
PAGE
This publication contains:
Summary 3
Factors influencing soil losses in New York 7
Rainfall 7
Slope of land 8
Thersoil 10
in Lapd comer, or cropping system 11
Protecting soilsfrom washing 12
Fertilization 12
Winter cover crops 12
Good soil management 14
Contour strip-cropping 16
Arrangement of crops 19
Width of strips 22
Laying out strips 24
Contour farming 26
Waterways in grass 28
Diversion channels 29
Terraces. 31
Control of gullies 31
Vegetation 32
Brush. 33
Other dams 34
Contour furrows in pastures 35
Holding fruit soils against washing 35
Contour planting 36
Terracing peach orchards. 36
Contour planting of grapes 37
Holding soils against blowing 39
Muck 39
Sandy soils 41
Revised June 1944

This bulletin is published and distributed in furtherance of the purposes provided for in the Acts of Congress of May 8 and June 30, 1914

Published by the New York State Coliege of Agriculture at CornelI Univer3l , fhac New York. L. R. Simons, Director of Extension Service

SUMMARY

Good soil management and soil-erosion control go hand in hand. It is unwise to apply fertilizer, lime, manure, and to sow seed only to have them washed away because of lack of erosion control.

The steeper cropped lands should be occupied most of the time by soilprotecting crops, such as small grains and the pasture and hay grasses and legumes.

The leveler land is the best place to grow such soil-exposing crops as corn, potatoes, and beans.

On nearly all slopes, plowing, harrowing, seeding, and cultivating should be on the contour.

On long slopes particularly, soil-protecting crops in contour strips alternated with soil-exposing crops help greatly to prevent soil erosion. In many places channels are needed to carry water from the slopes.

Steep, eroded, or easily erodible land should be in forest.
Gullies should be checked as soon as possible after formation. Filling them with straw or brush or planting grasses and legumes, vines, shrubs, and trees in them is helpful. In many places, particularly in pastures, shallow channels are used to carry water away from gullies and to give vegetation an opportunity to become established.

Windbreaks and cover crops hold muck and sand from blowing.

THE CONTROL OF SOIL EROSION IN NEW YORK

A. F. Gustafson

Before the white man came to the area that is now New York State the land was covered almost entirely with forests. Such forests constituted one of nature's best means of protecting sloping lands. The' fallen leaves and twigs absorbed much water, and, by covering the soil, protected it from the beating action of raindrops. This cover and the underbrush, together with the fibrous roots of the trees and the open, absorptive condition of the soil, prevented loss by washing or soil erosion. More than half of the farm land in this State has undergone or is subject to fairly severe erosion, and much of the remainder suffers some loss if not well protected.

It has been between seventy-five and one hundred years since man cut the timber on the hilly lands of the State and placed the soil under cultivation. During the first few years of cropping, the undecayed rootlets, twigs, and leaves prevented serious loss of soil. Through continuous cropping, however, nature's protection has decayed and disappeared.

Plowing, planting, and cultivation usually have been parallel to roads and fences in fairly straight lines without regard to slope (figure 1). On even moderate slopes rainwater collects between the rows of cultivated crops and in furrows or other depressions. The longer the slope the more water collects, and the steeper the slope the faster the water flows. As the speed of the current increases, larger and larger soil particles are carried in the water and larger pebbles and stones are rolled or pushed along by the water.

As the slopes were cropped year after year, heavy dashing rains carried away some of the surface soil. The topsoil to a depth of 6 or 8 inches, or a little more, is the soil from which crops obtain much of their plant food. Consequently, topsoil is invaluable and should be protected. Runoff water collects in depressions left by various implements, particularly cultivators. A single shower sometimes makes a rill or gully several inches in width and a few inches deep. On fairly steep slopes it is not uncommon to find a gully 4 inches wide and 3 inches deep between rows of corn, beans, or potatoes, following a single heavy shower. With rows 36 inches apart, such a shower

[^0]

Fignar I, masion, tompxiss county
This lots, getule slupe had lecen plowe? in mejoantion for areting whext, Maeb goos soil ars lost fious tha fithi. A graved waterway would bave prevented aura loes of topsed
removes the equivalent of $1 / 3$ inch of soil from the whole area. The next cultivation or plowing fills these little gullies, and for the time they are forgotten. As this goes on year after year it is clear that but eighteen or twenty auch showers can remove the entire topsoil. Since most fiehls are in grain or grass much of the time and simoe dashing rains do not occur every year while the soil is bare, it may take from forty to sixiy years for the. removal of the plow soil. Even that is too rapid a loss.

Not months or years but many centuries are rexpired for the development of the productive topsonil even from partially weathered soil materials. Of sourse, if the land is plowed to a depth of 6 or 7 inches each time after erosion, the subsoil is mixed with the surface soil that is keit. This prolongs the time required for the removal of alt of the original surface soil. This mixing is inevitable and helps to maintain a fair degree of pruductivity. Yields, however, scon drop lielow those produced before topsoil was lost. As a result the steeper lands in time are sabandoned.

During the summer of 1934 the writer observed numerous gently sloping fields in southern New York that had not been eropped for years. Even on gentle slopes the original surface soil was almust gone and the tight gray subsoil was at or near the surface. Usually such fields were not seeded the last year they were cropped. The result was a few grass plants along with goldcatod antl uther weeds. Such cover alloris litile protection from erosion, and the fields have tittle value for many years to come ualess steps are taken soon to check further erosion.

What becomes of the soil material washed from cultivated fields? The coarser material is deposited at the hase of steep alopes. Sometimes it fills stream channels and causes them to overflow. Sobsequent rains spread sand, gravel, and stoties over perfectly good valley soils. Such covering greatly reduces their productive power. The clearing of stream channels with a power shovet is a iamiliar sight in the hill sections of the State. The finer soit material is carriod far down the larger streams to be deposited on their flood plains or in lakes or the ocean. This valuable sijt and clay never finds it way back to the felds whence it came. Uncontrolled soll crosion, therefore, not only reduces the productivity of stopirg upland and esentually ruins it but covers valuable bottom lands with stones, gravel, and sand of Fittle present-day value (figure 2).

FACTORS TNFLUENCING SOIL LOSSES IN NEW YORK

Loss of soll may be attributed to several factors. Four of these are: (1) L the amount and type of rainfatl, (2) the slope of the land, (3) the soil itself, and (4) the laut cover, or cropping system, and the direction of tillage and seeding operations.

Rainfall

Usually rainfall in New York is fairly well distributed; and, on the whole, the growing-season raistall is ample for good yields oif crops.

Ties sienss were Jconele dpwa hy a prulacgod rain. Cors simiar in that ahawn oecupiad the

A large total rainfall as slow drizzles causes little loss of soil; but rapid rainfall leads to severe erosion, particularly on bare slopes. In 1936, 0.7 inch of rain fell in 5 minutes, or at a rate of more than 8 inches on hour and caused a loss of 17,000 pounds of soil an acre from bare land on the United States Soil Conservation Experiment Station near Ithaca. In contrast, a rain of 3.69 inches in 1937, the heaviest of which was at a rate of 1.2 inches an hour, during 5 minutes caused the loss of only 546 pounds of soil an acre. During the past few years rains of more than 1 inch in 10 minutes and even as much as 0.7 inch in 5 minutes have been recorded. Downpours of such intensity cause severe washing on sloping bare soils. It is during the summer when the soil is bare or not well protected that the heavier showers fall. A rain of 1.75 inches fell on land newly-plowed for wheat in Onondaga County in September 1941. The fact that New York is subject to downpour rains emphasizes the need for protecting the soil as much of the time as possible.

