,52,40,578.40	8,76,36,712.60	2,29,55,697.87	6,46,81,014.13
5. Jowar + Redgram	1,しJ,729.45	65,990.69	2,40,93,344.55	59,85,564.72	3,00,78,909.27	45,84,003.91	2,54,94,905.36
Total	11,24,0uC.00		45,52,86,702. 28	3,83,82,739.47	49,36,69,441.75	$9,27,09,605.03$	$\begin{aligned} & 40,09,59,836.72 \\ & + \\ & 2,69,37,909.82 * \end{aligned}$

[^2]* Tris amount of value added will arise from the unirrigated crops on the extent of nearly 87 thousand cores. No allowance is, however, made for intensity of cropping greater than unity in the irrigated area after irrigation.

```
Wrim
```


	$\frac{8 \mathrm{hr}}{\frac{8 \mathrm{June}}{\text { July }}}$	bul10c Sept/ Oct.	$\frac{x-p a i}{\text { rotal }}$	$\frac{\text { days reaui }}{\text { Value @ }}$ Ps. 3.66 per lor hr bullock pair day (in Ise)	Value other puts (in H_{s}	Value o material inputs (in Ps.)	$\begin{aligned} & \frac{\text { Yiel }}{\text { Weight }} \\ & \text { (in mds } \end{aligned}$		Value ckyproduct (in Rs)	fValue of total out put 2 l 59-60 prices	$\begin{aligned} & \text { ross value } \\ & \text { added } \\ & \text { (in Rs.) } \\ & \text { Col.(14) } \\ & \text { Col. (9) } \end{aligned}$
(1) (2) (?)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11) (12)	(13)	(in RS)	(15)
1. Irrjoftet Pridy $j 0$	4	\cdots	8	29.28	50	79.28	24.00	12.50 300.00	55.00	355.00	275.72
2. Chillies 60	4	3.5	7	25.62	120	145.62	76001 b	569.49.1350.89	3.00	1353.89	1208.27
3. Cuputry \uparrow abaceo 30	$\overline{3}$	4	8	29.28	. 18	89:28	6. 1007 jb	$36.68,220.08$	2.00	222.08	132.80
4. Cotton 30	3	\%		21.96			16:	24.50119 .07	-	119.07	79,81
5. Groundnut EO	2	-	4	14,64	50	64.64	11.00	17.85196 .35	3.00	199.35	134.71
6. Other ceieale 25	\cdots	3	6	21.96	40	61.26	11.25	12.05135 .58	15.00	150.58	89.32
7. Castor 75	2.5	-	5	18.30	10	28.30	4.00	13.1652 .64	-	52.64	24.34
3. Jowar + Cucumber	-	3.5	7	25.62	30	55.62	11.00	12.89141 .74	20.00	161.74	106.12
9. Groundnut+ Redgram	2	-	4	14.64	50	64.64	12.00	17.25206 .96	5.00	211.96	147.32
10. Other mixtures.	2.5	-	5	18.30	16	34.30	10.50	13.59142 .74	12.50	155.24	120.94
I1. Vegetables -	-	-	2	7.32	78	85.32	-	- -	-	138.10	52.78

RESOURCE AVAIIABIIITY PER FARM
(AS OBTAINED FROM OUR CENSUS SURVEY)

N.B:- In the first two size groups of farms, human labour is not considered to be a limitational factor during June/July.

* The percentage increases assumed over the availability at present in the size groups $7.51-\$ 5.00$ and Above 15.00 are 40 and 220 respectively.

```
IEFT CANAL AREA (S ; ;
```

RESOURCE AVAIIABILITY PER FARM
(AS OBTAINED FROM OUR CENSUS SURVEY)

N.B:- Human labour and Bullock labour in September / October are not found to be limitational factors and so are not considered.

* The percentage increase/h assumed over the availability at present is 50 in all the size groups except in the size group Above 15.00 where it is 60 .

