CENTRAL BOARD OF IRRIGATION & POWER Publication No. 51.

SILTING OF RESERVOIRS

BY

A. N. KHOSLA, I.S.E., B.A. M.I.E. (IND), M. AM. Soc., C.E.

Chairman, Central Water and Power Commission, Government of India, New Delhi.

PRINTED IN INDIA BY THE MANAGER, GOVERNMENT OF INDIA PRESS, SIMIA, 1953.

FOREWORD

The subject "Silting of Reservoirs" has been on the agenda of the Central Board of Irrigation and Power since 1939 and has been discussed in the Annual Meetings of the Research Committee and the Board. It has assumed greater importance now due to the large number of storage schemes under construction and contemplation in India, as it is linked with the life of the reservoirs. Shri A. N. Khosla has given particular attention to this subject and published two papers in 1940 and 1941. Since then, some work on the subject has been done in the Irrigation Research Stations, and some data has been collected from Indian rivers and Reservoirs.

In view of the importance of the subject in the successful development of river valley schemes and the wealth of information contained in Shri Khosla's papers and the data since collected, the Executive Committee of the Board requested Shri Khosla to prepare a publication of the Central Board of Irrigation & Power on the subject.

- Shri Khosla has compiled the information available on the subject in the form of this publication and it is hoped that besides being of value to the profession, it will help in further work on the subject at .the various Stations.

The Central Board of Irrigation & Power is grateful to Shri A. N. Khosla and others who have collected the data on the subject and are helping in advancement of this important subject further. It is hoped the information contained in this publication will be useful to those interested in the study of the subject and will supply the need of the Indian Engineers employed on construction of river valley schemes. The author has stated that the treatment of the subject in the publication is by no means exhaustive and upto-date. It is however, hoped that in view of the vigorous research in hand on the subject in various research and field stations in India, it will in the near future be possible to bring out a more comprehensive and uptodate edition of this publication.

S. L. MALHOTRA,

Secretary,

Central Board of Irrigation and Power.

As Superintending Engineer, High Dams Circle in the Punjab, in 1939, the author was faced with the problem of "Silting of Reservoirs" in dealing with the designs of Bhakra, Balehu and other storage dams in the Punjab. During his visit to the United States of America front April to October 1939, he made a special study of the problem in its relation to storage reservoirs in that country. On return to India, he initiated sediment studies on several streams in the Punjab. Many of these studies are still continuing. In 1945, soon after assuming charge as Consulting Engineer and Chairman, Central Waterways, Irrigation and Navigation Commission—now Central Water and Power Commission—the author initiated similar sediment studies on the Kosi and Mahanadi rivers and later on the Tapi and other rivers.

The author submitted two papers on the subject of Silting of Reservoirs to the Central Board of Irrigation, one in 1940 and the other in 1941. This subject has since been widely discussed in the Central Board of Irrigation and elsewhere. This was one of the subjects discussed at the fourth plenary session of the International Commission on Large Dams held in Delhi in January 1951.

There has been a very considerable and insistent demand in India for authentic information on the subject, particularly that relating to Indian rivers. This paper has been written primarily to satisfy this demand and in the hope that it will facilitate and encourage further exhaustive and scientific study of the subject.

In recent years, considerable amount of work has been done on sediment studies of various rivers in India and abroad and much useful data has become available in different parts of the world. Not all of this data has, however, been available to the author; nor had the author sufficient time to make an exhaustive study of what was available.

An attempt has been made in this paper to present the problem of 'Silting of Reservoirs' in it's fundamental aspects and to draw attention to certain salient features as well as some current misconceptions. One conclusion appears to stand out and that is that the silt yield of a catchment is essentially a function of its area and geological formation.

The treatment of the subject in this paper is by no means exhaustive, nor quite uptodate. The only justification for its publication at this stage is, therefore, to meet the persistent demand of irrigation engineers for the maximum available information on the subject and for conclusions, though tentative, based on an analysis of this information. The study of the subject is being vigorously pursued in many research centres and field stations in India and abroad and it is hoped that based on these a more comprehensive and uptodate publication will be brought out by the Central Board of Irrigation in the not distant future.

The literature in U.S.A. has been obtained through the courtesy of the Bureau of Reclamation, Geological Survey, Soil Conservation Service, Forest Service, Corps of Engineers and other organisations. Acknowledgments are due to all of these organisations. In particular, the author owes a debt of gratitude to Mr. Michael W. Straus, Commissioner and the Bureau of Reclamation for their generous help in supplying literature and providing facilities for establishing contacts with the research and field workers.

Acknowledgments are due to the Irrigation Research Division Poona, Bombay State, for the information on reservoirs in that State mentioned in Chapter 2, Part A, and Shri B. P. Saxsena, I.S.E., for his contribution in respect of storage reservoirs in Uttar Pradesh reproduced in Chapter 2, Part B.

The author is particularly indepted to Dr. R. C. Hoon who has done very considerable original work in connection with the silt problems of the Mahanadi and Kosi rivers, the data in respect of which, as given in the text, are mainly derived from his work. He has given many original and useful ideas on the technique of observations, field equipment and method of analysis. He has also assisted the author in preparing and editing the text.

The author is equally indebted to Shri N. D. Gulhati, I.S.E., Chief of Natural Resources, Planning Commission, Government of India and formerly Secretary of the Central Board of Irrigation, for the immense pains he took in compiling the original text from the various papers and discussions contributed at the meetings of the Central Board of Irrigation; and to Shri M. L. Madan for his general assistance. Acknowledgments are also due to Shri S. L. Malhotra, I.S.E., the present Secretary of the Central Board of Irrigation and Power for his valuable assistance in finalising the text and its printing.

NEW DELHI: 1952 (Sd.) A. N. KHOSLA,

CONTENTS ~

FETEODUCTION .	•	F	AG B
CHAPTER 1-CATCHMENT, STBEAM FLOW AND SILF			
• The origin of silt			1
Silt load of streams			2
Silt distribution and velocities in a vertical section.			4
Silt percentage and discharge			6
Some heavy silt concentrations			10
Rate of fall of particles	:		11
Thixotrophy and density currents		•	11
Settling of silt in reservoir	•	•	12,
Volume-weight relationship.	•	•	12
Rate of silting and catchment area	•	•	14
Methods available to combat silting up of reservoirs	•	•	14
CHAPTER 2-SILTING OF THE EXISTING RESERVOIRS IN INDIA			
AStorage reservoirs in Bombay State			
Nature of data		•	17
Dhupdal Reservoir (near Gokak)	•	•	17
Lake Fife (Khadakwasla Dam)	•		21
Lake Beale (Barna Dam,)	•	r •	23
Nandur Madhmeshwar Weir			24
Visapur Tank		•	25
Pimpalgaon Tank	•		26
General Observations.		•	30
B. Storage reservoirs in Uttar Pradesh			r
Dhukwan Reservoir on Betwa River	_		31
Paricha Reservoir on the Betwa River		-	33
Pahari Reservoir on the Dhasan River •!			35
Lachura Reservoir on Dhasan River		-	36
Gangao Reservoir on the Ken River			38
Bariarpur Reservoir on the Ken River	•	•	39
Pahuj Reservoir on the Pahuj River	•	•	40
Barwa Sagar on Barwar River.	•	•	41
Small Tanks	•	•	42
Bara Tal (Babina)		•	42
Koncha Bhanwar Tank	• •	•	42
Observations of suspended load in rivers	•	•	43
General Observations	•	٠	4 4
Summary and Conclusions	,	•	45
· (iv)			

(🛛) -

CHAPTER 3-SILT STUDIES OF SOME PROPOSED RESERVOIES IN INDIA

•

Bhakra Reservoir	÷	•			•	•	•	•	•	•	•*	55'
Balehu Reservoir		۰,	•	•			•	•	~	۰.	•	76
Hirakud Reservour	•	•	•	•	۰.	•	•	•	•		•	7 9
Kosi Reservoir .	• •	•	•	•		•		•	•	•	K.	89
Special investigation	s in c	onne	ction v	vith t	he sus	pende	ed silt	load o	of the	Maha	nadı	
and the Kosi	Rive	rs	•	•	•	•	•	•	٠	•	• _ <	113
CHAPTER 4-SILT STOP	dirs (of So	ME E	CISTO	NG RE	SERV	oirs 1	in ot	HER (Count	ries	•
General	•	٠		•	•	•		•	•	•	· ·, ·	137
Aswan Reservoir	•	•	•	•	•		•	•		•.	~	150
Boulder (Hoover) R	eserv	oir	•	•	•	•		•	•			153
, Grand Coulee Reserv	voir		•	•	•			•	•	ź	•	155
Lake Austin Reservo	T IC	•	•	•	•		•	•	•	1 a	- <u>,</u> , , -	155
Elephant Butte Rese	rvoir		•	•		•					÷ -	.158
Lake McMillan Rese	ervoii		. /	•	•	•	•	•			•	162
Four large reservoirs	in Sc	outh	Africa		•			•	•	•	•	164
Roosevelt Reservoir		•	•	•	•			•				167
Lake Worth Reservor	LC .	•						<i>.</i>		•	•	169
Zuni Reservoir				•	•	•					•	171
Parksville Reservoir		•	•		•	•		•		•	•	173
Medina Reservoir	•	•									•	174
Gibralter Reservoir	•		•	•			•			_	•	176
Sweet Water Reservo	ir			•				-			•	178
The Yellow River		•	•	•		•				•	-	179
General Observations	I_		•		•		•		•	-		182
CHAPTER 5		、		•	•		-	· •	-	•		
SUMMABY AND CONCLU	ISION					-					* * 7	•
Bibliography		-	_			_					· • · ·	100
APPENDIX				•	•	•	•	•	•	•	•	104
INDEX		•		•	•	•	•	•	-	• ~	•	108
		•	•	•	•	•	•		•	-	•	100

INTRODUCTION

The problem of silt, as far as it related to canals, has been investigated on an extensive scale throughout India and more particularly in the Punjab ever since the days of Kennedy but that relating to the silting of reservoirs does not seem to have received much attention in this country. It is satisfactory to note, however, that the Central Board of Irrigation and Power (India) has included this problem as one of the subjects for investigation. A sub-committee was appointed by the Board to draw up a note on the factors to be considered for a systematic study of the silting of reservoirs.

In compliance with a resolution passed on the subject of Silting of Reservoirs by the Central Board of Irrigation in 1939, Appendix (Para 1), and the instructions issued by it, vide Appendix (Para 2), information about silting of reservoirs has been collected by the Poona and United Provinces (now Uttar Pradesh) Research Divisions regarding the old reservoirs in their states. The data collected for the existing storage reservoirs in the Bombay and Uttar Pradesh States as abstracted from the Annual Reports of the Poona Irrigation Research Division and from the note of silting on reservoirs by Shri B. P. Saxena, I.S.E. are given in Chapter 2. The data for some of the reservoirs in the Central Provinces and Berar (now Madhya Pradesh), Hyderabad and Baroda is also contained in that Chapter.

The problem has been subjected to a good deal of sustained scientific study in other parts of the world, notably, the United States of America. The Bureau of Reclamation hydrologists with the help of Geological Survey and Navy department are using the Navy techniques, which comprise under-water Photography, 'supersonic soundings and coring *etc.*, developed during war time to locate submarines and sunken ships and to chart the ocean floor, to probe the bottom of reservoirs. Some very valuable work has been done in Egypt in connection with the Aswan Reservoir, and in South Africa in connection with four reservoirs on the Sundays and Great Fish rivers. In the Punjab also, silt sampling has been done on the River Sutlej at Bhakra in connection with the Bhakra Dam since 1916 and on the Beas at Balehu dam site during the summer of 1939.

An extensive programme of silt investigations has been undertaken since 1946 by the Central Waterpower, Irrigation and Navigation Commission (now Central Water and Power Commission) in connection with the Hirakud and other proposed dams on the Mahanadi River in Orissa and the proposed dam on the Kosi river in Bihar and Nepal and later on some other rivers also.

A correct knowledge of the probable rate of silting of reservoirs is of vital importance to any undertaking requiring the construction of a storage dam. The height of the dam is determined by a consideration of the necessary useful storage and the additional capacity required for silt reserve. If a reservoir is constructed for purposes of irrigation, the silting, if not adequately provided for, may start depleting the useful capacity of the reservoir just when the areas dependent on it, approach their maximum development. This may, not only impair the financial prospects of the scheme, but may spell disaster to the colonies and communities which owe their existence and subsequent prosperity

(vii)

to such undertakings. In the case of reservoirs for flood control, the depletion due to silting will progressively reduce their flood absorption capacity and to that extent, expose the country-side to increasing flood damage. In the case of those for hydro-electric development, this depletion will interfere with the equalisation of supplies which enables the generation of the maximum of power for any given stream flow.

In view of the stakes involved, the subject of silting of reservoirs assumes great importance and justifies amply a programme of systematic and thorough investigation. Silt experiments should be undertaken and continued for a number of years at all the likely storage sites in India. Information should, at the same time, be collected from all existing reservoirs in India and other countries and carefully analysed.

A large number of dams have been visited by the Author since 1939 in the United States of America, Canada, Europe and Africa. The information gathered locally as well as that from published and un-published literature with regard to the silting of reservoirs in those countries has been included in this book.

The results of silt investigations carried out on the Sutlej, the Mahanadi and the Kosi rivers for the Bhakra, Hirakud and Kosi dams respectively, have also been included.

The literature referred to in the Bibliography has been freely drawn upon and referred to in the text.

CHAPTER I Catchment, Stream Flow and Silt

THE ORIGIN OF SILT

The term silt, as used in this book, is stream-born material derived from the disintegration of rocks. The main factors causing disintegration are the diurnal and seasonal variations in temperature, wind and rainfall and the chemical agencies in air and water. Disintegration, erosion, transportation and sedimentation are the various stages leading to silting.

Generally speaking, sedimentary rocks such as sand-stones, clays, and shales are subjected to much greater disintegration than igneous rocks. Forest and other vegetable cover hold the soil in place effectively against ordinary rains but are relatively ineffective in preventing erosion by intense rainfall.

The processes of disintegration and its extent in relation to geology of the catchments concerned have been well described by Herman Stabler (³⁵). According to him, two processes, viz. weathering (disintegration in place) and corrosion (the tearing away or placing in motion of disintegrated material), are involved in the origin of silt and the speed of the first of these processes is materially affected by the nature of the country tock. Igneous rocks, in general, are hard, dense, and crystalline and they weather slowly. The older sedimentary rocks are likewise relatively dense and offer resistance to weathering. The younger sedimentary deposits, particularly recently laid alluvium, are especially susceptible to rapid weathering. Consequently, other things being equal, regions of igneous and precarboniferous rocks are regions of clear water streams and regions of recent sedimentaries and valleys filled with alluvial deposits are most likely to give rise to streams heavily laden with silt.

Among the younger sedimentary rocks, difference of texture and cementation are reflected by differences in speed of weathering. Loosely cemented sand-stones and friable sandy shales are readily susceptible to weathering and corrosion and are prolific producers of silt. For instance, Holecek (¹⁴) has described that the tributaries to the right of the Slevakian Carpethian mountain carry lot of sediment since they come from the outer fly-ash zone and the tributaries from the left bring almost clear water since they travel through dolomite and limestone regions.

The chemical composition of rock material is a factor in the silt problem. Rocks, that contain high percentages of aluminium silicate, weather into clay with fine flaky particles readily susceptible to corrosion and water transportation. Regions of such rocks are likely to be regions of cloudy, although, not necessarily heavily silt-laden streams.

Vegetation and incidence of climate are other important factors in the weathering of rocks and in the availability of weathered material for water transportation. By disruptive action of roots and chemical action of organic solvents, vegetation aids weathering and adds to the volume of material suitable for transportation as silt and to the dissolved load of streams. By protection of the land surface from action of wind and water it retards or MSCBI prevents silting material from corrosion and thus tends to - avoid the overloading of streams with suspended matter.

Rainfall, if it comes in a series of erratic cloud bursts, will accelerate erosion and transportation of silt. If, however, it is gentle and spread evenly over the catchment area and over the seasons, weathering, erosion and transportation of silt will be reduced owing to the sustained vegetal cover made possible by such distribution and the stream supplies will be less heavily silt laden.

An arid climate will cause excessive weathering and torrential rainfall will carry this excessive weathered material and result in heavy though sporadic flows of silt in streams.

Snow-fed supplies do not appreciably add to the silt load of a stream but supplies derived from rainfall do, more or less, in proportion to such supplies. Glacial supplies are silt laden.

Steep hill sides will part with debris much more quickly than gently sloping ones.

The above factors are a general guide to the relative degree of weathering and corrosion in various types of catchments. For determining the rate of silting of any particular reservoir, a number of other factors have to be considered. These are the areas of the catchment basin, the annual run-off, storage capacity, the period of storage in relation to silt load of the stream, the location of sluices and outlet works and the method and purpose of release of supplies through the dam.

SILT LOAD OF STREAMS

The detritus carned by streams is of two kinds (a) suspended load, *i.e.*, silt carried in suspension by water in a stream and (b) bed load, *i.e.*, the material which rolls along the bottom of the stream by the action of flowing water. The relative proportion of these has been the subject of much controversy but no satisfactory figures are yet forth-coming. In most cases, the bed load is considered to be small.

Suspended Load.—The magnitude of suspended load is capable of fairly accurate measurement by standard methods of sampling and analysis. From a large number of experiments carried out in the United States of America $(^{12})$ it has been found that (a) a sample taken from six-tenth depth gives the mean percentage of silt in the vertical within the limits of permissible error : and (b) that the mean of the results obtained from three tests made at the centre of the section and at distances of one sixth the width from each edge of the stream, affords mean percentages for the cross section.

Similar experiments carried out in Egypt $(^{27})$ on the Nile at Halfa, Dakka, Aswan and Gaafra have indicated that (a) the clay and silt are fairly constant throughout a vertical, the variation being almost entirely in the coarser sand portion of the suspended solids, (b) the mean concentration at half depth bears a constant ratio to the mean concentration in the water passing the whole cross section of the river. This ratio comes to 0.984 with an average departure of 0.026.

Bed Load.—No practical means of measuring bed load have been devised. Fortier and Blaney ⁽¹²⁾ estimated the bed load of the Colorado River at Yuma as 20 per cent. of the suspended load. "Humphreys and Abbot put it at 11 per cent, for the mouth of the Mississippi. Follett from a study of the Rio Grande believed it to be 25 per cent. Davis, as a result of studies of San Carlos River at Costa Rica arrived at percentages between 1.7 and 7.1. Maddock and Borland (¹⁸) consider that the material transported along the bed may vary between 2 to 50 per cent. of the total silt transported. They are of the opinion that transport along the bed increases when the material is fine in composition, the material in suspension is less, the average grain-size of the suspended material approximates to that of bed material and when the bed either increases or decreases in depth; any change of any of these factors in the opposite direction tend to decrease the transport along the bed.

Stevens (²⁹) analysed certain data and worked out as a very rough approximation that in the Coeurd' Alene River at Rose Lake Idaho, the bed load and suspended matter were equal but that a ten per cent. error one way would account for the entire silt deposit as bed load and a ten per cent. error in the reverse direction would account for the entire silt deposit as suspended load only. According to him the bed load may be any where from 0 to 100 per cent. of the total load.

R. C. Hemphill (2^7) is inclined to believe from investigations in Texas Streams that the quantity of silt transported as a true bed load comprised **a** much smaller percentage of the total load than is generally assumed.

Simarka (27) from a study of the distribution of silt in a vertical (Figure 1)

Figure 1:-Mean distribution of total suspended matter in the vertical (Helfa 1931).

concludes that the bed load cannot be heavy. If the bed load were consider able and not all carried through the sluices of the Aswan Dam, one would expect a continual rise of the bed upstream of the solid part of the Aswan Dam, for which there is no evidence.

It will thus be seen that information about the relative proportion of bed load and suspended silt is meagre and very conflicting. As far as is known, no successful attempt has been made to measure the material transported as bed load. It appears, as stated by Simaika and Hemphill that the bed load is not really so important a factor as it is sometimes made out to be.

Of late, great activity has been shown in the United States of America in the study of bed silts as apart from suspended silts and in that of the mechanics of sediment transportation. Various types of samplers have been tried both for suspended and bed silts. A complete description of these is given in two reports of the Hydraulic Laboratory of the University of Iowa. These studies were planned and conducted jointly by the Tennessee Valley Authority, Corps of Engineers, Department of Agriculture, Geological Survey, Bureau of Reclamation, Indian Services and Iowa Institute of Hydraulic Research.

The Central Board of Irrigation (India) has also had this subject under examination and investigation for a number of years and is shortly issuing a separate publication giving detailed instructions regarding the measurement and analysis of detritus load in rivers and canals.

SILT DISTRIBUTION AND VELOCITIES IN A VERTICAL SECTION

From the silt graphs reproduced in Figure 2, Faris (¹²) concludes that there is no evidence of any direct relationship between suspended load and the velocity of water at the river stations under consideration. It is true, he says, that the higher the velocity, the greater the carrying capacity but since the capacity
load is not even approximately reached, the magnitude of silt charge carried must be a function of loading and not of capacity to carry.

Hoon (¹⁵) gives a comparative investigation of solid transport in the Mahanadi and Kosi Rivers, in India, in which he shows that the solid discharge of Kosi is 4 to 5 times greater than that of Mahanadi, this difference being attributed to the availability of silt in the Kosi catchment and the steepness of the gradient of that river and consequently of higher velocities. He indicates that in the Mahanadi River, the coarse and medium silt concentrations vary along the vertical depth of the river and increase from surface downwards. The average concentration points for the coarse and medium silts in the majority of cases lie near 0.55 or 0.6 depth, that for coarse silt being relatively at lower depths than for medium silt : the variation in discharge seems to affect silt concentration at all points along the depth, being low for small discharges and high for larger discharges.

From his experiments Venoni (³³) concludes that the addition of sediment to a clear flow causes the velocity to increase, the increase apparently depending on the size and amount of sediment in the flow. This effect reduces the apparent resistance or roughness co-efficient of a channel. The increase in the velocity, however, does not give rise to an increased sediment transporting capacity, since it is accompanied by a shear or drag at the boundaries.

SILT PERCENTAGE AND DISCHARGE

The greater part of the silt load of a stream is made up in advance by the process of weathering after a dry period, the first water that runs off picks up the weathered material and carries it into the stream. After the first flushing, the amount of detritus available for transportation must depend on erosion which can only be light, in view of the fact that regions of excessive erosion

form but a small part of a large drainage basin. This explains why in a rainfed stream the maximum concentration of suspended load occurs earlier than the maximum height of flood.

In the early flood months, when the river is steadily rising, the concentration is higher for the same discharge than for subsequent months when the river is steadily falling. The same opinion is expressed by Faris (¹²). According to him the maximum silt percentage by weight usually occurs prior to the maximum stream discharge Figure 3 (a) and (b). When samples are taken throughout a rise and fall in a stream, an increase is noticeable in silt percentage up to a certain discharge. A further increase in discharge is associated with a decrease in percentage of silt due to dilution. As the water surface recedes during the falling stage, the silt percentage is again increased.

Silt and discharge curves at Halfa on the Nile in Egypt (Figure 4) and at Bhakra on the Sutlej in India (Figure 5) show similar characteristics.

The river Nile in Egypt is fed by rains during the monsoon months as are the rivers in India, as may be seen from the following extract.⁽³⁵⁾

"The concomitant variations of the gauge readings at Aswan and Bombay rainfall found by Sir William Wilcocks and Sir John Elliot are explained because conditions favourable for an abundant Abyssinian rainfall are found in those that favour a strong Bombay monsoon ".

Figure 4 :- Discharge and silt concentrations at Halfa on the Nile in Egypt.

5-Figure 6 :- Sile discharge graphs of the Oolorado River.

Silt per ·~~

May

Discharge

ŧ

Silt per

Ğila

Nov

Öct 🕂

Sect

1921

Mar

Apr

60

40

20

ol

pe jan. ere Feb

`.

8

In his report on the Silting of Reservoirs, Edgecombe (¹⁰) remarks that there is lack of any relationship between percentage of silt and river discharges. Typical silt discharge graphs of the Colorado River for 1923 and 1929 are given in Figure 6 which supports the above statement. But in connection with the Colorado, it has to be remembered, as pointed out by Edgecombe, that this river is snow-fed during the months of May, June and July while cloud bursts are liable to occur in August, September and October.

According to Maddock and Borland (18) a correlation between discharge and sediment load is difficult when much of the discharge comes from groundwater in-flow or when part of the stream flow comes from run-off from melting snow and part from rainfall. Figure 6 is a very good illustration of the fact that in the case of snow-fed waters the silt concentration not only does not increase with discharge but may actually go down due to dilution. The snow water will wash down the silt in the river section occupied by the flood discharge but no higher. Rainfall on the other hand will wash down weathered material from all hill faces in the area of rainfall. The rise and fall of silt graph with that of discharge in the rainy months of August, September and October in Figure 6 illustrates the fact that the silt concentration of the rain fed streams generally varies with the discharge.

Vetter (34) reports that from the results of total load of Colorado river it appeared that in the coarser grades there was a fairly well defined relation-, ship between total load and discharge ; but as the material became finer the points scattered more and more and no relationship appeared to exist between the discharge and material finer than 0.01 mm. Vetter describing the suspended load of Colorado at Imperial Dam and Laguna Dam sites arrived at a conclusion that the suspended load constituted by far the major portion of the load carried by the river. The following reasoning was given to support that : " As a result of turbulence the water particles and with them the suspended solid matter are constantly mixed. In the course of this mixing a certain number of silt particles will strike the bottom of the stream and at the same time a certain number of particles will be torn loose from the bed by the boundary layer and thrown into the stream. If the silt-laden stream is in equilibrium, the intensity of the turbulence in the boundary layer must be sufficient to maintain a certain silt concentration in the layers adjacent to the bed. If this concentration is known it is possible to calculate the concentration of any other depth."

The quantity of suspended matter carried by a river usually varies considerably from year to year. The annual suspended load in small flashy streams is carried only during a small number of days out of the year and silt content of the water may vary considerably, within a short time, on the rising or falling stage of the stream. Figure 7 shows discharge plotted against concentration of suspended matter for a particular flood on Coon Creek at Coon Valley. The importance of careful and frequent sampling during floods is obvious from an examination of this curve; that is, if only a single sample were taken to examine the daily stream load, a sample taken at 5.40 a. m. applied to the mean daily discharge would give a load of 64 tons per day and a sample taken at 8-00 a.m. MSOBI would give a load of 22,700 tons per day, but by planimetering Figure 7, which is plotted from 21 samples, the true load is found to be close to 7,660 tons per day. Thus, it is seen that the reliability of the results is dependent largely on obtaining samples at the right time.

Figure 7:—Discharge and suspended matter relationship for Coon Creek at Coon Valley.

SOME HEAVY SILT CONCENTRATIONS

On the Elephant Butte Reservoir the flashy summer flood waters usually carry $4 \cdot 0$ to $10 \cdot 0$ per cent. and occasionally as high as 12 to 15 per cent. by weight of silt which is characterised by a high percentage of colloidal argillaceous matter. On the other hand the spring floods coming from the head-waters of the Rio Grande from the mountainous drainage area are supplied largely by melting snows, springs and normal run-off, and normally carrying the greater part of the total annual inflow, contain only 0.5 to 1.0 per cent. of silt. The difference between the silt concentrations of rain-fed and snow-fed supplies is again emphasized.

Similar heavy concentrations have been observed in the Roosevelt Reservoir where it is believed that the silt deposited in times other than floods is negligible.

The extent of weathering in a particular catchment is, other factors being normal, a function of time. A certain quantity of weathered material is made available for transportation during the year. If the rainfall is more or less evenly distributed over the period, this weathered material will be transported gradually and the silt concentration will be low. If the rainfall is torrential and erratic, the entire run-off will be in the form of a few freshets and the silt concentration will be very heavy. This explains the heavy concentration at the Elephant Butte and Roosevelt Reservoirs. But this heavy silt concentration during flashy floods should not be interpreted as an indication of abnormal silting. The rate of silting will be governed by the area of the catchment.

Silt concentrations of 30 per cent. to 51 per cent. by weight have been recorded from some of the rivers in China.⁽²⁹⁾ For instance at Shenhsien on Yellow River the maximum concentration of silt was 46 per cent. by weight ⁽²⁸⁾.

RATE OF FALL OF PARTICLES

The process of silting up in a reservoir depends upon the rate of fall of the different particles. Considering the sedimentation process Lane (17) suggests that the particles as they are subjected to less turbulence in a reservoir, would have medium settling rates which are slower than that of sand particles. According to him the settling rates of the sediment particles carried by any given stream covers a wide range, the ratio of the diameter of the largest particles to the smallest may, in some cases, reach an order of magnitude of 1,000,000. Sediments having a high settling rate act very differently from those of medium settling rate and those of low settling rate. In this connection a reference to the ultra-mechanical analysis of silt reported by Hoon(15) are of special interest.

THIXOTROPHY AND DENSITY CURRENTS

The phenomenon of thixotrophy plays an important part in transport of materials, since this can turn a mixture of water and solid material into a heavy viscous jelly like hquid mud (which if undisturbed, behaves as a solid) in which even very coarse materials float. This phenomenon may provide a partial explanation to the surprising power of transportation shown by certain torrents, causing what is called "Lave" in French. Importance may sometimes be attached to this in the upper portion of catchments where affluents are torrential in character. Mention has been made by Fox (¹³) as to how by the phenomenon of thixotrophy huge boulders and blocks of granite were transported in streams of Cherraponji (Assam), which observation was made by a geologist.

According to Lane (¹⁷) the density currents occur along the sloping bottom of a lake and are due to the fact that the density of the sedument-laden water is greater than that of the clear water. These currents may flow scores of miles along the bottom of a reservoir, underneath the clear water without mixing appreciably. The material in these density currents will be composed mainly of the clay-sized particles with possibly some of the smaller of the sult sizes. Duquesnois (⁸) and Raynaud (²²) have conducted experiments to study the utilization of underflow for the outflow through discharge walls and also to determine the laws governing the flow of currents of muddy water through reservoirs. A trial has been made to make a comparison between underflows and free surface-flows. Drouhu, Mallet and Pacquant (⁷) have examined this matter thoroughly and from their observations of the process of sedimentation, they have pointed out a number of factors which influence the rate of sedimentation of basins and the possibility of washing away of the gravel.

SETTLING OF SILT IN RESERVOIS

What happens to the various grades of material carried by a river when it enters a reservoir which is full? Reminieras and Braudeau (²⁴) have shown that the coarser materials moving along the bottom or deposited on reaching calm water are later picked-up again by the movement so as to form a sort of delta with a sheer front downstream, in cross-section straight and horizontal, in longitudinal section concave and extending up to well above the highest water level of the lake. The finer materials are carried further into the lake, either by natural gravitation or by density currents or by under flows.

Maddock and Borland $(^{18})$ have reported a combination of factors leading to sediment deposition either in the upstream or downstream of reservoir. The factors which favour upstream deposition are (a) reservoir storage being at high elevation *i.e.*, full, (b) heavy sediment concentration with a large portion of load being coarse-grained, (c) large outlets at low elevation, (d) much vegetation at the head of the reservoir, and (e) constrictions in the reservoir between the head of the reservoir and the dam. Factors leading to sedimens deposition in the downstream are (i) reservoir storage usually at low elevations particularly during floods, (ii) sediment concentration low with fine-grained particles (iii) a type of reservoir having a short length and having a steep slope to the original valley floor, (iv) no vegetation at head of reservoir and (v) small outlets at a high elevation.

Lane suggests six possible types of action depending principally on the particle size of the sediment involved in sedimentation of reservoirs (17). These are the action of coarse sediment, ordinary deposition of suspended sediment, action of density currents produced by the settlement of suspended sediment, action of common form of density currents, the sloughing of deposited sediment and colloidal suspension.

Rao and Raghavachari (²¹) have attempted to study the problem of silting up of the reservoirs formed across rivers, assuming a sedimentation theory. According to them the silting up of a reservoir takes place in three stages viz., (i) silt is formed completely up to the sill level of surplussing sluices or spillway, (ii) the river forms a regular channel, the width and depth of which will be so regular that there will be neither scouring nor silting up of the course, and (iii) the rate of deposition of silt is very slow and hence the reservoir will have longer life.

The Japanese Hydrologists (28) lay stress on the "relief energy"—which is defined as the difference between the highest and lowest altitude in a specific area—which bears a greater significance as a factor to the configuration of the mountain land which in turn is a factor of sedimentation. Accordingly as a cause to create sedimentation, the factors relative to configuration has a more marked effect than the nature of rocks and their kind and composition in the catchment areas.

VOLUME-WEIGHT RELATIONSHIP

In considering the life of a reservoir we are concerned not so much with the weight of silt deposit as with its volume. The probable rate of silting of proposed reservoirs can be estimated in two ways. One is by taking representative samples of water from the stream concerned during the period it carrics silt, determining the concentration by weight and converting it to volume in foot acres. The other is on the analogy of similar existing reservoirs which have had their silt deposits surveyed over a sufficiently long period. The second method, though the more direct of the two, is subject to limitations, as each stream has its own catchment characteristics. Estimates have, therefore, to be based on the silt concentration by weight as obtained from sampling. It is, thus, essential to know the relationship between weight and volume of silt so sampled. According to Maddock and Borland (¹⁸) the weight of a cubic foot of sedument appears to be definitely related to the size of the sediment particles modified by the method of reservoir operation and the age of deposit.

The best known experimental work on this subject has been done by the Department of Agriculture, United States of America, as reported in their Technical Bulletin No. 382 (¹²) on the Silt Load of Texas Streams, by Orville A. Faris. Of all samples tested in this connection the leanest containing 18.7 pounds of dry material per cubic foot of deposit, possessed prominent colloidal characteristics. This sample was taken immediately above Lake Worth Dam on the West Fork of Trinty River. The densest sample was the cobble like formation containing 106.1 pounds of dry material per cubic foot of deposit taken from the Medina Reservoir. Between these two extremes, all intermediate values have been met with at one place or the other. The general remarks of Faris, may be quoted as follows :

"In a reservoir used for flood control only, the water is stored temporarily and the deposited material, subjected to shrinkage during long periods of time, has an average ultimate weight of dry materials per cubic foot of deposits approximating 90 pounds; in the average reservoir for storage of water for future use, dry periods and increased demand for water result in lowering of the water surface and exposure of the silt deposit for periods of time, resulting in an average ultimate weight of dry material per cubic foot of deposit approximately 70 pounds; and in a power reservoir where the head is maintained practically constant, exposure and the resulting shrinkage does not take place and the average ultimate weight of dry. material per cubic foot of deposit approximates 30 pounds ". Faris recommends 70 pounds for the average ultimate weight of dry material per cubic foot. For weights of some of the individual samples studied by Faris see Tables III and VI (Chapter 2).

For the Boulder Reservoir on the Colorado, the weight of dry material per cubic foot of deposit has been accepted as $85 \cdot 9$ lbs. While discussing the rate of silting-up of the Vaal Dam, McCrae (¹⁹) gives a useful account of the method adopted in his calculation. He states "The mud which settles in dams has a specific gravity which depends mainly on the consistency of the mud which is conditioned by the amount of water in it. Specific gravities as low as $1 \cdot 3$ have been recorded for such deposits but usually higher values have been obtained. As a rough approximation a specific gravity of $1 \cdot 5$ might be taken and if it be assumed that the true specific gravity of the solid matter (clay and sand) of the mud is $2 \cdot 6$ then the mud would be a mixture of 54 % of solid and 46 % of water and on this basis one ton of the dry solids would make 40 cubic feet of deposited mud. It has been shown that the weight of the dry solids deposited in the dam in 8 years is approximately $20 \cdot 76$ m. short tons and this would produce about 830 m. c. ft. of mud which is equivalent to about 19,000 acre feet.

RATE OF BILTING AND CATCHMENT AREA

The most important single factor in determining the silt yield of any catchment is its area. The silt characteristics of catchments vary within very wide limits. The Columbia River above the Grand Coulee Dam, with a catchment area of 74 thousand square miles and mean annual run-off of 80 million footacres is believed to run practically silt free. The River Nile above the Aswan Dam carries approximately 100 million tons of silt per year but the silting in the reservoir above the Aswan Dam is negligible owing to the large sluicing capacity at bed level and to storage capacity being only 6-7 per cent. of the mean annual runoff which enables the requisite storage to be obtained during the period of low silt concentration. These are extreme cases but the rate of silting in the other major reservoirs, dealt with later on, is, more or less, of the same order, expressed in foot-acres per 100 square miles of catchment area, inspite of a variety of combinations of geology, topography, yegetation and rainfall, (Table XXXVII).

In large catchments, rock formations may vary within wide limits but these factors seem to balance up to give similar annual silt yield per 100 square miles. Wide divergencies in rates of silting can generally be explained by , artificial interference with the normal characteristics of the catchment such as construction of check dams in tributaries, large scale afforestation, denudation; etc. Thus on the Elephant Butte Reservoir with a catchment of 26,312 square miles and the Roosevelt Reservoir with a catchment of 5,760 square miles, the annual rates of silting work out to 61 and 79 foot-acres per 100 square miles of catchment respectively. In both cases, the storage capacity is more than the annual run-off, so that all the silt brought down the catchment is retained in the reservoirs except small quantities which may find their way down through the outlet works. These two appear to set the upper limit. The annual rate of silting per 100 square miles of catchment in the other reservoirs is materially very less except in a few abnormal cases.

The volume of material eroded, transported and deposited varies greatly in accordance, with local conditions. Cassidy (²) notes that during a single flood some 405 foot-acres were torn away from an area of 7.7 sq. miles. In the same catchment the volumes involved vary from 1-20 foot-acres per year per square mile of catchment with peaks reaching 3-4 times as much. The figures for transportation given by Hoon (¹⁵) for the Mahanadi and Sapt Kosi are 92 foot-acres per 100 sq. miles and 518 foot acres per 100 sq. miles respectively indicating that the Kosi brings with it, about six times as much silt as the Mahanadi. For the Yellow River in China the silt yield is about 445 foot-acres per 100 sq. miles of catchment.

METHODS AVAILABLE TO COMBAT SILTING UP OF RESERVOIRS

No suitable method of combating the silting has been evolved except, to provide a larger capacity than what is required or by increasing the capacity of the reservoir by additional structures.

One of the most effective operational techniques where it is applicable, consists in so conducting operations as to disturb the natural movement of solid materials along the valley as little as possible. This presupposes that relatively small proportion of the river discharge is to be utilised. Such techniques have been responsible for the negligible silting of Aswan Dam. The control of erosion in the catchments as a measure to combat silting up, is effective in large catchments.

Duquesnois (8) and Raynaud (22) suggest the most economical and effective way of reducing sedimentation, consisting of the utilization of underflow. for the outflow through discharge valves of the silt which usually gathers in the bottom of reservoirs. The problem is still to be studied.

Dredging or suction dredging though an expensive method has been studied in detail by Drouhin, Mallet and Pacquant (?) with the idea of making use of the filled land for cultivation at a later stage. Holecek (¹⁴) stressing upon the careful operation and regulation of gates, shows that by suction dredging the deposition of silt will not occur. Nizery and Rousselier (²⁰) also refer to the value of such dredgings. For the protection of lateral accumulations along the rivers heavily loaded with alluvia, reference may be made to the methods reported by Holecek (¹⁴) and Ehrmann (¹¹). Ehrmann suggests flushing by the dam, designing the construction of the dam and to have a guard wall and pit at the foot of the intake racks, which can be connected with the downstream side by a bottom gate.

Cassidy $(^2)$ reports the two general types of control structures developed for debris problem of the Los Angeles area (a) for intensely developed debris cones, a debris basin near apex of cone with concrete channel carrying clear water from the basin through developed area, (b) for the cones not intensely developed, a system of groins and levees on the upstream part to confine flow to a fixed channel and funnel it into a concrete channel through the developed area.

15

CHAPTER 2 Silting of the existing Reservoirs in India

A. STORAGE RESERVOIRS IN BOMBAY STATE NATURE OF DATA

A few water samples are taken each year in certain selected reservoirs during the flood season to estimate the amount of silt in flood waters prior to its entry into the pond and at its exit via the waste water. These are taken as far as possible, on the lines recommended in the Appendix. The samples could be taken only for one or two floods during each season as several difficulties have to be encountered in the work. The chief difficulty is the high velocity of water, frustrating every attempt to take samples on exact alignments or very near thereto and at the required depths particularly during high floods. Some floods go unobserved as it is not possible to anticipate their intensity or peak.

Thus the samples obtained can give only a very approximate idea of the silt content entering or leaving the reservoirs. Capacity surveys appear to be the only method of watching the rate of silting of existing reservoirs and these are invariably resorted to in the Bombay State wherever there is any doubt that the usable capacity of a reservoir is diminishing rapidly.

Some observations were also made in 1941 to ascertain :---

- (i) weighted mean diameter of silt particles suspended in the flood waters passing over the waste weir, and
- (ii) the profile of deposited silt in the basin of tanks and lakes.

These were not continued later as they did not lead to any useful result. It was found that the silt collected from the waste were was very fine (of the order of 0.005 mm. dia.) and flocculated during the period of travel of the sample from the lake to the laboratory.

A few observations on the volume weight relationship of silt on Lake Fife and Dhupdal Reservoir were, however, carried out in 1943 and 1944 respectively.

An abstract of the information regarding silt and connected data is given in Table I. Some remarks regarding individual reservoirs are given below.

District .	• •• •	••	•• 1	••	Belgaum	
River	• ••	••	<u>.</u>	••	Ghataprabha	
Catchment area .		•• (••	••	1,080 square miles	
Nature of catchme	ont	••		••	Cultivated area in trans tract	ition
Rainfall		••	!	••	23 inches	
Mean annual runo	ff	••	` 	·	2,754,000 foot-sores	
Height of dam ,		••	••	• ••	27 feet -	
Storage capacity .			•••	⁵¹ • •	33,705 foot-acres	
Years of capacity M8CBJ	surv9ys	 17	••	t;`	1891, 1911, 1924	1

DHUPDAL RESERVOIR (NEAR GOKAK)

will and connected data of some existing	Silt and	connected	dala	of	some	existing
--	----------	-----------	------	----	------	----------

						·····	-			
1	· · ·	Reservoir	*** 			Storage	Capac	uty .		·
Sør. No.*	District	Raver .	Name '	Catch- ment area (sq. ^ miles)	Height of dam (heet)	Foot- t acres	Fer- cent- age of annual runoff	Per sq mile of catch- ment (ft.	Mean annual rainfall (inches)	Mean Annual runoff '(foot- acros)
(1)	(2)	(3)					<u>ь</u> ,	acr(#)),,, 	· · ·
147	Belgaum	Chata.		(0)	(6)	(7) ['	(8)	(9)	(10)	(11)
		prabha	propost	1,080	27	33,705	1.2	31 2	23-1	2,754,000
148	Sholapur	Man	Maswad Tank	480	8 Ó	59,742		¹ 124	20-2	
149	Poona .	Mutha	Lake Fife (Kha- dakwasia Dam)	196	102 5	, 90,086	.1 8·9	460	40 (dam site)	1,009,800
150	 Ahmodnagar	Hanga	Visapur Tank	159	84 (max)-	27,96I (1927)	103	176	250 (ghats) 20	29,600
A 61	Sholanur				num)	30,509 , (1933) 	7	-	4 1 1	5
152	Nasik	**	Ekruk Tank	159	76	72,599		457	26-4	1 ++1
153	Satara	Darna	(Darna Dam)	156	· 94	178,212	~'31	1,141	125	568,572
154	Satara	ICIA	Nebr Tank	596	74	11,227	, . .	189	25 3	••
155	Khandesh	** D	Mayani Tank	51-7	57-3	4,317	••	835	- 21-3	
		raplets	Mukti Tenk	34-2	65	7,862	. 	,230	20-6	
156	Bijapur	••	Muchkundı Tank	26	60	14,791	· • •	j 569.	23-2	,5 ••
107	Abmednagar	Sina .	Pimpalgaon Tank	24	34	91 4,473	R	186	24	τ ¹ 7 μ
159	Satama		Matoba Tank	20	59	5,258	×4.	263	16-1	. 1135
160			Pmgli Tank	20	53-5	4,408	÷.	220	18 6	19 - 12 - 19
160	Neak	•	Koregaon	7		2,404	· • • • •	343		<u>₽</u> +4 ^r
1601		•••	Chankspur	100	101	35,527	1 1	••		-
160			Panel Tank	29	96	13,912	.		, •-	+ f + +
1600	Poona		Shreen 1	17.3	62	2,859	••		а т	**
160	· · ·	-	Shetal	23 5	52-3	9,200	•-,	,,	· ••	••
160	Sholapur		Tank	2-33	66	1,359			••	••
160	3		Ashta Tank	27.5	63-7	9,867	•• -		•	••
160	Abmednagar		Bhande-Ja-	9.22	57.7	32,388	••	••••	Эг г. + \$,1	••
	1 The Serial Non at			47	270	278,116		-++	,- -	

continuation of those in Table XXXVII.

,

170 7 30

. E I

dams in the Bombay State

Run- off	Years	of Cap Survey	acity		1	Silt deposi	tod			-
sq mile of catch- ment (foot- acres)	First	Last	Period in years	Total Foot- acres	Foot- acres per year	Percent- age of original capacity	Annual Percent- age of annual runoff	Per 100 sq. miles of catch- ment area	Remarks	References
(12)	(13)	(14)*	(15)	(16).	(17)	(18)	(19)	(20)	(21)	(22)
2,550	1891	1924	33	4,890	148-2	0.44	0 0054	13.7	Cultivated area in tran- sition tract with low	}
	1888	1943	55	24,452	444-6	0-74	ļ	92.3	Catchment in Satara	
5,152	1870	1940	70	19,140	273-4	0-30	0.027	139·3	Hilly terraced fields with good rainfall.	1
186			9	1,515	168•3	0 55	0.57	105.7	Catchment consists of black soil and rainfall occurs in occasional heavy torrents.	
••	1870	1923	53	12,536	236-5	0.33		148-7	Black soil tract.	 Report
3,645	1910	1941	31	1,565	50-5	0.028	0.0089	32.4	Catchment rocky and	On Irrigation
•••	1895	1942	47	1,722	36 6	0-33		62-0	Black soil tract.	and Allied
••	1873	1942	69	3,582	51-9	1.20	. .	100-3	Catchment in Satara	Poona, 1944.
••	1869	1927	58	514	8-9	0-11		26-2	Famine sres, Hilly catchment with low	
	1880	1944	64	1,190	18-6	0.12	{	71-2	Famine area. Black soil tract. Tank rare-	.
	1912	1941	29	283	9.7	0.22		40-2	Famine area. Tank rarely overflows.	:
••	1884	1941	57	1,042	18-3	0.35		91-5	Mostly supplied by Lake Fife water.	
••	1878	1942	64	1,997	31-2	0-71		- 156-8	Black soil. Tank rare- ly overflows.	J
	1891-92	1925	33	487	14-8	0.61	••	211+4	.	C.B.L. Pab- lication, 1941.
••	• ••			1,918		••	{· ·	••	Hilly catchment	
••	••	••		1,974	· ••	••	••	••	t - a " , ,	1
••	**	••		134		•••	••	••	به بر ریسانی	
••	••	••	••	1,013				••	· · ·	
	••	••	:-	••	••	{ ••		••	••	•
••	**	••		506					Hilly catchment	
•••			••	10,748		••			Soily and Murumy catchment	
••	••	i ;:		21,252	••	••	ļ		Rocky catchment	l

During 1941, samples from three sites—ten miles upstream, five miles upstream and near the dam—were taken on two days in August. The variation in the silt content was from 0.14 to 0.40 parts per 1,000 parts of water by weight. The results of the first flood appeared to be inconsistent, while the second flood showed that the amount of silt deposited in the lake was 0.02 parts per thousand.

In 1942, the variation was 0.10 to 0.80 and two out of the three floods showed a tendency of the dam to silt up (average 0.035 parts per thousand).

Four sets of samples were taken in 1943. The first of July flood was heavy and apparently the silt deposited in the reservoir previously was scoured out by the flood. The subsequent three floods, which were ordinary, showed little silting. The average silt content was 0.088—variation being from 0.05 to 0.21(1.7 recorded on one day near dam being exceptional). The observations show that conditions during floods of various intensities are different. During the same year silt may be scouring or be depositing and the present method of determining silt content during various floods does not give any correct idea of the rate of silting.

River Cross Sections

Cross section taken near the weir showed that between the years 1890 to 1940, the original straight course of the river near the right flank has altered. The river has shifted to the left bank, with the result that silt is being scoured from the left bank and deposited on the inner side or the right bank.

The cross section at entry and in the ponding limit did not show much change, except a slight deposit of silt on both sides.

Rate of Silting

Table II gives the results of silt surveys carried out in the years 1891, 1911 and 1924.

•		Silt deposite	d in foot-a	cres		Silt de-	
Period of record	Years	During period	Per annum	Cumula- tive total	Catchment area (square miles)	foot-acres per 100 square miles of catchment area	
1891-1911	20	3,972	198.6	3,972		18.4	
1911-1924	. 13	918	70~6	4,890		6-5	
1891-1924	33	4,890	148.2		1,080	13.7	

TABLE II

Volume-Weight Relationship of Silt

Samples of silt of two categories were taken from the Dhupdal Reservoir in 1944. Six samples were taken one foot under water from both the banks and as many corresponding samples 10 to 15 feet above the water edge. The densities of the samples are given in Table 111.

TABLE III

Volume-Weight Relationship of Silt Samples taken from Dhupdal Reservoir

			Inside water	10	10 to 15 feet above water edge			
S	ample l	No.	Dry weight/ volume	Sample N	ło.	Dry weight/ • volume	Wet weight/	
			(Pounds per • cubic foot).			(Pounds per	 cubic foot) 	
3	••	••	78.9	14	•••	75.8	109-1	
2		••	64.2	2 A		68·4	99-6	
3	••	••	62 · 2	3A	••	64 ·2	98-9	
4	••		67-8	4A		62.5	· 92·0	
5	••	••	61-4	5A		48-3	80-1	
6		••	67-3	6A ,		58-6	· 82·6	
Mee		,	67.0	Mean		63-0	93.7	

The mean density of these samples is $67 \cdot 0$ lbs. per cubic foot for those under water and $63 \cdot 0$ lbs. per cubic foot for those above it. This may be compared with the dry weight of silt reported in the case of Lake Fife, viz., $52 \cdot 7$ (under water) and $63 \cdot 4$ (outside it).

Remarks

ı.

The catchment is in the transition tract as in the case of Lake Fife but it has a low rainfall. The rate of silting per 100 square miles of catchment is therefore, low.

			•			•
District	••	••		••	••	Poons
River	••	••		••	• •	Mutha
Catchment area	••	••	••	••		196 square miles
Nature of eatchn	1085 ·	••	•••	••	••	Hilly terraced fields
Height of dam	••			••	••	102.5 feet
Storage capacity			••		••	90,086 foot-acres
Rainfall	••	••	••	••	••	250 inches (ghats)-40 in hes (Dam site)
Mean temperatu		**	••	••	••	75°F
Mean annual run	off	••	••	••		1,009,800 foot-acres
Type of flood	• •	••	••	••	•• -	Concentrated
Years of capacity	y surveys		, 	••	••	1870, 1904, 1940

LAKE FIFE (KHADAKWASLA DAM)

Suspended Silt Samples

The results of silt samples taken during floods are given in Table IV.

	Silt in parts per the	ousand by weight	-			
Year (1)	Entering lake	Leaving lake	Difference of Columns (2) and (3) (4)	Remarks - (5)		
1941	0.209 (Range 0.09-0.43)	0.103	0.106	Average of siven readings.		
1942	0 · 197 (0 · 060 · 83)	0-075	0-122	Average of two readings.		
1943	Samples not taken	•	{			
1944	0-500	0-230	0.270	One reading.		

TABLE IV

This gives an approximate idea of the intensity of silt entering and leaving the lake during floods and it would not be correct to work out the quantity of silt deposited in the lake from this.

An examination of the diameter of the silt leaving the waste weir in 1941 showed that only colloidal silt was carried over, while most of the suspended silt was deposited in the lake.

