UNITED STATES TARFF COMMISSION

UNITED STATES DMPORTS FROM JAPAN and
 Their Relation to the Defense Program and to the Economy of the Country

WASHINGTON
September 1941

UNITED STATES IMPORTS FROM JAPAN AMD
 their relation to the defemse program AND TO THE
 ECOMOMY OF The COUMTRY

$\xrightarrow[\sim]{\sim}$

Washington
September 1941

RAYMOND B. STEYENS, chairaan
 OSCAR B. RYDER, Tice chairman
 EDGAR B. BROSSARD
 E. DAMA DURAND
 EBEM M. WHITCOMB, deting secretary

Address All Communications

United States Tariff Commission
Washington, D. C.

ACKNOWLEDGMENT

In the preparation of this report, the Commission had the services of Ben Dorfman, Samuel Lipkowitz, the specialists In the various commodity divisions, and others of the Commission's staff.

Contents

Page

Part I

Introduction 3
Scmanary 5
Conclusions 21
Part II
Frozen stordfish, whole, filleted, boned, etc. 25
Tuna fish, packed in oil 30
Salmon, conned 35
Crab moat, crab sauce, and crab paste 39
Sesd oysters 44
Pish scrap and fish meal 47
Cod and cod-liver oils 52
Fish livers 57
Fish-1iver o11s, other than cod and cod-liver 62
sother-of-pearl shelle, crude 66
Kink fur skins, undressed 69
fily bulbs 72
Bristles, sorted, bunched, or prepared 75
 7.9
Vegetables, prepared or preserved, n.s.p.f. 82
Ajinamoto 85
Pineapples, prepared or preserved, n.s.p.f. 87
Mandarin orangea, canned 93
Tse, n.8.p.F. 96
Pyrethrum or insect flowers, crude 105
Rapeseed oil (denatured) 108
Japan max 111
Perilla oil 113
Agar-agar 116
Dead or creosote oil 120
Menthol 124
Cemphor, crude and refined 127
Cotton mampactures, n.s.p.I. 131
Cotton cloth, bleached, plain 133
Plainbeck cotton velveteens 138
Cotton table damasic, and mamfiactures thereof 141
Table and bureau covers, etce, of plain-moven cotton cloth, 148

Contento-contimed

Page
Part II-contimed
Cotton floor coverings 151
Cotton raga, inclading wiping rags, except for paper making 154
Cotton flish nets and netting 157
Raw afic 159
Silk raste 181
Habutal and other plain-woven silk fabrics 186
Rafon staple fiber 191
Pedaline hat braid and unfinished paper hat bodies 194
Sticics of bamboo 193
Mamifactures of papar, n.e.s. 200
Pottery, household table and kitchen articles, decorated, colored, etc. 203
Pottery, nonhousehold ware, decorated, colored, etc. 209
SLide fasteners 215
Incandescent alectric lamps, metal filament, other than riniature 218
Incandescent electric lataps, metel illament, inflature 222
Cultured pearls and parts, and solid initation pearla 226 226
Miscallaneous pyrorilin articles 230
Appendix
Table showing principal commodities imported into the OnitedStates from Japan, 1939 and 1940, and Jamary-May 1940 and1941235

PART 1

OIITED sTATES DPPORTS FTOM JAPAN AND THEIR RELATION TD THE

 DEFEESSE PROCRAN AND TO THE ECONONY OF TEES COONTIRI
Introduction.

Recent developnente bearing on the trede relations between the Onited States and Japen hare alrandr sasulted in a sharp reduction of iuports fros that country. This aitaation has given rise to the question of that effect a complete cessation of imports from Japan, if it should for anf reason occur, would have on the defense program of the nation and on the general economy of the country. This report reviews the principal individual commodities in the import trade with Japan from this point of view.

The articles covered in this report comprise 59 import classifianthons. 111 imports of comodities or classes of commodities from Japan wich anounted to as much as $\$ 250,000$ in 1940 or $\$ 500,000$ in the preceding year are inciuded, and in addition a mumber of minor imports which either are intimatelf related to the above or are important for other reasons such as for national defense. The final compilation, as ahown in the table in the appendix of this report, accounts for commodities which represented 90.5 percent of all imports from Japan In 1940 and 88.9 parcent in the first 5 months of 1942. (These same classifications accounted for 90.2 percent of the imports in 1939.) The commodities ars, with onis a few exceptions, $\sqrt{1 /}$ aiscussed In the order in which they appear in the classification of imports used by the Depertment of Commerce.

1 For example, fish scrap and fish meal are used both for feed and for fertilizer, and imports for each use enter under different classifications. In this report, horever, the tro classes are discussed in the same section.

Fach commodity or class of comodities listod in the appendix table, with onfy a fer exceptions, is treated in a separate section In Part II of this report. The exceptions are certain groups of coumodities which have cioself related uses or origins; in such instances, the group is treated as a separate section. Each section gives a description of the product or products under revien and a statement concerning principal defense and civilian uses. The competitive situation is briefly described and the principal economic data bearing on the problems which would be created by a stoppage of imports from Japan are presented. The classes of domestic intarests (Inporters, mamofacturers, workers, consumers, and defense industries) which would likely be affected by such a stoppage are indicated. Faphasis, however, is placed on the probable effects on the economy of the country as a whole. Where vital interests of substantial sections of the popriation would likely be affected, even though no great infury appeared in prospect for the country as a whole - as in the case of alimination of imports of ram silk - appropriate space is devoted to a discussion of the mamer in which particular groups would be affected.

At the end of each section are tables showing United States imp ports for consumption of the commodity under revien, both from Japan and from each of the other important suppliers, by years from 1937 through 1940, and by months for the period Jamary 1940 through

May 194. All statistics of imports were compiled from published or umpublished statistics of the United States Department of Comerce. Surnexy.

The imports from Japan which are separately analjzed in Part II of this report are sumarized in the following table.

- Table 1. - Onited States inports for conaumption from Japan, by principal commodity groups, 1940 and Jamary-May 1940 and 1941

Commodito group	Value $3 /$			Proportion of totel value of imports from Janan			
	2000 do11ars			Percent			
		Jamart-Mat		1940	8 Jampary-Yax		
		1940	12942		81940		19/1
,		18		2	8	\%	
Silk and silk producta	106,588	: 36,526	34,538	67.9	63.6	$:$	65.8
Fish and fish products	8,776	: 4,990	1,533	5.6	8.7	:	2.9
Cotton goods	6,452:	: 2,498:	: 3,206	4.1	4.3	8	6.1
Chemicals and industrial				:	18	1	
0118 -	3,475	1,807	1,176	2.2	3.1	1	2.3
Chine, porcalain, and :				8 8 22	20	8	
earthonmare	3,4618	1,164	8985	12.2	2.0	8	1.9
Teas	3,190	: 708	2718	82.0	1.2	8	1.4
Pedaline braid and		$: 2^{2}$	28	13.0	8	8	
Inuishod paper hat bodies -8	1,506:	872	794	1.0	1.5	\%	1.5
Canned fruite	1,185	109	387	8.8	- 2	1	-7
Reyon ataple fliber --I	1,033	501	487	. 7	-9	1	-9
Vegetables, sauces, and 8		: ${ }^{\text {a }}$:	8 -	37	8	
other food preparations -8	941	\% 387	\% 302	8 -6	. 7	:	- 6
meatric lamps -	924	2258	: 163	8.6	04	:	3
Mink furs -	898	8506 :	8917	8.6	- 9	8	1.7
Lildy bulbs	845	30	835	8.5	.1	8	-1
Pearls, cultured and 8		88^{2}	8 \%	8	3	8	
colid initation	585	- 208	418	$8 \quad 4$	-4	8	. 8
Slide fastonars -	526	205	296	: $\quad 3$	- 4	8	. 4
Bristles -	515	274	256	1.3	. 5	\%	. 5
Bamboo sticke	355	140	168	. 2	.2	:	. 3
Miscellanoous pyroxylin		88^{8}	8 8	8	12	8	
	- 287	: 1118	50	8.2	2	8	. 1
Papar mamifactures, ne Sop.f. 8	- 266	891	283	$1 \quad 2$	2		2
Pearl shalls	- 177	2133.	216	8 . 1	2		
Total imports		${ }^{8}$		830.5	83		
ammarated above	141,979	: 51,528	2 46,628	90.5	89.7	8	88.9
All others 2		$8^{8} 5.912^{8}$		8 \%			
		3	:	8			
Total	156,933	857,440	: 52,461	100.0	8100.0		100.0

1 The values given do not necessariliy shom the values of total imports from Japan within each of the classes indicated; instead, they ghow the total of ouly the imports which are separately listed in the appendir table. For example, the value of all fish and fish products from Japan was in excess of $\$ 8,776,000$ in 1940, but that sum represents the total value of those flish and fish products which are separately anplyzed in this report.
2 Inciudes imports valued at about $\$ 8,000$ in 1940 of optical glass, unmanufactured mica, and platiman grains, miggets, sponge, and scrap, which classes are designatod as "critical" or "strategic" materlals. Ho othar materials, except ailk, which were designated by the Arny and Mavy Munitions Board as "critical" or "strategic," were imported from Japan in 1940.

[^0]Silk end silin products. - A complete stoppege of imports of silk and silk products from Japan, which in recent jears have accounted for about two-thirds of the total value of inports from Japan, would create much the greater part of the difficulties which mould be associated with a cessation of all imports from that country.

For military purposes, rat silk is used principally in the mannfacture of parachute cloth. Data on United States requirements for this purpose and on the existing stocks on hand of finished materials and materipls in process are not available for publication. However; donestic warehouse stocks of silk (which may now be used only under Government license) are themselves sufficient for making about onehalf million parachutes of the average size used for militsry purposes. There are also available substitutes for silk in making parachutea, notably ryion.

The only other silk material which is of military importance is "silis waste." China has been much the most important supplier of imports of silk waste since 1937; imports from Japan have been neglisible since the beginning of 1940. There is also some domestic production of silk waste recovered in textile manufacturing processes.

The only indispensable military use of waste silk is in the production of lacing twine and tie straps for the assembly of propelling charges and in the fabrication of cartridge igniter cloth and : gun-powder bag cloth for high callber ordnance. Cloth for such uses must burn quickly and completely without leaving a hard smoldering
residue, and adik has been genorajly balleved to be the oulf IIber poasessing that combination of charactaristics. But it is significan that the Onited States Ars puhlicis announced early in lugast that it was no longer dopendent on silk for most powder bags and parachotes. Powder bage for mall calibers are succesafllly made of cotton; wool, and mohalr.

Data con Onited Statas military requirements fór waste sily, and the stocks of silk powdar bags completed and in process are not available for publication. But even if thare were no stocks of moh on hand, the available docestic supplies of silk and silk waste (which are mow under mandatory priarity control by the Covernment) would sufIlee for all indispensable miltary proposes for at least the imediate Intore.

As regards the cifilian uses of silk, it mas be observed that 80 parcent or more of the imports of Japanase sill into the United Stated in recent years have ontered into the mamifacture of hosiery. A ceasation of inporte mould thorefore affect principally the hosieny manfecturecry, the ally throwaters and their employees, and the great maber of woan tho wear silk hosiery, particularly full-fashioned monicry.
 abeer hosiery (corresponding to 10,20 , and 3-thread silk), will not litaly be available in nearly as large quantities as ailk has been. Flon, now the most acceptable aubstitute insofar as phrsical
characteristics are concernod, will not be imediataly available in sufficient volume to supply yarn for the manufacture of more than 25 to 30 percent of the number of pairs of full-fashioned silk and nion hosiery which were made in 1940. However, this percentage inill likelf be about doubled when the new mylon plant at Martinsville, Va., now nearing completion, attains full output, which is expected by the end of 1942.

Full-fashioned hosiery made of cotton and of rayon could in some degree elso be used to replace silk hosiery. In 1940, however, only 1 percent of the production of full-fashioned hosiery wes of cotton, rayon, or mixtures.

Production and emplosment in the silk hosiery and silk throwing industries were already reduced in mid-August and will probably be reduced still further in the next several months. The extent and duration of the curtailment is indeterminate; it will depend principally on the availability of garns wifich can be substituted for silk and on how quicicly volume production of acceptable hosiery made from them can be got under way. Rayon yarn plants are already operating at full capacity so that increases in the supply of rason for hosiery will necessitate diversion fram its other present uses, some of which are for defense. Productive capacity for cotton yarn sufficientily fine to make sheer hose is very limited; a substantial inmediate increase in oupplies of fine cotton or rajon jarn could be available if inports fron Creat Britain were increased. Only if
very much larger amounts of hosiery were made of rayan or cotton yarn could production and employment in the hosiery industry be maintained at the levels which prevailed in 1940.

The hosiery industry produced about 500 million pairs of fullfashioned hosiery in 1940. If mion is to supply material for no more than 150 million pairs per jear by the end of 1941 and no more than 300 million pairs per year by the end of 1942 (as has been estimated in this report), then hosiery of other yarns will initially have to make up a deficiency of at least 350 million pairs per year in order that output, and presumably employment, in the hosiery industry be maintained at the 1940 level. Production of full-fashioned rayon and cotton hosiery in 1940 amounted to only 5.4 million pairs. Sharp reduction in both the output and employment in the hosiery and the silf throwing industries appears inevitable for at least the immediate future. The impact of curtailment in production of hosiery will be felt principally in the States of Pennsylvania and North Carolina, which accounted for approximately 60 percent of all full-fashioned hosiery produced in the United States in 1940.]

The manufacturers and users of woven silk fabrics made of imported silk would be little affected by a stoppage of imports of ram silk Irom Japan, inasmuch as rayon and other available fibers are acceptable substitutes, having in fact already largely displaced silk for most woven fabrics. Plants and workers now devoted to the production of roven silk fabrics could readily be employed in the production of woven fabrics of other fibers.
1 Quarterly Statistical Bulletin of the Hosiery Industry, National Association of Hosiery Mamfacturers, Aug. 1941, p. 41.

Insofar as civilian requirements for maste silk are concerned, spun rayon (made from rayon stsple fiber and rayon waste) and continuous filament rayon are satisfactory substitutes in most uses. Some of the equipment and part of the labor supply in the spun-silk induse try could be employed in making spun-rayon yarn and novelta mixture jamb.

Fish and fish products. - Of the total vaiue of fish and fish products (including seed oysters) imported from Japan in 1940, canned crab meat accounted for almost 70 percent. In recent jears imports of this product from Japan have been exceeded only by those of silk. A stoppage of imports of Japanese crab meat mould no doubt compel an almost immedicte curteilment in the domestic consumption of canned crab meat since the deficiency could not quickly be made up by in creased domestic production or incressed imports from Soviet Russia, the only other source. The incidence, however, would be principally on consumers of "luxury" seafoods. kach the same situition would likely prevall for swordfish. A stoppage of other fish food products from Japan, such as canned tuma and salmon, would not likely heve an important effect, because large supplies of these and other fish products are available from domestic and other sources in the Western Hemisphere. Ang resulting increase in the domestic fish catch rould have the incidentel effect of increasing somemat the supply of fish livers, which could be utilized to reduce the Onited States shortage of the vitamin materisis derived from them.

There already exists a shortage of natural $\operatorname{Fitamin} 4$ and D matoricis in the United States. Vitamin A is used in the prevention of night-blinaness, and vitamin $D_{\text {, }}$ in the prevention of rickets. The imports of fish livers and fish-liver oils from Japan have been valued principally for their content of vitamin D although they have also been inportent for their content of A.

The principal users of vitamin oils derived from fish livers from Japan heve been the producers of poultry feed. Manufacturers of vitamin oils for hwan consumption, however, have also been faportent users. With supplies of cod-liver oil no longer available from Europe, poultry raisers are now substituting sardine oil fortified Fith tuna-liver oil and shark-liver oil. The tuna-liver oil makes up the deficiency in the vitamin D potency of the sardine oil, and the shark-liver oil, the deficiency in Vitrmin A.

Onder present conditions, a stoppage of imports of fish livers, cod-liver oil, and other vitamin materials from Japen would aggravate still further the shortege of supplies of natural vitamins A and D in the United States. This need not, however, have serious repercussions on the country as a vhole. Adequate supplies of synthetic vitamin D can be obtained from domestic sources, and some natural Fitamin a in the form of carotene (made from carrots and other materiعls) also can be obteined from domestic sources. In addition there exists the possibility of increasing imports of liver oils high in vitamin A and D from foreign acurces other than Japan. The public interest might
require, however, that donestic monufacturers of the synthetic substituites for V itamin D (which are made under patented processes) not take advantage of the reduced availability of the natural vitamin $D_{\text {. }}$

A stoppage of imports of seed oysters would seriously injure, Within a year or so, a segment of the domestic oyster industry located principally in the State of Frashington. Except for a small crop of 01ympia ofsters, the Pacific coast has no native oysters. Prior to the use of Japanese seed in that area, some seed from the Atlantic coast was used, but the business was never large because the Atlantic ofster takes from 3 to 5 years to attain marketable siee in Pacific vaters as compared with only 12 to 28 months for the species grow from the Japanese seed. There is very little propegation of Japanese oysters in Pacific coast waters.

A discontinuance of imports of fish scrap and fish meal from Jepan would not be serious, in vier of the substential imports of aimilar materials from Canada and the availability of larger donestic eupplies of other feed and fertilizer materiele. Inports from Japan In the first five months of 1941 nere negligible.

Cotton goods. - A stoppage of imports of Japanese cotton goods would prokably attract littile domestic notice except from the present users of Japanese fish nets and netting. United States production of cotton manufactures is the largest, in the world, and the domestic industry could probably make up most of any likely deficiency in volume arising from a stoppage of imports from Japan. Such a stoppage;
however, would reduce the supply of certain classes of inexpensive bleached cotton cloth, tablecloths and napkins, damask, and floor coverings. Substitutes would, in many instances, be less satisfactory Or more costify. A cessation of imports of fish nets and nettings nould probabiy be importont in raising the costs of certain domestic fishing operations. The lergest domestic producer of netting also produces most of the seine twine used in the mamfacture of netting by other manufacturers. Domestic productive capacity of these materisls is probably sufficient to meet all domestic requirements.

Chemicsis end Industrial oile. - The importance to the United States of its imports of chemicals and industrial oils from Japan varies from product to product. Japan (including Kmantong) is the major foreiga applier of agar-agar, camphor, perilla oil, rapeseed 0il, and Japan wax. The principal effect of a stoppage of such isports would be the greater resort to substitutes, satisfactory suppliea of which are now available for most.

The sole domestic producer of agar-agar, whose raw material now comes from Merico, could probebly, in his present plant, eupply the country's essential military and civilian requirements. Plant capacity could quicicis be expended with littile outlay. There are maer olss substitutes based on domestic raw materisls which could be used to replace agamagar in many of its most important uses. Domestic capacity for output of eynthetic camphor, wich is interchangeable in use with natural camphor, would have to be increased about 25 pars cent to supply all domestic requirements, and such expansion of plant would require about 6 months.

Perilla oil is a drying oil preferred in making certain apecialties. Domestic consumption is supplied entirely by imports, practically all of which come from Japan (including Kwantong). However, for practically all uses satisfactory substitutes (linseed oil, dahydrated castor 0il, fish and soybean oils) are available from domestic sources and from foreign sources other than Japan. Rapeseed oil came principally from Japan prior to 1941 but is now boing imported principally from Argentina. Japan wax comes only from Japan, but domestic substitutes, such as paraffin, are available.

The United States is much less dependent on Japan for pyrethrum, creosote oil, and menthol. Ary deficiency in pyretbrum could easily be made up by increased imports from British areas. (Imports of pyrethrum from British East Africa (Kenga) were over five times those from Japan in 1940.) Domestic and Canadian production of creosote ofl also could easily be expanded, but transport costs to the West coast, where Japenese imports have been entered and consumed world be high. A stoppage of imports of menthol, which now comes principally from China, would no doubt compel a reduction in its consumption, particularly in such products as salves and cigarettes. Domestic production of synthetic menthol is amall and that of natural menthol, negligible; and rapid expansion in the production of either is unlikely.

China porcelain, and eartheprere. - Because of the stoppage of Imports of such materials from continental Europe, Japan has become practically the sole foreign supplier of inexpensive earthenware and of both the inaxpensive and modimmpriced china and porcelain dimerware. A discontimance of jxports from Japan at this time would compel a sharp reduction in the domestic consumption of such articles and a considerable amount of substitution, mostly at higher prices. However, domestic earthenware and, to some extent, machine-made glassware, could largely replace the cheap grades of Japanese china and earthenwere.

Feg. - Most of the domestic consumption of tea is sumplied by imports from Ceylon, India, and the Netherlands Indies, neither Japan nor China being particularly important in this trade. A stoppage of imports from Japan would affect principally those few users of oolong tea wo would not find other teas accepteble.

Pedaline braid and unfinished paper hat bodies. - A discontimance of inports of pedaline hat braid and paper hat bodies (toyos) mould reduce the avaliability of materials now popular for use in low-priced men's and women's "straw" hats. Consumers would consequently be obliged to curtail their purchases or to seek substitutes. The effect on exployment would depend largely on the adjustments made in the hat industry, an industry whose prosperity rests largely on the vegaries of stale.

Genned fruits. - Imports from Japan consist of canned pineapple and canned mandarin oranges. The imports have bean amall, and a stoppage of the trade would cause littile difficulty. Capacity for prow ducing domestic camned pineappie (principally in Hawail) is more than sufficient to meet all requirements, and a variety of substitutes exist for canned mandarin oranges, a "luxury" salad fruit not produced domestically.

Rayon staple fiber. - A stoppage of imports from Japan would not have any appreciable effects. Domestic production of staple fiber has been growing very rapidy, and a large new plant is scheduled to begin production before the end of this Jear (1941). For many uses, there are adequate supplies of substitutes, such as rayon waste.

Food preparationg, vegetables, and sauceg. - These consist largelf of axticles consumed in the United States by persons of oriental descent and by others who patronize restaurants which eerve oriental dishes. Most of the comsumption is in Hawaii and on the Pacific coast. A stoppage of imports from Japan would necessitate a sharp curtailment in consumption in the Onited States. Increased imports from other areas and increased domestic production, however, could make up at least part of the deficiency in some classes.

Electric lamps. - A stoppage of imports of electric lamps mould not likely have any importent effect. Domestic plant capacity is sufficient to supply any likely demand for lamps. The domestic products are more costly than the comparable product from Japan, but are generally of superior quality.

Link fires. - Mink firs from Japen, although infericr in quality and lower in price than those of other origins, are "luny articles for which adequate substitutes are available. Other species of furs from domestic and from other foreign sources are available and, if need be, the output of minks on fur farms in both the Onited Stetes and Canada could be increased after a.period of 1 to 2 years.

Ifly bulbe - The imports from Japan, of which United States stocks are sufficient for requirements in 1941, could not be replaced quickiy by domestic production of lily bulbs or by imports from other coumtries. Substitute floral decorations would therefore have to be used.

Pearlec coltared and solid imitation. - A dizcontimance of imports from Japen would necessitate the substitution of other materials for use as costume jenelry. A wide variety of materisis for such Jewelry can be obteined from both domestic and foreign sources other than Japan.

SIIde fastenerg. - Domestic slide fasteners sell at higher prices than the Japanese product but are generally of higher quality. Adequate capacity exists in the United Ste.tes to supply all domestic consumption of slide fasteners. Moreover, domestic substitutes are available at no higher prices than prevail for the Japanese slide fastener.

Bristiles. - A cessation of imports of bristles from Japan would not adversely affect the Dnited States to anf appreciable extent
because Japan is only a minor supplier. A stoppage of imports from the Japanesemontrolled areas in China, however, would in a short time compel a reduction in the United States consumption of paint brushes. No wholly satisfactory substitute for imported hog bristles is available for making such brushes, but for certain proposes paint can be applied with spray guns. Present stocks of hog bristles are sufficient for making a 6-months' supply of all brushes or an 8- or 9-months' supply of paint brushes alone. Tooth, other toilet, induer trial, and household brushes are now being made in consicerable amounts from nyion and other materials. There is also a fairly large stock of finished brushes in the hends of mamufecturers and dealers in the United States.

Bamboo sticks. - A stoppage of imports from Japan would have but Iittle effect, inssmuch as imports from other foreign sources could be increased, and for many uses a number of substitutes are available.

Pyrozylin articles, and paper manufactares. - A stoppage of imFcrts of these Japanese specialties would reduce the varlety of low priced celluloid and paper novelties sold principally by 5-and 10cent stores in the United States. There nould be aveilable, however, a supply of similar and substitute articles of domestic and other foreign origins.

Pearl shells. - Inaswuch as United States imports of pearl shells come principally from Australia and the Netherlands Indies, a cessation of inports froe Japen rould not be particulerly importont. Imports
from non-Japanese sources could be increased and there exist in this country large supplies of mussel shells from which fresh-water pearl buttons and novelties may be manufactured.

Other Imports. - The classes of imports from Japan not discussed in the preceding paragraphs accounted in the aggregate for less than 15 million dollars in 1940, or for 9-1/2 percent of United States total imports from Japen in that jear, These imports consisted of a large variety of miscellaneous articles, only three of which are in categories classified by the Army and Hary 伿itions Board as "critical' or "strategic" - platimin (in various forma), optical glass, and mica. The imports of platimum amounted to $\$ 6,000$ and those of the other two articles to about $\$ 1,000$ each. None of the mica was of "atrategic" quality and it is doubtful that any of the optical glass vas. Shipoing.

A cessation of imports from Japan would have little effect on the" volume or value of cargo carried into the United States on American vessels. According to a recent report issued by the United States Laritime Commisaion, 86 percent of the tonnage of imports into the United States from Japan in 1939 was transported on Japanese vessels, 12 percent by vessels of other foreign nationalities, and less than 2 percent on United States vessels. Participation in this trade by American vessels has declined since that year. In fact, very few vessals of American registry were calling at Japanese ports in 1941 even prior to the Presidential order of July 26, 194, "freezing" all Japanese assets in the Onited States.

1 These same classes accounted for 11 percent of the total in the first 5 months of 1942.

Conclusions.

The principel economic effects on the United States which would likely follow from a cessation of imports from Japan may be sumarized as follows:

1. The aggregate effect on the econong of the country as a whole would be slight.
2. United States defense program would not be interfered with to any appreciable degree.
3. The health of the population of the United States would not be affected.
4. Certain domestic industries which have been using imported materials (notably the full-fashioned hosiery industry) would be edversely affected; but certain other domestic industries procucing articles competitive with imports from Jepan (the fish canneries and the mamufacturers of electric lamps, for example) would be benefited. Most of the unemployment in the industries adversely affected woula probably be short-lived because of the large and increasing demand for rorkers in other industries.
5. The public interect might require that the Federal Government teke measures both to facilitete readjustments in the fer: industries Which would be most seriously affected, and to prevent any unmarrented increase of prices by those domestic interects which are in a position to profit from a stoppage of imports from Japan, either in consequence of having accumulated stocks of imported goods or because they contrul the production or supply of substitute materisls.
6. Present users of silk hosiery rould be the principal consumer interests affected. For at least a limited time, aggregate consumption of full-feshioned hosiery mould have to be sherply reduced. Horever, after nocessary readjustments were made by the hosiery incustry and by the suppilers of yarn (mbich rould probebly require a year cr so) domestic production of hosiery of fibers other then silk nould probebly be sufficient to suppif the great bulk of the country's requirenents.
7. Consumers of such semilumury Jepanese procults as crab meet, swordfish, and mink furs, constitute only a small fraction of the popralation and a group rhose incone rould persit substitution of other articies without eppreciable herdship.
8. Conswers of low-priced Japanese manufectured articles (cotton manufactures, hat bodies, slide fasteners, chinaware, electric lamps, etc.) would generally be obliged either to cortall their consumption of such goode to to purchase higher-priced substitutes, or to do both. Purchases of such Japanese erticles, however, do not eccount for an inportant part of the total expenditures of even those in the very 10 v - Incoae brackets. Koreover, the substitution of higher priced articles would, in a number of instances, prove beneficial because of their superior quality.
9. The extent and rapidity with which domestic substitutes could replece certain imports from Japan would depend on the domestic aveilability of materials some of which are now subject to priorities.

PART 2

FROZEN SNORDFISH, WHOLE, FILLETED, BONED, ETC.

General information.

Frozen swordfish of domestic origin is put up principally in New England during the summer fishing season mainly for consumption in Finter when there is no fresh swordfish. Imports, practically all from Japan, are also sold mainly during the winter season. Boston, Uss. is the principsl point of domestic production, as well as the principal port of entry for imports, New England being the center of consumption for both fresh and frozen swordfish. The swordfish from Japan is generally transported in Japanese steamers and is sold mainly through American owned and operated commission houses at Boston.

In 1936 the duty on frozen swordfish was raised from 2 to 3 cents per pound under section 336 of the Tariff Act of 1930. Since then, the tendency has been to enter imports in the form of fillets, chunks, etc., at a duty of $2 \frac{1}{2}$ cents per pound ryther than as whole fish at the rate of 3 cents per pound.

The following teble shows Jnited States production, imports, and exports of frozen swordfish for the years 1937-40. These data are for the whole fish, fillets, chunks, etc. Statistics of imports for each class are separately shown in the last two tables of this section.

Frosen awordichs Cuited States production, imports, and exports, 1937-40

$1937: 1938: 1940$	
Quentity (1,000 pounds)	
Inports (practically all from Japan): Wholo-	
Flleted 1/menmeme $1.952: 3.166: 3.016$	
Totsl	
	- 3
Exports 2/--	
	$330: 320: 250: 320$
Imports (practically all from Japan)s:	
Thole	419 : 223: 153: 105
Filletol 1	154: 376 : 317 : 384
	573: $392: 470: 489$
	: \quad : ${ }^{\text {a }}$
	:
1 Imports fron Japan of Fish, filleted, skinned, boned, etc." believed to be almost entirely swordfish fillots.	
2/ Hot separately reported in official statistics.	

Source: Production data from Fish and Wildife Service, U. S. Departsent of Interior; import data cospiled from official statistice of the Dilited States Department of Cosmerce.

Imports from Japan during the first five months of 1941 were 824,000 pounds compared with $2,167,000$ pounds for the corresponding period of 1940.

Probeble economic effects of a cessation of imports from Japan.
A stoppage of imports from Japan would operate, in the absence of counter measures, to cause a sharp rise in the price of swordfish, again placing thet product in the semiluxury class of seafood.

Both domestic production and imports of fresh swordfish from Canada would probebly increase and would thus benefit the Onited States and Canadian fishery industries which suffered somewhat several years ago when inports from Japan became Iarge. In 1939 the Onited States Consumption of fresh swordfish amounted to 4.2 million pounds, of which 1.5 million pounds were inported from Canada and 2.7 millinn pounds were produced domestically.

