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FORE"WORD 
IN our work at Rothamsted on insecticides, their action and 
relative potency, we have been so dependent and have made so 
many calls on the skill and patience of the Statistical Depart
ment and in particular, in recent years, of Mr Finney, that it is 
a pleasure to learn that the statistical methods and techniques 
which he has placed so willingly at our disposal for the solution 
of our various problems are now to be expressed in a more 
permanent form and to be given to a wider field of workers. 
If this book receives its due, the investigators of toxicological 
problems throughout the world will find it a standby. 

To many of us, engaged on the practical issues of devising 
the experimental material and methods to be employed in our 
laboratory tests, there will be much in these pages that has to 
be taken upon trust. They are meant to act primarily as an 
aid in computation, but there is a profound thread of reasoning 
running through them all, giving a coherence to. the several 
chapters. One cannot but feel, therefore, that the more mathe
matical readers will find the book suggestive and stimulating. 

Twenty-five or more years· ago, when I entered th~ field of 
research from which :Mr Finney takes so many examples for 
detailed computational study, the very whisper of the need 
for statistical analysis, falling upon the ears of the biological 
expert, was enough to bring down a storm of denial upon one's 
head. Although there may be some small residue of such 
a reaction still in existence, it now only persists in obscure 
nooks and crannies of the world of biological research. l\Iuch 
of this change is due to the school. of statisticians founded by 
R. A. Fisher at Rothamsted, of which l\Ir Finney has been 
a distinguished member. They always showed a willingness to 
enter into one's experimental difficulties and an understanding 
of the limitations imposed by time and space upon the amount of 
work it was possible to do. The measure of the thought given 
to theBe matters can be gauged by the fact that some of the 
most important tables, given by l\Ir Finney in the following 
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pages, were in process of computation in actual anticipation 
of problems which we later carried to him. This brings up the 
now rather hackneyed, but none-the-less important, matter of 
the prior consultation with a competent statistician before de
signing experiments. Repeatedly is such a course justified by 
events, in that the plan can not only be often simplified, but so 
designed as to yield more information with little, if any, more 
labour. 

Another issue, raised by such text-books as this, concerns 
the extent to which a training in statistics should enter into the 
curriculum of the biological and biochemical student. I have 
found, relatively late in life, how hard a task it is to pick up, 
during busy years, the requisite amount of basic statistical 
knowledge to follow the arguments set out in recent text-books 
written for one's own benefit. I therefore feel that more atten
tion might be given to such a matter by the academic powers
that-be. The engineer may not need to know all there is to be 
scientifically known about the composition and manufacture of 
his tools and materials, but at least he should know enough to 
use them rightly. So too the quantitative biological investigator. 

Mr Finney's text-book has a very long and dignified ancestry 
ranging back to early Egyptian and :Mesopotamian times, when 
texts of mathematics were used for the training of scribes, the 
professional computers of those distant days. But this is 
a forward-looking book and is primarily meant for experi
mentalists. E·nlarged editions may well follow this, the first, 
as the subject grows and new problems arise; and that there 
are many just round the corner anyone who has discussed these 
matters with the author is very well aware. Havillg had the 
benefit of his personal advice and help throughout the la8t six 
years I cannot but wish this book Godspeed on its helpful 
mission to others. 

F. TATTERSFIELD 



PREFACE TO FIRST EDITION 

FROM the theory of probability, origirially investigated in order 
to explain nothing more important than the results of games 
of chance, has developed the science of applied statistics. Over · 
one hundred years ago Lavlace wrote that 
... Ia theorie des probabilites n'est au fond, que le bon sens reduit; 
au calcul: elle fait apprecier avec exactitude, ce que les esprits 
justes sentent par une sorte d'instinct, sans qu'ils puis'sent souvent 
s'en rendre compte, · 

and these words might equally well· be written of statistics 
to-day. In many fields of scientific research, and especially in 
the biological sciences, numerical studies are complicated by the 
inherent variability of the material under investigation, and 
conclusions must be based on averages derived from series of 
observations. The estimation of these averages and the assess
ment of their reliability are statistical operations, in the 
performance of which the experimenter inevitably employs 
a statistical tecb.i:uque evt"n though he himself may not always 
recognize this fact. The operations may be simple or complex, 
depending upon the circull!-stances; if, however, they cease to 
be 'le bon sens reduit au calcul ', they can no longer be expected 
to contribute to the understanding of the problem under in
vestigation. 

The recent rapid advances in the application of rigorous 
statistical methods to biological data began with the publica
tion, in 1925, of R. A. Fisher's Statistical Methorh for Research 
Workers. Not only did Fisher develop exact methods for the 
analysis of data from small samples to replace the older approxi
mations from large-sample theory, but he also introduced new 
and powerful techniques for making the most efficient use of 
experimental results. Of equal importance to the growth of the 
present-day philosophy of experimentation was Fisher's sug
gestion that the statistician should be consulted during the 
planning of an experiment and not only when statistical analysis 
of the results is required, as his advice on experimental design 
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may greatly increase the value of the results eventually obtained. 
Since Fisher's book first appea:.:ed, the principles of experimental 
design and the methods of statistical analysis have been ex
tended so rapidly as to make it increasingly difficult for any 
but the professional statistician to be familiar with the variety 
of methods needed in biological problems. 

l\Iany books since Fisher's have been ·written with the aim 
of surveying a wide field of biological statistics, but these can 
give only an outline of some important topics. There is to-day 
a. need for books in which the specialized statistical methods 
appropriate to certain branches of science "ill be discussed in 
sufficient detail to enable biologists to appreciate them and 
apply them to their own problems. 

One subject requiring fuller discussion than can reasonably 
be expected.in any general text-book of statistics is the method 
of pro bit analysis, for the development of which J. H. Gaddum 
and C. I. Bliss are largely responsible. This method is "idely 
used for the analysis of data from toxicity tests for the assay of 
insecticides and fungicides, and also of data from other types 
of assay dependent upon a quanta! response. In this book I have 
tried to give a systematic account of the theory and practice 
of probit analysis, including as much as possible of the most 
recent extensions and refinements, in such a form that it may 
be understood by biologists, chemists, and others who have some 
knowledge of elementary statistical procedure; at the same time, 
I have endeavoured to satisfy the mathematical statistician by 
showing the theoretical background of the method. The less 
mathematically minded reader will no doubt be content to omit, 
or at most to read cursorily, Appendix II and other sections 
concerned with the mathematical basis of the technique. Full 
understanding and appreciation of statistical methods can be 
gained only by experience in their use, but careful study of 
the numerical examples should enable many who were previously 
unfamiliar with pro bit analysis to apply it satisfactorily to their 
own data. 

This book has been written as a result of several year:> of 
close collaboration with members of the Insecticides Department 
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at· Rothamsted Experimental Station, especially with Dr F. ! 
Tattersfield, Dr C. Potter, and, until he left Rothamsted, 
Dr J. T. 1\Iartin. I wish to express my gratitude to them for 
discussing with me a "ide variety of their problems, for advising 
me on the experimental aspects of their results, and for the 
generosity with which they have permitted me to use their data 
both in this book and in earlier publications. I am also very 
grateful to my colleagues in the Statistical Department at 
Rothamsted for much helpful discussion, and particularly to 
Dr F. Yates for his detailed and constructive criticism in the 
preparation of my book. Others to whom my thanks are due 
include l\liss G.l\L Ellinger for assistance in German translatio~, 
Dr C. G. Butler for permission to use the numerical data of 
Ex. 33, Dr A. E. Dimond and Dr J. G. Horsfall for giving me 
very full information on the results discussed in § 41 and for 
permission to use their data, Professor G. H. Thomson for 
assistance in tracing the history of the probit method, the 
Editors of the Annals of Applied Biology for permission to 
reproduce the first half of Table II, Professor R. A. Fisher, 
Dr F. Yates, and Messrs Oliver and Boyd, Ltd. for permiss'ion 
to reproduce Tables I, VI and VII from their book Statistical 
Tables for Biological, Agricultural and Medical Research, and my 
father, Robt. G. S. Finney, for very considerable help in the 
correction of proofs. 

RQTHAMSTED EXPERIMENTAL 
STATION 

.4.ugU8t 1945 

D. J. FINNEY 

PH.E~~ACE TO HECOND EDITION 
IN the four years· that have elapsed since the fir~t edition of t.his 
book was completed, the theory of the analysis of 4uantal 
response data has been extended and new application!' of pro bit 
analy:'>is and relatPd methods have been made. To discuss these 
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in logical order would entail considerable rearrangement of the 
book, a course that :was impracticable for this edition. Instead, 
I have adopted the compromise of correcting a small number of 
minor errors, of rewriting §§ 15, 28, parts of §§45 and 47, and 
Appendix II, and of adding a new chapter on Recent Develop
ments. Table II has been extended to 90% natural mortality, 
and additional information has been incorporated into Table V; 
the new Tables VIII and IX aid the analysis of problems discussed 
in Chapter II. 

I am aware of three major shortcomings that could not be 
removed without a more radical revision of the book. I have not 
discussed as fully as I should now choose to do alternative 
methods for the analysis of quantal response data, especially . 
that based upon the angle transformation(§ 15) and approxima
tions such as Karber's (§§ 13, 49). My examples give the impres
sion that probits are useful primarily for data from insecticide 
tests, whereas· in fact they find application in many other 
branches of science. I may seem to imply that pro bit analysis is 
a statistical technique co-extensive with the analysis of biological 
assays; in fact, only one class of biological assays has any need 
ofprobits or related techniques, and probit analysis is used in the 
statistical examination of many experiments that would not 
generally be regarded as assays. 

I am indebted to all who, privately and in reviews, have told 
me of errors in the first edition or have made suggestions which 
have helped the preparation of this edition. I am especially 
grateful to l\Ir P. S. Hewlett and :Mr R. L. Plackett, for sending 
me a draft of a new paper and allowing me to comment on it in 
§53, and to the Editors of Biometrika for permission to include 
Table VIII. 

D. J. FINNE) 

OXFORD 

I>ecember 1949 



Chapter 1 

INTRODUCTORY 

1. BIOLOGICAL AssAY 

THE term biological assay, in its widest sense, should be under
stood to mean the measurement of the potency of any stimulus, 
physical,-chemical or biological, physioiogical.or psycholo~cal, 
by means of the reactions which it produces ill. living matter. The 
biological method of me~uring the stim~ns-"is idopted-either 
for lack of any alternative, or because an exact physical or 
chemical measurement of stimulus in_tensity may need transla
tion into biological units before it can be put to practical use. 

Biological as~ay is most commonly consid~re<!_ as referring to 
t~~ assessment of t~e pote--;~y of _vita~!- ~es~t?~~an~ 
md drugs of all types by means of the responses produced when 
loses of these are given t<>~.;rlt~ble e;perimental allimais~·Esti
iiaticm of the potency of a natw=al product, such as a drug 
~xtracted from plant material, in producing a biological effect 
)f a certain type, is often impossible or impracticable by 
~hemical analysis. Even if the chemical constitution of the 
m.aterial is known or determinable, there ma-y be little knowledge 
)f the magnitude of the effect which the constituents will produce, 
1. difficulty not confined to natural products but occurring also 
with many manufact'ured compounds, such as insecticides, which. 
1-re made to precise chemical specifications yet which are of un
known biological activity. The material must in fact be tested 
and standardized by meth<?ds appropriate to its future use. 

For example, vitamin assays may be made in terms of weight 
changes or other physical measurements observed in rats, the 
effects of different doses of the. preparation to be assayed being 
compared with the effects of a standard in order to estimate the 
relative potency of the test preparation and the standard. Insulin 
may be assayed in terms of the fall in blood sugar in injected 
rabbits, and digitalis by the mortality amongst injected cats. 
Again, the potency of insecticides may be assessed by means of 

FPA 
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the mortality in batches of treated insects, and that of fungicid~s 
by the proportion of treated spores failing to germinate. Another 
form of assay procedure which is sometimes useful depends on 
meas~rement of the time required for the production of a specified 
effect instead of measurement of the magnitude of the effect pro
duced. In an interesting and informative article, which should 
be read by all who are seriously concerned with this type of 
investigation, Bliss and Cattell (1943) have reviewed nearly 300 
recently published papers on the theory and practice of biological 
assay, with especial reference to vitamin, hormone, and drug 
assay. The texts of Burn ( 1950) and Coward ( 1938) may also be 
consulted, though the statistical methods there advocated do 
not fully exploit modern developments. 

One _type of assay which has been found valuable in many 
different fields, but especially in toxicological studies, is that 
dependent upon the qua;;,ta,l~or~ll-or-;;:othing, response. Though 
quantitative measurement-of~ response is always to be preferred 
when available, there are certain responses which permit of no 
graduation and which can only be expressed as 'occurring' or 
'not-occurring'. The most obvious example of this kind of re
sponse is death; although workers with insects have often found 
difficulty in deciding precisely when an insect is dead (Tattersfield 
et al. 1925), in many investigations the only practical interest lies 
in whether or not a test insect is dead, or perhaps in whether or 
not it has reached a degree of inactivity such as is thought certain 
to be followed by early death. In fungicidal investigations, failure 
of a spore to germinate is a quanta! response of similar impor· 
tance. In studies of drug potency, the response may be the cur· 
of some particular morbid condition, no possibility of partial cur 
being under consideration. 

This book is concerned chiefly with the statistical techniqu 
needed in the analysis of quanta! response data, rather than wi 
the general theory of biological assay. Though most of the d 
cussions are prePented in terms of tests of the potencies of 
secticides, the methods are applicable to many other types 
data, and are not peculiar to those relating to assays in 
strict sense. 
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2. VARIABILITY OF RESPONSES 

One feature possessed. by all biological assays is the variability 
in the reaction of th~ te_st subjects-an.d the "cm:isequentrmpossi
bility of ~p~oducing at will the ~e result -in successi;.e trials: 
however carefully the experun~ntal ~onditions ~r~- c~ll-ed.: 
Though similar variability may be encoun~r;;d in assays based 
oilly on purely physical. or chemical measurements, it is genex;.ally 
then of far less practical importance. The contrast between the 
physical approach and the biological may be seen from a con
sideration of two methods for the estimation of the ratio of two 
unknown weights. The physical method is to balance each in turn 
against a set of standardized weights, and to take as the required· 
estimate the ratio of their magnitudes. There may be technical 
difficulties in carrying out the operations of weighing to very high 
accuracy, and both the quality of the balance and the compe!ience 
of the operator are important factors, but for most practical pur
poses the reproducibility of the results is not called in question; 
one measurement on each weight will usually suffice to determine 
the ratio with an accuracy far beyond that obtainable in any bio
logical assay. 

The physical assay of the ratio is here so simple that no alter
native method is needed. For the sake of the illustration it may 
be compared with a biological technique, using quanta! responses, 
in which the weights are dropped from a fixed height on to the 
heads of live rats. Data for the assay are provided by the records 
of death or survival. That the first weight, at its first trial, killed 
a rat, while the second weight did not, would not show with any 
certainty that the first was the heavier, still less would it give any 
clue to their ratio; the effect would be influenced not only by the 
weight dropped, but also by the age, sex, size and physical con
dition of the rat, and other biological and environmental factors 
(as well as, of course, the shape and elasticity of the weights, 
which will here be assumed the same for both). If batches of rats, 
chosen at random from the stock available, were tested with each 
weight, the proportionate effect of variation in susceptibility from 
rat to rat would be reduced with increasing size of sample, and 
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the weights could be compared in terms of the two mortality 
rates. Variability could be still further controlled, though never 
entirely eliminated, by using a specially bred strain of rats, and 
selecting batches homogeneous for sex, age and other relevant 
factors. When every test is made from the same arbitrary height, 
t~ assay cannot discriminate between weights too light to cause 
any deaths or between weights so heavy as to kill every rat. This 
difficulty can be overcome by making tests from a series of dif
ferent heights- and obtaining a range of mortalities for each 
weight. The weights are then compared in terms of equivalent 
heights, or heights estimated to give the same (say 50%) mor
tality. The height scale thus provides a basis for the biological 
comparison of any number of weights, but, without experimental 
or theoretical knowledge of the law relating mortality to height 
and the physical measure of weight, the results of the biological 
assay cannot be transformed to purely physical terms. 

This example has been discusse4 in some detail, as, in spite of its 
absurdity, it illustrates the necessity for a careful consideration of 
variability in any biological assay technique. To some extent the 
quantal nature of the responses is a complication, but quantitative 
respon8es by no means provide an escape from the problem. Equal 
doses of insulin will not produce equal effects on the blood sugar of 
different rabbits, or even on the blood sugar of the same rabbit at 
different times~ Consequently, though two insulin preparations 
could be compared in terms of the magnitudes of the changes in 
blood sugar produced in two rabbits, only repetition of the tests 
on several rabbits for each preparation can give an estimate of the 
relative potency sufficiently precise to be of any practical value. 

Biological aspects of, and reasons for, variability in test or
ganisms of many kinds have been discussed by Clark (1933, 
especially Chapter VI), and his remarks on individual variations 
in response deserve careful reading. The occurrence of this varia
bility introduces considerations other than those of biology; when 
there is a large natural variability of response amongst the test 
subjects, the analysis of numerical data for the estimation of the 
effects of applied treatments can only be effected satisfactorily 
with the aid of exact statistical techniques. 
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3. STATISTICAL METHODS 

The development of statistical techniques for the analysis of 
biological data of all types has proceeded with great rapidity in 
recent years. In many fields of research on biological topics, ex
perimental and observational results can only be used to the best 
advantage by subjecting them to precise and critical statistical 
examination. When a programme of biological research involves 
the collection of numerical data, the problem of interpreting these 
is almost inevitably one of statistics. The choice is not, as the 
biologist sometimes imagines, of whether his figures shall be 
'statistically analysed' or not, but rather of whether the analysis 
shall be theoretically sound and able to extract all the relevant 
information from the material, or inadequate and possibly un
sound. Even the simplest and most straightforward averaging 
of results is essentially a statistical process; the analysis appro
priate to any body of data is determined by the inherent pro
perti~s of those data, not by the whim of the statistician. It is 
unfortunate, to !'ay the least, that good experimental work should 
ever be followed by a statistical treatment of the result~ so un
satisfactory that the conclusions are incomplete, unreliable, or 
even actively misleading. 

The function of the statistician in biological investigations is · 
to supply that critical and objective judgement of numerical 
material which is a product of ·his specialized training and ex
perience. An important aspect of his work is co-operation in the 
planning of an experimental programme so that, taking into 
account all relevant information already available, it is designed 
to give results of maximum utility and precision. The assistance 
of a competent statistician from the beginning of the programme 
will often substantially increase the value of the results obtained 
from a given amount of experimental time and labour, in respect 
of both their scope and their reliability, whereas the conclusions 
may be much less satisfactory if the statistician is only consulted 
after the completion of the experimental work. 

Nevertheless, the methods of analysis used by the statistician 
are not esoteric mysteries, but are simply instruments for 
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discovering the most important features of numerical data. The 
computational procedures appropriate to many types of data 
have been so far standardized that they can be applied by a bio
logist who has some understanding of their purposes, even though 
he may know little of their theoretical foundations. The blind 
application of formulae is a danger which should be avoided, for 
not infrequently the formulae may be used quite inappropriately; 
on the other hand, the anxiety of many biologists to learn enough 
of statistical methods in order to be able to analyse their own data 
without complete dependence on the assistance of a statistician 
is witnessed by the recent spate of books designed to instruct the 
non-mathematician in statistical technique. 

The statistical treatment of quanta} assay data has been much 
aided by the development of probit ana.lysis. This method, which 
is usually attributed to Gaddum (1933) and Bliss (1934a, .b; 
1935a, b) though it has, in fact, a much longer history(§ 14), has 
now been widely adopted as the standard method of reducing the 
data to simple terms. 

4. SUMMARY O.F CONTENTS 

This book is written with the intention of introducing the pro bit 
method to many wh~ have previously not ventured to use it, and 
of presenting some of its more recent developments to those who 
are already familiar with it. In the first few chapters the tech
nique is shown in its simplest form, stripped of all but the essen
tials. It is hoped that these chapters, at least, will be capable of 
.appreciation and use by many whose knowledge of other branches 
of statistics is small. Even for this purpose, however, a slight 
acquaintance with modem statistical thought and terminology 
is necessary, and although. notes on various tests and distributions 
will be found in the appropriate sections these can do little more 
than give references and hints on particular applications. The 
reader is strongly recommended to familiarize himself with the 
relevant portions ofR. A. Fisher's Statistical M etlwds for Research 
Workers (1944), especially the sections dealing with the normal, t, 
and r distributions, and with regression. K.l\father's Statistical 
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.Analysis in Biology (1943) provides a valuable introduction for: 
those who find Fisher's book too difficult. 

The numerical examples in subsequent chapters have been 
carefully chosen to illustrate many points of procedure and to 
show the application of the method to a variety of toxicological 
data. Though the computational work required is sometimes 
laborious, it is not as heavy as some accounts have made it 
appear; in an appendix is given a detailed description of a syste-. 
matic arrangement of the computations for the simplest type of 
problem, and this arrangement may easily be extended to suit 
more complex data. A second appendix gives a brief outline of 
the mathematical theory of the pro bit method. The book is com
pleted by a·series of tables which lessen considerably the com
puting time and labour required for probit analysis. · 



Chapter 2 

QUANTAL RESPONSES AND THE DOSAGE
RESPONSE CURVE 

5. THE FREQUENCY DISTRIBUTION oF ToLERANCE 

IY all biological assays there are two components to be con
sidered, the stimulus (for example, a vitamin, a drug, a physical 
force, or a mental test) and the subject (for example, an animal, 
a plant, a piece of tissue, or a single cell). The stimulus is applied 
to the subject at an intensity specified in units of concentration, 
weight, time, or other appropriate measure and under environ
mental conditions as carefully controlled as is practicable, as 
a result of which a response is produced by the subject. Different 
stimuli are then compared in terms of the magnitudes of the 
responses they produce, or, more commonly and usefully, in 
terms of the intensities required to produce equal responses. 

When the characteristic response is quanta!, its occurrence or 
non-occurrence will depend upon the intensity of the stimulus 
applied. For any one subject, under controlled conditions, there 
will be a certain level of intensity below which the response does 
not occur and above which the response occurs; in psychology 
such a value is designated the threshold or limen, but in pharma
cology and toxicology the term tolerance seems more appropriate. 
This tOlerance value will vary from one member to another of 
the population used, frequently between quite wide limits. When 
the characteristic response is quantitative, the stimulus intensity 
needed to produce a response of any given magnitude will show 
similar variation between individuals. In either case, the value 
for an individual also is likely to vary from one occasion to another 
as a result of uncontrolled internal or external conditions. Clark 
(1933, Chapter V~) has discussed the nature of these individual 
variations in response for many different populations. 

For quanta! response data it is therefore necessary to consider 
the distribution of tOlerances over the population studied. If the 
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dose, or intensity of the stimulus, is measured by,\, the distribu· ! 
tion of tolerances may be expressed by 

dP =/(..\)d.\; (2·1) 

this equation states that a proportion, dP, of the whole popula
tion consists of individuals whose tolerances lie between ,\ and 
,\+d.\, where d,\ represents a small interval on the dose scale, 
and that dP is the length of this interval multiplied by the 
appropriate value of the distribution function,* f(,\). 

If a dose A.o is given to the whole population, all individuals 
will respond whose tolerances are less than ..\o, and the P!Oportion 
ofthese is P, where 

p = f~J(,\)d,\; (2·2) 

the measure of dose is here assumed to be a quantity which can 
conceivably range from zer~ to + oo, response being certain for 
very high doses so that 

f~ f(,\) d,\ = 1. 

The distribution of tolerances, as measured on the natural 
scale, may be markedly skew, but it is often possible, by a 
simple transformation of the scale of measurement, to obtain 
a distribution which is approximately normal. 'A variate is said , 
to be normally distributed when it takes all values from - 00 to 
+oo with frequencies given by a definite mathematical law, 
namely, that the logarithm of the frequency at any distanced 
from the centre of the distribution is less than the logarithm of 
the frequency at the centre by a quantity proportional to d2• The 
distribution is therefore symmetrical, with the greatest frequency 
at the centre; although the variation is unlimited, the frequency 
falls off to exceedingly small values at any considerable distance 
from the centre, since a large negative logarithm corresponds to 
a very small number' (Fisher, 1944, § 12). In tests of insecticidal 
sprays, for example, although the distribution of tolerance con
centration of the toxic agent is usually far from symmetrical on 

• The statement that /(A) is a function of A means simply that for 
any given value of A the value of /(A) is uniquely determined. 
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account of a few insects with extremely high tolerances providing 
an extended 'tail' to the distribution (Fig. 1 ), normalization can 
often be effected by expressing the tolerances in terms of the 
logarithms of the concentrations instead of the absolute values 
(Fig. 2); this transformation is now accepted as standard practice 
for expressing the results of such trials (cf. Galton, 1879). Various 
writers (Clark, 1933; Hemmingsen, 1933; Bliss, 1935a) have 
sought an explanation of the normal distribution oflog tolerances 
in the Weber-Fechner law and in adsorption phenomena, par
ticularly as expressed by the Langmuir adsorption law, but these 
explanations are beyond the scope of this book. The validity and 
appropriateness of the logarithmic tran.Sformation in the analysis 
of experimental data are not dependent on the truth or falsity 
of any hypotheses relating to adsorption; use of the log concen-

. tration as measuring the dosage in insecticidal trials requires no 
more justification than that it introduces a simplification into the 
analysis. There are additional advantages in having a scale on 
which a given proportionate increase in concentration has the 
same scale value at all levels of concentration, but other forms of 
transformation may sometimes be more suitable. Parker-Rhodes 
(1941, 1942a, b) has advanced reasons for expecting a normal 
distribution of some fractional power of the concentration of 
a fungicide to which suspensions of fungus spores are exposed 
(see § 45), though this must be only an approximation which 
holds over a restricted range of concentrations. 

It is convenient to take x as representing the intensity of the 
stimulus on the scale on which the tolerances are normally dis
tributed, and ,\ as the untransformed value of concentration, 
time of exposure, or other variate. Thus for much insecticidal 
work, if,\ is the concentration of the toxic agent, 

X= log10,\, 

and for some fungicides a better transformation may be 

X= ,\i, 

(2·3) 

(2·4) 

where usually i :e:; I. The second normalizing transformation tends 
to the logarithmic as i is decreased to zero. There is no reason why 
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a simple transformation should always be available; nevertheless, ' 
many classes of data have been found amenable to treatment on 

0 15 20 30 35 
Concentration 

FIG. I. Typical distribution curve for the absolute values of toleran,ce con
centrations of an insecticide. (The area between any two ordinates represents 
the proportion of insects having tolerances lying between these limits.) 

0•8 1·0 1·2 
Logarithm of Concentration 

Fza. 2. Normal distribution for the logarithms of tolerance 
concentrations, derived from Fig. I. 

these lines, so that the study of the consequences of this normal 
distribution and of the appropriate methods of statistical analysis 
is of considerable practical importance. In order to distinguish 
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the scales of measurement, the word dose will be restricted to the 
scale of A, in which measurements of stimulus are in fact made, 
and x will be referred to as the measure of dosage, or, more briefly, 
just the dosage. 

In an investigation for which tolerance can be satisfactorily 
defined, so that for any given dose all individuals with equal or 
lower tolerance values will respond, a graph of the percentage 
responding against the dose will give a steadily rising curve. The. 
rate of increase in response per unit increase in dose is frequently 
very low in the region of zero or 100% response, but higher in 
the intermediate region, so that the curve is sigmoidal (Fig. 3). 
'Vhen the stimulus is measured in dosage units, the curve takes 
the characteristic normalsigf7!0id form (Fig. 4). This curve does 
not attain the zero or 100% response except at infinitely low or 
infinitely.high dosage, a situation which cannot truly arise (except 
that, when the measure of dosage intensity is logarithmic, an 
infinitely low value represents zero dose). Nevertheless, the dis
tribution may be effectively normal over the range of values 
which is of practical interest, the disagreement between theory 
and fact outside this range being of negligible importance. 

6. DIRECT MEASUREMENT oF ToLERANCE 

The tolerance of the test subject in respect of a given stimulus 
can sometimes be measured directly. Such direct measurement, 
for example, is involved in the 'cat' method for the assay of 
digitalis, in which anaesthetized cats are given a continuous slow 
intravenous infusion of digitalis until death occurs. If there is 
any appreciable time lag between the introduction of the drug 
and its taking effect, the lethal dose will be overestimated. 
Though there is no certainty that the dose required to cause 
death under conditions of slow application will be the same as 
the tolerance for more rapid application, the technique has proved 
suitable for assaying a. preparation of unknown potency in terms 
of a. standard. 

An alternative method is to give to each subject successive 
doses of different intensities, allowing a suitable time interval 
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Flo. 3. Sigmoid curve derived from Fig. 1 to show percentage of insects whose 
tolerances are leBB than a specified value. 
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FIG. 4. Normal sigmoid curve derived from Fig. 2 to show percentage of insects 
whose log tolerances are less than a specified value. 
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after each for a return to normal and making the differences 
sufficiently small for a satisfactory determination of the lowest 
dose which causes the characteristic response. With an irrever
sible response, such as death, the doses would have to be given 
in an increasing series. For the method to be satisfactory, there 
must be no cumulative effect of doses already given, either as 
lowering or increasing the resistance of the subject, a condition 
which severely limits its applicability. 

In either of these methods of direct measurement of tolerance, 
the appropriate methods of statistical analysis are the same as 

. for other types of biological measurements. If the tolerance of 
each subject has been separately and independently determined, 
the set of values obtained may be subjected to the same analytical 
processes as measurements of length or weight; the estimation 
of means and standard errors, the comparison of distributions, 
and the making of tests of significance present no new features. 
Bliss and Hanson (1939), for example, have discussed the applica
tion of the analysis of variance and covariance to assays based 
on the 'cat' method. 

Direct tolerance measurement is often impracticable on ac
count of the amount of time required for either of the methods 
mentioned above. Even more frequently i~ is ruled out entirely 
by the nature of the problem. It is hard to conceive of any direct 
measurement technique for the poison tolerance of an insect, still 
less for that of a fungus spore. In these circumstances an entirely 
different approach must be adopted, and the potency of the 
stimulus must be assessed by mearu of the proportion of subjects, 
in random samples of the population, showing responses at dif
ferent levels of dose. 

7. THE BINOMIAL DISTRIBUTION 

If an insect, selected at random from a population, is exposed to 
a dose Ac, of a poison, the probability that it will respond is P; 
the probability of its failing to respond is (1- P), a quantity 
usually denoted by Q. The dose here may be measured by the 
concentration of toxic substance, the absolute quantity used, the 
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length of time of exposure to a fixed set of conditions, or soine' 
combination of these or other factors. If two insects are exposed 
to the dose, and if their reactions are completely independent, 
the probability that both respond is P 2, and the probability that 
both fail to respond ia Q2; the probability that only the first 
responds is P x Q, and the probability that only the second re~ 
spondsis Q x P. Thus thetotalprobabilitiesof2, 1 andOrespond
ing are J>l, 2PQ and Q2 respectively, the su~cessive terms in the 
expansion of (P+ Qf". In a similar manner it may. be seen that 
if a batch of n insects is exposed to the dose Ac,, and all react 
independently, the probabilities of n, (n-1), (n- 2), ... , 2, 1, 0 
responding are the ( n + 1) terms in the expansion of the binomial 
(P+ Q)". The probability of exactly r responding is therefore. 

n! P'Qn-r 
r!(n-r)! · 

This is known as the Binomial Distribution, of probabilities (cf. 
Fisher, 1944, § 18; Mather, 1943, § 5). The average number re
sponding in repeated batches of n from the same population is nP, 
and the average number failing to respond nQ. Durham et al. 
(1929) have given useful tables of sums of terms from this dis
tribution, and Clopper and Pearson (1934) have shown similar 
results in the form of charts. 

The reactions of separate members of a batch to the stimulus 
of a particular dose are not always independent; a- correlation of 
response may result from incomplete randomness of selection of 
the batch, or alternatively from unsatisfactory control of experi
mental conditions causing the number responding to be seriously 
affected by some factor other than the dose. For example, if each 
batch consists of insects from a single brood, insects from o~e 
batch are likely to be more alike in tolerance than those from 
different batches, and the variation between batches in the num
bers responding will be greater than that for the binomial dis
tribution. Again, the susceptibility of insects to an insecticide 
might be greatly influenced by temperature; if the temperature 
during the tests was permitted to vary substantially from one 
batch to another, the variance of the numbers responding to 
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a given dose of insecticide would be inflated. The extreme 
situation. is that, in every batch tested, either all members 
respond or all fail to respond, so that the evidence from a batch 
is no more reliable than that from an individual. Whatever the 
cause, such heterogeneity must make the weight to be attached 
to the data less than is appropriate to the binomial distribution 
(Bliss, 1935a; Parker-Rhodes, 1941). 

The result of testing a series of doses, each on a separate batch 
of insects, is to obtain for each dose a proportion, p, of insects in 
the batch which show the characteristic response and whose 
tolerances are therefore lower than that dose. Each value of p 
is an estimate of the correspondiD.g P; the proportion in the 
population of which the batch was a sample, and it is from these 
quantities that the statistics• of the population may be calculated. 
In general both P and p will increase steadily with increasing 
dos~ (an interesting exception is discussed in § 41), but, if the 
number of test subjects in a batch is small, sampling variation 
may interfere with the regularity of the trend in p. Trevan ( 1927) 
has shown that if two batches of five subjects are given doses 
which would cause 25% and 7 5% of responses respectively in the 
whole population, only 92 % of trials would give more responses 
for the higher dose. In 2 % of trials the lower dose would appear 
to be the more effective, in nearly 6 % the numbers of responses 
in the two groups would be equal, and in a very small proportion, 
0·05 %, either none or all would respond to both doses. The larger 
the batches the greater is the assurance that there will be satis
factory discrimination between the effects of different doses, but 
when, as is often the case, the limiting factor to the size of the 
experiment is the total number of subjects to be used, it is usually 
preferable to have several batches of moderate size than to have 
two or three large ones, in order that a wide range of doses may 
be tested and an idea of the dose-response relationship ob
tained. 

• The word statistic is here used in the sense introduced by Fisher 
(1944, § 11) as 'a value calculated from an observed sample with a view 
to characterising the population from which it is drawn'. 
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8. THl.il MEDIAN EFFECTIVE DosE 

At one time it was customary to characterize the effectiveness of 
a stimulus by means of the minimal effective dose, or, for a more 
restricted class of stimuli the minimal lethal dose, terms which 
fail to take account of the variation in tolerance within a popula
tion. Writing of toxicity tests, Trevan (1927} says: 'The common 
use of this expression in the literature of the subject would 
logically involve the assumptions that there is a dose, for any 
rriven poison, which is only just sufficient to kill all or most of 
:.he animals of a given species, and that doses very little smaller 
would not kill any animals of that species. Any worker, however, 
accustomed to estimations of toxicity; knows that these assump
tions do not represent the truth.' It might be thought that the 
minimal lethal dose of a poison could instead be defined as the 
dose just sufficient to kill a member of the species with the least 
possible tolerance, and also a maximal non-lethal dose as the dose 
which will just fail to kill the most resistant member. Though 
there will undoubtedly be doses so low that no test subject will 
succumb to them and doses so high as to prove fatal to all, there 
are considerable difficulties in the way of determining the end
points of these ranges. Even when the tolerance of individuals 
can be measured directly, to say, from measurements on a sample 
often or a hundred, that the lowest tolerance found indicated the 
minimal lethal dose would be unwise; a larger sample might well 
contain a more extreme member. When only quanta! responses 
for selected doses can be recorded the difficulty is increased, and 
the occurrence of exceptional individuals in the batches at dif
ferent dose levels may seriously bias the final estimates. The 
problem is, in fact, that of determining the dose at which the 
sigmoid death curve for the whole population meets the zero or 
100% levels of kill and a very extensive experiment would be 
necessary in order to estimate these points with any accuracy. 

As a characteristic of the stimulus which can be more easily 
determined and interpreted, Trevan has advocated the median 
lethal dose, or as a more general term to include responses other 
than death, the median effective dose. This is defined as the dose 

FPA 
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which will produce a response in half the population, and thus 
from another point of view, is the mean tolerance. If direct 
measurement of tolerance were possible the mean tolerance of 
a batch oftest subjects would naturally be considered as the chief 
characteristic of the dose, and there is a strong case for using an 
estimate of the same quantity in material of the type now under 
discussion. The median effective dose may conveniently be re
ferred to as the ED 50, and the more restricted concept of median 
lethal dose as the LD50. Anaiogous symbols may be used for 
doses effective for other proportions of the population, ED 90, ' 
for example, being the dose which causes 90% to respond. As 
will become apparent in later chapters, by experiment with a fixed 
number of test subjects, effective doses in the neighbotlfhood of 
ED 50 can usually be estimated more precisely than those for 
more extreme percentage levels, and this characteristic is there
fore particularly favoured in expressing the effectiveness of the 
stimulus; its chief disadvantage is that in practice, especially in 
toxicological work, there is much greater interest attaching to 
doses producing nearly I 00 % responses than to those producing 
only 50%, in spite of the difficulty of estimating the former. 

For any distribution of tolerances, the ED 50, A, satisfies the 
e'tluation 

(2·5) 

When a simple normalizing transformation for the doses is avail
able, so that z, the normalizing measure of dosage, has a normally 
distributed tolerance, equation (2·I) is transformable to 

dP I _ _!_ (z-11>" d 
= u .J(27r) e 217" x, (2·6) 

where pis the centre of the distribution and u 3 its variance. Thus 
pis the population value of the mean dosage tolerance, or median 
effective dosage, and efforts must be directed at estimating it 
from the observational data. This problem will be considered at 
length in Chapter 3. For the present the normalizing transforma
tion will be assumed logarithmic, as defined by equation (2·3), so 
that pis the log ED 50; the results obtained are in the main true 
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for any other transformation, at least as far as they relate to the 
measure of dosage, x, but modifications are required in trans
forming back from the x to the A scale. 

Clearly the ED 50 alone does not fully describe the effectiveness 
of the poison or other stimulus tested. Two poisons may require 
the same rates of application in order to be lethal to half the 
population, but, if the distribution of tolerances has a lesser 
'spread' for one than for the other, any increase or decrease from 
this rate will produce a greater change in mortality for the first 

-than for the second. This 'spread' is measured by the variance, 
u 2 : the smaller the value of u 2, the greater is the effect on mor
tality of any change in dose. Stimuli which produce their effects 
by similar means (in particular, poisons whose physiological 
effects are similar), often have approximately equal variances 
of their log tolerances for any given population of test subjects, 
even though they differ substantially in their median lethal 
doses. An assessment of the relative potencies can then be made 
from median lethal doses alone(§ 20). 

8·1. NOTATION AND TERMINOLOGY 

The symbol A was used by Gaddum (1933) for 1fb, the estimate 
of u given by the reciprocal of the pro bit regression coefficient 
(§§ 9, 10). This usage has been followed by other writers, notably 
Bliss and Cattell ( 1943). It is perhaps unfortunate that, in the 
first edition of this book, I chose A to represent dose; elsewhere, 
I have used z for dose, and should now prefer that symbol. 

In biological assay, the phrase dose metameter (Bacharach et al. 
1942) is generally used to describe the transformed value of dose 
used in statistical analysis. This is less confusing than dosage 
(§ 5), and should be adopted. 



Chapter 3 

THE -ESTIMATION OF THE MEDIAN 
EFFECTIVE DOSE 

9. THE PROBIT TRANSFORMATION 

A TYPICAL test used in the evaluation of an insecticide is one 
in which successive batches of insects are exposed to different 
concentrations of the poison for a constant time and, after 
a suitable interval, scored for the numbers dead and alive. As 
an alternative to varying the concentration, a fixed concentra
tion may be used throughout, but different total quantities 
given. Another factor which is sometimes studied at different 
levels is the period of exposure, the concentration and quantity 
of poison being kept constant. Such experimental conditions 
have the character of the stimuli discussed in§ 5 whose effects 
are observed at different levels of intensity. Statistical me~h~ds 
for the analysis of quanta! response data have been developed 
in recent years chiefly for use with tests of this type. 

The form of analysis now used to estimate the parameters p 
and o-2 of the distribution of tolerances, equation (2·6), is 
generally based upon the probit transf01"TYU1,tion of the experi
mental results. The history of this transformation and of the 
statistical technique associated with it is outlined in § 14; Bliss 
(1934b) first proposed the name 'probit' for his modification of 
Gaddum's normal equivalent deviate, which he increased by 5 so 
as to simplify the arithmetical procedure by avoiding negative 
values. The pro bit of the proportion P is defined as the abscissa 
which corresponds to a probability Pin a normal distribution 
with mean 5 and variance 1; in symbols, the probit of Pis Y, 
where 

p = -- e-lu• du. I fY-5 
,j(21T) -ao 

(3·1) 

The effect of transformation from percentages or proportions 
to probits is illustrated in Fig. 5. The normal sigmoid curve of 
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Fig. 4 is reproduced here, together with the straight line obtained 
when its ordinates are replotted on a.Iinear scale of probits. 
Along the left-hand vertical axis is a linear scale of percentages 
with their corresponding probit values, and on the x:ight-hand 
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Probit %· 
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FI~. 6. Effect of the probit trlldlBformation. (The normal sigmoid curve of 
Fig. 4 is transformed to a straight line when the ordina.tes are measured on 
a linear scale of probits instead of percentages.) 

axis is a linear scale of pro bits with their corresponding percen
tage values. The transformation may be considered as a stretching 
of the left-hand scale to give that on the right-hand, during which 
process the sigmoid curve becomes straightened. 

If (2·6) represents the_ distribution of tolerances on the x scale 
of dosages, the expected proportion of insects killed by a dosage 
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Comparison of the two formulae for P then shows that the pro bit 
of the expected proportion killed is related to the dosage by the 
linear equation 

1 
Y = 5+- (x-,u). 

0' 
(3·2) 

By means of the probit transformation, experimental results 
may be used to give an estimate of this equation, and the para
meters '">f the tolerance distribution may then be estimated; in 
particular, the median effective dosage is estimated as that value 
of x which gives Y = 5. 

TABLE 1. Transformation of Percentages to Probits 

% 0 1 2 3 4 6 6 7 8 9 

0 2·67 2·95 3·12 3·25 .3·36 3·45 3·52 3·59 3·66 
10 3·72 3·77 3·82 3·87 3·92 3·96 4·01 4·05 4·08 4·12 
20 4·16 4·19 4·23 4·26 4·29 4·33 4·36 4·39 4·42 4·45 
30 4·48 4·50 4·53 4·56 4·59 4·61 4·64 4·67 4·69 4·72 
40 4·75 4·77 4·80 4·82 4·85 4·87 4·90 4·92 4·95 4·97 
50 5·00 5·03 5·05 6·08 5·10 5·13 5·15 5·18 5·20 5·23 
60 5·25 5·28 5·31 5·33 5·36 5·39 6·41 6·44 5·47 5·50 
70 5·52 5·55 5·58 5·61 5·64 5·67 5·71 5·74 5·77 5·81 
80 5·84 5·88 5·92 5·95 5·99 6·04 6·08. 6·13 6·18 6·23 
90 6·28 6·34 6·41 6·48 6·55 6·64 6·75 . 6·88 7·05 7·33 

0·0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 
99 7·33 7·37 7·41 7·46 7·51 7·58 7·65 7·75 7·88 8·09 

A table giving probits for specified values of P has been pre
pared by Bliss (1935a), and this table is reproduced by Fisher 
and Yates ( 1948) as Table IX. of their Statistical Tables for 
Biological, Agricultural and Medical Research. A simplified 
version of this table, sufficiently detailed for many purposes, is 
given as Table 1 above, and the full table is reproduced as Table I. 
The relationship between percentages and probits is shown · 
graphically in Fig. 6. 

10. THE PROBIT REGRESSION LINE 

When experimental data on the relationship between dose and 
mortality have been obtained, either a graphical or an arith
metical pro~ss can be used· t6 estimate the parameters. Both 
depend upon the probit transformation. The graphical approach 
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is much more rapid and is sufficiently good for many purposes, 
but for some more complex problems, or when an accurate 
assessment of the precision of estimates is wanted, the more 
detailed arithmetical analysis is, necessary. In this chapter only 

Z•O 
o~~--~~~--~40~~~w~~--~~~~~,oo 

Percentages 

FIG. 6. Relationship between percentages and probits. 

the graphical method will be discussed, though the ideas intro
duced will be wanted again for the discussion of the maximum 
likelihood estimation of parameters in Chapter 4. 

In order to make either type of estimate, the percentage kill 
observed for each dose must "first be calculated and converted 
to pro bits by means of Table I. • The pro bits are then plotted 
against x, the logarithm of the dose (or against some other 

* There is seldom any advantage in using Table I for these empirical 
pro bits; even when batches of test subjects are sufficiently large to 
justify the use of three or more places of decimals (in itself a rare 
occurrence), points cannot usually be plotted with this accuracy. 
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normalizing function of the dose where this seems more suitable), 
and a straight line drawn by eye to fit the points as satisfactorily 
as possible: In drawing the line and judging its agreement with 
the data, only the vertical deviations of the points must be 
considered: the line must be so placed that the differences between 
the pro bit values which are plotted and the pro bits given by the 
line at the same dosages are as small as possible. Very extreme 
probits, say outside the range 2·5-7·5, carry little weight and 
may almost be disregarded unless many more insects were used 
than in the batches giving intermediate probit values. The line 
is, in statistical.terminology, the weighted regre8sion line of the 
mortality probit on x. 

This line may be used, as described in§ 17, to initiate the arith
metical process of estimating a better fitting line. The empirical 
probits plotted for a carefully conducted experiment often lie 
so close to a ~traight line, however, that there is no necessity to 
improve on the provisional line. Only experience of the subject 
and of the experimental technique used can be a sound guide in 
this matter, but it is undoubtedly true that many experimenters 
who make use of probit analysis spend time unnecessarily on 
arithmetic when eye estimation would suffice. As will appear 
from § 17, the complete method for deriving the best estimate 
of the line is not difficult, but is laborious if adopted as a routine 
measure for all tests made~ 

If it is decided to proceed with the eye estimate alone, the 
log LD 50 is estimated from the line as m, the dosage at which 
Y = 5. The slope of the line, b, which is an estimate of 1/u, is 
obtained as the increase in Y for a unit increase in x. These two 
parameters are then substituted in equation (3·2) to give the 
estimated relationship between dosage and kill. To test whether 
the line is an adequate representation of the data, a X2 test 
(Fisher, 1944, § 20} may be used, as in Ex. 1 below. A value of 
xt. within the limits of random variation indicates satisfactory 
agreement between theory (the line} and observation (the data). 
A significantly large x2 may arise either because the individual 
test subjects do not react independently to the poison, or because 
the straight line does not adequately describe the relation 
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between dosage and probit. In the former case the scatter of the 
points about the line will be wider than would occur if there were 
no correlation between the reactions of insects in the same batch; 
the precision of the line will be reduced(§ 11), though its position 
should be free from bias providing that adequate precautions 
have been taken in the conduct of the experiment(§ 42). In the 
latter case there will generally be a systematic departure of the 
points from the line, indicating a curvilinear relationship; it 
may be possible to transform this to a linear relationship by 
adopting a different scale of dosage, such as that of equation (2·4 ). 

A timely warning against attaching too much importance to 
the probit itself, at the expense of the kill, has _been given by 
Wadley (Campbell and Moulton, 1943), who says: 'The use of 
transformations carries with it a temptation to regard the trans
formed function as the real object of study. The original units 
should be mentioned in any final statement of results.' In essence 
the probit is no more than a convenient mathematical .device 
for solving the otherwise intractable equations discussed in 
Appendix II. Though it may also be used to give a simple dia
grammatic representation of the dosage-response relationship, 
and though familiarity enables these diagrams to be interpreted 
directly, any suggestion that the statistical analysis is completed 
by the estimation o~ a pro bit regression line must be avoided. 

llany of the numerical examples in this book have be_en chosen 
to illustrate special points of analytical technique, and, since the 
data have been removed from their original context, their dis
cussion may not always be carried as far as a statement of con
clusions in biological or chemical terms. In practical applications 
of the probit method the results should finally be expressed by 
median effective doses, relative potencies, tolerance variances, 
or other suitable quantities, the units employed being dose (not 
log dose or dosage) and percentage kill; at this stage the word 
'pro bit' need seldom be mentioned, though sometimes quan
tities such as mean probit differences (§ 24) may usefully be 
retained. 

Ex. 1. Fitting by eye of a probit regre8sion line to tke re8ults of 
an insecticidal te!Jt. Martin (1942, Table 9) has published data 
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showing the effect of a series of concentrations of rotenone when 
sprayed on MacrOBiphoniella sanborni, the chrysanthemum aphis, 
in batches of about fifty. His results are reproduced in Table 2. 
The number affected, shown in the third column of the table, is 
the total of insects apparently dead, moribund, or so badly 
affected as to be unable to walk more than a few steps. This 
classification has been found convenient and has been frequently 
used by Tattersfield and his co-workers at Rothamsted (Tatters
field etal., 1925); the total is taken as the 'kill', andnormalor 
only slightly affected insects are considered to have survived. 

TABLE 2. Toxicity of Rotenone to Macrosiphoniella sanborni 

Concentra-
No. of No. %kill Log con-

Empirical insects affected centration 
tion {mg.fl.) {n) {r) {p) (.x) pro bit 

10·2 50 44 88 1·01 6·18 
7·7 49 42 86 0·89 6·08 
5·1 46 24 52 0·71 5·05 
3·8 48 16 33 0·58 4·56 
2·6 50 6 12 0·41 3·82 
0 49 0 0 - -. 

The rotenone WIIB applied in a medium of 0·5 % saponin, containing 5 % of 
alcohol. Insects were examined and classified one day after spraying. 

In experiments of this nature, provision should always be 
made for estimating the natural mortality amongst untreated 
insects. The last line of Table 2 records that forty-nine insects 
were sprayed with the alcohol-saponin medium alone, containing 
no rotenone, and that all of these survived. It therefore seems 
safe to assume that the results for the five concentrations of 
rotenone have not been appreciably influenced by the super
imposition of a natural mortality of insects. As will be seen later 
(9hapter 6), adjustments to the statistical analysis.are needed 
when there are indications of an appreciable natural mortality 
during the course of an experiment. 

The percentage kills observed at each concentration are shown 
in the fourth column of Table 2. These values are estimates of 
the corresponding averages, P, for the whole population, and 
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are subject to sampling errors. In order to distinguish them from 
the population values they will be denoted by p. (In all formulae 
in the text, here and elsewhere, p and P denote proportions, not 
percentages; it is convenient to use the same symbols in the 
headings of tables both for proportions and percentages, though 
for the latter lOOp and lOOP would be more correct. If this is 
borne in mind, no confusion should be caused by the slight 
ambiguity of usage.) · 
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FIG. 7. Relationship between dosage of rotenone and percentage kill of 
M. sanborni (Ex. 1), showing normal sigmoid curve·. 

Over the range of concentrations tested, the sigmoid nature 
of the relationship between percentage kill and log concentration 
is not very apparent .• The percentages are plotted against the 
dosage in Fig. 7, together with the normal sigmoid curve which 
is fitted to them by the present analysis. Between 25 % and 7 5% 
kill this curve is practically indistinguishable from a straight line; 
a line drawn to fit the five points would give a dosage of about 
0·68 corresponding to 50% kill, a value in good agreement with 

' 
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that obtained later for the log LD 50. The straight-line relation
ship for percentages must nevertheless be quite inadequate at 
more extreme values, even though the absence of extremes and 
the regularity of the data enable it to be used here. A method 
proposed by Karber (see§ 13 below) for the estimation of the 
LD 50 makes use of this linear approximation. 

7·0 

6•0 

~ ... 
5·0 0 

1 
&lot 

4•0 

Log Concentration (mg./1.) 

FIG. 8." Relationship between dosage of rotenone and pro bit of kill of M. sanbomi 
(Exs. 1 and 6), showing probit regression line. 

The probits of the percentage kills, read from Table 1, have 
been entered in the last column of Table 2. These probits are 
plotted against dosage in Fig. 8; they lie nearly on a straight line, 
and such a line has been drawn through them by eye. Using 
Table 1 once more, points on the straight line of Fig. 8 have been 
converted back from probits to percentages; these give the sig
moid curve already shown in Fig. 7, from which the mortality 
to be expected from any given dosage, or the dosage which will 
kill, on the average, a given percentage of insects, may be pre
dicted. In practice the sigmoid seldom needs to be constructed, 
as all predictions can be made directly from the pro bit diagram. 
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For example, in Fig. 8 a probit \'"alue of 5 is given by a dosage 
of m = 0·687; this therefore is the estimate oflogLD50, and the 

. LD50 is estimated as a concentration of 4·86 mg.fl. The value 
may be compared with 4·85 mg.fl. obtained" by the arithmetical 

· process of fitting a straight line to the same data (Ex. 6). S~
larly the log LD 90 corresponds to a pro bit of 6·28 and is therefore 

·1·003; the LD90 is thus estimated as 10·1 mg.Jl. 
' 1\gain from Fig. 8, an increase of 0·8 in dosage is associated 
~ith an increase of 3·21 in the probit.• Hence the estimated 

TABLE 3. Comparison of Observed and Expected Mortality in 
: Eye Estimation for Rotenone-M acrosiphoniella aanborni Test 

!Log con- No. affected 
No. of Dis-

centra- y p insects Ob- Ex- crepancy (r-nP)1 

tion (n) served pee ted (r-nP) nP(1-P) 
(z) (r) (nP) 

--- --
1·01 6·30 90·3 50 44 45·2 -1·2 0·33 

0·89 I 5·83 79·7 49 42 39·1 2·9 1-06 
0·71 5·10 54·0 46 24 24·8 -0·8 0·06 
0·5&; 4·58 33·7 48 16 16·2 -0·2 0·00 
0·41 3·90 13·6 50 6 6·8 -0·8 O·ll 

x1~1=H6 

regression coefficient of pro bit on dosage, or the rate of increase · 
of pro bit value per unit increase in x, is 

b = 1/a = 4·01, 

where a ( = 0·25) is an estimate of u, the standard deviation of 
the distribution of'log tolerances. The relationship between· 
probit and dosage may be written 

Y = 5+4·01(x-0·68~), or Y = 2·25+4·01x; (3·3) 

Equa~ion (3·3) may be used to calculate expected numbers of 
insects killed at each concentration. By substitution of the values 

• De Beer (1941) has suggested the graduation of a. protra.ctor in 
units of b instead of degrees, so as to rea.d the slope of the line directly; 
the sa.me instrumer;tt could be used for a.ll dia.gra.ms ha.ving a. fixed ra.tio 
between th~ scale units of pro bits a.nd of dosa.ge. 
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of :c used in the experiment, the equation gives the values of l 
shown in the second column of Table 3; from Table 1 the corre 
sponding expected percentage kills, P, are obtained. Thus a pro 
bit of 6·30 corresponds to a percentage of between 90 and 91, 01 

more accurately, 90+-i %- If the expected proportion for an: 
concentration is multiplied by n, the number of insects tested a 
that concentration, the result is the expected number of affecte< 
insects, or the average number which would be affected in a batcl 
of size n if equation (3·3) represented the true relationship be 
tween dosage and kill. These numbers, nP, may then be com 
pared with the actual numbers affected, r, in order to judge th 
adequacy of the equation. · 

Only the second concentration tested shows any appreciabl 
discrepancy, three more insects being affected than equation (3·:3 
:J>redicts, and even this may be shown to be well within the limit 
of random variation. There is no indication of any systemati 
departure from the line such as might arise if the _wrong no1 
malizing transformation had been·used and the true equatio1 
were not linear. A test of significance of the discrepancies rna: 
be obtained by squaring each, dividing the square by (1- P; 
and again dividing by the tabulated value nP. • The sum o 
these quantities is, to a sufficiently close approximation if th 
line in Fig. 8 ltas been well drawn, a x1; the degrees of freedon 
are two less than the number of concentrations tested, since th 
two parameters of equation (3·3) have been estimated from th 
data. The mean value of x2 in random sampling from a populati01 
whose tolerance distribution is defined by this equation is equa 
tr- the number of degrees of freedom; the value obtained i1 
Table 3 is 1·56, which, being less than 3, is clearly sufficient!: 
small to be attributed to random fluctuations about the relation 
ship specified in (3·3). Indeed Fisher and Yates's Table IV, o 
which a simplified form is reproduced as Table VI, shows tha 
a valu~ greater than 7·8 could occur by chance in 5% of easel'! 
hence the probit regression line in Fig. 8 appears to beaver; 
satisfactory representation of the results of the experiment. 

• This calculation, like that of nP, may be performed on a slide ru' 
with sufficient accuracy for the present purpose. 
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11. PRECISION OF THE ESTIMATES 

The binomial distribution of probabilities (§ 7) shows that if 
a batch of n insects is exposed to a concentration which, 
on an average, will kill a proportion P, the probabilities of 
n, (n-1), ... , 2, l being killed are the successive terms in the 
expansion of (P + Q)n, provided that the n insects react inde
pendently to the poison. By a well-known result of elementary 
statbtical theory, it follows that the standard deviation of the 

, er of affected insects in samples of size n is ± .j(nPQ), and 
lle standard deviation of the observed proportion p, about 

n value of P, is ± .j(PQjn). The square of a standard 
ton is known as the variance; here the variance of the 

· proportion killed is PQjn, which is inversely proportional to the 
number in the batch. The reciprocal of the variance, sometimes 
called the invariance or quc;uq,tity of inforrrw,tion, is proportional 
ton, and represents the weight to be attached to the observation 
on the batch in respect of the information it provides on P. In 
Appendix II the weight to be attached to the pro bit of Pis shown 
to be nw, where 

w = z•tPQ; (3·4) 

here Z is the ordinate to the normal distribution corresponding 
to the probability P, and may be written 

Z = _l_ e-l<Y -5)l 
.j(211) . (3·5) 

.Bliss (1935a) and Fisher and Yates (1948, Table XI) have tabu
lated the weighti111J coefficient, w, for values of Y at intervals of 
0·1; intenil.ediate values may be obtained by interpolation if 
required. • A shortened version of their table is given here as 
Table 4; more accurate values appear in the column for 0 = 0 
of Table II. The values are symmetrical about Y = 5·0, so that, 
for example, Y = 3·8 and Y = 10- 3·8 = 6·2 haYe th.e same 
weighting coefficient, 0·370. For many practical purposes Table 4 

• Finney and Stevens (1948) have tabulated w at intervals of 0•01 
in Y. 
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is sufficiently accurate; it is very seldom necessary to interpolate 
for Y, which may usually be taken correct to the nearest 0·1. 

The weighting coefficients may be used in order to estimate 
the standard error of the log ED 50. For this purpose the value 
of Y corresponding tq each dosage used must be read from the 
provisional regression line as drawn by eye, the weighting coef
ficient determined from Table 4 for each Y, and this coefficient 
multiplied by n, the number of insects tested at the dosage. The 
quantities nw must then be summed for all dosages; the s,vmbol 

TABLE 4. The Weighting Coefficient, w = Z2JPQ 
y 0·0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 o.S., 

1 0·001 0·001 0·001 0·002 0·002 0·003 0·005 0·006 0·008 O·Ulr 
2 0·015 0·019 0·025 0·031 0·040 0·050 0·062 0·076 0·092 0·110 
3 0·131 0·154 0·180 0·208 0·238 0·269 0·302 0·336 0·370 0·405 
4 0·439 0·471 0·503 0·532 0·558 0·581 0·601 0·616 0·627 0·634 
5 0·637 0·634 0·627 0·616 0·601 0·581 0·558 0·532 0·503 0·471 
6 0·439 0·405 0·370 0·336 0·302 0·269 0·238 0·208 0·180 0·154 
7 0·131 0·110 0·092 0·076 0·062 0·050 0·040 0·031 0·025 0·019 
8 0·015 0·011 0·008 0·006 0·005 0·003 0·002 0·002 0·001 0·001 

S is used to denote the summation. If t.b.e log ED 50 is not very 
different from the mean value of the dosages used in the experi
ment, its standard error is approximately ± lfb.J(Snw); this 
expression makes no allowance for the sampling errors in the 
estimation of b, the slope of the line, in consequence of which 
it may be a serious underestimation if m, the estimated log ED 50, 
is far from x, the weighted mean dosage or (Snwx)j(Snw). The 
variance of b is, by equation (II, 11), lJSnw(x,-x)2, and a more 
accurate value for the variance of m is therefore 

V(m)- _!_{_1_+ (m-x)2 } 
- b2 Snw Snw(x-x)2 • 

(3·6) 

Equation (3·6) gives the variance of the logarithm of any ED 
value by substitution of its estimate for m. In making a rapid 
analysis of data, by means of the provisional line only, inclusion 
of the second term in the variance of m is often unnecessary; 
its calculation requires part of the complete calculation for fitting 
a more accurate regression line, and if the computations have to 
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be taken so far not a great deal of extra labour is needed for 
the more exact result. Litchfield and Fertig (1941) have de
scribed a more rapid, but less exact, approximate method which 
may sometimes be useful. 

This discussion of weights, standard errors and variances is 
based on the assumption that there is no heterogeneity of de
partures of the plotted points from the regression line. If the 
reactions of the individuals in a batch are not independent of 
one another, the weights, nw, though still proportional to the 
true weights, will be too large, and the estimated variances will 
therefore be too small. This will be indicated by a large value 
of the statistic x" (§ 1 0}, which is now seen to be a weighted sum 
of squares of the discrepancies between the expected and ob
served numbers killed. Since the expected va~ue of x" is its 
number of degrees of freedom, a significantly large value indi
cates that all weights have been overestimated by a factor 
x2f(k- 2), where k is the number of dosages tested. All variances 
should therefore be multiplied by this heterogeneity factor as 
compensation for the overweighting. 

When x" is not greatly in excess of its expectation and it may 
be assumed that the weights are correct without further adjust
ment, the standard errors may be considered in relation to 
a normal. distribution of errors and fiducial limits calculated 
with the aid of normal deviates (Ex. 2 and § 12). On the other 
hand, a significant x2 necessitates the estimation of standard 
errors empirically from the observed variability between batches, 
and these errors must therefore be used in conjunction with the 
t-distribution (Fisher, 1944, § 23; Mather, 1943, § 15). The fact 
that the standard errors themselves are not precisely known 
leads to a wider range of values being admissible as within the 
limits of experimental variation for m (Exs. 7 and 9). Fisher 
and Yates ( 1948, Table III) have tabulated the distribution oft, 
the deviate required for this situation, and a simplified version 
of their table is given as Table VII; t must be used with the 
same number of degrees of freedom as in the x2• The values 
rapidly approach those of the normal distribution as the number 
of degrees of freedom increases. 

FPA • 3 
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Ex. 2. The starulard error of a median lethal dose. The fore
going remarks may ·be illustrated on the data of Ex. 1. In 
Table 5 the values of Y as predicted by equation (3·3) for each 
concentration of rotenone are tabulated to the nearest 0·1. From 
Table 4 the w corresponding to each Y is entered and multiplied 

TABLE 5. Calculation of Standard Error of log LD 50 in Eye 
Estimation for Rotenone-Macrosiphoniella sanborni Test 

Log con- No. of 
centration insects y w nw nwx 

(z) (n) 

1·01 50 6·3 0·336 16·8 16·968 
0·89 . 49 5·8 0·503 24·6 21·894 -
0·71 46 5·1 0·634 29·2 20·732 
0·58 48 4·6 0·601 28·8 16·704 
0·41 50 3·9 0·405 20·2 8·282 

119·6 84·580 

li= 0·7072, (Snwz)•fSnw=59·81418, 
Snwz1 =64·42700, Snw(z-x)1 = _4·61282. 

by the corresponding n to give the column nu.; again a slide rule 
gives sufficient accuracy. The sum of this column is 

Snw = 119·6, 

~ whe~ce the standard error of m is, approximately, since x.2 was 
found to be well within the limits of random variation, 

Bm = l/4·0l.J(ll9·6) 

= 0·0228. 

The mean dosage, x, may be found by constructing a column In 
Table 5 for nwx, summing, and dividing by Snw. This gives 

x = 84·580/119·6 

= 0·707, 

a value which differs but slightly from m = 0·687. In order to 
calculate the full expression for the variance of m, the entries 
in the column nwx must be multiplied again by x and added 
to give Snwx2 = 64·427. 



PRECISION OF THE ESTIMATES 35 

The sum of squares of deviations of x may then be calculated as 

Snw(x-x)2 = Snwx2 - (Snwx)2/S'fl3!!_ 

,;. 64·427- 59·814 

= 4·613, 

and therefore, by equation (3·6), 

- _!_ {-1- (0·687- 0·707)2} 
V(m) - b2 119·6 + 4·613 

= 0·00_8448 = 0·000525 
(4·01)2 • 

The square root of this is the revised. value for the standard 
errorofm 

8m = 0·0229, 

which differs by a negligible amount from the approximation. 
Now m is measured on a logarithmic scale (logarithms to 

base 10). The standard error of the LD50, the antilogarithm 
of m, may be shown to be given by the formula 

S.E.(10m) = 10m X log.,10 X Bm, (3·7) 

so that S.E.(LD50) = 4·86 X 2·30 X 0·0229 
/" . .. 

= 0·26. 

Thus the LD50 is estimated as 4·86 ± 0·26 mg.fl. This standard 
error is of little use, as the distribution of errors may be far from 
normal on the concentration scale, and tests of significance or 
fiducial limits (§ 12) should always be evaluated on the dosage 
scale. For example, if it is desired to test whether the LD 50 
estimated for this experiment differs significantly from a true 
value of 4·2 mg.Jl., the difference should be examined in loga
rithmic units. The logarithm of the latter dose is 0·623, so that 
the estimate is greater by 0·064 ± 0·023, a deviation which is 
2·8 times its standard error. The last line of Table VII, which 
gives deviates for the normal distribution, shows the probability 
of so large a deviation to be less than 1 % (more exactly, from 
Table I, the probability is about 0·5 %); hence the experiment 
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has given an estimate of the LD 50 significantly greater than 
4·2 mg.fl. 

If the standard error of estimation of the log LD 90 is required, 
the approximate formula breaks down, since the estimate is 
very different from x, and equation (3·6) must be used. The 
variance is 

V(l LD 90) = _!_ {-1- (1·003-0·707)
2
} 

og b2 119·6 + 4·613 

.J = 0·001701, 

so that the log LD 90 is estimated as 1·003 ± 0·04J. 

12. FIDUCIAL PROBABILITY 

When a parameter such as the median lethal dose has been esti
mated from experimental data it is natural to wish to infer within 
what limits its true value may reasonably be expected to lie. 
A statement about the probability of the true value lying be
tween certain limits cannot be made in terms of the ordinary 
concept of probability, by the use of which·probabilities can be 
assigned only to statements about the occurrence of observations 
or of statistics calculated from the observations. In order to 
overcome this difficulty, the concept of fiducial probability has 
been introduced (Fisher, 1942, §§ 62, 63; 1944, § 2; Mather, 
1943, § 58). . 

There is said to be a fiducial probability, F, that the true value · 
of a parameter is greate1· than a specified value if that value is 
the lowest value from which the observation is not significantly 
different at the F level of probability. Similarly, there is said 
to be a fiducial probability, F, that the true value lies between 
specified upper and lower limits if the lower limit is the lowest 
value and the upper limit the highest value which would not be 
contradicted by a significa:nce test at the iF probability level; 
these are termed fiducial limits to the value of the parameters. 
Their meaning and calculation will be made clear by considering 
fiducial iimits in the estimation of the LD 50 for the data of 
Ex. 1. 
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Ex. 3. Fiducial limits to the LD50 in the rotenone-Macrosi
phoniella sanborni test. In Ex. 2 the log LD 50 for the data on 
the toxicity of rotenone toM. sanborni was estimated as 

m = 0·687 ± 0·023. 

No evidence of significant heterogeneity of the points about the 
regression line was found, and consequently standard errors may 
be considered in relation to the normal distribution. From ·the 
last line of Table VII, there is a 5 %probability that the deviation 
from the true logLD50 shall be at least l·96 times the standard 
error, or a 2!% probability that the estimate shall be at least 
1·96s,. ( = 0·045) less than the true value and a 2!.% probability 
that the estimate shall be at least 0·045 greater than the true 
value. In other words, if the true log LD 50 were 0·732, estimates 
as low as or lower than 0·687 would occur in only 2! % of trials 
such as that under consideration and if the true log LD 50 were 
0·642, estimates as high as or higher than 0·687 would occur in 
only 2! %of trials. There is therefore a 95% fiducial probability 
that the true value lies between 0·732 and 0·642, which limits 
correspond to concentrations of 5·40 and 4·39 mg.fl. If the limits 
had been estimated directly from the LD 50 and its standard 
error as 4·86 ± 1·96 x 0·26 mg.fl., or 5·37 and 4·35 mg.fl. they 
would have been equidistant from the estimated LD 50, whereas 
the limits derived on the logarithmic scale are not symmetrically 
placed on the concentration scale. The difference_ is trivial here, 
but with relatively larger standard errors, or for more extreme 
limits, it may be considerably greater. The method just discussed 
is itself an approximation, sufficiently good for many data; the 
exact procedure for finding fiducial limits is set out later (§ 19). 

13. APPROXIl\IATE METHODS oF EsTil\IATION 

Before passing to the consideration of_the arithmetical technique 
of fitting pro bit regression lines, other approximate methods for 
estimating the LD 50 which have achieved some popularity may 
be briefly mentioned. All these have been developed inde
pendently of the pro bit technique and are based on an assumed 
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.linearity of the relationship between the percentage kill and the 
dosage instead of between the mortality pro bit and the dosage. 
They may often be adequate, but they are likely to be misleading 
if the curvature of the dosage-response curve is appreciable over 
the range of dosages tested, especially if in addition the distribu
tion of the dosages tested is markedly unsymmetrical about the 
logLD50. 

(a) Method of extreme lethal dosageJJ. This method is intended 
for use in the limited class of experiments in which subjects are 
tested singly, one at each of a series of dosages; the interval, d, 
between successive dosages must be constant, and enough levels 
must be tested to cover the range from those practically certain 
to be ineffective to those practically certain to kill. The log LD 50 
is estimated as the mean of the highest dosage which fails to 
kill and the lowest whicn kills. When dis of about the same mag
nitude as u, the standard deviation in the distribution of log 
tolerances, this estimate, f1l(a) has the approximate standard 
error (Gaddum, 1933) 

sJII(a) = 0·75.j(ud). (3·8) 

This standard error is of little use, however, as the easiest way 
of estimating u is from ·a pro bit diagram, and if this is employed 
the LD 50 may as well be estimated from it. • 

(b.) Behrens's method is intended for experiments in which the 
dosages are equally spaced, and in which equal n\unbers of test 
subjects are used at each of a series of dosages covering the whole 
range of kills from zero to 100 %. For each dosage two quantities 
are calculated: 

s.z_(r) = the total number of individuals killed at dosages 
less than or equal to x, 

Bz+(n-r) =the total number of individuals surviving at 
· dosages greater than or equal to x. 

The estimate oflog LD 50 is "'<b>• the value of x for which 

Sz_(r) = Bz+(n-r), (3·9) 

• Application of the pro bit method to experiments in which only one 
individual is tested at each concentration is discussed in § 43. 
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and is obtained by interpolation where necessary. The method 
was suggested by Behrens (1929), from whose data, and from 
additional results of his own, Gaddum (1933) found an approxi
mation for the standard error of ~b> in the form 

(3·10) 

This expression also is of little use, since knowledge of the value 
of u can only be derived from a more elaborate analysis. 

(c) Karber's method (Karber, 1931) is more adaptable than the 
two preceding approximations, as it does not require a constant 
interval between successive dosages nor even a constant number 
of test subjects at each dosage, though the number should ·not 
vary very widely. Once again the dosages tested must cover the 
whole, or practically the whole, range from zero to 100 % kill. 
The method assumes the whole of the increase in proportion 
killed between dosages xi and xi+1, (pi+1 - Pi), to be attributable 
to a dosage l (xi+ xi+l), and estimates the log LD 50 as the mean 
dosage. If k dosages are tested, and if p1 = 0, Pk = 1 (that is to 
say. the ,,two extreme dosages kill respectively none and all the 
test organisms), the estimate is 

(3·11) 

the summation being taken over all dosages. When the interval 
between successive dosages has a constant value, d, this estimate 
may be -.vritten more simply as . 

m<c> = xk-!dS(pt+Pi+1). 

The standard error ofthe estimate in equation (3·12) is 

smccJ = d..j[S(PQfn)], 

(3·12) 

(3·13) 

where P, Q are the expected proportions of killed and survivors 
at each dosage, for which smoothed value of p, q may be taken 
(Irwin and Cheeseman, 1939a). When the extremes of mortality 
are not reached within the range of dosages tested, formula (3·12) 
may sometimes be made applicable by the as~umption that the 
next lower or next higher dosage at the end of the range would 
kill none or all respectively. The standard erro-.:- for the estimate 
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in equation (3·ll) may be found similarly, but the more compli
cated formula will not be given here. Epstein and Churchman 
(1944) have discussed the theory of Karber's method, but failure 
to distinguish between the observed and expected proportions 
detracts greatly from the usefulness of their work. 

Ga.ddum (1933) has found that an average value of (3·13) may 
be obtained in the same form as (3·8) and (3·10); the average 
variance of m may be shown to be 

V('111'(c)) = udfn • .frr, 

and therefore arlt(d = 0·751../(udfn). (3·14) 

The variances of these three estimates of the log LD 50 may 
be compared with that of the estimate obtained by the probit 
method. According to Ga.ddum (1933), when dosages are equally 
spaced and cover the whole range from 0 to 100% kill, average 
values of the variance are: 

1\Iethod of extreme lethal dosages: 0·57ud, 

Behrens's method: 0·66udfn, 

Karber's method: 0·564o:dfn, 

Probit method: · 0·554udfn. 

These values can be used only if u either is known or can be 
assumed the same as in earlier experience of the experimental 
technique. The indications they give of the relative efficiencies 
of the four methods, and in particular their suggestion of only 
a trivial advantage for the probit method over that of Karber 
(amounting to a 2% reduction in the variance of the estimated 
logLD50), are entirely misleading; as Gaddum has pointed out, 
these conclusions apply only when the dosages are chosen in 
such a way as to permit the use of Karber's method or of one of 
the other approximations. If previous experience or preliminary 
trials give any clue to the value of the LD 50, the procedure of 
distributing test subjects evenly over a wide range of dosages, 
in order to ensure having zero or complete kills at the extremes, 
is very wasteful. By concentrating on dosages nearer to the 
LD 50, observations of much greater weight are obtained and 



APPROXIMATE METHODS OF ESTIMATION 41' 

a correspondingly more precise estimate of the LD 50 is derived. 
A further theoretical objection to the three approximate methods 
is that, unless the dosages used are symmetrically situated with 
respect to the true log LD 50, each gives a biased estimate. 
Irwin (1937) found the bias to be negligible, even when the 
interval between successive dosages was as great as 2u; the bias 
increases with this interval, but intervals greater than 2u are 
not likely to occur frequently in practice. 

Karber's method, and to a lesser extent other approximate 
methods distinct from probit analysis, may occasionally be of 
use in aiding the rapid estimation of the LD 50, particularly in 
preliminary or exploratory trials. But the argument usually 
advanced in their favour, namely that they are much quicker 
than probit analysis and do not require its complex calculations, 
is of much less force than might at first appear. The graphical 
estimation of logLD50 described in § 10 is as quick as either 
Karber's or Behrens's methods, and has the important advan
tages of being just as easy and satisfactory to use when the 
dosages are not equally spaced or do not cover the whole range 
and when t~e numbers of subjects tested are not equal for all 
dosages. If assessment of the precision of the estimate of LD 50 
is also required, some form of pro bit analysis is almost essential 
in order to estimate u, and equation (3·13) is certainly more 
troublesome to use than the method given in§ ll. By contrast 
with the other approximate methods, the graphical probit 
method avoids considerations of whether conditions for the 
applicability of Karber's or Behrens's formulae are fulfilled, 
permits estimation of other properties of the dose-response re
lationship (such as LD90) as easily as that of LD50, and may 
easily be converted into the more exact analysis discussed in 
Chapter 4 when this seems necessary. Furthermore, as will be 
seen in later chapters, the pro bit method can be applied to many 
more complex types of toxicity test data. 

