GOVERNMENT OF INDIA CENTRAL WATER AND POWER RESEARCH STATION POONA

Technical Memorandum HLO 2 March 1962

with FOREWORD by D V Joglekar

V P Aggarwal

PEAK FLOW ESTIMATION BY METHOD OF MAXIMUM LIKELIHOOD

by G M Panchang and V P Aggarwal

Foreword by D V Joglekar

Technical Memorandum HLO 2 March 1962

GOVERNMENT OF INDIA CENTRAL WATER AND POWER RESEARCH STATION Poona, India

FOREWORD

It is sometime that Gumbel's Extreme Value formula has come to be almost universally accepted for deriving the most reliable estimate of the average peak flow magnitudes of long term return periods of occurrence. Pitfalls nonetheless obtain commonly in evaluating the parameters of the formula from the past observed data of the annual peak flow measures on record. Hypothetical definitions are postulated for the plotting positions representing the various observed flow magnitudes, while theoretically none exist. Gumbel has in fact clearly admitted this position in his latest published valuable book on Extreme Value Distributions(1>58).

The maximum likelihood approach which involves "prohibitive" computational labour has been processed in the Technical Memorandum in a schematized form to be readily adopted by all design engineers who are equipped with the simple aid of only a routine calculating machine and ordinary tables of logarithms. The estimates resulting are shown to be precise as well as better consistent of magnitude (ie insusceptible to large alterations of value) to withstand effectively deletions of a few years doubtfully observed flow measures or limited additions of more recent data. The feature comprises a fundamental and a very significant contribution to the subject which has for long proved to be slippery.

> D V Joglekar Adviser, Central Board of Irrigation & Power.

March 17, 1962

Poona

Engineers double-check their work as they go along and then try another method to see if the final answer is the same. That is why it is safe to ride automobiles and electric trains and cross bridges. An Engineer worthy of the name would rather lose a client than design a structure he considers unsafe. -- Harold Coy

The statistician is no longer an alchemist expected to produce gold from any worthless material offered him. He is more like a chemist capable of assaying exactly how much of value it contains, and capable also of extracting this amount, and no more. In these circumstances, it would be foolish to commend a statistician because his results are precise or to reprove because they are not. If he is competent in his craft, THE VALUE OF THE RESULT FOLLOWS SOLELY FROM THE VALUE OF- THE MATERIAL GIVEN HIM. IT CONTAINS SO MUCH INFORMATION AND NO MORE. HIS JOB IS ONLY TO PRODUCE WHAT IT CONTAINS.

- R A Fisher

PEAK FLOW ESTIMATION BY METHOD OF MAXIMUM LIKELIHOOD

The assessment of the largest magnitudes expected of floods in different rivers constitutes a problem of great significance and importance in engineering constructions and works of River valley development and flood control Projects. The problem is very complex also; for, floods are produced by different combinations of a large number of variable and nonvariable conditions. The former include: the rate of rainfall; the temperature conditions; the quantity of water in reservoirs, lakes and ground at the time the flood occurs; the velocity and direction of the storm; and the many other elements which cause one flood to differ from another in the same stream. The latter conditions include: the prevailing conditions of rainfall; the size, shape and slope of the catchment area; the character of the soil and vegetation on the catchment; the physical characteristics of the stream channel; the storage capacity in reservoirs; and many other physical characteristics of the catchment area and the stream itself. The effect of these on floods is usually invariable.

Again no two floods are exactly alike. Two storms of like intensity, velocity and direction passing over a catchment area may produce different floods. When many conditions tending to large floods occur coincidently with great rainfall, extraordinary floods are produced. Thus floods which have occurred on some rivers have been greatly in excess of others on the same river. But a characteristic of these great floods is that they come only rarely, and usually in different years for different streams. In order to ascertain, therefore, the flood magnitude(s) that any proposed hydraulic structure(s) across a stream may be expected to meet in the normal course of years, the frequency study of the past observed floods data alone of the stream can at all provide any indication or guidance. By virtue of the natural topographical, climatic and other differences ruling from one region to another, such studies of necessity have also to be confined to individual basins separately.

2. EMPIRICAL FORMULAE

While the subject has interested design engineers from very early years, observed data in the past have been meagre. The methods of flow rates observation have been mostly indirect and not sufficiently elaborate in accordance with the modern standards. In order to serve the adhoc needs of constructional requirements therefore, such incomplete

data alone have provided the means for deriving different empirical formulae like

Dickens'	$q = c A^{3/4}$	825 < C < 1 400
Ryves'	$Q = CA^{2/3}$	450 < C < 2700 [.]
Modified Inglis!	$Q = K^{\frac{1}{3}} \times \frac{7000A}{\sqrt{A+4}}$	K, the shape factor = ratio of diameter of standardcir- cular catchment of same area to actual stream length L of catchment.
Ali Nawaz Jung Bahadur's	$Q = CA^{(0.925 - 1/14]}$	og A) 1700 < C < 2100
Dredge and Burge's	$Q = 1300 \text{ W L}^{\frac{1}{3}}$	W = Average width of basin L = Length of basin
Murphy's	$Q = A \left[\frac{46790}{A + 320} + 15 \right]$	for areas under 10,000 sq miles in north-eastern USA
Ganguillet's	$Q = \frac{1421A}{3.11 + /A}$	for Swiss streams
Cramer's	$Q = \frac{80.6A}{1 + 0.1347 A^3}$	for Mohawak river in USA
Switzer & Miller's	$Q = 80PW^{1.5}$	for Miami Conservancy district, where P = rain- fall factor and W = mean width of drainage area in miles.
etc,	etc,	

The principal lacuna in the above formulae and their like is the complete absence in them of a term or terms for the relative frequency or the RETURN PERIOD concept. They all simply aim at evaluating the magnitudes of the very highest floods alone that may ever be expected in the respective streams. But actual observed data of the daily flow rates and of the annual peak rates which have accumulated of recent years for some of the streams show the derived magnitudes from the formulae as not quite realistic always, apart from their looseness. In other words the formulae do not come up to the modern design engineer's standards of requirements. Economy conditions impose the need for making every design as precise as possible. Thus dams or weirs are designed with fixed spans of expected life. Their heights and or other dimensions are suitably determined to withstand the extreme magnitude of the floods expected during this period and not the highest magnitude for all time. For^{*}

"However big floods get, there will always be a bigger one coming; so says one theory of extremes, and experience suggests it is true." It is an obvious fallacy therefore, to formulate any expression for estimating all time maximums.

3. RETURN PERIOD CONCEPT

The earliest known attempts towards introducing the frequency or return period concept for different flood magnitudes were made by W E Fuller(1914) and E W Lane(1926) who both expressed the formula for the average highest flood magnitude(Q) expected to occur once every T years as

$$Q = k(\log T + b)$$
 ... (1)

where <u>k</u> and <u>b</u> are specific constants for the basins. Different methods of evaluating <u>k</u> and <u>b</u> have been sponsored from time to time. Better suitable forms of expressions have also been proffered for deriving by the application of statistical methods to the observed data / H A Foster (1924) Allen Hazen(1930) 7. Slade(1936) proposed the transformation through the partly bounded function

$$F(y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\sqrt{2} \operatorname{clog}_{e}} \frac{d(y+b)}{t^{2}+1} \dots (2)$$

^{*} President's Water Resources Policy Commission, 1950. Water Policy for the American People. Report, Washington, D C. Vol I, p 141.

for normalizing the data where \underline{e} is the Naperian base and \underline{b} , \underline{c} , \underline{d} and \underline{t} are constants pertaining to the basin.