UNITED STATES IMPORTS OF SWORDFISH FROZEN (NATURALLY OR ARTIPICIALLI), \therefore Class 0055.5 WHOLE, OR BEHEADED, OR EVISCERITED OR BOTH

Country	1937		1938		1939		1940 (prel.)		1941 (prela)
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	\$1,000
All countries, total	5,236	419	2,966	223	1,639	153	902	105	
Japan \qquad Cannda \qquad	$\begin{array}{r} 5,216 \\ 20 \end{array}$	417 2	2,953 13	222 1	$\begin{array}{r} 1,605 \\ 34 \end{array}$	148 5	870 32	100 5	

By Months and by Principal Countries - Nuantity (1,000 :cunds)

UNITED SIATES IMPORTS OF FISH: OTHER THAN COD, HADDOC, HAKE, POLLOCK, CUSK AND ROSEFISH: FRESH OR FROZEN; FILLETED, SKINNED, BONED, SLICED OR DIVIDED, N.S.P.F. 1/

By Principal Countries

By Months and by Principal Countries - Quantity (1,000 pounds)

TUNA FISH, PACKED IN OIL

General information.

Imports from Japan consist of the albacore species of tuna packed in cottonseed oil in tins. Other species of tuna are available in Japan for canning, but, for several jears past, exports from Japan to the United States have been IImited to albacore. That species was not caught in appreciable quantities in United States waters during the period 1925-37.

The consumption of fresh and salted tuna in Japan is large. The preference there is for the darker meat suecies, especially bluefin, whereas in the United Stetes the preference is for the white and light meat varieties, such as albacore and yellovifin. The United States is the only substantial foreign market for Japan's exportable suriplus of albacore.

At present the following syecies of tuma are canned in the Onited States: (1) Albsicore, or long-fin tuna; (2) bluafin or leaping tuna; (3) yellorfin tuna; and (4) striped tuna or sicipjack. White meat tunn," prepared from albacore, commends the hizhest price. "Light meat tunan is prepared from all other varieties. About 90 percent of the domestic pack is put up in cottonseed oil. The reminder is put up in the Italian way - heavily salted and packed princlpally in olive oil.

Production of canned tume in the United States has increased irregularly, from 19 million pounds in 1923 to 100 million sounds in 1940. Of the output of canned tuna in 1940, albecore accounted for 9
million pounds and other species for 91 million pounds. Although the albacore sells for slightly more than the other species, there is competition between all varieties.

Only negligible quantities of tuma packed in oil are exported from the United States. Imports prior to 1932 were not an importent factor in the domestic market. The peak of imports was 14 million pounds in 1933. Imports then declined steadily; in 1940 they were only 7-3/4 million pounds. Jipen is by far the principal source, heving supplied 72 percent of the total in 1940. Imports from Japan in the first 5 months of 1941 were 877,090 pomals as compared with $3,000,000$ pounds in the seme period in 1940.

Imports from Jcuan are transported on Japanese steamers and most importing agencies are Japanese owned or controlled. United States offices of these agencies have oniy a few employees, mostly Japenese. Almost all of the wholesale and retail distribution of the imported product is in the hands of non-Japanese.
ilthough imports from Japen heve been relatively small in the last few years (they represented only 5 ?ercent of the consumition of all kinds of tuna in 1940), they heve an importent influence on the packing of the albacore saccies in Oregon and Washington, notably by the Colombia River Packers' Association and others at Astoria.

The importation of frozen tuna from Japan and elsewhere for canning in the United Stetes has been precticed for a number of years. In 1937 such imorts from Japen amounted to 11 million pounds, but in 1940 they amomites to only $1 \frac{1}{2}$ million pounds.

The foilowing table shows production, and imports of canned tuna for the years 1937-40; the table at the end of this section gives detailed statistics for imports in the same years.

Tuna, packed in oil, or in oil and other substances: Summary of United States production and imports, 1937-40 1/

Kind of tuna :	1937	:	1938	:	1939	:	1940 2/
:							
:	Quantity (1,000 pounds)						
Albacore: :		:		:		:	
Production -----:	2,369	:	8,009	:	11,803	:	9,213
Imports 3/--m---:	9,802	:	.4,872	:	7,764	:	5,538
Other tuna:		:		:		:	
Production ---:	67,935	:	52,287	:	70,206	:	91,268
Imports -------:	1,251	:	2,320	:	2,362	:	2,140
Total:		:		:		:	
Production ----:	70,304	:	60,296	:	82,009	:	100,481
Imports ---m:	11,053	:	7,192	:	10,126	:	7,678
:	Value (1,000 dollars)						
Albacore: :		:		:		:	
Production --m:	723	:	2,085	:	2,939	:	2,368
Imports 3/--m:	1,913	:	960	:	1,314	:	958
Other tuna: :		:		:		:	
Production ---:	17,192	:	12;058	:	16,208	:	21,346
Imports --m:	121	:	292	:	355	:	308
Total:		:		:		:	
Production --m:	17,915	:	14,143	:	19,147	:	23,714
Imports: -----m:	2,034	:	1,252	:	1,669	:	1,266
3		:		:		:	

1/ Exports are not separately reported but are believed to be negligible
2/ Preliminary.
3/ Imports from Japan, believed to be albacore only.
Source: Production from Fish and Wildife Service, U. S. Deportment of the Interior; imports from official statistics of the U. S. Department of Commerce.

Probable economic_effects of e cessation of imports from Japan.
Domestic fishermen and packers heve adequate facilities to supply all
military and cirdilian requirements as now estimated. The domestic estch of albecore is increasing and domestic yellowfin (a species of almost equal quality and one which has always been the chief factor in determining the price of albacore) is available in substantial amounts. A cessation of imports of canned tuma from Japan would therefore not likely have more than a small and possibly temporary effect on the price of canned tuna sold in the United States. Domestic employment in tuma fishing and canning would be increased somerhat if imports from Japen ceased.

UNITED STATES IMPORTS OF TUNA FISH, IN OIL OR IN OIL AND OTHER SUBSTAICES

Country	1937		1938		1939		1940 (peol.)		1941(prol.)	
	$\begin{aligned} & \text { 1,000 } \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { p, } 3 \text { unds } \end{aligned}$	\$1,000
All countries, total	11,053	2,034	7.192	1.252	10.126	1,669	7,678	1,266		
Jrpan	9,802	1,913	4,872	960	7,764	1,314	5,538	958		
(Free) British Maleya	$\begin{aligned} & 106 \\ & 169 \end{aligned}$	$\begin{aligned} & 17 \\ & 27 \end{aligned}$	$\begin{aligned} & 565 \\ & 464 \end{aligned}$	122 69	991.	178 102	$\begin{aligned} & 970 \\ & 655 \end{aligned}$	$\begin{aligned} & 168 \\ & 102 \end{aligned}$.	.

Minth	1939	1940	1941	Principal countries of origin						
				1940			1941			
				Japan	Phil. Islands	British Malaya	Jrpan	Phil. Islands	British Malayz	
Jenuary - -m-m	696	2,281	199	2,155	64	52	174	24	-	
February --	517	938	322	471	54	237	228	55	-	
March ------	970	219	227	85	93	6	37	188	-	
	716	316	242	139	21	57.	149	93	-	
May -_-m	1,204	343	440	150	95°	28	289	109	-	
June ---m---	647	294		125	86	15				
July --m	819	485		290	103	-51				
August ------	923	684		518	134	30				
September ---	1,127	544		386	88	71				
October --m	927 919	469 589		366 499	80 84	15 6				
December --m	$5: 1$	516		354	72	86				
$\begin{gathered} \text { Total, } 12 \\ \text { mos. } \end{gathered}$	10,1,6	78.678		5,538	970	655				

SALMON, CAMIED

(Reported as Salmon, not in oil or in 011 and other substances, in airtight containers reighing with contents, not over 15 pounds each)

Ceneral Information.

Total imports of canned salmon in the last 10 years were largest in 1937 when $6-3 / 4$ million pounds were entered. of that amount Canada supplied 81 percent and Japan 11 peroent. In 1940 imports amounted to only, 215,000 pounds, almost entirely fron Japan and entered for consumption in Hawail: \because Early in 1941 Japanese packers planned to send some 33 million pounds to the Duited States during the year because the United Kingdom, formerly Japan's principal merket, was no longer buying the Japanese product. . The species which Jepan expected to ship to the United States was red salmon; the most expensive grade; at least 85 percent of United States:exports, most of which go to the Daited Kingdom, consists of this grade. Uaited States imports from Japan in the first 5 months of 1941, however; amounted to only 122,000 pounds compared with 70,000 poumds in the corresponding period of 1940.

Production of all kinds of camed salmon in the Onited States in 1940 was 269 million pounds valued at 38 million dollars, of which 51 aillion pounds valued at 11 million dollars were red salson. Exports In the same year, consisting mainly of red salmon, were 56 million pounds, of wich the Onited Kingdom took 52 million pounds. In consequence, stocks of red salmon were greatiy reduced in 1940. In 1940 production in Japan (including that by Japenese canneries in

36

Kanchatica) amounted to 92 million pounds of all grades, of which 30 fillion pounds were red salmon. Japan's exports in the previous jear (1939) were 80 million pounds, of which Europe, mainly the Daited Kingdom, received 64 million pounds, half of which was red and half mostly pink. Baving been denied the British market, Japan attempted to find a new foreign outlet for at least its pack of reds. Under the defense progran the United States Covernment is to take for its' om use and for shipment to the United Kingdon and other countries under the Lend-Lease program, 53 million pounds of the 1941 donestic pack divided as follows: Red 21; pink 17; silver 10; and chun 5 million pounds. This program is designed to remove all silver salmon from the misket, draw heavily on the red pack, and leave the pink and chum packs almost untouched.

Table 1 shows Onited States production, imports, and exports of canned aalmon and the table appended to tinis section gives detailed statistics of iports.

Table 1. - Salmon, in airtight containers, not in oil: United States production; imports, and exports, 1937-40

Kind of salmon	1937	:	1938	:	1939	$:$	1940
:	Quantity (1,000 pounds)						
Red or sockeye salmon:		:		:		:	
Production -	104,492	:	128,227	:	96,725	:	50,697
Importsi		:		:		:	
Exports $2 / 3 /$	33,308	:	42,351	:	35,752	:	49,294
Other salmon:		:		:		:	
Production -_m	258,150	:	221,199	:	190,896	:	218,343
Imports ${ }^{\text {a }}$	6,713	:	698	:	928	:	215
Exports 2 -	4,671	:	2,940	:	5,014	:	6,918
Total: :		:		:		:	
Production -	362,642	:	349,426	:	287,621	:	269,040
Imports	6,713	:	698	:	928	:	215
Exports -	37.279	:	43,291	:	40,766	:	56,212
	Value (1,000 dollars)						
Red or sockeye salmon:		:		:		:	
	22,476	:	21,708	:	18,853	:	10,789
Imports 1 \qquad		:	,	:		:	
Exports $2 / 3 /$ -	6,116	:	6,680	:	5,993	:	9,295
Other salmon:		:		:		:	
Productign --m:	30,458	:	20,658	:	22,928	:	27,261
Imports4/	411	:	68	-	81	:	32
Exports $2 /$ -	539	:	589	:	528	:	820
Total:		:		:		:	
	52,934	:	42,366	:	41,781	:	38,050
Imports -	411	:	68	:	81	:	32
Exports -	6,655	:	7,269	:	6,521	:	10,115

[^1]Sources8 Procuction. fron Fish and Fildlife Service, U. S. Department of the Interior; inports and exports from official statistics of the J. S. Department of Commerce.

Probable effects of a cespation of 1mporta fron Japan.

Imports from Japan have never in the past been more than a negligible

factor; hence a cessation would not likoly bring about any new dovelopments. The domestic industry is capable of meeting, at aubstantially present prices, $a 11$ doeestic requirements and of atill aupplying large quantities for exporte

UNITED STATES IMPORTS OF SALMON, NOT IN OIT OR IN OIL AND OTHER SUBSTANCES, IN AIRTICHT Cl2SS 0067.1 CONTAINERS FEIGHING FITH CONTDNTS, NOT OVKR 15 POUNDS EACH

By months and by Principal Countries - Quantity (1,000 pounds)

Loss than 500.

CRAB MEAT, CRAB SAUCE, AND CRAB PASTE

General information.

Imports of the products under this classification consist almost entirely of canned king or deep-sea, and Korean crab meat, from Japan and the Soviet Dnion. Japan uaually supplies about 78 percent of the total and the Soviet Union about 21 percent, but in the first 5 months of 1941 imports from the Soviet Union were negligible. Annual imports in recent years heve averaged about 11 million pounds, valued at about $3 \frac{1}{2}$ million dollars. Unusually lérge imports for consumption were reported for 1939 and the early part of 1940, but this increase over previous years was due mainly to heavy withdrayals from bonded warehouses, probebly in anticipation of some restriction on imports following notice on July 26, 1939, of abrogation of the AmericanJapanese Treaty of Comerce and Navigation. The large marehouse withdrawals in 1939 and early 1940 accoumt for the smill imports in the latter part of 1940 and the first 5 months of 1941 as compared With the years immediately preceding.

Imports into the United States arrive on Jepunese steamers consigned principally to Japanese-owned companies employing mainly Japanese nationals. Subsequent distribution is by American brokers, wholesale and retail grocers, and chain stores.

The United Stites production of canned crab meat in 1939 was threequarters of a million pounds, valued at one-quarter of a million dollars, and consisted almost entirely of dugeness and blue crab meat. The domestic pack of king crab meat (the principel species imported) is
almost nil. American and imported canned crab products generally sell at about the same price and are used for the same purpose. In addition to the domestic pack of camed meat there is a much larger domestic production of fresh-cooked crab meat put up in unsealed tins. Production of this perishable product in 1939 was 10 million pounds, valued at slightly more than 3 million dollars. The buik of this output, which was produced on the Atlantic and Gulf ceasts, was blue crab; the production on the Pacific coast was dungeness.

In response to Senate Resolution 200 of the 76th Congress, 3d session, the United States Tariff Commission, on October 3, 1940, ordered an investigation under Section 336 of the Tariff Act of 1930, of the differences in costs of production of domestic and imported crab meat. A report on this investigation was made to the President of the United States. He approved the report and on August 22, 1941, issuad a proclamation increasing the duty on canned crab meat from 15 percent ad valorem to $22 \frac{1}{2}$ percent ad valorem, effective September 21, 1941.

The following table shows production, imports, and exports of crab meat, and the table at the end of this section gives detailed statistics of imports.

Crab meat: United States production, imiorts, and exports, 1937-40

1 Not available.
2/ Includes small quantities of crab pasts and crab sauce.
3/ Negligible. Not separately classified in official statistics.
Sources: Production compiled from official statistics of Fish and Wildife Service, U. S. Department of the Interior; inports and exports compiled from official statistics of the U. S. Department of Comperce.

Probable economic offects of a cessation of inports from Japan.
Inasuuch as Japan supplies the great bulk of the canned crab consumed in the United States, a stoppage of imports from that country mould at least temporarily compel a restriction in domestic consumption. An increase in Imports from the Soviet Union might make up sone of the deficiency (provided such imports continue to arrive) but any likely increase could not approxinate the present level of imports from Japan for at least several years. The same may be said in regard to the domestic production of crab,fresh or camed.

Any decline in domestic employment resulting from a cessation of imports from Japan riould be confined largely to emplojecs of inporters, most of mhom are Japanese nationals. There mould no doubt be an increase in employment in the domestic fishing and canning industries. Foduction is wich would be groetily atimalated. Employmont in distribution would not Ifrely be affected.

UNITED STATES IMPORTS OF CRAB MEAT, CRAB SAUCE, AND CRAB PASTE

Country

SEED OYSTFRS

General information.

The value of imports of seed oysters, all from Japen, amounted to $\$ 67,000$ in 1937, but declined to $\$ 28,000$ in 1940. Imports from Japen in the first 5 months of 1941 were larger than for the entire year 1940, in both quantity and value. Imported seed oysters are used entirely by the domestic oyster industry of the Pacific coast vihich, except for the very small crop of 0lympia oysters, has no native oysters.

The planting of Japanese oysters on privately-owned beds along the Pacific coast, mainly in Washington, was begun in 1928. In 1939 the production of marketable oysters from these beds, in terms of oyster meat, was 9 million pounds, valued at one-half million dollars.

The imported seed oysters grow to marketable size in 12 to 28 months. Except in a very few Pacific coast areas, where conditions are most favorable, the mature oysters grown from planted seed will not propagate, and the beds must be reseeded after each harvest. Prior to the use of Japanese seed on the Pacific coast there were some shipments of Atlantic seed to that area, but the business was never Jarge because the Atlantic oyster takes from 3 to 5 years in Pacific waters to reach marketable size.

Production of "eastern" seed oysters on our Atlantic and Gulf coasts is large, and some Atlantic coast companies specialize in maintaining seed beds but all of their prominction is sold locally. Until the present European war there were some exports of immature oysters (not strictily seed oysters) from our Atlantic coast to inglend. These oysters mature to market size in English waters, but they never propagate there.

Domestic production of all eastern seed oysters was $3-1 / 3$ million bushels, valued at $1 \frac{1}{4}$ million dollars, in 1938. There are no exports. All of the imports have been from Japan, and these were as follows for the years 1937-40.

Source: Compiled from official statistics of the U. S. Department of Commerce.

Probable economic effects of a cessation of imports from Japan.
Most of the Pacific coast's "Japanese" oyster industry would have to be abandoned if imports of Japanese seed vere discontinued. About 40 companies are engaged in shucking and canning oysters, and these companies, together with others engaged exclusively in operating oyster beds, employ about 700 men, most of whom could probably find work in other fisheries or other branches of industry. The present investment in beds, vessels, and in shucking and canning plants probably totals about 2 million dollars. The ofster beds, constituting the larger part of the investment, would be of no value for other purposes.

UNITED STATES MITORTS OF OYSTERS, NOT IN AIRTIGHT CONTAINERS, SEED CYSTERS AND OTHER THAN FRESH OR FROZEN

FISH SCRAP AND FISH IEEAL

Cencral information.

In some localities the term "fish scrap" refers only to unground fish meal, but the trade terminology is not uniform; the term "fish meal" as used here refers to both ground and unground fish meal. Fish meal is produced mainly in conjunction with the extraction of fish oil from whole fish (mainly pilchards, menhaden, and herring) and from fish processing waste. The fish material is cooked, pressed to extract the oil, and then dried. This dried material, consisting of fish flesh and bone, is sold principally to feed dealers who mix it with grain and other materials to produce mixed feed for poultry and other animals. At least tno-thirds of the consumption of fish meal in the United States is used for this purpose and the remainder goes into mixed fertilizers.

United States annual production amounts to about 170,000 long tons, valued at about 8 million dollars. Imports fluctuate widely, having ranged from 40,000 to 93,000 tons annually in recent years. The annual imports in the 4 years 1937-40 averaged 60,000 tons, of which Japan supplied 37,000 tons and Canada 18,000 tons. In 1940 imports were 46,000 tons, of which Japan supplied 18,000 tons and Canada 25,000 tons. Between June 1940 and May 1941 imports from Japan were negligible. Imports from Japan have consisted of about 27 percent low-grade meal suitable only for fertilizer, whereas imports from Cansda have been almost entirely of a higher grade suitable for feed.

Exports are negligible at present, but formerly they were large. In 193: they amomted to 30,500 tons and consisted mainly of "whitefish" meal, produced from cod and haddock filleting waste. These exports went mainly to Arope. This product sells for the highest price becerse it contains no oil. Becanse of its high cost, Europe practically discontinued buying it even before the present war.

The following table shows production, imporis, and exports, and the next table gives imports by principal supplying countries.

Fish scrap and fish meal: United States production, imports, and exports, 1937-40

1 Does not include acidulated scrap.
2/ Not available.
Sources: Production, Fish and \#ilillife Service, U. S. Department of the Interior; imports and exports compiled from official statistics of the U. S. Departaent of Comerce.

Fish scrap and fish meal: Imports into the United States, by principal countries, 1937-401/

Country :	1937	1938	1939	:	1940
:	Cuantity (long tons)				
All countries -m:	92.772 :	39,887:	61,401		46,133
Jopan ---mom:	66,768	23,590 :	39,570	-	18,162
Canada ---	18,387	12,891:	15,173		25,131
:	Value (1,000 dollars)				
All countries -:	3.357	1,506:	2,565	:	2,221
Japan ---m:	2,327 :	851 :	1,583		787
Canada --	725 :	525 :	686	:	1,303
:	Value per ton (dollars)				
All countries --	36	38:	42	.	48
Japan ---m:	35 :	36 :	40	:	43
Canada ---	39 :	41 :	- 45	:	52
:		:		$:$	

1 Official statistics show imports under tariff paragraph 1685. covering substances used chiefly for fertilizer and under tariff paragraph 1780 covering fish scrap and fish meal unfit for humen consumption. In this table the two classes have been combined.

Source: Compiled from official statistics of the J. S. Department of Commerce.

Probable economic effects of a cessation of imports from Japan.

Imports of fish meal from Japan in recent years have represented only a negligible proportion of the protein material entering into animal feeds and a still smaller fraction of the nitrogenous material entering into fertilizers consumed in the United States. A continuance of the stoppage of such imports from Japan would, therefore, have little effect in the United States. It is even doubtful that such action would influence appreciably the price of fish meal, since that is determined not only by the supply of fish meal but also by the supply of other feed and Pertilizer materials. The effect which a cessation of imports would have on producers of mixed feeds and fertilizers would likewise be negligible.

UNITED STATES IMPORTS OF FISH SCIAP AND FISH MELI, NITROGEHOUS FERTILIZER MATERIALS

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	Long tons	41,000	Long tons	\&1,000	Lonf tons	\$1,000	Long tons	*1,000	Lonf tons	\$ 1,000
All countries, total	24,568	843	6,965	253	12,024	467	6,900	311		
Jnpan -	19,316	632	5,579	205	10,577	418	5,308	233		
Argentina ---	316	11	240	8	857	28	173	7		
Mexico --_	302	9	297	7	442	13	294	10		
Conada	4,068	169	849	33	138	7	137	8		
I celand	-	\checkmark	-	-	-	*	943	. 50		

By Months and by Principal Countries - Ouantity (Lone tons)

UNITED STATES IMPORTS OF FISH SCRAP AND FISH MEAL (NOT FERTILIZER)

Country	Long tons	\$1,000	Long tons	¢1,000	Long tons	\$1,000	Long tons	¢1,000	Long tons	\$1,000
All countries, total	68,204	2,514	32,922	1,253	49.377	2,098	39,233	1,910		
Japun \qquad Canada \qquad irgentina	$\begin{array}{r} 47,452 \\ 14,319 \\ 2,535 \end{array}$	1,695 556 82	18,011 12,042 1,095	61,6 493 37	28,993 15,035 1,048	$\begin{array}{r} 1,165 \\ 679 \\ 38 \end{array}$	$\begin{array}{r} 12,854 \\ 24,994 \\ 699 \end{array}$	$\begin{array}{r} 554 \\ 1,295 \\ 31 \end{array}$		

By Months end by Principal Countries - Qunntity (Long tons)

Month	1939	1940	1941/	Princinal countries of origin						
				1940			29/21/			
				Japan	Canada	Argentina	Jtapan	Canada	Argentina	
January --m-	5,342	8,419	3,412	5,391	2,889	39	-	1,871	240	
Fobrunry ---m-	4,129	4,179	2,388	986	2,830	67	${ }^{-}$	2,071	316	
	6,882	8,208	4,071	4,094	3,812	122	2/	1,654	148	
April --mom	5,574	4,261	2,175	1,994	2,112	155		1,419	233	-
	4,885	3,336	822	100	3,044	192	-	773	49	
June --m-.---m	1,563	1,557		289	1,202	51				
July -mon-m	738	808		-	763	-				
S.ueust -------	2,74,7	1,226		$2 /$	1,163	63				
September ---m-	1,300	1,264		-	1,204	10				
Octobar ---m-m	2,152	2,401		-	2,401					
November -----	6,508	713		$2 /$	713					
December ---m-	7,557	2,861		2/	2,861	-				
$\underset{\text { mos. }}{\text { Totas. }} 12$	49,377	39,233		12,854	24,994	699				

COD AND COD-LIVER OITS

General information.

Cod oil and cod-liver oil are both obtained from the livers of the cod fish. Cod oil is of a grade suitable only for industrial purposes, chiefly in the leather industry, whereas cod-liver oil, which is obtained from fresh livers, is used principally for medicinal purposes, chiefly in andmal and human nutrition.

Norway was for many years the principal source of both cod and cod-liver oil consumed in the United States. In 1940, Newfoumdand and Labrador, and Canada were the principal sources of the diminishing imports of cod oil. Japan ranked third that year but supplied none in the first 5 months of 194. Iceland was the principal source of the reduced imparts of cod-liver oil in 1940 and in the first part of 1941, Japan ranking second. Domestic production is far from sufficient to satisfy domestic requirements. Factory and warehouse stocks of cod oil and cod-liver oil combined (not reported separately) declined from the relatively high figure of 4,487,000 gallons at the end of 1939 to $1,923,000$ gallons on June 30, 1941. Consumption in the period 1936-39 averaged about 9 million gallons annually. Exports, for which official statistics are not available, are probably negligible.

Substitutes for cod oil are whale oil, fish oils, lard oil, tallow, and wool grease. Substitutes for the natural vitemins A and D conteined in cod-liver oil are the natural vitamins contained in other fishliver oils, both domestic and imported. Natural vitamin A can also be obtained from carotene (made from carrots and other materials) and synthetic vitamin D products are made domestically, $1 /$

[^2]The poultry industry until recently took the major part of the supply of cod-liver oil, but now most of the reduced supplies are being used for human mutrition. A large part, if not the major part, of the requirements for human consumption is now supplied by other liver oils. and synthetic vitamin D. The principal substitutes for cod-liver oil iri poultry nutrition is sardine oil fortified with natural vitamins a and D derived from other fish liver oils. Synthetic vitamin D is also used to some extent in conjunction with mixed feeds.

Most of the imports of cod and cod-liver oils from Japan have been shipped in Japanese vessels. The selling agencies in the United States are largely under American control and the employees are mostly American nationals.

Cod oil is processed by leather and textile supply companies and by the leather companies themselves. Most imported cod-liver oil is either rebottied in the United States or sold as imported. The number of employees engaged in handling the imported products is small.

Detailed statistics of United States imports of cod oil and codliver oil in recent years are shown in the table at the end of this section.

Probable economic effects of a cessation of imports from Japan.

In 1940, Japan supplied less than 10 percent of the reduced imports of cod oil and slightly more than 10 percent of the lowered imports of cod-liver oil. In the first five months of 194, it supplied 35 percent of the small imports of cod-liver oil and none of the cod oil. Consequently, if imports of cod-liver oil from Japan were also to cease,

54

the effect in the United States would probably be slight. Stoppage of imports from Japan could probably be made up by increased output of liver oils from both domestic and other foreign sources, and fram increased production of synthetic vitamin D. Plant facilities formerly used for treating imported cod oil are now being used for treating other oils. Few plant facilities, apart from bottling works, were used for cod-liver oil.

UNITED STATES IMPORTS OF COD OIL
Clres 0804.0

By Months and by Princivel Ccuntrius - Quentity (1, 0000 arllons)

UNITED STATES IMPORTS OF CODMLIVER OIL
C_{1} :ss Céc 5.0

Country	1937		1938		1939		194: (prol.)		1941 (rrol.)	
	$\begin{aligned} & 1,60 \\ & \text { gillons } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { ec.ilons } \end{aligned}$	\$1,0n0	$\begin{aligned} & \text { 1,000 } \\ & \text { erillons }^{\text {rill }} \end{aligned}$	人1,020	$\begin{aligned} & 1,90 \\ & \text { gidlons } \end{aligned}$	W1, H_{0}	$\begin{aligned} & 1,!E \\ & a!1 \mathrm{nns} \end{aligned}$	V1, Coc
All cruntri2a, totci-	5,91\%	3,867	5,229	3,326	5,670	3,731	2,114	2,521		
Norway-_-_	2,858	1,971	1,725	1,083	2,36\%	1,492	, 224	, 212		
Icolond Kingrom-m	1, 1,337	-773	1,103	- 876	1,7\%1	1,1,94	1,395	1,793		
Gurminy 1 ,	- 1,432	87 7	631 930	384	1,180	436	18	33		
Jıprn-	212	157	416	325	-139	61	263	278		
	28	277		36	9	62	36	49		
Nuwfd. \& Lelrodor-	89	52	217	126	107	59	56	55		-
Cinndr	72	46	155	87	144	67	55	48		

By Months ind ov Princioc. 1 C untrios = Ouantity (Inafolions)

Mnnth	1939	$194 ?$	1941	Principil countrijs of origin							
				Iculand.	Jupr.n		Crne:da	Icolend	Jr.pen	Nawf undisnarndor	Cenadc.
Jonunry	453	92	190	12	4	-	10	125	$5{ }^{\circ}$	6	9
Fobruary	227	121	275	28	-	-	$2 /$	41	111	-	19
W: rch-	$30: 2$	163	159	115	6	15	1	115	41	2	$3 /$
${ }^{4} \mathrm{pril}$	254	243	61	. 155	6	21	7	2/	30	24	7
Mッy-	9814	296	151	- 279	8	-	7	121	25	$2 /$	5
June-	5¢7	275		256	16	2.	2				
July	530	141		- 103	34	$2 /$	$2 /$				
C.ugust-	931	74		- 66	-	2		.			
Scptember	1, 060	99		49	11	$\overline{7}$	$2 /$				
October	768 265	213		163 94	32	7					
Nevomber \qquad Docembor \qquad	26,5 18.1	171 226		94 75.	39 107	11	11				
$\begin{gathered} \text { Totr 1, } 12 \\ \text { mes. } \end{gathered}$	6,67)	2,114		1,395	263	56	55				

FISH LIVERS

General information.

In recent years there has been a large increase in imports of fish livers, largely because of the increased demand in this country for vitamin D (the rickets prevention vitamin) and vitamin A (the nightblindness prevention vitamin). Prior to the present war in Burope, the United States annually consumed special Fitamin materials containing about 5,360 billion units of vitamin D, of which 4,700 billion units; or 88 percent of the total, was supplied by imparts. about 3,000 billion units entered in the form of cod-liver oil imported mainIf from Norway and 1,700 billion units in the form of frozen fish livers (mainly tums livers) imported almost entirely from Japan. Since the outbreak of the European war, imports of cod-liver oil have fallen sharply and prices have about doubled. This situation, together with the growing demand for vitamin D materials other than cod-liver ofl, has greatly stimulated imports of fish livers from Japan. Canada, formerly a minor supplier, now prohibits the export of fish livers and fish-liver oils except under license.