Slope of land

Both steepness and length of slope have an important bearing on the washing of soil.

Steepness of slope

Water flows more rapidly on steep slopes than on moderate ones. ${ }^{1}$ Doubling the speed of running water makes it four times as effective in scouring or loosening particles. If the velocity is increased three times, the scouring ability becomes nine times greater (figure 3).

The carrying power of water, that is, the weight of the separate particles that water is capable of carrying in suspension, is increased more by increased velocity than is the scouring power of running water. Doubling the velocity of a stream increases its carrying power 64 times; trebling the velocity increases carrying power to the almost unbelievable extent of 729 times. For example, a stream that can carry soil particles that weigh not more than $1 / 100,000$ of an ounce can by doubling its velocity carry particles that weigh $64 / 100,000$ of an ounce. Although this carrying power sounds incredible, it explains how large stones (figure 2) are brought down steep slopes. Rounded stones may be rolled along the bed of a stream while flat ones are shoved along, or, in places, picked up and carried momentarily. Only this enormous increase in carrying power can explain the choking of so many stream channels, which must be cleared periodically to prevent damage to bottom lands, roads, or buildings.

[^1]

Ficuns 3. a andrle way to deteacime pebcansace of slope

At the Arnot Experiment Station of the Soil Conservation Service a slope of 18 [er cent lost nearly twice as much soil as one of a little lexs than 9 per cent. Similar differences may be expected over the State.

Length of slope

Short, relatively slight slopes ordinarily do not wash badly because little water accumulates on them. With the same degree of slope, however, erosion may be pronouriced on slopes of 20 rods in length and severe on

Wete the gullizin is the potatee and the depesitice of slones, sand, asd grovel io the foregroand. Damaka was even crontar an tha right alope of this drumio

Figuige 5. gulaytyg akd shert washing on suxxikk sotl. smmaca coumtt
 this waterway in errass wwald preveat further arsaion in it
slopes of 80 rods (1320 fect) or more in length on which considerable water accumulates during thawing of snow or in heavy rains (figures 4 and 5).

In experiments in New York, a medium-length slope (72.6 feet) lost 8000 pounds of soil an acre a year. Under similar conditions a luoger slope (145 feet) lost ore-haff more soil. These slopes are both short compared with those on many farms in the State. From these losses on narrow strips it is clear that heavy losses must be expected on slopes a few hundred to several thousand feet in length.

These facta show how casential it is to decrease the velocity of water running over the surlace, especially over bare land. With decrcascd velocity, not only is the carrying power reduced but tie quantity of water absorbed by the soil is increased so there is less runoff to carry away valuabie soil.

The soil

The soil itself has a marked influcnce on the ease with which runoff water can loosen and carry away snil particles.

Size of soil particles

The sixe of the soil particles affects the rapidity of absorption of rainfall. A coarse, satridy or gravelly soil may absorb rain as fast as it falls. Thus there is mo runoff and no erosion. A heavy soil, such as fine silt or
clay, on the other hand, has such small openings between the particles that water is absorbed slowly and much may flow off over the surface. On such soils, there is danger of serious erosion unless the surface is well protected.

Tilth, or porosity

Absorption may be increased by maintaining good tilth, that is, keeping the surface of the soil loose and porous so that it can take up and hold rainwater. This increased absorption by reducing runoff decreases erosion and supplies water for crops.

Depth to the subsoil

The depth of surface material has a bearing on absorption and runoff. This is particularly true if the subsoil absorbs water slowly. In rainy periods a shallow surface soil above a tight layer soon takes up all the water it can hold, and additional rain must run off. This usually causes erosion.

Stones

Removing the stones permits rapid runoff, and leaving the stones holds the water longer on the soil so that more of it is absorbed. In many fields the larger stones must be removed to cultivate crops satisfactorily, but the medium-sized ones may well be left on the land.

Land cover, or cropping system

The cover of the land largely controls the loss of soil by erosion. Virgin forest holds the soil but food and feed crops also are needed. Next to trees and shrubs, grasses afford the best protection. Grasses may be widely used in the cropping system to excellent advantage, as is shown in table 1. The small loss of soil and water from the fertilized meadow was notable. Similarly, the loss from good pasture was slight. The loss of soil was rather heavy from corn and from fallow soil. The rotation was relatively effective in holding both soil and water.

TABLE 1. Effect of Crops on Losses of Soil and Water, Average 1935 to 1941, Arnot Station
(Rainfall 21.2 inches; Bath flaggy silt loam; slope 20 per cent)

Plot	Crop and treatment	Losses over 7 years	
		Water	Soil
A8..........	None cultivated 000 pounds 5-10-5	Inches 3.74	Pounds an acre 20.266 6.178
A $5 . \ldots .$.	Continuous corn, 200 pounds 5-10-5	1.75	6.178
A $9 . \ldots$.	Corn, oats, clover; 6 tons manure on corn Meadow, fertilized	$\begin{aligned} & 0.46 \\ & 0.18 \end{aligned}$	537 21

Potatoes planted on the contour and ridged do not suffer serious losses of either soil or water. Even contour-planted potato land loses both soil and water after the crop is harvested and during the following spring before the soil is prepared and seeded to the small grain that usually follows in a short rotation (figure 6). Rye should be used as a cover crop wherever possible.

Land planted to corn is subject to some loss of soil during winter and spring, but ordinarily less than land planted to potatoes under New York conditions. In 1937 the rainfall from May through October was 31.3 inches, or about one-half greater than the average for this period. Fertilized corn lost 6522 pounds of fine soil to the acre in comparison with a loss of 9562 pounds from third-year unfertilized corn. Fertilizing corn reduced the loss of soil one-third. Corn that was grown after clover lost a little less than 1000 pounds of topsoil to the acre. And the use of 6 tons of manure an acre on the clover sod reduced the loss of soil to 728 pounds an acre. This relatively small loss occurred during a season of unusually heavy summer rainfall which generally produces severe erosion.

PROTECTING SOILS FROM WASHING

Although for many years farmers have employed measures to control the washing of soils, some important step has been overlooked and heavy losses have resulted.

Fertilization

Fertilization itself does not control erosion, but it does help by' producing thrifty plants and by increasing yields. Moreover, the thriftier plants protect the soil against the beating action of raindrops and produce more roots to hold the soil together. Furthermore, if the crop is fed and the resulting manure and the crop residues are returned to the soil, the tilth is eventually improved. The following measures are inexpensive and may easily be put into effect on many sloping farms.

Winter cover crops

Even on extremely gentle slopes much erosion occurs in late winter and early spring following corn, cabbage, potatoes, buckwheat, and truck crops. The seed for a cover crop must be inexpensive and easily obtained. Also, the crop must be capable of making good growth in this State during the times it competes least with the main crop. Rye and oats meet these specifications. Wheat and winter and spring barley also serve this purpose but the seed costs more than that of rye or oats. Domestic rye grass sown in July or August deserves extensive trial in New York.

Noft that the tmes Jenje tevard this gullg. The pows dollivered wates to the doprowing in which

 ulber, areph

Facurs 7. conex ceop of sys

 plasis. The fictaing aprime ty byt grolected the anil

Rye may be drilled after silage corn has been harvested, after the earlier varieties of late potatoes have been dug, or after vegetables in home gardens.