Examples of the use of Karber's method have been given by 
Irwin and Cheeseman (1939a, b); Ex. 4 below discusses very 
briefly the application of approximate methods to the data used 
in Ex. 1. 
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Ex. 4. Estimation of the median lethal dose by Behrens' B and 
Karber's methods. In the experiment whose results are sum
marized in Table 2 the intervals between successive dosages did 
not differ greatly from the mean of 0·15, and the number of 
insects tested at each dosage was about 50. If an assumption 
is made that the next higher dosage would have killed.all the 
insects and the next lower would have killed none, both Behrens's 
and Karber's methods can be used fqr estimating the log LD 50. 
For the former the percentages dead and alive should be used 
rather than the actual numbers, in order to overcome the com
plication of unequal values of n. The two estimates are . 

m<b> = 0·682, 'mtc> = 0·688. 

The close agreement with the estimate made graphically in Ex. I . 

is largely fortuitous; it occurs because the middle one of the five 
doses tested is very near to the LD 50 and the other doses and 
percentage kills are practically symmetrical on· either side of 
this·. Thus conditions happened to be very favourable to the two 
approximations, but even so they have no advantage over the 
graphical method as they can scarcely be reached with greater 
ease or rapidity than the estimate made in Ex. 1. 

14. HISTORY OF THE PROBIT METHOD 
. . 

Though the widespread use of the pro bit transformation in the 
statistical analysis of biological data is of comparatively recent 
growth, the underlying principle has been known for many years. 
It appears to have originated with psychophysical investigators 
who, in the latter half of the nineteenth century, were confronted 
with the problem of estimating the magnitude of a stimulus 
from statements by test subjects that it seemed to them greater 
than or less than the various members of a standard series. The 
proportion of answers 'greater than' steadily decreases as the 
scale of standard stimuli is ascended, and shows a sigmoid 
relationship with the measure of these stimuli. 

Fechner (1860) discussed the relationship of the difference 
between two weights with the proportion of trials in which 
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a subject correctly judged which was the heavier. He suggested 
(Chapter VIII) the conversion of the proportions to deviates 
of a normal distribution with mean zero and precision* unity, . 
by means of a table of the normal integraV If steps are 
taken to eliminate biases due to the order, in time or space, 
in which the weights are picked up, when the weight 
difference is negligibly small the proportion of right answers 
should be one-half, and the normal deviate therefore zero. 
Fechner further suggested that a linear relationship would· be 
found between the weight difference and the normal deviate. 
Hence, if the proportion of right answers were known for one 
weight difference, the factor of proportionality with the normal 
deviate could be estimated; estimates could then be made of 
the proportions corresponding to any other weight differences 
or vice versa. This appears to be the earliest reference to the 
fundamental idea of the probit method, namely, the reduction 
of a sigmoid response curve to a straight line by means of a 
transformation of the responses based on the normal integral; 
the credit for inventing. the method should therefore be given 
to Fechner. 

Muller (1879) recognized that the transformation from pro
portions to the standardized normal deviates introduced a dif
ferential weighting.* He proposed to determine the parameters 
of the distribution of threshold values by fitting a straight line 
to the transformed data, weighting each point by its 'MUller 
weight', a quantity proportional to. z2 in the present notation. 
The ordinate, z, was taken as corresponding to the observed 
proportion, and not, as in equation (3·4), to the expected value 
from the fitted line. His method was called the Constant Process 
or the Method of Right and Wrong Cases, under which names it 
is still known to psychophysicists. 

0 The preciBion, h = 1/tr -J2, was at one time commonly used instead 
of tr as a. parameter of the normal distribution. 

t This table is still known to psychophysicists as 'Fecluier's Funda
mental Table'. 

s There is P. danger of some verbal confusion here, since weights are 
used as stimuli, and, in the statistical analysis, the responses are assigned 
'weights' proportional to their invariances. 
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Urban (1909, 1910) collected extensive experimental data, of 
the type considered by Fechner, on the difference threshold for 
lifted weights. In his experiments, a standard weight of 100 g. 
was lifted before each of a series of seven weights ranging fr<?m 
~4 to 108 g., and a judgement of lighter than, equal to, or heavier 
than, was given by the subject for each trial. Urban described 
several different methods for estimating the threshold of just 
perceptible weight differences, and for assessing the relationship 
between the weight difference and the proportion of right 
answers. In his account of the constant process, or, as he 
termed it, the lf>(y) PrOWJs, he pointed out that the l\Iiiller 
weights failed to take accom1t of the variability in the original · 
proportions due to the binomial distribution of right and wrong 
answers. To allow for this source of variation, he introduced a 
factor 1/piJ, and weighted his normal deviates proportionally 
as z2fpq. 

Thomson (1914, 1919) drew attention to certain defects in 
Urban's treatment of the problem, especially in his methods of 
estimating the standard errors of the parameters and of assessing 
the goodness of fit of the line to the data. His revision (Brown 
and Thomson, 1940, Chapter III) put the constant process into 
a form very similar to that of the probit method to-day, except 
that the weights were taken from the values of p for the observa
tions and not from the corresponding values of P for a pro
visional line, and that his formulae for the standard errors of 
the parameters were. much more complicated and laborious to 
compute than those now used. No provision was made for taking 
account of zero or 100% values of P, which were presumably 
simply ignored. 

Independently of the work of the psychophysicists, Hazen 
(1914) and Whipple (1916) suggested the use of graph paper 
the scale of ordinates of which is graduated according to a normal 
probability distribution, so that the proportions are plotted as 
their corresponding normal deviates. A normal sigmoid curve 
plotted on this paper is automatically transformed to a straight 
line. A modified form of paper has a logarithmic scale of ab
scissae, so that a logarithmic transformation of dose is also made 
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automatically at the same time.• O'Kane et al. (1930) made use 
of probability paper for plotting the results of insecticide tests. 

In 1923 Shackell suggested that the normal integral might be 
used in interpreting the results of toxicity tests. Three years 
later Wright (1926), also without knowledge of the earlier work, 
proposed the use of an inverse function of the normal probability 
integral as a means of simplifying the statistical treatment of 
certain statistical data. His paper, however, seemed to escape 
the attention of biologists, who therefore had to wait a further 
seven years for yet another rediscovery of the method. 

In 1933 Gaddum published an important memorandum on 
the analysis of quanta! assay data in biological investigations. 
He proposed to transform each percentage to its normal equivalent 
deviation (N.E.D.), defined as the abscissa. to a normal curve of 
zero mean and unit variance corresponding to a probability P; 
that is to say, P is the probability of obtaining an observation 
from this normal distribution whose value is less thari. or equal 
to the N.E.D. In symbols 

1 J:lf.E.D. 
p = ,.j(211) -oo e-iu•du, 

a transformation essentially the same as that used by Fechner. 
The N.E.D. of the pe!centage kill of various animals was found 
by Gaddum to give a straight line when plotted against the 
log dose of the drug applied. He described the regression tech
nique for fitting the line, in a form similar to that given earlier 
by Urban and Thomson, but his treatment of the standard errors 
of the ·parameters and associated quantities was much simpler. 

Bliss (1934a) suggested the division of the interval between 
0·0 1 and 99·99 % into units of normal deviation which he called 
probits, the whole interval ranging from 0 to 10 probits an~ 
50% being 5 probits. When he later saw Gaddum's publication, 
he modified his definition of the probit and redefined it as in 
equation (3·1), so that it became the N.E.D. increased by 5 (Bliss, 
1934b). In two comprehensive papers (1935a, b) he discussed 
the use of the pro bit transformation, and gave tables of pro bits 

• Arithmetic and logarithmic probability paper can be obtained from 
the Codex Book Company, Inc., 74 Broadway, Norwood, Mass., U.S.A., 
or from Wightman, Mountain and Co., London, S.W.l. 
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and weighting coefficients. Fisher (1935) outlined the maximum 
likelihood analysis for zero and 100 % responses, and showed the 
need for using 'working pro bits' at all levels of mortality, in the 
manner described by Bliss (1938). 

Two other developments deserve notice. In 1894, Henry 
showed how to transform a cumulative normal curve to a straight 
line by use of normal equivalent deviates, and suggested graph 
paper with probability ruling. Haag (1926) gave examples of 
Henry's scheme, but, like Henry, discussed only data for which 
direct measurements were available and not the essentially 
quanta! type. The work of Kapteyn (1903) and Kapteyn and 
Van Uven (1916) owed something to Fechner; their reaction 
curves are aids to the normalization of distributions, but they 
also were not concerned with essentially quanta} data. 

1\leanwhile, psychologists apparently remained unaware that 
their method had been adopted and refined by biologists. 
Ferguson (1942) used the constant process for analysing data on 
the selection of items for mental tests; Lawley (1943, 1944), in 
considering the theory of this problem, came near to an indepen
dent derivation of the maximum likelihood solution. Finney 
(1944c) endeavoured to unite. the biological and psychophysical 
methods by illustrating the use of the probit method on 
Ferguson's data. 

15. ALTERNATIVE TOLERANCE DISTRIBUTIONS 

If log tolerances are not normally distributed. the relationship 
between log dose and response rate will not be a normal sigmoid. 
~rban (1910) proposed the alternative 

I 
P = !+-tan-1 (.x+Px), 

1T 
(3·15) 

where P, x are as before and .x, pare parameters. ·wilson and 
Worcester (1943c) realized that this was one of a class of sig
moids; their theory has been extended by Finney ( 194 7 a, 1949d), 
using the method of Appendix· II with an equivalent deviate 
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appropriate to the curve adopted. Of particular interest are the 
logistic curve, 

(3·16) 

and the sine curve, which applies only to a finite range of doses, 

P = l{1+sin(a+Px)} 
71 71 

-2~a+Px~2. (3·17) 

Equation (3·16) is frequently used to represent a growth curve. 
Its use for quanta! responses was suggested by Fisher and Yates 
in the introduction to their Statistical Tables, and the estimation 
technique has been discussed by others (Wilson and Worcester, 
1943a,b,d; Worcester and Wilson, 1943; Berkson, 1944, 1946). 
Berkson defined the logit, analogous to the probit (cf. Finney, 
1947b), and showed that an ingenious approximation to the 
minimum x2 (instead of maximum likelihood) estimation of the 
parameters simplified the calculations. KnudseiJ, and Curtis 
(1947) commended the sine curve; its angle transformation has 
a constant weighting coefficient, so that the arithmetic is less 
laborious than for probits or logits. 

The logit and angle transformations seem to have less theo
retical recommendation than the probit; however inexact the 
assumption of a normal distribution of log tolerances may be, 
there is no reason to suppose that the tolerance distributions to 
which they correspond are any closer to the truth. Neverthel~ss, 
only very numerous data could discriminate between the three, 
as even the limited distribution that gives the angle trans
formation approximates to the normal except at extreme values. 
In practice, conclusions drawn from the same data by each of the 
three methods will often agree sufficiently for the choice to be_ 
unimportant. Consequently, for simple routine analyses, there 
may be a good case for using angles instead of pro bits. For more 
complex problems, the advantage for angles is less and probits · 
are preferable. The logistic curve might be more appropriate 
than the normal in Ex. 33. 



Chapter 4 

THE MAXIMUM LIKELIHOOD SOLUTION 

16. WORKING PROBITS 

THOUGH the methods described in Chapter 3 are often adequate 
for estimating the LD 50, the variance of tolerances, or other 
quantities connected with the dosage-response relationship, com
plications in the data may prevent these being used satisfactorily 
and an arithmetical rather thana graphical technique for obtaining 
the best fitting probit regression line is then required. For 
example, the observations, when plotted as in Fig.· 8, may be 
too irregular for any confidence to be placed in an eye estimation 
of the fitted line, or differences in the weights attached to the 
observations may be so marked as to make satisfactory allowance 
for them very difficult without objective computational methods. 
The need becomes still greater when seve;al different materials 
or dose factors are simultaneously under test;in the more complex 
types of experiment discussed in Chapters 5-8 developments of 
the analytical technique now to be discussed are almost essential. 

The mathematical basis of the method of estimating the pro bit 
regression equation (3·2) by a process of successive approxima
tions is given in Appendix II, but its details need not concern 
the non-mathematical reader. The process is begun by drawing 
a provisional probit line, just as described in§ 10, and using this 
to determine the weights, nw, to be attached to each observation. 
The weighted regression equation of pro bit mortality on dosage 
is then computed. The transformation from obsen·ed proportions 
to pro bits, as defined by equation (3·1 ), is non-linear, and, as 
shown in Appendix II, the regression equation should therefore 
be calculated for working probits rather than for the empirical 

• Some writers use the term 'corrected pro bit' instead of working 
probit, but this name is an unfortunate choice; the working probit is 
used to give a convenient simplification of otherwise complicated calcula
tions and is in no way a correction of the empirical value. On diagrams 
of pro bit regression lines only the empirical pro bits should be shown, the 

. occurrence of zero and 100% kills being indicated by arrows, as in Fig. 9. 
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probits obtained directly from the proportions p. The working 
prohit is defined in equation (II, 15) as 

p-P 
y = y +---z-

q-Q 
= y -----z-, 

where Y is the expected probit taken from the provisional line, 
P and Z the corresponding probability and ordinate respec
tively. Either of these formulae may be used, according to 
convenience. The quantity 

Q 
Ytoo = Y +z 

is known as the maximum working probit; -when all the test 
subjects in a batch are killed, p = 1 and the corresponding em
pirical pro bit is infinite, but the maximum working pro bit deter
mined from the provijionalline allows this observation to play 
its part in determining the regression equation. Similarly 

p 
Yo= Y-z 

is the minimum ·working pro bit, and is used when no subjects 
are killed. Fisher and Yates ( 1948, Table XI) ha,·e tabulated 
the maximum working probit and also the range, 1/Z, for values 
of Y at intervals of 0·1. Table III of this book shows both mini
mum and maximum working probits and the range; the second 
column of this table gives minimum working probits for 
Y = 1·1-6·5, and the fourth column gives maximum working 
probits for Y = 3·5-8·9, values outside these limits being of 
exceedinglyrareoccurrence. The difference between the maximum 
and minimum working probits for the same Y is the range, so 
that when only one is tabulated the other may easily be derived. 

From Table III working probits for other values of p may 
be calculated as in Ex. 5 below. Table IV has been prepared in 
this way, so as to give working probits at intervals of 0·1 in Y 
and 1% in kill for all combinations of values whose working 

FPA 
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pro bitS lie between 0 and 10, outside which limits working pro bits 
seldom occur.* The working probit usually does not differ from 
the empirical probit by as much as does the expected probit, Y. 

Ex. 5. Calculation of working probit8. ·As an example of the 
use of these tables, consider the working probit corresponding 
to a kill of 72·3% when the expected probit, as- taken from 
a provisional line, is 6·2. From Table III the minimum working 
probit is 1·6429 and the range 5·1497. Hence p = 0·723 gives 

1J = 1•6429+0·723 X 5·1497 

= 5·366. 

Alternatively, using the maximum working probit, 6·.7926, and 
q = 0·277 

1J = 6·7926-0·277 X 5·1497 

= 5·366. 

The same result may be obtained more easily from Table IV. 
In this table the column for Y = 6·2 shows working probits of 
5·351 and 5·402 for 72 and 73 % kill respectively: hence, by an 
interpolation which may be carried out mentally, 

y = 5·351+ 1
3
0 (5·402-5·351) 

= 5·366. 

Very frequently y is required only to two places of decimals, or pis 
reliable only to the nearest 1 %, so that y can be read directly 
from Table IV with little or no interpolation. 

Occasionally the expected probits may need to be taken to 
two decimal places. Interpolation is then necessary in order to 
obtain the maximum or minimum working pro bit and the range, 
afte; which y may be calculated as above. Thus if the value of Y 
in this example were 6·24 the maximum working probit and the 

• A useful table of working probits, at intervals of 0·1 in Y and 
including every value of p that can arise in a batch of twenty or less 
test subjects, can be obtained from the Division of Pharmacology, Food 

-and Drug Administration, United States Department of Agriculture, 
Washington, D.C. Finney and Htevens (1948) have tabulated maximum 
and minimum working probits and ranges at intervals of 0·01 in Y. - . 
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range would be given by taking the sum of 6/10 of the values 
for Y = 6·2 and 4/10 of the values for Y = 6·3. Hence y may 
be written, in a form suitable for machine calculation with the 
minimum of resetting, as 

y = 0·6 X 6•7926 + 0·4 X 6·8649 
-0·277 X (0·6 X 5•1497 +0·4 X 5·8354) 

= 5·319. 

The correct value, obtained from Stevens's more detailed table, 
is 5·323. 

17. THE REGRESSION EQUATION 

The linear regression equation of the working probits on the 
measure of dosage, x, is an improved estimate of the dosage
response relationship. If_it differs markedly from the provisional 
line drawn by eye, it may itself be used as a new provisional line 
and the process repeated. The maximum likelihood estimate is, 
in fact, the limit to which these estimates tend as the cycle of 
determining a new line with the aid of that last calculated is 
indefinitely repeated. With experience the first provisional line 
may often be drawn so accurately that only one cycle of the 
calculations is needed to give a satisfactory :fit, though when 
the empirical probits are very irregular two cycles may be 
needed.· 

De Beer ( 1945) has developed an ingenious system of scales 
and nomographs for simplifying the calculations. With the aid of 
these, many of the expressions required as steps in the estima
tion of the LD 50 and its fiducial limits can be read directly from 
the diagram showing the provisional regression line. The results 
obtained are not quite the same as the maximum likelil}.ood 
values, since the method does not completely distinguish 
between empirical and working probits, nor does it obtain 
fiducial limits from the exact formula ( 4·6) below; nevertheless 
it is likely to be sufficiently good for many purposes, and merits 
serious consideration by those who have to make many routine 
LD 50 estimations but who find a purely. graphical method 
insufficiently accurate. 
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Ex. 6. Arithmetical procedure in the fitting of a probit regreasion 
line. As a simple example of the computations required in the 
fitting of a probit regression line by the maximum likelihood 
method, the data of Ex. I will be used again. The computations 
are shown in Table 6. A more detailed account of computing 
procedure is given in Appendix I, where another set of data is 
used. · 

1/1: 

r---
1·01 
0·89 
0·71 
0·58 
0·41 

1-·-

TABLE 6. Maximum Likelihood Computations for 
Rotenone-MacrOBiphoniella sanborni Test 

Em~ p 

" r (%) pirical y nto y nto:~: 

pro bit 
--------------

60 " 88 6·18 6·3 16·8 6·16 16·968 
49 42 86 6·08 5·8 24·6 6·05 21·894 
46 24 62 6·05 6·1 29·2 5·05 20·732 
48 16 33 4·56 4·6 28·8 4·56 16·704 
60 6 12 3·82 3·9 20·2 3·83 8·282 
--------

I 119·6 84·580 

1/Snto = 0·008361204, z = 0·7072,' j = 6·0876. 

Smu.r:S Snwzy Snwy• 
64·42700 «9·5685 3177·748 
59·81418 430·3057 3095·637 

4·61282 19·2628 

6=4·1759, 

82-111 
80·440 

1·671 = xrs; 
Y=5·0876+4·1759 {z-0·7072) 

=2·134 t-4·176z. 

I ntoy 

103·488 
148·830 
147·460 
131·328 

77·366 

608·472 

I 

The first five columns of Table 6 are repeated from ~able 2. 
The expected probits, Y, are obtained from the provisional line 
of Fig. 8, and the c~rresponding weighting coefficients (from 
Table 4) are then multiplied by nand tabulated, this step being 
exactly as in Ex. 2. Working pro bits are read from Table IV, 
and entered in the column y. In the example the empirical 
probits and working probits are so nearly the same that the 
former could have been used instead of y \\ithout appreciably 
altering the conclusions, but a routine of working with y is to be 
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preferred. · Consideration of the weights, nw, indicates that two 
decimal places in the working probits are quite sufficient; the 
variances of the individual observations are 1/nw, and thus the 
standard errors are of the order of 0·2, so that differences of 0·01 
in working pro bits are of little importance. 

Individual values of the products nwx, nwy, are next tabulated 
and added; division of the totals by Snw gives the means x, y. 
The values of nwx are multiplied by x and added to give Snwa;2, 

then multiplied by y and added to give Snwxy. The products of 
nwy with x should be summed as a check on Snwxy, and also, 
for reasons which will shortly appear, the products of SnunJ 
withy to give Snwy2• Tl).e three totals are reduced respectively 
by (Snwx)2JSnw, (Snwx) ?< (Snwy)JSnwand (Snwy)2JSnw, to give 
the sum$ of squares and products about the mean, Snw(x- x)2, 
Snw(x- x) (y- y) and Snw(y- y)2• 

From equation (II, 9) the estimated regression coefficient is 

b = Snw(x-x)(y-y)JSnw(x-x)2 

= 19·2628/4·61282 

= 4·1759, 

and the fitted equation is a line with this slope passing through 
the point (x, y): 

Y = 5·0876+4·1759(x-0·7072) 

= 2·134 + 4·1 i6.r. .. (4·1) 

Using this equation, Table 7 has been obtained in the same 
way as was Table 3 and gives an ·heterogeneity x2 of 1·62 with 
3 degrees of freedom. Since 

X
z = Sn(p-P)z 

-=-=p,...,Q=---'-

= snw(p~Pr. 

the computation may be made mo~e easily as the weighted sum 
of squares of deviations of the working probits from the pro
visional line, Snw(y- Y)2• This quantity is Snw(y-y)2 reduced 
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by {Snw(x-x)(y-y)}2/Snw(x-x)2 ; the calculation is shown in 
Table 6, and gives the result 

Xl~l = 1·67. 

Neither this nor the value 1·62 in Table 7 is strictly a x2, in the 
recognized meaning of the term, until the maximum likelihood 
solution has been closely approximated by a series of cycles of 
computation; in the limit, the two values would be the same, and, 
in practice, reference of either to the x2 distribution at an earlier 
stage is usually harmless.' 

TABLE 7. Comparison of Observed and Expected Mortality in 
Maximum Likelihood Fitting for Rotenone-Macrosiphoniella 
sanborni Test · 

Log 
No. affected 

·concan- No. of Dis-
(r-nP)1 

tration 
y p insects Ob- Ex- crepancy 

(z) (n) served pected (r-nP) nP(1-Pl 
(r) (nP) 

1·01 6·352 0·9118 50 44 45·59 -1·59 0·63 
0·8!1 5·851 0·8026 .49 42 39·33 2·67 0·92 
0·71 5·099 0·5398 46 24 24·83 -0·83 0·06 
0·58 4·556 0·3285 48 16 15·77 0·23 0·00 
0·41 3·846 0·1242 50 6 ~21 -0·21 0·01 

XI~J=l·62 

The x.2 test gives no evidence of heterogeneity of departure 
from the fitted pro bit line. The variances of the parameters are 
therefore, from equations (II. 10, ll), 

V(y) = 1/Snw = 0·00836, V(b) = 1fSnw(x-x)2 = 0·2168, 

whence y = 5·088±0·091, b = 4·176±0·466. 

The slope has been altered from its provisional value of 4·01 
by an amount equal to about one-third of i~s standard error, 

• The x• calculated as here does not necessarily decrease as the 
maximum likelihood solution is approached; the process of maximizing 
the likelihood function is not precisely equivalent to that of minimizing 
x•. though the final x• value will usually be not very different from the 
minimum. 
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and if an accurate value of b were particularly required a further 
cycle of computations would be desirable; the next value ob
tained forb is, in fact, 4·196, the alteration being only 4% of 
the standard error. 

On the scale of Fig. 8 the pro bit equation ( 4·1) is practically 
indistinguishable from the eye estimate (equation (3·3)). The 
estimated log LD 50 is 

- 5-y 
m=x+-b-

= 0·7072- 0·0210 

= 0·686; 

the variance, obtained from equation (3·6), is 

0·008457 
V(m) = (4.176}2 = 0·0004849, 

and therefore 8m = 0·0220. 

The estimate of the logLD50 obtained in Exs. 1 and 2 (0·687 ± 
0·023} agrees remarkably well with the value 0·686 ± 0·022 found 
by the maximum likelihood method. The LD 50 is now estimated 
to be 4·85 ± 0~25 mg. fl. 

18. HETEROGENEITY 

The data of Ex. 6 were selected as being particularly regular and 
presenting no complications in their analysis. The x2 test for 
the heterogeneity of the discrepancies between observed ·and 
expected numbers is only valid when the expected numbers are 
not·' small'. At the more extreme dosages tested either P or Q 
is often nearly zero, so that, with the usual numbers of insects 
exposed to the poison, either the expected number killed (nP) 
or the expected number surviving (nQ) is too small for x2 calcu
lated in the usual manner to be referred to the distribution in 
Table VI. The formulae used for x2 in Ex. 6 may be written 

(4·2} 

where the abbreviations Bxx• Sx11 and 81111 are used for the sums of 
squares and products of deviations about means Snw(x-x)2, 
Snw(x- x) (y- y) and Snw(y- y)2, and k is the number of dosages 
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tested. • Small values of nP or nQ often lead to unduly large 
contributions to x2, thus exaggerating the significance of the 
total. 

In other applications of the x2 test, a value less than 5 for the 
. expected number in any class has often been taken as a warning 
that the x• distribution may give misleading results (Fisher, 1944, 
Ex. 9). There is no special virtue in the number 5; in some cir
cumstances considerably lower expectations produce no ill effects, 
and in others the x2 distribution may be unreliable with higher 
expectations (Cochran, 1942). Possibly the chief danger lies in 
the application of the test to data in which the expectations for 
most classes ·are moderately large but one or two are very small; 
when all or nearly all expectations are low the disturbance of 
the distribution is not likely to be so serious. Further investiga
tion into this subject is needed, and at present no more definite 
advice can be given than to treat as suspect any x" value most of 
which is made up of large contributions from classes with small 
expectations. 

TABLE 8. Table of Greatest Expected Probit giving at 
least nP Expected Survivors in a. Batch of n 

No. in 
Expected no. of survivors (nP) 

batch (n) 10 5 2 I 

5 - - 5·25 5·84 
10 - 5·00 5·84 6·28 
20 5·00 5·67 6·28 6·64 
30 5·43 5·97 6·50 

I 
6·83 

40 5·67 6·15 6·64 6·96 
50 5·84 6·28 6·75 7·05 

100 6·28 6·64 7·05 7·33 
200 6·64 6·96 7·33 

I 
7·58 

1000 7·33 7·58 7·88 8·09 

The difficulty of small expectations may usually be overcome 
by combining the results for extreme dosages with the next 
highest or next lowest, so as to build up larger expectations, 

* A number of writers have used A, B and C for Su, s ... and s ••. 
but the latter symbols have the advantage of giving clearer indication 
of their meaning. 
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though some sensitivity is thereby lost. Equation (4·2) cannot 
then be used for the calculation of x2, and recourse must be had 
to the method of Ex. 1 involving the calculation of the various 
expectations. The degrees of freedom for x2 must be reduced by 
the number of dosage levels lost by combination (Ex. 7). Table 8 
gives a rapid guide to the 'danger levels' of the expected numbers 
of survivors. The table states, for example, that the expected 
number of survivors in a batch of fifty insects will be less than 
5 when Y exceeds 6·28 and will be less than 2 when Y exceeds 
6·75. Similarly, the expected number killed will be less than 5 
when Y is less than 3·72 ( = 10- 6·28), less than 2 when Y is less 
than 3·25. When the batches of insects or other test organisms 
are themselves small (say ten or less) it may be safe to adopt 
a requirement of at least 2 survivors and 2 killed in each group, 
but for batches of thirty and upwards a standard of about 5 seems 
a better working rule. 

Ex. 7. Application of probit analysis to heterogeneoua oota. As 
a second example of the technique of fitting the pro bit regression 
line, this time to less regular data, results obtained by Busvine 
(1938) on the toxicity of ethylene oxide to the grain beetle, 
Calandra granaria, may be considered .. These data have been 
fully reported by Bliss ( 1940 b, Table VII); for the present purpose 
only the records referring to insects examined 1 hr. after exposure 
to the poison will be used. 

The data are shown in the first three columns of Table 9, x 
being the logarithm to base 10 of the concentration of ethylene 
oxide in mg./100 ml. The empirical pro bits were plotted against X. 

(Fig. 9) and a provisional line 

Y = 3·06+7·95x 

was drawn by eye, allowing for a value above the line at x = 0·391 
and a value below the line at x = 0·033. Using this line, by 
application of the maximum likelihood process, the new approxi
mation 

Y = 2·948 + 8·600x (4·3) 

was reached. The change in the value of the regression coefficient 
was sufficiently large for a second cycle of computations to seem 
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worth while, details of which are shown in Table 9. The values 
of Yare obtained from equation (4·3), the working probits from 
Table IV; maximum and minimum working pro bits respective,ly 
are required at z = 0·391 and z = 0·033, and these are read 
either from the 100 and 0% lines of Table IV or directly from 
Table III. The computations then proceed as in Ex. 6 to give the 
equation 

Y = 2·928+ 8·674z. (4·4) 

As will be seen shortly, differences between (4·3) and (4·4) are 
negligible by comparison with the standard errors, and no further 
approximation is necessary. 

TABLE 9. Maximum Likelihood Computations for Ethylene 
Oxide-Calandra granaria Test (second cycle) 

I n I r Em-
:r; p pirica1 y nw y nw:r; __ ,_!_ (%) pro bit 

----
0·394 30 23 77 5·74 6·3 10·1 5·52 3·9794 
0·391 30 30 100 00 6·3 10·1 6·86 3·9491 
0·362 31 29 94 6·55 6·1 12·5 6·45 4·5250 
0·322 30 22 73 5·61 5·7 15·9 5·61 5·1198 
0·314 26 23 88 6·18 5·6 14·5 6·06 4·5530 
0·260 27 7 26 4·36 5·2 16·9 4·38 4·3940 
0·225 31 12 39 4·72 4·9 19·7 4·72 4·4325 
0·199 30 17 57 5·18 4·7 18·5 5·19 3·6815 
0·167 31 10 .32 4·53 4·4 17·3 4·54 2·8891 
0·033 24 0 0 -oo 3·2 4·3 2·74 0·1419 

- --
I 1139·8 37·6653 

-
1/Snw = 0·007153076, z = 0·2694, y = 5·2652. 

Snwz1 

1H8778 
10·14789 

1·03989 

Snwxy 
207·3360 
198·3159 

9·0201 

Snwy1 

3986·265 
3875·603 

110·662 
78·241 

32·421 = x[:J 
b = 8·6741, Y = 2·928 + 8·6i4x. 

nwy I 
55·752 
69·286 
80·625 
89·199 
87·870 
74·022 
92·984 
96·015 
78·542 I 
11·782 i 

736·077 

Application of formula ( 4·2) gives a X2 of 32·42, with 8 degrees 
of freedom, as a measure of heterogeneity, a value which, ac
cording to Table VI, is clearly significant. The validity of this 
test is suspect, however, since. three of t.he expected probits 
exceed 6·0 and one is less than 4·0, thus giving dangerously low 
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values to nP or nQ. The test may be modified as shown in 
Table 10 by grouping the expectations for the two highest con
centrations with the next highest and that for the lowest with 
the next lowest. Equation (4·2) is then no longer applicable, 
and the separate contributions to x.3 must be calculated by the 

o-1 O·Z O·l IH 

Log Concentration (mg./100 inl.) 
FIG. 9. Probit regreesion line and 5 % fiducial band for toxicity 

of ethylene oxide to C. granaria (Exs. 7-9). 

method used in Ex. 1, namely, by squaring the difference between 
observed and expected numbers killed, multiplying by the total 
number, and dividing by the product of the expected kill and 
expected survivors. Thus 

91 X (0·9)3 
= O·Og 

81·1 X 9·9 

is the contribution from the first group. The total number of 
groups of insects has been reduced by 3 and therefore x.3 has 
5 degrees of freedom instead of 8; 

xf51 = 19·74 

is still highly significant, and confirms the evidence for hetero
geneity of the departures from the regression line. Since Fig. 9 
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gives no suggestion of any systematic deviations from the line 
such as would arise if the regression relationship were not truly 
linear, the heterogeneity may be allowed for by multiplying all 
variances by the heterogeneity factor (§ II) 

x•f5 ~ 3·95. 

For example V(b) = 3·95/1·040 = 3·798, 

and therefore b = 8·674 ± 1·949. 

TABLE 10. Comparison of Observed and Expected Mortalities 
for Ethylene Oxide-Calandra granaria Test 

y p I 
nP r-nP 

(r-nP)1 1 
:;c I n r nPQ 

. 0·394 6·346 0·911 30 23 27·3} 
0·391 6·320 0·907 30 30 27·2 0·9 0·09 
0·362 6·068 0·857 31 29 26·6 
0·322 6·721 0·766 30 22 23·0 -1·0 0·19 
0·314 5·652 0·743. 26 23 19·3 3·7 2·75 
0·260 6·183 0·573 27 7 15·5 -8·5 10·94 
0·225 4·880 0·452 31 12 14·0 -2·0 0·52 
0·199 4·654 0·365 30 17 11·0 6·0 5·17 
0·167 4·377 0·267 31 10 8·3} 0·8 0·08 0·033 3·214 0·037 24 0 0·9 

X1~1= 19·74 
I 

Again, from (4·4) the logLD50 is 

m = 0·239, 

and using equation (3·6) once more 

3·95 [ (0·030)2
] 

V(m) = (8·674)2 0·007153+ 1·040 

= 0·000421, 

so that the standard error of m is ± 0·021. 
If 5 % fiducial limits to m are wanted, instead of using 

the normal deviate, 1·96, as the multiplier of Bm, the t-value 
. (Table VII) for 5 degrees of freedom, 2·57, must be used. Hence 
these limits are 0·239±0·054, or 0·293 and 0·185; the LD50 is 
t-stimated as· 17·3 mg.fl. with 19·6 and 15·3 mg./1. as the 5% 
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fiducial limits. It will be seen later (Ex. 9) that these limits are 
in fact not sufficiently wide, and in this example a more exact 
method of estimating them is needed. 

When very few degrees of freedom are available for estimating 
the heterogeneity factor, the corresponding t-value for any 
selected probability level becomes large in order to allow for 
the unreliability of the heterogeneity factor, and consequently the 
fiducial limits are widely spaced. For example, for a large number 
of degrees of freedom the 5 % t is about 2·00, for 5 degrees of 
freedom it is 2·57, for 3 degrees offreedom 3·18, and for 1 degree 
of freedom 12·711 This la,'lt value, in particular, is practically 
useless in the determination of fiducial limits. The remedy is 
to pool the x1 values from comparable series of tests, whenever 
this is possible, and thus to obtain a single heterogeneity factor 
of reasonable accuracy instead of separate factors oflow precision. 
In particular, when a single experiment consists of several series 
of tests which yield similar values of b, the methods of analysis 
described and illustrated in§ 20 should always be used; unless 
there are strong indications that the series differ in respect of 
heterogeneity, a composite test of heterogeneity is then Jllade for 
the whole experiment and, if necessary, a single heterogeneity 
factor estimated and used for all standard errors and fiducial 
limits. 

19. FIDUCIAL LIMITS 

The expected probit, Y, for any dosage, x, has been obtained 
in the form 

Y = y+b(x-x); 
the variance of Y is 

V(Y) =_I_+ (x-x)s 
Snw S= ' 

(4·5) 

if no allowance has to be made for heterogeneity, but the ex
pression must be multiplied by the heterogeneity factor when 
this is significantly greater than unity. Fiducial limits to Yare 
therefore Y ±Byt, where By is the square root of V(Y) and tis 
the normal deviate for the level of probability to be used, or, 
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if there is significant heterogeneity, the t-value corresponding 
to this probability. 

If the fiducial limits of Y are plotted for each x, they will be 
found to lie on two curves which are convex to the regression 
line and which approach the line most closely at the dosage x. 
The further x is removed from x in either direction the greater 
is the contribution to the variance of Y from the second term 
of (4·5), which represents the effect of the errors of estimation 
of the regression coefficient b, and in consequence the more widely 
spaced are the fiducial limits .. 

~insecticidal and fungicidal investigations the effect of a single 
poison is often of less interest than comparisons between the 
effects of two or more different poisons in the same experiment. 
Day to day changes in the susceptibility of the organisms may 
alter very considerably the kill for any selected dosage without 
seriously upsetting the relative toxic effects of different poisons; 
consequently the fiducial band for one regression line may not 
be very helpful for inferring future behaviour(§ 20). 

Ex. 8. Fiducial bands for a probit regression line. The plotting 
of fiducial limits so as to give a band on either side of the pro bit 
regression line may be illustrated on the data of Ex. 7. Under 
the conditions of the experiment, the true value of the kill for 
the range of dosages may be expected to lie within this band with 
a degree of confidence represented by the fiducial probability 
level chosen. 

Formula (4·5) gives for these data 

{ 
(x- 0·269)2

} 
V(Y) = 3·95 X 0·007153+ 1·040. ; 

variances and standard errors calculated from this expression 
are shown in Table II. Multiplication of the standard error, sy, 
by 2·57, the appropriate t-value for a 5 % fiducial probability, 
gives the width of the fiducial band on either side of the regression 
line; the boundaries are shown in Fig. 9. 

The method of determining fiducial limits which has been 
described in § 12 (Ex. 3) is often sufficiently good, both for the 
log LD 50 and for the estimated dosage corresponding to any 
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other selected kill; strictly speaking, however, the limits are the 
values of x for which the boundaries of the fiducial band attain· 
the selected value of Y. By solving an equation so as to obtain 
the value of x for which Y has a selected fiducial limit, exact 
fiducial limits to x, the dosage giving a kill whose probit is Y, 
are shown to be 

g _ t jfl-g (x-x)2
) 

x+l-g(x-x)±b(l-g) \Snw+-s:-' (4·6) 

TABLE 11. Variance and Standard Error of Expected 
Probits in Equation (4·4) 

z V(Y) 8y 

0·00 0·3031 0·551 
. ·. 

0·05 0·2104 0·459 
0·10 0·1367 0·370 
0·15 0·0820 0·286 
0·20 0·0463 0·215 1.:· 
0·25 0·0296 0·172 
0·269 0·0283 0·168 

I 
0·30 0·0319 0·179 
0·35 0·0532 0·231 
0·4Ci 0·0934 0·306 

whereg = t2fb2S=(Irwin, l943;Fieller, 1944). Significanthetero
geneity must be allowed for by increal!ling both g and the expres
sion within the square root by the heterogeneity factor. When 
g is small compared with unity these limits are practically the 
same as those obtained by the method of Ex. 3, but they become 
more widely spaced as g approaches unity.* · 

• Equation (4·6) is a. particular case of a. very useful theorem stated 
by Fieller. If a and b are sample estimates of ex and p subject to normally 
distributed random errors, and if t111, t111, t111 are joint estimates, from 
the same sample and based on I degrees of freedom, of the variances 
and covariance of a and b, then the fiducial limits of the ratio p = «/P 
are the roots of 

IJ1(b1 -t1t111)- 20(ab-t1t111) + (a1 -tlv11) = 0, 

where t is the appropriate deviate with I degrees of freedom for the 
chosen probability level. The limits may be written as 

g ( t111
) t '[ ( ti~•)J m + 1_ g m- tin ± b( 1_ g),.j t111 - 2mt111 + mlv11 - g t111 - tl

11 
, ( 4·7) 

where m = afb and g = tlv11/b1 • In the present instance t111 = 0, but 
elsewhere, for example in§§ 28 and 47, this is not so. 
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Ex. 9. Fiduciallimit8 of the median lethal clo&e. Reverting to 
the data analysed in Ex. 6, in which no heterogeneity was found, 
for the 5 % fiducial limits 

t = 1·96 

and g = (1•96f1/(4·176)2 X 4·613 

= 0·048. 

The log LD 50 in this example was 0·686, and therefore the 
fiducial limits are, by equation (4·6), 

1·96 J(0·952 (0·021)2
) 0"686 -0·0SOx 0"021 ± 4·176x 0·952 ll9·6 + 4·613 

or 0·729 and 0·641, as compared with 0·729 and 0·643 obtained 
from the approximation m ± 1·96am. With so small a value of g, 

the difference between the two methods is· trivial. 
In Ex. 7, g is much larger; taking in the heterogeneity factor, 

and using the 5 % value oft with 5 degrees of freedom, 

g = 3·95 X (2·57)2/1·040 X (8·674r1 

= 0·333, 

a value which is certainly not negligible by comparison with 
unity. In this example m = 0·239 and the fiducial limits are 
therefore 

2·57 J[ (0·667 0·0009)] 
0·239- 0·499 X 0·030 ± 8·67 4 X 0·667 3·9_5 X f39·8 + 1·040 . 

or 0·224 ± 0·066. These limits, 0·290 and 0·158, are much wider 
than the values of 0·293 and 0·185 obtained in Ex. 7 by the 
simpler method. They may be read directly from the boundaries 
of the fiducial band in Fig. 9. On the concentration scale the 
limits are 19·5 and 14·4 mg.fl. 



Chapter 5 

THE COMPARISON OF EFFECTIVENESS 

20. RELATIVE POTENCY 

CHANGES in the level of tolerance of the population of test 
subjects frequently make it impossible to rely on assays of 
materials carried out singly. It is therefore customary, in many 
types of investigation, to assay a test material against a standard 
and to measure the perforlnance in relation to that of the standard 
rather than as an absolute effect. In the second of his early 
papers on the probit method and its applications, Bliss (1935b) 
considered the measurement of differences between two or more 
comparable series of dosage mortality records .. His suggestion 
of measuring differences in terms of relative potency has been 
widely adopted in the comparison of toxicity data and in bio
logical standardization procedure. Examples have been given 
by Irwin (1937) and Cochran (1938). 

When the dosage scale, in which tolerances of the test subjects 
in respect of a stimulus are normally distributed, is logarithmic 
the variances of the tolerances for a number of closely related 
stimuli are often nearly equal. For example, derris derivatives, 
such as rotenone, deguelin, toxicarol, and elliptone, haye been 
found (Tattersfield and Martin, 1938; Martin, 1942) to have 
similar tolerance variances of their log concent.rations when used 
against Aphis rumicis or against Macrosiphoniella sanborni under 
carefully controlled conditions of spraying. This equality of 
variances is shown in the probit analysis by parallelism of the 
probit regression lines; the comparison of different series of data 
is then particularly simple. Parallel regression lines are much 
less likely to be found with non-logarithmic dosage scales. 

The relative potency of two stimuli is defined as the ratio of 
equally effective doses. If two series of quanta! response data 
yield parallel probit regressions against the logarithm of the 
dose, there is a constant difference between dosages producing 

FPA s 
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the same proportion of responding subjects, and consequently 
a co:O.stant relative potency at all levels of response; the relative 
potency then provides a convenient description of the difference 
between the two series. The constant dosage difference is usually 
denoted by M, and is equal to the difference between the median 
effective dosages. If suffices are used to indicate the two series, 
the relative dosage value of the first series with respect to the 
second, or the amount by which a dosage in the first series is 
less than an equally effective dosage in the second, is 

M11 = m1 -m1 = x1-x1 ;.... (y1 -fit)fb, (5·1) 

b being the common slope of the two regression lines. For data 
having x = log10 A, the relative potency is then 

Pta = loM~t. (5·2) 

The variance of~~ is 
I 

V(M11)"= IJZ{V(y1)+ V(y2)+(x1-x1-~1)1 V(b)}; (5·3) 

the standard error, BM, derived from this variance may be used 
for assigning approximate fiducial limits to M, but, unless b has 
been estimated with such precision that g = t2V(b)fb1 is small, 
these limits will be too narrow. As in§ 19, exact fiducial limits 
may be determined (Cochran, 1938) and take the form 

M11+-
1 

g (M11-x1 +x1) 
-g 

± b(I ~g) .J[(I-g){V('fit)+ V(y2)}+ (x1 -x1 -M12)
1 V(b)]; (5·4) 

t is the normal deviate for the significance level, unless hetero
geneity requires it to be taken from Table VII with the number 
of degrees of freedom in x2, in. which case g and the variances 
must be increased by the heterogeneity factor. This expression, 
whose analogy with (4·6) is apparent, reduces to .Jf12 ± s.11 t when 
g is very small. 

The numerical estimation of M is accomplished by straight
forward extension of the methods of Chapters 3 and 4. If inspec
tion of the pro bit diagram suggests that the two regression lines 
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are parallel, the provisional lines are drawn parallel. Working 
pro bits are formed and sums of squares and products calculated 
for each series separately. A new approximation to the common 
slope, with which the computations may be repeated if necessary, 
is given by adding the components from each series, and taking 

b = lBxu+'lftxu = l:B:ru 
1Bzz + 28= l:Szz' 

(5·5) 

where l: indicates summation over the two series.· 'Vhen a satis
factory estimate of b has been obtained: the heterogeneity of 
the data may be tested in the usual manne.r by comparing o~
served and expected numbers of test subjects; the most rapid 
means of deriving the value of x2 for this test is illustrated 
in Ex. 10. If there is no heterogeneity, the variance of b is 

so that 

(5·6) 

(5·7) 

These variances must be increased by the heterogeneity factor . 
if this is significantly greater than unity. 

Though the relative potency of two poisons can be estimated 
from data on only two doses of each, provided that the regression 
lines do not markedly· depart from parallelism, it is preferable 
to have at least three doses in each series. In the first discussion 
of relative potency in relation to probit analysis, .Bliss (1935b) 
has given expressions forM when only two doses have been used 
for each series and also when a single dose of the test material 
is assayed against a series of doses of a standard. The latter is 
an unsatisfactory method of assaying relative potency, as there 
can be no certainty that the regression line will be parallel to 
that for the standard, yet the assumption of parallelism is im
plicit in the estimation and interpretation of M. The method 
depending on only two doses of each poison should not be used 
unless the regression relationship is already known to be linear, 
since the data themselves can provide no information on the 
existence of a curvature on the x-scale used (Finney, 19446). 

Ex. 10. Relative potency of rotenone, deguelin concentrate, and 
a mixture of the two. The data considered in Exs. 1, 4 and 6 are 
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one portion of the results of an experiment fully reported by 
Martin (1942) in which a deguelin concentrate and a 1 : 4 mixture 
of rotenone and deguelin concentrate were tested as well as 
rotenone alone. The complete results are shown in Table 12, and 
the empirical probits are plotted in Fig. 10. 

7·0 

- 6oQ 
~ ... 
0 .. 
:c 
0 

~ 51) 

o ~------~&~s------~,~.o~-----7,.~s------,t,1·0 · 
Log Concentration (mg./1.) 

FIG. 10. Probit regression lines for estimation of relative potency of rotenone, 
a deguelin concentrate, and a mixture of the two (Ex. 10). x rotenone; 
+ deguelin concentrate; fj. mixture. 

From the figure the lowest concentration of the deguelin con
centrate and the two lowest concentrations of the mixture are 
seen to give points markedly disagreeing with any set of parallel 
straight lines. The phenomenon of a 'break' in the regression 
line at low concentrations has been observed in a number of 
toxicological investigations; here it may be the result of the 
poisons not being chemically pure substance_s (Bliss, 1939a). 
Dosage-response relationships for mixed poisons are discussed 
in Chapter 8, but for the present data the difficulty may be 
overcome by rejecting the three aberrant points from the analysis. 
Though generally undesirable, this course may be defended here 
on the grounds that the chief interest lies in the behaviour of 
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TABLE 12. Maximum Likelihood Computations for Esti~ation 
of Relative Potency of Rotenone, a Deguelin Concentrate, 
and a ]\fixture of the Two 

:z:. " - r 

1·01 50 
0·89 49 
0·71 46 
0·58 48 
0·41 I 50. 

j 

44 
42 
24 
16 

6 

P Em-
(%) pirical 

pro bit 

88 
86 
52 
33 
12 

6·18 
6·08 
5·05 
4·56 
3·82 

y nw 

Rotenone 
6·3 
5·8 
5·1 
4·6 
3·9 

16·8 
24·6 
29·2 
28·8 
20·2 

119·6 

nw:z: nwy 

6·16 I 16·968 103·488 
6·05 21-894 148·830 
5·05 20·732 147·460 
4·56 16·704 131·328 
3·83 I 8·282 77·366 

1
--1---1 

84·580 608·472 

Deguelin concentrate 
1·70 
1·61 
1·48 
1·31 
1·00 

48 48 
50 47 
49 47 
48 34 
48 18 

I 49j16J 
I 0·71 

1·4o 
1

, 5o 
1-31 46 

1-18148 1·00 46 
0·71 46 
0·40 47 

I 

l 

48 
43 
38 
27 
22 

7 

100 
94 
96 
71 
38 
33 

96 
93 
79 
59 
48 
15 

CQ 7·3 3·6 
6·55 6·9 7·7 
6·75 6·4 14·8 
5·55 5·8 24·1 
4·69 4·5 27·9 
4·56 3·4 -

6·75 
6·48 
5·81 
5·23 
4·95 
3·96 

I 78-1 

Mixture 
6·8 9·0 
6·4 13·9 
5·9 22·6 
5·2 28·9 
4·0 -
2·8 -

74·4 

7·68 
6·42 
6·{17 
5·53 
4·70 

6·75 
6·47 
5·80 
5·23 

6·120 
12·397 
21·904 
31·571 
27·900 

99·892 

12·600 
18·209 
26·668 
28·90(.) 

1 86·377 

27·648 
49·434 
98·716 

133·273 
131-130. 

440·201 

60·750 
89·933 

131·080 
15H47 

432·910 

1 
,.Snw = 0·008361204, z. = 0·7072, Yr = 5·0876, 

Roten and 

Deguelin 
concentrate 

Mixture 

Total 

1 . 
-

8 
= 0·012804097, z 11 = 1·2790, y11 = 5·6364, 

" nw 
1 

- 8 = 0·013440860, zm = 1·1610, Ym = 5·8187. 
m nw 

Snwx1 

64·42700 
59·81418 

4·61282 
132·03910 
127·76455 

4·27455 
101·86203 
100·28207 

1·57996 
10·46733 

Snwxy 
449·56848 
430·30570 

19·26278 
578·40765 
563·02891 

15·37874 
508·68363 
502·60036 ---

6·08327 
40·72479 

Snwy•" 
3177·74804 
3095·63691 

82·11113- 80·440= 1·671 
2541-44933 
248H3855 

60·31078- 55·329 = 4·982 
2542·69182 
2518·96597 

23·72585- 23·422 = 0·304 
166·14776- !58·446 = 7·702 
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the various toxic materials at high concentrations, in which 
region Fig. 10 suggests that the data may be adequately repre
sented by three parallel lines. 

Provisional lines for the three series of data have been drawn 
in the figure, and have equations: 

Y,. = 2·30+3·94x, Y.r = 0·59+3·94x, Ym = 1·24+3·94x. 

From these, first approximations to the log LD 50's are 

mr = 0·685, m4 = 1·119, mm = 0·954. 

A provisional estimate of the relative dosage value of rotenone 
and deguelin concentrate is therefore 

M...r = 1·119-0·685 = 0·434, 

giving a relative potency 

Prd = IQO·~:U = 2·72. 

Expected probits, Y, are read from the provisional lines and 
entered in Table 12. Calculations of sums of squares and pro
ducts proceed for each series separately, those for rotenone being 
identical with those of Ex. 6, since the same set of provisional 
probits has been' used. Corresponding values of S=, S:ru and Suu 
are then summed over the three series; for example 

l:S:r:r = 4·61282 + 4·27455+ 1·57996 

= 10·46733. 

These are used to give the new estimate of the regression coef
ficient 

b = 40·72479/10·46733 

= 3·8907. 

The three regression lines are lines through the three mean 
points, (x, y), with slope b; thus 

Y,. = 5·0876+ 3·8907(x- 0·7072) 

= 2·336 + 3·89lx, 

Y4 = 0·660+3·89lx, 

Y.n = 1•302+3·89lx. 

(5·8) 
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The differences from, the provisional lines are small, leaving little 
doubt that the hypothesis of a single value of b for the three 
series is justified. A test of parallelism is given by comparing 
the sum of the xa values for the three series with that obtained 
by a similar process from the total sums of squares and products. 
For these totals 

};81111 - (J;S:cy)2fl;Szz = 7•702; 

this has 10 degrees of freedom, since there are fourteen ob
servations and four parameters have been estimated for the 
equations. This quantity may be subdivided into a X2 with 

TABLE 13. Analysis of x2 for Ex~ 10 

Sum of Mean I D.l!'. squares square· 
i 

Parallelism of regressions 2 0·745 0·372 I 

I Residual heterogeneity 8 6·957 0·870 I 
l 

Total 10 I 7·702 J 
8 degrees of freedom, which is the sum of the x2 values for the 
three series separately, and a residual x2 with 2 degrees of freedom 
dependent on the departure from parallelism of the three lines. 
The analysis of x2 in this way is shown in Table 13. The second 
line of the analysis shows a x2 of 6·957 for heterogeneity, a value 
which is clearly not significant; the sum of squares for parallelism 
may therefore be tested as a x2• Since 0·745 is not significant, 
theye is no evidence of any conflict with the hypothesis that the 
three lines are parallel. Had the heterogeneity x2 been significant, 
the ratio of the two mean squares {obtained by dividing the 
sums of squares by the degrees of freedom) would have been 
tested by Fisher's tables of the variance ratio {Fisher and Yates, 
1948, Table V), and the mean square for heterogeneity would 
have been used as the heteroge~eity factor in the calculation of 
variances. 

The new estimates of the log LD 50's are, from equations ( 5·8), 

mr = 0·6847, m4 = 1·1154, mm = 0·~ 
~ 
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corresponding tO LD50 values of 4·84, I3·04 and 8·92 mg.fl. 
respectively. The standard error of m may be calculated from 
equation (3·6), ·as in Ex. 6, remembering that b has now been 

· estimated from the more extensive data, so that, by equation (5·6), 

V(b) = I/10·4673. 

The revised value of the estimate of the relative dosage value 
of rotenone and the deguelin concentrate is 

..M,.tl = 0·4307 ± 0·0390, 

the standard error being derived as the square root of the 
variance; from equation (5·7) 

I { I · 1 (0·5718-0·4307)2} 
V(M) = {3·8907)2 119·6 + 78·1 + 10·4673 

= O·OOI52. 

The relative potency is therefore 

Prtl = 2·70 ± 0·24, 

the standard error of the antilogarithm -of M being obtained by 
equation (3·7). Rotenone is thus estimated to be 2·70 times as 
toxic to M. aanborni as the deguelin concentrate, or,_ in other 
words, in order to give a kill as great as that produced by a given 
concentration of rotenone a 2·70 times greater concentration of 
deguelin concentrate would be required. 

For the 5% fiducial limits of M, t = 1·960 and therefore 

g = 3·8-!/10·47 X 15·14 

= 0·024, 

a value sufficiently small to be ignored; consequently fiducial 
limits of M may be taken as M±I;960x0·390 or 0·5071 and 
0·3543. Hence the fiducial limits for pare 3·21 and 2·26. 

In the same manner, the potency of the mixture relative to 
rotenone or the deguelin concentrate may be estimated. Further 
consideration of these three relative potencies will be deferred 
until Ex. 20, where the data will be used as an illustration of 
similar joint action of two poisons. 
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When the relative dosage value of two poisons has been assayed 
separately by two or more series of tests, an improved estimate 
is given by the weighted mean, using for weights the reciprocals 
of the variances of the estimates of M (Cochran, "1938). A 
weighted sum of squares of deviations of M may be used as 
a x2 in a test of the heterogeneity of the estimates averaged 
(:\Iiller, Bliss and Braun, 1939). When there is no evidence of 
heterogeneity the sum of the weights is the weight to be attached 
to the mean; when a significant x2 occurs the total weight must 
be diVided by the heterogeneity factor. 

Ex. 11. Combination of relative potencies. In separate tests 
Tattersfield and Martin (1938, Table I) have compared a toxicarol 
precursor (potash separated), prepared in three different ways, 
with rotenone. The dosage values relative to rotenone were 
- 1·164 ± 0·036, - 1·186 ± 0·029 and - 1·114 ± 0·042. Differences 
between~ these barely exceed their standard_ errors, and it is 
therefore reasonable to form a combined estimate using the 
reciprocals of the squares of the standard errors as weights. The 
estimate is 

M =- 772 X 1·164+ 1189 X 1·186+567 X 1·114 
772+ 1189+567 . 

= - 2940·4/2528 

. = -1·163. 

The variance of M is 0·000396, the reciprocal of the sum of the 
"·eights, and the standard error is therefore ± 0·020. The test 
of heterogeneity of the separate estimates is scarcely required 
here, in view of the close agreement between them; the appro
priate X2 is 

Xf2) = 772 X (1·164)2+ 1189 X (1·186)2 

+ 567 X (1·114)1 - (2940·4)2/2528 
= 1·99. 
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With weights as nearly equal as these, little is lost by taking 
the unweighted mean 

M' =- (1·164+ 1·186+ 1·114)/3 

= -1·155, 

the variance of which is 

V(M') = {(0·036)11 + (0·029)1 + (0·042)2}/32 

= 0·000433. 

This estimate therefore has a standard error of ± 0·021 and is 
only 9 % less precise than the weighted mean. 

If two poisons have been tested in.different experiments, even 
though they show similar values of b a direct estimation of their 
relative dosage value as the difference in the estimated log LD 50's 
may be misleading: the level of susceptibility of the test subjects 
may have been different in the two experiments or experimental 
conditions may have differed in such a way that the absolute 
potency of any poison is different in the two experiments though 
relative potencies within an experiment are unaffected. An esti
mate of relative potency independent of any difference in sus~ 
ceptibility may still be made, providing that each poison can be 
compared with a third which has been tested in both experiments. 
Estimates of M13 and M23 can then be made 'within experiments'; 
the required M is estimated as 

and 

Mu = Mls- Mzs• 

Pu = P1s/P2s· 

(5·9) 

The variance of M12 is the sum of the variances of ... l£13 and M23• • 

The method should only be used whenthe conditions in the two 
experiments are sufficiently similar for the estimate obtained 
to be relevant. 

• Cochran (1938) suggested this procedure for testing the significance 
of a difference in potency of poisons used in separate experiments. The 
significance should be assessed from the normal distribution, not the 
t-distribution, unless the variances have been adjusted by a heterogeneity 
factor. 
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Ex. 12. Comparison of relative potencies. Tattersfield and 
Martin ( 1938, Table I), experimenting with rotenone and a resin 
derived from a Sumatra-type derris root, found a relative dosage 
value 

MB'I' = - 0·800 ± 0·025. 

In a second experiment, using rotenone and a Derris elliptica 
resin, they found 

Mer = - 0·552 ± 0·031. 

Both experiments were spraying trials against Aphis rumicis, 
the same tec;hnique being used for both. Now 

(0·025)2+ (0·031)2 = 0·001586 = (0·040)2; 

hence the relative dosage value of the two resins is estimated as 

Mse = - 0·248 ± 0·040, 

and the Sumatra-type resin is estimated to be 0·56 times as 
toxic as the Derris elliptica. 

Ex. 13. The relative toxicities of seven derris roots. A further 
example is provided by earlier data from Tattersfield and Martin 
( 1935) in which seven samples of derris root were tested for their 
toxicity to Aphis rumicis. Tests were made on six occasions, 
a different pair of roots being compared on each occasion. The 
proportions of badly affected, moribund, and dead at each con
centration have been re-examined for this example, using as the 
measure of dosage the logarithm of the concentration of ether 
extract in mg.fl. The logLD50 and M values for these six tests 
were found to be {the suffices referring to the seven roots)'": 

Test I m2 = 1·539, m6 = 1·607, Mss= 0·068, 

" 
2 m6 = 1·695, m6 = 1·452, M56 = - 0·243, 

" 
3 m5 = 1·622, m7 = 1·384, M57 = - 0·238, 

" 
4 m4 = 1·631, m5 = 1·682, ·M,s= 0·051, 

" 
5 m1 = 1·496, m3 = 1·492, M13 = - 0·004, 

" 
6 m1 = 1·440, m7 = 1·421, M17 = -0·019. 

'" Allowance was made for the natural death rate estimated from 
control batches, the methods of Chapter 6 being used. 
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From these estimates the relative potency of any two roots 
can be estimated by comparisons within experiments. For 
example, the relative potency of roots I and 4 may be estimated 
from the relative dosage value 

Mu = M17 -Mr,7-M45 = O·I68; 

the standard errors are not shown here, but are obtainable by 
the same method as before. A convenient way of summarizing 
the LD50's is to take a mean value for root no. 5, which was 
tested four times, and to place the others at the estimated dis
tances from this; this mean might be obtained by appropriate 
weighting, as in Ex. 11, but the simple arithmetic mean of the 
four values, I·652, is almost equally good. The log LD 50's may 
then be written as: 

Root no. I: I·433 

" 
" 
" 

2: I·584 

3: I·429 

4: I·60I 

Root no. 5: I·652 

" 
6: I·409 

" 
7: I·414 

The values are very similar to those computed independently 
by Bliss (I939a). The variance of M14 is the sum of the variances 
of M17, M57 and M45, each being taken from a separate experiment, 
and the standard error of any relative dosage value should be 
obtained in this way rather than by using standard errors of 
each log LD 50, such as Bliss has estimated. 

Had more tests of pairs of these seven roots been carried out, 
· it would have been possible to estimate some of the relative 
potencies by more than one chain of pairs. In order to obtain 
the best possible estimates the method of least squares would 
then have had to be used (see Ex. I4), though data from carefully 
controlled trials might be. sufficiently consistent for satisfactory 
estimates to be made, by simple averaging, without this process. 

Ex. I4. Combination of relat·ive potencies by the method of least 
squares. As a more complex example of the estimation of relative 
potencies from a series of tests, data published by 1\lartin (I940) 
on tests of four different derris roots as. poisons for A. rumicis 



COMPARISON OF RELATIVE POTENCIES 7~ 

will be considered. Of these roots, known as W. 211, W. 212, 
W. 213 and W. 214, two sets of three were tested on different 
occasions, and on a third occasion W. 211 and W. 213 were 
compared with rotenone. The estimated log LD 50's are shown 
in Table 14, together with the weights (recipr9cals of the 
variances) to be attached to each. For each occasion the three 
estimates were obtained from a common regression coefficient 
as in Ex. 10, but in the computations modified weighting coef
ficients (§ 27) were used in order to take account of 2-4% mor
tality amongst the control batches of insects. 

Date 

15.vi.38 

27. vii. 38 

18. vii. 39 

TABLE 14. Estimated log LD50's and their Weights for 
Rotenone and Four Derris Roots on Three Occasions 

Rotenone W.2ll W.212 W.213 W.214 Totals 

- 2·430 2·228 - 2·022 22138·82 
- (1790) (3610) - (4820) (10220) 
- 2·420 2·156 2·255 - 21392·03 
- (3520) (2530) (3290) - (9340) 
0·980 2-193 - 2·191 - 7788·62 

(1640) (1400) - (1420) - (4460) 

1607·20 15938·30 13497·76 10530·17 9746·04 51319·47 
(1640) (6710) (6140) (4710) (4820) (24020) 

m = 2·1365308. 

The estimated log LD50's for any one occasion are not inde
pendent, since they are based on the same regression coefficient. 
Hence the variance of a relative dosage value obtained for .two 
poisons on one occasion is not simply the sum of two variances 
of the form of equation (3·6), but is an expression like equa-

. tion (5·3). In this example the second term of equation (3·6) 
was in every instance small relative to the first and thus had · 
little effect on the variance, as may be expected when knowledge 
of the poisons allows the experiment to be so planned that the 
mean pro bit, y, shall be near to 5. The complication of this non
independence has therefore been ignored in the analysis of the 
data. In order to estimate the relative potencies of the five 
materials under comparable conditions, account must be taken 
of the difference in susceptibility of the insects on the three 
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occasions. If the relative potency of any pair remained the same 
on all occasions, the log LD 50 of one material on one occasion 
is expressible as the sum of three components, the general mean, 
a root or column constant, and an occasion or row constant. 
For example, the logLD50 for root W. 2ll on 27 July 1938 
should be .expressible as m+c1 +r1, where m is the general 
(weighted) mean, c1 is. one of the five column constants cr, c1, c1, 

c3, c4 corresponding to the root, and r a is one of the three row 
constants r 1 , r 2, r a corresponding to the occasion. Since each set 
of constants is to represent deviations about the general mean, the 
weighted totals must be :1:ero, so that 

1640cr+6710c1 + 6140c2 +4710c3 +4820c4 = 0,} 
10220r1 +9340r2 +4460r3 = 0. 

(5·10) 

Estimates of all the constants can be obtained by minimizing 
the weigh~ sum of squares of differences between the values 
in Table 14 and their expectations in terms of the constants. 
The minimizing conditions are simply statements that the 
weighted total for any one of the columns or rows is equal to 
its expected value. These weighted totals are shown in the 
margins of Table 14, with the total weights in brackets. Thus, 
for example, the second column gives the equation 

6710m+ 1790(c1 +r1)+3520(c1 +r2)+1400(c1 +r3) = 15938·30. 
The general mean is 

m = 51319·47/24020 = 2·1365308, 
and the equations therefore reduce to the following form, in 
which only the coefficients of the eight unknowns are tabulated 
on the left-hand side: 

cl Cz Cs c,. rl rs rs 
1640 = -1896·71, 

6710 1790 3520 1400 = 1602·18, 
6140 3610 2530 = 379·46, 

4710 3290 1420 = 467·ll, 
4820 4820 552·04, (5·ll) 

1790 3610 4820 10220 = 303·48, 

3520 2530 3290 9340 1436·83, 

1400 1420 4460 = -1740·31. 
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These equations are not entirely independent, and, before they 
can be solved, need to be supplemented by the two conditions 
on weighted totals already stated. Though they appear compli
cated, a little study of their structure should enable the analogous 
equations for other similar sets of data to be written down quite 
easily. The solution is not difficult, but is tedious; the results 
to any required degree of accuracy may be obtained by a process 
of successive approximation, and are 

Cr = -1·0177, 

Ct = 0·2507, 

c1 = 0·0266, 

~~ = 0·1387, 

c, = -0·1721, 

,.1 = 0·0576, 

r 1 = 0·0033, · 

r 8 = -0·1388. 

The column constants give the required balanced oomparisons 
between the five poisons; the row constants are of no interest 
except for comparing the susceptibilities of the insects on the 

TABLE 15. Comparative Potencies of Rotenone 
and Four Derris Roots 

Potency relative toW. 211 

Material logLD50 LD50 
Present Martin (mg./1.) t 

analysis (1940) 

Rotenone Hl9 13·2 18·50 -
W.211 2·387 244·0 1·00 1·00 
W.212 2·163 146·0 1·68 1·76 
W.213 2·275 188·0 . 1·29 1·31 
W.214 1·964 92·0 2·65 2·66 

three occasions. By addition of the general mean, m, comparable 
values of log LD 50 for the five materials are obtained, and these 
are shown in the seoond column of Table 15. The last two columns 
of the table give the relative potencies as estimated by the above 
analysis and as previously given in Martin's paper,• where an 

* When Martin's paper was written, the modified weighting coefficients 
(§ 27) had not been developed, and though the percentage kills were 
adjusted for mortality in the controls the ordinary weighting coefficients 
were used. As the control mortality never exceeded 4 %, the difference 
in method is not important. 

.-
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approximate method suggested by the present writer was used; 
the approximation is here close to the least squares solution 
but might give misleading results with less regular data. 

Table 16 shows the expected LD50 values, corresponding to 
the experimental values in Table 14, and has been constructed 
by adding the appropriate pairs of row and column constants 
to the general mean. The goodness of the agreement of the data 
and the hypothesis ·of constant relative potencies may be assessed 
by meails of a X" test. The weighted sum of squares of deviations 
of the data in Table 14 is 

1640 X (0·980)2 + ... + 4820 X (2·022)2 

- (51319·47)2/24020 = 2779·85, 

and of this the fitted constants account for an amount 

-1896·7lcr+ 1602·18c1 + ... -1740·31r3 = 2765·61. 

TABLE 16. Values of log LD50 Fitted to Data of Table U 
on Assumption of Constant Relative Potencies 

Date Rotenone W.211 W.212 W.213 W.214 

15.vi. 38 - 2·445 2·221 - 2·022 
27. vii. 38 - 2·390 2·166 2·278 -
18. vii. 39 0·980 2·248 - 2-136 -

' 
; 

Though apparently eight constants have been fitted, only six 
of these (two 'row' and four 'column') are independent, since 
the weighted sums were constrained to be zero. The residual x2 

therefore has 2 degrees offreedom (9, less 1 for the mean and 6 for 
the constants); hence · 

xr2] = 14·24. 

The same value, apart from errors of rounding off,· may be 
obtained as the sum of squares of the discrepancies between 
corresponding entries in Tables 14 and 16. The significance of 
x2 indicates that the relative potencies of the five poisons did 
not remain constant throughout the .investigation; nevertheless, 
the agreement between Tablesl4 and 16 is probably good enough 
for most practical purposes. 
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The standard errors of the logLD50's in Table 15 may be 
estimated by the use of routine processes in the method of least. 
squares, but a detailed discussion is beyond the score of the 
present work. 

22. DESIGN OF EXPERIMENTS 

W'hen several poisons are to be compared in one experiment it 
may be impossible to test them all on one day or all on one homo
geneous stock of insects. Precautions must then be ~a.ken to 
avoid any bias in the results arising from inequalities in the 
susceptibility of the insects on different days or in different stocks. · 
A similar problem may be encountered when tests have to be 
made in several laboratories, or by several workers in the same 
laboratory; even though standardized methods of testing are used, 
variations may occur in the effectiveness of the same poison used 
by different workers. Illustrations have been given in ~xs.13 and 
14 of methods of combining results from groups of tests where 
each group contains a different selection of poisons from all those 
under investigation and the general level of potency or effective
ness may vary from one group to another. These, however, are 
not ideal examples of how to deal with the general problem, 
since their lack of symmetry complicates the analysis and leads 
to final estimates of log LD 50's which differ widely in precision. 

In planning an investigation of poisons which are too many 
for all to be tested on a single occasion, or which for some other 
reason have to be divided into groups for testing, it is usually 
an advantage to introduce an element of balance into the 
arrangement adopted, so that unbiased and reliable comparisons 
can be made between every pair of poisons. The levels of dose 
and numbers of insects should be chosen, in the light of existing 
knowledge, with the aim that all estimates of logLD50 have 
about the same precision. Careful planning of an investigation 
before it is begun is always to be preferred to the haphazard 
accumulation of results, for no amount of detailed statistical 
analysis can extract satisfactory answers to the· questions pro
pounded if the experiments were badly designed for obtaining 
the answers. 

FPA 6 



82 THE COMPARISON OF EFFECTIVENESS 

Moore and Bliss (1942) have described an experiment in which 
seven different organic compounds were tested for their toxicity 
to Aphis rumicis. Sets of three compounds were tested under 
comparable conditions on each of seven days; the sets were so 
chosen that each poison was used on three days and occurred 
mice .and once only on the same day as each of the others. Moore 
and Bliss have discussed analysis of variance methods appro
priate to these data, ignoring the differential weighting of the 
observations arising_ in the course of the usual probit analysis. 
They obtained unbiased comparisons between the poisons, though 
still more precise estimates might possibly be made from the 
information contained in the data. In this experiment there 
was a heavy mortality amongst insects sprayed with the spreader 
only, and in view of the considerations advanced in Chapter 6 
there should be some modifications in the analysis, but the 
results will not be discussed here. 

This experiment is said to have a balanced incomplete block 
design (Yates, 1937 b, 1940). If the seven insecticides are denoted 
by A, B, ... , G, the seven blocks or sets of three may be written 

A A A B B C C 
B D F D E D E 
C E G F G G F 

Yates has described how the effects of differences between days 
may be eliminated and the seven poisons compared by means of 
'within-day' comparisons only; he has also discussed the utiliza
tion of information from comparisons' between days', an addition 
which may be of value in more extensive experiments though 
scarcely likely to be so here. There is, of course, no advantage 
in this arrangement in blocks unless the blocks are likely to 
differ appreciably in the results which they would give for any 
one poison. Only experience can help the experimenter to dis
tinguish circumstances in which the control of variations in 
experimental conditions by means of blocks may be expected 
to be advantageous from those in which it is unnecessary and 
may even lead to a reduction in precision. Few published ac
counts of researches on insecticides, or, indeed, on other aspects 
of biological assay, refer to ~his problem. 
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The subject of experimental design has been developed pri
marily in connexion with agricultural field trials, but the prin
ciples are undoubtedly useful in planning biological assays. The 
properties of many other designs have been studied, and valuable 
accounts of these have been given by Fisher (1942), Fisher and 
Yates (1948, Tables XV-XIX) and Yates (1937a), to whose 
work the reader seeking information on randomized blocks, 
Latin squares, confounding, and like topics must be referred; 
a brief discussion here would be inadequate and a full treatment 
would be out of place. Further research into the adaptation of 
the principles of experimental design and the analysis of the 
results of well-planned experiments is undoubtedly needed. 
Another branch of this subject, factorial design, is discussed in 
Chapter 7. 

23. PRECISION OF ARSA YS 

Miller, Bliss and Braun (1939) have discussed a number of 
methods for increasing the precision of estimates of M. The 
experimenter may always attain greater precision by using larger 
numbers of test subjects, but this is often inconvenient or im
possible. In planning assays of M, therefore, consideration must 
usually be given to the most economical utilization of a limited 
number of subjects. If some information on the value of a relative 
potency already exists, doses of the test material and the standard 
may be chosen so as to bear this ratio to one another; the mean 
pro bits in a new assay should then be nearly equal, and the third 
term in the expression for the variance (equation (5·3)) will be 
small. In choosing the doses the experimenter should remember 
that very low or very high kills give low values of the weighting 
coefficient, w, but that, on the other hand, if the doses used are 
too close together the value of Sxx will be small and b therefore 
of low precision. When nothing but M is· to be estimated, and 
some information on the' LD50's is already available, probably 
the best compromise is to aim at sets of expected kills lying 
between 4 and 6 probits and as far as possible to avoid probits 
lower than 3 or higher than 7. On the other hand, when little 
is known of the LD 50's, a sufficiently wide range of doses should 

6·2 
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be used to ensure that, at all costs, the kills obtained with each 
poison bracket the 50 % point. The slope of the regression lines, 
being the reciprocal of the standard deviation of the dosage
tolerance distribution, is also of some interest, and for its satis
factory estimation a rather ·wider range of doses (and conse
quently of kills) may be desirable than would be ideal if Malone 
were considered. 

The expression for the variance of M is also reduced by any 
procedure which increases the slope of the regression lines. The 
regression coefficient, b, however, is not under the control of 
the experimenter in the same way as are the dose levels, but is 
a characteristic of the poison, the test subject, and the conditions 
of the experiment. Though the precision of an assay of relative 
potency may be increased by a change in the test subject or in 
the experimental conditions, there may then be some doubt of 
whether the same quantity is being estimated. Bliss and Cattell 
(1943, pp. 482-5) refer to instances of drug assay with animals 
which have given estimates of relative potency very different 
from the values found for man, in some cases even the order of 
potency. being reversed. The relative potencies of insecticides 
may be altered by a change in spray medium or in method of 
application, and may be entirely different for different species of 
insect. 

It might be thoughtthat, in assaying the potency of a poison 
or other stimulus relative to a standard, precision would be 
increased by comparing the response to the substance under 
test with that found for the standard in all previous tests, rather 
than with the small amount of data for the standard obtained 
in the course of the current assay. The danger in this approach 
is that, though conditions can usually be so controlled that 
relative potency remains reasonably constant in tests made over 
a period of time, absolute potency often varies very considerably 
from day to day. The data examined in Ex. 14, for example, 
indicate that the poisons on the last occasion ofthe tests averaged 
60% higher potency than on the first. Bliss and Packard (1941) 
have reported that exposure of eggs of Drosophila melanogaster 
to rontgen rays gave the same probit regression relationship 
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between kill and intensity of irradiation on a number of occasions 
over a period of seven years, and Whitlock and Bliss (1943) 
have described a series of antihelminthic tests in which the 
position of the regression line remained the same, within the limits 
of experimental error. Nevertheless, this state of affairs appears 
to be exceptional, and in any new investigation the experimenter 
should be prepared for much greater instability in the mean log 
tolerance, m, than in the slope, b, until experience shows other
wise. 