In 1940, total United States imports of fish livers amounted to $8 \frac{1}{2}$ million pounds valued at $2 \frac{1}{2}$ million dollars, of which Japan supplied $6 \frac{1}{4}$ million pounds valued at 2 million dollars, or approximately 80 percent of the total in terms of value. In the first 5 months of 1947; total imports decreased about 3 percent in quantity, to $2,126,000$ pounds, of which Japan shipped 65 percent, Canada and Mexico supplying most of the remainder. Statistics of imports of fish livers are shown in the table at the end of this section.

The content of vitamins A and D in fish livers varies with several factors but principally with the species of fish from which they are taken and the value of each species of liver is determined by its vitamin A and D potency. Japan supplies mainly frozen tuna livers. These are high in both vitamin A and vitamin D, especially D; and D is the more valuable of the two. The principal importers are Califormia sardine (pilchard) oil producers who use the oil extracted from twa livers in fortifying their sardine oil which they then sell as a substitute for cod-liver oil in poultry feed. Other large importers are drug companies engaged in the production of vitamin concentrates for human consumption.

The frozen livers from Japan are stored in the United States under refrigeration until needed. To extract the liver oil, shich serves as a. vehicle for the vitamins, the frozen livers are thawod and digested with an alkali. This process requires little expense and little labor, the principal cost being the investment in large stocks of livers and in finished products.

Domestic production of so-called hign-vitamin fish livers is about 5 million pounds valued at 1 million dollars amually, of which 1 million pounds valued at $\frac{1}{4}$ million dollars are tuna livers. Production fluctuate with the pack of canned tuna, the livers being a byproduct of the tunacanning industry. The estimated United States production of fish livers is shom in the follorring table.

Fish livers: Estimated United States production, 1938-39

Source: Estimated by the U. S. Tariff Commission on basis of catch of fish, reight of liver, and yield of oil as reported in official statistics of Fish ind Wildife Service, U. S. Department of the Interior.

The principal domestic consumers of oil produced from fish livers from Japan are the producers of poultry feeds; manufacturers of vitamin oils for human consumption are also important users. Inasmuch as supplies of cod-liver oil have been sharply reduced, poultry raisers are now largely substituting sardine oil fortified with tuna-liver oil and shark-liver oil. Muna-liver oil makes up the deficiency of the sardine oil in vitamin D, and shark-liver oil, the deficiency in vitamin A.

If supplies of natural vitamin D oils for muman nutrition should be insufficient, irradiated ergosterol in oil could be substituted in larger amounts than at present. There are adequate supplies of irradiated ergosterol in the Onited States for all human requirements, but production is controlled under patents. Irradiated ergosterol is not suitable for poultry mutrition but irradiated cholesterol, a synthetic product recently placed in the market, is claimed by its manufacturer to be equal for this purpose to the natural D. There are no synthetic substitutes for vitamin A, but a natural vitamin A is available in the form of carotene. Production of this is limited at present and the price is about double that of the vitamin A obtained from fish livers. Carotene is made principally from carrots, alfalfa meal, and nettles. Probable economic effect of a cessation of imports from Japan.

Poultry raisers and the mixed feed producers who supply them would be the principel donestic interests adversely affected by a cessation of imports of fish livers from Japan. Prices of the vitamin naterials used in poultry feeds have already risen about 100 percent since imports of cod-liver oil practically ceased with the extension of the European war to the Scandinavian countries. A stoppage of imports of fish livers would operate to restrict still further the availability of natural vitamin materials used in feeds, with the probable result that poultry raisers would be obliged to use more of the synthetic substitutes. Prices of these at present are not mach different from those of the natural vitamin oils.

Requirements of vitamin D for human consumption probably would not be seriously affected by a cessation of imports from Japan. Synthetic vitamin D would be available in sufficient amount to meet all requirements for human consumption, probably at no increase in price to consumets.

Class 221.97.
UNITED STATES IMPORTS OF FISII LIVEHS

Country	1937		1938		1939		1940 (prei.)		1941 (prel.)	
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { pounds } \end{aligned}$	\%1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { jounds } \end{aligned}$	\$1,000
All countries, total	2,474	421	4,932	658	6,255	1,718	8,444	2,462		
Japan \qquad Canad: Hexico \qquad \qquad	$\begin{array}{r} 1,595 \\ 754 \\ 18 \end{array}$	$\begin{array}{r} 136 \\ 224 \\ 1 \end{array}$	$\begin{array}{r} 2,466 \\ 1,937 \\ 27 \end{array}$	$\begin{array}{r} 282 \\ 291 \\ 2 \end{array}$	$\begin{array}{r} 5,321 \\ 664 \\ 176 \end{array}$	1,434 257 11	$\begin{array}{r} 6,293 \\ 520 \\ 523 \end{array}$	$\begin{array}{r} 2,080 \\ 202 \\ 49 \end{array}$		

By Months and by Principal Countries - Quantity (1,000 pnunds)

Month	1939	1940	1941	Principal countries of origin						
				1940			1941			
				Japon	Cunada	Hexico	Japan	Cancda	Mexico	
Januory	160	329	551	302	11	14	359	82	54	
Februiry	262	198	319	110	12	18	230	13	71	
March	243	375	393	312	3	40	292	16	61	
April	322	416	302	301	36	15	207	20	73	
May --	411	863	561	421	74	50	303	26	175	
June -	792	1,106		920	78	81				
July --	887	1,739		1,466	49	116				
August -	1,029	784		- 675	20	53				
September	765	706		596	51	5				
October	658	647	- -	495	48	33				
November	465	628		475	66	27				
December	261	653		220	72	71.				
$\begin{aligned} & \text { Total, } \\ & 12 \text { mos. } \end{aligned}$: 6,255	8,444		6,293	520	523				

FISH-LIVER OITS, OTHER THAN COD AND COD-IIVER
(Reported as "Vegetable or Animal Drugs, Advanced in Value, N.E.S.")

General information.

United States imports of fish-liver oils, other than cod and codliver ofls, are not separately classified but are entered as "vegetable or animal drugs, advanced in value, not elsewhere classified." These imports of fish-liver oils are valued principally for their content of vitamin D and to a lesser degree for that of vitamin A. Most of these imported oils are obtained from livers of the various species of tuna fish, the remainder being from swordfish and other fish, whose livers are of high potency in either vitamin A or D. These liver oils are used as an ingredient in poultry feed mixtures and for human consumption (see section on Fish Livers).

The domestic production of so-called high vitamin A and D fishliver oil, i.e. all fish-liver oils except cod and shark, comparable with imports from Japan, was 227,000 gallons valued at $22,832,000$ in 1940. This production was obtained principally from imported fish livers, also largely from Japan. Only one-fifth or less of the domestic output is from fish livers of the domestic catch.

United States imports of fish-liver oils from Japan were negligible prior to 1939 but increased from 70,000 pounds valued at $\$ 197,000$ in that year to 198,000 pounds valued at $\$ 838,000$ in 1940. Imports from Japan in the first 5 months of 1941 were negligible. Imports from countries other than Japan, being largely botanical drugs (advanced in Falue beyond the crude state) are not comparable with the imports from

Japan. Consequently, statistics of imports from these other countries are not separately shown in the table at the end of this section. Jnited States exports of fish-liver oils are not reported but are probably small.

Production of high vitamin fish-liver oils from the domestic catch of fish provide considerably less than one-half of United States requirements; any additional supplies of vitamin liver oils must be imported either as finished oils or as fish livers from which the oil can be extracted.

Synthetic substitutes for vitamin D of these fish-liver oils are available, the most important of which are irradiated cholesterol and ergosterol. Limited quantities of these synthetic products now sell on a competitive basis with the vitamin D obtained from liver oils. No synthetic vitamin A is available, but natural vitamin A can be obtained srom carotene, $1 /$

Probable economic effects of a cessation of imports from Japan.
A stoppage of imports from Japan would curtail still further the supply of high vitamin liver oils, particularly those high in vitamin A and D. However, the deficiency could be made up in part by increased imports from other areas, or, as far as vitamin D is concerned, by greater use of synthetic substitutes. Synthetic vitamin D for human consumption (irradiated ergosterol) could be supplied in sufficient quantity at no increase in price over the natural D. Synthetic D for

[^3]64
poultry (irradiated cholesterol) mould, according to claims made ty its manufacturer, also be available in sufficient quantity to supply and deficiency. The decrease in vitemin a supplies which would reatult from a stoppage of imports from Japan would be less serious but nevertheless of some importance.

UNITED STATES IMPORTS OF VEGETLBLE OR ANIMAL DRUGS, IDVINCED IN VALUE, NOT ELSLITIERE GRECIFIED

By Principal Countrios

By Luonths and by Princior 1 Countrius - Quantity (1,000 ounds)

Inasmuch as only a amall part of the imports under this classification from countries other than Japan are comparable with those from Japan, no data are presented for the other countries.
2) Lese than 500 .

MOTHER-OF-PEARL SHELLS, CRUDE

General information.

Imported mother-of-pearl shells are used in the United States principally in making ocean-pearl buttons. A small quantity of these shells and parts of shells are also used in making novelties. Much Larger quantities of domestic fresh-water pearl buttons and novelties are manufactured from mussel shells obtained in the Mississippi Valley. These domestic products are generully lower in price and quality than like products made from the imported shells. There is no reported domestic production of mother-of-pearl shells.

About 90 percent of the United States imports since 1935 have come from Australia, Japan, and the Netherlends Indies. Although the quality of like imported shells is about the same, the Japanese product has generally been lowest in price. Most of the mother-of-pearl shells imported from Japan are believed to be gathered in raters near Australia. Exports of certain types of pearl shell from Australia are prohibited by a customs proclamation issued November 27, 1940, except with the consent of the Minister for Trade and Customs. Shipments to the United States have continued in 1941, although at a lesser rate than in 1940.

In 1932-35, Japan supplied none of the mother-of-pearl shells imported into the United States, but in 1936 supplicd 17 percent of the quantity imported, in 1937 almost 44 percent, in 1938 about 50 percent, and in 193947 percent. Australia, the principal source for many years prior to 1937, again became chief supplier in 1940, accounting for 58 percent of the total quantity, while imports from Japan
decreased to less than 18 percent. Imports from Japan in the first 5 months of 1941 amöunted to $1,375,000$ pounds, valued at $\$ 216,000$, as compared with $1,224,000$ pounds, valued at $\$ 133,000$, in the correspond ing period of 1940.

Probable economic effects of a cessation of imports from Japan.
A cessation of imports of mother-of-pearl shells from Japan would have little, if any, effect on domestic industry, labor, or consumers. There rould sossibly be some increase in the price of buttons made from imported shells but such increase would have only a negligible effect on the price of the finished articles to which buttons are applied.

Concerns now using mother-of-pearl shells may still obtain them from the Netherlands Indies, Australia (under license), and possibly other foreign countries. There are also large donestic supplies of mussel shells from which larger quantities of fresh-water pearl buttons and noveltics may be manufactured.

UNITED STATES IMPORTS OF MOTKER-OF-PEMRL SHELLSS, UNLLNUFACTURED

By Months and by Principal Countries - Quantity (1,000 pounds)

MITK FUR SEINS, UNDRESSED

Cenergl information.
The mink furs imported from Japan are meh lower in quality and Lighter in color than either those imported fram other countries or those produced in the Onited States. 101 of the mink furs inported from Japan are raw furs; they are dressed and dyed in this country. Most other mink furs - domestic and imported - are used in their natural color, requiring only dressing to preserve the pelt. Japanese mink furs are used as material for fur coats and for triming both cloth and fur coats.

As a source of United States imports of mink furs Japen ranics first on the basis of quantity; Cansds, the only other important supplier, ranks first on the basis of value. (See table at end of this section.) Domestic production sf mink furs amounts to about 450,000 pelts annually. Fxports of undressed mink furs amounted to 273,000 pelts in 1938, to 153,000 in 1939, and to 80,000 in 1940. At present stocks are lower than they have been for several years.

Japanese mink furs are purchased and inported by American fur dealers tho also import other furs. The skins from Japan are transported in both American and foreign ships; most of these skins are entered at the port of Rew Iork. The dealers sell these furs direct to manufacturers of fur goods tho have then dreased and dyed before making them into finished goods.

Data on the number of establishments and the number of vage earners engaged in dressing and dyaing mink furs from Japan and in manfacturing them into fur goods are not available. It is know,
hovevar, that nink fror fron Japan account for a negligible proportion of all furs processed in the United States. Bepable economiceffects of a cessation of importa from Sapan.

Stoppage of imports froi Japan would have only negligible effect on the domestic fur-goods mannfacturing and fur-drecsing and dyeing industries. Concerns now engaged in processing mink furs from Japan could easily adjust their plants to the processing of other furs, and the few employees now working principally on mink furs from Japan could readily be shifted to work on other furs. In 1940 the value of all undressed furs consumed in the United States is estimated to have exceeded $\$ 100,000,000$; imports of mink furs from Japan during the same year were valued at $\$ 898,000$, or at less than 1 percent of the total.

A cessation of imports of mink furs from Japan would not cause a shortage of furs for civilian use as there are other competitive imported furs, such as kolinsky, weasel, and Persian lamb, which could be substituted. The production of ranch mink furs in Canada and the Onited States could not ismediately be increased, however, because 1 or 2 years mould be required to build up additional breeding stock.

UNITED STATES IRTORTS OF UNDRESSED MINK FUR SKIMS

By Kunths and by Princijal Countries - Quantity (number in thousands)

LILI BULBS

Ceneral information.

Most of the lily bulbs consumed in the United Stites are Easter 1ilies, used for "forcing" in greenhouses. Nearly all of the United States consumption is supplied by imports, which come almost exclusively from Japan.

Imports usually enter during the fall months, the bulbs being held in cold storage for use throughout the year. As the normal quantity was imported in 1940 and the first 5 months of 1941 , it may be assumed that present stocks are adequate to last through the fall of 1941. Imports probably amount to about 7,500 short tons annually (equivalent to 26 million bulbs), and usually enter in small lots - in 1938 only 10 per cent arrived in lots of 10 tans or mure. Most of the imported bulbs a transported in Japanese ships, and the remainder largely in ships of cth foreign registries. Hearly all of the few American firms importing lil bulbs handle also many other kinds of bulbs and horticultural products, both domestic and imported. The importing firms distribute the bulbs without further processing directly to the florists. Statistics of imports for the years 1937-40 and the first 5 months of 1941 are shom in the folloring table.

United States production of lily bulbs now supplies less than 5 per cent of the dumestic consumption. Recent experiments by the Onited Sta Department of Agriculture indicate that commercial production of bulbs of better quality than those imported from Japan is feasible. The new strains, having been developed from seed through which disease is not
transmitted, are free from mosaic. This disease, with which many Japanest bulbs are infected, causes total or partial nonflowering, or defective or imperfect flowers.

Probable economic effects of a cessation of imports from Japan.
A stoppage of imports of lily bulbs. from Japan would not be likely to cause any important injury to the economy of the United States. The immediate effects would be a sharp diminution in the consumption of lily bulbs and flowers. Stocks of Japanese bulbs on hand are sufficient to meet domestic consumption at the present rate through the fall of 1941, when imports of the new crop of bulbs would ordinarily enter.

At least two years would be required to develop sources of production in the United States adequate to supply the present volume of domestic consumption. In the interval imports of bulbs from Bermuda would probably incretse materially, even though the Bermuda variety is at present not held in high favor in the United States. Mieanthile, also, domestic greenhouse operators and florists might lose part of their total sales, since there is no flower wich would be as acceptable as lilies for use during the Easter season, and for floral decorations at reddings and funerals throughuut the jear. American firms mhich import Japanese bulbs would also be injured. The import business of such firms has, in many instances, alrendy been cut considerably by the cessation of imports from Europe, formerly the sole scurce of the other kinds of bulbs normally imported.

UNITED STATLSS IMPORTS OF LILY BULBS
By Princtoul Countrics

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)
	Numbar in th vuiands	\$1,000	Number in thuusends	\$1,000	Numbur in therusinds	\$1,000	Number in thumeands	\% 11,000	\$1,000
411 cuuntrics, totill	26,226	700	23,437	619	24,305	631	26,376	890	
J:ıpan Netherlands France \qquad Bermuda \qquad	23,464 1,581 572 316	585 54 32 21	21,098 1,607 403 221	525 56 16 18	$\begin{array}{r} 22,089 \\ 1,478 \\ 513 \\ 211 \end{array}$	539 52 22 17	$\begin{array}{r}25,295 \\ 484 \\ \hline 242 .\end{array}$	$\begin{array}{r}845 \\ 9 \\ \hline 21\end{array}$.

By Minths and by Principal Countrios - Qurntity (Number in thousands)

BRISTIES, SORTED, BUNCHED, OR PREPARED

General information.
Bristles are the coarse stiff hairs of the hog. Their only use is in the production or paint, tooth and other toilet, industrial, and household brushes. No hog bristles are produced comercially in the United States, the hairs from domestic hogs not being sufficiently coarse or stiff to be used for brushes.

China, the source of most of the world supply of bristles, has for many years been the outstanding supplier of United States imports. Most of the Chinese bristles come from areas nor occupied by Japan. Japan, usually the second supplier of United States imports, was in 1940 the source of about 4 percent of the total, as compared vith 91 percent. from China. Imports from Japan consist entirely of bristles of Chiness origin.

Onited States imports of bristles from all sources in the period 1931-38 averaged about 4.5 million pounds a year, of thich 4.1 million pounds vere consumed in the domestic brush industry, the remainder being reexported. Imports increased suòstantielly after 1938, having anourted to 5.2 million pounds in 1939 and to 5.6 willion pounds in 1940 . Imports in the first five months of 1941 sere 2,124,000 pounds as compared vith $1,688,000$ pounds in the sane period of 1940. Rcexports of bristles, chiefly to the Onited Kingdom and Conada, ariounted to about 10 percent of the imports in the 1931-38 period, 15 percent in 1939, 18 percent in 1940, and 15 percent in the first five months of 1941.

Stocks of bristles in the United States customarily heve been sufficient for 4 months' production of brushes of all types. At this priting stocks ere above ncmal, being sufficient for about 6 months a current high rates of brush production. Most of the stocks of bristl ere held by manufacturers of brushes. It is estimated thet although the present stocks of brushes in the hands of manuficturers are sufficient for only 1 or 2 months, a much larger than usual supply is hel by deelers.

Bristles are imported into the Onited States by about 15 firms, 4 of which are Japenese. Most of the im:orted bristles are brought is by 4 or 5 American companies. Japenese firms control the export of bristles not only from Japan but also. from the Japanese-occupied sections of China. The Chungking area vas formerly an important source of white bristles (for tooth brushes) but transport difficulties have greetly reduced American imports from that source. Most of the bristles imported into the United States are transported in Japenese boats.

Probable economic effects of a cessation of imports from Japan.
A stoppage of the small imports of bristles from Japan alone would not adversely affect the United States to any significant extent A cessation of imports from Japanese-controlled areas in China, however, would have a serious effect unon the domestic production and con sumption of paint brushes and less effect on the production and consumption of brushes of other types. There is no satisfactory substitute for hog bristles in making paint brushes.

77

Present domestic stocks of hog bristles could probably be increased from 6 months' supply to 8 or 9 months' supply by: Diverting to paint brushes supplies of bristles that would otherwise be used in tooth and other toilet, industrisl, and household brushes; the use of greater quantities of horsehair or vegetable brush fibers with bristles and by increased use of paint apray guns.

About 35 companies, employing about 700 workers, are engaged primarily in the production of paint brushes. The machinery and skill of this industry could be adapted to the production of some other types of brushes.

There are satisfactory substitutes for hog bristles in the manufacture of other types of brushes, such as tooth, toilet, industrial, and household brushes, but most of the substitute materials are more costly. The cessation of imports of hog bristles might result in some decline in output of these brushes and in some deterioration in quality, but on the whole neither producers nor consumers would be seriously affected except as regards paint brushes.

UNITED STATES IUPORTS OF BRISTLES, SORTED, BUNCHED, OR PREPARED

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	$\begin{aligned} & 2,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & \hline \text { 1,000 } \\ & \text { pounda } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000
A1l countries, total-	4,825	9,955	3,209	5,431	5,163	7,338	5,640	9,684		
China			2,860		4,632	6,116	5,078	8,419		
Japan -	372	1,063	- 96	314	155	405	223	515		
U.S.S.R. -	164	692	57	99	140	333	191	261		
Poland and Danzig-	107	212	59	131	44	56	7	-		
Kirangtung Lithunnia \qquad \qquad	54 1	117 3	11	15 2	18	28 3	17 7	29		

By Manths and by Principal Countries - Quantity (1,000 pounds)

Month	1939	1940	1942	Princtpal countrios of origin							
				1940				1941			
				China	Japan	J.S.S.R.	Krangtung	China	Japan	U.S.S.R.	Krangtung
January	301	509	500	433	31	25	-	437	48	4	-
February	416	267	581	216	35	4	-	545	25	$1 /$	-
March	350	263	451	221	30	2	-	422	13	4	-
April -	351	254	496	233	10	6	-	332	25	136	\cdots
May -	251	395	496	332	16	19	17	434	15	27	-
June - -	350	574		524	10	34	-				
July	423	493		452	22	13	-				
August -	506	672		635	7	25	-				
September	604	526		505	9	3	-				
October -	422	691		662	11	2	-				
November -	515	402		345	15	30	-				
December -	674	594		520	27	28					
Total, 12 mos	5,163	5,640		5,078	223	191	17				

SAUCES, N.S.P.F.

General information.
Imports of sauces, n.s.p.f., are of two main classes: (1) A large variety of high-priced bottled sauces ready for table use, mostly from the United Kingdom and British India; and (2) a seuce, known as soy, mostly shipped in bulk from Japan, China, and Hongkong. Soy is a clear dark brown liquid made from soybeans, with the addition of wheat or barley meal, by a somewhat complicated and prolonged process of boiling and fermentation. Soy may be either thick or thin. Thick soy, principally from China, is a semimanufactured product used by the Chinese in cooking and by occidentals as a base for other sauces, among them Vorcestershire. Thin soy, a finished product mainly from Japan, is used mostly as a sauce on Chinese and Japanese tables. The soy embraced in the classification "Sauces, n.s.p.f." is thin soy; thick soy is classified elsewhere. Soy is manufectured throughout Japan and China, principelly in small establishments.

Imports of sauces in the 4-year period 1937-40 averaged 13 million pounds annually, of which about 93 percent came from the Far East and consisted mostly of thin soy. Japen supplied two-thirds of the thin soy annually imported during this period. Imports are handled prin-: cipally by Japanese firms and shipped principally in Japanese bocts.

Imports from principal sources by months are shown in the table at the end of this section.

The sauces produced in the United States ere principally those having a tomato base, whereas the imported consist eitiner of soy or of sauces with a soy base. The United Stetes output of miscellaneous
sauces in 1939 (which excludes the tro big volume articles, tomato ketchup and tomato chili) was valued at over 4 willion dollars. Although the manufacture of soy (mostly thin soy) in the United Ststes is a very recent industry, there are nori at least five nanufacturing plants in or near the central western soytean belt in Hichigan, Indiena, and Illinois. Present annual output is estimated at 200,000 gallons or epproximátely 2.6 million pounds as conpared with imports of about 12 million pounds. Thus, domestic production supplies only about 12 percent of consumption in the United States and outiging territories, but probably as much es 20 percent of the coneumption on the United States mainland.

Undoubtedly most of the imported thin soy is used as a sauce ky Chinese and Japanese nationals and by patrons of Chinese and Japanese restaurants, inasmuch as approximetely half of the imports are entered at Hamaii.

Brobeble econonic effects of a cessation of imports from Jepan.
Stoppage of imports would provide a direct stimulus to domestic manufecture. The Japanese method of manufacture requires a period of from 12 to 14 months, but American manufacturers have devised a process requiring one month or less. It would, therefore, be possible quickly to expand production.

Class 1234.0
INITED STATES IMPORTS OF SAUCES, NOT SPECIALLY PROVIDED FOR

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	1,000 pounds	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	1,000	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { pounds } \end{aligned}$	\$1,000
All countries, total	14,892	542	10,739	429	13,773	504	12,942	592		
Jspan -	9,093	309	7,960	- 279	8,931	297	7,107	268		
China ----m-	1,424	40	1,444	$\cdots \quad 43$	2,796	70	2,763	- 67		
United Kingiom --	286	+52	197	40	237	44	465	- 82		
British India ---	1/127	$1 / 24$	169	29	176	31	176	$\therefore \quad 28$		
Hong Kong ---	3,819	97	791	25	1,283	31	1,233	33		
Italy \rightarrow-manmom	93	12	153	9	277	22	95			

By Montr:s and by Principel Countries - Quentity (1,000 pounds)

Month	1939	1940	1941	Principgl countries of origin							
				1260				1241			
				Jopan	China	United Kingdom	Hong Kong	Japan	China	United Kingdom	Hong Kong
Jenuary	1,216	1,017	1,013	639	178	54	114	377	162	50	420
February -	855	843	1,690	656	102	14	41	374	157	2	129
March --	1,161	902	870	428	228	90	56	382	293	5	157
April --n--	- 865	512	1,288	287	101	41	71	455	570	7	226
Mとy -----	810	732	1,084	364	195	75	83	511	366	10	181
J une --mo	904	842		451	276	24	76				
July --m	738	1,107		606	203	49	224				
August -m.	885	1,115		396	525	47	124				
September	1,187	1,031		631	241	9	145				
Octobor ---	1,754	1,537		768	188	52	76				
November --	1,551	1,791		947	133	2	101				
December	1,847	1,513		934	393	8	122				
Total ${ }_{\text {mos }} 12$	13,773	12,942		7,107	2.763	465	1,233				

VEGETABLES, PREPARED OR PRESERVED, N.S.P.F.

General information.

The above import classification includes all vegetables prepared or preserved in any manner other than tomatoes, mushrooms, beans, peas chickpeas, pimientos, and pickled vegetables. About 40 percent of th value of the imjorts from Japan usually consist of conned bamboo shoot about 10 percent of dried vegetables, and the remainder of an assortment of vegetables specially prepared for use by Japanese nationals residing in the United States.

Imports of prepared vegetables, n.s.p.f. in the four-year period 1937-40 averaged $\$ 665,000$, of which about 40 percent were received frc Japan. In the same period China and Hong Kong also supplied about 40 percent; and Italy and Greece most of the remainder. The products from China and Hong Kong are similar to those from Japan and are imported for use mostly by Chinese nationals.

United States production of canned vegetables alone in 1939 was valued at 256 million dollars, but almost none of the products were directly comparable with the imports from the Far East.

Most of the prepared vegetables imported from Japan are handled by Japanese houses, are shipped in Japanese bottoms, and enter at Hawaii and Pacific Coast ports. Probable economic effects of a cessation of imports from Japan.

A stoppage of imports would affect principally Japanese importing firms in the United States and the consumers of these specialty products, most of whom are people of Japanese descent. (Nearly 50 percent of the

83

imports from Jajan are usually entered at Hawaii). Imports of similar materials from China and Hong Kong, together with domestic jrocuction might, to a limited extent, provide substitute sources should imports from Japan cease.

UNITED STATES IMPORTS OR VEGZTABLES, INCLUDING HORSERADISH, CUT, SLICED, PARCHED, ROASTED, HEDUCED TO FLOUR,
PACKED IN OIL, OR PREPARED, NOT SPECIALLY PROVIDED FOR

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000
All countries, total	11,128	791	6,780	550	7,836	662	7,039	657		
Japan -	3,898	249	2,904	218	3,053	273	2,578	283		
China	1,268	88	1,690	136	2,211	184	2,679	223		
Hong Kone	2,826	238	876	76	1,025	81	1,296	108		
Italy Mexico	1,104 12	100 1	811	75 2	624 12	52 1	287 60	26 3		

By Months and by Princijal Countries - Quantity (1,000 pounds)

Month	1939	1940	1941	Principal countries of origin									
				1940					1941				
				Japan	China	Hong Kong	Italy	Mexico	Japan	China	Hong Kong	Italy	Mexico
January	729	717	477	210	24.4	142	35	47	82	248	146	1	\square
February -	383	562	425	258	178	91	6	-	108	249	61	1	$1 /$
March	393	462	450	123	203	111	21	1	119	242	77	-	2
April	505	566	748	198	239	88	21	1	92	461	189	-	5
May -	$5: 2$	521	501	165	163	70	102	1	133	252	105	-	4
June	1,180	895		474	207	123	81	1					
July	$6<7$	544		331	118	76	7	5					
August --	529	603		176	330	- 81	12	-					
September	565	542		137	165	236	-	4					
October	885	611		158	325	123	-	1					
November -	745	528		210	257	55	-	-					
December -	773	488		138	250	100	-	-					
$\text { Total, } 12$	7,8\%6	7,039		2,578	2,679	1,296	287	60					

1/Leas than 500 poumds.

AJINOMOTO

General information.

Adjinomoto is the trade name of a Japanese condiment having a characteristic meat flavor and consisting for the most part of monosodium glutamate. This and a number of similar products are imported also from China under a variety of names, all of which are generally referred to as "vegetable essential powder."

These preparations are derived principally from wheat gluten, the starch remaining as a byproduct. In China and Japan they are usually made from imported wheat flour, and the starch is reexported. There is a large market for ajinomoto in the Far East among Buddhist vegetarians.

Konosodium glutomate products are manufactured in the United States in moderate quantities. Statistics of output and of exports, however, are not available. In the 4-year period 1937-40 imports of adjinomoto averaged 724,000 pounds annusily, of which 70 percent came from Japan, and the remainder from China and Hong Kong. About 25 percent of the imports enter Hawail where they are consumed principally by the oriental residents.

Probable economic effects of a cessation of imports from Japan.

A stoppage of imports would have little effect in this country. Domestic plant capacity is probably sufficient to supply the entire domestic market. .

UNITED LTATES IMPORTS OF AJINOMOTO .ND OTHER MONOSODIUM - GLUTAMATE PREPRRUTIONS
By Principel Countries

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	1,000 pounds	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000
All countries, totul	911	793	542	513	780	689	662	558		
Japan	722	597	403	367	503	429	440	390		
China -	129	131	123	129	195	178	184	137		
Hong Kone	60	65	16	17	81	81	38	31		

By Lionths and by Principal Countries - Quantity (1,000 pounds)

I/Less than 500.