In order to explore what additional modifications may or may not be needed for analysing Indian rivers data in accordance with the procedures outlined, the apriori frequency histograms obtaining of the daily observed discharges data of six rivers for some 8 to 20 years as listed below are presented in fig 1.

Tapi at Kathore	••	1941 - 53
Narmada at Gardeshwar		1948 - 55
Yamuna at Tajewala	• •	1946 - 55
Sone at Dehri	••	1945 - 56
Mahanadi at Sambalpur		1944 - 54
Damodar at Rhondia	· • •	1933 - 53

The distributions in terms of the original variate of the daily discharge are at once seen to be all highly skew. Their logarithmically transformed distributions(also presented in fig 1) show a large part of the skewnesses as removed, though not quite reaching to near normality. On utilising the longer term(1920-54) daily discharges data also(of the Sone at Dehri), both Slade's expression(2) or the alternatively best fitting Pearson type curve(type VI) either(fig 2) are not found to be reasonably adequate. The exceedingly large values^{*} of χ^2 obtaining in each case for the different respective fits made, only add to the infallibility of the otherwise correct inference derived from visual inspection of fig 2.

* x² = 338.8 for 12 degrees of freedom for Slade's expression;
 x² = 277.1 for 11 degrees of freedom for Pearson-type VI curve;
 x² = 310.4 for 18 degrees of freedom for log-normal distribution.

4. OBSERVED ANNUAL PEAK FLOW RATES

Other avenues also have, therefore, been explored toward meeting the limited objective of evaluating the magnitude Q_T of the average highest flood of T years return period of occurrence in specific streams of interest. The annually observed single highest peak flow rates data of the respective streams have alone been mostly utilised for this purpose by suitably processing them. The individual values of such data interse separated by broad twelve months intervals between them subscribe better to the independency criterion usually prescribed for all statistical analyses. Their lengths for most Indian rivers extend only to about 30-40 years. Such data are better easily securable also than complete daily data. They lend better amenable for any computational manipulations by virtue of their limited numbers for the purpose of examining the suitability of various alternative "processes" of analyses.

Accordingly, fig 3 was prepared to present the type of variations obtaining of such data from year to year. Apart from reflecting the usual year to year irregularities of the flood magnitudes in River Sone (or any other river for that matter) fig 3 does not serve much other useful purpose. Their re-arranged presentation as in fig 4 in ascending order of the year to year peak flood magnitudes will perhaps be found better useful instead, for estimating the graduated future higher magnitudes to expect.

5. FREQUENCY HISTOGRAMS

As the sequence of the years in which they are presented in fig 4 follows only the respective flow magnitudes, it was thought useful in the first instance to enumerate the number of occasions for which the annual peak flood magnitudes were palpably not different. Thus peak floods of the order of

Fig 1: Frequency histograms for July-Sept daily flows rates and logarithms

Fig.5: Sone at Dehri (1920-54); frequencies or numbers of years when annual highest flows attained different magnitudinal stages.

Fig. 7: Krishna at Vijayawada (1894–1958); frequency histogram of annual highest flow rates with fittings of different smooth distributions

2.75	lakh	cfs	were	observed	2	times	in	32	years
4.08	11	н'	11	88	3	H	II	lt -	n –
5.80	11	11	11	11	2	n	lt –	11	11
6.03	n	11	11	N .	2	11	Ħ	н	11
6.17	11	11	11	11	2	н	11	11	11
6.77	11	It	11	11	2	и .	11	Ħ	11
7.81	п	11	11	11	2	11	It	11	11
8.66	11	11	11	ŧt	2	n	Ħ	11	11
9.59	n	11	11	11	4	11	n	11	H

while all other magnitudes occurred only once each. Representing these relative frequencies of occurrence as the ordinates against the respective flood magnitudes as in fig 5 we find the lie of their tops yielding a frequency distribution polygon. It is not difficult to see that the unequal spacings of various ordinates in fig 5 owe primarily to the different concentrations obtaining over different ranges of the flow magnitudes during the period of the years. In order to highlight this aspect in its clearer perspective, a frequency histogram as in fig 6 offers better suitable.

Fig 6 actually shows the frequency histogram for a slightly longer data obtaining of the Krishna at Vijayawada for 65 years(1894-1958). The frequency histogram, as is well known, is the preliminary derivative stage of the ultimate frequency distribution type, which the data, when obtaining in larger numbers may be expected to subscribe or conform to. It is supposed to reflect the principal features of the type and yield a fair index to the values of the parameters contained of its descriptive expression. The broad extents of the curve's coverage to the left and to the right are also nearly indicated by the histogram, as also the relative frequencies expected of all intermediate individual annual peak flood magnitudes.

Fig 8: Krishna at Vijayawada (1894-1958); expected return periods of peak flow magnitudes as derived by fitting different distribution types to data

6. MULTIPLICITY OF EMPIRICAL DISTRIBUTIONS

In an attempt to even out the irregularities of the limited histogram form of variations and to avail its inner average form for broad general use elsewhere, five curves evaluated in accordance with the standard procedures are shown superimposed in fig 7. As eye inspection alone may not provide sufficient or reliable evidence of the goodness of fit(appropriateness of the curve types to conform to the histogram pattern), aid has been sought of the non subjective statistical X1 tests. While the elegant symmetrical Gaussian or normal type is immediately found inappropriate for describing the skew pattern of the histogram, the multiplicity of the remaining four types all fitting the histogram nearly adequately, lands the investigation in an awkward dilemma. For, despite the four curves each providing adequate huge to the overall lie of the histogram, they are not exactly coalescent. As an immediate corollary of the non-coalescence, the areas enclosed between the horizontal axis and the different curves to the right of any specified ordinate(s) will also differ. Since the reciprocals of these areas constitute the RETURN PERIODS(in years) of attaining or exceeding the corresponding peak flood magnitudes, the return period measures as estimated from the different curves will be also different (fig 8). "The disparity feature between the estimates which is quite evident for flood magnitudes of the order of nine lakh cfs keeps on steadily increasing for higher magnitudes. It is easy to verify the converse feature also namely of the curves yielding non-unique estimates of return periods of occurrence for identical peak flood magnitudes. In other words, the use of the frequency curves despite their adequately fitting the frequency histogram of the observed annual

peak floods data seems rather inappropriate particularly for the purpose of estimating the peak magnitudes of longer return periods of occurrence. It is an inherent limitation of all statistical methodologies and/or derivations.

7. THEORETICAL DISTRIBUTION OF EXTREME VALUES

All the same, there are numerous occasions when such estimation problems have to be solved and the subject has been making rapid progress to provide reasonable approaches from within the realms of statistical methodologies. It was probably under these contingencies that Gumbel^{*}(1941) developed his Extreme Value distribution function

$$P(x) dx = ae^{-a(x-u)}e^{-e^{-a(x-u)}}dx$$
 ... (3)

for analysing the data consisting of the extreme(largest or smallest) members(\underline{x}) of several large samples(where <u>a</u> and <u>u</u> are parameters pertaining to the basin and <u>e</u> is the Naperian Constant = 2.71828). Fisher^{**} and Tippett(1928) had derived the expression earlier in their exposition on "Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample".