Rate of Silting

. The Silt surveys were carried out in 1870, 1904 and '1940 and the results are set down in Table V :---

	Period of record		,	Silt dep	osited in for		Silt de- posited in foot-acres per 100 square miles of catchment area	
			Years	During Per period annum		Cumula- tive total		
	1870-1904		34	16,432	483	16,432		246.4
	1904a1940	••	• 36	2,708	75	19,140		38-3
ĸ.	1870-19 4 0	••	70	19,140	273	<u> </u>	196	139-3

TABLE V

Volume-Weight Relationship of Silt

Samples to determine the density of silt under water and outside it were taken in 1943. The results are given in Table VI.

TABLE VI

• •

Volume Weight Relationship of Silt Samples taken from Lake Fife in 1943

Malkhed Village	Wet weight/ volume (Lbs. per cubic foot)	Dry weight/ volume (Lbs. per cubic foot.)	Difference of Columns (2) and (3)	Moisture percentage
(1)	(2)	(3)	(4)	(5)
A.'Silt exposed for a long time 300 feet away from the water edge in the lake	82-1	63-4	18-7	22-8
B. Silt newly exposed on the edge of water	83-8	61/1 ¹	22-7	27.0
C. Silt under water	97-4	52.7.	44.7	45-9

It is seen that under water a cubic foot of silt weighed about 97 lbs. and the weight of moisture contained in it was 45 lbs.

Remärks

The catchment is in the transition tract consisting of cultivated lands with good rainfall. Silting is, therefore, more than in the ghat storage (Darna Dam).

LAKE BEALE (DARNA DAM)

'	District '	<i>.</i> .	·** ••	15. 1 44	1.1.4.4	fe e	Nasik	
B^{\pm}	River 1.	• • • '	1.1.4	••	••	á.,	Darns	
	Catchment area	••	••	••	••	**	156 square miles	
	Nature of catchi	nent		•••	••	••	Rocky and hilly	
	Rainfall	••	- #-#	••	••	••	125 inches	
	Temperature	••	••	7 89	••	• # #	88.8°F., (maximum), (minimum), -	66•7°F.
	Mean annual ru	10ff -	••	• ••	- ••	••	56,3572 foot-acres -	
	Type of flood .	•• <	· , ••		••	••	Distributed	
	Height of dam	•• ,	••		••	••	94 foet	
	Storage capacity	<u>^</u>	• •	••	••	••	178,212 foot-acres	
		_r(1	•				
	Years of capacit	y BUL	veys	••	• •	••	1910, 1941	
		61		A C	•			

Suspended Silt Samples

In 1941, only one sample was taken in August. This showed that the silt content near the dam was 0.1 part per 1,000 parts of water by weight. No samples were taken in 1942.

The flood in July 1943 was heavy and the silt content in the Darna was also exceptionally high, (9.84 parts per thousand at 6/10 depth near Ghoti). The average silt content, exclusive of this heavy flood (2 samples taken in August) was as below and showed a silting tendency:----

(Silt o	ontent in	parts pe	r 1,000	parts of	water)	
	•	•			Surface	6/10 depth
Near Ghoti (at entry)	•• '	•• •	••	••	0-654	3.66
Near Dam	•• .	••	••	.	0.081	0.062

During 1944, monsoon samples were collected twice in August and September, the former flood being the bigger of the two. The average silt content varied from 0.052 parts per thousand parts near the dam to 0.066 about two miles above it. The silt content at entry varied between 0.024 to 0.061parts per thousand parts. The silt content was low with little tendency to deposit.

Silt Surveys

Silt surveys were carried out in 1910 (at the time of construction) and in 1941. The silt deposited during the 31 years works out to 1565.4 foot-acres, i.e., 50.5 foot-acres per annum. That works out to 32.4 foot-acres per 100 square miles of catchment area or 0.028 per cent of original capacity per year.

Remarks

The Darna is a ghat-fed reservoir bringing low amount of silt from its rocky and hilly catchment. The rate of silting is, therefore, low. Some silting that has occurred is in the lowest reaches of the lake.

NANDUR MADHMESHWAR WEIR

Catchment area ...

M^s in a **1,650 square miles**

This is a pick-up-weir built lower down across river Darna on which Darna Dam is constructed. The silt contents at entry and near the weir in different years were as under :---

				At entry	Near weir	Remarks	
1941		••		• ••	0-290	Average of 2 samples "	
1942	••	••	••	0.240	0.127	One sample	
1943	••	••	••	0·131	0-111	One sample	
1944	••	• •	••	0.391	0 • 236	Average of 2 samples	

(Silt content in parts per 1,000 parts of water)

The average silt content in this basin is more than that in the Lake Beale above Darna Dam which forms the storage of this pick-up-weir. This is due to the fact that this drains, in addition, areas in the plains, with level, cultivated black soil.

5

There is a heavy silt deposit in the ponding limits of the basin.

VISAPUR TANK

District	••	••	•• ••	••	••	Ahmednagar
River	••	••	••		••	Hanga
Catchment area	••			• ••		159 square miles
Nature of catchment	••			••		Black soil
Mean annual rainfall		••	••*			20 inches
Mean annual temperat	ture	••	••			83 5° F.
Mean annual runoff				••		29.600 foot-acres
Type of flood	••	••				Concentrated
Storage capacity	••	••	••	••	••	27,961 foot-acres (in 1927)
					,	30,509 foot-acres (in 1933)

Suspended Silt Samples

Silt content of flood waters in different years was as under :--

				Silt in part sand by	s per thou- weight	Difference of	•	
	Yeaı			Entry	Head- works	(2) and (3)	Rømarks	
·	1			2	3	4	б	
1941	••	••	••	1.700	1.760	0.060	One observation.	
1942	۹.	-,	••	0.783	0.668	0.115	Average of two observa- tions.	
1943	••	••	••	0-395	0.084	0.311	One observation-maxi-	
1944	••	••	••	0.766	0.213	0•553	One observation-no discharge over the waste weir.	

TABLE VII

The silt content in the Hanga river which is in the heart of black cotton soil is much higher than that of the hilly Darna river. The catchment has an average rainfall of 20 inches but this occurs in torrents and the floods are concentrated. The result is that erosion is heavy and silt content in the flood waters very high.

Rate of Silting

The results of silt surveys show that the rate of silting per year is 168 foot-acres. This works to $105 \cdot 7$ foot-acres per 100 square miles of catchment or 0.55 per cent. of original capacity per year.

Remarks

Silting in tanks is generally rapid as they rarely overflow and practically the whole of the silt brought down by the rain is deposited. The catchment consists of deep black soil and rainfall is occasionally heavy. MSOBI

25

PIMPALGAON TANK

District					**	••	. Ahmednagar	
River					••		Sina	
Catabra	*	••		• -			24 square miles	
Cateman	10 8100	••	••	••	••	••	Muramy (decaved	
Nature of catenment		ent	- ••	• •	••	• •	trap)	
TT • 14 -4			Ł				34 feet	
Height O	(qam	••	••	••	• •	••	4 472 foot-acres	
Storage c	apacity	••	••	••	••	••	4,415 1000-00100	
Ramfall	••	••	• •	••	••	••	24 inches	

Description of the Tank

The Pimpalgaon tank is situated on the river Sina, along the Shundi Wambori road north-east of Ahmednagar, and is used for water supply of the Ahmednagar town. The catchment is *muramy* (decayed trap) about 24 square miles in extent. Rainfall is limited to 24 inches and the tank rarely overflows The length of the earthen dam is a little over a mile and its height in the valley 34 feet.

Capacity Surveys

The original capacity when the tank was constructed in 1922 was 4,473 foot-acres and as surveyed in 1941 it was 4,190 foot-acres, giving a total silt deposit of 283 foot-acres during 29 years. This gives a rate of silting per year of 9.7 foot-acres or (0.215 per cent of original capacity or 40.2 foot-acres per 100-square miles of catchment area.

_The silting has been compensated by raising the full supply level by a foot.

Mode of Silting

Detailed data about the capacity surveys carried out in 1912 and 1941 is also available for this tank. Figure 8 is a plan showing contours for 1912 and 1942, and Figure 9 gives cross sections along lines AB and CD. These show that the main valley has completely silted up in the lower portion (cross section AB) upto sill level, viz., R. L. 2234.0. Silting has extended backwards along the main gorge (valley) up to R. L. 2240 and a thin layer of silt must have been deposited even upwards. But there was little silt deposited on the sides of the valley and there was on the contrary a tendency to scour as can be seen from the (1941) dotted contours of 1912 receding above the full line contours of 1941. In contrast to the silting up of the main gorge in the lower reach, the upper reach—broad to start with—appears to have been eroded sharply into a narrower gorge. The channel to the right changed its old circuitous course and took a straight run. The old bed was naturally silted up. These statements are better understood by a reference to the longitudinal section of the channel (Figure 9). It has silted up in a horizontal layer upto R. L. 2235, i.e., just above the minimum water level in hot weather controlled by sill level. Silting extended upwards to R. L. 2244 with a slope of 1 in 317, which is fairly steep. R. L. 2235 and 2245 represent the limits of variation, the minimum water level before the monsoon and the normal water level thereafter. Silt brought down by the first storm is evenly dropped within the permanent hot weather ponding limits. It is subsequently dropped at different levels as the water level rises in the monsoon.

Figure 10 shows the area in square feet of each contour determined at the time of capacity surveys in 1912 and 1941. It is seen that the area of contours upto R. L. 2244 has decreased due to silting, beyond this, the area has increased due to securing.

Figure 10 :- Pempalgaon Tank-Graph showing silling surveys, during 1912 & 1941
Remarks

The silting has occurred in the dead water zone below the sill level and has not affected the useful capacity appreciably.

, GENERAL OBSERVATIONS

The catchment area of Lake Beale (Darna Dam) is in rocky tract and there is very little erosion. The rate of silting is, therefore, low.

Dhupdal and Lake Fife are both in the transition tract with terraced fields but the latter has much higher rainfall. The result is that Lake Fife has a silt deposit as high as 139 foot-acres per 100 square miles of catchment, while Dhupdal has only 14 foot-acres.

Silting in tanks is generally high as they have enough soil in the catchment area and the tanks rarely overflow. The rainfall is low but there are occasional heavy storms with consequent high erosion. The reduction in capacity of the tanks and reservoirs is generally brought about at the rate given below :---

Particular	Number of years	Percentage reduction-in reservoir capa- city
l. Reservoirs	24	9.20
2. Tanks with hilly catchments	48	8.70
3. Tanks in plains with muramy and soil catchments	60	36-00
4. Tail tanks	60	19 00

Depending upon the data of construction and the nature of the catchments the capacities of tanks with soily catchments have been considerably reduced. The tank of Mayni is very nearly filled up. Thus in the soily catchments the tanks are being silted up within 100 to 200 years.

B. STORAGE RESERVOIRS IN UTTAR PRADESH

There are some 65 reservoirs in the Uttar Pradesh situated in Bundelkhand and Mirzapur districts to the south of the Yamuna and the Ganga Rivers. The They were constructed as Irrigation Works for protection against famine. Capital Investment is above Rs. three and a half crores and annual irrigated area is over half million acres. The physical characteristics of different catchments and the average runoff are varied ; the catchment area ranges from 1 sq. mile to overten thousand sq. miles; the storage capacity from 230 foot-acres to 81,000 foot-acres and thus a wide field of study for the rate of sedimentation is offered. Observations of the quantitative study of the probable rate of silting have been carried on some of the largest reservoirs over a long period by capacity surveys, which are discussed below. A few typical examples of the smaller reservoirs have also been incorporated.

- Catchment	••,	••	••	••	••	8,240 sq. miles
Rainfall minimum	••	•• '	••	••		18-2 inches (1913)
Rainfall maximum	••	••	••	•••	••	52 3 inches (1934)
Rainfall average	••		••	••'	••	42 inches
Runoff minimum	••	••	•• •,-	••	••	1,000,000 ft. acres (1913)
"Runoff maximum	••		••	••	••	10,000,000 ft. acres (1934
Runoff average	•	••	, .	••	••	5,660,000 ft. acres (1934)
Height of the dam	• -	+* 48	•• .		••	50 ft.
Length of the dam	y	••	••	••	••	3,916 ft.
Length of Lake	••	••		A 8	••	9 miles
Area of Lake	••	••	••	••		64,000 acres
Capacity at crest	•		••	••	· · <i>′</i>	56,252 foot-acres

DHUKWAN RESERVOIR ON BETWA RIVER

Catchment characteristics

The catchment is entirely monsoon fed and contains wooded hilly country and cultivated land. The upper parts of the main river and its principal tributaries traverse through Vindhyan ranges and the catchment basin is almost equally interspersed with wooded hills and with scrub *jungle* plains of steep slopes and cultivated plains of medium slopes. The upper Vindhyans vary in height from 1,700 to 2,400 ft. above sea level and consist of massive sand-stones with a bed of conglomerate at its base. The lower Vindhyans principally consist of sand-stone, slate and shale intermixed with poorer conglomerate. Further down in the watershed basin, the ranges vary in height from 700 to 1,400 ft. above sea level and consist of massive rocks, indistinctly foliated and traversed by quartz reefs and numerous basic dykes of dolerite or diabase. These hills combined with well wooded forests occupy one third of the catchment.

A portion of the catchment consists of undulating and plain wasteland with ravine edged river beds covered either with scrub *jungle* or growing long grass. The balance of the area which forms the *doab* of the various tributaries is mostly black cotton soil, generally under some form of cultivation. These areas are liable to sheet and gully erosion and they furnish, in major part, all the silt in the river.

Rate of Silting

Capacity surveys were carried out in 1916, 1930, 1932, 1937 and in 1942. The results of the surveys of 1930 and 1932 were inconsistent and have been disca-ded. The rate of silting is given in Table VIII and Figure 11.

			Silt deposited in foot-acres							
Period of	record	-	Years	During period	Per annum	Cumulative total	Per 100 sq. miles catch- ment per annum			
1907-1916		•••	10	12,924	1,292	12,924	16			
1916-1937	••	[20	12,007	603	24,931	7			
1937-1942	••		5	61	12	24,870	Nil			
1907-1942	••	••• }	35	*24,870	701		8.5			

Figure 11 :- Showing silt deposited in Dhukwan Reservoir

Remarks

The rate of silting was high in the first ten years and has been falling rapidly since, which appears to be due to :--

- (1) Settlement and shrinkage of silt deposits due to superimposed load of . additional silt and due to exposure.
- (2) Capacity runoff ratio is 1 to 100, and apparently, the reservoir has silted upto section required for normal floods.

TABLE VIII

(3) The capacity surveys indicate that the lake at the dam has a regular shape and silt deposits are distributed uniformly along the axis. As the distant ends at the flanks have silted up and the river flow is becoming confined within higher banks, resulting in velocities at the various points of the crosspection is less and, therefore, the tendency to silt is falling.

PARICHA RESERVOIR ON THE BETWA RIVER

It is a subsidiary Reservoir on the Betwa river, 30 miles below Dhukwan.

	-Gatchment	••	·•7		••		••	10, 384 'sq. miles
2	Rainfall	**	••	••	••	••	••	41 inches
;	Runoff	••	••	••	, 	••	• •	7,200,000. foot-acres
	Maximum Heigh	ht of the	Dam	•4	••	••	••	54 · 8 ft.
	Average Height	of the D	ani		•	••	••	20 ft.
	Length of the D	ani			••	••	••	3,853 ft.
,	Length of lake	••		••	••	••	••	17 miles
;	Area of Lake	••	••	••	••	••	••	2,400 acres
	• Capacity at cres	it	• •		•	••	••	50,305 foot-acros

Catchment characteristics

The additional catchment is about 2,000 sq. miles and its features are not different from those of Dhukwan.

Rate of Silting

Paricha Dam was constructed in 1885, some 22 years before the upper reservoir Dhukwan. Its capacity was surveyed in detail in 1912 and again later at different intervals. The surveys indicate that the reservoir has never shown a tendency to silting, but, on the other hand, has been scouring all this time (Table IX).

•	,				in foot-acres	ot-aores		
Period of	f Record		Теви	During period	, Per. annum	Cumulative total	Per 100 sq. miles catch- ment per annum.	
1912-1923	••		11,	4,362	397	4,362	4	
1923-1933	••	••	10	616	62	4,978		
1933-1938	••	••	5	280	56	5,258	••	
1938-1941		••	3	2,667	892	7,935	9	
1941 -194 3	••	••	2	2,478	1,238	10,411	1\$	
1912-1943	••	•••	31	10,411	336		10	

TABLE IX.

. .

*

MSCBI

The scour has been plotted in Figure 12 which brings out that the rate of scour n the various periods has been variable.

Figure 12 :- Rate of scouring of Paricha Reservoir

R3m wks

Paricha is a second major reservoir on Betwa, being 30 miles below Dhukwan and its catchment is 2,000 sq. miles greater than that of Dhukwan. Although, a good part of the silt may be trapped at Dhukwan, some of the suspended load is certainly carried down. Instead of showing any signs of ailting, the reservoir has progressively scoured and the circumstances leading to continued scouring appear to be :--

- (1) The reservoir is a sort of raised natural lake.
 - (2) The reservoir is situated in a narrow long gorge with high bank on either side and it has small waterspread. The length of the lake at Paricha is 17 miles and its area 2,400 acres as compared to 9 miles length and 6,400 acres area at Dhukwan, whereas the storage capacity is almost similar.
 - (3) The flood lift in the river has not been appreciably altered after the construction of the dam. The river has been steadily adjusting its section required for floods by scouring both the bed and its sides and consequently, the capacity of the lake has gradually increased.

Paricha is an unique example of a reservoir which has shown continuous

PAHARI RESERVOIR ON DHASAN RIVER		
	•	

Catchment	••	••	••		••	••	3,026 sq. miles
Rainfall	••	••	••	••	••	••	38 mohes
Runoff	••	••	••	••	••	••	2,760,000 foot-aorea
Length of the	dam	••		••	••	••	1,848 ft.
Height of the	dam		••	••	••		54 ft.
Length of the la		••	••	••	••	••	8 miles
Area of the lake	»	••	••	••	••	••	1,700 acres
Capacity at cree	st	••	••	••	••	••	38,284 foot-acres

Catchment Characteristics

In general, the catchment is similar to that of Dhukwan. The differences are that (1) the scrub and *jungle* portion has lighter growth and is more hable to erosion, and (2) the cultivated area has more of lighter types of Bundelkhand soils which are easily erodible in comparison to heavier soils. In other words, this river carries somewhat heavier silt load.

Rate of Silting

Capacity surveys have been spread out over a long period and the rate of silting is indicated by Table X and Figure 13.

	-	,		s	lt deposite	d in foot-acre	×	
Period o	f record		Years	During period	Per annum	Cumulative iotal	Per 100 sq. miles catch- ment per annum	
1911-1916	•••	 	5	3,047	609	3,047	20	
1 0 - _ 1916-1932	j * •	- ••	16 ,	18,118	1,132	21,165	87	
1932-1939	••	••	7	2,289	327	23,454	11	
1911 1939 <	••	, ,	. 28	23,454	. 838		27.7	

TABLE X

Figure 13 :- Rate of silting of Pahari Reservoir.

Remarks

The rate of silting has been high in the first 20 years but it has been falling subsequently. The higher rate of silting appears to be due to :---

- (1) The cultivated area comprises of lighter soils as against heavier soils in the catchment of Dhukwan and Paricha reservoirs.
- (2) The shape of the lake is irregular in the upper parts of the reservoir where silting has been heavier.
- (3) The deeper portions of the lake have silted most, and the extreme ends at the flanks a little less so that a shallower section requiredfor the floods is maintained.
- (4) The rate of silting rose during the first 20 years of the reservoir and in the meantime the section of the lake stabilised. The rate of silting has been falling for the last 7 years.

LACHURA RESERVOIR ON DHASAN RIVER

This is a subsidiary reservoir on Dhasan river, 6 miles below. Pahazi. The catchment is only 214 miles greater but has similar characteristics as of the catchment of Pahazi.

Catchment		••				••		••		••	3,240 sq. miles
Rainfall	••			••		••					38 inches
Runoff	:.		14	••	++		\$1	••	* *		2,960,000 foot acres
Length of the dam		••				••		••			1,732 ft.
Height of the dam	· ·	••		••						••	57 ft.
Length of the lake	••	••		••			٠ ٠	••		••	6 miles
Area of the lake	• •	••		••		••		••		••	960 acres
Capacity at crest	••		•	••		••		••		••	16,728 foot-acres

Rate of silting, based on capacity surveys is given in Table XI and Figure 14.

		Silt deposited in foot acres						
Period of record	Years.	During period	Deposit foot-acres per annum	Cumulative total	Per 100 sq. miles catch- ment per- annum			
1908-1939	31	3,613	117	3,613	4			
1939-1945	6-	1,278	213	4,891	7			
1908-1945	37	4,891	132		4			

Figure 14 :--- Rate of sitting of Lachura Reservoir.

Remarks

The rate of silting in Lachura reservoir is small as the entire bed load is and a good part of the suspended load is arrested in the upper reservoir. Besides : in the case of this lake, the river banks are high and the flow is confined is to a narrow section. Except at the approaches of the dam, the river section, offers little room for silting.

ANGAO RESERVOIR ON KEN RIVER

							7.199 sq. miles
Catchment		••		**	- * * * •	•••	45 inches
Rainfall normal	••	••		- ••	• •	• •	6 000.000 foot-acres
Runoff normal	••	••	••	••	• •	••	9.712 ft.
Length of the dam		••		••	••	• •	E9 ft
Height of the dam	••			••	• •	••	7
Length of the lake	••		* •	••	• •	• •	2 800 p 000
Area of the lake		••		••	• •	••	3,000 acros
Capacity at crest	••	••	••	••	••	••	48,040 1001-90109

Catchment Characteristics

Ken, like other rivers of Central India is a monsoon stream. It rises in the Damoh District of the Central Provinces, where the famous Kaimur range is the dividing line of the watershed of the Narbada and Ken rivers. These ranges rise from 1,200 to 2,000 feet and comprise of a group of sandstone, shale and lime stones, sometimes resting directly on gneiss.

The total catchment is 7 199 sq. miles and the greater part is covered with steep wooded hills and thick scrubs. The cultivated plains and the ravines which are liable to sheet and gully erosion form only one-fifth of the catchment whereas well wooded and scrub areas are protected against erosion. The rate of silting base 1 on capacity surveys is given in Table XII and Figure 15. TABLE XII

Rate of silting in Gangao Reservoir

Figure 15 :- Ra'e of silting of Gangao Reservoir

Remarks

1. The Dam is built obliquely to the flow of water and the flood waters impinge on the right flank at the dam.

2. The lake is irregular in appearance and the river is tortuous for six miles above the dam.

3. Silting has occurred in the deeper portions of the lake and at the far ends of the flanks. The width of the lake has narrowed down considerably in wider sections, and the river is getting confined into a stable channel.

4. The rate of silting is low as greater part of the catchment is not liable to serious erosion.

5. Except for a few miles near the dam, the river flows, through hilly country over a rocky bed with many cascades. The channel is well defined with high banks on the sides.

85
t acres
ros
,

BARIARPUR RESERVOIR ON KEN RIVER.

Catchment Characteristics

Bariarpur is a second reservoir on Ken river, 25 miles below Gangao reservoir. The catchment is the same as for the upper reservoir. The rate of silting based on capacity surveys is given in Table XIII and Figure 16.

TABLE XIII

<u>م</u>				Silt deposited in foot-acres						
Period of	record		Years	Daring period	Per annum	Cumulative total	Per 100 sq. miles catch- ment per annum			
1906-1939		 	33	738	22	738	Insignificant			
1939-1945	••	- ••	6	439	73	1,177	1			
1906-1945		 ;•	39	1,177	80		Insignifier at			

Rate of silting in Bariarpur Reservoir

Figure 16 :- Rate of silting of Bariarpur Reservoir.

Remarks

1. Capacity runoff ratio is great, being 1 to 1,400.

2. The main reservoir Gangao is only 25 miles above Bariarpur and traps all the silt.

3. Below Gangao, the river has natural high banks and a rocky bed with steep gradient which keep the river confined in a well set channel.

4. The dam forms a sort of a raised natural lake and the flood lift is not very appreciable, except in the vicinity of the dam.

5. General rate of silting is very low.

Catchment	••	• ••	••	••	••	120 sq. miles
Ramfall normal	••	••	••	••		39 inches
Runoff-normal	•	••	••	••	••	53,000 foot-acres
Length of the dam		• •	••	••		603 ft.
Height of the dum			••			35 ft.
Length of the lake		-	••		• .	24 miles
Area of the lake		•		••	۰	800 acres
Capacity at crest	••	••	••	••		7.460 foot-acres
Capacity at top of g	gates		••	••	••	15,640 foot-aores

PAHUJ RESERVOIR ON PAHUJ RIVER

Catchment Characteristics

About half of the catchment is covered with scrub and thin forest with occasional formations of foliated granitic rocks. The growth of *jungle* and grass offers some protection against erosion. The remaining area is either cultivated land with flat and medium slopes or broken land along streams and is liable to sheet and gully erosion. The soil structure of the cultivated area varies from black cotton soil to light loam, and the shape of the storage basin is irregular. The physical characteristics are such as to encourage erosion. The rate of silting based on capacity survey is given in Table XIV.

TABLE XIV

Rate of si	lting in Pal	huj Reservoi	r	
	٤.+	· · Silt de	posited in foot	80108
Period of record	Years	During period	Per annum	Per 100 sq. miles of catchment per annum
1914-1945	31	346	11	9

Remarks

The dam has 6 feet high gates which are kept raised up for most of the year during monsoon in order to ensure full storage. River sluices are provided at bed level with a capacity of 2,400 cusecs. Ordinary spates of 6,000 cusecs, lasting for 4 to 6 hours, are easily cleared by the sluicing capacity with careful regulation. The gates are dropped in high spates only when the flood lift tends to rise above a safe limit.

Storage capacity of the reservoir to the top of gates is one third of the average annual run-off and the spates are of short duration. Although sluicing power is equivalent to low flood discharges, the sluices are often kept open during the monsoon period, and they help to throw out a part of the silt load which may otherwise accumulate above the dam. The contributary causes which lead to silting are :---

- (a) Capacity runoff ratio is 1:3.
- (b) Storage basin is very irregular.

BARW SAGAR ON BARWAR RIVER

Catchment	••	••	••	••	••	71 sq. miles
Normal rainfall	*		••		••	36 inches
Normal runoff	••		••	••		30,000 foot scree
Length of earthen	dam	••			••	400 ft.
Height of earthen	dam	••	••		·	24 ft.
Length of the lake	e	••		••		1 mile
Area of the lake	••	••			••	900 acros
Capacity	••				••	8,300 foot-acres

Catchment area

Half of the catchment is hilly of foliated granitic formation, lightly wooded and the remaining is cultivated area of mixed soils, partly protected with vegetation.

Barwa Sagar is an old chandela Tank, constructed or restored in 1705 A.D., as a shallow tank with 5 feet deep storage. It was subsequently taken over by the Irrigation Department in 1890 and raised to store 20 feet water. MECBI

The rate of silting is a	given be	lo w :				e 200 foot-sores
G				* *	**	8,300 1000-00100 2
Capacity in 1000	**			••		7,600 foot-acres
Capacity in 1909	••	••				7 400 foot-agres
Canacity in 1933		••	• •	••	••	1,100 2000 0000

Capacity runoff ratio is 1 to 4, silt deposited in 65 years is 900 foot-acres or 14 foot-acres per year, giving a rate of 20 foot-acres per year per hundred square miles catchment.

SMALL TANKS

Bara Tal (Baoma)						2 ag miles
Catchment area	••	• •	••	••	••	Z BQ. IIII00
Normal rainfall	••	••	••	••	••	37 inches
Normal runoff	••	••	••	••	••	900 foot-acres
Capacity in 1906	••	••	••	••	••	1,020 foot-acres
Capacity in 1933	•		••	••	••	800 foot-acres
Silt deposited in 27	years	••	••	••	••	220 foot-acres
Silt deposited per s	nnum	••	••	••	••	8 foot-acres
Silt deposited per a	nnum p	or 100 ag	. miles ce	tohment	••	400 foot-acres
Koncha Bhanwar Ta	n k					_
Catchment area	••	••	••	••	• •	2·7 sq. miles
Normal Rainfall	••	••	••	••	••	36 inches
Normal runoff	••	••		`.	••	1,200 foot-acres
Carooity in 1911	••	••	••	••	••	770 foot-acres
Capacity in 1933	••	••	••	••	••	600 foot-acres
Silt deposited in 2	2 years	••	••	••	••	170 foot-acres
Silt deposited per	nnum	••	••	••	••	S foot-acres
Silt deposited per	annum p	ər 100 sq	į. miles ca	tohment	••	296 foot-acres
	-					

Remarks

17.1.1-0

In small catchments, particularly where capacity-runoff ratio is near about one, entire silt is transported into the lakes and the rate of silting is of a higher order. If the catchments are large, say 50 sq. miles or more, and the capacity-runoff ratio is still about one, the rate of silting is comparatively less as the transported silt load has a much bigger area for dispersal.

OBSERVATIONS OF SUSPENDED LOAD IN RIVERS

Experiments for measuring suspended silt of the rivers were first performed in the Uttur Pradesh State during 1911 and 1912. The method adopted was to take two samples from one point in the centre of the stream, two feet below the water surface, in measured sized bottles. This was allowed to stand for 24 hours until the sediment had settled down, and the top clear water was decanted off leaving a few ounces overlying the sediment. This remaining mixture was passed into a small measuring glass, tapering to a narrow size at the bottom and graded to show drachms and minims, to allow the measuring of the smallest quantities. The mixture was subjected to heat and evaporation, leaving dry residue of which the volume was measured in the measuring glass. The results of experiments made in 1912 are set down in Table XV.

	Proporti silt in s	on of dry uspension	Weight in lbs, por cu. ft. well pressed						
Name of river	By volume	By weight	1	Silt	Sa	nd			
- <u> </u>	•	•	Wet-	Dry	Wet -	- Dry			
Khajuri	1 4,800	1 	111	77	104	. 90			
Karamnasa	1 4,700	1 3,864	105	75	98	. 86			
Ghegar	1 5,000	- <u>1</u> - <u>4,112</u> :	105	79	105	91			
Gerai	1 4,600	1 3,783	105	75	- 109 -				
Belan	1 3,200	. <u>1</u> 2,480	104	75	Not	found)			
Ganga at Mirzapur	1	- 1 	103	75	106	3 90			
	<u></u>	<u> </u>	·			بجعد			

Similar experiments were conducted on Ken and Betwa rivers, and the data for suspended load varied from 1 in 1,500 to 1 in 2,500. The details of the experiments are however not available.

More recently since 1941, the U.P. Irrigation Research Institute has observed the amount of suspended load on the Betwa river above and below Dhukwan Dam. Silt samples are collected in standard bottles of one litre at three points in the section, at 1/6th, at 1/2nd and at 5/6th of the width from either bank, and at 6/10th depth at each of the points. These three samples make up one observation of the silt content over the whole section. The samples are taken during the monsoon period only, when the river carries appreciable quantities of silt. The results are shown in Table XVI.

TABLE XV

44 🥍

٩	funning 4	<u></u>				
Year	Runoff (foot- acrea)	Total suspended load (foot- acres)	Silt retained in reservoir (foot- acres)	Rainfall in catch- ment (inches)	Percent of total suspended silt retained in reservoir	Proportion of suspended load to run off
1941 1942 1943 1944 1945 1946	1,261,000 7,075,000 2,544,000 6,601,000 6,670,000	795 5,427 2,173 1,897 6,511 2,722	188 507 632 433 1,215 142	21 55 34 28 34 34 39	24 - 9 29 23 19 5	1 in 1,600 1 in 1,300 1 in 1,170 1 in 3,470 1 in 1,030

 TABLE XVI.

 Quantity of silt deposited at Dhukwan

The dry density of the material has been found to vary from year to year. It was taken as 140 lbs. per cft. in 1941, $111 \cdot 3$ lbs. in 1942, $85 \cdot 37$ in 1943, $83 \cdot 8$ in 1944, 70 in 1945 and $77 \cdot 5$ in 1946. Obviously, the moisture content of the samples of the different years has been changing, and the results cannot be considered dependable. It is, therefore, difficult to draw any conclusion until the experiments had been conducted on an uniform basis for several years.

GENERAL OBSERVATIONS

The composition of watershed catchments of Bundelkhand reservoirs is more or less, similar, but the trend of silting is different. An abstract of the results of capacity surveys showing the comparative rate of sedimentation of some of the existing reservoirs in Uttar Pradesh, Madhya Pradesh, Berar, Baroda and Hyderabad is given in Table XVII. The conclusions are :---

(a) Reservoirs like Dhukwan, Pahari and Gangao form one class. There are no reservoirs above them and their sluicing capacity with respect to normal floods is too small for consideration. Rate of sedimentation is comparatively high in the first 15 to 20 years, varying with the nature of the catchment from 9 to 37 foot acres per 100 sq. miles catchment per year. Later, the rate rapidly falls off and may ultimately become negligible. This is easily explained. The runoff capacity ratio is high being roughly 100 to 1, and the river spates require a certain section to maintain the flow. The obstruction by the dam causes the dips and the flanks of the storage basin to fill up with the silt in the early year. A stage comes when the river section is adjusted to carry the normal flood discharge. Under such a condition, the disposal of the suspended load in the area of the lake is harmonised with the conditions of flow as they are in the other parts of the river and silting is greatly reduced. Besides, the progressive developement of deltas above reservoir level helps in trapping some

of the silt load, and shrinkage combined with settlement of silt deposits due to weather and due to superimposed load of additional silt reduces the silt volume in the storage basin.

(b) Subsidiary reservoirs like Lachura below Pahari, Bariarpur below Gangao and Pahuj below Garhya and Palanpur show insignificant silt deposits in the first 15 to 20 years, when the upper reservoirs had been picking up the maximum volume of silt. As the lakes above are forming a stable section for the passage of normal floods, more silt is travelling downwards to subsidiary reservoirs where rate of silting is now 6 to 7 foot acres, per year per 100 sq. miles catchment, and is showing a rising tendency.

(c) Bara Tal and Konch Bhanwar tanks are the worst silters. Capacityrunoff ratio is about one and so, the normal runoff along with the entire bed and suspended load is accommodated in the lakes almost every year. In these two cases, silt is being deposited at the rate of 8 foot acres annually; the capacity of the lakes is about 800 foot acres each, and at this rate they are likely to get partially silted up in a period of 100 years. The rate of silting in later years may however rapidly decrease when the reservoir silts up to a section required for normal flood discharge, and the useful life of the lakes may be somewhat prolonged.

SUMMARY AND CONCLUSIONS

In the Bombay State water samples are taken from a few selected reservoirs from flood waters entering a reservoir and leaving the same via the waste weir. But the samples have been taken for one or two floods during each season and cannot give any correct idea of the amount of silt deposited in the lake. Capacity surveys are, however, undertaken wherever it is feared that the useful contents of a reservoir are diminishing. A summary of the result is given in Table I.

In Uttar Pradesh the amount of suspended load is being observed on the Betwa river above and below Dhukwan Dam, since 1941. The samples are taken during the monsoon period each year when the river carries appreciable quantities of silt. The results are summarised in Table XV. The great drawback of these observations is the determination of the density of dry silt which has been varying from year to year. The average suspended load retained in the reservoir during the period 1941 to 1946 works out to 519 foot-acres per annum. That may be compared with the average rate of silting, viz., 701 foot-acres as determined by the capacity surveys. The difference is due to the fact that the rate of silting has decreased in later years and the actual rate is now less than in the first 10 years after construction. It is also partly due to the omission of bed load. An abstract of the results of capacity surveys and connected data is given in Table XVII.

The information regarding Madyha Pradesh, Berar, Baroda and Hyderabad State is also contained in Table XVII. ••=====

-

TABLE

	Re	er⊽oir	eren		Stor	nge cape	city	ches	5	le of
Serial No.*	River	Name	Catchment area in ag miles	Height of dam in feet	Foot acres	Percent of annual runoff	Per square mile of catchment	Annual rainfall in inc	Annual runoff foot ac	Runoff persquare mi catchmont foot acres
1	2	3	4	8	6	7	8	9	10-	11
					UT	TAR P	RADES	H		
161	Betwa	Paricha	10,381	55	50,305	0.70	5-0	41	7,200,000	694
162	Betwe	Dhukwan	8,240	50	56,252	1.00	8-9	42	5,66 0,000	687
163	Ken	Bariarpur	7,699	26	4,669	0 07	06	45	6,400,000	331
164	Ken	Gangao	7,109	53	48,645	0.81	6.8	45	6,000,000	833
165	Dhasan	Lachura	3,240	67	16,728	0.26	5-2	38	2,960,000	913
166	Dhavan	Pahari	3,026	54	38,284	1 32	12.7	38	2,760,000	912
167		Ghaggar	310	••	123,684		399	••		
108	Pahuj	Pahuj	120	35	~ 7,460	14 1	62	39	53,000	442
109	Barwar	Barwasagar	~71	24	8,300	27.7	117	- 36	- 30.000	422
170	Barwar	Kouch Bhanwar	2.7	••	770	64	285	36	1,200	444
171	Barwar	Bara Tal	2		1,020	113	510	37	900	450
			MAD	HYA I	PRADESI	AND	BERA	R		
172	Tandula and Sukhanalas	Tandula and Şukha	319	82	223,957	66	6 99	52.1	339,000	1,065
173	Maniari	Maniari .	810	95	119,743	. , 51	387	80.3	236,000	763
176	Kharang	Kharang	237	69	155,900	68	 . 658	61.7	231,000	975
175	Sıloriyanala	Maramsilli	187	84	131,267	65	704	45-8	203.000	1.085
176	Sarathinala	Sarathi .	37-8	58	- 13,113	46	848	56-8	28,700	761
137'	Charkha- mara nala	Charkhamara	- 29-0	61	- 17,883	84	618	56.7	21,200	731
178	Bagdeonala	Bodalkassa	. 23.5	63	16,010 .	.93	683	38-7	17,240	744
179	Godam nala	Bori.	20.6	55	· 8,092	44	391	42-8	18,540	901

Silt and connected data of some existing dams in Uttar Pradesh

"Serial Nos. are in continuation of those in Table 1 and Table XXXVII."

XVII.

.

Madhya Pradesh and Berar, Baroda and Hyderabad

Year	of capa urveys	cıty		Silt	deposit	bed		
Einst	Last	Period in years	Total foot sores	Annual foot-acres	Percent of original capacity per annum	Per thousand of water supply by volume	Per hundred aquare miles of catchment per annum (foot- scres)	Romarks Nature of catchmens
12	13	14	· 15	-16	17	18	19	20
1912	1943	31	10,411	336	Scour	0+005	10	Has continuously scoured. Subsj- diary reservoir
1907	1942	35	24,870	701	1.24	0.012	8.2	
1906	1945	39	1,117	30	0.64	0.0	Insig	Subsidiary reservoir.
1912	1945	33	19,872	602	1 24	0.0100	8	
1908	1945	37	4,891	132	0-8 0	0.004	4	Subsidiary reservoir.
1911	1939	28	23,454	838	2.19	0•030	27	Has a high percentage of cultivated area in the catchment.
1919	1938 -	19	**		Nıl	••		Catchment area rocky, no tendency to silt.
1914	1945	31	846	11	0-15	0-021	9	Has two small reservoirs above in the catchment.
1868	1933	65	900	14	0.17	0.047	20	
1911	1933	22	170	8	1-04	0.67	296	
1906	1933	27	220	8	0-80	0.89	400	
1919	- 1941	22	1,170	53 8 -	0.024	0.016	16•7	Mostly matari under lain by Morum and laterite. Hilly with <i>fungle</i> , slopes 1 in 300 to 1 in 1,000.
1930	1941	11	975 -	88•6	0 074	0+038	28•7	Metamorphic rocks prevalent over the catchment area which lies among forests covered hills with gteep slopes.
1926	1941	<u>_ 15</u>	1,490 -	99 2	0.063	0 043	41.8	Matamorphic rock—Slopes vary. Catchment jungles and hilly.
1922	1941	19	520	27.3	0.021	0.013	14.7	Vindhyan and granites.
1919	1941 -	23	1,562	71	0.54	0.007	188	Disintegrated crystalline rock. Slopes steep and wooded.
1913	1941	28	407	14-5	0.081	0+069	50·1	Dharwar formation, slopes fairly storp.
1913	1941	28	1,088	-38-9	0.242	0.225	165	Dharwar formation, slopes fairly steep.
1927	1941	14	312	22-2	0.275	0.120	108	Steep hills covered with thick jungies,

.

 TABLE XVII

 Silt and connected data of some existing dams in Uttar

.	Res	ervoir	quare	100	Storag	e capa	cit y	Ę.	t-aorea	re mile (foot
Serial No.	Biver	Name	Catchment area in s miles	Height of dam in f	Foot acres	Percent of annual runoff	Foot sores per square mile of ostohment	Annusl rainfall inches	Annual runoff (foo	Runoff per squa of catobment acres)
1	2	3	4	ő	6	7	8	0	10	, 11
180 181	Badhbura nala.	Khalrbanda Khapri	16-5 15 4	60 35	13,360 9,472	88 57	810 614	54-9 44-2	22,900 16,600	1,380 1,080
182	Dodha nala	Jamunia	11.8	50	7,438	77	630	53-0	9, 700	821
183		Kumha ri	11.7	39	9,183	75	784	46- 6	12,300	1,048
181	Dorki nala	Pindraon	9-8	35	8 ,6 06	δ8	882	49 •3	14,800	1,517
185		Khaira datan	7•5.	27	1,919	19	256	45-7	10,000	1,332
186		Kutrengi	ō-9	33	3,611	54	614	47•7	6,710	1,140
• 187		Doritala	5-5	- 36	1,928	33	351	47•4	5,760	1,050
188		Moroda-A	5-2	29	8 ,590	68	691	42•9	7, °40	1,008
169		Wara tank	4.4	33	2,273	21	517	55-3	10,900	2,473
190		Dhanms	4-0	33	1,080	39	270	40-8	3,910	977

-conid.

Pradesh, Madhya Pradesh and Berar, Baroda and Hyderabad

đ

.

a a	Isrately steep. Isrately steep. Isrately steep. Isy etc., light opth of 3 feet by soil under
12 13 14 15 16 17 18 19 20 1915 1941 26 No silt - Gneias rocks, slopes model 1908 1941 33 106 3·2 0·034 0·019 20·9 Bare rock mourum, classical under is in at a depth of 3 18 19 20.0034 0·019 20·9 Bare rock mourum, classical under is in at a depth of 3 1908 1941 33 106 3·2 0·034 0·019 20·9 Bare rock mourum, classical under is in at a depth of 3 18 at a depth of 3 106 100 10·019 20·9 10·01 10·01	lerately steep." lay etc., light opth of 3 feet by soil under if feet by hard lerately stoop s fairly stoop
1915 1941 - 28 No silt Gneiss rocks, slopes mod 1908 1941 33 106 3.2 0.034 0.019 20.9 Bare rock moorum, ola soil under ismat a de by soft moorum, ola lam at a depth of 3 rock. Slopes mod 1 1 1 106 1 100 1 100	lerately steep. lay etc., light opth of 3 feet by soil under- feet by hard lerately stoop s fairly stoop
1908 1941 33 106 3.2 0.034 0.019 20.9 Bare rock mourum, chasta de by soft mouru	lay etc., light opth of 3 feet by soil under- feet by hard lerately stoop s fairly stoop
	s fairly steep
1916 1941 25 180 7.2 0.097 0.074 61.2 Crystallins rock. Slopes and well wooded.	
1923 1941 18 826 46.0 0.500 0.374 393 Jungle and cultivated proportion of 2 to moderate.	areas in the to 1. Slope
1908 1941 33 No silt Cultivated land and Bha ly steep, slopes 1/2 Clay soil underlain of 3 ft. by hard rock cultivated.	ats moderate- 200 to 1/400. at a depth k and partly
1908 1941 33 437 13.2 0.689 0.132 176 Kankar, matasi and s slopes—l in 500 to Yellow matasi under moorum, moorum, moorum, moorum, moorum, moorum, moorum, moorum, undepth of 1½ feet by h hard moorum undepth of 4 feet by c black stone. Partly partly cultivated.	moorum, flat b l in 2,000. rlain by soft inderlain at a hard moorum, derlain at a clay with flat v wooded and
1909 1941 33 414 12.5 0.347 0.187 213 Matasi and kankar mod —I in 200 to 1 in 44 underla:n at a depth soft moorum. Por underlain at a depth latence partly wooder cultivated.	derately steep 100. Light soil 1 of 4 feet by rous moorum of 4 feet by 3d and partly
1909 1941 33 74.5 2.32 0.120 0.040 42.5 Rock with jungle. Har lain at a depth of 2 fs soil. Slopes steep—densely wooled.	rd silt under- feet by light -1/50 to 1/150
1908 1941 33 113 3-45 0-098 0-088 65-9 Bhala and motion. SI 1/50 to 1/150. Partly partly cultivated.	lopes steep_ y wooded and
1910 1941 31 102 3-24 0-142 0-030 73-6 Rock. Slopes fairly stee	ър.
1909 1941 32 54-3 1-70 0-158 0-043 42-5 Kachar about 1-0 a rest rocky. Gradien	square miles

MSCBI 🔮

TABLE XVII

.

		Retorpoir	5		Storag	e capa	city	pea	(jag	ot-			
Soria) No,	River	Namo	Catchment area in agu milea	Height of dam in foot	Foot acres	Per cent. of annual runoff	Foot acres per square mile of catchment	Annual rainfall in inc	Annual runoff (foot-ac	Runoff per rquare n of catchment (for acres)			
1	2	3	4	5	8_	7.	- 8-	- 9	- 10	11-			
101	* * - * *	akrdehi	3.7	29 .	1,990	.2	543	48-2	5,810	1,003			
102		Borikhera	3.7	30	943	- 48	256	50·5	1,970	5 3 6			
มีอา	••• ••	Baloda	36	24	1,025	27	284	48·3	3,770	1,050			
194		Pangri	3-3	39	2,030	43	613	55 6	4, 710	1,420			
195	Bandha nala	Hargahan	3-2	32	2,521	75	796	438	3,330	1,056			
					•			•		,			
196	•••	Amachua	3.2	39	1,35 <u>4</u>	51	429	45-2	2,640	837			
197_	Dhumma nala	KITA	2-9	31	2,135	-67	735	36-5	3,050	1,048			
198		Jam Mobgaon	2.5	29	1,394	18	557	53-9 Ľ	7.922	3,170			

Silt and connected data of some existing dams in Uttar.

---contd.

Yoar	s of cap surveys	acity I		Silt	deposit	ed		
Визь	Last	Period in years	Total foot acres	Annual foct-acres	Per cents of original capacity per annum	Per thousand of water supply by volume	Per hundred of sousre miles of catchment per' annum (foot acres)	Romarks Nature of eatchments
.12	13 -	14	15 _	16	17_	18	_ 19	20
1908	1941	33	322	98	0-489	0.225	265	Bhata, matasi and kankar, sloped flat-1/500 to 1/2,000. Partly wooded and partly cultivated Kankar sou underlan
v			- ak	-1	• .:		~ _	depth of 2 feet by yellow soil mixed with moorum underlain at a depth of 3 feet by chius with boulders.
1909	1941	31.	44 •5	1.38	0-145	0.020	37-5	Crystalline rock formation. Slopes fairly steep.
1908	1941	83	23	7.00	0-681	0·18 <u>4</u>	194 <u>-</u>	Bhata, mainsi and kankar. Yellow soll underlaun at a depth of lifeet by soft moorum underlain at a depth of lifeet by hard moorum and laterite. Hard moorum and laterite underlaun at depth of 3 feet by clay soil. Slopes flat 1/500 to 1/2,000.
1917	1941	24	, - 1		No Silt		, - 	Rock and ordinary soil covered with dense jungle and entirely bounded by high hills. Slopes generally steep.
1908	194Ì	33	74 5 . :	2 27 	ō∙090	ð 068	71-0	Kankar soft moorum underlain at a depth of 3 feet by hard moorum. Hard moorum underlain at a depth of 5 feet by soft moorum mixed with yellow clay and soft moorum mixed with yellow
-		÷.	- 444 E. 7 <u>1</u>	: 	•		-	clay underian at a depth of 11 feet by stiff clay. Light soil underlain at a depth of δ ft. by stiff clay. Slope of catchment is from 1 in 130 to 1 in 200. Partly wooded and partly cultivated.
1917	1941	24	68 8 	2.87	0-212	0 108	91-1	1.5 sq. mile is Kacha earth mixed with sand and the rest rocky. The catchment being hilly, the slopes are steep.
1906	. 1941	35 <u>.</u> '	• , t~161	- 4- 60 ²	0 •215 .	0 · 151	158	Light soil underlain at a depth, of 4 feet by soft moorum. Clay soil underlain at a depth of 3 feet by hard rock, slope 1 in 60.
1908	1941	35	220	6-27	0-450	0.049	251	Clay soil overlying porous moorum. Slopes rather flat and only spar- soly wooded.

Pradesh, Madhya Pradesh and Berar, Baroda and Hyderabad

TABLE XVII

			·			ب السبي ال		_		
	Rex	orvoir	luare		Storag	e capa	oity	ohes	(CTOS)	aorea)
Borial No.	Rivor	Namo	Catchmont area in so miles	Height of dam in fee	Foot sures	' Per cent. of angual run'ff	Fuot acres per squrre mile of catchment	Annual rainfall in ine	Annusl runoff (foot-a	Runoff per square of estchment (fost
1	2	• • 3	4	5	6	7	8	9	10	11
, 199		Morid	2.5	22	345	14	138	45-1	2,420	970
۰° ۲					,		:		-	:
* 200	`	Doongar Barl	2.4	33	903	18	369	60 <u>.</u> 3	5,500	2,245
• 201	* n*	Maroda B and O	1.7	B=22 C=20	1,190	72	695	42-9	1,650	970
`	\$.:	~- ·				••••
*7	· · · ·		•	. t	. * î		•	- 1		· ·
203	•••	Gomdoh	1.8	32	1,080	52	675	52-3	2,070	1,290
203		Dorll	1-4	25	952	54	680	52-7	1,750	1,250
204		Usri	1-4	13	941	25	172	47+5	963	688
. 205	••	Barpıli	1.0	28	644	60	643	ŏ0·6	1,067	1,067
208		Khortora	1.0	18	322	34	322	45-7	943	
907	••	Abhanpus	0•8	19	195	23	244	46-6	, 839 (1,047
- 208	••	Sor11	0.7	14	269	39	407	43-4	- 693 -	1,048
• • •			BAR		STATI		, , ,			1
209 •••		Sayaji Sarovar (Ajiva Lako)	36-2 (1591) 78-4 (1931)	' 40 (at Surya)	59, 593	'n	760	40`	83,600	
		E Pocharam Byyel marchand Tank	YDER 240 168	A 8 A	D BTA 50,905 -5,840	T 8.	' 212 35∙8.	• <u>:</u> :		

Silt and connected data of some existing dams in Uttar

-concld.

.