PINEAPPLES, PREPARED OR PRESERVED; N.S.P.F.

Cenerigl Information.

Imports of prepared or preserved pineapples consist principally of canned pineapples. These are used mainly for dessert, but appreciable quantities are also used as an ingredient of soda-fountain preparations and bakery products and in the production of candied pineapple. The combined quantity of canned pineapples and canned pineapple juice consumed in the Onited States has in the past few jears exceeded that of any other single canned fruit by almost 50 percent.

Production of canned pineapples in continental United States is negligible. There is a plant in Texas that has for several years been canning limited quantities of pineapples imported from Mexico, and there has been also some intermittent canning of imported pineapples at Key West, Fla., Baltimore, Md., and around New York City. The off-shore areas of the Onited States produce an abumdant supply of both canned and fresh pineapples. Hawaii now produces about 65 percent of the world's pack and could expand its output materially, while the Philippine Islands, which started commercial production in the late twenties, could expand its output to surpass that of Hawaii.

Domestic consumption of canned pineapple is supplied by shipments from Hawail and Puerto Rico, duty-free imports from the Philippine Islands, and dutiable imports from Cuba, Japan, and British Malaya.

Since 1931, consumption of canned pineapples in continental Onited States (measured in terms of combined shipments and imports) has ranged between 400 million pounds in 1932 and 645 million pounds in 1937.

Hawall furnished about 98 percent of Onited States total consumption in most years until 1935. Since then Hawail's ahare has declined somewhat, largely because of increased imports from the Philippine Islands. The principal operating company in the Philippine Islands is an American-owned firm, which also cans pineapple in Hawail. Puert Rico has never supplied as much as 1 percent of United States consumption; and dutiable imports never amounted to as much as 3 percent of United States consumption until 1939 when they were about 5 percent In 1940 they amounted to 7 percent of the total. (The duty on canned pineapple was reduced from 2 to $l \frac{1}{2}$ cents per pound under the trade agreement with the United Kingdom effective January 1, 1939.)

Japan supplied 16 million pounds in 1939 and 21 million pounds in 1940 (about 3 percent of United States consumption in those jears); Cuba supplied in those years 12 million pounds and 14 million pounds; respectively; and British Malaya, 1.8 and 1.1 million pounds, rem: spectively.

The table below shows shipments and imports of canned pineapple into the United States since 1931. The table it the end of this section shows imports by country of origin for the period 1937 through Lay 1942.

Pineapples, canned: Summary showing quantity of United States receipts and imports, 1931-40

Source: Foreign Commerce and Navigation of the United States.

United States exports of cunned pineapples, almost wholly from Hawa: haive been distributed among many countries but have gone in greatest vol to Burope, where the United Kingdom, Germany, France, Sweden, and Denmar! have been the principal mariets. Exports, as shown in the following tal declined from a peak of over 54 million pounds in 1328 to 17 million pounds in 1932; they increased slightly for the next few years, but fel to $6-2 / 3$ million pounds in 1940 , the decreaso being lurgely the resuit of war conditions in Europe.

Canned pineapples: United States exports,
by years, 1928-40

Year	$:$	Quantity	$\begin{gathered} : 1 \\ : 8 \end{gathered}$	Year	$:$	Quantity
	:	1,000 pounds	:		:	1,000 pounds
	:		:		:	
1928	:	54,394	: :	1935	:	21,982
1929	1	46,153	: $:$	1936	:	23,962
1930	:	37,790	: :	1937	:	29,428
1931	:	24,473	:	1938	:	18,436
1932	:	17,389	:	1939	:	23,350
1933	:	20,424	: :	1940	:	6,669
1934	:	20,386	: :		\cdot	
	:		i:		:	

Source: Foreign Commerce and Navigation of the United Stetes.

Canned pineapples from Japan are available in most of the leading markets in the United Stetes. They are customarily handled by American brokers who sell to both the wholesale and the processing trade. The 40-and 60-pound net fruit, drained-ireight, packs, are water-packed and a sold to manufacturers of candied pineapple; the 7 to 9 -ounce tins in cases are packed in sirup and are sold to retailers for direct consumer trade.

91

Probable economic effects of cessation of imports from 'Japan.
The discontinuance of imports from Japan would have only negligible adverse effect on any domestic interest. American-oimed canneries in Hamail and in the Philippines could easily increase their cutput to supply consumers now using the Japanese products

UNITED STATES IMPORTS OF PREPaRED OR PRESEKVED PINEIPPLES, N.S.P.F.

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000
ill countries,total -	45,298	2,241	31,484	1,524	74,393	2,985	84,952	4,288		
Philippine Islands Cuba \qquad Jipan \qquad British Melaya	$\begin{array}{r} 26,559 \\ 7,081 \\ 4,615 \\ 6,891 \end{array}$	$\begin{array}{r} 1,287 \\ 452 \\ 220 \\ 272 \end{array}$	$\begin{array}{r} 21,425 \\ 6,587 \\ 447 \\ 2,989 \end{array}$	$\begin{array}{r} 943 \\ 423 \\ 18 \\ 132 \end{array}$	$\begin{array}{r} 44,632 \\ 12,249 \\ 16,189 \\ 1,766 \end{array}$	$\begin{array}{r} 1,672 \\ 680 \\ 555 \\ 74 \end{array}$	$\begin{array}{r} 48,279 \\ 14,296 \\ 21,240 \\ 1,123 \end{array}$	$\begin{array}{r} \hline 2,612 \\ 821 \\ 792 \\ 62 \end{array}$		

By Months and by Princi, al Countries - Quantity (1,000 Founds)

Month	1939	1940	1941	Principul countries of origin							
				1940				1941			
				$\begin{gathered} \text { Phil. } \\ \text { I:slands } \end{gathered}$	Cuba	Japan	British Malinya	Phil. Isliands	Cuba	Jnpun	British Malaya
Jinuary --m	3,753	7,634	2,991	5,355	267	1,955	55	-	538	2,236	216
February -mom	1,039	661	2,036	-	311	252	98	-	433	1,544	59
March --	3,276	750	5,807	-	425	181	144	2,568	638	2,491	110
April --	1,958	466	5,750	-	298	104	64	3,182	529	2,019	19
May --_-m	10,079	5,330	3,825	4,907	- 264	50	102	1,386	1,238	1,028	173
June --m	7,459	10,841		9,245	1,183	185	227				
July -------	11,383	6,045		2,419	3,385	109	129				
iugust --m-m-	8,412	9,602		6,830	2,498	228	45				
September ---	14,575	7,900		4,317	1,821	1,668	93				
October ----	5,620	18,346		9,165	1,520	7,631	29				
Novenber ----	3,923	12,191		6,040	1,425	4,725	$\overline{7}$				
December ----	3,416	5,186		-	898	4,152	137				
Totsi, 12 mos.	74,893	84,952		48,279	14,296	21,240	1,123				

MANDARIN ORANGES, CANIED

General information.
The mandarin is a sweet orange similar to the tangerine grown in this country. Its skin is glove-thin, making it easy to peel, and its segments are readily separable. The Japanese mandarin is reported to have more flavor than the domestic tangerine:

In Japan the mandarin is sold both fresh and as a canned fruit. The canming process is to treat the inner skin of the segments in a chemical solution which loosens the skin pithout breaking the cells and permits the skin to bo readily removed by hand. \because The skinned segments are then packed in a sieetened sirup in small cans. Less than 10. percent of the mandarins produced in Japan are canned, the remainder being sold fresh in either the domestic or export markets. Those selected for canning must be seedless, of medium size, and contain only a small number of segments.

The United States imports both fresh and canned mandarins, but: the canned has in recent years accounted for about four-fifths of the total, on the basis of weight of fresh fruit. Fresh mendarins are imported principally for the holiday trade. Canned mandarins are Imported throughout the year. . They find a market principally as a fruit specialty, largely for salads. Ćanned mandarins are dutiable at the same specific rate as fresh oranges.

Imports of canned mandarins, all of Japanese origin, averaged, during the period $1937-40 ; 3.5$ million pounds valucd at $\$ 200,000$. These imports represent the equivalent of less than 100,000 boxes of fresh fruit.

In recent years the United States production of oranges of all types has averaged over 75 million boxes. The principal producing States are California, Florida, and Texas. There is no canning industry in the United States thich prepares oranges in a manner similar to those imported from Japan. United States exports of oranges in 1938 and 1939 averaged more than 7 million boxes, or about 20 tines as much as the imports of fresh and canned oranges combined.

Production of oranges in Japan has increased somewhat during recer years. The reported production for 1937 and 1938 averaged 15 million boxes, nearly 80 percent of which consisted of mandarins. The most important producing district is in the middle of the main island.

Official Japonese statistics ne longer give exports by country of destination. In 1936, however, the British Isles were reported to hav ta':en 82 yercent of the total exports of canned mandarin oranges; the United States was second, with 8 percent. According to unofficial reports the exports in 1937 also went largely to Great Britain. It is estinated that about 20 percent of the production of canned mandarins, principally of the lorrer grades, is consurned in Japan. Probable economic effects of a cessation of imports fron Japan.

Imported mendarins, both fresh and canned, are not only a luxury on the United States market, but thoy represent less than one-balf of 1 percent of the United States consumption of oranges. Consequently a stoppage of imports rould have only a najilgible effect upon Unitiol States economy. Thatever inconvenience might result from a cessation of inports nould be felt by only a limited number of consumers.

UNITED STATES IMPORTS OF MNDARIN ORANGES, CANIED

TEA, N.S.P.F.

General information.

The tea of commerce consists of the dried or otherwise prepared: leaves of the tea plant; a shrub or small tree cultivated in tropicta or subtropical regions. There are three main types of tea, resulting from different methods of prócessing - (1) green; or unfermented, (2) black, or fermented, and (3) oolong, an intermediate type which is semifermented.

China and Japan produce mostly greon tea; very little equipment is required and the culture of tea is sulted to the Chinese and Japanese type of farming. British India; Ceylon, end the Netherlands Indies produce, almost wholly black tea; this is grown on plantations and requires expensive machinery and other production equipment. The Japanese island of Taiwan (Formosa) produces most of the oolong of commerce; but China produces small quantities.

About one-half of the world production is in China, but only about 10 percent of China's output is exported. Japan exports. about 40 percent of its production, About 85 percent of the tea entering. foreign trade is black tea from the British and Dutch possessions; nearly 70 percent coming from the British possessions alone. These countries grom tea almost entirely for export. The United Kingdom and its possessions teke 70 percent of the tea entering world
trade, whereas the entire Western Hemisphere takes less than 10 percent.
United States imports of tea averaged 87 million pounds ennually during the period 1935-39 (fiscal years). Considerable quantities
were formerly received from other than producing countries (as much as 18 million pounds from the United Kingdom in 1936 and 1 millicn from the Netherlands), but since 1937 most of the imports have come direct from the producing areas. By original sources the avarage during the 5 -year period $1935-39$, in percentage of total United States imports, was: India and Ceylon 43.4, Japan, including Taiwan, 25.2, the Netherlands Indies 23.0 , and China 7.9 percent. During the same רeriod, imports from British and Dutch possessicns, all black tea, amrunted to about 66 percent of the total, including black tea from China, Japan, and Formosa; black tea imported from all countries amounted to 72.6 percent of ail teas. Imports of oolong from Taiwan amounted to 6.4 percent, and green tea from all sources to 18.4 percent.

Japan (including Taiwan) has been supplying 80 percent of the green tea, all of the oolong, and about 3 percent of the black tea. The United States is Japan's best customer, having taken in the last decade 54.4 percent of its tea exports (the Soviet Union took 23.1 and Canada 7.7 percent).

Statistics of United States imports by countries from which the tea is received (but not in all cases the countries in which it is produced) are shown in the table at the end of this section.

Tea: United States imports from ariginal sources, 1935-40 and 5-year average 1935-39

1/ Less than one-twentieth of 1 percent.
Source: Food and Drug Administration, U. S. Department of Agriculture.

Teas Dnited States inports classifled by scurce and trpe, 5-year average, 1935-39, and annualiy, 1935-40

Source: Food and Drug Administrationg U. S. Department of Agriculture.

No tea is produced in the United States, but the blending and packaging of tea is a large and important industry. Statistics of exports of tea repackaged in the United States are not available, but reexports of foreign tea averaged 811 thousand pounds anrually during the feriod 1935-39. Exports for the first 9 months of 1940 amounted to $1,407,000$ pounds.

Estimated stocks of tea on hand in the United States in recent years are shown in the table folloving. Combined stocks of green and oolong at the end of 1940 accounted for nearly 10 million pounds out of a total of 47 million pounds of all tea. Stocks at the end of 1940 vere larger than in 1939 because of the much larger imports, but those of green and oolong accounted for a smaller proportion of the total than in 1939.

Estimated stocks of tea in the United States on December 31, 1936-40
(In 1,000 pounds)

Kind of tea	1936 :	1937	1938	1939 :	1940
	:	:	:	:	
Black-British and Dutch --i	20,700:	20,600:	18,400:	24,700:	32,300
Black-Chinese and Japonese	- 4,000:	5,600:	5,500:	4,600:	5,100
Green, oolong, and other -:	10,000:	12,200:	10,600:	9,700:	2,600
Totel, cll kinds --m:	34,700:	38,300:	34,500:	39,000:	47,000
	:	:	:	:	

Most of the tea imported from Japan is transported in Japanese boats. At the time when only green tea was exported from Japan practically all imports into the United States vere handled by American firms. After Jaj began to produce black tea to compete with that from India and Ceylon, imerican import firms lost some of their business to Japanese firms. In 1922 american firms still handled 73 percent of Japan's export trade in
tea, but by 1939 only about 25 percent of it. American iirms, however, still ship the bulk of the Japanese tea which enters the American-Canadian market. Some of the lerger import ioouses in the United States which import Japanese tea employ a small Japanase personnel, and the few branches of Japanese export houses in the United States employ a fev Americans. The total number of empioyees is very small.

About 16 million pounds of green tea are consuncd annually in the United States (mainly in the Central and Western States), of which Japan supplies about 13 million and China 3 million pounds. There is no exact equivalent of green tea, but for meny yeers the trend in the United States has been steadily from green to black tea. Any shortage of green te: would undoubtedly accelerate this trend (imports oí green tea declined from 25 million pounds in 1929 to 15 million in 1940.)

The United States annually (average 1935-39) consumes about $5 \frac{1}{2}$ million pounds of oolong tea from Fcrmosa for which there is likewise no exact equivalent. The consumption of oulong, hoirever, has been declining from 9 millicn pounds in 1929 to 5 million in 1940. In the past few jears, uving largely to the rise in price of Japanese tea, American dealers have been buying larger quantities of black tea.

The United States Army uses about one yound of tea per man per year, and the Navy nearly three pounds. The Army uses black tea only - blends of India, Ceylon, Java, and Suncitra. The Navy also uses black tea; it l.as, at various times, hoitever, made purchises of Chinese congou (black), and Formosa oolongs (semiblack), which teas it considers interchangeable nith the regular blacks from the Dutch and British possessions.

There are usually three to five grades of each type of tea quoted on the market, and of these the Japan greens everage the lowest in price, folloved in ascending order of price by China greens, Formosa oolongs, China blacks (congou), Java and Sumatra blacks, and Ceylon and India blscks. Generally speaking, users of green tea buy a cheap tea. Probable economic effects of a cessation of imports from Japan.

A stoppage of imports of tea from Japan would have no importint economic effects on American interests provided that such a cessation was not accompanied by sericus interference ritin United States imports of tea from Ceylon, India, and the Hetierlands Indies. (Importe of toa from China are small, only about 5 percent of United Stutes total.) United States Army and Navy rations wiculd be unaffected by a cessi:tion of imports from Japan.

Aliacst four-fifths of the tea consumed in the United Stites in 1940 wes black tea, of which Japan (including Formosa), suiplied only about a trentieth part. Black teas from other sources could easily replace those now imported from Jtpan.

Less than 5 percent of United States tee consumption in 1940 was oolong, and all of this came fromi Fornosi. There would be no important replacement of such tea from other sources, but black tea mould be an acceptable substitute for most users. Consumption of ociong in the United States is not only small but has been declining in recent years.

Almost une-seventh of the United Sthetes consumption of ten in 1940 mas green tea, practically all of which came from Japan. If supplies fror that scurce were unavailable, China conceivably would provide some of the deficiency, although circumstences might render that unfeasible. Ceylon,
however, shuuld be able to augment its production of green tea on short notice, as tea is horvested there the year round. (Ceyion has already marketed small quantities of green tea in the United States.) Present stocks of green tea in the United States are sufficient to trake care of consumption requirements at the current rate for about 7 to 8 months. Should imports from Japan cease, the present shift from green to black tea in the United States would be accelerated.

The American export houses in Japan would suffer to sume extent if. imports from Japon into the United States were to stop. Practically all these firms, however, also operate in tho other important tea producing arces (principally Britich and Netherlands possessions.) Presumably, therefore, the net shrinkage in their tea trade pould be small.

Practically all of the blenders and dealers in Japanesc tea also handle teas imported from other countries. A cessation of imports from Japrn viuld thorefore not likely cause an important decline in their total business.

UNITED STATES IMPORTS OF TEA, N.S.P.F. ${ }^{\text {// }}$

Country		1937		1933		1939.		1940 (prel.)		1241 (rrel.)	
		$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,005	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000
All countries, total Ceylon \qquad Netherlands Indies British India \qquad Japan \qquad China \qquad United Kingdom \qquad		94,837	21,372	81,372	18,313	97,791	21,090	98,963	22,689		
		19,967	6,337	22,145	6,707	25,152	7,141	25,929	7,783		
		18,734	4,250	20,639	4,412.	28,276	5,709	31,009	5,792		
		10,124	2,854	12,173	3,380	15,797	3,916	17,204	4,529		
		28,746	3,725	17,086	2,054	23,511	3,304	17,656	3,190		
		6,621	828	6,307	. 770	3,510	532	5,392	900		
		9,433	3,096	2,671	905	953	355	1,134	354		
				1.							
By Months and by Principal Countries - Quantity (1,000 pounds)											
Month	1939	1940	1941	Principal countries of origin							
				1940				1941			
				Ceylon	Neth. Indiess	British India	Japan	Ceylon	Neth. Indies	British India	Jupan
January -------	7,698			1,710	3,226	3,077	3,026	1,673	2,385	1,201	1,941
February ------	7,931	8,864	8,363	1,913	2,415	3,147	1,015	2,156	3,197	1,310	1,213
likrch --------	8,576	8,056	6,197	3,348	1,859	2,226	343	2,002	2,380	- 570	378
April ---------	6,566	8,630	7,793	3,326	2,851	1,099	224	1,204	4,834	162	773
May ----------	8,785	4,922	11,190	1,557	1,042	825	176	3,023	5,007	1,020	451
June ----------	6,724	6,510		2,339	2,100	190	648				
July ----------	6,799	7,316		2,191	2,665	420	1,372				
incust --------	7,500	7,176		2,077	3,038	160	1,512				
September -----	7,307	7,783 9,030		2,765	4,702	$\begin{array}{r}209 \\ \hline 1009\end{array}$	1,524				
Oetober --------	7,653 9,953	9,030 9,364		3,170 1,559	2,068 2,000	1,008 2,145	1,943				
November --------	7,653 11,969	9,364 9,335		1,559 1,969	2,000 2,163	1,145 1,098	1,077 2,746				
Total, 12 mos.	97,791	98,963		25,929	31,009	17,204	17,656				

1/ Not spocially provided for.

PYRETHRUN OR INSECT FLOWERS, CRUDE

General information.

Pyrethrum flowers are the dried flower heads of several species of Chrysanthemum, which have powerful insecticidal properties. Pyrethrum is cultivated in many parts of the world, the principal producing countries being Yugoslavia, Japan, and British East Africa. The crude flowers are one of the most important raw materials used. in the manufacture of insecticides.

Pyrethrum flowers are prepared for insecticidal use either by grinding them to a fine powder or by extracting the pyretirin fith kerosene or a similar petroleum solvent. About three-fourths of the pyrethrum consuned in this country is used in the form of liquid extract for spraying and the other fourth in powder form. Such insecticides are employed principally against household insect pests, such as flies, roaches, and moths, but they are also used for horticultural and,livestock insect sprays and for dusting powders.

United States requirements of pyrethrum flowers are supplied almost entirely by imports, principally from British East Africa and Japan. From about 1915 through 1939 Japan was the most important source of inports. Since then British East Africa (Kenya) has been the principal supplier of the somemat reduced total imports; in 1940 it accounted for more than 5 times the amount imported from Japan and in the first five months of 1941, for more than 20 times as much. Import statistics from principal supplying countries are given in the table at the end of this section.

106

There hes been no commercial production of crude pyrethrum flowers in the Onited States because of the low price of the imported product. Exports of pyrethrum are in the form of finished insecticide spriys or powders and are not separately reported in official statistics. It is estimated that the present stock in all forms is equivalent to 12 to 15 million pounds of crude flowers, or to coout 1 year's normil imports.

About tizo-thirds of the imports of Japanese pyrethrum flowers are carried in Jepanese: boats and about 10 percent in American-omed ships. The importers in this country and all donestic processors are, so far as is known, under ámerican control and employ American nationals. There are four or five importers of crude pyrethrum flowers and about 100 to 150, mostly small concerns, process the finished insecticide. Their total employment amounts to between 500 and 1000 people. Probable economic effects of a cessation of imports from Japan.

A stoppage of imports of pyrethrum flowers from Jepan would have little if any economic effect on this country. Since 1936 United State Imports from British East Africe (Kenya) have increased steadily and in 1940 and the first part of 1941 mere many times the imports from Japan. The crude insecticide from Kenya contains 1.3 percent pyrethrin as compared with only 0.9 percent in the Japmese product. It thus apers that the crude pyrethrum flowers from British East Africe will likely continue to displace Japanese insecticide in the United States market. There is also available in the United States a synthetic organic insecticide which can be produced in any desired quantity from dumestic ra materials which are readily available. For most purposes it is equally satisfactory with jyrethrum.

UNITED STATAS IMPORTS OF PYRETHRUM, UR INSECT FLOIIERS, CRUDE

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \\ & \hline \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounde. } \end{aligned}$	\$1,000
411 countries, total	20,092	2,204	14,537	2,491	13,569	3,174	12,591	2,949		
Japan \qquad British Enst Africe \qquad	17,850 1,423	1,995 139	10,896 2,864	$\begin{array}{r} 1,781 \\ 619 \end{array}$	7,486 5,524	1,636 1,466		$\begin{array}{r} 409 \\ 2,513 \end{array}$		
								:		

By Months and by Principal Countries - Quantity (1,000 pounds)

RAPESEED OIL (DENATURED)

General information.

Rapeseed oil has high viscosity, does not readily thicken when heated or on exposure to the air, mixes well with mineral oil, and emulsifies with water. In the United States it is used principally for lubricating, especially in marine reciprocating engines. Rapeseed oil is also used as a rubber substitute (for incorporation rith rubber and for art gum crasers) made by treating the oil with sulphur or sulphur chloride. For some of these substitutcs, other oils, such as corn and soybean, are more or less interchangeable vith rapeseed oil.

Prior to this year (1941) rapeseed oil was imported mainly from Japan. In the first five months of 1941, howover, Argentina became the principal supplier. China and India are the principal gromers and have generally been the chici exporters of rapeseed. These tizo countrics, together rith Argentina, are possible sources of rapeseed and rapeseed oil. Stocks of rapeseed oil in the United States on June 30, 1941, were approximately 8 million pounds, or about a 9-months' supply at the recent rate of consumption.

Rapeseed oil enters the United States principally in Japanesc ships. Some of the selling agencies in the United States are fmerican and some Japanese.

There are several oil refining companies in the United States engaged in the processing of rapeseed. The oil is treated in tanks and little labor is required.

Probable economic effects of a cessation of imports from Japan.
Certain properties of rapeseed oil make it especially desirable for lubricating marine reciprocating engines, and although the quantities required for this purpose are not large, this oil is considered important for this special use. If supplies from Japan ceased to be available, it might be possible to increase still further imports from Argentina and to obtain supplies from India, or to use substitutes.

Most of the domestic equipment now used for processing rapeseed oil can be used for treating other oils. Any shrinkage in total imports of rapeseed oil would, therefore, not render useless the productive capacity or reduce'employment.

UNITED SIATES TMPORTS OF RAPESEED (COLZA) OIL (DENATURED)
By Principal Countries

	1937		1938		1939		1940(prol.)		1941(prol.)	
Country	$\begin{aligned} & \text { 1,000 } \\ & \text { gailons } \end{aligned}$	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { goilons } \end{aligned}$	¢1,000	$\begin{gathered} 1,000 \\ \text { gallons } \end{gathered}$	\$1,000	$\begin{gathered} \text { 1,000 } \\ \text { gailons } \end{gathered}$	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { gailond } \end{aligned}$	\$1,000
All countries, total-	650	292	689	278	1.185	392	1,723	761		
Japan Argontina	650	292	65 -	276	1,185	399	1,546 177	684 77		
,									.	

By Months and by Principal Countries - Quantity (1,000 gallons)

111

JAPAN HAX

Ceneral information.

Japan wax is obtained from the berries of a shrub native to Japan and China. It is somewhat like tallow, but has a rancid odor and taste. It is used as a substitute for beeswax and in combination with other waxes in candles, floor wax, and furniture polish.

United States imports are wholly from Japan and there is no domestic production. Consumption is, therefore, approximately equal to imports, which averaged about 3 million pounds annually for the 4 years 1937-40.

Practically all imports of Japan wax are shipped in Japanese vessels and enter at Atlantic coast ports, principally at New York. Probable economic effects of a cessation of imports from Japan.

Japan wax has no direct military use, and there are ample supplies of substitutes, particularly domestic paraffin wax, for civilian uses. The plants now using Japan wax could continue to operate without material change in equipment or employees by substituting other kinds of wax.

UNITED STATES IMPORTS OI JIPAN FAX

By Months and bry Princi;ibl Countries - Quantity (1,000; ;iunds) \qquad

PERILLA OIL

General information.

Perilla oil is obtained from the seeds of an anmal plant grown in Mançhuria, Chosen, Japan, China, and Northern India. Japan and the Kwantung Leased Territory are the principal sources of perilla oil for export.

Perilla oil is consumed principally in paints and varnishes and in linoleum and oilcloth,' paints and varnishes taking the major share. Smaller quantities are used in printing inks, and for miscellaneous purposes where a "drying" oil is required. Perilla oil produces a hard, brilliant, tough, water-resistant film, excelling linseed oil in this respect. It is especially desirable in the production of high-grade enarel paints. Because of its high-dring properties, it is often blended with oils of lower-drying properties, such as soybean 0il, to produce a satisfactory product for use where the low-drying oil alone would not be suitable.

The United States obtains its supply of perilla oil almost wholly from Japan and Kwantung. No perilla oil is produced in the United States from domestic seed. From time to time small quantities of seed have been imported for crushing in the United States. The largest quantity imported was in 1939, when 6.5 million pounds were entered (equivalent to about 2.5 million pounds of oil). There was practically no importation of seed. in 1940. Imports of perilla oil were very low in 1940 (11 million pounds, as compared with from 30 to 50 million pounds in each of the years. 1937 to 1939). The smallness of imports was due to the short crop of seed in. Manchuria in 1939 and to the low prices offered the Manchurian farmer.

The United States exported from 2 to 6 nillion pounds of perilla 011 (as foreign marchandise) ammally in the period 1937-40. Factory and warehouse stocks declined froe 15 million pounds at the end of 1939 to 7 allilion pounds at the and of 1940, and rose to 8.9 million pounds on June 30, 1941.

Mormally perilla oil is shipped to the Dnited States in Japanese vessels. The selling agencies in the United States (about one-half of which are Anerican-controlled and the other one-half, Japanese) employ mainly American nationals.

Before resale, part of the perilia oil inported into the United States is treated, but the najor part is sold direct to the large number of paint, varnish, linoleva, printing ink, and other manufaoturers, who treat the ofl themselves.

Probable economic effects of a cessation of imports from Japan.
Perilis oil has no important direct nilitary use. Combined civilian and nilitary requirements of paints, varnishes, inks, linolew, etc., at present, however, are' increasing the demand for perilla 0il. If it were no longer available, other drying oils, both domestic and foreign, would be substituted. These mould include linseed oil, dokydrated castor oil, oiticica oil, and drying oils made from fish and sojbean oils.

Most of the equipment now nsed in processing perilla oil could be used in processing other drying oils. The number of workers employed vould be little affected by the kind of oil processed.

UNITED STATES IMPORTS OF PERILLA OIL

Country	1937		1938		1939		1940 (prel.)		1942(prol.)	
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	81,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	31,000		.
111 cumntrios, total	43,591	2,127	31,821	1,665	51,284	2,205	11,347	873		
Kivantuns \qquad Japan \qquad Chine \qquad	$20,739$ 16,233 4,175	$\begin{array}{r} 868 \\ 889 \\ 225 \end{array}$	14,940 25,237 1,644	716 856 93	20,370 22,415 338	1,233 944 20	$\begin{array}{r} 6,446 \\ 4,700 \\ 121 \end{array}$	580 289 13		
-										

By Monthe and by Princijual Countrios - Qunntity (1,000 pound a)

AGAR-AC. $B R$

Generg 1 information.

Agar-agar is the commercial nome of the dried, bleached, gelatinous extract of several species of gelidium - a seaveed native to shores on both sides of the Pacific washed by the Japan Current. Imported agaragar is identical chemically with the domestic product but differs in physical form. . Both products are used principally in mediciral and pharmaceuticel preparations and as a culture mediun in bacteriologicel work. They are also used to a linited extent in cardies and certein food products.

Imports, which come almost exclusively from Japan, have elways been several times greater than domestic production. Duririg the past decede, the ennual imports ranged between 450 and 700 thousand pounds. Domestie production, which began in 1923, slightly exceeded 100 thousand pounds in 1925, but in other years was less than 50 thousand. In 1940 approximately 25 thousand pounds were produced. .Exports of agar-agar reported in official statistics under "crude dmıgs" - have been small and irregular. Data are not avaiIable regarding stocks in the United States.

The exportation of agar-ager from Japan is rigidly controlled by the govemment through the Agar-agar Exporters, Association of Japon. Approximately 95 percent of Jepan's exports to the United States are transported on Jap\&nese vessels. Selling agencies in the United States, with the exception of one large Japenese trading house, are American-controlled and employ American nationals. The Japanese firm elso employs a number of American nationals.

