An Introduction to
LOGIC
and
SCIENTIFIC
METHOD

BY

MORRIS R. COHEN
Department of Philosophy, College of the City of New York
AND

ERNEST NAGEL
Department of Philosophy, Columbia University

HARCOURT, BRACE AND COMPANY
NEW YORK
PREFACE

Though formal logic has in recent times been the object of radical and spirited attacks from many and diverse quarters, it continues, and will probably long continue, to be one of the most frequently given courses in colleges and universities here and abroad. Nor need this be surprising when we reflect that the most serious of the charges against formal logic, those against the syllogism, are as old as Aristotle, who seems to have been fully aware of them. But while the realm of logic seems perfectly safe against the attacks from without, there is a good deal of unhappy confusion within. Though the content of almost all logic books follows (even in many of the illustrations) the standard set by Aristotle's Organon—terms, propositions, syllogisms and allied forms of inference, scientific method, probability and fallacies—there is a bewildering Babel of tongues as to what logic is about. The different schools, the traditional, the linguistic, the psychological, the epistemological, and the mathematical, speak different languages, and each regards the other as not really dealing with logic at all.

No task is perhaps so thankless, or invites so much abuse from all quarters, as that of the mediator between hostile points of view. Nor is the traditional distrust of the peacemaker in the intellectual realm difficult to appreciate, since he so often substitutes an unclear and inconsistent amalgam for points of view which at least have the merit of a certain clarity. And yet no task is so essential, especially for the beginner, when it is undertaken with the objective of adjusting and supplementing the claims of the contending parties, and when it is accompanied by a refusal to sacrifice clarity and rigor in thought.

It is far as an elementary text permits such a thing, the present

that logic is the autonomous science of the objective though formal conditions of valid inference. At the same time, its authors believe that the aridity which is (not always unjustly) attributed to the study of logic testifies to the unimaginative way logical principles have been taught and misused. The present text aims to combine sound logical doctrine with sound pedagogy, and to provide illustrative material suggestive of the rôle of logic in every department of thought. A text that would find a place for the realistic formalism of Aristotle, the scientific penetration of Peirce, the pedagogical soundness of Dewey, and the mathematical rigor of Russell—this was the ideal constantly present to the authors of this book.

However inadequately this ideal is embodied in the present text, the embodiment is not devoid of positive doctrine, so presented that at least partial justice is done to supplementary approaches to logic.

1. The traditional view of logic as the science of valid inference has been consistently maintained, against all attempts to confuse logic with psychology, where by the latter is meant the systematic study of how the mind works. Logic, as the science of the weight of evidence in all fields, cannot be identified with the special science of psychology. For such a special science can establish its results only by using criteria of validity employed in other fields as well. And it is clear that questions of validity are not questions of how happen to think, but of whether that which is asserted is or is not in conformity with certain objective states of fact.

2. On the other hand, the pedagogical applications of psychological logics have not been ignored. We have aimed to present the subject in such a manner that discussion of doctrines new to the student is made continuous with his presumed knowledge at the outset. We have therefore avoided as far as possible the synthetic method of exposition: the method which begins with highly abstract elements and constructs a science out of them. Instead, we have followed what seems to us psychologically a more appropriate method. Illustrations with which a college student may reasonably be supposed to be familiar are usually taken as the text for discussion, and abstract, formal elements are gradually revealed as abstract phases of the subject matter. In this way, we trust, we have removed many of the difficulties which face the young student, and at the same time have indicated to him the important rôle played by logic in all of man’s activities.

3. Again, while we have tried to present the significant results of symbolic or mathematical logic to those who have no previous
knowledge of the subject, we have not tried to develop the technique of symbolic manipulation for its own sake. In our opinion, such a technique, while very valuable, belongs properly to mathematics developed as an organon of science, and not to an elementary book on logic. Nor do we share the rather hostile attitude towards the Aristotelian logic expressed by some of the more zealous workers in the newer fields. We have not been sparing in indicating the limitations of the traditional presentation of our subject. But we think that the newer achievements in exact logic have served to extend as well as to correct the Aristotelian logic. We have thus given a great deal of attention to traditional views that might well be left out in a systematic presentation of our present knowledge. For we think that the discussion and correction of the limitations of the traditional views has many pedagogical advantages in making our final ideas clear.