24. MEAN PROBIT DIFFERENCE 

A second measur:e of the difference between two series of observa
tions giving parallel pro bit regressions is the mean probit difference 
(Finney, 1943a). The mean probit difference, Lt, between two 
parallel probit lines is defined as the constant vertical difference 
between the lines 

.112 = Y1 -Y2 = bM12 

= ih -yz-b(x1-xz). 

The variance of this expression is 

V(L11z) = V(y1 ) + V(y2) + (x1-x2) 2 V(b), 

which may be written 

V( 
,. ). _ 1 1 (x1 - x2) 2 

LJ 12 - --+ -- + ~=--=-__:::__ 
1 Snw 2Snw l:Szz 

when no heterogeneity factor is needed. 

(5·12) 

(5·13) 

Though Lt is in some ways easier to use than M, particularly 
in respect of its fiducial limits which do not require complex 
expressions like (5·4), it has the serious disadvantage of giving 
a comparison that is much less readily interpreted in practical 
terms. Indeed, Lt only measures the difference in effect of equal 
doses-and that in a unit whose value in percentages is not 
constant at all parts of the scale-instead of comparing the 
magnitude of equally effective doses. The mean pro bit difference 
may sometimes provide a convenient statement of results, but 
is seldom useful without a knowledge of the regression coefficient. 
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Values of .1 between different pairs of poisons and over a series 
of experiments may be combined and compared just as were 
values of Min Exs. II-I4, the weights again being the reciprocals 
of the variances. 

Ex. I5. Mean probit difference of rotenone and deguelin con
centrate. From equations (5·8) the mean probitdifference between 
rotenone and the deguelin concentrate is · 

. .1rd = I•676 ± 0·229, 

the standard error being obtained by equation (5·I3) as 

I I (0·5718)2 
V(.1) = l19·6+78·1 + I0·4673 

= 0·0524. 

Fiducial limits for .1 are obtained by addition and subtraction 
of the appropriate multiple of the standard error. For rotenone 
and the deguelin concentrate the 5 % fiducial limits differ from .1 
by ± I·960 x 0·229, and are therefore 2·I25 and I·227. 

25. UNEQUAL TOLERANCE VARIANCES 

When the probit regression lines of two series of tests are not 
parallel, the interpretation of their comparative effects is more 
difficult. The relative dosage value of the two poisons can still 
be measured at a selected level of kill, but this quantity will be 
different at another level. The variance of such a relative dosage 
value is the sum of the variances of the two dosages estimated 
to give that kill, each being obtained from equation (3·6). Simi
larly, the probit difference between the poisons must be quoted 
for a specified dosage. Thus much of the usefulness and simplicity 
of these two measures is lost when the variances of the distribu
tion of tolerance are unequal. 

An apparent lack of parallelism may sometimes disappear if 
a more suitable x-scale is chosen, though this is unlikely unless 
the separate series also give indications of departing from 
linearity of regression on the scale first used. Up to the present 
no simple method of comparing the effects of two poisons whose 
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regression lines are not parallel has been developed, though, as 
will appear in§ 38, consideration has been given to the form of 
dose-mortality relationship for mixtures of two such poisons. 
Indeed, for two substances of totally different chemical con
stitutions or modes of action on the test subjects, there is no 
reason to expect an easy expression of the difference in the 
dose-response relationships and the term 'relative potency' may 
cease to have much useful meaning. 



Chapter 6 

ADJUSTMENTS FOR NATURAL MORTALITY 

26. ABBOTT's FoRMULA 

THE responses of the test subjects have so far been assumed to 
be entirely due to the effects of the stimuli applied, and no 
allowance has been made for any responses which might have 

·occurred without these stimuli. In some instances the assump
tion may be justifiable, and, indeed, almost all the numerical 
examples used in earlier chapters were chosen as containing 
evidence of little or no natural mortality under the conditions 
of the test. This state of affairs does not always obtain. Control 
batches of insects, untreated or possibly treated with a spray 
medium having no toxic content, often show appreciable death 
rates in the period between the application of insecticides to the 
test batches and the examination of the results of this applica
tion. A similar situation arises in ovicidal tests when it is 
impossible to distinguish between fertilized and unfertilized eggs 
at the start; the observed percentage of eggs failing to hatch 
must be adju~ted in order to allow for the percentage unfertilized 
in the population from which the test batches were taken. Again, 
in tests of fungicides by means of spore germination counts the 
adjustment is required in order to allow for the existence of 
spores which would not germinate even ·in the absence of any 
fungicide. 

If in a toxicity test a proportion C of test subjects would die 
even without any poison, the total death rate expected from 
a dose sufficient to kill a proportion P of those which would 
otherwise survive is. 

P' = C+P(I-0), (6·1) 

providing that the two types of mortality operate independently. 
From this equation it follows that, if the total proportion dead 
is P', the proportion killed by the poison alone is 

P = (P'- C)/(1- C). (6·2) 
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This is commonly known as 'Abbott's formula', on account of 
its use in a paper. by W. S. Abbott (1925) on the adjustment of 
the results of insecticidal tests; in fact, it had been used earlier, 
for the same purpose, by Tattersfield and Morris (1924), and is 
an application of the well-known rule for the combination of 
independent probabilities. 

27. APPROXIMATE EsTIMATION OF THE PARAMETERS 

The effects of the adjustment for natural mortality on the maxi
mum likelihood estimation of the parameters of the tolerance 
distribution have usually been ignored. Most important of these 
is that the effective number of subjects exposed to the poison 
is no longer n, the total number in a batch, but, on the average, 
n( I -C). This was realized by .Bliss, who, in the discussion of an 
ovicidal test (1939a, p. 602), states: 'Both the. number of eggs 
exposed and the percentage kill have been corrected for mor
tality in the untreated controls.' Examination of his correction 
shows the number of eggs tested at each concentration to have 
been reduced by the percentage mortality in the controls; thus 
the weights attached to each observation were proportionately 
reduced. The estimates of potency are not altered, but their 
precision is less than if no adjustment had been required. 

Even when C is known exactly, this is not the only alteration 
required in the pro bit analysis. In the expression for the weight
ing coefficient (equation (3·4)), the produc~ PQ arises as the 
variance of a binomial frequency distribution; when C is not 
zero, the relevant distribution is that defined by the total pro
portions of dead and surviving, P' and Q', Finney (1944a) has 
shown that the two adjustments may be combined by taking as 
the weighting coefficient 

zz 
w- (6·3) 
- Q(P+1~c) 

instead of the usual w = Z2/PQ, and multipl,Ying by the unad
justed n. Values of this quantity, at intervals of 1% inC from 
zero to 90 % and at intervals of 0·1 in the expected probit, are 
given in Table II. 
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When 0 = 0, (6·3) reduces to the formula for the ordinary 
weighting coefficients; for any other value of 0 these coefficients 

must ~e multiplied by PI ( P + 
1 
~ 0 ) . Even when 0 is no greater 

than 5 %, the reduction in the value of w may be considerable, 
especially if the expected probit is small. Except when 0 = 0, 
w is not symmetrical about the value Y = 5, but decreases much 
more rapidly for small values of Y than for large. For most 
practical purposes, it is sufficient to determine w from a value 
of 0 given to the nearest 1 %, so that interpolation in Table II 
is seldom needed. Beyond the range of Table II, w may be 
calculated with the aid of Table I, as illustrated in Ex. 16. 

Ex. 16. Calculation of weighting coe.fficient8. Suppose that it 
is required to find the value of w for an expected pro bit Y = 6·2 
and a control mortality of 59%- The mortality P, corresponding 
toY, must first be read from Table I as 

p = 0·8849. 

Also 0/(1- 0) = 1·4390, 

and therefore · P_l ( P + 
1 
~ o) = 0·3808. 

When 0 = 0, the weighting factor for this Y is 0·37031 
(Table II), and therefore for 0 = 0·59 

W = 0·37031 X 0·3808 

= 0·1410. 

This may be compared with the value for Y = 3·8, for which 

P = 0·1151; PI ( P+ 
1 
~ o) = 0·0741, and w = 0·0274. 

In practice 0 is seldom, if ever, known exactly, and must 
instead be estimated from a sample of the population just as 
are other mortality rates. If this control batch is large relative 
to the batches used for the different doses in the experiment, 
0 may be estimated satisfactorily from it alone, a procedure 
which ignores the information on 0 contributed by the mor
talities observed for the test doses. The observed mortality 
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amongst the controls, c, is itself subject to sampling variation, 
and, though it is an unbiased estimate of 0, a better estimate 
may often be obtained by the use of additional information, 
especially that from the lower dose levels of the poisons under 
test. Such a dose may, for example; give a total mortality, p', 
which is less than c, and thus suggest that c is an overestimate 
of the true natural mortality, C. Similarly, a series of values 
of p' at small doses which are nearly equal to one another bu~ 
much in excess of c, indicates that c is an underestimate. In 
such circumstances an improved estimate of 0 may be obtained 
either from inspection of the data or from a freehand sketch 
of the sigmoid response curve relating dosage to percentage kill. 

When 0 is not too large (say less than 20 %), a probit analysis 
based on the estimate c, or on an estimate modified as suggested 
in the last paragraph, and using equation (6·3) for the weighting 
coefficient but otherwise proceeding as in Chapter 4, is very 
often sufficiently near to the maximum likelihood treatment of 
the data for practical purposes. The estimate of 0 may be greater 
than certain of the p', so that Abbott's formula yields negative 
values for p. Though no meaning can be attached to negative 
mortalities, the correct procedure is still to calculate and use 
working probits according to the rules of Chapter 4, as only in 
this way can each observation exercise its right influence in the 
estimation of the regression line or lines. Working pro bits corre
sponding to ne~ative values of p are not often required, and have 
not been included in Table IV; when needed they must ·be 
calculated from Table III. No example of the use of these modi
fied weighting coefficie~ts in the manner just described need be 
given, as the method is exactly the same as that customarily 
employed when 0 = 0. 

28. THE MAXIMUM LIKELIHOOD ESTIMATES 

If a series of tests provides evidence that the natural mortality 
rate is high, or if the control batch is so small or the test mor
talities so· irregular that estimation of 0 is difficult, the full 
maximum likelihood process, following the lines indicated in 
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Appendix II should be carried out (Finney, 1949d). An auxiliary 
variate, x', is define_d by 

x',;. QJZ; (6·4) 

numerical values of x' are given in Table II. The maximum 
likelihood equations are then set up: 

b"? 30 s- s } l:zz+ 1=-c zr= ¥11' 

(6·5) 
bSz:r + 1 ~ G Sz-:r = Sz'll' 

d - b- 30 _, (6 6) an a=y-- .t--
1

_
0

x. · 

These equations need explanatiPn. A first approximation to C 
is determined as descrihed in§ 27, and used in Abbot's formula to 
give values of p. From these, a provisional probit line is con
structed, and weights (using Table II) and working probits 
obtained in t.he ordinary manner. An additional column is added 
to the computing ~o~heet to show QJZ for each Y. Equations (6·5) 
give b and 80/(l- C) as t.he partial regression coefficients of y 
on X and x'; b is a new approximation to the probit regression 
coefficient, ( 0 + 30) u new approximation to the natural mortality 
rate. \Veighted sums of squares and products are used, so that, 
for example; 

S=· = Snw(x- x) (x'- x') 
= Snwxx'- (Snwx) (Snwx')/Snw. 

Equation (6·6) gives the constant term in the new regression 
equation 

Y = a+bx. (6·7) 

If nc subjects are tested at zero dose, and re of these die, an 
estimate of the natural mortality rate, 

C = rcfnc, (6·8) 

is derived from the control group alone; in equations (6·5), 

n.-(1- C) - .. -0-- (6·9> 

aud (6·10f 
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must be added to sz'z' and SZ'IJ respectively, as allowances for 
the information provided by this group. 

If the revised estimate of the natural mortality rate or the 
revised regression equation differs appreciably from that on 
which the milculations have been based, a second cycle must 
be computed. The process of iteration must continue, in the usual 
manner, until differences between successive cycles become un
important. At that stage, 8C will be practically zero, so that 
equations (6·5) will give b as the total regression coefficjent of 
y on x, and equation (6·6) will give the constant term in the 
regression equation as (Y- bx). Herein lies the justification for 
the approximate method of analysis described in § 27, for if a 
value of C close to the maximum likelihood estimate can be chosen 
by inspection of the data, only the modification of the weighting 
coefficients is needed in order that the method of Chapter 4 may 
estimate the other parameters. 

When a satisfactorily close approach to the maximuin likeli
hood estimates has been made, 

8C 
X2 = Suu-bSzu-1-CSz'u (6·11) 

gives a test of heterogeneity; in assigning degrees of freedom to 
x2, a group_ of subjects at zero dose counts as one dose level, and 
one degree of freedom must be subtracted for the additional 
parameter, c. In equation (6·11), s/IU is to be interpreted as the 
usual sum of t~quares of deviations plus a contribution nc(c- C)2 f 
C( 1 -C) from the controls. This x2 is subject to the usual limita
tions, in that it is strictly valid only in the limit of the iteration 
and that it may be disturbed by small expectations. 

Equations (6·5) should be solved by first deriving the inverse 
matrix of the coefficients, or what Fisher (1944, §29) calls the 
set of c-mult.ipliers. }'rom this, both the estimates of the para
meters and their variances may be formed. An example of the 
calculations has been given elsewhere (Finney, 1949b); Ex. 17 
illustrates an application to the fundamental' biological assay 
problem, the comparison of two sets of data with pro bit regression 
equations constrained to be parallel. · 



T ABLE 17. Toxicity of Derris Roots W. 213 and W. 214 to Oryzaephilus surinamensis 
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Ex. 17. Numerical example of the maximum likelihood solution. 

Martin (1940, Table 5) has reported the results of tests of_the 
toxicity of two derris roots, W. 213 and W. 214, to the grain 
beetle, Oryzaephilus surinamensis. Of 1.29 control insects, 
sprayed with. the alcohol-sulphonated lorol medium but no derris, 
21 were affected, so that·c is 16·3 %·The logarithms of the con
centrations of the two roots, measured in milligrams of dry root 
per litre, are shown in the first column of Table 17. ~he columns 
n, r, p' contain the numbers of insects exposed, and affected; 
and the percentage affected respectively. The kills by the spray 
were substantially higher than 16·3 %, and appear to give little 
additional information on C. 

As a start to the computations, a provisional value of C (in 
fact a remarkably good guess) may be taken as 17·0 %· The 
percentage kills due to the poisons alone are then estimated by 
means of equation (6·2); for example, for t~e lowest concentration 
of root W. 213, 

p = (0·460-0·170)/(1-0·170) = 0·349. 

The empirical pro bits of pare plotted against X, and two parallel 
regression lines placed by eye so as to give. two series of expected 
probits, Y. The weighting coefficients, read from Table II in 
the column for 17 %. are multiplie~ by nand the products entered 
in the column nw; thus, for the first line of Table 17, Y = 7·6, 
the weighting coefficient is 0·03298, and multiplication by 142 
gives 4·7. The auxiliary variate, x', is read from Table II for the 
appropriate values of Y, and the working probits, y, are obtained 
as usual. 

Product columns, nwx, nwx', nwy, are next formed, the totals 
of which lead to the weighted means x, x', y, for each root. Sums 
of squares and products of deviations are calculated, and the 
contributions from the two roots added, with the further 
addition of (6·9) 

129 X 0·83/0·17 = 629·8235 

to sz'z'• and (6·10) 

129 X (0·163-0·17)/0·17 = -5·312 
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· to Sz·11• Thus the combined evidence of the two roots gives 
equations (6·5) in the form 

( 
80 ) ' 28·8295b'-76·5485 -- = 80·709 } 1-0 , 

(6·12) 

-76·5485b+897·112s( 1~0) = -214·659. 

The first row of V, the im·erse matrix of coefficients, is found by 
replacing the right-hand sides of equations (6·12) by I, 0 and 
solving; similarly, the second row is found by solving with 0, I 
on the right. The result is _ 

V = (v11 v12) = (0·0448!75 0·0038267) (6.13) 
v12 v22 _ 0·0038267 0·0014412 

The solution of equations (6·12) is obtained by adding the 
products of their right-hand sides with each row of V in turn· 

b = 80·709 X 0·0448475- 214·659 X 0·0038267 
· = 2·7982, r 

80 ., 
l- O = 80·709 X 0·0038267- 214·659 X 0·0014412 

= -0·00052. 

:By substitution of the provisional value of 0, 

80 = - 0·00052 X 0·83 

= - o·ooo43, 1 
and the revised estimate of the natural response rate i~ 

0 = 0·17 -0·0004 

= 16·96 %· 
The mean values in Table 17 are then used in equation (6·6): 

a1 = 5·5980- 2·7982 X 1·4417 + 0·0005 X 1·1325 = I·564, ' 

a2 = 5·8841- 2·7982 x 1·3017 +0·0005 x 1·3233 = 2·242. 

Hence the revised regression equations are 

Y1 = 1·564+2·798x,\ 
Y1 = 2·242 + 2·798x.J 

(6·14) 

The revised estimate of 0 is almost identical with the provi
sional value, and expected prohits calculated from equations 
(6·14), shown in the last column.ofTable I7, agree closely with 
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those used in the first cycle; no second cycle of calculations is 
needed. By eqJiation (6·11) 

(6·15) 

ten dose levels were tested, and four parameters have been 
estimated, leaving 6 degrees of freedom for x2• Had x2 been 
large, the possibility that one or two classes with very small 
expectations were making unreasonably large contributions 
would have needed consideration. The expected probits from 
equations {6·14) would be converted into values of P, these used 
in equation (6·1) with G = 16·96% to give P', and expected
frequencies calculated in each group {cf. Ex. 7). In this instance, 
the smallness of the x2 in equation (6·15) would suffice to con
vince the experienced statistician that there is no serious devia
tion from parallelism. A proper test of parallelism requires the 
reconstruction of equations (6·12) so as to give separate regression 
coefficients for the two preparations; the information on 0 must 
still be pooled. The coefficients of the equations are easily read 
from Table 17: 

... 
13·7182bl 38·867, 22·5704(1 ~c)·= 

15·1113b2 - 53·9781(
1 
~0) = 41·842, (6·16) 

- 22·5704b1 -53·9781b2 + 897·1128(
1 
~c) =- 214·659. 

The solutions {evaluation of an inverse matrix is unnecessary) are 

bl = 2·8302, 

b2 = 2·7622, 

80 
1

_ G = -0·00187. 

By equation (6·11), but including terms for b1 and b2, 

X1~1 = 5·61, 

1 degree of freedom less than in equation (6·15) because an extra 
parameter has been estimated. The analysis of xz in Table 18 
shows that both the component for deviations from parallelism 

PPA 7 
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and that for residual heterogeneity are small enough to be 
attributed to random variation in the data. 

TABLE 18. Analysis of x2 for Derris-Oryzaephilus surinamensis 
Experiment 

Source of variation D.J'. 
Sum of Mean 
squares square 

----·- ·~---··- ------
Parallelism of regressions 1 0·03 0·03 
Residual heterogeneity 5 5·61 l-12 

Total 6 5·64 -

The matrix V does not require multiplication by a hetero
geneity factor, but gives directly the variances and covariances 
of band 80/(1- 0). From the first diagonal element 

V(b) = 0·04485, 

whence b = 2·798 ± 0·212, 

and from the second diagonal element 

V(O) = 0·0014412 X (0·83)2, 

whence 0 = 16·96±3·15%. 

The sizes of these standard errors, relative to the changes from 
the provisional 0 and expected probits to the values after the 
first cycle, again show a second cycle to be unnecessary. The 
remaining element of V, the covariance, .is required in forming 
variances of quantities such as m or M. At the 5 % probability 
level 

= 0·022. 

Variance formulae can therefore be used satisfactorily to express 
the precision of rn or M. For the log LD 50 of either root 

_ (s _ 80 _,)/b 
m=~+ -y+1-0x . (6·17) 

Equation (3·6) must be modified to allow for the extra term in 
(6·17), and becomes ·· 

V(m) = b\ {s!w +x'2v2~- 2x'(tn -:r) v12 + (m -x)2 v11}, (6·1~) 
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where v11, Vn, v22 are as shown in equation (6·13). Hence 

V(m1) = ~ {
9
:.

9 
+ (1·132)2 x 0·00144+2 x 1·132 x 0·214 x 0·003~3 

+ (0·214)2 X 0·044S5} 

= {0·01032 + 0·001~5 + 0·00186 + 0·00205}+ 7·830 
= 0·00205. 

Therefore m1 = 1·228 ± 0·045; and similarly 1n2 = 0·986 ± 0·051. 
The relative dosage value of the two roots is given by a modifica
tion of equation ( 5·1): 

M . - - {- - 80 (-' _, >}/b = ma-tnt = Xa-xl- Yz-Yt- 1_ 0 Xz-xl • 

and for t.his quantity 

V<M> - 1 { 1 1 (-' -')2 - b2 ...,-+-s + Xz-x• Vzz 
1onw 2 nw 

(6·19) 

+2(x~-x~) x (x2-x1 -M)v12 -f:" (x2-x1 +.M)2 v11}. (6·20) 

Substitution from Table 17 and equation (6·13) gives 

M = -0·2423 

and V(M) = 0·00273: .. 
The result, M = - 0·242 ± 0·052, may be compared with that 
given by Martin, JJI = - 0·248 ± 0·042, in his discussion of the 
same data. The difference in M is trivial; the present analysis 
shows a higher standard error because allowance for the natural 
mortality rate reduces the weighting coefficients. The correct 
technique was not known in 1940, when Martin published his 
paper. Fiducial limits to M are calculated by adding and sub
tracting 1·96 times the standard error, and thus are set at 
- 0·344, - 0·140: Root W. 213 is estimated to have a potency 
57·3% that ofW. 214, and the true value is likely to lie between 
45·3 and 72·4 %· Had g not been negligible, fiducial limits would 
have been obtained by application of formula (4·7) to equation 
(6·19). 



Chapter 7 

FACTO RIAL EXPERIMENTS 

29. REASONS FOR FACTO RIAL DESIGN 

THE introduction of the factorial principle into the planning of 
biological experimentation has been a revolutionary step which 
can now be seen as not merely useful, but essential for a full 
exploration of the causes underlying even the simplest biological 
phenomena. Fisher (1942, § 37), in an excellent chapter on the 
advantages of factorial experimentation, succinctly states the 
case for factorial design: 'In expositions of the scientific use of 
experimentation it is frequent to find an excessive stress laid 
on the importance of varying the essential conditions only one 
at a time .. •.. This ideal doctrine seems to be more nearly related 
to expositions of elementary physical theory than to laboratory 
practice in any branch of research. In experiments merely de
signed to illustrate or demonstrate simple laws, connecting cause 
and effect, the relationships of which with the laws relating to 
other cauSes are already known, it provides a means by which 
the student may apprehend the relationship, with which he is 
to familiarise himself, in. as simple a manner as possible. By 
contrast, in the state of knowledge or ignorance in which genuine 
research, intended to advance knowledge, has to be carried on, 
this simple formula is not very helpful. We are usually ignorant 
which, -out of innumerable possible factors, may prove ultimately 
to be the most important, though we may have strong presup
positions that some few of them are particularly worthy of study. 
We have usually no knowledge that any one factor will exert 
its effects independently of all others that can be varied, or that its 
effects are particularly simply related to variation in these other 
factors. On the contrary, when factors are chosen for investiga
tion; it is not because we anticipate that the laws of nature can 
be expressed with any particular simplicity in terms. of these 
variables, but because they are variables which can be controlled 
or measured with comparative ease. If the investigator, in these 
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circumstances, confines his attention to any single factor we may 
infer either that he is the unfortunate victim of a doctrinaire 
theory as to how-experimentation should proceed, or that the 
time, material or equipment at his disposal are too limited to 
allow him to give attention to more than one narrow aspect of 
his problem.' 

, Factorial design has until now been most widely employed for 
agricultural field trials, but its value in the logical structure and 
interpretation of experiments is as great in the laboratory as in 
the field. Problems of toxicology have been investigated in the 
past chiefly by varying the level of a single factor in the set of 
conditions defining the stimulus, other factors being held as 
nearly constant as was practicable. Factorial design, on the 
other hand, entails, first, a selection of the more important factors 
relating to the stimulus or the subject; secondly, the adoption 
for the experiment of a convenient number of states or levels of 
each factor selected; and thirdly, the making of tests on batches 
of subjects under the conditions defined by various combinations 
of levels of these factors, non-experimental factors peing held 
as nearly constant as possible. In this way the virtues of carefully 
standardized conditions are combined with the 9btaining of in
formation on the effects of variations in these conditions. The 
measurements of all factors constituting the stimulus may be 
referred to collectively as the dose. 

In considering the desirability of adopting a factorial set of 
treatments, the different needs of an assay and an investigation 
into the laws determining the reaction of the subject to the 
stimulus should be borne in mind. The purpose of an assay is 
to assess the value of an arbitrary unit of the stimulus under 
test in terms of units of a standard stimulus; providing that 
the test stimulus can be fully described in these standard units, 
there will generally be no advantage in using sever~;~.l factors for 
the assay rather than only one. If, for example, an insecticidal 
spray whose only toxic constituent is rotenone is to be assayed 
in units of a standard rotenone preparation, the same result 
should be obtained (within the limits of sampling variation) 
from tests at different concentrations as from tests with 
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different quantities of a fixed concentration, and the inclusion 
of different levels of other factors would have little advantage. 
Indeed, any indication that the result of the assay depended on 
other conditions (such as temperature or method of spraying) 
would contradict a basic assumption of the assay, and would 
suggest that the spray under test contained a toxic constituent 
whose potency could not be described simply in units of rotenone, 
since its equivalent in rotenone varied when experimental con
ditions were changed. The choice between varying the concen
tration and varying the quantity of spray would depend upon 
practical convenience and experie~ce of which gave the more 
reliable results. 

On the other hand, when the relationship between the reaction 
of the subject and the measures of the stimulus is the object of 
study,. -a factorial experiment may have many advantages. 
Before the action of an insecticide can be fully understood, the 
direct effects of various factors defining the dose and its inethod 
of application and the interactions between these must be investi
gated in detail. By comparison with agricultural experiments, 
laboratory tests of insecticides take only a short time to carry 
out, and, at least in the preliminary stages of a research project, 
a series of experiments on single factors may give better returns 
than one comprehensive experiment including many factors. 
Making use of the information gained from these simple trials, 
plans can be made for the more extensive factorial experiments 
which iue essential to the elucidation of the interrelationships 
between the factors. 

The discussion which follows is once again given in terms of 
insecticidal studies; but the applicability of the principles to 
other fields will be easily appreciated. Laboratory research on 
insecticidal potencies has been primarily directed at discovering 
the effect of variation in the concentration of the toxic substance 
on the mortality rate of the insects. To a lesser extent, the effect 
of variation in the duration of exposure to the poison has been 
examined, though published data from tests in which both factors 
have been varied are few. Other factors, such as the temperature 
or the quantity of poison used, have received even less attention. 
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30. QUALITATIVE FACTORS 

In a well-planned toxicological investigation there will generally 
be at least one graded or quantitative factor, such as the con
centration or amount of toxic substance, amongst the complex 
of factors measuring the dose. Methods of statistical analysis 
suitable for use when there are two or more quantitative factors 
are discussed in § 31 and subsequent sections. There may also 
be factors of a purely qualitative nature, such as variations in 
the medium in which the poison is applied (e.g. oil or watt>r; 
Martin, 1943), or variations in the method of application of an 
insecticide (e.g. spray or film; Tattersfield and Potter, 1943). 
Other factors, though capable of being measured quantitatively, 
may simply be recorded descriptively, as in comparisons between 
'warm' and 'cold' conditions during spraying or between 'old' 
and 'new' stocks of insecticide. A similar classification may be 
made of factors relating to the test subject (see§§ 51, 52). 

The data from series of tests with the various combinations of 
conditions arising from several qualitative factors may most 
readily be analysed by the methods of Chapter 5 when there. is 
only one quantitative factor, or by extensions of these when 
there are more. In the former case, if the pro bit regression lines 
for the quantitative factor are parallel for each combination, 
the effects of the qualitative factors may be measured simply 
by comparisons amongst their median lethal doses, and a fac
torial analysis of these will sort out the main effects and inter
action. Yates ( 1937 a) has discussed this type offactorial analysis, 
and, though some complication is introduced by the unequal 
precisions of the estimated log LD 50's, his work may be adapted 
to suit the present purpose. If the lines are not parallel, interpre
tation of the results is more difficult, but nothing need here be 
added to what has been said in § 25. 

31. THE PROBIT PLANE 

If the joint effects of two quantitative factors, such as the time 
of exposure to an insecticide and its concentration, are to be 
studied, batches of insects must be tested at various combinations 
of values of the two factors. The test conditions may be chosen 
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as several different concentrations for each of a number of 
exposure times, or as several different exposure times for each 
of a number of concentrations. Greater symmetry may be 
attained by using all combinations of a set of concentrations 
and a set of exposure times (say 4 concentrations and 5 times 
used in all their 20 combinations); the more extreme combina
tions-low concentrations for short times, or high concentrations 
for long times-may be omitted if they seem unlikely to give 
useful results. 

Experience has shown that not only is the mortality probit 
frequently linearly related to the logarithm of the concentration 
for a. fixed time of exposure, but also it is frequently linearly 
relat<:d to the logarithm of the exposure time for a fixed con
centration. As a representation of the joint effect of time and 
concentration, therefore, a plane may be suggested: 

(7·1) 

giving the probit in terms of the log concentration (x1) and the 
log time (x2). Bliss (1940b) expressed this by saying that the 
logarithms of the exposure time and concentration required to 
give any particular kill are linearly related; he proposed to 
evaluate this relationship by selecting a level of mortality and 
estimating either the values of x1 for a series of times or the 
values of x2 for a series of concentrations, according as the experi
ment was performed in sets of tests with fixed exposure time 
and varied concentration or with fixed concentration and varied 
time. This method of analysis involves a great amount of 
tedious calculation and does not give the maximum likelihood 
est~mates of the parameters, though the estimates obtained 
will usually be not very different from the maximum likelihood 
values. 

The maximum likelihood estimation is, however, to be pre
ferred(Finney, 1943a); not only is it a more symmetrical approach 
and a natural generalization of the one-factor analysis, but the 
computations, though still lengthy, are simpler and are more 
easily reduced to a routine process. The method applies multiple 
regression analysis (Fisher, 1944, § 29) to the estimation of the 
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coefficients /11 and fJ2, and may be further extended to three or 
more factors with no difficulty other than the increase in the 
computations. In order to use the regression technique, a pro
visional plane must first be fitted to the empirical pro bits which 
have been read from Table 1 in the normal manner. :U: several 
concentrations have been tested at each of a series of times, but 
not necessarily the same set of concentrations for every time, 
lines may be drawn, by eye, relating the empirical probit to th; 
log concentration for each time, with the rest:riction that all 
the lines shall be parallel and at distances apart proportional 
to the differences in the log times. If the stmcture of the experi
ment is such that a series of concentrations and a series of times 
are used in all, or nearly all, their combinations, a method adapted · 
from a suggestion of Richards (1941) may be used. The probits 
are plotted against the sum of log concentration and log time, 
(x1 +x2); points with constant x2 should then lie on one set of 
parallel straight lines with slope b1, and points with constant x1 

on a second set of parallel lines with slope b2• The differences 
between pairs of lines of either set will be proportional to the 
differences between the corresponding values of x2 or x1• In this 
way a plane representation of the three-dimensional figure re
lating probits to log concentration and log time is obtained, and 
expected probits can be read from two intersecting sets of 
parallel lines, drawn by eye, in the diagram. Whatever the means 
employed, it is worth taking some trouble over the drawing of 
provisional lines, in order that a satisfactory approximation to 
the maximum likelihood solution may be obtained by one cycle 
of the computations. 

The working probit, y, and its weight, nw, may be deriyed 
from the expected probit and the percentage kill in precisely 
the same way as when only one factor is involved. Using the 
technique of multiple regression to derive a, b1 and b2 as estimates 
of the parameters, equation (7·1) is estimated just as was the 
one-factor pro bit equation in § 17; the details will be made clear 
by a careful study of Ex. 18. If this equation differs substantially ' 
from the provisional lines or plane, it may be used to determine . 
a new series of provisional probits, with which the cycle of 
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computations is then repeated. 'When there is an appreciable 
natural mortality amongst the controls the methods of adjust
ment discussed in Chapter 6 may be used; the approximate 
method, involving only a modification of the weighting coef
ficient, is directly applicable, and the full analysis described in 
§ 28 may easily be extended to allow for an additional inde
pendent variate, x2• 

The method of estimating the parameters, testing the goodnesR 
of fit of the equation, and determining standard errors will now 
be illustrated by a numerical example. The statistical technique 
was elaborated for the analysis of data obtained by Tattersfield 
and Potter (1943), and Ex. 18 is a revised version of an account 
of the· computations appropriate to the results of one of their 
experiments; in the account as preyiously published (Finney, 
1942b, 1943a) weighting coefficients were not modified to allow 
for the control mortality. 

Ex. 18. The effect of variation in concentration and deposit on 
the toxicity of a pyrethrum preparation to Tribolium castaneum. 
Tattersfield and Potter (1943) have described a series of experi
men~ on the toxicity of a solution of pyrethrum extract in heavy 
oil to the beetle, T. castaneum; the doses used consisted of all 
combinations of several concentrations of the pyrethrum extract 
and several weights of spray deposit on the glass disk on which 
the insects were placed. In the first experiment four concentra
tions (these have been measured in terms of pyrethrin I only) 
and three deposits were tested; the glass disk was covered with 
a loosely woven fabric, and each combination of concentration 
and deposit was used, on separate batches of insects, both as 
a direct spray and as a film on which the insects were afterwards 
placed. Batches of ten insects were used for each spraying, and 
all treatments were given in three-fold replication. 

Insects were also exposed to different deposits of the base oil 
alone, applied both by the spray and by the film technique, but, 
as the mortalities gave no indication of being different from that· 
amongst unsprayed controls, all control batches have been added. 
Of a total of 311 beetles, 12 were 'badly affected, moribund, or 
dead', giving a control rate of 3·9 o/o. The full data have been 
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reported by the experimenters (loc. cit. Table 2); after adjustment; 
for a control death rate of 4 %, the mortalities are as shown in 
Table 19. 

An extension of the ideas of Chapter 5 suggests the fitting 
of two parallel probit planes to the data. Table 20 sets out full 
details of the lengthy, but straightforward, computations re
quired for this, including the derivation, from the original 
observations, of the figures shown in Table 19. In order to avoid 

TABLE 19. Percentage Kills of Tribolium castaneum by a Pyre-
thrum Spray, adjusted for 4 % Mortality amongst the Controls 
(numbers of insects shown in brackets) · 

I Pyrethrin I Deposit (mg.fsq.cm.) 

I concentra· Direct spray 

I 
Film tion 

(mg.fml.) 0·29 0·57 1·08 0·29 0·57 1·08 

I 0·5 0 10 17 7 11 26 
(27) (29) (30) (29) (27) .(28) 

1·0 50 64 61 31 48 59 
(29) (29) (24) (30) (28) (28) 

2·0 90 96 100 82 96 93 
(30) (27) (31) (29) (28) (28) 

4·0 100 100 100 100 100 100 

1 I (28) (30) (19) . (29) (29) (17) 

the occurrence of negative numbers, both c.oncentrations and 
, deposits have been multiplied by 10, so that x1 and x3 are each 

1·00 in excess of the true log concentrations and log deposits. 
These modified x1 and x2 values form the first two columns of 

Table 20, and are followed by n, the number of insects under 
any one treatment, r, the total killed, and p', the proportionate 
mortality. The control mortality is estimated with considerable 
accuracy from the insects untreated or treated with oil alone, 
and, as 4 % is low and not in conflict with the remainder of the 
data, the approximate method of § 27 has been used without 
any attempt to improve the estimate of 0 by means of the 
maximum likelihood equations. The column of adjusted mor
talities, p, has therefore been obtained with 0 = 0·04 in Abbott's 
formula (equation (6·2)), and the empirical probits of p have 
been written down from Table l. 
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TABLE 20. Computations for Analysis of Results of Testing Various 
Concentrations of Pyrethrin on Tribolium castaneum 

_:_I_:__:_~~~~ p.(C =~1. ~~~~ I__:_L:_i_y I nw.r, __ 
nto.r1 "'"Y 

Exposure to direct spray 
0·70 0·47 27 1 I 3·7 0 -co 3·4 3·6 1 2·91 • 2·520 10·-H6 
HlO 0·47 29 15 51-7 50 5·00 4·8 16·61"" 16·600 83·000 
1·30 0·47 30 27 90·0 90 6·28 6·2 10·6 6·28 13·780 66·568 
1·60 0-47 28 28 100·0 100 00 7·6 H 7·94 1-760 8·734 - . -- -- --

31·9 34·660 14·993 168·778 
O·iO 0·75 29 4 13·8 10 3·i2 3·8 7·9 3·72 5·530 29·388 
1·00 0·75 29 19 65·5 M 5·311 5·2 17·0 5·36 17·000 91-120 
1·30 0·75 27 26 96·3 96 6·75 6·6 6·1 6·73 7·930 4Hl53 
1·60 0·75 30 30 100·0 100 .., 8·0 0·4 8·30 0·640 3·320 

- ' -- -- --
3H ' SHOO 23·550 16-1-881 

O·iO 1o04. 30 6 20·0 17 4·05 4·2 12·6 -1·06 8·820 51-156 
lo()() 1-()4 24 15 62·5 61 5·28 5·6 12·7 5·25 12·700 66·675 
1·30 1-()4 '31 31 10<Kl 100 .., 7·0 3·9 7-42 5·070 28·938 
1·60 Hl4 19 19 100-() 100 .., 8·4 0·1 8·67 0·100 0·867 ,- -- -- --

I 

I 
29·3 26·750 30·472 147·636 

! i 92.6 - - ;M951 92·510 69-()15 

Exposure to film 

o;o j <Hl I~ 
3 I 10·3 I 7 3·52 3·3 •.. I ~., 2·170 11·067 

1·00 0·47 10 I 33·3 

I 
31 4·50 4-7 16·7 4·51 16-700 75·317 

1·30 0·47 24 82·8 82 5·92 6·1 11-2 5·90 14·560 66·080 
1·60 0·47 

129 29 I 1oo-o 100 .., 7·5 H 7·85 2·240 10·990 -, -
- --

""" 
I I I i 32·4 I 35·67Q 15·228 163--15,1 

0·70 0·75 27 4 14·81 11 

I 
3·77 3·6 I 5·i 3·80 ' 3·780 20·520 

1·00 0·75 28 14 I 50-() 48 4·95 5·o I 111-s ' 4·95 16·500 81·675 
1·30 0·75 28 27 I 96-4 96 6·75 6·4 : 8·1 16·67 10·5~0 54·027 
1-60 0·75 29 29 100·0 100 I 

.., H 0·7 8·12 l-120 5·68i 
- I - --

-~ I 
30·7 I 31·930 23·025 161·908 I 

i 
0·70 1·0t 1 28 8 i 28·6 26 I 4·36 4·0 9·7 4-42 6·790 42·874 
1·00 1-()4 I 28 17 60·7 59 I 5·23 5·4 15·8 1 5·22 15·800 82-4i6 
1·30 1-()4 I 28 

26 I 92·9 93 i 6·43 6·8 4·8 I 6·37 

I ~l~ I 
30·5i6 

1·60 1·04 17 17 100·0 

I 
100 00 8·2 0·1 8·49 0·849 

I -, --
I I 30·4 128·990 31·616 156·775 

i I I I I I ~ -- -I 
96·590 ! 69·869 482·135 I 

-· 
Spray: :r, =0·9990, :r. =0·7-!53, y =5·1976. 
Film: :r, =1·0330, :r. =0·7473, ii =5-1565. 

Snw.r11 8nw.r1.r• 8nJc.r1
1 8nw.r1y 8rw.•.r1y Snwy1 

Rpray 97·01900 117-43520 56·-IDOOO 502·70'J3 356·5278 261H23 
92·42009 68·94792 51·43704 480·8272 358·71()3 2501·565 

4·59891 -1·51272 4·963011 21·8821 -2·1825 112·858 -109· 75 = 3-11 
t"ilm 104-27900 70·86200 57·30655 515·5154 361·2989 2566·119 

99·78212 72·li80& 52·210-!5 498·0667 360·2812 2486·141 

4-49688 -1·31604 5·09610 17-4467 1·0li7 79·978- 75·65 = 4·33 
Total 9·09579 -2·82876 10·05915 39·3288 -1-1648 192·836-183--10 =9-41 
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The empirical probits have been plotted against (x1 +x2) i:ri 
Fig. 11. Both for the direct spray and for the film technique two
intersecting sets of parallel lines have been drawn, the one repre
senting the regression of pro bits on x1 for fixed x2 and the other 
the regression on x2 for fixed x1 ; the lines were drawn by eye, 
remembering the existence of zero and 100% kills at certain 

8·0 

7-0 

s 
~ 6-() ... 
0 

~ 
,Q 
0 

It 
)-() 

4-() 

1·0 1-5 2·0 2-S 
1•0 ·film 1-S 2·0 Z.S 

Log Concentration (mg./10 mi.) +Log Deposit (mg./10 sq.cm.) 

FIG. 11. Diagrammatic representation of probit planes for comparing potency 
of direct spray and film applications of a pyrethrum spray to T. caataneum 
(Ex. 18). X direct spray; + film. Continuous lines show effect of change in 
concentration at a fixed deposit. Broken lines show effect of change in deposit 
at a fixed concentration. 

doses, in such a way as to intersect vertically above or below the 
plotted points. The intersections give the expected probits, Y, 
appropriate to each combination of x1 and x2, from which; by 
the methods of previous chapters, weights, nw, and working 
probits, y, were calculated; the weighting coefficients were taken 
from the 4 % column in Table II. 
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For either, technique of application of the insecticide, an 
approximation to the maximum likelihood estimate of the pro bit 
plane is derived as the weighted regression equation of yon z1 

and z1• In· order to obtain two parallel planes, the regression 
coefficients must be calculated not from the sums of squares and 
sums of products of deviations for the techniques separately but 
from the totals of these (cf. § 20). 

The next stage of the computations was therefore the formation 
of the products nwx1, nwx1 and nwy, the calculations proceeding 
independently for spray and for film; for nt'r.ra it is sufficient to 
total the values of nw for each of the three deposits and multiply 
this total by the appropriate z2, but for nwx1 and nwy individual 
products must be entered for each of the twelve tests and totalled 
in the three 4eposit groups. Totals of the columns Snw, Snwx1, 

Snwx8 and Snwy were then n:'ade. By summing the .products 
of each of the twelve values of nwx1 with z1 and deducting 
(Snwx1)2fSnw, the sum of squares of deviations of x1, denoted 
by Sz z, was obtained. Similarly, multiplying each of the three 

1 1 

subtotals of nwx1 by the corresponding x1 adding, and deducting 
(Snwx1) (Snwx2)fSnw, the sum of products of deviations, Sz z, 

1 • 

was obtained. In like manner all the smns of squares and products 
shown at the bottom of Table 20 for both spray and film methods 
have been computed, and the values for the two techniques have 
been added to give the last line of the table. 

The regression coefficients for the two parallel planes are the 
solutions of the equations 

9·096b1 - 2·829b1 = 39·329, 
- 2·829b1 + 10·059b1 = -1·165. 

These should be solved by the inverse matrix method, as in 
Ex. 17, in order to obtain also the variances of parameters and 
other estimated quantities. Taking first values 1, 0 and then 0, 1 
on the right-hand side, this matrix was obtained as 

whence 

- (0·1204:8 0·03388) 
v - 0·03388 0·10894 ' 

b1 = 39·329 X 0·12048-1·165 X 0·03388} 

= 4:·6989, 
b2 = 1·2056. . 

(7·2) 

(7·3) 
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Now the fitting of the regression planes accounts for a .portion ~ 

(7·4) 

of the sum of squares of deviations of y, S1111 = 192·84. S1111 is 
based on two sets of 11 degrees of freedom, and the fitted para
meters remove 2, leaving X~oJ = 9·44. This x2 has been analysed 
to provide a test of parallelism of the two planes. Regression 
coefficients were obtained for spray and f:i1ni separately, using 
only the appropriate sections of the data of Table 20; the pairs 
of values are: 

,-
I 

Spray 

bl = 5·1277 

b8 = 1·1236 

Film 

bl..,;, 4·2601 

b2 = 1·2999 

TABLE 21. Test of Parallelism of Pro bit Planes for Ex. 18 

I Sum of Mean 
D.JI'. squares square 

Parallelism of planes 2 2·00 1·00 
.Residual heterogeneity 18 7·44 0·41 

Total 20 9·44 

The separate values of S1111 were then reduced by quantities 
calculated as in equation (7·4), namely, 109·75 and 75·65, to 
give residuals of 3·11 and 4·33 respectively, each being a xr9)• 
Hence for a joint test of the heterogeneity of the data about 
two fitted planes (not now constrained to be parallel) xrl8) = 7·44; 
the difference between this and the previous xrao) is xra) = 2·00, 
which indicates no significant departure from parallelism. These 
results are summarized in Table 21. Had the heterogeneity x• 
been large, the test of parallelism would have been based on the 
ratio of mean squares; the variances discussed below would then 
have been increased by the heterogeneity factor. Since the xa 
values are all small, there is no need to give special consideration 
to possible excessive contributions from the tests at extreme 
dose levels, but in other circumstances the method of Ex. 7 could 
be employed for examining the separate contributions more 
carefully. 
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The equation to either pro bit plane is of the form 

Y = y+b1(x1-x1)+b2(x2 -x2). (7·51 

Substituting the appropriate values ofy, x1 and x2, the two fitted 
equations• are: 

Y. = - 0·395 + 4·699x1 + 1·206x1, 

If = - 0·598 + 4·699x1 + 1·206x2• 

H the values of Y. and If are calculated for the twelve dosages 
used in the experiment they will be found to exhibit so good an 
agreement with the expected probits, Y, in T'l.ble 20 as to 
make it apparent that there is no necessity to repeat the cycle 
of -computations; had a. closer approximation to the solution of 
the maximum likelihood equations been required, Y. and fJ would 
have been used as the new expected probits. 

The diagonal elements of the matrix V are the variances of 
b1 and b2, and the remaining element is the covariance between 
these two parameters. Hence the standard erro,rs of b1 and b2 

are ± 0·347 and ± 0·330 respectively. The kill might have been 
expected to be independent of the separate values of concentra
tion and deposit, within fairly wide limits, so long as the total 
amount ofpyrethrin (the product of concentration and deposit) 
remained the same. This would imply that b1 and b2 should only 
differ by an amount consistent with their sampling variation. 
since increases in either concentration or deposit which were 
equal on the logarithmic scale would have equal effects on the 
kill. Such equality is clearly contradicted by the results, for 
the variance of the difference between b1 and b2 is 

V(b1 - b2) = ~·1205- 2 x _0·0339 + 0·1089 

= 0·1616, 

and therefore b1 - b2 = 3·493 ± 9·402. 

In this experiment concentration has been a far more important 
factor than deposit in determining the kill. In fact a doubling 

• The equations may easily be put in terms of the logarithms of the 
concentrations ami deposits given in Table 19 by replacing x1 anti .r: 
by (x-1 + I) anrl (x1 + I) respectively. 
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of the concentration was as effective as an increase of (b1 log 2)/b2 

in the log deposit, or a multiplication of the deposit by 14·9; 
the precision of this ratio is low, and 5% fiducial limits deter
mined. by formula (4·7) from the variances and covariances in 
equation (7·2) are 5·9 to 279. The absorptive powers of the sub
stratum are undoubtedly important in determining the relative 
effects of changes in concentration and in deposit: in further 
experiments with the same or a similar fabric covering the glass 
disk, Tattersfield and Potter again found concentration to have 
the greater effect, but when a hardened filter paper was used 
deposit became the more important factor. 

In multifactorial experiments there is no unique median 
lethal dose; for example, with the direct spray any pair of 
values of x1 and x2 satisfying 

4·699x1 + 1·206x2 = 5·395 

is estimated to give a 50 % kill. Similarly the relative potency 
of the direct spray and the film technique cannot be uniquely 
defined, for the inequality of b1 and b2 implies a difference in 
relative potencies in respect of concentration and of deposit. The 
relative dosage value, or difference between_ equally effective 
dosages, may be taken as any pair of values satisfying 

4·699Jf1 + 1·206M2 = 0·203. 

If equal concentrations were used, log deposits 0·168 less for 
the spray than for the film would be expected to show equal 
kills, and, if equal deposits were used, equal kills would be 
expected when the log concentration was 0·043 less for the spray 
than for the film. 

The mean probit difference (§ 24) was introduced (Finney, 
1943a) in order to provide a single measure of the difference 
between two parallel probit planes. In the present experiment 
the value of this quantity is, by the obvious extension of equa
tion (5·12}, 

L1B/ = Y,.-lf 
= 0~203 ± 0·147, 

FPA 8 
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the variance havmg been obtained as 

Y(J) = -
8

1 + 
8
1 + (xl.B-x11)2 V(b1) 

8 nw 1 nw 
+ 2(x14-x11)(x28 -x=t> Cov (b1, b2) + (x28-x21) 111 V(b2) (7·6) 

= 0•0108 + 0·0107 + (0·0340)1 X 0•1205 
+ 2 X 0·0340 X 0·0020 X 0·0339-t (0·0020)1 X 0·1089 

= 0·0216. 

32. OsTWALD's EQUATION 

H equation (7·1) be considered as expressing a relationship 
between values of x1 and x111 which give a selected kill, it may 
conveniently be put in the form 

.A{·~~· = constant, 

.t\1 and· A1 being the absolute (not logarithmic) measures of dose, or 

.A{J/1•.,\2 = constant. 

This equation has been used by Busvine (1938) and others, in 
the form 

(7·7) 

:where A is the concentration, t the time of exposure, n and k 
constants, as an empirical law relating the concentration and 
time required for a given toxic effect. Bliss (1940b) pointed out 
that this was a particular case of the equation 

(7·8) 

which was used by Ostwald and Dernoschek ( 191 0) in a discussion 
of the relationship between adsorption and toxic effect, .Ao being 
a threshold concentration below which no effect takes place. 

Bliss has only discussed experiments in which the time taken 
to reach 100% kill at selected concentrations was measured. 
This is not usually a convenient method of studying time-con
centration relationships, and is liable to give results subject to 
\\ide variation, since the time measurement is determined by 
the most extreme member of the batch. The more satisfactory 
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method is to expose batches of test subjects to concentrations 
and for times chosen by the experimente_r and to measure the 
mortality in each batch. A threshold concentration is unlikely 
to be known in advance, and would therefore have to be esti
mated from the data. The estimation would then become 
a more troublesome process tha,n. Bliss suggests, but even 
though the data require the obtaining of a probit equation 
in the form 

rather than a direct relationship between A and t, the principle 
used by him may reasonably be adopted. This entails calculating 
the regressiop. equation for several values of A0, but including 
also a. quadratic term in {log (A- A0)}2; Ao is finally estimated, 
by interpolation, as that value which makes the coefficient of 
the quadratic term zero. This is not the maximum likelihood 
estimate of "-o but should be a satisfactory value for practical 
purposes. The maximum likelihood equations have not been 
considered and are undoubtedly very complicated. 

Fortunately, an adjustment to the concentration seldom 
appears to be needed. If the threshold concentration regularly 
differed from zero to any important extent in concentration-time 
tests, the same difference would presumably occur in tests carried, 
out for a fixed time. Hence the adjustment would also be needed;. 
in one-factor experiments such as have been considered in earlier · 
chapters, and x in equation (3·2) would have to .be taken as 
log (A- A0 ) instead of log A, Ao being an additional parameter to 
be estimated from the data. The fact that in so many experiments ' 
equation (3·2) is adequate for the description of the results seems 
evidence against the need of any allowance for threshold con
centration. Nevertheless, spme cases of data showing curvature 
of the relationship between pro bits and log concentrations might 
be.simplified if a regression equation of the form 

y = ~X+fllog(,\-,\o) 

were used instead of the more usual 

Y =£X+ fllog ,\. 

(7·9) 

S·a 



116 FACTORIAL EXPERIMENTS 

33. THE INTERACTION oF Two FACTORS 

The linear regression equation (7·1) implies that the effects of 
the two dosage factors on the mortality probit are independent 
and additive. If a concentration-time experiment were carried out 
in batches at fixed concentrations with varied times of exposure," 
the relationship of pro bit and log time might be linear for each 
concentration without the lines for the different concentrations 
necessarily being parallel. Such a situation might indicate 
heterogeneity of the material, or changes in the experimental 
conditions between the tests of different concentrations, but it 
might alternatively imply a true dependence of the slope of the 
lines upon the concentration. Bliss (1940b) has suggested that, 
as a first approximation, the standard deviation of the log-time 
tolerances (which is the reciprocal of the slope) might be expressed 
as a linear function of the log concentration, a method which leads 
to a final regression equation of Y on x1 (log concentration) and 
x1 (log time) in the form 

y = a.+Pxt+Xz. (7·10) 
a.' +fl'xt 

Equation (7·10) is linear in x1, so that for any fixed concentra
tion the relationship between Y and x1 is given by a straight line, 
but it is not linear in Xt· It therefore differs fundamentally from 
the usual findings in single-factor experiments that Y is linearly 
related to the log concentration. The equation 

Y = a.+Ptxt+Pzxa+PuxtXz (7·11) 

s.eems preferable to (7·10), being linear in x1 when x1 is held 
constant and vice versa. • The slope of the regression line of 
mortality probit on either x1 or x1 increases (decreases if P11 is 
negative) as the other increases. The coefficient Pu measures the 
interaction between the two factors, or the extent to which the 
increase in Y for unit increase in x1 or x1 exceeds that predicted 
by the purely additive equation (7·1). 

• This surface, which reduces to a. plane if P11 = 0, is known a.s a.n 
hyperbolic paraboloid; sections by planes z 1 =constant or z 1 =constant 
are generators (straight lines), and sections by planes Y = constant are 
rectangular hyperbola.<t. 
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The technique of fitting equation (7·11) to experimental data 
presents no difficulty. The first step is to form the products x1 x2 

for each dosage level. These are then treated as the measure of 
a third factor of the dosage, x3 , the subsequent procedure being 
exactly as in Ex. 18. A multiple regression equation on x1, x2 

and :z·1 :r 2 is eYentually obtain.ed in the form 

Y = y + b1(x1 -:1\) + b2(.r2- .X2) + b12(x1 X2- l-1:i2). 

It should be noted that x1 x 8 is the mean value of the product 
x1 x2, and is different from :1\ x2, the product of the mean values 
of x1 and x2 ; x1 x2 = Snwx1 x2fSnw. A more complex equation 
such as (7·11) should not be used in preference to (7·1) unless 
the data clearly require it as an adequate representation of the 
facts, or unless there is strong a priori evidence of its appropriate
ness. 

Ex. 19. The effect of variations in concentration of hydrocyanic 
acid and exposure time on the mortality of Calandra granaria. 
Peters and Ganter ( 1935) tested the toxicity of hydrocyanic acid 
to C. granaria at seven different concentrations, using batches 
of ten insects and two to five different ~xposure times for each 
concentration. The results, from 270 insects in all, are given in 
the first three columns of Table 22 and suggest that the slope 
of the mortality-time regression lines decreases with increasing 
concentration. Bliss ( 1940 b) showed the calculations for fitting 
equation (7·10), but did not examine whether in fact (7·1) might 
not be equally satisfactory. 

When equation (7·1) was fitted to the data, the result was 

Y = - 6·15 + 6·10x1 + 6·29x2, .(7·12) 

with a residual xr24) = 53·10; here xl is the log concentration in 
g.fcu.m., and x2 is the log exposure time in hours. Thus dis
crepancies from this equation show heterogeneity, with a hetero
geneity factor of 2·21. Sincf' only ten insects were used in each 
batch, the expected numbers of dead and surviving are necessarily 
small, but, as pointed out in§ 18, this is less likely to disturb the 
x2 distribution than the occurrence of a few isolated cases of small 
expectations. Detailed examination of the separate contributiom 
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to x1 suggests that, though one or two are large, heterogeneity 
would remain after any reasonable grouping of the data. As the 
example is only given here in order to illustrate the technique 

TABLE 22. Results of Tests of the Toxicity of Hydrocyanic 
Acid to Calandra granaria 

Log con- Log 
%kill Empirical centration expo!lUI'e y 

(g.fcu.m.) time '(hours) (p) pro bit 

1·477 0·176 10 . 3·72 4·2 
0·301 40 4·75 5·0 
0·477 50 5·00 6·0 
0·544 100 00 6·4 

1-380 0·398 60 5·25 4·8 
0·477 70 5·52 5·3 
0·544 80 5·84 5·7 
0·602 90 6·28 6·1 
0·653 100 00 6·4 

1-190 0·544 50 5·00 4·3 
0·778 80 5·84 5·9 
0·903 100 00 6·7 

1·061 0·699 40 4·75 4·5 
0·778 70 5·52 5·0 
0·845 90 6·28 5·5 
1·000 100 00 6·5 

0·929 0·903 0 -oo 5·0 
0·954 40 4·75 5·4 
1·000 70 5·52 5·'1 
1·079 80 5·84 6·2 
1-176 100 00 6·9 

0·778 1·204 60 5·25 6·2 
1·255 100 00 6·6 

0·544 1·204 20 4·16 4·8 
1-255 80 5·84 5·2 
1·301 90 6·28 5·6 
1·398 100 00 6·3 J 

At every dose "= 10. 
The first three columns of the table are taken from Table XII of Bliss ( 1940b ). 

for fitting the regression equation, this point will not be considered 
further; The variance matrix 

= (0·764 0·693) 
v 0·693 0·699 (7·13) 

must be multiplied by the heterogeneity factor to give the 
variances and covariance of the regression coefficients, whence 

b1 = 6·10 ± 1·30, b8 = ~·29 ± 1·24. 
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In view of the apparent decrease in the slope of separate x3 

regressions with increasing values of x1, equation (7·11) has also 
been fitted to the data. Details of the computations will not be 
given here as they are so very similar to Ex. 18. A first set of 
expected probits was taken from the column headed 'Second 
expected pro bit' in Bliss's Table XII, since these values were 
readily available, but usually this first set would be most easily 
obtained from a sketch or from a simpler equation such as (7·12). 
Working probits and weights were found in the usual manner, 
and were used ·to calculate a weighted regression on x1, x2 

and the product x1 x2• The resulting equation was used to give 
a new set of expected probits. In all, three cycles of the 
computations were carried out; the expected probits for the 
last of these are shown as Y in Table 22. The final equation is 

(7·14) 

the inverse matrix leading to the variances and covariances being 

( 

2·324 

v = 2·494 

-1·305 

2·494 

2·782 

-1·511 

-1·305) 
-1·511 . 

1·089 

The x2 has been calculated as in Ex. 18, by means of 

X2 = Syy-blSZ111-b2SXzl/-b12S(Z1ZI)II" 

(7·15). 

This gi\·es xF231 = 51·27, showing departures from the regression 
equation still to be heterogeneous, with a value of 2·23 for .the 
heterogeneity factor. The variance of b12 is 2·23 x 1·089 = 2·428, 
so that 

b12 = -1·90"± 1·56. 

The parameter b12 does not significantly exceed its standard 
error, so that no great advantage in the representation of the 
data arises from using equation (7·14) instead of (7·12); in other : 
words, the data do not seriously contradict the hypothesis that 
p12 = 0. 

The values of b1 and b2 in equation (7·14) are not directly 
comparable with those in (7·12). In equation (7·14) the slope of 
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the regression on x1 for fixed x1 depends upon the value of Xz 

and in that equation b1 represents the slope when x1 = 0; when 
x1 has its mean value, the slope is 

b1 + b11x1 = 6·79. 

Similarly when x1 has its mean value, the slope of the regression 
on x1 is 

These quantities are much closer to the b1 and b2of equation (7·12) . 
. The variances of b1 and b1 obtained from the appropriate entries 
in the matrix (7·15) are considerably higher than the variances 

·of b1 and b1 in equation (7 ·12), but this is of no consequence since 
the parameters are very different in meaning. 

Since for the parameters of equation (7·12) 

V(b1 -b1) = 2·21 x (0·764- 2 x 0·693 + 0·699) 

= 0·170, 

and therefore 

there is no significant difference between the two regression 
coefficients, and a regression equation with (x1 + x2) as the single 
independent variate would represent the data almost as satis
factorily as equation (7·14). Hence, in this experiment, the toxic 
effect of the hydrocyanic acid may be expressed purely in terms 
of the number of' grams-per-cubic-me.tre hours', the product of 
the concentration and the time of exposure. Taking the sum of x1 

and Xa as a new variate, X, the methods Of§ 17 would lead to the 
regression equation, which may be derived with sufficieqt ac
curacy from sums of squares and products already computed as 

with 

and 

Y = -6·32+6·27(x1 +x2), 

xr25] = 53·57 

b = 6·27 ± 1·22. 

34. ExTENSIONS TO SEVERAL FACTORS 

The methods outlined in this chapter may easily be applied to 
data relating to more than two dosage factors, though, as always 
in multiple regression analysis, the amount of computing involved 
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increases rapidly with increasing number of factors. For three 
factors, equation (7·1) may be extended to the form 

(7·16) 

and, though expected probits are less easily obtained, the 
estimation of the parameters follows the same procedure as 
before. On the analogy of equation (7 ·11 }, a more general equa
tion, linear in each factor separately but allowing for interactio:qs 
between them, is 

Y = a.+fJ1x1 +fi2x'l.+fiaxa+fi12xlx2 
(7·17) 

in which the regression coefficient /112 measures the interaction 
between the first two factors, and /1123 measures the three-factor 
interaction. To fit such an equation to experimental results, the 
four products x1 x2, x1 x3, x2x3 and x1 x2x3 are treated as though 
they measured separate factors, and a seven-variate regression 
equation is calculated. 

As in the unifactorial analysis, the cycle of computations for 
fitting a regression equation is repeated until satisfactory agree
ment with the maximum likelihood estimates is obtained, as 
shown by the agreement between successive sets of expected 
pro bits. Careful choice of the first set will often ensure that one 
or, at most; two cycles suffice. Tests of heterogeneity and of 
parallelism are easily made, and standard errors of parameters 
are derived from the inverse matrix used in solving ~he equations 
for the estimates. The notion of relative potency, so useful in 
tests of one factor, has no simple multifactorial analogue, but in 
all cases the mean probit difference can be used for comparing 
series of parallel results; 'parallel' is here used with the meaning 
that equations such as (7·16) or (7·17) can adequately describe 
the data, with the restriction that corresponding regression 
coefficients, fJ, shall be the same for every series and thus that 
the equations for the several series shall differ only in their 
values of a.. 



Chapter 8 

THE TOXIC· ACTION OF MIXTURES 
OF POISONS 

35, TYPES OF JOINT ACTION 

ANY attempt to understand fully the toxic action of a group of 
insecticides or fungicides must ultimately involve a study of their 
behaviour when two or more are applied in mixture. In some 
cases the potency of a mixture may be greater than would be 
~xpected simply from a knowledge of the potencies of the con-

. stituents separately, a result which is clearly of practical impor
tance in the economic utilization of the poisons; the opposite 
situ~tion of reduced potency of a mixture by comparison with 
that of its constituents may also occur. Precise meaning can 
only be given to these modes of action of mixtures after the 
establishment or definition of a normal mode of action; the result3 
of any series of tests may then be compared with this standard 
in order to judge whether the toxicity is enhanced or reduced 
when the poisons are applied in mixture. 

The fir3t systematic discussion of this topic in relation to 
probit analysis was given by Bliss (1939a) in a paper on 'The 
toxicity of poisons applied jointly'. He distinguished three types 
of joint toxic action, independent, similar and synergistic, whose 

· properties he described as: 
'(1) Independent joint action. The poisons or drugs act inde-

. pendently and have different modes of toxic action. The sus
ceptibility to one component may or may not be correlated with 
the susceptibility to the other. The toxicity of the mixture can be 
predicted from the dosage-mortality curve for each constituent 
alone and the correlation in susceptibility to the two poisons; 
the observed toxicity can be computed on this basis whatever 
the relative proportions of the components. 

'(2) Similar joint action. The poisons or drugs produce similar 
but independent• effects, so that one component can be 

• An unfortunate choice of word, since the meaning . is entirely 
different from that in the previous paragraph. 
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substituted at a constant proportion for the other; variations in 
individual susceptibility to the two components are completely 
correlated or parallel. The toxicity of a mixture is predictable 
directly from that of the constituents if their relative proportions 
are known. 

• (3) Synergistic action. The effectiveness of the mixture cannot 
be assessed from that of the individual ingredients but depends 
upon a knowledge of their combined toxicity when used in dif
ferent proportions. One component synergizes or antagonizes 
the other.' 

Bliss explicitly excluded from this classification cases of two 
constituents which react chemically to form a new compound. 
In one sense he may be considered to have covered all other types 
of joint action, independent and similar action being the simplest, 
and synergism including all forms of departure from the normal. 
Antagonistic action, in which the potency of a mixture is less than 
expected, has been described by Clark (1937, Chapter 17), 
who suggested various mathematical representations· of it; his 
examples, however, are of so different a nature as scarcely to fall 
within the scope of Bliss's paper or the present work. Antagonism 
will be treated here simply as negative synergism. 

The potency of a mixture whose constituents act similarly is 
generally greater than that of a mixture, in the same proportions, 
whose constituents are of the same individual potencies but act 
independently (§ 38). Either type of action is specified by an 
exact law predicting the kill produced by a mixture from the 
amounts of the constituents and their po~ncies. Hence a more 
exact definition of synergism is needed than Bliss's statement of 
its being 'characterized by a toxicity greater than that predicted 
from experiments with the isolated constituents'; at least it must 
he decided whether independent, or similar, or some other joint
action law is the norm to which any suspected case of 
synergism is to be referred. Bliss suggested two alternative 
mathematical models for synergistic action, but neither of 
these rior any of those used by Clark has the more familiar 
concepts of independent or similar action as special cases of 
zero synergism. 
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Finney (1942a) has endeavoured to bring out the logical 
relationship between different types of joint action. That of chief 
importance in studies of insecticides and fungicides appears to 
be similar action, which will therefore be first considered here. 

36. SIMILAR AcTION 

As has been -said in § 20, two poisons whose modes of action on 
the test organism are much alike, especially poisons of related 
chemical constitutions, often show parallel regression lines of 
mortality probits on log doses. The relative potency can then 
be expressed by a single figUI·e, the ratio of equally effective 
doses, which is a constant at all levels of mortality. If the two 
regression lines are written as 

1;. = a 1 + b log A, 

Yz = a2 +b1ogA, 

(8·1) 

(8·2) 

where A is the dose, the potency of the second poison relative to 
that of the first is given by 

logp2 = (a8-a1)fb, (8·3) 

so that (8·2) may alternatively be written 

1;. = a 1 + b log (p8 A). 

l\Iultiplication by the factor p8 converts doses of the second 
poison into equivalent doses of the first, the kill then being 
predictable by means of equation (8·1). A mixture containing 
amounts A1 , A8 of the two poisons is said to show similar action if, 
within the limits of sampling variation, the kill is the same as 
that which would be produced by a dose of the first equal to the 
sum of A1 and p8 A8 ; thus similar action requires that the probit 
regression line for a mixture shall have the form 

(8·4) 

If the mixture is applied as a total dose, A, in which the pro
portions of the two poisons are 111, 118, equation (8·4) may con
veniently be rewritten as 

. Y = a 1 +blog (111 +p8112)A. 
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Though it is not necessary that 1r1 +1r1 = 1, since A may be 
measured in terms of some preparation containing also a pro
portion of inactive materials, equations (8·1) and (8·2) can. be 
obtained by taking 71'1 = 1, 11'2 = 0 and vice versa. The potency 
of the mixture relative to that of the first poison is 

(8·5) 

and (7T1 +p1 7T2)A=A1 +p2A1 is the expression of a dose, A, of 
the mixture as an equivalent, or equally effective, dose of the 
first poison. From these relationships it follows that if A1, A 1 

are the ED50's for the two poisons, A2 = A1/p1 and, more 
generally, for any mixture the ED 50 is estimated as 

(8·6) 

The equations (8·4) and (8·6) are the same as {5) and (7) of Bliss's 
paper, except for the changed notation. 

The concept of similar action and of equivalent doses is easily 
extended to three or more poisons, provided that all may be 
taken to have the same probit-dosage regression coefficient, b. 
If a mixture contains quantities A1, A2, A3 of three such poisons, 
the second and third having potencies p2, p3 relative to the first,· 
the equivalent dose is (A1 + p2 A.2 + p3 A.3) and the regression lin~ 
for the mixture 

Y = a1 + b log (A1 + PaAa + PaAa)· (8·7) 

If the regression equations for two poisons which exhibit 
similar action and for a mixture of the two in proportions 
11'1: 7Ta (11'1 +71'2 = 1) are written as 

Y1 =a1 +bx, Y2 =a2 +bx, Y3 =a3 +bx, (8·8) 

· the potency of the second poison relative to the first is estimated 
asp = 10M, where 

the third regression equation must then be equivalent to 

Y~ = a 1 + b log (11'1 + p7r2) + bx, (8·9) 

apart from sampling errors in the estimation of the four para
meters a1, a 2, a 3, b. 
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Ex. 20. Similar joint acticm of rotenone and a deguelin ccm
centrate. Data from tests of rotenone, a deguelin concentrate, 
and a mixture of the two in the proportion of 1: 4 have been 
examined in Ex. 10, and have been found to be satisfactorily 
fitted by the three parallel probit lines shown as equations (5·8): 
Y,. = 2·336+3·891x, Y" = 0·660+3·891x, Y,. = 1·302+3·891x. 
From the first two of these, the potency of the deguelin con
centrate relative to that of rotenone is lissessed, as in Ex. 10, at 

P1.1 = 10--0-4307 = 0·371. 

H the two poisons act similarly, a dose A of the mixture will be 
as effective as a dose 

(1Tr+p11"1J)A = (0·2+0·371 X 0·8)..;\ = 0·497..;\ 

of rotenone, from which the regression line for the mixture may 
be predicted as 

Y,:. = 2·336+3·S9llog0·497+3·891x 

= 1·155+3·89Ix. 

Compamon of this prediction with the equation estimated 
directly from the data. shows the toxicity of the mixture to be 
a little greater than that required by the hypothesis of similar 
action. The logarithm of the observed potency relative to that 
predicted is 

M 8 "= (}·302-1·155)/3·891 

= 0·0378; 

thus the mixture is estimated to be 9 % more toxic than if the 
constituent poisons acted similarly. This apparent slight syner
gistic effect is shown in. Ex. 21 to be within the limits of sampling 
variation, and no significance need be attached to it. 

The difference between the third equation of (8·8) and equa
tion (8·9}, the pro bit-dosage relationship estimated directly from 
the data and the prediction according to the hypothesis of similar 
action respectively, is a mean probit difference measuring the 
amount of any enhancement or reduction of effectiveness, or, in 
general terms, a measure of synergism; it is 

(8·10) 
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The variance of Lf, has a complicated expression, but is not ! 
·difficult to calculate from quantities already used in estimating 
the various parameters: 

suffices indicating the data for the three preparations tested, 
and I indicating summation for the three. As always, the 
variance must be multiplied by the heterogeneity factor when 
this is significantly greater than unity. Comparison of Lf, with· 
its standard error, the square root of the expression in (8·11), 
gives a test of the significance of the departure from the similar 
action prediction; positive values of Lf, indicate synergism, nega
tive antagonism. 

M aa-al 1 The quantity ,=-b-- og(1r1 +P1rs) (8·12) 

is t:iie logarithm of the ratio of the observed potency of the 
mixture to that predicted on the hypothesis of similar action. 
Since · 

M, = Lfllfb, 

the sign of M, also shows whether the departure from similar 
action is in the direction of synergism or of antagonism, but the 
test of significance should be made on Lf, rather than on M,. 
Should the standard error of M, also be required, it may be 
obtained from the variance 

V(M) = I [ 1ri + P~t~ (1r1 +P1rs)1 

8 b2(1r1 +p1r2) 2 
1Snw 2Snw 8Snw 

+ {1r1ih + p1r2Y2- (1rl + p7r2) Ya}~ (8·13) 
b2ISzz -_j. 

Exact formulae for the fiducial limits of M, and .1
8 

have not been 
developed, but, unless g (as defined in § 19) is large, limits 
calculated from the standard error should be sufficiently reliable 
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for Ll. and probably also for Jf.. The error committed in assessing 
the fiducial limits of M8 as though the estimate were normally 
distributed will usually be less serious than in similar estimations 
of fiducial limits for median lethal dosages or relative dosage 
values; on account of the greater number of tests, the accuracy 
of estimation of b will. be increased and g will therefore be reduced. 

Ex. 21. Standard errors of discrepancies between observation 
and similar action predictions. The mean pro bit difference between 
the regression equation for the rotenone and deguelin concentrate 
mixture discussed in Ex. 20 and the equation predicted on the 
hypothesis of similar action is 

Ll. = 1·302-1·155 = 0·147. 

Also, using numerical values found in Ex. 10, 

1TrYr+p1TdYt1_- = -0·403 
1Tr+p1TtJ '!/,. ' 

and therefore, from equation (8·11), remembering that no evi
dence of heterogeneity was found when these data. were analysed 
in Ex. 10, 

(0·2)1 (0·297)1 1 (0·403-0·147)3 
V(LI.) = 119·6 X (0·497)3+ 78·1 X (0·497)1+ 74·4 + 15·138 X 10·467 

= 0·0014638 0·01344 0·065536 
0·24701 + + 158·45 

= 0·01978. 

Hence Ll. = 0·147 ± 0·141, 

a. value which is not significantly different from zero and which 
therefore shows that the indication of synergism is within the 
limits of sampling variation.. 

The calculations for V(LI 11) have been shown in some detail, 
as by arranging them in this way some steps can be used again 
in calculating the variance of the log ratio of potencies, Jf.. 

From equation (8·13) 

V(M) = [0·0014638 0·01344 (0·403)~/15·138 
B 0·24701 + + 158·45-j 

= 0·001347. 
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The value of M. has already been found in Ex. 20, whence 

M. = 0·0378 ± 0·0367. 

Fiducial limits toM. are approximately, for 5% probability, 
0·0378 ± 1·96 x 0·0367 or - 0·0341 and.0·1097, so that the true 
potency of the mixture may be expected to lit: bliltween 92·4 
and 128·7% of the similar action prediction. 

The test of significance of A8 may be carried out as a x2 test, 
taking (8·14) 

this test being precisely equivalent to the test based on the 
normal distribution and the standard error of A8 • If tests have 
been carried out on several mixtures of two poisons of different 
proportionate constitution, each giving an estimated A8 , a com
posite test of agreement with the similar action hypothesis may 
be obtained by adding the x2 values calculated as in (8·14) and 
testing as a x2 with the total number of degrees of freedom. If 
allowance has had to. be made for heterogeneity, the total of 
the x2 values must be divided by the degrees of freedom and the 
result used in a variance ratio test of significance. The various 
A8 and V(A8 ) are, strictly speaking, not independent, since all 
are dependent upon the common value of band upon information 
from tests on the constituent poisons used separately. Never
theless, the composite test derived from equation (8·14) should 
give an approximate test of synergism for use when·the more 
complicated procedure described in§ 37 seems unnecessary. 