There is but one domestic producer of agar-agar and he depends for his supply of seaweed on imports from Mexico. Ithe material is gathered there off the coast of Lower Califormia by Japenese divers. Seaweed is also obtainable off the coast of California, but American divers are not available for gathering it. At one time, consideration was given to bringing in divers from Japan but none have been brought in thus far.

About six domestic pharmaceutical houses process imported agaragar. Processing consists essentially of sorting, cleaning, and cutting. The processed article is then either distributed directly to the reteil trade, or is incorporated into biological and pharmaceutical preparations. Although the pharmaceutical houses that process the imported material are large - employing between 15 and 20 thousand persons - agar-agar is only one of the several hundred articles handled by them.

Probable economic effects of cessation of imports from Jipan.
If there rere a cessation of imports from Japan, the sole domestic producer could probably satisfy the country's essential military and civilion requirements so long seaweed continued to be available from Nexico. Consumption of agar-agar for many purposes could be considerably reduced without injury to public health. Many uses of agar-agar are based more upon its availability and upon custom than upon its indispensability. For example, a number of laxatives made from emulsions of agar-agar and mineral ofls could be replaced by other laxatives.

118

Because of the large muber of other products handled by domeatic pharnaceutical houses, it is doubtiful that any of then, or thoir enployees, would be serfously affected by a cessation of inports of agar-agar Irom Japan.

UNITAD STATAS IMPORTS OF AGAR-AGAR
By Principal Countries

Country	1937		1938		1939		1940 (prol.)		1942 (prel.)	
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \\ & \hline \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000
All countries, total	704	418	589	333	497	378	635	606		
Japan	696	416	589	333	497	378	623	597		
										${ }^{\prime}$

By Months and by Principal Countries - Quantity (1,000 pounds)

DEAD OR CREOSOTE OIL

Generel informatione

Creosote oil is a coal-ter distillate containing a mixture of tar. acids. More than 90 percent of production in the United Stetes is consumed as a mood preservative, chiefly on cross ties, telephone and telegraph poles, and construction timbers.

Statistics of domestic production and sales of creosote oil are shown in the following table.

Creosote 01l: United States production and sales, 1937-39

Source: Synthetic Organic Chemicals, United States Production and Sales, U.S. Tariff Commission.

Statistics of United Ststes imports of creosote oil by principal countries are shom in the table at the end of this section.

The United Kingdom was the princinal supplier of imports in 1940, but was superseded by Cenada in the first 5 months of 1941. Imports from Canada have been entered mainly at the port of New York. Virtually all of the creosote ofl imported from Japan is consuned in wood preserving on the Pacific Coast. About 30 plats, enaloying several hundred persons, are engaged in that industry on the cosst. ithe oil from Jajan is believed to be imported directly by the drerican consumers.

Exports of creosote oil, 1937-40, were as follows:

Creosote oil: United States exports, 1937-40

Source: Official statistics of the U. S. Department of Comerce.

Probable economic effects of a cessation of imports from Japan.

Creosote has little direct military use. From 150 to 200 million gallons are consumed annually in the Onited States, of which about 10 to 12 million gallons are consumed in the Pacific Coast area; about one-half of the consumption on the Pacific Coast is supplied by Japan. Certain salts of zinc, chromium, arsenic, and other metals are used fn relatively small quantities in wood preserving. Most of these metals are of military importance, and large supplies are not at present available for conversion into wood preservativea.

The United States has abundant arpplies of tar; and facilities for producing its entire requirements of creosote oil either exist or could soon be installed at little cost. Less than 10 percent of the existing plant capacity, however, is located west of the Missippi River. Increased production of coke in that area would be necessary

122

to justify any aizeable installation of creosote-producing equipment. If imports from Japan were unavailable on the West coast the western consuming plants could probably be gupplied from plants locsted in the eastern part. of the Onited States and of Canada but probably only at an increase in cost over the Japanese product.

UNITED STATES TMPORTS OF DEAD OR CREOSOTE OIL

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)
	$\begin{aligned} & 1,000 \\ & \text { gallons } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { gallons } \end{aligned}$	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { gaillons } \end{aligned}$	81,000	$\begin{aligned} & \text { 1,000 } \\ & \text { gailons } \end{aligned}$	\$1,000	
41 l countries, total	58,190	6,802	55,392	6,316	51,877	5,769	39,010	3,890	
Onited Kingdom --	24,815	2,841	28,018	3,213	22,555	2,576	33,111	3,308	
Belgium	9,137	1,085	5,891	664	9,589	1,140	16	2	
Japan -	5,614	645	4,870.	484	5,673	594	5,065	493	
Germany 1/	2,849	342	7,159	849	4;569	557	-	-	
Netherlands	12,329	1,457	6,262	742	2,811	313	450	54	
Canada	2,570	316	868	111	532	62	450	54	.

By Monthe and by Principal Countries - Quantity (1,000 gallons)

1/ Includea Austria beginning 1938.

General information.

Menthol is a colorless, crystalline solid, with a characteristic odor. The natural product is obtained from Japanese peppermint oil expressed from the plant Menthe arvensis. It is made synthetically from a variety of raw materials, chiefly Java citronella oil. Menthol is used in medicine, foods, dental preparations, and certain types of cigarettes.

The domestic production of menthol, practically all of which is by synthesis, has in recent years supplied about one-fifth of domestic consumption. Although natural menthol can be produced in the United States, the present domestic output is negligible.

United States imports of natural menthol, by principal countries, are shown in the table at the end of this section. In recent years imports have averaged from 350,000 to 400,000 pounds annually.

Menthol is not shown separately in official export statistics. Very little, if any, is exported as such. Severial thousand pounds are probably exported annually in the form of medicinal preparations and other products containing menthol.

United States imports of natural menthol were almost entirely from Japan prior to 1939. In that year China supplied nearly 24 percent of United States imports, and in 1940 and in the first 5 months of 1941, supplied over 78 percent of the totel. Until recent years production of menthol in China was negligible, the peppermint oil produced there having been exported to Japan for extraction. China ceased exporting peppernint oil to Japan and began the production of
menthol (in the province of Kiangsu) following the outbreak of SinoJapanese hostilities in 1937. Both production and exports, which go direct from Shanghai, "have steadily increased since 1938.

The large consumers of menthol ordinarily carry inventories ample for a yeer's operation. Several of the larger users import their requirements direct from the Orient. Others buy from importers and chemical supply houses. Probably very few persons are engaged solely in the distribution of Japanese menthol.

A large part of the United States consumption of menthol is by firms making medicinal products, and by tobacco companies selling mentholated cigarettes. In the manufacture of both menthol medicinals and cigarettes labor is a small part of total cost, and probably not as many as a thousand persons are directly engaged in producing mentholated products.

Probable economic effects of a cessation of imports from Japan.
No substitute is available for menthol in medicine, either for military or civilian use. Other materials could be used in flavoring, and the consumption in cigarettes could be dispensed with or at least cut down. Domestic production might be sufficient for strictly medicinal purposes. Hore menthol could be produced synthetically in the United States by an expansion of plant capacity. But any large increase in synthetic production would bring about a shortage of the preferred raw material, Java citronella oil, until larger supplies of such oil or ram meterials of domestic origin were available. United States requirements of menthol could alternatively be proaluced from plants grown in Califormia, but only at a considerably higher cost thun for imported menthol.

UNITED STATES IMPORTS OF NATURAL UENTHOL

Country	1937		1938		1939		1940(prel.)		1941 (pre2.)
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	
All countries, total	417	981	366	865	355	766	404	810	
Japan \qquad China \qquad	$\begin{gathered} 417 \\ 1 / \end{gathered}$	$\begin{aligned} & 981 \\ & 1 / \end{aligned}$	346 20	$\begin{array}{r} 827 \\ 38 \end{array}$	$\begin{array}{r} 271 \\ 84 \end{array}$	615	$\begin{array}{r} 82 \\ 322 \end{array}$	$\begin{aligned} & 200 \\ & 610 \end{aligned}$	

By Months and by Principal Countries - Quantity (1,000 pounds)

CAMPHOR, CRUDE AND REFINED

Gencral infornation.

Natural crude canphor is a crystalline solid obtained from the tree Cinnamonum camphora, native to Formosa, Japon proper, and China. Natural refined comphor is a white solid produced by refining the crude. Synthetic canphor, produced fron turpentine, is interchangeable in use for most purposes vith either form of natural camphor. The substantial United States production is entirely of synthetic caraphor, and practically the entire output is by a single company.

United States imports of natural crude camphor and of natural refined caraphor are shom separately in the tables at the end of this section. Japan is the sole supplier. United States exports of camphor, not shown separately in officiol statistics, arc knorm to be snall.

Normal stocks of carphor in the United States are probably about 3,000,000 pounds. Although domestic production has increased considcrably, stocks are probably below nornol because of the sharp decrease in imports in 1940 and the lon level of inports, particularly of crude, during the first part of 1941.

The production of natural canphor in Formosa, its transportation, and distribution in the United States are molly controlled by an official Japanese Camphor Monopoly.

Ten plants mere engaged in the United States in 1939 in making nitrocellulose (pyroxylin) plastics, using crude canphor as a plasticizer About 500 enployees are engaged in producing nitroccllulose sheets, rods, and tubes. Refined carphor, which is not further processed in this country, 'is distributed, along with nany other products, through wholesale drug houses.

Probable economic effects of a cessation of imports from Japan.

Military requirements of camphor are primarily as a plasticizer for nitrocellulose film base, and as a medicinal. Civilian requirements are much the same, except that a wider variety of nitrocellulose plastic products are consumed. Cellulose acetate and other plastics may be substituted for nitrocellulose in the manufacture of film base and other plastic products, and synthetic organic chemicals, such as tricresylphosphate, may be substituted in part for camphor as a plasticizer in nitrocellulose products. No satisfactory substitute for camphor as a medicinal is available.

In the event of a cessation of imports of camphor from Japan, it is doubtful that consuming industries would be seriously affected. Ihere is Installed capacity for making synthetic camphor in the United States sufficient to supply 80 percent of the country's requirements; and plant capacity could be expanded in less than 6 months to supply all requirements. The production of synthetic camphor requires little labor. The United States also has facilities for producing both plasticizers other than camphor and plastics other than those requiring camphor.

UNITED STATES IMPORTS OF NATURAL CAMPHOR, REFINED

By Months and by Principal Countrics - Quantity (1,000 pounds)

UNIITED STATES IMAPORTS OF NATURAL CAMPHOR, CRUDE

By Months and by Principal Countries - Quantity (1,000 pounds)

COTTON MANUFACTURES, N.S.P.F.

General information.

Cotton manufactures, n.s.p.f., include a wide variety of commodities, imports of which are mainly specialties from Europe and lowpriced articles from Japan. The principal articles imported from Japan are tablecloths and napkins other than damask and those made of plain-woven cotton cloth. Imports are chiefly woven-figured, yarndyed, cloths and napkins, made in various patterns. Similar cloths and napkins are produced in the United States. Probable economic effects of a cessation of imports from Japan.

Tablecloths (not damask or plain-roven) from Japan are sold by 5-and-10-cent chain stores, mail-order houses, and department stores at prices ranging from 20 cents to one dollar, according to size. Similar domestic articles are also available, but not generally at prices as low as those which have prevailed for the imports from Japan. A stoppage of such imports would therefore limit the supplies of lowpriced articles, and would probably result in some substitution of non-textile articles. Domestic producers with unused capacity for similar textile or substitute materials would, therefore, likely benefit from a stoppage of imports.

UNITIED STATES IMPORTS OF ARTICLES GMD LAANUTACTURES OT COINON, N.S.P.F.

Country		1937		1938		1939			1940 (prel.)		1941 (prel.)		
			61,000		61,000			1,000		\%1,000			©1,000
All countries,	tal		4,207		2,171			2×438		2.037			
Jrpnn Itrily \qquad Belgium \qquad Ching \qquad United Kingdon (icrmany 2/ Anstria \qquad	---		2,286 345 341 64 490 87 392		961 230 100 92 183 301 -			1,273 264 221 173 155 60 -		1,119 169 75 372 120 2 -			
By fionths and by Principal Countrics - Vnluc (01,000)													
Honth	1939	1940	1941	Principil countries of origin									
				1940					1941				
				Jnpm	Itsly	Belgium	China	United Kingcom	Japan	Italy	Seligium	China	United Kingdona
J nui.ry ----	1180	0241	183	140	\$29	18	` ${ }^{2} 21$	S13	\%112	3/	$3 /$	842	\$13
Fi.brustry --m	163	14/4	159	78	3	9	20	8	"105		$3 /$	45	4
: r rch -	195	159	150	70	8	18	28	9	80	-	1	52	7
	172	118	160	47	16	9	18	14	106	-	$3 /$	42	5
b y ---m-----	186	143	139	58	33	7	18	6	85	-	3	43	6
June ------	172	152		56	33	3	35	10			2	4	
July --------	230	134.		78	3	2	32.	10				-	
Andist - ---	228	188		123	5	2	4.5	8					
Switsaber ---	231	178		108	9	1	29	20					
Octaber ---	234	166		100	8	1	37	4					
Noromber -	230	220		126	16	3	49	9					
n-cembor --m	217	194.		135.	1	2	40	9					
mos.	2,438	2,037		1.113	169	75	372	120					

Also includes clesoss o61. 3 3 $2061.5,323.35,323.41,323.67$, 2 nil 2439.95.
$\overline{2}$ Includes Austrin Br:ginning 1938.
3/Less than $\$ 500$.

COTTON CLOTH, BLEACHED, PLAIN
General information.
Most cotton cloth comes from the loom as gray goods woven of mbleached and undyed yarns; the remainder is woven in whole or in part of dyed yarns. The gray goods may be subsequently bleached, dyed, or printed. Of the total domestic cotton cloth finished by bleaching and dyeing establishments in recent years, about 39 percent was bleached; 31 percent, dyed; and 30 percent printed. The principal types of bleached cloth are sheetings, printcloths; broadcloths, and fine goods such as batiste, lawn, voile, and organdy. Other bleached cotton cloth includes twills and drills, shirtings, damask, terrywoven fabrics, duck, etc. Imports of bleached cotton cloth consist principally of sheetings, mulls, and shirtings from Japan, with small quantities of fine cloths from Switzerland and the Tnited Kingdom.

Mull is soft, with practically no starch, and is similar to the domestic nainsook. This fabric is used mainly in the manufacture of nightgows and underwear. Shirting, which contains more starch, is generally similar to domestic muslin and is used chiefly in the manufacture of handkerchiefs, shirts, and wearing apparel. Imported sheeting is used in the manufacture of sheets, pillowcases, and lining.

The bleached fabrics imported fron Japan are made of finer jarns than those used in corresponding domestic fabrics. - The domestic low-end printcloth is used chiefly for nightgowns and other_low-priced, lightweight articles.

Prior to 1935 Europe was the chief source of imports, supplying mostly fine-quality fabrics and specialties: 'Since 1935 Japan has been the principal source, supplying mainly plain-woven bleached cloth. Imports of bleqched fabric in recent years, by principal countries, are shown in the table at the end of this section.

The United States output of cotton cloth is the largest in the world, having amounted to over 9 billion square yards in 1940. The output of finished cotton cloth as reported by textile finishers indicated that over one-half of the domestic production of cotton cloth is finished by bleaching, dyeing, or printing. The volume of production by finishers in recent years is shown in the following table.

- Total cotton cloth finished in the United States, 1936-40

2	: 1936	$\text { : } 1937$	$: 1938$	$: 1939$:1940 $1 /$
	:	:	:	: 1	:
Bleached	\% $1,1,740$	(i) 1,579	: 1,462	: 1,694	: 1,617
Dyed	: . 1,637	: 1,256	: 1,068	: 1,306	: 1,317
Printed	: 1.346	:1,250	:1,135	: 1.305	:1.231
Total	$: 4,723$	$: 4,085$	$: 3,665$	$\begin{array}{r} 4,305 \\ \hline \end{array}$	$\begin{aligned} & : 4,165 \\ & \hline \end{aligned}$

$1 /$ Preliminary.
Source: Compiled from Survey of Current Business, U.S. Department of Commerce.

Of the total cotton cloth bleached in the United States, sheetings represent from 20 to 25 percent, printcloths from 10 to 15 percent, and broadcloths about 10 percent. The remainder consists of a wide variety of fabrics, principally shirtings, lawns, voiles, poplins, reps, tmills or drills, and ducks.

Although total exports of domestic cotton cloth exceed total imports, United States exports are much less than those of either Japan or the United Kingdom, and represent less than 3 percent of production. Bleached cotton cloth has represented less than 20 percent of total United States exports of cotton cloth in recent jears; the bleached cloth amounted to 19 percent of the total in 1937 but declined to about 10 percent by 1940. Exports of bleached cloth have been less than imports. Domestic exports of bleached cotton cloth (exclusive of ducks, which are small) for the period 1937-40 are shorm in the table below.

Bleached cotton cloth: United States exports, 1937-40

(In thousands of square yards)

Source: Compiled from official statistics of the U.S. Department of Commerce.

There are many importers of bleached cloth from Japan, the principal ones being the branches of large Japanese trading houses. These companies sell direct, or through brokers, to manufacturers of undermear, handkerchiefs, and sheets and pillowcases. Some sales are made to jobbers, but such business represents only a small fraction of the total volume.

The imported fabrics from Japan, processed by domestic manufacturers of handkerchiefs, nightgowns, sheets, pillowcases, etc., constitute only a minor fraction of the total goods processed in the United States in the production of such articles.

Probable economic effect of a cessation of imports from Japan.

The primary reason for imports of bleached cotton cloth from Japan is their low price, which permits the manufacture of inexpensive articles. These compete with similar but higher-priced articles made wholly of domestic cloth. Products made from Japanese cloth are retailed principally in 5-and-10 cent stores, chain stores, and department-store basements. A cessation of imports would therefore increase the cost of certain articles purchased by those in the lower income brackets. The consumption of goods made from Japanese cloth, however, represents only a small fraction of the total consumption of similar cloth or articles made therefrom. Domestic manufacturers of bleached cotton cloth would probably be able to increase their output somewhat, but many of them are already operating at capacity.

UNITED STATES IMPORTS OF COTTTON CLOTH - BLEACHED, PLAIN

By Months and by Principal Countries - Quantity (1,000 39. yds.)

PLAINBACK COTTON VELVETEENS

General information.

Cotton velveteens are filling-pile fabrics ordinarily made wholly of cotton. In weaving, the warp (longitudinal) threads and a small part of the filling (cross) threads are used to form the ground; the remaining filling threads; intended for use as pile, are floated over the surface and bound into the ground at regular intervals to form longitudinal "races" which are subsequently cut.

Velveteens may be divided into two general groups: (1) Plainback, and (2) twillback. Plainback velveteens are of cheaper construction and usually of lighter weight than twillback, and the pile is not so firmly bound into the ground fabric.

Because of the tendency of the pile to loosen and drop out when subjected to any friction, plainback velveteens require a protective lining when made into garments. Besides their use in cheaper apparel, such as blouses, skirts, scarfs, berets, and trimmings, plainback velveteens are used in the production of slippers, cost handers, picture-frames, jewelry boxes, and display cards. They are also used for linings of eye-glass cases', for polishing cloths, and for decoration and drapery materials in theaters.

Japanese velveteens are made of somewhat finer yarns than are used in the domestic velveteens, and the threads per square inch slightly exceed those in the domestic fabrics, but they frequently have ridges and other imperfections in finish and color not found in domestic velveteens.

Imports of low-priced velveteens from Japan have displaced some domestic plainback velveteens in certain lines - such as in the manufacture of slippers, in linings for boxes and cases, and to a lesser extents in the manufacture of blouses, but they have also created new markets, in the lower price ranges, for articles containing the foreigr velveteen.

Prior to 1934 imports of cotton velveteens were almoat wholly from Europe, largely from the Unitêd Kingdom and Germany. Recent imports have been almost entirely from Japan, and over 95 percent have consisted of plainback velveteens. As shown in the table at the end of this section, Japan supplied 99.9 percent of the plainback cotton velveteens imported into the Onited States in the period 1937-40.

Domestic production of plainback cotton velveteens is not shown separately in census statistics, but a preliminary census report for 1939 shows production of all cotton velveteens in that year to have been 5.2 million square yards, weighing 2.2 million pounds. The average weight of that production (6.85 ounces per square yard) indicates that the domestic output in 1939 consisted mainly of twillback velveteens. Exports have been negligible. Probable economic effects of a cessation of imports.

A stoppage of imports from Japan would cut off the only source of lov-priced plainback velveteens. This would no doubt result in substitutes for velveteen being sought for many uses. There would likely be an increase in demand for domestic velveteen, despite its higher price. This could easily be supplied, inasmuch as the installed capacity of looms suitable for miking velveteens is sufficient to Increase domestic output several fold.

UNITED STATES IMPORTS OF PLAINBACK VELVETEENS OF COTTON

By Months and by Principal Countries - Quantity (1,000 sq. yds.)

COTTON TABLE DAMASK AND MANUFACTURES THEREOF

General information.

Cotton table damask is a special type of jacquard-figured fabric having warp-sateen figures on a filling-sateen ground, or vice versa. The surface threads in the figures lie at right angles to those in the ground so that light falling on the fabric is more diffusely reflected when it strikes the figures, causing them to stand out in bold relief. Cotton table damask is usually woven of coarse or medium yarns (15 s to 30 s , usually in the single) and subsequently bleached and finished to imitate linen table damasks. Manum factures of cotton table damask are mainly tablecloths, table runners, napkins, and doilies.

The following table compares, as far as the data permit, production, imports, and exports of cotton table damask in selected years beginning with 1925 , the year in which production and consumption attained their peak.

Cotton table damask and manufactures thereof: Summary of United States production, imports, and exports, in specified years, 1925 to 1940
(Value in thousands of dollars)

Sources: Production figurea, Bureau of the Census; import and export figures, compiled from official statistics of the U.S. Departanent of Commerce.

United States profuction and consumption of cotton table damask has declined sharply since 1925. The decrease in the output for use in tablecloths and napkins is due in part to the substitution of other types of less expensive woven fabrics (principally plain-moven fabrics such as prints and yarn-dyed checks), in part to the increasing use for informal occasions of lumcheon sets of cloth or peper doilies and napkins, to the use of lace cloths for formal occasions, and in part to the increasing use by restaurants of paper doilies on bare table tops.

The table below shows domestic production in specified years for the period 1925-39 during which the trend of production was sharply dommard.

Cotton table damask and manufactures thereof: United States production in specified census years, 1925 to 1939

1/ Not reported.
Source: Bureau of the Census.

Data are not evailable on the number of mills or of workers engaged in the menufacture of cotton table damask. Fewer than a dozen mills nom inclucie table danask as a major item of production. Inasmuch as the looms used in weaving damask may also be used to weave verious other fabrics, a number of cotton mills produce damask only on order, end practically none of them confine their output to this one fabric. The production of cotton table damask is not localized.
kost of the cotton table damask is woven in the gray and afterwards bleached and mercerized. Some damask is dyed and then subjected to beetling or other processing to produce a cloth resembling linen * damask. The mills which produce most of the cotton table damask piecesoods also produce orticles made therefrom, the menufacture of which involves cutting, hemaing, and packaging. A fev mills have their products finished in outside plents which specialize in finiahirg cotton or reyon fabrics.

144

Imports of cotton table damask from Japan vere insignificant prior to 1936. In the years 1922-35 Czechoslovakia ranked first as a source of imports (in value and apparently in quantity), and the United Kingdom and Belgium were the only other sources of importence. In 1936 Czechoslovakia still ranked first in value, but imports from Japan had increased to such an extent that Japan ranked first in quantity and second in value. For the period 1939-40, when the volume of imports reached its peak, Japan supplied about 80 percent of the total quantity, which accounted for slightly over 60 percent of the total value. In the first five months of 1941, imports from Japen were 50 percent greater than in the corresponding period in 1940 and represented more than 90 percent of the cuantity and more than 75 percent of the value of total imports of this product. inis increase in imports was no doubt partly due to reduced imports of linen table damask from the United Kingdom.

The wide spread between the price of Japenese cotton damask and damask from other countries is apparent upon examination of the unit values as set forth in the following table. For the 5-year period 1936-40, imports from Japan averaged $\$ 0.435$ per pound, whereas imports from all other countries averaged \$1.124.

Cotton table damask and manufectures thereof: United States imports for consumption from Japan and ell other countries, 1936-40 and five-year total

I/ Preliminary.
Fource: Compiled from official statistics of the U. S. Department of Commerce.

Exports of cotton table damask decreased from 780,000 square yards in 1929 to 145,000 square yerds in 1940. Domestic producers have been unable to develop or even to maintain their markets in the face of lowprice competition from other countries, particularly Japan.

Probable economic effects of a cessation of imports from Japan.
The consumption of cotton table damask in the United States has decreased since 1925. This has resulted in a sharp decrease not only in domestic production but elso in imports, whici formerly consisted mainly of high-quality, high-priced damesk from Europe. Imports from Jepan, which commenced in 1936, increased sharply because of their very low price. A cessation of imports from Japan would greatly restrict the supplies of low-priced cotton damask available to domestic consumers.

$1 / 6$

These cotton mills in the United States which are in a position to supply cotton table damask and the cheaper plain-woven fabrics would benefit from a stoppage of imports, as would also the producers of substitute materials.

UNITED STaTES IMPORTS OF TABLE DAMASK GND MLNUFACTURES OF, IN CHIEF VALEE OF COTTON, VALUED IESS THAN 75 CENTS PER POOND

By princtija? countriog

By Yonths and by Finncival Oountries - Quantity (1,000 pounds)

I/ Not separately reported in import stetistice prior to April 16, 1938.

148

> TABLE AND BUPEAU COVLRS, CETTERPIECES, RUNNIERS, SCARFS, NAPKINS AND DCILIES, OF PLAAN-MOVEN COTTON CLOTH, N.S.P.F.

General information.

The above classification was inserted in the Toriff Act of 1922 for the purpose of securing separate enumeration of the imported specialties known in the trade as "Japanese blue prints" and made of coarse sheeting stencil-dyed in indigo. This classification also covers a specialty more recently imported known as "India prints" (plain-moven articles printed in varicolored oriental design), as well as staple and special plain-woven articles produced in turove and elsewhere and sold ubleached, bleached, printed, dyed, or colored. Imports from Europe have been majnly high grade machine or hand-printed articles in sets, including tablecloth ond napkins.

Imports of table and bureau covers, centerpieces, runners, scarfs, napkins, and doilies, made of plain-woven cotton cloth, have been supplied principally by Japan, Germany, and the United Kingdom. Japan has usually been the most important source of such imports, having supplied slightly over 70 percent of the total value in the period 1937-40.

Domestic production of such articles is not separately recorded, but the output of goods, printed or yarn-dyed, that are competitive with the imported specialties is known to be large and to supply the greater part of the domestic demand. Exports are not recorded, but are known to be relatively small.

149

Probable economic effects of a cessation of imports from Japan.
Imports from Japan, formerly only "blue prints," now include color-printed tablecloths, napkins, and similar articles. These are brought in principally because they are lower priced than most similar domestic products. A cessation of imports from Japan would therefore cut down the supplies of low-priced articles and compel the substitution, in some degree, of higher priced domestic textiles, or of tablecloths, napkins, and doilies made of paper; the last named are already being used extensively, particularly in restaurants, tea rooms, and taverns. Domestic manufacturers of both the cloth and the paper articles have ample productive capacity to handle any likely increase in demand resulting from a stoppage of imports from Japan.
united states tmpurts of table and burdau covirs, centerpieces, runners, scarfs, mapkins aNI 工OILIES, OF PLAIN WOVEN COTTON CLOTH, NOT SPECIALLY PROVIDED FOR

By Months and by Principal Cuuntries - Value (1,000 dollars)

Munth	1939	1940	1941	Principal countrios of origin							
				1940				1941			
				Japan	United KIngdom	Belgium	Iran	Japan	United Kingdom	Bolgium	Iran
January -	33	32	28	22	3	3	3	24	$1 /$	-	-
February -m	22	17	23	12	1	-	-	18	3	1	1
March -	28	47	22	36	1	5	2	16	3	-	-
April -	21	26	27	15	2	3	2	15	9	-	2
May --momen	21	32	25	26	1	4	\cdots	23	1	-	-
June --m-m-m	2.5	23		17	1	3	1				
July -_um-m	28	26		19	6	-	$1 /$				
Aurust ---m-	23	43		33	2	4	-				
Seitiomber --m	27	29		26	3	-	-		-		
Octriber -m-m	54	42		26	9	1	$1 /$				
Novombor --men	32	47		29	$1 /$	2	6				
Ducambar --m	36	29		24	1	$1 /$	2				
mos. - -	355	393		235	30	25	16				

1/ Lase than 500 .

COTTION FLOOR COVERINGS

Cenersl information.

Cotton floor coverings, almost wholly rugs, include a wide variety of types, particularly among imports, which supply the greater part of consumption in the Onited Statea. Chenille rugs predominate in domestic production and are followed by ovel braided rugs, tufted rugs, rag rugs, plush rugs, and hooked rugs: In imports, cotton imitation oriental and other cut-pile rugs, mainly from Belgium, predominate in terms of value. In terms of quantity, cotton rugs, other than imitation oriental and cut pile, predominate and are from Japan. Japanese cotton rugs include rag rugs (hit-and-miss, plain, and plaid), ricestraw rugs (cotton chief value), chenille rugs, sanshu-yern rugs, hooked rugs, and braided rugs.

Imports of cotton floor coverings, by principal countries during the period 1937-40 and the first 5 months of 1941 are shown in the table at the end of this section.

Domestic production of cotton floor coverings, not recorded by types, is estimated at about 4 million square yards annually. Exports are negligible.

Cotton rugs are imported from Japan by Japanese firms which deal almost exclusively in Japanese goods, and also by domestic firms which handle both imported and domestic products. The Japanese rugs are retailed in this country by chain stores, mail-order houses, and department stores.

Probable economic effects of a cessation of imports from Japan.
Japanese cotton rugs are imported almost entirely because of their Low prices. About 15 years ago the Japanese began to imitate American hit-and-miss rag rugs for sale to this market, with the result that production in the United States decreased steadily with the influx of cheaper rugs from abroad. Other types, such as plaid rag rugs and chenilie rugs, which have developed in this country as higher quality offerings, have also felt severe competition from Japanese imitations. Cessation of imports from Japan would encourage expansion of the domestic industry but probably not to such an extent that it mould make up the deficiency, inasmuch as the domestic product would probably sell at higher prices than have prevailed for the imports from Japan.