4. We do not believe that there is any non-Aristotelian logic in the sense in which there is a non-Euclidean geometry, that is, a system of logic in which the contraries of the Aristotelian principles of contradiction and excluded middle are assumed to be true, and valid inferences are drawn from them. What have recently been claimed to be alternative systems of logic are different systems of notation or symbolization for the same logical facts. We have drawn freely on the natural sciences for illustrations of logical principles, precisely because the logical structure of these sciences is clearly more than linguistic. We have therefore frankly indicated the metaphysical significance of logical principles, and have not failed to note that the structure of language is itself often a clue to something other than linguistic fact. While maintaining that logic as an autonomous science must be formal, we have insisted that its principles are not therefore without significant content; on the contrary, we have taken the position that they are inherently applicable because they are concerned with ontological traits of utmost generality. We think that the category of objective possibility is essential to logical discussion.

In the main, therefore, we view the history of logic as that of a series of contributions of diverse value by the various schools. If our point of view is consequently somewhat eclectic, seeking to give the student a liberal rather than a narrow view of the subject, we have nevertheless striven hard to maintain clear distinctions as to fundamentals. Florence Nightingale transformed modern hospital practice by the motto: Whatever hospitals do, they should not spread disease. Similarly, logic should not infect students with fallacies and
confusions as to the fundamental nature of valid or scientific reasoning.

Different instructors will naturally attach more value to different parts of the book. Not all of it can be presented in a one-semester course, and enough material has been included to occupy the student's attention for a full year. In a one-semester course, the authors have found that the substance of Book II, with the inclusion of Chapters III, IV, and VIII of Book I, gives the most satisfactory results. Those not interested in mathematics may omit Chapter VII. Books are tools which wise men use to suit their own ends. One of the authors, who has given courses in elementary logic for over twenty years, has generally treated the contents of Book II (Applied Logic and Scientific Method) before the formal logic of Book I. There are, to be sure, some topics in Book II which presuppose the solutions of Book I. But experience shows that such difficulties are readily surmountable. It is especially the hope of the authors that general readers as well as students of the natural and social sciences will find this book helpful towards an understanding of scientific method.

M. R. C.
E. N.

The continued demand for this book, which has exhausted three printings of it, has given us a chance to correct certain errors and to revise some statements in the interest of greater clarity.

M. R. C.
E. N.

January 7, 1936
CONTENTS

Preface iii

I. THE SUBJECT MATTER OF LOGIC
1. Logic and the Weight of Evidence 3
2. Conclusive Evidence or Proof 5
3. The Nature of Logical Implication 8
4. Partial Evidence or Probable Inference 13
5. Is Logic about Words, Thoughts, or Objects? 16
6. The Use and Application of Logic 21

BOOK I: FORMAL LOGIC

II. THE ANALYSIS OF PROPOSITIONS
1. What Is a Proposition? 27
2. The Traditional Analysis of Propositions 30
3. Compound, Simple, and General Propositions 44

III. THE RELATIONS BETWEEN PROPOSITIONS
1. The Possible Logical Relations between Propositions 52
2. Independent Propositions 56
3. Equivalent Propositions 57
4. The Traditional Square of Opposition 65
5. The Opposition of Propositions in General 68

IV. THE CATEGORICAL SYLLOGISM
1. The Definition of Categorical Syllogisms 76
2. The Enthymeme 78
II. CLASSIFICATION AND DEFINITION

1. The Significance of Classification 223
2. The Purpose and the Nature of Definition 224
3. The Predicables 234
4. Rules for Definition 238
5. Division and Classification 241