Year	s of all surveys	nacity		SI	t deposi	ited		
First	Last	Period in ycars	Total foot acres	Annuel fost-adrea	Per cent. of original o'apacity per annum	Per thousand of water supply by volume	Per b u n d r c d square miles of catchment per annum (foot acres)	Romarks Nature of catchmons
12	33	14	15	· 16	17	- 18	• 19	20
1906	1941	35			No Silt		••	Light soil underlain at a depth of 3 feet by soft moorum; clay soil underlain at a depth of 3 feet by soft rock. Slopes steep-1 in 50 to 1 in 150.
1909	1941	32	121	3.78	0.417	0-068	154	Crystalline rocks. Slopes fairly steep well wooded.
1908	1941	33	<u></u> б•8	0.18	0.012	0-011	10.8	 B—Clay soil underlain at a depth of 4 feet by soft moorum. C—Porous moorum underlain at a depth of 4 feet by kankar mixed with the lime, Kankar and matrai, Slopes steep 1 in 50 to 1 in 150. Partly wooded and partly culti- vated.
1913	1941	28	28-2	1.01	0.094	0.049	63·2	Moorum sikar and light soil, flat covered with jungle.
1908	1941	33	40-1	1.22	0+130	0.020	87•4	Generally light soil overlying moorum or laterite. Slopes rather flat.
1ີຄບສ	1941	33	28-3	0.85	0.352	0*088	60-7	Moderately steep country in the crystallinerock formation.
1012	1941	29	44.8	1.54	0.240	0.144	154	0.5 square mile cultivated, the rest fallow or hilly. Slope 1 in 200.
1906	1941	35	92	2.62	0.814	0.528	262	Light soil over hard moorum at a depth of 4 feet. Slopes are moderately steep—1 in 200 to 1 in 400.
1908	1941	33	1-8	0-05	0.023	0.002	5∙8	Light soil underlain at a depth of 4 feet by soft moorum. Slope generally flat 1 in 500 to 1 in 2000.
1905	1941	38	62+5	1·72	0-641	0.249	261	Light soil underlain at a depth of 6 feet by soft moorum; soft moorum underlain at a depth of 5 feet by clay; clay soil underlain at a depth of 2 feet by laterite. Slopes steep 1 in 50 to 1 in 150. Partly wooded and partly cultivated.
1891	1945	54	3,055	56-6	0-095	0.068	72.2	
1922 1935	1947 1942	25 7	9,122 4,10 0	365 587	0·717 10·0	•	152 860	Black cotton soil-net deep. Surface soil loose sandy leam.

.

•

Pradesh, Madhya Pradesh, Berar, Baroda and Hyderabad

54

There is only one reservoir in the Bombay State and six reservoirs in Uttar Pradosh which have a large catchment area (more than 1,000 square miles) and the rate of silting in these does not exceed 27 foot-acres per 100 square miles of catchment area. The maximum rate of silting for major catchments is 75 foot-acres per 100 square miles of catchment per year.

The rate of silting for minor catchments is variable and depends upon a number of factors such as the physical characteristics of the catchment, capacity runoff ratio, the intensity and amount of rainfall, the form and shape of the storage basin, and the escaping capacity of the sluices with respect to normal flood discharges, etc.

It is noticed that the rate of silting decreases with age as also observed in the case of reservoirs in other countries described in Chapter 4. The reasons for this downward tendency have already been given in Chapter 1.

CHAPTER 3

Silt Studies of Some Proposed Reservoirs in India

BHAKRA RESERVOIR*

River	••	••	••	Sutlej—Punjab,	India	
Catchment	••	••	• •	21,960 square mi	ilea	
Rainfall .	••		••	About 45 inches	-	
Mean annual rui	noff, \ ^	•	•••	16 million foot-a (Calculated mean aores) '	ores 1 1911-12 to 1939-40 13.8	million foot-
Storage capacity	7 -	••	••	4.91 million foot	acres (Revised figure 7.2	m. ft. acres)
Height of dam		••	••	500 feet (Revised	figure 680 feet)	
Annual silt depo	sit-	••	••	19,600 foot-acres] • • •	
Assumed silt dep per 100 squar ment area.	posited j re miles	of, cate	ohe.	90 foot-acres	' Based on total estima river	ted load of.

Catchment Characteristics

The general catchment characteristics have been described by Dr. C. S. Fox, Ex-Director, Geological Survey of India, in his note dated the July 15, 1939 and are summarised below.

The River Sutlej traverses the softer tertiary strata of the outer Himalaya. before debouching into the plains. The river above Bhakra has three large tributaries—the Lunkhar, Sir and Gambhar Khads—which roughly follow the strike of the Tertiary strata and may be quickly in floods as a result of heavy rain on their respective catchments. The Lunkhar is entirely on the relatively softer sandstones and clays of the Siwaliks (Upper Tertiary), the Sir Khad ' partly drains Sirmur (Middle Tertiary) bed but is largely on Siwalik rocks,

^{*} Extracted from the Bhakra Dam Project Vol. II pp. 25, 28, 40 to 59; Wi'ey Committee Report pp. 23 and 29 and 1949 Revised Project Report.

the Gambhar has a lower catchment of Siwaliks and Sirmur and an upper catchment of Sabathu (Lower Tertiary) and older rocks much of which consist of shaly slates. In the 900 square miles of catchment immediately above the Bhakra gorge, the Sutlej drainage includes soft sandstones and an appreciable proportion of argillaceous rocks which would readily yield silt of the character which can not be trapped. The proportion of silt (as fine suspended matter) to coarse material (sand and shingle) is likely to be relatively high. Some fine silts will be brought down by the snow fed river from the wind-borne dust which settles along its upper catchment during autumn.

Silt Load of the River Sutlej at Bhakra

Silt surveys on the Sutlej were started in 1916, and are described in Volume II of the Bhakra Dam Project Report of 1919. They were subsequently continued in 1921 to 1926 and 1932, 1933.

The original silt and discharge observations are plotted in Figures 17 to 25. Tables XVIII and XIX give ten-day and monthly silt loads and corresponding discharges. The basic observed data are given in italics in these statements. Table XX is a record of the maximum silt concentration and -maximum discharges for each month of the years in which observations were taken.

Ten-day mean discharges in ousees and silt in foot-acres, given in .Table . XVIII have been plotted for all the years in Figures 26 to 34.

The siltcharge in periods during which no observations were made has been taken from the graph of Figure 35 which has been prepared by plotting ten-day mean silt against ten-day mean discharge given in Table XVIII. An attempt was made to use daily silt observations for obtaining the silt discharge relationship but as will be apparent from the nine graphs of Figures 17 to 25, there are wide variations from month to month and year to year. Variations exist even in the ten-day results but they seem to even out sufficiently to enable a reasonably consistent relationship being obtained between discharge and silt. It is felt that the eprve of Figure 35 is reasonably representative of conditions at Bhakra. Table XXI showing discharga-silt relation for. Bhakra has been prepared from Figure 35.

120,000 C.8.1 24 237,000 Discharge **BABTN** 110,000 22 -100,000 20 ъ 90,000 ğ 18 80,000 ouble 16 ម្តី 70,000 (4 In one <u> </u>60,000 2 82 50,000 50,000 50 40,000 Weight of silt in ounces 10 8 30,000 6 20,000 Silt ii. 10,000 2 0 June May FIGURE 21 RIVER SUTLEJ AT BHAKRA, DISCHARGE-SILT_GRAPH (From actual observations) 1924 191,000 / 24 120,000 of water 22 -110,000 Discharge 20 100,000 Weight of stit in ounces in one cubic foot 18 - 90,000 16 80,000 cusecs ~ _ 14 70,000 = 60,000 big 50,000 G 40,000 12 10 ł 8 6 30,000 20,000 2 10,000 Ô - August -4September - July -June May FIGURE 22 - RIVER SUTLES AT BHAKRA, DISCHARGE-SILT GRAPH (From actual observations) [925

62 °

Jigures 26-28 :- River Sutlej at Bhakra-Discharge silt graphs.

Figures 29-31 :- River Sutlej at Bhakra-Discharge silt graphs.

TABLE XVIII

Silt load of River Sutlej it Bhakra

Ten-day discharges and silt load in foot-acres

Weight of dry material in one cubic foot of deposit—90 lbs.

.

			1916			1		1921		1	19	922			1923	<u>. </u>	[094		1															
Month	Period	Discharge in cuseo	Silt in foot-	Silt per-	Cumula- tive total	Discharge	Silt in	Silt per-	Cumulative total of	Discharge	Silt in	Silt per-	Cumula.	Discharge	Silt in Silt	per- Cumula	- Discharg				<u> </u>	192 	25 	·		199	:0 				1932		·	1038	3	
1		days	acres	of dis- charge	of silt in foot-acres	days	acres	of dis- charge	silt in foot acres	days	acres	of dis- charge	tive total of silt in foot acres	in cuseo days	foot- acres of char	age tive tot dis- of silt ge foot acr	al in cusec n days	foot- acres	of dis-	tive total of silt in	Discharge in cusec days	Silt in foot- acres	Silt per- centage of dis-	Cumula- tive total of silt in	Discharge in cusco days	Silt in foot- acres	Silt per- centago of dis-	Cumula- tive total of silt in	Dischargo in cusco days	Silt in foot- acres	Silt per- contage of dis-	Cumula- tive total	Discharge in ousco	Silt in foot-	Silt per-	Cumula tive tot
				5	6	7			10		12	13	14	15	16 1	1 18	19	20	21	22	23	24	25	10ot acres	97		charge	footacros			ohargo	foot aoros		40100	or ain- ohargo	of alls i foot.aor
April	1-10 11-20 21-30	44,200 60,530 52,055	8 11 9	0-0091 0-0091 0-0086	8 19 28	53,550 73,150 85,100		0.0093	10 24	64,180 66,165	12 12	0.0094 0.0091	12 24	88,495 83,645	28 0.0 21 0.0	158 2	8 61,770		0.0089	11	62,397		0.0088	11	42,613	8	0.0094		31	32	33	84	30	30	87	38
May	1-10 11-20	156,785 47,690 77,010	28 9	0.0089 0.0004	37	211,800) 42 5 20	0.0099		217,925	20 44	0.0114 0.0101 0.0337	44	103,235 275,375	$\begin{array}{c c} 45 & 0 \cdot 0 \\ 94 & 0 \cdot 0 \\ 111 & 0 \cdot 0 \\ \end{array}$		4 83,210		3 0.0138 3 0.0138 3 0.0108	25 48 	64,237 177,580 304,214	12 180 203	0.0094 0.051 0.0334	23 203	45,401 51,724 139,738	8 9 25	0 0088 0-0087 0-0089	16 25	41,123 43,553 121,521	7 8 21	0+0081 0+0085 0+092 0+086	0 38 21	54,702 54,299 65,831 174 922	10 10 12	0.0091 0.0092 0.0091	10 20 32
J.	2131 Monthly	163,400 288,100	110 133	0.0091 0.0338 0.0231	51 161 	156,050 200,200 455,178	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.0352 0.0495 0.036	172 370	161,415 229,943 539,798	120 281 501	0.0372 0.0611 0.0465	264 545	182,400 137,265 146,705 446,370	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	143 23 25 32 184 38 311	8 70,020 7 69,91 1 91,63 221,57		9 0.0064 9 0.0064 1 0.0169	57 66 97	123,425 93,050 281,089	60 76 7,514	0.0243 0.0408 0.269	263 339 1,853	65,526 90,044 172.040	12 20 135	0.0392 0.0111 0.0392	37 57 102	42,753 37,703	8	0+0094 0+0093	20 36	90,019 106,236	20 32	0.0111 0.0151	52 84
	1-10 11-20 21-30	298,020 484,520 433,810	600 1,800 1,562	0.100 0.186 0.178	761 2,561	119,28	0 51 0 490	5 0·023 0 0·0885	425 915	243,450 453,870	375 1,560	0.077	920 2.480	211,540	266 0.0	628 64	7 141,83		3 0.0105 0.0504		497,564	1,650	0.166	3 106	327,610	167	0.0256		176,909	22 37	0.104	**	209,319 405,574	628 675	0-102 0-0585	507
July	Monthly	1,216,350 393,440	3,962 1.321	0.178 0.162	5 444	339,45	0 80 0 1,34	$ \begin{bmatrix} 0 & 0 & 0 & 118 \\ 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ $	1,715	639,550 1,336,870	3,400 5,335	0·266 0·20	5,880	428,965 940,595	1,356 0·1 2,082 0·1	58 2,40 106 .	3 305,30 529,36 976,49) 892) 3,180 5 4,214	$\begin{array}{c c c} I & 0.146 \\ 0 & 0.300 \\ 4 & 0.2158 \end{array}$	1,131 4,311	252,2:0 541,535 1,116,245	637 2,598 4,573	0·126 0·239 0·2(5	3,180 3,833 6,126	227,824 236,180 611,560	49 176 229	0.0326	241 417 €46	185,161 213,780 222,856	190 270 300	0.021 0.003 0.008	248 518 818	313,519 878,744 664,673	934 876 3,696	0-140 0-116 0-318	1,441 2,217 5,913
. 1	1120 2131 Monthly	462,740 383,640 1,239,820	2,037 799 4,157	0.220 0.104 0.168	7,481 8,280	438,70 543,70 1,321,92	0 1,45 0 2,07 5 4,32	$\begin{array}{c c} 0 & 0.118 \\ 0 & 0.166 \\ 9 & 0.191 \\ 9 & 0.163 \\ \end{array}$	2,515 3,965 6,044	489,100 635,140 730,840 1.855,080	1,850 4,843 3,980	0.189 0.381 0.273	7,730 12,573 16,553	391,750 266,140 435,015	693 0.0 552 0.1 1,182 0.1	885 3,1 04 3,7 36 4,8	6 709,750 8 969,09 0 879,840) 4,562 5 8,340 0 4,552	5 0·322 0 0·430 5 0·259	8,876 17,216	606,7C0 651,150	2,544 1,993	0.209	8,970 10,963	330,331 396,900	462 757	0.037 0.070 0.0954	1,108 1,865	021,707 1 199,764 388,349	760 2,250 1,100	0 · 061 0 · 1125 0 · 142	··· 1,043 2,143	1,256,836 586,500 500 443	5,400 2,024 1,971	0·215	7,087
August	1-10 11-20	515,780 439,590	2,318 2,912	$0.224 \\ 0.331$	10,598 13,510	648,00 773.50	0 3,50	0 0.270	9,544	589,510	2,145	0.182	18,698	563,935	2,427 0.1	11 26 7.4:	2,558,68	5 17,460	0.341		2,066,593	2,890	0.179	13,353	531,(32 1,258,263	2,701 3,920	0·254 0·16	4,006	602,720 1,190,833	2,629 3,954	0·218 0·100	4,772	680,573 1,770,606	2,107 5,402	0·153 0·152	11,315
September	21-31 Monthly 1-10	431,680 1,387,050 281,850	1,325 6,555	$0.153 \\ 0.236 \\ 0.102$	14,835	595,50 2,017,00	6 3,54 0 13,40	4 0·298 1 0·332	19,445	709,000 2,006,220	3,158 3,663 8,966	0·223 0·258 0·224	21,856 25,519	461,050 496,670 1,521,655	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 8,59 915 9,49 53	6 559.35 5 638,90 1,890,95	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 0.20 \\ 1 & 0.136 \\ 6 & 0.181 \\ 4 & 0.1740 \end{array} $	24,538 26,059 28,365	684,909 745,781 403,520	1,795 3,104 - 242 5,141	0.131 0.208 0.030	15,648 18,752 18,994	480,433 578,669 548,162	1,436 1,714 1,682	0·147 0·169 0·153	6,002 7,716 9,398	456,275 757,591 626,473	2,463 7,453 8,473	0 · 270 0 · 492 0 · 277	7,235 14,058 18,101	480,358 554,593 457,774	1,100 2,440 728	0·124 0·220 0·0795	12,511 14,951 15,679
-	1120 2130 Monthly	246,840 187,100 715,790	431 106 1,132	0.106 0.0874 0.0284 0.079	15,430 15,861 15,967	392,45 392,05 207,25	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20,969 22,069 22,309	531,170 459,280 217,980	1,543 1,058 275	0·145 0·115 0·063	27,062 28,120 28,395	342,440 199,905 122,930	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	712 9,98 23 10,0° 244 10,13	3 440,58 5 275,23 5 242 54) 798) 49(8 0·096 0·089	29,163 29,653	318,340 215,820	<i>165</i> 270	0.0259	19,159 19,429	436,045	4,832 1,220 375	0.140 0.0768	•• 10,618 10.9(3	1,840,339 333,055 215 809	13,380	0 · 363	19,309	1,492,725 833,537	304 514	0·147 0·077	16,193
October	1-10 11-20	200,530 134,290	284 - 44	0.071	16,251	120,40	0 5	5 0.0229	22,364	1,208,430	2,876	0·119 0·032	28,485	665,275	640 0·0		1,058,35	2,118	0.121 0.10	30,483	123,150 657,310	60 495	0.0244	19,489	120,459 800,870	55 1,€50	0.023 0.103	11,048	184,203	96 1,392	0+0258 0+095	19,553	275,470 232,227 841,243	533 253 1,300	0.097 0.055 0.0775	16,726 16,079
Total from	2131 Monthly	97,550 252,370	5 333	0.0026	16,295	0 105,52 89,36 315,28	$ \begin{bmatrix} 5 & 3 \\ 0 & 1 \\ 5 & 10 \end{bmatrix} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22,396 22,413	108,425 101,145 349,990	40 20 150	0.0185 0.0099 0.0214	28,525 28,545	91,545 86,180 321,425	20 0.0 17 0.0 132 0.0	10,23 109 10,23 108 10,26 205 10,26	0 336,580 0 157,540 7 112,521 606,540	780 120 28 28	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31,263 31,383 31,411	82,801 71,782 67,426	18 13 12	0.0169 0.0691 0.0089	19,507 19,520 19,532	96,933 85,602 73,095	23 18 13	0.0118 0.0106 0.0089	11,071 11,089 11,102	119,004 87,121 82,020	55 18	0.031 0.0108	19,608 19,626	143,452 111,038	17 11	0+0059 0+005	16,956 7,007
April to October (Ft. acres).		10,512,530	16,300	0.120	 	12,097,33	0 22,41	3 0.185	••	15,028,626	28,545	0.190		10,525,200	10,267 0.0	97	15,090,21	31,411	0.208	···	222,009 13,396,290	43 19,532	0.0097 0.146	••	255,030 9,937,470	54 11,162	0.0106 0.112		288,155 9.945.428	10 98 19.641	0.00153	18,041	110,063 365,173		0.0127	17.(35
Run off Nov. March (foot acres).		1,269,940			 	1,624,76	0			1.844 950																·				,	0.00	**		11,080	0.130	
Total annual	•	11,782,470	16,300	0.1347	ļ 	13 799 00	0 99 41	3 0.165				••		1,045,114			1,787,650	• • • •		••	1,240,142	••		••	1,276,054	••	••	••	1,413,344	••	••	•.	1,596,004		••	
(foot acres).	_					10,722,08	22,41	0.163		16,872,876	28,545	0.169	•••	12,170,314	10,267 0.0	4	16,877,864	31,411	0.186	••	14,636,432	19,532	0.133	••	11,213,524	11,102	0.098	••	11,358,772	19,641	0.173	••	14,222,162	17,035	0·12 0	
MSCBI&P	1			<u>_</u>			<u>.</u>		<u>'</u>	·	ا <u>ا</u>	Figures in	italics are c	btained from	actual daily	hermations	000-0	1]														

· · ·

.

-

.

-

.

- L

66

.

.

.

Figure 35 :- Siltload of Sutlej at Bhakra

TABLE Sill Load of River Monthly discharge Weight of dry material in one

<i></i>	•						
Month	•	Particulars			1916	1921	1922
.1		2			3 -	4	б
		Consee days			156,785	211,800	217,925
April	Discharge	{foo acres	••		313,570	423,600 -	435,850
	Silt foot acr Silt percents	es ge of discharge	••	••	28 0 0089	$\begin{array}{c} 42\\ 0 \ 0099 \end{array}$	44 0 0101
		Cuseo days			288,100	455,175	539,798
blay	Discharge	foot acres	••		576,200	910,350	1,079,596
	Silt foot acre Silt percenta	ego of discharge	••		133 0 0231	328 0+036	501 0 0465
7) Deckerse	Cousee days		••	1,216,350	- 735,730	1,336,870
9 0 00	- Creconie	foot cares	••		2,442,700	1,471,460	2,673,740
	Silt foot acre Silt percenta	ge of discharge	••	 	3,962 0+162	1,345 0 091	5,335 0 20
Jule	Discharge	∫ouseo days	••	••	1,239,820	1,321,925	1,855,080
00.9		foot Acres	••	••	2,479,640	2 643,850	3,710,160
	Suit foot series Suit percenta	go (f discharge	••	••	4,1 57 0 168	4,329 0 163	10,673 0 288
Angust] Discharge	fouseo days	••	••	1,387,050	2,017,000	2,006,220
	}	foot acres	••	••	2,774,100	4,034,000	4,012,440
	Silt foot acr Silt percents	es sge of discharge	 	••	6,555 0·236	13,401 0-332	8,966 0 * 224
Septem-	Discharge	fousee days	••		715,790	291,750	·1,208,430
ber		(foot acres	••	••	1,431,580	1,083,600	2,416,860
	Silt foot-acro Silt percenta	es ge of discharge	••	•••	1,132 0·079	2,864 0 144	2,87 6 0 119
October	Discharge	fousee days	••	••	432,370	315,285	340,990
		(foot-acres	••	••	564,740	_ 630,570	699,980
I	Silt foot acre		`. .	••	333	, 104	150
I	Silt percenta	ge of discharge	••	•	• 0 0385	0 0165	0 0214
Total April to October	Dischargo in	foot acres	••		10,512,530	12,097,330	15,028,626
o con for	Silt in foot a		••		16,300	22 413	28,545
	Silt percents	ge of discharge by	volume	.	0+150	0 1955	n 1895
1	Wonght of si	lt in tons	••		25,528,260	A 39 907 992	40.959.459
	Selt % of du	scharge by weight	••		0,216	002,1822,000 0 907	10,000,200 0+27 3
Total Nor March	Discharge in	foot-acres	••	••	1,269 940	7 694 700	1 844.250
Annual Run off	foot same	** ••	5	••	12,152,470		16.872.876
		<u>.</u>					

XIX Sutlej at Bhakra and silt load cubic foot of deposit=90 lbs.

J

	_						1
1923		1924	1925	1926	1932	1033	Average
6		7	8	9	10	ريا1	12
275,	375	222 405	304,214	139,738	121,521	174,922	.202,743
550,	750	444,810	608,428	279,476	243,042	349,844	405,495
0.0	94 171	48 0 0108	203 0 0334	25 0 0089	21 0+0086	- 0 0092	- ⁻ 60 0.012
446,	370	231,572	497,564	327,610	176,909	405,574	374,297
892,3	740	463,144	995,128	655,220	353,813	811,148	748,594
0 0	287 311	49 0 0105	1,650 0 166	167 0 0256	- 37 0-104	475 0 0585	403 0*054
940,8	595	976,495	1,116,245	811,580	621,797	1,256,836	979,720
1,881,1	190	1,952,990	2,232,490	1,223,120	1,243,594	2,513,672	1,959,440
2.(0 1)	082 106	4,214 0 216	4 573 0•205	454 0+037	- 760 0+061	5,406 0+215	3,126 0~160
1,091,9	905	2,558,685	2,066,593	1,258,263	1,190,833	1,776,606	1,595,523
2,183,8	810	5,117,370	4,133,180	2,516,526	2,381,686	3,553,212	3,191,048
2,4 0 1	427 111	17,460 0 341	7,427 0 179	3,920 0 156	3,954 0 166	5.402 0 152	6,639 0 208
1,521,6	055	1,890,950	1 834,210	1,575,664	1,840,339	1,492,725	1,785,090
3,043,3	310	3,781,900	3,068,420	3,151,328	3,680,678	2,985,450	3,459,069
4,0 0	305 153	6,594 0 174	5,141 0+1400	4,832 0·153	13,380 0+3 6 3	4,364 0 147	7,538 0·218
665,:	275	1,058,355	657,310	800,870	, 33,160	841,243	852,465
1,330,8	550	2,116,710	1,314,620	1,601,740	1,166,320	1,082,486	1,704,950
0.0	640 048	2118 0100	495 0+0377	1,650 0 103	1,392 0-095	1,300 0 0775	. 1,607 0 094
321,	125	606,845	222,009	255,030	288,155	365,173	350,676
642,	850	1,213,250	444,018	510,060	576,310	730,346	701,352
1	132	928	- 43	54	38	- 56	210
0 0	203	0-076	0.0097	-, 0 0106	0-0153	0-0077	0.030
10,525,5	200	15,090,214	13,396,200	9,937,470	9,945,428	12,626,158	12,169,910 ,
10 1	267	31 411	10.532	11,102	19,641	17,035	19,583
0.0	975	0+2070	0.148	0-112	0 1975	0.135	0-161
17,960 :	303	84,975.532	34,184,906	19,430,720	34,375,678	29 814,657	33,941,000
0 14	480	<u> 296</u>	J- 0-210	0.161	0+23 ·	0-194	0.228
1,645	114	1.787.050	1,240.142	1 276,054	1,413,344	1,596 004	1,521,918
12,170 \$	814	16,877,864	14.636.432	11,213,524	11,358,772	14,222,162	13,691,834

~

.

TABLE

.

Statement showing maximum discharge and corresponding silt and maximum (Silt is taken in ounces per cubic foot of

,

•	•	Ap	ril	Ms	y	
Year	Partículars		Discharge in cusecs	Silt in oz. per cubic foot of water	Discharge in ousees	Silt in oz. per Cubic foot of water
1	2		3	4	5	6
1916	Maximum discharge and corresponding silt Maximum silt and corresponding discharge	••			••	
1921	Maximum discharge and corresponding silt	••				
	[Maximum silt and corresponding discharge	••	••		••	••
1922	Maximum discharge and corresponding silt	••			••	.1
	L Maximum allt and corresponding discharge	••	••	•	••	••
1923	Maximum discharge and corresponding silt	••	14,100	0.62	19,500	0-81
	(Maximum si't and corresponding discharge	••	14,100	0 62	15,900	083
1924	Maximum discharge and corresponding ailt	••	9,500	0·24	9,800	- 0.27
	(Maximum silt and corresponding discharge	••	8,800	0 26	9,300	0.40
1925	Maximum discharge and corresponding silt	••			35,700	4-93
	Charmum allt and corresponding discharge	••		••	31,100	5-43
1926	Maximum discharge and corresponding alt	••	• • •		18,200	0+62
	Lanximum silt and corresponding discharge	••			14,000	1.10
1932	Maximum discharge and corresponding silt	•.,	•			••
	Carresponding discharge	••	• •	. .	••	**
1933	Maximum duscharge and corresponding alt	••			27,500	3-06
	Laurinum silt and corresponding discharge	••			27,500	3-06
,	sauy discharges are taken correct upto hundre	de. ;	Figures belo	r 50 are neg	lected and t	1066 a boys

silt and corresponding discharge in each month observed on River Sutlej at Bhakra water-parts per 1,000 by weight)

Ju	ДЭ	Ju	ly ,	Aug	ıst	. Sept	ember	Ooto	bor
Dis- charge in cusecs	Silt in oz. per cubic foot of water	Discharge in cusecs	Silt in oz. per cubic foot of water	Discharge in cusecs	Silt in oz. per cubic foot of water	Discharge in cuseos	Silt in oz per cubic foot of water	Dis- charge in cusecs	Sult in oz per cubio foot of water
7	8	9	10	11	12	13	14	15	16
55,500 47,900	3 21 3.84	74,600 74,600	8 18 8·18	70,600 53,700	7-92 11 02	38,200 38,200	3 55 3 55	30,000 30,000	3·89 3 89
		•	•	122,500 92,000	6+96 8+1	77,000 77,000	`8·18 6·16		
		92,000 85,300	- 6·13 10·47	110,000 110,000	6 99	68,900 46,500	2·14 5·69		••
49,700 43,700	3-04 3 04	49,500 36,400	2 00 4·17	93,100 51,500	4 93 5+67	44,500 44,500	2+62 2+62		
71,800 70,000	631 693	237,000 237,000	8·4 8·4	81.000 70,600	4-47 4-58	65,500 65,500	2 6I 2·61		••
74,100 58,500	4·22 4·79	112,000 57,900	3·44 5·42	191,100 135,500	4.71 6.02	39,400 39,400	0·49 0 49		••
33,200 27,400	0·98	96,000 96,000	8·75 8·75	, 61,100 54,100	· 2-60 2 94	59,600 55,900	2•32 3•55		
••		94,100 50,600	8·99 9·29	€ 135,100 13 <i>5</i> ,100	13·53 13·53	61,800 61 800	5·27 5·27	 	••
76,300 71.500	- 3·27 9·50	92,800 80,600	• 4•04 4•21	57,300 42,100	2·44 2·62	50,700 28,200	1 · 93 5 · 69	17,100 14,800	0·10 0-13

50 are taken and next hundred figure recorded.

In computing the volume of silt, the weight of dry material has been assumed as 90 pounds per cubic foot of silt deposit. In estimating the probable volume of silt in the Boulder Reservoir, this was taken as 85.6 pounds, while the exposed deposits at the Elephant Butte Reservoir weighed on the average 92.3 pounds.

Figure 36 shows the silt load carried by the river at Bhakra (in millions of tons) and the runoff (in foot acres) year by year.

Figure 36 :- River Sutlej at Bhakra : Run-off silt graphs.

TABLE XXI River Sutlej at Bhakra Discharge/Silt Table (Prepared from Figure 35)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Discharge	Silt in' foot	Discharge	Silt in foot	Discharge	Silt in foot acres	Discharge in	Silt in foot acres
	Cusecs	per day	Сивесв	per day	Cusecs	per day	Cusecs	per day
	1 000	0.1	29.000	56	57,000	259	85,000	647
	1,500	0.2	29,500	58	57,500	265	85,500	655
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,000	03	30,000	60	58,000	270	86,000	663
	2,500	0.4	30,500	62	58,500	275 -	86,500	671
	3,000	0.5	31,000	65	59,000	280	87,000	079
	3,500	0.6	31,500	67	59,500	286	87,500	007
	4,000	0.7	32,000	70	60,000	291	88,000	090
	4,500	0.8	32,500	72	60,500	297	88,500	100
	5,000	0.9	33,000	75	61,000	302	59,000 80 =00	718
	5,500	1.0	33,500	78	61,500	309	00,000	726
	6,000	11	34,000	80	62,000	310	00,000	731
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,500	1.2	34,500	83	62,500	321	90,300 91,000	741
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,000	13	35,000	86	03,000	320	01,000	749
	7,500	1.4	35,500	1 89	84,000	340	92,000	757
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,000		36,000	92	84 500	345	92,500	765
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,500	1.8	36,500	95	65,000	350	93,000	772
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,000	20	37,000	98	85 500	357	93,500	780
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9,500	23	37,500		66,000	363	94.000	788
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10,000	25	38,000	104	66,500	370	94,500	796
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10,600	32	38,500	107	67.000	377	95,000	804
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11,000	4.0	39,000	112.	67.500	383	95,500	812
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11,000	47	40,000	117	68,000	390 •	96,000	820
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12,000	0.0	40,000		68,500	397	96,500	828
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12,000	7.0	41,000	123	69,000	403	97,000	835
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13,500		41 600	127	69,500	. 410	97,500	044 950
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 000	90	42,000	130	70,000	417	98,000	880
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.500	05	42,500	134	70,500	425	98,500	868
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,000	10.0	43,000	138	71,000	432	99,000	876
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,500	11.0	43.500	142_{-}	71,500	439	100,000	883
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.000	12.0	44,000	145	72,000	446	100,000	000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16,500	13.5	44,500	149	72,500	403		•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17,000	15 0	45,000	152	73,000	400		•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17,500	16 5	45,500	156	73,600	400	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18,000	18 0	46,000	160	74,000	483.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18,500	19-0	46,500	164	74,000	490		•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19,000	20.0	47,000	168	75,500	· 498	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19,500	21-0	47,500	172	76,000	506		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20,000	22 5	48,000	170	76,500	514		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20,500	24.0	48,500	100	77.000	522	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21,000	25-5	49,000	180	77,500	530	}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41,000	27.0	49,500	193	78,000	538	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22,000	210-	50,000	197	- 78,500	545	ļ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23,000	39.0	61,000	201	79,000	553	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23,500		51 500	205	79,500	561		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24,000	38.0	52 000	210	80,000	569	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24,500	37.5	52,500	215	80,500	595	~	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25,000	390	53,000	220	81,000	599	ł	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25,500	41.0	53,500	225	81,500	800	ļ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26,000	43.0	54,000	230	82,000	608	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26,500	45.0	54,500	235	32,000	616	}	
27,500 49.0 55,500 244 65,000 632 28,000 51.0 56,000 249 84,000 632 28,600 53.0 56,500 254 84,500 640	27,000	47.0	55,000	239	22 KM	624		-
28,000 51.0 56,000 249 84,500 640 28,500 53.0 56,500 254 84,500 640	27,500	49-0	55,500	244	84,000	632	ł	
28,500 53.0 56,500 209	28,000	51.0	56,000	249	84,500	640	[•
	28,500	53-0	56,500	209		l		

The average silt load of the river Sutlej at Bhakra works out to 34 million tons or 19,600 foot acres per year. This is equivalent to 157 thousand tons or 90 foot-acres per year per 100 square miles of catchment.

Similar wide variations in the annual silt load as well as the run off are to be noticed in the Elephant Butte Reservoir (See Figure 62 in Chapter 4).

Table XXII showing silt loads of various streams, will be of interest as it brings out the extraordinary variation in the silt load of various streams and thus demonstrates the futility of trying to estimate rate of silting of any particular reservoir on any river on the basis of figures available for another, without full knowledge of the catchment characteristics of the latter coupled with a detailed study of the silt load of the former except as an indication of the upper limit for the annual rate of silting.

Sorial No.	Name of river	Name of reservoir	Catch- ment area (square miles)	Annual sılt load (tons)	Annual silt load in tons per 100 square miles of catchment
1	2	.3 .	4	5	6
1	Nile	Aswan	, 620,000	95,000,000	15,000
່ 2	Colorado (Arizona)	Boulder	167,000	250,000,000	150,000
3	Columbia	Grand Conlee	74,000	Said to be Nil	Nil
4	Brazos (Texas)	Rosenburgh	44,000	32,000,000	73,000
б	Colorado (Texas) 🕤	Lake Austin	38,200	8,220,000	22,000
6	Do	Tow	31,100	5.000.000	16.000
7	Rio Grande	Elephant Butte	26.312	21.700.000	82 000
8	Sutlej	Bhakra	21.960	34 500 000	157 000
9	Nuecos	Three Rivers	15,600	834,000	5,350

TABLE XXII

Comparison of Silt Loads of Bhakra and Boulder Reservoirs

The annual silt load of the Colorado above the Hoover Dam has been accepted (²⁹) as between 200 million and 300 million tons or a mean of 250 million tons (ton equivalent to 2,000 pounds) which works out to nearly 137,000 foot acres for a catchment of 167,000 square miles or to about 150,000 ton or 82 foot-acres per 100 square miles. The comparative estimated figures for the Bhakra and the Boulder Reservoirs are given in Table XXIII.

	. <u></u>			Boulder -	Bhakra
Catchment (square miles)		••		167,000	21,960
Mean annual run-off (foot-acres)	••	••		15,000,000	16.000.000
Rainfall (inches)	••	••		10	45
Storage capacity (foot-acres)	•• '	••		30.500.000	4,905,150
Height of dam (feet)	. 7		· • •	726	_earlier
Mean annual silt load (tons)	••	, 		250,000,000	34.500.000
Mean annual silt (foot-acres)	••			137,000	19.600 -
Mean annual silt load per 100 squa	re mile	s (tons) .	مة .	150,000	157.000
Mean annual silt load per 100 squa	re miles	(foot-acr	8)	82	90
Accepted for project per year (foot	-80T0s)			60,000-	
Accepted for project per year per]	100 squa	re miles (foot-		
acres) Weight of dry material assumed pe (lbs)	r cubic,	foot of de	pošit		- 90

TABLE XXIII

* Since revised in 1949.

The Bureau of Reclamation estimate of the mean annual silting of the Boulder Reservoir was 80 thousand foot-acres, against 137 thousand foot-acres subsequently recorded by the Colorado-River Board (³⁵). The actual provision made for silting in the reservoir was 3 million foot-acres in 50 years (³¹) *i.e.*, 60 thousand foot-acres per year. This presumably takes account of the reduction of silt due to the contemplated construction of some silt storage dams upstream of the Hoover Dam during the next 50 years.

The annual silt burden of the Colorado above Hoover Dam and of the Sutlej above the proposed Bhakra Dam are 82 and 90 foot-acres per 100 square miles of the catchment, respectively. But the storage capacity of the Boulder Reservoir is nearly twice the mean annual runoff of the river, so that all the silt must necessarily lodge in the reservoir except a very small amount which may escape with the discharge passed below the dam for irrigation and hydroelectric generation. The storage capacity of the Bhakra reservoir, on the other hand, is nearly one-third of the mean annual run off so that a considerable proportion of the heavity silt laden flood flows may be available for escapage during the silting periods, thus reducing the silt accumulation in the reservoir. What the actual reduction will be, will depend on the time of the year when MSOBIAP atorage begins, the rate of release of water, the location and capacity of outlet works and the relative claims of irrigation and power. Sixteen thousand footacres per year appears to be a safe figure. This will give an annual rate of silting per 100 square miles of 72 foot-acres against 61, 57, 75, 57, 87, 64, 66, 74 foot-acres for the Elephant Butte, Lake Mentz, Roosevelt, Lake Worth, Grassridge, Van Rynevelds Pass, Zuni and Meiktala Reservoirs respectively as obtained from actual capacity surveys (See Table XXXVII in Chapter 4).

Further Silt Investigations

Silt observations are being started on the tributaries of the Sutlej above Bhakra and it may be possible to effect material reduction in the silting of the proposed Bhakra Reservoir by introducing among other measures a system of check dams in portions of the catchment which are most prolific in silt and detritus. But to make these effective, a careful geological examination of the entire area will be necessary in order to locate the exact position of soft strata and of hill sides which are liable to slip during heavy rains and thus provide immense solid material for the flood stream to carry.

1

PROPOSED BALEHU RESERVOIR

		-		• •		
River	•• 、	**	••••	•	**	Beas, Punjab-India
Catchment	•• •	••	••	•••	••	3,320 square miles
Rainfall Mann annsa	••	••	• • • •	••	:•	42 inches to 116 inches
Proposed et	I TUD OU	• ••	••	••	••	9,000,000 foot-acres
Reservoir le	vel R [°] L ⁴	•••	••	· ••	••	3,751,800 foot acres
		• •	-**	••	** **	2,000
			-			

Catchment characteristics

The characteristics of this basin are similar to those of the Sutlej. The following is taken from the description given by Dr. C. S. Fox, Ex-Director, Geological Survey of India.

The Beas river above the Balehu site, drains a greater area of Siwalik sandstone rock's than Sirmur argillaceous strata but the catchment includes 75 square miles of sub-recent boulder gravels which are easily eroded. There is, however, little doubt that the detritus carried by the tributaries of the Beas in this part of the catchment will be largely soarse materials which should, by suitable measures, be tapped above the limit of the proposed reservoir. The general conclusion, therefore, is that the proportion of silt (or fine suspended matter) to coarse material (sand and shingle) is likely to be appreciably less in the Beas discharge than in that of the Sutlej. Also that the percentage of suspended silt in the Beas flood flow should be materially less than in the flood discharge of the Sutlej as the result of heavy rain on the catchment of Tertiary rocks in either drainage basin.

Comparison of Silt Loads of Sullej and Beas

These are general deductions based on geological considerations and there is very strong evidence to support the opinion that both the Beas and the Sutlej carry large quantities of detritus during flood after heavy rains in their catchment above Balehu and Bhakra respectively. This detritus would appear to have different proportions of gravel, sand and silt in the two riversthat of the Sutlej having a higher percentage of suspended matter as against a large amount of coarse material (sand and shingle) in the Beas. Such deductions, though favourable to the Beas in regard to fine silt, are also to be considered as a hint that it will be prudent to discover what steps must be taken to prevent erosion of soft Siwalik rocks, especially the sub-recent gravels and where the check dams will be required to prevent the coarse detrital materials being swept into the Balehu reservoir.

Silt investigations at Balehu

Silt samples at Balehu were taken in August and September of 1939 only and are abstracted in Table XXIV.

