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FOREWRD 

It is sometime that Gumbel's Extreme Value formula has come to 

be almost universally accepted for deri~ing the most reliable estimate 

of the average peak flow magnitudes of long term f' :._urn periods of 

occurrence. Pitfalls nonetheless obtain commonly in evaluating the 

parameters of the formula from the past observed data of the annual 

peak flow measures on record. Hypothetical definitions are 

postulated for the plotting positions representing the various 

observed flow magnitudes, while theore~ically none exist. Gumbel has 

in fact clearly admitted this position in his latest published 

valuable book on Extreme Value Distributions(1158). 

The maximum likelihood approach which involves "prohibitive" 

computational labour has been processed in the Technical Memorandum 

in a schematized form to be readily adopted by all design engineers 

who are equipped with the simple aid of only a routine calculating 

machine and ordinary tables of logarithms. The estimates resulting 

are shown to be precise as well as better consistent of magnitude(ie 

insusceptible to large alterations of value) to withstand effectively 

deletions of a few years doubtfully observed flow measures or limited 

additions of more recent data. The feature comprises a fundamental 

and a very significant contribution to the subject which has for long 

proved to be slippery. 

Poona 

March 17_, 1962 

D V Joglekar 
Adviser, Central Board 
of Irrigation & Power. 
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Engineers double-check their work as the7 go along and then tey 
another method to see if' the final answer is the same. That is why 
it'is safe to ride automobiles and electric trains and cross bridges. 
An Engineer worthy of the name would rather lose a client than design 
a· structure he considers unsafe, H ' 1~ C. 

- aro .. oy 

The statistician is no longer an alchemist expected to produce 
gold fran any worthless material offered him. He is more like a 
chemist capable of assaying exactly how much of value it contains, and 
capable also of extracting this amount, and no more. In these cir­
cumstances, it would be foolish to commend a statistician because his 
resUlts are precise or to reprove because they are not. If he is comp­
etent in his craft, THE VALUE OF THE RESULT FOLLOWS SOLELY FRCM THE 
VALUE OF,. THE MATERIAL GIVEN HIM. IT CONTAINS SO MUCH INFO~ATION AND 
NO MORE,. HIS JOB IS ONU: '10 PRODUCE WHAT IT CONTAINS. 

- R A Fisher 

PEAK FLOW ESTIMATION BY METHOD OF MAXIMUM LIKELIHOOD 

The assessment of the largest magnitudes expected of floods in 

different rivers constitutes a problem of great significance and importance 

in engineering constructions and works of River valley development and 

flood control Projects. The problem is veey complex also; tor, floods are 

produced by different combinations of a large number of variable and non­

variable conditions. The former include: the rate of rainfall; the 

temperature conditions; the quantity ot water in reservoirs, lakes and 

ground at the time the flood occurs; the velocity and direction of the 

storm; and the many other elements which causa one flood to differ fran 

another in the same stream. 
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The latter conditions include: the prevailing conditions of rain­

fall; the size, shape and slope of the eatchment area; the character of 

the soil and vegetation on the catchment; the physical characteristics . . . 

of the stream channel; the storage capacity in reservoirs; and many 

other physical characteristics of the catchment area and the stream it­

self. The effect of these on floods is usually- invariable. 

Again no two floods are exactly alike. Two storms of like 

intensity, velocity and direction passing over a catchment area may 

produce different floods. When many conditions tending to large floods 

occur coincidently- with great rainfall, extraordinary floods are produced. 

Thus floods which.have occurred on some rivers have been greatly in 
. 

excess of otl:ers on the same river. But a characteristic of these great 

floods is that they come only rarely, and usually in different years 

for different streams. In order to ascertain, therefore, the flood 

magnitude(s) that any proposed hydraulic structure(s) across a stream 

may be expected to meet in the normal course of years, the frequency 

study of the past observed floods data alone of the stream can at all 

provide any indication or guidance •. By virtue·of the natural topographi­

cal, climatic and otl:e r differences ruling from one .region to another, 

such studies of necessity have also to be confined to individual basins 

separately. 

2. EMPIRICAL FORMULAE 

While the subject has interested design engineers from very early-

years, observed data in the past have been meagre. _The methods or flow 

rates observation have been mostly indirect and not sufficiently-

elaborate in accordance with the modern standards. In order to serve 

the adhoc needs of constructional-requirements therefore, such incomplete_ 
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data alone have provided the means for deriving different empirical 

formulae like 

Dickens' 

Ryves• 

Modified Inglis • 

Q • CA3/4 

Q • CA2/3 

Q • Ki x 7000A 
..,f"N. 

825< c '< 1400 

450 <C < 2700· 

K, the shape factor • ratio 
of diameter of stand~cir­
cular catchment of same area 
to actual stream length L of 
catchment. 

All Nawaz·Jung 
Bahadur's Q .. CA(0.925- 1/ 14 log A) 1700<C< 2100 

Dredge and Burge 1 s Q = 1300 W d W • Average width of basin 
L • Length or basin 

Murphy's Q = A T46790 + 157 for areas Under 10,000 
'f. A + 320 :.J sq miles in north-eaetern 

USA 

Ganguillet • s 1421A 
Q .. 3.11 +/A 

C.ramer•s Q. 80.6A· · 

1 + 0.1347 A! 

Switzer & Miller'~ Q = 80PW1·5 

etc, · ... • •• etc, 

for Swiss streams 

for Mohawak river in USA 

for Miami Conservancy 
district, where P • rain­
fall factor and W• mean 
width or drainage area 
in miles. 

The principal lacurJE. in the above formulae and their like is the 

complete absence in them ·or a. term or terms for the. relative frequency 

or the RETURN PERIOD concept. They all simply aim at evaluating the 

magnitudes of the very highe-st floods alone that may ever be expected in 

the respective streams. But actual observed data of the daily flow 

rates and of the annual peak rates which have accumulated of recent years 

for sane of the streams show the derived magnitudes from the formulae as 

not quite realistic always, apart fran their looseness. In otl:er words 
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the formulae do not come' llil.to the modern design engineer's standards 

of requirements. Economy conditions impose the need for making every 

design as precise as possible. Thus dams or weirs are designed with 

fixed spans of expected life. Their heights and or other dimensions 

are suitably determined to withstand the extree magnitude of the floods 

expected during this pericxi and not the highest magnit'.lde for all time. 

For* 

"However big floods get, there will always be a bigg~r one coming; 
so says one theory of extremes, and experience suggests it is true." 

It is an obvious fallacy therefore, to formulate any expression for 

estimating all time maximums. 

3. RETURN PERIOD CONCEPT 

The earliest known attempts towards introducing the frequency or 

return period concept for different flood magnitudes were made by 

WE Fuller(1914) and E W Lane(1926) who both expressed the formula for 

the average highest flood magnitude(Q) expected to occur once every T 

years as 
Q -= k(log T + b) ••• (1) 

where ~ and ~ are specific constants for the basins. Different methods 

of evaluating ~ and ~ have been sponsored from time to time. Better 

suitable forms of expressions have also been proffered for deriving by 

the application af statisticalethods to the obs~rved data ["H A Foster 

(1924) Allen Hazen(1930)_7- Slade(1936) proposed the transformation 

through the partly bounded function 

F(y) =-1-
.j2 1T 

~clog d(y + b) 
e 2 J 8 _ ~2 '' t • I 

-oo 

• • • (2) 

*President's Water Resources Policy Commission, 1~50. Water Policy for 
the .AJnerican People. Report, Washington, D C. Vol I, p 141. 
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for np~alizing the data where~ is the Naperian base and b, c, d and t 
0 • ' - - - -

are cOflstants pertaining to the basin. 