The limiting form(3) is known to hold for most forms of frequency distributions of the parent population of \underline{x} so long as the sample size <u>m</u> is sufficiently large. In the present case <u>m</u> equals 365 corresponding to the number of days in a year. The value of <u>n</u> for the number of years whose peak flow data have been observed is also similarly required to be sufficiently large for obtaining better reliable estimates of <u>a</u> and <u>u</u> in(3). Assuming for simplicity the values of <u>m</u> and <u>n</u> obtaining

* E J Gumbel : 'The Return Period of Flood Flows', Annals of Mathematical Statistics, Vol XII pp 163-190, 1941

**R A Fisher & L H C Tippett : Proceedings of the Cambridge Philosophical Society, Vol XXIV, Pt 2, pp 180-150, 1928. in most hydrological data to be tolerably adequate in practice, different processes have been availed for evaluating <u>a</u> and <u>u</u> in(3). On integrating (3) the probability of an year's peak flow <u>x</u> not exceeding <u>x</u>₀ is obtained as $e^{-a(x_0 - u)}$

$$P_{o} = e^{-e^{-a(x_{o} - u)}} ... (4)$$

8. HYPOTHETICAL PLOTTING POSITIONS

In terms of the average return period measure T(in years) of just exceeding <u>x</u> once in T years(4) can be re-expressed as

$$x = u - (1/a) \log_e \log_e T/(T - 1)$$
 ... (5)

While there is no dispute up to this stage from a theoretical point of view, different methods have been availed on different occasions for evaluating the two parameters a and u from a set of any observed data. Thus, Gumbel offered the method of equating the first two moments or alternatively their variants, the mode and the mean deviation to the respective entities of distribution(3), which is a perfectly legitimate procedure. Some other procedures, apparently presumed to be capable of yielding even more powerful estimates of a and u by directly fitting expression(5) to the data by the method of least squares have also been availed. For this, the different approximate concepts of the return period measure as postulated by Hazen, Gumbel and V T Chow have been availed for evaluating the return period measures of the observed n x's. It is here possibly that the studies have landed in a region of fallacious approach. Gumbel^{*} is, no doubt, aware of the possible incorrectness of the method of the plotting position's definition, but has still availed it as the most plausible method under the circumstances

*E J Gumbel : Statistics of Extremes, pp 29-37, Columbia University Press, New York(1958)

of the case. The method consists of arranging the n years between annual floods data in descending order as $x_1 \dots x_n$ and assigning their respective return periods as

Taking n = 50 for instance, these magnitudes obtain as

	T ₁	^T 2	^т 3	т ₄ т ₅₀)
Hazen	100	33.3	20	14.3 1.01	
Gumbel and V T Chow	51	25.5	17	12.75 1.02)

On plotting the <u>n</u> points(T_m , x_m) so obtaining on specially ruled Extreme Value Probability paper, a least square line through them is drawn and the values of the two parameters <u>a</u> and <u>u</u> determined. Thus different values will be obtained according as Hazen's or the other series of T values are availed, resulting in higher return period measure for any specific large flood magnitude by Hazen's process than by the other.

Actually neither sets of the apriori T values in(6) nor any other similar sets can claim to constitute the true average return period measure of the x's. In fact, they do not debar other definitions being formulated for evaluating T in different other ways^{*}. Thus, the design flood estimates derived there-from by fitting the least square lines through the <u>n</u> points(T_m , x_m) will also differ accordingly. Even

[#]B F Kimball - "On the choice of plotting Positions on Probability Paper" - Journal of Am Stat Assoc Vol 55 No 291, Sept '60 R K Linsley, M A Kohler and J L H Paulhus - "Hydrology for Engineers", pages 247 - 249, McGraw Hill, New York, 1958. when the different sets of the plotting positions may be covering much common ground in the domain of the observed data, their average lies may not be exactly coalescent. Thus on account of any such incidental slope differences, the different mean lines through the different sets may find themselves considerably apart from each other, especially when extended outside the observed domain of the data.

YT MAXIMUM LIKELIHOOD ESTIMATION

The feature only reflects the inherent limitations of analysing small samples data. For, the set of the <u>n</u> years' observed data form but a small part only of the unending series of the annual floods' data. The small part is thus fortuitously quite capable of coinciding with a series of very low flood years or of very-high-flood years or of a balanced or other mixture of the two. In fact no law, cyclic or otherwise of any assignable number of years duration of periodic regularity or otherwise has so far been ascertained from observed data or inferable other evidence. The utmost that is known of the observed series of the annual floods data is that each separate value comprises the largest or the -textreme member' of the yearly samples of 365 daily flood measures each. Such data are yet known to subscribe to the only Distribution Law(3):

Availing therefore(3) alone as our main prop we can evaluate <u>a</u> and <u>u</u> by maximising the probability of the observed <u>n</u> floods. IN OTHER WORDS, WE ONLY ASK WHAT VALUES OF <u>a</u> AND <u>u</u> WOULD MAKE THE CHANCE A MAXIMUM OF OUR HAVING OBSERVED THE MAGNITUDES x_1, \ldots, x_n AS <u>n</u> ANNUAL HIGHEST FLOODS? For this, we do not need to postulate any subjective doncepts for the return period measures of the observed <u>n</u> x's. Since no sequential law of the annual floods has been observed or is expected,

the individual peak flood values all must obviously be having respective return period measures quite independently of each other. Thus, the return period measures of the <u>n</u> observed peaks may be all larger than <u>n</u> years, all smaller than <u>n</u> years, or mixed. But each peak is an annual peak value, and must all have occurred under the most congenial circumstances inducing their occurrence in the different respective years. In other words, the probability of the <u>n</u> magnitudes having occurred as <u>n</u> annual highest floods must be a maximum. Now by the multiplication theorem for the joint occurrence of <u>n</u> independent events

$$P(x_1...x_n) = P(x_1) P(x_2) ... P(x_n), \text{ which with the help of (3)}$$

= aⁿ e⁻ $\Sigma a(x_1 - u)$ e⁻ $\Sigma e^{-a(x_1 - u)}$... (8)