XIII. THE METHODS OF EXPERIMENTAL INQUIRY

1. Types of Invariant Relations 245
2. The Experimental Methods in General 249
3. The Method of Agreement 251
4. The Method of Difference 256
5. The Joint Method of Agreement and Difference 260
6. The Method of Concomitant Variation 261
7. The Method of Residues 264
8. Summary Statement of the Value of the Experimental Methods 265
9. The Doctrine of the Uniformity of Nature 267
10. The Plurality of Causes 269

XIV. PROBABILITY AND INDUCTION

2. The Rôle of Fair Samples in Induction 279
3. The Mechanism of Sampling 284
4. Reasoning from Analogy 286

XV. MEASUREMENT

1. The Purpose of Measurement 289
2. The Nature of Counting 291
3. The Measurement of Intensive Qualities 293
4. The Measurement of Extensive Qualities 296
5. The Formal Conditions for Measurement 297
6. Numerical Laws and Derived Measurement 298
CONTENTS

XVI. STATISTICAL METHODS
1. The Need for Statistical Methods 302
2. Statistical Averages 303
3. Measures of Dispersion 310
4. Measures of Correlation 312
5. Dangers and Fallacies in the Use of Statistics 316

XVII. PROBABLE INFERENCE IN HISTORY AND ALLIED INQUIRIES
1. Does History Employ Scientific Method? 323
2. The Authenticity of Historical Data 326
3. Establishing the Meaning of Historical Data 329
4. Determining the Evidential Value of Historical Testimony 334
5. Systematic Theories in History 340
6. The Comparative Method 344
7. The Weighing of Evidence in Court 347

XVIII. LOGIC AND CRITICAL EVALUATION
1. Are Evaluations Beyond Logic? 352
2. Moral Judgments in History 353
3. The Logic of Critical Judgments on Art 357
4. The Logic of Moral and Practical Judgments 362
5. The Logic of Fictions 367

XIX. FALLACIES
1. Logical Fallacies 376
2. Sophistical Refutations 381
3. The Abuse of Scientific Method 382
CONTENTS

XX. CONCLUSION

1. What Is Scientific Method? .. 391
2. The Limits and the Value of Scientific Method 399

Appendix—Examples of Demonstration

 1. What Does a Demonstration Establish? 407
 2. Some Fallacious Demonstrations 413

Exercises .. 418

Index ... 461
AN INTRODUCTION
TO LOGIC AND SCIENTIFIC METHOD
INDEX

Abélard, 96
Absolute priority, fallacy of, 385
Absorption, principle of, 124
Abstract, all propositions and systems are, 140, 396-7
Abstractions, 371-5
Abstractive theories, 397-9
Accident, and the Predicables, 237-8; fallacy of, 377-8
Added determinants, inference by, 73
Addition, logical, 122
Affirmative propositions, 36
A forteriori arguments, 77-116
Alexander, of Macedon, 354, 356
Alternative propositions, 45; equivalence to hypothetical and disjunctive propositions, 64-5; contradictory of, 69
Alternative syllogism, 100-1, 105
Ambiguity, 225
Analysis, abuses of, 383, 385
Analogy, and formation of hypotheses, 221-2; and induction, 286-8; and metaphor, 369
Antecedent, 8, 44; fallacy of denying, 99
Antilogism, 91-4
Apodosis, 8
Archimedes, 407-13, 442
Argumentum ad hominem, fallacy of, 380
Aristotelian sorites, 95
Arithmetic mean, 304-6
Array, Besian, 446
Art, and logic, 357-62
Association, principle of, 124
Asymmetry, of relations, 114
Authenticity, of historical data, 326-9
Authority, and scientific method, 193
Averages, statistical, 303-10
Axioms, for categorical syllogism, 78-9: function of in system, 129-33; consistency and independence of, 143-7; fertility of, 143
Bacon, Francis, 245
Bain, A., 436, 445
Beethoven, 352
Begging the question, fallacy of, 379
Bell, E. T., 433
Bentham, J., 236, 447
Berkeley, Bishop, 384, 458
Binomial theorem, and mathematical probability, 164
Blackstone, 378
Bolyai, 144, 417
Boole, George, 112
Bradley, F. H., 34, 455, 457
Buckle, H. T., 316
Buddha, 352
Bukharin, 438
Butler, Bishop, 151
Caesar, Julius, 354
Cantor, Georg, 113, 146
Categorical propositions, 33-44; symbolic representation of, 124-5
Causality, and invariant relations, 245-9
Certainty, in logic, 19, 186
Champollion, 329
Change, and logic, 176
Classes, calculus of, 121-6
Classification, 223-4, 241, 372
Coefficient of dispersion, 311
Commands, and propositions, 28
Commutation, principle of, 123
Comparative method, in history, 344-7
Complex conception, inference by, 74
Complex constructive dilemma, 106
Complex destructive dilemma, 106
Composition, fallacy of, 377; principle of, 124
Compound propositions, 44-8; equivalence between, 69-5; opposition between, 69-75
INDEX