In order to explore what additional modifications may or may not be 

needed for analysing Indian rivers data in accordance with the procedures 

outlined, the apriori frequency histograms obtaining of the daily 

observed discharges data of six rivers for some 8 to 20 years as listed 

below are presented in fig 1. 

Tapi at Kathore •• 1';141 - 53 
Narmada at Gardeshwar •• 1948 - 55 
Yamuna at Tajewala •• 1946 - 55 
Sone at Dehri •• 1945 - 56 
Mahanadi at Sambalpur •• 1944- 54 
Damodar at Rhondia •• 1933 - 53 

The distributions in terms of the original variate of the daily discharge 

are at once seen to be all highly skew. Their logarithmically transformed 

distributions(also presented in fig 1) show a large part of the 

skewnesses as removed, though not quite reaching to near normality. On 

utilising the longer term(1920-54) daily discharges data also(of the Sone 

at Dehri), both Slade 1s expression(2) or the alternatively best fitting 

Pearson type curve (type VI) ei the r(fig 2) are not found to be reasonably 

adequate. The. exceedingly large values* of x.a.obtai~ng in each case 

for the different respective fits made, only add to the infallibility 

of the otherwise correct inference derived fran visual inspection of 

fig 2. 

* -,._'2. = 338.8 for 12 degrees of. freedom for Slade.1s expression; 

X.
1 

= 277. 1 for 11 degrees of freed an for Pearson-type VI curve; 

x_2. = 310.4 for 18 degrees of freedom for log-normal distribution. 
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·4." OBSERVED ANNUAL PEAK FLOW RATES 

. ···Other avenues also have, therefore, been explored toward meeting 

the limited objective of evaluating the magnitude ~ of the average 

hi'ghes't' f:J:ood of T years return period of occurrence in specific 

s~'Feaui!i ofi interest. The annually observed single highest peak flow 

rates~ata of the respective streams have alone been mostly utilised 

fil'r"·'th:ts -purpose by suitably processing them. The individual values 

oi"' ·silcif d!lta interse separated by broad twelve months intervals 

bet.weerftl1em subscribe better to the independency criterion usually 

p~escr.tbed for all statistic&l analyses. 

ri'lre:rs-·'extend only to about. 30-40 years. 

s~urable ~lso than complete daily data. 

Their lengths for most Indian . . 

Such data are better easily 

They lend better amenable 

fol:'·' sr¢. computational manipulations by virtue of their limited· mm.bers 

for ttti· purpose of examining the suitability of various alternative 

'·proee·mS"of analyses. 

·: ::.·,-·~cii""dingly, fig 3 was prepared to present the type of 'Variations 

'o'fitalrifhg"'of such data fran year to year. Apart fran reflecting the 
' 

'ujUSJ:"'j"eai' to year irregularities of the flood magnitudes irr River Sone 

· (~·'li.Iif other river for that matter) fig 3 does not serve much other 
~-·-~-.;:- ..... :.-~ .... ._,. ~ ~· 

uifefu.J:·"'plli<pose. Their re-arranged presentation as in fig 4 ·in 

'agtei:idmg•·order of the year .to year peak flood magnitudes will perhaps 

be- !~~·better useful instead, for estimating the graduated future 

h~ghezoinagnitudes to expect. 

5: FREQ1JENCY HISTOGRAMS 

As the sequence of the years in which they are presented in fig 4 

.follows. only the respective flow magnitudes, it was thought useful in 

· tfie'fint·'instance to enumerate the number of occasions for which the 

· annual' peak flood magnitudes were palpably not different. Thus· peak 
floods of the order of 
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FIG 2. 
1&00 FREQUENCY DISTRIBUTIONS OF 

JUNE·DCTOBER DAlLY FLO'fl MAGNITUDES 
SONE AT DfHRI(1720-54) 
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2. 75 lakh cfs were observed 2 times in 32 years 
4,08 II II' 11 II 3 II II II II 

5". 80 11 11 11 11 2 II II II II 

6.03 11 II II II 2 II II II 11 

6', 17 11 II II II 2 II 11 II II 

6", 77 II II II II 2 II II II II 

7.81 II II 11 II 2 11 11 II 11 

8,66 II II II II 2 II II II II 

9, 59 II II II II 4 II 11 II II 

while all other magnitudes occurred only once each. Representing these 

relative "frequencies of occurrence as the ordinates against the respect-

ive flood magnitudes as in fig 5 we find the lie of their tops yielding 

a frequency distribution polygon. It is not difficult to see that the 

unequal spacings of various ordinates in fig·5 owe primarily to the 

different· concentrations obtaining over different ranges of the flow 

ma.gnitude·s during the period of the years. In order to highlight this 

aspect iri its clearer perspective, a frequency histogr~ as in fig 6 

offers better suitable. 

·Fig~ actually shows the frequency histogram·for a slightly longer 

data obtaining of the Krishna at Vijayawada for 65 years(1S94-1958). 

The frequency histogram, as is well known, is the preliminary derivative 

stage of 'the ultimate frequency distribution type, which the data, when 

obtaining in larger numbers may be expected t~ subscribe or conform to. 

It.is supposed to reflect the principal features of the type and yield 

a fair index to the values of the parameters cont!lined of its descriptive 

expression. The broad extents of the curve 1 s coverage to the left and 

to the right are also nearly indicated by the histogram, as also the re­

lative frequencies ejqlected of all intermediate individual annual peak 

flood magnitudes. 
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6. MULTIPLICITY OF EMPIRICAL DISTI\IBUTIONS 

In an attempt to even out the irregularities of the limited histo-

gram form of variations and to avail its inner average form for bro11d 

general use elsewhere, five curves evaluated in accordance with the 

standard procedures are shewn superimposed in fig 7. As eye inspection 

alone m~- not provide sufficient or reliable evidence of the goodness 

of fit(appropriateness of the curve types to confonn to the histogram 

pattern); aid has been sought of the non subjective statistical 't.'­

tests.· · While the elegant symmetrical Gaussian or nonnal type is immed­

iately 'fdUnd inappropriate for describing the skew pattern of the 

histogr·am, the multiplicity of the remaining four types all fitting the 

histograin nearly adequately, lands the investigation in an awkward 

dilemma. · For, despite the four curves each providing adequate hugs to 

the overall lie of the histogram, they are not exactly coalescent. As 

an immediate corollary of the non-coalescence, the areas enclosed 

between: the horizontal axis and the different curves to the rig.ilt of 

any specified ordinate(s) will also differ. Since the reciprocals of 

these areas constitute the RETURN PERIODS(in years) of attaining or 

exceeding the corresponding peak flood magnitudes, the return period 

measures ·as estimated from the different curves will be also different 

(fig ·a)-. ·• The disparity feature between the estimates which is quite 

evident·ror flood magnitudes of the order of nine lakh cfs keeps on 

steadily ·increasing for higher magnitudes. It is easy to verify the 

convers~ feature· also namely of tt~ curves yielding non-unique 

estimates of return periodS of occurrence for identical pellk flood 

magnitudes. In other words, the use of the frequency curves despite 

their adequately fitting the frequency histogram of the observed annual 
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peak floods oata seems rather inappropriate particularly for the purpose 

ot estimating the peak magnitudes of longer return periods of occurrence. 