	~			<u> </u>		
~~~		August 1939		Se	ptember 19	39
	1—10	11 <del>.</del> 20	21-31	··. ^{1—10}	11—20	2130
Mean Discharge cusecs	31,150	54,520	43,345	84,480	26,111	18,600
Foot acres of silt	293	- 778	-599	- 2,369	185	49
	1 1	•		•	1	

TABLE XXIV

Total discharge in foot-acres=5,098,600

Total silt in foot-acres - 4

**4,**224

Norm.—Dry silt assumed to weigh 90 lbs. per cubic foot of deposit. Discharge has been worked out from section based on observed gauges and slopes with N=0.035.

The result of these investigations are plotted in Figure 37.



## SILT INVESTIGATIONS CARRIED ON THE MAHANADI AND THE KOSI RIVERS (6)

HIRAKUD RESERVOIR

-Biver				بالى ويسم	Mahan	adi (Orissa-	
Catchment are	8 1.4	, • .l.••			•1ndı: •ats 82,200	a) aq. milea	
_Rainfall	۰ 					•	
Mean ann Maximum Minimum	nal (1919) - (1902) -	•	**	• • ·	54.4 jn '	iches	
Run-off-	· ·		~			<i>"</i> -	
Mean ann Maximum - Munmum Storage capacit	nal	- • • •	1-	••		02 foot-acn 	83
Gross at R Dead at R Live	. L. 625 . L. 590	, \ • • • · · · · · · · · · · · · · · · ·	•• * ₁₁ ••	•• •• ••	5.98 2.24 3.74	7 22 22 23 23 24 22 25 27	
Air temperatur	<del>0</del> -			5 B			
Annual gen h Annual ma Annual mi	ieral mean ximum m nimum m	n Ioan Ioan	، متي ويد بر، ۲۰ ۲۰ د	· · · · · · · · · · · · · · · · · · ·		Fahrenheit "	<b>)</b> F
Wat	or temper egrees Fa	rature	، <u>۱</u> ۲ ۱ ۲		1949	1950	1951 ( 1951 ( 1 m )
Maximum-	, <u>,</u> ,		II L			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Morning	••	•• •	• ••	95°F	88·7°F	89·4°F	91·2°F
Evening	••		• •	103°F	95.9°F	94·1°F	95-1 <b>-</b> R
Minimum-	·	(	<i>′</i>	• •	c J		
^j Morning	یں ۲۰۰۰ راب <b>ہ</b>	د . مواد مو	· - :4	≥11 <b>68°F</b>	67-1°F	-66 2°₽	~.66 2°F,
Evening	4 j ••	, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	173 17 17 - 1 <b>7 -</b>	''' 70°F	- 68 · 9°F	'68.9°P	68-9°F
TT				~		<u> </u>	· <u>···</u> ···

Reight of the Dam

150 feet

Characteristics of the catchment area

The Mahanadi-literally the Great River-is one of the three rivers which 87 1 -thas its basin in the state of Orissa and is the largest of those rivers with a total length of 533 miles. It rises near Schawa in the extreme south west of Raipur district in Madhya Pradesh (Central Provinces). After a short run through the Raipur and Bilaspur districts it then enters the Sambalpur district of Orissa and at Sambalpur becomes a river of the first magnitude with a bed width of over one mile. It has a catchment area of about 32,200 sq. miles above the Hirakud "Dam site.) The latter is about 9 miles upstream of Sambalpur. The maximum

and minimum daily run-off. in that river at Sambalpur during the last five years have been as below :

19	1947 1948 ··· ) ··· · · · · · · · · · · · · · ·			<b>0</b> 91	19	50	1951					
 Min.*	Max.*	' 195 ' ' <b>Min</b> ', '	с мал.	Min.	Max.	Min.	Max.	Min.	Max.			
428	1,929,102	<b>860</b> 	1,896,056 L	826	1,402,446	524	1,584,184	1,058	900,916			
7th June**	2nd Sept.**	12th June	17th Ang.	10th May	8th Aug.	7th June	6th Aug.	lst June	7th Aug.			

*Minimum and maximum run-off in foot acres

**Dates when the particular run-off was recorded.

#### Silt investigations on the Mahanadi

#### (a) General

The silt work mainly relates to the silt carried in suspension by the river water and the investigations comprise, firstly routine day, to-day estimation of silt load and, secondly, special work directed at obtaining further information on some particular aspects of that load. Three laboratories are at present engaged on silt work at, or near, the proposed sites for dams on that river *i.e.* at Sambalpur for Hirakud Dam, at Barmul for Tikkerpara Dam and at Kaimundi for Naraj Dam. For the sake of brevity only work done at the Sambalpur site, which is of immediate importance for the sake of the Hirakud Dam under construction, is described here.

(b) Collection of river water samples

There are 15 sampling verticals about 300 ft. apart at the Sambalpur site on the Mahanadi during the high discharge and 5-6 during low discharge periods. The water sampling is done with the help of one-litre capacity Punjabtype bottle sampler at the conventional six-tenth of the depth of water at the sampling vertical except for special investigations when water samples are collected at other depths along vertical also (see part dealing with special investigations).

# (c) Estimation of the suspended silt load

Technique: The present practice of estimating the suspended silt involves, its separation based on particle-size into three fractions viz. coarse, (above 0.2 mm) medium (0.2 mm—0.075 mm) and fine (below 0.075 mm). The separation of the coarse silt is done by sieving the silt laden water through 70-80 mesh sieve and the medium by sedimentation method by allowing the well stirred suspension to settle for calculated interval of time for particles upto and above 0.075 mm. The coarse and medium fractions are estimated on volume basis by dropping each one of them in a graduated glass tube, especially designed to read to a hundredth of a conjunct. further settlement occurs. The finer fraction is estimated on weight basis from a separate sample by a special hydrometer capable of estimating silt upto about 0-02 % per litre of suspension or alternatively by actual weighment when the silt content goes very low. From the weight of fine silt its equivalent volume is computed.

Tabulation and graphic representation of the silt load from the daily figures of volume of each of the coarse, medium and fine silt and the discharge, the quantities in cubic feet and also in foot acres of each of these silt fractions and total silt are worked out for each day. The daily results are then computed on the basis of ten-day mean figures for each month separately and later for the whole year. Those figures may then be plotted. The estimated amounts of silt of each one of the three fractions and total silt on monthly basis for sambalpur has been presented in Tables XXV to XXIX* for the years 1947-1951, and that for four years (1947-1950) plotted in Figures 38-41. The cumulative annual figures of discharge and silt load for the five years have been compared in Table XXX.

#### TABLE XXX

Showing a comparison of the annual run-off and silt load figures from 1947-1951

Year		Annual run- off (foot-acres)		Silt load in foot acres							
			Coarse	Medium	· Fine	Total	% Silt con- tent				
1947	•••	39,179,672	3,721.32	4,383.41	25,130.63	33,235.36	· 0.085				
1948	••	34,138,582 .	2,661.51	2,892.67	23,912.64	29,406.82	0 088				
1949	••	34,814,310	2,100.89	3,028.31	21,833.71	26,971·91	<b>a</b> 0+068				
1950	••	34,923,806	1,659-21	3,241.57	18,711.42	.23,612.20	*0.079				
1951	••	24,662,622	774.37		19,085∙06	20,995 • 27	0.085				
Mean	••	33,543,798	2,185-26	2,936 • 36	21,734 • 69	26,856·31	0.081				

As is clear from Table XXX the silt yield of the Mahanadi catchment above Hirakud Dam site for the five years 1947-1951 amounted to 33,235, 29,467, 26,972, 23,612 and 20,995 foot-acres (mean 26,856) foot-acres respectively. In terms of 100 sq. miles of the catchment these figures work out to  $103 \cdot 2$ ,  $91 \cdot 5$ ,  $83 \cdot 7$ ,  $73 \cdot 3$  and  $65 \cdot 2$  foot-acres (mean  $83 \cdot 4$  ft. acres) respectively for five years.

Probable rate of silting of the Hirakud reservoir on the Mahanadi

The rate of silting of a proposed reservoir may be determined either on the basis of silt load carried by the main tributaries or by comparison with sedimentation rates in other reservoirs exposed to similar conditions. As the information relating to the latter is not at present available, recourse has to be made of that available in connection with the former.

^{*} Tables XXV to XXIX are printed on pages 82-91.

 TABLE XXV

 Suspended load of the River Mahanadi at Sambalpur site during January to December, 1947.

		1			Sediment load	in foot-scree	-	~ .	ł
Dayi	Ten days total discharge in	Mean discharge in cuscos	Cumulative ducharge in		t 1		-	Ten days , mean	Cumulativa in foot-sore:
		<b>(</b>		Coarse	Medium	Fine	Total	· •	}
1	2	3	in 🖌	5	6	7	8	9	- 10
latuaru -						1 1			
· 110 1120 \$131	35,976 31,566 38,478	3,597+6 3,156+6= 3,498+0		Negligible (N) - N N	Negligible (N)	21-20 13-56 14-50	21 · 20 13 · 56 14 · 60	2·12 1·35 1·38	
Total	106,020	<u>م</u> •	106,020		······	49-26	49-26		49-26
11-20	30,898 34,950 40,254	3,089 · 8 3,495 · 0 5,033 · 0	- t	N N N	N 0-05 0-03	6-92 8-41 18-55	6-92 8 46 18-61	0.692 0.846 2.320	}
Total	105,102	1	212,132		0.08	- 33-91-	• 33-99		83-25
11-10 11-20 21-31	31,406 -24,468 22,603	3,140 <i>-6</i> 2,446-6 2,054-8		N N N	N N N	7 · 42 6 · 58 5 · 26	7 • 42 6 • 58 5 • 26	0.742 0.658 0.478	{
Total	78,475		290,607	- L -	1	19-26	19-26		102-51
$\begin{array}{c} 1 - 10 \\ 11 - 20 \\ 21 - 30 \\ \end{array}$	- 15,803 14,581 - 9,857	1,580-3   1,458-1   985-7	,	N N N	N N N	2·37 2·27 1·52	2 37 2 27 1 52	0-237 0-227 0-152	
Total -	40,241	`	330,848			6.16	6.16		<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8,403 3,735 3,157	849·3 373·5 287·0		N N N	N N N	0 508 0+180 0+080	0+506 0+180 0+060	0 031 0+018 0+008	
Total	15,385		346,233		·- /	0.746	- 0 746		100-416

	uno-						•				
28 28 28	$\begin{array}{c} 1 - 10 \\ 11 - 20 \\ 21 - 30 \\ \end{array}$	••	2,527 10,051 22,096	252-7 1,005-1 2,209-6		N N N	N N 0 091	0-068 0 937 8 885	0 068 0+937 8+976	0-007 0-094 0-898	
BI&	Total	••	34,674		380,907		· 0·091	9 890	9 981		119-397
, קר קר	uly 110 1120 2131		433,983 687,093 3,058,756	43,398+3 68,709 3 280,796+0		· 7-69 40-02 1,189-29	9 14 45·19 1,7 <del>4</del> 8·91	633 75 1,351 • 62 4,914 82	650 58 1,436 83 7,853 02	65 06 143•70 713•91	
	Total	[	4,209,832		4,590, 739	1,237.00	1,803-24	6,900-19	9,940·43		10,059+827
4	ugusi	  	2,779,808 1,393,008 2,962,631	277,980-8 139,300 8 269,330 1		501 48 109 29 1,011 85	536 47 172-15 922 90	4,452 02 1,646 • 76 5,084 66	5,549 97 1,928 20 7, <b>0</b> 19 41	554-99 192-82 638-13	
	Total	ł	7,135,447		11,726,188	1,682 62	1,631+52	11,183 44	14,497-58		24,557-407
£	lepiembėr 110 . 1120 2130		3,676,987 1,184,781 1,267,657	367,696 7 118,478•1 126,765•7	1	648 97 57 39 67 56	775 57 76 32 73-00	3,961 84 818 37 1,515·49	5,386·38 952 08 1,656 05	538-638 95 208 165-605	
	Total	••	6,129,405		17,855,591	773-92	924 89	6,295 70	7,994 51		32,551-917
Ċ	Actober 110 1120 2131	••	801,481 397,536 180,518	80,148 • 1 39,753 • 6 16,410 7		23·04 3·99 0·654	20·09 2 96 0·370	498 • 31 82 • 28 32 • 34	541.44 89.23 33.364	54 • 144 8 • 923 3 • 033	
	Total	••	1,379,535		19,235,126	27 - 684	23-420	612-93	664.034		38,215-951
	November 110 1120 2130	•••	97,574 70,837 54,540	9,757 4 7,083 • 7 5,454 • 0		n N N	0 1523 0+0316 0+0271	6+6190 3+9652 3 0794	6-7713 3-9968 3 1065	0+677 0+400 0+311	
	Total	••	222,951	ł	19,458,077	N	0.2110	13-8636	13-8746		33,229 • 8256
-	Derember	•••	47,013 40,249 38,619	4,791 · 3 4,024 · 9 3,510 · 8	•	*. N N N	0 0281 0+0205 0 0053	2 • 8920 1 • 6273 0 • 9599	2 9201 1 • 6478 0 • 9652	3 • 292 0 • 165 0 • 088	-
	Total	<u></u>	126,781	<u> </u>	19,584,858	N	0.0239	5.4792	ð 5331		33,235 - 3587

### TABLE XXVI

Suspended load of the River Mahanadi at Sambalpur site during January to December, 1948.

						Sediment load	in foot-sores			
· Days		Ten days total discharge in ousees	Mcan discharge in cuseos	Cumulative discharge m cusees	Coarse	Medium	Fine	Total	Ten days mean	Comulative in foot-scree
i		2	3	4	5	6	7	8	9	10
January 110 1120		40,909 43,679	4,090 · 9 4,367 · 9 2,367 · 0	•.	, Nogligible (N) N	Negligıble (N) N N	- 0-7517 0 2991 0 1592	0 7517 0 2091 0 1592	0 0752 0 0299 0.0145	
2131 Total	••	121,588	3,304+0	, 121,588	N	N	1 2100	1 2100	•••••	1-2100
<b>February</b> 1-10 11-20 21-29	••	26,350 20,500 16,500	2,635•0 2,050 0 1,833•0		N N N	N N N	0 0927 0 0820 0 0853,	0 0927 - 0 0820 0 0652	0.0093 0.0082 0.0073	
Total		63,350		184,938		_	· 0 2399	0 2399		1-4499
$\begin{array}{c} 1 - 10 \\ 1 - 20 \\ 11 - 20 \\ 21 - 31 \\ \dots \end{array}$	- -	13,914 10,843 9,931	1,391 4 1,084 3 903·0		N N N	N N N	0 0487 0 0392 0 0272	0,0487 0,0392 0,0272	0 0049 0 0039 0 0025	
Total	[	34,688		219,626		•	0 1150	0.1150		,1•5649
$\begin{array}{c} 1 - 10 \\ 1 - 20 \\ 21 - 30 \\ \dots \end{array}$		8,363 7,026 5,552	836 3 702+6 555 2		N N N	N · N N	0 0195 0 0174 0 0135	0 0195 0 0174 0 0135	0 0020 0.0017 0.0014	
Total		20,941		240,567			0.0204	0 0504		1.6153
1-10 11-20 21-31	••	4,848 4,286 4,111	484·8 428·6 374 0		N N N	N N N	0 0095 0 0065 0 0070	0 0095 0 0065 0-0070	0 0010 0.0007 0 0008	
, Total ·		13,245	•	253,812		,	0 0230	0.0230		1-6383

,

Jane	1	a Ana I	201.6	1	N2 1 · · ·	N' .	0.0049	0.0049.1	a acar i	
11-20	.::)	72,630	1,263.0	1	Ň	0 0023	0 1609	0 1532	0 1532	
21	}	238,501	23,850 • 1		1-9215	2.7727	317 8142	322 5084	32.2508	١
Total	Г	253,746		507,558	1-9215	2:7750	317-9690	322 6664	{	324-3047
			(		}	• • }	{	{		
July	1	KR0 539	56 953 . 2	}	6 9110	10 6235	1.217.9052	1.234. 4407	123 4441	
11 - 20	1	844,695	84,469.5	· · · · ·	16 4013	42.8093	1,521 -5775	1,580 7881 (	158 0788	
21-31	Ĩ	1,730,589	157,326 2	5	106+3306 {	240 9427	3,204 8078	3,552.1411	322 9219 }	
m.4.1	}~	9 144 916	{	3 652 374	128 6429	294 3755	5.944 3515	6.367 3699	· }	6.691 • 6740
TORE	•• }	5,144,010	Į	0,002,012	140 0140		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,000	5	4
August-	1			{		,	000 0070	000 5000	90 '9760 l	•
1-10		773,623	77,362 3 (	1	13+2524	1 200.6807	862 3979	893 7088	1 081 7954	
11 - 20	•• }	3,471,740	347,174.0	Į	1,411 4323	455,0507	5 495 1495	7 370 9657	670.0878	
21-31	- * {	0,000,440	309,404.4	_	920 1000					ı
Total	}	8,198,812	{	11,851,186 (	2,345 4412	2,302.8479	14,433 6997	19,081 9888	1	25,773 • 6634
Baula Ban		1	1	ļ		4 ·				
nepicmoer	. 1	1 982 430 )	798 242.0	{	68 5460	88-4918	. 946-9174	× 1.103 9252	110 3925	
11-20	- :: {	1.392.789	139.278.9	{	82-8558	166 8951	908 6038	1.156 3547	115 6355	
21-30		643,864	64,386-4	j	7 5055	6 4717	428 5733	442.5505	44-2551	
<b>m.</b>	ł	0.200.000	1	15 171 980	150.0072	041.0508	0.000.0045	9 709 9904	}	99 478 4099
TOAN	•• {	3,320,083	1	10,111,200	198,8019	201.0040	2,202 0040	2,102.0304		20,410-4000
October			. }	1	1	· ···· ·	}	ł		
1-10		1,510,707	151,070-7		24 6274	27.5664	733 3179	785 5617	78.5562	
11-20	••	291,782	29,178 2		1.3760	1 1838	66-2272	68.7870	6.8787	-
31-01	••	193,008	11,090.2		0.0357	0 44/8	20.0310	20 0230	1.0008	2
Total	••	1,996,047	ł '	17,167,316	26.0481	29-1890	819-5761	874.8722	{	29,351+3880
Moneyhan		{	{ }	••		ł	ş	{		•
1-10		121,640	12.164.0		0-0159	0.2613	10.9689	11 2461	1.1246	
11-20		192,675	19,267.5		0.2057	0.6843	51 1915	52.0815	5 2082	
21-30	_ ••	113,952	11,395-2	{	{ 0∙0894	0.3422	20.6010	21.0326	2.1033	
Total	••	428,267	-1	17,595,583	0 3110	1.2878	82.7614	84.3602	1	29,435-7262
December		1	1	}	Į		ł		}	}
, <u>1</u> —10	•-	125.678	12 567.8	1	0.1999	0.9745	98.8879	97.2505	2,735]	1
11-20	•	55.535	5,553 5	}	N N	0-0401	1 9929	2 0330	0.2033	<b>}</b>
<b>2</b> —si	• •	47,386	4,307-3	) I	) N	0.0088	1.6941	1.7029	0.1548	}
Total		228,599	51	17,824,182	0.1888	3 0-3234	30.5742	31.0864	1	29,456-8126
		220,095	, 	17,024,182	0.1888	si0+3234	30.5742	31.0864	<u></u>	1 19,400-8120

#### TABLE XXVII

# Suspended load of the River Mahanadi at Sambalpur site during January to December, 1949.

		1	1	ł	]	Sediment lo	ad in foot-acres		{	1
Days		Ten days total discharge in cusees	Mean discharge in cuseos	Cumulative discharge in cuseos	Совляе	Medum	Fine	Total	Ten days mean	Cumulative in foot-sorce
1		2	3	4	5	6	7	8	9	10
Jinuary 110 1120 2131		35,568 30,727 32,387	' 3,656-8 3,072-7 - 2,944-3		Neglugible (N) N N	Negligible (N) N N	1 • 3913 1 • 0031 0 7433	1 · 3913 1 0031 0 · 7433	0-1391 0-1003 0-0676	
Total		98,682		98,682		•	3 1377	3 1377		3 • 1377
1 <u>1</u> 0 11 <u>-</u> 20 21 <u>-</u> 28		27,090 27,519 16,834	2,709 0 2,751 • 9 2,104 • 2		N N N	N N N	0 6651 0 8511 0 4829	0 6651 0 8511 0 4829	0.0865 0 0851 . 0 0604	
Total		71,443	· }	170,125			1 9991	1 9991		5-1368
March		14,865 12,710 11,044	1,486+5 1,271+0 1,004.0		N N N	N N N	0 4908 0 4211 0·3508	0-4908 0-4211 0-3508	0 0491 0+0421 - 0 0318	
Total		38,619		208,744			1 • 2627	1 - 2627		6-3998
<i>April</i> <i>110</i> <i>1120</i> <i>2130</i>	::	7,388 7,007 5,579	738-6 700-7 557-9		N N N	N N N'	0·1842 0 1815 0 1308	0-1942 0 1815 0-1308	0·0184 0 0182 0-0131	
Total	[	19,972	•	228,716			0 4985	0-4965		6+8960
$\begin{array}{c} 1 & -10 & \dots \\ 11 & -20 & \dots \\ 21 & -31 & \dots \end{array}$		4,377 5,996 8,020	437•7 599•6 729•1		n N N	N N N	0+0751 0 1586 0 2561	0+0751 0+1586 0+2561	0+0075 0+0159 0+0233	}
Total	••	18,393		247,109			0 4898	0.4898	·	7.3858

J 1180				i		·			_	
1-10		\$3,166	3,316-6		0.0085	0.0143	$12 \cdot 4923$	12 5151	1-2515	
11-20		145,634	14,563-4		0.0202	1-0471		125 4436	12-5444	
2130	••	73,515	7,351.5		0+1220	0 3129	52 1912	52 6291	5-2629	
MI- 4-1	1	952 915	{	KA9 404	0.7507	1.3773	188-4598	190 5878	·	107-0736
Total	••	200,010	1	002,121	0.1001	2.0110	100 1000			701-0100
lastas	1	, Į		{	4		-		1	
1.10	្រ	804 822	60 462 2	1	18-7683	35 3172	1.372 . 2612	1.428.3467	142.6347	
11 00 .5	••• [	816 049	61 504 8	1	9.0049	11 2560	682+3977	682 6586	68.2659	
11	••• }	1 447 902	131 627.5	ſ	140.8269	183-1376	2.242 . 1515	2.566 • 1190	233.2835	
2161	- +• {	1,221,000	101,001-0	í.						
Total	- <b>.</b> . [	2,667,572		3,169,996	168-6001	229+7108	4,276+8134	4,675 • 1243		4,873+0979
Aurorat	1	j j	1	ł	(	{	}			
1		3 451 163	345.116-3	í	812-9947	1.202 3639	5.438 2722	7.451 . 6308	745 • 1631	
11 00	- ** !	0 205 042	280 594 3	{	735 8184	1.029.4210	4.090 5658	5,855 8052	585+5805	```
	- ** }	1 280 599	123,868,2	ſ	82,3833	87-1568	1,115 3647	1 264-9046	114.9913	
2131	••• }	1,302,046	100,000 2	ļ		01-1000				
Total	]	7,619,634	ł	10,789,630	1,611-1964	2,318.9415	10,642 2027	14.572-3406		19,445+4385
0. 1. 3	1	•	ł	1	1	ſ	f f		ĺ	
September	(	001.014	05 141.4	1	17,8779	00 4500	604 1515	723 9700	79.9990	
1-10	•••]	851,414	80,141.4	1	109.9691	2014000	044 1010 1	134 4199	10.4200	
11-20	••	1,988,689	198,808 9 1	1	198.3031	319-9418	2,448 9041 1	2,907-2090	290.7289	
21	••	951,978	95,197-8	{	00.0202	91 • 5552	1,198.9011 [	1,316-0480	191.0048 )	X
Total		3,792,081	1	14,581,711	281.5671	431 - 9476	4,302.0727	5,015 5879		24,461.0259
			{	· · · · · · · · · · · · · · · · · · ·	}	1	· ·	· ·		
Detober		1 1		}				)	}	
1-10	. 4	819,858	81,985 8	}	24 8594	25 7348 (	919 1518 )	969+5460	96 9546	
11-20		700,473	70,047 3	{	15-7488 (	14 8016 {	748-3027 }	778 8531	77-8853	
2131		503,246	45,749 • 7	{	<b>4 · 2</b> 872 (	3 1127	289.0321	296 - 4320	26 • 9484 (	
Total		9 002 577		16 605 288	44 6954	42,6401	1 058.4868	2 044 8311	~~~~~	28 505 <b>•8</b> 57 <b>0</b>
, 2000		4,020,011		10,000,200		20.0401	1,000 2000	2,011.0011		20,000-0010
November-		}			)	ł		(	ĺ	
1-10		374 990	37,499.0		2+8838	2.3988	398 8151	404 0957	40-4098	
11-20		137 950	13 795.0		0 1486	0 1808	36-1688	36 4980	3-6498	
21-30		102,000	10 286.7		0 0395	0.0541	12.7005	12.8031	1 2803	
	••	202,001	10,200	Î			12 1000			
Total	••	615,807	}	17,221,095	3-0719	2•6315	447 6934	453 3968	{	26,956 •2538
O ac amber		1	ł		i j	I 1			{	
1-10		74 550	7 455 9		0 0100	0 0104	7 0242	7.0747	0.7975	
11-20	••	1 80 400	8 649.7		0.0000	0.0149	9,100#	2 2012	0.3901	
21-31	••	1 00,407	4 820-5	l I	0.0000	0.0000	90001-0	1 6104 6	0.12/4	4
41-01 +1	••	01,034	4,038*0	}	}	0.000	1 4802	1.4004	0.1940	
Total	<u> </u>	188,060	]	17,447,155	0.0100	0.0552	12.5910	12.6562	]	26,971-9100

# TABLE XXVIII

Suspended load of the River Mahanadi at Samoalpur site during January to December, 1950.

	1.	1 .			Sediment loss	d in foot-acres			
Дауа	Ten days total discharge in cusecs	Mean discharge in cusees	Cumulative discharge in ousees	Coarse	Medium	Fine	Total	Ten days mean	Cumulativa in foot-acres
1	2	3	4	5	6	7	8	9	10
fanuary 1950- 1-10 11-20 21-31	31,603 27,014 28,215	3,160 3 2,701 · 4 2,565 · 0	86,832	0.00 0.00 0.00	0 00 0 00 0 00	0 4285 0 3772 0 4521	0+4285 0+3772 0 4521	0 0429 0·0377 0 0411	1.2578
Total boruary 1950- 110 1120	\$6,832 23,586 20,602	2,358 6 2,060 2		0.00	0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1-2578 0 3669 0 2960	1 · 2578 0 3669 0 2960	0+0367 0-0296	
21-28 Total	67,962	2,971-8	154,794	0.00	0 00	1 3847	1 3847	0+6902	2.6425
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<ul> <li>28,055</li> <li>18,528</li> <li>45,025</li> </ul>	2,865.5 1,852 8 4,093 2	ł	0 00 0 00 0 00	0 00 0 00 0 00	1 · 3132 0 4686 6 0650	$\begin{array}{c}1 & 3132 \\0 & 4686 \\6 & 0650\end{array}$	0·1313 0 0489 0 5514	
Total	92,208 22.013	2 204 3	247,002	0 00	0 00 0	7 8468	7 8468	0.1219	10-4893
11-20 21-30	9,674 6,682	967-4 666-2	-	0 00 0+00	0 00 0	0 3247 0·1720	0 3247 0 1720	0·0325 0·1720	-
Total	38,379		285,381	0 00	0 00	1 8086	1 8086		12-2979
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,768 , 3,915 3,464	476+8 391+5 314+9	ł	0.00	0.00 0.00 0.00	0·1126 0 0801 0 0329	0 1126 0-0861 0 0529	0·0113 0 0086 0·0048	
Total (	12,147	{	297,528	0.00	0 00	0 2516	0 2516		12.5495

June 1960-										
$\begin{array}{c} 1 - 10 \\ 11 - 20 \\ 21 - 30 \\ \end{array}$	::	2,858 87.491 249,020	285 · 8 8,749 · 1 24,902 0		0.00 0 00 0 8872	0 00 0·1141 0 9037	0-0500 94 6858 338 9441	0.0500 94.7999 340 7150	· 0.0080 9.4800 34 0716	
Total	•• [	339,369		636,897 (	0 8672	1 0178	433 6799	435 5649		448.1144
July 1950- 1-10 11-20 21-31		597,876 1,262,222 2,931,924	59,787-6 126,222-2 266,538-5	-	8·3053 49·0572 381 9483	10 6159 108 • 1781 782 • 0545	981 • 4968 1,780 • 2729 4,311 • 7722	1,000 4180 1,937+5082 5,475+7750	100 0418 193-7508 497-7977	
Total	. [	4,792,022	}	5,428,919	439-3108	900.8485	7,073 5419	8,413.7012		8,861 • 8156
August 1950- 110 1120 2131 . Total	•••	5,015,159 2,727,344 629,957 8,375,460	501,815 9 272,734·4 57,268 8	1,380,4379	852 3501 264 9097 2 5312 1,119 8810	1,508,7871 531 8530 9 5727 2,050 2128	5,575 9897 2,540-2071 323-1920 8,439 3878	7,937 • 1259 3,337 0597 335 • 2960 11,609 • 4816	793·7126 333 7060 30 4815	20,471 • 2972
September 1950 110 . 1120 2130		963,697 1,286,991 698,428	96,569 • 7 128,699 1 68,842 8		22-4346 69 6398 6-3411	81 8208 187 5210 18 9203	874 • 9906 1,463 - 3005 308 8702	979 • 2460 1,720 4613 334 1316	97+9246 172 0461 33+4132	
Total		2,941,116	• }	16,745,495	<b>98·4</b> 155	288-2621	2,647 • 1613	3,033 8389		23,505 • 1361
October 1950 110 . 1120 . 2131	  	172,408 145,716 120,526	17,240 8 14,571 6 10,958 9	ł	0 4253 0 1639 0 1265	0 4535 0 4352 0·2313	46 4045 33 6597 17 4275	47·2833 34 2488 17 7853	4·7283 3·4249 1 6168	الور م
Total	••	438,650		17,184,145	0 7057	1 1200	97 4917	99 3174	) [	23,604-4535
November 1950- 110 1120 2130	••	84,348 53,374 37,921	8,434 · 8 5,337 · 4 3,792 · 1		0.0315 Nul Nul	0.1107 0.0000 0.0000	3 2511 1-6188 0-9436	3 • 3933 1 • 6188 0 • 9436	0.3393 0.1619 0 0944	
Total	••	175,643	}	17,359,788	0 0315	0.1107	5.8135	5.9557		23,610-4092
December 1950- (1-10 11-20 21-31	•••	36,590 33,481 32,044	3,650•0 3,348-1 2,913•1		Nul Nul Nul	NH NH NH	0 · 7227 0 5384 0 5321	0·7227 0·5384 0·5321	0.0723 0.0538 0.0484	<b>b</b>
Tota	<u>ı</u> .	102,115	<u> </u>	17,461,903	1.,	1	1.7932	1.7932	1	23,612-2024
					,					

#### TABLE XXIX

,

Suspended load of the River Mahanadi at Sambalpur & Bridge site during January to December, 1951.

			1			Sediment load		_	C	
Days ,		Ten days total discharge in cusces	Mean discharge in cuseca	Camalative discharge in ousees	Соатее	Medium	Fino	Total	Ten days mean	Cumulative in foot-acres
1	_	2	3	4	δ	<u> </u>	7	8 '	9	10
January 1951— 1—10 11—20 21—31	•••	25,331 22,852 24,028	2,533 1 2,285 2 2,184 4	• (	Nel Nel Nel	Nd Nd Nd	0 4631 0 4208 0 4649	0 4631 0 4298 0+4649	0 0463 0+0430 0 0423	
Total	••	72,211		72,211			1.3578	1.3578		1.3578
February 1951- 1-10 11-20 21-28	•••	19,287 15,056 10,427	1,928·7 1,505 6 1,303·4		Nıl Nıl Nıl	Nu Nu Nu	0 3531 0 2369 0-1638	0 3531 0 2369 0·1638	0+0353 0+0237 0 0205	
Total	••	44,770		116,981	·		0 7538	0.7538		2.1116
Harch 1951 110 1120 2131		10,001 8,816 40,717	1,000 · 1 881 · 6 3,071 · 5		Nıl Nıl 0·0154	Nsl Nsl 0·0154	/ 0 1504 0·1399 10·3484	0 1504 0·1399 10·3792	0·0150 0 0140 0 9436	
Total		59,534	1	176,515	0 0154	0 0154	10 6387	10.6695		12-7811
April 1951 110 1120 2130		84,501 64,275 28,351	8,450 • 1 6,427 • 5 2,835 • 1		Nd Nd Nd	0 0855 0-0418 Nu	29 4472 15 1061 2 2375	29 5327 15·1479 2·2375	2+9533 1+5148 0+2238	
Total	[	177,127		353,642		0.1273	46.7408	46-9181		59.6992
$\begin{array}{c} 1 \\ 1 \\ 1 \\ -10 \\ \\ 11 \\ -20 \\ \\ 21 \\ -31 \\ \end{array}$		13,212 7,731 6,269	1,321 •2 773 • 1 569 • 9		Nsl Nsl Nsl	N\$1 N\$1 N11	0·8488 0·3409 0 1609	0+8488 0+3409 0+1609	0 0849 0+0341 0+0146	}
Total		27,212		380,854	-		1.3506	1.8506		61 • 0498

	na 1957	_		-	r.							
KSCBI	1	•••	•••	16,378 27,119 51,497	1,637-8 2,711-9 5,149-7		0-4880 0 8510 4-0849	0:0228 0-0821 0-1443	1-8200 11-3642 (41-0966	2.3317 12.2973 45.3258	0 2332 1-2297 4 5326	
		Total	••	94,994		475,848	5.4248	0-2492-	54-2808	59-9548	-	121-0046
Jul	y 1951- 110 1120 2131	•	••	346,442 328,381 473,975	34,644 2 32,838 · 1 43,088 · 6	-	5 9494 3•7683 19•5464	4·3012 2·0678 20·4801	444 • 4292 400 • 7438 2,070 • 8294 -	454 6798 406+5799 2,110 8659	45 • 4680 40 • 6580 191 • 8960	
		Total		1,148,798		1,624,646	29.2641	26 8491	2,916.0024	2,972 • 1156		3,093 - 1202
A ug	nust 1951- 110 1120 -2131		•••	2,474,452/ 2,521,746 1,722,297 6,718,495	247,415 · 2 252,174 6 156,572 · 5	8,343,141	239 8336 230 1733 148 7336 618•7405	386 • 2147 412 • 4149 200 • 6302 999 ,2596	6,188 0400 3,912 0056 2,118 · 7076 12,218 7532	6,814.0883 4,554.5936 2,466.0714 ~13,834.7533	681 4088 455-4594 224-1883	<b>. .]6,927-873</b> 5
,' Bepi	tember 193 110 1120 2130	5 <b>]</b>	  	1,219,638 908,158 277,812	121,963 · 8 90,815 8 27,781 2		59 9692 21 5865 11 · 0314	65 0959 22-9658 1-6361	1,652 2009 1,014 0934 82-4460	) 1,777 2660 1,058~6457 95 1135	177-7266 105-8646 9 5114	;
		Total		2,405,608		10,748,749	92 5871	89 6978	2,748 • 7403	2,931 0252		_19,858-8987
ιOcto	ber 1951- 1		  	359,044 567,367 275,870	35,904 4 56,736 7 25,079 1		5 4756 13 3641 5 1701	3 2021 14 4079 1 • 1578	219 0917 755 6983 82 7459	227-7694 783 4703 89 0738	22 7769 78 3470 8 0976	
		Total	••	1,202,281	}	11,951,030	24 0098 ¹	18.7678	1,057 5359	1,100-3135	}	20,959 · 2122:
`Not	21	51— 	 	1,26,691 72,773 55,141	12,669 • 1 7,277 • 3 5,614 • 1	-	4.0255 1.0264 0.6447	0·3264 0·1902 0 1093	20 4047 5 2351 0 9793	24 7566 6·4517 1 6933	2 4757 - 0 6452 0 1693	
		Total		254,605		12,205,635	5.6566	0 6259	26 • 6191	32.9016		20,992+1133
10a 10	cember 19. 1	51— 	••	45,711 39,801 39,965	4,571 1 3,980-1 3,633-2		0·3453 0 1532 0·1725	0-0906 0-0788 0-0825	0 8463 0 7210 0 6681	1 2822 0 9528 0 9231	0 • 1282 - 0 0953 0 • 0839	
*°		Tutal	<u></u>	125,477	l 	12,331,312	0-6710	0-2517	2 2354	3 1581	/	20,995 - 2719

.91

-----

----



Figure 38 :- Showing silt studies of the Mahanadi for the proposed Hirakud Dam.



Figure 39 :- Silt studies of the Mahanadi for the proposed [Hirakud Dam.



Figure 40 :—Showing silt studies of the Mahanads for the proposed Hirakud Dam.

**9**4



#### Figure 41

The live storage of 3.74 million foot-acres constitutes 7.5 per cent. of the mean annual runoff. Sluices will be provided at bed level for the full flood discharge and flood supplies during the months of June to September will be passed below the dam and not stored. The conditions there will be somewhat similar to those at the Aswan Dam where storage constitutes 6.7 per cent. of the mean annual runoff of 66 million foot-acres, flood waters passed through bed sluices and no water is stored in the reservoir during floods. There is, however, one At the Aswan Dam there is at present no provision for water power difference. generation and the level of the reservoir is dropped during floods to the normal At Hirakud, there is provision for power generation and a miniflood level. mum pond level about 50 feet above flood level has to be maintained for the purpose, so that while the entire flood flow will be allowed to pass through the sluices it will have passed through the dead pond with consequent partial deposition of silt. At the Aswan Dam there is no silt deposit in the reservoir under present conditions of flood disposal. At Hirakud partial deposition will take place because of a permanent dead pond.

From an examination of the analysis of silt load it will be seen that fine silt constitutes nearly 75 per cent: of the total silt charge of that river. From the results of the fineners of the silt coming at various times of the year in the Mahanadi (see part dealing with special investigations), it is seen that it is of very fine variety which might be expected to remain in suspension for quite a long time without settling. From the size distribution curves of the Mahanadi silt it is not improbable that about 90 per cent. of it will be carried with the floods and only 10 per cent. may deposit in the reservoir.

However, for purposes of working out the probable rate of silting let it be assumed that the following percentages of various categories of silt will get deposited in the reservoir;

·	(January 11)				1			Per cont.
(4) (0)	COLINO BILL	••	••	•• ''	••	**		100
(2) (9)	Electrom site	••	••	••	••	••	••	80
(0) (4)	Fille Bit	·	••	• •	••	••	••	20
(*)	Deci sur (assomed	@ 10	per cent.	of the to	otal suspe	ended silt)	••	100

On the above assumption the annual rate of silting based on the mean figure for the years 1947-1951 work out as follows :

Mean annual figures (1947–1951)	Portion likely to be deposited in the
Coarse silt 2184.20 @ 100%	(ft. acres) 2,184-20
	2,349 16
55 % water	
Bed silt (assumed @ 10 not cont of the internet	9,670-65
the total suspended silt)	2,687 96
Total	16,891.97

On the above assumptions the period after which the live storage starts getting affected works out to 132 years on the basis of 1947-1951 silt data. In the Project this period has been put as 100 years.

#### PROPOSED KOSI RESERVOIR

River		•••	••	A1	**	••		Kosi (Nepal &
Catobmont areas		· · -		• •				Bihar, India)
OBMILLION CALOR -								so, miles
Sankosi tribu	tary		••		••			7.330
Arun tributa	ry	••	••	••	••	••	••	13,380
Tamur tribut	ary	••	••	••	• •	••	••	2,278
Sapt Kosi (co	mbined	channel b	elow jun	otion at I	rebeni)	• •	••	22,988
Ramfall-								
Mean annual	••	••	••	••	••	••	••	About 67 ins.
Run-off-(million	foot-ac	(cs)				1948	19	49 1950
Sun Kosi	••	11	••	••		, 17•49	24	•08 19•74
Arun	••	••	••	••	••	17.92	17	•72 16•00
Tamur	••	••	••	- *	{	8.71	10	•31 7•39
Sapt Kosi	••	••	••	••	••	49·24	47	•12 42•56
Storage capacity-	-(millio	n foot-aer	es)		•	• at re	50770.r	level of
						1100 R. L		1000 R.L.
Gross	••	••		••	•••	1	0-908	6-906
Dead	**	<b>24</b>		25	••	4-119 (900 R.L.) 3-112 (850 R.L.)		
Live		**		•••	· ••	6-789		3.794
Air temperature a	at Dam i	site		•			·	

	(Dej	1948	1949	1950				
Mean annual-	····	<del></del>	17.	·····		[	-	
Morning		• •	••	••		71 3°	73·1°	73·8°
Evening	••	••	••	••	•• {	78·4°	75·8°	76·8°
Maximum—						. [	Ì	
Morning	••		••	••		88-7°	[	**
Evening	••	••	••		, <b>.</b> .	97·3°	{	
Minimum-		ر		+		ł		
Morning		••	••	••		51.5°	••. {	•• •
Evening	••			••	]	29·6°	]	**
		• •			[	,		

-

.

Water temperature at dam site-

(Degrees Fahrenheit)

		÷			1948	1949	1950	
Mean annual—							-	
Morning		••	••	••		65 · 5°	66 · 22°	66·16°
Evening		••	••	••		67 · 5°	67·78°	67 · 99°
Meximum—						·	ł	•
Morning	••	••	••	••		75· <b>4</b> °	74 80*	74·84*
Evening	••	••	••	••		77·9°	76.28*	77-00*
Minimum—			-					
Morning	••	••	••	••	••	55 · 0°	55-40*	- 54-86*
Evening		••	••	••		56·3°	56-80°	56·66*

Height of the dam-(above foundation EL 240)

Reservoir level at 1100 R. L .--- 883 feet

Reservoir level at 1000 R. L.-783 fect.

#### Characteristics of the catchment area

.

The Kosi which, next to the Brahmaputra, is the biggest river in India at its debouch in the plain, rises in Tibet and flowing across the Himalayas in Nepal joins the Ganges after traversing North Bihar. It is a perennial stream whose three main tributaries, the Sun Kosi, the Arun and the Tamur meet at Trebeni to form the Sapt Kosi. The catchment area of the Kosi above Barakshetra, the site for the proposed dam, is 22,988 sq. miles of which nearly 2,228 sq. miles are under glaciers. The catchment area of the Arun extends beyond the main Himalayan range. The highest peaks in the world, Mount Everest and Mount Kanchinjinga, lie in its catchment area.—From a preliminary reconnaissance, it has been found that the catchment area has characteristically steep slopes, indiscriminate deforestation and intense soil erosion along hill sides.

The Kosi is notorious for its vagarles and is known as the 'river of sorrow'. It has been changing its course, generally in a westerly direction and has shifted across a width of over 70 miles. In those movements it has laid waste large tracts of agricultural land in Nepal and Bihar.

The minimum perennial flow of the Sapt Kosi during dry weather is not known to have dropped below 9,000 cusecs while it is estimated that during the record flood of 1927 its maximum discharge was a little over 7 lakh cusecs. The mean annual run-off at the proposed dam site at Barakshetra during 1947-1950 has been about  $46 \cdot 22$  million foot-acres which is about 30 % more than that of the Mahanadi at the Hirakud Dam site. The maximum and minimum run-off in that river at Barakshetra during the five years have been as follows :

					•			·	
1947		1948		1849		19	50	1951	
Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
22,100	613,764	18,032	956,888	24,826	751,434	19,208	681,322	18,650	481,140
9th March*	31st July*	18th Mar,*	13th July*	26th Mar.*	19th July*	30th Mar.*	20th Aug.*	24th March*	24th Aug.*

Minimum and maximum daily run-off in foot-acres

*Date of record of that particular run-off.

Silt investigations on the Sapt Kosi

#### (a) General

The silt work mainly relates to the silt carried in suspension by the river water and the investigations comprise, firstly, routine day-to-day estimation of silt load and, secondly, special work directed at obtaining added information on certain particular aspects of silt load and bed silt. There are two field silt laboratories at the Sapt Kosi river, one at Barakshetra on the main river near the dam site and the other at Trebeni. The main part of the work has been carried at those field laboratories and the specialized work with bulk silt load and bed silt samples at the Hirakud Research station.

(b) Collection of water samples from the river and its tributaries

Collection of water samples is done at 5-6 verticals on the Sapt Kosi discharge site where the river passes through a narrow gorge about 500 feet wide and at 3-5 verticals on the three tributaries. Water samples are collected with the help of one-litre capacity Punjab-type bottle sampler at the conventional six-tenth of the depth of water at each vertical during normal stream flow. However, the sampling presents considerable difficulties during high-discharge period due to a velocity of over 20 feet per second that the river attains when it becomes hazardous to ply the boat. During that period the sampling from a suitable boil or failing that from near the water surface has to be resorted to. A fair amount of work is involved to come to a decision with regard to the conversion factor which has to be applied to bring the analytical data to a uniform and comparable basis.

# (c) Estimation of susponded silt load

Technique: The practice of estimating the suspended silt load into its coarse, medium and fine silt fractions has been similar to the one described in the note for the Hirakud reservoir. The discharge and silt data for the years 1948-1950 on 10-day mean basis is presented in Tables XXXI to XXXIII and diagrammatically presented in Figures 42 to 44. MSOBLEP

## TABLE XXXI

# Statement showing ten days total and mean silt load of Sapt Kosi for the year 1948.

· · ·			 !		}	Sediment load	•	ł		
Daya		Ten days total bucharge in cutces	Mean discharge	Cumulative discharge in ousees	Coarse	Medium	Fine	Total	Ten days megn	Cumulative in foot-actes
1 '	_	2	3		5	6	7	8	9	- 10
January 110 1120 . 2131		1 53,149 141,430 145,895	18,315 14,143 13,263		21 · 28 16 07 14 · 23	7 40 6 06 4 95	17·59 14 01 8·48	46 27 36-14 27-67	4•83 3•61 2•51	•
Total February	••	440,474		440,474	51 58	18 41	40 09	110.08		110-08
1-10 11-20 21-29	••	120,467 113,467 102,931	12,047 11,347 11,437	1	7 24 5 99 7-87	3+81 4 57 7+25	2.06 - 3.26 5.80	13-11 13-81 28-63	1·31 1 38 2·29	
Total	••	336,865	1	777,339	20 80	15 63	11-12	47+55	•	157-83
1-10 11-20 21-31	::	116,284 103,098 126,124	11,626 10,310 . 11,376		13-34 8 85 25-69	3 48 3-14 16-34	8-58 5-92 72 68	23-48- 17-91- 114-71-	2+34 1+79 10+43	
Anot Total	•	344,486		1,121,825	47 88	22 96	85-18	156.02	ļ	313-65
110 . 1120 . 2130	:	124,817 147,275 174,147	12,482 14,728 17,915		27 · 29 53 09 60 01	18-97 41 02 87 98	64 46 165·34 232 13	110-72 259 45 400 12	11.07 25.94 40.01	ſ
Total .	•• [	446,239	{	1,568,054	160~39	147.97	461 .03	770-29		1,083+94
110 1120 \$131		244,642 273,664 367,499	24,464 27,366 <b>33,40</b> 9	* .*	- 160 · 54 159 · 72 228 · 58	152 39 203•20 707•87	443+92 162+65 369+58	756+35 525-57 1,296-03	75 64 52-56 117-82	-
Totaj	[	885,805	Ì	2,453,859	548-84	1,062-46	985-85	2,577.95	!	3.66I • 89

-un- ,		1	!	:	1 200 00	1 284.00	100 74	770 61	77-08	1
	•• ;	309,376		!	280.90	1 810 88	2/798 63	6 429 89	542 99	
21-20 ·		646.917	64,692		· 740·22	986 06	1,272-88	2,949.17	299.92	
			01,002						-	
Total .		1,947,930	- 1	4,401,819	1,841 58	3,161 82	4,205 27	9,208 67	ł	12,870-55
	- 1					1	1	1	1	
July-		·	5	i		1	1 000 00	1 507.00	150.00	1
1-10 .	••	1,144,629	114,463	•	881 49	1,735.78	1,600 00	4,007 80	1 400 00	
11-20 .	· }	2,311,448	231,140	0.496 197	1,010 07	9.061.59	201208	8711 50	A10-14	í
21-31 ,	•	1,029,291	. 148,020	<i>v</i> ,400,107	730 04	2,001 08	5,015 80	0,111 00	010-14	1
Total	- 1	5 084 368	· · · · ·		3,227 60	9.785 82	15,141 58	28,155-00	]	41,025+56
1 1000	•	1,001,000			0,001 00	•,•••••			ł	
August-							}	1	}	
1-10	. 1	1,842,747	184,275		732 33	1,927 51	3,805 75	6,525 39	652 56	
11-20	.	1,848,790	184,879		545 39	1,832 09	3,171.56	5,549.03	554.90	
21-31	(	1,988,750	180,795		643 45	2,707 - 74	5,037-55	8,388 • 75	762 61	
	ł			1						A1 400-02
Total .	•	5,680,287		16,166,474	1,921 17	6,437+34/	12,074 86	20,403 37		01,900.90
ceptember .	1	1 042 000	104 200		17 090	9 997 19	4 008 89	8 074 .57		
1-10	•• {	1,040,009	120.555		510+32	1 513 00	2,000 00	4 169 64	446-96	
91_30	··	1 495 043	149 504		584 85	1,436 03	2,108 11	4,128,99	412.90	
	••••		110,001	1						
Total	l	4,932,909		20,099,383	1,775 88	5.236 21	8,561 11	15,573-20	- 1	ı 77,082·13
Uctober-										•
1-10	••	1,210,137	121,014	1	361 04	1,145+08	2,228 72	3,734.84	373 48	
11-20	•	853,868	85,387		163 68	449 96	841-64	1,455 28	145 53	
21—31	••	682,278	62,025		93 34	269 <b>•24</b>	442 46	805 04	73 19	-
(Catal)		0 740 000		OU DAT GOR	610.06	1 994 00	9 510.00	# 005-10	l l	83 057.99
Noumher	••	2,740,203		42,540,000	019.00	1,804 28	3,012.02	0,990-10		00,001-20
1-10		409.930	40,993	l	24.57	45 61	174 92	245-10	24.51	
11-20		336,144	33.614		37-89	44 81	111.09	193 79	19-38	
21-30		309,860	30,986		45.18	50.92	162 40	258.14	25.81	
								·		
Tctai	••	1,055,934	l i	23,901,620	107 64	141.34	448 05	697.03	1	' 83,754+32
December-		000	أسمعهم							
1 - 10	••	280,425	28,048		44.57	39 78	48.89	133-24	13 32	
11-20.	••	224,729	22,473		24.01	16 92	31.70	73 13 (	7-31	
·2131	* *	213,320	10,393		17 53	11.74	17.08	40 35	` 4.04	
Total		718,479	Դ Ն	24,620,099	88 81	68.40	97.87	952.79		84 007-04
2000	- •	1	<u> </u>		00 01	00 35			1	01001-01

Norg.-Conversion factors were apphlied to the coar e and medium alt loads for periods during which water samples were collected from hear the water surface.

## TABLE XXXII

Statement showing ten days total and mean silt load of Sapt Kosi for the year 1949.

.

	}				Sediment load			}	
Days	Ten days total discharge in ousees	Mean discharge in cusees	Cumulative discharge in cusees	Coarse	Medium	Fme	Total	Ten days mean	Cumulative in foot-acros
1	2	3	4	õ	6	7	8	9	10
¹ 2nuary- 1-10 11-20 21-31 February- 1-10 11-20	183,249 166,007 173,809 523,065 170,361 168,470	18,325 16,601 15,801 17,036 15,847	523,065	14.11 9 15 7.00 30 26 12.43 ,7.09	8.70 6.76 5.94 21.40 15 57 5.23	28 74 20-55 23-52 70 81 28-98 20-90	49.55 36.46 36.46 122.47 86.98 33.22	4.96 3.65 3.31 5.70 3.32	122-47
2128 ) Total	452,\$90	10,407	975,155	23 94	23.83	63-63	141.40	2-06	263-87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141,393 140,678 145,254	14,139 14,068 13,205		5.02 7.70 5.44	3 98 8 05 4-58	12 39 16 06 22 • 46	21 • 39 31 • 81 32 • 49	2-14 3-18 2-95	
fortal	427,325	ł	1,402,480	18.17	16.61	50-91	85.69		349-58
$\begin{array}{c} 1 \\ 1 \\ 11 \\ 21 \\ 30 \\ \ldots \\ \end{array}$	167,064 196,732 215,036	16,706 19,673 21,504		33.50 49 41 62.04	53 41 91 • 40 158 • 38	271-30 83-28 374-31	358 • 21 224 • 09 444 73	35-82 22-41 49-47	
Total	578,832	.	1,981,312	144-95	303-19	628.89	1,027.03		1,376.59
$\begin{array}{c} 1 - 10 \\ 11 - 20 \\ 21 - 31 \\ \end{array}$	217,562 381,817 411,082	21,756 38,182 37,371	ţ	76-52 181-91 196-11	168 • 25 693 17 470 • 65	208-35 787-78 574-25	453+12 1,662+86 1,241+01	45+31 166+29 112+82	
Total	1,010,461		2,991,773	454.54	1,332.07	1,570.38	8,356.09		4,733-58

----
-			· · ·								(
June 110 . 1120 . 2130 .	•	:-	387,621 768,562 1,122,081	38,762 76,850 112,208	2   	171 41 340 07 650 69	480 87 1,311 04 2,725 26	612 89 2,332 70 6,316 14	1,271 · J7 3,983 · 81 9,736 09	127-12 398-38 973-61	107 94 . 65
	Total	[	2,278,264		5,270,037	1,162·17	4,523 17	9,305 73	14,991 • 07	l l	101,61 00
July	Total	••	1,442,469 1,557,009 1,762,696 4,762,174	144,247 155,701 160,245	10,032,211	821 · 38 844 · 87 761 82 2,428 07	2,713 93 6,873 10 3,477 38 13,064 41	8,209 · 16 12,787 36 6,562 · 93 27,559 45	11,744 47 20,505 · 33 10,802 · 13 43,051 93	1,174•42 2,050•53 982•01	62,776 <i>-</i> 58
Aumet								-	{		
ì—10 1 ₩ <u>—</u> 20 21—31	••	 	1,267,941 2,202,727 2,127,967	126,794 220,278 193,452		612 15 1,043 27 1,280 23	$\begin{array}{r} 1,707\cdot 42 \\ 3,775 & 36 \\ 3,032 & 34 \end{array}$	3,009 42 7,498 39 · 6,456 66	5,328 99 19,317 02 10,769 23	532-90 1,231-07 979-08	
1	Total		5,598,644		15,630,855	2,935 65	8,515 12	16,984.47	28,415-24		91,191 • 82
September I10 1120 2130	••	•••	1,671,644 1,524,645 1,065,031	167,164 152,465 106,503		763 10 677+54 413 38	2,766 16 4,382 08 1,288 48	5,263 99 10,550 85 1,889 • 16	8,793 25 15,610 45 3,591 • 02	879•33 1,561•05 359•10	
0.4.1	Total	••	4,261,320		19,892,175	1,854 02	8,436 70	17,704.00	27,994 • 72		119,186+54
i-10 11-20 21-31	••	••• ••• ••	789,961 720,860 574,458	78,090 72,086 52,223		134 21 63+06 82 89	547 20 572 54 204 30	766 60 662 63 334 29	1,448 01 1,098-23 621-48	144-80 109-82 56 50	
N	Total	••	2,085,279		21,977,454	280.16	1,124 04	1,763 52	3,167 72		122,354 • 26
110 1120 2130	· · · · · · · ·	•••	406,596 306,092 259,528	40,660 30,609 25,953		38 57 37 41 35-99	99 38 45 03 24 05	146 93 96-18 56 48	$\begin{array}{c} 284 & 68 \\ 178 & 62 \\ 117 & 42 \end{array}$	28 47 - 17-86 11-74	
	Total	•	973,116		22,950,570	111 77	169 36	299 59	580 72		122,934 • 98
Lecember 110 1120 2131	- 	•••	220,397 195,612 195,819	22,040 19,561 17,802	-	10`04 6 52 8 08	12 26 8 15 11 58	30 30 22 18 27 77	52 GO 36 85 97 43	521 369 431	
•	Total	••	611,828	\	23,562,308	24 64	31 09	80 25	136 88		123,071 • 86

Nors.-Conversion factors were applied to the coarse and medium sit loads for periods during which water samples were collected from near the water surface.

۰

۰.

### TABLE XXXIII

Statement showing ten days total and mean silt load of Sapt Kosi for the year 1950.

	,				Sediment loso	l in foot-acres			
Duys	Ten davs total discharge in cusees	Mean discharge in cusees	Cumulative discharge in cusecs	Coarso	Medium	Fine	Total	Ten days mean	Cumulative in foot-acres
1	2	3	4	5	6	7	8	9	10
January 110 1120 2131	162,064 154,680 154,888 471,632	16,20 <del>8</del> 15,468 14,081	471.732	6 51 5 91 6 93	7 80 6 57 6 68	26 53 28 30 22 • 57 77 40	40 90 40 78 35 88	4-09 4 08 3-26	117-56
5 e' ruary- 1-10 11-20 , 21-28 Total	120,711 130,890 105,580 363,190	12,671 13,090 13,198	834,922	4 77 4 08 3 14 11 97	5 10 4 36 3 10	- 18 80 18 86 12 80	28 67 27 08 19 04	2.87 2.71 2 38	192-35
$\begin{array}{c} Mar \cdot h - \\ 1 - 10 \dots \\ 11 - 20 \dots \\ 21 - 31 \dots \\ \end{array}$	118,230 113,073 128,454	11,824 11,307 11,499		• 3 54 4 20 6 19	2 32 4 38 8·55	20 64 16 36 - 21 47	29.50 25.00 36.21	2•65 2•50 3•39	l
April         Total            110             1120             2130	357,806 117,783 114,920 133,448	11,778 11,492 13,345	119,272,8	13.99 4 35 4 12 13 83	15-25 3-68 3-91 16.39	58 47 16 53 16 37 23 87	87 • 71 24 • 56 24 • 40 54 • 09	2·46 2·44 5·41	<b>280+08</b>
Total            1-10             11-20             21-31	* 366,151 156,185 161,136 294,153	15,619 16,114 26,741	155,887,9	22 30 27·74 35 55 159 21	23-93 , 25-83 33 56 191-73	58 77 177.76 242 79 508 33	103.05 231.33 311.91 859.28	23 · 13 31 · 19 78 · 11	383.11
Total	611,474	5 1	217,035,3	222.50	251 • 13	• 928 88	1,402-52		1,785-63

June-				• •		. 1				-	2
1-10 .			354,971	35,497		228 81	476.71	578 68	L,284-20	128-43	Ì
11-20 .			779,949 (	77,994 (		} ′ 549∙64	1,255 92	2,219 72	4,025-29	402 53	
21—30 .			1,013,371	101,337 [		774 · 19	1,377-64	2,003.25	4,155-08	415-51	
	Total		2,148,286	· · · · · · · · · · · · · · · · · · ·	431,863,9	1,552.64	3,110-27	4,801-65	9,464-57		11,250.20
July1 110 . 1120 . -2131 .	•		1,127,667 1,130,866 1,673,989	112,767 113,087 152,181		- 712-60 546-63 1,139 56	1,575 • 61 1,167 • 99 2,213 • 20	2,636 • 62 1,989 • 70 4,248 • 83	4,924 · 84 3,704 32 7,601 · 59	492+48 370+43 691+05	
	Total		3,932,522	1	825,116,1	2,398.80	4,956 60	8,875 • 15	16,230 75		27,480.95
August		 	1,365,388 2,035,145 2,071,095	136,539 203,515 242,827		1,018 32 1,391 · 09 2,082 45	1,783+69 2,851+89 3,614+33	3,433 · 01 6,446 · 21 8,810 · 10	6,235 02 10,689 19 14,508-88	623-50 1,068-92 1,318-81	
. C. taukan	Total	••	6,071,628	}	14,322,789	4,491.86	8,249 • 91	18,689 32	31,431 09		58,612 04
September- 110 1120 .2130	••	 	2,035,604 1,318,219 846,604	203,560 131,822 84,660	,	1,686 · 77 815 · 55 344 · 13	2,643 • 44 1,282 • 90 356 • 70	5,314 · 70 2,005 · 73 513 · 71	9,644,91 4,104 18 1,214-54	964 49 410-42 121-45	
0	Total		4,200,427	)	18,523,216	2,846 • 45	4,283.04	7,834.14	14,963 63	۰.	73,875-67
1	••		608,229 485,301 370,039	60,823 48,530 33,640		182 · 88 94 · 09 64 · 74	136·78 95 34 33·79	277 • 52 208 • 89 36 • 51	597 • 18 398 32 185 • 04	59 72 39-83 16 82	
	Total	••	1,463,569		19,986,785	341.71	265 91	572.92	1,180.54	. ]	75,056-21
November 110 1120 2130			289,105 262,368 210,335	28,911 26,237 21,304		56 43 44 32 28 74	19.77 17.26 14 18	56×29 55×10 41 31	132 49 116+68 84+23	13-25 11-67 8-42	
n. 1.	Total		761,808	1	20,748,593	129 49	51 21	152.70	333-40		75,389+61
1/4rem0er- 1-10 11-20 21-31		•••	178,633 164,602 166,228	17,803 16,460 15,112		18 63 10 90 7 33	7.60 4.15 4.70	32 24 27 09 28·73	58 47 42 15 38 76	5-85 4-22 3-52	
	Total	۰.	509,463	7	21,258,056	36.86	16 45	86-08	139-38	{	75 538 99

NOTE .- Conversion factors were applied to the coarse and medium silt loads for periods during which water samples were collected from near the water surface.



Figure 42 :- Showing silt studies of the Sapt Kosi.







Relationship between the analytical results of the coarse and medium silt fractions of water samples collected at six-tenth of the depth and from the boil or water surface.—This has been the subject of considerable research at the main river and its tributaries during the last few years. During 1948 investigation relating to that point was carried at the Sapt Kosi and at the Tamur tributary and the following conversion factors for the coarse and medium silt fractions derived.