In order to maximise(8) which is the same thing as maximising

$$L = \log P(x_{1} \dots x_{n})$$

$$= n \log a - \Sigma a(x_{1} - u) - \Sigma e^{-a(x_{1} - u)}$$
we put $\frac{dL}{du} = 0$ and $\frac{dL}{da} = 0$... (9)
Now $\frac{dL}{du} = na - a \Sigma e^{-a(x_{1} - u)}$

$$= na - ae^{au} \Sigma e^{-ax_{1}}$$
on equating which to zero, we obtain
$$e^{au} \Sigma e^{-ax_{1}} = n$$
ie $e^{-au} = \frac{1}{n} \Sigma e^{-ax_{1}}...(10)$
Next, $\frac{dL}{da} = \frac{n}{a} - \Sigma (x_{1} - u) + \Sigma (x_{1} - u) e^{-a(x_{1} - u)}$
...(11)
Substituting from(10) in the last term of (11) and rewriting,
 $\frac{dL}{da} = \frac{n}{a} - n\overline{x} + nu + e^{au} \Sigma x_{1} e^{-ax_{1}} - nu$

$$= \frac{n}{a} - nx + e^{au} \Sigma x_i e^{-ax_i} \dots (12)$$

Utilising(10) for a second time in(12) and transposing, it can be rewritten as

$$\frac{dL}{da} = \frac{n}{\Sigma e^{-ax_i}} \Sigma x_i e^{-ax_i} - n(\overline{x} - 1/a)$$

on equating $\frac{dL}{da}$ to zero therefore, we obtain

$$f(a) \equiv \sum x_i e^{-ax_i} - (x - 1/a) \sum e^{-ax_i} = 0$$
 ... (13)

yielding a unique value for <u>a</u>, simply deduced from the <u>n</u> observed magnitudes of the annual peak floods $x_1 \dots x_n$ without any hypothetical assumptions whatsoever about their return periods. The requisite value of <u>u</u> also is then uniquely determinable from (10).

10. SCHEMATISATION OF COMPUTATIONS

. . .

But the form of expression(13) despite its containing a single unknown <u>a</u> is rather complicated to yield its unique solution explicitly. It does not offer any further simplification of form. The neighbourhood of the expected solution therefore, has to be intuitively assessed first, whereafter a series of nearer approximations to the exact solution of <u>a</u> have to be successively tried for bringing f(a) nearer to zero. The amount of numerical work involved which has been called as "prohibitive" by Gumbel is no doubt very cumbersome. But the obtaining results very often more than repay for all the trouble and labour by the sheer virtue of the absolute freedom from any subjective or hypothetical assumptions accompanying the estimation procedures.

The methodical steps described below help reduce the tedium. Making an intelligent start thus from

$$a = a_1 = \frac{\pi}{\sqrt{6}} \frac{1}{s}$$
 where $s = standard$ deviation of the x's,

the solution obtaining by the method of moments(mentioned above) as the first approximate solution, the value of $f(a_1) \neq 0$ is computed. Then, utilising Taylor's expansion for

$$f(a_2) = f(a_1 + h_1) = 0$$

upto the first power of h_1 , we obtain $h_1 = -\frac{f(a_1)}{f'(a_1)}$... (14)

where $f'(a) = \frac{d}{da} f(a) = -\sum x_1^2 e^{-ax} i + (\overline{x} - 1/a) \sum x_1 e^{-ax} i - \sum e^{-ax} i/a^2$ But the approximation may not suffice and most likely, $f(a_2)$ either may not be actually equal to zero. We again repeat the steps and determine successively the necessary values of h_2 , h_3 etc until the requisite smallness of value of $f(a_k)$ is reached. In most cases a value of $\underline{k} = 3$ or 4 will more than suffice in practice for yielding a negligible $f(a_k)$. An illustrative example is given below to help clarify the computational steps better. The example of the Sabarmati at Dharoi(1935-52) is of course especially chosen for the simple reason of its small size data to suit the presentation of the detailed procedures in print. The routines of the computational procedure otherwise, will be exactly similar for rivers with longer years data which no doubt are always definitely more desirable for reliable design flood estimation. <u>n</u> should in general be preferably larger than about 20.

The preliminary computations upto

$$a_1 = .048045$$

are all shown and are simple and self explanatory. The steps which are found useful for reaching the successive approximation stages are also presented in suitably schematised form for adoption for similar computations elsewhere with other data. Thus starting from

 $f(a_1) = 6.338863$ for $a_1 = .048045$ we soon come down to

$$f(a_{4}) = .001448$$
 for $a_{4} = .049837$

The successive reductions in the values of <u>h</u> are largely found useful in guiding where to call a halt to the process of bringing f(a) nearer to zero. Computing the value of u_k from(10) at the stage reached of a_k we have for the estimation expression of the expected annual peak flood magnitudes of any long(or short) term return period(T) of occurrences in the Sabarmati at Dharoi as

for k = 1
$$x_T = 22.982208 - \frac{1}{.048045} \log_e \log_e \frac{T}{T-1}$$
for k = 2 $x_T = 22.704838 - \frac{1}{.049737} \log_e \log_e \frac{T}{T-1}$ for k = 3 $x_T = 22.687887 - \frac{1}{.049835} \log_e \log_e \frac{T}{T-1}$ for k = 4 $x_T = 22.687353 - \frac{1}{.049837} \log_e \log_e \frac{T}{T-1}$

It is not difficult to see the fair stability attained of the estimation expression at the third approximation stage of $\underline{k} = 3$. It may be useful to mention that a fast computer with the help of an ordinary calculating machine and a book of logarithmic tables at hand, should not take more than 6 to 7 hours of a working day to reach the kind of stability even for observed annual peak floods data on record extending upto 50 years. The long term peak flood magnitude derived from the four expressions for different values of T are also tabulated. The stability obtaining of the expected peak flood magnitudes of different return periods is abundantly evident for $\underline{k} = 2$ even, as the incremental improvements accruing to the estimates thereafter do not add to more than .2% in the present example at least. Another remarkable feature of the method is that the percentage improvements to the estimates at every successive approximation stages remain nearly comparable for all Ts from 20 to about 500 years and possibly beyond.

I	Peak flow rat	e			- 0.2	-0.17
Year	(000 cfs)	+ X ²	e^{-a_1x}	e ^{- <i>a</i>2x}	e ^{-agr}	e ⁴ *
	x					•
1935	27	729	.2733	·2611	• • 2604	·2604
1936	1	1	·9530	·9515	·951 5	- 9515
1937	44	1936	·1208	-1121	·1116	·1116
1938	28	784	·2605	-2484	·2477	-2477
1939	80	6400	·0214	·0187	• 0186 ·	·0186
1940	32	1024	·2149	·2036	·2030	-2030
1941	15	225	·4864	-4742	-4736-	-4735
1942	44	1936	.1208	-1121	-1116	-1116
1943	68	4624	·0381	·0340	·0338	·0338
1944	87	7569	-0153	·0132	-0131	-0131
1945	66	4356	•0420	·0375	·0373	·0373
1946	16	256	·4635	-4512	-4505	-4505
1947	20	400	-3825	·3698	·3691.	·3691
1948	7	49	•7144	-7060	·7055	-7055
1949	17	289	·4419	-4293	·4286	·4286
1951	36	1296	·1773	-166 9	·1663	·1663
, 1952	2	4	·9084	•9053	·9051	·9051
Total	. 590	31878	5.6345	5-4949	5.4873	5.4872
$\frac{\Sigma(x-\bar{x})^{2}}{2}$	$= \frac{\sum x^2 - (\sum x)^2}{\sum x^2 - (\sum x)^2}$)²/n	s = 26.0	694486	-	
n-1	n-1		5 — 20			
31878 - 2047	76-4706		$a_1 = -$	$\frac{1}{-x} = \frac{1}{-x}$	048045 (1s	t approx to a)
16			- ` √	<u>6</u> s	· · · · · · · · · · · · · · · · · · ·	ppron to u j
712-595588			$\overline{x} = \frac{\Sigma x}{n}$	$\frac{x}{17} = \frac{590}{17} = 34$	4·7059	

Computational Procedure with data of Sabarmati at Dharoi (1935-52)

Computations for further values of a_{k+1}

.