Although covering the seed is desirable, in some seasons sowing broadcast is successful. In gardens, the harvesting of late vegetables covers the seed enough. The stand of rye sown in cabbage (figure 7), beets, or parsnips is somewhat spotted as would be expected. Broadcast seeding affords better protection than does drilling. If drilled, the cover crop should always be seeded on the contour.

Cover crops take up and use available plant food, some of which would be lost if no crop were sown. Moreover, normal growth of cover crops protects the soil somewhat from alternate thawing and freezing in early spring. During thawing the soil is wet and soft and consequently easily churned into suspension by the beating action of raindrops. Much fine soil is lost in this way at that time of year. Also, the cover crop actually holds back runoff water and thereby reduces its speed and consequently the loss of valuable topsoil, organic matter, and plant food.

Under current (1944) shortages of feed grains, somewhat lighter rates of seeding than usual may be used. Best protection for the soil is obtained, however, if considerably more seed to the acre is used for winter cover than is usually sown for grain production.

Oats and spring barley may be used if growth the following spring is not desired. On Long Island, spring barley and rye are sown together and rye alone is used extensively. On Long Island and upstate as well, winter cover crops help to reduce spring erosion and should be sown on much of the land that otherwise lies bare during the spring thaw.

Good soil management

Maintenance of productivity is essential in any erosion-control plan and definitely supplements and supports other erosion-control measures. Good management requires that organic matter be returned to the soil. This is accomplished by plowing under crop residues and farm and green manures. Moreover, adding an abundance of phosphorus and lime as needed to grow clover, alfalfa, and other crops, aids in the production of organic matter and increases the yield of crops. Also, the production of such close-growing, soilprotecting crops as meadow mixtures, including legumes, and of the small grains prevents exposing the soil.

On sloping lands, growing protecting crops in rotation with cleancultivated, soil-exposing crops, such as corn, potatoes, beans, cabbage, and other vegetables, is usually advisable. On gentle slopes of moderate length, the maintenance of high organic content and high productivity, especially
if tillage operations are carried out on the contour, may be enough. On moderate to steep slopes, however, much lime, fertilizer, and organic matter may be washed away if suxh inexprensive erosion-control measures as contour tillage and seeding, contour strip cropping, grassed waterways, and cover crops are not employed. On more steeply sloping lands, any one method seldarn succeeds fully withont the others.

On fairly steep slopes, particularly if the soil is shallow, the return of the soil to forest is good land use. Even the more moderate slopes that are not nceded for pasture or meadow alsn may well he reforested.

Moderate to steep slopes may be used for the production of forage. Faxtures and meadows lose plant food in the iorage removed from thens. Most of these lands were not rich in the virgin state and have since been depleted by cropping and washing. Thin stands of grass are the rule. The application oi phosphorus, and lime if needed for alfaifa and clovers, is essential for the production of satisiactory yieids and a good cover. A thick sward is noeded to protect the soil against the beating action of beavy rains that cause runoff and loss of soil (bigure 8). Moreover, the use of time and phosphorus is highly beneficial to the livestock that grazes thesc treated pastures or cats the hay that is grown on such fertilized meadows. Light, frequent applications of manure are highly stimulating to crop plants on

[^2]
depleted soils, and the manure itself affords some protection to the soil. On the rougher lands, the productivity of meadow or pasture should be maintained as long as it is economical and then the land should be reseeded quickly.

Contour strips may be plowed for reseeding. The roots of the grasses should hold the soil against erosion fairly well through the period required for growing one clean-cultivated crop and a small-grain crop in which a meadow mixture may be seeded. Under favorable conditions, particularly if the clean-tilled crop is not needed, small grain and the meadow mixture may be sown on a well-worked-down sod. It should be possible to reseed such soils with little or no erosion.

On somewhat less steeply sloping and less erodible land, a long rotation may be practiced in which grasses and legumes for hay and pasture occupy the land for periods of from three to ten years. The longer-term meadows and pastures can be kept productive by applications of manure, lime, and phosphorus.

On many farms the homestead is in the valley, with varying acreages of good bottom land and sometimes gently sloping adjacent upland. In these situations clean-tilled crops may be grown in short rotations or continuously on the valley soils. Of course, liberal manuring and fertilization are essential for maintaining high yields. If high yields are obtained on bottom lands, the better part of the erodible hill land may be left in semipermanent meadow and in pasture.

If cash crops, silage, and hay must be grown on moderately sloping lands, a shorter rotation, such as one of four years, is suitable. Such a rotation properly fertilized on moderately productive land that has not suffered heavy loss of topsoil should produce good average yields. Under these conditions and on the more productive lands that have a high proportion of moderate to steep slopes, contour strip-cropping is good practice.

Contour strip-cropping

The production of close-growing, or soil-protecting, and clean-tilled, or soil-exposing, crops in alternate contour strips is known as strip-cropping. This practice has been carried on for nearly a quarter of a century by one farmer in Steuben County. On three other farms, strip-cropping has been carried on for several years previous to 1934 (figures 9 and 10).

Strip-cropping is an older practice in Pennsylvania, Ohio, West Virginia, and Minnesota than in New York. In Pennsylvania it was begun by the farmers themselves, as they had no land for cultivated crops that was not moderately to rather steeply sloping. Because of bad surface washing and gullying, they found that something must be done to protect these sloping lands. The beginners in each locality placed the strips at right angles to

 CULTERE OX MaHT
The bolfeger navilog up the hill in the midile of the poent separater tom firma. Noin the
 tame at the rast, This is Rooan to better advantala in lie owve illorinhin. The hatseage is coesimues on toe hovk oover of this Iulletik
the natural direction of the gullies. From one farm so laid out north of Jersey Shore, Pennsylvania, the practice has spread so that nearly all of the cropped land over an area of 100 square miles is now farmed in strips that are close to the contour. Since each farmer did it on his own initiative

Prgus to ale stbip-chopping, staciey caunty
This lang sters itape of depp Wesater suil has been slripsersoped by iss wewer fer a mumber of

Frevax 11. oce serip-capptinc, cestral menasylvasia

 thime pore
and accorling to his own plan, the strips in some areas, uniortunately, were not strictly on the contour. As a consenquence crop rows had slopes where the water from heavy rains caused nome washing. On the whole, however, this early strip-cropping has helped greatly to check soil erosion, Gullying is rarely found on these farms.

On one farm near Danville, Pennsylvania, the contour strips were laid with a level in 1885 and have been farmed in level strips ever siace. In an inspoction of these strips the writer found no gullies, although gullies were

plainly evident on the same slope on the same soil on the adjoining farm. The corn rows were definitely on the level or contour. A fair degree of prosperity is evident on these hilly lands that have been strip-cropped over a period of years (figure 11).

In Washington County, Pennsylvania, most of the cultivated land in two areas is being strip-cropped. One is north and the other south of the city of Washington, Pennsylvania. Many of these strips are close to the contour and help greatly to hold the soil in place (figure 12).

Near Wheeling, West Virginia, and near Saint Clairsville, Ohio, are two areas where much of the cultivated land has been strip-cropped for 30 or 40 years or longer.

Strip-cropping in Minnesota ${ }^{2}$ was started by a Swiss farmer who brought the idea from the homeland. Farmers have practiced strip-cropping of their own free will throughout a generation, and in places longer, because it is a practicable system of reducing loss of soil by erosion and of increasing yields on their lands.
-In New York, strip-cropping as a means of reducing erosion has been used generally by the Soil Conservation Service and in the Soil Conservation districts in the State. Farmers have noted the washing that resulted from crop rows that were off the contour. It is they who have insisted on a layout that keeps the rows on the level. Loss of water and, consequently, loss of soil are thus lessened and larger yields are produced.