In any experiment designed to throw light on the potency of 
mixtures of poisons, the constituent poisons should be tested 
alone as well as in mixture. Even when a considerable amount 
of information on their toxic effects is already available, they 
should not be omitted from further tests. The insects or other 
test subjects used in work of this nature often show great 
variability in response, both amongst themselves and as a result 
of uncontrolled experimental conditions; hence, unless it is cer
tain that conditions have not changed appreciably in any im
portant aspect, tests of mixtures cannot safely be compared with 
tests of the separate constituents made on a different occasion. 

FPA 9 
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The internal consistency of results for three or more mixtures 
of two poisons with the hypothesis of similar action may, how
ever, be judged, even without tests on the poisons separately,- · 
by expressing intermediate members of the series as though they 
were obtained by mixing, in the appropriate proportions, the 
two mixtures of most extreme constitution; the illustration given 
in Ex. 22 will suffice to show how this is done. 

Ex. 22. Expression of one mixture in terms of two others. 
Suppose tests have been made on three mixtures, containing 
respectively proportions 4 : 1, 7 : 3, 2 : 3 of two poisons. The first 
and the last are the most extreme in composition, and the second 
may easily be expressed in terms of them. The proportions of 
the two constituent poisons in the mixtures are (0·8, 0·2J, (0·7, 0·3) 
and (0·4, 0·6); the second mixture may therefore be considered 
as composed of proportions 71'1, 'll'z of the first and third where 

0·871'1 + 0·47T1 = 0·7, 0·271'1 + 0·671'1 = 0·3, 

-whence 71'1 = 0·75, 71'1 = 0·25. It is easily verified that if the 4: 1 
and 2 : 3 mixtures are themselves mixed in the ratio 3 : 1 a mixture 
of the original poisons in the ratio 7 : 3 is obtained. The agreement 
of the results of the experiment with predictions made from the 
hypothesis of similar action may then be examined by means 
of the methods and formulae just discussed. 

37. A GENERAL TEsT FOR SIMILAR AcTION 

When several mixtures with different proportionate constitutions 
have been tested, another method (Finney, l942a) may be used 
for examining the agreement of the median effective doses with 
the values predicted by similar action. This method explicitly 
uses only the median effective doses and their standard errors; 
parallelism of the regressions is implied, however, since otherwise 
no meaning can be given to the concept of similar action .. There 
are theoretical objections to the method on account of certain 
assumptions of normality and independence, but providing that 
the regression coefficient is estimated with reasonable precision 
the resulting tests of significance should be reliable. 
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From equation (8·6), if ,\1 is the LD 50 of a poison, p the relative 
potency of a second poison, and 111, 111 the proportions of the two 

. poisons in a mixture, the LD 50 of the mixture is ,\, where 

·(8·I5) 

Consequently, if values of ,\ have been estimated for mixtures 
of two poisons in a series of different proportions, I/,\1 and pj,\1 

may be estimated as the regression coefficients of If,\ on 111 and 111 , 

each value of If,\ being weighted inversely as its variance. If,\ 
is the LD50 corresponding to a log dose m (m = log10 ,\) 

V(lf,\) = Vl':) (loge Io)s = 5·30~~(m)' 

and therefore the weight to be attached to If,\ is 

W = O·I886,\1fV(m). (8·I6) 

The regression equation (8·I5) contains no 'constant term', but 
is constrained to give ,\ infinite when the content of both con
stituents is zero; hence total sums of squares and products must 
be used in calculating the regression coefficients, not sums ad
justed so as to refer to deviations about means. Comparison 
of the values of,\ calculated for each mixture from equation (8·I5) 
with the values from which the equation was estimated shows 
how well the observations are fitted by the similar action hypo
thesis and permits a test of significance of the agreement. 

Tattersfield and Martin (1935; see also Ex. I3 above) have 
published results of toxicity tests with ether extracts of seven 
different derris roots to Aphis rumicis, and have given the LD50 
for each in terms of rotenone and a dehydro mixture. The latter 
is known (Martin, private communication) to have varied con
siderably from toot to root in its relative proportions of different 
dehydro compounds. Though he recognized that any comparison 
of toxicities based on the two constituents alone must be of 
doubtful value, Bliss used these data as an illustration of 
synergistic action between two poisons and found them to agree 
satisfactorily with a generalization of one of his formulae for 

v-:a 



132 THE TOXIC ACTION OF MIXTURES OF POISONS 

synergism, provided that one root (no. 2), which behaved 
anomalously, was omitted. On account of the non-independence 
of the LD50's and their standard errors, the analysis given is 
not strictly correct, but the disturbance so caused can only be 
slight. A mo:re serious error of tactics is that the data were not 
examined for their possible agreement with the simpler hypo
thesis of similar action. Finney ( 1942 a) has shown the median 
lethal doses to be satisfactorily fitted by equation (8·15), using 
the regression procedure outlined above. Details of the calcula
tions will not be shown here, since the process is sufficiently 
illustrated by Ex. 23, in which the method is used to test similar 
action between three components. 

Ex. 23. Similar action between the toxic con&tituent8 of derris 
root. Results of toxicity tests on four derris roots, ~arried out 
byMartin(1940),have beenexaminedinEx.14, and comparative 
LD50 values have been estimated, allowing for different levels 
of susceptibility of the test insects on the three days of testing; 
these values are given in Table 15. The variances of the median 
lethal doses were not discussed in Ex. 14, but for present purposes 
the sum of the weights in the appropriate column of Table 14 
will be taken as the weight to be attached to any logLD50; 
a little consideration shows this figure to be too high, though it 
should be of the right order of magnitude. Allowance must also 
be made for the heterogeneity of the relative potencies which 
was demonstrated by a x2 test at the end of Ex. 14, but this can 
most conveniently be done at a later stage of the analysis. 

Martin subdivided the toxic constituents of each of the four 
roots into rotenone, a toxicarol fraction (possibly including 
sumatrol, malaccol, and other materials in addition to toxicarol) 

· and a deguelin concentrate fraction (including elliptone, if pre
sent, as well as deguelin), and determined the proportions of these· 
three for each root. The average probit regression coefficients 
for the three days of testing were 5·77 ± 0·39, 5·07 ± 0·35 and 
4·66 ± 0·32. Though difference~ between these are not significant, 
there is some indication of a decrease from the beginning to the 
end. There is no evidence of consistent differences between roots 
in their log-tolerance variances. An examination of the adequacy 
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of similar action to explain the observations is therefore of 
interest and provides a useful illustration of the method. If the 
three components act similarly, equation (8·7) should be adequate 
to describe the observed mortalities, and the LD 50 for any root 
should be given by 

~= (~) 1Tr+ (~) rr,+ (~)"d• (8·17) 

"r• rr1, 1r4 being the proportions of the three components in the 
root, ,\,. the LD 50 of rotenone, and p1, p4 the potencies of the 
toxicarol and deguelin fractions relative to rotenone. 

TABLE 23. Computations for Test of Similar Action between 
the Constituent; of Derris Root 

Material 1/V(m) A w "• "• "• 
Rotenone 1,640 13·2 0·054x 108 1·0000 0·000 0·000 
W.2ll 6,710 244 75·3 X 108 0·0146 0·152 0·086 
W.212 6,140 146 24·7 X 108 0·0414 0·043 0·124 
W.213 4,710 188 31·4 X 108 0·0346 0·024 0·082 
W.214 4,820 92·0 7·69 X 108 0·0794 0·026 0·122 

Material 1/A WIT. W"e WIT. W/A 

Rotenone 0·07576. 54,000 0 0 4,091·04 
w. 211 0·00410 1,099,380 11,445,600 6,475,800 308,730 
W.212 0·00685 1,022,580 1,062,100 3,062,800 169,195 
W.213 0·00532 1,086,440 753,600. 2,574,800 167,048 
W.214 0·01087 610,586 199,940 938,180 83,590·3 

Table 23 shows the first stage in the fitting of this equation 
to the data for rotenone alone and for the four roots. The column 
IfV(m) contains the column totals from Table 14, representing 
approximately the weight to be attached to each logLD90, and 
the column i\ contains the values of the LD50 from Table 15; 
from these and equation (8·16), W has been calculated. The 
proportions of rotenone, toxicarol and deguelin (1rr, rr1 and 1111) 

are reproduced from :Martin's Table 12 (1940), 1/.i\ is tabulated, 
and the products of W with each of the four following columns 
are then entered in full. 

Sums of products of the entries in each of the last four columns 
in Table 23 with 1Tr, 111, 114 and-1/.i\ are next formed. Sums of 
products such as SW 1r r 111 are obtained in two ways, the agreement 
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being a check on the arithmetic; sums of squares such as SlV1T~ 
must be recalculated as a check. Systematic arrangement of the 
results gives the following equations for the three regression 
coefficients in (8·17): 

198,457(1/A,.) + 253,026(p,/A,.) + 384,926(pd/A,.) = 28,020·1, 

253,026{1/A,.) + 1,808,686(p,/A,.) + 1,202,210(pd/A,.) = 60,384·8, 

384,926(1/A,.) + 1,202,210(p,/A,.) + 1,262,298(pd/A,.) = 71,426·9. 

These equations must be solved to a greater number of decim~l 
places than is needed for the comparison of potencies, in order 
to have sufficient accuracy in. the test of significance of the 
departure from similar action. The solutions are: 

1/A,. = 0·0800010, p1/A,. = 0·0021760, Pa/A,. = 0·030ll68. 

Also the weighted sum of squares of I/ A is 

SW(l/J...)Z = 4532·04, 

and the portion of this accounted for by the linear regression 
on 1tr, 1t1, ·1Ta is 

(1/A,.) SW1rr/J...+ (p1/A,.) SW1r1/A.+ (Pa/A,.) SW1r4 /J... = 4524·18. 

Now SW(l/A.)2, being a sum of squares not adjusted for a mean, 
has 5 degrees of freedom, and the residual after the fitting of 
three constants therefore has 2 degrees of freedom. If the 
weights, W, had been truly the reciprocals of the variances of 
1/J..., the residual would have been a x2, namely, 

xr2] == 7·86. 

Quite apart from the considerations of non-independence men
tioned earlier, the weights require to be reduced on account of 
the heterogeneity of relative potencies found in Ex. 14 

xr2] = 14·24. 

Hence a test of significance for departures from the similar action 
law is obtained by comparing mean. squares from these two x2 

values {Fisher and Yates, 194M, Table V). Since the mean square 
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for departures from similar action is less than the heterogeneity 
mean square, the data do not contradict similar action, but the 
test is not very precise because of the few degrees of freedom 
available for the heterogeneity x• and mean square. 

The LD 50 for rotenone, ~. is estimated as 12·50 mg.fl., and 
the potencies of.the toxicarol and deguelin fractions relative to 
rotenone, p1 and Pd• are estimated as 0·02720 and 0·37645 or/, 
and a little over !. as compared with the values of h and l 
used by Martin in computing rotenone equivalents for, the four 
roots. The rotenone equivalent is (trr+p1tr1+pdtrd}, and the esti
mated LD 50 for any root is obtained by dividing the LD 50 for 

TABLE 24. Comparison of Median Lethal Doses of Derris Roots 
and Values Predicted according to Similar Action (doses in 
mg.fl.) 

Predicted from Predicted, omitting 

LD50 in all data rotenone 
Sample 

Table 15 %rotenone 
LD50 

%rotenone 
LD50 equivalent equivalent 

Rotenone 13·2 100·000 12·5 100·000 (9·09). 
w. 211 244 5·111 245 3·728 244 
W.212 146 8·925 140 6·240 146 
W.213 188 6·612 189 4·819 189 
W.214 92·0 12·603 99·2 9·898 91·9 

rotenone by the rotenone equivalent. Table 24 shows the results 
and makes it clear that the expression of the toxic contents of 
the four roots in terms of their rotenone equivalents gives a very 
reasonable evaluation of their potencies. 

The rotenone content of the roots is so small, and in. conse
quence the potencies of the roots are so very different from that 
of rotenone, that it may seem more appropriate to examine the 
consistency with the similar action law of the data for the four . 
roots alone, ignoring the rotenone tests entirely. The only changes 
which the omission of the first line in Table 23 produces in the 
equations for the three parameters are that SWtr: becomes 
144,457 instead o£198,457 and SWtrrf>.. becomes 23,929·1 instead 
of 28,020·1. The solutions now lead to 

~ = 9·093, p1 = 0·06642, Pd = 0·14634. 
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That the four roots show excellent agreement with the similar 
action hypothesis is evident from the rotenone equivalents and 
estimated LD50's, also shown in Table 24, though naturally the 
discrepancy for rotenone itself becomes much greater than in 
the earlier analysis. 

From his examination of the same data, Martin concluded 
that there was some evidence of synergistic action between the 
three toxic constituents of the roots. The present more complete 
analysis shows that the indications of synergism disappear when 
the best possible values for the relative potencies of the con
stituents are estimated from the data themselves instead of from 
an earlier investigation. Nevertheless, synergism may be present 
in a form that leaves the data internally consistent with simi
larity; the matter can scarcely be settled satisfactorily without 
comprehensive trials including tests both on the roots and on 
the constituents. 

38. INDEPENDENT AcTION 

The distinction between similar and independent action must be 
kept clear. In mixtures whose constituents act similarly a_ny 
quantity of one constituent can be replaced by a proportionate 
amount of any other without disturbing the potency, but for 
mixtures whose constituents act independently the mortalities, 
not the doses, are additive. This type of action may occur with 
a mixture whose constituents produce their toxic effect in entirely 
different ways, as, for example, a mixture of two insecticides of 
which one is a stomach poison and the other a contact poison. 
• Suppose that the doses of two poisons given in a mixture are 

capable of producing mortalities~. P2 when used separately. If 
the two act independently, a proportion P2 of the test subjects 
which would survive the first poison is expected to succumb 
to the second; thus giving an expected total mortality (cf. § 26) 

p = ~+~(1-~). 
This may be written 

P=1-(1-~)(1-P2) (8·18) 

in order to display the symmetry in~ and P2 • Equation (8·18) 
is the basic expression of independent action between two 
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poisons; for three constituents, the corresponding relationship ~s 

P = 1-(1-P1)(1-P2)(1-,Pa), (8·19) 

whence the method of extension to a greater number of con
stituents is apparent (see §53). 

Bliss (1939a) has suggested a modification of equation (8·18) 
to allow for a correlation in the susceptibility to the two com
ponents. If Ji > Pz, so that the first component is the more toxic, 
his equation is (8·20) 

r representing the degree of correlation between the suscepti
bilities to the two poisons. • When r = 0, this last equation 
reduces to (8·18); when r = 1 it becomes simply 

P=Ji, 
so that the combined mortality is the same as that for the more 
toxic ingredient applied alone. Negative correlation of suscepti
bilities does not fall within the scope of equation (8·20), since 
negative values of r would make P > 1 for certain values of Ji 
and J8. As will· be seen from Ex. 26, a critical experiment to · 
distinguish between equations (8·18) and (8·20), even for values 
of r close to I, would usually require many more test subjects 
than are normally available; there appears to be no e~idence, 
either theoretical or experimental, that equation ( 8·20) represents 
any real biological situation, and therefore no detailed study of 
it will be attempted here. Indeed, so far as is known to the 
writer, no clear experimental demonstration of the occurrence 
of the simplest form of independent action has yet been.made, 
and equation (8·18) may well be too crude an approximation tO 
any interaction of effects of mixed poisons to be of much practical 
value. A discussion of the types of relationship to which the 
equation can lead is of interest, however, as giving some indica- · 
tion of what may be expected in a future approach to more 
complex problems. 

Simple though the concept of independent action is, the 
statistical treatment of data relating to poisons acting in this 

. • The symbol r is used here with a. meaning entirely different from 
that in other sections of this book. 
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manner is much more difficult than that of data. relating to 
similar action. Even though the two constituents of a mixture 
give mortality pro bits which are linearly related to the log dose 
and the two probit regression lines are parallel, the regression 
relationship for the mixture will not be a straight line; still less 
can this be so when the regression lines for the constituents are 
not parallel. No exact methods of statistical analysis are avail
able, but a few illustrations of curves obtained according to the 
independent action law, for mixtures whose constituents ha¥e 
the usual normal distribution of log tolerances, will show the 
types of pro bit-dosage relationship which may be encountered. 

Ex. 24. Independent action between constituent.! with paraUel 
probit regression lines. Consider two poisons having the probit 
regression lines · 

1; = 6+2x, Y1 = 4+2x; 

the first has ten times the potency of the second at all levels 
of mortality. In a 1:1 mixture of the two, the concentration 
of the first poison in a total concentration .\ will be !.\, and the 
log concentration of the first will therefore be (x -log 2). For 
low values of x, the kill produced by the second poison will be 
negligible relative to that produced by the first, and the total 
effect will be almost identical with that caused by the content 
of the first poison alone; hence for low values of x the mixture 
gives mortality pro bits determined by 

Y = 6+2(x-log2) 
= 5·40+2x. 

With increasing total concentration, the amount of the second 
poison present in the mixture begins to produce an appreciable 
effect, so that the total kill is greater than that for the first alone. 
The curve relating the pro bit of the total mortality to the dosage 
is shown in Fig. 12.* 

If the standard deviation of the log-tolerance distributions· 
for the two p9isons is altered, without change of the mean pro bit 

* Points on this curve are most easily calculated by first tabulating 
Y1 and Y1 for a series of values of z; for example, when z = 0·20. for 
the mixture, the log concentration of each constituent present in the 
mixture is z = - 0·10, so that Y1 = 5·8, Y1 = 3·8. Values of Ql, Q •• 
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difference, the only change in Fig. 12 is a change in the scale of~· 
For example, for two poisons giving the separate lines 

1;. = 6+ lOx, Y2 = 4+ lOx, 

a I : I mixture shows the same response curve as Fig. 12, except 
that one unit of x in that figure must now be read as only l unit. 

lo0_2·0 -1·0 0 1·0 

Log Total Concentration 

FIG. 12. Independent action in a 1 : 1 mixture of poisons with pro bit regression 
lines Y1 = 6 + 2x, Y1 = 4 + 2x. Curve .shows dosage-response relationship for 
mixture (Ex. 24). Broken line shows dosage-response relationship for corre
lated independent action with r= 1 (Ex. 26). 

If the standard ·deviation remains unaltered, but the· mean 
log tolerances are changed, the curve is again unaltered as long 
as the relative potency is the same. For example, if 

Y1 =3+2x, Y2 =1+2x, 

.the proportions of test subjects separately surviving these dosages, 
are then obtained from Table 1; here Q1 = 0·2119 and Q, = 0·8849. Now 
equation (8·18) can alternatively be written 

Q=Q,Q •• 
so that tabulation of products gives the proportion surviving the mixed 
dose, or in this instance Q = 0·1875; the value of Y = 5·89 is then read 
directly from Table 1. 
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the two lines and the curve are shifted horizontally by 1·5 units; 
the change may be accomplished by writing (x+ 1·5) for x in 
Fig. 12. 

H the relative potency of the two poisons is changed, the curve 
for the mixture is changed though still very similar in general 
form. For the lines 

I;= 5·1+2x, Y1 = 4·9+2x, 

a 1 : 1 mixture gives the curve in Fig. 13. 

Log Total Concentration 
FJ:a. 13. Independent action in a I : I mixture of poisons with pro bit regression 
lines ~=5·1+~. Ya=4·9+~. Curve shows dosage-response relationship for 
mixture (Ex. 24). 

The contrast between similar action and independent action is 
emphasized by consideration of the interesting limiting case of 
a mixture of two poisons whose separate pro bit lines are identical. 
Under similar action, any such mixture, irrespective of the pro
portions, would give the same line. ·Under independent action 
a curve is obtained, of a form very like those just discussed, which 
at low concentrations lies below the lines for the two constituents, 
but at high concentrations lies above. If 

Y1 = Y1 = 5+2x, 
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the curve for a. I : I mixture is obtained by calculating, f~r 
various values of x, 

Q=Qi; 

this curve is shown in Fig.l4, together with further curves for 
mixtures of 4, I6 and 1000 components in equal proportions, all 
having the same individual probit lines. 

Log Total Concentration 

FIG. 14. Independent action in mixtures of several poisons each with probit 
regression line Y = 5 + 2x. Curves are drawn for 2, 4, 16 and 1000 components 
(Ex. 24). 

From consideration of Figs .. I2-14 the general nature of the 
curve for a mixture in equal proportions, at least when the two 
constituents give parallel probit lines, may be inferred. At low 
concentrations the curve is indistinguishable from the line repre
senting the effect of the mixture's content of the more ·potent 
constituent applied alone; if the relative potency of the more 
potent constituent is less than two (Fig. I3) the kill at these 
concentrations is even less than for the same total concentration 
of the less potent constituent alone. At higher concentrations, 
the kill is augmented by an appreciable effect of the weaker 
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constituent, so that the curve turns upward and is no longer 
parallel to the two original lines. If the two constituents do not 
differ greatly in potency (Figs. 13, 14), as the concentration is 
increased the mixture soon becomes more effective than the 
same total concentration of the stronger constituent, but if the 
difference is large (Fig. 12) this does not occur until very high 
concentrations and kills are reached. 

',['he discussion just given may be extended to cover mixtures 
in proportions other than 1 : 1 by a simple transformation. A 2: 3 
mixture, for example, may be considered as a mixture in equal 
proportion of the first constituent with a new second constituent 
of 3/2 the potency of the original. Hence on the pro bit diagram 
the line for the second constituent may be shifted a distance 
b log (3/2) to the left and the behaviour of the mixture then 
deduced as that appropriate to a 1 : 1 mixture. For numerical 
calculation nothing is gained by this process, as the ordinates of 
the curve for the mixture may just as easily be calculated directly. 
· Bliss (1939a) implied that mixtures of two poisons showing 

similar action always had greater potency than mixtures of two 
poisons with potencies equal to those of the first pair but showing 
independent action. This is true at moderate dose rates if the 
relative potency of the constituents is large, but Figs. 13 and 14 
indicate that if the relative potency approaches unity inde
pendence gives a lower potency at low doses and a higher potency 
at high doses than does similarity . 
. Ex. 25. Independent action between constituent8 with inter

secting probit lines. The curve relating mortality pro bit to dosage 
for a 1 : 1 mixture of independently acting poisons whose separate 
regression equations are 

:I;= 5+2x, ~ = 5+4x, 

is shown in Fig. 15; in general characteristics it is typical of the 
curve resulting from mixing poisons whose regression lines inter
sect. At concentrations sufficiently low for the constituent with 
the greater log-tolerance variance (i.e. lesser value.of b) to be the 
more potent, a 1 : 1 mixture produces almost the same effect as 
would its content of this constituent applied alone. At higher 
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concentrations, the curve for the mixture eventually rises rathe~ 
more steeply than the line for the constituent with the greater 
value of b; as the curve increases in steepness with increasing 
concentration it may be presumed eventually to intersect the 
line for this constituent a.Ione, but unless the original lines are 
nearly parallel.this intersection seems not to occur until very high 
kills have been reached. 

7•0 

-1·0 0 1·0 2·0 

Log Total Concentration 
FIG. 15. Independent action in a 1 : 1 mixture of poisons with probit regression 
lines Y1 =5+2x, Y1 =5+4x. Curve shows dosage-response relationship for 
mixture (Ex. 25). Broken line shows dosage-response relationship for corre-
lated independent action with r= 1 (Ex. 26). · 

Curves calculated for 1:1 mixtures whose constituents have 
the regression lines 

J; = 4+2x, Y2 = 4+4x, 
or J; = 2+2x, Y2 = 2+4x, 
have been found to be very like those of Fig. 15, except for the 
displacement caused by the changed point of intersection of the 
lines, but they are not quite identical in shape. Two poisons 
whose probit lines are 

Y1 = 5+2x, Y2 = 5+10x, 
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differ more markedly in tolerance variance than those just con
sidered, but the curve for a 1 : l mixture has the same general 
appearance (Fig. 16). Mixtures in proportions other than 1: 1 
may be discussed as l : 1 mixtures by means of the transformation 
suggested at the end of Ex. 24:. 

Ex. 26. Correlated independent action. The curve representing 
the toxic effect of a mixture of two poisons showing correlated 
independent action, as defined by equation (8·20), is always 

7.() 

-1-o 0 1.0 

Log Total Concentration 

Fla. 16. Independent action in a 1: I mixture of poisons with probit regression 
lines Y1 =5+2z, Ya=5+10z. Curve shows dosage-response relationship for 
mixture (Ex. 25). Broken line shows dosage-response relationship for corre
lated independent action with r= 1 (Ex. 26). 

intermediate in position between that for completely independent 
action and the line or sections of lines for the more potent con
stituent alone. Thus for complete correlation (r = 1) in Ex. 2!, 
since one constituent is always inore potent than the other at 
all dosages, the mixture would follow the line for the amount of 
this constituent present in the mixtUre; this line is shown in 
Fig~ 12 and is a continuation of the initial rectilinear portion of 
the curve for r = 0. For less complete correlation, represented 
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by 0 < r < I, an intermediate curve would be obtained. In Ex. 25 
the more potent constituent is not the same at all dosages'. 
Sections of lines corresponding to r = I are also shown in Figs. I5 
and I6; again lesser values of r would give curves in intermediate 
positions. The two extremes (r = 0 and r = I) are often not very 
different, and only very extensive and precise data could permit 
satisfactory discrimination between different values of r. With 
experimental results for poisons whose effects are like those shown 
in Fig. I6·, for example, it would be very difficult to assess r with 
any precision. Indeed, in practice, data which are ~ppreciably 
less satisfactorily fitted by r = 0 than by some other value of r 
will rarely be encountered. 

As stated above, no exact statist~cal treatment of data relating 
to independent action has yet been developed. If probit lines 
for the constituents are estimated in the same series of tests as 
those on the mixture, these lines may be used to predict the form 
of the curve for the mixture, and the observed mortalities may 
then be compared with the expected, by a x2 test in the manner 
of that used in Ex. I. Such a test ignores the errors of estimations 
of the lines for the constituents, and is therefore liable to 
exaggerate the significance of discrepancies, but no alternative 
can at present be suggested. No examples from experimental 
data will be given here, as none suitable have been found in the 
published literature. 

Mortality probits corresponding to low concentrations of 
a poison have often been found to be higher than predicted by 
the line fitted to the whole data. Bliss (1939a) has suggested 
that this phenomenon of a 'break' in the line may indicate that 
the poison is in fact a mixture of two or more toxic components; 
the possibility merits furth8r consideration, but detailed experi
mentation at many concentrations is needed if it is to be examined 
adequately. Such breaks are often drawn as sudden changes in 
slope, a situation which can only occur with independent action 
if r = 1. The data are seldom sufficiently precise, however, for 
any certainty that the change in slope is not more gradual and 
of the type found for lesser values of r, perhaps even for r = 0. 
Frequen~ly only the upper portion of the curve is of interest, 

FPA 10 
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since this usually extends over the important range of kills, and 
difficulties of analysis may be avoided by ignoring the results 
for the lower dosages, a policy which is theoretically objectionable 
but practically justifiable. 

Murray (1938) published the results of tests on the toxicity 
of a pyrethrin spray to the house-fly which give some evidence of 
independent action of pyrethrins I and II; a distinct 'break' 
occurs for the female Hies, but the more susceptible males show 
only one phase of action over the whole range of concentrations 
tested. The proportions of the two pyrethrins present in the spray 
were not stated, nor were tests made on either component alone, 
·so that no critical judgement can be formed. The data have been 
discussed by Bliss. 

39. SYNERGISTIC ACTION 

}!any writers have used the terms synergism and anuzgoni&m to 
describe the joint action of certain mixtures of poisons without 
giving any unambiguous definition of their meaning. The first 
attempt to formulate algebraic relationships which would repre
sent this type of action was due to Bliss ( 1939a); he proposed two 
alternative equations for the simple case of similar synergistic 
action, in which the pro bit-dosage regression lines for mixtures 
and for the constituent poisons are all parallel. 

Bliss endeavoured to find the relationship between the quan
tities of two poisons present in equipotent doses of mixtures 
behaving synergistically. H a total dose .,\ contains quantities 
.,\1 and "'-z of two constituents, the first being the 'more active 
ingredient', an equation will connect the values of .,\1 and .,\3 for 
which the total kill is constant.* The first equation suggested 
by Bliss may be written in the form-

AHA1 +A2) = k, (8·21) 

where e depends only upon the two poisons and k is a function 
only of the level of kill seleoted. Bliss does not state by what 
criterion it is to be decided which ingredient is the more active, 
though some standard independent of dose seems to be implied. 

• For similar action, the equation is A.1 + pA.1 = constant. 
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The equation cannot hold for very small doses of the first poison, 
since it implies that the addition of a trace of this to a moderate 
dose of the second would reduce rather than increase the potency. 

The second equation, which Bliss considered more satisfactory, 
is (8·22) 

where e again depends only on the two poisons and k, . k are 
functions of the level of kill selected for comparing the data. 
On the analogy of Clark's fin~gs for drug antagonism (1937), 
Bliss suggests that e is frequently-very close to unity; he also 
states that in one example the product kk appeared to be 
almost independent of the kill and proposes that its value might 
therefore be used as a measure of the intensity of synergism. 
Equation (8·22) must break down at very small doses of the 
second poison since it implies that a preparation containing only 
a trace of the second mixed with the first would be less toxic 
than the same amount of the first applied alone. .. 

Both these equations must be judged unsatisfactory repre
sentations of similar synergistic action. Apart from the dis
continuity for small doses and the difficulty of defining the more 
active ingredient, there is the disadvantage that neither includes 
similarity or independence, the two simpler forms of joint 
action already discussed, as cases of zero synergism. Though 
the final appeal must be to experiment rather than to abstract 
argument, equations (8·21) and (8·22) appear unlikely to be very 
helpful in describing synergistic action, particularly as each 
requires at least two parameters, one of which depends upon 
the level of mortality. 

An alternative equation, which may satisfactorily fit so~e 
data whose probit regression equations, both for mixtures and 
for their constituents, are rectilinear and parallel, has been 
suggested by Finney (1942a). It may be written, using the same 
·notation as in § 36, 

Y = a+blog(711 +p1111 +K,J[p7111111])+bx, (8·23) 

and is an extension of equation (8·9). A dose A of the mixture 
produces the same effect as a dose (111 + p1121 + K ,J[p711 7111]) A ofthe 
first constituent alone. If K = 0, equation (8·23) represents similar 

IG-Z 
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action. If K is positive, the potency is greater than that predicted 
by similar action, and the poisons act synergistically; if K is 
negative, they act antagonistically. Equation (8·23) may prove 
at least a satisfactory empirical formula. for mixtures whose 
probit lines are parallel to those for their constituents; the 
constant K will be called the eoe.fficient of synergism. The equation 
will easily generalize so as to include mixtures of several toxic 
constituents. 

In order that the agreement between experiment and a pro
posed law of synergistic action may be examined, toxicity tests 
must be carried out with a range of doses of mixtures in at least 
two different proportions as well as on the constituents separately. 
From data collected in such an experiment the coefficient of 
synergism, as defined above, can be estimated by a generalization 
of the method described in § 37, using now a regression equation 
in the form 

~= (~J7T~+(fj1Ta+{:C)<7TI7Ta}•. (8·24) 

The only data found in published papers which give definite 
evidence of synergism and which are shown in a. form suitable 
for testing the adequacy of equation (8·23} are discussed in Ex. 27. 
Before the many problems of synergism can be elucidated, a great 
amount of further experimentation, testing mixtures in several 
different proportions, must be carefully planned and executed. 
Without much more experimental evidence than is at present 
available any complete discus~ion even of similar synergistic 
action is impossible; no attempt will be made here to unravel the 
complexities that may arise when the separate regression lines 
are not parallel. 

Ex. 27. The toxicity of rotenone-pyrethrins mixtures to the house
fly. Le Pelley and Sullivan (1936) have reported the results of 
two series of trials in which adlllt house-flies were sprayed with 
alcoholic.solutions of rotenone, pyrethrins, and a mixture of the 
two; in the first series the mixture contained rotenone and 
pyrethrins in the proportion of 1:5 (by weight}, and in the 
second series the proportion was 1:15. About 1000 flies were 
tested at five levels of each toxic preparation, and the kills 
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obtained were as shown in Table 25, these figures having been 
abstracted from the diagrams in the original paper. The authors 
interpreted the results as indicating no striking antagonistic or 
synergistic effect in the mixtures. A footnote by H. H. Richardson 
asserted that in the first series there was pronounced synergism 
and in the second an effect in the same direction but of less 

TABLE 25. Toxicity of Rotenone and Pyrethrins to House-flies 

I First series Second series 

Concentra- Concentra-~ I tion No. of flies %kill tion No. of flies %kill 
(mg.fc.c.) (mg.fc.c.) 

I 
Rotenone Rotenone 

0·10 1000 24 0·10 JOO 28 
0·15 1000 44 0·15 900 51 
0·20 1000 63 0·20 900 72 
0·25 1000 81 0·25 900 82 
0·35 1000 90 0·35 900 I 89 

Pyrethrins Pyrethrins 
0·50 1000 20 0·50 900 23 
0·75 1000 35 0·75 900 44 
1·00 1000 53 1·00 900 55 
l-50 1000 80 1·50 900 72 
2·00 1000 88 2·00 900 90 

Mixture ( 1 : 5) Mixture (1: 15) 
0·30 1000 27 0·40 900 23 
0·45 1000 53 0·60 900 48 
0·60 1000 64, 0·80 900 61 
0·875 1000 82 l-20 900 76 
l-175 1000 ; 93 1·60 900 93 

apparent significance; Richardson here used a prediction for the 
mixture equivalent to the similar action law. Bliss (1939a) con7 

firmed Richardson's conclusion, and Finney ( 1942 b), after a new 
analysis of the data, also agreed that there was evidence of 
synergism. 

In this last analysis, for each series, parallel probit lines were 
fitted to the data for the two poisons and their mixture. For the 
first series, the LD50's were 0·156, 0·918 and 0·455 mg.fc.c. for 
rotenone, pyrethrins and the 1:5 mixture respectively. The 
pyrethrins were slightly more than one-sixth as toxic as the 
rotenone (more precisely, p = 0·170), whence the similar a~tion 
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law predicts a relath-e potency of ()-308 for the mixture. or an 

LD 50 of ()-506 mg.fc.c. The mixture .-as thus II % more potent 
than .-ould be expected if ita constituents acted similarly; a test 
!>f the significance of this synergistic effect may be obtained from . 

.d.= o-I68 ± o-oso, 

leaYing little doubt that the enhanced toxicity is greater than -
can be attn"buted to random sampling variation. Analysis of 
the second series gave ()-1!2, ()-889 and ()-65I mg.fc.c. as the 
LD50's for rotenone, pyrethrins and the I: 15 mixture. The 
values for the two constituents of the mixture .-ere thus very 
close to those obtained in the first series, and gave p = o-I60. 
Similar action then predicts a relath-e potency of o-212 for the 
mixtu:re, and therefore an LD50 of ()-670 mg.Jc.c. This mixture 
W'88 3 % more potent than predicted, but the difference here is 
not significant since 

.d.= ()-()39 ± ()-()67. 

Both series of tests give some indication of synerg:ism, though 
in only one is the departure from similarity si.:,unificant. It is 
therefore of interest to inquire 'Whether the equation for similar 
eynezgistic action (equation (8·23)) ..-ill fit the resnlts. The data 
are insufficient for any precise estimation of the coefficient of 
synergism, but a value of about ()-15 may easily be seen to be satis
factory. Using K = ()-15, the expression (w1 +Fz+«",fpw1 .-J) 
gives the expected potency of a mixture relative to that of 
rotenone; for the two :mixtures under test the values are ()-331 

and o-227 respectively. The corresponding LD50's, ()-!71 and 
o-626 mg.fc.c., agree ..-ell "With the experimental determinations 
of o-NS and ()-651 mg.fc.c.; even "Without exact statistical tests 
the di.serepancies are seen to be not significant, so that at Iea.:.-t 
the data do not ""contradict the hypothesis expressed by equa
tion (8·23). 

~- PLANNED TEsTs ol' SYliE:BGISX AND SnnLA:BITY 

l\"hen experiments on the joint action of two poisons have to 
be planned in the absence of any information about the existence 
of synergism or antagonism between them, a working hypothesis 
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that the action will be similar may reasonably be adopted. 
Unless there are a priori considerations governing the propor
tionate constitutions of mixtures to be tested, it is preferable 
that the pro bit lines for mixtures should be fairly evenly spaced 
between those for the constituents used separately. If the second 
constituent is p times as potent as the first, its probit line will 
be a distance logp to the left of the first. On the hypothesis of 
similar action, if a mixture in the proportion 1T: ( 1-11) yields 
a probit regression line at a distance Ologp to the left of that for 
the first poison, where 0 is some fraction between 0 and 1, then 

whence 

log{11+p(1-11)} = Ologp, 

p-pB 
11=-- • 

. p.;..1 
(8·25} 

In Table 26 11 is tabulated, as a percentage, for a series of values 
of p and 0; providing that an approximation to p is available 
from earlier experiments, the table may conveniently be used 
in planning toxicity tests intended for the investigation of similar 
and similar synergistic action. 

Ex. 28. The UBe of Table 26 in planning toxicity testa. Suppose 
that toxicity tests are to be planned for two poisQns and a mixture 
whose constitution shall be chosen so that, if similar action is 
operating, the probit regression line for the mixture_ will be 
midway between the lines for the constituents, all dosages being 
measured as the logarithms of total poison content. Suppose 
further, that, from previous experience, the second po~n is 
believed to be about four times as toxic as the first. Entering 
Table 26 with p = 4 in the column for 0 = 0·5, the required 
proportion of the first poison is found to be 67 %, and therefore 
a 2 : 1 mixture of the two poisons should be used. 

Again, suppose that three different mixtures of two similarly 
acting poisons are required such that the mixtures give probit 
lines equally spaced between those for the separate poisons, and· 
assume that the second constituent is known to be about twelve 
ti.mes as potent as the first. Interpolation in Table 26 for p = 12 
and 0 = 0·25, 0·5 and 0·75 gives figures of about 91, 77 and 50% 
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for the amounts of the first poison in the mixtures. Suitable 
mixtures would therefore be made in the proportions of 10 : 1, 

· 7:2and1:1. 
· In order to ~btain reliable evidence of the nature of the joint 

action of the two constituents of a mixture, a minimum of four 
concentrations of each toxic preparation should be tested. If 

TABLE 26. The Function 11 = 100(p-p6)f(p-l) used 

in Planning Tests of Mixtures of Two Poisons 

0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 ~ ------------------,_ 
H 90·4 81 71 61 51 41 31 21 10 
1·5 91-7 83 74 . 65 55 .45 34 23 12 
2 92·8 85 77 68 59 48 38 26 13 
3 94·2 88 80 72 63 53 42 30 16 
4 95·0 89 83 75 • 67 57 45 32 17 

5 95·6 90·5 84 77 69 59 48 34 19 
6 96·1 .91·4 86 79 71 61 50 36 20 
7 96·4 '92-1 87 80 73 63 52 38 21 
8 96·7 92·6 88 81 74 65 53 39 21 
9 96·9 93·1 88 82 75 66 54 40 22 

10 97-1 93·5 89 83 76 67 55 41 23 
15 97·8 94·9 91·0 86 79 71 60 45 25 
20 98·2 95·7 92·3 88 82 74 62 47 27 
25 98·4 96·2 93·2 89 83 75 65 49 29 
30 98·6 96·6 93·9 90 85 77 66 51 30 

40 98·9 97·2 94·8 91·3 86 79 I 69 54 32 
50 99·0 97·6 95·4 92·3 88 81 70 55 33 
60 99-1 97·9 95·9 93·0 89 82 I 72 57 34 
80 99·3 98·2 96·6 94·0 90 84 74 59 36 

100 99·4 98·5 97·0 94·6 90·9 85 I 76 61 37 
I I 

there is no prior knowledge of synergism, the test doses of each 
should roughly be inversely proportional to their relative poten
cies. For example, consider the trials on two poisons of relative 
potency twelve and their three mixtures in the proportions deter
mined in the last paragraph. The relative potencies of the five 
preparations are, by equation (8·5),approximately 2:4: 7: 13:24, 
and doses inversely proportional to these numbers should be 
used. Hence · if the LD 50 for the stronger poison were 
thought to be about 0·2 unit and experience had shown 
the suitability of a two-fold increase in dose between 
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successive levels, the following sets of five doses of each 
preparation might be chosen: 

Mixture in proportions of 

1:0 10:1 7:2 1: 1 0:1 

{ 
0·004 0·008 0·015 0·025 0·05 

0·008 0·016 0·03 0·05 0·1 

Doses O·Olli 0·032 0·06 0·1 0·2 

0·032 0·064 0·12 0·2 0·4 
0·064 0·13 0·24 0·4 0·8 

41. COMPOUND RESPONSE CURVES 

An unusual dosage-response curve has been reported (Dimond , 
et al. 1941) for tests of the toxic effect of tetramethylthiuram 
disulphide to spores of Macrosporium sarcinaeforme. Dr Dimond 
has kindly made available more information about these tests 
than was originally published. Five concentrations, ranging from 
0·2 % to 0·00002 %, were sprayed on to glass slides, and several 
different spray times between 50 and 5 sec. were tested for 
each concentration. In this way, deposits ranging from 35 to 
0·00105 pg.fsq.cm. were obtained, some of these being duplicated 
by being made up from two different combin!-tions of concentra
tion and tiire. Spore suspensions were then added to the dried 
residues of the spray so that the concentration of the toxicant 
in the drop of suspension was proportional to the density o~ the 
dried deposit on the slide. The percentage inhibition of spore 
germination was measured; Fig. 17, which has been copie~ from 
that published by Dimond et al., shows the relationship between 
the inhibition probits and log deposits. The very close agreement 
between percentage inhibitions from pairs of results with equal 
deposits, but different combinations of duration of spraying and 
concentration, suggests that the total deposit was the chief factor 
determining the response and that the method of obtaining this 
deposit was comparatively unimportant. The curve indicates 
that tetramethylthiuram disulphide had a maximum potency 
at about 0·06 pg.fsq.cm., above which level any increase in dose 
decreased the inhibition of germination until a minimum was 
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reached at about 0·3 pg.fsq.cm. At still higher doses, the potency 
again increased and rose beyond the previous maximum; in
hibition was complete for the six highest levels tested. 

The authors make the following comments: 
'A possible explanation of this type of behaviour is that dis

sociation or association of the toxicant occurs. It seems likely 
that weakly-dissociating materials may dissociate (or associate), 

-z.o -I·O 0 1•0 

Log Deposit (,.g.{sq.cm.) 

FIG. 17. Toxicity of tetramethylthiuram disulphide to spores of M. aarcina6· 
forme. Each point is based on a count of 100 spores. Complete inhibition was 
recorded for log deposits of 0·85, 1·02, 1·15, 1·32, 1·45 and 1·54. 

forming a complex which has toxicity markedly different from the 
original molecule. In the case of tetramethylthiuram disulfide, 
the toxicity of the dissociation complex would be greater than 
·that of the undissociated molecule. 

'In the first phase of toxic action,* where decrease in toxicity 
is proportional to dilution on the logarithmic-probability scale, 
the proportion of dissociated molecules as compared with the 
dissolved, undissociated molecules of toxicant might be very 

* The authors explain that the argument in this paragraph has been 
put in terms of decreasing concentration instead of increasing, in order 
to simplify the discussion of the effect of molecular dissociation. 
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small, and toxic action would be determined largely by the 
' undissociated molecules. As dilution continues, however, the pro-

portion of dissociated to undissociated molecules increases, and, 
if the dissociated molecule is very much more toxic than the 
undissociated molecule, the inhibition of spores will rise with 
further dilution. Finally, when the original toxicant is com
pletely dissolved and dilution has progressed to the stage at 
which there are no undissociated molecules left, the second peak 
of toxicity has been reached. Dilution beyond this point can 
only cause a decrease in concentration of dissociated molecules 
and in toxicity.' -

Thus they spggest that tetramethylthiuram disulphide has 
two separate types of toxic action, that of the undissociated 
molecule occurring when high concentrations are used, and that 
of the dissociated molecule occurring when low concentrations 
are used. At intermediate concentrations presumably the toxi
cant must behave as a mixture of the two toxic materials; the 
proportionate constitution of the mixture will depend upon the 
total concentration of the poison, and as the concentration 
decreases the proportion of the dissociated molecule will change 
smoothly from 0 to I. Montgomery and Shaw (1943) have con
firmed the occurrence of this form of response curves for several 
thiuram sulphides with spores of Venturia inaequalis. 

Any study of the form of dosage-response curve that may be 
. expected in these circumstances requires knowledge not only of 
the potency of a mixture of the two toxic constituents in any 
given proportions but also of the law determining the proportions 
that occur at any concentration. The two extreme linear sections 
of the curve in Fig. 17 are clearly not parallel, and therefore 
similar action cannot be operative. But, even with parallel lines 
to represent the extreme phases of toxic action, an increase in 
toxicity with decrease in concentration at intermediate levels 
could not occur as a result of similar action unless the total con
centration of dissociated molecules, not merely the propo{tion 
of dissociated to undissociated, were then increasing; the dis
sociation would therefore have to be of a different type from that 
normally encountered, since this could not happen according 
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to accepted dissociation laws. On the other hand, if there were 
a pronounced antagonism between the toxic action of the dis
sociated and undissociated molecules, a curve similar to Fig. 17 
might arise. Thus a possible explanation of Dimond's results is 

. that the dissociated and undissociated molecules differ widely 
in their potency and in the tolerance variance shown by the 
spores (as evidenced by the difference in slope of the two linear 
sections), and that some type of antagonism is displayed when 
the two are in mixture. Further understanding of this complex 
problem must await the accumulation of a greater amount of 
experimental evidence. 

AB an attempt to set up a mathematical model of what might 
occur when two toxic materials which show similar action in 
mixture are mixed, under conditions that make the proportionate 
constitution of the mixture dependent upon the total concentra
tion, a study has been made of the behaviour of a mixture in 
proportions 

Here,\ is the total concentration of poison, k a positive constant; 
the law is not intended as even an approximation to any physico
chemical relationship, but has simply been chosen so that the 
proportion of the first constituent, 111, is zero at high concentra
tions and changes continuously to 1 at low concentrations. If 

Y = a+blog,\ 

gives the pro bit of the kill for this constituent, and the relative 
potency of the second is p, equation (8·4) gives the pro bit of the 
kill for any concentration as 

Y = a+blog{p+ (1-p) IO-kAJ+blog,\. (8·26) 

Ifp is less than 1/(e2 + 1), or about 0·119, equation (8·26) has both 
a maximum and a minimum, and represents a curve of the same 
general form as that in Fig. 17, except that the two extreme 

· sections are now parallel. 
Ex. 29. Response curves given by equation (8·26). Fig. 18 

shows the curve derived from equation (8·26) when the probit 
line for the first constituent is 

Y = 5+2log,\, 
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the relative potency of the second constituent is 1 ~ 0 , and k = lo: 
These values have been chosen as roughly corresponding to the 
curve obtained by Dimond et al.; the similarity with Fig. 17 
is n'oticeable, especially in respect of the wide peak and.narrow 
trough, though the trough in Fig. 17 is deeper. A modification 
of equation (8·26) so as to base it on similar synergistic action 
would alter the proportions of the curve in accordance with the 

I 
I 

I 
1•0 2·0 3-G 

Log Concentration 

FIG. 18. Response curve from equation (8·26) for p= 1 ~ 0 , k=-h (Ex. 29). 

amount of synergism or antagonism, but unless the departw 
from similarity were very great the main features would remail 

When pis greater than 0·119 but less than 1, the maximum an 
minimum disappear, and increasing concentration always iJ 
creases the kill. Fig. 19 has been drawn for p = IO-i, k = 2~ 
the probit line for the first constituent being the same as befor1 
Typical of the situation in which the second constituent is tl 
more toxic is Fig. 20; here p = 100, k = lo• and the equation f< 
the first constituent is again the same. This curve has bee 
drawn for probits far beyond the range of practical ilnportanc 
in order to show its eventual agreement with the upper line. 
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Log Concentration 

FIG. 19. Response curve from equation (8·26) for p= 1o-l, lc=-h (Ex. 29). 
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FIG. 20. ·Response curve from equation (8·26) for p= 100, k=o\ (Ex. 29). 
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Further discussion of the possible effects on the dose-response 
curve of molecular dissociation of poisons or of othe~ types of 
compound response curves would be unprofitable at this stage. 
The only conclusion to be drawn at present is that the data of 
Dimond et al. are in general agreement with the behaviour that 
might occur if undissociated and dissociated molecules have very 
different toxicities and behave antagonistically. The account that 
has been given in this section is intended only as a suggestion 
of a mode of action that may sometimes be found, and is in no 
way an exact treatment of this complex problem; more detailed 
consideration is impossible without a much greater amount of 
experimental evidence as well as a fuller understanding of the 
underlying theory. 



Chapter 9 

MISCELLANEOUS PROBLEMS 

42. VARIATION BETWEEN BATCHES 

IN the analyses discussed in previous chapters it has been tacitly 
assumed that all the subjects at one dose were members of 
a single batch and were tested at the same time. Many assays 
of insecticides and fungicides are in fact conducted by exposing 
several distinct batches to each dose of the poison. For example, 
in some forms of apparatus for the testing of insecticidal sprays 
not more than about twenty insects can be used at one time, and 
therefore, if conclusions based on approximately sixty insects 
at each dose are required, three batches must be tested. Exami
nation of the variability between mortalities in batches given 
the same dose then provides a measure of the heterogeneity of the 
behaviour of the batches, including both biological differences 
between batches and variation from batch to batch in experi
mental technique. Comparison of this variability with the 
residual variation between doses (after the removal of the probit 
regression component) enables a test to be made of whether the 
latter can be explained as due only to the natural batch variation, 
and thus of whether the regression line is an adequate description 
of the relationship between dosage and response. 

The usual procedure when several batches are used for each 
dose is merely to add the values of n (number of test subjects) 
and r (number killed) and to treat the results as if they referred 
to a single batch. Very often this course is satisfactory. If all 
batches contain the same number of subjects, the maxinium 
likelihood estimates of the parameters are the same whether all 
subjects for one dose are treated as a single batch or the batches 
are kept distinct throughout, and, providing that the same 
provisional line is used, the estimates are the same at the end 
of each cycle of computations. This remains true for batches of 
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unequal size as long as the total variance of the percentage mor
tality at a given dose is inversely proportional to n. Even when 
there is a component of batch variance independent of n, the 
batches will often be of nearly the same size, and the less onerous 
computations needed when batches are combined make that the 
generally preferred method. 

When the residual variation between doses after the fitting of 
the linear probit regression equation gives a significant x2, this 
may indicate either a real departure from linearity ~r a non1. 
independence of the responses of mdividuals of the 'same batch. 
If the latter explanation is adopted, all variances have to be 
multiplied by a heterogeneity factor, and, since the degrees of 
freedom available for the estimation of this factor are often very 
few, its estimate may be of low precision; fiducial limits will 
then vary irregularly in repeated determinations and will tend 
to be widely spaced on account of the increased value of t for 
few degrees of freedom. By using the data for each batch. 
separately, not only may a test of linearity. be derived but, 
supposing that there is heterogeneity between batches though no 
significant departure from linearity, a heterogeneity factor based 
on a greater number of degrees of freedom may be estimated. 

At this point a _brief digression on the order in which a series of 
tests should be carried out seems appropriate. Strictly speaking, 
the different batches of test subjects should be assigned to the 
doses entirely at random and the doses should be tested in random 
order, or in some restricted randomization in accordance with 
modern principles of experimental design (Fisher, 1942; Yates, 
1937 a). In practice, order of testing is usually held to be unim
portant in a well-controlled experiment, provided that the whole 
is completed within a reasonably short time (with insecticides, 
preferably within one day); the theoretical requirement!'! of 
randomization are therefore frequently sacrificed to the practical 
convenience of testing all batches at one dose consecutively and 
making all tests on one poison before those on a second are 
begun. The possibility of bias from this source must not be 
neglected, and every precaution to eliminate it must be taken 
lest any difference in susceptibility of insects tested at different 

PPA II 
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times in the day be interpreted as a difference in potency of two 
poisons (McLeod, 1944). H the doses of a single poison are tested 
in ascending or in descending order, any steady trend in suscepti
bility of the subjects or any increase in the dose actually received 
(through incomplete cleaning of the apparatus after the preceding 
dose) may manifest itself by an increase or decrease in the esti
mated slope of the regression line or even by a departure from, 
linearity; if the doses are given in random order, though these 
influences may increase the heterogeneity between batches they 
will not bias any estimates of potency. In insecticidal work the 
random selection of insects for the batches may be important; 
any method of selection which allows the more active insects 
to be used first, or which takes insects from a culture as they reach 
a certain stage of developme~t, may have undesirable conse
quences through the batches being heterogeneous in respect of 
sex ratio or some other important factor correlated with suscepti
~ility to the poisons under test (Murray, 1937; Bliss, 1939b). 
In other branches of biological assay analogous considerations 
arise, and, unless a strict randomization has been employed 
throughout, the experimenter should always be on his guard 
against any bias in his data resulting from non-random selection 
and order of testing. 

When there is no evidence of heterogeneity of any type--and, 
with experience, this may often be judged from inspection of 
the data before any statistical analysis is made-there is nothing 
to be gained by maintaining the identities of different batches 
tested at each dose, and the less laborious analysis of combined 
batches should be adopted. When there is heterogeneity, such 
as is indicated, in the usual manner, by a significant residual x", 
a complete analysis may sometimes be made with advantage, 
in order to gain degrees of freedom for the heterogeneity factor, 
even though the estimates of potency will not be affected. If 
more thaii one cycle of computations is likely to be needed the 
detailed work should only be 9-one in the last cycle, since the only 
use of the earlier ones is to improve the provisional line. The 
tests to be made can best be described by means of a numerical 
example. 
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Ex. 30. The toxicity of ammonia tq Tribolium confusum. 
Strand ( 1930, Table I) has given the results of tests of ammonia 
as a fumigant for T. confusum. Two batches of insects were tested 
at each of eight concentrations of the fumigant; from the form 
in which Strand states the results it seems likely that the tests 
were carried out as two distinct experiments, one batch in each, 
but for present purposes this point will be ignored and the pairs of 
batches will be assnmed to be replicates of the type just discussed. 

The computations necessary for fitting a pro bit regression line, 
when the batches are all kept separate, are shown in Table 27. 

TABLE 27. Computations for Ammonia-Tribolium confusum Tests 

I 
z I n 

-1--
. 29 

0·72 I 29 

I 30 
0·80 31 

0·87 
31 
32 

0·93 
28 
31 

0·98 
26 
31 

1-02 27 
28 

1-07 
26 
31 

30 
l-10 I 31 
-i--

I 

Em· 
r p pirica.l y nw y nwz 

pro bit 
-21_7_ 

3·52 - 6·0 3·57 4·320 
1 I 3 3·12 3·3 6·0 3·14 4·320 

7 23 4·26 14-1 4·27 11·280 
12 39 4·72 4·1 14·6 4·87 11·680 

12 39 4·72 
4·8 

19·5 4·72 16·965 
4 12 3·82 20·1 4·03 . 17·487 

19 68 5·47 
5·5 

16·3 5·47 15·159 
18 58 5·20 18·0 5·18 16·74(1 

24 92 6·41 
6·0 

11-4 6·32 11-172 
25 81 5·88 13·6 5·87 13·328 -
21 100 00 

6·4 
8·2 6·94 8·364 

27 96 6·75 8·5 6·67 8·670 

26 100 00 
6·9 

4·0 7·34 4·280 
29 94 6·55 4·8 6·42 5·136 

30 100 00 2·8 7·59 3·080 
30 97 6·88 7·2 2·8 6·75 3·080 

-~- 170·7 155·061 

1/Snw = 0·00585823, if= 0·9084, Ji = 5·2304. 

Snwx1 

142·46391 
140·85480 

1·60911 

Snwxy 
827·4877 
811·0263 

16·4614 

Snwy1 

4869·816 
4669·799 

200·017 
168·402 

31-615 

nwy 

21-420 
18·840 40·260 

60·207 
'71-102 131·309 

92·040 
81·003 173·043 

89·161 
93·240 182·401 

72·048 
79·832 151-880 

56·908 . 
56·695 113·603 

29·360 
30·816 60·176 

21·252 
18·900 40·152 

892·824 

U-2 
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They follow the usual plan (cf. Table 6), but, for use at a later 
stage, subtotals for each dosage are shown in the column nwy. 
In the table z is the logarithm of the ammonia concentration 
(in mg.Jl.) and the other symbols have their usual meanings. 
The residual sum of squares, 31·62, instead of being tested simply 
as a xi'141 can be subdivided into two portions. The subdivision 
is accomplished by first calculating a sum of squares for y between 
dose levels, the expression for which is 

(4:0·260)2/12·0'+ (131·309)2/28·7 + ... + (40·152)2/5·6 

= 4:856·852- 4:669·799 

= 187·053; 

- (892·824)2/170·7 

the numerators of the fractions are the squares of the subtotals 
in the nwy column and the denominators the subtotals of nw for 
the doses. The analysis of variance of the mortality pro bits can 
now be completed as in Table 28. The first line is the sum of 
squares removed by the regression, the third line is the total sum 
of squares between the eight doses, the fifth line is 8

1111
, and the 

other lines are obtained by subtractions. The sums of squares 
in the second and fourth lines add to give the previously calcu
lated residual, 31·62. The sum of squares in the fourth line is 
a xrs) which gives a test of the homogeneity of the results for 
different batches; its non-significance indicates that any hetero
geneity is not sufficiently great to be disclosed by inter-batch 
variations. The sum of squares which measures departures from 
linearity, 18·65,. if tested as a xi'61, is judged significant, but 

. inspection of the probit diagram (not shown here) discloses no 
systematic deviation from linearity. Since the two mean squares 
are not significantly different (Fisher and Yates, 1948, Table V) 
but both are greater than unity, their expectation for homo
geneous data, the most reasonable conclusion to draw seems to 
be that heterogeneity between batches has increased both. This 
heterogeneityamay be measured by combining the sums of squares 
to give a factor of 31·62/14: = 2·26, with i4: degrees of freedom. 

If the analysis had been made only on the totals for the eight 
doses, without using data from separate batches, only the first 
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three lines of Table 28 would have appeared; in fact, 18·65 would 
then have arisen in the ordinary way as the residual x2, and, 
since the probit diagram indicated no systematic non-linearity, 
its significance would have been interpreted as due to hetero
geneity between batches. The heterogeneity factor would then 
have been taken as 3·11 with only 6 degrees of freedom. In either 
analysis, the regression equation is obtained as 

Y = - 4·063 + 10·230x, 

and other parameters are estimated as required. 

TABLE 28. Analysis of Variance of Mortality Probits 
for Ammonia-Tribolium confusurYJ, Tests 

Sum of Mean 
D,J', squares square 

Regression 1 168·40 
Deviations from linearity 6 18·65 3-11 

- --
Between doses 7 187·05 
Between batches at a dose 8 12·97 1·62 

Total 15 200·02 

Even when the number of batches is- not the same for every 
dose the calculations follow exactly the same plan. If three or 
more batches are tested at each dose the number. of degrees of 
freedom for differences between batches will be substantially 
greater than for deviations from linearity, thus enabling a more 
sensitive test of heterogeneity to be made and leading to a 
more precise estimate of the heterogeneity factor. In addition, 
a test for departures from linearity independent of that for 
heterogeneity can always be made, but, unless the probit dia
gram indicates systematic non-linearity, any significance in the 
linearity test should be interpreted as additional evidence of 
batch heterogeneity. · 

43. INDIVIDUAL MORTALITY RECORDS 

In testing the effect of a drug or poison, it is sometimes impossible 
to feed the test subjects with predetermined doses; though the 
doses can only be roughly controlled, however, exact measure
ment of the amount taken may be possible afterwards.. For 
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example, some techniques for the testing of stomach insecticides, 
such as Campbell's poison-sandwich technique (Campbell and 
Filmer, 1929; Campbell, 1930), involve the feeding of separate 
amounts of poison to each insect, though the dose can only be 
measured after ingestion. Consequently the experimental results 
consist of a series of doses with, for each, a record of whether 
or not a single insect was killed. Such techniques tend to be 
more troublesome to carry out than those commonly employed 
for testing batches of insects at selected doses, and only com
paratively short series are. usually obtained. Tests on less than 
fifty insects in all cannot be expected to yield results ofa pre
cision comparable with that obtained when batches of this size 
are tested at each of several dosages. Nevertheless, the median 
lethal dose and other parameters can still be estimated by 
the method of probit analysis. Little modification of the in
structions given in preceding chapters is required, but, as the 
analysis presents some unusual features, a brief account of it 
will be given. Bliss (1938) has given a similar but fuller dis
cussion; his conclusions in respect of precision, however, must 
be treated with some reserve. 

The first novelty lies in obtaining the provisional regression line 
necessary for the initiation of the computations. The observations 
show either zero or 100% kill for each dose, and cannot therefore 
be plotted directly as probits. Instead, the results for a set of 
consecutive doses must be grouped so as to give percentage kills 
based on ten or more individuals, and the pro bits of these must 
be plotted against the mean log dose or other measure of dosage. 
In some experiments the doses themselves may indicate a con
venient grouping, the experimenter having deliberately aimed 
at certain values. In others the doses may be spread fairly 
uniformly over the whole range so that the grouping has to be 
entirely arbitrary; non-independent overlapping groups of about 
ten might then be used in order to obtain more points, taking, 
say, the first to the tenth dosages as one group, the sixth to the 
fifteenth as a second, the eleventh to the twentieth as a third, 
and so on. A diagram showing the empirical mortality probit of 
each group plotted against the mean dosage allows a provisional 
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line to be drawn in the usual manner; the grouped data tend 
to underestimate the slope of the line, which should therefore 
be drawn so as apparently to err slightly on the side of 
steepness. 

From this stage, the improvement of the line may proceed 
exactly as described in § 17, each experimental dosage being used 
individually and each giving a maximum or a minimum working 
probit according as the corresponding insect was killed or sur
vived. As usual, if the calculated line differs markedly from the 
provisional it should be used as a new 'provisional' for a second 
cycle of computations. When thirty or more doses have been 
tested, the process of working with 'batches of one' is tedious 
and seldom worth all the trouble involved. Grouping into small 
independent {non-overlapping) groups offour or five consecutive 
dosages greatly reduces the labour of finding sums of squares 
and products, and, though the regression coefficient will be 
slightly underestimated, the estimate of the log LD 50 will not 
be greatly affected provided that the experimental dosages are 
well distributed on either side of it. Difficulties of estimating .. 
a provisional line satisfactorily from meagre data frequently 
make it necessary to carry out two or more cycles of the com
putations, and, even though it may be intended to base the final 
line on the analysis of individuals, grouping may assist the rapid 
completion of the first cycles. 

Unfortunately the troubles encountered with the routine x2 

test for homogeneity(§ 18) arise in their most acute form in an 
analysis of individual mortality records, and are also severe when 
very small groups are used. A Ringle instance of survival at 
a high dose or death at a low may inflate the value of x2 to an 
undue extent, as may easily be seen by considering, for example; 
the contribution to this X2 given by an observation of 1 in a class 
whose expectation is only 0·05. The sampling distribution of 
such a x2 is very different from that tabulated in Table VI, values 
usually being much lower than for a true x2 but there being also 
an excess of high values. If valid conclusions are to be reached 
by means of an ordinary x2 test, the method suggested in§ 18 
must be followed; after the calculation of expectations for each 
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dosage these must be further grouped so as to give reasonably 
large total expectations, both of dead and alive, in every group, 
and x• must then be recalculated from these groups. If the total 
number of insects in the experiment is under fifty, the number 
of groups that can be formed will be small and the resulting test of 
homogeneity will not be very sensitive. On the other hand, no 
easily applied test of greater sensitivity is available. Indeed, 
even if the individual tolerances of these few individuals were 
measured directly, a significance test on the departure from 
normality of the distribution of their logarithms could not be . 
very sensitive; when the results are only obtainable as quanta} 
responses a sensitive test is even less to be expected. 

Bliss (1938) proposed to modify the usual test of heterogeneity 
by referring x", calculated according to equation (4·2), to a dis
tribution with less than (k- 2) degrees of freedom (where k is 
the number of groups). His rule involves classing as one group 
enough of the terminal groups at each end of the range of doses 
to make the expected number of survivors at the upper end and 
deaths at the lower end at least 10% of the number of subjects 
in the standard group, even when the latter consists of only one: 
'Thus if there were three in a standard group, the end groups at 
the upper end would be combined until 0·3 or more live animals 
was expected.' The number of degrees of freedom is then taken 
as two less than the number of groups after this combination . 

. The test might seriously exaggerate the apparent significance of 
x•, since that statistic is not recalculated from the combined 
groups. Only a full amalgamation of groups and recalculation 
of x" can give an unbiased test. In a short series of tests the data 
will generally be insufficient to show any significant departure 
from the fitted line; if x" calculated according to equation (4·2) 
is well below the significance level for (k-2) degrees of freedom 
(Table VI), no further test need be made and variances of esti
mates may be used without any heterogeneity factor. When 
a large value of x1 occurs, it may be necessary to recalculate on 
grouped data, or at least to investigate the possibility that an 
exaggerated effect of one or two anomalous observations is re
sponsible. 
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No example of the computations for the fitting ofthe regression 
line is given here, as the initial determination of a provisional line 
is the only stage likely to trouble those who are familiar with the 
standard te9hnique. A good illustration has been given by Bliss 
(1938} in the analysis of data on the toxicity of sodium fluoride 
to grasshoppers; the modified x2 test which he advocates has 
been criticized in the preceding paragraph, but inspection of 
these data shows there to be no significant heterogeneity. The 
approximate fiducial limits assigned to the LD 50 in this example 
are too narrow on account of the high variance of b (in fact 
g = 0·44}; the exact formula (4·6} should have been used, and 
this gives limits of 0·062 and 0·135 mg./g. instead of 0·070 
and 0·125 mg.fg. Bliss has analysed these data both as individual 
records and by grouping in various ways; the estimated values 
of b differ quite widely, though they always lie within the range of 
sampling variation, but the estimates for the LD 50 are re
markably consistent. Finney ( 194 7 b} gives another example. 

A common practice in tests of this nature is to express the 
doses as amounts per unit weight of the test subject, in order to 
make some allowance for the varying size of these and their 
consequent probable variation in resistance. Thus the doses of 
sodium fluoride in the example used by Bliss were used as mg.fg. 
of body weight. As an approximate method of adjustment this 
is not unreasonable, but a more exact approach would be to 
use the logarithm of the actual rather than the proportional 
dose as the dosage measure, and to make use of body weight as 
a concomitant variate. The assumption that resistance .to the 
poison is directly proportional to body weight is thereby avoided, 
and instead the influence of body weight is estimated from the 
data. The computations may be carried out as in § 31, so that 
a probit plane is determined which relates mortality to log dose 
and log body weight; if desired, the effect of body weight may 
then be averaged out(§ 44}. 

In the light of the above discussion, little difficulty should 
be encountered in applying the methods of earlier chapters to 
individual mortality records. The various statistical techniques 
and formulae appropriate to comparisons of poisons, the action 
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of mixtures, and multifactorial data can all be adopted even 
when the number of test subjects per batch is reduced to one. 
Obtaining a set of provisional pro bits for starting the computa
tions is more troublesome when two or more dosage factors have 
to be considered in the same analysis, but instances of this are 
not likely to be encountered except by the more experienced 
workers to whom the estimation of some reasonable values will 
not be an insuperable obstacle; useful as it is to make a good first 
approximation, a poor one only delays the obtaining of satis
factory estimates, by requiring additional cycles of computations, 
and does not invalidate the final analysis. 

44. THE A VERA.GE KILL 

Though not usually of great interest in insecticidal and fungicidal 
studies, the expected kill when a selected average dose is given, 
but the amounts received by individual test subjects vary, is 
sometimes required in other applications of the probit method. 
If the population has a true median lethal dose whose logarithm 
is p, and the tolerance values of the log dose are n~rmally dis
tributed about this with variance u2, the true probit regression 
equation is 

Y = 5 + (x-p}fu, 

more commonly written as 

y = a.+Px, 

where p = 1Ju. Suppose now that the logarithms of the doses 
received by the subjects are normally distributed about a mean 
6 with variance y2• Then the proportion killed will be the pro
portion receiving doses greater than their tolerance values. It 

· might at first be thought tha.t the result would be obtained by 
substituting 6 for x in the regression equation, but further con
sideration shows that the proportion also depends upon y, being 
nearer to 50% when y is large compared with u. By integration, 
the proportion is found to be that whose probit is Y, where 

(9·1) 
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In practice a and fJ have to be replaced by·estimates a and b 
derived from experimental data. For example, if routine pro bit 
analysis has given a line 

Y = 3+2x, 

corresponding t.o a log LD 50 of I and a variance of 1 for the 
distribution of the logarithms of individual tolerances, equa
tion (9·1) gives 

Hence, if individuals are given doses whose logarithms are . 
normally distributed about a mean of 1, the expected proportion 
killed is 50 % ( Y = 5), whatever the variance of the dosage 
distribution may be. If the mean log do~e given is 2, the pro bit 
of the expected km is nearly 7 (97·7 %) when y, the standard 
deviation of the distribution of log doses, is very small, decreases 
to 6·41 (92·1 %) when y is !, and decreases still further to 
a limiting value of 5 as y increases indefinitely. 

A slight~y more complex situation arises when the mortality 
probit has been expressed, as in § 31, in terms of two dosage 
factors, say by the equation 

Y = a+b1 x1 +b2x2• 

If the dosages to which the population is exposed are such that 
x1 can be controlled but x2 is normally distributed about 62 with 
variance y~, the mortality probit is still linearly related to x1, 

but the regression coefficient is reduced to 

b~ = bl/(1 +bh~)! .. 

The one-factor regression equation is then 

Y = 5+(a-5+b2 62)/(1+b~y~)i+bix1 • (9·2) 

This last equation is useful when x2, though formally a 'dose 
factor', is in fact a measurable characteristic of the individuals 
tested. For example, the potency of a poison may depend not 
only on the concentration but also on the weight of the subject. 
By subdivision of the data into weight classes, or by using 
individual records as described in§ 43, the weight (or perhaps 
the logarithm of the weight) can be introduced as an x2 into the 
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probit regression equation. In order to predict the effect of any 
chosen concentration on a random selection of subjects, the 
contribution of weight to the equation must be averaged by 
means of equation (9·2). For this purpose g2 and 'Yz may be 
estimated from the animals used for the toxicity test, provided 
that these were randomly selected from the whole population, 
or alternatively the parameters of the weight distribution may 
be estimated from measurements of a subsidiary random sample 
on which no toxicity tests have been made. 

45. THE PARKER-RHODES EQUATION 

A. F. Parker-Rhodes has made an extensive series of tests of 
the toxicity of metallic salts and other related compounds io 
spores of Macrosporium sarcinaeforme and Botrytis allii, and also 
to Bacillus agri. As a result of these tests, he has formulated 
a 'Theory of Variability', intended to explain, at least in part, 
the comparative toxic effects of different compounds (especially 
salts of the same metal) in terms of their chemical contltitutions. 
Details of his ingenious theory, with experimental results, 
have been presented by the author in a series of papers (1941, 
1942a, b, c, 1943a, b) to which the reader must be referred for the 
chemical and biological arguments. Discussion of the validity 
of these arguments is outside the scope of this book, but a brief 
outline of the statistical implications may be helpful to those 
concerned with fungicidal investigations of a like nature, the 
more particularly as Parker-Rhodes's treatment of this aspect 
seems scarcely adequate. For this purpose his notation will be 
brought into line with that of earlier chapters. 

It has so far usually been assumed that the logarithm of ..\, 
the tolerance of an individual test organism, is normally dis
tributed, though mention has been made of the case of ,.\ itself 
being normally distributed. O'Kane et al. (1930, 1934) published 
data from insecticidal studies which suggested that the logarithm 
of the mortality probit, rather that the probit itself, was linearly 
related to the log concentration. This theory may be expressed 
by the statement that the probit is proportional to a power of 
the dose. Parker-Rhodes's theory introduces the generalization 
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that A', a fractional power of the individual toleran~s, shall bt;' 
normally distributed. The relationship between mortality pro bit 
and dose thus becomes 

y = a.+fJ~"· (9·3) 

of which O'Kane's equation is a particular case (Bliss, 1935c). 
Parker-Rhodes defines i (for which he uses the symbol a.) as tht 
index of variation; i = 0 is a limiting case corresponding to the 
normal distribution of log tolerances, and i = I gives a normal · 
distribution of tolerances. In general, the nqrmalizing trans
formation for the dosage is 

X=Ai, 

the tolerances on the x-scale being normally distributed about 
a mean value p with variance u2 = lffJZ. This normal distribution 
can only be an approximation and must break down for small 
doses (assuming i to be positive); A' cannot be less than zero, 
and equation (9·3) therefore suggests that the kill approaches 
a minimal value represented by Y = a. as A tends to zero. 

He defines the variability* of the spores relative to the toxic 
substance under investigation as 

~(A) = u"fi2pz, 

which for the limiting case of i = 0 takes the form 

JVo(A) = uz. 

(9·4) 

(9·5) 

Using estimates of 0' and the median lethal dose obtained from 
the obser-Vations, an estimate of the variability is 

or, in the limiting case, 
llo(A) = l/b2

• 

(9·6) 

(9·7) 

The properties of the variability and index of variation in 
relation to the chemical and fungicidal behaviour of the 

* This definition of variability is likely to be confused with other 
aspects of the variation in the behaviour of the spores, and the name is 
an unfortunate choice for a precisely defined quantity. In order to 
follow Parker-Rhodes, the word will be used in the strict sense for the 
remainder of this section. 
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compounds under investigation have been developed in the 
second of the series of papers (Parker-Rhodes, 1942a). The 
two chief results are: 

'It is sho~ that the ~ariability of a given population of spores 
to a compound which can penetrate the spore wall is less than to 
any other compound of the same element which cannot do so 
unless it undergoes one or more reactions on the surface of the 
spore with substances secreted by it, and that the greater the 
number of such successive reactions that are required to bring 
it to a permeable form, the greater will the variability be. 

'It is shown that the variability of the spores to any compound 
is proportional to the square of the number of atoms of the 
effective element in a molecule of that compound, and that 
the index of variation is inversely proportional to that number, 
provided only one compound is permeative.' 

Any study of a series of compounds in relation to the Theory 
of Variability must therefore pay special attention to the indices 
of variation and to the variabilities. In the most general case, 
not only have the parameters a and p to be estimated from the 
data, but also the index of variation. Experience indicates, 
however, that the index takes either simple fractional values or 
values so near these as to be indistinguishable from them. Indeed, 
Parker-Rhodes states (1943a): 'On a priori grounds, however, 
it appears that the index of variation must always be a rational 
number, and is more likely to be a simple fraction than a com
plicated one.' For example, in addition to the common values 
ofO and 1, he finds (1942b) values very close to 1 and! (but see 
Ex. 32 below). Negative values, i =-!and i = -J, have also 
been found (1943a), in association with negative values of p. 
A negative index of variation implies that, as the concentration 
is increased, the kill will approach, asymptotically, a maximum 
value corresponding to Y = a; if this level is less than 50%, 
formal solution of the equations -Will give an imaginary value 
for the median lethal concentration: the value of m (measured on 
the x = ,.\i scale) being negative. There may in truth sometimes 
be such a limiting mortality, but any expression of the situation 
in terms of 'imaginary LD50's' is useless. In practice it seems 
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likely that, as in Parker-Rhodes's examples, at the higher con
centrations some other phase of toxic action will supervene'. 
Parker-Rhodes's statement that 'An imaginary value may be 
taken to imply absence offungicidal potency' is misle~g, even 
if the word 'potency' is considered to refer only to tlle one phase 
of toxic actio!), for though this phase may fail to attain an LD 50 
it may well possess, say, an LD 45. 