LINSIR PROGN		Table Ho. 4 (Contd.)			PT-14	
(_AS OBT 4 INED FHOM IIJTEFSIVE FARM SURVEYS)						
$\begin{aligned} & \text { Size grotgs } \\ & (\text { in acres } \end{aligned}$	At present available	Assumed available *	$\frac{\text { Set apart for }}{\text { Chillies Country }}$tobacco	$\frac{\text { selected }}{\text { Paddy }}$	rops Vegetables	Balance available for programming
	(16)	(17)	(18) (19)	(20)	(21)	(22)
0.01-2.50	61.41	92.12	$2.40 \quad 0.60$	59.50	1.56	28.06
2.51-7.5u	120.65	241.30	7.20 1.80	203.00	4.68	24:02
7.51-15.00	236.14	590.36	15.60 4.20	434.50	I(314	125.92
Above 15.00	796.88	1490. 65	42.0010 .20	1122.00	27.30	289.15

* The fercentage increased assumed over the availability at present razge from 50 to 200 in the different size groups.
 FOH THE GROSS VILDU ADDED

S. No. Ciop	$\begin{aligned} & \text { Land } \\ & \text { (in acres) } \end{aligned}$	June/July Buzeleck Bullock labour (in 3 hr . pair days)	September/ october Bullock labour (in 3 hr . pair days)	Other variable inputs (in Bs.)
(1) (2)	(3)	(4)	(5)	(6)
1. *üroundnut	0.74	9.28	1.43	37.12
2. *Totton	1.25	-	-	22.55
3. Gasior	4.11	15.41	10.71	41.10
4. *Jowart\%romber	0.94	-	-	23.27
5. Other cerenls	1.12	7.00	-	44.78
6. *Groundnuot Redgrem	0.63	9.33	1.36	33.92
7. *Other-mixultes	0.83	5.29	2.07	12.23

N..3:- ij Czops marked with an asterisk have turned out to be efficient crops.
ii) Otner cereals are Jowar, Variga, Bajra and Korra
iii) Other mixtures are Bajra + Cotton, Jowar+Redgram+Greengram
iv) Human labour is not considered here.

Size groun: 0.01-2. 50 acres Typical farm size is 1.47 acres

 $J+C u .=$ Jowar + Cucumiber

Size aroup: 2.51-7.50 acres $\frac{\text { Size group: } 2.51-7.50 \text { acres }}{\text { Typical farm size is } 5.00 \text { acres }}$

N.B:- J.B.L.- $=$ June Bullock labour; Grnut $=$ Groundnut; Rg. $=$ Rëdgram; J + Cu $=$ Jowar + Cucumber.

Tep1o H2 6 (Contan

PT -16
Size groun: 7-51-15,00 acres Typical farin size is 10,63 acres

N.B:- J.H.L. = June Human Labour; J.B.I. = June bullock labour; O.V.I. = Other Tariable inputs;

N.B;- J.H.I = Jľe huruan labour; J.B.I. = June bullock labour; OV.I. $=$ Other varibale input s;

RESOURCE AVAILABILITY AND REQUIREMENTS FOR ADOPTING THE OVERALL OPT IMAL CROP PATTP:RIN

S.NO.	Deacription of the resorarce	Available at present (in 59~60)	Available for crop production only	Actual requirement as per the optimal crop pattern	Shortage $\begin{array}{r}\text { Pe } \\ \text { in } \\ \end{array}$	Percent age increase quired over the actual
(1)	(2)	(3)	(4)	(5)	(6)	(2)
	$\begin{aligned} & \text { Human labour in } \\ & \text { June/July (in } \\ & 8 \mathrm{in}, \text { day } \mathrm{c} \end{aligned}$	73,79,324	$36,89,662$	88,83,285	$\begin{gathered} 57,93,623 \\ \text { (or } 1,73,121 \text { workers) } \end{gathered}$) 140.76
	Bullocl labour in June/July (in 8 hr . fair lays)	15,90,119	14,31,107	- 27,29,280	$\begin{gathered} 12,98,1.73 \\ \text { (or } 43,272 \text { pairs) } \end{gathered}$	90.71
	Other varicble inputs (in Bs)	1,30,16,330,78	1,30,16,330.78	3,93,23,166.00	2,63,06,835.22	202.11