Arrangement of crops

Long slopes are common in New York (figure 10). Even though such slopes are moderate, large quantities of water collect during heavy rains, with the result that the unprotected slopes are badly washed. In areas of productive soils, moderately intensive cultivation is the rule. Cropping slopes in contour strips helps to conserve the soil while growing soil-exposing crops. It is desirable to alternate clover with cultivated crops on part of the farm and on other fields to alternate timothy with grain. This arrangement has the advantage of keeping a crop all on one field or series of strips in any one season. It lessens the distance from one area of potatoes, for example, to another, and thus reduces the time lost in moving machinery and working crew from one field to another (figures 13 and 14).

An example of this arrangement is the following:

[^3]Arrangement of Crops on Two Series of Strips in a Dinided Four-Year Rotation

Strip	First year	Second year	Third year	Fourth year
	First field or series of strips			
1.	Potatoes	Oats	Clover	Timothy
2.	Clover	Timothy	Potatoes	Oats
3	Potatoes	Oats	Clover	Timothy
4	Clover	Timothy	Potatoes	Oats
5	- Potatoes	Oats	Clover	Timothy
6	Clover	Timothy	Plotatoes	Oats
8.	Clover	Timothy	Potatoes	Oats
	Second series			
9.	Oats	Clover	Timothy	Potatoes
10.	Timothy	Potatoes	Oats	Clover
11.	Oats	Clover	Timothy	Potatoes
12.	Timothy	Potatoes	Oats	Clover
13.	Oats	Clover	Timothy	Potatoes
15.	Oats	Clover	Timothy	Potatoes
16.	Timothy	Potatoes,	Oats	Clover

An arrangement such as this can be followed on an even number of strips in either series.

On a small farm that has a limited number of strips, the following arrangement is desirable:

Arrangement of Crops on Strips in a Single Series of a Four-Year Rotation

Strip	Pirst year	Second year	Third year	Fourth year
1.	Potatoes*	Oats	Clover	Timothy
2	Timothy	Potatoes	Oats	Clover
4.	Oats	Clover	Timothy	Potatoes
5.	Potatoes	Oats	Clover	Timothy
6.	Timothy	Potatoes	Oats	Clover
8.	Oats	Clover	Timothy	Potatoes
8.	Clover	Timothy	Potatoes	Oats

*The potato represents clean-tilled, soil-exposing crops in general.
This arrangement may give somewhat better control of losses of water and soil than the arrangement given above. On slopes of less than 10 per cent on well-drained soils, a rotation of three years may be desirable, especially if only a small acreage of the farm is well adapted for a special crop, such as cabbage or potatoes. In a rotation of three years, the acreage of cabbage or potatoes is one-third larger than in a rotation of four years. The following arrangement is feasible and may be repeated on all the strips:

Arrangement of Crops in a Three-Year Rotation

-	Strip	First year	Second year	Third year
2		Potatoes	Oats	Clover
		Clover	Potatoes	Oots
		Potatos	Oats	Clover
6.		Oats	Clover Potatoes	${ }^{\text {Potatoes }}$

A serious objection to this rotation is that oats and potatoes are adjacent to each other every year.

Corn, cabbage, beans, or other cultivated crops may occupy the same place as potatoes in any or all of these crop arrangements. Soil and water from cultivated strips are caught and held by the grass, clover, and grain below. These close-growing, soil-protecting crops check the runoff and reduce its carrying power.

In less heavily cropped areas, the grass may be cut for hay 2 additional years, thus making a rotation of 5 years. On steep or badly eroded land this rotation is better than one of 3 or 4 years. Obviously, only one-fifth of the land is in a soil-exposing crop, such as corn or potatoes, at any one time and four-fifths of the land is in grain and hay, or soil-protecting crops. Except on long, steep slopes or with heavy showers, erosion should seldom be serious if this rotation is practiced and contours are followed.

Wherever a 5 -year, feed-crop rotation is desired, the following arrangement of crops on the strips provides excellent protection against erosion. It is best to use 5,10 , or 15 strips, or some multiple of 5 for this rotation, to have the same acreage of each crop every year.

Arrangement of Crops in a 5-Year, Feed-Crof Rotation

Strip	First year	Second year	Third year	Fourth year	Fifth year
1 2 3 4 5	Corn* Clover II timothy \dagger Oats I timothyt	Oats I timothy \dagger Corn Clover II timothy \dagger	Clover II timothyt Oats I timothy \dagger Corn	$\begin{aligned} & \text { I timothy* } \dagger \\ & \text { Corn } \\ & \text { Clover } \\ & \text { IItimothy } \\ & \text { Oats } \end{aligned}$	$\begin{aligned} & \text { II timothy* } \dagger \\ & \text { Oats } \\ & \text { Itimothy } \dagger \\ & \text { Corn } \\ & \text { Clover } \end{aligned}$
6 7 8 9 10	Corn Clover II timothy \dagger Oats I timothy \dagger	Oats I timothy Corn Clover II timothy	Clover II timothy \dagger Oats I timothy \dagger Corn	$\begin{aligned} & \text { I timothyt } \\ & \text { Corn } \\ & \text { Clover } \\ & \text { II timothyt } \\ & \text { Oats } \end{aligned}$	II timothyt Oats I timothyt Corn Clover

*Corn or other soil-exposing, cultivated crop.
\dagger I Timothy $=$ first-year timothy; II Timothy $=$ second-year timothy.
Seldom, if ever, may two soil-exposing crops be grown with safety under these less favorable soil and slope conditions.

Under more favorable slope and soil conditions, however, a 5-year cashcrop rotation with two years of exposing crops might be used to advantage in place of a 3 -year rotation, particularly in western New York. A rotation
of corn, beans, wheat, and two years of alfalla may be grown safely with the jollowing arrangenent of crops:

Amanermext of Chops tr a 5-Yraly Faz-Chop Rotatrex

Staipt	Firet yay	Semand yoar	Thirt pear	Preurth yeat	Fifth ywar
$\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$	Com* falfitat Wheot Pexas If Livilat	Geans 11 sufalfa aliait What: Corn	Wheas Cora 12.hbil Buan	$\begin{aligned} & \text { latalis } \\ & \text { hens } \\ & \text { non } \\ & \text { Ininlint } \\ & \text { wies } \end{aligned}$	Hembllat Wreat Ecars Cern Tellalat

Width of strips

The width of strips necded for a fair degree of erosion coalrol is influenced by the length and steepness of the slope, the texture of the suil, the rate of absorption of water by the snil, and the crops grown, that is, the proportion of soil-protecting to soil-expeging exnps. Many lonyg slopes are divided by farm boundaries, the upper part being on one farm and the lower on another. The width of strips to use on the lower part of the slope depends on conditions on the upper part. It is desirable to protect the lower part of slopes by diverting the water away. If this cannot be done, the vege-
 Was stamete

tative protection or lack of it and of the probable runoff from above must be considered. To control erosion on the lower part, it is advisabie to be prepared to take care of all the watcr likely to come from above onto the lower part of the slope. In any system of strip-cropping, the width of strips should be such as to catch and hold in grass and small grain much of the water and soil that comes from the slope alave in addition to the water that falls on the strip itself.

New York has four distinct soil conditions with respert to drainage through the soil:

Group 1. Well-drainell soils represented by Rath, Lordscown, Ontarin, Hoseoye, Wooster, and others, and the Groton and Otisville and others with good to excessive drainage.