		UNITED	STATES IMP	RTS OF CO	CTON FLOOR	COVERINGS			$\begin{gathered} \text { Claas } 3224.1-3 \\ 3224.7 \\ 3224.9 \end{gathered}$	
	1937		1938		1939		1940 (prel.)		1941 (prel.)	
Country	$\begin{aligned} & 1,000 \\ & \text { sq. yds. } \end{aligned}$	81,000	$\begin{gathered} 1,000 \\ \mathrm{sq} . \mathrm{y} . \mathrm{yds} . \end{gathered}$	11,000	$\begin{gathered} 1,000 \\ \text { sq. yds. } \end{gathered}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { sq. yds. } \end{aligned}$	-1,000	1,000 sq. yds.	\$1,000
All countries, total	17,143	5,580	9,018	3,253	12,459	4.440	7,744	2,695		
Japan --mem-m-m	12,372	1,798	5,549	717	7,157	905	5,207	842		
Belgium --mon-m	3,980	3,201	2,771	2,060	4,562	3,061	1,915	1,445		
Italy --m----m-m	604	453	470	315	500	313	327	247		
France ---m-	21	26	103	91	146	107	75	64		
	117	53 6	91	38 8	70	38	66	39 54		
						4		54		

Month	1939	1940	1941	Principal countries of origin							
				1940				1941			
				Japan	Belgium	Italy	China	Japan	Belgium.	Italy	China
January -men	1,154	1,322	455	906	354	42	4	436	3		16
February	890	941	644	539	348	24	2	572	-	-	70
March --m-m	1,608	1,028	555	645	329	34	6	495	1	-	52
April -	1,471	882	651	537	287	33	7	601	- 2	1	36
May --meneme	1,522	979	304	641	276	49	5	224	-	-	71
June -m-	1,069	442		327	76	20	7				
July - -mom	691	312		268	30	7	2				
August ----mm	689	190		121	39	16	6				
Septamber --m	697	374		276	48	28	12	.			
October ---	950	274		171	24	33	34				
November --	813	524		405	64	7	37				
Docember -	905	476		371	41	34	26				
$\text { Total, } 12$	2,459	7.74		5,206	1.916	$32^{\prime 7}$	148				

COTTON RAGS, INCLUDING WIPING RAGS, EXCEPP FOR PAPER MAKIMG

General information.

Imports under the above tariff classification consist principally of wiping rags and rags for remamfacture. Wiping rags, or wipers, are pieces of cloth torn or cut from used clothing, such as kimonos, shirts, slips, and knit underwear. These rags are usually entered in prepared form, but the preparation varies from simply removing the buttons and tearing open the sleeves to cutting tine material into suitable sizes and washing or bleaching. Wiping rags are used primarily for wiping machinery.

Rags for remanufacture include those rags (except paper stock) too amall for wiping but suitable for the reclamation of the fiber. The reclamation process consists of passing the rags through a picking or garnetting machine where they are shredded and reduced to a fibrous mass. The cotton "shoddy" thus obtained is used in making batting or wadding for mattresses, in roofing felts, as calling cotton, and some is respun into yarn for use in mops and in coarse fabrics.'

Imports consist almost entirely of rags which require no further processing as rags. Absut 95 percent of tine bales brought in are sold in the original package. Japan is the principal source of imports, having supplied over 95 percent of the total in each year since imports were first reported separately. These goods are shipped chiefly from the Kobe and Osaka districts of Japan. They include many varieties of rags but are principally old cotton kimonos and knit underwear.

Imports reached a peak in 1937, amounting to more than 30 milliom pounds, but subsequently decreased sharply. In 1940 they dropped to 1,333,482 pounds, and for the first 5 months of 1941 were only 31,000 pounds, as compared with 949,000 pounds in the corresponding period of 1940. Statistics of inports from Japan are shown in the table at the snd of this section.

Domestic production of cotton rags doubied from 1931 to 1935; having amounted to about 98 million pounds in 1935. More recent figures are not available. At the present time domestic production not only supplies domestic consumption, but also affords a considerable exportable surplus.

Exports, usually less than imports, far exceeded imports in 1939 and 1940. These exports include wiping rags, rags intended for remanufacture into cotton shoddy, and remnants. Canada, the United Kingdom, and Italy have been tie most important purchasers in recent years.

No statistics are available on the number of establishments that produce wiping rags, but it is estimated that there are over 100 such establishments scattered throughout the Uaited States, inciuding dealers and laundries. The laundries usually purchase graded rags which they wash and sterilize. The dealers usually buy ungraded rags which tiey sort and grade and then have sterilized, generally by launaries. Tae principal producine States are Illinois, Michigan, Ohio, Pennsylvania, and California. Probable economic effects of a cessation of inports from Japan.

Imports from Japan have declined so sharply during the last 2 years that a cessation of imports would have but little additional effect.

By Lionths and by Frincioni Countries - Quentity (1,000 jounds)

COMTON FISH NETS AND NETTTING

General information.

Prior to 1932 the small amounts of cotton fish nets and netting imported were mainly from Europe. In 1932 Japan became the principal source, supplying in tiat year about 120,000 pounds. In 1937 imports from Japan rose to 800,000 pounds, but thereafter they declined to 619,000 pounds in 1940 , and to 244,000 pounds in the first 5 months of 1941.

Domestic production of cotton fish nets and netting has in recent years ranged fron $1-3 / 4$ to $2-1 / 2$ million pounds annually. The largest domestic producer of netting also produces most of the cotton seine twine used by the other manufacturers of netting. Exports, which are not reported separately, probably amount to less than 40,000 pounds per year. Statistics of imports in recent years are shown at the end of this section. Probable economic effects of a cessation of imports from Japan.

Cotton fish nets and nettings are imported fron Japan principally because of their low price. A stoppage of imports would therefore result in a scarcity of low-priced netting: Domestic production cuprcity for fish nets is probably sufficient to meet all domestic requirements, thougin at higher prices than have prevailed for the imported product.

Country	1937		1938		1939		1940 (prol.)		1941 (prol.)	
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { jpounds } \end{aligned}$	敬, 000	$\begin{aligned} & 1,000 \\ & \text { jounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000
All countrios, total	846	255	699	154	775	199	656	210		
Japan \qquad Nothorlands \qquad United K!ngAnm -.-	$\begin{gathered} 802 \mathrm{e} \\ 31 \\ 10 \end{gathered}$	236 12 6	474 14 8	141 6 5	719 36 10	171 15 6	619 5 23	181 3 18		

RAT SILS

General information:

The tera "raw silk" means ailk in skeins, as reeled from the oocoon or rereeled. Raw ailk is used principally in the manufacture of hosiery and to a lesser extent in weaving. For most textile uses, two or more raw silk threads must be doubled together and twisted into ply jarn. This process is called "throwing" and the resultant product is known as "thrown silki"

For military proposes, the chief use of raw silk is in the mannfacture of woven fabrice for man-carrying parachutes, balloons, and parachutes for pyrotechnic signals and flares. Suspension lines for parachutes are made of corded silk yarns encased in a tubular braided silk outer covering. Darrow silk tapes are required for reinforcing bands in parachutes, and silk sewing thread is needed for stitching.

Japan is the largest producer of silk and China is the second. Italy, France, and other countries produce much smaller quantities. The United States, the largest consumer of silk, obtains the ${ }^{\circ}$ great bulk of its raw silk from Japan. China is an inportant secondary source, but. Iftile Chinese silk has been fornd suitable for the manufactore of hoalery.

United States inports of ram silk fron all countries amounted to 87 million pounds, valued at 427 million dollars in 1929; they declined In quantity In each succeeding year thereafter, exoept 1931 and 1935. The decrease from 1929 to 1940 was 49 percent in quantity and 71 peroent in value, imports in 1940 amourting to 44.9 million pounds, velued
at 125 million dollars. Imports in the first 5 months of 1941 amounted to 15.1 million pounds (compared to 13.6 willion pounds in the corresponding period of 1940). Imports of raw silk by years for the period 1937-40 and by months from January 1940 through May 1941 are shown in the table at the end of this section.

Practically all of the raw silk imported into the United States In recent years has been transported in foreign vessels. In 1938, Japanese boats accounted for 83 percent of the silk cargo tonnage, vessels of other foreign registries for 15 percent, and American boats for the remaining 2 percent. $1 /$

Almost all of the raw silk imported into the United States from Japan is handled by Japanese controlled companies, and it is estimated that 94 percent of Japan's export business in silk with the Americas is done by seven large Japanese firms; all of which have branches in the United States. The small amount of silk not imported by the large Japanese trading forms has been brought in principally by import merchants and throm-silk dealers. 2/ Importers of raw silk are organized into a trade association known as the Raw Silk Importers, Inc. Membership in 1940 consisted of 15 import merchants and 14 thrown-silx dealers. Domestic manufacturers have imported little silk directly.

There is no comercial production of raw silk in the United States, hence there are no domestic exports. There has been, however, a substantial reexport of imported raw silk, amounting usually to 5 percent or more of total imports (12 percent in 1940). Practically all of these reexports have gone to Canada and the United Kingdom.

[^4]Total stocks of raw silk in New York warehouses (the only important stocks in the United States) have increased somewhat in recent years as shown in table 1. Month-end stocks averaged higher in the 12-month period ending June 1941 than in any earlier corresponding period show in the table.

Table 1. - Raw ailks Importers' warehouse stocks in New
York and Hoboken at end of each month, $1937-417^{\prime \prime}$ York and Hoboken at end of each month, 1937-41

Month	1937-38	8	1938-39	8	1939-40	:	1940-41	8	1941-42
:		:		:		\%		8	
July	41,494	:	42,305	:	25,748	:	43,211	:	47,208
August -	44,183	:	39,747	:	25,060	:	46,898	:	
Septernber - - -	43,957	:	40,711	:	27,760	:	44,454	8	
October	40,834	:	43,811	2	35,935	:	48,297.	8	
	45,424	:	46,218	:	41,927	:	60,330	8	
December -_:	49,535	:	53,278	:	55,610	:	72,248	8	
	68,678	:	48,554	:	59,225	:	63,433	8	
February __m:	43,834	:	38,178	:	50,306	:	54,106	:	
March ——_me:	36,326	:	23,116	:	45,887	:	49,904	8	
April	41,455	.	20,738	:	42,698	:	49,373	:	
	37,016	:	24,201	:	43,285	:	50,341	:	
June	44,457	-	19,209	$:$	41,822	2	53,436	:	

1/ Including Comodities Exchange certificated stocks and stocks at terminals.

Source: Commodity Exchange, Inc.

The available warehouse stocks of raw ailk, use of which is now permissible only under Covernment license, are adequate for production of about one-half million parachutes. A parachute of the average size used for military purposes requires 7.8 pounds of silk (representing abput 65 square yards of cloth) for the canopy, and 3.9 pounds for shroud lines, tapes, and sering thread. Statistics of stocks of parachutes and parachute cloth on hand are not available for pablication.

There are several substitutes available for silk in the manufacture of parachute cloth, gylon having thus far given the most promising results. High-tenacity acetate rayon frim, such as has been used by Great Britain, also is suitable. Vinyon also may have possibilities.

As shown in table 2, hosiery has accounted in recent years for steadily increasing proportions of the declining amounts of silk consumed in the United States: In 1940, almost 90 percent of the total consumption was used in the manufacture of hosiery, principally fullfashioned for women. .. (0nless otherwise indicated, all subsequent reference to silk and nylon hosiery is to full-fashioned hosiery only.) Census data indicate that 499 firms and 97 thousand workers were engaged In the full-fashioned hosiery industry in 1939. Full-fashioned hosiery production in 1940 amounted to 503 million peirs, According to the National Association of Hosiery Manufacturers. An additional 350 establishments and 36 thousand workers were employed in the production of silk thread, throm yarn, and woven fabrics. Most full-fashioned hosiery concerns are fairly large, whereas firms in the weaving industry range from individual weavers who have set up a shop for themselves with two or three looms to establishments of substantial aise.

Table 2. - Raw silk: United States consunption by uses, 1939-40.
(In thousands of pounds)

Year	Net monthly : Consumption in - : Ratio to totaldeliveries to $\mathrm{Hosiery} 2 / \mathrm{Other}:$ Hosiery :i OtherU.S. mills 1 uses							
:					:			
	Annual total				Percent			
1934	58,188	: 28,088	:	30,100	:	48.3		51.7
1935 —nemer	62,289	: 32,886	2	29.403	:	52.5	:	47. ?
1936 - :	57,\$37	- 35,266	:	22,571	-	61.0		39.0
1937 -	53,599	- 38,635	-	14,964	-	72.1	:	27.9
1938 -	51,668	37,352	:	14,316	:	72.3		27.7
1939	47,325	: 38,4/49	:	8,876	:	81.2		18.8
1940 ${ }^{3}$ -	35,801	32,068	:	3,733	:	89.6	,	10.4

1) Reexports deducted from gross monthly mill takings. These monthly net delivery figures approximate actual consumption except for changes in mill stocks of raw silk held. Data of Commodity Exchange, Inc., as published in Rayon Organon, shown in bales, and converted to pounds by multiplying by 132.25.
2/ Full-fashioned and seamless. Data from National Association of Hosiery Manufacturers.

3/ Preliminary.

Factory stocks of all full-fashioned hosiery (over 90 percent being silk hosiery) on hand on June 30, 2941 amounted to 87 million pairs, or about 2 months' supply, based on average monthly shipments in 1940; stocks in the hands of wholesalers and retailers - for which
statistics are not available - accounted possibly for 1 month's supply; and raw silk, and silk in process, in the hands of hosiery manufacturers accounted for more than an additional month's supply. A minimur of 4 months' supply of full-fashioned hosiery would therefore appear to have been available at that time. The corresponding minimam supply available at the end of July 1941 (when imports of sifk from Japan virtuaily ceased) may be assumed to have been little different from that at the end of June 1941.1/ Retail purchases since the end

[^5]of July have been abnormally large, but this has had the effect principaily of transferring stocks from manufacturers and dealers to consumers hands. Production of silk hosiery since the end of July has declined sharply.

Substitutes for silk in hosiery manufacture are nylon, rayon, and cotton (particularly desirable as lisle and mercerized yarn). of these, aylon is at present by far the most acceptable inasofar as physical characteristics and appearance are concerned; the retail prices of most nylon hosiery, however, are almost twice those at which the great bulk of silk hosiery has been sold. The output of nylon yarn has steadily increased since initiation of production in December 1939. Prices of nylon yarn were reduced late in 1940 and again in June 1941. The prices of nylon hose were increased somewhat late In 1940 (output had not kept pace with the increasing consumer demand) but were reduced later in the spring of 1941.

About 36 million peirs of nylon hose were produced in 1940. Practically all of these were made from yarn supplied by a single nylon yarn plant at Seaford, Del. A second plant of equal capacity, also at Seaford, bégan operations in November 1940, but did not attain full production until the Spring of 1941. Production of nylon hosiery in the last quarter of 1940 was, as shown in table 3, at the rate of over 60 million pairs per jear. ${ }^{2 /}$ In the second quarter of 1941 , production was at a rate in excess of 100 million pairs per year. Output in

1 The total net reduction in 30 denier yarn (the main type used in full-fashioned hosiery) was about 27 cents per pound, or about 6 percent.

2/ The du Pont Company, in February 1941, reported that "at the end of the year (1940) women's nylon stockings were being manufactured at the rate of $68,000,000$ pairs annually."
that period was the equivalent of 20 percent of the total shipments of all full-fashioned hosiery in 1940, which shipments amounted to 519 million pairs.

Table 3. - Production of nylon full-fashioned hosiery, by months, and corresponding annual production rates, July 1940 - June 1941

Month :	Production	$\begin{array}{r} \vdots \\ \vdots \\ \vdots \end{array}$	Corresponding annual production rate
:	1,000 pairs		
1940:		:	
July	3,183	:	38,196
	3,712	:	44,544
September -	4,494	2	53,928
October --_	5,302	:	63,624
November	5,185	:	62,220
December -	5,154	:	61,848
1941:		8	
January -_-_-_-_-	5,720	:	68,640
	6,068	8	72,816
	7,131	8	85,172
April	8,389	:	100,668
May -:	8,630	:	103,560
June -_-_-_-_-	9,050	:	108,600

Source: Quarterly Statistical Bulletin of Hosiery Industry, National Association of Hosiery Manufacturers, February, May, and August 1941.

Future production of nylon hosiery will depend on several factors which cannot be fully appraised at present. For example, if following the stoppage of imports of silk from Japen, there should also be a cessation of imports of bristles from north China, the proportion of the basic nylon ingredient (flake polymer) which would be made into brush bristles might be increased and that available for making nylon yarn for hosiery be reduced correspondingly. The proportion of nylon used in hosiery might also be reduced in consequence of an increased
demand for nglon in woven materials and for other purposes. Also, some nylon might be requisitioned by the Government for defense purposes. The amount of nylon available for hosiery and for all other uses will also depend on whether any new nylon yarn plants will be constructed. The conpany controling the nylon patents has thus far been the only company to erect plants in the United States $\frac{1 /}{}$

On the basis of the expected output of nylon by plants now in operation or under construction the production of nylon hosiery (on the assumptions mentioned in the next paragraph) may be estimated to be at the rate of about $121 \frac{1}{2}$ million pairs by the end of 1941 , and at the rate of about 243 million pairs by the end of 1942. The estimated rate for the end of 1941 is based on capacity operation of the two nylon yarn mits located at Seaford, Del. The first of these mits, which began operation in December 1939, has been producing at full capacity for some time, and the second, which began operation in November 1940, reached full capacity before the miädle of 1941. The estimate of the rate of aylon hosiery production for the end of 1942 is based on an increase in yarn output by a plant at Martinsville, Va.; this plant is nearing completion and is expected to be operating at full capacity early in 1942. Each of the units at Seaford, Del., has a yarn capacity of 4 million pounds per year, and the plant at Martinsville, will have a capacity of 8 million pounds.

[^6]The above estimates of output of nylon hosiery are based also on the essumption that 80 percent $1 /$ of the producticn of nylon yarn will be used in the manufacture of hosiery and that, on the average, 19 pairs of kose can be made from 1 pound of yarn, 2/

The above estimates, incidentelly, correspond closely with the actual rate of production of nylon hosiery in October 1940, the month of maximum hosiery production based on the output of a single nylon fiber unit of 4 million pounds capacity. Output of nylon hosiery in that month was at the rate of 63.6 million pairs annually. If the output of nylon hosiery by the end of the years 1941 and 1942 were to be in the same reletion to the estimated production of nylon yarn as prevailed in that month, they would be at the annual rates of 127.3 . million pairs and 255.6 million pairs, respectively.

The above estimates of production of nylon hosiery are calculated on the basis of hosiery made entirely of nylon. Early in August 1941, the manufacturers of nylon yarn announced that patent licensing restrictions forbidding the mixture of nylon with other materials in hosiery would be lifted. There are, therefore, no longer any legal obstacles to incorporating welts (or even feet) made of such yarns as rayon or cotton in hosiery made chiefly of nylon. ${ }^{3 /}$ The output of nylon hosiery

1) Approximately 85 percent entered into full-fashioned hosiery in the apring of 194. In view of the increasing use of nylon for other than hosiery, however, 80 percent is belleved to provide a more conservative basis for making estimates for future nylon hosiery output.
2/ The computation for the end of 1931 is 8,000,000 (pounds of nylon yarn output) multiplied by $80 / 100$ (the proportion of yarn output it is assumed. Will be devoted to full-fashioned hosiery) multiplied by 19 (the number of pairs of hose which can be made from 1 pound of fiber) $=$ 121,600,000 (pairs of hose). The output by the end of 1942, based on twice the production of yarn, would be $243,200,000$ pairs of hose.
3/ In fact, the Government now requires hosiery manufacturers to use silk with other yarns in hosiery manufacture and has recommended that. at least 50 percent of the nylon hosiery output be of nylon in combination with other yarns.
could be increased by about 25 percent if other fibers could be substituted in the welts. $1 /$ Table 4 compares the number of pairs of nylon hosiery incorporating non-nylon welts with the number of allnylon hose which previously it was estimated could be made by the end of 1941 and 1942 , respectively.

Table 4. - Estimated annual rate of production of full-fashioned nylon hosiery, with and without substitute materials incorporated in welts

Period	All-nylon		Nylon with non-nylon welte

Source: Calculations by the U.S. Tariff Comnission based on data obtained from official and private publications and other sources.

The actual output of nylon hosiery may be expected to be somewhere between the extremes shown in the above table, assuming, of course, that nylon yarn production will expand as now anticipated and that about 80 percent of the output will be devoted to full-fashioned hosiery, 2/ The consumption (shipments) of all full-fashioned hosiery in 1940, however, was 519 million pairs, of which 480 million pairs were silk. There is no possibility, therefore, that nylon hosiery can be produced in sufficient volume, on the basis of the nylon yarn production now expected, to make up the deficiency which would result from a stoppage of production of silk hosiery. Many users of nylon hosiery claim that these

[^7]hose wear longer than silk hosiery; if such is the case, any given output of nylon hose would replece more than a corresponding number of pairs of silk hose. I/ If nylon hosiery is to replace silk hosiery at its present level of consumption, it can do so only after more nylonyarn plants are constructed. No plans for additional units have been publicly announced. In any event, no additional plants could come into production before about 1 year from the beginning of their actual construction.

If further supplies of silk will not be available for hosiery, consumers in the aggregate will be obliged, once existing stocks of hosiery are exhausted, and until the new Martinsville nyion plant is in operation, to reduce their rate of consumption of silk and nylon hosiery combined to between 25 and 30 percent of that for 1940. The extent to which the deficiency can be filled will depend on the degree to which hosiery of still other materials becomes available and is found acceptable. It is probable, however, that the total consumption of hosiery will decline, at least temporarily. When the nylon plant at Martinsvilie, Va., gets into production, consumption of nylon hosiery can be increased to between 50 and 60 percent of the rate of consumption of silk and nylon hosiery in 1940.

Full-fashioned women's hosiery made of materials other than silk : or nylon emounted in 1940 to about 5 million pairs or only 1 percent

[^8]of the total production of all full-fashioned hosiery. Kost of these hose were of rayon; cotton, and mixtures; and very few of them were made of yarns as fine as those entering into the great buik of the silk and nyion hosiery.

The trend in the consumption of women's hosiery in the United States in recent years has been in the direction of greater sheerness. A sample analysis by thread types of the women's silk hosiery produced in March 1941 shoms that 60.1 percent of the total was of 3-thread or finer, that 28.7 percent was of 4 or 5 -thread, and that only 11.2 percent was 6 -thread or coarser. $1 /$

In the manufacture of hosiery of 2 or 3 threads ${ }^{2 /}$ (corresponding approximately to 30 or 40 denier) only silk or nylon have thus far been used in appreciable quantities. Production of these types was at the annual rate of about 300 million pairs in 1940 , whereas production of nylon hosiery even by the end of 1941 will not likely be at the rate of over 150 million pairs. To make up the whole of the deficiency with correspondingly sheer cotton and rayon hose would require about 8 million pounds of very fine cotton and rayon yarn.

Domestic production of plied cotton yarns equal in fineness to 3-thread silk (240/2 or finer) is not comercially feasible. Plied cotton yarn of $160 / 2$ is the finest made in the United Stetes but the output is so small that it could supply only a negligible part of the

[^9]yarn needed to make up the deficiency in sheer hosiery. 1$]$ Moreover, domestic capacity for producing very fine cotton yains is extremely Iimited and could not easily be expanded.

The capacity of the Dinited States for producing fine rayon yarns is large, but the output of rayon has been going principally into products other than women's hosiery, including a number of defense materials as well as men's hosiery, women's dress goods, etc. The rayon industry is already opevating at maximum capacity, and demand for rayon in recent months has exceeded output as evidenced by declines in stocks. If production of the fine sizes of rayon (from 50 to 100 deniers) were to be increased to meet the needs of fullfashioned hosiery manufacturers, it would result in a reduction in total output of rayon, inasmuch as the rate of production is slower for the finer yarn than for the coarser.

The Office of Price Administration and Civilian Supply recently ordered rayon producers to allot 7 percent of their stocks and their monthly output during August and September 1941 to hosiery manufacturcrs.2/ This may permit some expansion in the production of fullfashioned rayon hosiery, but not necessarily an expansion in output of hose comparable in sheerness with most silk and nylon hosiery. 1 Output for sale of 121 s and finer in 1937. (the latest year for which data are availeble) was 203,000 pounds, an amount which if devoted entirely to full-fashioned hosiery would permit the manufacture of possibly 4 million pairs. Imports of cotton yarns of numbers 121s in recent years have ranged from 200,000 to 400,000 pounds annually but these have been used mainly in the production of lace.
2/ Subsequently, producers of acetate rayon were exempt because acetete jarn is not particularly suitable for making full-fashioned hosiery.

It would appear, therefore, that unless more very fine cotton or rayon yarn were shortly to become availeble as a result of larger imports, $\sqrt{1 /}$ the rate of production of very sheer (corresponding to 1 to 3-thread) hosiery in the United States for the immediate future will have to be reduced to less than one-half of that produced in 1940. By the end of 1942, however, when the nem nylon plant at Martinsville, Va., will have attained full production, sufficient nylon yern should be available to make possible an aggregate production of very sheer hose at almost the 1940 rate, assuming that all the nylon entering into hosiery was used for very sheer hose, the requirements for the less sheer being supplied by rayon or cotton.

Considerable domestic capacity exists for making rayon yarn sufficiently fine to replace silk in hosiery of 4- or 5-thread construction (which corresponds roughly to 60 and 75 denier rayon or nylon yarns, ${ }^{2}$ / and 180/2 and $L_{4} / 2$ in cotton yarns). All producers of rayon, hovever, are already operating at maximum capecity to supply existing demands. Increased consumption by hosiery manufacturers would therefore necessitate some diversion of output from present uses.3/

For the production of hosiery corresponding to silk of 6 threads or more, it would probably be less difficult to obtein some increesed

1) Great Britain appears to have some plant capacity which could be devoted to the production of fine cotton and rayon yarns for the Onited States. British manufacturers claim, however, that high duties make the Onited States market mattructive. (The Onited States duty is 25 to 30 percent ad velorem on fine cotton yarns, single and ply, and the equivalent ad vaiorem duty on rayon is much in excess of 100 percent.)
2/ To date there has been no commercial sale of nylon full-fashioned hosiery using yerns coarser than 40 denier in the leg portion but 70 denier yern has been used in the welt.
3/ To the extent that such diversions are made, other industries using rayon or rayon fabrics will be affected.
supplies of cotton from mills specializing in coarse yarn, inasmuch as not all of them are currently operating at capacity.

The trend of consumption of raw silk in the Onited States for purposes other than hosiery has been sharply downward. The so-called silk manufacturing industry used 54 million pounds of silk in 1929, but only 4 million in 1940. Consumption declined during this intervel from 66 percent of the totai amount of silk used to about 10 percent. The principal replacement material has been rayon.

In 1939 production of silk broad goods, including silk warp mixtures and pile fabrics, amounted to 71.8 million linear' yards, as compered with 1,346 million linear yards of rayon goods. The value of broad woven fabrics wholly or in chief value of rayon was almost eight times as great as that of silk goods. The popular price dress fabrics, which account for the bulk of the broad goods consumption, have been Virtually preempted by rayon fabrics; the necktie and lining trades also have turned largely to rayon fabrics except for specialties.

Most of the machinery used in making hosiery and other knit goods; and also woven fabrics, from silk or nylon can be used in making similar goods or fabrics from rayon or cotton yarns. Shifting from one yarn to another involves making adjustments of machinery and sometimes added investment in new attachments, as well as some changes in labor requirements. Most manufacturers of woven materials are accustomed even at present to shifting from one gern to another, and knitting mills can do so with moderate difficulty.

If total production of hosiery is to be sharply curtailed for at least 1 year, the full-fashioned hosiery industry in the aggregate may expect to sustain considerable losses in employment and reduction in profits during this period. The full-fashioned hosiery industry employs about 97,000 workers, many of whom mieht find it difficult to obtain satisfactory alternate employment particularly in areas where hosiery firms employ a large proportion of the workers.

Production of silk hosiery also provides employment for persons engaged in the throwing industry. At present about 18,000 workers double and twist the silk and nylon which is consumed alnost entirely by the hosiery industry. Many of the workers would have difficulty in finding other employment unless they could obtain it in performing similar operations in the expanded production of nylon, rayon, or other yarns.

Probable economic effects of a cessation of imports from Japan.
Although a complete stoppage of imports of silk would not have an important effect either on the defense program of the United States or the economy of the country as a whole, the impact would be serious, at least temporarily, for certain groups.

Data on United States requirements of silk for defense purposes and the stocks on hand of finished materials and materials in process for such purposes are not avallable for publication. However, available warehouse stocks of raw silk, which may now be used anly under

[^10]Government license, would be sufficient for making about one-half million parachutes of the average size used for military purposes. Koreover, there are also available several substitutes for silk in the manufacture of parachutes; nylan, especially, gives particularly promising results.

Inasmuch as about 90 percent of United States consumption of silk enters into hosiery, a stoppage of imports of silk from Japan would affect principallys The manufacturers and empioyees in the wamen's hosiery industry; the firms and employees of the throwing industry engaged in doubling and twisting silk for use principalify as hosiery farn; and the very large mumber of consumers of silk hosiery, including women in all but the lowest income brackets: The offect on domestic importers and on American steamship lines would be negligible inasmuch as the great buik of the silk imported into the United States is handled by Japanese firms and is transported in foreign vessels, principally Japanese. The manufacturers and users of men's hosiery and of woven silk fabrice would likewise be little affected, since rayon and other yarns have been accepted for these purposes and have already largely displaced silk. The plants and. workers now devoted to the production of woven silk fabrics could readily be employed in the production of fabrics woven of other yarns. The manufacturers of and the 97,000 workers engaged in the ailk hosiery industry, as well as the silk yarn and thread industries and their employees (about 20,000) are already feeling the effects of the virtual stoppage of imports of silk from Japan. Hanufacturers of full-fashioned hosiery have already curtailed their output considerably
and may be obliged very shortly to reduce it much further. The production of hosiery from nyion, which was at the rate of 108 miliion pairs per year in June 1941, may be expected to increase to a rate of 120 to 150 million pairs per year in the remaining months of 1941. Should hosiery manufacturers depend solely on nylon as a replacement for silk, the output of full-fashioned hosiery in the remaining months of this year will likely be at only 25 to 30 percent of the average monthly rate in 1940. However, some small amounts of thrown silk (which were in the hands of manufacturers when silk processing was placed under Government license) can be used to augment temporarily the supply of nylon. There will also be some increase in the amount of fine cotton and rayon yarn available. When the new nylon yarn plant (now nearing completion) comes into full production, yarn will be available for making aylon hosiery at the rate of about 240 to 300 million pairs annually. This plant is expected to be operating at full capecity by the end of 1942. By that time there may also be available increased amounts of other fine yarns for hosiery. Manufacturers of silk hosiery should have little difficulty in adapting their present plants and machines to the production of hosiery of materials other than silk.