			Factors for conversion of silt datas obtained from surface samples to those of boil samples					
<u></u>	<b>.</b>						Coarse silt	Medium silt
	Tamur	•	•	••			2.32	1.28
	Sapt Kosi	**		••	••		20	1.2

The contents of the coarse and medium fractions of silt load for the Sapt Kosi and the Tamur were therefore corrected by using the above-mentioned respective conversion factors during 1948 and 1949.

More systematic work was done during 1950 with the object of either corroborating the conversion factors derived as the result of earlier work or alternatively to obtain further information on that point. It has been shown on the basis of the work done during 1950 that :

(i) Any factor based on the low discharge period is not applicable to the high discharge period in that river and its tributaries.

(ii) Medium silt behaves, more or less, like fine silt and does not manifest the typical increasing content with depth along vertical. That conclusion is supported by the fact that the total quantity of the medium silt recorded during 1950 at Sapt Kosi comes out to  $19,993 \cdot 43$  ft. acres against  $19,530 \cdot 81$  ft. acres, the total for the medium silt content of the three tributaries, the flow in the latter being highly turbulent due to the presence of a number of rapids and rocky bed.

(*iii*) As there is little variation of sediment distribution of coarse and medium grade during turbulent flow in the Sapt Kosi and the tributaries, no definite point of average concentration can be given.

(iv) The conversion factors for coarse and medium silt fractions decrease with increasing discharge as brought out in Figure 45 and can therefore be best represented as a function of the latter. It is seen in that Figure that although the points are scattered widely, the curves for the coarse and medium grades of silt do indicate the general trend of the conversion factor closely enough for various ranges of discharge. It is further brought out that when the discharge of the Sapt Kosi exceeds 2-lakh cusecs the turbulence is so great that medium silt gets more or less uniformly distributed over the entire depth. Likewise, the goarse silt behaves in that way when the discharge exceeds 3-lakh cusecs.



Figure 45 :- Fraph of correction factors for Sapt Kosi for converting silt load from surface samples to mean silt load.

As the result of the work done during 1950 it was clearly shown that the conversion factors used during 1948 and 1949 were very much on the high side and it was decided to recalculate the data with regard to the coarse and medium silt fractions of 1948 to 1950 on the basis of the respective curves in Figures 45. A summary of the experimental and corrected data for the years 1948-1950 is given below :--

#### TABLE XXXIV

Showing the comparison of the annual run-off and suspended load of Sapt Kosi for the years 1948-1950.

Veen			Sediment	load 12 foot-1	10108	•
- ORL	acres	Coarse silt	Medium ailt	Fine alt	Total silt	% silt content
1948	49,240,198	Exp* 8,976-40	· 27,102·54	45,530.38	81,609 32	0.166
		Corr** 10,408.02	27,867 • 40		83,805+80	0.171
1949	47,124,798	Exp* 7,723·28	35,714 34	76,061-64	119,499.26	0.254
		Corr** 9,467 • 65	37,561 · 34	••	12,3090-63	0 261
1950	, <b>42,</b> 583,834	Exp* 9,896 · 76	19,993-43	42,183-70	72,073 • 89	0.18
		Corr** 12,087.66	21,257.64		75,529.00	0.177
Mean (1948. 50)	46,316,276	Exp* 8,865-46	27,603-44	54,616.90	91,085-76	0.196
	•	Corr** 10,654 · 67	28,937 • 73	54,616-90	94,209.30	0 · 203

*Actual experimental data.

**Corrected by applying conversion factor from curves in Figure 45.

As is clear from the Table XXXIV the silt yield of the Sapt Kosi above the proposed dam site for the three years 1948-1950 amounted to  $84,007 \cdot 04$ , 123,091  $\cdot 86$  and 75,528  $\cdot 99$  foot-acres respectively (mean  $94,209 \cdot 30$  foot-acres). In terms of 100 sq. miles of the catchment these figures work out to 370, 535 and 329 ft. acres for three years respectively (mean 411 foot-acres). Observations during coming years will help to confirm or modify this abnormal figure of anaual silt charge,

#### Probable rate of silting of the Kosi reservour

It is proposed to instal sluices in the dam at the lowest possible level consistent with assured operation. It is further proposed to operate the storage in the 'reservoir in such a way that the heavy silt laden water of the earlier floods will not be stored but allowed to pass below the dam thus carrying the maximum amount of silt charge with it. As however the flood water would normally pass through the dead pond provided for silt reserve resulting in a fall in the velocity of water flow that will affect the silt charge at the entry and some part of the silt is bound to get deposited in the reservoir. In the absence of relevant data on other similar reservoirs, it is not possible to say with any degree of certainty 'what part of the silt charge during floods will be retained in the reservoir and what part passes down, considering that water will be stored only after the floods are over and silt charge is relatively low (live storage of  $3 \cdot 8$  and  $6 \cdot 8$  million foot acres will be only  $7 \cdot 50$  and  $13 \cdot 8$  per cent. of annual runoff) and that water will be discharged through deep set sluices carrying bulk of the silt charge.

The mean silt figures for three years 1948-1950 work out in foot-acres as under :

	Partice	ılars.	Coarse	Medium	Fine	Total	
Exp. Cor.	• • • • •	••	 8,865•48 10,654•44	27,603•44 28,895•46	54,591 • 91 54,591 • 91	91,060·82 94,141·81	

The nature of variations in the silt data for the three years as indicated in Table XXXIV do not justify any but rather broad generalizations. For general interest, however an attempt has been made to work out the period after which the live storage in the reservoir shall start getting affected. As has been seen from the ultramechanical analysis of bulk silt samples about 70 per cent. of the silt load is below 0.03 mm and with the high velocities of Sapt Kosi during the flood period, such fines may not settle down in the reservoir even though the velocities will be considerably damped in the reservoir. The annual rate of silting has been computed as below :

Mean annual figures (1948-1950)	Portion likely to be deposited in the re- servoir (foot-acres).
Coarse silt 10,654.44 @100%	10,654-44
Medium silt 28,895.46 @ 80% Fine silt 54,591.91 @ 30% and wet density of mud as 1.5 a.c. 550/	23,116.37
solids and 45%, water Bed silt 94,141.81 (assumed @ 20% of the total silt load)	29,778.00 19,828.36
	83,377 • 17

On the above assumption the period after which the live storage starts getting affected works out as 36.6 and 48.4 years for a dead storage or 3.11 and 4.12 million foot-acres respectively.

If the live storage, which is primarily meant for flood regulation, is not to be impaired after the lapse of that period, additional dams will need to be constructed higher up on the tributaries during that period. Any encroachment on the live storage will reduce the extent of flood moderation and the generation of power.

It is advisable that more data be collected at the Sapt Kosi river to examine the validity of the above figure for the life of the silt reserve capacity of the proposed reservoir.

#### SPECIAL INVESTIGATIONS IN CONNECTION WITH THE SUSPENDED SILT LOAD OF THE **MAHANADI AND THE KOSI RIVERS**

Besides the routine work relating to the estimation of suspended silt load of waters of the Mahanadi and the Sapt Kosi at the field laboratories, the following special investigations were carried at the Hirakud Research Station (6).

#### Variation of silt load with varying discharges of the two rivers

The variations of the total sediment load and its coarse plus medium and fine silt fractions with varying discharges in the Mahanadi and the Sapt Kosi as observed during 1948 and 1949 are diagrammatically presented in Figures 46 and 47 respectively. It is seen that there is, in general, a progressive increase in the total silt and its various fractions with increase in discharge in both rivers. However, whereas the curves showing the relationship of silt for the Mahanadi were more or less, analogous during those two years, for the Sapt Kosi, on account of relatively higher discharges attained in that river during 1949, the curves for that latter year are placed distinctly higher than those of the previous year in Figure 47. It is felt that the utility of this relationship cannot but be qualitative as the conspicuous difference in the silt load of the river carrying a similar discharge during rising and falling floods is quite well known.

#### Relationship between discharge and velocity of waters of the two rivers

The variations in the discharge with the velocities attained by river water are diagrammatically presented in Figures 48 and 49. It is shown that whereas in the case of the Mahanadi, a velocity of about 8 feet /second corresponds to a discharge of over 7.5-lakh cusecs, but an equivalent velocity of the Sapt Kosi River water corresponds to only a discharge of about 50 to 60 thousand cusecs. The velocity that the latter river water attains during high floods is 15 to 20 ft/sec and at that high velocity a discharge of a little over 4-lakh cusecs may be recorded. The high silt capacity and preponderance of relatively higher sized silt particles in suspension in the Sapt Kosi in comparison to that of the Mahanadi may partly be attributed to the high velocity attained by the former.

# Fariation of suspended silt load with depth along the sampling vertical

A number of experiments carried out in the U.S.A. led to the conclusion that a sample taken from six-tenth depth gives the mean percentage of suspension in the vertical. Experiments conducted in Egypt indicated that the clay



Figure 46 :- Silt load of the Mahanadi at Sambalpur-Discharge silt curves for 1948 and 1949.



Figure 47 :- Silt load of the Sapt Kosi at Barakshetra-Discharge silt curves for 1948 and 1949



Figure 48 :- Discharge velocity curves for the Mahanadi River for the years 1948-1950.



Figure 49 :- Discharge velocity curve for the Sapt Kosi River (1948)

and silts were, fairly constant throughout the depth along a vertical, the variation being almost entirely in the coarser grades. The experiments done in India have shown that the depth of mean silt point on the vertical increases with an increase in the average particle-size in suspension. It was therefore considered of interest to study the variations in different size grades of suspended load at varying depths along a sampling vertical.

Work has been carried on the aspect of silt load for a number of years in succession on the Mahanadi. During 1947, observations were taken at Sambalpur site on days when the river discharge varied from 64,525 to 638,179 cusecs and the river depth at the experimental verticals from 8 to 20 feet. Water samples were collected at  $0 \cdot 1, 0 \cdot 2, 0 \cdot 3, \ldots 0 \cdot 9D$  along the vertical section of the stream. The results of coarse and medium sediment contents in cc. per litre of water were obtained and are diagrammatically presented in Figure 50. It is seen that, in general, the contents of those sediment fractions increased from surface downwards, the increase being more conspicuous in the case of coarse than the medium fraction. Moreover, the mean concentrations of those fractions correspond to the depths 0.45 D to 0.66 D (mean 0.55 D) for coarse and 0.4 D to 0.7 D (mean 0.58 D) for medium fractions respectively.

In 1948 that investigation was extended to other sites viz. Kaimundi (proposed Naraj Dam site) on the Mahanadi and Saplohara on the Ib, a tributary of the former. The experimental technique was the same as during the previous year. The results of the present investigations are diagrammatically represented in Figure 51 and the mean concentration points of the coarse and medium silts are also indicated. The general nature of the curves are similar to those reported in the above paragraph. The mean concentration points for the coarse and medium sediment fractions correspond to depths 0.44D to 0.61D (mean 0.53D) and 0.4D to 0.63D (mean 0.52D) respectively.

During 1949, besides the coarse and medium silt fractions it was considered of interest to study the variations in the fine silt fraction for which it is generally assumed for routine purposes that there is little variation along the vertical depth. The latter fraction in our routine estimation comprises particles below 0.075 mm. That fraction was divided into two sub-fractions *i.e.* particles ranging from 0.075 mm to 0.02 mm and those below 0.02 mm. That year's work thus related to four categories of silt particle-sizes, otherwise the technique was similar to that adopted during previous years.

The results are plotted in Figure 52. It is shown that ;

- (i) The coarse and medium silt concentrations vary along the vertical depth of the stream and increases from surface downwards.
- (ii). The mean concentration point for the coarse and medium silt fractions in the majority of cases lie near 0.55 D or 0.6D, that of the former fraction being relatively at lower depth than for the latter.
- (111) The two sub-fractions of fine silt do not manifest any marked variation from surface downwards.
- (iv) The variations in the discharge seem to affect silt concentrations at all points along the vertical, being low for lean and high for bigger discharges respectively.



Figure 50:—(1-18) Showing the variations of the coarse and medium sediments (cxpressed in cc. per litre of uater) along the vertical section of the Mahanadi River at Sambalpur (July-September 1947).



Figure 51:—Showing the variations of the coarse and medium sediments (expressed in cc. per litre of water) along the vertical section of the Mahanadi river (July-Sept. 1948)

C ÅI Θ ⊘ 0 2 5, 015, 075 150 1 00. 070. 26-8-49 D, 2-7-49 0.08. 140 020 6 13. 0 65 060 171,548 cusec 107 28,466 cusees 0 06. 130 0-15. 011 0 5 5 0 50 D=180 ft 0 04 040 1 20 010 0.09 0 45 0.02 0 30. F 10 0 05 0 07. 035 0.00] 0 20 1 00 0 00 0 051 0 2 5 B ന 004 0.081 080 0 225 0 27 060 20-7-49 25-8-49, 199,073 cusecs 0.03. 0.06. 070 0 175 0 2 5. 0.50 561 cuseca 6 D=140 fc+ 0-02. D=60 ft 0.04. 0 6 0 040 0 23. 0 125 001. 002 0.50 021. 030 0 075 0 00] 0.00 0.40 0 02 5 019 C 20 C ø 0.081 1101 080 E 0301 E 0.901 E 0.90 E 7.9-49 94/459 cuseci 025 E 0 SO E 0 80 269858 cusecs E 1-00 E 0-70 0 06 004 2 090 2 060 D = 12.5 (c 0 20 8 0 70 S 0 70 D=108 ft (LB) 0 015 2 0 60 0 02 9 0 80 020 ≥ 0 60 ₹ 0 00 5 0 70 0 0.40 010 8 050 -0 50 • ወ Ξ ø ø * Q 05 011 0701 0 90 0 40 Ð ۵ 23-7-49 ε Ę Ь 0.09. 0 80 103613 cusecs, 0 60. ٦ ε Ee N ٤ --18|9 ft • 0 60₁ 0.405 011 13-8-49 0 07. 0 50; 0 30 2 0 50 ø 070 1 00 269,858 cusecs T υ 0.05. 0 40. 0.60 -0 2 0 0 90 D=152 ft (R <u>B</u>) 5 0 40, E Ð 0-30 0 20 4 ε 0.03. 0.50 010 0 30 L c 5 080 -σ 001 0 40 a 070 0 2 0 0 001 c 5 2 © 0 081 🛱 0 161 ๗ ā 070 Scal 0.65 0.301 5.0 065 23-8-49 *1 0 06 ۵. 9-8-49 0-14, 0.60 104719 cuted D = 100 ft-۵. 5 L 8 0 2 5. 0 5 5. 0 5 5 406.173 cused 0 50 D 0.04 0.12 0 20 0 <del>1</del>5. D=155 ft 045 ¢ o 0 02 0-10. 0-40 c) 015. υ 0 35. 035 0.08 0.00 030 010 0 2 5 025 Ē 0-201 0-60 190 0 05. 015 6-7-49 015 0.15 0.50 1 80 132769 curec 0 00 0 05] 0.05 170 D=90ft 0.10 0 40 0 0-35 0.80-1-65 0-05. 0 30. 160 6-8-49 428,991 cusec 0-30 070. 155 0 001 0.20 1 50 D=200 ft 025. 0 60. 145 G 0-20 0.16 065 0 20. 0-50. 135 13-8-49 0-15. 014. 055 152462 cusees, D=7 0 6. 015 0-40 125 0.10 012 0 45 010 030 115 0-05 0-10. 035 <del>0</del> 05, 0 2 0 1 05 0-00. 0-08. 025 0-00 010 095 Surface 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 010203040506070809 Surface 0 Vertical depth Vertical depth References -Coarse silr_ Fine silt (0.075-0.02 mm) ----Medium sile Fine silt (below 0.02 mm).

Figure 52 :--Curves showing the variation of different-sized grades of suspended silt a different depths along the vertical and at varying discharges of the Mahanadi River (Jul-Aug 1949).

## A comparison of the 'bucket' and 'bottle' sampling of water for stream

. For daily estimation of the suspended load the essential requirements are the use of the right type of silt sampler and the selection of sampling site and sampling verticals to get the representative mean silt charge.

Experiments were conducted at Barakshetra on the Sapt Kosi to bring out a comparison of the silt load of water samples collected with the help of (i)-ordinary bucket and (ii) 1-htre capacity Punjab-type Bottle Sampler at a number of sampling verticals on the Sapt Kosi. The contents of the coarse and medium silt fractions in those Samples are presented in Table XXXV. The results are very interesting and bring out that:

(i) The results of coarse and medium silt contents in water samples collected
by the bottle sampler fairly agree but those of samples collected by bucket tend to show wide variations.

(ii) The mean values of coarse silt content are invariably higher and those of medium silt content in a majority of cases in samples collected by the bottle method than the corresponding samples collected by bucket.

(iii) The silt charge in samples collected by bottle method along the crosssection at different verticals does not show so conspicuous variations as those collected by bucket.

(w) The charge of coarse silt fraction in water samples collected from nearer the two banks of the river is relatively higher than those collected from verticals on the midstream. That also applies to some extent to the charge of medium alt fraction.

Experiments on similar lines were carried on the Tamur, tributary of the Sapt Kosi and the results agreed fairly with those obtained and reported for the latter. The differences in the behaviour of the samples collected by the bucket and bottle sampler are attributable to the fact that the bucket sampling being instantaneous sometimes catches the silt from eddies and at other times it does not whereas sampling with bottle, which consists in collecting four to five bottleful of sample at each site, tends to catch a sample which is much more representative of silt carried in suspension at the sampling vertical.

# Variations in the nature of silt load in rivers during freshets

Certain variations in the nature of silt in suspension in the river waters at the time of successive freshets during the years may be expected. For instance there may be differences between silts coming along a winter freshet from that during the one in monsoon period. Such a study affords a progressive idea of the quality and grade of material which can be expected in the river or any of its tributaries during the year. Samples of water are, therefore, collected from the stream, in sufficient quantity to yield a cigarette tim-ful of dry silt, each time it swells due to an occurrence of a freshet. A systematic study is carried out with those bulk freshet silt samples of their particle-size distribution, fineness, wet density and void ratio characteristics and the results for samples collected from the Mahanadi and the Sapt Kosi and their tributaries are diagrammatically presented in Figures 53 to 58.



## TABLE XXXV

M.OBIAP

2

123

	Method of water				Соцете ві	it co per la	tre	`		os per litre		
Dato	sample collection	30'	60′	100′	140	180'	220'	260'	280'	Total	Moan	
11-7-50	Bucket	0·235	0-265	0 090	0.085	0 270	0·120	0 310	0.310	1 · 685	0 · 211	
	Bottle	0·370	0-190	0 210	0.175	0 135	0 160	0 210	0.375	1 · 825	0 · 228	
12-7-50	Bucket Bottle	0·260 0·370	0 300 0-290	0 · 210 0 · 150	0·105 0·200	$0.175 \\ 0.220$	0 090 0 180	0 • 365 0 • 275	0,350 0·425	1 · 855 2 · 110	0 • 232 0 • 264	
13.2.50	Bucket	0 · 275	0 · 180	0·150	0 · 100	0 095	0 • 100	0+085	0·190	1 · 175	0 · 147	
	Bottle	0 · 280	0 · 225	0·100	0 · 150	0+155	9 135	0 140	0 225	1 · 410	0 · 176	
15-7-50	Bucket	0·245	0`•180	0-205	0.080	0 • 155	0+240	0-255	0 715	2·075	0 • 259	
	Bottle	0·325	0-200	0-195	0 195	0 • 210	0+295	0-415	0-560	2·395	0 • 299	
16-7-50	Bucket	0-275	0-200	0 · 100	0·095	0·055	0 · 070	0 · 200	0 710	1 075	0·218	
	Bottle	0-275	0-235	0 135	0 160	0·200	0 · 220	0 · 375	0·570	2·170	0·271	
17-7-50	Bucket Bottle	0.250 0.295	0·075 0·190	0-085 9-150	0 · 055 0 · 130	0-040 0-150	0·075 0·165	0·075 0·245	0·505 0·470	1 • 160 1 • 795	0·145 0·2 <del>44</del>	
18-7-50	Bucket	0.300	0·145	0·165	0.050	0 050	0·060	0·385	0.760	1 · 915	0 · 239	
	Bottle	0.310	0·150	0 135	0.210	0·185	0·225	0·215	0.565	1 · 995	0 · 249	
19-7-50	Bucket Bottle	0 · 150 0 · 270	0 065	0.080 0 185	0.075 0.175		0 105	0.225	0.350	1.100	0·138 0·258	

TABLE XXXV

•

, <b>2</b> 0- <b>7-50</b>	Bucket Bottle	0.325 0.225	0 225 0·155	0 · 200 0 · 155	0 · 190 0 · 160	0·105 0 145	0+480 0+180	0.090 0.230	0 · 390 0 · 470	$2 \cdot 005 \\ 1 \cdot 720$	0·251 0 215
21-7-50	Bucket Bottle	0·302 0·405	0 • 230 0 • 325	0 070 0·270	0 290 0•280	0.085 0.265	0∙388 ,0∙380	0 • 220 0 • <b>4</b> 55	1-138 0-590	2·723 2 970	0 340 0·371
22-7-50	Bucket Bottle	0•403 ≁0 435	0·240 0·505	0 365 0·220	0·160 0·180	0 200 0·255	0 455 0-265	0·202 0 265	0·455 0 410	2·480 2·535	0 · 310 0/ 317
23-7-50	Bucket Bottle	0·780 0·675	0-565 0-450	0 500 0·500	0+490 0+495	0 • 465 0 • 475	0·220 0·745 √	0·510 0 705	0 • 775 0 • 855	4-305 4-600	0 · 538 0 · 575
24-7-50	Bucket Bottle	0·370 0 540	0 655 0 525	0·295 0·495	0·285 0·340	0·145 0·280	0 · 200 0 · 515	0·825 0·475		2•775 3•170	0·396 0·453
25-7-50	Bucket Bottle	0-320 0-450	0·250 0·310	0·320 0·290	0·320 0·300	0 465 0•320	0·070 0·575	0·220 0·425	 	1-965 2-670	0+281 0+381
26 7,-50	Bucket Bottle	0-420 0-345	0220 0·290	0·230 0·285	0·245 0·240	0-450 0-325	0 135 0 305	0·315 0-400	0-615 0-580	2·630 2·770	0 • 3 <b>29</b> 0 • 346
27-7-50	Bucket Bottle	0-285 0-390	0-385 0-300	0-275 0-290	0 · 475 0 255	0·290 0 315	0-110 0-355	0·315 0·260	0 · 155 0 · 675	2·290 2·840	0 · 286 0 · 355
<b>15-7-5</b> 0	Bottle	20 ⁷ ۥ640	40' 0 435	60* 0-385	``801 0+290	100' 0·310	120' 0-265	140' 0•225		4.790	0.397
<u></u>		9·265	180' 0 • 195	200' 0·315	220' 0-250	240' 0-260	260' 0-365	280' 0-520		7.180	U-041 }

					Medrum silt	ce, per litz	'e *			<b>46.</b> par	litre
Date	Method of water sample collection	30'	60′	100'	140'	180′	220'	250'	280'	Total	Moan
11-7-50	Bucket	0 818	0.505	0.430	0·320	0 455	0·350	0 430	0 455	3.560	0•44
	Bottle	0 560	0.440	0.425	0·320	0·395	0·305	0·350	0 420	3.215	0•4(
12-7-50	Buckət	0+415	0 490	0 · 500	0+400	0+520	0+425	0-670	0 • 545	3+965	0-4
	Boštle	0+530	0-465	0 390	0+435	0+390	0+440	0-525	0 • 580	3+755	0-4
28-7-50	Buckes	0-465	0 · 445	0 · 515	0+480	0·285	0·390	0 315	0·480	3∙375	′0•4
	Botie	0-450	0 325	0 500	0+395	0·425	0·345	0·345	0·500	3∙285	0•4
18-7-50	Bucket	0+495	0 530	0 575	0+415	<b>0 3</b> 80	0+425	0 · 500	0•995	4 · 315	05
	Bottlo	0.615	0-500	0- <b>4</b> 95	0 500	0∙525	0+535	0 650	0•705	4 · 525	0.5
16-7-50	Bucket	0 · 550	0 · 500	0 410	0-455	0 195	0 476	0 525	0·935	4-045	0-5
	Bottle	0 · 545	0 · 500	0-500	0-500	0·525	0·440	0·545	0 730	4 285	0-5
7-7-50	Bucket	0 570	0 • 305	0·340	0·355	0-165	0·545	0+430	0-680	3 · 390	0.4
	Bottle	0 685	0 • 550	0 525	0·545	0-530	0·525	0+630	0-680	4 · 620	• 0.5
<b>8-</b> 7-50	Bucket	0+580	0-440	0 460	0·240	0 220	0.355	0-665	0•725	3 • 685	0-4
	Bottle	0+775	0-550	0 555	0·510-	0-530	0.545	0-600	0•660	<b>4</b> • 725	0-5
9-7-50	Buoket Battle	0 450 0-530	0 • 370 0 • 430	0 350 0• <b>4</b> 10	0 325 0-390	0-220 0-230	0.265 0.525	0-670 0-425	0+780 0+660	2-430 3-690	0·4 ●·4

TABLE XXXV-contd.

-

MSC	20-7-50	Bucket Bottle	0-700 0-675	0-545 0-665	0·470 0 582	0 450 0-553	0·345 0·592	0+940 0+630	0·500 0·778	0.630 0.905	4 • 580 5 • 380	0•573 0•673
BI&P	21-7-50	Bucket Bottle	0+528 \ 0+560	0 565 0 553	0-307 0-532	0·570 0·475	0 330 0·495	0.635 0.563	0,575 Q 695	0 930 0.720	4•440 4•593	0•555 0•579
	22-7-50	Bucket Bottle	0+775 0+675	0-675 	0-960 0-755	0·845 0·665	0 650 0-650	0·925 `, 0*728	0'820 0+705	- 0·945 0·815	6•595 4•993.	`d·824 0·713
	23-7-50	Bucket Bottle	1.020 1.020	0-955 0-845	· 0-975 0-930	1.030 0.935	0 · 890 0 · 850	0•835 0•955	1 • 205 • 1 • 155	$1 \cdot 150 \\ 1 \cdot 150$	8·060 7·840	1+008 0+980
	24-7-50	Bucket Bottle	0 930 1·070	0+925 0+850	1.030 0.780	1.020 0.690	0·745 0·585	1•090 1•280	1∙450 0∙900		7·190 6·155	1.027 / 0.879
	25-7-50	Bucket Bottl <del>o</del>	0+695 0+825	0+630 0+685	' 0·765 0·715	0.780 0.695	0.850 0.725	0+450 0-795	0.725 0.695	· ··	4-915 5-135	0·702 0·734
	26-7-50	Bucket Bottle	0 535 0·575	0 • 500 0 • 515	0·490 0·535	0.500 0.405	0.515 0.510	0-520 0-690	0-580 0-605	0·785 0·655	4-425 4-490	0·553 0·561
	27-7-50	Buoket Bottlo	0+625 0+630	0.800 0.545	0.695 0.800	0-615 0-540	0-560 0-825	0·460 0·740	0·805 0·625	0-625 1-170	5·185 5·475	0.648 0.684
	15-7-50	Bottle	20' 0-945	40' 0-935	60* 0+900	80' V+685	100' 0·710	120′ `'0•665	140′ 0.665	.   ]	10 <i>•5</i> 50	′ <b>0.7</b> 54
_		<u> </u>	160' 0.725	180' 0-746	200' 0.620	220' 0+635	240' 0·725	280' 0-790	280' 0-960	].		_ <b>'</b>

## (a) Particle-size distribution

Mechanical analysis of silt samples for particle sizes ranging from ultrafine size of 0.0002 mm to 0.6 mm, was done by employing a micro-pipette for pipetting out aliquot fractions of silt suspensions for particle sizes below 0.001mm. The particle size distribution curves of a few typical samples representing the Mahanadi and the Sapt Kosi river systems are given in Figure 53 which bring out very clearly that the Mahanadi silts contain a much higher proportion of finer particle sizes as compared to the Sapt Kosi silts.

## (b) Fineness

In order to obtain a single value characterization of silts from those two river systems in terms of fineness, the specific surface values of these silt samples were determined with the help of the Blaine's air permeability apparatus.

The determination of fineness required a pre-treatment to affect the breaking up of the aggregates of silt particles, formed during the separation and subsequent drying of silt from waters, to a fineness corresponding to that in wet state of suspension in water at the time of collection.

A series of trials were made with a view to evolve a suitable technique for dispersing dry silt samples as given below :

- (i) dispersing with denatured alcohol and removing alcohol by burning;
- (ii) wet grinding with denatured alcohol and removing alcohol by burning;
- (iii) as (ii) but removing the alcohol by evaporating it to dryness ;
- (10) wet churning the suspension of silt in alcohol by means of a high speed cylindrical brush stirrer of the type used for Wagner's Turbidimeter equipment followed by removal of alcohol by evaporating to dryness.

It was found that pre-treatment of dry silt samples according to method (iv) described above resulted in breaking up of aggregates in these dry silt samples to the required limit of their fineness and ensured reproducible results of specific surface. Moreover a single treatment was enough for the purpose as shown from the comparative results of fineness of samples treated by those four methods given in Table XXXVI.



Micbi

### TABLE XXXVI

Showing comparison of values of specific surface of bulk silts after subjection to different treatments

	- <u></u> - i	•		, ['] Fine	eness sq cm	/gm	- - -
Silt No.		Operation	Untreat- ød	(i) Bur- ning with- out grind- ing	(11) Bur- ning and grinding	(iii) Grind- ing and evapora- ting	(ir) Chur- ning and evapora- ting
-1		2	3	4	5*	6	. 7
Saplohara 1	•••	1	3,221	3,294	16,010	16,820	25,510
	'۔ ا	2	••	}	18,250	18,450	26,320
		- 3 -			19,450	19,900	. '
Saplohara 2	••	1	2,500	2,660	10,020	12,210 ~	22,260
-	-	2	••		14,030	14,320	21,930
		3			15,100	15,510	••
Saplohara 8	••	1	2,942	3,147	7,537	7,521	12,680
•		2	••		7,678	8,690	13,030
		3	· · ··		8,358	9,090	••
Saplohara 10		- 1	3,808	4,004	6,969	7,920	13,040
		2	- -		7,889	8,268	13,290
<b>~</b> i		3	+-		7,889	8,450	••
Barmul 3		1	3,584	4,177	7,593	11,190	20,600
2/41		2	-		12,130	13,490	22,250
		3			13,450	14,140	••
Rarakshetra 2		1	4,769	4,757	5,184	5,376	. 6,151
THURSDUCING B	••	2			5,374	5,578	6,142
		3			<i>5</i> ,395	5,601	₹ <i>≓</i> •
Aron 4	• -		2,747	2,738	3,477	3,730	3,869
A104 3	••	2			3,684	3,885	3,854 ;
		3	••		3,681	3,884	 

The figures of specific surface (sq. cm/gm) for a number of silt samples are diagrammatically presented in Figure 54. On the basis of this characteristic it is shown that, firstly, the Mahanadi silts are considerably finer than those of Kosi and, secondly, the silts carried in suspension during earlier freshets in these rivers are relatively finer than those representing subsequent freshets. This study thus serves to confirm the conclusion drawn earlier on the basis of the regults of the ultramechanical analysis of those sets of silt samples. MSCBJ&P



#### (c) Mean diameter of particle sizes of silt samples

From the particle-size distribution curves of silt samples from the two river systems, the mean diameter size of each sample has been worked out statistically. Two alternative ranges of sizes of silt particles have been considered for computations in that connection, *i.e.*, 0.0002 mm to 0.075 mm and 0.0002 mm to 0.03 mm respectively. A plot of the mean diameters of silts on the basis of either of those particle-size ranges against their respective specific surface values are presented in Figures 55 and 56.

An attempt has been made to obtain a statistical correlation between the fineness characteristics of silts, as defined in terms of specific surface, which can be determined relatively quite quickly, and their respective mean diameters as it shall be very helpful to arrive at the latter value on the basis of the experimental results of specific surface. The correlation obtained are given below :

Range of particle sizes	Correlation Coefficient	Linear relationship
0.0002 mm to 0.03 mm	-0·713	$y \times 10^{-3} = -1361x_1 + 25 \cdot 35$
0.0002 mm to 0.075 mm	-0·854	$y \times 10^{-3} = -872 \cdot 1x_1 + 27 \cdot 38$

where y is specific surface value in sq. cm/gm and  $x_1$  and  $x_2$  are the mean diameters for the two ranges of particle sizes respectively. It is seen that the correlation co-efficient for the range 0.0002 mm to 0.075 mm is relatively better than for the other range. The difference between the two correlations is, however, not statistically significant for 53 observations taken for purposes of this study.

#### (d) Fineness of silts in relation to sieve analysis

This study was made to examine the possibilities of obtaining an idea of the value of specific surface from sieve analysis at places not equipped with requisite apparatus to carry out the test for fineness. Figure 57 presents the relation between the value of specific surface for silt samples and the percentage of particle size retained on B.S.S. sieve No. 325 (0.043 mm mesh). This relationship has been obtained for freshet silts from both the rivers, the finer ones from the Mahanadi and the coarser ones from the Sapt Kosi respectively. It is thus shown that a rough approximation is possible that way.

(e) Wet density and void ratio

A study was made on laboratory scale with the various freshet samples to obtain a relationship of the fineness with wet density and void ratio. The results of that study given in Figure 58 indicates that the wet density decreases and void ratio increases with an increase in the fineness of silt. Beyond a certain degree of fineness of say 10,000 sq. cm/gm any further increase in fineness seen:s to have little effect on the wet density and void ratio.



FIGURE 57 :- Diagram showing the relationship between the specific surface and percentage fraction retained on Sieve No. 325 of the suspended silts of the Mahanadi and the Sapt Kosi Rivers."



Ì35

FIGURE 58 :- Curves showing the relationships of wet density, void ratio and fineness of suspended silts of the Mahanadi and the Sapt Kosi Rivers.

# **CHAPTER 4**

# Silt Studies of Some Existing Reservoirs in Other Countries

#### GENERAL

This section deals with the silting of some existing foreign reservoirs. Information regarding silting and connected data has been collected from published literature, office files and other notes and has been compiled in the form of a statement in Table XXXVII.

This statement deals with most of the important foreign reservoirs in the *world but is by no means complete. It is presented in the hope that its circulation may help to stimulate interest in the problem and thus bring to light much useful information which may be available at the many reservoirs in India and abroad. As mentioned before, the data collected from the existing Indian reservoirs is given in Chapters 2 and 3.

The statement has been arranged in the order of areas of the catchment basins. These areas are given in column (5). The rates of silting per year per 100 square miles of catchment are given in column (20).

Some details of individual reservoirs have been given, in the order in which they occur in Table XXXVII.

For the sake of comparison the hydrological data for the Yellow River in China has also been included (28).

# TABLE

# Silting of

		Recervoi	r	(89		Storage	Capao	ity	(B)	(Bano
Serial No.	Country	River -	Name	Catchment area (square mil	Height of dam (feet)	Footaorea	Percentage of annual run- off	Foot-sores per square mile of ostohment	Mean annual ramfall (inch	Meen annal run-off (font-a
1	2	3	4	5	6	7	8	9	10	11
1	Egypt	Nıle	Aswan	620,000	174	4,400,000	6.7	7:1		66,000,000
2	U.S.A.	Colorado (Arizona.)	Boulder dam	167,000	726-4	30,500,000 , -	203	183	5-10	15,000,000
8	U.S.A.	Mississippi	Keokuk	119,000	32	370,000	0-80	8.1	32	46,000,000
4	U.S.A.	Columbia	Grand Coulee	74,000	550	9,645,000	12.5	136	••	80,000,000
5	<b>U.S.A</b> .	Colorado	New Lake Austin	38,200	65	37,000	1 75	0.80	21	1,827,000
6	<b>U.S.A.</b>	-do- (Tezas)	Old Lake Austin	38,200	60	49,300	2 46	1.31	21	2,000,000
7	U.S.A.	Rio Grande	Elephant Butre	26,312	306	2,638,860	264	100	10-25	1,000,000
1				-			,	•-		
8	Ū.S.A.	Pecos	Lake McMillan	22,000	52	90,000	30	<b>4</b> ·0		300,000
9	<b>U.S.A.</b>	Tennessee	Hales Bar	21,800		156,000	0-57	7.2	•• `	17,000,000
10	U.S.A.	Mississippi	Coon Repids	19,000		8,000	0.20	0-40	•••	4,400,000
11	U.S.A.	North Platt	Gurnsej	16,200	105	72,000	4.4	4.4	••	1,650,000
12	U.S.A.	San Carlos	San Carlos	13,540	203	1,248,000	••	92	10-15	••
10	0.5.A.	Dest	Lay Reservoir	9,087	77	156,525	••	17.23	54	••
15	T.S.A.	Rock	Storling Pool	8,760	••	13,700	0•4	1.56	••	3,500,000
18	U.S.A.	Salt	Bocramit	7,740	· 44	16,000	1.06	2.07	13-5	1,500,000
-•			TARCERATE	5,760	284	1,522,200	181	; ²⁶⁴	8-35	`£ <b>40,00</b> 0
17	<b>U₁9 A.</b>	Iran	Fall	5,140						
18	Aostralia	Murrum	Burringuck	5,000	200	772.000	67	154	••	1,150,000
19	Africa 🥁	Sun lays	Lake Montz	6,823		94,619	82	19.7	12	146,000
		5								
20 		Im	Fettenbach	4,730	••		••	••	••	9,090,000

.

-

	* 1			
XX	X	V	11	ł

## Reservoirs

٠

	Year	a of capa surveys	cıty		Silt de	posited	_	-					
Run-off per square mile of oute ment (foot- eres)	First	Last	Period in years	Total (foot-gores)	Annus (foot-acres)	Percentage of original capacity per annum	Per thousand of water supply by volume	Per 100 square miles of catchment per a num	- Remarks	Reference to bibliography on page 194.			
12	13	14	15	16.	17	18	19	20	21	22_			
107	1900	- 1927	25	· · ·						(29), (27) and			
90 ;	Esti	mated		137,000		, <b>.</b>	·.	82 	*Accepted in final designs	(35) (25), (10),(31), (29), (10) and (9)			
386	1913	1928	- 15	112,000	7 460	20	0-18	6-3	·	(10) and (29)			
1 081				112,000	, ,,,100					(31)			
48	1913	1926	13	30.620	2.355	73	1.28	6 2	••	(12) (10) and			
52	1893	1900	6 75	23,600	3,500	71	1.75	9		(29) (12) and (29)			
38	1916	<b>194</b> 0 '	25, 75	415,786	16,147	0 61,	1.62	61	Erratic and violent rain- fall. Rio Grande carries the largest silt burden of any major stream in the South West.	(10) (29) and (9)			
4	1893	1). 1932	38 4	46,400	1.208	1 34	4.03	5.0	Accidental Tamariik	(10) (29) and			
1 937	1913	1930	18 92	45,500	2.690	1.73	0.10	12	growth reduces silting.	(9) (29)			
939	1899	1931	32	1.380	43	0 54	0.01	0-22	¥ ••	(29)			
102	1927	1933	5.9	8.400	1.430	1.98	0.85	9		(29)			
1,02	1928	1935	6-33	36,896	5.829	0.47		43	Severe over grazing	(9)			
-1	1013	1936	22.3	18.005	807.4	0.52		89	· ·	(1)			
400	1912	1930	18	2.010	111	0.82	0-032	1	¢ 1	(29)			
194	1911	1924	13	13.000	1.000	6 25	0-66	13	i ] i	(29)			
	1911	1938	27	123,770	i 4,584	0.30	5•46	796	Catchment consists of highly erodible soils. Over grazing under and conditions.	(10)(29)(9) & (31)			
		1 ••	6.5	2,420	373			17-3		(29)			
230	1910	1924	14	3,970	285	0.037	0-28	6	1	(29)			
•	1-1-23 •	31-5-35	12.4	34,466	+ 2,780	2•9	19-0	57	Soft Geological formation, ateep slopes, poor vege- tel covering, small violent and irregular rainfall, intense sheep farming.	(20) (30). ,			
1,922			6,	1,750,	1 292	·	0+30	6-2	1 ••	(29) ,			
- 	BI&P			·	<u>.                                    </u>	<u> </u>	· · · ·						

٠

.

•

....

- **- -** -

## TABLE

	<u></u>								S	ilting of
		Reservoir		69		Storage	capaci	ty	(6	(ores)
Serial No.	Country	intry River Name		Catohment area (sq tare ml)	Height of dam (feet)	Root-acrea	Percentage of annual run- off	Foot-acres per square mile of catchment	Mean annuel reinfail (inche	Mesu banaal run-off (foot-a
1	2	3	4	5	6	7	8	9	10	< 11
21 22	U S.A. U.S A	Yadkın	Lake Taneycemo High Rock	4,610 3,930		43,980		9-54 73 65-	47 78	·
¥3 04	USA.	Davattaa	Genier-See	2,800		72,100,000	•	25,200		. :
1 23		Mar	Black Canyon	2,540	184	37,659		14 83	11-26	2,235,000
20 98		Rhine	P-doored	2,420	· ·	4,0 /)		1.05	]. ••	
27	Àfrica ,	Fueb .	Tako Arthur	2,350		10 000				776,000
25	USA.	Clear Fk.	Tobe Denick	2,270		63,630	81	28	13.5	79,000
- 1		Brazos.	JASAC LONICA .	2,250	49	3,090	2.70	1.40	••	111,000
29	U.S.A.	W br. Trinity	Lake Worth	1,870	36	47,200	22 2	25	31	212,009
30	U.S A.	Bosque	Lake Waco .	1,662	].	39,378		23	25	
81	U.S.A.	Lattle Tennes-	Cheoha	1,620	230	41,600	1.38	26		3,030,000
12	Africa	Fish	Grass Ridg .	1,-83		64 500	143	41	14	42,000
33	U.S.A	Toulumne	Le Grange	1,500		2,330	0.15	16		1,970,000
34	Africa	Sundays .	Van-Ryneveld;	1,477	13י	65.967	200	45	14	33,000
33	; ] U S.A.	Ocmalgee .	Lloyds Sheals	1,375	100	112,538	.	82	50	
3(	۶ <u> </u>	Sif	St. Denis	I,350	]	2,800	i	2.07	.	÷
37	U.S.A.		New River	1,320	í	13,255		10 04		••
31	U.S.A.	Umatilla	Famish	1,200		5,500	1.16	4.6	.	485,000
39	パー:	Meckerra	Choarfas	1,160	{	10,100	41-7	8.7		23,306
40	) Italy	••	Pescara-3° salto	1,008		{ ]		ا ا	.	
41	USA.	Sciota	O'Shaughnessy	988	84	16,673		16-9	l	••
4	1 U.B.A.	••	Lake Decatur	906	]	19,738	!	21.79	.	
4	3	••	Puentes	800	156	21,500		27	13	1
4	*	Irac .	Avignounette	772		800	0.09	1 04		890,000
4	s	Verdun	Quinson	695		1,100		1-58		
•			f	ł	}	1	ļ ;			1
# XXXVII-contd.

# Reservoirs

	Yes	rs of capa surveys	city	· _	Silt d	epoerted	1			{
Run-o'' per square mile of catchment (foot-acres)	Kirst -	Last	Period in ycars	Total (foot-acres)	Annual (foot-acres)	Percentage of original capacity per annum	Per thousand of water supply by volume	Foot-acres per 100 square miles of catchment per annum	Remarks	Reference to bibliography on page 194
12	13	14	15	16	17	18	19	20	21	22
	.		( 22.4	20,266	904-73	2 06		19.6	••	(1)
•	1927	1935	78	13,916	1,784 1	0.62		45 7	••	(1)
		• •	.	, 1 , 1	2,400		1	84		(29)
813	1924	1936	12	4,037	336-4	0+89	0.15	13-2	••	
	. i	••	1.5	·284	203	51		8-4		(29)
329	.		20	8,010	400	].	0.51	17		(29)
	1-4-25	30-4-35	10 1	26,200	2,600	4-1	33	115	Same as No. 19 above	(30)
49	1920	1927	7	965	138	46	1.25	6	••	(29) and (9)
113	1915	1928	13.0	13,837	1,064	23	5.0	57	••	(12) (29) & (9)
	1930	1935	5	7,790	953	3.34		. 57	••	(9)
1 870	1918	1930	11.83	. 4,350	367	0.88	0.12	23	••	(29)
27	1-1-80	1935	11.3	15,601	1,380	2 20	32.9	87	Same as No. 19 above	(30)
1,313	1895	1931	36	12,940	54	23	0 028	4	•	(29)
22	1-1-25	1935	10 3	9,697	941	1.44	28.5	64	Same as No. 19 above	(29) and (30)
••	1-2-10	1935	2 <b>4</b> · 33	13,960	574	0.51		42	••	(9)
••		••	8	608	76	2.7		5-8	••	(29)
••		••	33-5	8,155	243-43	1.84	'	18 5	••	(1)
404	1909	1931	22	4,500	204	3.73	0-44	17	••	(29)
20	]	••	50	4,950	99	0-98	4.25	9-0	••	(29) -
•••		••			352-1			35-0	••	(3)
••	1925	1934	9.0	1,016	112-9	Q-68		11-4	•• -	(1)
			14.2	2,808	197.75	10		21-9		(1)
-					510	2-38		64	•••	
1,153		<b>*.</b> .	8	810	101	12.6	0-11	13	<b>.</b>	(29)
••			5	730	146	13		21		(29)

# TABLE

							-		S	ilting of
		Reservoir		(93		Storag	e capa	city i	, (8	ros)
Serial No.	Country	River	Namo	Catchment aroa (aquare mil	Height of dam (feet)	Footgores	Percentage of annual run- off	Foot-acres por square mile of catchment	Moau annual rainfall (mohe	Mean annual run-olf (foot-ac
1	2	3	4 ''	5	6	7	8	9	.10	11
46	U S.A.	בי אמויצ	Zuni .	<b>6</b> 50	80	<b>15,811</b>	91	25 3	13	17,400
47 48	Pakıstan U.S A.	Ococe	Khushdil Khan reservoir. Parksville .	608 600	66 125	26,997 97,000	16·3& 10-Ż	44 4 162	8 9) 55	950,000
49	U.S.A.	Medma	Medina	587	164	318.703	1	549-04		
<b>5</b> 9	}	Lech	Rosshanpten .	550			[ ·	1	25	1 590.000
់ ខា		Aare	Bieler See	532		1,010,000	58.6	1.910		1,710,000
52		Anza	Kellnach	FOF	,		۰ ا	_,		
53		Same	Perolles	497		1,500		2 86		•
54	••	Kander	Thunomen	407		800	••,	1 61	· ·	
55	US.A.		Lake Spavinau	400	••	0,270,000	531	12,710		993,000
56		Throler Ache	Chuem See	392	<b>1</b> -	1 700 000		79 22	리티	1 000 000
67		Saalache	Saalache	386		2,100,000	0.99	4,570	11-2	1,050,000
58		Avista	Avisia	369		1,600	0.70	1 20	ł ••	1,010,
59	· ·	••	Djidovia	328		1.600		4.30	,	
60	[	Begrenzer	Bodensee	321	-	39,400,000	5.070	192.000	•• ,	776,000
61	•-	Reuss	Vierwald	321		9,560,000	1.570	20,000		608,000
62		Ghun Powder	Loch Raven	306		1,600	0.52	5-23		300,000
63	<b>U.S.A.</b>	San Dieguito	Hodges	303	, <b>13</b> 0 ,	37,450		123 6		
64		Pont Du-Loup	Drag	290	` 	2,400	) <u>.</u> .	8 30		
65	Burma	•	Meiktala Lake	240		30,301		126		• ,
00 87		Wallen See	Linth	240		2,030,000		8,459	·	لاي هو
< <u> </u>	L	Steyr	Steyrdurchorach	222	••	6,700	1.31	30-2	•	510,000
						<u> </u>		I		

# XXXVII-contd.

,

# Reservoirs

·			_							
	Ye	ars of cap surveys	acity		Silt d	eposited	i			] -
Run-off poi square mile of catchinent (foot-acres)	F)rat	Last **	Period in years	Total (foot-acres)	Annual foot-acres	Percentage of original capacity per annum	Per thousand of water supply by volume	Foot-acre per 100 square miles of catchment por annum	Remarks.	Reference to bibliography on page 194
12	13	14	15	16	+ 17	18	19	20	21	22
27	1906	• 1932	26 2	1!,330	432	2 7,3	24•8	<b>66</b>	Catchment in an advanced stage of a crosion and gully developments Denudation due to intense sheep farming. Recovery due to sult control works	(29), (10)
	1888	1940	52	5,039	97	0 35	•••	h •••	4 ⁴ 8.99 y	-
1 383	1912	1930	18 _. 75	20,800	1,110	1 14	1-17	185	Destruction of forest lands by fumes from roast ovens and smelters, clayey soil and excessive	(29)
	1912	1935	23 8	6,265	263 2	0 08	••	45 4	ramany (bud	(1), (12) and (29)
2,891		••	7	1,780	255	{ .	0 16	47	i 7 (1∩1) , / 2) "2 ve7	(29)
3,214			$\frac{20}{16}$	<u>5,430</u> 2,030	207	0 02	0 12	39	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(29) , -
.	.		6	810	138	92	•	' 26	-	- (29)
	<b>.</b>	•	14	810	58	72	ļ.	12	, 	(29)
2,401		{	152	46,000	308	0 006	0 30	73	× 4 .	(29)
•			11 0	1,177	107	0 34		26 9	····	i (1)
2,781		.	35	2,790	`_ <mark>80</mark>	D 005	0.07	20	-	_ (29)
2,617			17	2,340	138	49	0 14	36	•• •	- (29)
]			8	1,620	203	12 7		<b>'5</b> 5	316 40 1	(29)
	.	••			203	12 7		62	•• , •	- (20)
2,417		••	24	2,510	105	0.0002	0-14	- 35	•• ( )	(29)
1,894			27	3,200	118	0 001	0 19	37	•• '	(20)
980		••	20	1,330	66.2	41	0.22	22	•• • •	(20)
	1919	1935	16 5	1,822	110	0-29	•	36.7	••	
		••	1-1	1,220	1,110	46-3	••	380	••	(29)
}	1896	1936	40	7,091	177-3	0 59		74		1 (29)
••		••	. 51	3,030	60-1	0.003	••	25	••	(29)
2,298	••	••	22.5	575	26	0.38	0-05	' 12	••	(29)

1

# TABLE

Silting of

		Reserve	de la companya de la	(ce)		Storage	e capac	dty	i per	(cres)
Serial No.	Country	River	Name	Catchmont area (square mi	Hought of dam (feet)	Foot-acres	Percentege of annual run- off	Foot-acres per square mile of catchment	Meyn annual raintàll (inc)	Mean annual run off (foot-a
1	2	3	4	5	6	7	8	9	10	n
68	USA.	Santa Yaniz	Gibralter	200	165	14,500	27	72 5		546,9%
65	{, ••	Ciamon	Cismon .	192		10,000	2.24	52	1	446,000
70	Italy		Cumon .	, 186	• ]44	4,050		22	••	
71	US.A.	Sweet Water	Sweet Water	181	90	36,300	205	200		19,000
72	U.S A.	Flat .	Lake Michie	170	85	12,671	11 5	75	42 2	110,000
73	Italy	Celina	Mont Reale	168	1.	· 1,000	1.76	5-9	78 8	56,700
, 74	U.S.A.	Buck Horn	Buck Horn .	130	(	1,190	ł	9.2		••
75	U.S.A.	Cotton wood	Barret	130	179	[ '	[.	331	18	••
76	U.S A.	Tranty	White Rock .	114	40	18,158	{	159	37	
77	U.S.A.	Cotton wood	Morena	112	162 5	68,388	.	610 61	22-30	•
78	U.S.A.		Burlington .	105 2		1,488	].	14 14		ļ
79	Italy		Cordevole-Lagodi Allenghee	56			.			•
60	U.S.A.	South Pecolet	Spartonourg .	92	60	2,700	ł	29	47 6	
81	Italy	••	Savio Quarto	83	.		.	•	•	
82	Spain	••	Almansa .	78	68	2,400	{	31	13	••
83	U.S.A.	••	Bay View	72 3	{ .	11,866		164 • 11	ł	
84	U.S.A.	Horse Pen	Greensboro	72 0	30	2,870	<b>]</b>	40	46 8	••
85	U.S.A.	••	Lake Hurlay	70.0	}.	1,226		17.51		••
86	Italy	••	Ferma-Cantangh-	69 0			]			
87	U.S. <u>A</u> ,	**	Little Rock	68-0		5,300		77 94		••
88	Italy	••	Scoltenna-Rio-	68-0	ļ	{	.			**
<b>69</b>	U.S A.	Deep	High Point	62-8	45	4,354		69 33		••
90	Italy	••	Orba Ortiglioto	56 0						••
91	U.S.A.	Pine Creek	Lake Crook	51-6	26	11,487	.	222 · 62	38-94	••
92	Burma	<u>,</u>	Tangundaing Tank.	51 <i>`</i> 0		4,290	<b>,</b>			••
93	U.S.A.		Lake Lee	50+5	••	821	••	16-26	•••	••

١

.

# XXXVII-contd.

# Reservoirs

	Yea	rs of capa surveys	city	·	Silt de	posited				
Run-off por square mile of catchment	First	Last	Period in years	Total (foot.acres)	Annual (foot-aoros)	Percentage of original capacity per annum	Per thousand of water supply by volume	Foot-weres per 100 square miles of oatchment per annum	Remarks	Reference to bibliography on page 194
12	13	14	15	16	17	18	19	20	21	22
9 393	1920	1940	20 66	5,579 1.420	270	1.86	05	135	Santa Barbara Water Department Santa, Bar- bara olif. Aug. 1940.	(29)
2,020				2,	149	3 68		80		
105	1888	1927	39	5.859	150	0 41	8	83	Erratic rainfall, poor	ĺ
647	1926	1935	8 75	305	45	0 36	0 41	27	Vegetal covering.	(29), (9) (29), (9)
338			1	<b>681</b>	681	68 1	1 20	408	••	(20)
	1907	1925	18	565	31 4	2-60		24	ê. • •	(29)
/ ·		•		-					••	••
	1910	1935	25	3,882	155	0-80	•	136	Catchment consists of limestone rocks.	(10), (29), ( <b>9)</b>
.	191 <b>0</b>	1935	25 7	7,184	280 0	0 41	•	256	**	(1)
			10.0	163	16 3	11	••	15 5	•• •	(1)
		•	•	••	SI 6	•	•	85		(3)
·	1926	1934	82	463	56•7	2 • 10	-	62	••	(9)
		••		••	253 79		••	313		(3)
		••		••	2.5	0 10	•	3	••	••
			24.6	2,352	95•6	081	•	134	••	(1)
	1928	1934	11 5	260	23	0 80	•	31	••	(9)
		••	45	37	8 22	0-67	-	11 8	•	(1)
<b>··</b>	••		.,	••	91.77	•	••	133		(3)
		•	11.75	83	7.06	0.13	•	10.4	••	(1)
		•		•	73.71	••	••	117		(3)
	1927	1938	10-25	316	30 8	071		49-5	••	(1)
1		••		••	86.24	••		154-0	••	()
1	1923	1936	13-1	732	55-9	049		112.0	••	(1)
{	i 1929 i	1936	60	499	83-2	1-93		163	**	
<u> </u>			11.1	109	15.23	1.85		30-3	••	(1)

# TABLE

Silting of

		floservo	ır	ss)		Storag	e capa	oity	()	)res)
Setial No ₃ -	Country	River	Namo	Catchment area (square mik	Height of dam in feet	Foot-aores	Percentage of annual run- off	Foot-acres per square mile of catchment	Mean annual rainfall (inche	Mean annual run-off (foot-a
1	2	3	4	б	6	7	8	8	10	11
94	U.S.A.	Medicine Crock	Wollficet	43 0	••••••	519		12 0	••	•
95	U.S A.	San Leander	Lake Chabot	42 0		17,000	78	405		21,700
96	U S.A	•	Lake Purdy	41 74		19,080		457 12		•
97	US.A	Ferozenman Creck.	Hayes Lake .	400	••	629	1	15 73		
98	U.S A.		Santa Fe	400		1,741		43 53		• <b>*</b> *