If the view that the index of variation is a simple rational 
fraction is accepted, the necessity of forming a statistical estimate 
from the data may be avoided; the subsequent calculations are 
then much simplified and the precision of estimation of a and fJ 
is increased. If the value of i can be decided either from pre.vious 
experience or from a preliminary inspection of the data, the 
technique for estimating a and fJ is exactly as described in § 17, 
using x = ,V, 

Parker-Rhodes has apparently based his formula (1942b, c) 
for testing the significance of differences between two estimates 
of variability on the belief that, when there is no heterogeneity, 
fori= 0 

V(U-t) = 1/Szz• 

and for other values of i 

V(U-i) = i2m2fS=, 

m being, as usual, defined by 

m = x+(5-y)fb. 

(9·8) 

The first of these equations is correct, but the second is easily 
seen to be entirely wrong. From equation (9·6) 

u-• =ibm 

= i(5-y+bx), 

whence V(U-i) = i 2 - +~ . ( 
1 -a) 

Snw Szz 
(9·9) 

The criterion of significance at the 5 % level given by Parker
Rhodes (1942b, p. 141) should therefore be amended to read 

~+U2-2(~U2)i 
UlUa{V(Uii)+ V(Uit)}~3·84, 
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where the two variances are calculated according to equations 
(9·8) or (9·9), whichever is appropriate; the test may alternatively 
be considered as a. test of the difference between Uil and Ua• 
by means of their standard errors. When the heterogeneity x1 

is significant, all variances should be multiplied by the hetero
geneity factor, and the tests based on normal distribution of 
errors should be changed to the corresponding t-tests. In the 
early papers of the series, Parker-Rhodes used a. conventional 
value of 50 or 100 for the heterogeneity factor, but in a. note to 
the fourth (1942c), he recognized this to be wrong and suggested 
an amendment. • 

Ex. 31. Variability ofMacrosporill1AJ;a.rcinaeforme t9 hydrogen 
B'lilphide, aodiu"m dithionite, and aodium tetrathionate. As part of 
the data. from an investigation into the toxicity of various sulphur 
compounds toM. aarcinaeforme, Parker-Rhodes has published 
results for series of concentrations of hydrogen sulphide, sodium 
dithionite, and sodium tetrathiona.te (1942b, Tables 2, 5 and 6). 
The concentrations there given are expressed in arbitrary units, 
since the only use made of the data. is for the estimation of 
variability, a quantity independent of the unit of concentration. 
Parker-Rhodes uses z instead of A to represent concentration, 
q instead of p to represent proportionate mortality, and his n' 
is the number of sets of 50 spores counted. In his Table 8, 
Parker-Rhodes gives 0·95, 0·48 and 0·24 for the estimated indices 
of variation for·the three compounds; these values are estimated 
from the data, by a method which is discussed and criticized 
below, but, in view of what has been said about likely values for 
the index of variation, they may reasonably be taken as 1, l 
and !- Table 29 gives details of the calculations for estimating 
the variability for sodium tetrathiona.te, on the assumption that 
i = 1-- The first stages are exactly as in the ordinary probit 

• In the next paper {1943a) Parker-Rhodes introduced a form of the 
test equivalent _to the use of tlie heterogeneity factor, though still 
involving the incorrect form for the variance of u-•- The reference to 
the present writer at this point unintentionally suggests that he advo
cated the adoption of an 'admittedly false assumption'; in fact, his 
advice was not so revolutionary but ~:~nly recommended bringing the 
test into line with other uses of the heterogeneity factor. 
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computations, except that x is taken as .,\l instead of log.\.* 
Apparently Parker-Rhodes adjusted the values of p, the pro
portion of spores failing to germinate, so as to take account of 
a control mortality, but he gives no details, and for this example 
the modifications introduced in Chapter 6 have been ignored. 

TABLE 29. Estimation of Variability of Macrosporium 
sarcinaeforme relative to Sodium Tetrathionate 

z=AI 

1·00 
1-50 
2·00 
2·51 
2·99 
3·50 

Em· 
n. p pirica.l y n.w '!/ n.wz 

pro bit 
------

400 4·8 3·34 3·4 95 3·34 95·00 
500 11-5 3·80 4·0 219 3·82 328·50 
500 43·6 4·84 4·7 308 4·84 616·00 
500 64·1 5·36 5·3 308 5·36 773·08 
500 80·4 5·86 5·9 236 5·86 705·64 
500 91·5 6·37 6·5 135 6·36 472·50 

------
1301 2990·72 

1/Sn.w = 0·0007686395, z = 2·29879, y = 5·02463. 

Sn.wz• 
7523·79 
6875·02 

648·77 

Sn.wxy 
15837·47 
15027·25 

810·22 

b= 1·24886, 

Snwy1 

33884·16 
32846·19 

1037·97 
1011-85 

26-12=Xl~ 

Y = 2·1538 + 1•2489z, 
.m=2·279, 

1 z• 
S-+8- = o-ooo769+0·008145 

n.w = 
=0·008914. 

n.wy 

317·30 
836·58 

1490·72 
1650·88 
1382·96 

858·60 

6537·04 

I 

The computations present no new features until the regression 
coefficient, b, and the median lethal x-value, m, have been calcu
lated. The fitted equation is 

y = 2·1538+ 1·2489,\CI-25, (9·10) 

It follows that U-l = ibm = 0·25 x 1·2489 x 2·279 
= 0·712, 

whence ZJi(A.) = 1·97 

is the estimated variability for sodium tetrathionate. Parker
Rhodes's estimate is 1·92; the difference is presumably due to 

• z is easily obtained as the antilogarithm of !log.\, 
J'PA ~·. 

12 
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different degrees of approximation in the maximum likelihood 
estimation of .the regression line and to the slightly different 
indices of variation used, 0·25 and 0·24. 

For the other two compou.nds, U-l and U have been similarly 
calculated, and their values are shown in Table 30. In each case 
there is evidence of heterogeneity, the values of x• being, for 
hydrogen sulphide . 

xra) = 8·60, 

TABLE 30. Variability of Macrosporium Barcinaeforme. relative 
to Hydrogen Sulphide, Sodium Dithionite, and Sodium 
Tetrathionate 

Index of I v a.riability ( U) 

Compound tested V(U-i) U-1 Present variation 
calcula- Parker-

tions Rhodes 

Hydrogen sulphide 1 0·0548 3·114+0·234 0·103 0·104 
Sodium dithionite l 0·0122 1-895± O·IIO 0·278 0·272 
Sodium tetrathionate i 0·00352 0·712±0·059 1·97 1·92 

-
for sodium dithionite (one concentration of the twelve tested 
was so high as to give zero weight) 

xrs) = 66·44, 

and for sodium tetrathionate 

xr,1= 26·12. 

Mean squares derived from these do not differ significantly, and 
the heterogeneity factor, obtained from 

xrl6) = 101·16, 

has the value 6·32. Now from Table 29 

I .xz 
-+-- = 0·008914 
Snw S= · 

for sodium tetrathionate, whence, by equations (9·9), 

V( U-!) = 6·32 X (0·25)3 X 0·008914 

= 0·00352. 
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The standard errors of U-l make it clear that variability 
differences between the three compounds are highly significant. 
The variance of the difference between any pair of values of U -l · 

is the sum of the corresponding variances .tabulated in the third 
column; if an exact test were needed, a t-test with 16 degrees of 
freedom (the number of degrees of freedom on which the hetero
geneity factor is based) would show whether or not the difference 
was significantly greater than zero. 

When the estimation of the index of variation from the data 
seems necessary, a more complex procedure must be adopted. 
Parker-Rhodes (1942a) has discussed this problem and has sug
gested a method of obtaining the maximum likelihood estimate. 
Comparison with the discussion of the general maximum Hkeli
hood equations in Appendix II shows his method to be at fault in 
several respects. The estimates obtained by it will frequently 
not differ greatly from the true maximum likelihood values, but 
since the correct method is no more difficult or laborious to apply 
there seems every reason for preferring it. 

Equations (II, 3) may be adapted to the estimation of the 
parameters of equation (9·3) in much the same way as they were 
adapted in § 28 to ·give equations (6·4). The most convenient 
method of computation is first to tabulate an auxiliary variate• 

x' =,\'log~.\. (9·11} 

If a provisional value is taken for i, and a provisional regression 
line of pro bits against x = ,\i drawn, weights and working pro bits 
can be formed as usual. Calculation of the regression of y on: x 
and x' then gives revised estimates: · 

and 

bS= + {b0 8i) 8_. = 8"'71, } 

bSzz' + (bo8i) sz'z' = SZ''II' 

a= y-bz-(b0 8i)z', 

(9·12} 

(9·13} 

• The safest procedure is to use natural logarithms in determining 
each value of z': if no tables of these are available, multiply logarithms 
to base 10 by 2·303. Logarithms to base 10 may be used, with appro
priate adjustments at the end of the calculations, but the danger of 
mistakes is greater. 

12·2 
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where b0 is the slope of the provisional regression line, a, b, and 
( i + oi) the parameters of a. revised equation 

Y = a+bx". (9·14) 

The process, which is analogous to that of§ 28, may be iterated, 
using equation (9·14) as a new provisional line, until successive 
values of the parameters are not appreciably different. 

Estimation of the variances of the index ofvari~tion and of the 
variability will not be discussed in detail here. A variance matrix, 
V, for the parameters is obtained by the methods of Appendix II 
(cf. equation (6·13)). Unfortunately, discrimination between the 
effects of small alterations in b and small alterations in i is 
difficult; the sampling variations of the parameters are usually 
closely correlated, and several cycles of computation may be 
needed in order to locate the maximum likelihood estimates 
satisfactorily. The variance of b will be much greater than it 
would have been if i had been known a priori, and, without data. 
vastly more extensive than are usually available, precise estima
tion of the index of variation will seldom be possible. The vari
ability, howev~r, is more easily determinable, and is not very 
sensitive to small changes in i, since sampling errors in b and i are 
often compensatory .. 

Ex. 32. Maximum likelihood estimation of index of variation of 
Macrosporium sarcinaeforme relative to sodium tetrathionate. 
Further examination of the sodium tetrathionate data analysed 
in Ex. 31 indicates that the value of! taken for the index of 
variation is substantially hlgher than the maximum likelihood 
estimate. After several cycles, the last starting from b = 4·264 
and i = 0·112, the equation 

y = -0·9312+4·1053,\11-1153 (9·15) 

was obtained. The measure of heterogeneity, now with 3 degrees 
of freedom because an extra parameter-has been estima~ed, is 

x2 = B11u- bS:£11....: (b0 oi) Bx-11 

= 15·25, (9·16) 

which gives 5·0~ as the heterogeneity factor. The difference 
between the x2 values in Exs. 31 and 32 is the improvement due 
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to estimating i (1 degree offreedom); as a test ofthe significance 
of the difference between the estimated index of variation a~d 
its previously assumed value, this should be compared with the 
residual mean square, using a variance ratio test since the second 
x2 is clearly significant (Table 31). Reference to Fisher and Yates 
( 1948, Table V) shows the ratio of mean squares to be non
significant, but; with so few degrees of freedom, the test is in
sensitive. In Table 32, the observed percentage mortalities are 
compared with those estimated by equations (9·10) and (9·15). 

TABLE 31. Test of Significance for the Difference between the 
Estimated Index of Variation and its Previously Assumed Value 

--~-

Source of variation D.l'. 
Sum of Mean 
squares square 

------
Removed by i 1 10-87 10-87 
After estimating a, b, i 3 15·25 5-08 

-----
After estimating a, b only 4 26-12 

- '-------

TABLE 32. Comparison of Two Probit Equations fitted to 
Sodium Tetrathionate-Macrosporium sarcinaeiorme Data 

(i) Y= 2-1538+1-2489,\0 "21. 

(ii) Y = -0-9312+4-1053,\0·1161 

A 
Percentage mortality 

n. 
Observed Equation (i) Equation (ii) 

I 400 4-8 5·5 3-4 
5 500 ll·5 16-4 16-1 

16 500 43-6 36·4 39-0 
40 500 64-1 61-6 63·7 
80 500 80·4 81·3 80-9 

150 500 91-5 93-6 91-7 
'--·----- -----------------

The matrix of variances and covariance forb and b0 8i is the 
inverse matrix formed in the solution of equations (9·12), namely, 

y = (v11 v12\ = ( 4·8600 -0·40551 ) 
v11 v2J - 0·40551 0·033965 ' 
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multiplied by the het~rogeneity factor. Hence the standard error 
of b, with only 3 degrees of freedom, is 4·97, much greater than 
when i was assumed known (Ex. 31). Also 

V(i) = 5·08v22/b~ 
= 0·0095; 

though i = o~ 1153 is very different from the value 0·25 assumed 
in ~x. 31, the standard error of the estimate, 0·97,is so great as 
not to discriminate clearly between the two, and, as shown by 
Table 31, the data do not definitely contradict the hypothesis 
that the true index of variation is 0·25. 

From equations (9·6) and (9·15), U-t may be estimated; its 
\"ariance is given by the lengthy formula 

V(U-•) = i2(~u, +x2v11 + 2x:X'v12 +x'2v22) 

+ 2ibm(xv12 +:X'v22)/b0 + (bm)2 v22/b~, (9·17) 

which must be multiplied by the heterogeneity factor when there 
is one. The result of these calculations is 

U-t = 0·684 ± 0·054, 

in good agreement with Table 30, thus illustrating the stability 
of the variability (now estimated as 2·14 instead of 1·97). The 
reduction in the standard error of U is an effect of the smaller 
heterogeneity factor (5·0~ inHtead of 6·32). A composite h£>tcro
gPneity factor from the three com pounds would have more degrees 
of freedom and would provide a more reliable standard error. 



Chapter 10 

GRADED RESPONSES 

46. THE LINEAR DosAGE-RESPONSE CuRVE 

THE discussion in earlier chapters has been concerned only with 
quantal characteristic responses. In many biological investiga
tions it is possible not merely to state that a subject has responded 
to the treatment applied but also to measure the magnitude of 
that response. Vitamin preparations, for example, are often 
assayed by comparing the weight increases of rats fed for a speci
fied period on suitable doses with the weight increases of other 
rats fed for the same time on a similar range of doses of a standard 
preparation with known vitamin content. Again, insulin may 
be assayed in terms of the percentage fall in blood sugar of 
injected rabbits. All such data could be reduced to a quanta! 
form by a simple dichotomy of the measurements into· those 
greater than and those not greater than an arbitrarily selected 
value; the relationship between the dose and the percentage of 
subjects whose responses exceed this value could then be studied 
by the methods of probit analysis already described. This pro
cedure, however, would be very wasteful, as it discards entirely 
the information provided by the distribution of the magnitudes 
of responses within the 'greater than' and 'not greater than' 
classes. 

\Vhen quantitative responses to a stimulus are measured over 
a sufficiently wide range of doses, some curvature of the relation
ship between dose and mean response will almost certainly 
become evident. Indeed, the response curve will frequently be 
sigmoid in type. Nevertheless, especially if the responses are 
plotted against a l~garithmic dosage scale, the curve often does 
not differ appreciably from a straight line over a considerable 
section of the dosage range. The central section is usually that 
of chief interest to the experimenter, and he may reject the 
results for the more extreme levels of dose which give responses 
outside the linear range in order to have data which can be 
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analysed by the ordinary linear regressio~ technique (Fisher, 
1944, §§ 25, 26). The accurate estimation ofthe regression slope 
requires thq.t the whole of the linear section should be included 
in the tests, but pre-existing knowledge may enable economies 
in experimental material to be effected by omitting very extreme 
doses which are almost certain to lie outside this range. 

Extreme responses will thus be avoided, and it may then be 
reasonable to assume that the variance of the response of each 
subject is constant, irrespective of the dose. A linear regression 
equation of mean response on dosage may therefore be calculated, 
weighting the mean response at each dosage in proportion to 
the number of subjects. Since these weights are independent 
of the expected responses, the complications of pro bit analysis 
do not arise and no method of successive approximations is 
required in order to obtain the maximum likelihood solution. 
Burn (1950) and Coward (1938) have used regression analysis 
extensively in a variety of problems of biological assay from 
quantitative responses. Bliss and Marks (1939a, b) have given 
an excellent description of the statistical analysis of an insulin 
assay, showing details of the computations and discussing many 
important points, including the use of covariance analysis for 
improving the precision of the· estimate of relative potency 
by making adjustments for preliminary variation in relevant 
measurable characteristics of the experimental rabbits. The same 
considerations in respect of fiducial limits as are_ outlined for 
quanta! response data in § 19 arise for quantitative responses 
also, and the general formula (4·7) may be applied (Irwin, 1943; - -
Fieller, 1944). · 

Details of the application of standard linear regression tech
nique to assay data will not be given here, for, though the under
lying theory is comparatively siniple, the methods could not be 
adequately illustrated without many examples, and a full account 
falls outside the scope of this book. In addition to references 
already given, Bliss (1940a), Bliss and Rose (1940), Fieller (1940), 
Finney (1945a), and Irwin (1937) may be consulted for useful 
examples of experimental planning and the statistical reduction 
of the results. Before leaving this topi_c, however, one small 
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point of interest may be noted in connexion with what has come 
to be known as the four-point assay, the very simple type of 
assay in which a test material and a standard are each used at 
two rates only; the differenCe between the higher and lower rates 
is the same for both materials on the dosage scale used, thus 
implJ-ing that, if a logarithmic dosage scale has been adopted, 
the two pairs of doses are in the same ratio. Gridgeman (1943) 
and Wood (1944a) have shown that for this type of assay the 
relative potency may be estimated even when there is an ap
preciable departure of the dosage-response relationJ~hip from 
linearity over the range of doses tested. Provided that the 
relationship can be adequately represented by a second-degree 
equation, the formula for relative potency derived on an assump
tion of linearity still gives an unbiased estimate. The four-point 
aesay may nevertheless give misleading results because of the 
very little evidence it supplies on the identity of shape of the re
sponse curves for the two materials tested; the conditions of its 
usefulness and validity have been discussed by Finney (1944b), 
Gridgeman (1944) and Wood (1944b). 

47. QUANTITATIVE RESPONSES AND 

THE PROBIT TRANSFORMATION 

When quantitative responses are studied over an unrestricted 
range of doses, they will frequently be found to show a sigmoid 
relationship with dose, and by a suitable choice of dosage scale 
(again often logarithmic) the relationship may usually be made 
to approximate to the normal sigmoid form. Though the probit 
transformation was devised as an aid to the analysis of quantal 
response data, its property of converting a normal sigmoid curve 
into a straight line is not dependent upon the source or nature 
of the data, and the same end will therefore be achieved if the 
sigmoid represents the relationship between dosage and a quanti
tative response. There is, however, an important difference 
between the statistical procedures for the two types of data. 
For quanta! responses the proportion of subjects responding 
to any dose is assessed as the ratio of the number showing the 
characteristic response to the total number receiving the dose; 
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for quantitative responses the mean response to each dose can 
be calculated from the data, but in general no maximum possible 
response is known and consequently no proportional response 
can be directly calculated. Sometimes, as in Ex. 33 below, one 
subject or set of subjects can be given a dose such that each will 
~how its individual maximum, but this can only be an estimate 
of the mean for all subjects, since it is itself subject to the natural 
va-riability of the population. The difficulty is similar to that of 
correcting quantal data for the proportion of responses amongst 
the controls (Chapter 6), but has to be faced relatively more 
frequently. Indeed, the rarity of investigations in which quan
titative responses can be reckoned as proportions of a known 
maximum probably accounts for the failure to realize the possi
bility ~f applying the pro bit transformation to quantitative data 
(Bliss, 1941; Finney, 1943b). 

The variance of the response of all test subjects receiving' the 
same dose can usually be estimated empirically from the separate 
observed responses to that dose, and thus independently of the 
expected response to that dose; the variance of the mean response 
then takes the form vfn, where v is the variance of a single 
response and n is the number of responses contributing to the 
mean. At low dosages the inean response tends to zero, and, 
unless negative responses of individual test subjects are possible, 
v must also become very small; at high dosages also, when the 
mean response approaches its maximum, v may again become 
small. Nevertheless, unless very extreme doses are used, v may 
often be taken as substantially constant and may then be assessed 
by pooling estimates for different dose levels. • 

If the mean response to n subjects tested at dosage x (on the 
normalizing scale) is u, the expected value of u may be written 

U = HP; _ (10·1) 

• An approximate test of the heterogeneity of a set of variance 
estimates t11, tlz, ... , "v with degrees of freedom f 1, f 1, ••• , j, is given by 

treating 2·3026(Jlog v-Sf; log t1;) 

as a xz with (k-1) degrees of freedom. The summation is to be taken 
over the k values, and J= Sf;, Jv = SJ.v;; " is the pooled estimate of 
variance to be Used if the test discloses no heterogeneity (Bartlett, 1937). 
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here His the mean limiting response for high dosages, and f, 
the proportionate response at this dosage, is as defined by 
equation (3·1). When His known, and therefore does not have 
to be estimated from the data, 

p = ufH (10·2) 

is an estimate of P. The probits of the several values of p may 
then be fitted by a linear regression on x by the method of § 17, 
except that the weight to be attached to each point is not nZ2fPQ 
but nH2Z 2fv. The standard errors of parameters estimated from 
the analysis are proportional to ,.jv and are based on the same num
ber of degrees of freedom as v instead of pertaining to a normal 
distribution. Ip.stead of a x2 test of the significance of the de
partures of the observations from the fitted probit regression 
line, a variance ratio test must be used, as illustrated in Ex. 33. 

In the present chapter, a weighting coefficient, w, defined by 

W= Z2, (10·3) 

will be used instead of that defined by equation (3·4). Values of 
both Z and Z2 are given in Table V for values of Y at intervals 
of 0·1 from 1·0 to 9·0; both functions are symmetrical a,bout 
Y = 5·0. For the simple problem of fittiilg the pro bit regression 
line when H is known, the only differen~es from the procedure 
of§ 17 are the changed weighting coefficient and the introduction 
of a, factor H 2fv into all weights, or vfH2 into all variances, at 
the end of the analysis. The working probit is not affected by the 
change in weighting. 

When H is unknown, three parameters must be estimated from 
the data. An auxiliary variate · 

x'=PfZ (10·4) 

is introduced, its values being obtainable by entering the QfZ 
column of Table II with ( 10- Y) instead of l'. If ll is a provi
sional value for the maximum re~ponsc, and h is the observed 
mean response to n,. subjects tested under the 'control' con
ditions for which P = I, an adjustment, 8H, to Hand revised 
parameters for a regression line are given by 
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_ b- 8H _, 
a=y- x-Hx. 

(10·5) 

(10·6) 

Contributions from the controls, nh and nh(h-H){H, must be 
added to S:z'r and Sr11 respectively (cf. §28). The estimates are 
obtained by a formal calculation of the multiple regression of y 
on x, x', the values of x', w, y being based on a provisional 
line. In the limit of successive cycles, the inverse matrix of the 
coefficients on the left-hand side of equations (10·5) gives the 

. variances and covariance of band 8HJH, except for the omitted 
factor vfH2 (and a heterogeneity factor, if required). 

Ex. 33. The repellent effect of lime sulphur on the honeybee. 
Butler et al. (1943) have discussed a series of experiments on 
the attractiveness or repellency to the honeybee of various 
constituents ~f orchard sprays. In one of these experiments 
individual cells of dry brood comb were filled with measured 
volumes of emulsions of lime sulphur in M /I sucrose solution, 
and were placed in an experimental chamber. Seven different 
concentrations of lime sulphur were used, ranging from 1/100 
to 1/1,562,500 by successive factors of one-fifth. Eight cells of 
each of these, together with eight cells of M /I sucrose solution 
alone, were arranged in eight rows of eight to form an 8 x 8 Latin 
square, thus eliminating as far as possible any positional effects 
within the chamber. Additional non-experimental cells of sucrose 
solution were placed between the rows and around the square so 
that there should be no shortage of the unadulterated solution. 
About 100 honeybees were then released into the chamber for 
two hours, after which the volume of liquid within each cell was 
again measured. The difference between the two volumes, cor
rected by a very small amount representing the evaporation 
during the experiment, is the quantity taken up by the bees. 
Table 33 shows the arrangement of the experimental cells and the 
corrected uptake figures for each; totals of rows and columns of 
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eight cells are also shown. The effectiveness of lime sulphur in 
repelling the honeybees is measured by comparing the total 
uptakes from the eight cells of each treatment, shown in Table 34. 

TABLE 33. Lay-out and Results of Experiment on Uptake 
of Lime Sulphur by the Honeybee 

(Uptake recorded in mg. per cell) 
Row 

to tala 
D c F H E· A B- G 
57 84 87 130 43 12 8 80 501 
E B H A D c G F 
95 6 72 4 28 29 72 114 420 
B H A E G F c D 

8 127 5 114 60 44 13 39 410 
H D E c A G F B 
69 36 39 9 5 77 57 14 306 
G E D F c B A H 
92 51 22 20 17 4 4 86 296 
F A c G B D H E 
90 2 16 24 7 27 81 55 302 
c F G B H E D A 
15 69 72 10 81 47 20 3• 317 
A G B D F H E c 

2 71 4 51 71 76 61 19 355 
Column 
totals 428 446 317 362 312 316 316 410 2907 

The meaning of the symbols for the eight treatments is given in Table 34. 

TABLE 34. Uptakes of Various Concentrations 
of Lime Sulphur by Honeybees 

Treatment 
Total of 
8 cells Mean per 
(mg.) cell (mg.) 

A: M/1 sucrose+ lime sulphur (1 %) 
B: ., .. (0·2 %) 

37 4·6 
61 7;6 

C: ., ., (0·04 %) 202 25·2 
D: ., ., (0·008 %) 280 35·0 
E: ., ,, (0·0016 %) 505 63·1 
F: ., .. (0·00032 %) 
G: , ., (0·000064 %) 
H: M/1 sucrose alone 

552 69·0 
548 68·5 
722 90·2 

Standard error of mean ± 6·9 

An analysis of variance of the 64 uptakes involves the assump
tion that the error variance is the same for all of them. In fact 
there are strong indications that the variance increases with 
decreasing concentration of lime sulphur; and especially that 
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the uptakes of the four highest concentrations are much less 
variable than those of the four lowest. Experience has shown 
that the validity of conclusions from an analysis of variance is 
not seriously upset unless the differences in variability are very 
great, and special investigation of these data indicates that the 
final estimates obtained would not be much altered if they were 
based on a variance which itself depended upon the concentra
tion. The standard procedure for the analysis of Latin square 
data (Fisher, 1944, § 49; Mather, 1943, § 29) has therefore been 
adopted. as a means of estimating the variance per cell. Each 
row of eight cells in the experimental lay-out contains one cell 
of each treatment, as also does each column of eight cells, and 
the variation between the sets of row and column totals is 
eliminated in the statistical analysis. 

The completed analysis of variance is given in Table 35. A 
total sum of squares of deviations of the 64 measurements about 
their mean is calculated as 

TABLE 35. Analysis of Variance of Data in Table 33 

D.:J'. Sum of squares Mean square 

Rows 7 4,768 
Columns 7 2,808 
Treatments 7 56,160 8,023 
Error 42 15,994 380·8 

Total 63 79,730 

A component of this sum of squares representing the variation 
in row totals, and having 7 degrees offreedom, is then calculated 
from the totals shown in Table 33 as 

(50!2+4202+ ... +3552)/8~(2907)2/64 = 4768, 

the divisor 8 occurring since each row has eight cells. Similar 
calculations give components for columns and for treatments, 
the latter being obtained from totals shown in Table 34 as 

(372+ 612+ ... + 7222)/8- (2907)2/64-= 56160. 
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The difference between these three components and the tot~ 
is a sum of squares with 42 degrees of freedom which measures 
the residual variation, and the mean square obtained when this 
residual is di~ided by 42 is the estimate of error variance, 

v = 380·8. 

A rapid inspection of the data is sufficient to show that the 
differences between the uptakes of the eight concentrations are 
much too large to be attributed to random variation. If a test 
of significance were required, it would consist in comparing the 
mean squares for 'Treatments' and 'Error'; according to Fishei: 
and Yates's table of the 5% levels of the variance ratio (1943, 
Table V), a ratio greater than 2·24 must be considered indicative 
of real differences between treatments, and in this analysis the 
ratio is over 20. 

The standard error of the treatment means, each a mean for 
eight cells, is ± .J(v/8), or ± 6·9 mg. per cell. The means are 
given in Table 34, and are also shown in Fig. 21 plotted against 
a logarithmic scale of dosage; on this scale, for convenience, the 
0·008 % ( = 5-a %) concentration has been taken as zero and 
other doses expressed relative to it by logarithms to base 5, 
so that 

x = 3 + log6 (percentage concentration). (10·7) 

Sucrose alone is a zero concentration oflime sulphur and therefore 
has an infinite negative value of x. Though-a straight line would 
fit the points for the seven concentrations of lime sulphur 
tolerably well, a sigmoid of some type is necessary to show the 
eventual tapering away to zero uptake at very high concentra
tions and the approach to the uptake of unadulterated sucrose 
solution at very low concentrations. A straight line would be 
an entirely inadequate representation of the relationship much 
outside the range of concentrations tested, and indeed the points 
do suggest a sigmoid curve. 

A part from the reversal in the direction of the dose ~ffect, 
so that increasing the dose decreases the response, the sigmoid 
required does not look to be markedly different in shape from 
the normal sigmoid illustrated in Fig. 4, and the frequent success 
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of log dose as a normalizing transformation encourages its use 
here. In this experiment the test subjects of the earlier discussion 
are the cells, no~ the bees, so that there are eight 'subjects' at 
each concentration; the response, u, is the uptake of liquid from 
a cell during the course of the experiment. Since u decreases 
with increasing concentra~on from the value for sucrose at zero 
concentration to zero at very high concentrations, for the probi.t 
regression line b must be negative. 

100 

t-------
80 

~ )I 
t>O 
.§, 

60 

=a! 
Q .. .. 
llo .. 40 1 ... 
~ 

20 

-3 -2 -1 0 

Dosage (x) 

Fla. 21. Uptake' of lime sulphur by the honeybee, showing normal sigmoid 
curve (Ex. 33). -+- indicates uptake of zero concentration. Broken line indi. 
cates mean limiting response. 

The mean uptake of liquid from the cells containing only 
sucrose solution is 90 mg. per cell, . so that the estimate of the 
parameter H from these control cells alone is k = 90. On the other 
hand, the two lowest concentrations of lime sulphur tested gave 
responses of just under 70 mg. per cell, thus suggesting that His 
not -so great as 90. !.n obtaining equations (10·4) a provisional 
value of 85 was taken for H, a guess which proved to be re
markably good. 
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The computations then proceed as in Table 36. Values of u, the 
mean uptake at dosage x, are copied from Table 34, and p = uf85. 
is calculated for each. The empirical pro bits of p are tabulated, 
and are plotted in Fig. 22, in which figure a provisional regression 
line is drawn. From this line expected probits, Y, are .read, and 
weights and working pro bits are deterz¢ned in the usual manner, 
except that w must be taken from the Z 2 column of Table V 
instead of from Table II; thus for the third dosage Y = 4·4, and 
the weight is therefore nw = 8 x 0·111. The quantities PfZ are 
-obtained from Table II as the values of Q / Z which correspond 
to (10- Y). 

TABLE 36. Computations on Uptake of Lime Sulphur by Honeybees 

Em- ~'=P/i II " " p(H~85) pirical y fttD 11 ftiDII "ID1J nwz'· 
pro bit 

1--- - ---------------
3 8 4·6 0·05 3·36 3·4 0·10 3·36 0·49 0·30 0·3360 0-()490 
2 8 7·6 0-09 3·66 3·9 0·36 3·69 0·62 0·76 1·4022 0·2356 
1 8 25·2 0·30 4·48 4-4 0·89 4·48. 0·82 0·89 3·9872 0·7298 
0 8 35-() 0·41 4-77 4·9 1·26 4-11 H6 0·00 6·0102 1-4616 

-1 8 63·1 0·74 5·64 5·4 1·08 5·63 1-78 -1·08 6-()804 1·9224 
-2 8 69·0 0·81 5·88 5·9 0·57 5·88 3·07 ·-H4 3·3516 1-7499 
-3 8 68·5 0·81 5·88 6·4 0·18 5·67 6·14 -0·54 Hl206 1-1052 
-ao 8 90·25 - - - - - - - - -- - ---------------

4-46 -0·81 22·1882 7·2535 

z = 0·1816, z' = 1·6263, y = 4-9749 

Snw:z:1 Snwxz' Snw:z:'1 Snw:r:y Snw:z:'y Snwy1 

8·2900 -7·3898 18·0440 -8·0458 38·6543 112·5612 
0·1471 -1·3173 ll·7967 -4·0297 36·0857 ll0·3848 -- ----- --
8·1429 -6·0725 6·2473 -4·0161 2·5686 2·1764 

nll= 8·0000 n,.(h-H)fH = 0·4941 
14-;2473 3·0627 

Table 36 is completed in the obvious manner, and equations 
(10·5) written down as 

8H ' 
8·1429b- 6·0725/[ = -4·0161,} 

8H 
-6·0725b+ 14·2473/i = 3·0627. 

The inverse matrix of coefficients is · 

FPA 

V = (Vn v12\ = .(0·180029 0·076732) 
v11 v2J 0•076732 0·102894 ' 

(10·9) 

IJ 
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and by summation of the products of each row of V by the right
hand sides of equations (10·8) 

-4 

b = -0·4880, 

8H n= 0·00697. 

-3 -2 -1 0 

Dosage (z) 
2 

FIG. 22. Data of Fig. 21 transformed to probit scaie, showing 
probit regression line (Ex. 33). 

The improved estimate of the maximum response, H + 8H, is 
. 85·59, and, by equation (10·6), 

a= 4·875. 

The calculations could be repeated, using H = 85·59 and 

Y = 4·875-CJ-488x (10·10) 

as a provisional line, but it is easily seen that changes from the 
first cycle would be negligible by comparison with the experi
mental errors. 
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Table 37 ~:~bows the result of using equation (10·10) to calculate 
expected probits, expected proportions, and expected uptakes, 
U, for each x; the sigmoid curve in Fig. 21 has been plotted from 
these values of U. Comparison with the observed mean responses, 
u, shows some irregularities but no systematic deviation. A test of 
significance of the discrepancies may be based upon the sum of 
squares of differences (u- U). Since each u is a mean of eight 
observations, S(u- U)2 must be multiplied by 8 to bring it to the 
same units as those of Table 35; the result, 1663, is a residual sum 
of squares with 5 degrees of freedom, three parameters having 

TABLE 37. Comparison of Observed and Expected 
Lime Sulphur Uptakes 

z 

I 
y p U=HP. u 

3 HJ1 0·056 ,.8 ,.6 
2 3·899 0·135 ll·6 7·6 
1 ,·387 0·270 23·1 25·2 
0 4·875 0·450 38·5 35·0 

-1 - 5·363 0·642 55·0 63·1 
-2 5·851 0·803 68·7 69·0 
-3 6·339 0·910 77·9 68·5 
-co - 1·000 85·6 90·2 

S(u- U)1 = 207·92. 

been estimated from the eight means. The mean square, 
1663/5 = 333, is less than the error mean square in Table 35, 
and therefore gives no indicat~on of serious deviations from the 
fitted- sigmoid curve. An alternative procedure is to follow the 
pattern of calculation which led to a x2 in§ 28; the expression 

8H 
B1111 -bSZ11-JjSz., = 0·1952 (IO·ll) 

is no longer a x2, but multiplication by H 2 ( = 7326) will give the 
residual sum of squares. The result, 1430, differs appreciably 
from the 1663 obtained by the first method because the basic 

IJ·Z 
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calculations have not been repeated sufficiently often to approxi
mate as closely to the maximum likelihood limiting values as 
would be required in a critical case. Here the practical conclusion 
is the same by either test. Had non-systematic heterogeneity 
of deviations from the fitted curve been found, the mean 
square with 5 degrees of freedom would have been used in 
subsequent calculations, in place of s2 = 380·8 with 42 degrees 
of freedom. 

Now 

and 

V(b) = B~v11/H2 = 0·009489, 

= 39·18; 

(10·12) 

(10·13) 

hence the standard errors of band Hare 0·097 and 6·2'6 respec
tively, which confirm that the changes from. the provisional 
values to. the results of the· first cycle are small by comparison 
with expe~imental errors. If the ED 50 is defined as the con
centration of lime sulphur producing a 50 % reduction in sucrose 
uptake, the log ED 50 is found as 

- (5 - oH -·)jb m=x+ -y+Hx (10·14) 

.- = -0·256. 
-

For the 5% level of probability, t = 2·02, and 

g = t2V(b)fb2 = 0·163, 

too large to permit the assessment of fiducial limits tom by means 
of a standard error formula. Formula (4·7) must therefore be 
applied to the expression for (m-x) given by equation (10·14), 

. using V(b) from equation (10·12); 

v( 5-y~ 0:: x') = s2(s!w -t:x'~22) j H 2 = 0·026161, 

and Cov{(5-y+ 0:: x'),b} = s2x'v12/H2 = 0·006577. 

The fiducial limits tom are found to be 0·356 and -1·167. 
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Now equation (10·7) may be written 

log10 (% concentration) = 0·699x- 2·097; 

from which the ED 50 of lime sulphur is estimated to be 0·0053 %. 
with 5% fiducial limits at 0·0142 and 0·0012_%. 

Many of the methods of analysis discussed in earlier chapters 
can be modified for use with quantitative response data of the 
type under consideratiqn here. In particular, the estimation of 
the relative potency of two stimuli whose pro bit regression lines 
are parallel, the analysis of data involving two or more dose 
factors, and the study of mixtures, can all be effected by tech
niques analogous to those used with quantal responses. The chief 
differences are the change in the weighting coefficient and the 
frequent necessity of estimating the third parameter, H. Conse
quently the computations are more laborious than those of 
ordinary pro bit analysis, but they are by no means prohibitively 
so. Additional examples will not be given here, as the assumption 
of a linear dosage-response relationship is so often good enough; 
the pro bit procedure for maJ].y types of data should be apparent 
by analogy with the corresponding quantal response problems. 
McCallan (1943) has suggested a further modification, for use 
with certain types of quantitative data, in which an empirical 
relationship between weighting coefficien_t and response is esti
mated as a preliminary to the main analysis. 

48. SEMI-QUANTAL RESPONSES 

Intermediate between quanta! responses and the truly quanti
tative responses are those which may be described as semi-quantal. 
As noted earlier, Tattersfield et al. (1925) classified their insects 
as dead, moribund, slightly affected, and unaffected, and thus 
recognized four levels of response instead of the two characteristic 
of quanta! data. They reduced their results to quanta! form, 
however, by assessing toxicity in terms of the percentage of 
insects which were either moribund or dead, and made no allow
ance for the subclassification of these insects into two levels or 
of the remainder into the two levels of unaffected and slightly 
affected; standard methods ofprobit analysis are then applicable 
to the data without modification. 
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Better use might be made of the data if the numbers of insects 
at the four different levels could be combined into a single index 
of toxic effect. Such a scheme was indeed proposed earlier by 
Fryer et al. _ ( 1923); they used the same fourfold classification and, 
in order to obtain a percentage response at each dose, scored 
moribund and slightly affected insects as one-half and one-quarter 
dead respectively. For example, if. a batch of ten insects were 
classified as 4, 1, 3, 2, the proportionate response would be 
(4 X 1 + 1 X 0·5+ 3 X 0·25)/10, Or 52·5 %• 

This method of scoring the results did not appear to give very 
much smoother response curves than that subsequently adopted 
by Tattersfield, and has never been very widely used. Possibly 
discrim.iD.ation between moribund and slightly affected is simpler 
than between other pairs of classifications, so that the informa
tion provided by the latter is relatively unreliable. Exact 
statistical methods appropriate to the analysis of semi-quanta! 
data have not yet been developed, but they would certainly be 
much more complex than the ordinary probit analysis. On the 
other hand, probably a sufficiently good approximation for many 
practical purposes is to form an index such as that described in 

· the previous paragraph, and to use this as the value of p in an 
ordinary probi_t analysis, but always to use an empirical variance 
for expressing the precision of estimates. The weights derived 
from equation (3·4) or its generalization (6·3) should give a reason
able indication of the relative value to be placed on different 
observations, but can no longer be regarded as the reciprocals 
of the true variances;' the heterogeneity x2 obtained therefore 
cannot be considered a true x2, but is only a sum of squares from 
which an estimate of variance can be formed. 
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RECENT DEVELOPMENTS 

49. ALTERNATIVES TO MAXIMUM 
LIKELIHOOD EsTIMATION 

SINCE the first edition of this book was written, a·number of 
alternatives to the scheme of maximum likelihood computations 
described in Chapter 4 have been developed, and the author's 
attention has been drawn to others of which he was previously 
unaware. Some of these undoubtedly have merits for routine 
analyses, because they reduce the time needed for calculation. 
Many, however, involve internal inconsistencies of assumption 
that will occasionally give trouble, although they may be harmless 
for most sets of data. The experienced statistician may use a rapid 
approximate method with safety, because he can recognize 
when some unusual feature of the data makes the method mis
leading or inapplicable. Unfortunately, the very simplicity of a 
method is an attraction to the experimenter who has little 
knowledge of statistical theory and who must therefore apply his 
chosen method uncritically. Moreover, at least under the 
assumption of a normal distribution of log tolerances and pro
bably also for any other r~asonable assumption about the form 
ofthis distribution, the approximate methods either do not make 
fully efficient use of the available data or require that the experi
ment be planned in a manner that does not make the best possible 
use ·of the materials. The labour of statistical analysis is usually 
only a small part of the total labour of an experiment, and, 
therefore, efficient analysis of a minimal number of observations 
is generally more economical than non-efficient analysis of a 
larger number. The argument is sometimes advanced that 
elaborate statistical analysis of a few observations is not worth 
while; this idea seems to be based upon a misconception, for 
scarcity of observations is likely to be a result of high oost of 
obtaining one observation, just the circumstances in which 
efficient utilization of each observation is economically most 
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important. In this book, chief emphasis is placed on efficient 
methods of analysis, but the reader who has mastered these 
should have little difficulty in understanding the simpler methods 
that, whatever their shortcomings, are certainly useful for the 
rapid preliminary evaluation of data. 

Graphical methods due to Litchfield and Fertig (1941) and to 
de Beer (1945) have been mentioned in Chapters 3 and 4. The 
Litchfield and Fertig method has been modified by 1\Iiller and 
Tainter (1944), and again by Litchfield and Wilcoxon (1949); in 
its latest exposition, it could scarcely be said to look simple, but 
undoubtedly if it were used as a routine it would take less time 
than the orthodox probit method. All these methods employ a 
line drawn by eye to fit points plotted for each dose and response, 
preferably on logarithmic probability paper. Systems of noma
graphs are then used to simulate the maximum likelihood cal
culations for variances, fiducial limits, and contributions to a 
heterogeneity x1 ; even without the inevitable inaccuracies of 
reading from diagrams, the corresp~>ndence is not exact, because 
the fitting of the line cannot take proper account of the working 
probits~nd weights. For good data, however, with points close 
to a straight line and no responses near to zero or 100 %. the 
results obtained are likely to be very close to those from maximum 
likelihood estimation. 

In § 13, a simple arithmetical method has been attributed to 
Behrens. As there described, the method is in fact that of Reed 
and Muench (1938), who proposed to use linear interpolation 

. between successive values of sz- and sz+ to find the 50 % point. 
The method originally described by Behrens (1929), and in
dependently but in less detail by Dragstedt and Lang (1928), is 
closely related but not identical; it makes use of the ratio 

Sz_f(Sz- + Sz+) 

as a modified response for the dosage x, and interpolates between 
successive values of this ratio to give the 50 % point. These two 
methods often mislead users into a belief that they are not merely 
helping interpolation by a smoothing of the data, but that they 
are getting results of the same precision as if they had tested 
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(Sz_+S.r+) subjects at each dose; Barr and Nelson (1949), fc:'r 
example, state explicitly 'This method enables one to obtain 
results in terms of a much larger number of animals than origin
ally employed, and, therefore, results are indeed inore accurate'. 
Though these methods may be satisfactory for estimating an 
LD 50 when the data are well distributed on either side of the 
50 % point, they are never valid for the estimation of the LD 90, 
or any other percentage 'point; the misunderstanding just noted 
may have serious consequences if it is used in support of such an . 
estimation. Winder (1947) has drawn attention to the dangers 
of regarding the Behrens ratio as an estimate of the response rate 
at any dose. Investigations now in progress indicJ~.te that the 
Reed-1\luench form of calculations gives a smaller bias than the 
Dragstedt-Behrens; both, however, have slightly larger variances 
than that for Karber's method, and, since they are no easier to 
use, they must be judged inferior to Karber's method. 

In§ 13 was noted a serious objection to the methods mentioned 
in the last paragraph, namely, that they are applicable only 
when a range of doses sufficient to span the interval from almost 
zero to alrilost 100 % response is used, and this feature is wasteful 
if an approximation to the LD 50 is known to the experimenter. 
The moving average method proposed by Thompson (1947) is. 
related to Karber's method, but is sufficiently different to escape 
this criticism. For data consisting of experimentally determined 
response rates, p, at equidistant points on the dosage_ scale, 
preferably but not necessarily each based upon the same number 
of subjects, Thompson would average all possible sets of three 
successive values of p and plot each average against the middle 
dose; linear interpolation between the two values nearest on 
either side of 50 % gives an estimate of the LD 50. (Moving
average spans other than three can, of course, be used if pre
ferred.) The estimate can be expressed by a formula similar to 
(3·12). Thompson claims for his method the advantage of estima- · 
tion 'free from assumption as to the precise type of fundamental 
curve involved', though presumably symmetry of the log toler
ance distribution is important. This method also must not be 
used for the estimation of any other percentage point. The 
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efficiency of estimation of the LD 50 has not been studied in 
detail, though Thompson presents a small amount of empirical 
evidence that it can stand comparison with the probit method. 

The question may reasonably be asked: Why should the 
maximum likelihood estimation of the parameters be set up as 
a standard against which alternatives are measured 1 It must be 
admitted that no entirely satisfactory answer can be given. 
General statistical theory proves that, for any formulation of 
the tolerance distribution in terms of unknown parameters 
(e.g. that of equation (2·6)), ifthenumberofobservations be large 
enough, no other method can give estimates of higher precision 
(smaller variance), though some may be as good. What con
stitutes 'large enough', however, is unknown. In some simple 
problems, the optimal property of maximum likelihood estimates 
persists even in very small samples; in the problem of relating 
a quanta} response to dose, nothing is known about the distribu
tion of the estimates in small samples. In many applications of 
.the probit method, the number of observations is probably 
sufficient for the large-sample efficiency of maximum likelihood 
estimation to be nearly achieved, but at present there is no 
certainty of this. The force of the criticism largely disappears 
when it is realized that just as little is known about the efficiency 
of alternative methods of estimation in small samples, that most 
of these are known to be not fully efficient in large samples, and 
that they have many other faults, as mentioned above and in§ 13. 

Berkson (1946) suggested estimation of the parameters in the 
tolerance distribution by minimizing xz instead of maxirp.izing 
the likelihood, and later ( 1949) developed this method more 
rigorously. It is known (Cramer, 1946, §30·3; Kendall, 1946, 
§ 18·8) to be as efficient as maximum likelihood in large samples; 
if the correct algebraic formulation of the tolerance distribution 
is being used, estimates from the two methods and their variances 
will tend to equality as the size of sample is increased, though in 
general they wi~ differ for small samples .. Minimum x2 might 
therefore seem to have the same status as maximum likelihood 
for the probleme of this book. For samples of moderate size, 
however, it appears to have at least one disadvantage not shared 



ALTERNATIVE METHODS OF ESTIMATION 203 

by maximum likelihood, namely the instability of x2 when some 
class numbers are small; the extreme instance is that of individual 
mortality records (§ 43), for which estimation by minimum xz 
would seem an unpromising procedure. Nevertheless, there is no 
a priori reason why minimum x2 should not be superior 1!o maxi
mum likelihood in small samples, or why some third method 
should not be superior to either (Tukey, 1949), and investigation 
of this matter is clearly needed. For the normal log tolerance 
distribution, all that can at present be said is that minimum X2 

has no known advantages, and therefore no tables to facilitate 
its use are provided in this book. For the logistic type of dis
tribution, as Berkson has shown, minimum x2 fitting of the logit 
regression is rather simpler than maximum likelihood, at least 
if his ingenious approxilitation be adopted. 

50. WADLEY'S PROBLEM 

In a study of the effect of temperature on a bacterial suspension, 
counts of survivors per unit volume may be made, but the actual 
numbers exposed to treatment in the same units of volume are 
unknown. If the original number of bacteria per unit volume 
follows a Poisson distribution with mean N, and a treatment 
sufficient to kill a proportion P operates at random within a 
sample, the number of survivors per unit volume will follow a 
Poisson distribution with mean N(l-P). Analysis of data con
sisting of counts of survivors, 8, at various temperatures would 
involve the estimation of N as well as of the parameters of the 
temperature tolerance distribution. A similar problem would 
arise in experiments on the control of immature stages of fruit 
flies, in which samples of fruit were treated at various dose levels 
of some factor, and counts were made of the numbers of flies 
which survived and developed. The total number of flies treated 
in any sample, however, could be discovered only by laborious 
counts on the dissected fruit. An alternative method of obtaining 
information on the numbers exposed to treatment is to take a 
parallel sample of untreated fruit, and to use the number of flies 
developing from this as an estimate of the numbers which would 
have developed in the other samples in.the absence of treatment. 
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H the distribution of initial numbers were Poisson, the problem 
would be formally the same as for the bacteria, except that the 
control samples provide an estimate of N independent of any 
additional information accruing from comparisons between 
treated samples at different doses. 

Wadley (1949) first stated this problem, and obtained the 
maximum likelihood solution. Finney (1949d) showed the close 
relationship to the problem of adjustment for natural mortality 
discussed in Chapter 6. From a provisional estimate of·N, an 
empirical proportion killed a.t each dose, 

8 
p = 1-N' (11·1) 

may be assessed, and, on the assumption that once again the 
tolerance distribution is log normal, the usual pro bit calculations 
may be initiated. Working probits are still found as in§ 16, but, 
because ·a· Poisson distribution occurs instead of a binomial, the 
weighting coefficient must be changed to 

w = Z2JQ; (11·2) 

this functio~ is tabulated in Table VIII. Since N is the same for 
all doses, it may be introduced into totals at the end instead of 
by calculation of N w for each dose. H the number of samples 
per dose varies, each w must be multiplied by the corresponding 
number. An auxiliary variate 

x' =- QJZ (11·3) 

is required, and may be read from Table II. Revised estimates of 
the three parameters are then obtained from 

oN ' 
bS= + N s=. = sXII '} 
. oN. (11·4) 

bS=· + N S:rz' = Sz•u• 

and (11·5) 

equations exactly analogous to (6·5) and (6·6), though the change 
in sign in the definition of x' should be noted. If a sample is tested 
at zero dose, and gives s0 survivors, so that s0 is a direct estimate 
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of N, Sz-r must be increased by the provisional value of Nand 
Sz., by (s0 - N). The cycle of computation may be repeated as 
often as is required to give a close approach to the maximum 
likelihood estimates. A test of heterogeneity may be based on 

8N 
x'l. = sl/11- bSZII- N sr,. (11·6) 

in which 8 1111 is understood to have been increased by (s0 -N)2/ 

N, and the variances and covariance of b, 8NfN are given by 
the elements of the inverse matrix of coefficients from equations 
(11·4). Other results, such as the LD50 and its fiducial limits, 
are obtained in the familiar manner. }'inney (1949d) has given 
details of a numerical example. . 

Anscombe (1949) has pointed out that, though a Poisson dis
tribution for N may be appropriate to~ well-stirred fluid in which 
bacteria are suspended, it is usually less satisfactory as a repre
sentation of an insect infestation in fruit. For the latter, a nega
tive binomial distribution might be nearer to the truth; this 
distribution also has the property that counts for treated samples 
at any one dose will follow the same type of distribution with 
modified parameters. Unfortunately, however, N is now replaced 
by two parameters, both of which enter into the ne.w weighting 
coefficient, and a satisfactory routine for statistical analysis has 
not yet been developed. Anscombe suggests a modification in 
experimental procedure that might help to -overcome the 
difficulty. 

51. A FACTO RIAL EXPERIMENT 

The merits of factorial design of experiments have been outlined 
in § 29, and § 30 indicated how standard methods of analysis 
might be adopted to a factorial experiment involving qualitath·e 
modifications of the stimulus. Potter and Gillham (1946) have 
reported several experiments of this kind, and Finney (1946) has 
described the analysis of one of these. A brief account of this 
analysis follows. 

Ex. 34. The effect of temperature on the insecticidal potency of 
pyrethrins. Potter and Gillham (1946) tested the toxicity of 
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pyrethrins to adult Tribolium castaneum Hbst. under various 
conditions of storage before and after spraying. Full details are 
given in their paper. All that need be noted here is that the 
insects were stored in either a hot (H) or a cool (C) room before 
spraying, and in either a hot or a cool room after spraying; tests 
were made with each of the four possible combinations of storage 
treatments. Tests were also made, with each of these conditions, 
using a spray to which I % terpineol (T) had been added. The 
eight series of tests form what is called a 23 factorial system, there 
being three factors (storage of insects before spraying, storage 
after spraying, terpineol) each of which has two alternative 
states (hot or cool for the first two, absence or presence for the 
third). The eight series are identified by code symbols; thus 
C.H.T. refers to the tests in which terpineol was added to the 
spray for insects stored cool before, hot after spraying. In each 
series, about seventy insects were tested at each of three doses, 
0·0195, Q·Ol30 and 0·0065% total pyrethrins; the data have been 
given in full by Finney (1946). 

TABLE 37 ·1. Summary of Calculations for 
Estimation of Eight Regression Lines 

(All doaes were multiplied by 1000 in order to avoid negative values of z) 

Series z y Snw Sa s,. s ... 
H.H. 1·057 4·966 76·0 2·7375 13·179 63·98 
C.H. 1·059 5·370 103·9 3·7137 16·478 74·63 
H. C. 0·953 6·055 63·3 2·0083 6·075 21·92 
c.c. 0·908 6·074 63·6 1·6054 7·974 39·71 
H.H.T. H48 4·407 92·7 2·2607 10·174 52·30 
C.H.T. 1·088 5·003 ll5·3 3·9490 12·457 43·17 
H.C.T. ()-918 6·062 47·4 1·3523 4·309 16·23 
C.C.T. 0·864 6·692 24·2 0·3735 Hl7 3·58 

Total - - - 18·0004 71·763 315·52 

The procedure of § 20 was -used tO give eight parallel pro bit 
regression lines. Table 37·1 summarizes the calculations. The 
heterogeneity of the deviations from the lines and the parallelism 
of the lines were examined, by forming 8'!11/ 8= for each series 
separately and a corresponding expression from the totals and 
subtracting these from .the 81111 and 1:81111• Table 37·2 was thus 
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obtained just as was Table 13. The heterogeneity x2, 18·8, is 
significant, but the mean square for parallelism is less than the 
mean square for heterogeneity and raises no doubts about the 
legitimacy of fitting parallel lines. The heterogeneity factor as 
ordinarily calculated is 2·35. Here, however, since the two mean 
squares in Table 37·2 are so similar, it is tempting to combine 
them in order to gain degrees of freedom, and to use 

29·42/15 = 1·961, 

with 15 degrees of freedom, as the factor. Had the. parallelism 
mean square been much larger than the residual, the basis of the 
analysis that follows would have )>een destroyed; had it been 
much smaller, pooling it with the residual would have introduced 
a danger of biasing the heterogeneity factor. The effect of pooling 
mean squares in circumstances such as these is a matter needing 
theoretical investigation, but it can scarcely do much harm, and 
has considerable advantages, when the constituent mean squares 
are as nearly equal as in Table.37·2. 

TABLE 37·2. Test of Heterogeneity and 
of Parallelism of Regressions 

Nature of variation D.F. 
Sum of 
squares 

Parallelism of regressions 7 10·61 
Residual heterogeneity 8 18·81 

Total 15 29·42 

Mean 
square 

1·52 
2·35 

From Table 37·1, the common regression coefficient is·esti-

n1ated as b = ES JES 
XI/ XX 

= 71·763/18·0004 

= 3·9867, 

with the aid of which, and of the means .X, y from Table 37 ·I, the 
log LD 50 for each series may be estimated. Moreover 

1·96 X (2·13)2 
g = (3·987)2 X 18·00 = 0"031 • 

which is small enough to permit the use of variances. 
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Chief interest attaches to comparisons between median lethal 
doses, rather than to the separate values, since in this manner the 
relative potencies of different conditions can be assessed. In 
particular the main effect of each factor must be studied: Is the 
potency for the average of all series stored hot before spraying 
different from that of all series stored cool before spraying?, with 
similar questions for the other two factors. Secondly, the inter
actions between these factors, the extent to which the effect of 
one is affected by the state of another, must be examined. A very 
convenient method of studying main effects and interactions in 
an experiment of this design (several factors, each at two levels) 
ha.s been suggested by Yates (1937, §3), and may be adapted to 
the present purpose. A full account of the method will not be 
given here, but the main computations are shown in Table 37·3. 
The values ofy (Table 37·1) are arranged in order, starting with 
'hot before, hot after, no terpineol' and changing each factor in 
turn according to the system. shown in the first column. The 
first four entries of column (I) are the sums of the four successive 
pairs of values ofy, and the last four entries are the differences of 
these pairs, the first :Qumber always being subtracted from the 
second; thus 

5·370+4·966:;:: 10·336, 

5·370 _: 4·966 = 0·404. 

Column (~)is derived from column (1), and column (3) from 
column (2) by rep·etition of this process. A final column shows the 
result of similar operations on the values o~ x. 

TABLE 37·3. Calculations for Main Effects and Interactions 

Series 1i (1) (2) (3) (3) for I!= 

H.H. 4·966 10·336 22·465 44·629 7·995 
C.H. 5·370 12·129 22·164 1·649 -0·157 

--

H.c.- 6·055 9·410 0·423 5·137 -0·709 
c.c. 6·074 12·754 1·226 -0·351 -0·041 
H.H.T.- 4·407 0·404 1·793 -0·301 0·041 
C.H.T. 5·003 0·019 3·344 0·803 -0·071 
H.C.T. 6·062 0·596 -0·385 1·551 -0·199 
C.C.T. 6·692 0·630 0·034 0·419 0·053 
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The first entry in column (3) is the total of the eight values ofy, 
and is of no particular interest. The second can be seen to be the 
difference between totals of the four 'cool before spraying' 
values of y and the four 'hot before spraying', and is used in 
comparing the potency for these two conditions. In fact, for the 
average potency of cool relative to hot 

(11·7) 

where Tx and T
11 

represent the second entries in column (3) for 
x andy respectively. The third entries, similarly, give the main 
effect of cool versus hot after spraying, and the fifth the niain 
effect of the addition of terpineol. The remaining entries give 
interactions. The fourth, for example, contains the difference 
between 'cool versus hot before spraying, cool after' and 'coo). 
versus hot before spraying, hot after', that is to say between 

(6·074+6·692)-(6·055+6·062) = 0·649 

and (5·370+5·003)-(4·966+4·407)'= 1·000 

for the y and between corresponding expressions for the x; 
application of equation (ll·7) gives a value of M for the inter
action of conditions before and after spraying. The sixth· and 
seventh entries give interactions of the two storage conditions 
separately with terpineol, and the last entry gives the inter
action of all three factors. Moreover, for any one of these M 
values, 

V(M) = 1·96{E(-l-) (4M+Tx)2}· 
16b2 Snw + ESxx ' 

(ll·8) 

this formula is analogous to equation (5·7), 1·96 being the hetero
geneity factor; the factors of 4 and 16 arise becaus~ M is based 
on an average difference between two sets of four tests. The 
results of applying equations (ll·7) and (ll·8) are summarized 
in Table 37·4. 

From Table 37·4, cool storage is seen to have increased the 
potency of pyrethrins substantially and significantly, especially 
after spraying. The mean effect of terpineol has been to reduce 
the potency slightly, but the difference is not significant. There is 

PPA 
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TABLE 37·4. Summary of Effects Expressed 
as Relative Poten~ies 

Effect M 

I. Cool versus hot before spraying 0·143±0·034 
2. Cool versus hot after spraying 0·499 ± 0·042 
3. Terpineol - 0·029 ± 0·032 
4. Interaction of I and 2 -0·012±0·032 
5. ·Interaction of I and 3 0·068 ± 0·033 
6. Interaction of 2 and 3 0·147 ± 0·033 
7. Interaction of I, 2 and 3 0·0 13 ± 0·032 

Relative 
potency 

1·39 
3-16 
0·94 
0·97 
H7 
I·40 
1·03 

evidence, however, of positive interaction of the terpmeol effect 
with cool storage, the after-spraying interaction being significant; 
this means that, although it had no average effect on potency, 
terpineol seems to have augmented the benefits of cool storage. 
Addition of line 6 to line 2 in Table 37·4 gives the value of M for 
cool versus hot storage after spraying in the prese~ce of terpineol, 
subtraction of line 2 from line 6 gives the value in the absence 
of terpineol: 

0·499+0·147 = 0·646 = log4·43, 
0·499-0·147 = 0·352 = log2·25; 

it is the difference of these. two quantities whose significance is 
demonstrated by comparison of the sixth value of M in Table 
37·4 with its standard error. The quantities could be obtained by 
direct calculation from Table 37·1, using either the first four or 
the last four lines only and calculating the appropriate Tx, T" 
from these by the method of Table 37·3 or otherwise; equations 
(11·7), (ll·8) must be modified in order to take account of the 
lesser ~umber of series involved: 

M = -!(T,.,-T"/b), 

V(M) = 1·96 {E'(-1-) + l2M_:!:-·!x~}' 
4b2 Snw ES= 

( ll·9) 

(11·10) 

where E' indicates summation over the appropriate four series 
only. 

A convenient and easily understood summary for factorial 
experiments of this type is shown in Table 37·5. The relative 
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potency for each effect is shown as an average for all series, and 
also separately averaged for the four series at each level of the 
other factors in turn. The derivation of the second pair of entries 
in the last column has been described above, and others follow 
the same pattern. 

TABLE 37·5. Relative Potencies ofPyrethrins 
under Various Conditions 

Storage 

Relative potency for Mean Before spraying Arter spraying 
Terpineol 

Hot I Cool Hot I Cool Absent I Pres<>nt 

Cool instead of hot, 1·39 - - 1-43 1·35 H9 1-63 before spraying 

Cool instead of hot, 3·16 3·24 3·07 - - 2·25" 4-43 afljer spraying 

TerpinL~>l added to spray 0·94 0·80 Hl9 0·67 1·31 - -

52. INCOMPLETE REPLICATION IN . 
CoMPLEX ExPERIMENTS 

The experiment discussed in §51 may be described as fully 
replicated, for tests were made at each dose level for all com
binations of the factors of storage and terpineol. A similar design 
might be used in the application of litter-mate control to an 
experiment with quanta} responses. If the test subjects are, say, 
rats, experience of other quantitative properties suggests that 
members of the same litter are likely to be less variable in their 
individual tolerances than members of different litters. An 
experimenter who proposed to test six dose levels (perhaps three 
from each of two preparations whose relative potency was to be 
estimated) might hope to increase the precision of his results by 
using litters of six rats and assigning to each dose one animal 
from each litter. On the assumption that the variance :within a 
litter was the same for all litters, the method of § 43 might be 
adapted to the estimation of a series of pro bit lines (two for each 
litter if two preparations were involved)· constrained to be 
parallel, the slope being the reciprocal of the standard deviation 
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of log tolerances within litters and therefore being steeper than 
if litter-mate control were not used. An average value of JJ could 
then be formed, as in equation ( 11·7), from the common value of 
band the appropriate differences between averages ofx and ofy. 

· The calculations would be more laborious than if the litter 
classifications were. ignored and data for all subjects at one dose 
were pooled, but, for subjects showing real differences between 
litters, the precision of the relative potency would benefit. More
over, it must not be forgotten that the design of an experiment 
always influences its analysis; to incorporate litter-mate restric
tions into the design and to ignore them in the analysis would be 
improper and could be misleading. 

Though the analysis suggested, like that used in §51, is a 
legitimate statistical treatment of the data, it is not the best 
possible. A litter whose members had unusually low tolerances 
would be regarded as giving information as valuable as that con
tributed by one whose tolerances fell in the middle of the dose 
range tested, yet clearly the observations from the first litter carry 
less weight. So in Ex. 34, the C.C.T. series showed very high 

· response rates, and consequently a low value of Snw, yet in 
forming the relative potencies in Table 37·4 it was allowed to 
play the· same part as the C.H.T. series. Of cours~, account is 
taken of this in forming V(M), but the unweighted mean of 
quantities whose variances are different will have a larger variance 
than a suitably weighted mean. 

The difficulty arises in more acute form when there is no longer 
full replication. Suppose, for example, that tests for the six-dose 
experiment cannot all be completed on one day. They might be 
spread over six days in accordance with a Latin square design; 
thus, if l, 2, 3, 1', 2', 3', denote the doses of the two preparations, 
the following scheme might be adopted: 

Litter Day I Day 2 Day 3. Day 4 Day 5 Day ti 

I I I' a~ 2' 3 2 
II 2 I' 3' 2' 3 
III I' 2' 2 3 3' 
IV 3 2 2' I' 3' 
v 2' 3' 3 I 2 I' 
VI 3' 3 I 2 I' 2' 
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Six litters would scarcely be enough to give reasonable. precision, 
and the design might be extended by adding further sets of six 
litters with other Latin square arrangements. Again, if the 
response were not death but some minor reaction that could be 
repeated indefinitely without harm to the subject, each row might 
represent a single animal, instead of a litter, and five or ten tests 
per day could be made on every animal. The simple six-litter 
scheme will serve for illustration here; If a quantitative resp(mse 
were measured for each test, differences between litters and 
between days would be eliminated by an analysis of variance,· 
and all comparisons between doses would be made with the same 
precision as if they were based entirely on differences within one 
litter and withiit one day. This ought still to be true for quanta! 
responses, but the method of analysis is less obvious. 

The key lies in the basic formulation of tolerance distributions. 
Each test gives information on the tolerance for a particular 
combination of litter and day, information that is inexact by com-· 
parison with a hypothetical direct measurement but still in
formation of value. If direct measurements of log tolerance or 
some other quantitative character were made, the assumptions 
underlying the analysis of variance would ~e that the expected 
value for each combination of litter and day could be expressed 
as the sum of two parameters, one constant for the litter and the 
other constant for the day, and that the distribution of measure
ments about their expectations was normal with a variance 
constant for the whole experiment. Such assumptions are made 
·regularly in the analysis of quantitative data, and an analysis for 
quanta! data may equally well be based upon them; a coniplica1 
tion arises, however, because the orthogonality of the Latin 
square disappears when unequally weighted probits replace 
quantitative measurements. 

The analysis must begin with the choice of a set of expected 
probits for the thirty-six combinations of litter and day; these 
are the values read from provisional regression lines, each modi
fied by addition of a quantity representing the deviation of its 
litter from the general average and another representing the 
deviation of its day from the general average. Thus, for a litter 
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which shows general evidence qf low tolerances, all the expected 
probits will be increased by the same amount. In the first cycle 
of the iteration, these adjustments may be little better than 
guesses. Weights and working probits are found from the usual 
formulae, and weighted totals of y for each litter, each day, and 
each dose formed. By equation of these totals to similarly weighted 
totals of expected values, representing a true linear regression of 
probit on log dose modified by litter and day parameters, esti
mates of the parameters may be formed. This step is essentially 
the same as for the 'fitting of constants' in any non-orthogonal 
experimental design (Yates, 1933), except that the weights are 
no longer integral numbers of plots but values of nw. From the 
estimates of the parameters, a new set of expected probits is 
constructed, and iteration proceeds as in simpler problems. Even 
for a Latin square, the calculations are laborious. If angles could 
be used instead of probits (§ 15), the labour would be much less, 
since the constancy of w would preserve the orthogonality of the 
Latin square in each cycle of the calculations and the linear 
equations for the parameters would degenerate into the evalua
tion of arithmetic means. At least for experiments in which all 
expected probits lie between 3·2 and 6·8 (i.e. between 4 and 96% 
probability of response), this is likely to be good enough. Even 
when angles are not satisfactory, one or two cycles of iteration 
based on angles might begin the calculations; expected angles 
would be replaced by the corresponding expected pro bits for the 
closing stages. 

A Latin square of k2 cells may be regarded as a fractional 
replicate of a k3 factorial arrangement, since only 1/k of all com
binations of the three faptors are used (Finney, 1945b ). Analysis 
is possible only if interactions between factors can be ignored. 
This condition, sometimes forgotten in other applications of 
Latin square designs, means here that tolerance differences 
between litters are assumed to remain the same from day to day; 
consequently, the fact that dose 2 is tested only on six of the 
thirty-six possible combinations oflitter and day does not prevent 
the.comparison of the responses it produces with corresponding 
results from other doses tested on other sets of six combinations. 
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The method of analysis j:ust outlined, however, is essential if the 
risk of false inference from non-orthogonal comparisons is to be 
avoided. If all tests had been made simultaneously, so that the 
day classification did not occur, the same principles could be 
applied and would ensure that the final estimate of relative 
potency was the best weighted average from the several litters. 
The calculations would then become rather simpler, but the 
method of§ 51, now applicable because of the complete replica-. 
tion of all combinations of litters and doses, might be preferred 
by many experimenters, even at the price of loss of precision. 

The general problem of the analysis of quantal response data 
in complex experiments may be regarded as solved, for the prin
ciples of analysis described here may be adapted to any design. 
Whether or not the gain in precision is sufficient to justify the 
labour of computation for a complex design must be decided by 
experience, as also must the extent to which approxirilations can 
replace the full scheme of analysis. No example of the com
putations will be given here, because, at the time of writing, they 
have been insufficiently tried for systematic recommendations 
to be made. 

53. THEORY OF INDEPENDENT ACTION 

Recent work by Plackett and Hewlett (1948) throws new light 
on the concept of the independent action of mixtures of poisons, 
and the account given in § 38 needs some modification. Tney point 
out the inadequacy of equation (8·20), and especially its inability 
to represent a negative correlation of susceptibilities. lfi!!ltead, 
they turn to the basic distribution of dosage tolerances for the 
two poisons; just as for one poison the distribution of tolerances 
may often be taken as normal, so for two a bivariate normal 
distribution may be expected to give reasonable results. Equation 
(2·6) is thus generalized to 

dP - I [ 1 {(x1-P1)
2 

- 211'0' 1 0' z( 1 - pz)i exp - 2( 1 - p2) uf 

_ 2p(xl-P1) (x2- P2) + (xs-P2)2
}] dx dx 

0'10'1 0'~ . 1 •• 
(11·11) 
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in which x1 , x2 are dosages of the two poisons, p 1, u 1 and p 2, u 2 the 
means and standard deviations of their own tolerance distribu
tions; pis the correlation coefficient• between the two tolerances 
of a subjec_t. \Vhen a subject receives a dose of a mixture, it will 
be killed if either constituent is present in excess of the tolerance 
and will survive if both doses are less than the corresponding 
tolerances. 

A positive value of p means that most subjects with high 
tolerances for one poison will have high tolerances for the other. 
Consequently, a mixture may be little more potent than the 
stronger constituent applied- alone. The extreme situation of 
p = 1, perfect correlation, gives a mortality for any mixture equal 
to that of the more toxic constituent alone, and is identical with 
the case of r = 1 in § 38. Illustrations have been given in Figs. 
12, 15, 16. If p = 0, the mortality from a mixture is exactly that 
expressed by equation (8·18), and adequately illustrated in Figs. 
12-16. Intermediate values of p will give results similar to, but 
not identical with, those predicted by substituting p for r in 
equation (8·20). A negative value ofp means that subjects whose 
tolerance for one preparation is high will generally have a low 
tolerance for the other; a mixture may be then much more potent 
than either constituent alone. Indeed, in the extreme case of 
p = -1, perfect negative correlation, equation (8·18) is changed 
to 

P-R+P.l-
- 1 2/ whichever is the less. 
or 1 

(11·12) 

In other words, for low do:;es of a mixture, the mortality will be 
equal to the sum of the mortalities appropriate to the two con
stituents applied separately; at or above the dose_ for which this 
sum is unity, the mortality will always be complete. 

These authors have also investigated more fully the shape of 
the probit regression curve when p = 0, for a mixture of two 
constituents whose separate regression lines have slopes b1 and 
b

2
• At low doses, the mixture will g"ive results for which the pro bits 

lie practically on a straight line whose slope is the lesser of b1 , b2 ; 

* The convention that the symbol p represents a relative potency 
must be suspended for this section. 
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at intermediate doses, the relationship will curve upwards; and 
at high doses it will again become approximately linear, with' a 
slope of (bf+b~)i. The upper section of linearity, however, will · 
generally be well outside the range of mortalities determinable 
experimentally. This is theoretical confirmation of the empirical 
results in § 38. For data of the limited range and number obtain
ahle in most experiments, a straight line of slope 

(ll·13) 

is likely to fit tolerably well, and very extensive data would be 
needed in order to detect the curvature. 

These suggestions effect a great simplification in the theo
retical formulation of a law of independent joint action. They may 
obviously be extended to any number of independently acting 
constituents. From the practical point of view, the importance 
of discovering insecticides whose tolerances are negatively corre
lated is obvious. In a later paper (Hewlett and Plackett, 1950), 
the same authors consider the estimation of p, illustrate the 
rather heavy calculations required for obtaining the estimate and 
its standard error, and obtain a test of significance for the devia
tions of observations from the predictions of correlated indepen
dent action. They also produce experimental evidence of a mixture 
of pyrethrins and. D.D.T. behaving ~ accordance with the 
predictions in respect of its toxicity to Tribolium castaneum, the 
correlation coefficient being positive for application as a film, 
negative for a direct spray. 

Similar action is the type of joint action that might reasonably 
be expected for a mixture of related chemical compounds-all of 
which cause reaction or failure of the same pl!ysiological system, 
as in Exs. 20 and 23. Hewlett and Plackett contrast this with 
dissimilar actiOn, in which the constituents of the mixture affect · · 
different physiological systems. Independent action is a par
ticular case of dissimilar action. That two poisons whose physio
logical effects are entirely different happen to have approxi
mately equal variances for their tolerance distributions, and 
therefore give probit regression lines that seem parallel, should 
not be regarded as justification for attempting to explain the 



2IS RECENT DEVELOPMENTS 

· toxicity of a mixture in terms of equations (8·4): in such cir
cumstances, the basic assumption of similar action, that an 
amount of one poison can be replaced by a fixed proportion of 
the other without affecting the potency, is a priori unacceptable. 
Equation (8·23) is perhaps equally open to objection; the analysis 
of data on mixtures of rotenone and pyrethrins in Ex. 27 is an 
illustration of statistical method rather than the appropriate 
treatment for these data. A form of dissimilar action, with an 
interaction between the modes of action of the poisons or a 
correlation of individual tolerances, might well give predictions 
of potency for a mixture so like those for similar synergistic or 
antagonistic action as to be expelimentally indistinguishable 
without very extensive tests. 

These developments are at present too new to the author to be 
discussed adequately here. Hewlett and Plackett have opened 
up an important new line of investigation, by means of which the 
collaboration of experimenter and statistician may lead to a 
much more complete understanding of the toxic effects of mix
tures than has been possible in the past. 

54. ESTIMATION OF A PERCENTAGE POINT 

If the prime object of a series of tests for quanta! responses is 
to estimate the dose corresponding to a particular percentage 
response, the tests should be planned in order to estimate that 
dose as precisely as possible. The first problem facing an experi
menter is then likely to be how to allocate his available supply of 
N subjects to different doses in order to maximize the precision 
of the estimate. No complete solution of the problem can be 
given, but some general principles can be established. 

·The easiest situation is that in which the ED 50 is to be esti
mated, and "in practice the same recommendations may be 
regarded as applicable to neighbouring points such as the ED 45 
or the ED 60. If nothing is known about the location of the 
ED 50 beyond a reasonable confidence that it lies between two 
widely separated limits, little can be done except to divide the N 
subjects equally between a large number of doses extending over 
a range rather wider than these limits. When N is large, a pilot 



ESTIMATION OF A PERCENTAGE POINT 219 

investigation with only a few of the subjects (say NJ4 or N/10) 
might be used to give some idea of the ED 50, the remaining 
subjects being assigned to an experiment planned as described . 
below. The experimenter who can afford only ten animals and 
wishes to estimate the mean toxic dose of a new poison or the 
mean curative dose of a new therapeutic agent, however, is 
asking for the impossible: discussion of whether he ought to use 
two groups of five animals or to give every animal a different dose 
is often vigorous but always unprofitable. 