General propositions, 50-1
Genus, 32, 235
Goclenian sorites, 95

334-40; and procedure in court, 347-51; and scientific method, 394. See Probability.

Exceptional propositions, 37
Excluded middle, principle of, 123, 181, 184-5
Exclusive particularity, fallacy of, 387
Exclusive linearity, fallacy of, 385
Exclusive propositions, 37
Existential import of categorical propositions, 41-4; in immediate inference, 58, 62-3; in square of opposition, 68; in syllogism, 91
Experiment, and measurement, 294-301; function of, 215-21, 266, 267
Extension of terms, 300
Extensive qualities, 296-7

Facts, and scientific method, 199, 201, 391-2; and hypotheses, 215-21; and classification, 224
Falk, J. S., 321
Fallacies, in statistics, 1116-22; formal, verbal, and material, 1176-82; in use of scientific method, 1182-90
False disjunction or opposition, fallacy of, 386
False hypotheses, value of, 207-8
Faraday, M., 399
Fertility of axioms, 143
Figures of categorical syllogism, 81-4
Fixation of beliefs, methods of, 193-6
Fling, F. M., 329
Form, in logic, 10-12; not a constraining force, 12; in language, 118; in critical evaluations, 367
Foucault, 219
Fraenkel, O., 349
France, Anatole, 216, 358
Frege, G., 113, 146
Freud, S., 443
Fuller, Governor, 349
Fundamental measurement, 297

Galileo, 204-6, 208, 278, 380, 399, 408, 444
Gambler's fallacy, 168
Gauss, K. F., 380
Generalization, and induction, 14, 277-9, 282-4; in mathematics, 247-50; and logic, 186-7
General propositions, 50-1
Genus, 32, 235
Goclenian sorites, 95

Grammar and logic, 16-8
Grassmann, H. G., 417
Hamilton, Sir Wm. R., 417
Harvey, Wm., 439
Heath, Sir T. L., 413
Heisenberg, W., 215
Henry VIII, 341
Hermite, 17
Herodotus, 197-204
Hertz, H., 441
Hilbert, D., 142, 146, 238
Historical criticism, in art, 359-62
Historical method, Chap. XVII
Hobbes, T., 16
Hume, D., 279-80, 325, 446
Huntington, E. V., 433
Huxley, T. H., 197, 381

Hypotheses, and universal propositions, 43; and mathematics, 139; and theory of probability, 167-8; and scientific method, 392-4, Chap. XI; general and special, 206; formal conditions for, 207-15; and experimental methods, 252, 257; and induction, 279-84; and counting, 291-3; and historical method, 325-51, 354; and fictions, 367-75

Hypothetical propositions, 44; contrapositives of, 64; their equivalent alternative and disjunctive propositions, 64-5; contradictory of, 69
Hypothetical syllogism, 90-100, 103-4

Identity; principle of, 123, 181, 185; structural, 137; and metaphors, 369

Immediate inference, 73

Implication, and inference, 7; its nature, 8-13, 175; and meaning, 9; as determination, 12; as factual and as logical, 48; paradox of, 127, 173-6; strict or tautologous, 127

Impressionism, in criticism, 357-9
Inclusion of classes, 113, 123
Incomplete expressions, and propositions, 90

Consistent Triad, 91-4, 144
Independence, between propositions, 53, 55, 56-7, 143-7; of events and their probability, 160
Indifference, principle of, 165
Induction, 14, 249; and probability, Chap. XIV; intuitive, 273-5; perfect, 275-6; and deduction, 276-9; and sampling, 279-86; mathematical, 147-8
Inference, and implication, 7; immediate, 73; mediate, 73; paradox
of, 175-6; by converse relation, 63; by added determinants, 73; by complex conception, 74; by limitation, 58, 84; and induction and deduction, 276-9.