99	U.S A.	Satchel Creek	Lake Eldorado	33-0		3,213	]	97.36		
100	US.A.	•	Sanpablo	32-2	•	•			•	8,800
101	Italy		Tidone-Molato	32 0		••				
102	Ū.S A.	•• *	Devils Gate	31-0		) [ • •	 			-
103	U S.A.	San Leandro Crock	Upper San Leand-	30 3	190	43,460	1	1.428		
104	U.S.A.		La eo Harns	30 0		2,421		: 180•70		•
105	Pakustan	Spin Karez	Spin Karez	28 0	94	5,785	42 35	207		1,200
106	U.S A.	Morgan Creek	University Lake	27-0	30	1.915	1	71	48	
107	USA.		Burat Mills	27.0		170		6.30	20	••
108	Italy		Torre-Crosin .	24.0						
109	USA.	Turkey Creek.	Lake Clunton .	23 0	52	4.415		192	•• ••	
110	USA.	· ·	Ottawa County	20 5		1.001		49 93	20	••
111	Italy		Leta Letino .	190		-,001		10 00	•	•
112	U.S.A.		Meade County	18 0		801		40 50		I
113	U.S.A.	· ·	Lake Sherwood	16 0		2.870		176 20	••	••
114	U.S A.	Pine Creek	Pine Lake	15 34		738	}	118 35	••	••
115	<b>U.S.A.</b>	Holmesrun .	Barcroft .	14 5		1 847		107 20	••	•
116	U.S A.	Cimarrow	Guthne	13 3		3 084	1 .	141 98 000		•
117	US.A.		Lake Calhoun	13.1		0,004 994	[ •	230	33 4	••
118	U.S.A.	Mission Creek	Mission Lake	11.4		1050		21.83		••
119	U.S.A.	{	Santa Anita	10-8		2007 ×	{ -	162 46	••	••
·			(1936)	I		1,043	•••	96.22	· • • •	••

.

# XXXVII-contd.

# Reservoirs

120 $114$ $125$ $16$ $17$ $189$ $100$ $200$ $21$ $12$ $13$ $14$ $125$ $16$ $17$ $18$ $19$ $20$ $21$ $12$ $13$ $14$ $125$ $16$ $17$ $18$ $19$ $20$ $21$ $1.1$ $1.5$ $5-6$ $55$ $9-82$ $189$ $$ $22.8$ $$ $(11)$ $117$ $1875$ $1923$ $48$ $3,700$ $77$ $0.45$ $3-5$ $183$ $$ $(11)$ $$ $$ $252$ $486-0$ $19-20$ $010$ $$ $48$ $$ $(11)$ $$ $$ $252$ $486-0$ $19-20$ $010$ $$ $48$ $$ $(11)$ $$ $$ $252$ $486-0$ $19-20$ $010$ $$ $48$ $$ $(11)$ $$ $$ $11-67$ $186$ $$ $29-3$ $$ $(11)$ $$	
12       13       14       15       16       17       18       19       20       21           5-6       556       9-92       1       89        22.6        (1)         517       1875       1923       48       3,700       77       0-45       3-5       183        (9),           25.2       486-0       19-29       0 10        48        (1)           4-2       49       11-67       1 86        29-3        (1)           8.6       144       17-0       0 98        44-6        (1)           9.0       131       14-55       0-45        44-9        (1)               1109        1920        (3)                   (3)	tence to graphy go 194
$5 \cdot 6$ $5 \cdot 6$ $9 \cdot 82$ $1 \cdot 89$ $22 \cdot 6$ (4) $517$ $1875$ $1923$ $48$ $3,700$ $77$ $0 \cdot 45$ $3 \cdot 5$ $183$ (9), $25 \cdot 2$ $486 \cdot 0$ $19 \cdot 29$ $0 \cdot 10$ $48$ (1) $4 \cdot 2$ $49$ $11 \cdot 67$ $1 \cdot 86$ $29 \cdot 3$ (4) $4 \cdot 2$ $49$ $11 \cdot 67$ $1 \cdot 86$ $29 \cdot 3$ (1) $4 \cdot 2$ $49$ $11 \cdot 67$ $1 \cdot 86$ $29 \cdot 3$ (1) $9 \cdot 0$ $131$ $14 \cdot 55$ $0 \cdot 45$ $44 \cdot 9$ (1) $1.132 \cdot 0$ $51 \cdot 44 \cdot 0$ $192_0$ (3) $1.109 \cdot 0$ $3,929$ (1) <t< td=""><td>82</td></t<>	82
$517$ $1875$ $1923$ $48$ $3,700$ $77$ $0.45$ $3.5$ $183$ $(9)$ , $252$ $486 \cdot 0$ $19 \cdot 29$ $010$ $49$ $(1)$ $4.2$ $49$ $11 \cdot 67$ $186$ $29 \cdot 3$ $(1)$ $4.2$ $49$ $11 \cdot 67$ $186$ $29 \cdot 3$ $(1)$ $4.2$ $49$ $11 \cdot 67$ $186$ $29 \cdot 3$ $(1)$ $90$ $131$ $14 \cdot 55$ $0.45$ $44 \cdot 9$ $(1)$ $90$ $131$ $14 \cdot 55$ $0.45$ $167$ $(1)$ $1.139$ $644$ $611$ $167 \cdot 7$ $(1)$ $1.199$ $1.92$ $9.2$ $0.5$ $59.5$ $(1)$ <td>)</td>	)
$25 2$ $486 \cdot 0$ $19 \cdot 29$ $0 \cdot 10$ $48$ $(1)$ $4 \cdot 2$ $49$ $11 \cdot 67$ $186$ $29 \cdot 3$ $(1)$ $8 \cdot 6$ $146$ $17 \cdot 0$ $0 \cdot 98$ $44 \cdot 6$ $(1)$ $9 \cdot 0$ $131$ $14 \cdot 55$ $0 \cdot 45$ $44 \cdot 6$ $(1)$ $9 \cdot 0$ $131$ $14 \cdot 55$ $0 \cdot 45$ $44 \cdot 6$ $(1)$ $21 \cdot 0$ $1,13^{\circ} \cdot 0$ $54$ $61 \cdot 167 \cdot 7$ $(2)$ $(3)$ $61 \cdot 44$ $192_{2}0$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $($	(29)
$4 \cdot 2$ $49$ $11 \cdot 67$ $186$ $29 \cdot 3$ (1) $8 \cdot 6$ $146$ $17 \cdot 0$ $088$ $44 \cdot 6$ (1) $$ $9 \cdot 0$ $131$ $14 \cdot 55$ $0 \cdot 45$ $44 \cdot 9$ (1) $$ $9 \cdot 0$ $1,13 \cdot 0$ $64$ $61 \cdot 1$ $67 \cdot 7$ (3) $$ $$ $$ $61 \cdot 44$ $$ $$ $1927$ $1935$ $8 \cdot 4$ $170 \cdot 0$ $21 \cdot 2$ $0 \cdot 5$ $69 \cdot 5$ $$ (2) $$ $$ $$ $$ $11927$ $1935$ $8 \cdot 4$ $170 \cdot 0$ $21 \cdot 2$ $0 \cdot 5$ $69 \cdot 5$ $59 \cdot 5$ $$ (1) $1927$ $1935$ $8 \cdot 4$ $170 \cdot 0$ $21 \cdot 2$ $0 \cdot 5$ $69 \cdot 5$ $59 \cdot 5$ $$ (1) $1927$ $1935$ $2.42$ $04$ $22$ $1$	<b>F</b>
$8 \ 6$ $146$ $17 \cdot 0$ $0 \ 98$ $44 \cdot 6$ (1) $9 \ 0$ $131$ $14 \cdot 55$ $0 \cdot 45$ $44 \cdot 9$ (1) $21 \ 0$ $1,13^{\circ} \cdot 0$ $54$ $44 \cdot 9$ (1) $21 \ 0$ $1,13^{\circ} \cdot 0$ $54$ $44 \cdot 9$ (1) $1,13^{\circ} \cdot 0$ $54$ $44 \cdot 9$ (1) $61 \cdot 44$ $192_{2}0$ (2) $1.199$ $1.2 \cdot 92$ $(9)$ (2) $(9)$ $(2)$ $(1)$ $(2)$ $(1)$ $(2)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$	I
90       131       14.55 $0.45$ 44.9        (1) $210$ $1,13^{2}\cdot0$ $64$ $61$ $167\cdot7$ <	ł
21 0 $1,13^{2} \cdot 0$ $54$ $61 \cdot 167 \cdot 7$ (2) $61 \cdot 44$ $102_50$ (2) $1.109$ $3,929$ (3) $1927$ $1935$ $8\cdot4$ $170 \cdot 0$ $2) \cdot 2$ $0 \cdot 05$ $69 \cdot 5$ $69 \cdot 5$ (2) $6 \cdot 75$ $49 \cdot 0$ $7 \cdot 11$ $0 \cdot 29$ $$ $23 \cdot 2$ (1) $42 \cdot 86$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $.$	•
$61 \cdot 44$ $102_{40}$ (2) $1.109$ $3,929$ (3) $1927$ $1935$ $8 \cdot 4$ $170 \cdot 0$ $2) \cdot 2$ $0 \cdot 65$ $69 \cdot 5$ $69 \cdot 5$ (2) $1$ $(6 \cdot 75)$ $49 \cdot 0$ $7 \cdot 11$ $0 \cdot 29$ $23 \cdot 3$ (1) $42 \cdot 86$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	
1,199        3,929        (3)          1927       1935 $8\cdot4$ 170·0 $2$ )·2       0 05       69·5       69·5        (2) $6\cdot75$ 49·0       7 11       0·29        23·2        (1)         42·86 $1.92$ 23·2        (1)         42·86 $1.93$ 1934       2·92 $0.44$ 22       1·14 $81$ <t< td=""><td></td></t<>	
.       1927       1935 $\$ \cdot 4$ 170 \cdot 0 $2 \cdot 2$ 0 05 $69 \cdot 5$ $69 \cdot 5$ (1) $6 \cdot 75$ $49 \cdot 0$ 7 11 $0 \cdot 29$ $23 \cdot 2$ (1) $42 \cdot 86$ (1) $42 \cdot 86$ (1) $42 \cdot 86$	
$0.75$ $49.0$ 7 11 $0.29$ $23.7$ (1) $42.86$	
$42\cdot86$	
1931       1934 $2 \cdot 92$ $64$ $22$ $1 \cdot 14$ $81$ (9) $7 \cdot 90$ $79$ $10 \cdot 1$ $5 \cdot 96$ $37 \cdot 5$ (1) $9 \cdot 4$ $40 \cdot 0$ (3)          1920       1935 $7 \cdot 4$ $434$ $58 \cdot 6$ $1 \cdot 33$ $261 \cdot 0$ (3)          1920       1935 $7 \cdot 4$ $4344$ $58 \cdot 6$ $1 \cdot 33$ $261 \cdot 0$ (1) $8 \cdot 1$ $71$ $8 \cdot 88$ $0 \cdot 89$ $44 \cdot 2$ (1) $1 \cdot 14$ $6 \cdot 0$ (3) $8 \cdot 8$ $72$ $8 \cdot 18$ $C \cdot 42$ $46 \cdot 1$ (1) $31 \cdot 0$ $78$ $2 \cdot 52$ $0 \cdot 09$ $16 \cdot 6$ (1) <td></td>	
$7.90$ $79$ $10 \cdot 1$ $5 96$ $37 \cdot 5$ (1) $9 \cdot 8$ $40 \cdot 0$ (3) $1930$ $1935$ $7 \cdot 4$ $434$ $58 \cdot 6$ $1 \cdot 33$ $261 \cdot 0$ (1) $8 \cdot 1$ $71$ $8 \cdot 88$ $0 \cdot 89$ $44 \cdot 2$ (1) $1 \cdot 14$ $6 \cdot 0$ (3) $1 \cdot 14$ $6 \cdot 0$ (3) $8 \cdot 8$ $72$ $8 \cdot 18$ $0 \cdot 42$ (1) $8 \cdot 12$ $8 \cdot 12$ (1)       (1) $8 \cdot 12$ $8 \cdot 12$ (1)       (1) $8 \cdot 12$ $8 \cdot 12$ (1)       (1)        (1)	
. $9 \cdot 4$ $40 \cdot 0$ (3)         .       1930       1935       7·4       434       58·6       1 33        261·0             8 '1       71       8·88       0·89        44·2        (i)            1·14         6·0        (3)           8 8       72       8·18       0·42        (1)           31·0       78       2·52       0·09        16 0        (1)	
.       1930       1935 $7 \cdot 4$ 434 $58 \cdot 6$ 1 $33$ $261 \cdot 0$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
. $1 \cdot 14$ $6 \cdot 0$ (3) $8 \cdot 8$ $72$ $8 \cdot 18$ $c \cdot 42$ $46 \cdot 1$ (1) $31 \cdot 0$ $78$ $2 \cdot 52$ $0 \cdot 09$ $16 \cdot 0$ (1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$19.4  19.  8.0  186  23.25  3.15  \dots  151.6  \dots  (1)$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
11 9 149 12.52 4.37 95.9 (1)	
$ \ \ 13.0 \ 289 \ 22.23 \ 1.0 \ \ 200 \ \ ()) $	
. 79 33 4-18 0 4 39-7 (1)	

۰.

M8CBI&P

•

# TABLE

Silling of

{	. <u></u>	Reservoir		ke)		Storag	je Capa	eity	hos)	(tes)
Serial No.	Country	JoveR	Мато	Intehment arca (square mi	Height of dam in feet	Foot-acres	Percentage of annual run.	Fortacres per square mile of catchment	Moan annual lanfall (1110	Mona annas run-off (foot-ac
1	2	3	4	5	6	7	8	9	10	11
120 121	U.S.A. Italy		Santa Anita (1938). Gorzente Lava-	10 8		1,043	••	96 57		<b>_</b>
122	U S.A		gnina. Lancaster	10.0	•		•		•	•
123 124	U.S.A. U S.A.	Boomer Creek Luguna Creek	Lake Boomer Upper Crystal	91 90	92-0	2,811 29,138	••	20 · 74 308 3,237 5	32	•
125 120	U S.A. U.S A.	·	Lake Brackon Lake Sapulpa	891 872	•••	2,881 1,094	•	$323 \ 34 \ 125 \ 46$		•
127 128	U.S A. U S.A.	Cedar Creek Sand Stone Creek.	Lake Olathe Baker	6 20 5 20	25	532 756	•	85 8I 145 4	14-9	•
129 130	U S.A. U S.A.		Lake Bennett Ardmore Club Lake.	- 4 16 4 15		492 1,797	••	118·27 433·01		
131 132	USA. USA.	Cold Water Oreek	Lake Concord West Frankfort	38 379	35	1,201 1,175	•	316 310-03	48	
133 134	U.S.A.	, ·	Sawpit Lake Booneville	3 00 2 60		289		111-15	•	2,220
135	U.S.A. U.S.A.	.:	Lave Oak . Grand Saline	2 34 2·12	:	242 531		103·42 250·47		 
137	USA.	Pine Creek	Wills Point Lake Gibbons	1-83 1-28	35	396 1,414		216·39 1,122 22	894	•
140	U.S.A.		Greenbelt Lake	$1.13 \\ 0.83$	{ ·	34•7 196		30 71 236 14	•	••
142	U.S.A.		Sunset Canyon	0-55	22	164	] .	298	35	••
143 144	USA.		Field Manufac- turing Co.	\	14	184				
145	U.S.A. U.S.A.		Byllesby		·	1,225			•	
1463	Japan Japan	Ishikari	Washington Mills Nokanan	1 107	:	8,892 2,954	•		•	•
1460	Japan	Sho .	Senzu	110	.	4,770	.		 ·	••
1400	Japan	15183 2030	On	678 1,278	·.	26,750 23,820				•
1431	Japan	Karobe .	Koyadaira	2,342 251		3,625 1,721	•	· .		•

# XXXVII-concld.

# Reservoirs

										'
	Year	s of caps surveys	ioity ,		Suit de	posited			}	1
Rua-off per square mile of catchmont (foct-acros)	Fust	Last	Period in years	Total (foot-aures)	Aanual foot-scros	Percentage of original capacity per aunum	Per thousand of water supply by volume	Foot-aorea per 100 square miles of catohmenk per annum.	Romarks	Rotorence to biblio- graphy on page 194
12	13	14	15	16	17	18	19	20	21	22
			10 2	360	35.3	3-38		327-0	,	$\Theta$
				•	12-6			126	••	(3)
•	••	•	13-4	52-0	3-88	1 60		41-7		(1)
•	1925 187^	1935 1935	10 25 57 X	171 9%9	18-7 16-9	0 59 0.06		183 217	··	(9) (1)
••		••	12.7 27.5	221 183	17-4 8-13	0.40		202 94•9	••	(1) (1,
••	1908	1937	4·9 9·1	55-0 254-0	11·12 8·73	2·11 1·15		184 · O 174 · 2	:	(J)
••	::	 	0·37 15 5	4.0 153.0	10-81 9-87	€-20 0-55		264 · 0 259 · 0	::	- (1) - (1)
••	1925	1935	10-17 10	79 95	7.X 9-5	0-65 0-81		965 269-0	::	(9) (1)
••		::	8-7		109-0 1-19	0.40	0.53	3833-0 46-0	::	(3) (1)
•	] ::	 	2 · 20 13 · 25	13 22	8-91 1∙66	2-44 0-31		252 82·2	**	(1) (1)
**/ **	1900	1936	23.6 36	121 78	∴•13 2•2	1-29 0-15		293-0 174		(1) (1)
• • • •			13.33	7•4 10	0+58 0+25	1.69 3.19	:	50•9 791	**	(1) (1)
••	1922	1934	12	37	3+] 6+0	1.91		560 1,300		(g) (3)
••			5-67	75	13.23	7.16				••
x			23-7	294	11-98	0.98			••	(1)
		::	23.7	7,354 2,443	2 5-91 72-93	2·54 2·47	••		••	(1) - (1)
	::		32 14	4,700 2,520		3.08 4 38			• •	(*16) (26)
-		•••	10 24	12,440 17,210		2·4 3·04	::		::	(26) (26)
}:		4 II • •	25 83	18,470 1,431	••	2-04 0-14		::	· · ·	(20) (28)

#### ASWAN, RESERVOIR

Baver		••		••	Nıle-Egypt
Ostohment a	ron	••	••	••	, 620,000 square miles
Ran-off	••	••	••	••	66,000,000 foot-scres
Height of da	m	••	••		174 feet
Storage cape	onty			••	4,400,000 foot-acres (after second heightening)
Period of ca	pacity s	urvey			1900—1927
Silt		••		••	Nil till 1927
Further sur	voys	••	••	••	1929, 1930, 1931, 1935 and 1938. 25,000,000 tons believed to have been deposited in 1938.

#### **Catchment** Characteristics

The rainfall in this catchment occurs during the monsoon period as in the Punjab. The time of onset of the rains in Abyssinia corresponds to the date of bursting of the Indian monsoon (June 15). High temperature and heavy rains characterise the upland plateau of Uganda, where the tributaries of the White Nile take their rise. When in flood, the Atbara and Blue Nile annually bring down in suspension large quantities of silt from the Abyssinian plateau.

Conditions in the catchment of the Nile in respect of season and intensity of rainfall and silt are similar to those in the catchments of the Punjab rivers before they debouch into the plains.

#### The Asuan Dam

The first dam  $(^{29})$  was constructed and completed in 1902 to store 865,000 foot-acres (R.L. 106.0 m). No spillway was provided but the dam has 180 sluices to pass a maximum flood of 500,000 cusecs. It was raised in 1907-1912 (R.L. 113.0 m) to provide a capacity of 1,970,000 foot-acres, and raised further to R. L. 122.0 m. giving a capacity of 4,400,000 foot-acres in 1929-31.

### Silt in the Nile and its Control

The presence of silt in the Nile limits the time during which storage reservoirs on the Blue and Main Nile can be filled. To avoid any risk of silting up the Aswan Reservoir, the rule in the past was to start filling after the peak of the flood had passed and the gauge downstream had fallen to  $88 \cdot 0$  (metres). But with the increase in capacity of the reservoir due to the heightening of the Aswan Dam the date at which filling commences has been advanced to about the middle of October when the Aswan gauge falls to  $91 \cdot 00$  (metres). This date will have to be advanced still further to meet the programme of future development. Filling in low years may have to start at the crest of the flood. The use of this reservoir for flood control is likely in emergency. Thus a situation may arise when part of the silt-laden waters may have to be retained in the reservoir.

The bed load in the stream above Aswan cannot be heavy, and what little there is, is carried through the sluices. This is substantiated by the fact that there has been no rise of bed above the solid part of the Aswan Dam. From January to nearly the end of July there is very little suspended solid matter in the Nile. Usually the concentration is less than 100 parts per million by weight Towards the end of July or the beginning of August, the concentration increases rapidly to a maximum which is usually reached late in August. The maximum concentration of suspended solids occurs very distinctly earlier than the maximum height of the flood. In a good flood it may reach 4,000 parts per million for a few days. The concentration then falls off gradually until in December it again becomes less than 100 parts per million. Table XXXVIII (²⁷) is illustrative

### TABLE XXXVIII

Suspended solids carried in the Nile past Halfa and distribution of sand, silt and clay

			Mean con per n	centration willion by	n in parts weight	1		:	Porcentage*			
Dates		1929	1930	1931	1935	1838	Average	Sand	Silt	Clay		
August-												
1-10	••	2,600	1,650	1,030			1,760	15	40	45		
11-20	••	2,520	2,400	2,890			2,600	22	45	33		
21-31	••	2,270	2,340	3,640		3,190	2,860	25	45	30 .		
September-				1	{		ł	[	[	{ .		
1—10	••	1,920	1,760	3,320	2,220	2,550	2,350	31	41	28		
11-20	••	1,790	1,570	2,280	1,670	1,840	1,830	36	40	24		
21-30	••	1,350	7 040	1,740	1,480	1,670	1,460	41	38	21		
October									ł	{		
1-10	•••	1,060	670	1,330	1,290	1.400	1,150	42	34	24		
11	••	800	510	790	910	1,190	840	43	33	24		
21-31	••	680		560	••	880	710	45	27	28		
November												
<b>I10</b>	•-	510		510	.	610	540	••	••			
11-20	]	360			}	420	390		••			
2130		170	.			.	170		•-	••		

* Mean of mechanical analysis made in 1930 and 1931.

It will be seen from the above table that the percentages of silt and clay diminish whereas those of sand increase with the progress of the flood.

The distribution of the total silt load on monthly basis and its sand, silt and clay contents are diagrammatically represented in Figure 4 (Chap. I.) and Figure 59 respectively.



Figure 59 :- Total quantity of suspended solid passing in Wadi Halfa 1931 in millions of tons per day.

The quantities of silt loads passing Halfa which are representative of those reaching Aswan were 136, 76 and 118 million tons in 1929, 1930 and 1938 respectively. Out of the 118 million tons of suspended matter that passed Halfa between August 21 and November 16, 1938, the deposit in the reservoir is believed to have been 23 million tons.

As the storage at Aswan is only one-fiftcenth of the mean annual run off and the sluces are placed at bed level capable of carrying maximum flood discharge of 500,000 cusees, the deposition of silt will be only a fraction of the total silt brought down by the stream. Fox  $(^{13})$  gives a possible reason for the negligible amount of deposition. He states that the silt brought to Aswan Reservoir from the Atbara (75) miles upstream) is only the very finest material an lis easily sturred and carried onwards when the floods are travelling through. If for hydro-electric divelopment or for irrigation expansion a steady head has to be maintained at the reservoir, the silting will be more pronounced and progressive.

#### Remarks

This is an instance perhaps the only one—in which silt deposit in the reservoir has been, until recently, avoided completely by providing slucing capacity equal to the maximum flood discharge by placing the sluces at bed level and by storing water at times when silt concentration was low and on the decline. It should, however, be noted that these provisions were made possible by the mean annual run-off being as high as fifteen times the storage capacity after the second heightening.

The annual suspended silt load of the Nile above Aswan is nearly 15,000 tons per 100 square miles against 150.000 tons of the Colorado above Boulder and 157,000 tons of the Sutley above Bhakra.

#### BOULDER (HOOVER) RESERVOIR

R.ver	 Colorado (Arizona, Nevada, U.S.A '
Catchment area	167,000 square miles
Ra.nfall	 . 10 inches
Average man -l run-off	15,000,000 foot-acres
Range of run-off	25 200,000 to 4,200,000 foot-acres
Height	726 4 feet
Gapacity	. 39,500,000 foot-acres
I ska langth	115 miles
Like surface	146, 500 acres
Annual estimated rate of situat	50,000 foot-acres
	<b>N</b>

#### Catchment Characteristics

The rocks at the dam site are of volcanic origin. The average rainfall over the drainage area is about ten inches, and over thousands of square mules less than five inches. The main flow is derived from the melting of snow on the mountains of the upper bisin. The principle characteristics of its flow are low waters during the autumn and winter months, with a normal floc? from the melting snows usually beginning late in April, reaching its maximum in June and ending by the middle of August. This flow is modified and intensified by the toriential floods of short duration which come in general from its southern tributaries and may occur during almost any month of spring, fall or winter. Of the catchment of the Colorado river above the Boulder Dam, the plateau region comprising an area of 60,000 to 65,000 square miles is said to contribute less than ten per cent. of the water and more than 75 per cent. of the silt load recorded at Grand Canyon [About 200 miles above the Boulder (Hoover) Dam] gauging station. This area consists of loosely cemented sandstones and sandy friable shales and to these rocks must be attributed the origin of most of the silt. This region has a low rainfall of six to ten inches and all this occurs in one to six storms during the year. These desert storms are torrential in character, well adapted to corrosion of the rather finely divided weathered material that abounds in the region.

To the and climate may be attributed an excess of weathered material and to the torrential character of storms, the heavy though sporadic flows of silt. The sparseness of vegetation permits the torrential rains to do their work with a minimum of hinderance.

# Estimate of Suspended Load

Silt studies were started on the Colorado river for the Boulder Dam in 1925.

£

The Colorado river above the Boulder Dam (²⁹) carries apparently an annual load of 200 to 300 million tons of silt. For purposes of design of dam, the annual silt deposition in the reservoir was estimated (²⁵) to be 137,000 foot-acres per year or 82 foot-acres per 100 square miles of catchment per year, compared with a previous Bureau estimate of 80,000 foot-acres. Subsequent estimate (³¹), which appears to have been accepted finally, puts it at 3,000,000 foot-acres in 50 years or 60,000 foot-acres per year or 36 footacres per year per 100 square miles of catchment. This presumably allows for a dam or dams to be constructed later higher up in the tributaries.

With the river unregulated, a low percentage of suspended silt occurs usually in the early summer at the peak of the annual flood resulting from the melting of snows in the upper water sheds, while the river water generally carries the highest percentage of silt in the late summer months or fall, when erratic floods are caused by rains in areas drained by its lower tributaries.

Estimates (10) based on the silt observations made at Yuma for a period of 207 months from January 1914 to March 1931, showed that the reservoir would be silted up in 200 years. The dry weight of the silt was taken as 85.9 lbs. per cubic foot of deposit.

#### Silt Discharge Relationship

There is a lack of any relationship between percentage of silt and river discharge of the Colorado river, during the months of May, June and July- when the river is snow fed, but the silt concentration more or less follows the discharge in August, September and October when cloud-bursts occur. The rain water is responsible for more silt than the snow water. This aspect has already been discussed in Chapter 1 (See Figure 6).

#### Remarks

The suspended silt load of the Colorado above the Boulder Dam is 150,000 tons per 100 square miles which is nearly the same as that of the river Sutlej above Bhakra which is 157,000 tons. The life of the Boulder Dam as estimated by the Bureau of Reclamation Hydrologists is 275 years ( 23 ).

The large disparity in the different parts of the catchment with regard to silt contribution is of particular interest in that it points to the necessity of careful geological survey of the catchment with a view to finding means for the controlling of the sections which are most productive of silt.

#### THE GRAND COULEE RESERVOIR

River	••		••		Columbia, (U.S.A.)
Catchment are	A*	••	••		74,000 square miles
Run off	••	••	••	••	80,000,000 foot-sores
"Estimated annu	ual evap	oration	••	••	200,000 foot-acres
Height of dam	••	••	••	••	550 feet
Capacity	••			••	9,645,000 foot-acres
Longth of lake	••	••		••	150 miles
Area of lake	••	**	••		82,000 acres
Estimated siltin	·g	•• ,	••		Almost nil

#### **Catchment** Characteristics

The headwaters of the Columbia river originate in Columbia Lake of the Canadian Rockies and are augmented by the principal supply from the Western slope of the Rocky mountains and from the Selkirk and Bitterroot mountains. The drainage area of 74,000 square miles includes heavily timbered mountain regions in part of British Columbia, Idaho, Montana and Washington. Deep snow at high altitudes and numerous large natural lakes near the headwaters serve to regulate the stream flow by retarding flood peaks and supplying the heavy run off during the summer months.

#### Silt Load*of the Columbia River

The streams tributary to the Columbia are almost always clear and free from silt. Solid matter causing slight turbidity during part of the flood season is extremely fine and practically all of it is carried in permanent suspension. Silt will have no detrimental effect on the utility of the reservoir.

#### Remarks

This is a unique case. Thus the second largest reservoir in the World will have its capacity unimpaired by silting, perhaps, for all time.

#### LAKE AUSTIN

Constructed primarily for hydro-electric power for Austin in May 1893 with a 66 feet high dam in the river Colorado at Austin, Texas U. S. A. A Section failed on April 7, 1900. It was rebuilt in 1911-13 with the crest of the dam nine feet lower than the old one. "The new dam and power plant have never been used owing to the refusal of the city to accept it on account of alleged defects.

**Macibi** 

Catchment	46	••	••	38,200 square miles.*
Rainfall	••	••	••	15 inches at headwaters to 33 inches at Austin
Mean annual runoff	••	••	••	1,827,000 foot-acres (New), 2,000,000 foot-acres (Original)
.Storage capacity	••	••	••	49,300 foot-acres (Original) 32,000 foot-acres (New)

#### Silt Surveys

During the interval 1900-1913, much of the silt deposited in the old reservoir was washed out. The reservoir created by the New Austin Dam has silted up to such an extent that channel conditions prevail and the percentage of silt in the water passing over the spillway differs very little from that in the flow over the reservoir (¹⁰).

The mean silt load of the Colorado for a three years period in this neighbourhood was 0.36 per cent. by weight. This should give approximately 8,222,000 tons of silt per year, or 21,500 tons per 100 square miles per year which is not far different from that of the Nile above Aswan.

The silt in the dam (1900) consisted of fine impalpable absolutely gritless deposit. At the head of the lake there was some admixture of sand. On the whole area, sand constituted nearly seven per cent. of the deposits.

Table XXXIX gives the dry weight of silt deposits.

Sample No.	Original weight per cubio foot ín pounds	Dry material per cubic foot of deposit in pounds	Sample No	Original weight per cubio foot in pounds	Dry material per cubic foot of deposit in pounds
1	109.8	83.5)	8	101-5	69.8
2	109-2	84.9	9	- 99-3	67.6
3	111-6	84.5 Expose	1 10	91.6	51.9 Exposed
4	113-8	86.9	' n	92.0	54.5) stages.
5	104.3	64.7	12	79-9	29.6]
6	124.2	106-0 Clay an	1d 13	80.6	29-9
7	108+1	. 73.1	14	81-2	Not ex 30.5 posed
		1	- 15	82.7	30-7

#### TABLE XXXIX

Rate of Silting

The rate of silting is given in Table XL and Figure 60.

* Part of which is non-contributing. Approximately 13 per cent. of the drainage area was cultivated in 1930, the remainder being pasture and timber land.

					-		់ន	alt dej	posite	d in fo	ot-ac	<b>168</b> ·		<b></b>				
	P	eriod (	of Re	ord	Years		During period		an	Per annum		Cumula- tive total		ment area (square miles)		deposit per 100 square miles per year (foot-aores)		e silt per quare per r res)
-	01	d 1893	8-1900		6.	7	2;	3,559		3,490		•• .		38,20	0		•	<u></u>
ľ	Nev	7 1913	-1922	• •		9	- 26	3,740		2,970		••		38,20	0		7	•8 -
		1922	-1924	1.0	-	2	- 2	2,460		1,230		29,200		••			3	2
	- <b>-</b>	1924	-1926	••		2	;	l <b>,4</b> 20		710	:	30,620		••			1	•9
		To	otal	••	1	3	30	,620		2,355		30,620		38,200	0	(/	6 Ivers	2 ge)
		40.000	<u> </u>						 ·	· · · •								81
		40,000																
		30 000				1			-	•					1	1	20	
	. 52			-	-					2	6,740			29,200	, .			
	foot-ac	30.000								$\ge$						1		-
	depotit	20,000																
	Silt	10.000					Z	ſ									<u> </u>	ŀ
		10,000			F	⇇	<u> </u>									1		
				2		1	1		<u> </u>							Ť		

TABLE XL

Figure 60 :- Rate of silting of Lake Austin.

Years

### Remarks

Although the reservoir has almost completely filled up in 13 years, the rate of silting per year for 100 square miles is only 6 ·2 foot-acres. This low figure is apparently due to the storage capacity (32,000 foot-acres) being small compared to the mean annual run off (1,827,000 foot-acres), and the silt concentration of the river water being low. Similar phenomenon appears on the Keckuk Reservoir (item 3 Table XXXVII.)

#### ELEPHANT BUTTE RESERVOIR

River -	n 1	Bio Grande (New Mexico, U.S.A.) The upper and of the reservoir is at San Marcial New Mexico.
Catchment are	0. 🛶	26,312 square miles
Rainfall		10 inches, 15 inches, lower areas. Head waters 25 inches
Rune		Annual average 1,000,000 foot-acres
Evaporation .		150,000 to 250,000 foot-scres
Height		306 feet ~
Lake longth	,.	41 miles
Lake surface		40,096 acres
Storage .		2,638,860 foot-acres
Mean annual	draft for	
irrization	.:	-75,000 foot-acres
Constructed		191 to 1916
Storage began	۰۰ L	January 1915

The Elephant Butte Dam is one of the largest in the United States and before construction of Boulder Dam impounded the largest reservoir in the country. The lake extends to San Marcial which is 13 miles above the dam. About 141 miles above the dam the lake gets very narrow and continues like this to near mile 191 from the dam. This reach of nearly five miles is called the Narrows and is particularly mentioned as the nature of silt accumulations above and below is different.

#### Satchment Characteristics (9)

Parts of the drainage basin are under strong erosional attack. Sheet wash and wind erosion are very general. Large areas of alluvial fans and exposed shale formation, are affected badly by gullying and dissection.

The lower part of the watershed is under-lain mostly by superficial deposits of alluvium, dune sand, the Gila conglomerates and the Palomas gravel. There are also extensive areas of quaternary and tertiary basalt and rhyohte and mixed oretaceous and tertiary volcanics of several types. On the headwaters and in higher mountains lime-stones occupy broad areas.

The entire lower section of the watershed is characterised by its aridity. Over-grazing has caused destruction of natural grasses and exposed large areas to sheet wash and wind erosion. The effect of over grazing is particularly acute in soft shale and alluvial formations at the foot of the mountains.

#### The Rio Grande and its Silt Load

The Rio Grande carries the largest silt burden both in absolute maximum percentage of silt load to discharge during any particular flood and in ratio of total silt to total discharge to any major stream of the south-west of which results are available.

The headwaters of the Rio Grande in north central New Mexico and south central Colorado draining a mountainous area of 11,028 square miles are supplied largely by melting snows, springs, and normal run-off. The waters carry little or no suspended load. In contrast, the streams draining 13,621 square miles of the generally barren, broken central part of New Mexico, supply floods of heavily silt laden water derived from the erratic and often spectacular cloud bursts, that occur during summer and early fall. These flashy summer flood waters usually carry four to ten per cent. and occasionally as high as 12 to 15 per cent. by weight of silt which is characterised by a high percentage of a colloidal argillaceous matter. On the other hand spring floods coming from the headwater drainage carry only 0.5 to one per cent. or less of silt.

Above the lake headwater, San Marcial, a considerable quantity of silt has deposited and the aggrading of the river bed is continuing as far up as 50 miles. The silt deposits below San Marcial are characteristically very fine textured containing a high percentage of true clay and colloidal matter. Much of the silt is so fine that no grit can be discovered in rubbing between the teeth. This is due to the fact that for 125 miles above San Marcial, the Rio Grande and its tributaries are draining a country underlain in large part only by shales. Sand deposits which are common above San Marcial, fail to enter the reservoir basin to any extent because of the retarding influence of vogetation.

### Capacity Surveys (*) (5)

These were carried out in 1903-1908, 1916, 1920, 1925, 1935 and 1940. Survey of 1903-1908 and 1935 covered the entire reservoir area. The surveys of 1916, 1920 and 1929, as stated by Taylor, were made only of the upper portion of the reservoir.

The 1935 surveys mapped the entire 21,600 acres of the silt surface with one foot contours. During this survey, water stage was at an extremely low level so that all the area above the Narrows could be mapped by plane table and stadia shots despite the soft and boggy character of the silt. The area below the Narrows was sounded from a boat.

# Rate of Silting of the Elephant Butte Reservoir

Table XLI and Figure 61 are considered to be the latest authentic information available.

		8	Silt deposite			
Period of Record	Years	In foot- scres	In foot- aores per annum	Cumula- tive total in ft. acres	Catch- ment area in sq miles	Silt deposis in foot-acres per 100 square miles of catchment per annum
1915	••		••	••	••	••
1916	1.81	53,995	28,270	53,995	••	107 -
1920	3.67	88,015	23,437	140,010	26,312	89
1925	5.00	91,725	18,345	231,735	۰-	70
1935 •	9167	133,451	13,801	365,186		53
1940	5.50	~ 50,600	9,200	415,786		35
	25.75		16,147	415,786	28,312	61

TABLE XLI



Figure 61 :- Rate of silting of the Elephant Butte reservoir

As the result of statistical examination of the data presented in Figure 61, Malhoutra has shown that the rate of silting falls off very appreciable with time. (4)  $\cdot$ 

The annual suspended silt carried by the Rio Grande at San Marcial from 1915 to 1931 is shown in relation to annual run-off in Table XLII and Figure 62.

	Quantity	Suspend	led Sılt		Quantity of water in thou- sands of foot- acres	Suspended Silt	
Period	of water in thou- sands of foot- sores	Per thousand of water supply by volume	Millions of tons during period	Period		Per thousand of water supply by volume	Millions of tons during period
1915 1916 1917 1918 1919 1920 1921 1922 1923	1,350 1,650 1,050 410 1,580 2,220 1,630 964 1,220	13.6 13.2 6.6 22.8 10.4 19.2 10.2 11.7	25.0 30.0 9.4 3.7 45.8 31.5 42.9 13.3 19.4	-1924 1925 1926 1927 1928 1929 1930 1931 	1,440 419 1,050 1,350 590 1,460 731 490	7.5 12.0 7.2 19.6 5.7 29.5 5.4 18.8 	14.6 8.6 10.2 35.9 4.6 58.6 54 12.5

TABLE XLII



Figure 62

Total run off 1915-1931			••	-	<b>19,604,000</b> foot-acres
Total suspended silt 19	15-1931	••	**	-	369,600,000 tons
Mean annual runoff		••	••	<b>_</b>	1,153,176 foot-acres
Mean annual silt	••	••	••	-	21,741,176 tons.
Catchment area	**	••	•••	_	26,312 square miles
Mean annual silt per 10	0 sq. mi	les of ca	tohment	=	82,628 tons of 2,000 lbs

17 samples from exposed silt beds of Elephant Butte Reservoir in 1916 gave the volume weight relationship given in Table XLIII (²⁹).

Description	Maximum	Minimum	Average	
Weight as taken, in pounds per cubic foot	÷ ••	124.3	96•7	104.7
Moisture percentage	••	20.9	4.4	11-6
Weight dry in pounds per cubic foot		101.2	87.9	92.3
Specific gravity		2.66	2.59	2.64
Parcentage of voids	••	46.6	39.0	44.0

.

TABLE XLIII

#### Phenomenon of Under-flow

Observations at this dam have revealed that silt laden water flows along the bottom of the lake in a very thin sheet (less than five feet depth) without diffusing in the water already in the lake. It retains a temperature higher than that of Reservoir water as it flows along beneath the clear water. When the silt laden water is being discharged from the outlet gates, it carries a silt load from two to six per cent. by weight. The character of the silt in the reservoir discharge is almost pure finely divided clay, with all particles of grit and heavier silts completely removed.

Its economic significance is of somewhat doubtful importance. The total volume carried through the reservoir in this manner to date is estimated to be only 5,000 foot-acres. This will probably increase as the storage capacity is progressively depleted. The Elephant Butte Reservoir although it has lost 16¹/₃ per cent. of its capacity within these 32 years, it will still be good enough for 160 years more (²³).

#### Remarks

Natural rock formation, aridity and overgrazing are responsible for the large silt load of the Rio Grande river. It would have been still worse were it not for the 11,028 square miles of mountainous area (out of 26, 312 square miles of total catchment area) which supplies water from melting of snow with little silt charge.

The rate of silting at this reservoir may be considered as representative of those on streams carrying heavy silt load.

#### LAKE MOMILLAN

	• •		Pecos, New Mexico U.S.A.
			22.000 square miles.
			300.000 foot-acres.
••	••	••	52 feet above original channel bed.
**	••	••	90,000 foot-acres.
••	••	••	1893
<b></b>	••	••	1932,
	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0     0.1       0.0     0.1       0.0     0.1       0.0     0.1       0.0     0.1       0.0     0.1       0.0     0.1       0.0     0.1	•••         ••         ••         ••           •••         ••         ••         ••           •••         ••         ••         ••           •••         ••         ••         ••           •••         ••         ••         ••           •••         ••         ••         ••           •••         ••         ••         ••           •••         ••         ••         ••

#### Catchment Characteristics

The catchment has arid climate, with total rain fall highly erratic from year to year.

Prior to 1912 the Pecos Valley above McMillan Reservoir was particularly devoid of vegetation other than low growing salt grass. The few seedlings of salt-cedar which appeared in the fall of 1912 had grown to lengths of three to five feet by 1915. Since then it has become very dense over the whole upper end of reservoir and extends some 200 miles upstream.

#### Rate of Silting

A notable falling off in rate of silting of the reservoir proper during the later part of the record points unmistakably to the influence of tamarisk or salt cedar growth in the valley at the head of the reservoir where it has greatly increased valley sedimentation above the lake level since 1915.

Table XLIV and Figure 63 represent the record of silting of Lake McMillan as given by Taylor.

	1		Silt deposit in foot-			
Period of Record	Years	In foot- acres	In foot- acres per annum	Cumulative total in foot-acres	hundred square miles of catch- ment per year	
1893-1904	10.42	18,000	1,730	18,000	7.8	
1904-1910	6-42	10,000	1,560	28,000	7-10	
1910-1915	4.58	13,400	2,920	41,400	13-3	
1915-1925	10.00	3,500	350	44,900	1.6	
1925-1932	7.00	1,500	215	46,400	0+98	
	38.42	-+================================	1,208	46,400	5.5	



163



Figure 63 - Rate of Sitting of Lake McMillan.

The original prediction was that the reservoir would silt up solid by 1935 but the growth of salt-cedar has altered the situation. This growth induces the river to drop most of its silt in the valley just above the reservoir.

#### Remarks

Lake McMillan is a definite indication of what can be accomplished in silt prevention by an increase in vegetal cover. The accidental propagation of tamarisk provides an effective silt trap.

#### FOUR LARGE RESERVOIRS IN SOUTH AFRICA

# (items 19, 27, 32 and 34 of Table XXXVII).

The four reservoirs are Lake Arthur, Grassridge, Lake Mentz, and Van Rynevelds Pass. The first two are on separate tributaries of the Great Fish River and the remaining on the Sundays river; Van Rynevelds Pass reservoir being about 120 miles above Lake Mentz.

These two rivers are the most silting rivers in South Africa.

#### TABLE XLV ·

Description	Lake Mentz	Van- Rynevelds Pass	Grass Ridge	Lake Arthur	
Catchment area (square miles)	6,300 (includes 1,477 V. R. Pass).	1,477	1,583	2,270	
Mean annual rainfall over catchment, (inches.)	12 (11 ex- cluding V. R. Pass).	13.5	13•5	13•5	
Mean annual run-off, foot-acres-		}		ĩ	
(a) estimated	115,000	40,000	45,000	73,000	
(b) actual since construction	146,000	33,000	42,000	79,000	
Original capacity of reservoir, foot- acres	94,600	66,000	64,500	63,600	
Original capacity of reservoir, as ratio of run-off.	0.82	1.65	1.43	0.87	
Annual evaporation in inches (Land)	71	82	81	74.5	
Date when water storage began	Dec. 1922	Feb. 1925	Feb 1924	Feb 1925	
Annual rate of silting per 100 square miles of estchment foot-scres	57	64	, 87	115	

### Major Features of the Four Reservoirs

The whole of this area is occupied by the karroo geological formation of about Permian age. This formation consists generally of an immense thickness of soft and easily erodible rocks, the material of which was laid down in an inland sea. Shortly after deposition they were raised to a great height, whough the strata lie almost horizontally.

There is practically no forest cover in the catchment area, the chief- growth being the low stunted karroo bush on which, however, sheep thrive.

The high parts of the catchment occasionally hold snows for very short periods only. The rainfall over the area varies from 20 inches at the high elevations to less than ten inches in the plains. About 80 per cent. of the rain falls in the summer half of the year, mostly from thunder storms of short violent nature. There is very little permanent flow in any of the streams which run only for short periods after violent rains.

Erosion, resulting in heavy charge of silt in the waters of the rivers, is encouraged by the soft nature of the geological formation, the steep slopes, the poor vegetal covering, the smallness, irregularity and violent nature of the rainfall and intense sheep farming in the catchment area.

#### Rate of Silting

Table XLVI, and Figures 64-67 show the rate of silting of these four reservoirs.

Period of Record Year		Years	S	Silt deposit in foot-acres per 100 super					
From	То	Y-M	In foot- acres	In foot- acres per annum	Cuma- lative total.	miles of catohment area per annum			
	LAKE MENTZ-(Catohment area 4,823 sq. miles)								
1-1-23	30-4-24	1-4	1,957	1,468	•• }	30			
1-5-24	28-2-26	1—10	2,900	2,127	4,857	44			
1-3-26	31-3-27	l—1	607	560	5,464	12			
1-4-27	28-2-29	111	10,017	5,226	15,481	108			
1.3.29	81-5-35	63	12,985	3,038	30,466	63			
1-1-23	31-5-35	12_5		2,780	34,466	:7			

#### TABLE XLVI

V	AN BYNEVE	LDS PASS-	-{Catonmen	6 8rea 1,417 89	ц. шц. су 1	59			
1-1-25	31-1-31	61	5,245	874					
81-1-31	30-4-35	43	4,452	1,035	9, <del>69</del> 7	70			
••••		<u>\</u>				·····			
				941	9.697	64			
1-1-25	30-4-35	10-4	ļ						
	 T.AK)	ARTHUR	(Catchmen	t area 2,270 s	q. miles)	-			
1-4-25	1 31 10-27	2-7	3,400	1,350	•• }	60 -			
91 10 97	21_1.37	3_3	8 437	2,590	11,837	114			
01-10-21	01-1-01		0,200		04 900	149			
31-1-31	30-4-35	43	14,363	3,380	20,200	* **			
		╺┟─────	·						
1-4-25	30-4-35	10-1-	}	2,600	26,200	115			
	\	}	<u> </u>		 				
	GRAS	S RIDGE(	(Catchment a	area 1,583 sq. 1	niles)				
1-4-2	4 31-1-27	1 2-10	3,046	1,050	4 · · ·	67			
<u> </u>	7 31-1-3	ι 40	3,817	954	6,863.	60			
- 1-2-3	31-5-3	5 4-4	8,738	2,030	15,601	128 /			
<u> </u>					<u> </u>	<u> </u>			
140	21 5 9	8 11 0		1 200	15 001	87-			
1.4.2	64 J 31-0-3	· · · · · · · · · · · · · · · · · · ·	}	1,380	10,001	{			





Figures 64-67 :- Rate of silling of some large reservoirs of South Africa.

As in other reservoirs sand deposits are found at the upper end of reservoir getting to fine silt and clays towards the dam. Sand samples weighed about 100 pounds (dry weight) per cubic foot and the finest deposits near the surface if not exposed, weighed 40 pounds.

#### Remarks

The catchments of these four reservoirs have all the favouring features for maximum silt production. The geological formations are soft, slopes steep, vegetable cover poor, rendered worse by intense sheep farming and the rainfall is small, irregular and violent. These reservoirs are, therefore, illustrative of the worst type of silting. Out of these, Lake Arthur has the maximum rate of silting presumably because the tributary of river on which it is located is the heaviest carrier of silt.

#### **ROOSEVELT RESERVOIR**

River	••		Salt river 55 miles on direct line from Phoenix Arizona
Catchment .		••	5,760 square miles
Rainfall		••	8 inches in desert areas to 35 inches in mountains
Mean annual run-o	ff	••	840,000 foot-acres
Height of dam	••	••	284 feet -
Lake area	••	••	16,320 acres
Storage capacity	••		1,522,200 foot-acres.
Completed	••		March 1911 (1906-1911)
Year when water a	storage be	gan,	1911.
Range of flow	•••	•_• .	From a few hundred cusees to a maximum of 150,000 cusees in February 1891.

### Watershed Characteristics

The watershed-which covers 5,760 square miles varies from desert with a mean annual precipitation of eight inches to a heavily timbered mountain region with a precipitation of 35 inches Much of the area is covered by highly erodible soils underlain by loosely consolidated alluvial deposits or disintegrated granites. Grazing in the basin under arid conditions has generally reduced vegetal protection.of soil and resulted in greatly accelerated sheet and gully erosion.

#### Capacity Surveys

The survey done during 1925 showed an accumulation of 101,000 foot-acres of predominantly coarse grained sediment which figure worked out to an annual rate of accumulation of 6,733 foot-acres or 116.9 foot-acres per year per 100 sq. miles of catchment. The later survey done by Hayden in 1935 brought out an accumulation of 108.8 thousand foot-acres of sediment, thus showing an increase of 7.8 thousand foot-acres during the period 1925 to 1935 *i.e.*, 780 foot-acres per-year or nearly 13 foot-acres per year per 100 sq. miles of catchment as compared to the previous figure of 106.9 foot-acres per year during the 15 years prior to 1925. This is also in contrast with 43 and 62 foot-acres respectively coming from the neighbouring Gila and Rio Grande water sheds.

The survey of the Roosevelt Reservoir during 1935 appeared to have been made under exceptionally favourable circumstances at a time of extreme low water when the bottom of reservoir was dry except under a small pool immediately above the dam. This should have permitted direct examination and mapping of the silt deposits to any desired standard of accuracy.

Edgecombe has based his remark with respect to this reservoir made on pages 8 to 10 of his book on Silting of Reservoirs on the information derived from T. A. Hayden, Hydraulic Engineer of the Salt River Valley Waterusers' Association, whose subsequent report on the 1935 survey have been quoted above.

The main silt charge at the Roosevelt Reservoir is brought down by freshets during rainfall. This is in keeping with the experience elsewhere, viz, that snow-fed waters carry little ailt and that the bulk of silt is brought down by rain water

Rate of Silting

This is given in the Table XLVII and Figure 68.

Period of Record	Years		Silt deposit in foot-acres per 100 square		
		In foot- sores	In foot- sores per snnum	Cumulative total in foot-acres.	miles of catchment per -annum
1911		••			
1914	3	27,000	9,000	27,000	156
1916	2	85,000	17,500	62,000	304
1919	3	0	0	62,000	
1925	6	39,000	6,500	101,000	113
1935	10	7,800	780	108,800	- 13.5
1938	3	14,970	4,990	123,770	87
·	27		4,584	123,770	79.6

### TABLE XLVII



[Figure 68 :- Rate of silting of Roosevelt Reservoir

### Remarks

This is another illustration of a high rate of silting due to erodil le geological formation coupled with lack of vegetable cover as a result of grazing and low rainfall in the desert portion of the catchment.

# LAKE WORTH RESERVOIR

On West Fork of Trinity River five miles north-west of Fort Worth, Texts.

Catchment	••	••	••	1.870 square miles
Rainfall	••	••	••	32 or 33 inches
KUD OU	••	••	••	212,000 foot-acres
Considered	nn -	••	••	36 feet
Vear when w	e. atomato	**	•••	47,200 foot-acres
TOTAL BUDALE BA	<b>ave:</b> 200	unde com	menced	1914

Catchment Characteristics

The topography is rather rolling. Perhaps one-third of the area is under cultivation, the rest being devoted to forestry and grazing. A large part of the watershed is composed of sandy soil and in some reaches of colloidal clay. The flood waters enter the Lake Worth Reservoir heavily charged with silt and of a chocolate or yellowish brown colour.