FOR $\triangle D O P T$ ING THE FROPOSED OPT IMAL CROP PATTERV

S. No.	- Crop		Of which June/July		Of which June/July	```Other variable inputs (in BS.)```
(1)	(2)	(7)	(4)	(5)	(6)	(7)
	Chillies	6,00,000	-	70,000	-	12,00,000
	Country	1,30,000	-	40,000	-	3,00,000
	foddy	3, $20,00,000$	91,25,000	52,00,000	26,00,000	3,25,00,000
	Vegetables	7,00,000	-	20,000	-	7,30,000
	Groundnut+ Redgran	36,74,430	6,60,603	1,94,504	97,252	24,31,300
	Jowar + Cucumber	15,39,075	-	4,44,941	-	19,06,890
7.	Other mixtures	3,53,703	39,677	64,055	32,023	2,04,976
	Total	3,85,72,213	83,83,285	60,33,500	27,29,230	3,93,23,16:6

Size group (in acres)	Average size of farm	Gross value added at present	Gross value added after irrigation *	Percentage increase
(1)	(2)	(3)	(4)	(5)
$0.01-2.50$	1.47	55.26		
$2.51-7.50$	5.00	181.25		1303.85
$7.51-15.00$	10.69	531.51	2770.77	603
Above 15.00	27.62	1762.71		7171.10

* Thin is calcilesed on the cessmingtion that the infersily of cropping after irrigation is union.

LEFT CAINAL LARM (S_{3})
WALUE (F OUTPUT, MTRRIAL IUPUTS $\angle N D$ GROSS VALUS NDDED IF THE OPT IML CROP PATTURH IS ADOPTED

Fross value added at present•1s Rs. 3,30,67,232.92

$$
\begin{aligned}
& \text { Purcentage increase, surpoming } \sqrt{n} \text { (} 513
\end{aligned}
$$

APPENDIX - I

OUTLINE OF A SCHEME OF INVESTI GATION INTO THE ECONOMIC ASPECTS OF THE NA GARJUNA SAGAR PROJECT

SOCIAL ASPECTS OF PROJECT PLANNING:

It is common experience that, while much attention is paid to engineering detail in planning a big public utility project to provide water for irrigation or power or railway transport for I wide reqion, the social and economic aspects of the project do not receive the attention due th then, either before or after the project is completed. It is of course vitally inportant that the engineerine details of construction, maintenance and operation should be thoroughly exanined; but a scientific study of the social and economic consequences of the project is as important. Too often the benefits of the project are taken for granted; and proper assessuent of net benefit and its distribution among the different. classes of bene ficiaries are not emphasised as inportant problems for investigation. This attitude is basícally inconsistent with any: scheme of planned utilisation of national resources. Survey of social and economic: condiditinns existing in the ferion which a project is intended to serve, both before the project is completed and after, objective study of the project's impact.on : the social and economic life of the regien during the stages of construction and later, and assessment of results with reference \not to the social aims of the preject - these also should form essential elements in a project plan. Further, each project must be considered as part of a general plan fer the developnent of the refion which it serves. Maximum benefit from the project can be realised only when it is treated as one of the instrmments for an integrated development of the refion. It is also necessary to co nstantly bear in mind that development is essentially a dymamic process. It nust be pursued according to a well-conceived plan as an unendine drive te raise the productivity of land and labour 'y various reans of which water or pewer forms a part.

It cannot be said that project planning in iur country fully recognises the inportance of the above considerations. Social and economic en ineerine does not receive equal attention with the engineering f ' f the physical plant. The government and the people are, hiwever, beconing increasingly aware of the social inplications of project plannints and the need for objective study of the social and economic aspects of projects. In this connection the Nagarjuna Sagar Project, recently undertaken, provides us with a reat opportunity to view it in the proper perspective by paying due attention to the economic aspects of the project. We are advantaceously placed in respect of this in that steps can now be taken to undertake basic economic survey and studies during the construction phase of the project. In ${ }_{\text {reganizing these surveys }}$ we can also draw on the valuable experience gained by the Reserve Bank of India, the Programe Evaluation Organization and other Institutions in conducting large scale econonic surveys.
2. MAIN FEATURES OF THE NAGARJUNA SAGAR PROJECT:

Nagarjuna Sagar Project is richtly clained as one of the major multi-purpose River Valley Projects in India. The project ís ar unit for large scale storage and use of the water of tne river Krishna for purposes of irrigation and generation of Hydel power. The project also serves the purposes of flood control and navigation. Irrigation was however given the highest priority in planning the multipurpose scheme. The total estimated cost of the Dan at Nagar juna Sagar and of the Right and Left Bank canals worked out wa to a sum of Rs 122 crores, and it will take nine years to complete the project. When the project is completed, and when full developbent of the ayacut under the Dam has taken place, it is expected to bring under irrigation about ${ }^{31} 1^{8}$ lakhs of acres of land, lying mostly in the dry and arid zones of Andhra Pradesh, and to assure water supply in the existing ayacut under the Krishna Anicut Systen. In respect

- of irrigation the project is thus planned to achi eve within a short period of sixteen years more than what was achieved durinf the past hundred years under the Krishna and Godavari Anicut Systens. The construction of the Dam and storare of water at Nargarjuna Sagar will also reduce the incidence and fear of floods. The network of canals will facilitate navication overt a wide region. Moreover, $75,000 \mathrm{~K} . \mathrm{W}$. of Hydel power will be fenerated for the benefit of the region:

Thus, broadly speakin $n_{;}$, the benefits expected fron the project are a considerable increase in the area of irrigated land and production of food-grains, additional ceneration of Hydel power, prevention of lesses from floods in the river Krishna, and additional navigational facility in the canals. It is not possible to make a more detailed and precise staterient about the benefits of the Project or its full significance in relation to the regional and rational econony for want of necessary statistical information. The benefits also depend on how rapidly the ayacut under the dan is developed and what extra cost have to be borned by the farners and the local governments, the extent to which the project actia vites the economy of the refion directly and indirectly, and the measures which the state and the local covernments take to aid the process of econonic developnent in the region.

3. CERTAIN IMPORTANT QUESTIONS:

Some of the inpertant questions which arise in the study if the social and economic aspects of the project nay be stated as follows:
(1) What are the extra capital costs to be borne by the cultivators in order to brince water into their lands or to bring new land under cultivation for the first tine.
(2) What are the extra capital costs to be borne by the state and local governments in promotinc the developnent of the ayacut, in erectine: road bridges or providine ferries on the canals, etc.
(3) What is the attitude of farmers to irrication in dry areas which are now used for arawing comercial crops and whether there will be any opposition to irrication based on econonic or non-economic considerations. Economic considerations are inportant when the farmers feel that change from dry cultivation of crops like virginia tobacc ; chillies or groundnut, to wet cultivation of paddy may not brine not monetary benefit. Non-economic considerations are important when the cultivators are reluctant to adopt wet cultivation due t lack firrigation experience, etc:
(4) What shifts are likely to take place in land utilization and crop pattern (that is, in the distribution of dry and wet food crops, wet commercial crops and dry comercial crops) and how they affect the econony of the recion. It is interesting to find that in the Krishna, Guntur and Nellore Districts 76 per cent of the area unl er dry crops is under cereals and pulses; while ${ }^{i}{ }^{i} r$ value comes to only 39 per cent of the total value of dry crops. The area under Tobacc is 7 per cent d $_{f}$ the area under dry crops while its value cones to ablut 33 per cent: The area under chillies, eroundnut, cotton and castir cones to 17 per cent and their value is 28 per cent. As recards irricatid crops paddy takes, of course, nearly 95 per cent of acerage as well as value. (These are roumh estim tes based on data in the Season and Crop Reports).
(5) What price should be charged for water, and what will be the economic justification for inp sine additional tax burdens on land:
(6) What will be the extra demand for trade and transport facilities taking into account the possible changes in the crop pattern and expansion of agricultural production How will the canal navigation affect the present distribution of such facilities
（7）What new opportunities for the development of processing or other manufacturing industires will arise（for rice mills， sugar mills etc．）．What will be the effect on some of the import－ ant existing industices like the tobacco fax区 factories and oil mills． How does the generation of power help the establishment of new industries in the region．
（8）What are the eraployment potential ties in the project during the stages of construction and later．How is employment related to investment．What peculiar problems of recruitment and migration of labour and its organization arise in the important work centers of the project．
（9）What are the governmentaj measures reguired regarding the rapid development of irrigation，extension of credit facilities；and provision of better seed and manures in addition to water for raising agricultural production．What are the measures needed，speaking in a general way，fox sustaning the stigulus that the project would impart to the reginn，and for mobilising the economic surglus arising from the project for productive purposese
（10）What will be the overall effect on the incomes and Ilving standards of the peoris in the region． 4．NEED FOR ECONOMIC SUSVEYS AID STUDIES：