It is an inherent limitation of all statistical methodologies and/or 

derivations. 

7. THEORETICAL DISTRIBUTION OF EX'l'REl'.E VALUES 

·· . All the same, there are numerous occasions when such estimation 

problems hsve to be solved and the subject has been making rapid progress 

·to· provide reasonable approaches from within the realms of statistical 

methodologies. It was probably under these contingencies that 

· Gumbel*(1~41) developed his Extreme ValUJ distribution function 

P(x) dx = ae-a(x-u)e-e-a(x-u)dx • • • (3) 

for analysing the data consisting of the extreme (largest or smallest.) 

I members(~7 of several large samples(where .! and~ are parAm~ters pe~­

taining to the basin and~ is the Naperian Constant= 2.71828). 

Fisher** and Tippett(1928) had derived the expression earlier in their 

exposition on 11Limiting Forms of the Frequency Distribution of the · · 

Largest o:r' Smallest Member of a Sample". 

The limiting form{3) is known to hold for most forms of frequency 

distributions of the parent•population of~ so long as the sample size 

· !!! is· sufficiently large. In the present case !!! equals 365 corresponding 

to· the nutJiber of days in a year. The value of .!! for tte number of 

· years whose peak flow data have been observed is also similarly required 

·to be sufficiently large for obtaining better reliable estimates of .! 

and ~ in(3). Assuming for simplicity the values of !!! and.!! obtaining 

· * E J Gumbel: 1The Return Period of Flood Flows•, Annals of 
Mathematical Statistics, Vol XII pp 163-190, 1941 

**R A Fister & L H C Tippett : Proceedings of the Cambridge Philoso­
phical Society, Vol mv, Pt 2, pp 180-1'7(), 1928. 
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in most hydrological data to be tolerably adequate in practice, different 

processes have been availed for evaluating .! and .!! in(3). On integrating 

(3) the probability of an year's peak flow~ not exceedirg !o is obtained 

as 
-e-a(x0 - u) P0 = e 

8. HYPOTHETICAL PLOTTING PUSITIONS 

... 

In terms of the average return period measure T(in years) of just 

exceeding ~ once in T years(4) can be re-expressed as 

x = u- (1/a)loge loge T/(T- 1) ... 
While there is no dispute up to this stage fran a theoretical point of 

view, different methods have been availed on different occasions for 

evaluating the two parameters .! and .!! fran a set of any observed data. 

(4) 

(5) 

Thus, Gumbel offered the method of equating the first two moments or 

alternatively their variants, the mode and the me&.n deviation to the 

respective entities of distribution(3), which is a perfectly legitimate 

procedure. Some other procedures, apparently presumed to be capable· of 

yielding even more powerful estimates af .! and.!! by directly fitting 

expression(5) to the data by the method of least squares have also been 

availed. For this, the different approximate concepts of the return 

period measure as postulated by Hazen, Gumbel and V T Chow have been 

availed for evaluating the return period measures of the observed n x 1s. 

It is here possibly that the studies have landed in a region of 

fallacious approach. Gumbel* is, no doubt·, aware of the possible 

incorrectness of the method of the plotting position's definition, but 

·has still availed it as the most plausible method under the circumstances 
• 

*E J Gumbel : Statistics of Extremes, pp 29-37, Columbia University Press, 
New York(1958) 
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of the case. The method consists of arranging the n years • observed· 

annual· hoods data in descending order as x1 ••• ~ and assigning their 

re-spective return periods as 

T1 T2 T3 T4 •••• Tm ••• Tn ) 
) 

Hazen 2n 2n ~ 2n 2n 2n ) (6) 7 ····--··- ... 
1 3 5 2m-1 2n-1 ) 

!!!:1 n+ 1 
) 

G\.DIIbel and !!!:1 n+ 1 n+ 1 n+ 1 .. . .. ) 
V T Chow 1 2 3 4 m n 

Taking n = 50 for instance, these magnitudes obtain as 

... ) T1 T2 T3 T4 T50 
) ... (7) 

14.3 1.01 ~ Hazen 100 33.3 20 ••• 

G\.DIIbe 1 and 51 25.5 17 12.75 .. 1.02 ) 
V T Chow ) 

On plotting the n points(Tm• Xm> so obtaining on specially ruled 

Extreme Value Probability paper, a least square lire through them is 

drawn and the values of the two parame~ers .! and .!!: determined. Thus 

different values will be obtaired according as Hazen's or the other 

series of T values are availed, resulting in higher retu...'Il period 

measure for any specific large flood magnitude by Hazen's process than 

by the otre r. 

Actually neither sets of the apriori T values in(6) nor any other 

similar sets can claim to constitute the true average return period 
. . 

measure of the x•s. In fact, they do not debar other definitions 

being fonnulated for evaluating Tin different other wrqs*. Thus, the 

design flood estimates derived there-from by fitting the least square 

lines through the .n_points('Jtn, xm) will also differ accordingly. Even 

#a F Kimball - 110n the choice of plotting Positions on Probability 
Paper" - Journal cl Am Stat .Assoc Vol 55 No 291, Sept 160 

R K Linsley; K A Kohler an:! J L H Paulhus - 11Hydrology for Engineers", 
pages 247 - 249, McGraw Hill, New York, 1958. 
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,when the different. sets of' tb:l plotting positions may be covering much 

CODDIIon groun:i in the domain of the observed data, their average liu 

ma;y.-n:at be exactly coalescent. Thus on account of any such incidental 

slo-pe--differences • the different mean lines through the different sets 

mq i'ind themselves considerably apart fran each otb:lr, especially when 

~"erided ·outside the observed domain of tb:l data. 

,..;-MtOCIMUM' UKELIHOOD ESTIMATION 

~""-~-l'.l!.~,~ature only rsflects the inherent limitations of' ~llll~ing 

!ma,;.:L.,:taJIIP.les _data. For, tile set ~ the .!l yeare 1 observed data form 
.· . 
t;ut:.-e,i;'smal1. part only Of the unending Series Of the annual f·lOodS I data, 

. 'fhe- -emall1>art is thus fortuitously quite capable of coinciding with a 

Seri-es'>of -very low flood _years or of very-high-flood years or· of' a 

o!d'ancl!d·or othsr mixture of the two. In fact no law, cycli<:· or ,other­

wtsre-·o!l- ·any assignable number of years duration of periodic regularity 

or-otherwise has so far been ascertained from observed data or inferable 

otte-r•"1W!dence. The utmost that is known of the observed series of the 

annual: 'floods data is that each separate value canprises the largest or 

the'-textreme member' of the yearly samples of 365 daily fiood measures 

eactt.-· 'Such data are yet knOW'l to subscribe to the only Distribution 

La'fl(3) :- · · · 

' :. · .. Availing therefcre(3) alone as· our main prop we can evaluate .! and 

~by, maximising the probability of the observed .!l floods. IN OTHER 

WORDS,•'WE Ot-.'LY ASK WHAT VALUES G' .! AND,!! \\OULD MAKE THE CHANCE A . . 
MAriMUM .~F· OUR HAVING OBSERVED THE MAGNITUDES x1, •••• xn AS .!l ANNUAL 

HIGHEST ·FLOODS? For this, we do not need to postulate any subjective 

sOdcf!P,tS f:or the return pet'iod measures ar the observed .!l x•s. Since 
. 

no·wquential la.w of the annual fioods has been observed or is expected, 
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the individual peak flood values all must obviously be having respective 

re+.urn period measures quite independently of each other. Thus, the 

return period measures of the .!! observed peaks may be all larger than .!! 

years, all smaller than.!! years, cr mixed. But each peak is an annual 

peak value, and must all have occurred under the most congenial cir-

cumstances inducing their occurrence in the different respective years. 