The results of silt surveys are carried during 1925 & 1928 indicated as follows :---

1925	••	••		- •	10,890 foot-acres
1928	• •		· • •		13,837 foot-acres
Mean annual si	lt per	100 sq	uare mil	es of	
catchment	••	• •			57 foot-acres

Table XLVIII gives the weight of dry silt of various samples taken from Lake Worth on April 26, 1929. The samples were creamy without the slightest trace of grit except nine and ten which were sandy.

Sample No.	Original weight of deposit per cubic foot in pounds	Weight of dry silt per cubic foot of deposit in pounds	Samplo No.	Original weight of deposit per cubic foot in pounds	Weight of dry silt per cubic foot of deposit in pounds
1	73-9	18.7	6	93-1	47.2
2	75.4	21.7	7	94-4	53.9
3	75-2	22.6	8	77 - 6	33.4
4	79.1	29.4	9	118.9	99.2
5	90-6	45.3	10	114.3	93.5 Sand
	ł			1	l ·

TABLE XLVIII

Samples 1 to 8 were gritless colloids and passed entirely through sieves with 300 meshes per square inch. Sample 9 had  $71 \cdot 21$  per cent. retained on 200 and sample 10 had 65  $\cdot 7$  per cent. retained on 65 mcsb.

#### Remarks

The sand samples generally at the head of the reservoir weigh from  $93 \cdot 5$  to  $99 \cdot 2$  lbs. of dry material per cubic foot of deposit. The gritless silts in the body of the reservoir weigh from  $33 \cdot 4$  to  $53 \cdot 9$  lbs. Inspite of the low storage capacity against discharge, the silting is relatively heavy due to abnormal silt charge in the contributing stream.

#### ZUMI RESERVOIR

River		**	 	••			Zunl river
A tributary	of the	Little Col	lorado at	Black F	lock, Nev	/ Mexi	co. (U. S. A.)
Catchment	_	••	••		••		650 square miles
Mean Annual Run	lott	**	• •	••	••	••	17,400 foot-acros
Man annual des		**	••.	· • •	••	••	15,811 foot-acres
min sunnal diali	•		••	••	••	••	4,500 foot-acres

The reservoir as originally constructed in 1907 had a capacity of 15,811 foot-acres but in 1927 *i.e.*, after 20 years' use, silting had reduced this capacity to 4,256 foot-acres or just about the mean annual draft.

The record of silting of Zuni Reservoir (Table XLIX and Figure 69) is of particular value as capacity surveys have been made almost every year since the beginning of storage in 1910. The record subsequent to 1927 has been so complicated by extensive wastage of silt over and through the dam and by silt detention in tributary valleys above the head of the reservoir that it has no definite bearing on the general rates of erosion in the water shed. But it is of particular significance in that it shows how the protective works for silt detention in the tributary valleys have reduced materially the silting in the reservoir.

		.	Silt Deposited					
Period of Record	Years	In foot- aores	In foot- acres per annum	Cumu- lative total in ft. acres	foot-acres per 100 square miles of oatchment per year			
1906 1910	4.0	1,800	- 450	1,800	ė9			
1911	1.5	1,200	800	3,000	123			
1914	2.1	1,200	570	4,200	69			
1918	4.0	1,360	340	5,000	52			
1010	1 1.0	880	680	6.240	103			
1000	1.0	1 250	1.250	7,490	192			
1920	1.0	810	810	8,300	125			
1000	1 1	1.490	1 470	9.920	226			
1922	1.1	1,020	200	10,300	31			
1924 1095	1.9	100	190	10,490	29			
1920	1.0	100			04			
1926	1.0	170	170	10,660	20			
1927	1.0	170	170	10,830	49 77			
1927	. 0.9	450	500	11,280				
1000	1.0	120	-120	11,160				
1928	1.1		730	11,960	112			
1930	2.6	-630	-240	11,330	**			
······································	<u> </u>		^		AA			
-	26.2	••	432	11,830				
	()	·			BL			

TABLE XLIX

. *



Figure 69 :- Rate of silting of Zuni Reservoir

# **O**atchment Characteristics

The drainage basin consists mainly of plateau and mesas underlain by cretaceous sandstone and shale.

The Zuni river is an ephemeral stream carrying only flood waters and large quantities of silt. The Nutria creek is the most silt productive of its tributaries.

The high rate of silting of Zuni Reservoir reflects an advanced stage of erosion and gully development and severe sheet erosion in the catchment. Sheep breeding was introduced some 55 years ago and large flocks have been grazed on the reservation continuously, ever since.

### Capacity Surveys

The survey of July 1932 was a topographical survey of the entire reservoir on the surface of the silt deposits, while this reservoir was practically empty. It is probably the most accurate survey that has been made.

172

Protection works to hold the silt on the water shed were begun in 1923 on Rio del Los Nutrias, the principal silt producing tributary.

A sluice gate was put in 1931 and silt has been sluiced ever since. The gain in capacity for the survey of 1929 and 1932 is partly due to sluicing and perhaps partly to inaccuracies in the preceding surveys.

#### Remarks

The chief interest lies in the fact that the rate of silting was reduced as a result of protective measures in the most silt producing tributaries. This is a good illustration of efficient and cheap silt control. Lake McMillan is another illustration of such control though in this case it was due to the accidental growth of tamarisk in the upper part of the catchment.

#### PARKSVILLE RESERVOIR

8
8

The dam is 12 miles above the mouth of the Ocoee river at Parksville, Tennessee.

#### Catchment Characteristics

About 70 per cent. of the drainage area is forest and wood lots. The Ducktown Mining District presents a striking example of destruction of forest lands by the fumes from smelters and roast ovens. About 20 square miles have been completely denuded. Erosion is excessive as the poisonous gases will not permit vegetal growth. This condition and the clayey soils and excessive rainfall to which this basin is subject, explain the abnormal and unnatural erosion in this catchment.

Rate of Silting.—This is shown in Table L and Figure 70.

TABLE L

· Period of	Years	Sil	Silt deposited ·			
incorta .	-	In foot- acres acres p annum		Cumula- tive total foot-acres	mues of catchment per year	
1912 *				····		
, 1921	. 9	15,600	1,720	15,600	282	
1930	9.75	5,200	530	20,800	87	
•	18.75		1,125	20,800	185	



Figure 70 :- Rate of silting of Parksville Reservoir

#### Remarks

The high rate of silting is due to clayey soils, excessive rainfall and destruction of forest cover by poisonous gases from smelters and roast ovens.

MEDINA RESERVOIR

River	••	-	••	••	•• \	••	Medina, 35 miles North West of San Antonio Texas
Catchment	**		-	**	••		587 square miles
Rainfall	••	••	••	••			29 inches
Height of de	m	••		••			164 feet
Storage cap	acity	••				•••	818 703 Foot - orea
Storage beg	an			••	••	••	1070
N				••	••	••	1912

### Capacity Surveys

The survey done during September 1925, after 13 years of service, showed a total silt deposit of 2,692 foot-acres or 207 foot-acres per year or 35 foot-acres per 100 squares miles of catchment per annum. The average dry weight of this material was 30 lbs. per cubic foot of deposit. The silt was grey in colour and no grit could be detected in it with fingers as there were no sandy deposits. The survey done again during Sept. 1930 was preceded by scarcity of rainfall and heavy demand of water. With the consequent lowering of reservoir level the deposits got exposed to the sun and shrunk considerably. In one place the silt depth went down from  $7 \cdot 2$ to 2.7 feet. The dry weight of material per cubic foot of deposit went up from 30 lbs. to 80 lbs.

The silt deposits according to this latter survey worked out to 1,270 foot-acres against 2,692 of September 1925 survey, (Table LI and Figure 71). All this reduction was due to exposure and consequent shrinkage.

174

Period of record	Years	٤	lilt deposite	Silt deposit in foot-acres per 100 square	
	;	In foot- acres	In foot- acres per annum	Cumula- tive total in foot-acres	miles of catchment per year
1912	 		•••		· · · · · · · · · · · · · · · · · · ·
1925	13	2,692	207	2,692	. * 85
1930	5	1,422		1,270	***
- 1935	58	4,995	861	6,265	147-
	23 • 8	•	263	6,265	45 4





[ Figure 71 :-- Showing rate of silting in Medina Reservoir

Table LII shows the wide variation in the dry weight of silt deposit at the Medina reservoir. Samples were taken in May 1929, all passed through 300 sieve.

Sample No.	Original weight per cubic foot of deposit. (Pounds)	Weight of dry silt per cubic foot of deposit (Pounds)	Sample No.	Original weight per cubic foot of deposit (Pounds)	Weight of dry sult per cubic foot of deposit (Pounds)
1	80*6	36.1	5	92 6	- 49·2
2	, 88 <b>∙</b> 9	45.0	6	Í17·6	91.6
3	88.3 -	46.5	7	105.2	72.9
<b>*</b> 4	138-7	106-1	8	108-7	74.4

TABLE LII

#### **GIBRALTER RESERVOIR**

This provides water supply for Sant Barbara California.

River 🛶	••	**	••		. Santa Yaniz
Height of dam	••	••	••	••	185 feet.
Catchment	••	••		**	200 square miles
Lake area		4.	••	••	325 aores -
Storage Capacity	• •	••	••	••	14,500 foot-acres

The water supply is very erratic. For 1921-1922 the run-off was 65,500 foot-acres which in 1923-24 dropped to 2,000 foot-acres.

#### **Catchment** Characteristics

. The drainage area is hilly to mountainous in topography and is characterized throughout with sedimentary formations that have formed deep and friable soils naturally held against erosional attacks by protective cover of vegetation.

#### **F**orest Fires

.

Since the completion of the dam 11 fires have burnt over different parts of the basin. After the fire of 1932 only 34.5 square miles out of 200 remained unburnt.

#### Capacity Surveys

Re-surveys of reservoir in 1925, 1931 and 1934 have shown progressive rates of silting corresponding with accelerated erosion in increasing areas of the watershed denuded of vegetal covering by fires.

This record is of particular importance as a specific illustration of the general menace of forest fires.
# Rate of Silting

This is given in Table LIII and Figure 72. TABLE LIII

	Period of		V	- <b>* •</b> •	Silt de	posited			Silt deposit in foot.acres	
record		đ	Icars	In foot- acres per annum		Cumu- lative total in foot-acres		miles of catchment per year		
	1920		••	••	•		•• 、			•
	1925		5	800		160	80	0	8	0
	1931		6	1,500		250	2,3	00	12	5
	1934		3	1,800		600	4,1	00	30	0
	1940	-	6-66	1,479		222	5,5	79	· n	1
	-		20.66	••	· , '	270	5,5	79	13	 ŏ
		,								
1	6,000	<b></b>		<del>.</del>	<u> </u>			,		С.В.І.
	5,000		•			•	' 	   	5,579 -	
, Ser	4,000	, 	-			4,1		Z		
t foot-a	3,000									
lit deposit	2,000		1	2,	300			     		
	1 <b>,0</b> 00		,		Ħ			••		
	0			800				، 		
~	Ŧ9)	10		25	.193(	D .	193	35	1 • •	940
[	116	********	· · ·		Year	· s		<u> </u>		<u> </u>

Figure 72 :- Showing the silt deposition in Gibralter Reservoir

# Remarks

The progressively increasing rate of silting is due to denudation of hill sides as a result of forest fires.

# 178-

### SWEET WATER RESERVOIR

This reservoir is in the San Diego County California

••	**	••	•• •	••	••		Sweet water
nt			••	•	••	••	181_square miles
mal ru	a-off	••	••	••	••	••	19,000 foot-acres
••			••		••	••	70 feet original
2			_		•	-	90 feet present
capacit	×y	••	••	•	••	••	36,300 foot-acres
n		••	••	••	••	••	1888
	nt mal ru  capacit n	nt	at anal ran-off eapacity n	at	at	at	at

Capacity surveys were made from time to time.

**Catchment** Characteristics

The watershed comprises, for the most part, chaparral covered mountain slopes but with some cleared land in the lower valleys. The rainfall is very erratic. Total inflow for 39 years period was 740,000 foot-acres.

Rate of Silting .--

This is given in Table LIV and Figure 73.

# TABLE LIV

Pariod of	Vana	S		Silt deposit in foot-acres per 100 square	
record		In foot- aores	In foot- Bores per annum	Cumu- lative total in foot-acres	miles of oatohment- per year
1888		8+8 1	•		
1895	9	1,137	162	. 1,187	- 90
1916	21	2,81 <u>4</u> '	134	3,951	74
1927 '	i u	1,980 -	173	<b>5,</b> 859	96
	39	-	150	5,859	83



Figure 73 .—Showing the silt deposition in Sweet Water Reservoir Remarks

The high rate of silting is due to arid climate and erratic rainfall. . THE YELLOW RIVER -

#### General-

The Yellow river is the second largest river in China next to Yangtse. Taking its origin in Singsu Hai and running a course of 2,878 miles through nine provinces it drains an area of about 297,905 sq. miles. The flood ravages are continuous in the North China plains, where the silt load is very heavy. Owing to the river being confined along dykes in the lower river course and also due to the extension of the coast near the mouth, the slope of the river bed is gradually flattened, which, in turn raises the flood level and there are less chances of the silt load being carried into the sea. In the lower course of the river during the last 4,224 years there were 1,170 breaches of dykes and 422 overtopping. The change of river course has happened seven times and those would threaten highways, railways and lands. Hydrological—

Owing to the Japanese war and also due to civil war recording of the Hydrological data was not possible in many stations till 1945, after which time a number of stations are recording the data regularly. MSOBIAP (a) Meteorology.—The basin lies between the arid N. W. and humid S. E. and has mostly a cold steppe type of climate. The annual range of temperature is—30° to 40°C, there being a severely cold winter and a fiercely hot summer. The absolute maximum temperature recorded is  $45 \cdot 2^{\circ}$ C at Sian and the minimum is—32.8°C at Paotan. During winter the basin is dominated by the Mongolian Anticyclone. Rainfall is mostly in July and August (70%). Annual rainfall varies from 6 inches in loop area to 30 inches in south east. Average annual rainfall is about 16 inches. The yearly variation in rainfall is responsible for the droughts and floods.

(b) Run-off.—The flood season is from July to October (61%) and the water is low from November to June (39%). A comparison of the seasonal rainfall and runoff indicates that the runoff season lags behind the rainfall season by a month, both being wettest in August and driest in January for rainfall and February for runoff.

At Shenhsien station below the confluence of Wei Ho, the peak discharge of 20.25 foot-acres was recorded in August 1933 and minimum of 0.12 footacres in January 1927. Compared to observation made at other stations the values recorded at Shenhsien station show that the average annual mean discharge is higher, *i.e.*, 1.1 foot-acres. The following figures were recorded at Shenhsien station.

Average annual discharge	• •	••	••	••	••	1-1 foot-acres	
Average annual runoff (1919-44)	I.		••	••	••	34,822,710 foo	t-acres
Maximum annual runoff (1943)	••	••	••		••	,, 57,672,810	,,
Minimum annual ranoff (1928)	• •	••	••	••		16,775,910 ,,	. "

#### TABLE LV

Maximum and minimum discharge of Yellow river and its main flood producing tributaries

River	Station	Max. dis. charge in foot-acres	Period	Min. dis- charge in foot-acres	Period
Yellow River Feng Ho Wei Ho 'Lo Ho Ching Ho	Shenhsien (1919-43) Hotsin (1934-37) Hsienyang (1934-45) Chuantou (1934-45) Changohia Shan. (1932-45)	20 · 25 1 · 58 7 · 61 3 · 25 10 · 125	9-8-33 8-9-37 Sept. 41 12-7-40 8-8-33	0.12 0.0004 0.013 0.0027 0.0016	2-1-27 June, 35 25-5-39 19-6-45 19-6-45

(c) Silt Load.—Regarding its silt carrying phenomena the river is comparable to Colorado and Rio Grande in America. The Yellow river flows through loess deposits and hence there is high silt discharge during floods. The silt content of the river is an indication of the soil erosion. Table LVI gives the Average annual silt flow in foot-acres, of the Yellow river and its tributaries :

	River			Period of record	Maximum foot-acres	Minimum foot-acres	Average foot-acres	
Yellow rive	Yellow river			1934-1945	1,856,000 (1937)	82,000 - * (1941)	1,328,000 (9 years)	
Tribut	aries		ľ			- -	1	
Wei Ho	••	••		1934-1945	0·275 (1937)	0·037 (1942)	0 133	
Ching Ho	••	••	·	1932-1945	1 · 17 (1933)	0·056 (1936)	0-298	
Lo Ho	••	••	••	1934-1945	0∙481 (1941)	0+0024 (1936)	. 0-133	

TABLE LVI

Silt discharge in Lower course of Yellow river-

Not much data is available to estimate the magnitude of silt flow.

In Yellow river the maximum silt flow is in August and minimum in January. Annual variability of siltflow is 63 to 388%. Maximum silt concentration at Shenhsien recorded is  $46\cdot14\%$  by weight. The maximum possible saturation limit of the flowing water at Shenhsien is  $66\cdot7\%$ . Average annual concentration is  $2\cdot02\%$ . The ratio of vertical distribution of silt between surface and bottom is practically zero at Shenhsien whereas at other places upstream, it is 1:3 or 1:2. Not much data is available about horizontal distribution of silt. The maximum mean velocity is  $18\cdot1$  ft./sec (1934-1939).

The loess covered area in the basin is roughly 154,400 sq. miles or 52% of the total area of the basin. Calculations show that if the average annual sult flow of 1,328,000 foot-acres would deposit in the area below Shenhsien it means an average rising of the area of 0.85 inches per year.

#### Soil erosion—

The most important aspect of flood control consideration, is the entire watershed of Yellow erosion of top soil of loessal land. The river hes in the zone of very severe erosion The soils being highly loessal, are rich in erosion potential. Rain is an important agency for erosion. Sheet erosion, gully erosion and sinkhold erosion are most common. By gully erosion and undercutting, land-falls occur which increase the silt in great volume. According to the Yellow River Commission 77,200 sq. miles of Yellow river basin between Paoton and Chengchow are subjected to severe The factors affecting the erosion are the high erosion potential of loess erosion. soils, frequency of steep slopes and gullies, rainfall, frost action, and deforestation. To control erosion in slopes tree plantations were carried out by water Conservation Experiment Station. Most severe erosion occurs in Northern Shensi, where the annual loss of soil may amount to 50 tons per acre. The annual loss of soil and erosion index in the water-sheds of some of the tributaries of Yellow river are as follows for 1934 :

	Yellow river at Tung- kuan	Wei Ho at Hsienyang	Ching Ho at Chang- kashan	Lo Ho at Chuang- ton
Lo:s of soil in tons per acro	9 5	24 6	9.6	48-3
Erosion index percentage	2·1	· 2 3	4.8	13-9

#### **GENERAL OBSERVATIONS**

The salient data in connection with the various reservoirs discussed in the foregoing pages, have been brought together in Table LVII and the rates of silting plotted in Figures 74 and 75. Special features regarding individual reservoirs have been mentioned briefly in column 15 of the table.

From the general trend of curves [Figures 74 & 75] it will be noticed that the rate of silling falls off, as, with the advance of years, the reservoir capacity dec eases. One of the main reasons for this is the progressive reduction in volume of deposits due to settlement and shrinkage as a result of superimposed load of additional silt and exposure to weather. Also deltas progressively form at the mouths of all tributaries so that a portion of the silt is trapped in these, above reservoir level resulting in a process of aggrading of their beds. Similar aggrading of bed may occur, above reservoir head-water, on the main stream in course of time. Where the capacity of the reservoir is small, the rate of reduction will be rapid until the reservoir silts up to the section required for flood passage, beyond which there will be no further silting.

The four reservoirs of South Africa do not conform to the usual trend, perhaps because they have not been in action long enough.



Figure 74 :- Rate of selling of Elephant Butte and Roosevelt



Figure 75 :- Silling of reservoirs (Pared on Capacity Surveys)

TABLË

Seinel No.	Name of Resorvoir	Country	Biyer	Hoight of dam in feet	Catoh- ments area in square miles	Mean annual tamfall in inches	Mean annual runoff in foot-acres
1	2	3	4	8	6	7	8
2	Boulder	U. S. A.	Colorado (Arizma)	728-4	167,000	10	15,000,000
5	New Austin	U. S. A.	Colorado (Texas)	65	38,200	21	1,827,000
7	Elephant Butte	Ū. S. A.	Rio Grande	30 <del>0</del>	26,312	1025	1,000,000
8	Lake McMillan	U. S. A.	Pesos	52	22.000	••	300,000
12	San Carlos	U. S. A.	San Carlos	203	13,540	10-15	
19	Lako Montz	Africa	Sunda <del>ya</del>	*•	4,823	12	146,000
16	Roose <del>ve</del> lt	U. S. A.	Salt	284	5,760	835	- 840,000
27	Lake Arthur	Africa	Fish	••	2,270	13-5	79,000
32	Grass R.dge	Africa	Fish		1,583	14	42,000
34	Van Rynevelds	Africa	Sundays	113	1,477	14	33,000
48	Zuni	U. S A	Zuni	- 80	650	13	17,400
48	Parksville	Ū. 8. A.	0.0000	125	600	55	860,000
49	Medina	U.8. A.	Medina	164	587	29	
65	Meiktela	Burms			240		
68	Gibralter	U. 8 A.	Santayanis	185	200		546,900 {
71	Sweet Water	U. S. A.	Sweet Water	90	191		19,000
÷		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<b>_</b>		

4

.

# LVII

Storage capacity foot- acres	Storage Capacity Mean annual run-off ratio	Total silt deposit foot- acros	Period in years	Annual silt deposit foot- acres	Average annual silt deposit per 100 square miles of catchment foo acres	Romarks ,
9	10	11	12	13	14	15
30,500,000	2.03		· .	137,000	82	82 estimated . 36 accented for the
00,000,000			••	60,000	36	final scheme.
32,000	0.017	80,620	13	2,355	6•2	Storage only 32,000 foot-acres against, 1,827,000 foot-acres run-ofl.
2,638,860	2.64	415,786	25 75	16,147	61	Erratic and violent rainfall. Rio Grande carries the largest alt burden of any major stream in the South-West
90,000	0-30	46,400	38· <b>4</b>	1,208	55	Accidental Tamarisk growth reduces silting.
1,248,000	4-18	36,896	6-83	5,829	43	Severe over graz ng.
94,619	0-82	34,466	12•4	2,780	57	Soft geological formation, steep slopes, poor vegetal covering, small violent and irregular rain- fall. Intense sheep farming.
1,522,200	1.81	·123,770	27	4,584	79 6	Catchment consists of highly erodible soils. Over grazing under arid conditions.
63,630	0-81	26,200	10-1	2,600	115	Same as No. 19 above
64,500	1-43	15,601	11-3	1,380	87	Same as No. 19 above.
65,967	1.65	9,697	10-3	941	64	Same as No. 19 above.
15,811	0-91	11,830	28.2	432	66	Catchment in an advanced stage of erosion and gully development. Denudation due to intense sheep farming. Recovery due to silt control works.
97,000	0.102	20,800	18-75	1,110	185	Destruction of forest lands by fumes from roast ovens and smelters, clayey soi, and excessive rain-
318,703	27	6,265	23-8	263	45 4	1811.
30,301		7,091	40	177	74	Information obtained from Secretary, Centra. Board of Irri- gation and Power.
14,500	0.027	8,579	20.66	270	135	Forest fires over 80 per cent. catchment.
36,300	2.05	5,859	89	150	83	Erratio rainfall, poor vegetal covering
	_			•	• 1	

Another noteworthy fact is that the rate of silting per year per 100 square miles of catchment is more or less of the same order of magnitude in all the arid catchments, as will be seen from Table LVIII which is an extract from Table LVII.

The estimated figures for Bhakra have also been included in Table LVIII for comparison.

#### TABLE LVIII

Name of I	(050 <b>r</b> vo)	r		Catchment area in square miles	
Boulder -	,	••		167,000	$\frac{-82(a)*}{-36(b)}$
Elephant Butte Bhakra Lake Mentz Roosevelt Grassridge Van Rynevelds Zuni Sweet Water Meiktala (Burma)	· · · · · · · · ·	•••	••• ••• ••• ••• •••	26,312 21,960 4,823 5,760 1,583 1,477 650 181 240	61 90(a) 57 80 87 64 66 83 74
Average	••	•••	••		75

#### Silling of reservoirs based on capacity surveys

* (a) Estimated (b) Accepted.

Lake Arthur (South Africa) with catchment of 2,270 square miles has an excessive rate of silting of 115 foot-acres although the other three neighbouring reservoirs have rates of 57, 87 and 64 respectively per year per 100 sq. miles of catchment. This is probably due to the catchment of Lake Arthur being unusually silt productive.

Parksville and Gibralter are other instances of excessive rate of silting. Both of these are typical cases of denudation, the former by destruction of forests by fumes and the latter by fires. The graph of Gibralter shows a reverse trend.

Lake Austin and Lake McMillan show abnormally low rates of silting per 100 square miles of catchment area. In the case of Lake Austin apart from the fact that its storage capacity is smaller as compared to the mean annual run-off, the stream feeding the reservoir has an abnormally low silting content. Lake McMillan is an instance of silt prevention by vegetal cover.

Apart from these exceedingly high and exceedingly low values, the annual rate of silting per 100 square miles of catchment ranges between 57 and 90 (average 75) foot-acres although the catchment areas range from 181 to 167,000 square miles.

In Figures 76 and 77 the annual rate of silt deposit in foot-acres has been plotted against catchment area in square miles for reservoirs (including Indian, Tables I and XXVII) having catchment areas of more than 1,000 square miles. The 75 foot-acres to 100 square miles of area line has been drawn on both the figures. It will be noticed that there are no many points above this line. The upper limit for the annual silt deposit per 100 square miles, with few exceptions, therefore, appears to be at 75 foot-acres.

The Boulder Dam with a catchment area of 167,000 square miles has been plotted as an inset. Its mean annual silt yield is 81 foot-acres per 100 square miles which is not much removed from the 75 foot-acre line.

The annual rate of silt deposit for minor catchments (area less than 1,000 square miles, both foreign and Indian, is plotted in Figures 78 and 79). A line indicating the normal maximum silt deposit has been drawn on each of the two charts plotted to natural and logarithmic scales. It will be seen that the annual rate of silt deposit per square mile of catchment area increases as the catchment area decreases and if Y is the annual silt deposit in foot-acres for a reservoir of catchment area A square miles, then,

If  $Y_1$  is the annual silt deposit per 100 square miles of catchment area then

$$Y = 5 \cdot 19 A^{0 \cdot 72} \begin{cases} Y_1 = 5 \cdot 19 A^{0 \cdot 72} \times \frac{100}{A} \\ = \frac{519}{A^{0 \cdot 25}} \end{cases}$$

L

<del></del>		Annual silt deposit in foot-acres per 100 square miles							
	10								079
	10	••			• •	• •	••		212
	<i>6</i> 0	••	•			••			174
	100		• -						143
	200			• •	•••				118
	200	••	/ ••	• •	••	••	••	••	107
	300	••	••	••	• •	••	• •	• •	105
	400	••	••			••			97
	500			_					91
	750	••	••	••	••	••		••	10
	100	••	••	• •	• •	• •	**	••	01
	1,000		••		••	<b>* • •</b>			1 75
	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••	••	••	••	••	••	••	1

The above discussion leads to two important conclusions.

- (a) The rate of silting falls off with years.
- (b) The annual rate of silting per 100 square miles of catchment has an upper average limit of 75 foot-acres for major catchments which give rise to heavily silt laden streams. The absolute maximum rate for any major catchment will, perhaps, not exceed 90 foot-acres.

The lower limit for the annual rate of silting can be as low as zero as in the case of the Grand Coulce and the Aswan Reservoirs. M8CBI&P



Figure 76 :- Showing the annual rate of silt deposit in reservoirs with catchment areas above 1,000 square miles (Logarithmic scale).





Figure 77 .-- Showing annual rate of silt deposit in reservoirs with catchment areas above 1,000 square miles (Natural scale)



Figure 78 :- Showing annual rate of silt deposit in reservoirs with catchment areas below 1,000 square miles (Logarithmic scale)



Figure 79 :--- Showing annual rate of sit deposit in reservoirs with catchment areas below 1,000 square miles (Natural scale)

The silting of Reservoirs is a matter of vital concern for any undertaking dependent on stored supplies, be it for irrigation, water supply, floed control or hydro-electric power. Each such project requires, for its successful functioning, a certain minimum storage capacity which must remain undiminished for a minimum specified period (generally 50 years). Hence the full capacity of the reservoir must not be less than this minimum plus the probable volume of silt deposit during that period. The correct determination of this probable silt reserve is therefore of the utmost importance for any storage scheme. The rate of annual deposition of silt will largely depend on the annual silt load brought in by the stieam and the extent to which the latter will be retained in the reservoir. The problem is, thus, to determine this annual rate and to investigate if means can be devised to reduce the original silt load of the stream or to minimise its deposition in the reservoir.

Snow fed streams as a rule, carry little sediment. Rain fed streams carry heavy sediments, the concentration increasing with the increase in the intensity and the erratic nature of rainfall in their catchments. In the latter type of streams the silt concentration is, on the whole, proportional to the discharge. Flashy streams which derive most of their supplies from a few freshets only, may carry abnormal silt concentrations during such freshets (e. g. Roosevelt and Elephant Butte Reservoirs) but their annual silt contribution will not be materially different from that of streams running through similar catchments having the same areas but with rainfall more evenly distributed. The actual amount of total annual rainfall will not make much difference.

The catchment characteristics of the reservoir concerned can best be ascertained by means of a general geological investigation of the water-sheds of the main stream and its tributaries including special detailed examination of the sections which are most productive of silt and a study of the nature and extent of vegetable cover.

Catchments vary widely in silt production. The Columbia river above Grand Coulee Dam is supposed to be free from silt. On the other hand, the Rio Grande river above Elephant Butte Dam, the Salt river above Roosevelt Dam, the Colorado river above Boulder Dam, the Sutlej river above Bhakra, and the Tosi carry very heavy silt loads. The rate of silting in a reservoir on heavily silt laden streams averages 75 foot-acres per year per 100 square miles of catchment. The maximum rate recorded for any major catchment so far is below 90 foot-acres.

The rate of silting in any reservoir can be estimated (a) on the basis of that in existing reservoirs with similar catchment characteristics or (b) from the silt load carried by the stream concerned as calculated from a series of carefully planned experiments carried over a sufficient number of years. These experiments should aim at determining the various grades of the suspended load and as far as possible, the bed load of the stream. The suspended load is obtained by weight and has to be converted to volume in order to work out the necessary rate of silting. Opinions differ as to the weight of dry material in a cubic foot of silt deposit in the reservoir. The figures obtained from actual tests, range from  $18 \cdot 7$  lbs. to  $106 \cdot 1$  lbs. Faris recommends 90 lbs. for deposits subject to prolonged exposures, 70 lbs. for those subject to short exposures and 30 lbs. for those permanently submerged. In estimating the rate of silting in the Boulder Reservoir this weight was taken as  $85 \cdot 9$  lbs. In the case of the Bhakra Reservoir this has been assumed as 90 lbs.

Similarly, estimates vary widely for bed load, the figures ranging from 1.7 to 25 per cent. of suspended load. It is, however, generally felt that bed load in the case of large reservoirs is not of much consequence Coarse materials like shingle, *bajri*, *etc.* will normally be deposited at the headwater of the reservoir, where the velocity starts getting slack on entering the reservoir, and will progressively build up a delta, thus causing a gradual aggrading of the stream bed and a reduction in the silt, depositing in the reservoir.

and for the Mahanadi and the Kosi rivers as  $87 \cdot 4$  lbs.

The rate of sching decreases with age due to shrinkage on exposure of the deposits and to the gradual formation of deltas at the mouth of tributaries which help to hold the silt above reservoir level.

The relative silting of reservoirs is best measured in foot-acres per year, per 100 square miles of catchment. The rate of silting measured as percentage of original capacity is highly misleading (See Columns 18 and 20 of Table XXXVII). Thus, the new Lake Austin (item (5) Table XXXVII) is silting at the rate of  $7 \cdot 3$ per cent. of original capacity per year, which is very high. The annual rate per 100 square miles of catchment is, however, only  $6 \cdot 2$  per cent. which is among the lowest on record. On the other hand, the Elephart Butte Reservoir silts annually at the rate of  $0 \cdot 61$  per cent. of the original storage capacity and 61 foot-acres per 100 square miles of catchment. Judged as a percentage of capacity, the silting at the Lake Austin is twelve times ( $7 \cdot 3_1 \cdot 61$ ) as heavy as that at the Elephant Butte, although, as a matter of fact, the latter catchment contributes 10 times ( $61/6 \cdot 2$ ) as much silt per 100 square miles as the former. The determining factor is the catchment area and not the storage capacity, as, the latter may be many times the annual run-off or only a small fraction of it depending upon the requirements and limitations of each case.

The natural rate of silting from a catchment can, to some extent, be regulated and reduced by afforestation, controlling deforestation and grazing and by suitably protecting the most silt producing portions of the catchment. But it should be clearly recognised that these control measures can only produce limited results.

A certain amount of silt control is possible by means of outlet works if of ample capacity and placed low enough, subject to the limitations imposed by run-off, the period of storage and the relative claims of unigation and hydroelectric power.

On a reservoir silting up to the extent that the capacity fails below it, useful storage, the construction of a dam or dams higher up the main stream and its tributaries may be investigated with a view to forming new reservoirs unless some cheaper and more convenient means of supplementing supplies can be found elsewhere.

Capacity surveys of the various reservoirs should be instituted in India on the lines of those in America, with a view to obtaining a systematic and continuous record of the silting of Indian reservoirs, due attention being paid to the volume weight relationship of silt deposits.

#### BIBLIOGRAPHY

. .

1. Brown, Carl. B.	:	"Silting of Reservoirs", Revised, 1939, U.S. Dept. of Agri.
2. Cassidy, W.C.	:	"The Debris problem in the Los Angeles Area and its control" Paper R. 27, ques. No. 14, IVth Congress on large Dams, 1951.
3. C.B.I.	:	Central Board of Irrigation and Power, India, Annual Report (Tech.) 1939-40.
4. Do. '	:	Central Board of Irrigation and Power, India, Annual Report (Tech.) 1948.
5. Do.	:	Central Board of Irrigation and Power, Jour, Vol. 1, No. 5, January, 1948.
6. C.W.I.N.C.	:	<ul> <li>Central Waterpower Irrigation and Navigation Commission—now Central Water and Power Commission, India :</li> <li>(a) Report on the Proposed Kosi Project, 1946, Revised 1951.</li> <li>(b) Report on the Hirakud Dam Project (Mahanadi Valley Development) 1947.</li> </ul>
		(c) C. W. P. C. Research Station, Hirakud (Orissa) Annusl Reports for 1949 and 1950.
7. Drouhin, Mallet & Pacquant.	•	"The sedimentation of storage basins in Algeria; Trial of a method of unsilting by Dredging"—Paper R. 49, ques. No. 14, IVth Congress on large Dams, 1951.
8. Duquesnois, H.	:	"Statistic Research on solid sediments and their draining off by underflow "-Paper R. 47, ques. No 14, IVth Congress on large Dams, 1951.
9. Ekin, Henry, N.	:	" Silting of Reservoirs " U. S. Deptt. of Agri. Tech. Bull. No. 524- 1936.
10. Edgecomb, & F.B.	:	Report on the Silting of Reservoirs etc., U P Government Publica- tion-1934.
11. Ehrmann, F,	:	"Problems pertaining to earth and sand removal from the auxiliary water intake of the Courbaisse Water falls " Paper R. 51, ques. No. 14, IVth Congress on Large Dams, 1951.
12. Faris, A. Orville	:	"The silt load of Texas streams" U. S. Deptt. of Agri. Tech. Bull. No. 382—Sept. 1933.
13. Fox, Cyril. S.—	:	"The Transportation and depositing of solid materials by flowing and evaporating water" Paper R. 18, ques. No. 14, IVth Con- gress on Large Dams, 1951.
14. Holecek, V	:	"Establishment of Reservoirs in the middle Vah in Czechoslovakia with intense sediment carriage" Paper R. 111, ques. No. 14, IVth Congress on Large Dams, 1951.
15, Hoen, R C.	:	Silting of Reservoirs. with special reference to the proposed reservoirs of the Mahanadi and the Kosi-Paper R. 72, ques. No. 14, IV th Congress on Large Dams, 1951.
16. Khosla, A.N.	:	"Special techniques in water storage conservation" United Nations Scientific Conference on the conservation and utilization of Reservoirs—Introductory paper for sectional meeting: Water 5(c) on water control structure,—1949.
17. Y re, E.W.	;	"Sediment deposits in Flood control and multipurpose reservoirs" Paper R. 34, ques. No. 14, IVth Congress on Large Dams, 1951.

48.	Maddock, T and Borland, W.M. "Sedimentation studies for the planning of Reservoirs by the Bureau of Reclamation "-Paper R. 41, ques. No. 14, IVth Congress on Large Dams, 1951.
19.	McCrae, J.' : "Suspended solids in the water of the uppermost reach of the Vaa) River "Water and Water Engg. Journ., January, 1948.
20.	Nizery, A and : "Economical aspect of the sedimentation in Reservoirs "Paper Rousselier M. R. 83, ques. No. 14, IVth Congress on large Dams, 1951.
21.	Rao, K. L. and Ragha- "Sedumentation of Reservoirs in the state of Madras"Paper. vachari, S. R. 55, ques. No. 14, IVth Congress on large Dams, 1951,
22.	Raynaud, J.P. : "Study of Current of muddy water through Reservoirs "Paper R. 48, ques. No. 14, IVth Congress on Large Dams, 1951.
23.	Reclamation Era : "Solving the silt mystery "-Sept. 1950.
24.	Reminieras and Braudeau, G
[•] 25	Report of the Colorado River Board on the Boulder Dam Project, 1928.
26.	Sedimentation of Principal Reservoirs in Japan, October, 1950.
.27.	Simaika, Y. M. : "The suspended Matter in the Nile."—Ministry of Public Works Egypt—1940.
-28.	Studies on the Yellow River Project—Published by Public Works Commission, Supreme Economic Council, Nanking, China, June, 1947.
29.	Transactions of the Am. Soc. of Civ. Engg., Vol. 101-1936.
30.	Transactions-Second Congress on Large Dams. Vol. 5-1938.
31.	U. S. Deptt. of the interior-Bureau of Reclamation.
32.	U. S. Geological Survey, water Resources branch "Determination of loads of suspended matter in small streams "Quality of water division, 1939.
-33.	Vandnit A. : "Some experiments on the transportation of suspended load" Trans. Am. Geoph. Union-Hydrology, 1941.
34.	Veter, C.P. : "Silt problems on the Colorado River"-Paper C-7 for the Third Int. Cong. "In Large Dams.
35	Willcocks and Craig-Egyptian Irrigation Vol. 1, IIIrd Ed. 1923.
	NOTE.—There are a large number of publications other than those mentioned

NOTE.—There are a large number of publications other than those mentioned above from which information has been extracted but as these are all entered , as references in one or more of the above noted publications, they have been omitted from the above list.

4

1

# Appendix

## Resolutions and Recommendations of the Central Board of Irrigation and Power

#### SILTING OF RESERVOIRS

#### (1) July 1939

The records from various parts of the world show that the silting of reservoirs may be serious or negligible. The Committee consider that the factor determining silting vary from site to site and must, therefore, be studied locally.

The Committee recommend that :

- (a) investigations regarding silt loads should go on ' pari passu ' with enquiries regarding water available for storage,
- (b) the main source or sources of the silt load should be determined and steps should be taken so far as possible before dam construction to reduce erosion in the catchment area,
- (c) every opportunity should be taken to study silt accumulation in existing reservoirs with the object of obtaining information regarding, the most economical design and method of construction with reference to the life of the reservoir,
- (d) samples of silt in suspension should be taken regularly at existing river gauging sites and at or near any possible dam site. The clay content of the silt should be determined as this may exert an important influence on the volume of the deposited silt,
- (e) samples of deposits from reservoirs should be obtained so that an attempt may be made to estimate the volume of the deposited material with reference to its physical composition.

#### (2) July 1941

The Board approved the following Notes on Factors Affecting Silting of Reservoirs by C. C. Inglis, Esq., Dr. E. McKenzie Taylor and Rai Bahadur A. N. Khosla.

Storage reservoirs will, sooner or later, play an increasingly important part in the future development of many provinces of India. In some, they will be needed for irrigation; in others, for generation of hydro-electric power while in others they may be used for flood control. It is highly desirable, therefore, that an early start be made towards a systematic study of the silting of such reservoirs with a view to securing representative and reliable data, under as large a variety of conditions and for as long a period of years as possible. Such a study will furnish a sound basis for correctly estimating the rate of silting of any reservoir and the height of dam required to provide the full capacity for the necessary useful storage and the additional capacity for silt reserve required to maintain the useful storage-unimpaired for the minimum specified number of years.

- - (a) Correlating the volume of silt collected in existing storage reservoirs with various factors, and (b) Estimating the rate of silting in new or proposed storage reservoirs.

- 3. (a) The main factors controlling silt accumulation in existing storages are: *i*. Proportion of silt, if any, intercepted by an upstream lake or reservoir.
  - 21. Proportion of silt reaching the reservoir which passes out through sluices, etc.
  - vii. Degree of consolidation-i.e., weight of silt per unit volume.
  - iv. Total area of catchment and various zones into which it is considered:
- desirable to divide the catchment in view of varying silt contributions.
  - v. Type of rainfall and snowfall in each zone.
- vi. Effective monthly and annual rainfall in each zone.
  - vii. Mean monthly and annual temperatures in each zone.
  - viii. Monthly and annual run-off from catchment or sub-catchments. ix. Slope of each zone.
  - $\bar{x}$ . Vegetation in each zone.
  - xi. Geological formation of each zone and estimated relative rate of weathering and erosion with due regard to climatic conditions.
  - xii. Total silt accumulated per year :---
    - (a) in acre feet per 100 square miles of catchment;
    - (b) in tons per square mile.

4 In the cold, arid, higher regions in the Himalayas, physical causes are mainly responsible, for the weathering and the disintegrated rock material is transported with the melting snow. These produce the grey silt found in the rivers fron. March until the monsoon. Landslides, so common in the Himalayas, also produce disintegrated rocky material and little soil. The second main source of silt is the erosion of the soil under the warmer humid conditions in the lower levels of the catchment. This provides the red silt during the monsoon period. It is from this latter source that the majority of the clay is derived, since clay is not produced by physical weathering at the higher altitudes.

5. Chemical weathering is essential for the production of clay- and this can only take place in the lower hills where the temperatures are higher. Erosion at the lower levels is, therefore, very important as upon this will depend largely the volume-weight relationship.

6. When the object is to predict the rate of silting, two lines of investigation may be followed :

- (a) the conditions may be compared with those in other similar catchments and the estimation of rate of silting be based on silting in reservoirs in those catchments, making allowances for such differences as exist, or
- (b) the quantity of silt movement may be measured and an assumption made as regards the proportion of that likely to be trapped by the reservoir.
- 7. It is customary to divide silt movement into-
  - (a) suspended solids, and
  - (b) bed load, vir.. sand, shingle..etc., moving along the channel hed

(a) Suspended Solids should be collected in standard silt bottles, preferably of brass to save breakage. In a straight reach, where boats can work, the sample should be taken at three points in a section at  $\frac{1}{6}$ ,  $\frac{1}{2}$  and  $\frac{5}{6}$  of the width from either edge and at not the depth at each one of these points. These three samples will make up one determination of silt content and will give an approximate neasure of the mean silt content over the whole section.

(b) Bed Load.—No method of observation of bed load has yet been standardised. Experiments are being done in this connection by the Punjab Research Institute at Madhopur with promising results.

8. During normal supplies, if the river impinges on one side and breaks up into boils and during floods when plying a boat may be risky and samples have, of necessity, to be taken at the river edge, such samples may be taken from these boils. These will be representative of the mean silt charge of the section.

9. A suitable site for observations of silt load for a proposed reservoir would be anywhere near the proposed dam site below the confluence of the dowest tributary.

10. In the case of an existing reservoir, such a site will be above the headwater of the reservoir where the water flows in a normal channel beyond the backwater effect. The results obtained in the latter case may not be fully representative, if any important tributary or tributaries join the reservoir lower down, but these will be a very near approximation. For a more detailed study, silt observations may be made on the tributaries if and when they are in flow. Where spillways exist it will be of interest to take silt samples from the flow over the latter and compare their silt load with that in the river channel, above the headwater.

11. Capacity Surveys. —In the case of existing reservoirs capacity surveys should be done at regular interval of years. These surveys can be carried out by observing a series of cross sections at close intervals for the entire reservoir area or as an alternative for the portion under water in conjunction with detailed contouring of the exposed area above water. For this work, to be of value, it is necessary to have a basic contour plan of the reservoir area and a network of bench marks and traverse marks spread over this area.

12. Volume-Weight Relationship.—Samples of silt should be taken occasionally from the various types of deposits in the reservoir with a view to determining the dry weight of these deposits. Silt deposits are of three types (1) those permanently submerged, (2) those subject to occasional exposure and .(3) those subject to periodical and prolonged exposures. The first of these will have the least dry weight and the last will have the greatest.