Group 2. Moderately drained soils represented by Mardin, Canfield, and Janglord.

Group 3. Poorly drained soils represented by Fremont, Volusia, Eric, and others.

Group 4. Lake-haid and marine soils representel by Dunkirk, Schoharie, Cauepovia, Cancadea, Hudson, Vergennes, and others. These soils wash casily on very gentle alopes.

The formula summarized in table 2 is tentatively suggested as a general guide in deternuining strip-widths for New Xork conditions.

The leres sumber ef lone mareas felld is poticeable. Thew lear atife wre so faid out thet the
 is makiked!, returind

TABLE 2. Provisional Approximate Strip-Widtis for Different Solls

Slope	Soil groups		
	1	2	. 3 and $4 . .1$
	Good drainage	Medium to poor drainage	Poor or slow drainage
5 (3 to 5 for Group 4 soils).	Feet 125	Feet 100	Feet 75
7.........................	115	90	65
10............	100	75	50
12......	90	65	
15..	75	50	
17......	65		
20......	50		

A slope of 10 per cent was chosen as the base and 100 feet as the width of strip for soils similar to those in Group 1, 75 feet for those similar to Group 2, and 50 feet for soils similar to those in Groups 3 and 4. The width of strip is varied 5 feet for a change of 1 per cent in slope toward either "leveler" or steeper land.

On Dunkirk and other lake-laid soils, control measures are necessary even on a slope of less than 5 per cent. Cultivated crops may well be grown on or near the contour on very gentle slopes on these soils.

The matter of convenience enters into a determination of strip-widths. In Pennsylvania and Ohio, for example, strip-widths are such as to fit a desired number of rows of corn shocks. In other places widths that provide for full rounds with the potato sprayer are desirable. Some farmers will wish to base widths on the two-row corn or potato planter. The most important crop or planting or tillage implement deserves consideration in determining the strip-width. The widths given in table 2 may be regarded as the approximate maximums that are safe under average conditions. It may be desirable even in Group 1 to. hold widths to 100 feet, or less, to maintain a fair degree of uniformity in acreage of strips, because uniformity in acreage of each crop each year is essential.

Laying out strips

Best protection from erosion through strip-cropping is assured only when the strips are on the contour. Various types of level are being used, such as carpenter's levels supported on standards, hand levels, and "farm levels". ${ }^{3}$

In starting the layout, it will be necessary to stake a level or contour line across the slope. This line will be the boundary between two strips, and it may be desirable to locate it at a particular point to fit the slope or layout.

[^4]The procedure is as follows:

1. Drive a light stake at the beginning of the first contour line.
2. Locate the level at a point several hundred feet from the start of the contour line, in the direction in which the line is to be run and on nearly the same elevation as the stake.
3. Be sure the instrument is accurately levelled.
4. Hold the surveying rod at the first stake and note the height of the rod reading at the instrument. Since the line is level, the same height of rod will be read at all stakes until the instrument is moved. The reading may be marked on the rod with a string or rubber band for the convenience of the instrument man.
5. Set stakes about 50 to 200 feet apart along the line, the instrument man motioning the rodman up or down the slope until he reads the elevation on the rod. Distance between stakes varies with evenness or unevenness of the slope.
6. When the instrument man can no longer see the readings on the rod, he must move the instrument to a new location ahead of the last stake. After locating and relevelling the instrument, he "backsights" to the rod at the last stake, noting the new reading. This reading is the new one for the instrument and can be marked on the rod in the same manner as the first one.
7. Now measure from the completed contour line a distance equal to the width of strip desired. Set a stake and lay out another contour line; lay out additional ones over the entire area in the same way. Each line is the boundary between strips and should be marked by a shallow furrow to preserve it. Very sharp curves' may be smoothed somewhat, but few lines should depart much from the true contour. Old healed gullies or other depressions that make sharp bends in the contour lines are best left as grassed waterways.
If care is exercised, satisfactory lines may be laid with a hand level.
New York farmers who have farmed strips a few years prefer to keep all rows on the contour. This is accomplished by planting along the strip border on one side; then planting in the other direction along the opposite side of the strip and so on. Short, or point, rows at wide places in a strip fall in the middle of the strip (figure 15). Turning in cultivating and spraying, as for potatoes, does not injure the stand enough to cut yields materially; and excellent control of erosion is accomplished by planting and seeding in this way.

Preliminary economic studies in New York indicate that labor is equally as efficient on contour strips as on the old type of field layout. On many farms the rows on contour strips are considerably longer than on the pre-

Figure 15. planting plan for crops on strips
The heavy broken line represents the contour laid out as the border of strips. Because of unevennesses of the slope, the contours are not parallel and short rows are needed to fill in the wider places. By this method of planting, all rows are kept on the contour
vious "square" fields. In a number of comparisons on moderately sloping soils it has been shown that yields are 10 per cent or more higher on contour than on uphill and downhill rows. In places, a saving in power has been noted on the contour as compared with uphill and downhill tillage.

Contour farming

On divides or on narrow fields on gentle slopes that do not receive water from other land, crops may be planted on the contour without stripcropping. All plowing, harrowing, seeding, cultivating, and harvesting is on the contour. On a long, fairly steep slope planted to a soil-exposing crop, contour tillage alone cannot prevent erosion, yet erosion should be less than with uphill and downhill rows and tillage.

The only feasible way to move soil uphill is to throw the furrow uphill in plowing, and this should be done quite generally.

Nearly all implements leave depressions and ridges in the soil. If uphill and downhill, they serve as channels that lead to gullying (figure 16). On the contour, these ridges hold water like tiny dams until it soaks into the soil. More than 2 inches of rain has been held by potato ridges on slopes of

 vile Ludiay wrom

about 20 per cent. In dry seasons, the water so held is needed by crops. In New York potato yields on faitly steep slopes are about 10 losshels higher on contour than on uphill and downhill rows. In other States, yields are about 10 per cent bigher on the contour rows than on uphill and downhill rows.

Losses of soil are generally less with contour planting than with uphill and cownhill planting. Even after harvesting some depressions are left that are favorable to contour farming.

Uphill and downsill wheel tracks made in spresuling manure and lime and in harvesting, especially if the soil is moist, may lead to gullying (figure 17). Hauling, therefore, should be conc on the contour, particularly, on bare, moist soils.

On soils that lack good drainage, particularly with potatoes, peaches, and grapes, the rows may well be given enough slope to produce drainage. It is necessary, however, to take eare of such drainage at the lower end of the rows.

Waterways in grass

Leaving waterways in grass has been practiced less in New York than in the Midwest and in the other States in the East, particularty in Peun-

Facuiz 18. crassmo watraways

The grassed waterway on tie right eximb atrus four atripa and pari way sertse the fifh. Wide
 maxand ta thin why

 piot ments them
sylvania. Even on land that is being strip-cropped, old partly-healed gullies often cross the strips. When this land is plowed from sod for an intertilled crop, such as corn, these depressions remain in grass. Such a scrip of grass wide enough to carry the water that may collect in the depression will preveut erosion. The mistake, however, is ofren made of Jeaving tuo narrow a atrip of grass and of killing too msich of it during tillage operations. Sometimes gutlies start on both sides of the grass because the strip is too narrow. The grass catches water and silt and actually in time fills many gullies Wherever such grassed waterways are wide enough, they may be mowed and the grass harvested for hay (fgures 18 and 19).