In other words, the probability of the.!! magnitudes having occurred as 

.!! annual highest floods must be a maximum. Now by the multiplication 

theorem for the joint occurrence of .!! independent events 

P(x1 ••• Xo) m P(x1) P(x2) ••• P(Xo)• wnich with the help of(3) 

., an e- r.a(xi - u) e- E e-a(xi - u) • • • (S) 

In order to maximise (8) wnich is the same thing as maximising 

L =log Plx
1 

••• xn) 

m nlog a- I:a(xi - u) - l:e-a(xi - u) 

we put dL z 0 
du 

and 

Now dL • na _ a I:. e-a(~ - u) 
du 

on equating which to zero, we obtain 

dl. = 0 
da 

... (9) 

ie e-au"' .1 Ee-axi .. (10) 
n 

Next, dL = .!! - I:(~ - u) + J: (x, - u) e-a(~ - u) da a --~ 

Substituting fran( 10) in the last term at' ( 11) and rewriting, 

dL =.!! - riX + nu + eau t:.L e-axi - nu 
da a --::~. 

... (11) 

... (12) 

Utilising( 10) for a second tine in( 12) and transposing, it can be 

rewritten as 
dL _ 
da - n -ax· £xi e-~ - n(x- 1/a) 

S: e ~ 



19 

on equati~ dL to zero trerefore, we obtain 
da 

... 

yielding a unique val.t.e for_!, simply deduced fran the !! observed 

(13) 

. . . i • 

m~rrltudes' of the annual peak floods x ••• x without any hypothetical 
I n 

assumptions whatsoever about their return J:eriods. Tile requisite value 

of .!! alro is then uniquely detenninable fran( 10). 

10. SCHEMATISATION CF COMPUTATIONS 

But the form of expression(13) despite its containing a single un­

known.!. is rather complicated to yield its uniqt.e solution explicitly. 

It does not offer any furtrer simplification of form. The neighbourhood 

of the expected solution therefore, has to be intuitively assessed first, 

whereafter· a series of nearer approximations to the exact solution of.! 

have t·o be successive)¥ tried for bringi~ !(a) nearer to zero. The 

smount of numerical work involved which has been called as "prohibitive" 

by Gumbel is no doubt very cumbers<JIJ3. But the obtaining results very 

often more· than rep~ for all the. trouble and labour by the sheer virtue 

of the absolute freedom from any subjective or hypothetical assumptions 

accompanying the estimation procedures. 

The methodical steps described below help reduce the tedium. 

Making an intelligent start thus fran 

a = a1 = ~ l where s c standard deviation of the x•s, V6S 
the solution obtai~~~f by the method of moments(mentioned above) as the 

first approximate solution, the value of f(a
1
) ! 0 is computed. Then, 

utilising T~lor's expansion !or 

upto the first power o~ h1, we obtain h1 • • • ( 14) 
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where f'(a) .. .£.. f(a) • -r.l e-axi + (Jr- 1/a)'E xie-axi- J:e-axi;~2 
da i 

But the approximation may not suffice and most likely, f(a2) eitrer may 

not 'be .actually equal t~ zero. we again repeat the steps and· detennine 

successively the necessary values of h2, h
3 

etc until. the requisite 

smallness of value of f(~) is reached. In most cases a value of Js = 3 

or 4 will more than suffice in practice for yielding a negligible f(~). 

An illustrative example is given below to help clarify the canputational 

steps better. The example of the Sabarmati at Dharoi(1935-52) is 

of course especially chosen for the simple reason of its small size data 

to suit the presentation of the detailed procedures in print.: The 

routines of the computational procedure otherwise, will be exactly 

similar for rivers with longer years data which no doubt are always 

definitely more desirable for reliable design flood estimation. n should 

in general be preferably larger than about 20. 

The preliminary canputations upto 

a1 = .048045 

are all sh'own and are simple and self expla.na. tory. The steps- 'Which are 

found useful for reaching the successive approximation stages are also 

presented in suitably schematised form for adoption for similar 

computations elsewhere with other data. Thus startiq: fran 

for 

we soon cane down to 

for 

The successive reductions in the values of h are largely found useful 

in guiding where to call a halt to the process of bringing f(a) nearer 

to zero. 
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Computing the value of '\ from(IO) at the stage reached of \:we 
have for the estimation expression of the expected annual peak flood 

magnitudes· c£ any long( or short) term ret urn period (T) of occurrences 

in the Sabarma ti at Dharoi as · 

. xT = 22.982208 - I log lo~r ...I... 
.048045 e -eT-1 

for k = 1 

for k = 2 I T 
xT = 22.704838- •

049737 
loge loge T-l 

for k = 3 x = 22.687887 -
1 

loSe loSe ...I... 
T .04'1835 T-1 

for k = 4 
. I T 

xT = 22.687353 - •
04

.,
837 

loge loge T-1 

It is not difficult to see the fair stability attained of the estimat­

ion expression at the third approximation stage of ,!s • 3. It may be 

useful to mention that a fast computer with the help of an ordinary 

calculating machire and a book ~f logarithmic tables at hand, should 

not take more than 6 to 7 hours of a working day to reach the kind of 

stability -even for observed annual peak floods data on record exterxi­

ing upto 50 years. The long term peak flood magnitude derived from 

the four expressions for different values of T are also tabulated. The 

stability obtaining of the expected peak flood magnitudes of different 

return' periods is abundantly evident for 1s = 2 even, as the incremental 

improvements accruirg to the estimates thereafter a> not add to more 

than • 2% in the present example at least. Another remarkable feature 

of the metnod is that the percentage improven,ents to the estimates at 

every successive ~proximation stages remain nearly comparable for all 

Ts from 20 to about 500 years and possibly beyond. 
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Computational Procedure with data of Sabarmati at Dharo/ ( 1935-52 ) 

Peak flow rate 
e-aax· c-a,x 

Year (000 cfs) ' x• C-Q}X c-a'J)C 

X 

I935 27 729 .2733 ·2611 ·2604 ·2604 
I936 I I ·9530 ·95I5 ·95I5 ·95I5 
I937 44 I936 ·I208 ·112I ·1116 ·1116 
I938 28 784 ·2605 ·2484 ·2477 ·2477. 