13. It is recommended that each province select at least one site at which systematic and comprehensive silt studies be carried out over a sufficiently long period of time. Where reservoirs exist such work can generally be undertaken with httle additional cost by the existing staff.

14. A detailed report on each existing reservoir or proposed dam site should be prepared in respect of catchment area, rainfall and run-off and sent to the Secretary, Central Board of Irrigation. Relevant data should be supplied in the form, Table appended.

	-	Serial No.	a Havan		
	1 10	Country	5 11. <del>3</del> 8		
	co River		Roser		
· · · · · · · · · · · · · · · · · · ·	*	Name	"Ito?		
	- 	Catchment area (square miles	5) ,		
	6	Height of dam (feet)	· ·		
· · · · · · · · · · · · · · · · · · ·	7	Foot-acres	CA Con		
	8	Percentage of annual runoff	ođ vo eBr		
· • • • • • • • • • • • • • • • • • • •	9	Por square mile of catchmont	veity		
	10	Mean annual rainfall m inche	S		
	{=	Mean annual temperature de	gree Fahrenheit		
	12	Mean annual runoff (foot-acr	cs)		
	13	Run off per square mile of catchine (foot-acres)			
	14	First	n e K		
	6	Last	ears o upacit		
	16	Period in years	ys ty		
	13	Suspended	Volu silt in in re to vol		
	81	Bed	me of river lation unio of tter		
	91	Suspended	Weig silb in in re to wei wa		
	20	Bed	ght of river lation ght of ter		
·	2	Total foot acres			
	12	Annual foot-acres	ŝ		
* · · · · · · · · · · · · · · · · · · ·	8	Percentage of original capa- city per annum	t dep		
	Note     Percentage of water       Note     by volume       Note     Per 100 square r       Note     Catchment per an		osited		
			~		
· · · · · · · · · · · · · · · · · · ·	28	Remarks			
A	12	Reference			

738

#### (3) December 1946

Resolved that the Board considers it desirable that all Provinces and States which have large reservoirs may undertake a study of the silting of the reservoirs during the course of time and bring to their notice the following report, as accepted by the Board, of its Sub-Committee*, regarding the collection and recording of data regarding the silting of reservoirs.

Recommendations of the Sub-Committee on the collection and recording of data regarding the silting of reservoirs.

1. The Sub-Committee do not consider it feasible, at the present stage and in the light of present knowledge, to give any directive on the estimation of rate of silting in the case of proposed reservoirs. Any such estimate must depend on local knowledge and the skill of the estimator in selecting from such recorded data as is available those relating to a catchment similar, as near as may be, to the catchment he is considering.

2. The Sub-Committee point out that there are two components of the silt deposited in a reservoir.

(a) The silt in suspension in the river feeding the reservoir ;

(b) Its-bed load.

The former can be determined only very approximately. For the latter no means of determination have yet been devised. The most satisfactory data which can be selected are, therefore, instances where the total silt of both classes deposited in a reservoir has been measured.

3. There are several old reservoirs in Hyderabad State—the Pakhal Lake for instance is reported to be more than 700 years old—which are still functioning fairly efficiently and it is possible similar instances may be found elsewhere in India. If the life history of such old reservoirs could be reconstructed particularly in respect of the following, valuable information as regards overall average rate of sultation over long periods would be available not only for direct application where similar catchment and rainfall conditions prevail but also for comparison with the results obtained in other cases hy various methods.

(a) Date of construction. This could be ascertained by a critical study of the old records that may be available.

(b) Original storage capacity. This could be ascertained with a fair degree of approximation by contouring the valley just below the dam and above the water-spread of the reservoir and joining up the contour lines, subject to verification by noting the actual depth of silt deposit within the reservoir limit, as far as practicable, by means of borings during the minimum water level stage. Any error that might creep in, being distributed over several centuries, the average annual rate is not likely to be materially affected.

(c) Present storage capacity.

The Sub-Committee, therefore, strongly recommend that the research officers may be requested to make necessary enquiries and investigations accordingly.

^{*} The Sub-Committee comprised Mr. S. C. Mazumdar, Mr. T. A W. Foy, Rai Bahadur - Kanwar Sain and Rai Bahadur A. G. Maydeo.,

4. The Sub-Committee wish to offer a caution to engineers who owing to lack of suitable overall measured data are compelled to utilise instances of similar catchments where an estimate of the total silt load has been made from measurements of silt carried in the stream. Such estimates, which lead to the determination of the life of reservoir, have a very definite economic angle. Project designers will be well advised to discount any facile optimism in the preparation or interpretation of such estimates of the rate of silt deposition in a reservoir.

5. The Sub-Committee consider that their most useful advice can be rendered in standardisation, as far as may be possible, of the method of collection and recording of the data of silting in actual reservoirs. They recognise that reservoirs vary enormously in size, shape and characteristics. The main and most valuable information regarding the over-all silt deposit in the reservoir is sometimes costly and difficult to collect and the best methods of obtaining it, under given physical and economic conditions, must be left to the judgement of the engineer-in-charge.

6. The main factors controlling silt accumulation in existing reservoirs are listed below and are mainly taken from "Factors affecting Silting of Reservoirs" by Sir Claude Inglis, Dr. McKenzie Taylor and Rai Bahadur A. N. Khosla to whom the Sub-Committee acknowledge their debt.

(i) Whether all silt from the catchment reaches the reservoir or a portion is intercepted by an upstream lake or reservoir, etc. ?

(ii) Whether all silt reaching the reservoir is trapped and if not, what proportion passes through ?

(iii) Degree of consolidation-i.e. weight of silt per unit volume.

(iv) Total area of catchment and various zones into which it is considered desirable to divide the catchment.

(v) Type of rainfall and snow fall in each zone.

(vi) Effective annual rainfall in each zone.

(vii) Vegetation in each zone.

(viii) Slope of each zone.

(iv) Regional geological classification of the catchment of each zone and estimated relative rate of weathering and erosion, taking climate into account.

(x) Run-off volume and peak discharge from catchment and sub-catchments.

(NOTE.—Run-off is strictly speaking not a factor, depending as it does on rainfall, catchment area, *etc.* but it is none the less useful and relatively easy to measure as compared with the other factors, which it integrates.)

(xi) Total silt accumulated per year.

(a) in acre feet per 100 square miles of catchment.

(b) in tops per square mile, considering the degree of consolidation.

7. The Sub-Committee consider that the recording of the discharges entering the reservoir should be done in the greatest possible detail if economic conditions permit. They recommend that a careful gauge capacity table or diagram be prepared for the reservoir and that the daily inflow be recorded by the estimation from the rise in gauge reading added to the measured outflow. They recommend daily discharge observations at the point or peints of entering. Where this is economically not possible and the site is reasonably stable they recommend determination annually of the gauge discharge curve by periodic observations and the detailed recording of the discharges as read off this curve. Where again even this is not practicable they must leave it to the engineer concerned to give the best possible detailed estimate of the inflow.

8. Of equal importance with the measurement of the inflow is a daily recording of the releases and a clear exposition for as long a term of years as possible of the relationship between inflow, live capacity of reservoir, spillage and releases. An indication should also be given of the method of release and where this affords any special facilities, for example low level releases for disposing of any fraction of the silt entering the reservoir or specially designed outlets to dispose of density currents in the reservoir.

9. The Sub-Committee now consider item  $(x_i)$  of the above recommendations quoted in para 6, which they consider the most important of all. This is that the total silt accumulated per year should be measured and recorded. As stated above they prefer direct recordings of the silt quantity to any other method of estimation. The exact method of doing so must depend on the type of reservoir.

• For all reservoirs they recommend the laying down of permanent sectional lines at suitable intervals; the sectional lines being marked by concrete pillar on the flanks and the section measured annually either by levelling if the reservoir drics out or by soundings. In either case they recommend that this be done when the reservoir is at its lowest level. A further point on which information is desirable and probably easily obtainable in the case of long narrow reservoirs is the rate of advance of the delta from the head of the reservoir towards the dam. The fraction deposited in the live storage area and the dead storage area of the reservoir should also be recorded.

10. The Sub-Cormittee consider it desirable to determine the suspended detritus charge and the bed load in the stream entering the reservoir and in the off-taking channel. It is understood that the Board is shortly issuing standard instructions in this respect. The suspended detritus charge and the bed load should, therefore, be determined in accordance with these standard instructions, but until the sub-committee are satisfied that the methods adopted are capable of producing anything like accurate results, they do not recommend the use of the data so obtained in the problem of silting of reservoirs. They, however, consider that it might be possible to utilize this data at some future date when the technique to be adopted has proved its usefulness. The methods adopted for the collection of this data should, therefore, be recorded along with the data. (4) December 1947

(a) Chief Engineer Jodhpur had raised a few points regarding the resolution* of the Board as under :---

(i) Due to shortage of staff Jodhpur could not take up the observations in accordance with the recommendations of the Board but if the information pertaining to measured depths of silt deposit obtained by digging the beds of tanks when they were dry, the ages of which were known accurately would be of value, the Chief Engineer was prepared to supervise the obtaining of it personally.

(ii) Regarding the advancement of delta into tank beds, he suggested that the only satisfactory way of recording would be by means of air photos taken at five years interval over a representative series of tanks; this should not be either a difficult or costly matter to arrange.

(*iii*) Since there was very little silt in Rajputana rivers, yearly measurement of silt by levelling or soundings would not show significant changes, he suggested that the interval should be five years.

(*iv*) For flashy rivers, silt sampling is difficult to arrange and the information to be collected would not commensurate with the cost and trouble involved.

(i) The information so obtained would be very useful, and Chief Engineer, Jedhpur, be requested to collect it. He should also be requested to ascertain, if possible, the dry bulk density of silt '*in situ*', by layers, in its wet (spongy) state and whether it is possible to distinguish the various layers—yearly or otherwise.

(ii) A good suggestion which might be adopted for all reservoirs. The period between two successive photographs would vary for each case.

(*iii*) The period would vary for different places and must be determined by local officers.

(iv) Agreed.

(b) Resolved that all Provinces and States be requested that :

(i) As an ultimate objective, but for the present as far as possible, at discharge observation sites on main and tributary streams, sediment discharge observations, with analysis into principal sizes, should be made concurrently with every water discharge-observation. The results should be correlated annually with erosion intensity surveys done by the Forest Department.

(ii) Every project for damming a river system should contain a report detailing, in quantitative terms, the whole relevant sediment data and the economics of action required to protect the reservoirs from rapid loss of capacity, and the rivers from undesirable regime changes.

The Board further recommends that soil conservation experts be appointed, from the investigation stage, to each reservoir project.

#### LIST OF PUBLICATIONS ISSUED BY THE CENTRAL BOARD OF IRRIGATION

- 1. Digest of Technical Notes, 1931 (Reprint).
  - A summary of views of Chief Engineers on the following subjects :--
    - (1) Waterlogging and Reclamation.
    - (11) Effect of deforestation and afforestation on river floods.
    - (111) Design of works on sand foundations.
    - (1v) Fluming of canal works.
    - (v) Regulation at canal headworks.
    - (vi) Design of canal falls.
- 2. Digest of Technical Notes, 1932.

- (1) Waterlogging.
- (11) Design of works on sand foundations.
- (111) Design of canal falls.
- (iv) Staunching of canals.
- 3. Catalogue of books (upto December, 1933) in the Library of the Central • Board of Irrigation, Simla and its 1st and 2nd Annual Supplements (1934-36).
- 4. Hydraulic Diagrams: Energy of flow, Pressure-plus—Momentum Diagrams
   for the simple graphic solution of problems involving a change of section in a stream of water (Compiled by A.M.R. Montagu, M.I.C.E., etc.) (1934). Revised and Enlarged Edition 1948 by Shri N. D. Gulhati.
  - 5. Glossary of Technical and Vernacular Terms in connection with Irrigation in India, together with Standard Notations. (1934). (1st Revised Edition 1941).
  - 6. Fluming : A series of examples illustrating the use of Hydraulic Diagrams, C.B.I. Pubn. No. 4 by A.M.R. Montagu, M.I.C.E., etc. (1934).
  - 7. The Standing Wave or Hydraulic Jump. (1934).
  - 8. Observation and Record of Pressures below Works on Permeable Foundations, by Shri A. N. Khosla. (1935).
  - 9. Stabilization of Soils by the use of Bitumen Emulsion—by Brigadier C. H. Haswell. (1935).
    - 10. Irrigation Canal Falls. (Compiled by A.M.R. Montagu, M.I.C.E. etc.) (1935).
    - 11. Annual Report (Technical) of the work of the Central Board of Irrigation, India, 1934-35.
    - 12. Design of Weirs on Permeable Foundations-by Shri A. N. Khosla, Dr. N. K. Bose and Dr. E. McKenzie Taylor. (1936).
    - 13. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1935-36. (For the use of Board Members only).

A summary of views of Chief Engineers on the following subjects :---

- 14. Annual Report (Technical) of the work of the Central Board of Irrigation, India, 1935-36.
- 15. Annual Report (Administrative) of the Central Board of Irrigation, India, 1936-37. (For the use of Board Members only).
- 16. Annual Report (Technical) of the work of the Central Board of Irrigation, India, 1936-37.
- 17. Notes on Waterlogging and Land Reclamation in the form of a Questionnaire. (1938).
- 18. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1937-38. (For the use of Board Members only).
- 19. Annual Report (Technical) of the work of the Central Board of Irrigation, India, 1937-38.
- 20. Regime Flow in Incoherent Alluvium -- by Gerald Lacev. (1939).
- 21. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1938-39. (For the use of Board Mambers only).
- 22. Annual Report (Technical) of the work of the Central Board of Irrigation, India, 1938-39.
- 23. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1939-40. (For the use of Board Members only).
- 24. Annual Report (Technical) of the work of the Central Board of Irrigation, India, 1939-40.
- 25. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1940-41. (For the use of Board Members only).
- Water Weeds and their eradication from canals, -- by C. C. Inglis, and V. K. Gokhale, with a note on Eradication of Bulrush by V. K. Gokhale and S. N. Punekar. (1941).
- 27. Annual Report (Technical) of the Central Board of Irrigation, India, 1941.
- 28. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1941-42. (For the use of Board Members only)
- 29. Annual Report (Technical) of the Central Board of Irrigation, India, 1942.
- 30. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1942-43. (For the use of Board Members only).
- 31. Annual Report (Technical) of the Central Board of Irrigation, India, 1943.
- 32. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1943-44. (For the use of Board Members only).
- 33. Annual Report (Technical) of the Central Board of Irrigation, India, 1944.
- 34. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1944-45. (For the use of Board Members only).
- 35. Annual Report (Technical) of the Central Board of Irrigation, India, 1945.

- 36. Role of Glaciers and Snow on the Hydrology of Punjab Rivers-By Shri Kanwar Sain.
- 37. Annual Report (Administrative) of the work of the Central Board of Irrigation, India, 1945-46. (For the use of Board Members only).
- 38. Annual Report (Technical) of the Central Board of Irrigation, India, 1946.
- 39. Annual Report (Administrative) of the work of the Central Board of Irrigation, 1946-47. (For the use of Board Members only).
- 40. Annual Report (Technical) of the Central Board of Irrigation, India, 1947.
- 41. Resolutions and recommendations (Technical) 1931-47.
- 42. Standards for testing soils—Tentative.
- 43. Land Reclamation by M. L. Mehta.
- 44. Annual Report (Administrative) of the work of the Central Board of Irrigation 1947-48. (For the use of Board  $M\epsilon$ mbers only).
- 45. A manual of Library procedure. (For the use of Board Members only).
- 46. Annual Report (Administrative) of the work of the Central Board of Irrigation 1948-49. (For the use of Board Members only).
- 47. Annual Report (Technical) of the Central Board of Irrigation, India, 1948.
- 48. Data of High Dams in India.
- 49. Annual Report (Technical) of the Central Board of Irrigation, India, 1949. (In the Press).
- 50. Annual Report (Technical) of the Central Board of Irrigation, India 1950. (In the Press).

#### **INDEX**

			"A	"				PAGE
•								142
Aare River	••	••	• •	••	••	••	••	2
Abbot	•• ~	••	• •	••	••		••	- 52
Abhanpur Reserv	oir	•• `	••	••			••	1
Afluvium	•'•	••	<b>*</b> ' <b>*</b>	••	֥	•• <b>*</b>	••	1
Alluvial deposits		••	••	••	••	••	••	144
Almansa Reservoi	r	•	••	••	••	••	••	50
Amaehua Reservo	ir	••	••'	••	••	••	••	148
Ardmore Club Lal	te Reserv	roir	••	••	••		••	2
Arid Climate	••	••		••	••	•• -	••'	98
Arun River	••	••	•••	••	••		<b>• •</b>	18
Ashti Tank	••	••	••	••	••	••		 
Aswan Dam			••	••	-	••	150	153 158
Aswa <b>n</b> Reservoir	••	94 <b>8</b> )	••	. ••	**	•••	••- 74	153, 137.
Atbara River		••			••	••	• •	150
Avignounette Res	ervoir				••		••	140
Avista Reservoir			••				••	142
Avisia River		· · ·						142
			« T) S	,	•			
			U.B.		-			46
Bagdeonala (Rive	r)	••	••	••	••		••	148
Baker Keservoir	••	••	• •	••	••	••		6. 77. 78
Balehu Reservoir	**	. <b>**</b>	••	••	••	•• 、	•• •	50
Baloda Reservoir		••	••		••	••		
Bandha Nala		••	•• `	••	• •	** -	••,	144
Banet Reservoir		••	••		••	••	. 4	1. 45. 46
Bara Tai (Babina)	}	••	••	.* *	••	• •	•••	146
Barcroit Reservo		• •	••	• •	••	••	- 39.	40, 45, 46
Bariarpur Keser	701 <b>F</b> '.	••	••	••	••	••		52
Barpan Reservoi	r	••	••	••	* *	• •	••	41. 46
Barwar River	••	* *	••	••	••	••	••	41.46
Barwar Sagar .	••	••	••		••	••	••	144
Day view Reserv	701 <b>r</b>	••	< ** ·	••	••			76. 77. 78
Beas River	••	••	· · · ·	••	••	• •	••	2
		••		· ·	••	••	••	2. 3
Bedload percenta	ge in di	terent	LIA6L9	· ••	••		••	142
Belen wine-	••	••	••	••.	••	••	••	43
Beisn river	••	+ + t	••		• •	4.	. 31.	33. 24. 43:
Detwa Miver	•• •	- •	••	••	**	••	•• •••,	45, 40
Bhakra on Sutlej	i	**	••	••	•	••	7,5 74	5, 58, 57.
							18	6, 192 139
Bhandardara 🏾	••	••					• ••	18
Bibliograph <b>y</b>	••	••				••		194
Biebr See Reserv	oir	••					••	142
Big Hora River	••	••				••		, 138
Black Canyon Re	servoir >	••					•,•	140
Blaney	••	••	••		••			2
Blue Nile River								150

							PAGE
Rodel Kesse Reservoir		-					46
Rodensee Reservoir	4.				••	••	140, 142.
Boomen Laka Reservoir				<u> </u>		••	.149 '
Boomer Lake Reservoir	•••						148
Boomer Kiver	••	•••	••	••	,.		. 46
Bori Keservoir	••	••	••		••		3, 9, 12, 13
Borland	••	••	44 <b>B</b>	••	••	•••	50
Bosikhora Reservoir	••	••	••	r • 1	••		140
Bosque Kiver-	••	••			••		1. 155, 158
Bouider Dam	••	••	**	••	••		187, 192
Boulder Dam : Life of-				u1 	••	••	່ 155
Boulder Beservoir						13	, 72, 74, 75
	••					1:	38, 153, 184,
							186, 193
Boyel marchand Tank	••	·	·•:.	•:•	**	• • • • •	92 100
Boysen Reservoir	••	.:•	••	••	••	••	135
Brahmaputra River		••	••	••	•-	••	98
Braudeau, G	••	••	••	••		••	12, 195
Brazos River	••	** -	••	•• •	••	••	74
Brown, Carl. B	••	••	••	••	••	••,	194
· Buck Reservoir	••	••	••	••	••		148
Buck Horn Reservoir	••					••	144
Buck Horn River	••		••	••		••	<u>1</u> 44
Budhbara Nala	••	••	••	••	•• .	1	. 48
Burlington Reservoir	••			••	••	••	144
Burnt mills Reservoir				••			146
Burriniuck Reservoir		••					138
Byllesby Reservour							148
-,,	••	•••		••		• -	
•		**	C" _				•
Capacity of reservoir :	: Minimu	ım	••	••		••	192
Capacity surveys	••	••	••		••		26, 31
Capacity surveys for fi	nul rate	of silting		••	*		17 '
Capacity surveys of the	e Elepha	nt Batte	Reservour	••	×	· `	🌾 158 🕯
Capacity surveys of the	e Gibra	lter Reser	vour		٠		- 176
Capacity surveys of th	e Medin	a Reservo	ш	••			174
Capacity surveys of the	e Roosev	elt Reser	voir				167, 168
Capacity surveys of the	e Zumi	Reservoir			••	••	172
Cassedy, W.C.		••		••	·		14, 15, 194
Catchment, Straam Flo	ow and S	Silt					1
Catchments . Weather	ing and	COLLOSION	in various	type of	•••	•	2
Cedar Creek River	0.	•					148
Cèllina River		. i	••	••	•••	• ••	144
Chankapur		••	••	••	. ••	••	^{1.1} 18
Charkhamaranala (Ru	verl	••	••	••	••	••	46
Charkhamara Reservo		••	• •	••	••	••	11 1 46
Cheoha Reservoir		••	••	••	••	••	140
Chourfas Reservoir		••	••	••	• •	••	140
Chiem See Reservoir	••	••	••	••	••	••	148.
Ching Ho River	••	•	••	••	••	••	180. 182.
Cimarrow River	•••••	. <u>.</u>	•1	••	, <b>••</b>	••	146'
Cismon Reservoir	••	•	• •	••	••	••	1441
······					••		

t

144

C smon Res rvo r

- -

( ii )

		(	iii )				
			•	-			- Page
Clear Fir Brazos Biver			• •				140
Contra Alana River	•••	••		••	••	••	3
Cold Wator Duron		••	- • • T	••	••	••	148
Colu Water Wiver		••	••	••	·••	9013	74 75 138.
· · ·	•	•	•••	- 1	•••	1	53, 454, 155, 56, 184, 192
Columbia River			••	••	••	1	4, 74, 138, 155, 192
Combating solting up of	reservo	ir	••	••	••	••	14, 15
Coon Creek	••	••	•• `	••	•	••	9
Coosa River		• • •		·		••	138
Cordevole Lagodi Allengi	100 Rese	rvoir			• •	••	144
Corroston							1, 2
Cotton Wood Creek Rive		••	••	••			144
Contain in our creek, kint	/	 " I	 )" [:]	••	• • • • •		
Darna Dam		••	••	••	•	• •	18, 23, 30
Darna Reservoir			. • •			••	2 <b>4</b>
Darna River	••		••			18,	23, 24, 25
Davis				• •		••	3
Deep River	••						144
Density Currents	· · ·					i ••*	11
Devil's Gate Reservoir	۰.	••		••			146
Dhanras Reservoir					••	••	48
Dhasan River							35, 36,46
Dhukwan Dam	••	•		•		/	43, 45
Dhukwan Reservoir	••		•• ,	••	••	31, 3 35,	32, 33, 34, , 36, 44, 46
Dhumma Nala	1		••••	••			50
Dhupdal Reservoir	••	••		••		17	,18,20, 21 ⁻ 30
Disintegration			**				1, 2
Disintegration of rocks :	Maın fa	ctors caus	sine			••	1
Didovia Reservoir					••		142
Dodha Nala						••	48
Doritala (Reservoir)							48
Dorki Nala	<b>.</b> .						48
Dorli Reservoir							52
Doougar Bari Reservoir							52
Drae, Reservoir					••		142
Dredging			•	••	••	••	15
Drouhm, Mallet and Pac	ouant		.3		••		1. 15 194
Duquesnois, H				•••••••••••••••••••••••••••••••••••••••	••	1	1 15 194
		" E	·•	••	••	** *	1, 10, 104
Edgecombe, A. R. B.	••	••	۰.		••	. 9	, 168, 194 -
Ehrmann, P.	••	••	••	••		••	15,194
Ekin, Henry M	••	••	••	••	••	••	194
Ekrak Tank	••	••			••	••	18
Elephant Butte Dam							158
Elephant Butte Reservoir	r			••		. 10. 1	1-14, 72.
			••			-74 158, 161, 186,	, 76, 138 . 159, 160 162, 184 192, 193

**

PAGE 162 Elephant Butte Reservoir : Life of-. . . . 7 Elliot, Sir John ... . . . . • • .. 2 Erosion and Transportation of silt as effected by rainfall • • • • 1 Erosion of soil • • . . ۹. • • .... .:• .. 17 Existing Reservoirs in India : Silting of-. . ... ... "F" . 138 Fall Reservoir . . . . . . 4, 7, 13, 193, Faris, Orvilla A -10.10 · · · ... 194 180 Feng Ho River . . . . . . . . 146 Ferozemann Creek River . . . . • • . . l44 Forsina Cantanghel Reservoir . . . . . . 138 Fettenbach Reservoir . . • • . . . . , 1 f 7143 Field Manufacturing Co. Reservoir . . . . 140, 164, 184 -Fish River . . 2. . . • • • • . . . . 144 Flat River • • . . . . . . . . . . Z Follett ۰. . . . . . ۰. . . ٠. 2 Forther and Blancy ۰. . . ... 11, 55, 76, 153, Fox, C. S. . . .. • • ... . . 194 148 Franklinton Reservoir . • • • . . . . ٢ . . .. 140 Furnish Reservoir • • • • . . ... " **G** " 55, 56 Gambhar Khad . . . . . . . . . . . . 38, 39, 40, 44, Gangao Reservoir • • . . . . . . - -45, 46 r. 30, 43 Ganga River . . • • . . . . 43 Garai River • • . . • • •• 45 Garhya Reservoir . . • • .. 140 Genfer-See-Reservoir . . . . . ... . . . 46 Ghaggar Reservoir . . • • . . • • 43 Ghaggar River ... . . ... . . . .... 18 Ghataprabha River . . .. • • • • 142 Ghun Powder River • • • • .. 144, 176, 177, Gibralter Reservoir . . **,** • • • • • 184, 186 • • ۰. 46 Godam-nala (River) . . . . . . 52 Gomdoh Reservoir • • •.• ... ۲, 138 Goon Rapids Reservoir • • • • .... 148 Gorzente Lavaguina Reservoir . . • • • • Grand Coulee Dam 14, 194 ۰. . . Grind Coulee Reservoir 74, 138, 155, . . . . • • • • . . • • ì 187 Grand Saline Reservoir 148 • • . . ... ٠2. • • .. Grass Ridge Reservoir 76, 140, 164, ... . . . . . . ٤. 166, 183, 184. ۰. 186 • • Great Fish River

....

. . .

. .

• •

••

Greenbelt Lake Reservoir

Greenshore Reservoir

Guthrie Reservoir

Gurn ej Reservoir

. . .

. .

. .

••

••.

. .

. .

. .

• •

••

••

: ۱

. .

• •

• •

...

• •

..

••

• •

...

. .

...

. .

164

149

144

138

146

(iv)

(	¥	)
---	---	---

_	
- <b>P</b> 4	<b>A1A</b>
**	

4 X 7 Hales Bar Reservoir 135 . . .. . . • • 18, 25 Hanga River .... •• • • . . . . .. . . 50 Hargahan Reservoir •• • • . . • • • • • • Hayden, T.A. 167, 168 . . . . . . .... . . . . Hemphil, R. C. 8, 4 . . .. . . .. . . ... High Point Reservoir 144 . . . . . . . . . . High Rock Reservoir 140 . . . . • • . . • • . . Hirakud Dam 79, 80, 81, 92, ... •• .. . . .... . . .. 92, 94, 95, 96, 99 Hirakud Reservour 79, 81, 99 . . . . . . . . ... .. Hodges Reservoir . . 143 . . . . . . . . . . • • Holecek, V. 1,15, 194 •• • . . • • ... . . .. Holmesrun Reservoir - 146 • • . . • • ... ... . . Hoon, R. C. 4,14, 194 . . .. . . . . . . . . . . Hoover Dam 74, 75 . . • • - -•• . . . . . . Horse Pen River 144 • • . . . . . . • • •• Humphreys and Abbot 2 •• • • . . . . • • .. "I" Imperial Dam • • • • • • . . . . • • • • Im River 118 .. . . • • . . Irao River 140 . . • • .. . . Iran River 138 .. . . . . . . . . • • Ishikarl River 148 . . . . . . • • . . . . " "" Jam Mohgaon Reservoir 80 ... ... . . . . .. 48 Jamunia Reservoir . . ••. : . . • -• • 5. ۲» _ z " K " Kallnach Reservoir 142 . . .. . . * Kander River 149 • • . . . . Karamnasa River 43 . . ... . . . . Ken River ... 35, 89, 43, 46 ... . . • • . . Keokuk Reservoir 135, 157 • • . . • • ير فر . . Khadakwasla Dam 19, 21 .... . . . . • • ... Khairadatan Reservoir 48 .... . . --. . - -Khairbanda Reservoir 48 • • • • • • • • .... • • Khajuri River •• ... 43 •• • • .. --Khapri Reservoir ... 48 . . • • . . . . .. • • Kharang Reservoir . . 46 • • ... . . • • . . Kharang River ... 46 • • . . • • ... ... . . Khortors Reservoir 52 . . • • - -. . ..... Khosla, A. N. • • 194 • • • • . . - -. . . . Khushdil Khan Reservoir 142 •• • • • • . . Kirna Reservoir ... 50 .. •• .. •• • • ... Kiso River . .. 14\$ • • •• • • . . ... . . Koncha Bhanwar Tank 42, 45, 46 • • ... . . . . . . Koregaon - 18 • • - -• • --.. ... .. Kosı Reservoir 97, 112 • • •• •• • • .. ... ... 4, 14, 97, 56, Keai River • • - -•• • • • • ...

(*r*i)

-

•

		1 · · ·	/	-			-
				• • •			Pann
Wanadalaa Basannin							148 _
Kubadahi Dasarrair		••	••				50
Kurden Reserver	**	••	••	•••		•	. 48
Kummer Keservour	-	••	<b>V</b>	••		••	148
Kuroog Aiver				••		•	48
Winteniki reserver	••		••	••	••	••	
Lachura Reservoir			**	••	••	. 86, 37	45, 46
La Grange Reservoir	••		• •	8 yı.			140
Laguna Creek River		••	••	••	••	••	<b>``14</b> 8
Laguna Dam	••	´	••	•• •		••	9
Lake Ardmore Club Reser	voir	•		••		••	148
Lake Arthur Reservoir	••		**				84, 166,
			 	· _		167,1	82, 184,
			, -	• 1	• ~		180
Lake Austin Reservoir	• •		•••	• •*	••	156.	186, 195, 186, 193
Lake Bannet Beservoir			•••	••			'148
Lake Beale Reservoir		••				18. 23	. 24. 30
Lake Boomer Reservoir			••	••			148
Lake Booneville Reservoi	Γ		••	· . ·			·148
Lake Brackon Reservoir		••		•			148
Lake Calhoun Reservoir	••	••		, , ,			146 -
Lake Chabot Reservoir							146
Lake Chinton Reservoir							146
Lake Concord Reservoir			••••••	• •	••••		- 148
Lake Crook Reservoir		••	•••		••		144
Lake Decatur Reservoir							140
Laka Eldorado Reservoir	•••		•••	••	•• -	•••	146
Lake Fife Reservoir				••	••	17 19	21.22.
			•••	••••	** *	** ***	30
Lake Gibbons Reservoir	h	••	***	•• • •	••••	••••	148
Lake Harris Reservoir	··· ,	••	••	•• -	•:	·• ••	146
Lake Hayes Reservoir	•• '	•• •	• • •	•• `	••		146
Lake Hurlay Reservoir	••	••	••	•• •,	• •	· · · · · ·	144
Lake Lee Reservoir	· • • •	••	••	••	• •	• • •	144
Lake Meade County Stat	te Reser	roir	••	٤. ۲	<i>t</i> -  •		146
Lake MoMillan Reservoi	r		••	•• •	••	., 138,	162, 163, •
•						164,	183, 185
Lake Menta Reservoir	••		••	••	•-	76. 1	138164,
		_		•		165	, 183, 184
Taba Michia Dosomoja		-					185
Lake Mission Possbusin	••	• •	٠.	••	••	••	144
Lake Mission Reservoir	• •	• •	* -	••	••		146
Take Olathe Reservoir	+ 1 6 4 5 10 - 1	•• ••	••	••	••	¥ ++	148
Take Danish Deserves	CENG ALCE	SLAAKL	•• *	••	••	••	146
Take Dine Deservoir	•	•	••	•• •	••	•• •	140
Take Punde Dagament	••	••	••	••	••		146
Labour unity reservoir		••	**	••	• -	·· :	- 146
Lake Shamood Doo	ur	••	**	••	••		- 148
Lata Querwoou reserv	01 <b>7</b>	**	••	••			146
Taba Tapawama Daan		••	۰.	••			* 148
Taka Internette Dana	a vulr main	••	••	*•	••	**	140
Isla Waas Reserved	A ÓIL	*•	**	*•	••		· -145
TOYA H MAN TABALADIL	••	••	••	••	• -	••	140
							-

٠
				-		
	••		-			PAGE
Lake Worth Dam	••		••	••	••	• 18
Lake Worth Reservoir			••	••	••	
-	1	•				-`- 170**
Lancastor Reservour	••	••	· • •	••	••	148
Lane, E.W.	••	••	••	••	••	11, 12, 194
Large Reservoir in South	Africa : F	our	••	••	•• •	164.
Lay Reservoir	••	••	••	••	••	138
Lech River	••	••	•• .		••	142
Lete Letino Reservoir	••	••	••	••		· 146
Linth Reservoir	••	• •	••	••	••	142
Little Colorado River	••	••	••	••	••	171
Little River	••	••	••	••	••	. 148
Little Rock Reservoir	••	••	••	••	••	144′,
Little Tennessee River	-	•• 、	••	••	••	140
Live Oak Reservoir	••	••	••	••	••	148
Lloyds Shoals Reservoir	••	••	• •	•••	••	
Loch Raven Reservoir	••			••	•	<b>~.</b> 142
Lo Ho River		•		•	:	. 130, <b>182</b>
Lunkhar	••	••			•	55
		" M	"	<del>.</del>	± (	• • 1
Maddall Mard Darter		51			w	2 0 10 12
maudoek, 1 and Borlan	a, w.m.	••	• *	••	~*	
Moade County State Res	יומשינ	•				. 146
Mahanadı River					÷.	:. 4, 14, 79, 80,
•		••	••		-	81, 82, 83, 84,
•		-	•			85, 86, 87, 88,
						- 89; 90, 91, 92, - 93, 94, 95, 96, -
					•	99, 113, 114,
						116, 117, 118,
	•				_	·· 119, 120, 121, ·
				•		122, 125
Mainotra, J, K	(dealer)	41	••			···· 100'
Mallet	••	••	••	•• *	• • ²	· · · · · · · · · · · · · · · · · · ·
Maniari Keservoir	••	••	• •	•• •• •	يعظم والامر	40
Manlari Kiver		••	•• •	••	••	40 10
Man Kiver	••	••	••	••	••	··· 10
Marmsun Reservoir	••	**	••		••	·· · · · · · · · · · ·
Maswau lank	••	**	••	••	••	10
Mayoni Tank	••	**	**	••	- •	10. 10 90."
	Y	••	••	••	••	10, 3V,
Mechan Dimon	••	••	••	••	••	10, 100
Medicina Crock Diver	••	••	••	••	••	······································
Medicine Creek Kiver	••	**	••	••	••	·· 10 140 164
steanta Reservoir	••	••	••	••		175, 144, 174,
Medua River					••	· 142, 174, 184 "
Meiktila Reservoir		••	••	•• -	••	78, 142, 184
* *	••	••	••	••	-	. 186
Mission Creek River	••			••	••	. 146
Mission Lake Reservoir	••	••				:. 146
Mississippi Raver	••		••	••		2, 139
Mont Reab Reservoir	••	••	••		••	144
Morena Reservoir	••				••	144
Morgan Creek Reservoir	•					- 146

704

610

...

-

(vii)

•

J,

1	11:22
ŧΨ	
٩.	

27							PAGE
Morid Reservoir .			••	دي وو	· • •		52
Moroda Reservoir.		••	•• •	••	en e 7	••	48, 52
uohkundi Tank .		••	••	•• •		••	18
Mukti Tank		- 	••	••	••	·	18
Mur River					·-		140
Murrum Bridges R	ivor	•••	•		7		138
Mutha Rivar			••				18, 21
FILTE TALACE .	•• ••	· · · ·	••	••	••	••	20924
		" እ	[ **	-		-	
Nandur Medhmesh	war Weir	••	••	••	••	• -	2 <del>4</del>
Naraj Dam .	••	••	••	••	••	••	80,117
Narbada River			* ••	••	••	<b>~</b>	38
Nehr Tank .		• ••	••	••	••	••	18
New Austin Dam			••	••	••	••	156
New Austin Reserv	roir .	• ••	••	••	••	138	3, 183, 184.
	-	-	•	-			193
New River Reserve	. zie	• ••		••	••	'	140
Nile River			••	••	••	2.	7, 14, 138,
-						15	0,151,153,
· · ·					•		156
Nile River : Silt a	nd dischar	go ourres at	Haifa on t	he	••	••	7
Nizery, A, and R	ousseller,	м	••	••	••	•••	15, 195
Nokanan Reservo	ir .	• ••	••		••		148
North Platt Rive	× .	• ••	••		••		138
Nuscos River	ee ' -		••				• 74
• •		• • • •		-			. • .
Complete Bi			-		-	•	114
	** *	• ••	• •	•• •	••	••	140
00000 141707	•• •	• ••	••	۰۰ ـ ۲۰	••	14	2, 173, 184
OI Keservoir	**	• ••	••	••	••	• •	148
UI River	••	• •• .	- ··	••	+• ^{&gt;}		148
Old Lake Austin	Keservoir	*21	••	••	••	<b>•</b> ,•	138
Orba Ortiglieto B	loscryoir	•• .qs	••		• •••	·	. 144
O'Shaughnessy R	servoir		••	••	••	••	140
Ottawa County S	tate Lake	Reservoir	••	••		••	146
			<b>P</b> "		* *	-	•
Paormant		••	~				• • • • •
Dahari Pasarenia		••••	••	••	••	••	11,15
T - MALL TAGOLANIL		•• • ••	, ••	••	••	35	, 36, 44, 45,
Pahui Reservoir	••			_			40
Pahui River			••	••	-		<b>7, 41, 40, 40</b>
Palanne Roser	nie	**	••	••	••	••	40, 46
Paniana Diman		•• ••	••		••	•:	45
Daviaha Tara	-	•• ••	••	••	- •:	••	18
Desiche Desser	•• !	•• ••	**	••	••	••	33
Taricua Mesoryo	ч <b>г</b>	•• . ••	**	••	• ••	33	, 34, 36 <mark>, 4</mark> 6
L'ALKCEVILIO LOOP	LAÓTE	•• ••	••	••		., 14	2, 173, 174,
Darry Tank	× •	_		-		1	83, 184, 186
Tanu Iang	••	4.6 4.4	••	••	••	••	18
ravari 18ar.		•• ••	••	· ••	••	••	<b>∍18</b>
rayette Kiver	••	• • • •	••	**	••	••	140
Recos River	<b>`</b> 00	<u>*</u> ***	••	••	••	]	38, 162, 184
n	-						
Landis Pessian	F	** **	::	••	•• •	••	50
	• '	•	1	, -	•		
		-	-	-			

	-						
							PAGE
Perolles Reservoir	· · · ·	·	••	••	**	••	143
Pescara 3º Salto Rese	rvoir	••	••	••		••	140
Phono River	••	••		•• _		•• -	140
Pindraon Reservoir	••	••	• 4	4.	••	••	48
Pimpalgaon Tank *	••	••	۰.	· ••		18	<b>5, 26, 27, 28.</b>
Dung Croal Burer		-				1	20 14 148 148
Pine Lake Reservoir	••			••	••	*	140, 140 148
Durgh Tank	••	••	••		•••	••	190
Doobarar Decorreir	••	••	**	••	••		59
Porpoge Reservoir	••	••	••	••	••	••	140
Pout Du Loun River	••	••	••	• •	**	••	140
Preserboniferona rocki	e	••	••	• •	**	••	1
Puontes Recornor	J	• •	••	••	**		. 140
T HORING TROBOL OF	••		••	••		••	
		" Q	-			•	
Quinson Reservoir	••	••	••	••	* *		140
			z 16		•		•
Rao, K. L. and Ragha	wachari. S	L					12, 195
Raynaud, J. P.			~	~	_		11, 15, 195
Reuss River	••	•••	-		_		142
Relief energy		••	••	••			12
Reminieras							12, 195
Reservoir : Rate of Si	ilting of A	DV					2
Rhine River		-J		••		••	140
Rio Grande River		••			••	2,	10, 74, 138,
•						1	58, 184, 192
Rock-River	, <b></b>	••	••	••	••	••	133
Rejers Reservoir	••	-	••				148
Roosevelt Dam	••	••	••	**	••	••	· 192
Roosevelt Reservoir	••	••	-94	**	-	- 11,	14, 76, 138,
	•	•	•				167, 184,
Rose Lake						-	100, 102
Rosshaunten Reservo		••	••	••	••	••	149
Rousselier		••	• • •	••	••	••	15
	••	"5"	,	••	••		10
Saalacha Beservoir	•	~					749
Saalache Rivor	••	**	••	••	••	••	174
Salt River	••	-	••	••	••	. 19	9 167 189
	••	••	••	•• /	••		184, 192
Sampling of water fro	m a stream	a : A 001	nparison	of the "	bzoket "	and	•
" bottle "	••	••		**	••		`12 <b>1</b>
San Carlos Reservoir	••	••	8.0	••	•*•	••	138 184
San Carlos River	••	••	-		••	••	8, 138, 184
San Dieguits River	••	••	***	-		••	142
Sand Stone Creek Riv	er	••	**	-		**	148
San Leander River	••	••	**			-	146
San Leandro Creek R	iver	••	• 4	••	-	••	146
Sanpablo Reservoir	••	••	**	••'	-	-	<b>146</b>
Santa Anita Reservo	i <b>r .</b> .		*•	<b>é-10</b>	••	-	146, 148
Santa Fe Reservoir	••	••	•• ,		••		146
Santa Yaniz River		• =	<i></i>		₩.	]	44, 176, 194

ĩ			-				PAGE
Sapt Kosi River	••	^c ● ●	···* *	••	•• ·	10 106 106	14, 98, 99, 0, 102,104; , 107, 108, 0, 110, 111, 113, 115,
,		-		•	۲	ile	121, 122, 128
Serathi Nole (River)				••	••	••	46
Sarathi Reservoir		• • •		••	••		46
Sarina River				••	••		142
Satabal Creek River					••	• •	146
Savio Quarto Reservoir			••	••		••	144
Savan Sarovar (Ajiva L	Ake)			·••		••	•52
Soloto River				••	••	••	140
Scoltenna Riolunato Re	servoir					••	144
Sedimentary denosits							1
Sedimentary rooks	••				<i>*</i>	••	1
Sedimentation · Reducir	107				•	••	15
-Sediment - Completion 1	-6 ···	Discharr	hand	-			9
Senan Personal	JOI WOOL	Treaters	jo and	••		••	148
Shatahal Tail Tank	••	• -	*				18
Shreuzhal Tank	sup - C -			• •		••	18
Shirugawa Desewsoir	<i>.</i>	••	• • •	••		••	148
Sho River	••	• •	••			••	, 148
Sif River	••	•		••		••	150
Silt - Dofnition of		••		'			1
	· • •		* •	••	••	••	2
Sut : Erosion and trans	portation	1 OF	4.6		,	••	1
Silt : Urigin of——	•••		••	••	••	••	19
Silt : Settling ofin i	reservoir	8		. •••	<b></b>	•• ,	a ôn 91 99
, Sill : Volume weight rel	lationshi	p of	• •	••	• •	•• 1	2, 20, 21,22, 23
Silliand connector data	oftom	artetune	dame in B	ombow Si	ofe	••	18, 19
Sili and connected data	of some	oxisting	, dame in U	ttar Prad	lesh. Madh	.va	
Pradesh and Berar, 1	Baroda a	nd Hyde	rabad			4(	3, 47, 48, 49, 50, 51, 52,53
Silt characteristics of o	atchmen	ts		2			14
Silt concentrations of r	ivers in	China				• •	11
Silt concentrations : Es	timatiò	of]	weight	•••			13
Silt concentrations : So	me hear		.,		••	••	10
Silt deposited at Dhuk	wan: C	)uality of	F	••			44
Silt deposit in reservoi	rs of cat	chment	area above	1000 sau	are miles	••	188, 189
Silt deposit in reservoi	rs of cat	chment	area below	1000 sau	are miles	••	190 <b>, 191</b>
Silt discharge graph of	E Beas at	Balehu	••		••	••	78
Silt discharge graphs o	of Sùtlei	at Bhak	ra			5	7, 58, 59, 60,
		4 5					61, 62, 63,
	••	**	••	•			101
But alsonarge in lower	COURSE	ot the Ye	low River	• • •	••	••	164
Sut auscharge relation	ship⊶n t	h¢ Color	ado at Boul	der Dam	••	••	10 <del>4</del>
Suit custribution and y	610031468	in a ver	tical Section	n	**	••	* 17
Subing : Capacity. Sur	78 <b>78 to d</b>	letermine	ratio of			• •	` 1A
Silting , Stans L. J.	uadie to	combat-	up'of re	servoirs	••	••	1 (
Silting , Transa at 3 T	B 10		••	••	••	••	187
. Silting decreases with			<b>-</b>	••	••	••	54, 187, 193
		• • • • • • • • • • • • • • • • • • •					

						JAGE
Suting and catchment area	••	••	••	••	••	14
Silting of the Bombay State Reservo	ır -	••	**	••	••	20, 22, 25
Silting of the Elephant Butte Reserv	OIT	••	••	••	••	159 <b>, 16</b> 0
Silting of the Elephant Butto and R	oosevelt	Reservoi	<b>18</b>	••	••	183
Silting of the four large reservoirs in	South A	frica	••	·	••	165, <b>166</b>
Silting of the Gibralter Reservoir	•	••	••	••	••	177
Silting of the Hirakud Reservoir	••	••		•• • •	••	181
Silting of the Kosi Reservoir	••		••	••		112
Silting of the Lake Austin Reservoir		•		••	••	15 <b>6, 157</b>
Silting of the Lake McMillan Reserve	oir			••	· · ·	162. 163
Silting of the Medina Reservoir				`		175
Silting of the Parkeville Reservoir						173, 174
Silting of the Boosevelt Beservoir				••	•••••••••••••••••••••••••••••••••••••••	168 160
Silting of the Sweet Water Person	•	••	••	••	••	179 170
Salting of the little Dre Josh Description		••	••	* *	-++ 01	110,110
Suting of the Ottar Fradesh Reservo	118	••	••	••••••	31	37, 38, 39, 40, 41, 42
Stiting of the various reservoirs						183, 186
Silting of the Zuni Reservoir						- 171, 172
Silting of reservoirs Resolutions and	Recomm	endation	a of the C	entral Bo	ard	
of Irrigation and Power		* )				196
Silting rate : Estimation of			••	•	•• .	192.193
Silt in the Nile and its Control	_				• •	- 150.
Silt investigations at Balehu		•••				77'
Silt investigations on the Mahanadi	••					92 03 04
She meestigadons on the mananad		••	••	••	00	, 02, 00, 04, 95
Silt investigations on the Mahanadi	and the	s Kosi	••	••	·, 7 13	9, 128, 129, 0, 13', 132, 3, 134, 135
Silt investigations on the Sapt Kos	1 <b>`</b>	••	••	•		, 100, 107, 103, 109
Silt load and runoff of the Mahana	dı					10, 100
Silt load and discharge of the Mah	ur nadi an		4 4 1001	••	11	2 11: 11#
Silt load from surface camples to ma		L MO AS	rite	The second	11. 6	J, 117, 119
Sant Koel for converting			COLLECMO		tor .	110
Silt load in rivers during free hote . W	···	. د . د مد د اه	No ojem	<b>.</b> .		111 100
Silt load of storems	anauon	шине ца	ure or-		:	1 31,122
Silt load of the Columbia Dama	,	•••••••••••••••••••••••••••••••••••••••	••	••	••	2, 3, 4, 74
Sht load of the Columbia River		•	••	••	••	155
Sht load of Texas Streams			••	••	• •	13
Sht load of the Rio Grande	••	••	••	••	••	158
Silt load of the Sutlej at Bhakra		••	••	••	56	, 57, 58, 59,
						64, 65, 66, 67, 68, 69, 70, 71, 74
Silt loads of the Sutlai and the Ross						
Silt load of the Vellow River		••	••	**.	••	100 101
	••	••	••	••	••	100,101
Silt loads of Bhakra and Boulder Re	ARTYAIT			•	-	
Silt runoff graphs of the Sutlei of Th	abra			••		13,10
Silt studies of some evisting recommis-	un in cel-	••	••	••	••	7 <i>4</i> 197
or porte ortering legelA011	.ο.μ.,υιμε		· · ·		•	191

٠

Silt studies of some existing reservoirs in other countries, •• Silt studies of some proposed reservoirs in India • • • • Silt Surveys •• :. •• •• • • .... ... Silt Surveys of Lake Austin • • • • • ... .. Silt Yield of Mahanadi Catchment ... . •• •• ••

55

24

81

156

•

,		``	,				
							PAGE
01						<u> </u>	3. 4. 195
Simaika, Y.M.	•• ••	• •	•• .	· • •	••	-	18, 26
Sina River		••	• •			•••	55
Sir Khad	•• ••	••	· · · .	••	••	••	181
Soil erosion in th	e Watershed o	of the Yello	w River	••	••	• •	59
Sorlı Reservoir	·· ··	• ••	••	• • •	••	•	144
South Pecolet Ri	ver	• •	••	••	••	#	143
Sowpit Reservoir	· · · ·	• •	••`	••	••	* • •	140
Soyama Reservo	ir,	••	••	••	•••	••	; 140
Spartonourg Res	ervoit	••	••	••	••	· · ·	149
Spin Karez' Rese	rvoir	•	•• ,	••	••	•• *	. 140
Spin Karez Rive	л ^с	••	••	••	••	••	141
Stabler, Herman		••	•	••	••	••	1
St. Denis Reserv	oir .	••	••	••	••	**	140
Sterling Pool Re	servoir	••	••	- 1	••	••	13
Stevens	•• ••	••	••	••	••	••	1
Steyrdurchoruch	Reservoir		••	••	••		14
Steyr River	•• ••	••		••	••	••	14
Storage Reservo	irs in Bombav	State		••	••	••	1
Storage Reservo	urs in Utter Pr	adesh -				••	3
Summary and c	onclusions	••	••	••	••	••	19
Sundays River	•• ••	••	••	• •	••	1	38, 140, 169 18
Sun Kosi River							9
Sunset Canvon	Reservoir				••	••	14
Surva River					••		5
Suspended load	concentration		• • • •				
Suspended load	observation in	Ittar Prac	lesh Rive	r8			4
Suspended load	of the Colorad	lo at the Bo	ulder Da	m			154.15
Suspended load	of the Mahana	ngi ma ana ma				. 8	), 81, 82, 8
· ,			••		••	8	1, 85, 86, 8 8, 89, 90, 9
Suspended load	of the Mahan	adı and the	e Kosi Ri	vers : Spe	olal inve	stiga-	
tions in conn	ection with	:	••	•• -	••	- ••	11
Suspended load	of the Nile	••	••	••	• •	.:	151, 18
Suspended load	l of the Sapt K	losi .	••	••	••	9 1	9, 100, 10 02, 103, 10
Sugnandad 1 "	1 of the Court -	7			œ		
1801 Donneyers	tor the Sapt E	Losi Compai	teo to ani	iuai runoi	LC + •	••	1.
Suspended 10a(	i passing in W		••		• •	·• ·	ا↓ •• مוו פון
Suspended load	i with depth al	iong the sar	npling vei	rtical : Va	TISTION	01	120, 11 120, 1
Sutiej Kiver	•••••••	••	••	••	••	7	, 55, 56, 7 76, 77, 1
outlej Kiver a	t Bhakra : Sil	It load of-	····	••	••	. 5 6 6	6, 57, 58, 5 0, 61, 62, 6 4, 65, 66, 6 8, 69, 70, 7
Sweet Water	Reservoir					Ţ	14 170 10
Sweet Water	River	• ••	••	••	*•	1	184, 1
wheel traver.	****OT. * (	• _ • _,	••	••	••	••	144, 178, 1
<u>m</u>		••	Т″				
Tamur River	•• ••	• ••	••	••			
Tandula and S	ukha Nala	• ••	•• _	••	••	••	
Tandula and S	ukha Reservoi	irs	• ••	••		••	•
Sweet Water Tamur River Tandula and S Tandula and S	River Sukha Nala Sukha Reservoi	· _ ·	T"	••			184, 1 144, 178,

	٠	٠	٠	٠.
-	٠		-	ъ.
LX.	2	1	1	
	-			
•				•

-

				-			-
							PAGE
Tangundaing Tank		•	•		••	••	144
Tennessee River	••	- -	••	••	••	••	138
Thixotrophy and Density	Curre	nts	* * *	••	••	••	11
Three Rivers Reservoir			••		••	••	74
Thungr See Reservoir.				••	••	, 	- 142
Tidone Molato Reservoir			••		••	• • • •	. 146
Tikkerpara Dam		••	••	••	•• -	• • • •	80
Tırolar Ache River		·	••	••			142
Tolumpe River		••	••	••	-		140
Torre Crosin Reservoir		• •	••	••	• •		146
Tow Reservoir		••	••	••			·
Trinity River			••	••	••		13. 144. 169
Turkey Creek River	••	• •	•	••	••	••	- 146

" U "

Tinday Flow in th	a Elenhent	Butto	Reser	voir: The	 Phenom	enon of-	••	140
University Lake	Reservoir	2000						102 748
Unner Crystal Sn	rings Rese	rvoir				•	••	148
Upper Sig Suit Sp Upper San Leand	ro Reserve							- 146-
Uari Reservoir					••			52
	••	-	«	<b>v</b> "		•		• •
Vaal Dam				• ••				3
Vanoni. A								4, 195
Van Rynevelds I	Reservoir	••	••	••	••	••••	••	76, 140, 164, 166, 184, 186
Verdun River	<b>9.3</b>			••	•••	••		140
Vetter, C. P.	••		••	••	••	••	••	9, 195
Vierwald Reserv	oir d	••	••	••	••	•••	••	142
Visapur Tank	**	••	••		••	••	••	. 18, 25
Volume—weight	r lationshi	ip		••	••		••	12
			"	₩"				
Wadi Haifa	••	••	••	••		••	••	152
Waghad Tank	••	••	••	••	••	••		- 18
Wallen See Rive	r	••		••	••	••		142
Wara Tank	••	••	••	••	••	••		48
Washington Mill	s Reservoir		4.4	••	••	• *	••	148
Weathering-Se	e Disintegi	ation						
Wei Ho River	•• `	••	**	••	••	••	••	180, 182
Well Fleet Resei	rvoir	••	••	••	••	••	••	146
· west Frankfort	Keservoir	•• *	••	••	••	••	••	148
W. Fr. Truity	TALAGL	••	• •	••	••	••	***	140
White Real De	er	••	••	••	**	** •	••	150
Wilcooks Ser N	Servoir	••	1850 B	••	••	••_	••	144
Wills Point Por		*•	••		••	*2	••	7,198
14 113 T OITO 1468	OI VOIL	••	••	••	**	••	••	148

•

	-							1
			48	£ "				, PAGE
Yadkin River	••	••	**		•••		••	140
Yamuna River		••		••	-	• •	· .,	30
Yangtse River		• •	••	••	••	•	••	179
Yellow River	4 #	••		••	* * *	•• •	<u></u>	11, 14, 137, 179, 180, 181,
Yerla River	* ~	••	••	**			••	182 18
	ji;		" <b>Z</b>	**		•	: -	• • • • •
Zuni Reservoir	• •	•	• •	••	••	•	••	76, 171, 172, • 184, 186
Zynı River	•*	• ••	••	- 5	••	·	•	171, 172, 184

(¥1¥)	•
-------	---