.

	Step	k = 1	2	4	5
1. 2. 3. 4.	$a_k \log_{10} e$ $1/a_k$ $1/a^3_k$ $\overline{x} - 1/a_k$	·020866 20-8138 433-2143 13-8921	-021601 20-1058 404-2432 14-6001	-021643 20-0662 402-6524 14-6397	•021644 20•0654 14•6405
5.	$\Sigma e^{-a_k x_i}$	5-6345	5-4949	5-4873	5.4872
6.	$\Sigma x_i e^{-a_k x_i}$	84.6139	80-5551	80-3383	80.3368
7.	$\sum x_{i}^{2} e^{-a_{k}x_{i}}$	2481-3331	2317-4409	2309-0391	
8.	$f(a_k) = (6) - (4) \times (5)$	6-338863	·329011	·005874	-001448
9.	$f'(a_k) = -(7) + (4) \times (6)$ -(3)×(5)	- 3746-8143	- 3362·6043	- 3342·3850	
10.	$h_k = -\frac{f(a_k)}{f'(a_k)}$	-001692	-000098	-000002	
11.	$a_k + h_k$	$a_2 = .049737$	$a_8 = .049835$	$a_4 = .049837$	

.

Computations for values of u_k

.

.

From (10)

$$u_{k} = \log_{e} 10 \times \frac{1}{a_{k}} \times \log_{10} (n) - \log_{e} 10 \times \frac{1}{a_{k}} \times \log_{10} \left(\Sigma e^{-a_{k}x_{i}} \right)$$

$$= A - B$$

$$k = 1 2 3 4$$

$$k = 1 2 3 4$$

$$\log_{10} \left(\Sigma e^{-a_{k}x_{i}} \right) \frac{58 \cdot 967577}{750855} \frac{56 \cdot 961742}{750855} \frac{56 \cdot 849551}{739960} \frac{56 \cdot 847285}{739359} \frac{56 \cdot 847285}{739351}$$

$$B 35 \cdot 985369 34 \cdot 256904 34 \cdot 161664 34 \cdot 159932$$

$$u_{k} = A - B 22 \cdot 982208 22 \cdot 704838 22 \cdot 687887 22 \cdot 687353$$

Respective improvements from successive approximations to Peak flow estimates of T years return period (x_T) from .

$$x_T = u_k - \frac{1}{a_k} \log_e \log_e \frac{T}{T-1}$$

 x_T (000 cfs) for

24

Fig 9

11. EXTREME VALUE PROBABILITY PAPER

The expressions can be conversely also utilised for estimating uniquely the average return period of occurrences of any big or small annual peak flood magnitudes. In fact, they can be presented graphically by means of straight lines on the specially ruled Extreme Value probability paper as in fig 9. The magnitudes of the expected peak flow rates can be then directly read off for any desired return period value from the corresponding points along the line, or conversely the expected return periods for any postulated peak flow magnitudes. Any other hypothetical plotting positions for the observed annual peak flow data of the past thus have to be termed as purely tendentious or otherwise fallacious. But the other two methods mentioned in passing earlier, utilised by Gumbel namely of equating the first two moments or their variants the mode and mean deviation of the observed n annual peak flow data to the corresponding entities of (3)for determining the values of a and u also possess the likewise advantages of freedom from any subjective bias or limitations of arbitrarily defining the plotting positions. They also yield similar straight lines for reading off the expected peak flow magnitudes equally uniquely for any return periods magnitudes and conversely.

The question, therefore, arises immediately: Which of the three methods yields the better efficient estimates? In particular, where lies the superiority of the method just described with all its entailing huge computational labour, unless the obtaining estimates are better precise? The expression for computing the standard errors of the estimates by the two methods previously described by Gumbel has also

been given by him as

$$\lim_{x \to \infty} as = \left[\frac{e^{a(x_T - u)}}{a\sqrt{n}} \right] \left[\frac{e^{-a(x_T - u)}}{e^{e^{-a(x_T - u)}}} \right]$$

Appendix I shows the derivation of the expression obtaining for the standard error of the estimates utilising the values of <u>a</u> and <u>u</u> as deduced by the method of maximum likelihood. It is

$$SE(x_{T}) = \mathbf{e} = \frac{1}{a/n} \int_{-1}^{-1} + \frac{6}{\pi^{2}} (1 - C - \log_{e} \log_{e} \frac{T}{T-1}) \int_{-1}^{\frac{1}{2}} \dots (15)$$

While the forms of above expressions by themselves do not offer the ready means of comparing their relative magnitudes, Table I reproduces the expected annual peak flood magnitudes of various long term return periods of occurrences as deduced by the different methods together with their respective standard error measures for different rivers observed data. They provide the abundant incontrovertible evidence thus obtaining of the greater precise measures invariably accompanying the estimates by the method of maximum likelihood over the others. 12. STABILITY OF PEAK FLOW ESTIMATES

The Table also reproduces the magnitudes of the corresponding peak floods as deduced by availing the alternative methods utilising the plotting positions concept. While their comparison with the estimates otherwise deduced by the method of maximum likelihood may be irrelevant, fig 9 shows the different degrees of their conformities between the estimates by the various methods which again may differ fortuitously from one river to another. Whenever they may be found to conform closely to the estimates by the method of maximum likelihood also they do not provide any firm evidence about the correctness of the plotting positions method(s). For, casual additions of new data or deletions of a few doubtful observations are likely to leave their impress very differently on the two methods particularly when such data correspond to very high flood years. Thus the estimates values(Table I) by the various methods by including and excluding alternatively one or two high years data show the relative greater inertness(smaller susceptibility in other words) of the method of maximum likelihood to such omissions or additions to the main bulk of the data. The greater susceptibility of the plotting positions method in fact springs from the greater importance the least square process for formulating the line, assigns to the positions of the end points. In other words, the fitted line is more inclined to follow their lie. Thus any errors, big or small, in the plotting positions of the very high observed annual peak flows are likely to be duly reflected in the consequent derived estimates of long term return periods. With the best intentions therefore, for deriving precise estimates of the expected long term peak flow magnitudes, systematic errors of unknown magnitudes may be most unknowingly creeping into them. An illustration will perhaps clarify better.

In the 27 years'(1926-53) annual highest observed peak flows magnitudes data on record for the Mahanadi at Sambalpur, the following four years with the respective flow magnitudes shown against each stand out 'as the first to the fourth in descending order.