The precision with which the value of x corresponding to a 
50% response rate is estimated depends very much upon the 
position of the doses tested relative to the ED 50. Consequently, 
any information on the ED 50 can be used to advantage in the 
selection of a set of doses for the experiment; this knowledge will 
be inexact, for if it were good, no experiment would be ~eeded, 
but the better it is the better will be the results of a carefully 
planned experiment. Inspection of equation (3·6) shows that, 
since b is a characteristic of the subjects rather than of the experi
ment performed upon them, the variance of m is largely deter
mined by the size of Snw. The maximum value of w occurs at 
Y = 5, and therefore Snw will be maximized by choosing doses 
as near as possible to the ED 50. To concentrate all efforts on 
maximizing Snw would be disastrous, however, as tests confined 
to a single dose, or to several doses close together, would give a 
zero or small value for S=; the precision of estimation of the 
regression coefficient would be low, and the second term in 
equation (3 (i) large. If the doses are symii).etrically spaced about 
the ED 50, the largest contributions to Bxx will. come .from 
subjects with Y = 3·42 or Y = 6·58; for increasing the precision 
of b, therefore, doses expected to give responses of about 6 or 
94:% are the most valuable. Unfortunately, at these extremes, 
w is less than half its maximum value. A suitable compromise 
would be to divide the subjects equally between doses which 
previous information suggests as likely to give responses of 
about 15 and 85 %; contributions to Snw and to Bxx are then 
approximately 70% of their maxima. Such an experiment would 
provide no test of the linearity of the regression (a heterogeneity 
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r could be obtained by dividing the subjects into several batches 
at each dose: § 42), and division of subjects between three doses, 
planned to give 10, 50, 90% responses, or four doses, planned to 
give 10, 35, 65, 90% responses, is often preferable. Unequal 
division of N between the doses appears to give no advantages 
that cannot more conveniently be gained by choice of dose levels. 

In this argument, equation (3·6) has been assumed applicable, 
and g small. The smaller the number of subjects, the less precise 
will be the estimate of b for any one of the schemes just recom
mended. When N is small enough to bring the value of g above 
0·1, there is a case for using doses nearer to the 6 and 94% level, 
or even of abandoning the equal division of N, in order to keep 
gas low as possible and to prevent it from unduly influencing the 
precision of m; formula (4·6) will have to be used for the fiducial 
limits ~f m when g is as large as this. Table 37·6 shows values of 
Ng for 5% fiducial limits, values of Nb2V(m), and values of the 
standard error of m, for various schemes of two, three, and four 
dose experimentation. The ·variance is calculated from equation 
(3·6), with the supposition that m = x, as will be true for the ideal 
situation in which the doses chosen by the experimenter produce 
exactly the response rates he had predicted; deviations from this 
ideal will-in general increase both g and the variance. Inverse 
ratios of Nb2V(m) measure the relative efficiencies of the different 
schemes for the estilllation of the log ED 50, but they must be 
used with caution as they are applicable only when N is large 
enough to make g negligible. The column of values of N g shows 
that even a two-dose experiment at the 6 and 94% levels must use 
over sixty subjects in order to have g small enough to be neglected, 
and that the formula for V(m) can seldom be used for calculations 
of fiducial limits unless over 100 subjects are used; if attempts are 
made to reduce V(m) by the choice of doses near to the ED 50, 
even 400 subjects may be too few for this. When g is large (say 
greater than 0·1), variances calculated from equation (3·6) may 
give misleading evidence on precision, and comparisons between 
different experimental designs must be made in terms of the 
widths of fiducial ranges at an agreed probability level (Finney, 
l9-l7a). 
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TABLE 37·6. Values of g and Measures of Precision, in Various 
Schemes of Expex:imentation for the Estimation of an ED 50 
using a Total of N Subjects 

(Full explanation in text; u is variance of tolerance distribution) 

Subjects divided equally 
between doses giving % Ng (5%) Nb2 V(m) S.E. (m) 

responses of 

6, 94 6·3 3·95 1·99uf.JN 
10,90 6·8 2·92 1·71uf.JN 
15,85 8·4 2·35 1-53uf;JN 
20,80 11-1 2·04 H3uf;JN 
25, 75 15·9 1-85 l-36uf.JN 
35,65 41·9 1·66 l-29uf.JN 

6, 50, 94 9·5 2·63 l-62u ./N 
10, 50,90 10·3 2·27 l-51uf.JN 
15, 50, 85 12·5 2·02 H2uf.JN 
20, 50,80 16·7 1·85 l-36uf;JN 
25, 50, 75 23·8 1-75 l-32uf;JN 
35, 50,65 62·9 1-63 1·28uf.JN. 

6, 35, 65, 94 11·0 2·34 l-53uf.JN 
10, 35, 65, 90 11·8 2-12 l-46uf;JN 
15, 35, 65, 85 13·9 1·95 HOuf;JN 
20, 35, 65, 80 17·6 1·83 1·35uf;JN 
25, 35, 65, 75 23·0 1·75 l-32uf;JN 

If the doses could be chosen on the basis of previous information 
so as to ensure that x was very nearly equal to m, the second term 
in equation (3·6) would be negligible, and Table 37·6 would show 
that, for large N, the standard error of m decreases steadily as 
the doses are concentrated near to the ED 50. Under these con
ditions, equation (4·6) shows that the effect of g is equivale~t to 
a division of V(m) by (1-g). Hence, as judged by narrowness of 
the 5% fiducial range, if only 100 subjects are to be used, the 
fifth of the two-dose schemes, the fourth of the three-dose or 
four-dose will be the best; if only twenty subjects are to be used, 
the third of the two-dose schemes and the second of the three
dose or four-dose will be the best. This argument gives some idea 
how a decrease inN pushes the optimal doses further away from 
the ED 50 on either side. The impossibility of choosing the doses 
so symmetrically that xis equal tom emphasizes this trend, since 
Szz must be kept moderately large in order to prevent the second 
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term in equation (3·6) from making too great a contribution 
to V(m). 

Though these conclusions have been based upon an assumption 
of a normal distribution of log tolerances, the general behaviour 
of such alternative distributions as are likely to be considered 
for practical use (§ 15) is so similar to the normal, at least in the 
central region of the distribution, that the same recommendations 
should prove adequate in a general qualitative sense. A similar 
investigation could easily be made for any form of distribution 
that seemed to be of particular interest. 

The estimation of an extreme percentage point is more difficult, 
but is undoubtedly important. The user of an insecticide, for 
example, is likely to be more interested in the LD 99 than in the 
LD 50, and in other fields of study the ED5 may be important. 
The precision with which the ED 99 can be estimated with the 
aid of N subjects will be much less than the precision for the 
ED 50; if tests are made at doses in the neighbourhood of the 
ED 99, the weights of the observations will be low, yet if tests 
are made in the central region the second term in equation (3·6) 
will_make a large contribution to the variance. The second 
procedure, indeed, is scarcely worthy of serious consideration 
because it will involve extrapolation beyond the range of the 
observations, an action to be avoided unless the regression 
relationship fitted to the data is known to be absolutely, or very 
nearly, correct in its algebraic form. Though the normal dis
tribution is usually adequate to explain the dose-response 
relationship for a considerable range on either side of the 50 % 
response, there is rarely any certainty that it is correct, and, if 
the true pro bit regression equation has a slight curvature, extra
polatory estimation of a dose such as the ED 99 might be grossly 
misleading. 

Bartlett ( 1946) drew attention to the importance of estimating 
an extreme percentage point from observations made in its 
neighbourhood, and advocated an inverse sampling procedure. 
His ~ethod of obtaining maximum likelihood estimates is pre
sented here in a slight1y more general form. It may be adopted 
for any investigation in which the subjects are tested one at a 
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time and each can be classed as responding or not responding 
before the next is tested. As described here, the method is useful· 
for the estimation of a high percentage point, but the saine pro
cedure will apply to a. low percentage point if the roles of 're
sponse' and 'non-response' are interchanged. 

Suppose that subjects are tested one by one a.t a dosage x, 
which is expected to give a. high response rate, until8 have failed 
to respond, at which stage a total of n has been tested. In this 
inverse sampling, n is a variable for fixed 8, instead of the more 
usual direct sampling situation of 8 being a variable for fixed n. 
An experiment will involve tests of several dosages, with obser
vations of n for each; 8 need not be a constant for all doses. The 
general theory stated in Appendix II leads to a pro bit regression 
line, by means of an iterative process of the usual type. An 
empirical response rate 

8 
p=1-q=1-- (11·14) 

n 

is used to give empirical pro bits, a provisional regression line, · 
weightiqg coefficients 

w = Z2JPQ1, (11·15) 
and working probits 

y= Y-g+QI(!) z z q 
(11·16) 

are determined, and the weighted regression of y on x,_ with 8W 

(not nw) as the weight per observation, calculated. Table IX 
·shows the minimum working pro bit, ~:. 

Q 
Yo= Y -z (11·17) 

the range, Q2/Z, and w, from which the workingprobits and 
weights for an analysis may rapidly be constructed; the table 
has entries only for Y = 5·0 and upwards, as lower values of the 
expected pro bit are unlikely to occur. After completion of enough 
cyoles of the iteration, the final regression equation, 

Y = a+bx, 

is used for the- estimation of the required percentage point, by 
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substitution of the appropriate value for Y, and fiducial limits 
are given by equation (4·6). 

Bartlett suggested that, for the estimation of an extreme 
percentage point, the inverse sampling method, using a series of 
doses towards the appropriate tail of the tolerance distribution, 
would have advantages over direct sampling. He made a 
numerical study of variances, analogous to that for tbe ED 50 in 
Table 37·6, and in some instances found a smaller variance for 
the inverse method. His investigation, however, seems to have 
been scarcely fair to direct sampling, for which he considered 
only experiments with doses symmetrically distributed about 
the ED 50; an experimenter who wished to estimate .the ED 90 
would in any event a. void low doses and concentrate on the high 
ones. In fact, if a. second experiment were performed, this time 
by the ordinary direct method; with the same dosages and with 

· values of n chosen to be equal to those observed in the inverse 
experiment, the precision of an estimated percentage point would 
be about the same; this follows because &Z1JPQ2 and nZ1JPQ 
are approximately equal, and ~deed will tend to equality in 
large samples. Apart from differences due to the small samples 
used in practice, the two methods would be equivalent. 

The real argument for the inverse ~ethod is based not on 
precision but on relevance. If an estimate of an ED 90 is to be 
of practical use, it must have been estimated from observations 
on doses that bracket it, and, moreover, the weight of information 
from do8es above the ED 90 should be comparable in amount to 
that from lower doses; only so can the evils of extrapolation be 
avoided. Without foreknowledge of the dose-response relation
·ship, satisfactory allocation of the N available subjects between 
a series of doses is impossible. If instead a series of doses almost 
certain to bracket the ED 90 is chosen, and tests made by the 
inverse method, a. reasonable balance of information from the 
different doses will be maintained; the standard error of the rate· 
of non-response, q, will bear an almost constant ratio to q for all 
doses that give a high response rate (Finney, 1949a ). The scheme 
of experimentation might be to make tests at each dose in turn 
until one subject has failed to respond, then with the remaining 
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subjects to make further tests at each dose until a = 2, then to 
increase until a = 3,.and so on until theN subjects have been used. 
If the last subject responds, and so does not complete a group of 
tests for one dose, little harm will result from treating all the 
subjects for that dose as though they related to direct sampling, 
and using the ordinary formulae for wand y. Even this pro~·· 
cedure is not ideal, for Z 2/ PQ2 increases steadily with P and an 
excessive amount of the total information in the observations 
may therefore come from the very high doses. This is perhaps a 
good fault, as it will compensate for the natural tendency of the 
experimenter to use doses below rat~er than above the ED 90. 
The formal precision of the estimated ED 90 may be less than 
could be obtained in" some other way; a more equal division of 
subjects between the same doses, for example, might give a much 
greater total weight to the observations, and, even though the 
increase in (m-x) made the second term in equation (3·6) larger, 
the result might be a reduction in V(m). The requirement of 
relevance, however, must be regarded as more important than 
formal precision,· and even the scheme last mentioned might 
involve an undesirable extrapolation. In the recommended 
scheme, the regression line may not be the same as would be 
obtained from experimentation in the neighbourhood of the 
ED 50, but it will be an approximation determined from, and 
relevant to, observations round the percentage point to be 
studied. The ill effects of using an assumed tolerance distribution 
which may differ from the true will have been minimized, in a. 
general rather than a. rigorous mathematical sense, though devia.
tio~s from strict normality are likely to be more important for the 
estimation of an extreme percentage point than for the ED 50. 

For many quantal response investigations, of course, the 
inverse approach would be impracticable. Estimation of the 
LD 99 of an insecticide by spraying insects one at a time is not 
likely to prove a. popular method, though a modification using 
small batches often or twenty a.t once might sometimes be worth 
considering. When the inverse method is impracticable, direct 
sampling must be used, with values of· n guessed as well as 
possible. In other circumstances, however, as for example in 

FPA 15 
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the application of destructive tests to certain industrial products, 
subjects are normally tested singly, and the inverse method could 
be adopted as easily as the direct. 

55. STAIRCASE ESTIMATION 

The inverse sampling method, described in §54, is useful only if 
the experimental technique involves testing subjects one at a 
time, in such a way that the result of any test is known before 
the next is begun. If, in addition, a change in the level of dose is 
so little trouble to the experimenter that he is prepared to make 
every test at a dose different from that of its predecessor, another 
scheme of experimentation deserves consideration. This staircaae 
method is so called because the dose for any test is one step above 
or one step below the dose for the preceding test. 

A series of dosages is chosen, say ... , x_3 , x_2, x_1, x0 , x1, x2, x3, ••• , 

where x0 is believed to be about the ED 50 and the values of x are 
equally spaced. The result of any test determines the dose for the 
next test:. if the subject responds, the next subject is tested at a 
dose one step lower; if it fails to respond, the next is tested at a 
dose one step higher. The first test is made at x0 ; later tests will 
tend to be concentrated about the ED 50, because the rule ensures 
that the further from the ED 50 any test dose happens to be the 
greater is the probability that the next dose is one step nearer. 
The staircase method is clearly related to the sequential sampling 
methods developed in other· branches nf applied statistics. 
Dixon and Mood ( 1948) have given a preliminary report and have 
proposed an approximate method of statistical analysis which is 
good enough under certain conditions. The arithmetic of this is 
very simple, and can best be explained with the aid of an example; 
no probit transformation is used. 

The data in Table 37·7 were obtained artificially, with the aid 
of a table of random numbers, and purport to relate to a staircase 
experiment on fifty subjects. The data were in fact derived by 
sampling from a distribution of tolerances which is normal on the 
x-scale and has true values I' = 2·0, u = 0·15 for its parameters. 
The step between successive doses, to be represented by d, is 0·2. 
The estimation proposed by Dixon and Mood involves first 
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I--
1 2·5 
0 2·3 

-1 2·1 
-2 1·9 
-s 1-7 
-4 1-5 

Totals 

... ... 
M 

+ + + 
+ + 0 0 + 

0 0 + 
0 

TABLE 37·7. Example of the Staircase Method 

(Artificial data, with p=2·0, u=0·15) 

Results of 50 tests . 

+ + 
+ + + 0 + 0 + + 0 

+ 0 0 0 0 0 + 0 + + 0 
0 0 0 0 

+=response; 0 =non-response . 

Totals 

., II 

--1-

+ 6 0 
+ + + + 13 5 

+ 0 0 0 + 7 12 
0 0 0 7 

--1-
26 24 
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forming r, a, the total numbers of responses and non-responses at 
each dose, then N,., ~. the totals of these columns, and sub
sequently working only with the smaller of these two. The next 
step is to calculate either 

or 
(11·18) 

and then to estimate the ED 50 (on the dosage scale represented 
by x) as 

or 

m = x0 +d(~ -~)·} 
. m ~ x0+d(i+~)· 

Thus, in Table 37·7, ~is the smaller, 

A. = -5-2 X 12-3 X 7 = -50 

and m = 2·3-0·2 x (~! -!) 
= 1·983. 

(11·19) 

Study of equations (11·19) indicates a similarity between this 
procedure and Karber's method (§ 13). 

Dixon and Mood obtain an estimate of u, the standard devia
tion of the tolerance distribution, as 

(ll·20) 

where 
(11·21) 

or 

is to be substituted in equation ( 11·20), according as the response 
or non-response column is to be used. It is noteworthy that, 

·though the right-hand side of equation ( 11·20) is a linear function 
of (N B- A 2), it estimates the standard deviation and not the 
variance of the distribution. Dixon and Mood showed this to be 
a valid approximation when (NB-A 2) exceeds 0·3N2; when 
(NB-A 2) is less than 0·3N2, the estimation of It remains valid 
but that of u breaks down. For the data of Table 37·7 

B 8 = 116, 
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and therefore 

u = 1·620x0·2x (
24

x ll
6

-
2500 

+0·029) 
ll 576 . 

= 0·169, 

there being no trouble about the applicability of equation (ll·20). 
The two estimates, m and ull, agree well with the known true values 
in the population sampled. 

The standard error of m is dependent not only on u but on the 
ratio dfu. Dixon and Mood investigated the relationship, and 
constructed a diagram from. which the standard error can be 
obtained; in the range that is of practical importance, a suffi
ciently close approximation to their diagram is given by 

s.E.(m)=u(o·9+
8
:)/Nt for 0·2~~~2·4, {II·22) 

in which N,. or N, is to be inserted for N. Another diagram shows 
the standard error of the estimated standard deviation; this 
depends upon dfu in a more complicated manner which may be 
expressed very roughly as 

S.E.(ue).t:!:.u{1·6- 6:) / Nt for 0·6~~~ 2·0. (ll·23) 

Outside the limits specified, the standard error of ue may be much 
greater. Equations (ll·22) and (ll·23) cannot be used directly; 
since u is unknown, and the effect of substituting ull for u has not 
been examined. For the sake of comparison with subsequent 
calculations, it may be noted that, for the data of Table 37·7, 

!:._ = 1·18· 
qe ' 

if ull be substituted for u in equations (ll·22) and (ll·23), the· 
results are · 

S.E.(m) = 0·169 X 1·05+.J(24) 

= 0·036, 

and S.E.(Uil) = 0·169 X 1·40+.J(24) 

= 0·048. 
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The first result suggests that limits of about 1·91 and 2·05 might 
be set to m, the second that limits of about 0·07 and 0·27 might 
be set to u, and the breadth of the range for u clearly throws doubt 
on the validity of the inference for p. 

The calculations just described may be valuable as a method 
of rapid estimation from staircase data: they are obviously far 
from ideal for purposes of exact inference. Dixon and Mood's 
paper contained also an account of a maximum likelihood pro
cedur~, for use when equation (ll·20) is not applicable or when 
extreme values of dfu make their approximate formulae un

. trustworthy. This procedure begins with a neglect of a small part 
of the information, in order to simplify the analysis, but even 
then the computations are more laborious than for an ordinary 
pro bit regression. Yet inspection of the scheme of experimenta
tion shows no reason why the routine of Chapter 4 should not 
be adopted. At each value of x tested, except for the two extremes, 
the data give (r+a) independent observations, leading to r 
responses, and provide an unbiased estimate ofthe response rate; 
the fact that the. occasions on which these doses have been used 
are determined by responses at adjacent values of x does not 
affect the independence of the observations. The highest and 
lowest values of x used for tests have the property that, because 
of the staircase rule, one must show only responses and the other 
must show only non-responses. This, however, is a small-sample 
peculiarity, which becomes progressively less important as the 
total number of tests is increased and the chance oecurrence of 
long sequences of responses or of non-responses pushes the 
extreme values of x further from the neighbourhood of the ED 50; 
moreover, the maximum and minimum working probits make 
some-allowance for these extreme responses. As admitted in 
§ 49, maximum likelihood estimation has some theoretical flaws 
when applied to small samples, and there appears to be no reason 
for supposing that the form of calcuk.tion proposed by Dixon 
and Mood is free from any of the criticisms that may be levelled 
at the pro bit method (to which, indeed, it is very closely related). 
The pro bit method may be applied to staircase data as reasopably 
as to any of the other types of data discussed in this book; the 
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simple approximation described at the beginning of this section 
may then be regarded as similar to the approximate methods of 
estimation described in§ 13, in that it has some advantages but 
is of limited applicability. 

Application of probit calculations to the totals in the r and s 
columns of Table 37·7 yields a regression equation 

Y- 5 = 6·094(x- 1·980). 

Thus the ED 50 is estimated as 

m = 1·980 

and the standard deviation of the tolerance distribution as 

1/b = 0·164. 

These are very close to the results of the approximate analysis. 
If a standard error form is calculated by equation (3·6) it is found 
to be 0·034, practically the same as was given by the approximate 
method. This cannot properly be used, however, because 

b = 6·09 ± 1·57 
and consequently 

g = 0·254. 

Formula (4·6) may be used to give 5% fiducial limits 1·900, 2·056 
to the value of m; as noted in§ 54, this allowance for g has almost 
the same effect as a division of the approximate standard error, 
0·034, by (1- g)l. The almost perfect agreement bet-ween these 
limits and those assigned earlier on the basis of Dixon and 
Mood's approximate method is no doubt fortuitous, but is 
gratifying evidence that the approximate method is at least 
moderately trustworthy. Fiducial limits to u may be obtained 
as the reciprocals of fiducial limits to b, and are 0·11 and 0·33; 
the interval between these is about the same as that between the 
limits based upon equation (ll·23), but both values are a little 
higher. 

As with Bartlett's inverse sampling method for the estimation 
of an extreme percentage point (§54), the merit of the staircase 
method is not that it is in any inherent quality more precise, but 
that its rule of experimentation concentrates the observations 
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where they are most valuable. In the example discussed, the 
estimate of ED 50 formed is more precise than if the fifty sub
jects had been 'allocated in almost equal numbers to the four 
doses 1·7, 1·9, 2·1, 2·3. Moreover, if nothing had been known 
originally, except perhaps that the ED 50 almost certainly lay 

. between 1·5 and 2·5, an even wider range of doses, and con
sequently still lower precision, might have resulted from ail 
attempt to apply the principles suggested at the beginning of 
§ 54. In some situations, the staircase method is the ideal solution 
to the problem of the pilot investigation, for the first few tests 
play the part of the pilot in indicating roughly where the ED 50 
lies, yet all observations can be combined in the final analysis. 
If the original uncertainty about the ED 50 is great, there is no 
reason why a start should not be made with a large dose interval, 
d, which may be reduced to d/2 or d/4 as soon as the ED 50 has 
been roughly located; the probit method of analysis applies 
without modification, and no doubt Dixon and Mood's approxi
mate method, with the obvious slight modifications, would 
continue to serve well. 

Further research on the simple staircase scheme outlined here, 
and on many variants of the rule for successive doses, is believed 
to be in progress. For example, a rule that a step down is taken 
only after two consecutive responses at a dose, whereas a non
response is always followed by a step up would concentrate 
observations at some point above the ED 50. Rules might be 
found which would give highly efficient allocations of subjects 
for estimating the ED 90 or the ED 10. Such a ~odification as 
that just suggested would not invalidate the probit method, 
though this need not be true for all staircase schemes, and . 
approximate estimation formulae may also . be developed. The 
account given here is no more than an introduction to a new field. 

56. THE MEANING OF STANDARD ERRORS 

A warning needs to be given against the uncritical acceptance of 
standard errors, fiducial limits, or other measures of precision, 
as though they indicated the variation that might be encountered 
in any repetition of an experiment. Because of their emphasis on 
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analytical technique rather than on interpretation, text-books pf 
statistics tend to leave the teader with the impression that an 
estimate has only one standard error; the explanation of fiducial 
limits in § 12 may be open to a similar misunderstanding. In 
reality, even though only one standard error may be assessable 
from a particular set of data, the estimate will have different 
standard errors appropriate to the different kinds of comparison 
in which it may be used. _ 

The temptation to regard a percentage effective dose estima.ted 
from one sample of subjects, whether animal or human, as a 
'normal value' typical of the species, must not be bolstered up 
with argument from a standard error based on the internal 
variation of the sample. If any impression has been given that, 
for example, the value of 4·85 ± 0·25mg.fl., obtained in Ex. 6 
for the LD 50. of rotenone to Macrosiphoniella sanborni, is an 
estimate of a 'normal value' for this species of insect, that 
impression must be corrected; it is necessarily only an indication 
of what would be found in repeated tests of the same stock of 
M. sanborni under the same conditions of testing. · 

This very limited interpretation must always be attached to 
statements about the LD 50 or ED 50 of a single material. Tests 
performed in a London laboratory may be used to estimate the 
LD 50 and its standard error, and the results may be valid for 
future work in that laboratory; they could not be expected to 
give guidance on the outcome of similar tests in New York, where 
necessarily the subjects would be obtained from a different source, 
would be genetically different, and would have different nutri
tional and environmental experience. There is no more re~son to 
suppose that their tolerances. would be entirely independent of 
these conditions than that their weights or other measurements 
of size would be independent of them; small differences in experi
mental technique between different laboratories may also affect 
results. A standard error calculated from the internal evidence or
one experiment relates only to repetition under the same con
ditions, using either the same subjects and materials or others that 
can be regarded as ra~dom samples from the same population as 
were those in the original experiment. The LD 50 may have one 
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standard error between determinations by one worker, another 
standard error between workers using the same apparatus and 
stock of animals in one laboratory, and yet another between 
determinations in different laboratories. Comparison of esti
mates obtained from several experiments by one worker, or in 
one laboratory, will assess only the variations to be expected from 
day to day under those conditions and will still not be related 
to variations between laboratories or between different stocks 
of subjects. However extensive the experimentation on one 
population, no statistical analysis can demonstrate the applic
ability of the conclusions to a different population. 

At first sight, this argument might appear to deny the useful
ness not merely of statistical analysis but of experimentation. 
The extent to which past experience can form a logical basis for 
future action is too great an issue for discussion here. Much of 
the present difficulty seems to be removed by adoption of 
comparative experiments. As Anscombe (1948) has pointed out, 
even though the absolute performance of a particular treatment 
varies erratically with changes in experimental conditions, the 
relative performance of two treatments may be much less dis
turbed by these changes. The relative toxicity of two chemically 
related insecticides, for example, at least for a particular species 
of insect, may be a characteristic of the materials, rather than of 
the circumstances of any one experiment. There is some evidence 
of thisy but the truth-if truth it be-is an empirical one, and is 
not derived from statistical theory. A full study of the problem 
would involve lengthy experimentation into the effect of environ
ment on the responses of insects to insecticides. In so far as these 
experiments demonstrated ~onsistent qifferences, they could 
form a reasonable basis for inference relating to the future, while 
their inexplicable variations would warn the experimenter against 
any too general application of absolute standards. 

In one class of experiment to which the methods of this book 
are relevant, a theoretical reason exists for believing a numerical 
result to be applicable more widely than in the circumstances of 
the particular experiment that produced it. If two preparations 
contain the same effective constituent, but this is diluted to 
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different extents by constituents that do not affect the response, 
an estimation of relative potency constitutes an analytical 
dilution a.~say; the subjects are used purely as an aid to the 
measurement of the relative amounts of the effective constituent 
in the two preparations, and, though the choice of subjects and 
experimental conditions will influence the precision, it should not 
limit the meaning of the estimate. The result is an estimate of a 
property which, it~ theory, is independent of the species of subject 
or other circumstances of its determination; empirical verifica
tion of this statement is still desirable, but should be undertaken 
as a check on the validity of fundamental assumptions about the 
nature of the preparations rather than as a study of other sources 
of val'iation. 

In spite of the title of§ I, this book is an exposition of statistical 
methods associated with the probit transformation and not an 
account of the theory of biological assay. The logic underlying 
the last paragraph has been discussed at length by Jerne and 
Wood (1949); statistical techniques needed in many assay pro
blems have been described by Burn, Finney and Goodwin (1950) 
and Emmens (1948). 



Appendix I 

THE COMPUTING OF PROBIT ANALYSES 

THE chief hindrances to the more widespread adoption of the pro bit 
method for the statistical analysis of quanta! response data are 
probably the apparent complexity of the mathematical theory and 
the apparent laboriousness of the computatioru1. The more technical 
details of the theory (Appendix II) are admittedly difficult, especially 
for the many biologists who lack mathematical training. In Chapters 2 
and 3 an attempt has been made to present a reasonably simple account 
of the aim and underlying principles of the method, in a form which 
the reader will be able to appreciate even though he has to take the 
theory on faith. For many routine purposes the computations can 
be largely ·replaced by the graphical analysis described in Chapter 3, 
relative potencies and other parameters being estimated by measure. 
ment on the diagrams. When the complexity of the data, or the 
desirability of using extensions of the probit method (such as have 
been described in later chapter_s), makes necessary arithmetical rather 
than graphical estimation, the labour can be much reduced and 
computational accuracy much increased by orderly arrangement and 
systematic working procedure. In this appendix is given an example 
of the computing required for the simplest type of analysis, the fitting 
of a. single pro bit regression line; the arrangement is that used through
out this book, but the steps are set out in greater detail and recom
mendations for adequate checking are made. ·with modifications 
appropriate to the various circumstances, the same procedure may 
be used in computing any of the· more complicated probit regression 
equations that have been described. 

The computer is assumed to be working with a calculating machine; 
the same results can be obtained by pen-and-paper calculations, bm 
almost any machine intended for general computing will materially 
improve both accuracy and speed. Before buying a machine it is 
well to take expert advice on the most suitable type, though to some 
extent personal preference must decide between the products of 
different manufacturers. H the machine is to be used frequently, an 
electrically operated model is desirable, and a. 10-figure rather than 
an 8-figure keyboard is an advantage that usually outweighs the 
additional cost. 
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The reader should find little difficulty in becoming proficient at the 
arithmetical processes described in this book, but the only route to 
accuracy and efficiency is by way of experience. A machine is not 
a complete safeguard against arithmetical errors, and carelessness 
will lead to wrong answers just as certainly as in non-mechanized 
calculations. One of the most frequent sources of error lies in copying 
from paper to machine or from machine to paper; inversions of the 
order of two digits and similar mistakes are particularly ea8ily made. 
Computations should therefore be planned so as to reduce to' a mini
mum the necessity for copying on to paper figures that have later to 
be restored to the machine. The surest means of preventing errors is 
to have all work checked by another computer on another machine, 
but, by the application of full checks at every stage, one computer 
should be ab1e to carry out the work satisfactorily. The c~ief danger 
is that any misreading of figures, wrong setting of the machine, or 
faulty working of the machine may be repeated in checking; in order 
to guard against this, where a section of the computations cannot be 
checked by an independent path and the steps have therefore to 
be duplicated, the order of setting the machine should be changed 
so as to avoid the complete repetition of every detail. For example, 
a column may be summed by starting from the bottom instead offrom 
the top, or a product found by interchanging the roles of multiplicand 
and multiplier. 

Inexperienced computers frequently carry a far greater number of 
digits in their computations than is warranted by the accuracy of the 
original data, and present their results to six places of decimals when 
three at most are justifiable. In machine calculations an increase in 
the number of digits does not increase the labour to the same extent 
as in pen-and-paper work, and undoubtedly it is sometimes easier 
to carry an additional decimal place than to decide how many can 
be justified. Nevertheless the saving of time through w.orking with 
fewer digits may be considerable in a long series of analyses; it should 
further be remembered that copying errors are less common with 
four digit numbers than with seven. The general practice in the 
numerical examples of this book' has been to cut out all unnecessary 
digits from the early stages of an analysis (i.e. in dosages, working 
probits, weights, etc.), to retain digits fairly fully at intermediate 
stages (sums of squares and products, elements of matrices. etc.) as 
an aid to checking, but to present results shorn of superfluous digits 
and free of any spurious appearance of accuracy. Unless doses have 
been measured to within 0·1 % of their true values, two or three 
significant digits in the dosage, x, are sufficient. Percentage kills 
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based on batches of 200 individuals or less need not be expressed more 
precisely than to the nearest 1 %, thus enabling the tables of this book 
to be used without interpolation; there is little to be gained by 
calculating the kills to greater accuracy than the nearest 0·1 % unless 
the batches contain more than 2000 individuals. 

Martin (1940, Table 3) has given data on the toxicity to .Aphis 
rumicis of an ether extract of Derris malaccensis; the original observa
tions of the experiment have been reconstructed from his figures in 
order that they may be used in an example of the typical probit 
analysis. Table 38 shows the greater portion of the compp.tations for 
estimating a linear regression equation which will relate the probit 
mortality to the log concentration. 

:e 

TABLE 38. Computations for the Fitting of a Probit 
Regression Equation 

Em-
• ,. . p' p(C =2) pirical 

probit 
y 

""' y fttDZ ""'Y 

--1----------------
. 520 2·72 49 49 ·100 100 "" 7·5 2·4 7•85 6·528 18·840 

390 2·59 45 « ' 98 98 7-o5 6·9 6·8 7.00 17-612 47·81» 
260 2·41 « 38 86 86 6-os 6-1 174 6.()8 4Hl34 100·792 
130 2·11 52 15 29 28 4·42 H 30·4 4-43 6H.t4 134·672 
65 1·81 . 47 4 9 7 3·52 3·3 6·7 3·57 12-127 23·919 
0 - 48 1 2 0 - - - - - --------------------

63-7 

1/Snw = 0·0156986, z = 2·2346, y = 5·1967. 

Snwz" 
321·72589 
318·08633 

3·63956 

Snwxy 
757·4672 
739·7180 

17·7492 

Snwy• 

1809·159 
1720·234 

88·925 
86·558 

2·37=Xl!l 

142·345 33Hl27 

The various steps in building up Table 38 and in completing the 
estimatio~ of the probit regression line are as follows: 

I. . In the column headed A enter, in suitable units (here milligrams 
of dry root per litre of spray fluid), the doses tested, arrangmg these 
in descending order-frciiii the highest to the controls or zero concentra
tion. 

2. In the ~lumn headed x enter the logarithms of A, to base 10, 
correct to two plaCes of decimals. The doses may be multiplied or 
divided by a power of 10 throughout in order to make x take small 

I 
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positive va.lnes, but a compensating adjustment must be made in 
later stages of the analysis if the results are to be expressed in the 
original units of dose. 

3. In the columns headed n and r enter for each dose the number 
of insects tested and the number badly affected, moribund, or dead 
(Martin's B+M +D, which he takes as the 'kill'). 

. 4. Check that steps I, 2 and 3 are correct, beginning each check 
from the bottom of the column. 

5. Calculate the percentage kill, p' = IOOrfn, to the nearest whole 
number; this step is most expeditiously performed on a slide rule. 
If n exceeds 200 for many of the doses, give the percentages to one 
decimal place. 

6. The percentage kill among the controls is small (c = 2), and is 
estimated from about as many insects as the kill for other doses; the 
approximate analysis discussed in § 27 will therefore be sufficiently 
accurate. The population value, C, is taken as equal to c, and the 
adjusted kills calculated accordingly as 

·p'-2 
p=~x100 

= I·020p'- 2·0; 

p also is taken correct to the nearest whole pumber (or to I decimal 
place if n is generally greater than 200). A slide rule can be used for 
the multiplication. 

7. Check step 5, multiplying p' by n to give IOOr. 

8. Check step 6 froin the relation 

p' = 0·98p + 2. 

9. Enter the probits of pin the 'empirical probit' column, reading 
the values from Table I or Table 1, to 2 decimal places. 

10. Plot the empirical pro bits against x, as shown in Fig. 23; draw 
a provisional straight line to fit the points, placing the line by eye and 
allowing for one point above the line at x = 2·72. 

11. For each of the dosages used in the experiment read the value 
of the ordinate to the provisional line. These are the expected pro bits, 
Y, and are entered in the appropriate column of Table 38, correct 
to 1 decimal place; greater accuracy in Y is unnecessary unless n is 
very large. 
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I2. Check steps 9, IO and ll. 

I3. From the column 0 = 2 of Table II, read the weighting coef
ficient for each Y in Table 38, multiply by the corresponding n, and 
enter, to I place of decimals, in the column nw. Two or three significant 
digits in nw will generally be sufficient, and a. good working rule is 
to use 2 places of decimals when n is less than 20, I place when n is 
between 20 and 200, and the nearest whole number for higher values 

7-G 

2•0 N 2-4 2-11 

Log Concentration (mg./1.} 

Flo. 23. Relationship between dosage of D. malaccensis and probit of kill of 
A. ntmicia, showing probit regression line. 

of n, modifying this rule so as to give the same number of decimal 
places for each dose throughout one analysis. In exceptional cir
cumstances, such as the occurrence of a very wide discrepancy between 
the provisional line and an observation at either extreme of the 
range, a greater number of decimal places in nw may be desirable for 
the one dose. These recommendations assume that 0 is not very large; 
more decimal places may be required to give a reasonable number of 
significant digits when a high value of 0 reduces the values of w 
considerably. 

14. From Table IV enter the working probit, y, corresponding to 
each,p (not p') and Y. Thus from the last page of this table, the last 
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line of the column headed 7·5 gives 11 = 7·85 for p = 100; from the 
preceding page the column headed 6·9 gives 11 = 7 ·03 for p = 98, and 
so on. Use 2 decimal places if n is generally less than 200, othe'rwise 3. 
If Y is less than 2·0 or greater than 7·9, determine 11 from Table ITI 
as described in§ 16. 

15. Check steps 13 and 14; 13 may be checked satisfactorily with 
a slide rule. It will be observed that 11 usually, but not always, differs 
less from the empirical probit than does Y. 

16. Place the first value of nw on the keyboard of the machine, 
multiply by the corresponding x, and enter the product in the column 
nwx; leave the keyboard unaltered but clear the product from the 
machine, multiply by 11; and enter in the column nwy. Clear the 
machine and repeat for each dosage, entering each result to its full 
number of decimal places. No entries are made in the line fori\ = 0, 
as the controls are used· only for estimating C. 

17. ·Place the last value of x on the right-hand side of the keyboard, 
unity at the left-hand side, and multiply by nw; without clea_ring 
the result, repeat with the next to the last value of x and so work 
to the top of the x column, thus accumulating the products at the 
right-hand side of the result register and the sum of nw at the left hand. 
Enter the totals ' 

Snw = 63·7, 

Snwx = 142·345, 

in Table 38, and check the latter by addition of the nwx column from 
the top. Before Snwx is cleared from the machine, divide it by Snw 
to give x to 4 places of decimals, and enter x in Table 38. 

18. Repeat these operations using 11 in place of x, thus ch~cking 
the total Snw and also obtaining · 

Snwy = 331·027; 

again check, by adding the nwy column from the top, and before 
clearing divide by 63·7 to give y to 4 places of decimals. Enter y ih 
Table 38. 

19. Find the reciprocal of Snw, either from tables or by division, 
and enter at the bottom of Table 38 to at least 7 decimal places. 
Additional accuracy is needed here, as this quantity is to be multiplied 
by large numbers. 

20. Set lfSnw on the keyboard and check that multiplication by 
Snw gives unity; clear the result and multiply by Snwx, so checking 
the values of x; clear the result and similarly check y. 

PPA 16 
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21. Square 8nwx and divide by 8nw, multiply 8nwx and 8nwy 
and divide by 8nw, square 8nwy and divide by 8nw; the answers 
318·08633, 739·7180 and 1720·234, are to be entered in Table 38 as 
shown. Check by squaring the second, dividing by the first, and 
obtaining the third as the quotient; the first being still on the keyboard, 
multiply by 63·7 and divide by 142·345 to give 142·345 as a quotient. 
These checks may fail in the last digit as a result of rounding off. 
The parts played in the checks by the first and third of the three 
calculated quantities should be interchanged when the third has the 
~ter nu~ber of significant digits. · .. 

22. Set the first entry for nwx on the keyboard, multiply by x, and 
repeat with successive lines of Table 38, accumulating the 1total so 
as to give 

8nwx2 = 6·528 x 2·72 + 17 ·612 x 2·59 + ... + 12·127 x 1·81 

= 321·72589. 

Enter this figure in the appropriate position in the lower part of the 
U~.ble. Multiply the last value in the nwx column, which is already 
on the keyboard, by y and repeat with successive entries up the table, 
to~~ • 

8nwxy = 757·4672; 

enter this figure. Multiply nwy by x down the table, in order to check 
8nwxy~ ,Before clearing the machine, subtract from 8nwxy the second 
of the three quantities calculated in step 21, without the machine, 
to give 

8.,. = 17·7492; 

enter in Table 38 and.check the difference by means of the machine. 
Multiply nwy by y up the table to give Snwy2, and enter in Table 38. 

23. Check 8nwx2 by accumulating products of nwx and x up the 
table. Before clearing, subtract the first of the quantities calculated 
in step 21, without the machine, to give · 

8.,, = 3·63956; 

enter in the table and check with the machine. Similarly check 8nwy2 

down the table, derive 
81111 = 88·925, 

enter in the table, and heck. 

24. Compute 
b = 17·7492-:-3·63956 

= 4·8767. 
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25. Obtain the equation for the pro bit regression line as 

y = 5·1967 +4·8767(:~:-2·2346) 

= -5·70+4·88x; 

3 places of decimals are almost always sufficient for the coefficients 
of this equation, and consideration of the standard errors to which · 
the parameters are subject often s~ggests, as here, that only 2 are 
justified. 

~26. Compute (17 ·7 492)2 + 3·63956, and subtract the result from 8 1111, 

giving ~31 = 2·37; . 

reference to Table VI shows this not to be indicative of significant 
heterogeneity, and variances may therefore be derived from true 
weights without any heterogeneity factor. \yhen a significant x' is 
obtained at this stage, modify subsequent steps as in Exs. 7 and 9. 

27. To check b, set 3·63956 and multiply by 4·8767 to obtain 
17·7492. 

28. The variance of b is 1/8.,.,. Find the standard error of bas the 
square root of this reciprocal, and check by calculating the reciprocal 
of .J8.,.,; a slide rule or tables of square roots and reciprocals may be 
used. The result is b = 4·88 ± 0·52, 

and the size of the standard error shows that there is no need to quote 
b to more than 2 decimal places. 

29. Check step 25. Calculate values of Y for three values of x 
(say x = 1·5, 2·0 and 2·5), and plot Y against x on Fig. 23. The three 
points should be collinear and they define the pro bit regression line. 
This line is almost indistinguishable from the provisional line and bas 
therefore not been drawn separately in the figure. Since the agreement 
is so good, there is no need to carry out a second cycle of computations. 

30.' Find the Jog LD50 as the value of z which gives Y = 5: 

m = (5+5·70)/4·88 
= 2·193. 

The antilogarithm of m is the estimated LD50, 156 mg. fl. 
31. Calculate 

1 { (2·193-2·235)2
} 

V(m) = (4·877)2 0·0157 + 3·640 

= (0·0157 +0·0005)/23·79 

= 0·00068, 

whence the standard error of m is ± 0·026. 

16-~ 
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32. Calculate g = t1V(b)fb1 for the probability level at which 
fiducial limits are required; for the 5 % level t = 1·96 (Table VII), 
so that 

g = (1·96)1/3·640 X 23·79 

=0·044. 

33. Since g is small, the fiducial limits to m may be taken at 
a distance 1·96 x 0·026 on either side of m, these therefore being 
2·244 and 2·142. The corresponding concentrations are 175 and 
139 mg:fl. respectively.• 

34. Check steps 30-33. 

35. The conclusion from the analysis of these data is that the 
median lethal dose of Martin's ether extract of Derri& malaccensis to 
Aphis rumicis, under the conditions of the experiment, has a maximum 
likelihood estimate of 156 mg.fl.; with a fiducial probability of 95 %, 
the true value of the median lethal dose may be expected to lie 
between 175 and 139 mg.fl. 

The above is a detailed account of a systematic arrangement of the 
computations suitable for use when a single computer is responsible 
for the whole analysis. The plan need not be followed exactly and no 
doubt personal taste will suggest modifications. There is necessarily 
a conflict between the desirability of-checking a result before too 

_ many further calculations have been based upon it and the desirability 
of delaying a check for some time so as to reduce the risk of unconscious 
repetition of mistakes. The computer's aim should be to carry out 
the original calculations correctly, and checking should be looked 
upon as a verification of correctness rather than as means of dis
covering ~rrors. Where a result can be checked independently of its 
first calculation the check may be made immediately, but where the 
only check is to repeat the same processes a reasonable interval should 
be allowed to elapse first. In the arrangement of the computations 
that has just been described, notes on checks have been inserted, but 
generally the reader has been left to devise his own methods for these; 
they should not be made earlier than the points indicated, and 
preferably the original working should be so accurate that they can 
safely be left until much later. When a second computer is available 
to assist in the analysis, he sh,ould_ be responsible for all checks. 

• Fiducial limits to m calculated from the exact equation (4·6) are 
2·243 and 2·139, and the concentrations are 175 and 138 mg./1. respec
tively, thus confirming the statement that g is too small for the exact 
formula to be needed. 
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The reader who adopts either this or a. similar arrangement of 
the work for the simple type of data should have no difficulty, in 
adapting and extending it to the more complex analyses discussed 
in Chapters 5-10. For example, when relative potencies are being 
estimated for several poisons tested in a. single experiment, the pro
visional lines (step 10) will be drawn parallel if there seems any 
possibility of data agreeing satisfactorily with the hypothesis that 
the probit regression lines have equal slopes. Thereafter the com
putations proceed as outlined above, for each poison separately, until 
the values of 8,..,, 8n and 8 1111 have been obtained for each. A test of 
parallelism and, if departures from parallelism are not significant, 
subsequent estimation of relative potencies based on a. common 
regression coefficient follow as described in § 20. The computations 
are analogous to those in steps 24-34 above. 



Appendix II 

MATHEMATICAL BASIS OF THE 
PROBIT METHOD 

MANY who are concerned with the use of the pro bit transformation 
in the analysis of numerical data will be content to accept the tech
nique without explanation of the mathematical and statistical theory. 
In Chapters I-ll of this book, the practical applications have been 
developed, and the computational processes illustrated, with a 
minimum of theoretical argument. For the benefit of the mathematic
ally minded reader, this appendix gives a brief outline of the derivation 
of the equations of estimation which have been used elsewhere. 
The appendix is not intended as a complete account, but the whole 
theory of the probit method can be developed on the lines set out 
below; the mathematical statistician should have little difficulty in 
discovering for himself how the equations that follow lead to the 
computations described earlier, or in modifying these equations in 
01·der to obtain the analogous techniques for the alternative dis
tributions of tolerance discussed in § 15. The essential featur·es of the 
maximum likelihood e~timation of the parameters in the quantal 
response problem were contained in a note by Fisher (1935), though 
the first adequate formal presentation appears to ha,·e been that of 
Garwood (l'iJ-H); Finney (1U49d) has given a mm·e general result. 
As empha~;7ul in §-49, the known optimal pt·opertics of maximum 
likelihood estimation relate to large samples,' and some alternative 
may be F~uperior in samples of finite size. No other mPthod has yet 
bcen demonstrated to have an advantagE', and only maximum likPii
hood will be ('Onsidered<_ here. BPrkson's method of minimizing X2 

( 19--Hl) is in many respect;isimilar, and the consti'UC'tion of the iterative 
prm·ess may be of interest in ~on~exion with problems other than those 
of quanta! responses .. 

1-luppose that a tolerance distribution is rt>presentr-d by equation 
(2·1 ), so that the probability of response to a dose "-o is P, as defined by 
equation (2·2). If a batch of n subjects is exposed to the stimulus at 
a dose" t\0, and if the subjects reaet independeiltly of ont> another, the 
probability of r responses is given by the binomial distribution (§ 7) as 

nl 
P(r) = ---- P'Q"-'· (11,1) 

r!(n-r)! 
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Suppose that a series of k doses is tested in an experiment; then the 
probability of a particular set of numbers killed in each group is 
proportional to eL, where 

. L = SrlogP+S(n-r)logQ, (11,2) 

and S denotes summation over all doses. The quantity eL, o~, more 
strictly, a quantity proportional to it but having a maximum value of 
unity, has been called by Fisher (1922) the Likelihood of the obser
vations. 

Now P, Q are functions of the dose which contain certain para
meters, and the problem confronting the statistician is that of esti
mating the parameters from the experimental data. Fisher (1922, 
1925) has shown that estimates of the parameters which maximize the 
likelihood are asymptotically efficient (Cramer, 1946, § 33·3; Kendall, 
1946, § 17·27). The likelihood is a maximum when Lis a maximum; 
hence, if 0 is a parameter of the distribution of individual tolerances, 
the maximum likelihood estimate of 0 must satisfy the equation 

where 

0 = oL = s!..oP 8 n-roQ 
. ao Pao+ Q ao 

= 8 n(p-P)oP 
PQ ao• 

p=rfn 

(11,3) 

(11,4) 

is an empirical estimate of the value of P at a particular dose. H the 
tolerance distribution involves more than one unknown parameter, 
a set of equations of the form of (II, 3) must be satisfied simultaneously. 

Direct solution of such equations is seldom possible, but iterative 
methods can be made to give successive approximations converging 
to the solutions. It will be sufficient to illustrate the procedure for 
two parameters, 0 and¢. Suppose that 01, ¢1 are first approximations 
to the solutions of the equations (II, 3), obtained perhaps by rough 
graphical or arithmetical estimation. By the Taylor-Maclaurin 
expansion, to the first order of small quantities 

oL o
2
L OZL } ao +80 ao 1 +8¢ ao 8,. = o, 

1 1 1 Y1 

oL o1L o1L 
8,. +80 80 8,. +6¢ o"' 1 = o, 

Y1 . 1 Y1 Y1 

(11,5) 

where the addition of the suffix to 0, ifJ indicates ~hat the first approxi
mations are to be substituted after differentiation. The second-order 
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. . . ()IL ()t.L ()2L 
differential coeffiCients au.·· ao.orpl and 8t:1Jt2 may be simplified by 

putting p = P after differentiation, in order to give expected instead 
of empirical values (cf. Fisher, 19-U, §57·2). Equations (11,5) then 
become 

The solutions, 80, 8rp, are adjustments to 01, rp1, which give improved 
approximations, 01 = 01 +80, {>1 = {>1 +8{>. Further adjustments are 
obtainable by recalculating the equations with 02, rp1 in place of 01, ¢1, 

and the process may be repeated until the latest set of adjustments 
is negligible. General theory of statistical estimation, indeed, states 
that if the first approximations are of non-zero efficiency, the first 
cycle of computation will yield fully efficient estimates. This, however, 
is strictly true only for large samples, and also is likely to be disturbed 
by the subjective element in determining 01, t/>1 from the graphical 
process usual in probit analysis. The wisest course, therefore, is to 
iterate the calculations until the solutions of (11,3) are approached; 
care and experience in the choice of first approximations will usually 
ensure that two cycles give a numerical accuracy sufficient for practical 
purposes. 

If iJ is the estiipate of a single parameter, obtained as a solution of 
the maximum likelihood equation (II, 3), its variance is (Cramer, 
1946, §33·3; Fisher, 1922; Kendall, 1946, § 17·25) 

/

azL 
V(0) = -1 -~ aoz' (II, 7) 

in which expression n is to be substituted for (J after differentiation. 
When more than one parameter must be estimated, the \'"ariances 
and covariances of the estimates are the elements of the inverse matrix 
of second differential coefficients; thus, for two parameters, 

azL _ c2
L )-1 V=(-"(JA2. u .. a{Ja~ 

· ()ZL 82L 

- a{J a(J - c$2 

(11,8) 

This matrix, but with the previous set of approximations instead of 
{J, /J •. is inverted as part of the last cycle of computations, since the 
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differential coefficients appear as the coefficients of 80, Brf> in equations 
(II, 6). In practice, the variances and covariances may be taken as 
approximately equal to the elements of this inverse, so as to avoid the 
necessity of recalculation. A x1 test for the heterogeneity of the 
departures of the observations from the tolerance distribution specified 
by the parameters then follows. 

The equations discussed above are of general applicability, what
ever the form of P, and may esaily be extended to the estimation of 
a greater number of parameters. Toxicity test data, .and other quantal 
response problems, require their simplification to specialized forms 
suitable for computation. The most important form is that for the 
estimation of the parameters of the tolerance distribution given by 
equation (2·6), or 

P = 0"~~27T)J:.., exp [ - 2: 2(x-p)z] dx, · (II, 9) 

where x measures the dosage on a logarithmic or other normalizil)g 
scale. This distribution has been shown in § 9 to be equivalent to a 
linear relationship between x and the pro bit of P, say 

Y=a+Px, {II, 10) 

in which the new parameters, a, p are related to the old p, ·u by 

p = {5-a)fp,}· 
u = 1/P. 

and Y is defined by equation (3·1 ), namely 

I IY-5 I 

P = ~(21r) _.., e-lu du. 

Now oP = _l_e-t<Y-6l" = z 
aY ~(27r) • 

{II, B) 

the ordinate to the normal curve at the point whose abscissa is ( Y- 5), 
and therefore 

aP aP 
oa = z, op =xZ. 

Hence, if Y=a1+b1x {II, 12) 

is a first approximation to the maximum likelihood estimate of 
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equation {II, 10), adjustments to llt and b1 are given by equations 
{II,6) or 

6a8 ~~ +6b8 ~~ z = 8 ':~ ( p ~ p), } 
nZ1 nZ1 nZ2 (p- P\ 

6a8 PQz+6b8 PQz1 =8 PQz -z-J• 
{II, 13) 

in which Z, P, Q are determined from equation (II, 12). If the weighting 
coefficient, w, is defined by -

w=Z1fPQ, (II, 14) 

these last equations are seen to be equations for the estimation of the 
weighted linear regression of (p-P)fZ on z, the weight nw being 
assigned to each value of (p- P)/ Z. A convenient method of solution 
is to introduce the working probit 

p-P 
y = Y +---z-• (II, 15) 

and to add 8nw Y to each side of the first, 8nwz Y to each side of the 
second of equations (II, 13). The weighted linear regression equation 
of y on z is then calculated in the form 

Y = y+b(z-x), (II, 16) 

where x = 8nwzf8nw,} (II, 17) 
g = 8nwyf8nw, 

and b = 8Zflf8.,.,; (II, 18) 

equation (II, 16) may be seen to be a revised version of (II, 12), with 

a1 = llt +6a = y-bx, 

b:a = bl + 6b = b. 

The iteration may continue with a new cycle of computations based on 

y =az+baz. 

By equation {II, 8), which here is analogous to the ordinary formulae 
for weighted linear regression, 

V(y) = 1f8nw, 

V(t) = 1/8.,.,, 

(II, 19) 

(II,20) 

provided that the maximum likelihood estimates have been approached 
sufficiently closely. These results are, strictly, applicable only for 



MATHEMATICAL BASIS OF THE J,'ROBIT METHOD 251 

large samples, and research into the appropriate formulae for small 
samples is needed; the rapidity with which increase in the number of 
observations improves the approximation of a normal distribution to 
a binomial suggests that, when the total number of subjects tested is 
not very small, these variance formulae will be trustworthy. 

Homogeneity of the experimental materials and mutual independ
ence of the subjects have so far been assumed. If the n subjects in 
a batch do not react independently to the dose applied, but depart 
from the fitted equation (II, 16) more markedly than can be attribu~ 
to random variation, without showing any regularity such as would 
suggest the need for a different specification of the tolerance distribu
tion, the weights of the observations must be decreased, and the 
variances correspondingly increased. This situation will in general be 
indicated by a significantly large value of the heterogeneity r. whose 
calculation is described in §§ 17, 18. Provided that no classes have 
had to be amalgamated (cf. Ex. 7), x.• will have (k-2) degrees of 
freedom, two less than the number of batches tested; x_1/(k-2) is then 
the factor by which the variances must be increased. In a. more 
complex analysis, the heterogeneity factor remains the mean square 
derived from the heterogeneity x_1• When a. heterogeneity factor has 
to be used, all variances and standard errors must be conside!"ed in 
relation to a 1-distribution, not a normal, with degrees of freedom equal 
to those of x_2• This procedure is not peculiar to probit analysis but is 
the normal statistical practice of using an empirical variance instead 
of a theoretical when the data give evidence of the occurrence of 
variation other than that included in the theoretical value. 

The problem of adjustment for a natural respon.qe rate(§ 28) which 
supplements the responses due to the stimulus provides an instructive 
example of the generalization of the method just described (Finney, 
1949b,d). When an average natural response rate, C, operates in
dependently of the stimulus, the total response rate expected .at any 
dose is as given in equation (6·1 ), · 

P' = C+P(1-C). 

The probabilities P', Q' replace P, Q in (II, I), and the prototype of 
the maximum likelihood equations is 

0 = oL = 8 n(p'-P')oP' 
00 P' Q' iJ() • 

Now ar ar 
oC = Q, oP = (1-C), 

and also. p'-P' = (p-P)(1-C). 
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In general, 0 also has to be estimated. If 8 is used for summation 
over all non-zero doses, and the nc subjects tested at zero dose showed 
a response rate c, the equations corresponding to (II, 3) may be 
written 

oL aZ'(1-0) (p-P\ 
orz. = 

8 Q{O+P(1-0)} ---z;-} = O, 

oL aZ'x(1- 0) (p-~ 
ofl = 

8 Q{O+P(1-0)} ----z-} = O, 

oL •c(c-0) a(p-P) 
ao= 0(1-0)+ 8 O+P(1-0) = 0· 

Differentiate again, and equate observed values with expected; if 

Z' 
ID = __,..___;__,,..._ 

Q{P+1:o} 

and z'= Q/Z 

be introduced, as in equations (6·3), (6·4), the coefficients required 
for equations (II, 5) may be written 

()IL = - 8nw 
Ca.' • 

OIL 
Oa.8fl = - 8nur.r:, 

OIL 
ofl' = -8nur.r:', 

OIL 1 
Oa.oO = -1-o8"wz'• 

OIL 1 
apao = -1-0 8"wxx', 

~;- 0( .. :_0) (1_!-0),8nwz''. 

If the working pro bit is again introduced, the equations for a, b, 80 
may be reduced to the form most suitable for computing, equations 
(6·5), (6·6); these equations are formally the same as for a multiple 
linear regression of yon z, z', and the analysis may proceed as illu-
strated in Ex. 17. . 

Estimates of the parameters for other expressions of the probability 
function, P, can be derived in a similar manner. Other examples in 
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which the basic distribution (IT, 9) is retained but modified have been 
given in §§45, 47, 50, and the rea,der shoUld have no difficulty i~ 
developing the equations required for these problems. The analogue 
of the pro bit method appropriate to. any of the alternative tolerance 
distributions mentioned in § 15 can be found by alteration of (IT, 9) to 
an integral based on the new distribution. This has been illustrated 
elsewhere (Finney, 1947a) for the logistic distribution, for which it 
leads to the maximum likelihood estimates in Berkson's (1944) logit 
method. The logistic sigmoid might be more -appropriate than the 
normal for the problem of Ex. 33; it could be estimated without any 
change in the form of equations (10·1H10·6), except that P, Q, Z, 
w, x', y, must be interpreted in terms of the logistic function: 

p = eYf(1 +eY), 

Z = eYf(1 +eY)I, 

with the other quantities related to P, Z by the usual formulae. Thus 
the method of § 4 7 can be used in the fitting of a logistic curve with 
unknown upper limit to observations with equal variances, and can 
easily be modified so as to take account of unequal variances. Since 
the logistic and normal sigmoids are so similar in shape over a wide 
range of values of P, a logistic analysis of the data of Ex. 33 would not 
in fact have given results appreciably different from those of the 
probit analysis. 

It must not be forgotten that the probit transformation is only a 
convenient trick for representing the sigmoid (IT, 9) by a straight line, 
and that pro bit analysis is only one convenient method for the solution 
of equations such as (II, 3) for the normal distribution of tolerances. 
Neither the transformation nor the method of analysis have any 
fundamental relationship to the problems in which they are used, 
beyond what is implied by this statement. The chief advantage of 
probit analysis over other methods of solving the same equations is 
that it enables" the computational methods familiar in linear regression 
analysis to be applied in what is not reafly a linear regression problem. 
The wide range of tables now available reduces to a minimum the 
need for the calculation of special functions in any one problem; the 
procedure is a simple, easily checked routine that can be performed 
by workers who would be at a loss if merely ordered to solve equation 
(li.~J. 

Nevertheless, methods other than those of this book are in some 
respects superior. Black (1950) suggests an alternative method of 
tabulating maximum and minimum working probits which, while 
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leading to what is mathematically the same analysis, may be more 
rapid in use than the usual, since the nwy column is built up directly. 
The gain is at the expense of the graphical representation, and the 
linear regression analogy is left a little less clear, but, at least for some 
types of data, it has advantages. Black's proposal, in fact, is equi
valent to assigning a weight and a score to each subject, the score 
being a maximum or minimum function of the expected Y according 
as the subject does or does not respond; the analogy between probit 
analysis and linear scoring methods used in the estimation of genetic 
parameters (Finney, 1949c) is thus apparent. Garwood (1941) com
pared the use of expected values of the second differential coefficients 
in equations (II, 5) with the use of empirical values calculated from 
the complete expressi.pns for these differential coefficients. The two 
methods must converge to the same estimates of the parameters, 
though not necessarily to identical values for the variances. Garwood 
found that the empirical coefficients gave a quicker convergence, in 
the sense that fewer cycles were needed in order to attain a specified 
closeness of approach to the limiting values; this itself is an empirical 
conclusion, based on trial of several sets of data, though it is likely 
to be generally true. The advantage of the empirical coefficients is 
counterbalanced by their greater algebraic complexity and the con
sequent greater labour of calculating them, so that the time required 
for computing one cycle Qecomes much greater than for the expected 
coefficients. This difficulty seemed to condemn the 'empirical' so 
long as the only tables available were of the type of those in this book 
for the 'expected'. Recent work by Cornfield and Mantel (1950) 
alters this situation by suggesting an improved computing scheme for 
the empirical coefficients and providing tables for use in it; the method 
is still more laborious, cycle for cycle, than that used in this book, but 
the advantage in speed of convergence may· now be sufficient to 
outweigh this disadvantage. Extensive comparisons of the two will 
be necessary before a final decision is made as to which is best for 
routine use. 
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TABLE I. Transformation of Percentages to Pro bits 

% 0·0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1 2 3 4 5 
t-o 
0) 

""' 0 1·9098 2·1218 2·2522 2·3479 2·4242 2·4879 2·5427 2-5911 2·6344 
1 2-6737 2·7096 2·7429 2·7738 2·8027 2·8299 2·8556 2·8799 2·9031 2·9251 
2 2·9463 :.!·9665 2·9859 3·0046 3·0226 3·0400 3·0569 3·0732 3·0890 3-1043 For more detail see 
3 3-1192 3·1337 3·1478 3·1616 3-1750 3-1881 3·2009 3·2134 3·2256 3·2376 values for 95-100 
4 3·2493 3·2608 3·2721 3·2831 3·2940 3·3046 3·3151 3·3253 3·3354 3·3454 

5 3·3551 3·3648 3·3742 3·3836 3·3928 3-4018 3·4107 3·4195 3-4282 3·4368 9 18 27 36 45 6 3·4452 3·4536 3·4618 3·4699 3·4780 3·4859 3·4937 3·5015 3·5091 3·5167 8 16 24 32 40 
7 3·5242 3·5316 3·5389 3·5462 3·5534 3·5605 3·5675 3·5745 3·5813 3·5882 7 14 21 28 36 8 3·5949 3·6016 3·6083 3·Q148 3·6213 3·6278 3·6342 3·6405 3·6468 3·6531 6 13 19 26 32 
9 3·6592 3·6654 3·6715 3·6775 3·683S 3·6894 3·6953 3·7012 3·7070 3·7127 6 12 18 24 30 

10 3·7184 3·7241 3·7298 3·7354 3·7409 3·7464 3·7519 3·7574 3·7628 3·7681 6 11 17 22 28 11 3·7735 3·7788 3·7840 3·7893 3·7945 3·7996 3·8048 3·8099 3·8150 3·8200 5 10 16 21 26 12 3·8250 3·8300 3·8350 3·8399 3·8448 3·8497 3·8545 3·8593 3·8641 3·8689 5 10 15 20 24 
13 3·8736 3·8783 ' 3·8830 3·8877: 3·8923 3·8969 3·9015 3·9061 3·9107 3·9152 5 9 14 18 23 
14 3·9197 3·9242 3·9286 3·9331 3·9375 3·9419 3·9463 3·9506 3·9550 3·9593 4 9 13 18 22 

15 3·9636 3·9678 3·9721 3·9763 3·9806 3·9848 3·9890 3·9931 3·9973 4·0014 4 8 13 17 21 
16 4·0055 4·0096 i 4·0137 4·0178 4·0218 4·0259 4·0299 4·0339 4·0379 4·0419 .4 8 12 16 20 
17 4·0458 4·0498 4·0537 4·0576 4·0615 4·0654 4·0693 4·0731 4·0770 4·0808 4 8 12 16 19 
18 4·0846 4·0884 4·0922 4·0960' 4·0998 4·1035 4·1073 4·1110 4·1147 4·II84 4 8 II 15 19 
19 4·1221 4·1258 4·1295 4·1331 4·1367 4·1404 4·1440 4·1476 4·1512 4·1548 4 7 11 15 18 

20 4·1584 4·1619 4·1655 4-1690 4·1726 4-1761 4·1796 4·1831 4-1866 4·1901 4 7 II 14 18 
21 4·1936 4·1970 4·2005 4·2039 4·2074 4·2108 4·2142 4·2176 4·2210 4·2244 3 7 10 14 17 
22 4·2278 4·2312 4·2345 4·2379 4·241ll 4·2446 4·2479 4·2512 4·2546 4·2579 3 7 10 13 17 
23 4·2612 4·2644 4·2677 4·2710 4·2743 4·2775 4·2808 4·2840 4·2872 4·2905 3 7 10 13 16 
24 4·2937 4·2969 4·3001 4·3033 4·3065 4·3097 4·3129 4·31~0 4·3192 4·3224 3 6 10 13 16 

25 4·3255 4·3287 4·331'8 4·3349 4·3380 4·3412 4·3443 4·3474 4·3505 4·3536 3 6 9 12 16 
26 4·3567 4·3597 4·3628 4·3659 4·3689 4·3720 4·3750 4·3781 4·3811 4·3842 3 6 9 12 u 
27 4·3872 . 4·3902 4·3932 . 4·3962 4·3992 4·4022 4·4052 4·4082 4·4112 4·4142 3 6 9 12 15 
28 4·4172 4·4201 4·4231 4·4260 4·4290 4·4319 4·4349 4·4378 4·4408 4·4437 3 6 9 12 15 
29 4·4466 4·4495 4·4524 4·4554 4·4583 4·4612 4·4641 4·4670 4·4698 4·4727 3 6 9 12 14 



30 4·4756 4·4785 4·4813 4·4842 4·4871 4·4899 4..4928 4·4956 4·4985 4·5013 3 6 9 ·n 14 
31 4·5041 4·5070 4·5098 . 4·5126 4·5155 4·5183 4·5211 4·5239 4·5267 4·5295 3 6 8 ll 14 
32 4·5323 4·5351 4·5379 4·5407 4·5435 4·5462 4·5490 4·5518 4·5546 4·5573 3 6 8 ll 14 
33 4·5601 4·5628 4·5656 4·5684 4·5711 4·5739 4·5766 4·5793 4·5821 4·5848 3 5 8 ll 14 
34 4·5875 4·5903 4·5930 4·5957 4·5984 4·6011 4·6039 4·6066 4·6093 4·6120 3 5 8 11 14 

35 4·6147 4·6174 4·6201 4·6228 4·6255 4·6281 4·6308 4·6335 4·6362 4·6389 3 5 8 ll 13 
36 4·6415 4·6442 4·6469 4·6495 4·6522 4·6549 4·6575 4·6602 4·6628 4·6655 3 5 8 ll 13 
37 4·6681 4·6708 4·6734 4·6761 4·6787 4·6814 4·6840 4·b866 4·6893 4·6919 3 5 8 11 13 
38 4·6945 4·6971 4·6998 4·7024 4·7050 4·7076 4·7102 4·7129 4·7155 4·7181 3 5 8 10 13 
39 4·7207 4·7233 4·7259 4·7285 4·7311 4·7337 4·7363 4·7389 4·7415 4·7441 3 5 8 10 13 

40 4·7467 4·7492 4·7518 4·7544 4·7570 4·7596 4·7622 4·7647 4·7673 4·7699 3 5 8 10 13 
41 4·7725 4·7750 4·7776 4·7802 4·7827 4·7853 4·7879 4·7904 4·7930 4·7955 3 5 8 10 13 
42 4·7981 4·8007 4·8032 4·8058 4·8083 4·8109 4·8134 4·8160 4·8185 4·8211 3 5 8 10 13 
43 4·8236 4·8262 4·8287 4·8313 4·8338 4·8363 4·8389 4·8414 4·8440 4·8465 3 5 8 10 13 
44 4·8490 4·8516 4·8541 4·8566 4·8592 4·8617 4·8642 4·8668 4·8693 4·8718 3 5 8 10 13 

45 4·8743 4·8769 4·8794 4·8819 4·8844 4·8870 4·8895 4·8920 4·8945 4·8970 3 5 8 10 13 
46 4·8996 4·9021 .4·9046 . 4·9071 4·9096 4·9122 4·9147 4·9172 4·9197 4·9222 3 5 8 10 13 
47 4·9247 4·9272 4·9298 4·9323 4·9348 4·9373 4·9398 4·9423 4·9U8 4·9473 3 l.l 8 10 13 
48 4·9498 4·9524 4·9549 4·9574 4·9599 4·9624 4·9649 4·9674 4·9699 4·9724 3 5 8 10 13 
49 4·9749 4·9774 4·9799 4·9825 4·9850 i·9875 4·9900 4·9925 4·9950 4·9975 3 5 8 10 13 

50 5·0000 5·0025 5·0050 5·0075 5·0100 5·0125 5·0150 5·0175 5·0201 5·0226 3 ·5 8 10 13 
Ill 5·0251 5·0276 5·0301 5·0326 5·0351 5·0376 5·0401 5·0426 5·0451 . 5·0476 3 5 8 10 13 
52 5·0502 5·0527 5·0552 5·0577 5·0602 5·0627 5·0652 5·0677 5·0702 5·0728 3 5 8 10 13 
53 5·0753 5·0778 5·0803 5·0828 5·085;J 5·0878 5·0904 5·0929 5·0954 5·0979 3 5 8 10 13 
54 5-1004 5·1030 5·1055 5·1080 5·1105 5·1130 5-1156 5·~181 5·1206 5·1231 3 5 8 10 13 

55 5·1257 5·1282 5·1307 5·1332 5·1358 5-1383 5·1408 5·1434 5·1459 5·1484 .3 5 8 10 13 
56 5·1510 5·1535 5·1560 5·1586 5·1611 5-1637 5·1662 5·1687 5·1713 5·1738 3 5 8 10 13 
57 5-1764 5·1789 5-1815 5·1840 5·1866 5-1891 5·1917 5-1942 5·1968 5·1993 3 5 8 10 13 
58 5·2019 5·2045 5·2070 5·2096 5·2121 5·2147 5·2173 5·2198 5·2224 5·2250 3 5 8 10 13 Nl 59 5·2275 5·2301 5·2327 5·2353 5·2378 5·2404 5·2430 5·2456 5·2482 5·2508 3 5 8 1()- - 13 0) 

~ 



TABLE I (cont.) 