I939 80 6400 ·0214 ·0187 ·0186 ·0186 
1940 32 I024 ·2149 ·2036 ·2030 ·2030 

1941 15 225 ·4864 ·4742 ·4736. ·4735 
1942 44 1936 .1208 ·1121 ·1116 ·l116 
1943 68 4624 ·0381 ·0340 ·0338 ·0338 
1944 87 7569 ·0153. ·0132 ·0131 ·0131 
1945 66 4356 . ·0420 ·0375 ·0373 ·0373 
I946 I6 256 ·4635 ·4512 ·4505 ·4505 

1947 20 400 ·3825 ·3698 ·3691. ·369I 
1948 7 49 ·7144 ·7060 ·7055 ·7055 
I949 I7 289 ·4419 ·4293 ·4286 ·4286 
1951 36 1296 ·1773 ·1669 ·1663 ·1663 
1952 2 4 ·9084 ·9053 ·9051 ·905I 

Total 590 31878 5·6345 5·4949 . 5·4873 5·4872 

l:(x-x)1 l:xl-( l:x)1/n 
s = 26·694486 

n-1 n-I 

31878 - 20476·4706 1r 1 

16 
a1 =-=X -= ·048045 (1st approx to a) 

y6 s ' 

712·595588 i = l:x = 
590 

= 34·7059 
n 17 

Computations for further values of ak+l 

Step k=1 2 4 ' 5 

I. ak Iog10e ·020866 ·021601 ·02I643 ·021644 
2. Ifak 20·8138 20·1058 20·0662 20·0654 
3. I/a'k 433-2143 404·2432 402-6524 
4. i-1/ak 13-8921 14·6001 I4·6397 I4·6405 

5. l:e-ak.xi 5·6345 5·4949 5·4873 5·4872 

6. l:xJC-akXi 84-6139 80·5551 80·3383 80·3368 

7. l:x·•e-ak.xi 248I·333I 2317·4409 2309·0391 
' 

8. f(~)=(6)-(4)x(5) 6·338863 ·329011 ·005874 ·001448 

9. f'(ak)= -(7)+( 4)X(6) - 3746·8143 - 3362·6043 - 3342·3850 
-(3)x(5) 

10. h - f(ak) 
k - - f'(ak) 

·001692· ·000098 ·000002 

11. ak+hk 02 = ·049737 as= ·049835 ao~ = ·049837 
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Computations for ralues of "k 

From ( 10) 

IIi, = log.,IO X ~X log!Q ( n) -log.,IO X _! X log10 ( Ic- aAXi) 
ak ak 

= B 

k=l 2 3 4 

A 58·967577 56·961742 56·849SSI 56·847285 

log1o :Ee ' ( -akx") ·750855 ·739960 ·739359 ·739351 

B 35·985369 34·256904 34·161664 34·159932 

uk =A-B 22-982208 22·704838 22·687887 22·687353 

Respective improvements from successive approximations to Peak flow estimates 

ofT years return period (Xp) from 

1 T 
Xp =Ilk- -lOBe )og8 --

ak T-1 

Xp ( 000 cfs ) for 
----- -- ------

% im- %' • un- % im· % im· 
--

T=20 prove- T=50 prove- T= 100 prove- T=200 prove- T- 500 
ments ments ments mcnts. 

84·80 104·20 118·73 133-21 152·31 
-2·807 -2-917 -2-982 -3·025 

82-42 101-16 115·19 129·18 147-64 
- ·158 - ·168 - ·165 - ·178 

82·29 100·99 115·00 128·95 147·37 
0 - ·010 - ·009 0 

82·29 100·98 114·99 128·95 147·37 

. ·%-.,---
• Jm• 

prove-
mcnts 

-3-066 

- ·186 

0 
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11 • EXTREME VALUE PROBABILITY PAPER 

The expressions can be conversely also utilised for estimating 

uniquely the average return period of occurrences of any big or small 

annual' peak flood magnitudes. In fact, they can be presented 

graphi.cally by means of straight lines on the specially ruled Extreme 

Value probability paper as in fig 9. The magnitudes of the expected 

peak fl<»( rates can be then directly read off for any desired return 

period· value from the corresponding points along the line, or con­

versely, the expected return periods for any postulated peak flow 

magnitudes. Any other hypothetical plotting positions tor the observed 

annual' peak flow data of the past thus have to be tenned as purely 

tendentious or otherwise fallacious. But the other two methods men-

tioned in passing earlier, utilised by Gumbel namely of equating the 

first two moments or their variants the mode and mean deviation of 

the· ob'served n annual peak flOIIT data to the corresponding entities of(3) - . 

for de'ternuning the values of .! and ~ also possess the likewise 

advantages of freedom !ram any subjective bias or limitations of 

arbitrarily defining the plotting positions. They also yield similar 

straight lines for reading off the expected ~ak flow magnitudes , 
equally uniquely for any return periods magnitudes and conversely. 

The question, therefore, arises immediately: Which of the three 

method's yields the better efficient estimates? In particular, where 

lies the superiority of the method just described with all its entailing 

huge computational labour, unless the obtaining estimates are better 

precise? The expression tor computing the standard errors of the 

estimates by the two methods previously described by Gumbel has also 
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Appendix i shows the derivation of the expression obtaining for the 
0 

standard error of the estimates utilising the values of .! and~ as deduced 

by the method of maximum likelihood. It is 

' ! 
SE(JC.r) .. .-= _l_ r1 • ..2.. (1- C- loge loge ..Lff .. (15) 

_ r.: /... ,.a T-1 
a(U . 

While the .forms of above expressions by themselves do not offer the 
. I 

ready me~s of comparing their relative magnitudes, Table I reproduces 

the expected annual peak flood magnitudes of various long term return 

periods of occurrences as deduced by the different methods together 

with their respective standard error measures for different rivers 

observed data. They provide the abundant incontrovertible evidence 

thus obtaining of the greater precise measures invariably accompanying 

the estimates by the method of m~imum likelihood over the others. 

12. STABILITY OF PEAK FLOW ESTIMATES 
The Table also reproduces the magnitudes of the corresponding peak 

floods as deduced by availing the alternative methods utilising the 

plot-ting positions concept. While their comparison with the estimates 

~therwise deduced by the method of maximum likelihood may be irrelevant, 

fig 9 shows the different degrees of their conformities between the 

·estimates by the various methods which again may differ fortuitously 

from one river to another. ~henever they may be found to conform 

closely to the estimates by the met.hod of maximum likelihood also they 

do not provide any firm evidence about the correctness of the plotting 

positions method(s). For, casual additions of new data or deletions of 

a few doubtful observations are likely to leave their impress very 



'differently on the two methods particularly when such data corresoond 

to very high flood years. Thus the estimates values(Table I) by the 

various methods by including and excluding alternatively one or two high 

years data show the relative greater inertness(smaller susceptibility 

in other words) of the method of maximum likelihood to such omissions 

.or uqditions to the main bulk of the ~ata. The greater susceptibility 
•- ..... .L ..... 

of the plotting positions method in fact springs from the greater 

importance· the least square process for formulating the line, assigns 

to the positions of the end points. In other words, the fitted line 

is more inclined to follow their lie. Thus any errors, big or small, 

in the plotting positions of the very high observed annual peak flows 

are likely to be duly teflected in the consequent derived estimates of 

long term return periods. With the best intentions therefore, for 

deriving precis~ estimates of the expected long term peak flow 

magnitudes, systematic errors of unknown magnitudes may be most un-

·knowingly ·creeping into them. An illustration will perhaps clarify 

better. 