Initial predication, fallacy of, 386

Intension of terms, 30-3

Intensive qualities, 293-6

Interpretation, in historical method, 329-34; in art, 357-62; of axioms, 138, 145

Intuition, and scientific method, 193

Intuitive induction, 273-5

Invariant relations in science, types of, 245-9

Inverse variation of intension and extension, 33

Inversion, of categorical propositions, 61-3

Isomorphism, 137-41

Jevons, W. S., 423, 424, 448

Jesus Christ, 225, 325, 335-40

Johnson, Dr. Samuel, 241

Johnson, W. E., 275

Joint Method of Agreement and Difference, 200-1

Judgments, and propositions, 28

Jurisprudence, and metaphors, 370-1

Kant, I., 110, 111, 355, 378, 420

Kelvin, 399

Kepler, 408, 441

Keynes, J. N., 286

Koran, 325, 379

Ladd-Franklin, C., 91

Langlois, C. V., and Seignobos, C., 335

Language, general traits of, 117-8; changes in, 119; emotive and metaphoric use of, 368-71

Laplace, 168

Laws of Thought, 181-5; and metaphysics, 185-7

Laws, types of, 245-9, 354, 397-9

Leibniz, 34, 112

Leonardo da Vinci, 362

Limiting conceptions, 371-5

Lindemann, 17

Linguistics, and logic, 16-8

Lobachevsky, 144, 417

Locke, J., 20, 420

Lodge, O., 299

Logic, and evidence, 3-5; and implication, 8-13; and form, 10-2; and research, 13; and probable inference, 13-6; and linguistics, 16-8; and psychology, vi, 18-20; and physics, 20; and metaphysics of knowledge, 20-1; and possibility, 10, 21; its use and application, 21-3; mathematical or generalized, Chap. VI; as science of types of order, 110-3; and novelty, 175-6; and ontology, vii, 185-7; and scientific method, Chap. X, 394; and real definitions, 250-3; and value, Chap. XVIII; and fictions, 367-75.

Logical and temporal order, 132, 388-90

Lowell, J. R., 400

Lowell Committee, 350

Lully, R., 112

Magna Carta, 355

Mahomet, 353, 379

Maitland, F. W., 341-2

Major term in categorical syllogism, 77

Many questions, fallacy of, 379

Marx, Karl, 319-20, 352

Mary Stuart, 341, 356

Material implication, 48, 127

Material truth, 7, 9, 131-3, 277-9

Mathematical induction, 147-8

Mathematical logic, Chap. VI

Mathematics, and proof, 7; nature of Chap. VII; pure, 7, 133-7; and probability, 158-64

Maxwell, 120, 232, 399

Mean, arithmetical, 304-6

Mean deviation, as measure of dispersion, 310-1

Meaning, and implication, 9; and formal logic, vii, 12; and existential import, 43; and conditions of significance, 185; of historical data, 329-34

Measurement, its nature, Chap. XV; and probability, 165-6, 170; and statistical methods, 302-15

Median, 309-10

Mediate inference, 73, 77

Metaphor, 119, 368-71

Metaphysics and logic, vii, 20-1, 185-7

Methods of Experimental Inquiry, Chap. XII

Middle term in categorical syllogism, 77

Mill, J. S., 177-81, 225, 245, 249, 255, 256, 260, 261, 264, 267, 268, 269, 279, 280, 284, 441