!_I 0·0 0·1 0·2 0·3 0·' 0·6 0·6 0·7 0•8 0·9 1 2 8 ' 6 
~ 
CD 
c:D 

60 3·2533 3·21159 3·2118/J 3·2611 3·2637 3·2663 3·2689 3·2715 3·2741 3·2767 3 6 8 10, 13 
61 11·2793 11·2819 3·28411 3·2871 3·2898 3·2924 3·29110 3·2976 3·3002 3·3029 3 6 8 10 13 
62 6·306!1 3·3081 3·3107 3·3134 '11·3160 11·8186 3·3213 3·8239 3·8266 11·3292 8 15 8 11 13 
63 3·3319 11·3343 5·3372 5·3398 6·3426 3·3451 15·3478 5·3606 5·3531 15·3568 8 15 8 11 13 
64 6·36811 5·3611 15·3638 15·3663 15·3692 6·3719 5·37411 6·3772 15·3799 11·3826 8 15 8 11 13 

65 11·3853 5·3880 11·3907 11·3934 5·3961 6·3989 6·4016 15·4043 11-4070 15·4097 8 15 8 11 14 
66 11·4125 6-41112 11-4179 6-4207 11·4234 6·4261 15·4289 11-4316 6·4344 15-4372 3 15 8 11 14 
67 6·4399 15-4427 6-4454 6·4482 11-4510 6·41138 5·411611 5·41193 6-4621 3·4649 8 6 8 11 14 
68 5·4677 11·47011 11-4733 11·4761 11·4789 5·4817 6·48411 6·4874 5·4902 15·4930 3 6 8 11 14 
60 11·4959 11-4987 11-50111 5·5044 6·5072 15·6101 6·5129 3·11158 15·11187 15-15215 3 6 9 11 14 

70 II-G244 11·11273 6-5302 6·5330 11·3359 15·5388 11·11417 15·11446 5·11476 11·55011 8 6 9 12 14 
71 11·11534 11·5563 11-1~592 6·11622 11·5651 15·11681 15·11710 11·11740 15·6769 15·6799 8 6 9 12 15 
72 11·11828 15·11858 6·5888 5·11918 15·5948 11·5978 15-6008 15·6038 15·6068 15·6098 3 6 9 12 111 
73 11·6128 15·6158 11·6189 15·6219 11·6250 11·6280 11·6311 15·6341 15·6372 11·6403 8 6 9 12 111 
74 11·6433 11·6464 11·6496 11·6526 11·61157 15·6588 11·6620 15·66111 11·6682 11·6713 3 6 9 12 16 

715 5·6745 15·6776 11·6808 11·6840 11·6871 15·6903 6·69311 15·6967 11·6999 11·7031 3 6 10 13 16 
76 5·7063 11•7095 I 11·7128 11·7160 11·7192 11·72215 11·72117 15·7290 11·7323 15·7356 .3 7 10 13 16 
77 6·7388 5·7421 11·7454 11·7488 5·7521 5·71154 11·7588 11·7621 15·76511 11·7688 3 7 10 13 17 
'78 5·77:.!2 11·77116 11·7790 15·7824 11·7858 15·7892 15·7926 11·7961 11·79915 11·8030 3 '7 10 14 17 
'79 5·8064 11·8099 11·8134 11·8169 15·8204 11·8239 11·8274 15·8310 11·8345 11·8381 4 '7 11 14 18 

80 5·8416 11·84112 15·8488 11·8324 5·8560 11·8596 5·8633 11·8669 5·87011 15·8742 4 7 11 14 18 
81 6•8779 11·8816 11·!1853 5·8890 11·8927 11·89615. 11·9002 15·9040 11·9078 11·9116 4 7 11 111 19 
82 ll·ll11i4 11·9192 11·9230 11·9269 5·9307 15·9346 11·93811 6·9424 15·9463 11·91102 4 8 12 liS 19 
83 5·9542 11·9581 11·9621 11·9661 11·9701 11·9741 11·9782 11·9822 11·9863 11·9904 4 8 12 16 20 
84 5·9045 11·9986 6·0027 6·0069 6·0l10 6·0152 6·0194 6·0237 6·0279 6·0322 4 8 13 17 21 

!Ill 11·0364 6·0407 6·0450 6·0494 6·01137 6·01i81 6·0625 6·0669 6·0714 ! 6·07!18 4 9 13 18 22 
!IU 0·0803 6·084!1 6·0!193 6·0939 6·0985 6·1031 6-1077 6·1123 6-1170 6·1217 !I 9 14 18 23 
!17 6·1264 6·1311 6·1359 6-1407 6·1455 6·11103 6·11152 6·1601 . 6·1650 6·1700 5 10 1!1 19 24 
!Ill 6•1750 11·1800 6·1850 6·1001 6·1952 6·2004 6·2055 6·2107 6·21110 6·2212 !I 10 1!1 21 26 
!ill 6·22611 6·2319 6·2372 6·2426 6·2481 6·2536 6·2591 6·2646 6·2702 6·27119 !I 11 16 22 27 



90 6·2816 6·2873 6·2930 6·2988 6·3047 6·3106 6·3165 6·3225 6·3285 6·3346 6 12 18 24 29 
91 6·3408 6·3469 6·3532 6·3595 6·3658 6·3722 6·3787 6·3852 6·3917 6·3984 6 13 19 26 32 
92 6·4051 6·4118 6·4187 6·4255 6·4325 6·4395 6·4466 6·4538 6·4611 6·4684 7 14 21 28 35 
93 6·4758 6·4833 6·4909 6·4985 6·5063 6·5141 6·5220 6·5301 6·5382 6·5464 8 16 24 31 39 
94 6·5548 6·5632 6·5718 6·5805 6·5893 6·5982 6·6072 6·6164 6·6258 6·6352 9 18 27 36 45 

95 6·6449 6·6546 6·6646 6·6747 6·6849 6·6954 6·7060 6·7169 6·7279 6·7392 
97 100 101 102 105 106 109 110 113 115 

96 6·7507 6·7624 6·7744 6·7866 6·7991 6·8119 6·8250 6·8384 6·8522 6·8663 
117 120 122 125 128 131 134 138 141 145 

97 6·8808 6·8957 6·9110 6·9268 6·9431 6·9600 6·9774 11·9954 7·0141 7·0335 
149 153 158 163 169 174 - 180 187 194 202 

% 0·00 0·01 0·02 0·03 0·04 0·05 0·06 0·07 0·08 0·09 2 3 4 5 

98·0 7·0537 7·0558 7·0579 7·0600 7·0621 7·0642 7·0663 7·0684 7·0706 7·0727 2 4 6 8 11 
98-1 7·0749 7·0770 7·0792 7·0814 7·0836 7·0858 7·0880 7·0902 7·0924 7·0947 2 4 7 9 11 
98·2 7·0969 7·0992 7-1015 7-1038 7-1061 7-1084 7-1107 7-1130 7-1154 7-1177 2 5 7 9 12 
98·3 7-1201 7-1224 7-1248 7-1272 7-1297 7-1321 7-1345 7-1370 7-1394 . 7-1419 2 5 7 10 12 
98·4 7-1444 7-1469 7-1494 7-1520 7-1545 7-1571 7-1596 7-1622 7-1648 7-1675 3 5 8 10 13 

9&·5 7-1701 7-1727 '7-1754 7-1781 7-1808 7-1835 7-1862 7-1890 7-1917 7-1945 3 5 8 11 14 
98·6 7-1973 7·2001 7·2029 7·2058 7·2086 7·2115 7·2144 7·2173 7·2203 7·2232 3 6 9 12 14 
98·7 7·2262 7·2292 7·2322 7·2353 7·2383 7·2414 7·2445 7·2476 7·2508 7·2539 3 6 9 12 15 
98·8 7·2571 7·2603 7·2636 7·2668 7·2701 7·2734 7·2768 7·2801 7·2835 ' 7·2869 3 7 10 13 17 
98·9 7·2904 7·2938 7·2973 7·3009 7·3044 7·3080 7·3116 7·3152 7·3189 7·3226 4 7 11 14 18 

99·0 7·3263 7·3301 7-3339 7·3378 7·3416 7·3455 7·3495 7-3535 7·3575 7-3615 4 8 . 12 16 20 
99-l 7·3656 7·3698 7·3739 7·3781 7·3824 7·3867 7·3911 7·3954 7·3999 7·4044 4 9 13 17 22 
99·2 7·4089 7·4135 7·4181 7·4228 7·4276 7·4324 7·4372 7·4422 7·4471 7·4522 5 10 14 19 24 
99-3 7·4573 7·4624 7·4677 7·4730 7·4783 7·4838 7·4893 7·4949 7·5006 7-5063 5 11 16 22 27 
99·4 7·5121 7·5181 7·5241 7-5302 7-5364 7·5427 7·5491 7·5556 7·5622 7·5690 6 13 19 25 32 

99·5 7·5758 7·5828 7·5899 7·5972 7·6045 7-6121 7·6197 7·6276 7-6356 7-6437 
99·6 7·6521 7-6606 7·6693 7·6783 7·6874 7-6968 7·7065 7-7164 7·7266 7·7370 
99·7 7·7478 7·7589 7·7703 7·7822 7·7944 7·8070 7-8202 7·8338 7·8480 7·8627 
99·8 7·8782 7·8943 7·9112 7·9290 7·9478 7·9677 7·9889 8·0115' 8·0357 8·0618 Nl 
99·9 8·0902 8·1214 8·1559 8-1947 8·2389 8·2905 8·3528 8·4316 8·5401 8·7190 ~ 

~ 

I am indebted to Professor R. A. Fisher and Dr F. Yates, and also to Messrs Oliver and Boyd, Ltd. of Edinburgh, for permission to reprint 
'fable I from Table IX of their book Stat18tical Tables for Biological, Agricultural and Medical Research. 



The Weighting Coefficient and Q/Z 
Nl TABLE II. C)) 
00 

Percentage natural mortality, 0 
y Q/Z 0 1 2 3 4 5 6 7 8 9 10 

H 5034 ·00082 -1-2 3425 ·00ll8 ·00001 
1·3 2354 ·00167 ·00002 •00001 ·00001 

·1·4 1634 ·00235 ·00004 ·00002 ·00001 ·00001 ·00001 ·00001 
1-5 ll46 ·00327 ·00007 ·00004 ·00002 ·00.002 ·00001 ·00001 ·00001 ·00001 ··00001 ·00001 

1·6 811-2 ·00451 ·00015 ·00007 ·00005 ·00004 ·00003 •00002 •00002 ·00002 ·00002 ·00001 1·7 580·2 ·00614 ·00028 ·00014 ·00009 ·00007 ·00006 ·00005 ·00004 ·00003 ·00003 ·00003 1·8 419·1 ·00828 ·00053 •00027 ·00018 ·00013, ·OOOll ·00009 •00007 ·00006 ·00006 ·00005 1·9 305·8 ·Oll05 ·00097 ·00050 ·00034 ·00025 ·00020 ·00017 ·00014. ·00012 ·OOOll ·00010 2·0 225·3 ·01457 ·00172 •00090 ·00061 ·00046 ·00036 ·00030 ·00026 ·00022 ·00020 ·00017 

2·1 167·69 ·01903 ·00297 ·00159 •00108 ·00082 ·00065 ·00054 ·00046 ·00040 ·00035 ·00031 2·2 126·02 ·02458 ·00496 ·00274 ·00188 ·00142 ·00ll4 ·00095 ·00081 •00070 ·00062 ·00055 2·3 95·63 ·03143 ·00803 ·00456 ·00317 ·00241 ·00194 ·00162 ·00138 ·00121 ·00106 ·00095 2-4 73·28 ·03977 ·01256 ·00739 ·00521 ·00400 ·00324 ·00271 ·00232 ·00202 ·00179 ·00160 2·5 56·70 ~04979 ·01895 ·Oll61 ·00832 ·00646 ·00525 ·00441 ·00379 ·00332 ·00294 ·00264 

2·6 44·288 ·06168 ·02763 :01768 ·01292 ·01014 ·00831 ·00702 ·00606 ·00531 ·00472 ·00424 2·7 34·923 ·07564 •03895 ·02605 ·01947 ·01548 ·01280 ·01088 ·00943 ·00830 ·00740 ·00666 2·8 27·797 ·09179 ·05316 ·03719 ·02847 ·02297 ·01918 ·01642 ·01431 ·01265 ·Oll31 ·01021 2·9 22·330 ·ll026 ·07044 ·05147 ·04037 ·03309 ·02794 ·024ll ·02ll5 ·01879 ·01687 ·01527 3·0 18-101 •13ll2 ·09080 ·06912 ·05557 ·04631 ·03957 ·03445 ·03043 ·02719 ·02452 ·02228 

3-1 14·802 ·15436 ·ll419 ~09023 ·07432 ·06298 ·05449 ·04790 ·04263 ·03832 ·03473 ·03170 3·2 12·2ll ·17994 ·14046 ·!]476 ·09670 ·08332 ·07300 ·06481 ·05814 ·05261 ·04795 ·04397 3·3 10·159 ·20774 ·16935 ~142411 ·12263 ·10736 ·09525 ·08541 ·07726 ·07039 ·06453 ·05947 3·4 8·521 ·23753 ·20056 ·17308 ·15184 ·13494 ·12ll6 ·10973 ·10008 •09182 ·08469 ·07846 
3·5 7·205 ·26907 ·23373 ·20611 ·18392 ·16571 ·15050 ·13760 ·12652 ·11690 ·10848 ·10103 



3·6 6·1394 ·30199 ·26842 ·24107 ·21836 ·19921 ·18283 ·16867 ·15631 ·14541 ·13575 ·12711 
3·7 5·2705 ·33589 ·30415 ··27741 ·25456 ·23482 ·21759 ·20242 ·18896 ·17694 ·16614 ·15639 
3·8 4·5571 ·37031 ·34043 "31453 ·29186 ·27187 ·25409 ·23819 ·22387 ·21092 ·19915 ·18840 
3·9 3·9676 ·40474 ·37669 ·~5181 ·32960 ·30964 ·29161 ·27524 ·26031 ·24665 ·23409 ·22250 
4·0 3·4770 ·43863 ·41237 •388M ·36707 ·34739 ·32937 ·31279 ·29749 ·28334 ·27020 ·25797 

4·1 3·0665 ·47144 ·44691 ·42438 ·40362 ·38441 ·36661 ·35005 ·33460 ·32017 ·30666 ·29397 
4·2 2·7206 ·50260 ·47973 ·45844 ·43858 ·42000 ·40259 :,38623. •37085. ·35634 ·34264 ·32969 
4·3 2·4276 ·53159 ·51029 ·49024 ·47134 ·45350 ·43662 ·42063 ·40546 ·39105 ·37735 ·36430 
4·4 2·1780 •55788 •53806 ':j>1924 __ ·50134 ·48430 ·46805 ·45255 ·43774 ·42357 •41002 ·39702 
4·5 l-9640 •58099 ·56257 ·54495 ·52806 ·51187 ·49633 •48140 ·46705 ·45325 •43996 ·42716 

4·6 1·'7797 ·60052 1•58341 •56694 ·55106 ·53574 ·52095 ·50666 •49286 ·47951 ·46659 ·45409 
4·7 1·6202 ·61609 ·60022 ,•li8485- ·56996 ·55551 ·54150 ·52790 ·51470 ·50187 ·48941 ·47729 
4·8 1-4814 ·62742 ·61271 _:59840 ·58446 ·57089 ·55766 •54478 ·53221 ·51996 •50801 ·49635 
4·9 1·3599 ·63431' ·62069 ·60737 -- ·59436 ·58164 ·56921 ·55704 ·54514 ·53350 ·52210 ·51094 
5·0 1-2533 ·63662 ·62401 ·61165 ·59953 ·58765 ·57599 ·56455 •55332 ·54230 ·53149 ·52087 

5-l l-1593 ·63431 ·62266 :61120 ·59994 ·58886· ·57796 ·56724 ·55669 ·54631 ·53609 ·52604 
5·2 1·0759 ·62742 ·61667 ·60607 ·59562 ·58532 ·57516 ·56515 •55527 ·54553 ·53592 ·52644 
5·3 1·0018 ·61609 ·60618 :o9639' ·58672 ·57717 ·56773 ·55841 ·54919 ·54008 ·53108 ·52219 
5·4 0·9357 ·60052 ·59140 •58238 •57346 •56462 ·55588 ·54722 ·53866 ·53018 ·52178 ·51347 
5·5 0·8764 •58099 ·57263 ·56434 ·55612 ·54797 ·53990 ·53189 •52396 ·51609 ·50829 ·50056 

5·6 0·8230 ·55788 ·55022 ·54262 •53507 ·52759 ·52015 ·51278 ·50545 ·49818 . ·49097 ·48380 
IS·7 0·7749 ·53159 ·52460 ·51765 ·51075 ·50389 ·49708 ·49030 ·48357 ·47688 •47024 ·46363 
5·8 0·7313 •50260 •49624 ~8992 ·48363 ·47737 ·47114 ·46495 ·45879 ·45266 ·44657 ·44050 
5·9 0·6917 •47144 ·46567 ·45993-. ·45422 ·44853 •44287 . ·43723 ·43162 ·42603 ·42047 ·41493 
6·0 0·6557 ·43863 •43343 -~~. ·42308 ·41793 ·41281 ·40770 ·40261 ·39754 ·39249 •38746 

6·1 0·6227 ·40474 ·40006 ·39540 ·39075 ·38612 ·38150 ·37690 ·37231 ·36774 •36318 ·35863 
6·2 0·5926 ·37031 ·36613 ·36196 ·35781 ·35366 ·34952 •34540 ·34128 ·33718 ·33308 ·32900 
8·8 0·5649 ·33589 ·33218 ·32847 ·32477 ·32108 ·31740 ·31372 ·31006• ·30640 ·30274 ·~9910 
8·4 0·5394 ·30199 ·29871 ·29543 ·29216 ·28890 ·28564 ·28238 ·27913 ·27589 ·27266 ·26942 
G·5 0·5158 ·26907 ·26619 ·26331 ·26044 ·25757 ·25470 ·25184 :24899 ·24613 ·24329 •24044 !'¢ 

0) 

co 



~ 

TABLE II (cont.) 'I 
Q 

Percentage natural mortality, 0 
y Q/Z 0 1 2 3 4 5 6 7 8 9 10 

6·6 0·4940 ·23753 •23502 ·232111 ·23001 ·22751 ·22501 •222111 ·22001 •217112 •211103 ·2121111 
0·7 0·4739 •20774 ·20556 •20339 •20122 •19905 •19689 •19473 •19256 •19041 •18825 •18609 
6·8 0·45111 ·17994 •17808 ·17621 ·17435 ·17249 ·17063 ·16877 ·16691 ·16506 •16320 •16135 
6·9 o-4376 ·111436 ·15277 •111118 •14960 ·14801 •14643 ·14484 ·14326 •14168 ·14010 ·13852 
7·0 0·4214 ·13112 •12977 •12843 •12709 ·125711 ·12442 . ·12308 ·12174 •12040 ·11907 •11773 

7-1 0·4062 ·11026 •10914 ·10802 ·10689 . ·10577 ·10465 ·10353 ·10241 ·10129 ·10017 ·099011 7-2 0·3919 ·09179 ·09086 ·08993 •08900 ·08807 ·08714 ·08621 ·08528 ·08435 ·08342 ·08249 7-3 0·3786 ·07564 ·07487 ·07411 •07334 ·07258 ·07181 ·07105 ·07029 ·069112 ·06876 ·06800 7·4 0·3661 ·06168 ·06106 ·06044 •05982 ·05920 ·05858 ·011795 •05733 ·05671 ·05609 ·0111147 7-11 0·3543 ·04979 ·04929 •04879 •04828 ·04778 ·04728 ·04678 ·04628 ·04578 •04528 ·04478 ,\ 

7·6 0·3432 I ·03977 •03937 ·03897 ·03857 ·03817 ·03777 •03737 ·03697 ·03657 ·03617 ·03577 7·7 0·3327 ·03143 ·03112 •03080 ·03048 ·03017 ·02985 ·02954 •02922 ·02891 ·02859 ·02828 
7-8 0·3228 ·02458 •02434 '02409 ·02385 ·02360 ·02335 ·02311 ·02286 ·02261 ·02237 ·02212 7·9 0·3134 I ·01903 ·01883 •01864 ·01845 ·01826 ·01807 •01788 ·01769 ·01750 ·01731 ·01712 8·0 0·3046 ·01457 ·01442 ·01428 ·01413 ·01399 ·01384 ·01369 ·01355 ·01340 ·01326 ·01311 

8·1 0·2962 ·01104 •01093 ·01082 ·01071 ·01060 ·01049, ·01038 ·01027 ·01016 ·01005 ·00993 8·2 0·2882 ·00828 ·00819 •00811 ·00803 ·00795 ·00786 ·00778 ·00770 ·00762 ·00753 ·00745 8·3 0·2806 ·00614 ·00608 ·00602 ·00596 ·00590 ·00583 ·00577 ·00571 ·00565 ·00559 ·00553 8-4 0·2734 ·00451 ·00446 ·00442 •00437 ·00433 ·00428 ·00424 ·00419 ·00415 ·00410 ·00406 8·5 0·2666 ·00327 ·00324 ·00321 ·00318 ·00314 ·00311 ·00308 ·00305 ·00301 ·00298 ·00205 

8·6 0·2600 ·00235 ·00233 ·00231 ·00228 ·00226 ·00224 ·00221 ·00219 ·00217 ·00214 ·00212 8·7 0·2538 ·00167 ·00166 ·00164 ·00162 ·00161 ·00159 ·00157 ·00156 ·00154 ·00152 ·00150 8·8 0·2478 ·00118 ·00117 •00116 ·00114 ·00113 ·00112 ·00111 ·00110 ·00108 ·00107 •00106 8·9 0·2421 ·00082 ·00081 ·00080 ·00080 ·00079 ·00078 ·00077 ·00076 ·00076 ·00075 ·00074 9·0 0·2367 ·00056 ·00056 ·00055 ·00055 ·00054 ·00054 ·00053 ·00053 ·00052 •00051 ·00051 



y Q/Z 11 12 13 14 15 16 17 18 19 20 

H 5034 
1-2 3425 
1·3 2354 
H 1634 
1·5 1146 ·00001 ·00001 ·00001 

1·6 811·2 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 
1-7 580·2 •00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00001 ·00001 ·00001 ·00001 
1·8 419·1 ·00005 ·00004 ·00004 ·00003 ·00003 ·00003 ·00003 ·00003 ·00002 ·00002 
1·9 305·8 ·00009 ·00008 ·00007 ·00007 ·00006 ·00006 ·00005 ·00005 ·00005 ·00004 
2·0 225·3 ·00016 ·00014 ·00013 ·00012 ·00011 ·00010 ·00010 ·00009 ·00008 ·00008 

2-1 167·69 ·00028 ·00026 ·00023 ·00022 ·00020 ·00018 ·00017 ·00016 •00015 ·00014 
2·2 126·02 ·00050 ·00045 ·00041 ·00038 ·00035 ·00033 ·00030 ·00028 ·00026 •00025 
2·3 95·63. ·00086 ·00078 ·00071 ·00066 ·00061 ·00056 ·00052 ·00049 ·00046 ·00043 
2·4 73·28 ·00145 ·00131 ·00120 ·00ll1 ·00102 ·00095 ·00088 •00083 ·00077 •00073 
2·5 56·70 ·00238 ·00217 ·00199 ·00183 ·00169 ·00157 ·00147 ·00137 ·00128 ·00121 

2·6 44·288 ·00384 ·00350 ·00321 ·00296 ·00274 ·00255 ·00237 ·00222 ·00208 ·00196 
2·7 34·923 •00604 ·00551 ·00506 ·00467 ·00433 ·00403 ·00376 ·00352 ·00331 •003ll 
2·8 27·797 ·00928 ·00849 ·00781 ·00722 ·00670 ·00624 ·00583 ·00547 ·00514 ·00484 
2·9 22·330 ·01392 ·01277 ·Oll77 ·01090 ·01014 ·00945 ·00885 ·00830 ·00780 ·00735 
3·0 18·101 ·02038 ·01875 ·01732 ·01608 ·01497 ·01399 ·013ll ·01231 ·Oll59 ·01094 

3-1 14·802 ·02910 ·02685 ·02488 ·02315 ·02160 ·02022 •01898 ·01786 ·01684 ·01590 
3·2 12·211 ·04053 ·03753 •03488 ·03254 ·03044 ·02856 ·02686 ·02531 •02390 •02261 
3·3 10·159 •05505 ·05ll7 ·04772 ·04465 ·04188 ·03939 ·03712 ·03506 •03317 ·03143 
3·4 8·521 ·07297 ·06809 ·06374 ·05982 ·05628 ·05307 ·05014 ·04745 ·04498 ·04271 
3·5 7-205 ·09441 ·08848 ·08313 ·07829 ·07389 ·06987 •06618 ·06278 ·05965 ·05674 

3·6 6·1394 ·11934 ·11232 •10595 ·10014 ·09481 ·08991 ·08540 ·08122 ·07734 •07373 
3·7 5·2705 •14753 ·13945 •13205 ·12525 •11898 ·11318 •10780 •10279 ·09812 •09376 
3·8. 4·5571 ·17854 ·16947 •16111 ·15336 •14616 ·13946 •13321 •12736 ·12187 ·11672 

~ 3·9 3·9676 ·21179 ·20185 •19260 ·18398 ·17591 •16836 ·16127 ·15460 •14831 ·14237 -.:1 
4·0 3·4770 •24656 ·23589 •22589 •21649 ·20766 ·19933 •19146 ·18402 ·17698 ·17029 .... 



~ 

TABLE II (cont.) " ~ 
Percentage natural mortality, 0 

y Q/Z 11 12 13 14 Ill 16 17 1!1 19 20 

4-1 3·0665 ·28204 ·27081 ·26020 ·25017 ·24068 •23168 ·22314 ·21501 ·20728 ·19991 
4·2 2·7206 •31742 ·30678 •29473 ·28421 •27420 ·26465 ·25654 ·24684 ·23862 •23066 
4·3 2·4276 •311186 •33998 •32864 ·31779 ·30740 ·29744 ·28789 ·27873 ·26992 ·26145 
4·4 2·1780 •38467 ·37261 ·36112 ·35008 ·33946 ·32922 ·31937 ·30986 •30069 •29184 
4·5 1·9640 ·41482 ·40292 ·39142 ·3&033 ·86960 ·35922 •84919 ·33947 ·83006 •32094 

4-6 1·7797 •44198 ·43025 •41887 ·40784 ·39713 ·88674 •37664 . ·36683 ·36729 •34802 
4·7 1·6202 •46551 ·46405 ·44289 ·43202 ·42144 ·41113 ·40109 ·39129 ·38174 ·37242 
4·8 l-4814 ·48496 ·47386 ·46299 ·46239 ·44202 •43190 ·42199 ·41231 •40284 ·39367 
4·9 1·3599 ·110001 ·48931 ·47883 ·46855 .:•·46849 ·44862 ·43894 ·42946 ·42015 •41102 
6·0 1·2533 ·51044 ·60020 •49014 •48026 •47064 ·46100 ·46162 ;44240 ·43333 ·42441 

15-1 1·1693 ·61614 ·60639 ·49680 ·48735 ·47804 •46887 ·45984 ·46094 ·44217 ·43364 
5·2 1·0759 •61709 •60787 ;49876 ·48978 ·48091 ·47216 •46363 ·45500 ·44668 ·43827 

5·3 1·0018 ·51340 ·60471 ·49612 •48762 ·47923 ·47092 ·46271 •46459 ·44667 •43863 

6·4 0·9367 •50524 •49709 ·48903 •48104 ·47313 ·46629 ·46764 ·44985 ·44224 ·43470 
5·6 0·8764 ·49289 ·48529 ·47775 ·47028 •46286 ·45551 ·44822 ·44099 ·43382 ·42671 

5·6 0·8230 ·47669 ·46963 ·46262 ·45567 ·44876 ·44190 ·43509 ·42832 ·42161 ·41494 
l'J'7 0·7749 •45706 ·45054 •44406 ·43761 •43120 ·42484 ·41851 ·41222 •40597 ·39975 
6·8 0·7313 ·43447 ·42847 ·42250 ·41656 ·41066 ·40478 ·39893 ·311311 ·38733 ·38167 
5·9 0·6917 ·40942 ·40393 ·39846 ·39302 ·38761 ·38221 ·37684 ·37149 ·36617 ·36087 

6·0 0·6557 ·38245 ·37745 ·37248 ·36752 ·36258 •35766 ·35275 ·34787 ·34300 ·33815 

6-1 0·6227 ·35410 ·34958 ·34508 ·34059 ·33611 ·33165 ·32720 ·32276 ·31834 ·31393 
6·2 0·6026 ·32493 ·32087 ·31681 ·31277 ·30874 ·30472 ·30071 ·29671 ·29272 ·28874 
6·3 0·6649 ·29546 ·29183 ·28821 ·28460 ·28099 ·27739 ·27380 ·27022 ·26664 ·26308 
6·4 0·6394 ·26620 ·26208 ·251177 ·25656 ·25335 ·26016 ·24696 ·24378 ·24060 ·23742 
6·5 0·6158 ·23760 ·23476 ·23193 ·22910 ·22628 ·22346 ·22064 ·21783 ·21502 ·21222 



.. 6·6 0·4940 ·21007 ·20759 ·20511 ·20264 ·20016 ·19770 ·19523 ·19277 ·19031 ·18785 .. .. 6·7 0·4739 ·18394 ·18179 ·17964 ·17749 ·17535 ·17320 ·17106 ·16892 ·16679 ·16465 
6·8 0·4551 ·15950 ·157M ·15580 ·15395 ·15210 ·15026 ·14841 •14657 ·14473 ·14289 
6·9 0·4376 ·13694 ·13536 ·13378 ·13220 ·13063 ·12905 ·12748· ·12591 ·12433 ·12276 
7·0 0·4214 ·ll640 ·ll506 ·ll373 ·ll239 ·lll06 ·10973 ·10840 ·10707 . ·10574 ·10441 

H 0·4062 ·09794 ·09682 ·09570 ·09458 ·09347 ·09235 ·09123 ·09012 ·08900 ·08789 
7·2 0·3919 ·08157 ·08064 ·07971 ·07878 ·07786 ·07693 ·07600 ·07508 ·07415 ·07323 
7·3 0·3786 ·06724 ·06647 ·06571 ·06495 ·06419 ·06342 ·06266 ·06190 ·06ll4 ·06038 
7·4 0·3661 ·05485 ·05423 ·05361 ·05299 ·05237 . ·05175 ·05ll3 ·05051 •04989 ·04927 
7·5 0·3543 ·04428 ·04378 ·04328 ·04278 ·04228 ·04178 ·04128 ·04078 ·04028 ·03978 

7·6 0·3432 ·03537 ·03498 ·03458 ·03418 ·03378 ·03338 ·032981 ·03258 ·03218 ·03178 
7·7 0·3327 ·02796 ·02765 ·02733 ·02702 ·02670 ·02639. ·02607 ·02576 ·02544 . ·02513 
7·8 0·3228 ·02187 ·02163 ·02138 ·02114 ·02089 ·02064 ·02040 ·02015 ·01990 ·01966 
7·9 0·3134 ·01693 ·01674 ·01655 ·01636 ·01617 ·01598 ·01579 •01560 ·01541 ·01521 
8·0 0·3046 ·01297 •01282 ·01267 ·01253 ·01238 ·01224 ·01209 ·01194 ·01180 ·Oll65 ... 
g.} 0·2962 ·00982 ·00971 ·00960 ·00949 ·00938 ·00927 ·00916 ·00905 ·00894 ·00883 
8·2 0·2882 ·00737 ·00728 ·00720 ·00712 ·00704 ·00695 ·00687 ·00679 ·00670 ·00662 
8·3 0·2806 ·00547 ·00540 ·00534 ·00528 ·00522 ·00516 ·00510 ·00504 ·00497 ·00491 
8·4 0·2734 ·00401 ·00397 ·00392 ·00388 ·00383 ·00379 ·00374 ·00370 ·00365· ·00361 
8·5 0·2666 ·00291 ·00288 ·00285 ·00282 ·00278 ·00275 ·00272 ·00269 ·00265 •00262 

8·6 0·2600 ·00209 ·00207 ·00205 ·00202 ·00200 ·00198 ·00195 ·00193 ·00191 ·00188 
8·7 0·2538 •00149 ·00147 ·00145 ·00144 •00142 ·00140 ·00139. ·00137 ·00135 ·00134 
8·8 0·2478 ·00105 ·00104 ·00103 ·00101 •00100 ·00099 ·00098 ·00097 ·00096 ·00094 
8·9 0·2421 ·00073 ·00072 •00071 ·00071 ·00070 ·00069 ·00068 ·00067 ·00067 ·00066 
11·0 0·2367 ·00050 ·00050 ·00049 ·00049 ·00048 ·00047 ·00047 •00046 ·00046 ·00045. .. .. 1>:1 

-.J 
en? 
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TABLE II (cont.) " """ Percentage natural mortality, 0 

y .Q/Z 21 22 23 24 23 26 27 28 29 30 

H 11034 
1·2 3425 
1·3 2364 
1-4 1634 
1·11 1146 

1·0 811·2 ·00001 •00001 •00001 
1·7 1180·2 ·00001 ·00001 •00001 •00001 ·00001 ·00001 •00001 •00001 ·00001 ·00001 
1·8 419-1 ·00002 •00002 ·00002 ·00002 ·00002 ·00002 ·00002 •00001 •00001 ·00001 
1·9 3011·8 ·00004 •00004 •00004 •00003 •00003 ·00003 ·00003 •00003 ·00003 ·00002 
2·0 225·3 ·00007 •00007 •00007 •00006 •00006 •00006 •000011 ·000011 •000011 •000011 

2·1 ' 167-69 ·00013 ·00013 ·00012 ·00011 ·00011 •00010 ·00010 •00009 •00009 ·00008 
2·2 126·02 •00023 •00022 •00021 ·00020 •00019 •00018 ·00017 •00016 •000111 ·000111 
2·3 95·63 •00040 ·00038 ·00036 ·00084 ·00032 ·00031 ·00029 ·00028 •00026 ·000211 
2·4 73-28 ·00069 ·000611 ·00061 ·00058 ·0001111 ·000112 ·00049 •00047 •000411 ·00043 
2·11 116·70 ·00114 •00107 •00101 ·00096 ·00091 ·00086 ·00082 ·00078 ·000711 ·00071 

2·6 44-288 ·001811 ·00174 ·001611 ·001116 ·00148 ·00141 ·00134 •00127 ·00121 •00116 
2·7 84-923 ·00293 ·00277 ·00262 ·00248 ·00236 ·00224 ·00213 ·00203 ·00194 •001811 
2·8 27·797 ·004116 ·00431 ·00408 ·00387 ·00368 ·00349 •00333 ·00317 •00302 ·00288 
2·9 22·330 ·00694 •006117 ·00622 •001190 •00661 ·001133 ·001108 ·00484 ·00462 ·00441 
3·0 18·101 ·01034 •00979 •00928 ·00881 ·00838 ·00797 ·00760 •007211 ·00692 •00661 

3·1 14-802 ·0111011 •01426 ·013114 ·01287 •01224 ·01166 ·01112 ·01061 ·01014 •00969 
3·2 12·211 ·02143 ·02033 •01932 ·01838 ·017111 ·01669 ·011193 ·011122 ·0141111 ·01392 
3·3 10·1119 ·02983 ·02834 ·02697 ·021169 ·024110 ·02338 ·02234 ·02136 ·02044 ·019117 
3-4 8·1121 •04060 ·03864 ·03682 ·031112 ·033114 ·03205 ·030611 •02934 ·02810 ·02693 
3·11 7-2011 •011404 ·01Sl53 ·04918 ·04698 ·04492 ·04299 ·04117 ·039411 ·03782 ·03629 



3·6 6·1394 ·07037 ·06722 ·06427 ·06150 ·05889 ·05644 ·05412 ·05193 ·04985 ·04788 
3-7 5·2705 ·08966 ·08582 •08221 ·07881 ·07559 ·07255 ·06967 ·06605 •06435 •06189 
3·8 4·5571 ·11187 ·10730 ·10298 ·09890 ·09503 ·09136 ·08787 ·08455 ·08139 ·07838 
39 3·9676 ·13676 ·13145 ·12641 ·12163 ·11708 ·11275 ·10862 ·10468 ·10091 ·09732 
4·0 3·4770 •16394 ·15791 ·15216 ·14668 ·14145 ·13645 ·13167 ·12710 ·12271 ·11851 

H 3·0665 ·19288 ·18616 ·17974 •17360 ·16771 ·16207 ·15665 ·15145 ·14645 ·14164 
4·2 2·7206 ·22291 ·21559 ·20855 ·20180 ·19531 ·18906 ·18304 •17725 ·17166 ·16626 
4·3 2-4276 ·25331 ·24546 ·23790 ·23061 ·22358 ·21679 ·21023 ·20389 ·19776 •19182 
4·4 2·1780 ·28329 ·27503 ·26704 ·25930 ·25181 ·24456 ·23753 ·23072 ·22411 ·21769 
4·5 1·9640 ·31210 ·30352 ·29520 ·28712 ·27927 ·27165 ·26424 ·25703 ·25002 ·24319 

4·6 1·7797 ·33900 ·33022 ·32167 ·31335 ·30524 ·29734 ·28963 ·28212 ·27479 •26764 
4-7 . 1-6202 ·36332 ·35444 ·34578 . ·33731 ·32904 ·32095 ·31305 ·30533 ·29777 •29038 
4·8 1-4814 ·38450. ·37562 ·36693 ·35841 ·35007 ·34190 ·33390 •32605 •31836 ·31082 
4·9 1-3599 ·40206 ·39327 ·38464 ·37617 ·36785 ·35968 ·35166 ·34378 ·33604 ·32843 
5·0 l-2533 ·41564 ·40702 ·39853 ·39019 ·38197 ·37389 •36593 •35810 ·35039 ·34279 

H H593 •42502 •41663 ·40836 ·40020 ·39216 ·38423 ·37641 ·36870 ·36109 ·35359 
5·2 • 1·0759 ·43007 ·42196 •41396 ·40606 ·39825 ·39054 ·38292• ·37540 ·36796 ·36062 
5·3 1·0018 ·43077 ·42300 ·41532 ·40772 ·40020 ·39276 ·38540 ·37812 ·37091 ·36378 
5·4 0·9357 ·42724 •41984 ·41252 ·40526 ·39807 •39094 ·38388 ·37689 ·36996 ·36309 
5·5 0·8764 •41966 ·.U266 ·40572 ·39884 ·39201 ·38524 ·37852 •37185 ·36524 ·35868 

5·6 0·8230 ·40832 ·40174 ·39521 ·38873 ·38229 ·37590 ·36954 •36324 ·35697 •35075 
6·7 0·7749 ·39357 •38743 ·38133 ·37526 ·36923 ·36323 ·35727 ·35134 ·34545 ·33959 
5·8 0·7313 ·37584 ··37014 •36447 ·35883 ·35322 ·34763 ·34207 ·33655 •33104 •32557 
5·9 0·6917 ·35559 ·35033 ·34510 •33989 ·33470 •32954 ·32439 •31927 •31417 ·30909 
6·0 0·6557 ·33332 ·32850 ·32370 ·31892 ·31416 ·30941 ·30469 ·29997 ·29528 ·29060 

6·1 0·6227 ·30954 •30516 ·30079 ·29643 ·29209 •28776 •28344 ·27914 •27485 ·27057 .. 6·2 0·5926 ·28477 ·28081 •27686 ·27292 ·26899 ·26507 •26116 ·25726 •25337 ·24949 ,. 6·3 0·5649 •25952 . ·25596 ·25242 •24888 ·24535 •24182 •23831' ·23480 •23130 ·22780 .. 
.6·4 0·5394 ·23425 ·23109 ·22793 ·22477 ·22163 ·21848 ·21535 •21221 •20909 •20597 
6·5 0·5158 •20942 ·20662 ·20383 •20104 •19825 •19547 •19270 •18992 •18715 ·18439 

t-¢ 
o..J 
(11 



t-:1 

TABLE II (cont.) -· cr. 
. Percentage natural mortality, a . 

y I Q/Z 21 22 23 24 25 26 27 28 29 30 

·--, ·17805 ·17561 ·17073 ·16829 
6·6 0·4940 ·18540 ·18294 ·18049 ·17317 ·16586 ·16343 

6·7 . 0·4739 ·16252 ·16039 ·15826 ·15613 ·15401 ·15188 ·14976 ·14764 ·14552 ·14341 

6·8 0·4551 ·14105 ·13921 ·13738 ·13554 ·13371 ·13188 ·13005 ·12822 ·12639 ·12457 

6·9 0·4376 ·12119 ·11962 ·11805 ·11649 ·11492 ·11336 ·11179 ·11023 ·10866 ·10710 

7·0 0·4214 ·10308 ·10175 ·10042 ·09909 ·09777 ·09644 ·09512 ·09379 ·09247 ·09114 

7·1 0·4062 ·08677 ·08566 ·08455 ·08343 ·08232 ·08121 ·08010 ·07899 ·07787 ·07676 

7·2 0·3919 ·07230 ·07137 ·07045 ·06953 ·06860 ·06768 ·06675 ·06583 ·06491 ·06398 

7-3 0·3786 ·05962 ·05886 ·05809 ·05733 ·05657 ·05581 ·05505 ·05429 ·05353 ·05277 

7·4 0·3661 ·04865 ·04803 ·04741 ·04679 ·04617 ·04555 ·04493 ·04431 ·04369 ·04307 

7-5 0·3543 ·03928 ·03878 ·03828 ·03778 ·03728 ·03678 ·03628 ·03578 ·03528 ·03479 

7·6 0·3432 ·03139 ·03099 ·03059 ·03019 ·02979 ·02939 ·02899 ·02860 ·02820 ·02780 

.7-7 0·3327 ·02481 ·02450 ·02418 ·02387 ·02355 ·02324 ·02292 ·02261 ·02229 ·02198 

7·8 0·3228 ·01941 ·01917 ·01892 ·01867 ·01843 ·01818 ·01793 ·01769 ·01744 ·01720 

7·9 0·3134 ·01502 ·01483 ·01464 ·01445 ·01426 ·01407 ·01388 ·01369 ·01350 ·01331 

8·0 0·3046 ·01151 ·01136 ·01122 ·01107 ·01092 ·01078 ·01063 ·01049 ·01034 ·01019 

8·1 0·2962 ·00872 ·00861 ·00850 ·00839 ·00828 ·00817 ·00806 ·00795 ·00784 ·00773 

8·2 0·2882 ·00654 ·00646 ·00637 ·00629 ·00621 ·00612 ·00604 ·00.')96 ·005&8 ·00579 

8·3 0·2806 ·00485 ·00479 ·00473 ·00467 ·00461 ·00454 ·00448 ·00442 ·00436 ·00430 

8·4 0·2734 ·00356 ·00352 ·00347 ·00343 ·00338 ·00334 ·00329 ·00325 ·00320 ·00316 

8·5 0·2666 . ·00259 ·00255 ·00252 ·00249 ·00246 ·00242 ·00239 ·00236 ·00232 ·00229 

8·6 0·2600 ·00186 ·00184 ·00181 ·00179 ·00176 ·00174 ·00172 ·00169 ·00167 ·00165 

8·7 0·2538 ·00132 ·00130 ·00129 ·00127 ·00125 ·00124 ·00122 ·00120 ·00119 ·00117 

8·8 0·2478 ·00093 ·00092 ·00091 ·00090 ·00088 ·00087 ·00086 ·00085 ·00084 ·00083 

8·9 0·2421 ·00065, ·00064 ·00063 ·00062 ·00062 ·00061 ·00060 ·00059 ·00058 ·00057 

9·0 0·2367 ·00045 ·00044 ·00044 ·00043 ·00042 ·00042 ·00041 ·00041 ·00040 ·00040 



y Q/Z 31 32 33 34 35 36 37 38 39 40 

1·f 6034 
1·2 3425 
1·3 2364 
H 1634 
1·5 1146 

1-6 811·2 
1·7 580·2 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 

1·8 419-1 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 

1·9 305·8 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 

2·0 225·3 ·00004 ·00004 ·00004 -1004 ·00004 ·00003 ·00003 ·00003 ·00003 ·00003 

2-1 167·69 ·00008 ·00008 ·00007 ·00007 ·00007 ·00006 ·00006 ·00006 ·00006 ·00005 

2·2 126·02 ·00014 ·00013 ·00013 ·00012 ·00012 ·OOOll ·00011 ·00010 ·00010 ·00009 

2·3 95·63 ·00024 ·00023 ·00022 ·00021 ·00020 ·00019 ·00018 ·00018 ·00017 ·00016 

2·4 73·28. ·00041 ·00039 ·00037 ·00036 ·00034 ·00033 ·00031 ·00030 ·00029 ·00028 

2·5 56·70 ·00068 ·00065 ·00062 ·00059 ·00057 ·00054 ·00052 ·00050 ·00048 ·00046 

2·6 44·288 ·00111 ·00106 ·00101 ·00097 ·00092 ·00089 ·00085 ·00081 ·00078 ·00075 

2·7 34·923 ·00176 ·00169 ·00161 ·00154 ·00148 ·00142 ·00136 ·00130 ·00125 ·00120. 

2·8 27·797 ·00276 ·00263 ·00252 ·00241 ·00231 ·00221 ·00212 ·00204 ·00195 ·00188 

2·9 22·330 . ·00422 ·00403 ·00386 ·00370 ·00354 ·00339 ·00325 ~00312 ·00300 ·00288 

3·0 18·101 ·00632 ·00605 ·00579 ·00555 ·00532 ·00510 ·00489 ·00469 ·00451 ·00433 

3-1 14·802 ·00927 ·00888 ·00850 ·00815 ·00782 ·00750 ·00720 ·00691 ·00664 ·00637 

3·2 .. 12·211 ·01333 ·01276 ·01223 ·01173 ·01126 ·01080 ·01037 ·00996 ·00957 ·00920 

3·3 10·159 ·01875 •01797 ·01724 ·01654 ·01588 ·01525 ·01465 ·01408 ·01354 ·01302 

3-4 8·521 ·02582 ·02478 ·02378 ·02284 ·02194 ·02109 ·02027 ·01949 ·01875 ·01804 

3·5 7·205 ·03483 ·03345 ·03214 ·03089 ·02970 ·02856 ·02748 ·02645 ·02546 ·02451 

t.:i 
~ 
~ 
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TABLE II (cont.) ... 

CIO 
Percentage natural mortality, 0 

y Q/Z 81 82 83 84. 8/J 86 87 88 89 40 

8·6 6·1894. •04601 •04423 •04254 •04093 •03938 •03791 •03661 •03616 •03387 •03263 
8·7 11·270/J •06964. •06731 •06617 •06313 •06118 •04932 •04763 •04681 •04417 •042119 
8·8 4o·ll671 •071161 •07276 •07013 •06761 ·06620 •06289 •06067 •0118113 ·011048 •0114111 
8·9 8·9676 •09887 •090117 •08741 •08437 •08145 •07865 •071196 •07335 •07085 •06844 
4.•0 8-4770 •11447 •110119 •10087 ·10828 •09988 •09660 •09329 •09020 ·08721 •08432 

4-1 8·0665 •18701 •182611 •12825 ·12410 ·12010 •11623 •11249 •10888 •101138 •10200 
4·2 2-7206 •16106 •15003 •15116 •14646 •14191 •18751 •13324. •12910 •121109 •12120 
4·3 2-4276 •18608 •18061 •171112 •16989 •16481 •15989 •111611 •15046 •14695 •141116 

"' ll-1780 •21146 •20641 •19963 ·19382 •18826 •18286 ·177118 •17246 •16747 •16201 
H 1-9640 •236611 •23008 •22377 •21763 ·21164 ·20680 •20010 ·19464. •18911 ·18382 

4.-6 1·7797 •26066 •211384. •24719 •24069 •23433 ·22812 •22205 •21611 •21031 •20462 
4-7 1·6202 •283111 •27607 •26914 •26236 •26672 •24921 •24283 ·236119 ·23046 •22446 
4·8 1-4814 •30342 •29617 •28906 •28206 •271121 ·26848 ·26188 ·2111139 ·24902 ·24276 
4·9 Jo3699 •32096 •31361 •30638 ·29928 •29229 •28642 ·27866 •27201 •261147 •211904 
11·0 1-2633 •33632 •32796 •32070 •31366 •3061S2 •299118 •292711 ·28602 ·27938 •27284 

ll-1 1•11193 •34619 •33889 ·33168 ·324117 •317116 •31063 ·30380 ·297011 •29039 •28381 
11·2 1·0769 •35336 •34618 ·33909 •33209 •32516 ·31832 •311511 •30486 •29824 •29170 
11·3 1·0018 •35672 •34974 •34282 ·831198 •82921 ·322110 •311187 •30930 •30279 •29635 
11·4 0·9357 •35629 •34954 ·34286 ·33624 ·32967 •32317 •31672 ·31032 •30399 ·29770 
11·11 0·8764 ·35217 •34571. •33930 •33294 •32663 •32037 ·31416 •30799 ·30187 ·201180 

11·6 0·8230 •34457 •33843 ·33233 •32628 ·32026 ·31428 ·308311 ·30245 ·29659 ·29077 
11·7 0·7749 ·33377 ·32798 •32222 ·81660 •31081 •3011111 ·299113 •29393 ·28837 •2H284 
11·8 0·7313 ·82012 ·31470 •30931 •30394 •29860 ·29329 ·28800 ·28273 ·277110 ·27229 
11·9 0·6917 ·30403 ·29899 •29398 •28898 •28401 ·27906 •27413 ·26921 ·26432 ·21194.5 
6·0 0·6557 ·28594 •28129 ·27666 ·272011 ·26746 ·26288 ·25831 ·211377 ·24923 ·24472 



6·1 0·6227 ·26631 ·26206 ·25782 ·25359 ·24938 ·24518 ·24099 ·23681 ·23265 ·22850 
6·2 0·5926 ·24561 ·24175 ·23790 ·23406 ·23022 ·22640 .•22259 ·21878 ·21499 ·2ll20 
6·3 0·5649 ·22431 ·22083 ·21736 ·21390 ·21044 ·20699 ·20354 ·20010 ·19667 ·19325 
6·4 0·5394 ·20285 ·19974 ·19663 ·1935;J ·19044 ·18735 ·18426 ·18119 ·17811 ·17504 
6·5 0·5158 ·18163 ·17887 ·17612 ·17337 ·17062 ·16788 ·16514 ·16240 ·15967 ·15695 

6·6 0·4940 ·16101 ·15858 ·15616 ·15374 •15133 ·14891 ·14650 ·14410 ·14169 ·13929 
6·7 0·4739 ·14129 ·13918 ·13707 ·13496 ·13286 ·13075 ·12865 ·12655 ·1244G ·12Z36 
6·8 0·4551 ·12274 •12092 ·11910 ·11728 ·11546 ·11364 ·11182 ·11001 ·10819 ·10638 
6·9 0·4376 ·10554 ·10398 •10242 ·10086 ·09931 ·09775 •09619 ·09464 ·09309 ·09153 
7·0 0·4214 •08982 ·08850 ·08718 ·08586 ·08454 ·08322 ·08190 ·08058 ·07926 •07794 

7-1 0·4062 ·07565 ·07454 ·07343 ·07232 ·07122 ·070ll ·06900 ·06789 ·06679 ·06568 
7·2 0·3919 ·06306 ·06214 ·06121 ·06029 ·05937 ·05845 ·05753 ·05661 ·05569 ·05477 
7·3 0·3786 ·05201 ·05125 ·05049 ·04974 •04898 ·04822 ·04746 ·04670 ·04594 ·04519 
7·4 0·3661 ·04245 ·04183 ·04122 ·04060 ·03998 ·03936 ·03874 ·03812 ·03751 ·03689 
7·5 0·3543 •03429 ·03379 ·03329 ·03279 ·03229 ·03179 ·03129 ·03079 ·03030 ·02980 

7·6 0·3432 ·02740 ·02700 •02660 ·02620 ·02581 ·02541 ·02501 ·02461 ·02421 ·02382 
7-7 0·3327 ·02166 ·02135 ·02103 ·02072 ·02041 ·02009 ·01978 ·01946 ·01915 ·01883 
7·8 0·3228 ·01695 ·01670 ·01646 ·01621 •01597 ·01572 ·01547 ·01523 ·01498 ·01474 
7·9 0·3134 ·01312 •01293 ·01274 ·01255 ·01236 ·01217 ·01198 ·Oll79 ·Oll60. ·01141 
8·0 0·3046 ·01005 ·00990 ·00976 ·00961 •00947 ·00932 ·00917 ·00903 ·00888 ·00874 

8-1 0·2962 ·00762 ·00750 ·00739' ·00728 ·00717 ·00706 ·00695 •00684 ·00673 ·00662 
8·2 0·2882 ·005'H •00563 ·00554 ·00546 •00538 ·00530 ·00521 •00513 ·00505 ·00497 
8·3 0·2806 ·00424 ·00418 ·004ll •00405 ·00399 ·00393 ·00387 ·00381 . ·00375 ·00368 
8-4 0·2734 ·00311 ·00307 ·00302 ·00298 •00293 ·00289 ·00284 ·00279 ·00275 ·00270 
8·5 0·2666 ·00226 •00223 ·00219 ·00216 . •00213 ·00210 ·00206 ·00203 ·00200 ·00196 

8·6 0·2600 ·00162 •00160 ·00158 ·00155 ·00153 ·00151 ·00148 •00146 ·00144 ·00141 
8·7 0·2538 •00ll5 •00ll4 ·00112 ·OOIIO . •00109 ·00107 ·00105 •00104 ·00102 ·00100 
8·8 0·2478 ·00081 •00080 •00079 ·00078 ·00077 ·00075 ·00074 ·00073 ·00072 •00071 
8·9 0·2421 •00057 . •00056 ·00055 ·00054 •00053 ·00053 ·00052 ·OOOIH ·00050 •00049 
0·0 0·2367 ·00039 •00038 ·00038 •00037 ·00037 ·00036 ·00036 ·00035 ·00034 •00034 

t-.:.. ._. 
I am indebted to the Editors of the Annal.t of Applied Biology for permiBBion to reproduce the first two sections of this table.-- CQ 
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TABLE II (cont.) 0 

Percentage natural mortality, 0 
y Q/Z 41 42 43 44 4~ 46 47 48 49 110 ----------
J.8 419·1 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 •00001 
1·9 305·8 ·00002 •00001 ·00001 •00001 ·00001 •00001 ·00001 ·00001 ·00001 ·00001 
2·0 221.i·3 ·00003 ·00003 •00003 •00002 ·00002 ·00002 •00002 ·00002 •00002 ·00002 

2·1 167·69 ·00005 ·00005 ·00005 ·0000:5 ·00004 ·00004 ·00004 ·00004 ·00004 ·00004 
2·2 126·02 ·00009 ·00009 ·00008 ·00008 ·00008 . ·00007 ·00007 ·00007 ·00007 ·00006 
2·3 911·63 ·00016 ·00015 ·00014 ·00014 ·00013 ·00013 ·00012 ·00012 ·00011 •00011 
2·4 73·28 ·00026 •00025 ·00024 ·00023 ·00023 ·00022 ·00021 ·00020 ·00019 ·00018 
2·5 66·70 ·00044 ·00042 ·00041 ·00039 ·00038 •00036 ·00035 ·00033 ·00032 ·00031 

2·6 44·21!!8 ·00072 ·00069 ·00066 ·00064 ·00061 ·00059 ·00056 ·0005-& ·00052 ·00050 
2·7 34 923 ·00115 •00110 •00106 ·00102 ·00098 ·00094 •00090 •00087 ·0001!!3 •OOORO 
2·8 27·797 ·00180 •00173 ·00166 ·00160 ·00153 ·00147 ·00142 ·00136 •00131 ·00126 
2·9 22·330 ·00276 ·00265 ··00255 ·00245 ·00236 ·00226 ·00218 ·00209 ·00201 ·00194 
3·0 11!!·101 ·00416 ·00399 ·00384 ·00369 ·00355 ·00341 ·00328 ·00316 ·00303 •00292 

3·1 14·802 ·00613 ·00589 ·00566 ·00544 ·00523 ·00503 ·00484 •00466 ·00448 ·00431 
3·2 12·211 ·00885 ·00851 ·00818 ·00787 ·00757 ·00728 ·00701 •00674 ·00649 ·00624 
3·3 10·159 ·01252 ·01204 ·01159 ·01115 ·01073 •01033 ·00994 •00957 ·00921 ·0081:16 
3·4 8·521 ·01736 ·01671 ·01609 ·01549 ·01491 ·01436 ·01382 ·01331 ·01282 ·01234 
3·5 7·205 ·02360 ·02273 ·02189 ·02109 ·02031 ·01957 ·01885 ·01816 ·01749 ·01685 

ll·6 6·1394 ·03144 ·03030 ·02920 ·02815 ·02713 ·02615 ·02521 ·02429 ·023-&2 ·02257 
3·7 5·2705 ·04107 ·03961 ·03820 ·03684 ·03554 ·03427 ·03306 ·03188 •03074 ·02964 
3·8 4·5571 ·05261 •Oli078 ·04901 ·..04730 ·04566 ·04407 ·04253 ·04105 ·03961 ·03821 
3·9 3•9676 ·06611 ·06386 ·06169 ·Oli959 ·05757 ·05560 ·05370 ·05186 ·05008 ·04836 
4·0 3·4770 ·08153 ·07883 ·07622 ·07369 ·07124 ·06887 ·06657 ·06433 ·06217 ·06006 



H 3·0665 ·09872 ·09554 ·09246 ·08948 ·08658 ·08376 ·08103 ·07838 ·07579 ·07328 

4·2 2·7206 ·11743 ·11376 ·11020 ·10674 •10337 ·10010 ·09692 ·09382 ·09080 ·08786 

4·3 2·4276 ·13729 ·13314 ·12910 ·12516 ·12133 ·11759 ·11395 ·11040 ·10694 ·10357 

4·4 2·1780 ·15787 ·15325 ·14874 ·14434 ·14005 ·13587 ·13178 ·12778 ·12388 ·12007 

4·5 1·9640 ·17864 ·17359 ·16865 ·16382 ·15910 ·15448 ·14997 ·14555 ·14122 ·13699 

4·6 1·7797 ·19906 ·19362 ·18829 ·18307 ·17796 ·17295 ·16804 ·16323 ·15852 ·15390 

4·7 1-6202 ·21857 ·21280 ·20713 ·20158 ·19612 ·19077 ·18552 ·18036 ·17530 ·17032 

4·8 1-4814 ·23662 ·23058 ·22464 ·21881 ·21307 ·20744 ·20189 ·19644 ·19108 ·18581 

4·9 1·3599 ·25270 ·24647 ·24033 ·23428 ·22833 ·22247 ·21670 ·21102 ·20542 ·19990 

6·0 1·2533 ·26639 ·26003 ·25376 ·24757 ·24148 ·23546 ·22953 ·22368 ·21790 ·21221 

IS-I l-1593 ·27732 ·27091 ·26458 ·25832 ·25215 ·24605 ·24002 ·23407 ·22819 ·22237 

6·2 1·0759 ·28524 ·27884 ·27252 ·26626 ·26008 ·25396 ·24790 ·24192 ·23599 ·23013 

6·3 1·0018 ·28998 ·28366 ·27741 ·27122 ·26509 ·25901 ·25300 ·24704 ·24114 ·23530 

5·4 0·9357 ·29148 ·28530 ·27918 •27311 ·26709 ·26113 ·25521 •24935 ·24353 ·23776 

5·5 0·8764 ·28977 ·28379 ·27785 ·27196 •26611 ·26031 ·25454 ·24882 ·24314 ·23751 

6·6 0·8230 ·28499 ·27925 ·27354 ·26787 ·26224 ·25664 ·25108 ·24555 ·24006 ·23461 

6·7 0·7749 ·27734 ·27187 ·26644 ·26103 ·25565 ·25030 ·24499 ·23970 ·23444 ·22921 

5·8 0·7313 ·26710 ·26194 ·25680 ·25169 ·24660 ·24154 ·23650 ·23149 ·22650 ·22153 

5·9 0·6917 ·25460 ·24977 ·24496 ·24017 ·23539 ·23064 ·22591 ·22120 ·21650 ·21183 

6·0 0·6557 ·24022 ·23573 ·23127 ·22681 ·22238 ·21795 ·21355 ·20916 ·20478 ·20042 

6·1 0·6227 ·22436 ·22023 ·21611 ·21201 ·20792 ·20384 ·19977 •19572 •19167 •18764 

6·2 0·5926 ·20742 ·20366 ·19990 ·19615 ·19241 ;18868 ·18496 ·18125 ·17755 ·17385 

6·3 0·5649 . ·18984 ·18643 ·18302 ·17963 ·17624 ··17286 ·16949 ·16612 ·16276 ·15940 

6·4 0·5394 ·17198 ·16892 ·16587 ·16282 ·15978 ·15674 ·15371 ·15068 ·14766 ·14464 

6·5 0·5158 ·15422 ·15150 ·14879 ·14608 ·14337 ·14066 •13796 ·13527 ·13257 ·12989 

6·6 0·4940 ·13689 ·13450 ·13210 ·12971 ·12732 ·12494 ·12255 ·12017 ·11780 ·11542 

6·7 0·4739 ·12026 ·11817 ·11608 ·11399 ·11191 ·10982 ·10774 ·10566 ·10358 ·10150 

6·8 0·4551 ·10457 ·10276 ·10095 ·09914 ·09734 ·09553 ·09373 ·09193 . ·09013 ·08833 

6·9 0·4376 ·08998 ·08843 ·08688 ·08533 ·08378 ·08224 :08069 ·07914 ·07760 ·07606 
N> 

7·0 0·4214 ·07663 ·07531 ·07400 ·07268 ·07137 ·07005 •06874 ;06743 ·06611 ·06480 00 ..... 



~ 
00 
~ 

TABLE II (cont.) 
Percentage natural mortality, 0 

y Q/Z 41 42. 43 44 45 46 47 48 49 50 

7-1 0·4062 ·06457 ·06347 ·06236 ·06126 ·06015 ·05905 ·05794 ·05684 ·05574 ·00463 
7·2 0·39111 ·05384 ·05292 ·05201 ·05109 ·05017 ·04925 ·04833 ·04741 ·04649 ·04557 
7·3 0·3786 ·04443 ·04367 ·04291 ·04215 ·04140 ·04064 ·03988 ·03913 ·03837 ·03761 
7·4 0·3661 ·03267 ·03565 ·03504 ·03442 ·03380 ·03318 ·03257 ·03195 ·03133 ·03072 
7·5 0·3543 ·02930 ·02880 ·02830 ·02780 ·02731 ·02681 ·02631 ·02581 ·02531 ·02482 

7·6 ., 0·3432 ·02342 ·02302 ·02262 ·02222 ·02183 ·02143 ·02103 ·02063 ·02023 ·01984 
7·7 0·3327 ·01852 ·01820 ·01789 ·01757 ·01726 ·01695 ·01663 ·01632 ·01600 ·01569 
7·8 0·3228 ·01449 ·01424 ·01400 ·01375 ·01351 •01326 ·01301 ·01277 ·01252 ·01228 
7·9 0·3134 ·Oll22 ·OII03 ·01084 ·01065 ·01046 ·01026 ·01007 ·00\188 •00!169 •00950 
8·0 0·3046 ·00859 ·00845 ·00830 ·00815 ·00801 ·00786 ·00772 ·00757 ·00743 ·00728 

8·1 0·2962 ·00651 ·00640 ·00629 ·00618 ·00607 ·00596 ·00585 ·001)74 ·00563 ·00552 
8·2 0·2882 ·00488 ·00480 ·00472 ·00463 •00455 ·00447 ·00439 ·00430 ·00422 ·00414 
8·3 0·2806 ·00362 ·00356 ·00350 ·00344 ·00338 ·00332 ·00325 ·00319 ·00313 ·00307 
8·4 0·2734 ·00266 ·00261 ·00257 ·00252 ·00248 ·00243 ·00239 ·00234 ·00230 ·00225 
11·5 0·2666 ·00193 ·00190 ·00187 ·00183 ·00180 ·00177 ·00174 ·00170 ·00167 ·00164 

8·6 0·2600 ·00139' ·00136 ·00134 ·00132 ·00129 ·00127 ·00125 ·00122 ·00120 ·00118 
8·7 0·2538 ·00099 ·00097 ·00095 ·00094 ·00092 ·00090 •00089 ·00087 ·00085 ·00084 
8·8 0·2478 ·00070 ·00068 ·00067 ·00066 ·00065 ·00064 ·00062 ·00061 ·00060 ·00059 
8·9 0·2421 ·00048 ·00048 ·00047 ·00046 ·00045 ·00044 ·00044 ·00043 ·00042 ·00041 
9·0 0·2367 ·00033 ·00033 ·00032 ·00032 ·00031 ·00031 ·00030 ·00029 ·00029 ·00028 



y QJZ 51 52 53 54- 55 56 57 58 59 60 

1·8 419·1 ·00001 ·00001 •00001 
1·9 305·8 ·00001 •00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 •00001 ·00001 
2·0 2:.!a·3 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00001 ·00001 ·00001 ·00001 

2-l 167-69 ·00003 ·00003 ·00003 ·00003 ·00003 ·00003 ·00003 ·00003 ·00002 ·0000:.! 
2·2 126·02 ·00006 ·00006 ·00006 ·00005 ·00005 ·00005 ·00005 ·00005 ·00004 ·00004 
2·3 95·63 ·00010 ·00010 •00010 ·00009 ·00009 ·00009 ·00008 ·00008 ·00008 ·00007 
2·4 73·28 ·00018 ·00017 ·00016 •00016 ·00015 ·00015 ·00014- ·00013 ·00013 ·00012 
2·5 56·70 ·00030 ·00028 ·00027 ·00026 ·00025 ·00024 ·00023 ·00022 ·00021 ·00021 

2·6 44·288 ·00048 ·00046 ·00045 ·00043 ·00041 ·00039 ·00038 ·00036 ·00035 ·00034 
2·7 34·923 ·00077 •00074 ·00071 ·00068 ·00066 ·00063 ·00061 ·00058 ·00056 ·00054 
2·8 27-797 ·00121 ·00116 ·00112 ·00107 ·00103 ·00099 ·00095 ·00091 ·00088 ·00084 
!!·9 22·330 ·00186 ·00179 ·00172 ·00165 ·00159 ·00153 ·00147 ·00141 ·00135 ·00130 
3·0 18·101 ·00280 ·00270 ·00259 ·00249 ·00240 ·00230 •00221 ·00213 ·00204 ·00196 

3-1 14·802 ·00414 ·00399 ·00383 ·00369 ·00354 ·00341 ·00327 ·00314 ·00302 ·00290 
3·2 12·211 ·00600 ·00578 ·00556 ·00534 ·00514 ·00494 ·00475 ·00456 ·00438 ·00421 

3·3 10·159 ·00853 ·00821 ·00790 ·00760 ·00731 ·00703 ·00676 ·00649 ·00624 ·00599 
3·4 8·521 ·Oll88 ·01144 ·01101 ·01059 ·01019 ·00981 ·00943 ·00907 ·00871 ·00837 

3·5 7·205 ·01623 ·01563 ·01505 ·01449 ·01395 ·01342 ·01291 ·01242 ·01194 ·01147 

3·6 6·1394 ·02174 ·02095 ·02018 ·0194-4- ·01872 ·01802 •01734 ·01668 ·01605 ·01543 

3·7 5·2705 ·02858 ·02755 ·02655 ·02.'l59 ·02465 ·02374 ·02286 ·02200 ·02117 ·02036 
3·8 4·5571 ·03686 ·03556 ·03429 ·03306 ·03186 ·03070 •02958 ·02848 •02742 ·02638 

3·9 3·9676 ·04667 ·04504 ·04346 ·04193 ·04044 ·03899 ·03758 ·03620 ·03487 ·03357 
4·0 3·4770 ·05802 ·05603 ·05410 ·05222 •05040 ·04862 ·04689 ·04520 •04356 ·04196 

4-1 3·0665 ·07084- ·06847 ·06615 ·06390 ·06170 ·05956 ·05748 ·05545 •05346 ·05153 
4-2 2·7206 ·08500 ·08221 ·07949 ·07684 ·07425 ·07172 ·06926 ·06685 ·06450 ·06220 
4·3 2·4276 ·10027 ·09705 ·09391 ·09084 ·08785 ·084-92 ·08206 ·07926 ·07652 ·07384 
4·4 2·1780 ·11634 ·11270 ·10914 ·10565 ·10224 ·09890 ·09563 ·09244 ·08930 ·08623 
4-5 1·964-0 ·13285 ·12879 ·12481 •12092 ·11710 ·11336 ·10970 ·10610 ·10258 ·09912 t-:) 

00 
~ 



~ 

TABLE II (cont.) co 

""' Percentage natural mortality, 0 
y Q/Z IH 52 153 154 1515 156 157 158 159 60 

4-6 1·7797 ·14936 •14491 •140.515 ·13627 •13207 ·12794 •12390 •11992 ·11602 •11218 
4·7 1·6202 ·16644 ·16061 ·161592 ·115129 ·14673 •142215 •13785 ·13362 •12926 •12507 
4·~ 1-4!114 ·18062 ·17651 •17049 •1611114. •16067 •16588 ·15116 •14652 •14194 ·13744 
4·!1 1·35011 ·19447 ·181Jll •18383 ·171!63 ·17350 •161144 •16346 •161!54 •16369 •14!191 
IHJ 1·2533 ·20608 •20104 •111556 •19016 •18482 •171156 ·17436 •161123 •16416 ·16915 

15·1 1·1111l3 ·21663 ·210!l6 •20535 •19081 ·10433 •18891 •183116 ·17827 ·17304 •16787 
15·2 1-0759 ·22434 ·21860 ·21292 •20730 •20171S ·19624 •19080 •181541 ·18007 ·17470 
11·3 1·0018 ·22051 . •22377 ·21809 •21246 ·20688 ·20135 ·191588 ·19045 ·181508 •179715 
15·4 O·llM7 ·23204 ·2:!636 ·22074 ·21516 ·20962 •20413 •l!lH68 ·19328 ·187112 •18261 
15·11 0·8764 ·23101 ·22636 ·22084 ·21536 •209!l3 ·20453 ·10917 ·1931!15 ·188156 ·18332 

IH 0·8230 ·221110 ·22380 •21845 ·21313 ·20783 ·20259 •111737 •19218 ·18703 ·18191 
6·7 0·7749 ·2:!401 •21884 ·21369 ·20858 ·20349 •19H43 ·19340 •18H3U ·18341 •17H46 
6·8 0·7313 ·21658 ·21166 ·20677 ·201811 •19704 ·19221 ·187-&1 •1H2112 •177H6 ·17312 
5·11 0·61ll7 ·20717 ·20253 ·111791 ·19331 ·18873 ·1!1417 ·171162 •17501) ·170119 ·161109 
6·0 0•65117 ·111607 ·1917-i ·18742 •11!312 •17884 •17456 •17030 •16606 ·16183 ·15762 

6·1 0·6227 ·18311:! ·171161 ·1756:! ·17163 ·16766 •16370 •15074 ·15580 •15188 ·14706 
6·2 0·5026 ·17017 ·166411 ·16:!8:! ·15917 ·15M2 •111188 ·141!25 ·14411:! ·14101 ·13740 
6·3 0·51140 ·15606 ·15:!72 ·141l38 ·14606 ·1427.& ·13943 ·131112 ·13282 ·120.~3 ·12624 
6·4 0·53!14 ·14163 ·13!1112 ·135112 ·13:!62 ·12!l!l3 ·120116 ·12:Jtltl ·1:!009 ·11771 ·11.&75 
6·;' O·lH.~8 ·127:!0 ·124.'~:! ·1218.& ·1llll6 ·116.&0 ·1131!3 ·11116 ·10H.}0 •105H5 ·10319 

6·11 0·41-140 ·1130., ·ll068 ·10831 ·10505 ·103.>9 ·10123 •09887 ·096.i2 •09417 ·09182 
6·7 0·4730 •0!1\14:! •Oil73.~ ·00.328 •(1!1321 ·01111.& •08\IOH ·08701 •OH-1115 ·08:!!10 •080H3 
6·!1 0·4.iii1 ·0Hti.i3 ·OH-li3 ·0829.& ·081\o& ·07113.) ·077.)11 ·07;n7 ·ll731l8 ·07:!19 ·070-10 
!HI 11·43711 ·1174.;1 ·Oi::!!l7 ·Oil-13 ·011\lHil ·0118:!., •Oflt\S1 •OM:!R ·0113H ·00:!:!0 ·061167 
7-(1 0·4214 •111134\l ·06:!18 ·116087 ·0(i!l,i6 ·O.iS:!II ·O.'iiiUJ ·11556-& ·05-&3-i ·05303 ·0317Z 



7-1 0·4062 ·05353 ·05243 ·05133 ·05023 ·04913 ·04803 ·04693 ·04583 ·04473 ·04363 
7·2 0·3919 ·04466 ·04374 ·04282 ·04190 ·04099 ·04007 ·03916 ·03824 ·03732 ·03641 
7-3 0·3786 ·03686 ·03610 ·03535 ·03459 ·03383 ·03308 ·03232 ·03157 ·03081 ·03006 
7·4 0·3661 ·03010 ·02948 ·02887 ·02825 ·02763 ·02702 ·02640 ·02578 ·02517 ·02455 
7-/S 0·3543 ·02432 ·02382 ·02332 ·02283 ·02233 ·02183 ·02133 ·02084 ·02034 . ·01984 

7·6 0·3432 ·01944 ·01904 ·01864 ·01825 ·01785 ·01745 ·01705 ·01666 ·01626 ·01586 
7·7 0·3327 ·01537 ·01506 ·01475 ·01443 ·01412 ·01380 ·01349 ·01317 ·01286 ·01255 
7·8 0·3228 ·01203 ·01179 ·01154· ·Oll29 ·Oll05 ·01080 ·01056 ·01031 ·01006 ·00982 
7·9 0·3134 ·00931 ·00912 ·00893 ·00874 ·00855 ·00836 ·00817 . :00798 ·00779 ·00760 
8·0 ' 0·3046 ·00713 ·00699 ·00684 ·00670 ·00655 ·00641 ·00626 ·00611 ·00597 ·00582 

8-1 0·2962 ·00541 ·00530 ·00519 ·00508 ·00497 ·00485 ·00474 ·00463 ·00452 ·00441 
8·2 0·2882 ·00405 ·00397 ·00389 ·00381 ·00372 ·00364 ·00356 ·00348 ·00339 ·00331 
8·3 0·2806 ·00301 ·00295 ·00289 ·00282 ·00276 ·00270 ·00264 ·00258 ·00252 ·00246 
8·4 0·2734 ·00221 ·00216 ·00212 ·00207 ·00203 ·00198 ·00194 ·00189 ·00185 ·00180 
8·5 0·2666 ·00160 ·00157 ·00154 ·00151 ·00147 ·00144 ·00141 ·00138 ·00134 ·00131 

8·6 0·2600 ·OOII5 ·00113 ·00111 ·00108 ·00106 ·00104 ·00101 ·00099 ·00096 ·00094 
8·7 0·2538 ·00082 ·00080 ·00079 ·00077 ·00075 ·00074 ·00072 ·00070 ·00069 ·00067 
8·8 0·2478 ·00058 ·00057 ·00055 ·00054 ·00053 ·00052 ·00051 ·00050 ·00048 ·00047 
8·9 0·2421 ·00040 ·00039 ·00039 ·00038 ·00037 ·00036 •00035 ·00034 ·00034 ·00033 
9·0 0·2367 ·00028 ·00027 ·00027 ·00026 ·00025 ·00025 ·00024 ·00024 ·00023 ·00023 



~ 
00 
~ 

TABLE II (cont.) 
Percentage natural mortality, 0 

y Q/Z 61 62 63 64 65 66 67 68 69 70 

)o{} 305·8 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 
2·0 225-3 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 

2-1 167-69 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 
2·2 126·02 ·00004 ·00004 ·00004 ·00004 ·00003 ·00003 ·00003 ·00003 ·00003 ·00003 
2·3 95·63 ·00007 ·00007 •00006 ·00006 •00006 ·00006 ·00005 ·00005 ·00005 ·00005 
2·4 73-28 ·00012 •OOOll ·00011 ·00010 ·00010 ·00010 •00000 ·00000 ·00008 ·00008 
2·5 56·70 ·00020 •00019 ·00018 ·00017 •00017 ·00016 ·00015 ·00015 ·00014 ·00013 

2·6 44-288 ·00032 ·00031 ·00030 ·00028 ·00027 ·00026 ·00025 ·00024 ·00023 ·00022 
2·7 34·923 ·00052 ·00049 ·00047 •00045 ·00043 ·00042 •00040 ·00038 ·00036 ·00035 
2-8 27·707: ·00081 ·00078 ·00074 ·00071 ·00068 ·00065 ·00062 ·00060 ·00057 ·00054 
2·9 22·330 ·00125 ·00119 ·00ll4 ·OOllO ·00105 ·00101 ·00096 ·000112 ·00088 ·00084 
3·0 18·101 ·00188 ·00180 ·00173 ·00166 ·00159 ·00152 ·00145 ·001311 ·00133 ·00127 

3-1 14·802 ·00278 ·00267 ·00256 ·00245 ·00235 ·00225 ·00215 ·00206 ·00197 ·00188 
3·2 12-2ll ·00404 •00388 ·00372 ·00356 ·00342 ·00327 ·00313 ·002!10 ·00286 •00273 
3·3 10·150 ·00575 ·00552 ·00530 ·00508 •00487 ·00466 ·00446 ·00427 ·00408 ·00389 
3-4 8·521 ·00804 ·00772 . ·00741 ·00710 ·00681 ·00652 ·00624 ·00597 ·00571 ·00545 
3·5 7·205 •01102 ·01058 ·01016 ·00975 ·00934 ·00895 ·00!!57 ·00820 ·00784 ·00749 

3·6 6·1394 ·01483 ·01424 ·01367 ·01312 ·01258 ·01206 ·01155 ·01106 ·01057 ·01010 
3·7 5·2705 ·01958 ·01881 ·01807 . ·01735 ·01664 ·01595 ·01529 ·01463 ·01400 ·01338 
3·8 4·5571 ·02538 ·02440 ·02344 ·02251 ·02161 ·02072 ·01986 ·01902 ·01820 ·01740 
3·9 3·9676 ·03230 ·03107 ·02987 ·02!!70 ·02755 ·02644 ·02535 ·02429 ·02325 ·02224 
4·0 3·4770 ·04039 ·03887 ·03739 ·03594 ·03452 ·Ojl314 ·03179 ·03047. ·02919 ·02793 



H 3·0665 ·04964 ·04779 ·04599 ·04423 ·04251 ·04083 ·03919 ·03758 ·03601 ·03447 

4·2 2·7206 ·05996 ·05776 ·05562 ·05352 ·05146 ·04946 ·04749 ·04557 ·04368 ·04184 

4·3 2·4276 ·07122 ·06865 ·06614 ·06368 •06128 ·05892 ·06661 ·05434 ·05212 ·04995 

4·4 2·1780 ·08323 •08028 ·07739 ·07456 ·07178 ·06906 ·06639 ·06377 ·06120 ·05867 
4·5 1-9640 ·09572 ·09240 ·08913 ·08592 ·08277 ·07968 ·07664 ·07366 ·07073 ·06785 

4·6 1·7797 ·10841 ·10471 ·10107 ·09750 ·09398 ·09053 ·08713 ·08379 ·08050 ·07727 

4·7 1-6202 ·12095 ·11690 ·11291 ·10899 ·10513 ·10132 ·09758 ·09389 ·09026 ·08669 

4·8 1·4814 ·13300 ·12863 ·12432 ·12007 ·11589 ·11177 ·10770 ·10370 ·09975 ·09585 
4·9 1-3599 ·14420 ·13954 ·13496 ·13043 •12596 ·12155 ·11720 ·11291 ·10867 ·10449 

6·0 1·2533 ·15421 ·14933 ·14451 ·13975 ·13504 ·l3039 ·12580 ·12126 ·11678 ·11234 

6-1 J.l593 ·16275 ·15769 ·15269 ·14775 ·14285 ·13802 ·13323 •12850 ·12381 ·11918 
6·2 1·0759 ·16957 ·16439 ·15927 ·15419 ·14917 ·14420 ·13927 ·13440 ·12957 ·12478 

6·3 1·0018 ·17447 ·16923 ·16405 ·15891 ·15381 ·14876 ·14375 •13879 ·13387 ·12899 
5·4 0·9357 ·17733 ·17210 ·16691 ·16176 ·15665 ·15158 ·14655 ·14156 ·13661 ·13169 
5·5 0·8764 ·17811 ·17293 ·16780 ·1627C ·15763 ·15260 ·14760 ·14264 ·13771 ·13281 

5·6 0·8230 ·17681 ·17175 ·16672 ·16172 ·15675 ·15181 ·14690 ·14202 ·13717 ·13235 
5·7 0·7749 ·17353 •16863 ·16376 ·15891 •15409 ·14929 ·14452 ·13977 ·13505 ·13035 
5·8 0·7313 ·16840 ·16371 ·15903 ·15438 ·14975 ·14514 ·14055 ·13598 ·13143 ·12690 
5·9 0·6917 ·16162 ·15716 . ·15273 ·14831 •14390 ·13952 ·13515 ·13080 ·12646 ·12214 
6·0 0·6557 ·15342 ·14923 ·14506 ·14090 ·13676 ·13263 ·12851 ·12441 ·12032 ·11624 

6-1 0·6227 ·14405 ·14016 ·13628 ·13240 ·12854 ·12469 ·12085 ·11702 ·11321 ·10940 
6·2 0·5926 •13381 ·13022 ·12664 ·12307 ·11951 ·11595 ·11241 ·10887 ·10534 ·10182 
6·3 . 0·5649 ·12296 ·11969 ·11642 ·11316 ·10991 ·10666 ·10342 ·10018 ·09696 ·09374 
6·4 0·5394 ·11179 ·10883 ·10588 ·10293 ·09999 ·09705 ·09412 ·09119 ·08827 ·08535 
6·6 0·5158 ·10055 ·09790 ·09526 ·09262 ~08999 ·08736 ·08473 ·08211 ·07948 ·07687 

6·6 0·4940 ·08947 ·08713 ·08479 ·08245 ·08012 ·07779 ·07546 ·07313 ·07080 ·06848 
6·7 0·4739 ·07878 ·07672 ·07467 ·07262 ·07057 ·06852 ·06648 ·06443 ·06239 ·06035 
6·8 0·4551 ·06862 . •06683 ·06505 ·06327 ·06149 ·05971 ·05793 ·05616 ·05438 ·05261 
6·9 0·4376 ·05913 ·05760 ·05607 ·05454 .•05301 ·05148 ·04995 ·04842 ·04690 ·04537 
7·0 0·4214 ·05042 •04912 ·04781 ·04651. ·04521 ·04390 ·04260 ·04130 ·04000 ·03870 ~ 00 

~ 



Nl 
00 
00 

TABLEI II (cont.) 
Percentage natural mortality, 0 

y . Q/Z 61 62 63 66 63 66 67 68 69 70 

'7-1 0·4062 •042~3 ·04143 •04033 •03924 •038U •03704 •031193 •03483 ·03376 •03266 
7-2 0·3919 ·03~49 ·034~11 ·033116 •03275 ·031113 •03092 ·03001 •02009 •02818 ·02727 
7-3 0·8786 •02030 •02111111 •027110 •02704 •02629 •0211113 •02478 •02403 •02327 •022112 
H 0·8661 •02304 •02332 ·02271 •02209 ·02147 •02086 ·02024 •01963 ·01\101 ·011140 
7-5 0·8543 •01934 ·0111113. •011133 ·01'7811 •01736 •016116 •01636 ·01!186 ·01!137 ·01411'7 

'7·6 0·8432 ·01114'7 ·01~0'7 •01467 •0142'7 •01388 •01348 •01308 •01269 ·01229 ·01189 
7o'7 1).832'7 •01223 •01192 •01160 •01120 •010911 ·01060 •010311 •01003 ·00072 ·00941 
7oS 0·3228 ·000~'7 •00033 ·00008 •001!84 •001!~11 ·00834 •00810 •00'78~ •00761 •00736 
'7-ll 0·8134 •00'741 ·00722 •00703 ·0061!4 •006M •00646 •00627 •006011 •001'il!9 •OM70 
8·0 0·3046 •001168 •0011113 •00!139 •001124 •00!109 •0041111 •00480 •00466 •004111 ·00437 

8-1 0·2962 ·00430 ·00419 ·00408 ·0039'7 ·00386 ·003711 ·00364 ·00353 •00342 ·00331 
8·2 0·2882 •00323 •00314 ·00306 •00298 ·00200 ·0021H •00273 •0026!1 •00256 •002.&8 
8·3 0·2806 ·002311 •00233 •00227 ·00221 •002111 •00:!09 ·00203 •001116 ·001110 •OOlll-& 
8·4 0·2734 ·00176 •00171 •00167 •00162 •001!18 ·001113 •001411 ·001U ·00140 •00133 
8·3 0·2666 •00128 •00124 •00121 ·00118 ·001111 ·00111 •00108 •00103 ·00102 ·000011 

8-6 0·2600 ·00092 ·00089 •00087 ·00083 ·00082 ·00080 •000'78 ·00073 ·00073 ·00071 
8·'7 0·21138 •0006/S •00064 •00062 •00060 •000!19 ·00057 •0001111 ·00054 •000112 •000110 
11·8 0·2478 ·00046 ·00045 ·00044 ·00042 ·00041 •00040 •00039 ·000311 •00037 ·000:111 
8·9 0·2421 •00032 ·00031 •00030 •00030 •00029 ·000:.!8 •00027 ·000:.!6 ·000211 ·00025 
9·0 0·2367 ·00022 •00021 •00021 ·000:.!0 ·000:.!0 ·00019 ·00019 ·00018 ·00018 ·00017 



y Q/Z 71 72 73 74 75 76 77 78 79 80 

2·0 225·3 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 

• 167·69 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 • 2·1 ·00001 ... 2·2 126·02 ·00003 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 
2·3 95·63 ·00004 ·00004 ·00004 ·00004 ·00004 ·00003 ·00003 ·00003 ·00003 ·00003 
2·4 73·28 ·00008 ·00007 ·00007 ·00007 ·00006 ·00006 ·00006 ·00005 ·00005 ·00005 
2·5 56·70 ·00013 ·00012 ·OOOll ·OOOU ·00010 ·00010 ·00009 ·00009 ·00008 ·00008 

2·6 «·288 ·00021 ·00020 ·00019 ·00018 ·00017 ·00016 ·00015 ·00014 ·00013 ·00013 
2·7 34·923 ·00033 ·00031 ·00030 ·00028 ·00027 ·00026 ·00024 ·00023 ·00022 ·00020 
2·8 27·797 ·00052 ·00049 ·00047 ·00045 ·00042 ·00040 ·00038 ·00036 ·00034 ·00032 
2·9 22·330 ·00080 ·00076 ·00072 ·00069 ·00065 ·00062 ·00059 ·00055 ·00052 ·00049 
3·0 18·101 '•00121 ·00ll5 ·00109 ·00104 ·00099 ·00094 ·00088 ·00084 ·00079 ·00074 

3-1 14·802 ·00179 ·00170 ·00162 ·00154 ·00146 ·00139 ·00131 ·00124 ·00117 ·00110 
3·2 12·2ll ·00260 ·00248 ·00236 ·00224 ·00213 ·00202 ·00191 ·00181 •00170 ·00160 
3·3 10·159 ·00371 ·00354 ·00337 ·00320 ·00304 ·00288 ·00273 •00258 ·00243 ·00229 
3·4 8·521 ·00520 ·00496 ·00472 ·00449 ·00426 ·00404 ·00383 ·00362 ·00341 ·00321 
3·5 7·205 ·00715 ·00681 ·00649 ·00617 ·00586 ·00556 ·00526 ·00498 ·00469 ·00442 

3·6 6·1394 ·00964 ·00920 ·00876 ·00833 ·00792 ·00751 ·00711 ·00673 ·00635 ·00598 
3·7 5·2705 ·01278 ·01219 ·Oll61 ·Oll05 ·01050 ·00996 ·00944 ·00893 •00843 ·00794 
3·8 4·5571 ·01662 ·01586 ·01512 ·01439 ·01368 ·01298 ·01231 ·01164 ·01099 ·01035 
3·9 3·9676 ·02125 ·02028 . ·01934 ·01841 ·01751 ·01663 ·01576 ·01492 ·01409 ·01328 
4·0 3·4770 . ·02669 ·02549 •02431 ·02316 ·02203 ·02093 ·01985 ·01879 ·01775 ·01673 

H 3·0665 ·03296 ·03149 ·03005 ·02864 ·02725 ·02590 ·02457 •02327 ·02199 ·02074 
4-2 2·7206 ·04003 ·03826 ·03652 ·03482 ·03315 ·03152 ·02991 ·02834 ·02680 ·02528 
4·3 2·4276 ·04781 ·04572 ·04367 ·04165 ·03968 ·03774 ·03583 ·03396 ·03213 ·03032 .. 