Some of the silk hosiery workers who are now unemployed or will shortly become so, will doubtiess be able to find employment in other industries, many of which are now expanding operations on defense and private contracts in the very areas in which hosiery mills are located. Most of the displaced workers whb now double and twist silk for hosiery will likely be able to find employment either throwing nylon or rayon, or in some other industries.

The inpact of a cessation of cill inports will be folt most severaly in the aeveral industrial areas where hosiery manufacture is largely coneentrated. According to the 1939 census, over 30 percent of totel muaber of factory workers in Charlotte, H.C. (2,748), and in the Houling induen trial area (Beciss County) of Pennsyivania (13,655) were engaged in maidng full rashioned hosiery or in throwing and spiming silt. I/ the corresponding percentage for the whole State of Pembylvania was 5.5 and for Morth Carolina 7.8.

Inasofar as consumers in the aggregate are concerned, the stoppage of inports of silk will necessitate that, motil aditional mpation mylon and other jarns becone arailable, they reduce their annul rate of cotisumptica of full-fashioned hosiery. However, they will not be obliged, even initially, to reduce concomption by as mach as the production of full-fashioned hosiony is expected to decine. the eaisting 4 monthe' atook of silk and nylon hosiery (now probably tranaferred largely to the hands of retail prochgsere) can for a time be need to make up part of the deficiency; and some remaining portion of it can be made up by increased production of nylon, and by greater outpati of rayon and cotton hosiery. The period of maximan curtailsent in conunuption Fill probably be briof becanse comencing early in 1942 the outpent of mylon yarn available for hosiery will probably inorease steadis as the new mion plant gets into production. (Full output is expeoted by the and of 1942.)

[^11]To the extent that consumers in the aggregate will be willing to do with fewer hose of very sheer construction (1- to 3-thread), the smaller will be the shortage in full-fashioned hosiery, since the intormediate cotton and rayon yarns can probably be made available in somewhat greater quantities than the finest jarns, and the atill coarser yarns in even greater quantities. Nylon hose are now produced only in the very sheer constructions corresponding approximately to 1- to 3-thread silk. Until nylon from the new plant becomes available, production of very sheer hose is not likely to be at more than one-half the rate that prevailed in 1940. By the end of 1942, however, sufficient aylon should be available for hosiery to supply very sheer hose. at about the same rate as in 1940 (provided that none of the nylon is used for less sheer hose).

The extent to which there will be an immediate shortage of hosiery in the less sheer constructions (corresponding to 4 -thread or coarser) will depend on the degree to which production of full-fashioned rayon and cotton 'hosiery will be increased over the 1940 level of about 5 million pairs. Total production of full-fashioned hosiery in 1940 in constructions corresponding to 4-thread or coarser was about 200 million pairy, of which ailk accounted for over 95 percent. The prospect, therefore, is that the initial shortage in hosiery of less sheer conetruction will be even greater than in the very sheer. The extent and duration of the shortage are indeterminate; these will depend an how quickiy and in what amounts manufacturers expand their output of hosiery of cotton, rayon, mixtures of them, or of other fibers acceptable to
consumers. In the meantime, consumers may turn increasingly to the use of ankle and heavy sport hose made by the seamless hosiery industry. At present, however, such hose are not in great demand, eapecially for "dress" purposes. Seamless hose generally wear much longer than sheer, full-fashioned hose, and the yarn requirements are less difficult to meet, both qualitatively and quantitatively.

Class 3702.0-3702.1
united states Imports of raw silk, Iilcluding tussah

By Months and by Principal Countries - Quantity (1,000 pounds)

General information.

Silk waste is a term used to designate all silk other than that reeled from the cocoon. The waste includes cocoons unfit for reeling, jartly unwound cocoons, and broken filaments discarded in silk filatures in the process of reeling raw silk. It also includes mill waste recovered in textile manufacturing processes, and exhausted noils discarded in the process of making spun-silk yarn.

Unreelable cocoons and silk filature waste are used almost wholly in the spun-silk yarn industry, which also makes use of open silk thread waste of low twist, largely of domestic origin. Short or exhausted silk noils are employed principelly by the woolen industry in making a coarse silk noil jarn for use in ornamenting woolen and worsted fabrics. Both spun-silk yarns and silk noil yarns are of military importance in the manufacture of cartridge-igniter cloth and guri-powder-bag cloth for high caliber ordnance. Raw silk could also be used for these purposes but has not been thus far principally because of its very much higher price.

Cartridge-bag cloth for use in big guns must burn quickly and completely without leaving a hard smoldering residue, and silk has been generally believed to be the only fiber possessing that combination of characteristics. Early in August 1941, however, the United. States Army publicly announced that it was no longer dependent on silk in the manufacture of most types of powder bags. Powder bags for small and medium calibers are successfully made of cotton, wool, and mohair, $\sqrt{1 /}$

[^12]but silk remains indispensable for most igniter cloth, lacing twine, straps for loading charges, and sewing thread for stitching the powde: bags.

China in recent years has been the most important source of Onited States imports of silk waste. Japan at one time was the largest supplier, but since 1939 it has sharply reduced exports in order to conserve material for its own military requirements. United States imports from Japan in 1940 amounted to only 20,000 pounds and in the first 5 months of 1941 , to 4,000 pounds. Small amounts of silk waste were imported from European countries prior to the present war, but imports from these sources have now virtually ceased. Stetistics of United States imports by years for 1937-40 and by months from January through May 1941 are shown in the table at the end of this section.

Since silk is not produced commercially in the United States, th only domestic production of silk waste is in the form of byproducts 0 . silk manufacture. Reexports of silk waste have ordinarily been negl gible but in 1939 they amounted to 74,000 pounds, equivalent to 2 per cent of United States imports (exclusive of cocoons) in that year, an In 1940, to 153,000 pounds, equivalent to 5 percent of imports.

There are some stocks of silk waste on hand in the United States but statistics are not available for publication. Data conceraing United States military requirements of silk waste likewise are not available for prablication.

Silk noils were formerly obtained from Japan and European countries, but imports from these sources have now ceased. Imports of
silk noils from China, which has no spum-silk industry of importance, are negligible. Silk noils for the manufacture of cartridge cloth must, therefore, be supplied almost entirely by the domestic spum-silk industry processing Chinese filature and cocoon waste.

The output of spun silk has declined greatly since the peak year, 1921, when production for sale amounted to 4.7 million pounds. "By 1933, the output had fallen to 1 million pounds; it rose to almost 2 million pounds in 1937, but declined to 1 million pounds again in 1939. At present only five firms, employing about 1,500 persons, are engaged in this business. The great decline in production of spun silk has. resulted in a corresponding reduction in the output of silk noils.

Domestic substitutes for imported silk filature waste are linited. The bulk of silk mill waste originates in hosiery and throwing plants, and much of this waste is too hard-twisted to be suitable for manufacture into spun silk. The fiber obtained by garnetting new clips and rag waste (from used silk garments or stockings) is not suitable, except as a blend with silk noils and open silk thread waste, because the fiber alone is not sufficiently long or strong for spinning. Probable economic effects of a cessation of imports from Japan.

Inasmuch as imports of silk waste from Japan since 1940 have been ! negligible, a stoppage of such imports would have little further effect. And if, as recently reportad, satisfactory substitutes are available for silk waste in the manufacture of most types of cartridge bags, then a stoppage of imports of silk waste and of raw silk from Japan (and even from China) would have only a limited bearing on United States ability to méet the most important of its military requirements. For

184

indispensable military uses, available domestic supplies of filature waste, silk noils, mill-thread waste, reclaimed silk fiber, and raw silk should suffice for the immediate future. On August 8, 1941, all stocks in the United States of silk raste, silk noils, reclaimed silk fiber, and raw silk were placed under mandatory priority contiol by the Government.

Insofar as civilian requirements are concerned, spun rayon (made from rayon staple fiber or rayon waste) and continuous filament rayon are satisfactory substitutes for silk waste in most uses. Some of the equipment and part of the labor supply in the spum-silk industry could be employed in making spun-rayon yarn and novelty mixture yarns.

UNITED STATES IMPORTS OF SLLK WASTE, N.S.P.F.

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	\$1,000	1,000 pounds	Q 1,000
All countries, total	6,292	1,855	1,856	432	3,654	1,049	2,664	909		
China Japan	$\begin{aligned} & 2,954 \\ & 2,534 \end{aligned}$	$\begin{aligned} & 919 \\ & 620 \end{aligned}$	1,505 234	335 79	3,163 161	$\begin{array}{r} 800 \\ 96 \end{array}$	2,533 20	871		

By months and by Principal Countries - Quantity (1,000 pounds)

HABOTAI AND OTHER PLAIN-FOVEN SILK FABRICS

(Reported as all-silk fabrics over 30 inches wide, bleached, printed, piece-dyed, or yarn-dyed, etc., not Jacquard-figured, valued at $\$ 5.50$ or less per pound

Ceneral information.
Imports under this classification consist almost wholly of Japenece export specialties, such as habutai, pongee, and spun-silk Fujii cloth. The principal fabric, which represented 85 percent of the exports of broadsilks from Japan to the United States in 1938 (later Japanese export data are not available), is habutai, known in the retail trade as "China silk." Habutai is an unaeighted all-silk fabric of close, firm, but uneven texture, woven of low-quality, unthrown, raw silk in the gum. It is also made with a silk warp and rayon filling, silk being the fiber of chief value. Habutal is woven in many different thicknesses and weights the latter of which are expressec in momme, The bulk of the habutei imported from Japan in recent years has been the very lightweight grades of $3,3 \frac{1}{2}$, and 4 mome, classified as "sheer fabrics." These weights are equivalent to 42,36 , and 31 square yards per pound, respectively.

Lightweight habutal is used principally by oil-silk processors who impregnate the fabrics with various oils or synthetic resins for umbrellas, raincoats, shampoo capes, aprons, shower curtains, varnished electrical insulating tapes, hospital bed sheetings, covers for food containers, linings for tobacco pouches, toilet cases, garment bags, and similar articles. Habutai moiled is used in the manufacture of

[^13]handkerchiefs, infants' caps, dress shields, lamp shades, window curtains, and bias dress tapes. Unbleached habutai is used as a foundation fabric in the manufacture of burnt-out laces in the embroidery industry. Habutai reighing about 12 momme (10 square yards per pound) was formerly used for canopies of parachutes for the United States Air Service, but for some years both the Army and the Navy have speciried silk fabrics made in the Onited States. Japanese habutai and pongee are still used in the manufacture of both pyrotechnic parachutes (for flares) and man-carrying parachutes for cominercial sale and for export.

Japan is the only source of unprocessed hebutai in the gray and bleached condition. Converting and processing of Japanese habutai and pongee are carried on in several other countries; England, in particular, has a considerable export trade in printed and dyed habutai and pongee.

Imports of wide, plain-woven all-silk fabrics advanced beyond the gray condition and not exceeding $\$ 5.50$ per pound in value (the bulk of which is hatutai), declined 30 percent in volume in 1940 as compared with 1939. Imports were higher in the first 5-month period of 1941 than in the corresponding period of 1940 , but were still somewhat below those for the corresponding period of 1939. Imports under this category are show in the table at the end of this section.

There is no domestic production of broadsilks which approach in fineness the imported habutai in weights of 4 momme and less; the large amount of veaving-mill labor required and the slov rate of production make the manufacture of such fabrics unsuited to industrial conditions

In the United States. Domestic mills make an imitation habutai with a filling of throm tram silk or of rayon, but the cloth is usually heavier than the imported product.

The distribution of imported habutai is carried on principally by three or four Japanese commercial houses having agencies in this country; and, to a lesser extent, by a few independent Onited States importers who handle, in addition, other types of goods. The bulk of the importation is transported to the United States in vessels flying the Japanese flag.

The oil-proofing, dyeing, and printing of habutai are done by the finishing trades, but work on habutai constitutes only a negligible proportion of their total business. There are fewer than a dozen mills which oil-proof the fabric or dye and print the finished oilsilk for sale or for the account of consuming manufacturers. The larger manufacturers of electrical equipment process whatever amounts of fabric they themselves need in electrical insulation and some for others, either on a sale or on a comaission basis. Limited amounts of silk habutai also are processed by mills primarily engaged in waterproofing cotton cloth and in making other coated and filled fabrics and varnished papers.

Probable economic effects of a cessation of imports from Japan.
If imports of habutal should cease, domestic manufacturers now using plain untreated habutai for articles of apparel and house decoration could to some extent substitute rayon fabrics. Later, as output of "synthetic" fibers expands, fabrics noven of nylon, and of hightenacity rayon could also be substituted. Mills at present processing
habutai for oil-silk products could undoubtedly shift to cotton lawn and cotton balloon cloth, the finer grades of which, however, are much more expensive than the sheer grades of habutai. Rayon fabrics are also being oil-treated with waterproofing compounds, but are said to be less absorbent and less flexible than silk. Capacity in both rayon and cotton yarn manufacture is being almost fully utilized at present, but the yarn requirements to replace imported habutai would be very small in relation to total yarn output, especially in rayon.

Electrical insulating tapes can be made with a fiber glass-cloth base impregnated with varnish.

There may be available, in addition, syntinetic materials to replace oiled habutai for consumer goods. The most important is pliofilm, a rubber hydrochloride introduced commercially in 1936 by one of the larger manufacturers of rubber goods. This material is a transparent, odorless, film resembling cellophane, and is made by subjecting high-grade crepe rubber to chemical treatment. Production in 1940 was several times greater than imports of habutai. Military requirements, however, may preclude much pliofilm being entered into civilian consumption.

UNITED ST:TES IMPORTS OF SILK :WOVEN FABRICS (ALL SILK) OVER 30 INCHES VIDE, BLEACHED, PRINTED, Class 3710.71 PIECE-DYED, OR YARIJ-DYED, ETC., NOT JACQUARD FIGURDD, VILUED IT $\$ 5.50$ OR LISS PER POUND

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	$\begin{aligned} & 1,000 \\ & \text { s } 4 . y^{d} . \end{aligned}$	恠, 000	$\begin{aligned} & 1,000 \\ & \text { s.1.yd. } \end{aligned}$	\$1,000	1,000 sil , yd.	\$1,000	3,000 sq.yd.	\$1,000	1,000 $s c_{c} . \mathrm{yd}$.	\$1,000
111 countries, totol	18,503	2,512	22,872	2,342	14,290	1,703	10,042	1,338		+
Japan France	$\begin{array}{r} 17,775 \\ 473 \end{array}$	2,346 106	$\begin{array}{r} 22,350 \\ 399 \end{array}$	2,212 85	13,816 319	1,584 75	$\begin{array}{r} 9,768 \\ 146 \end{array}$	$\begin{array}{r} 1,269 \\ 28 \end{array}$		

By Months and by Principal Countries - (juantity (1,000 sci.yd.)

[^14]
RAYOM STAPLE FIBER

(Reported as "filaments of rayon or other synthetic textiles not exceeding 30 inches in leagth, other than waste.")

General information.

Rayon is not only produced in the form of continuous filaments which are made into yarn in the rayon plant, but the filaments are also cut into short lengths for use as a spinning material in the cotton, woblen, worsted, and spun-sill industries. These short length filaments are called "ataple fiber" or "cut fiber." Yarn bpun wholly or predominantly of staple fiber is "spun-rayon yarn."

World production of staple fiber increased from about 6 million pounds in 1930 to over one billion pounds in 1940. In 1940 the world output of staple fiber surpassed that of rayon filament yarn for the first time. The greatest increase has been since 1935, when Germany, Japan, and Italy began intenaive production in an attempt to lessen their dependence on foreign sources of textile fibers. Production of staple fiber considerably exceeds that of rayon yarn in those three countries. Continuous filament yarn is still the main product of the rayon industry in the United States, although the annual rate of production of staple fiber has increased from less than one-half million pounds in 1930 to about 125 million pounds in the first half of 194.

Imports of staple fiber also increased greatiy prior to 1940.
From 1930 through 1935 imports ranged up to 3 miliion pounds annually; after 1935 they increased yearly and exceeded 47 million pounds in 1939. Har conditions abroad in 1940 reduced United States imports to less than 18 million pounds. Imports constituted about one-half of total
domestic consumption from 1936 through 1939, but only 13 percent in 1940.

There are seven producers of staple fiber in the Daited States, three of which account for the bulk of production. The productive capacity of the industry has been increasing rapidly: Rated at 65 million pounds at the end of 1939, it reached 130 million pounds in July 1941 and is expected to reach 145 million pounds in 1942. Probable economic effects of a cessation of imports from Japen.

A stoppage of imports of staple fiber from Japan, which in most recent years has ranked below the United Kingdom and Italy as a supplier, would have little effect on the domestic textile industry. In this country the chief outlet for most grades of domestic and European staple fiber is the cotton industry. Japanese staple fiber has not been used to any appreciable extent by domestic cotton spinners as most of it is unsuitable in length, size, and quality for processing on their equipment. Topmakers and woolen and worsted manufacturers have been the principal consumers of Jepanese staple fiber. Their comparatively small requirements for blending purposes could probably be met by increased use of rayon waste and staple fiber of the wool type.

NOA deXCELDING 30 INCHE, IN LeNGTH, OThLit Tiin idsete
By Prinetinal. Countries

Cuuntry	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	11,000	$\begin{aligned} & \text { 1,000 } \\ & \text { pounds } \end{aligned}$	61,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	81,000	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	61,000		© 1,000
ill countries,total -	20,607	3.347	23,182	4,609	47.400	2,016	17.734	3.268		
United Kingdon ----	3,094	699	12,033	2,438	27,602	5,2.53	6,992	1,277		
It:lly	5,637	1,092	9,908	1,940	9,481	1,931	3,644	815		
Frince --m--------	11,34	1, 7	208	30	4,923	798	358.	+ 57		
Jcipen ---m-m-m-m-m	11,689	2,001	526	85	2,855	445	6,407	1,033		
Gerintun d/	108	33	324	88	1,702	441	230	67		

By Munths and by Princionl Countries - Guentity (1,000 younds)

Munth	1939	1940	19/4	Principal countries of origin							
				1940				2941			
				United KIngdom	Itraly	Fronce	J:pan	Unitod Kingdeun	It.Iy	Trence	J: p ¢ ${ }^{\text {a }}$
J: nuary -x-m- -	2,869	5,087	1,658	1,457	616	198	2,334	1,138	-		520
Fobrunry --m-	3,320	2,581	1,773	1,412	740	160	269	806	\square	-	966
Merch --ame--	3,916	1,273	2,252	190	826	-	158	1,336	218	\ldots	748
Sipril --me-----	3,438	2,119	1,608	1,223	806	-	91	1,235	-	-	360
May ---m-m-----	3,299	562	1,304	-	329	-	21.	800	61	-	419
June --mmenme	4,230	659		-	216	-	421				
	3,490	387			84	-	183 430				
iucust -m-n-m	3,398	435		2.	5	-	430 214				
Septeinber -mea-	3,084 4,047	214		-	22	-	214 356				
November ------	5,670	1,573		500	-	-	1,073				
Decamber ---m-	6,739	2,466		1,800	\cdots	-	664				
Totill, 12 mos.	47,400	17,734		6,99,2	3,644	358	6,407				

PEDALINE HAT BRAID AND UNFINISHED PAPER HAT BODIES

Ceneral information.

Pedaline hat braid is made by winding a continuous strip of cellophane spirally around a core of hemp and braiding the resultant product. The braid is used almost exclusively in making low-priced hats for women. Paper hat bodies (or toyos) are made from twisted rice paper coated with pyroxglin plastic. Toyos are used almost exclusively in the production of inexpensive hats for men, and in all price ranges of hats for women.

Toyos are made only in Japan, and that country in recent years has also produced most of the morld's supply of pedaline braid. Imports into the United States of unfinished paper hats (bieached, dyed, colored or stained) and of pedaline braid are shown separately in the two tables at the end of this section.

There has been no production of pedaline braid in the United States for some years. Both this product and the toyos are usually imported from October through March for use in the folloring spring and summer seasons. There are no available statistics of stocks held in the United States, but it is probable that the present stocks are sufficient to supply all Onited States requirements for the remainder of the year 1941.

Exports of hat materials from Japan are controlled by an exporters' association approved by the Japanese Government. The Japanese manufacturers ordinarily sell through sales agents in the Onited States to importers, who in turn resell to manufacturers of millinery or of men's hats. One of the largest importers, however, is a Japanese firm, and
another is an Americen wholesaler of men's hats.
The women's millinery industry in 1939 included 1,050 establishments employing 27,055 persons. In that year women's trimmed straw hats accounted for 34 million dollars out of 101 million dollars production of all trimmed hats. In 1937 the men's straw hat industry included 47 establishments employing 3,366 persons. Production data for hats made from pedaline braid or from toyos are not available. Probeble economic effects of cessation of imports from Japan.

There is no military use of these hat materials or hats. For civilian use "straw" hats can be made of other materials than pedeline braid or toyos, some of which materizls come from Latin America. These other materials, honever, are generally used in only the more expensive dress hats. The most probable effect of e lack of the cheap oriental materials would therefore be a sharp decline in the production of inexpensive straw hats for both men and women. Low-priced substitutes are less available for men's hats then for wonen's hats. To the extent that substitute hats would not be produced, losses in income to both employers and employees would probably result. The incidence of reduced employment and payrolls on different types of workers (blockers, trimmers, etc.) would vary with the material used in producing substitute types of hats.

Pedoline braid has in the past been made in the United States and could again be made, but probably not in price ranges for use in inexpensive "straws." Former purchasers of straw hats might be led by style changes to buy other types of hats; and the practice of going hatless might become more common.

UNITED STATES IUPORTS OF HERE (PEDILINE) HAT BRATDS, PLAITS, ETC., COHAIITING RIYOH, ETC.

By Kinths and by Princi;al ceuntrics - Ruantity (1,000 :ounds)

U:ITED STATES IMTORTS OF UNFIHISHED HITS, BONNETS, WND HOODS, CORCOSED WHOLIY OR IN CHITF DIass 3012.1 VILUE OF PAPER (EXCEPT HARVEST haTS), BLELCHED, DYED, COLORED, OR STAIMED

By lionths and by Principal Countries - Ouantity (number in thousands)

STICKS OP BAMBOO

General information.

Bamboo is imported into the United States chiefly in the form of sticks or poles for making a variety of articles, the principal use being in the manufacture of rug poles, garden stakes, etc. Certain high grade bamboo, such as Tonkin, is used for manufacturing split bamboo fishing rods.

Although Japan has been the principal supplier of United States imports of bamboo in recent years, other countries are importent producers and, if need be, some of them could increase their shipments to the United States. The major portion of high grade bamboo originates in China. No bamboo is produced commercially in the Onited States:

Probable effects of a cessation of imports from Japan.

A stoppage of imports from Japan would have little economic effect on the United States. The high grade bamboo now shipped to the Onited States from Japan is believed to originate in China, and the varieties of Japanese origin which are imported into the Onited States could be largely replaced by imports from other areas.

Substitutes of domestic derivation for most uses of bamboo are believed to be available.

UNITED STATES IMFORTS OF STICKS OF BAMBOO, IN THE ROUGH, OR NOT FURTHER ADVANCED THAII CUT IMTO LENGTHS SUITABLE FOR STICKS FOR UMBRELLAS, PARASOLS, SUNSHADES, hHIPS, EISHING RODS, OR WALKIIG CANES

	1937	1939	1939	1940 (prel.)	1941 (prel.)	
- \quad	\$1,000	\$1,000	\$1,000	61,000		\$1,000
AIl countries, total-	277	250	268	544		
$\begin{aligned} & \text { Japan } \\ & \text { China } \\ & \text { British Indial } \end{aligned}$	201 28 22	168 45 26	198 20 47	355 127 40		

By Months and by Principal Countries - Value (iv, 000)

$1 /$ Includes Burma. $\quad 2 /$ Less than 500.

MANUFACTURES OF PAPER, H.E.S.

General information.

United States imports from Japan of manufactures of paper not elsewhere specified consist almost entirely of toys, novelties, decorative knicknacks, and gewgaws of low unit value made largely or entirely of paper or paperboard and employed for many purposes in which lasting qualities are nonessential. Imports of these articles from Japan have been decreasing annaliy for several years; in 1940 they were valued at approximately a quarter of a million dollars, representing about 70 percent of total imports under this classification. By far the larger part of these imports have heretofore been sold in Japanese bazaar stores, 5-and 10- cent stores, and novelty shops, few if any of the imports requiring further conversion prior to sale in retoil markets.

Japan has for many years been the principal United States source of supply for these articles. Prior to 1940, Germany also was an impartent supplier. The Onited Kingdom, Frence, Canada, and Italy have each furnished approximately 5 percent of the totel imports in recent years.

The domestic production of like or equivalent articles is not known but it is probably small. Many of the imported specialties represent a comparatively large amount of hand labor, wnereas most of the corresponding articles produced in the United States are machine made. Exports, if any, are negligible. United States stocks of these imported articles are probably limited to those held by retailers since importers turn over their stocks rapidly.

Most of the wholesale agencies in the Onited States selling Japanese manufactured paper articles are Japanese controlled. Some retail establishments in the United States, however, import directif without making use of such agencies. Probable effects of a cessation of imports_from Japan.

A stoppage of imports from Japan mould have only negligible economic effects in the United States. The disappearance of the Japanese specialties would probably reduce the number of novelty lines displayed at 5- and loncent stores, particularly during the holiday season, but would go largely unnoticed. Domestic manufacturers might benefit in some measure from an increased demand for novelties to replace the imports.

UNITED STATES IMPORTS OF MANUFACIUMES OF PAPER, NOT ELSEHERE SPECIFIED

By Months and by Principal Countrios _ iValue (1,000 dollars)

Month	1939	1940	1941	Principal countries oi origin									
				1940					1941.				
				Jopan	United Kingdom	Franco	Canada	China	Jupan	$\begin{array}{\|l\|} \hline \text { Unitud } \\ \text { Kingdor } \end{array}$	France	Canada	China
January -mm	36	36	30	25	3	2	1	1	25	$3 /$	21	1	2
February -m	29	21	19	12	2	2	2	1	14	2	-	1	2
March -mmen	41	23	24	14	1	1	2	1	16	2	21	3	2
April --momen	43	35	25	25	2	2	1	1	18	2	-	2	2
May --m-m	40	24	19	15	2	2	2	1	10	3	-	2	3
June --m-m-	34	31		20	2	3	$2 /$	2					
July -	32	28		22	2	2	1	1					
Auguat ---m	41	29		21	3	2	1	2					
September ---m	52	26		18	1	$2 /$	2	1					
October --m-	57	42		34	1	21	1	4					
November ---m	67	42		33	3	1	3	1					
Decomber -mm-	37	33		27	2	$2 /$	3	3					
Total, 12 mos.	509	370		266	24	13	19	19					

1/ Includes Austrie beginning 2938. 2/ Lase than 500.

POITERY HOUSEHOLD TABLE AND KITCHEN ARTICLES, DECORATED, COLORED, ETC.

General information.

The articles here considered are of the kind ordinarily used on tables and in kitchens in private homes for serving, preparing, or storing food and beverages, as distinguished from corresponding articles used in hotels, restaurants, and other public places. Inports from Japan come predominantly within two general groups: Inexpensive grades of both earthenware and china or porcelain; and (2) medium-priced china or porcelain dinnerware.

Earthenware and chinaware are made of the same general classes of materials, but the proportions of the several ingredients used vary, and the processing differs somewhat, china generally being baked at higher temperatures. The differences in proportions of ingrediente and in baking temperatures, however, give the finished products their Identifying characteristics. Earthenware is generally opaque and absorbent, whereas chinaware is translucent and nonabsorbent. Being nonabsorbent, chinaware resists discoloration around chips somewhat longer than earthenware. Japanese chinaware is usually more elaborately decorated than the American product, either china or earthenware, in the same retail price class. There is severe, competition between Japanese chinaware and domestic earthenware, particularly in the low-price ware.

The two tables at the end of this section show separately United States imports of tsble and kitchen articles, decorated, colored, etc., distinguishing earthenware from chinaware. For a number of

Jears Japan has been by far the largest foreign bupplier of inexpensive grades of these articles. Because of the cessation of 1 ports from Germany and from Czechoslovakia (now absorbed by Germany), Japan has also become practically the sole supplier of Onited States imports of medium-priced china household dinnerfare, a clase of tableware for which there is a large demand in the American market. The United Eingdom has been the largest foreign supplier of the better grades of earthenware approximately comparable in quality and finish to the major part of the earthenware table articles produced in the United States.

United States consumption of china or porcelain household table articles (of other than the highest grades) as distinguished from earthenware, has been until recently supplied almost entirely by impurts. The domestic industry does not produce inexpensive grades of china similar to those imported in large amount from Japan, and until recently supplied only a negligible proportion of the consumption of medium-priced china dinnerware. In the last 2 or 3 years there has been a large increase in the domestic production of mediumpriced china dinnerware, and several nem producers have entered the field. Ho data are available for domestic production of this class of ware, but prior to the outbreak of hostilities in Europe, donestic production probably averaged leas than $\$ 100,000$ annually. Production in 1940 may have amounted to as much es $\$ 500,000$.

The domestic industry supplies by far the larger part of the United States consumption of earthenware household table and kitchen articles, and production has increased substantially in recent years.

The value of output was greater in 1939 than in any year of the prem ceding decade, and production in 1940 probably exceeded that in 1939. The following table gives figures for domestic production of earthenware reported by the Bureau of the Census as "white-mare." This clessification may, for practical purposes, be considered as covering the better grades of earthenvare, generully referred to in the producing branch of the pottery industry as a semivitreous china type of earthenware, to distinguish it from the cheaper grades. Figures for the substential production of the inexpensive grades are not separately reported.

Domestic production of so-called semivitreous china type of earthenware table and kitchen articles, in specified years, 1929 to 1939

Year	Value	$\begin{array}{r}12 \\ : 8 \\ \hline\end{array}$	Year	:	Value
8		$8:$		8	
1929 -	32,066	: 8	37		25,711
1932 -	14,325	88	8		25,348
1936 -	23,735	$8:$	9	:	28,226

Source: Bureau of the Census.

Although figures are not available, exports of pottery household table articles are known to have been negligible in the past. It is reported, however, that domestic exports to Canada have recently increased substantially because of the curtailment of suppiles from European sources.