The questions posed above are very imortant for any rational scheme of project planning；but，it is obvious that no satisfactory encwers can be given to the above questions without adequate $\pm \times$ knowledge of the existing social and economic conditions of the region，how they will change in the course of the development of the project，and that the government policy is regarding the utilisation of water and power，（ice．g regarding shifts in land use and crop pattern and the establishment of new industries）and what other measures the government propose to undertake for the general develop－ ment of the region．It is therefore necessary to emphaslse the need for starting immediately economic surveys and tudies covering the thole region，some of which will have to be repeated during the stage f the develonaent of the ayacut under the Dam and also after the三：a゙ge of complete utilisation of tho new water and power resources as reasiod．

The main objects of the proposed economic surveys and studies may be stated as follows:
(1) Estimating possible changes in crop pattern, agricultural production, trade, incomes etc., in the $\dot{\mathbf{x}}$ different parts of the Project region on certain assumptions regarding the use of water and other investment by the cultivators, while the Project is still under construction.
(2) Preparation of plans regarding the use of water and power on the basis of opjective economic information in order to secure maximum gain from the project, and for the organisation of complementary resources such as supply of credit to the farmers and local governments, transport facilities, services of Government Agriculture and Health Departments, and community development schmes for sustam ining and stimulating the new dynamic factors brought into existence by the Project.
(3) Assessment of results of the Project and the developments following the Project as contrasted with the ecunomic conditions existing at present in the region.
(4) Study of the impact of the Project and the developments following the Project on the finances of the govemments particularly in relation to tax revenues.

6. TYPES OF SURVEYS NEEDED:

The types of economic surveys and studies required for the above purposes will be the following:
(1) Systematic collection of historical and factual data about the Project region from the available records, relating to land area, topography, geology and soils, hydrolozy, population, existing land use and crop pattern, land tenures and tenancy, organigation of markets and credit, development of urban centers, trade and industry, communications, government revenues and expenditures, etc.
(2) Eield surveys and enquiries in selected villages, urban areas, markets and industries in order to gather comprehensive economic information for purposes of estimating possible economic changes and assessment of results. These surveys may be classified as follows:
(a) Village surveys covering both agricultural and nonagricultural activities, landholdings and fragmentation, output, income and employment, indebtedness, investment, consumption habits, etc:
(b) farm surveys (including the study of model or experimental farms set up for the purpose) for the study of farmmsize, costs of cultivation, cropmotation, agricultural practices etc.
(c) urban area surveys including survey of cottage and small-scale industries (selected important trading and industrial. centres, railway stations and semimurban areas likely to develop rapidly as trading or industrial centres).
(d) marketing surveys (of the principZal food and commercial \& crops).
(e) employment surveys (with particular reference to the work centres of the project).

7. TIMP AND OTHER ASPECTS OF THE SURVEYS:

As regards the time aspect of the above surveys we have to distinguish three stages of development of the Project, i.e.g the construction stage, the transition stage and the mature stage. The construction stage is spread over nine years and it is essential that different kinds of investigations should commence during this stage. Employment surveys habe to be commenced at the earliest time as the work on the Project has already been taken up. The investigation of the employment problem under the Bakranangal Project by the Delhi School of Economics, and DraD.I. Narayana's study of the problems of labour organisation under the Machkund ydel Project (to be shortly published by the Andhra University) "ill be found very useful in the connection. Reports on employment labour xws surveys are to be made available even as the consm btion work is going on. Village and farm surveys I have of
course to be given the top priority. Reports based on these surveys, dealing with the existing economic conditions, estimates of investment which the cultivators have to undertake, changes in crop pattern, production, etc. and the organization of complementary resources, have to be made available before the Project is x completed. It will be ælso necessary to get reports of studies on the marketing of principal comraodities and industrial potentialities in the region. The construction stage of the project is thus a crucial one both from the point of view of engineering and that of economic investigetion.