Diversion channels

Much water coilects during long and heavy rains on long slopes. To $1^{\text {rrevent erosion on such slones, diversion chamnets are builh to carsy the }}$ Funoff to safe or protected outlets (figure 20). Each charmel carries the runoff from the slope above and thas prevents the waser irom causing sursace crosion or gullying on the lower part of the slope.
Such channels placed below every thrird or fourth strip help to muke coutour strip cropping effoctive. The willh of strips inmediaceiy below the chasnels may be made, somewhat greater than elsewhere and still protect the soil.

The chamnel is usually given a fall of 1 per cent, or 1 foot in 100 feet.

Fraver 20. A pwrasion or reit whenas toxace typr
Thia tiwertion terrace chamel eatchor she fanaft wava Iraw twelve serm an the groulle slage

 The samper shape of peil-druined soil at the laft she watry is torried smand the bill and deliverpal
 thes formarly

A filter atrip 30 feet wide above the chauncl, the channel, and the conbankment are seeded to long-lived, legume-grass mixtures. The filter strip catches soil, sand, and gravel and thus keeps the chansel from becorming clogged. The vegetation protects the channel and embankment from erosion and should be cut and removed for hay twice a year. All of this grass requires jertiliation to maintain an erosiom-resistant cover, Fach string aod after heavy rains channels sbould be cleared of stones, gravel, or other obstructions so that they may serve their full purpose.

Diversion channels not ouly carry off rain water, but aid in the drainage of moderate- to slow-draining soils. If properly placed, these channcis drain unany troublesome wet, syringy spots in aloping fields. Slopes protected by diveraion channels may be rilled, seoced, and harvested souner than otherwise. In wet seasona these channels prove a bighly profitable investment.

The outlet

A safe, suitable place for the digpoxal of water is the first consideration in the luaztion and construction of diversion chanuels. If none can be found or developued inexpensively, it is wise to kernp Lic water spreal out instend of concentrated in a channel. An ample area of trees or brash, a fertilizel permanent patture, or a long-term meadow with a stiff, erosion-resistant sward usually srrves this purpose. These sufe outlet areas must be fully developed before the channels are completed and the water is turned onto then.

In so far as possible, vegetation should be used to protect the outlet end of channels, partly because of expense. Sometimes, however, concrete, masonry, or stone ripraps are needed to let the water down safely from channels to disposal areas.

To operate correctly, the fall in a channel must be uniformly accurate (1 per cent). High spots are dams and low places are ponds. Either may cause a break, and costly repairs will be needed. Channels should be laid out, and their construction supervised and the settled channel and embankment checked, by a person trained and experienced in the operation of an accurate level.

The shape of a suitable channel is shown in figure 20. The side slopes of the channel and embankment are gentle and may easily be crossed by ordinary farm implements.

Power graders and crawler or track-type tractors are used in the construction of the larger channels. Smaller channels may be made with smallbladed, horse-drawn graders, and very small ones may even be made with plows.

Terraces

Although terraces serve the same general purpose (removal of water), they differ from diversion channels. Terrace channels have a very gentle slope because the entire terrace is cropped with the rest of the field. The grade, must be so gentle as not to permit erosion when clean-tilled crops are being grown. Land with slopes up to 10 per cent may be terraced successfully. Some improved terracing implements have been demonstrated and others are being developed. Terracing is practiced for intensive production. of high acre-value crops both on Long Island and upstate.

According to the Conservation Needs Survey ${ }^{4}$ about one-fourth million acres in New York would benefit from terracing.

The methods and precautions stated for construction and maintenance of diversion channels apply with equal force to terraces.

CONTROL OF GULLIES

Ass already stated, gullies form wherever water is allowed to concentrate on slopes that are not protected by vegetation, but there is little gullying on contour strip-cropped land. Under many conditions a first step in the control of gullies is to break down the steep sides and thus to reduce the steepness of the slopes.

[^5]
Vegetation

The control of gullies by vegetation is highly desirable because the degree of control improves with additional growth. Small gullies may be filled by plowing them in and seeding them to grain with adapted grasses and legumes. A liberal application of manure and superphosphate, and also lime if needed, aids in the formation of a sward that is resistant to erosion. Once established, grass in the waterway is left undisturbed when the field is plowed again (figure 19). Such grassed waterways have been used in Illinois for more than forty years and for a long time in Pennsylvania and in other States, including New York. The grassed area should be of ample width to carry all of the water. The grass, may be harvested for hay as usual.

In many places it is desirable to divert the water from the gully for a time to permit the grass to become well established. This may be done by plowing one or more furrows or making a diversion channel above the head of the gully, depending on the amount of water in the gully. These diversion furrows may be allowed enough slope for water to flow away slowly, but not enough to permit cutting or erosion in the bottom. Moreover, these diversion channels should be long enough to carry the water far enough to each side so that it does not find its way back into the gully. Sod dams or burlap bags filled with sod are sometimes used in small gullies, particularly at their heads or at small waterfalls.

In larger gullies, or in areas not in active cultivation, shrubs may be used. The bush honeysuckle grows wild in many hedgerows in southern New York. This and other native, wild shrubs are exceptionally useful. The coralberry produces runners that take root and grow new plants. These plants grow well under unfavorable soil conditions and consequently are useful in gullies and on banks of raw subsoil.

Vines are of much service in difficult places. The Virginia creeper is of some value. The climbing honeysuckle, ${ }^{5}$ however, is much better (figure 21) because it roots from the vines or runners and thus spreads over a bare ditch or other bank. It is capable of growth under unfavorable conditions and affords complete protection. Its leaves stay on and remain green in winter, which is a marked advantage in that the leaves protect the soil under them from the beating action of raindrops.

Black-locust seedlings may be planted to advantage on steep, raw, subsoil banks where they make excellent growth. Being a legume, black locust makes better growth in these situations than does a non-legume.

Slips or cuttings of various species of willow, cottonwood, elderberry, philadelphus, or mock orange, and others may be used. The basket willow is particularly useful. Slips are cut in the spring when dormant and pushed

Ftotres 21, cutameng runavsucesix un a moab barik

 suabe (cs vads
into the soil along the banks or in the bottum of gullies. The slips grow and make a complete mat of roots and, when once established, prevent further wasting. Moreover, the vegetation slows the current and causes the deposition of silt and sand, and thus eventually fills the gutlies. Where trees are not wanted, the basket willow, which grows as a tall shrub, is exceptionally useful. Straw or crarse manure might be scattered over the surface of the gully after it is seeded to legumes and grasses.

All control of gullies in pastures should be protected by kerping out livestock until the vegetation becomes fully established. If pasture becomes short, eattle and especially horses graze the first-year, and even second-year, growth of willow and various other trees and shrubs. Moreover, livestock wandering over bare stream or gully banks prevents protective vegetation from getting a foochold and proulucing protection.

Bruah

Brush is decidedly belpful in the control of gullics. A method that has proved purticularly cffective has been unsl ly Wood" and tive associates in Nebraska. They "eased" the sides of gullies, set a row of posts across

[^6]

Ficuluz 22. batsh juks

 the purpose of pradiving a live dom ia thes, since lise dane ingeove will uge
them, covered the sides with wet straw, and then placed live brush in thern, jreicrably with the leaves on and with the butts up stream (thie forks in the branches were heng over the posts). The brush is tramped down and held in place with pules wised to the tops of the posts. Wet straw is crowded in among the but-ends of the branches. The straw telps to filter the soil material and thus enables such brush dams to fill the gullies.