Prectically all Japanese medium-priced china dinnerware used in the United States is imported and sold wholesale by Japanese concerns. Two of these, by fer the most important, are controlled by the
producing concerns in Japan, and the larger of the two is also one of the chief importers of other classes of china and earthenware table articles, as mell as of decorative articles. It is not knom to what extent the other Japanese importing concerns are controlled by suppliers in Japan. The importation from Japan of china and earthenware table and decorative articles (other than china dinnerware) is in large part carried on by both Japanese and American concerns. Probable economic effects of a cessation of imports from Japan.

A cessation of imports of china dinnerware from Japan would affect domestic consumers. The present prices for the domestic china dinnerware usually are from 30 percent to 50 percent above prices for the better grades of Japanese china dinnerware and possibly three times as high as for the cheaper grades of the Japanese product; and domestic sources of supply are not adequate to meet even the present demands on them. Consumers with only moderate purchasing power would be obliged to curtail their purchasea of china dinnerware. They would probably substitute mainly domestic earthenware and possibly some machine-made glassware. Imports from Japan have made available to American consumers at low prices a considerable volume of novelties and specialties (both earthenware and china) of a type that has not been and probebly never will be produced by the domestic industry. Domestic earthenware, decorated or not decorated, could largely rem place the cheap grades of Japanese china and earthenware at little or no higher cost to conswmers. Both the domestic chinaware and earthenware industries would benefit to some extent from a cessation of imports from Japan.

Ciuntry	1937		1938		1939		1940 (prel.)		1941 (prel.)
	$\begin{aligned} & 1,000 \\ & \text { dczens } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { dozens } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { dozens. } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { dozens } \end{aligned}$	\$1,000	
All ceuntrios, total	4,392	2,675	2,195	1,675	2,613	1,950	2,512	2,049	
United Kingdom Japan \qquad Italy \qquad	$\begin{array}{r} 777 \\ 3,438 \\ 85 \end{array}$	$\begin{array}{r} 1,175 \\ 1,189 \\ 128 \end{array}$	545 1,445 88	$\begin{aligned} & 919 \\ & 457 \\ & 158 \end{aligned}$	$\begin{array}{r} 756 \\ 1,653 \\ 104 \end{array}$	1,188 478 152	828 1,536 67	$\begin{array}{r} 1,398 \\ 458 \\ 109 \end{array}$	

By Months and by Principal Ccuntries - Ouantity (1,000 dozen)

1/ Less than 500.
 AMD UTENSILS, DECORITJD, COLORED, ETC.

POTTETY, NONHOUSEHOLD, DECORATED, COLORED, EIC.

General information.

The decorated or colored pottery here considered may be divided Into two general groups, namely, (1) art and decorative articles, whether or not utilitarian, mainly vases, jardiniers, figures and like ornamental pieces, including mumerous novelties, and (2) articles for industrial uses. United States imports (both earthenware and stoneware, par. 211, and china and porcelain, par. 212) of articles coming within the first groap have been large, whereas those of pottery articles for industrial uses have been inconsiderable. wost, if not all, of the imports from Japan come within the first general group.

The tables at the end of this section show United States imports of earthenware and stoneware and of china of the above descriptions. For a long period Japan has been by far the largest foreign supplier of art and decorative pieces and of novelties; the imports from that country cover articles ranging widely in price, grade of ware, and decoration, and include a large number of figures, novelties, and other articles of small intrinsic value.

In the fast the Onited States consumption of china and porcelain art and decorative pieces of cheap and medium-priced grades (these grades representing the greater part of consumption) has been supplied almost wholly by imports; since the cutbreak of the present European war two or three domestic concerns have begun comercial production of medium-priced articles on a relatively small scale, but no attempt has ade or is likely to be made by aomestic interests to produce the cheap
grades competitive with the articles imported in large quantities from Japan. On the other hand, the consumption of earthenware and stoneware art and decorative articles (which is smaller than that of china articles) is supplied mainly by the domestic industries, although imports account for a fairly large proportion of the total.

Official statistics for total United States production of art and decorative articles are not available. The table following shows production for three general groups of pottery; the first group, largely utilitarian pottery, includes some tableware and probably a considerable amount of art and decorative articles; the other groups relate to art and decorative pottery, mainly earthenware and stoneware.

> Pottery: United States production of specific classes, in specified years, 1929 to 1939

1/ Stoneware, mainly crocks, jugs and other utilitarion articles; probably includes scme tableware and a substantial amount of art and decorative articles; yellow ware and Rockingham earthenrare (forms of tableware) usually represent less than 10 percent of total for the entire group.

Source: Bureau of the Census, U. S. Department of Commerce.

Figures for United States exports of art and decorative pottery are not available, but it is known that exports are small in relation to imports.

United States branches of Japanese concerns import the major proportion of art and decorative pottery obtained from Japan. Probable economic effects of a cessation of imports from Japen.

Japan has for many years supplied the major part of United States imports of art and decorative pottery articles; Germany, Italy, and Czechoslovakia were also large suppliers in past years. None of the imports of these classes of pottery is essential. Imports from Japan range from those of low unit value to those which are artistic in form and have comparatively expensive applied decoration. Japanese articles consist largely of novelties of a class or kind not produced in the United States, and many of them are typically Japanese in form and decoration. Low prices to the consumer and the character of the article itself account to a considerable extent for the large sale of such Japanese pottery in American markets.

A stoppage of imports from Japan would result in the practical disappearance from United States markets of extremely low-priced pottery articles, particularly china articles, which are purchased mainly by persons of limited incomes. Substitutes such as American earthenware sell at mach higher prices and would be available in less variety.

The domestic earthenware industry apparently has ample plant capacity and sufficient skilled labor to supply the demand for articles in the price range at which it can afford to sell. The large plants are equipped with modern tunnel kilns and other appliances and machinery. The numerous small plants and individusl operators throughout the country would be capable of producing in the aggregate a substantially larger amount of ware even without expanding their plants.

UNITED STATES IHORTS OF CHIN/ IND PORCELAIN : R RTICLES (OTHER TH:N TABLE IND KITCHEN MARE, CHEMICAL iND ELECTRICAL PORCELIIN, IND SANITARY /ARTICLES), DECORUTED, COLORED ETC.

Country	1937		1938		1932		1940 (prel.)		1941 (prel.)	
	$\begin{aligned} & 1,000 \\ & \text { dozons } \end{aligned}$	\$1,000	2,000	\$1,000	1,000 dozens	\$1,000	1,000 dozens	\$1,000	1,000 dozens	31,000
All countries, total	4,660	1,165	3,541	835	3,798	867	4,921	960		
Japan	4,343	519	3,228	308	3,515	368	4,778	666		
Gormany 1/-	179	218	180	204	182	170		9		
France -	12	120	11	77	26	138	24	80		
China --mome	71	132	47	. 74	51	69	93	79		
Unitod Kinedom -	4	46	4	38	7	63	12	95		
Crochoslovakia -	36	76	58	76	4	4	2/	2/		

By Months and by Princifal Countries - Quantity (1,000 dozens)

Month	1939	1940	1941	Principal countrios of oricin							
				1940				1941			
				Jajan	France	China	United Kingiom	Jaman	Franco	China	UnIted Kingdom
January	241	501	316	491	3	2	2	303	$2 /$	12	1
Fobruary -	228	251	336	245	3	3	$2 /$	328	$2 /$	7	1
March --	265	336	269	324	3	7	1	262	$2 /$	6	1
Arril	286	208	390	202	2	3	1	373	-	15	1
May	293	421	370	407	9	2	2	356	2/	13	1
June -	344	417		401	2	12	$2 /$				
July	327	549		539	2	7	1				
Auguat -	357	462		446	$2 /$	13.	1				
September	387	369		357	1	8	2				
October	358	558		547	$2 /$	10°	1				
November	317 395	519		512	$2 /$	7	1				
Decomber	395	330	-	307	2/	21	2/				
Total, 12 mos	3,798	4,921		4,778	24	93	12				

2/ Inoludes Austris baginning 2938. 2/ Less than 500

UNITLD SIATES IMPORTS OF EARTHENHARE AND STONEWARE, NOT SPECIALLY PROVIDED FOR,
Clase 5373.7 DECORLTED, COLORED, ETC., OTHER THAN TABLE ARD KITCHEN ARTICLES AND SANITARY

Country	1937		1938		1939		1940(prel.)		1947 (prel.)	
	1,000 dozens	\$1,000	$\begin{aligned} & 1,000 \\ & \text { dozons } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { dozons } \end{aligned}$	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { dozens } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { dozens } \end{aligned}$	\$1,000
All countries, total	1,409	1,042	1,022	843	1,353	955	1,366	884		
Japan	1,134	484	704	271	942	389	1,123	587		
Italy	86	185	202	220	237	247	68	131		
United Kingaom	19	50	39	83	37	96	27	72		
China	12	12	15	10	24	10	57	16		
Hong Kong --mmen	3	3	4	3	9	4	19	7		

By Months and by Principal Countries - Quaritity (1,000 dozens)

Month	1939	1940	1941	Principal countrios of origin							
				1940				1941			
				Japan	Italy	United KIngdom	China	Japan	Italy	United Kingdom	China
January	53	112	73	94	5	3	3	63	1	2	4
February	57	67	49	47	8	3	2	44	1	1	1
March --m	73	77	58	56	9	2	5	50	1	1	3
April	59	91	64	66	7	3	7	53	$1 /$	3	4
May	87	97	60	75	11	2	4		1	3	2
June	107	103		80	8	2	4				
July	140	154		129	9	2	5				
August -	160	156		130	5	2	9				
September -	135	155 169			4	2	4				
October	199	169		146 102	1^{2}	2	6				
November	158 125	113 72		102 59	$\frac{1}{1}$	2	5 3				
$\begin{aligned} & \text { Total, } 12 \\ & \text { mos. } \end{aligned}$	1,353	1,366		1,123	68	27	57				

[^15]
SLIDE FASTENERS

General information.

Slide fasteners importod from Japan are much the same as those made in the Onited States, but are usually of poorer cuality. Patent restrictions limit the importation of those with locking sliders: Japan has several large producers who carry on a world-wide trade through export organizations. . Practically all United States imports in recent years have been from Japan. Entries from the Philippines are from one concern which began the mamfacture of fasteners several years ago for export to the United States. This company is reported to be American-owned.

Total production of slide fasteners in the United States in 1939 amounted to about 180 million units, valued at about $\$ 18,000,000$. A large part of that output consisted of fasteners with locking sliders. Of the United States consumption of nonlocking fasteners, probably one-third to one-half is supplied by Japan. The domestic industry consists of six well-established companies and of at least four others who have recently entered the field. The industry employs from 7,000 to 10,000 persons, about one-half of whom are women. It could expand outrut considerably on short notice, apart from priority restrictions on the use of materials.

There are four or five importers of fasteners, all Unitea States firms, handling diversified lines of products, both domestic and imported.

Probable economic effects of a cessation of imports from Japan.
Insofar as domestic mamufacturing capacity is concerned a stoppage of imports from Japan would cause no domestic shortege in slide fasteners. Priority regulations may, however, limit supplies of raw materials available to this industry.

A cessation of imports would immediately result in some loss of business to American importing firms. Slide fasteners, however, account for only a small part of their total business. One of the largest importers is already financially interested in one of the newer domestic manufacturing firms. Some of the low-priced articles now made with Japanese zippers could not be made to sell at the same price if American zippers were used, but similar articles made by the adaptation of other closing devices of domestic origin could be.

UNITED STATES IMPORTS OF SLIDE FASTENERS

Country	1237		1938		1939		1940 (prel.)		1944 (prel.)	
	Number in thousinds	\$1,000	Number in thousands	81,000	Number in thousands	\$1,000	Number in thousands	\$1,000	Number in thousands	\$1,000
111 countries, total	39,491	870	43,729	902	32,349	696	32,500	687		
Jnpan \qquad Pnillppine Ialands China \qquad	$\begin{array}{r}32,009 \\ 299 \\ \hline\end{array}$	$\begin{array}{r}610 \\ 14 \\ \hline\end{array}$	$\begin{array}{r} 39,006 \\ 1,801 \\ \hline \end{array}$	745 62 -	$\begin{array}{r} 28,654 \\ 3,316 \\ 36 \end{array}$	579 106 3	$\begin{array}{r} 26,754 \\ 4,184 \\ 1,554 \end{array}$	526 131 30		

By Months and by Principal Countries - Quantity (number in thousands)

INCANDESCENTT ELECTRIC LAMPS, METAL FILAMENT, OTHER THAN MINIATURE

General information.

Imports of electric lamps other than miniature consist almost entirely of metal filament lamps of the conventional types used for household and commercial purposes. They range from 50 to 100 watts and retail at prices lower than domestic lamps of corresponding wattage.

Imports, which are supplied almost entirely by Japan, increased from nearly 1 million lamps in 1929 to 32 million in 1935, but declined thereafter, in 1940 amounting to 18.8 million. The unit value of lamps imported from Japan declined from 3 cents in 1931 to $1 \frac{1}{2}$ cents in 1933. In recent years the unit price has remained at about 1.7 cents.

The production of incandescent electric lamps in the United States probably exceeds that of all other countries combined. Manufacture is concentrated in the plants of a few large companies, the largest of which produce full-line electrical machinery and apparatus, lamps accounting for a small but important part of their total production. United States production of large lamps increased from 352 million valued at 65 million dollars in 1929, to more than 516 million valued at 58 million dollars in 1939. The volume of production in 1940 is reported to have increased aboüt 10 percent over that of 1939. Approximately 90 percent of this production is accounted for by the General Electric Company and the licensees of 1ts patents, including the Westinghouse Electric and Mamfacturing Company.

Lamps with metal (tungsten) filaments are by far the most importent class of lamps riroduced; of these there are more than 9,000 sizes and types manufactured in the United States. The domestic producers have much less competition from imports of large lamps than from imports of miniature lamps. On the basis of quantity, imports of large lamps were equivalent to nearly 11 percent of domestic production in 1932, 6 percent in 1936, and 2 percent in 1938.
'United States exports of large lamps are small in relation to production, normally amounting to less than 2 percent of the total domestic manufacture. In terms of quantity, exports amounted to . 4.8 million lamps in $1935,6.7$ million in $1938,8.6$ million in 1939, and 10.4 million in 1940. Cuba, the Philippine Islands, Canada, Chile, and Colombia have been our principal export markets for large lamps. Patent and marketing agreements very largely account for the limited number of countries to which the Onited States exports lamps.

Imported lamps are generally distributed by wholesale and jobbing houses which usually import direct from Japan. The principal retail outlets are chain and variety stores located in many cities throughout the country.

Lamps imported from Japan supply only a very small proportion of the total consumption of incandescent electric lamps in the United States. As with miniature lamps, the imported large lamps are generally lower in efficiency and price than the corresfonding domestic lamps, and consumption of the imported lamps is limited almost entirely to a trade where price is the controlling factor. Probable economic effects of a cessation of imports from Japan.

A stoppage of imports of Japanese lamps nould probably have small effect upon the domestic trade. The domestic production is carried on almost entirely by mass-production methode, and output could readily be expanded to take up the slack caused by a cessation of imports. Employment would be affected only negligibly since most of the importing wholesalers and jobbers carry a large variety of products, lamps accounting for only a small part of their business.

UNITED STATES IMPORTS OF INCANDESCENT METAL FILAMENT LAMPS: OTHER THAN MINIATURE

By Months and by Principal Countries - Quantity (number in thousands)

IICANDESCENT ELECTRIC LAM,'S, METAL FILAGENT, MINIATURE

General information.

Imported miniature lamps of the types coming from Japan, while similar in design and construction to lamps produced in the United Stictes, are lower in quality and rrice than most of the domestic jroduction. Imports consist almost entirely of low-voltage lamss of the types used in Christmas. tree sets, toys, and flashlights. Imports supply only a very small fraction of the domestic consumption of miniature $12 m$ for automobile and radis use and none of the types used for nilitiry or scientific jursoses where quality and dependability are imprtint cinsiderations.

Imports of miniature Iamps were at a high level during the past decade, the highest having been in 1936 when 117 million, valued at $\$ 653,000$, were entered. For the 5-year period 1936-40, annual imports averaged neärly 90 million lamps. Prior to 1940 , Japan supplied virtually all of the imports, and in that year supplied 85 percent of the total, and China supplied the remainder. -(See table at the end of this section.)

On the basis of official estimates, about 75 percent of these imports were decorative lamps (Christmas-tree types) and the remainder, toy and flashlight lamps. The unit value of imported lamps in most years averaged one-hall cent.

Total domestic production of miniature lamps rose from 86 million lamps in 1921 to 272 million in 1929. Since 1929 the domestic manufacture of low-voltage lamps is known to have increased substantially (official statistics are not available). The present annual production is probably 350 million to 400 million lamps.

Miniature lamps are manufactured in the United Ststes by about 14 companies, the larger of which are highly mechanized and use mass production methods. Four of these, the General Electric Company and the Westinghouse Electric Company, together with two other companies (both 11censed by the General Electric Company) account for nearly 90 percent of domestic output. Production could ausily be increased sufficiently 'to replace imports, but probably only at prices somewhat higher than prevail for the imported product.

The ratio of imports to domestic production, based on quantity, was 58 percent in 1932, 28 percent in 1934, and 21 percent in 1938. Based on velue, imports were equivalent to 6, 4, and 3 percent, respectively, of domestic production in the years mentioned.

United States exports of miriature lamps increased from 5.2 millions in 1935 to 10.6 millions in 1937, fell to 9.8 millions in 1939, and rose to 24.7 millions in 1940. British India, Australia, the Philippine Islands, Cuba, and the Union of South Africa were the principal foreign• markets of the United States.

Wholesale and jobbing houses in and around New York City sare the principal importers. Most of the imported lamps are sold direct to large consumers, chiefly manufacturers of Christmas-tree sets, toys, flashlights, and chain drug, herdware, and variety stores. From 5 to 10 firms probably accourit for most of the imports. In some instances imports are made direct by firms acting as importer, broker, and agent in the sale and distribution of lamps to retailers.

Probable economic effects of a cessation of imports from Jepan.
A stoppage of imports from Japan would eliminate most of the supply of low-priced miniature decorative and novelty lamps in the United States, inasmach as imports of corresponding types of lamps from the Japanesecontrolled areas in China would not likely increase at such time. Domestic producers have sufficient capacity to supply the whole domestic market but would likely supply it only at higher prices than have prevailed for the Japanese products. The retail price of the most popular type of Japanese Christmas-tree Iamp - which class constitutes the bulk of all imports of miniature lomps - has been 2 for 5 cents as compared with 5 cents each for the corressonding domestic lamp.

UNITED STATES ImPORTS OF MINIATURE INCANDESCENT ELECTRIC LAMPS, METAL FILAMENT
By Principal Countries

Country	1937		1938		1939		1940 (prel.)		1941 (prel.)	
	Number in thousands	\$1,000	Number in thousands	\$2,000						
111 countries, total	100,089	538	55,998	299	79,223	507	97,120	711		
Je.pan China	100,050	536	55,890	298	$\begin{array}{r} 78,134 \\ 1,084 \end{array}$	$\begin{array}{r} 502 \\ 4 \end{array}$	$\begin{aligned} & 82,707 \\ & 14,412 \end{aligned}$	$\begin{array}{r} 658 \\ 53 \end{array}$		

CULTURED PEARIS AND PARTS AND SOLID IIITATION PEARLS

Ceneral information.

Cultured pearls are used chiefly in medium- and high-priced necklaces; imitation solid pearls are used chlefly in the mamufacture of inexpensive jewelry, such as necklaces, bracelets, earrings, brooches, pendants, and novelty and ornamental jevelry.

At present Japan is practically the wole foreign source of cultured and of imitation pearls and parts. United States imports of cultured pearls in 1940 were valued at $\$ 356,000$, of which Japan provided $\$ 320,000$. Imports in 1940 of imitation solid pearls and parts, except iridescent, totaled $\$ 266,000$, with Japan supplying $\$ 265,000$. Formerly, France and Spain were important suppliers of imitation pearls but Japanese competition gradually forced those countries out of the United States market.

Cultured pearls are not produced in the United States, domestic production consisting entirely of imitation solid pearls. These are made in establishments which also manufacture novelty jewelry. Statistics of the volume of the domestic production of imitation pearls are not available. The domestic industry employs about 3,000 workers.

[^16]
Probable effects of a cessaticn of imports from Japan.

A stoppage of imports from Japan nould probably have little effect upon the domestic jerelry trade as a whole, even though pearl merchandi. would largely disappear from the market. The absence of pearls rould probably divert consumer attention to other lines of jearelry vhich would be available in similar price classes.

Domestic producers of imitation solid pearls depend upon imports of Japanese glass cores. These glass cores can be produced in the United States, but at a much greater cost.

Domestic manufacturers could probably employ most of their equipment and personnel nor devoted to naking articles containing pearls in the production of other varieties of novelty jewelry.

UNITED STATES IMPORTS OF IMITATION PEARLS, SOLID, EXCEPT IRIDESCENT, VALUED NOT MORE THAN ONE-FOURTH CENT PER INCH

Country	1937		1938		1939		1940(prel.)		1942 (prol.)	
	$\begin{aligned} & 1,000 \\ & \text { inches } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { inches } \end{aligned}$	\$1,000	$\begin{aligned} & \text { 1,000 } \\ & \text { inches } \end{aligned}$	*1,000	$\begin{aligned} & 1,000 \\ & \text { inches } \end{aligned}$	\$1,000	$\begin{aligned} & 1,000 \\ & \text { inches } \end{aligned}$	-1,000
All countries, total-	133,509	151	102,456	119.	241,650	268	236,623	266		
Japan -_	131,056	148	28,353	112	231,855	251	235,985	265		

By Months and by Principal Countries - Quantity (1,000 inches)

UNITED STATLS DRPORTS OF PEARLS AND PARTS, NOT STRUNG OR SET, CULTURED OR CULTIVATED

By Mionths and by Principal Countries - Value (1,000 dollars)

Month	1939	1940	1941	Principal countries of origin								
				1940				1941				
				Japan	China			Japan	China			
Janunry	24	27	44	26	1			44	$1 /$			
February	14	17	54	15	2			54	-			
March	45	39	74	38	1			66	8			
April	16	21	66	21	-			63	3			
May -	27	22	66	19	3			66	-			
June -	24	18		17	1							
July	30	28		21	7						.	
August -	22	47		39	5							
Septomber --m	35	14		14.	\cdots							
October -	28	41		32	9							
November ---	35	42		38	4							
December	23	40		40	-							
Total, 12 mos	328	356		320	33					-		

1/Less than 500.

MISCELLANEOUS PIRPXILIN ARTICLES

(Reported as compounds of cellulose (other than acetate) made into finished or partly finished articles, n.e.s., other than slides used as buckles, toilet articles, or smokeless powder)

General information.

Imports under the above classification consist principally of Low value novelties such as charms, figures, brooches, bracelets, and similar merchandise, made of cellulose nitrate (pyroxylin).

Japan supplies more than 90 percent of United States imports of these articles. Separate statistics of domestic production are not available, but such production is known to be large relative to imports.

The imported and domestic articles are distributed principally through the 5-and 10-cent and novelty stores. The domestic articles are generally of better quality than the imported, and are replacing them.

Probable economic effects of a cessation of imports from Japan.
The articles in this classification have no military use. Civilian consumption could easily be supplied by articles made from cellulose acetate and other plastic materials produced in this country, though probably only at somewhat higher prices.

COMPOUNDS OF CELUULOSE (OTHER THAN ACETATE) MADE INTO FTNISHED OR PARTLY FINISHED ARTICLES, N.E.S., OTHER THAN SLIDES USED AS BUCKLES, TOILET ARTICL'S, OR SHOKDLESS POHDER

By Months and by Principal Countrias - Value ($\mathbf{1}, 000$ dollars)

APPENDIX

PRINGIPAL COMHODITIES IMPORTED INTO THE UNITED STATES FROH JAPAN, 1939 AND 1940, AND JANUARY-MAY 1940 AND 1941

PRINCIPAL COMAODITIES IIPORTED INTO THE UNITED STATES FROM JAPAN, 1939 AND 1940,
AND JiNUUARY-MAY 1940 ind 1941-Oontinued

PRINCIPAL COMMODITIES INPORTED INTO THE UNITED STATES FROM JAPAN, 1939 AND 1940,

 AND JANUARY-MAY 1940 AND 1941-Continued

Import	$1:$ Unit 0	1	Qunntí	fity		1	$V 1$		(1,000		glar		
classif1cation No.:	1 Commodity $:$ quantity	11939	1 1940	4 Sanuar	Y-May		1939	1	1940		Janua		
	: .	12939	12940	1.1940	: 1941		1939	1	1940		1940	1	1941
$\begin{aligned} & 479.99 \\ & 5350.2 \end{aligned}$	4 \%	8	1	t	:	1		1		1		1	
	¢Manufacturos of paper, n.s.p.r. -----1 -	1	Not	availabla		!	272	1	266	1	91	8	83
	China or porcelain, domentio or	1	1	1	${ }^{\prime}$	1		1		1		1	
	: houeohold table and kitchen artiolent	1	8	1	1	1		1		1		,	
	1 and utensils, docorated or colored, 1	1 1 0 ,	1	:	1	t		,		1		1	
	\% to. -	3,079	2,592	1 1,070	668	1	1,670	1	1,750	1	654	1	496
536.52	China and porcolain articlon (other :	\%	\&	1	1	1		1		,		1	
	: than table und kitchen ware, chomi- :	8	1	8	1	1		1		1		1	
	- cal and electrical porcolein, and :	2	1	1	1	1		1		1		8	
	1 eanitary articlos), decorated, :	1	1	1	!	1		1		1		\%	
		1 3,515	: 4,773	: 1,669	: 1,622	1	368	8	666	:	192	\%	216
5372.2-3	Earthenwere and stoneware, domestio :	1	:	1 1,669	\%	1		1		1		1	
	: or housohold tablo and kitchen	2		:	*	1		\%		\%		,	
5373.7	I articlos, decorntod, colored, otc.--i do.	: 1,653	1 1,536	1542	588	1	478	1	458	-	154	1	139
	:Earthonwaro and stonowaro, n.a.p.f., :	1 1,	:	1	-	1		1		2		1	
	: docorated, colored, otc., other than:	t	8	1	1	1		1		2		8	
	: table and kitchen articles, and :	*	1	\%	1	1		1		1		8	
		- 942	: 1,123	1238	1 261	1	389	,	587	!	164	1	134
$\begin{aligned} & 679.564 \\ & 7064.1 \end{aligned}$	silde fastenera \qquad Thousands incandescent metul fllamanot lampsa 2	$: 28,654$: 26,754	: 10,575	$: 9,977$	1	579	1	526	1	205	1	196
	incandescent motal filamanot lampas : 	: 16,884	: 18,676	$5,563$	$4,465$	1	258	1	266	:	84	$:$	60
7064.0	Miniature incandescont electric	:	:	:	1	1		1		1		1	
	1 lamps, metal filament m--m-e-m-m---: do.	: 78,134	: 82,707	: 24,824	: 14,106	1	502	1	658	8	174	\%	203
5953.9	sParla and parts, not strung or bet, 1 cultured or cultivated \qquad	$:$	1 Not	availabl	1	1	323	1	320	8	119	,	293
9701.2	IImitation penrls, volid, oxcept :	1	1	$: 1$	1	1		1		1		1	
	i irldescent, valuod not more than	1	$\stackrel{1}{1}$	1	1	1		1		1		!	
		1231,855	1235,985	: 88,494	1108,244	1	251	1	265	1	99	1	125
	1 !	1	1	1	1	1		1		1		1	
				1		1		1		1		1	

PRINCIPAL COMMODITIES IIAPORTED INTO THE UNITED STATES FROM JAPAN, 1939 AND 1940, AND JANURRY-MAY 1940 AND 194-Continued

Lo:se than 1/2 long ton.
Lose than $\$ 500$.
Luss then 500 pounds.
Sourool Compilod from official atatistics of the U.S. Dopartment of Commorce.

[^0]: Sources Compiled from official statistics of the U.S. Departament of Commerce.

[^1]: 1 Negligible. Not separately reported in official statistics, included in this table with "other salmon."

 2/ Estimated.
 3/ May include some other species.
 I/ Mainly silver, chum, and pink salmon but includes some red salmon.

[^2]: 1/ For a further discussion of vitamins A and D, see the section following on fish livers.

[^3]: $1 /$ For a further discussion of vitimins A and D, see the section on Fish Livers.

[^4]: 1 U.S. Maritime Commission, Special Report No. 2896.
 2/ These incluie dealers operating their own thrown-silk plants as well as dealers who have raw silk thrown on comission.

[^5]: 17 All stocks of raw silk were frozen as of August 2 and may now be used only under a Treasury license. It seems probable that, for the time being at least, no raw silk supplies will be available for civilian uses. All thrown silk which was on hand on August 2, however, may be usod.

[^6]: 17 A nylon jarn plant licensed by du Pont has been constructed in Canada by a Canadian affiliate of Imperial Chemical Industries, Ltd.

[^7]: 1/ The output could be further incrensed if substitute materiels were to be used in the feet.

 2/ It should be noted that the remaining 20 percent of the nylon jarn output will amount to 3.2 million pounds annually, when total output reaches estimated capacity, 16 milition pounds. This figure (3.2 miliion poumds) is more than twice the amount that has hither to been available to all users of nylon yarn combined, other than the full-fashioned industry.

[^8]: $1 /$ This consideration has not taken into account in estimating prospective deficiencies in hosiery, principally because satisfactory comparative data on the wearing dualities of nylon and silk hosiery are not available.

[^9]: 1 National Association of Hosiery Manufacturers, Quarterly Statistical Bulletin. March 1941, p. 11.

 2/ These, together with 1-thread, comprise the group of "very sheer" hosiery referred to in the folloving portions of the text.

[^10]: 1 Since most of these work on both silk and nylon, no allocation by type of yarn is possible.

[^11]: 17 In a muber of amaller commuitios, for which Consus data are not available, the dogree of concentration may be equally high.

[^12]: 1 Army specifications have been drafted for rayon cartridge cloth made of high tenacity viscose rayon jarn for use in the assembly of charges of propellent powder for cannon.

[^13]: 1/ A fabric weighing-1 mome averages, for rough calculation, about 125 square yards to the pound; dividing 125 by the mome weight of any cloth will give the equivalent in square jards per pound.

[^14]: 1/Less than 500.

[^15]: 1/ Less than 500.

[^16]: 1/This section covers two Import classifications only: (1) Pearls and parts, not strumg or set, cultured or cultivated, class 5953.9; and (2) imitation pearls, solid, except iridescent, valued not more than $1 / 4$ cent per inch, class 9701.2 .