The transition stage is spread over six years again after the construction of the project is completed, and during this stage the process of converfion of dry cultivation to wet cultivation, land reclamation etc. will go on. It will become necessary for some of the village and farm surveys mentioned above to be repeated for limited purposes during this stage, i.e., for a the study of transitional problems. During the mature stage, when the new resources of water and power are fully utilised, the surveys have to be repeated again for an overall assessment of the results.

Further, as regards the selection of villages and farms for purposes of survey, due attention must be paid to the problem of proper stratification of the whole region or population. For instance, in the selection of villages or groups of villages the following five categories may be considered. (1) Villages growing Virginia tobacco as a predominont cropg (2) villages growing other commercial crops like groundnut, chillies and cotton as predominant crops, (3) villages growing predominantly other crops, (4) villages having wet cultivation under non-canal sources of water, (5) and villages which lie within the project region or in the adjacent region but in which dry cultivation will continue.

With regard to the selection of farms for the study of farm-size, zosts, output, and incomes, and agricultural practices, due attention 'ust be similarly paid to the important dry and irrigated crops tl. it are now raised in the Project region. Details of design of
sample surveys will have to be worked out carefully with the assistance of competent economists and statisticians.

紫
 8; ORGANIZATION AND COST OF THE SURVEYS:

The organization of the economic surveys and studies suggested above will be an enormous and responsible task. It would be necessary to: entrust it to a body of experienced and competent persons. The cost of the whole scheme would come to a few lakhs of rupees; but, the surveys would be absolutely worth while undertaking. A tentative and rough estimate of the cost of surveys during the construction stage, covering a total period of three years, can be given as follows:

1. Head-quarters organization (staff and office expenses, at Rs. $\mathscr{D}_{\mathbf{T}} 600$ per month,
for three years) ... Rs. 72,000
2. Village and farm surveys - (field survey with five Research Officers for the five districts, and five investigators to cover about 200 villages in two yecars, including travelling expenses of officers and Directors.) Rs, 2,00,000
3. Employmelluthtrveys (for two years confined to the work centres)
4. Tabulation, Analysis and preparation of Reports

Repeat surveys may cost about Rs. $1 \frac{1}{2}$ lakhs during the transition stage and about $2 \frac{1}{2}$ lakhs during the mature stage. The cost of survey of an urban area may be placed at an average figure of Rs. 25,000, and if ten centres are selected for survey in the construction stage or in the transition stage, the total cost would be Rs. 2,50,000. The cost of repeat survey of the selected urban areas may be placed at RS. $1,50_{2} 000$.

ANDHRA UNIVERSITY,
WALTAIR, D/24th Sept. 1956.

Sd. B.. SARVESTAARA RAC,
HEAD OF THE DEPARTMENT OF EOONOMICS $\therefore: ~$.

$$
\text { APPENDIX - } \pi
$$

METHODS OF EVALUATIING FARM ASSETS, OUTPUTS AND INPUTS,
A. Evaluation of Farm assets:

1. Farm lands:	: Self cultivated lands have been evaluated at the rates prevalent in the village at the time of enquiry, taking into account the individual differences with regard to type of soil, distance from village, source of irrgation available etc.g
2.1) 酗lling houses, cattle sheds, storage sheds, wells etc.,	: These have been evaluated at the market prices prevailing at the time of enquiry.
3. Implements and Machinery:	- Tvaluated at market pruces prevai- ling at the time of enquiry.
4. Live-stock	Foaluated at market price. Even if the age of the animal exceeds 13 years the prevailing market value of the animal at the time of enquiry is taken.