Minor term in categorical syllogism, 77

Mixed hypothetical syllogism, 97

Mode, 307-9
INDEX

Moïre, 226-7
Montague, W. P., 435
Mood of syllogism, 81-4, 98, 99, 101, 102
Moore, George, 96
Moral Judgments, in history, 353-7; and logic, 362-7
Multiplication, logical, 122
Myerson, Abraham, 443
Necessary and sufficient condition, 271; confusions of, 388
Necessary reasoning, 5-13
Negative propositions, 36
Neglective fictions, 372
Newton, 213, 214, 219, 232, 283, 384
Nietzsche, 35
Nightingale, Florence, vii
Nominal definition, 227-9
Non-Euclidean geometry, 140, 144, 145
Novelty, in logic, 173-6; in art, 358
Normative, logic as, 110
Null-class, 122
Number, generalization of, 148-50
Numerical laws, and measurement, 298-301
Observation, and hypotheses, 215-7
Obversion of categorical propositions, 59
Obverted converse, 61
Occam’s Razor, 395
Old Testament, 312, 331-34, 336
One-one relations, 115; and isomorphism, 138
Operations, in calculus of classes, 122; differences in mathematical, 149
Opposition of propositions, square of, 65-8; in general, 68-75
Ostwald, W., 399
Paine, T., 100
Particular propositions, 35
Peano, G., 131, 146
Pearson’s coefficient, 314
Peirce, C. S., vi, 17, 113, 117, 169, 172, 441
Perfect induction, 275-6
Persuasion and logic, 19
Petitio principii, fallacy of, 379; and the syllogism, 177-81
Philip II of Spain, 355
Philo, 359-60
Physical theories, 397-9
Physics, and logic, 20
Plato, 58, 227, 459
Pluralism, and systems, 128, 140
Plurality of causes, 255, 269-72
Poe, E. A., 329
Poincaré, H., 139, 382, 398
Pompey, 354
Ponendo ponens, 102; ponendo tollens, 102
Porphyry, 236
Port Royal, 111, 429
Positivism, in morals, 363-4
Post hoc, ergo propter hoc, 258, 379
Predicables, 234-8; and dichotomous division, 243
Predicate, 30
Prediction, and hypotheses, 208-12
Premise, 8; major and minor in categorical syllogism, 78; and real definitions, 292
Presumption of fact, 15, 155-6
Priestley, J., 219
Principal, and subaltern, 55, 66
Principle of Indifference or Insufficient Reason, 165
Probability, its nature, Chap. VIII; and relative frequency, 153-7, 166-72; calculus of, 158-64; and measure of belief, 164-6; and induction, Chap. XIV; and statistics, 306, 311, 312
Probable error, 312
Probable inference, 13-6, Chap. VIII; and generalization or induction, 14; and presumption of fact, 15, 155-6; in history, Chap. XVII
Proclus, 413
Proof, 7; in mathematics, 129. See Demonstration.
Property, and the Predicables, 236-7
Propositional functions, 29, 50, 135, 183-5
Propositions, and immediate knowledge, 4; their analysis, Chap. II; as distinct from sentences, judgments, resolutions, commands, and things, 27-50; and propositional functions, 29, 50; categorical, 33-44; conditional, 33, 44; compound, simple, and general, 44-51; the possible logical relations between, Chap. III; calculus of, 126-8; consistency and independence, 143-7
Protasis, 8
Pseudo-simplicity, fallacy of, 384-8
Psychology, and logic, vi, 18-20; and logical novelty, 173-75; and laws of thought, 182
Ptolemy, 213, 214, 415-5
Pure alternative syllogisms, 105
Pure hypothetical syllogisms, 97, 103-4
INDEX