In the 27 years'(1926-53) annual highest observed peak flows 

magnitudes data on record for the Mahanadi at Sambalpur, the follow­

ing four years with the respective flow magnitudes shown against each 

stand out ~~ the first to the fourth in descending order. 

Year ' (000 cfs} Return ~riod(~ears} estimated bz method of 
Hazen : Gumbel • Maximum : Moments : Mode and • 

Likell- Mean de-
hood viation 

1947 965 54 28 9.3 14.5 11.2 
1946 950 18 14 8.4 12.8 10. I 
1948 948 10.8 9.3 8.3 12.6 10.0 
1952 848 7.7 7 4.6 5.8 5.1 
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It is doubtful if the three highest magnitudes observed can be at all 

termed as different one from the other. Even currentmeter observations . 
of the flow velocities are ordinari~ qualified as subjected to ! 3% 

errors. But if the annual observed flow magnitudes are each to be 

assigned definite ranks and hypothetical return period measures depen­

dent on them, the three nearly equal magnitudes above of the peak flows 

will each have vastly different values of T. Prima facie they Will 

appear very unrealistic. Unlike the adhoc hypothetically assigned T 

values, their most likely measures as deduced from the 27 years observed 

annual peak flows data themselves by the method of maximum likelihood 

are all very rationally close to each other as they should be. Thus "it 

is reasonable to hope that any derived peak flow estimates of long term 

return periods will be also better realistic(conforming to actualities) 

by the method of maximum likelihood than by the estimates derived by 

utilising the hypothetical plotting positions concept. 

1 .3. UPPER CONFIDENCE LDI:):TS 

Having reached t.ilcl,; xo the happy: solution of an otherwise so far 
~· ., .. 

tough problem it may be worth pondering for a while over the pithy note 

of R A Fisher, the greatest of all Statistical wizards cited at the 

outset. The paper describes a precise way for evaluating uniquely the 

expected estimates of long term,return periods of occurrences in any 

stream( a) ·but appends an expression( 15) yet for c·amputing the standard 

error measures.. This has been perhaps done rightly also. For-, who can 

correctly foresee the infinite future which is yet to unfold? A peep 
.. 

into the recorded limited past can at best provide a semblance only to­

ward ·a.ny approximate guidance. Any mathematical law that may be near~ 

discovered to follow the course of events will. be an approximation and 
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may not fully coalesce with all the occurrences exactly. The standard 

error device accordingly computed for any formula fitting the past data 

thus provides a yardstick measure of their closeness to the actual 

occurrences in the past and plausibly of their expected deviations in 

the future, so far as the other causes, interfering with their course, 

purely arif!e from the chance or such othe~dom phenomena. Thus 1 

d~spite tpe uniqueness of the average estimates obtaining from(5) with 

the values substituted of ~ and ~ as derived by the method of maximum 

likelihood from the limited observed data of the past, any like 

estimates deduced from another set of ~ years observed data may be 

slightly different also, the differences ordinarily not exceeding 

1.94~ where the standard error~ is given by(15). 

In order to provide reasonable safeguards therefore, for meeting 

95% of such chance variations it is usual ordinarily to take the 

upper limiting value of xT + 1.64 ~for all design flow estimates. The 

straight lines representing the expressions for computing the average 

peak flow magnitudes of different return periods as deduced by the 

method of maximum likelihood for various observed rivers data together 

with the lines for the corresponding ~5% upper limiting values are .. 

shows in figs 10. {"The original data of the various rivers are 

presented separately in Appendix II and fig 11_}. The hypothetical 

return period values according to Gumbel are also plotted therein and 

confoJ'IIl t? lies which may at times vastly diff~r from the lines fitted 

by the method of maximum likelihood. Thus it is not always safe to 

accept their lie as reasonably accurate particularly when long term 

design flow estimates are desired. 
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.14. RESUME 

When data of the directly or indirectly observed annual maximum 
flow measures for a reasonably sufficient number of years are 
available, the method of maximum likelihood has been shown to be 
better successful for deriving both preci&e as well as consistent 
estimates of the design flow measures of desired long term return 
periods. At the outset, the virtual impossibility has been postulated 
of framing any apriori definitions for evaluating the plausible 
return period measures of the different observed annual peak flow 
rates data on record. Instead, the method of m~um likelihood, 
with no hypothetical assumptions whatsoever, has been called to aid 
for evaluating the parameters of the extreme value distribution law 
governing the data. Any design flow estimates so derived can all 
thus claim absolute freedom from subjective biases in the analytical 
procedures etc. 

The increased precision of the estimates as weli as their.larger 
insusceptibility to withstand effectively small additions or deletions 
of doubtfully high values or such other material to and fran the basic 
data have been demonstrated. 

A·schematized method is presented of speedily and systematically 
sieving through the complicated computations for arriving at the 
estimation expression for the average peak flow magnitude of different 
return periods. The procedure outlined rios it of the tedium usually 
attendant of the computations in all such estimation problems, and 
thus commends as readily acceptable to most design engineers 
equipped only with routine calculating machines and ordinsr,y tables 
of log·arithms. 
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TABLE 1 

L01ig Term ~limates ( 000 cfs ) of Peak Flows 

Return 
Deduced. with Parameters using . . ·;. ' ' .. . 

Period and site Period· Maximum ' Plotting position 
! years) · likelihood · Moments 

Mode and mean. concept due to 

method 
deviation 

Gumbel Hazen 
I 2 3 4 5 6 7 

I. Baitarni at Akhupndli 20 237± 14 248± 25 246± 25 257 249 
( I874-1957 ) 50 280 18 295 40 293 39 306 295 

100 313 21 33I 56 328 55 343 331 
200 345 23 368 80 365 78. 383 368 
500 388 27 411 I26 408 I23 429 4H 

2. Krishna at Vijayawada 20 795 41 826 70 821 69 848 826 
( I894-I958 ) so 903 so 943 Ill 936 109 973 943 

IOO 983 58 I03I I 57 I022 154 1066 1031 
200 . 1064 66 112S 223 lll4 218 1166 1125 
500 1170 76 1232 352 1219 344 ·I281 1233 

3. Godavari at Dowlaishwaram 20 . 1673 104 1812 197 1722 169 . 1849 1797 
( 1905-S7) so 1922 •129 2108 311 . I976 267 2156 2087 

100 2108 148 2330 439 2167 378 2386 2304 
200 2293 I67 2S67 621 2371 535 263I 2S35 
500 2S38 I93 2838 983 2604 846 29I2 2800 

4. -do- 20 IS97 96 I625 I 59 I608 I48 . 1675. 1625 
( omitting 19S3) so I825 120 I863 2SI I828 233. I928 .. I862 

100 1997 13.7 2040 355 1993 330 2118 .2039 
200 2I67 155 . 2230 S05 . 2I69 467 2320 2228 
soo 2392 178 2447 795 2371 73~ 2552 . 2444 

5. -do- 20 I549 92 I537 143 1546 13.6 1582 I537 
( omitting 1942 and I953 ) 50 1765 114 1748 226 1748 2I6 1808 1748 

100 I928 132 1906 320 I899 305 1978 1905 
200 2089 149 2075 452 2060 431 2159 2074 
500 2803 I72 2268 715 2245 682 2366 2267 