B. Evaluation of farm output:

C. Evaluation of Farm inputs :

1. Human Labour:
a. Casual hired labour: Actual amounts paid in cash and/or value of kind payments evaluated at harvest prices.
b. Permanent hired labour (Annual servant)
: Actual amounts paid in cash and/ or the value of payments made in kind estimated at the harvest prices has been taken to be the total wage paid to the servant Payments in kind include meals clothes, chappals etc. consumption of food grain (Paddy) has been estimated at 6 maundsteper meal per year, and evaluated at harvest price.
c) Family labour:
i) Men
(ii) Women \& Children
d) Exchange or Gratis labour:
e) Supervision:

Conversion
: The cost of labour days has been evaluated at the village average wage rate for annual servants. For. wage-rates-pefer-Appendix.
: Wage rates prevailing in the village for hired women and children(Casual) labour) have been used for family labour.
: Evaluated at family labour rates.

- Supervision charges have not been included:
; All human labour hours have been converted into man-hours on the basis of following ratios.
One woman hour $=4 / 5$ man-hour
One child hour $=\frac{1}{2}$ man-hour
The above ratios have been arrived at on the basis of average rates during the year. All man hours have again been converted into man-days (8 man-hours $=1$ man-day).

2) Bullock labour:
(a). Hired Bullock labour: Actual amount paid-out for hiring in bullokes in cash and or the value of kind payments estimated at harvest prices.
(b) Owned bullock labour: Bullock labour includes work done by all draught cattle. The cost of maintenance of bullocks includes the fallowing items:
(i) Cost of green and dry fodders;
(ii) Cost of concentrates;
(iii) Depreciation and interest on the value of animals;
iv) Depreciation and interestion the value of cattle sheds;
v) Shoeing veterinary opest-changes, r/pus;
vi) Upkeep labour charges.

101

Receipts:

i) Value of farm yard manure including dung is estimated at the prevailing village price.
ii) Amount received for hirindout

Net cost of maintenance:

Total cost of maintenance minus receipts.
The cost of Bullock pair labour days is arrived at by dividing the total net cost of maintenance per pair in the year by total number of 8 hour work days of a bullock pair in the year.
3) Seed
4) (a) Depreciation on

- For crops which are generally trans planted with seedlings such as paddy, tobacco etc., the cost of raising seedlings is taken into account. For other crops which are sown with seed, actual cost of seed if purchased, or the value estimated at the village price at the time of sowing, if home produced.
 Farm Buildings:
: Evaluated 5 per cent in the case of kuccha and 2 per cent in the case of. pucca buildings per year.
(b) Depreciation on : implements and machinery excluding irrigation equipment.

5) Irrigation charges:

Depreciation according to expected life of the implement piust cost of repairs if less than Rs.10/- depreciation on added value of implement if cost repair exceeds Rs. $10 /$ - plus rent paid for hiring in implements, minus rent received for hired-out implements, if any.
i) Depreciation on irrigation implements and wells according to principles cited above.
ii) Working expenses such as fuel, oil, engine oil, lubricants etc. 1
iii) Hire paid for using water from other sources.
6) Manures and
7) Land Revenue, Cesses:
and Water rates:
: Under this head the following items are included:
i. Home produced farm yard manure has been valued at market price prevalling in the village.
ii. Actual cost of purchased farm yard manure and fertilisers.

This item includes the land revenue and water rates for irrigationed crops and special taxes for certain crops paid to the Government.
8) Rental value of owned
land
the land has been estimated for the land owned by the cultivator on the basis of prevalent rents in the landalillinge fov similar lands. Interest on agricultural assets excluding land have been calculated at 3 per cent per annum in all
10) Miscellaneous: cases.
: Miscellaneous items include items which have not been included under any of the above heads.

D. Estimation of cost of production

1) Human Labour:
(a) Casual hired labour: Actual amount paid for hired labour in cash and/or kind for different crops.
(b) Permanent hired labour (annual servant)
(c) Family labour:
(i) Men:
(ii) Women \& Children:
(iii) Exchange or Gratis labour:
: In proportion to labour-days put in for different crops.