Year	' <u>(000 cfs)</u>	Return	period(T/y	ears <u>)</u> est	imated by	method of
		Hazen :	Gumbel :	Maximum Likeli-	: Moments	: Mode and Mean de-
•	;			hood		viation
1947	965	54	28	9.3	14.5	11.2
1946	950	18	14	8.4	12.8	10.1
1948	948	10.8	9.3	8.3	12.6	10.0
1952	848	7.7	7	4.6	5.8	5.1

It is doubtful if the three highest magnitudes observed can be at all termed as different one from the other. Even currentmeter observations of the flow velocities are ordinarily qualified as subjected to \pm 3% errors. But if the annual observed flow magnitudes are each to be assigned definite ranks and hypothetical return period measures dependent on them, the three nearly equal magnitudes above of the peak flows will each have vastly different values of T. Prima facie they will appear very unrealistic. Unlike the adhoc hypothetically assigned T values, their most likely measures as deduced from the 27 years observed annual peak flows data themselves by the method of maximum likelihood are all very rationally close to each other as they should be. Thus it is reasonable to hope that any derived peak flow estimates of long term return periods will be also better realistic(conforming to actualities) by the method of maximum likelihood than by the estimates derived by utilising the hypothetical plotting positions concept.

13. UPPER CONFIDENCE LIMITS

Having reached thus to the happy solution of an otherwise so far tough problem it may be worth pondering for a while over the pithy note of R A Fisher, the greatest of all Statistical wizards cited at the outset. The paper describes a precise way for evaluating uniquely the expected estimates of long term return periods of occurrences in any stream(s) but appends an expression(15) yet for computing the standard error measures. This has been perhaps done rightly also. For, who can correctly foresee the infinite future which is yet to unfold? A prep into the recorded limited past can at best provide a semblance only toward any approximate guidance. Any mathematical law that may be nearly discovered to follow the course of events will be an approximation and

may not fully coalesce with all the occurrences exactly. The standard error device accordingly computed for any formula fitting the past data thus provides a yardstick measure of their closeness to the actual occurrences in the past and plausibly of their expected deviations in the future, so far as the other causes, interfering with their course, purely arise from the chance or such other/random phenomena. Thus, despite the uniqueness of the average estimates obtaining from(5) with the values substituted of <u>a</u> and <u>u</u> as derived by the method of maximum likelihood from the limited observed data of the past, any like estimates deduced from another set of <u>n</u> years observed data may be slightly different also, the differences ordinarily not exceeding 1.64 $\boldsymbol{\epsilon}$ where the standard error $\boldsymbol{\epsilon}$ is given by(15).

In order to provide reasonable safeguards therefore, for meeting 95% of such chance variations it is usual ordinarily to take the upper limiting value of $x_T + 1.64$ σ for all design flow estimates. The straight lines representing the expressions for computing the average peak flow magnitudes of different return periods as deduced by the method of maximum likelihood for various observed rivers data together with the lines for the corresponding y5% upper limiting values are shows in figs 10. The original data of the various rivers are presented separately in Appendix II and fig 11.7. The hypothetical return period values according to Gumbel are also plotted therein and conform to lies which may at times vastly differ from the lines fitted by the method of maximum likelihood. Thus it is not always safe to accept their lie as reasonably accurate particularly when long term design flow estimates are desired.

Fig 11: Annual highest flow rates

14. RESUME

When data of the directly or indirectly observed annual maximum flow measures for a reasonably sufficient number of years are available, the method of maximum likelihood has been shown to be better successful for deriving both precise as well as consistent estimates of the design flow measures of desired long term return periods. At the outset, the virtual impossibility has been postulated of framing any apriori definitions for evaluating the plausible return period measures of the different observed annual peak flow rates data on record. Instead, the method of maximum likelihood, with no hypothetical assumptions whatsoever, has been called to aid for evaluating the parameters of the extreme value distribution law governing the data. Any design flow estimates so derived can all thus claim absolute freedom from subjective biases in the analytical procedures etc.

The increased precision of the estimates as well as their larger insusceptibility to withstand effectively small additions or deletions of doubtfully high values or such other material to and from the basic data have been demonstrated.

A schematized method is presented of speedily and systematically sieving through the complicated computations for arriving at the estimation expression for the average peak flow magnitude of different return periods. The procedure outlined rids it of the tedium usually attendant of the computations in all such estimation problems, and thus commends as readily acceptable to most design engineers equipped only with routine calculating machines and ordinary tables of logarithms.

ACKNOWLEDGEMENTS

The preparation of the Technical Memorandum in its above form was undertaken primarily at the instance of Dr K'L Rao for whose almost challenging encouragement the authors remain highly indebted.

The authors owe grateful acknowledgements to Dr A R Kamat, S C Desai, C V Gole, and S V Chitale for kindly going through the paper critically. V T Jumde and M V Bagade carried out most ungrudgingly the large volume of computational work necessary for the presentation of the results.

TABLE 1

Long Term Estimates (000 cfs) of Peak Flows

	Return	Deduced with Parameters using									
Period and site	Period	Maxim	um	· ·			•	Plotting position			
	(years)	likeliho	bod	Mome	ents	Mode an	d mean.	concept	due to		
	· .	metho	od				lion ·	Gumbel	Hazen		
1	2 • •	· · · · 3 _.	s., , ,	4	·.	5		6	7		
1. Baitarni at Akhupada	20	237+	14	248+	25	246 -	- 25	257	249		
(1874–1957)	50	280	18	295	40	293	39	306	295		
	100	313	21	331	56	328	55	343	331		
	200	345	23 ·	368	80	365	78	383	368		
· · · · · ·	500	388	_. 27	411	126	. 408	123	429	411		
2. Krishna at Vijayawada	20	795	41	826	70	821	69	848	826		
(1894–1958)	50 .	903	50	943	111	936	109	973	943		
	100	983	58	1031	157	1022	154	1066	1031		
	200	1064	66 76	1125	223	1114	218	1100	1125		
• • •	500	11/0	10	1232	352	1219	344	1201	. 1233		
3. Godavari at Dowlaishwaram	20	1673	104	1812	197	1722	169	1849	1797		
(1905–57)	50	1922	129	2108	311	1976	267	2156	2087		
	200	2108	148	2330	439	· 210/	575	2380	2304		
	200 500	2293	107	2307	983	· 2604	846 ·	2031	2000		
4	200	1607	06	1626	160	1600	1.40	1675	. 2000		
a. $-00 -$	50	1825	90 120	1863	251	1878	140 233	1075	1025		
(omitting 1955)	100	1925	120	2040	355	1993	330	2118	. 2030		
	200	2167	155	2230	505	2169	467	2320	2039		
	500	2392	178	2447	795	2371	738	2552	2444		
5. – do –	20	1549	92	1537	143	1546	136	1582	1537		
(omitting 1942 and 1953)	50	1765	114	1748	226	1748	216	1808	1748		
	100	1928	132	1906	320	1899	305	1978	1905		
	200	2089	149	2075	452	2060	431	2159	2074		
	500	2803	172	2268	715	2245	682	2366	2267		
6. Penner at Nellore	20	. 306	30	365	60	· 342	58	378	359		
(1903–54)	50	376	37	455	95	428	91	472	446		
	100	428	42	522	134	493	129	542	511		
	200	481	48	594	190	561	182	617	587		
	500	550	22	0/0	301	640	288	703	661		
7. Sutlej at Bhakra	20	242	19	249	31	239	32	261	251		
(1912-55)	50 100	282	23	292	49	283	51	308	294		
	200	313	20	324	09	310 251	102	343	326		
	500	383	34	397	155	391	161	. 300	100		
8 Mahanadi at Narai	20	1787	153	1500	197	1606	205	725	400		
(1926-58)	50	2072	190	1818	295	1036	205	1004	1580		
(120 00)	100	2286	219	1982	418	2116	458	2066	1/91		
	200	2495	247	2157	591	2308	648	2255	2117		
	500	2781	285	2357	934	2527	1025	2471	2310		
9. Yamuna at Tajewala	20	325	35	380	71	354	68	400	378		
(1927–59)	50	390	43	463	112	434	108	490	460		
	100	438	50	525	159	- 494	152	556	522		
	200	487	56	591	224	557	216	628	587		
	500	550	64	667	354	631	341	710	663		