6. Penner at Nellore 20 306 30 365 60 342 58 . 378 359 
( 1903-54) 50 376 37 "455 95 428 91 472 446 

100 428 42 522 134 493 129 542 511 
200 481 48 594 190 S61 182 617 587 
500 550 55 676 301 640. 288 703 661 

7. Sutlej at Bhakra 20 242 • 19 249 31 239 32 261 251 
( 1912-55) so 282 23 292 49 283 51 308 . 294 

100 313 26 324 69 316 72 343 326 
200 343 30 3S8 98 35I 102 380 361 
500 383 34 397 155 39I 161 423 400 

8. Mahanadi at Naraj 20 1787 153 1599 187 I696 205 1654 1580 
( 1926-58) 50 2072 190 1818 295 1936 324 1890 \791 

100 2286 219 1982 418 2116. 458 2066 1949 
200 2495 247 2I57 591 2308 648 2255 2117 
500 2781 285 2357 934 2527 I025 2471 2310 

9. Yamuna at Tajewala 20 325 35 380 71 354 68 400 378 
( 1927-59) 50 390 43 463 112 434 108 490 460 

100 438 50 525 159 . 494 I 52 556 522 
200 487 56 S91 224 557 216 628 587 
500 550 64 667 354 631 341 710 663 



35 

TABLE I ( Conttl) 

Return 
Deduced with Parameters using 

Period and site Period Maximum Plotting position 
(years) likelihood Moments Mode and mean concept duo to 

method deviation Gumbel Huzcn 
I 2 3 4 s 6 7 

I 0. Sone at Dehri 20 1196±117 1126±I63 1193±174 1188 1126 
( 1920-54) so 1413 I4S I317 258 . 1397 276 1400 1376 

IOO 1576 I66 146I 365 ISSO 390 1558 1459 
200 I738 I88 'I613 516 1114 552 1727 1611 
500 1952 217 1788 8I7 1901 872 1921 1785 

II. -do- 20 1154 I 13 1074 ISS 1132 166 1126 1065 
(omitting 1933 ) so I361 141 1252 245 1323 262 1321 1239 

100 1517 162 1386 346 1466 370 1467 1369 
200 1672 183 1529 489 1618 524 1623 1508 
500 1877 211 1692 774 1793 828 1801 1668 

12. Ravi at Madhopur 20 336 37 445 92 418 85 456 429 
( 1929-58) 50 403 .46 549 145 514 134 562 526 

100 453 53 626 205 586 189 641 598 
200 502 60 709 289 663 268 726 616 
500 568 69 804 458 751 424 823 765 

13. Hatmati at Himat Nagar 20 35 s 43 10 43 10 46 43 
( 1922-49) 50 44 6 ss 16 ss 17 59 54 

100 50 7 63 23 63 23 68 62 
200 57 8 72 33 72 33 78 71 
500 65 9 82 52 83 52 89 82 

14. Mahanadi at Sambalpur 20 1086 83 1006 104 1049 119 1043 1001 
( 1926-53) so 1227 103 1118 165 1177 188 1168 Jill 

100 1333 118 1202 233 1273 266 1261 1193 
200 1438 133 1292 330 1376 377 1360 1281 
500 1577 154 1395 522 1493 596 1474 1381 

IS. Damodar at Rhondia 20 4SS 52 432 75 434 72 468 440 

( 1933-56) so 539 65 508 118 508 114 SS6 519 
100 602 75 565 I67 563 162 622 577 
200 665 84 626 236 621 228 693 640 
soo 748 91 695 374 688 361 773 712 

. I6. Sabarmati at Dharoi 20 117 20 I72 54 139 43 174 159 

( I935-52) so 145 25 219 86 176 67 221 202 

100 166 29 255 121 204 95 2S6 234 

200 187 32 293 171 234 135 293 268 

soo 215 37 336 270 268 213 336 306 

17. -do-· 20 82 14 85 23 84 24 95 86 

( omitting 1950 ) so 101 I7 104 36 lOS 38 118 lOS 

100 liS 20 118 so 120 54 135 120 

200 129 22 I34 71 137 77 153 135 

soo 147 26 lSI 113 156 122 174 153 

18. Tapi at Kathore 20. 833 136 882 236 903 266 992 891 

( 1940-53) 50 1000 169 1065 373 1108 420 1210 1076 

100- 1126 194 1202 527 1262 594 1374 1214 

200 1251 220 1347 745 1427 840 1548 1361 

soo 1416 253 1514 1178 1615 1328 1749 1530 



APPENDIX I 

Standard Error of Peak Flow Estimates by Maximum Likelihood 

Since from ( S ), xT = u- ..!_log, log,...!..... au - .!..R 
. a T-1 a 

Variance ( xT) =Variance· (u) + R' Variance (!) - 2R Covariance ( u, !) ... (16) 

or, denoting Variances and Covarianccs by Var and Cov 

Var(xT)=Var(u)+RIVar (!)..:2RCov(u, !) 

Now the Variance-Covariance matrix of u and a viz 

II 
Var (u) · 
Cov(u, a) 

Cov (u, a) II 
Var (a) 

is the reciprocal • of the matrix 

-n 

E(rJI ~:gf) 

E(rJI logf) 
~adu 

E(rJIIogf) 
da du 

E (rJilogf) 
da• 

where •r stands for the distribution function 

-a(x-u) 
-a(x-u) -e 

ae e 

••• ( 16) 

•.• (17) 

••• ( 18) 

and E Cor the expected values of the second order partial derivatives of Jog f, 

+oo 
e E (rJIIogf) = J rJIIogf fdx 

g, du1 du1 -oo 

On evaluating and substituting the expected values, ( 18 ) becomes 

a• (1-C) 

n (1-C) _!_[tr\(1-C)•] 
a• 6 

••• (19) 

( C being Euler's Constant= 0·577216). 

• M G Kendall; "The Advanced Theory of Statistics" Vol IT, pp 36-42. 



Reciprocal of ( 19) is 

I 
n 

_I [I+ 6(1-C)'1 
a• tr• · J 

-6(1-C) 
tr• 

37 

-6(1-C) 
tr• 

Comparison of ( 20) with ( 17) gives 

Var(u) =_I_[ I+ 6(l-C)• ]. 
na• tr1 

6a" 
Var(a) = --

" fl'' 

Cov(u, a) 
-6(I-C) 

II fl' 1 

wherefrom we get • 

Var(-I )=(--I )
1
Var(a)=-

6
-

a a• 11 tr•a• 

( 
I ) I 6( 1- C) and Cov u,- =-- Cov(u,a) =--
a a• ntr•a• 

substituting which in (16) gives 

Var(A"T)=-I-[1+6{1-C)•]+RI 6 
na• tr• 11 fr1a1 

-lR6(1-C) 
ntr•a• 

=-I { I +~[(l-C)I+RI-2R(I-C)]} 
na• tr1 

I [ 6 =- I+-- (1-C-R)'] 
11a• 11"' 

Therefore Standard Error ( ""T) = v'Var ( ""T) 

= . / [ I + :. ( I - C- R )1 ]l 
-v n a 

I 20) 

• M G Kendall, "The Advanced Theory of Statistica ", Jlo/ J, pp 208, -Charles 
Griffin & Co Ltd, London ( 1943) 