- In proportion to days of labour. put in for different crops.
: Actual labour days evaluated at wage rates prevalent in the village.
: In proportion to labour days put in and evaluated at family labour days rates.
(2) Bullock Labour:
(a) Hired Bullocklabour: Actual amount paid fom hiring bullocks utilised for different crops.
(b) Owned Bullock Labour: In proportion to Bullock pair labour days utilised for different crops.
(3) Seet : Cost of seed used or cost of seedlings raised.
(4) Depreciation:
(a) Depreciation on Frarm Buildings:
: In proportion to acreage under the crop. In the case when it is used for only a certain crop the whole amount has been debited to the concerned crop.

4(b) Depreciation on implements and Machinery excluding irrigation equipqient:
5) Irrigation charges
6) Manures and fertilisers :
7) Rent Paid
8) Rental value
9) Land Revenue
10) Interest on fixed capital (e車cluding land)
11) Miscellaneous
12) Cost of Fuel for flue-curing tobacco
13) Special taxes and cesses:
E. Estimating cost of Maintenance of cattlel Draught, milch and other cattle)

1. Fodders
: Un Proportion to bullock pair labour days put in for different crops if they are bullock drawn implements. With regard to specific implements the oft has been debited to the crop for which they have been used.

- In proportion to irrigation days for crops which require irrigation by the help of implements.
Values of quantities applied for different crops. Residual effect have been ignored.
: Proportional to acreage under the crop to total cropped area of each fragment of leased-in lands.
: Proportional to acreage under the crop to total cropped area of each fragment of awned land.
: Proportional to acreage under the crop to total cropped area in each fragment.
: Proportional thacreage under the crops to total cropped area.
: Actual amounts spent for different crops.
: This is only for tobacco crop.
: Respective crops.
: Fodders jointly fed to the total live-stock have been allocated to different cattle on the following basis:
(i) Bullock, cow, Buffalo, abovel 2 years in agel
(ii) Youngstock bet ween 1 \& 2 years in age
(iii) Young stock below one yearl
$\frac{1}{2}$ adult animal unit
$\frac{1}{4}$ adult animal unit.

2) Concentrates
3) Depreciation on livestock
: Costs of actual amounts fed to different cattle.
: For the purpose of calculating depreciation on livestock, the life of an animal is assumed to be 13 years in age. Its value has been taken to appreciate during the first three years in the ratio of $1: 3: 5$, constant upto 5 years and depreciatere thereafter upto the age oi 13 years at the rate of l2t per cent anuum fin a straight line method. If the age of animal exceeds 13 years, no depreciation
is accounted for, if the animal died during the year, total remaining value has been debited to the depreciation accoúnt.
4) Depreciation on cattle sheds:
: Calculáted at 5 per cent for kaccha sheds and at 2 per cent for puccasheds and has been allocated in proportion to the number of cattle in each category.
5) Up-keep labour charges: Allocated in proportion to number of cattle in each category. Family man labour has been evam luated at the wage rate of an annual servant mainly engaged for tending of cattle in the village.
6) Interest on cattle sheds:
: Apportioned in proportion to number of cattle in each category.
7) Interest on the value: Calculated at 3 per cent on the of live-stock value of different categories of cattle separately.
8) Ropes, veterinary charges etc.a
: Actual amounts spent for different categories of cattle.

RECEIPTS:

i) Farm Yard manures (dung etc.g)
: Apportioned on the basis of the ratios adopted for allocating fodders fed jointly.
ii) Amount received for : This only occurs in the case biring out of draught cattle.
9) Net maintenance cost : Total cost minus income from dung fy and amount received for hiring out in the case of draught cattle.

[^0]: - 2The intensity of cropping is very nearly unity。 The difference between the village and the stratum intensities would be so small that the error introduced by. simplifying the calculatinns by using the stratum intensity for each villag - negiffibly small.

[^1]: $822 / 7 \mathrm{Ibs}=1 \mathrm{md}$.

[^2]: Value added at present in Rs. $10,12,78,540.28$ Increase in value added $R s_{0} \quad 32,66,19,206.26$
 \% increase 322