TABLE	1	(Contd)
-------	---	---------

	Return	Deduced with Parameters using								
Period and site	Period (years)	Maximum likelihood method 3		Mom	ents	Mode ar	nd mean	Plotting concept	position t due to	
	•					GCVI		Gumbel	Hazen	
I	2			4		5	i	6	7	
10. Sone at Dehri	20	1196 J	F112	1126 ₋	±163	1193	<u>+</u> 174	1188	1126	
(1920–54)	50	1413	145	1317	258	• 1397	276	1400	1376	
	100	1576	166	1461	365	1550	390	1558	1459	
	200	1738	188	1013	210 217	1714	552 872	1/2/	1011	
11 da	200	1154	112	1074	166	1122	144	1126	1065	
11. $-00-$	20 50	1154	115	10/4	245	1132	262	1120	1239	
(onlitting 1955)	100	1517	162	1386	346	1466	370	1467	1369	
	200	1672	183	1529	489	1618	574	1623	1508	
	500	1877	211	1692	774	1793	828	1801	1668	
12. Ravi at Madhopur	20	336	37	. 445	92	418	85	456	429	
(1929–58)	50	403	46	549	145	514	134	562	526 [°]	
()	100	453	53	626	205	586	189	641	598	
	200	502	60	709	289	663	268	726	67 6	
	500	568	69	804	458	751	424	823	76 5	
13. Hatmati at Himat Nagar	20	35	5	43	10	43	· 10	46	43	
(1922–49)	50	44	6	55	16	55	17	59	54	
	100	50	7	63	23	63	23	68	62	
	200	57	8	72	33	72	33	78	71	
	500	65	9	82	52	83	52	89	82	
14. Mahanadi at Sambalpur	20	1086	83	1006	104	1049	119	1043	1001	
(1926–53)	50	1227	103	1118	165	1177	188	1168		
• • •	100	1333	118	1202	233	1273	266	1261	1193	
	200	1438	133	1292	330	1376	377	1360	1281	
	500	1577	154	1395	522	1493	396]4/4	1301	
15. Damodar at Rhondia	20	455	52	432	75	434	72	468	440	
(1933–56)	50	539	65	508	118	508	114	556	519	
	100	602	75	565	167	563	162	022	5/7	
	200	665	84	626	236	021	228	073 772	712	
	500	748	91.	• 095	3/4	000	501	113	160	
. 16. Sabarmati at Dharoi	20	117	20	172	54	139	43	1/4	202	
(1935–52)	· 50	145	25	219	86	170	0/	221	202	
	100	166	29	255	121	204	93 125	203	268	
	200	187	32 37	293	270	268	213	336	306	
	JWC	215	14	200	22	84	24	95	86	
17. – do –	20	82	14	6J 104	36	105	38	118	105	
(omitting 1950)	50	101	20	104	50	120	54	135	120	
	100	115	20	134	71	137	77	. 153	135	
	200 500	147	26	151	113	156	122	174	153	
.	200	022	136	887	236	903	266	992	891	
18. Tapi at Kathore	20 , 50	1000	160	1065	373	1108	420	1210	1076	
(1940–53)	20 100	1126	194	1202	527	1262	594	1374	1214	
	200	1251	220	1347	745	1427	840	1548	1361	
	500	1416	253	1514	1178	1615	1328	1749	1530	

APPENDIX I

Standard Error of Peak Flow Estimates by Maximum Likelihood

Since from (5), $x_T = u - \frac{1}{a} \log_e \log_e \frac{T}{T-1} = u - \frac{1}{a} R$

Variance $(x_T) = \text{Variance } (u) + R^* \text{Variance } \left(\frac{1}{a}\right) - 2R \text{ Covariance } \left(u, \frac{1}{a}\right) \dots$ (16)

or, denoting Variances and Covariances by Var and Cov

$$\operatorname{Var}(x_T) = \operatorname{Var}(u) + R^{\mathfrak{a}} \operatorname{Var}\left(\frac{1}{a}\right) - 2R \operatorname{Cov}\left(u, \frac{1}{a}\right) \quad \dots \quad \dots \quad (16)$$

Now the Variance – Covariance matrix of u and a viz

Var
$$(u)$$
Cov (u, a) ... (17)Cov (u, a) Var (a)

is the reciprocal* of the matrix

$$-n \left| \begin{array}{c} E\left(\frac{d^{2} \log f}{du^{4}}\right) & E\left(\frac{d^{2} \log f}{da \ du}\right) \\ E\left(\frac{d^{2} \log f}{da \ du}\right) & E\left(\frac{d^{2} \log f}{da^{4}}\right) \end{array} \right| \qquad \dots (18)$$

where f stands for the distribution function

$$\begin{array}{r} -a(x-u) \\ -a(x-u) & -e \\ ae & e \end{array}$$

and E for the expected values of the second order partial derivatives of $\log f_{i}$

eg,
$$E\left(\frac{d^2\log f}{du^2}\right) = \int_{-\infty}^{+\infty} \frac{d^2\log f}{du^2} f dx$$

On evaluating and substituting the expected values, (18) becomes

$$n \begin{vmatrix} a^{2} & (1-C) \\ (1-C) & \frac{1}{a^{2}} \left[\frac{\pi^{2}}{6} + (1-C)^{2} \right] & \cdots (19)$$

(C being Euler's Constant = 0.577216).

* M G Kendall, "The Advanced Theory of Statistics" Vol II, pp 36-42.

Reciprocal of (19) is

$$\frac{1}{n} \begin{vmatrix} \frac{1}{a^2} \left[1 + \frac{6(1-C)^2}{\pi^2} \right] & \frac{-6(1-C)}{\pi^2} \\ \frac{-6(1-C)}{\pi^2} & \frac{6a^3}{\pi^2} \\ & \dots \quad (20) \end{cases}$$

Comparison of (20) with (17) gives

$$Var(u) = \frac{1}{na^{3}} \left[1 + \frac{6(1-C)^{2}}{\pi^{2}} \right], \quad Var(a) = \frac{6a^{2}}{n\pi^{2}}$$
$$Cov(u, a) = \frac{-6(1-C)}{n\pi^{2}}$$

wherefrom we get*

$$\operatorname{Var}\left(\frac{1}{a}\right) = \left(-\frac{1}{a^2}\right)^4 \operatorname{Var}\left(a\right) = \frac{6}{n\pi^2 a^2}$$

and $\operatorname{Cov}\left(u, \frac{1}{a}\right) = -\frac{1}{a^2} \operatorname{Cov}\left(u, a\right) = \frac{6(1-C)}{n\pi^2 a^2}$