>ttl ~~ "'" ~- .. -· ::r- '< "' Year c: ., .. ::r 
'0 g :E ., 
,. -· .. .. 
c.., c.., 

" - .. -
1905 56 483 

06 172 463 
07 275 495 
08 101 572 
09 122·5 653 
10 96 370 

1911 82 320 
12 125 543 
13 290 418 
14 92·5 949 
15 83 578 

16 65 955 
17 101 498 
18 85 254 
19 101 456 
20 263 392 

1921 65 558 
22 127 499 
23 140 624 
24 52·5 634 
25 173 613 

26 125 552 
27 325 560 
28 172 461 
29 125 458 
30 102·5 370 

z:l' ro ., _., - .. 0 ... 
d .. -

82 
48 

144 
105 
473 
206 

34 
152 
63 
29 
98 

382 
324 
72 
96 
69 

142 
127 
91 

151 
Ill 

30 
158 
17 
67 

169 

~Cl 
:E 0 
Ego 
"' < ::roo 
~ ::J, 
!!l .. .. -
9 

795 
1078 
1228 
1036 
901 
965 

1144 
1186 
969 

1141 
1066 

915 
936 
718 
678 
528 

998 
824 
555 
629 
796 

933 
845 
725 
845 
972 

11:1{1> 
::r" .. :::. 
~.!!. 
iil .. -

237 
199 
199 
146 

75 
160 
70 

133 
145 

136 
110 
93 

"237 
191 

96 
141 
85 

162 
150 

APPENDIX II 

Annual Peak Flows ( 000 cfs ) 

::c . 
{1>:::: :::: '"':;.< tl -!.{:' -· :;;: ~~ {I> 9 .. .. .. z~ ~ .. otr ~~ oo .. - s::r ~- 8 C.O> ::rEI ro ., -a ::r"' .. .. " c: ::r< 0 0 ire -'0 ::r<> 

z~. edl· ... ., :E ., 
0 -· 

.,c. ::r -· :::1 • ., -ge: ~-~ !!!_10 "'"' 
C.O> a e 0 .. - .. .. -· .. .. c- &' .., -· -· tl -'tj ... ... .. .. ... .. .. - -... - .. -

Year Baitarni Krishna 
Year Baitarni Krishna Penner 1874 87 
1896 211 760 75 87 

97 50 619 
98 116 624 1876 85 
99 72 405 77 183 

1900 228 719 78 20 
79 95 . 

1901 ll4 513 80 83 
02 180 548 
03 96 1061 479 81 250 
04 228 479 38 82 108 

83 110 
84 I 12 
85 54 

674 
1886 80 

580 87 68 
309 6·8 88 112 

1028 0.9 89 98 
965 5·9 90 72 
892 2·7 

91 142 
871 34·9 841 1410 92 ll2 
600 29·7 698 1164 189·5 93 156 
NA 3-7 595 991 81 94 195 578 
638 H 840 1400 294 72 95 75 496 
NA 10·3 559 931 145 155 



1931 148 468 41 954 72 400 6·3 ~0 1150 &2 .116 
32 146 512 6 933 135 953 2-9 566 943 213 157 
33 142 632 46 1020 93 580 15·5 847 1412 79 137 216 
34 140 384 69 1029 87 120!1 31-4 NA 1185 89 77 106·5 
35 95 360 107 909 156 786 7-8 552 920 76 111 422·5 27 

36 91 350 95 1075 84 619·5 0·7 546 910 98 193 174·5 1 
37 127 393 51 785 83 614 60·1 825 1375 194 112 202 44 
38 47·5 370 143 1011 175 272 7-8 492 820 51 94 64 28 
39 117 402 158 896 83 681 7-8 816 1360. 43 69 258·5 80 
40 217 354 199 1791 61 404 1·0 840 1400 70 115 266·5 32 243 

1941 300 382 55 626 97 181 41·8 402 670 78 104 521·5 IS 481 
42 127 381 13 2108 177 959 10·8 656 1093 143 138 375·5 44 758 
43 287 427 293 635 186 NA 7-7 714 1190 118 94 251 68 179 
44 148 385 89 1794 81 959 45·6 793 1322 101 114·5 153 87 900 
45 108 375 27 1164 109 279 20·6 589 981 97 114·5 121 66 722 

46 192 475 420 1250 135 512 13-1 950 1445 129 103·5 314 16 339 
47 45 443 132 lll7 276 607 0·2 965 1495 563 566 260 20 291 
48 64 369 IS 671 83 561 0·1 948 1103 110 79 230 7. 255 
49 69 914 455 lll9 107·5 443 9·0 701 634 126 133 230 17 662 
so 134 565 33 1153 172 861 792 913 92 301 246 291 398 

1951 83 360 42 846 325 421 450 394 215 71 347 36 162 
52 84 406 294 526 83 356 848 1045 NA 101 168 2 115 
53 108 478 55 2830 170 777 776 876 154 357 195 235 
54 58 513 117 1084 199 206 450 224 152 243 
55 175 503 1364 130 NA 275 617 61 

56 142 830 1571 647 450 232 244 
57 62 592 1755 NA denotes • data not available. ' 503 317 472 
58 740 931·5 199 128 
59 180 

>f ~~ ~0 :t: tn3: 3: -I:: ~::a 
0 en 

:z:l' -· :t: .. ~ 0 tJ:Itll til a "' .. .. .. ,., .. 
olr ~;I I<' -· .. -· ;;;a. :z.,.. a. a .,.a .,.I» ...... n :a .,..c oo ..- a::r Q,C> Year .. ... -:a -·"' .. ::. .. :I -a .,.. .. .. .. .. c 0 0 ... ~ .g 3 - .. .. < ::r< .. a -.., ~ :I ~ .. ::r .. 1<'.!!. ::rO 

~ ~~ 
.. :I .. ::s ~ ::s o- ::sa. .,.._ .. -· .. .. ~ :l. .. ::! •• 
_ .. .as, !!!. .. a.= a .. 0 .. a.,. .. .. .. .. ..,a. ... .. ··; e-~ .. .... c- -a::. a-.... - .. .. - 'CI~ ..- .. .. - .. . • - - .. 

.a .. - - -



CWPRS TECHNICAL MEMORANDUMS 

SUBJECT ClASSiflCATION 

Subject 

Water studies & Hydrology 
Rainfall & Runoff 
Regeneration & Losses 
Quantity of Water 

Fluid Mechanics 

Design of Hydraulic Structures 

River. Training & Flood Control 

Irrigation, Drainage & Reclamation 
Surface & subsurface irrigation 
Water requirements of crops 
Soll Sl!rVey and crop pattern 
Drainage 
Reclamation 

Navigation 
Ports, Harbours & Estuaries 
Inland Navigation 
Coastal Erosion 
Ships & Navigation Crafts 

Structural Design 

Soil Mechanics & Foundation EngineerinJ 
Investipti.ons 
Stability, ddormations & 

displacements of eanh stracturcs 
Foundation studies incl~g geophysical 

Construction Materials & Practices 
Concrete Technology 
Building &. other Materials 

Instrumentation 

Model and Prototype comparisous 

Other miscellaneous 

Symbol 

HLO 

FLM 

HYD 
HYR 
IRD 

NAV 

STD 
SFE 

CMP 

1ST 

MPC 

MIS 
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