Willow or other slips or stakes of Hive wood driven through the brush in time produce a "live" dam (figure 22). Its effectiveness improves even after the hrush has decayed. Sceding grain or grasses in the silt deposited above the dams helps further to hole scill that is carried in lyy fater rains.

In moderate-sized gullies, wet straw, leaves, or other rash may be covered with brush that is then tramped and staked down. The stakes are slanted upsiream to prevent flood wator from floating the slrave and brush away. Straw staked down in small gullies is temporarily effective. In iact, aryching that checks the speed of flowing water reduces its culting and carrying power and causes the ofeposition of the sand and silt it carried.

Other dams

Gieck dams of stunes, woven-wire fence, or logs thave been used. The dams hoid soil material to the top; that above is lost. In a steep gully, the danss must be rather close together since the top of one dam must not be uuch below the bottom of the next upstream from it. Because the dam
checks erosion, vegetation soon gains a foothold in the newly-deposited silt and helps to control further washing.

Woven wire is fastened to posts set firmly across the gully. Straw, leaves, or other refuse may be used to hold the water back and to catch the soil which then fills in above the dam.

Any type of check dam must have below it an apron of non-eroding material on which the water may fall as it comes over the dam. Concrete poles, loose, large stones, brush, trash, or stiff sod may be used to advantage.

The difficulty with the various types of dams is the cost of materials and the labor required to build them. Woven-wire dams are the most economical. These dams, in particular, and all dams in general ought to be used with live vegetation such as coarse grass and legumes, wild shrubs, cuttings of willow, elderberry, or cottonwood, and locusts and other trees. In fact, dams may often be justified on the score of aiding the vegetation to become established.

CONTOUR FURROWS IN PASTURES

Pastures on steep slopes suffer some loss of water during heavy rains. contour furrows on such slopes hold water, and some of this soaks into the soil and helps the grass to keep growing during periods of drought. Also, the furrows prevent any concentration of water. Moreover, the water held goes into the soil, part of it to feed springs, wells, and streams. All water that is held reduces the amount that would go quickly down into the valleys, where destructive floods occur all too often.

Furrows are used only on well-drained soils on contour lines. Gaps of from 3 to 5 feet in furrows, staggered to prevent concentration of water on slopes, are desirable. Seeding furrows and excluding stock until a grass cover is established is desirable to prevent trampling down the embankments.

HOLDING FRUIT SOILS AGAINST WASHING

Orchards and vineyards represent a long-time investment and it seems wise to confine new plantings to the very best fruit soils. Deep rooting is essential if fruit plants are to live long and produce good yields. Trees and vines will not root deeply on poorly drained soils or where hardpan or rock is encountered within 2 or 3 feet of the surface. Before deciding to plant fruit on any site, the soil profile should be carefully examined to determine its adaptability for this purpose. If the land is well drained and deep enough for fruit, then in making the planting it is well to provide against soil erosion on slopes where cultivated fruits, such as peaches or grapes, are to be grown.

Fruits, cspecially grapes and peaches, are grown in protected areas on slopes adjacent to bodies of water such as the Lakes and the Hudson River in New York. Owing to their location, the slopes near the Finger Lakes are often rather steep and the heavy soils on the lake plain near Lakes Erie and Ontario wash easily. Both conditions prevail in some areas.

Contour planting

As with cultivated crops, fruits that are to be grown on slopes are bext planted on the contour, capecially fruit that is so be clean-culdivated. Moreover, some of the usual advantages of contour worle ayply in large neasure to íruit production. If apples are to be grown in sod, they may be planted with the rows near, but perhaps not necessarily exactly on, the contour. Any fruit, however, that is to be cultivated in whole or in pert may be expectad to give best results over a period of years if planted on, or close to, the contour (figure 23). A alight slope in the rows belps to dispose of excess water, espectally uns stow-draining soiks.

Terracing peach orchards

On erosive moćerate slopes, sach as on the lake-laid soils in New York, it is proboble that terraces may be belpful. Depending on slope and soil conditions, peach trees may be planted on every terrace embankment; on gentier slopes, one or more rows of trees may be see betwoen the terraces.

Cultivating, spraying, and harvesting may then be parallel to the ferraces or almost on the contour. The saving of power that attends all contour, as compared with uphill and downhill work, is made in terraced orchards.

Many peach orchards that have been set in recent years are not on the contour and consequently those on clean-cultivated slopes are subject to washing. Young orchards may be changed from up-and-down the slopes to the concour. This has been done in Pennsylvania by moving only a very few trees to the acre. New plantings should always be made on or near the contour because severe damage may result from the surface soil washing away from the roots during the normal hife of the trees. Any reduction in the exposure of the soil by mulches or vegetation is most desiralle from the standpoint of conscrvation of the soil for future use. How to use soilconservation measures in a feasible scheme to produce peaches and grapes economically is the joint task of the pomologist, the soil conservationist or agronomist, and the agricultural ergineer.

Contour planting of grapes

In the Finger Lakes region grapes are successful in a narrow belt adjacent to the water. Much of this belt is steeply sloping land. Slopes of from 25 to 43 per cent are not unuscal. The writer found one vincyard on a slope of 60 per cent in the Itammondsport aren, Except for a few areas of welldrained gravelly soil, these grape soils are subject to severe erosion during heavy or prolonged rains (figures 24 and 25). The severity of erosion may

 Leraute of lew yntide

Figure 25. getumace is chares
A vime at the right and the poss wre mmuleitely wated wut. The woll is gosi has tha nuwn wriv not cut the enetour
be altributed to the steepuess of slopes and to clean cultivation. Because the soil is exposed so much oi the season to the beating action of heavy summer showers, some erosion is certain to take place.

As a rule, graper lave not been planted on the contour, and destructive erosiort has taken place. In fact, a considerable acreage of vineyard has been abandoned largely because the fine soil capable oi holding water has been lost. Instead of the nriginal triable silt or gravelly silt loam, stoties larger than an inch in diameter now constitute much of the surface material. Such material can hold tittle water or plart nutrients for use by the crop.

Experiments on losses of soil and water and on yields of grapes in the Hammondsport area were begen in 1933° by the Regearch Division of the Soil Conservation Service in cooperation with the New York State experiment stations. ${ }^{T}$ Comparisons are made between grapes planted on the contour and those plarted uphill and dowuhill on similar slope and soil conditions. As an average of the 7 years, 1935 to 1941, the contour grapes produced 5082 pounds of fruit a year and the uphill and downhill rows produced 4278 pounds. This is a gain in yield of 804 pounds an acre a year. In years of ample and well distributed tainfall there was little difference in yield. In 1940 the May-through-October rainfall was 17.54 inches and the yield was about 6500 pounds of grapes an acre. Becanse of its good distribution throughout the growing acason, 11 inches of water in 1941 produced the third highest yicld oi grapes (also about 6500 pounds an acre) for the entire pericd.

The loes of soil was highest in 1936 with 12.43 inches, and sccond highest in 1939 with 16.05 inches. During these two ycars the average loss of soil was 2997 pounds on the uphill and downhill rows and 41 pounds of soil an acre on the contour rows. The loss of soil was not large during the other years on either type of planting. This narrow zone along the lakes has climate suitable for grapes, and presurnably the elimate will continue indetinitely to le suitable for this crop; therefore, if future genterations are to benefit from this favorable clirratic situation, the soil now left must be saved and held in place.