•

substituting which in (16) gives

$$V_{ar}(x_T) = \frac{1}{na^2} \left[1 + \frac{6(1-C)^2}{\pi^2} \right] + R^4 \frac{6}{n\pi^2 a^4} - 2R \frac{6(1-C)}{n\pi^2 a^2} \\ = \frac{1}{na^2} \left\{ 1 + \frac{6}{\pi^2} \left[(1-C)^4 + R^4 - 2R(1-C) \right] \right\} \\ = \frac{1}{na^2} \left[1 + \frac{6}{\pi^2} (1-C-R)^4 \right]$$

Therefore Standard Error $(x_T) = \sqrt{Var(x_T)}$

$$=\frac{1}{\sqrt{n}a}\left[1+\frac{6}{\pi^{2}}(1-C-R)^{2}\right]^{\frac{1}{2}}$$

^{*} M G Kendall, "The Advanced Theory of Statistics", Vol I, pp 208, Charles Griffin & Co Ltd, London (1943)

APPENDIX II

Annual Peak Flows (000 cfs)

Year	Baitarni at Akhupada	Krishna at Vijayawada	Penner at Nellore	Godavari at Dowlaishwaram	Sutlej at Bhakra	Sone at Dehri	Hatmati at Himat Nagar	Mahanadi at Sambalpur	Mahanadi at Naraj	Yamuna at Tajewala	Ravi at Madhopur	Damodar at Rhondia	Sabarmati at V Dharoi	Tapi at Kathore
1905	56	483	82	795										
06	172	463	48	1078								Vear	Baitarni	Krishna
07	275	495	144	1228			Year	Raitarni	Krishna	Penner		Ical	Dattatili	KIISIIIIA
08	101	572	105	1036			1 cui	Danaim	ix toinia	renner		1874	87	
09	122-5	653	473	901			1896	211	760			75	87	
10	96	370	206	965			97	50	619					
							98	116	624			1876	85	
1911	82	320	34	1144			99	72	405			77	183	
12	125	543	152	1186	237 .		1900	228	719			78	20	
13	290	418	63	969	199		1001					79	95	· · · ·
14	<u>92</u> .5	949	29	1141	199		1901	114	513			80	83	
15	83	578	98	1066	146		02	180	548	150				
1/	~ ~			• • •			03	96	1061	479		81	250	
10	65	955	382	915	75		04	228	479			82	108	
10	101	498	324	936	160							83	110	
18	85	254	72	718	70							84	112	
19	101	456	96	678	133							85	54	
20	263	392	69	528	145	674								
1021	15	<i>eco</i>	1.00									1880	80	
22	20	228	142	998	136	580						87	68	
22	127	499	127	824	110	309	6.8					88	112	
23	140 53.5	024	91	222	93	1028	0.9					89	98	
24	32.3	034	151	629	237	965	5.9					90	12	
25	175	013	111	796	191	892	2.7	,				01	142	
26	125	552	30	933	96	871	34.9	841	1410			92	112	
27	325	560	158	845	141	600	29.7	698	1164	180.5	,	93	156	
28	172	461	17	725	85	NA	3.7	595	100	207 ⁻ 5		94	195	578
29	125	458	67	845	162	638	7.1	840	1400	294	72	95	75	496
30	102-5	370	169	972	150	NA	10.3	559	931	145	155	<u> </u>		
		-		• -	••••	• • • •		~~~	4 4 7	170	*~~			

Усаг	Baitarni at Akhupada	Krishna at Vijayawada	Penner at Nellore	Godavari at Dowlaishwaram	Sutlej at Bhakra	Sone at Dehri	Hatmati at Himat Nagar	Mahanadi at Sambalpur	Mabanadi at Naraj	Yamuna at Tajewala	Ravi at Madhopur	Damodar at Rhondia	Sabarmati at Dharoi	Tapi at Kathore
59				-						180				
58		740	-						931-5	199	128			
57	62	592		1755	NA d	lenotes • da	ta not avai	lable.'	503	317	472			
56	142	830		1571					647	450	232	244		
55	175	503		1364	130				NA	275	617	61		
54	58	513	117	1084	199	206			450	224	152	243		
53	108	478	55	2830	170	777		776	876	154	357	195		235
52	84	406	294	526	83	356		848	1045	NA	101	168	2	115
1951	83	360	42	846	325	421		450	394	215	71	347	36	162
50	134	202	33	1153	172	861		792	913	92	301	240	291	398
49	09 134	914	455	1119	107.5	443	9.0	701	634	126	133	230	17	00Z
48	04 60	369	15	671	83	561	0.1	948	1103	110	79	230	7 ·	255
47	45	443	132	1117	276	607	0-2	965	1495	563	566	260	20	291
46	192	475	420	1250	135	512	13-1	950	1445	129	103.5	314	16	339
-3	100	313	21	1104	109	2/9	20.0	289	981	97	114.2	121	00	122
44	140	202	89	1/94	100	959	45·6	793	1322	101	114.5	100	81	900
45	287	427	293	635	186	NA	7.7	714	1190	118	94	251	68	179
42	127	381	13	2108	177	959	10-8	656	1093	143	138	375.5	44	758
1941	300	382	55	626	97	181	41.8	402	670	78	104	521.5	15	481
						101	10	040	1400	10	110	2000		2.0
40	217	354	199	1791	61	404	1.0	840	1400	70	115	266·5	32	243
39	117	402	158	896	83	681	7.9	472 816	1360	43	69	258.5	80	
38	47.5	370	143	1011	03 175	014	7.9	823 403	820	51	04	202 64		
30	91 127	302	95 51	10/5	84 ·	619.5	0.7	546	910 1275	98 104	193	1/4.2	1	
26	01	250	0.5	1076	04 .	(10.5	<u>.</u>	546	010	00	102	174.5	1	
35	95	360	107	909	156	786	7.8	552	920	76	111	422·5	27	
34	140	384	69	1029	87	1209	31.4	NA	1185	89	77	106-5		
33	142	632	46	1020	93	580	15.5	847	1412	79	137	216		
32	146	512	6	933	135	953	2.9	566	943	213	157			
1931	148	468	41	954	72	400	6.3	690	1150	82	.116			

CWPRS TECHNICAL MEMORANDUMS

SUBJECT CLASSIFICATION

Subject	Symbol
Water studies & Hydrology Rainfall & Runoff Regeneration & Losses Quantity of Water	HLO
Fluid Mechanics	FLM
Design of Hydraulic Structures	HYD
River Training & Flood Control	HYR
Irrigation, Drainage & Reclamation Surface & subsurface irrigation Water requirements of crops Soil survey and crop pattern Drainage Reclamation	IRD
Navigation Ports, Harbours & Estuaries Inland Navigation Coastal Erosion Ships & Navigation Crafts	NAV
Structural Design	STD
Soil Mechanics & Foundation Engineering Investigations Stability, deformations & displacements of earth structures Foundation studies including geophysical	SFE
Construction Materials & Practices Concrete Technology Building & other Materials	СМР
Instrumentation	· IST
Model and Prototype comparisons	MPC
Other miscellaneous	MIS

Printed by S. B. Kulkarni, I. A. S., Municipal Commissioner, Poona Municipal Corporation, at the Poona Municipal Press, Ghole Road, Poona 5.

Published by the Director, Central Water and Power Research Station, Poona 3.