Qualities, measurement of, 293-301
Quality of categorical propositions, 36-7
Quantity of categorical propositions, 35-6
Quartile deviation, 312
Questions, and propositions, 28
Range, as measure of deviation, 310
Rankine, W. J. M., 398, 399
Real definition, 230-3
Reductio ad absurdum, 88
Reduction of syllogism, categorical, 87-91; mixed, 103
Reduction, fallacies of, 382-4
Reflective method. See Scientific Method.
Relations, formal properties of, 49, 113-5; in inference, us-6; in calculus of classes, 123
Relative frequency, and probability, 153-7
Relevance, and implication, 6, 10; and hypotheses, 200-2; and experimental methods, 252, 257
Residues, Method of, 464-5
Resolutions, and propositions, 29; and nominal definitions, 229
Riemann, 144
Rousseau, 68
Russell, B., vi, 113, 127, 146, 228, 240, 272, 438, 439
Saccheri, 144
Sacco and Vanzetti, 349
Sampling, 14, 156, 279-86; and fallacies of, 317-22
Santayana, G., 343-4, 400, 455
Schiller, F. C. S., 438, 457
Schrödinger, E., 215
Science, 191, 199, 364; and analysis, 383, 385
Scientific method, and logic, Chap. X; and hypotheses, Chap. XI; in historical sciences, 324-6, 352-7; in art, 357-62; in morals, 362-7; abuses of, 382-90; general character of, 391-9; limits and values of, 399-403
Self-evidence, 4, 87, 88, 130-2
Sentences, and propositions, 27
Shakespeare, 352, 362
Sherlock Holmes, 436
Simple constructive dilemma, 106; simple destructive dilemma, 106
Simple propositions, 48-9.
Simplicity, and choice of hypotheses, 212-5; fallacies of, 384-8
Simplification, principle of, 124
Simplicism, fallacy of, 384-8
Smith, Adam, 373
Smith, Sydney, 382
Sophisms, 183-5
Sophistical refutations, 381-2
Sophocles, 355
Sorites, 94-5
Species, 32, 234-5
Spencer, H., 458
Spinoza, 332-3, 380
Square of opposition, 65-8
Standard deviation, 311
Statistical methods, Chap. XVI
Strauss, D. F., 335-40
Strengthened syllogism, 86
St. Thomas, 107, 420
Structure, identity of, 137-41
Subaltern, 54, 55, 66
Subcontrary propositions, 55, 67, 71
Subimplication, 56, 66, 74
Subject, 30
Subsystems, 139-40
Sufficient conditions, 271
Superaltern, 54, 55, 66
Superimplication, 55, 66, 72-4, 96
Syllogism, categorical, Chap. IV; hypothetical, alternative; and disjunctive, Chap. V; principle of in calculus of classes, 124; is it a petitio principii, 177-81
Symbolic logic, of classes, 121-6; of propositions, 186-8; and classification, 244
Symbols, their use, 70, 117-20
Symmetric relations, 114
System, nature of, Chap. VII; and science, 199-206, 214, 394-5; and history, 340-44; and morals, 365-7
Tautology, principle of, 124; and implication, 124
Temporal and logical order, 132, 187, 346, 388-90
Tenacity, and scientific method, 193
Terms, 30-3; distribution of, 37-9; contrary and contradictory, 59
Thackeray, 174
Thales, 278, 340
Tollendo ponens, 101; tollendo tollens, 99
Tolstoi, L., 453
Transitive relations, 49, 114
Tree of Porphyry, 236
Truth, and implication, 9, 76; and propositions, 27, 29; and logical
INDEX

priority, 132, 187; and evaluation, 352

Truth-frequency theory of probability, 169-72

Truth-value, 54; in calculus of propositions, 127

Types, theory of, 184

Undefined terms, 142

Undemonstrated propositions, 142

Uniformity of Nature, 254, 267-9

Universal propositions, 35; and hypotheses, 43

Universe of Discourse, 39, 43, 122

Vagueness, 118, 224

Valuation, and logic, Chap. XVIII

Variables, 11, 135

Veblen, 142; and Young, 134

Venn, John, 40

Verification, and hypotheses, 207, 211

Vicious-circle principle, 184

Victoria, Queen, 341

Voltaire, 151

Weakened syllogism, 84

Weierstrass, 113, 146

Weighted mean, 306-7

Whately, 427

Whistler, 455

Whitehead, 113, 127, 146, 228, 432, 438

Young, J. W., 134

Zero-class, 122