A study of permanent cover crops of clover hase been started. Apparently, clover reduces yieids because it uses water neceied by the grapes. Clover in

[^7]each fourth spruce letween the rows caused a slight lass in yicld. Mulches of straw (12 tons an acre) or similar material held soil and water and increased the yicld oi grapes 1500 pournis an acre in 1939 and 2100 pounds in 1940. Further work is needed with both various types of cover crop and different quantities of mulch.

All new vineyards should be planted an the contour on well-lrained soils (figure 26). On soils with siow drainage sloping the rows encough to provide surface drainage is recommended. Planting new grapevines on low terrace embankments has proved desirable. On the drice soils, mulching the youthg vities gives exacellent growth.

HOLDING SOILS AGAINST BLOWING

MUCk and sandy soils in New York are blown considerasly by the wind. Damage to eroos on muck soils is reported almost every spring. In addition, mock blown into field and road-draizage ditches clogs them. Sands and sandy soil are blown about whenever they are bare and dry,

Muck

During windy periods in late spring, the dry surface of muck soils is blown by the wind. The bits of wood, of which much of the cultivated muck of the State was iormed, are hurled against the tender stems of plants, These fragments eventually cet through the outer covering of the tender stems and the plants soon die. Apother crop must then be planted to obtain

Figuke 26. GRapes of tar cismmer

[^8]any income whatever irom the land. Mech additional tabor is required, and the crop planted seldom gives as good returns as the original crop would have done.

Windlbreaks of willows have long leen used to control soil from blowing (figure 27). The ordinary tree-type of willow may be used bat the basket willow is mush better. It may be planted wherever a relatively low windbreak gives enough prutection. The disadvantage is that the willows occupy tillable land.

Under conditions that are unusually favorable for blowing, permanent windbreaks fail to give complete protection. Woven pirket fences (snow fences) placed at regular intervals parallel to the willow windloreaks, help materially to hold the muck against blowing and thus protect tender crop plarts. These snur fences have the advantage of cot keefing valuable land permanently out of cultivation,

Strips of rye seeded in the fall might serve as windbreaks. By the time the "blowing" scason arrives, the rye will have atlained a height of several feet and, since it is thick, will check the movement of soil. Unless the rye is in scrips of approximately the width of the ordinary beds and can be seeded to other valuable crops later in the season, considerable land is thus taken out of the cropping system.

Singlo rows of oats between the rows of onions are drilied as intervals, the cats being removed when danger of further blowing is over.

A cover crop of wheat or rye seeded in August or early September protects the soil against possible blowing during the fall and the winter. Moreover, such a crop takes up some oi the residue, especially nitrogen, from the smasno's fertilizer. The nutrients are thnu held int live material against leaching during wiuter and spring when the soil is not protected by crops. Ways to prevent muck from blowing are discussed in Cornell Extension Bulletin 482, The Contrul of Wind Erosion an Muck Lands.

Sandy soils

Bare, sandy loams and sands are subject to blowing. Crop darage by blowing sand in New York is seldom serious, alchough there is some blowing on the sandy areas of the lake ptain, in the tootaills of the Adirondacks, and on Long Island, particularly on the sonth shoze. The storm of September 1938 undercut the protective vegetation and exposed much additional sanil, Fiven hiefure that, however, destructive movement of the sand had been taking piace regularly.

Plantings oi American beachgrass in the actively blowing sand have hren mande near Jones Beach and on the ceuseryay leading to the beath and about the Aclirondack foothills. The grass has made fairly good growth in some places but bas died out in others. In the bare spots hlowing is begiuning again. A legume is needied ta supplify nittogen to the growing grass. Nature has helped, as the trailing wild hearn (Strophostyies kelvola) tas already made a start in this area. It appears probable that chis legrome may be particnlarly useiul wherever sauds in Nev York are blowing or threatening to blow (figure 28).

Figuna 28. sancit aians in sand

This beach grass on Long 1xiand was youndel afoer the storm of Sepienter tyss. As the arass fictes be bolds the sawd againet Howian

The bayberry grows wild and holds the soil well near the plants. The black locust when thoroughly inoculated makes fairly good growth on sands. If interplanted in strips with native or adapted conifers or evergreens, the combination affords year-round protection. Being a legume, the black locust collects nitrogen that may be used by non-legumes that grow near it. On loamy sands, the locust often brings grass into the partial shade under it. This is ideal since the grass covers and holds the sand in place.

The woven picket fence holds sand temporarily, especially while vegetation is being established. It is being used on Long Island against the blowing of sand in the same way as it is used against snow.

An effort has been made in the Adirondacks to reforest and thus to stabilize blowing sands. This did not succeed because many of the planted pine seedlings were blown out and others grew slowly.

A partial cover of straw, pine needles, or other low-value material held in place by brush may be expected to aid the pines greatly. A partial cover of pine brush between the planted seedlings prevents serious movement of sand until the plantings become established and afford protection.

Locusts planted among the brush suggested, or locusts in belts alternated with conifers, may be expected in time to hold sand against blowing. Since wind shifts, an occasional cross belt of the adapted or native conifer may aid still further in preventing the sand from blowing.

On cropped sandy land, windbreaks and a protective cover of vegetation may be all that is needed. Thoroughly inoculated wild or tame legumes mixed or interplanted in belts with non-legumes aid in the stabilization of sandy soil. On Long Island, considerable use is made of winter cover crops. Rye or rye and barley are most commonly used. Because of shifting winds, an occasional drill width or two across the main direction of seeding may help to check movement of sand. The main seeding is made at approximately right angles to the prevailing wind direction. A light hand-seeding of grain before drilling the main cover crop fills the spaces between the drill rows and thus checks movement of sand. While such a seeding over the entire field might be most desirable, a trip every 50 to 75 feet ahead of and at right angles to the main seeding will check much movement of sand along the drill rows.

[^0]: Author's acxnowhmagent. The manuscript for the original edition (1940) was read by T. A. Pasto, W. C. Huff, Paul Hoff, M. B. Hoffman, E. V. Hardenburg, R. Bradfield, E. L. Worthen, J. H. Barron, E. VanAlstine, G. H. Serviss, and R. B. Child. The revised manuscript (1944) was read by John Lamb Jr., I. B. Stafford, H. F. Eaton, Hugh M. Wilson, and George Moore of the Soil Conservation Service.

[^1]: ${ }^{2}$ Slope is expressed in percentage. A vertical drop of 10 feet in 100 feet of horizontal distance is called a slope of 10 per cent. A drop of 25 feet, therefore, is a slope of 25 per cent. Levels are needed to determine the per cent of alope. The tripod, the hand jevel, or a simple arrangement of a carpenter's level such as that shown in figure 3, may be used.

[^2]: sulnfall w:m 2 ieches ia 20 minutes (unufscial). The sutire sluge atove was plamed 10 sotaluts and

[^3]: 2Effect of erosion on long-time strip cropping in Bush Valley. Minnesota. By I. J. Nygard and L. E. Bullard. Soil Conservation, Vol. 4, No. 10, p. 239-241. 1939. (U. S. Agr. Dept., Soil Conservation Service.)

[^4]: ${ }^{2}$ Good farm levels mounted on sturdy tripods are ordinarily available at reasonable prices, and simple hand levels cost even less. The county agricultural agents or Soil Conservation District workers have information about levels.

[^5]: ${ }^{4}$ From unpublished data (1943) by I. B. Stafford, State Conservationist, Soil Conservation Service.

[^6]:

[^7]: - and araseisto. Unpoilikikes data. 194.3.

[^8]:
 with aptill-and-downakill planted grapes soil wasting wos severe