"' 4·4 2-1780 ·05620 ·05377 ·05138 ·04903 ·04673 ·04446 ·04224 ·04006 ·03791 ·03580 
4·5 1-9640 ·06502 ·06224 ·05951 ·05682 ·05418 ·05158 ·04!103 ·04651 ·04404 ·04161 

N> 
()() 
CQ 



Q/Z 

1·7797 
Jo6202 
H814 
1-3699 
1·2633 

l-11103 
1·0769 
1-0018 
0·0367 
0·8764 

0·8230 
0·7"9 
0·7313 
0·6017 
0·6667 

0·6227 
0·11026 
0·11649 
0·11394 
0·111118 

0·4040 
0·4739 
0·46111 
0·4376 
0·4214 

71 

•0,.09 
•08317 
•00201 
•10036 
•10796 

•114119 
•12003 
·12416 
•12681 
·12703 

·127116 
·12568 
•12240 
•11784 
•11218 

·10560 
·00831 
·09052 
·08244 
•07426 

·06616 
•011831 
·011084 
·04384 
·03741 

72 

•07096 
•07970 
·08822 
•09628 
•10364 

•11006 
•1111311 
•11936 
•12197 
•12312 

·12279 
•12103 
·11791 
·11366 
•10813 

•10182 
·09481 
·08731 
·070113 
·0716.5 

•06384 
•011628 
•04907 
·04232 
·03611 

TABLE II (cont.) 

73 

•06788 
•07629 
·08449 
•09226 
•09936 

·1011117 
•11071 
•11461 
•11717 
•11833 

•11806 
•11640 
•11344 
•10929 
•10410 

·00804 
·09132 
•08411 
•07662 
•06004 

•061113 
•011424 
•04730 
•04080 
•03481 

Percentage natural mortality, 0 
74 . 711 76 77 

·064811 
·07202 
·08081 
•08828 
•09111,3 

·10113 
•10610 
·10990 
·11240 
•113116 

•11333 
•11180 
•10900 • 
•10504 
•10008 

·09428 
•08783 
•08002 
·07372 
·06644 

•011922 
•011221 
·041153 
•03927 
·033111 

•06187 
·061!60 
•07717 
•08436 
•00093 

·00673 
•101114 
•101122 
•10767 
•10883 

•10867 
•10723 
•10457 
•10080 
•09607 

·09063 
·084311 
·07773 
·07083 
·06384 

•011691 
·05018 
•04376 
•037711 
·03222 

•011803 
•06633 
•073119 
•08048 
•08681 

·00238 
•09702 
•100119 
•10208 
•10413 

•10402 
•10267 
•10016 
•09669 
•00208 

•08678 
•011088 
•074114 
·06704 
·06124 

•011460 
•048111 
•04200 
•03623 
·030112 

•011604 
•06311 
•070011 
•076615 
•08272 

·08808 
·0021115 
•01!699 
•09832 
•09046 

·09939 
•09814 
~09578 
·00238 
·08809 

•083015 
·07742 
•07137 
•06506 
•01186.5 

•011230 
·04612 
•04023 
•03471 
•02963 

78 

•011319 
•011994 
·06656 
·07287 
•07868 

·08382 
•08811 
•09H4 
·09369 
•09482 

·09479 
•09364 
·09141 
•08820 
·08412 

·07933 
·07397 
•061120 
·06218 
•011606 

·011000 
·04410 
·03847 
·03319 
·02833 

79 

•015039 
·011681 
·06311 
•06913 
•07469 

·07960 
·08372 
•0861!2 
•081HO 
•00021 

•09022 
·089115 
·08706 
•08403 
•08017 

·071162 
·070112 
·061103 
·011930 
·011348 

·04770 
·04207 
·03671' 
·03168 
·02704 

80 

·04763 
·011372 
•011971 
•061144 
•07074 

•071543 
•07937 
•08244 
•084114 
·081163 

·081167 
·08469 
•08273 
·071187 
•07623 

•07192 
·06708 
·06187 
•011643 
·011090 

·041140 
·040015 
•0341111 
·03016 
·021174 



7-1 0·4062 ·03157 ·03047 ·02938 ·02829 ·02719 ·02610 ·02501 ·02392 ·02283 ·02174 
7·2 0·3919 ·02636 ·02544 ·02453 ·02362 ·02271 ·02180 ·02089 ·01997 ·01906 ·01815 
7·3 0·3786 ·02177 ·02101 ·02026 ·01951 ·01876 ·01800 ·01725 ·01650 ·01575 ·01500 
7·4 0·3661 ·01778 ·01717 ·01655 ·01594- ·01533 ·01471 ·01410 ·01348 ·01287 ·01226 
7·5 0·3543 ·01437 ·01388 ·01338 ·01289 ·01239 ·01189 ·01140 ·01090 ·01040 ·00991 

7·6 0·3432 ·01149 ·01110 ·01070 ·01030 ·00991 ·00951 ·00911 ·00872 ·00832 ·00792 
7-7 0·3327 ·00909 ·00878 ·00846 ·00815 ·00784 ·00752 ·00721 ·00690 ·00658 ·00627 
7-8 0·3228 ·00712 ·00687 ·00663 ·00638 ·00613 ·00589 ·00564 ·00540 ·00515 ·00491 
7·9 0·3134 ·00551 ·00532 ·00513 ·00494 ·00475 ·00456 ·00437 ·00418 ·00399 ·00380 
8·0 0·3046 ·00422 ·00408 ·00393 ·00378 ·00364 ·00349 ·00335 ·00320 ·00306 ·00201 

8·1 0·2962 ·00320 ·00309 ·00298 ·00287 ·00276 ·00265 ·00254 ·00243 ·00232 ·00221 
8·2 0·2882 ·00240 ·00232 ·00223 ·00215 ·00207 ·00199 ·00190 ·00182 ·00174 ·00165 
8·3 0·21:106 ·00178 ·00172 ·00166 ·00160 ·00153 ·00147 ·00141 ·00135 ·00129 ·00123 
8·4 0·2734 ·00131 ·00126 ·00122 ·00117 ·00113 ·00108 ·00104 ·00099 ·00005 ·00090 
8·5 0·2666 ·00095 ·00092 ·00088 ·00085 ·00082 ·00079 ·00075 ·00072 ·00069 ·00065 

8·6 0·2600 ·00068 ·00066 ·00064 ·00061 ·00059 ·00056. ·00054' ·00052 •00049 ·00047 
8·7 0·2538 ·00048 ·00047 ·00045 ·00043 ·00042 ·00040 ·00038 ·00037 •00035 ·00033 
8·8 0·2478 ·00034 ·00033 ·00032 ·00031 ·00029 ·00028 ·00027 ·00026 ·00025 ·00024 
8·9 . 0·2421 ·00024 ·00023 ·00022 ·00021 ·00021 ·00020 ·00019 ·00018 ·00017 ·00016 
9·0 0·2367 ·00016 ·00016 ·00015 ·00015 ·00014 ·00014 ·00013 ·00012 ·00012 . ·00011 

.. 
"? 
N 

~ = ..... 



t-:1 

TABLE II (cont.) co 
t-:1 

Percentage natural mortality, 0 

y QJZ 81 82 83 84 85 86 87 88 89 90 

2-1 167·69 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 ·00001 
2·2 126·02 ·00001 ·00001 ·00001 ·00001 ·OOOOi ·00001 ·00001 ·00001 ·00001 ·00001 
2·3 95·63 ·00003 ·00002 ·00002 ·00002 ·00002 ·00002 ·00002 ·00001 ·00001 ·00001 
2·4 73·28· ·00004 ·00004 ·00004 ·00004 ·00003 ·00003 ·00003 ·00003 ·00002 ·00002 
2·5 56·70 ·00007 ·00007 ·00006 ·00006 ·00005 ·00005 ·00005 ·00004 ·00004 ·00003 

2·6 44·288 ·00012 ·00011 ·00010 ·00010 ·00009 ·00008 ·00008 ·00007 ·00006 ·00006 
2·7 34·923 ·00019 ·00018 ·00017 ·00015 ·00014 ·00013 ·00012 ·00011 ·00010 ·00009 
2·8 27·797 ·00030 ·00028 ·00026 ·00024 ·00022 ·00021 ·00019 ·00017 ·00016 ·00014 
2·9 22·330 ·00046 ·00043 ·00040 ·00037 ·00035 ·00032 ·00029 ·00027 ·00024 ·00022 
3·0 18·101 ·00070 ·00065 ·00061 ·00057 ·00052 ·00048 ·00044 ·00041 ·00037 ·00033 

3·1 14·802 ·00103 ·00097 ·00090 ·00084 ·00078 ·00072 ·00066 ·00060 ·00055 ·00049 
3·2 12·211 ·00150 ·00141 ·00131 ·00122 ·00113 ·00105 ·00096 ·00088 ·00080 •00072 
3·3 10·159 ·00215 ·00201 ·00188 ·00175 ·00162 ·00150 ·00137 ·00125 ·00114 ·00102 
3·4 8·521 ·00301 ·00282 ·00264 ·00245 ·00228 ·00210 ·00193 ·00176 ·00160 ·00144 
3·5 7·205 ·00415 ·00389 ·00363 ·00338 ·00314 ·00289 ·00266 ·00243 ·00220 ·00198 

3·6 6·1394 ·00561 ·00526 ·00491 ·00457 ·00424 ·00392 ·00360 ·00329 ·00298 ·00269 
3·7 5·2705 ·00746 ·00699 ·00653 •00608 ·00564 ·00521 ·00479 ·00438 ·00397 •00357 
3·8 4·5571 ·00973 ·00912 ·00853 ·00794 ·00737 ·00681 •00626 ·00572 ·00519 ·00467 
3·9 3·9676 ·01248 ·OlliO ·01094 ·01020 ·00946 ·00875 •00804 ·00735 ·00667 ·00601 
4·0 3·4770 ·OL374 ·01476 ·01380 ·01287 ·Oll95 ·01104 ·01016 ·00929 ·00844 ·00760 

H 3·0665 ·01951 ·01831 ·01713 ·01597 ·01483 ·01371 ·01262 ·0115-1 ·01049 ·009!5 
4·2 2·7206 ·02379 ·02233 ·02090 ·011150 ·01811 ·01676 ·01542 ·01411 ·01282 ·Oil 56 
4·3 2·4276 ·02855 ·02681 ·02510 ·02342 ·02177 ·02015 ·01833 ·01698 ·01544 ·01392 
4·4 2·1780 ·03372 ·03168 ·02967 ·02770 ·02575 ·02384 ·0::!196 ·02011 ·01829 ·01650 
4·5 l-!1640 ·03!121 ·03685 ·03453 ·03225 ·03000 ·02779 ·02561 ·02346 ·02134 ·01926 



4·6 1·7797 ·04491 ·04223 ·03959 ·03699 ·03442 ·03190 ·02941 ·02695 ·02453 ·02214 

4·7 1·6202 ·0-5068 ·04767 ·04472 ·04180 ·03892 ·03608 ·03328 •03051 ·02778 ·02509 

4·8 1-4814 ·05636 ·05305 ·04978 ·04655 ·04337 ·04022 ·03711 ·03404 ·03101 ·02802 

4·9 1·3599 ·06180 ·05820 ·05464 ·05112 ·04764 ·04421 ·04081 •03745 ·03414 ·03085 

6·0 1·2533 ·06683 ·06296 ·05914 ·05536 ·05162 ·04792 ·04426 ·04064 ·03705 ·03351 

5-l 1-1593 ·07129 ·06720 ·06315 ·05914 ·05517 ·05124 ·04735 ·04349 ·03967 ·035811 

5·2 1·0759 ·07505 ·07078 ·06654 ·06235 ·05819 ·05407 ·04998 ·04593 ·04192 ·03794 

5·3 1·0018 ·07i99 ·07358 ·06921 ·06488 ·06057 ·05631 ·05208 ·04788 ·04371 ·03958 

5·4 0·9357 ·08002 ·07553 ·07107 ·06665- ·06226 ·05790 ·05357 ·04927 ·04500 ·04076 

5·5 0·8764 ·08108 ·07656 ·07208 ·06762 ·06318 ·05878 ·05441 ·05006 ·04574 ·04145 

5·6 0·8230 ·08116 ·07666 ·07219 ·06775 ·06334 ·05895 ·05458 ·05024 ·04592 ·04163 

5·7 0·7749 ·08025 ·07584 ·07144 ·06707 •06272 ·05839 ·05409 •04980 ·04554 ·04130 

5·8 0·7313 ·07842 ·07413 ·06986 ·06560 ·06137 ·05715 •05295 ~04877 ·04461 ·04047 

5·9 0·6917 ·07573 ·07161 ·06751 ·06341 ·05934 ·05528 ·05123 ·04720 ·04319 ·03919 

6·0 0·6557 ·07230 ·06838 ·06448 ·06058 ·05671 ·05284 ·04899 ·04514 ·04132 ·03750 

6·1 0·6227 ·06823 ·06454 ·06087 ·05721 ·05356 ·04992 ·04629 ·04267 ·03906 ·03546 

6·2 0·5926 ·06365 ·06023 ·05682 ·05342 ·05002 • ·04663 ·04325 ·03987 ·03651 ·03315 

6·3 0·5649 ·05872 ·05558 ·0~244 ·04930 ·04618 ·04306 ·03994 ·03683 •03373 ·03063 

6·4 0·5394 ·05357 ·05071 ·04785 ·04500 ·04215 ·03931 ·03647 ·03364 ·03081 ·02799 

6·5 0·5158 ·04832 ·04575 ·04318 ·04061 ·03805 ·03548 ·03293 ·03037 ·02782 ·02528 

6·6 0·4940 ·04311 ·04082 ·03853 ·03624 ·03396 ·03168 ·02940 ·02712 ·02485 ·02258 

6·7 0·4739 ·03803 ·03601 ·03400 ·03198 ·02997 ·02796 ·02595 ·02395 ·02194 ·01994 

6·8 0·4551 ·03319 ·03143 ·02967 ·02792 ·02616 ·02441 ·02266 ·02091 ·01916 ·01741 

6·9 0·4376 ·02864 ·02713 ·02561 ·02410 ·02259 ·02107 ·01956· ·01805 ·01654 ·01504 

7·0 0·4214 ·02445 ·02316 ·02187 ·02058 ·01929 ·01800 ·01671 ·01542 ·01413 ·01284 

7-l 0·4062 ·02065 ·01956 ·01847 ··01738 ·01629 ·01520 ·01411 ·01302 ·01194 ·01085 

7·2 0·3!)19 ·01 724 ·01633 ·01542 ·01451 ·01361 ·01270 ·01179 ·01088 ·00997 ·00906 

7·3 0·3786 ·01425 . ·01349 ·01274 ·01199 ·01124 ·01049 ·00974 ·00899 ·00824 ·00749 

7·4 0·3661 ·01164 ·01103 ·01041 ·00980 ·00919 ·00857 ·00796 ·00735 ·00674 ·00612 

7-5 0·3543 ·00941 ·00892 ·00842 ·00792 ·00743 ·00693 ·00644 ·00594 ·00545 ·00495 ~ cc 
~ 



TABLE II (cont.) 
Percentage natural mortality, 0 

y Q/Z 81 82 83 84 85 86 87 88 89 90 

7-6 0·3432 ·00753 ·00713 ·00673 ·00634. ·00594 ·00555 ·00515 ·00475 ·00436 ·00396 
7-7 0·3327 ·00596 ·00564 ·00533 ·00501 ·00470 ·00439 ·00407 ·00376 ·00345 ·00313 
7·8 0·3228 ·00466 ·00442 ·00417 ·00393 ·00368 ·00343 ·00319 ·00294 ·00270 ·00245 
7·9 0·3134 ·00361 ·00342 ·00323 ·00304 ·00285 ·00266 ·00247 ·00228 ·00209 ·00190 
8·0 0·3046 ·00277 ·00262 ·00247 ·00233 ·00218 • ·00204 ·00189 ·00174 ·00160 ·00146 

8-1 0·2962 ·00210 ·00199 ·00188 ·00176 ·00165 ·00154 ;00143 ·00132 ·00121 ·00110 
8·2 0·2882 ·00157 ·00149 ·00141 ·00132 ·00124 ·OOI16 ·00108 ·00099 ·00091 ·00083 
8·3 0·2806 •OOI17 ·OOllO ·00104 ·00098 ·00092 ·00086 ·00080 ·00074 ·00068 ·00061 
8·4 0·2734 ·00086 ·00081 ·00077 ·00072 ·00068 ·00063 ·00059 ·00054 ·00050 ·00045 
8·5 0·2666 ·00062 ·00059 ·00056 ·00052 ·00049 ·00046 ·00043 ·00039 ·00036 ·00033 

8·6 0·2600 ·00045 ·00042 ·00040 ·00038 ·00035 ·00033 ·00031 ·00028 ·00026 ·00024 
8·7 0·2538 ·00032 ·00030 ·00028 ·00027 ·00025 ·00023 ·00022 ·00020 ·00018 ·00017 
8·8 0·2478 ·00022 ·00021 ·00020 ·00019 ·00018 ·00017 ·00015 ·00014 ·00013 •00012 
8·9 0·2421 ·00016 ·00015 ·00014 ·00013 ·00012 ·OOOII ·00011 ·00010 ·00009 ·00008 
9·0 0·2367 ·00011 ·00010 ·00010 ·00009 ·00008 ·00008 ·00007 ·00007 ·00006 ·00006 



295 
' . 

TABLE III. Maximumand:Minimum Workingl'robitsr,ndRange 
Minimum working probita Maximum working probita I 

Expected 
probit 

y y1 =Y-P/Z ~ y1.=Y+Q/Z 

Expected 
probit 

y 

H 0·8579 5034 9·1421 8·9 
1·2 0·9522 3425 9-()478 8·8 
1-3 1-()462 2354 8·9538 8-7 
H 1-1400 1634 8·8600 8·6 
1·5 1·2334 1146 8·7666 8·5 

HI 1·3266 811·5 8·6734 8·4 
1-7 1·4194 580·5 8·5806 8·3 
1·8 1-5118 419·4 8·4882 8·2 
1-9 1·8038 306·1 8·3962 8-1 
2-o 1-6954 225·6 8·3048 8-() 

2-1 1-7866 168·00 8·2134. 7·9· 
2·2 . 1·8772 126·34 8·1228 7·8 
2·3 1-9673 95·96 8-0327 7-7 
2-4 2-()568 73·62- 7·9432· 7·6 •. 
2·5 2·1457 57-()5 7·8543 7·5 

2·6 2·2339 44·654 7·7661 7·4 
2·7 2·3214 35·302 7·6786 7·3 
2·8 2·4081 28·189 7·5919 7·2 
2·9 2·4938 22·736 7·5062 'H 
s-o 2·5786 18·5216 7-4214 7-o 

3·1 2-6624 15·2402 7·3376 6·9 
3·2 2·7449 12·6662 7·2551 6·8 
3·3 2·8261 10·6327 7-1739 6·7 
3·4 2·9060 9-()154 7-o940 6-6 
3·5 2·9842 7·7210 7·0158 6·5 

3·6 3·0606 6·6788 6·9394 6·4 
3·7 3·1351 5·8354 6·8649 6·3 
3·8 3·2074 5·1497 6·7926 6·2 
3·9 3·2773 4·5903 6·7227 6·1 
4-() 3·3443 4-1327 6·6557 6-o 

4-1 3·4083 3·7582 6·5917 5·9 
4·2 3·4687 3·4519 6·5313 5·8 
4·3 3·5251 3·2025 6-4749 5·7 
4·4 3\5770 3·0010 6·4230 5·6 
4·5 8·6236 2·8404 6·3764 5·5 

4·6 3·6643 2·7154 6·3357 5·4' 
4·7 3-6982 2·6220 6·3618 5·3 
4·8 3·7241 2·5573 6·2759 5·2 
4-9 3·7407 2·5192 6·2593 5-l 
.5·0 3·7467 2·5066 6·2533 s-o 

5-l 3·7401 2·5192 6·2599 4·9 
5·2 3·7186 2·5573 6·2814 4·8 
5·3 8·6798 2·6220 6·3202 4-7 
5-4 3-6203 2·7154 6·3797 4·6 
5·5 3·5360 2·8404 6·4640 4·5 

5-6 3·4220 3{)()10 6·5780 4·4 
5·7 3·2724 3·2025 6·7276 4·3 
5·8 3·0794 3·4519 6·9206 4·2 
5·9 2·8335 3·7582 7-1665 4·1 
6-() 2·5230 4-1327 7-4770 4·0 

6·1 2·1324 4·5903 7-8676 8·9 
6·2 1·6429 IH497 8·3571 3·8 
6·3 1-{)295 5·8354 8·9705 3·7 
6·4 0·2606 6·6786 9·7394 3-6 
6·5 -0·70ii2 7-7210 10·7052 3-5 

The working pro bit, y, may be obtained aa y = (Y -P/Z)+p/Z or y ~ (Y +Q/Z) -g/Z, 
whichever il the more convenient, where p( -1- g) il the obllerved proportion killed. 
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TABLE IV. Working Probits 

(l" = 2-o-2-9; 0-60% kill) 

% E:o:pected probil, l" 
kill 2-6 2·1 2·2 2·3 2-4 2·5 2-6 2·7 2·8 2·9 

0 1-695 1-787 1·877 1-967 2-o57 2·146 2·234 2·321 2·408 2·49· 

1 3-951 3-467 3·141 2-927 2·793 2·716 2-681 2-674 2-690 2·721 
2 6·207 5·147 4~ 3·886 3·529 3·287 3·127 3-()27 -972 -949 
3 8-463 6·827 5-667 4·846 4·265 -857 ·574 ·380 3·254 3·176 
4 8·507 6-931 5·806 5~ 4-428 4-020 ·733 ·536 ·403 
5 8·194 6·765 -738 -998 -467 4-()86 ·818 -631 

6 9·458 7-725 6-474 5·569 4·913 4-440 4-oo9 3·858 
7 8-684 7·210 6·139 5·360 ·793 ·381 4-oM 
8 9-644 -946 ·710 -806 5·146 -663 ·313 
9 8-683 7·280 6·253 -499 -94.'; -540 

10 9-419 ·851 -699 -852 5·227 ·767 

11 8·421 7-146 6·205 5·500 4-995 
12 -992 -592 -558 ·791 5·222 
13 9·562 8-()39 -911 6{)73 -449 
14 -486 7·264 ·355 -671 
15 -932 -617 -636 -001 

16 9·379 7-970 6·918 6·132 
1'1 -825 8·323 7·200 ·359 
18 -676 -482 -586 
19 9{)29 ·764 -614 
20 ·382 8{)46 'l-ou 

21 9·735 8·328 7·268 
22 ·610 -496 
23 ·892 ·723 
24 9·173 -950 
25 -400 8·178 

26 9·737 8·405 
2'1 -633 
28 ·860 
29 9{)87 
30 ·315 

31 9·542 
32 ·769 
33 -997 
M 
35 
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TABLE IV (cont.) 

(Y- 3-G-3·9; 0-00% kill) 

% Expected probit, Y 
kill 3-() 3-1 3·2 3·3 3-4 3·5 3-6 3·7 3·~ 3·9 

0 2·579 2-662 2·745 2·826 2·906 2-984 3.001 3-135 3·207 3·2i7 

1 2·764 2·815 2·872 2·932 2·996 3.()61 3-127 3·193 3·259 3·323 
2 ·949 ,·967 -998 3-o39 3·086 ·139 ·194 ·252 ·310 ·369 
3 3-134 3·120 3-125 ·145 ·176 ·216 ·261 ·310 ·362 ·415 
4 ·319 ·272 . ·252 ·251 ·267 ·293 ·328 ·369 -413 -461 
5 -505 ·424 ·378 ·358 ·357 ·370 ·398 ·427 ·465 ·507 

6 3·690 3·577 3·505 3-464 3·447 3·447 3·461 3·485 3·516 3·553 
7 ·875 ·729 -632 -570 ·537 ·525 ·528 ·544 ·568 ·599 
8 4-o60 ·882 ·758 ·677 ·627 -602 ·595 -602 -619 -645 
9 ·246 4.034 ·885 -783 ·717 -679 •662 -660 -611 -690 

10 -431 ·186 4·012 ·889 ·808 ·756 ·728 ·719 ·722 ·736 

11 4·616 4·339 4-138 3·996 3·898 3·834 3·795 3·777 3·774 3·782 
12 ·801 ·491 ·265 4-102 -988 -911 ·862 ·835 ·825 ·828 
13 -986 -644 ·391 ·208 4-()78 -988 -929 ·894 ·877- ·874 
14 5·172 ·796 ·518 ·315 ·168 4.()65 -996 ·952 -928. -920 
15 ·357 -948 -645 -421 ·258 ·142 4.()62 4·010 ·980 -966 

16 5·542 5·101 4-771 4·527 4·348 4·220 4-129 4·089 4-()31 4.012 
17 ·727 ·253 ·898 ·634 -439 ·297 ·196 ·127 -()83 -()58 

18 -913 ·406 5-()25 ·740 ·529 ·374 ·263 ·185 ·134 ·104 
19 6·098 ·558 ·151 ·846 ·619 ·451 ·330 ·244 •186 ·149 
20 ·283 ·710 ·278 -953 ·709 ·528 ·396 ·302 ·237 ·195 

21 6-468 5·863 5·405 5-()59 4-799 4-606 4-463 4·361 4·289 4·241 
22 -653 6-()15 ·531 ·165 ·889 -683 ·530 -419 ·340 ·287 
23 ·839 ·168 -658 ·272 -979 ·760 •597 -477 ·392 ·333 
24 7-o24 ·320 ·785 ·378 5·070 ·837 -664 ·536 ·443 ·379 
25 ·209 ·472 ·911 ·484 160 -914 ·730- -594 -495 ·425 

26 7·394 6·625 6·038 5·591 5·250 4·992 4<797 4·652 4·546 4-471 
27 ·580 ·777 ·165 -697 ·340 5.()69 ·884 ·711 ·598 ·517 
28 ·765 -930 ·291 -803 -430 ·146 -931 ·769 -649' ·563 
29 ·950 7o082 -418 ·910 ·520 ·223 ·997 ·827 .•701 -608 
30 8-135 ·234 ·545 6.016 -610 ·300 5·064 ·886 ·752 -654 

31 8·320 7·387 6·671 6·122 5·701 5·378 5-131 4·944 4·804 ·HOO 
32 ·506 ·539 ·798 ·229 ·791 ·455 ·198 5-()02 ·855 ·746 
33 -691 -692 -925 ·335 ·881 ·532 ·265 .()61 -907 ·792 
34 ·876 ·844 7·051 -441 ·971 ·609 ·331 ·119 ·958 ·838 
35 9.()61 -996 ·178 ·548. 6.()61 -687 ·398 ·177 5.010' ·884 

36 9·247 8·149 7·305 6·654 6·151 .5·764 5·465 5·236 5.()61 4·930 
37 ·432 ·301 -431 ·760 ·242 -841 ·532 ·294 ·113 -976 
38 -617 ·454 ·558 ·867 ·332 -918 ·599 ·353 ·164 5-()22 
39 ·802 -606 ·685 -973 ·422 -995 -665 -411 ·216 -()68 

40 -987 ·758 ·811 7·079 ·512 6-()73 ·732 -469 ·267 ·113 

41 8-911 7·938 7-186 6-602 6·150 5·799 5·528 5·319 5·159 
42 9.()63 8-()65 ·292 -692 ·227 ·866 ·586 ·370 ·205 
43 ·216 ·191 ·398 ·782 ·304 ·932 -644 -422 ·251 
44 ·368 ·318 ·505 ·873 ·381 ·999 ·703 -473 ·297 
45 ·520 -445 -611 -963 ·459 6.()66 ·761 ·525 ·343 

46 9-673 8·571 7-717 7-o53 6·536 6·133 5·819 5·576 5·389 
47 ·825 -698 ·824 ·143 -613 ·200 ·878 -628 -4.15 
48 -978 -825 -930 ·233 -690 ·266 -936 ·679 -481 
49 -951 8-()36 ·323 ·767 ·333 ·994 ·731 ·527 
50 9-()78 ·143 -414 -845 -400 6-o53 ·782 ·572 
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TABU: IV (oont.) 

(.Y- 4-o-4-9; 0-50% kill) 

% Expected probit, .Y 
kill 4-o 4·1. 4·2 4·3 H 4·5 4-6 H 4·8 4·9 

0 3·344 ll·{()S 3-4.69 3·525 3·577 3-624 3·664 3·698 3·724 3·741 

I 3·386 3·446 3·500 3·557 3-607 3-652 3-691 3·724 3·750 3·766 
2 -427 -487 ·538 -689 -637 -680 ·719 ·751 ·775 ·791 
3 -468 ·521 -572 -621 -667 ·700 ·746 ·777 ·801 ·816 
4 -510 ·559 -607 -653 -697 ·737 ·773 -803 -826 o84l 
5 •551 -596 -641 -665 ·727 ·766 ·800 ·829 -852 -667 

6 3·592 3-634 3-876 3·717 3·757 3·794 3·827 3·856 3·878 3·892 
7 -634 -671 ·710 ·741} ·787 -822 -854 ·882 -903 -917 
8 -675 ·709 ·745 ·'181 ·817 -851 ·882 -908 -929 -942 
9 ·716 ·747 -779 ·813 ·847 ·879 -909 -934 -9M -961 

10 ·758 ·784 ·814 -645 -877 ·908 -936 -960 -980 -993 

11 3·799 3·822 3·848 3·877 3·907 3·936 3-963 3·987 4-oo5 4.018 
12 -840 ·859 -663 -909 -937 -964 -990 4.013 -()31 o()43 

13 ·882 ·897 -917 -941 -967 -993 4.017 -()39 ~7 o()68 

14 -923 -934 -952 -973 -997 4-1>21 o()44 -()65 o()82 ~3 
15 -964 -972 -986 4-()()5 4-()27 ~ -()72 ~ ·108 •119 

16 4o()()6 4.010 4-1>21 4-o38 4~7 4-()78 4-oo9 4-118 4·133 4-144 
17 -()47 -()47 -ooo o070 o()8'? ·106 ·126 ·144 ·159 •169 
18 o()88 o()85 ~ ·102 ·117 ·135 ·153 ·170 ·184 ·194 
19 ·130 ·122 ·125 ·134 ·147 ·163 •180 ·196 ·210 ·219 
20 ·171 ·160 -- •159 •166 ·177 •192 ·207 ·223 ·236 ·245 

21 4·212 4-198 4-194 4-198 4·207 . 4·220 4·235 4·249 4·261 4·270 
22 ·253 ·235 ·228 ·230 ·237 ·248 ·26ll ·275 ·287 ·295 
23 ·295 ·273 ·263 ·262 ·267 ·277 ·289 ·301 ·312 ·320 
24 ·336 ·310 ·297 ·294 ·297 ·305 ·316 ·327 ·338 ·345 
25 ·377 ·348 ·332 ·326 ·327 ·334 '•343 ·354 ·363 ·370 

·<'· 

26 4-419 4·385 4·366 4·358 4·357 4·362 4·370 4·380 4·389 4·396 
27 -460 -423 -401 ·390 ·387 ·391 ·397 -406 -415 -421 
28 ·501. -461 -435 -422 -417 -419 -425 -432 -440 -446 
29 -543 , "-498 ·470 -454 -447 -447 -452 -459 -468 -471 
30 ·584 - ·536 -504 -486 -477 -476 -479 -485 ·491 -496 

31 4-625 4·573 4·539 4-518 4·507 4·504 4·506 4·511 4-517 4-522 
32 -667 -611 -573 ·550 ·537 ·533 ·533 ·537 -542 -547 
33 ·708 -649 -608 -582 ·567 -561 ·560 ·563 ·568 ·572 
34 ·749 -686 -642 -614 ·597 ·589 ·568 -590 ·594 ·597 
35 ·791 -724 -677 -646 . -627 -618 -615 ' -616 -619 -622 

36 4·832 4-761 4·711 4·678 4-657 4·646 4·642 4-642 4-645 4-648 
37 -873 ·799 ·746 ·710 -687 -675 -669 -668 -670 -673 
38 -915 -836 ·780 ·742 ·717 ·703 -696 -695 -696 -698 
39 -956 ·874 ·815 ·774 ·747 ·731 -723 ~1 ·721 -723 
40 -997 ·912 -649 ·806 ·777 ·760 ·750 47 ·747 ·746 

41 5-()39 4·949 4·884 4·638 4·807 4-788 4-778 4-773 4-773 4-774 
42 o()80 -987 -918 -870 ·837 ·817 -805 ·799 ·798 ·799 
43 ·121 5-()24 -953 -902 -667 -645 ·832 ·826 ·824 -824 

44 ·163 o062 -988 -934 -697 -873 ·859 ·852 ·849 ·849 
4fj ·204 ·899 5-()22 -966 -927 -902 ·886 ·878 ·875 -874 

46 5·245 5-13'7 5~7 4-998 4·957 4·930 4-913 4·90i 4·900 4·900 
47 ·287 ·175 ~1 5-o30 -987 -959 -941 -931 -926 -925 
48 ·328 ·212 ·126 o()62 5.017 ·987 -968 -957 ·95ll -950 
49 ·369 ·250 ·160 o()94 -()47 5.015 -995 -983 -977 -975 
50 -411 ·287 ·195 ·126 -()78 o()44 5-()22 5-ooo 5-oo3 5·000 
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TABLE IV (cont.) 

(Y- 5-o-5·9; (h')()% kill) 

% Expected probit, l' 

kiU 5.0 5-l 5·2 5·3 5·4 5·5 5·6 5·7 5·8 5·9 

0 3·747 3·740 3·719 3·680 3·620 3·536 3-422 3·272 3-679 2·834 

1 3-772 3·765 3·744 3·706 3·647 3·564 3·452 3·304 3·114 2·871 
2 ·797 -790 ·770 ·732 -675 ·593 -482 ·336 ·148 ·909 
3 ·822 ·816 ·795 ·758 ·702 -621 -512 ·368 ·183 -946 
4 -847 ·841 ·821 ·785 ·729 -650 ·542 -400 ·217 -984 
5 -872 ·866 ·848 ·811 ·756 -678 -572 -433 ·252 3-621 

6 3·897 3·891 3·872 3·837 3·783 3·706 3·602 3-465 3·287 3-()59 
7 -922 -916 •898 •863 ·810 ·735 . -632 -497 ·321 -()97 
8 -947 -942 -923 ·890 ·838 ·783 ·662 ·529 ·356 ·134 
9 -972 -967 -949 -916 -865 ·792 -692 ·561 ·390 ·172 

10 -997 -992 -974 -942 -892 •820 ·722 ·593 -425 ·209 

11 4-622 4.0}7 4000 3·968 3·919 3·848 3·752 3-625 3-459 3·247 
12 «1 -()42 -625 ·994 ·946 ·877 ·782 -657 -494 ·284 
13 -()73 -068 -()51 4-621 ·973 ·905 -812 -689 ·528 ·322 
14 -()98 -()93 -()77 -()47 4.()()() -934 ·842 ·721 ·563 ·360 
15 ·123 •ll8 ·102 -()73 -628 -962 ·872 ·753 ·597 ·397 

16 4-148 4-143 4-128 4·099 4·055 3·990 3·902 3·785 3·632 3·435 
17 ·173 ·168 ·153 ·126' -()82 4.019 ·932 ·817 ·666 -472 
18 ·198 ·194 ·179 ·152 ·109 «7 -962 ·849 ·701 ·510 
19 ·223 ·219 ·204 ·178 ·136 -()76 -992 •881 ·735 . ·548 
20 ·248 ·244 ·230 ·204 ·163 ·104 4-622 -913 ·770 ·585 

21 4·273 4·269 4·256 4-230 4-191 4-132 4-o52 3-945 3·804 3-623 
22 ·298 ·294 ·281 ·257 ·218 ·161 -()82 -977 ·839 -660 
23 ·323 ·320 ·307 ·283 ·245 •189 ·112 4-609 ·873 -698 
24 ·348 ·345 ·332 ·309 ·272 ·218 ·142 -()41 -908 ·735 
25 ·373 ·370 ·358 ·335 ·299 ·246 ·172 -()73 -942 ·773 

26 4·398 4·395 4·383 4·362 4·326 4·276 4·202 4-105 3·977 3-811 
27 '423 ·420 -409 ·388 ·353 ·303 ·232 ·137 4-()11 ·848 
28 -449 -445 -435 -414 ·381 ·331 ·262 ·169 -()46 ·886 
29 -474 ·471 -480 -440 -408 ·360 ·292 ·201 -oso ·923 
30 ·499 -496 -466 -466 -435 ·388 ·322 ·233 ·ll5 -961 

31 4·524 4-521 4-511 4-493 4·462 4-417 4·352 4·265 4-149 3·999 
32 ·549 ·548 ·537 ·519 -489 -445 ·382 ·297 ·184 4-636 
33 ·574 ·571 ·563 -545 ·516 ·473 -412 ·329 ·219 -()74 
34 ·599 ·597 .;ss ·571 ·544 ·502 -442 ·361 ·253 •lll 
35 -624 -622 -614 ·598 ·571 -530 -472 •393 ·288. ·149 

36 4-649 4-847 4-839 4-624 4·598 4·559 4·502 4-425 4·322 4-188 
37 -674 -672 -665 ·650 -625 ·587 -532 -457 ·351 ·224 
38 -699 ·697 -690 ·676 -652 -615 -562 -489 ·391 ·262 
39 ·724 ·723 ·716 ·702 -679 -844 ·592 ·521 -426 ·299 
40 ·749 ·748 ·742 ·729 ·706 -672 -622 ·553 -480 ·337 

41 4-774 4-773 4-767 4-755 4-734 HOI 4-652 4·585 4-495 4·374 
42 ·799 ·798 ·793 ·781 ·761 ·729 -682 -617 ·529 •-412 
43 -825 ·823 -818 "-801 ·788 ·757 -712 -649 ·564 -450 
44 ·650 ·849 ·844 ·833 -815 ·788 ·742 -682 ·598 -487 
45 ·875 -874 -869 ·860 -842 -814 ·772 ·714 -633 ·525 

48 4-900 4-899 4·895. 4·888 4-869 4·843 4·802 4-748 4·667 4·562 
47 -925 -924 -921 -912 ·897 ·871 ·832 ·778 ·702 ·600 
48 -950 -949 -946 -938 -924 ·899 ·882 ·810 ·736 -637 
49 -975 -975 -972 -965 -951 -928 ·892 ·842 ·771 -675 
60 5000 5000 -997 -991 • -978 -956 -922 ·874 ·805 ·713 
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TABLE IV (cont.) 

(Y ~ 6-o-6-9; 0-50% kill) 

0.' Expected prubit., Y /0 

kiD 6-() 6·1 6·2 6-3 6·f 6·5 6-6 6·7 6·8 6-9 
0 2·523 2·132 1-643 Hl30 ()-261 

1 2·5M 2·178 1-694 Hl88 ()-327 
2 -606 ·224 ·746 ·146 ·394 
3 -647 ·270 -797 . ·205 -461 
4 -688 -316 -849 ·263 -528 
5 -730 ·362 -900 ·321 . -595 

6 2-771 2·408 1-952 1·380 o-661 
7 -812 -454 2-()03 -438 ·728 
8 -854 {j()() -()55 -496 ·795 
9 -895 -546 ·106 ·555 -862 

10 -936 -591 ·laB -613 -928 o-067 

11 2·978 2-637 2·200 1-671 ()-995 ()-144 
12 3-()19 -683 ·261 ·730 1-()62 ·221 
13 o()6() ·729 ·312 ·788 ·129 ·299 
14 ·102. ·775 ·364 ·846 ·196 ·376 
15 ·!fa -821 -415 -905 ·262 -4i)3 

16 3·18f ·2·867 2·467 1-963 1·329 ()-530 
17 ·226 -913 -518 2-()22 ·398 -607 
18 ·267 -959 ·570 -()8() -463 -685 
19 ·308 3-()()5 -621 ·138 ·530 ·762 
20 ·350 -()5() -673 ·197 -596 ·839 

21 3·391 3-()96 2·72' 2·255 1-663 ()-916 
22 -432 ·142 ·776 ·313 ·730 -993 ()-062 
23 -474 ·188 -827 ·372 ·797 1-()71 ·152 
24 -515 ·234 ·879 -430 -864 ·146 ·2f3 
25 -556 ·280 -930 -488 -930 ·225 ·333 

26 3·598 3·326 2·982 2-547 1-997 1-302 o-423 
27 -639 ·372 3-()33 -605 2-oM ·379 ·513 
28 -680 -418 -()85 -663 ·131 -457 -603 
29 ·721 -464 ·138 ·722 ·197 -534 -693 
30 ·763 ' -509 ·188 ·780 ·264 -611 -784 

31 3·80f 3·555 3·239 2·838 2·331 1-688 ()-87f 
32 -845 -601 ·291 -897 ·398 ·766 -964 
33 -887 -647 ·342 -955 -465 ·Sf3 1-oM 0-()5() 

34 -928 -693 ·394 3.014 -531 -920 ·144 ·156 
35 -969 ·739 -445 -()72 ·598 -997 ·234 ·262 

36 4.011 3·785 3-497 3·130 2-665 2-()74 1·324 ()-369 
37 -()52 -831 -546 ·189 ·732 ·152 -415 -475 
38 .003 -877 -600 ·247 ·799 ·229 ·505 ·a81 
39 ·135 -923 -651 ·305 ·865 ·306 ·595 -688 
-10 ·176 -969 ·703 ·364 -932 ·383 -685 ·794 

41 4·217 4-()14 3·754 3·422 ·2·999 2·460 1-775 0·900 
42 ·259 -()60 -806 -480 3-()66 ·538 ·865 Hl07 
43 ·300 ·106 ·857 ·539 ·132 -615 -955 ·113 ()-035 

44 ·341 ·152 -900 ·597 ·199 -692 2-<»6 ·219 ·162 
45 ·383 ·198 -960 -655 ·266 ·769 ·136 ·326 ·289 

46 4·424 4·244 4-()12 3·714 3·333 2·846 2·226 1·432 0·415 
47 -465 ·290 -()63 . ·772 -400 -924 ·316 ·538 ·542 
46 -507 ·336 ·115 -830 -466 3-()()1 -406 -645 -ti69 
49 ·546 ·382 ·166 ·889 -533 -()78 ·496 ·751 ·795 
50 -589 -428 ·218 -947 -600 ·155 -586 ·857 ·922 
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TABLE IV (cont.) 

(Y- 3-o-3-9; 51-100% till) 

% Expected probit, Y 
kill 3-() 3·1 3·2 3·3 3-4 3·5 3-6 3·7 3·8 3-9 
51 9·205 8·249 7·504 6·92!! 6·467 6·111 5·834 5-618 
52 ·331 ·355· ·594 -999 -534 ·170 -885 -664 
53 -458 -462 -664 7.076 -600 ·228 -937 ·710 
54 ·585 ·568 ·774 ·154 -667 ·286 -988 ·756 
55 -711 -674 -864 ·231 ·734 ·345 6-()4() -802 

56 9·838 8·781 7-954 7·308 6·801 6-403 6-091 5·848 
57 -965 -887 8-()45 ·385 ·868 -461 ·143 ·894 
58 -993 ·135 -462 -934 ·520 ·194 -940 
59 9·100 ·225 -540 7·001 -578 ·246 -986 
60 ·206 {115 -617 o()68 -636 ·297 6-()31 

61 9·312 8-405 7-694 7-135 6-695 6·349 6-()77 
62 -419 -495 ·771 ·201 ·753 -400 ·123 
63 ·525 ·585 -848 ·268 -811 -452 ·169 
64 -631 -676 -926 ·335 ·870 -503 ·215 
65 ·738 ·766 8-()()3 -402 -928 -555 ·261 

66 9·844 8·856 8-()80 7-469 6-986 6-606 6·307 
67 -950 -946 ·157 -535 7-()45 -658 ·353 
68 9-()36 ·234 -602 ·103 ·700 ·399 
69 ·126 ·312 -669 ·162 ·761 -445 
70 ·216 ·389 ·736 ·220 -812 -491 

71 9·307 8·466 7·803 7·278 6·864 6·536 
72 ·397 -543 -869 ·337 -915 ·582 
73 -487 -621 -936 ·395 -967 -628 
74 -577 -698 8-()()3 -453 7.018 -674 
75 -667 ·775 o()70 -512 -()70 ·720 

76 9·757 8·852 8·136 7-570 7-121 6·766 
77 -848 -929 ·203 -628 ·173 ·812 
76 -938 9o()()7 ·270 -687 ·224 -858 
';"9 o()84 ·337 ·745 ·276 -904 
80 ·161 -404 ·803 ·327 -950 

81 9·238 8-470 7·862 7·379 6-995 
82 ·315 ·537 -920 -430 7o()41 
83 •393 -604 -978 -482 o()87 
64 -470 -671 8-()37 -533 ·133 
8S ·547 ·738 -095 ·585 ·179 

86 9-624 8·804 8-154 7-636 7·225 
87. ·701 ·871 ·212 -688 ·271 
88 ·779 -938 ·270 ·739 ·317 
89 -856 9-()05 ·329 ·791 ·363 
IKI -933 -()72 ·387 ·842 -400 

91 9·138 8·445 7-894 HM 
92 ·205 -504 -945 -500 
93 ·272 ·562 -997 ·546 
94 ·339 -620 8o()48 -592 
95 -405 -679 •100 -638 

96 9-472 8·737 8·151 7-684 
97 -539 ·795 ·203 ·730 
98 -606 ·854 ·254 ·776 
~ -673 -912 ·306 -822 

100 ·739 -970 ·357 ·868 
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TABLE IV (cont.) 

(Y -4-G-4-9; 51-100% kill) 

0/. ,o Expected probit, Y 
kill 4o() H 4·2 4·3 4·4 4·5 4-6 H 4·8 4·9 
51 5-452 5·325 5·229 5·158 5-108 5-<n'2 5-()49 5-o35 5-o28 5-()25 
52 -493 ·363 •264 ·190 •136 ·101 -<n'6 o()62 o()54 o051 
53 ·535 ·400 ·298 ·222 •168 ·129 ·103 o()88 -<n'9 o076 
54 ·576 -438 ·333 ·254 ·198 ·157 ·131 ·114 •105 ·101 
55 -617 -475 ·367 ·286 ·228 ·186 ·158 ·140 •131 •126 

58 5·659 5·513 5·402 5·318 5·258 5·214 5·185 5·167 5·156 5·151 
57 ·700 ·550 -436 ·351 ·286 ·243 ·212 •193 ·182 ·177 
56 ·741 ·586 •471 ·383 •318 ·271 ·239 ·219 ·207 ·202 
59 ·783 -626 ·505 -415 ·348 ·299 ·286 ·245 ·233 ·227 
60 ·824 -663 ·540 -447 ·378 ·328 ·294 ·271 ·258 ·252 

61 5·865 5·701 5·574 5·479 5·408 5·358 5·321 5·298 5·264 5·277 
62 -907 ·738 -609 ·511 -438 ·385 ·348 ·324 ·310 ·303 
63 -948 ·776 -643 ·543 -468 ·413 ·375 ·350 ·335 ·328 
64 -981) ·814 -678 ·575 ·498 -441 -402 ·376 ·361 ·353 
65 6-()31 -851 ·712 -607 ·528 -470 ·429 -402 ·386 ·378 

66 6-o72 5·889 5·747 5·639 5·558 5·498 5·456 5·429 5·412 5·403 
67 ·113 -926 ·781 -671 ·586 ·527 -484 -455 -437 ·429 
68 ·155 ·964 ·816 ·703 -618 ·555 ·511 -481 -463 -454 
69 ·196 6-()01 ·851 ·735 -648 ·583 ·536 -507 -489 -479 
70 ·237 o()39 •885 ·767 -678 -612 ·565 ·534 ·514 ·504 

71 6·279 6-()77 5·920 5·799 5·708 5-640 5·592 5·560 5·540 5·529 
72 ·320 ·114 -954 ·831 ·738 -669 -619 ·586 ·565 ·555 
73 ·361 ·152 -989 ·863 ·768 -697 -647 -612 ·591 ·580 
74 ·402 ·189 6·023 ·895 ·798 ·725 ·674 -636 -617 -605 
75 -444 ·227 o()58 -927 -828 ·754 ·701 -665 -642 -630 

76 6·485 6·265 6-()92 5·959 5·858 5-782 5·728 5·691 5-668 5-655 
77 ·526 ·302 ·127 -991 ·886 ·811 ·755 ·717 -693 ·680 
78 ·568 ·340 ·161 6-()23 -918 ·839 ·782 ·743 ·719 •706 
79 -609 ·377 ·196 o()55 ·948 ·tl68 ·809 ·770 ·744 ·731 
80 ·650 o415 ·230 -()87 ·978 •896 ·837 ·796 ·770 ·756 

81 6-692 6·452 6·265 6·119 6-oos 5·924 5·864 5·822 5·796 5·781 
82 ·733 -490 ·299 ·151 o()38 -953 ·891 -848 ·821 ·806 
83 ·774 ·528 ·334 ·183 o()68 ·981 ·918 ·874 ·847 ·832 
84 ·1116 ·565 ·368 ·215 -()98 6·010 ·945 ·901 ·872 ·857 
85 ·857 -603 ·403 ·247 ·128 o()38 -972 -927 ·898 ·862 

86 6·898 6·640 6·437 6·279 6·158 6-()66 6·000 5·953 5·923 5·907 
87 -940 -678 -472 ·311 ·186 -()95 -()27 -979 ·949 ·932 
86 -981 ·716 ·506 ·343 ·218 ·123 o()54 6-()06 ·975 -956 
89 7-()22 ·753 ·541 ·375 ·248 ·152 -()81 -()32 6o()()() -983 
90 -()64 ·791 ·575 ·407 ·278 ·180 ·108 o()58 -()26 6-oos 

91 7-105 6·828 6·610 6·439 6·308 6·208 6·135 6-()84 6o051 6-o33 
92 •146 ·866 -644 ·471 ·338 -·237 ·162 ·110 o077 o()58 

93 ·188 ·903 -679 ·503 ·368 ·265 •190 ·137 ·102 o()84 

94 ·229 -941 ·713 -535 ·398 ·294 ·217 ·163 ·128 . ·109 
95 ·270 ·979 ·748 ·567 -428 ·322 ·244 •189 ·154 ·134 

96 7·312 7-()16 6·783 6-600 6·458 6·350 6·271 6·215 6·179 6·159 
97 ·353 o()54 ·817 -632 ·486 ·379 ·298 ·242 ·205 ·184 
98 ·394 -()91 ·852 -664 ·518 ·407 ·325 ·268 ·230 ·210 
99 ·436 ·129 ·886 ·696 ·548 -436 ·353 ·294 ·256 ·235 

100 -477 •166 -921 ·728 ·578 -484 ·380 ·320 ·281 ·260 
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TABLE IV (cont.) 

(Y- 5~-9; 51-100% kill) 

% Expected probit, Y 

kiD 5.0 5-l 5-2 5·3 5 .. 5-li. 5-6 5-7 5-8 5-9 

51 5~ 5.()25 5-()23 5-()17 IHJ05 4-985 4-953 4-906 4-840 4-750 
52 .o;o .o;o -()48 o()43 -()32 5-()13 -983 -938 -874 -788 
53 .()75 .075 .014 -()69 -()59 -ou 5-()13 -970 -900 -825 
5! •100 ·100 ·100 -()96 -()87 .()70 o()43 5.()()2 -943 -863 
M ·125 ·126 ·125 ·122 ·114 o()98 -()73 -()34 -978 -901 

56 5-150 5-151 5-151 5-148 5·141 5·127 5-103 5-()66 5-()12 4-938 
57 ·175 ·176 ·176 ·174 ·168 ·1M ·133 o()96 -()47 -976 
58 -~1 -~1 ·202 -~1 •195 ·183 ·163 ·130 -()82 5-()13 
59 ·226 ·226 ·227 ·227 ·222 ·212 •193 ·162 ·116 -()51 
60 ·251 ·252 ·253 ·253 ·250 ·240 ·223 ·194 ·151 -()88 

61 5·276 5·277 5·279 5·279 5·277 5·269 5·253 5·226 5·185 5-126 
62 ·301 ·302 ·304 ·305 ·304 ·297 ·283 ·258 -~ ·1M 
63 ·326 ·327 ·330 ·332 ·331 ·325 ·313 ·290 ·254 -~1 
M ·351 ·352 -355 ·356 ·356 ·354 ·343 ·322 ·289 ·239 
65 -376 ·378 ·381 -384 ·385 -asa ·373 ·354 ·323 ·276 

66 5-401 5-403 5406 5 ... 0 5~ 5 ... 1 5-403 5·386 5·356 5·314 
67 -426 -428 -432 ..S7 ~ ..a9 ..ss -418 ·39S ·351 
68 -451 -453 -458 ..ss -467 -467 ..ss ..so -427 ·389 
69 -476 -478 -483 -489 -494 -496 -493 -482 -461 -427 
70 -501 ~ ·509 -515 -521 -5241 -523 -514 -496 -464 

71 5-:i26 5·529 5·5M 5·541 5·548 5·553 5·553 5·548 5-530 5·502 
72 -551 -554 -560 -568 -575 -581 -583 -578 -565 -539 
73 -577 -579 -585 -594 -603 «J9 -813 -610 -599 -577 
74 -602 -604 -611 ~ -630 -638 •• -643 -642 -634 -615 
75 -627 -630 -637 -646 -657 -666 - -673 -614 -666 -652 

76 5-652 5-655 5-662 5-673 5-684 5-695 5·703 ,5-706 5·703 5-690 
77 -677 -680 -688 -699 ·711 ·723 ·733 ·738 ·737 ·727 
78 -702 ·705 ·713 -725 ·738 ·752 -763 -770 -772 ·765 
79 ·727 ·730 ·739 ·751 ·765 ·780 ·793 -802 -806 -802 
60 ·752 ·7M ·764 ·777 ·793 -806 -823 -834. -841 -840 

81 5·777 5·781 5-790 5·804 5·820 5·837 5·853 5·866 5·875 5·878 
82 ·802 -806 -816 -830 -847 -865 -883 -898 -910 -915 
83 -827 -831 -841 -856 -874 -894 -913 -930 -944 -953 
M -852 -856 -867 -882 -901 -922 -943 -962 -979 -990 
85 -877 -881 -892 -908 -928 -950 -973 -995 6-()14 6-()26 

88 5-902 5-907 5-918 5-935 5-956 5-979 6-()()3 6-()27 6-()48 . 6-()66 
87 -927 -932 -943 -961 -983 6-00'1 -()33 -()59 o()83 ·103 
88 -953 -957 -969 -987 6-QIO -()36 -()63 -()91 ·117 ·141 
69 -978 -982 -995 6-()13 -()37 -()64 -()93 ·123 ·152 ·178 
90 6-oo3 6-00'1 6~ -()40 -oM -()92 ·123 ·1M ·188 ·216 

91 6o028 6-()33 6-()46 6-()66 6.001 6·121 6·153 6·187 6·221 6·253 
92 -()53 -()58 -o71 -()92 ·118 ·149 •183 ·219 ·255 ·291 
93 .()78 -()83 -()97 ·118 ·148 ·178 ·213 ·251 ·290 ·329 
94 ·103 ·108 ·122 ·144 ·173 -~ ·243 ·283 ·324 ·388 
95 ·128 ·133 ·148 ·171 ·200 ·234 ·273 ·315 ·359 -404 

96 6·153 6·159 6·174 6·197 6·227 6·263 6·303 6·347 6·393 6·441 
97 ·178 ·1M ·199 ·223 ·254 ·291 ·333 ·379 -428 -479 
98 ·:ni ·200 ·225 ·249 ·281 -3lQ -363 ... 1 -462 ·517 
99 ·228 ·234 ·250 ·276 ·300 ·348 ·393 -443 -497 -554 

100 ·253 ·259 ·276 -302 ·336 ·376 -423 "'71i -531 -592 
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TABLE IV (cont.) 

(l'- 6-o-6-9; 51-100% kill) 

% Expected probit, Y 
kill 6-0 6·1 6·2 6·3. 6-4 . 6·5 6-6 6·7 6·8 6·9 

51 4-631 4-473 4·269 4·006 3·667 3·233 2-677 1·964 1-()49 
52 -672 ·519 ·321 -oM ·734 ·310 ·767 2·070 ·175 0-()22 
53 ·713 -565 ·372 ·122 ·800 '•387 ·857 ·176 ·302 ·175 
54 ·755 -611 -424 ·181 ·867 ·464 -947 ·283 -429 ·327 
55 ·796 -657 -475 ·239 -934 ·541 3-()37 ·389 ·555 ·480 

56. 4·837 4-703 4·527 4·297 4·001 3-619 3-127 2-495 1·682 0·632 
57 -879 ·749 ·578 ·356 -068 -696 ·218 -602 ·809 ·784 
58 -920 ·795 -630 ·414 ·134 ·713 ·308 ·708 -935 -937 
59 -961 ·841 -681 -472 ·201 ·850 ·398 ·814 2-()62 1·089 
60 5{)()3 ·687 ·733 ·531 ·268 -927 -488 -921 ·189 ·242 

61 5-()44 4·932 4-784 4·589 4-335 4-()()5 3·,78 3{)27 2·315 1·394 
62 -085 -978 ·836 -647 -401 -()82 -668 ·133 ·442 ·546 
63 ·127 5-()24 ·887 ·708 ·468 ·159 ·758 ·240 ·569 -699 
64 ·168 o()70 ·939 ·764 ·535 ·236 ·849 ·346 -695 ·851 
65 ·200 ·116 -990 ·823 -602 ·313 -939 -452 -822 2-()()4 

86 5·251 5·162 5-()42 4·881 . 4-669 4·391 4-()29 3·559 2·949 2·156 
67 ·292 ·208 -()93 -939 ·735 -468 ·119 -665 3o()75 ·308 
68 ·333 ·254 ·145 ·998 -002 ·545 ·200 ·771 ·202 -461 
69 ·375 ·300 ·196 5-()56 ·869 -622 ·299 ·878 ·329 -613 
70 -416 ·346 ·248 ·114 ·936 ·700 ·390 -984 -455 ·766 

71 5·457 5·392 5·299 5·173 5·003 4-777 4·480 4-()90 3·582 2·918 
72 -499 ·437 ·351 ·231 -()69 ·854 ·570 ·197 ·709 3·070 
73 ·540 -483 -402 ·289 ·136 ·931 -660 ·303 ·835 ·223 
n ·581 ·529 ·454 ·348 ·203 5-oos ·750 ·409 ·962 ·375 
75 -623 ·575 ·505 -406 ·270 -()86 ·840 ·516 4-()89 ·528 

76 5-664 5·621 5·557 5·464 5·336 5·163 4·930 4-622 4·215 3·680 
77 ·705 -667 -608 ·523 -403 ·240 5·021 ·728 ·342 ·832 
78 ·747 ·713 -660 ·581 470 ·317 ·111 ·835 469 ·985 
79 ·788 ·759 ·711 -639 ·537 . ·394 ·201 -941 ·595 4-137 
80 ·829 -805 ·763 ·698 -604 -472 ·291 5-<>47 ·722 ·290 

81 5·870 5·851 5·814 5·756 5·670 5·549 5·381 5·154 4·849 4·442 
82 -912 ·896 ·866 ·815 ·737 -626 ·471 ·260 ·975 ·594 
83 ·953 -942 -917 ·873 ·804 ·703 ·561 ·366 5·102 ·747 
84 -994 -988 -969 -931 ·871 ·780 ·652 473 ·229 ·899 
85 6-()36 6-()34 6-()2() ·!)9() -938 ·858 ·742 ·579 ·355 5-052 

86 6-()17 6-()80 6·072 6-()48 6-()()4 5-935 5·832 5-685 5·482 5·204 
87 ·118 ·126 ·123 ·106. o()71 6-()12 -922 ·792 -609 ·356 
88 ·160 ·172 ·175· ·165. ·138 -()89 6-()12 ·898 ·735 ·509 
89 ·201 ·218 ·226 ·223. ·205 ·166 ·102 6-()()4 ·862 -661 
90 ·242 ·264 ·278 ·281 . ·272 ·244 ·192 ·111 ·988 ·814 

91 6·284 6·310 6·329 6·340 6·338 6·321 6·283 6·217 6·115 5·966 
92 ·325 ·355 ·381 • ·398 405 ·398 ·373 ·323 ·242 6·118 
93 ·366 -401 ·432'' 456 ·472 475 ·463 430 ·366 ·271 
94 ·408 447 -484 -515 ·539 ·553 ·553 ·536 ·495 ·423 
95 -449 -493 ·535 -573 -605 -630 -643 -642 -622 ·576 

96 6490 6·539 6·587 6·631 6-672 6·707 6·733 6·749 6·748 6·728 
97 ·532 ·565 -638 -690 ·739 ·784 ·824 ·855 ·875 ·880 
98 ·573 -631 -690 ·748 ·806 ·861 -914 ·961 7·002 7-o33 
99 -614 -677 ·741 ·807 ·873 -939 7-oo4 7-()68 ·128 ·185 

100 -656 ·723 ·793 ·865 ·939 7-()16 -()94 ·174 ·255 ·338 
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TABLE IV (cont.) 

(l" -7~7-9; 51-100% kill) 

% E:rpected probit, Y 
kill 7-() H 7·2 7·3 7-4 7·5 7-6 7-7 ·7·8 7·9 
51 
52 
53 
54 
55 

56 
57 
58 
59 
60 O-o13 

61 0·198 
62 ·383 
63 ·568 
64 ·753 
65 -939 

66 1-124 
67 ·309 0{)()3 
68 -494 ·231 
69 -680 ·458 
70 ·865 -685 

71 2-o50 0·913 
72 ·235 1-140 
73 ·420 ·367 
74 -606 ·595 0·263 
75 ·791 ·822 ·545 

76 2·976 2·050 0·827 
77 3·161 ·277 1-108 
78 ·347 ·504 ·390 
79 ·532 ·732 -672 0·265 ~-

80 ·717 -959 -954 -618 

81 3·902 3·186 2·236 0·971 
82 4-087 -414 ·518 1·324 
83 ·273 -641 ·800 -677 0·175 
84 ·458 ·868 3-082 2-Q30 -621 
85 -643 4-o96 ·364 ·383 1-()68 

86 4·828 4·323 3·6-t5 2·738 1·514 
87 5-Ql4 ·551 -927 3-089 -961 0·438 
88 ·199 ·778 4·209 ·442 2·408 1-()08 
89 ·314 5{)05 ·491 ·795 ·854 ·579 
90 ·569 ·2"J3 ·773 4-148 3·301 2·149 0:581 

91 5·754 5·460 5-o55 4·501 3·747 2·720 1·317 
92 -940 -687 ·337 ·S.'l-1 4-194 3·290 2-054 0·356 
93 6·125 -915 -619 5·207 ·640 .•1<61 :790 Hll6 
94 ·310 6·142 -901 ·560 5·087 4·431 3·526 2·275 0·542 
95 -495 ·369 6·182 -914 ·533 5-()()2 4·262 3·235 1·806 

96 6·681 6·597 6·464 6·267 5-980 5·572 4·998 4-194 3-089 0 l-493 
97 -866 -824 ·748 -620 6·426 6·143 5·735 5·154 4·333 3·173 
98 7-051 7-051 7-o28 -973 . ·873 ·713 6-471 8-114 5·596 4·853 
99 ·236 ·279 ·310 7·326 7·319 7·284 7·207 7-o73 6·859 6·533 

100 -421 ·506 ·592 -679 ·766 ·854 -943 8·033 8·123 8·213 
~ 

IFP4 20 
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TABLE V. The Probability, P, the Ordinate, Z, and za 
y p z z• 

6·0 0·50000 0·39894 0·15916 

6·1 0·53983 0·39695 0·15757 
6·2 0·67926 0·39104 0·15291 
6·3 0·61791 0·38139 0·14546 
6·4 0·65542 0·36827• 0·13562 
5·5 0·69146 0·35207 0·12395 

6·6 0·72575 0·33322 O·lll04 
5·7 0·75804 0·31225 0·09750 
6·8 0·78814 0·28969 0·08392 
5·9 0·81594 0·26609 0·07080 
6·0 0·84134 0·24197 Q-05855 

6·1 0·86433 0·21785 0·04746 
6·2 0·88493 0·19419 0·03771 
6·3 0·903200 0·17137 0·02937 
6·4 0·919243 0·14973 0·02242 
6·5 0·933193 0·12952 0·01677 

6·6 0·945201 0·11092 0·01230 
6·7 0·955435 0·094049 0·00885 
6·8 0·964070 0·078950 0·00623 
6·9 0·971283 0·065616 0·00431 
7·0 0·977250 0·053991 0·00292 

7-1 0·982136 0·043984 0·00193 
7·2 0·986097 0·035475 0·00126 
7·3 0·989276 0·028327 0·00080 
7·4 0·9918025 0·022395 0·00050 
7·5 0·9937903 0·017528 0·00031 

7·6 0·995338H 0·013583 0·00018 

7-7 0·9965330 0·010421 O·OOOll 

7·8 0·9974449 0·0079155 0·00006 

7·9 0·9981342 0·0059525 0·00004 

8·0 0·9986501 0·0044318 0·00002 

8·1 . 0·99903240 0·0032668 0·00001 

8·2 0·99931286 0·0023841 0·00001 

8·3 0·99951658 0·0017226 0·00000 

8·4 0·99966307 0·0012322 0·00000 

8·5 0·99976737 0·00087268 0·00000 

8·6 0·99984089 0·00061190 0·00000 

8·7 0·99989220 0·00042478 0·00000 

8·8 0·999927652 0·00029195 0·00000 

8·9 0·999951904 0·00019H66 0·00000 

9·0 0·999968329 0·000133113 0·00000 

Y ahies of P and Z are tabulated above, to 5 significant digits, in order to 
aid the formation of functions that may be required in any new developments 
ofprobit methods; z• is the weighting coefficient introdu~ed in §47. 

When Y is less than 5·0, read the entries for (10- Y) as Q, Z, z•. 
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TABLE VI. Distribution of X" 

-Degrees of Probability 
·001 freedom ·90 ·70 ·50 ·30 ·10 ·05 ·02 ·01 

1 ·016 ·15 ·45 H 2-7 3·8 5·4 6·6 10·8 
2 ·21 ·71 1·4 2·4 4·6 6·0 7·8 9·2 13·8 
3 ·58 1·4 2·4 3·7 6·3 7·8. 9·8 11·3 16·3 
4 1,1 2·2 3·4 4·9 7·8 9·5 11·7 13·3 18·5 
5 1·6 3·0 4·4 6·1 9·2 11-1 13·4 15·1 20·5 

6 2·2 3·8 5·3 7·2 10·6 12·6 15·0 16·8 22·5 
7 2·8 4·7 6·3 8·4 12·0 14·1 16·6 18·5 24·3 
8 3·5 5·5 7·3 9·5 13·4 15·5 18·2 20·1 26·1 
9 4·2 6·4 8·3 10·7 14·7 16·9 19·7 21·7 27·9 

10 4·9 7·3 9·3 11·8 16·0 18·3 21·2 23·2 29·6 

12 6·3 9·0 11·3 14·0 18·5 21·0 24·1 26·2 32·9 
14 7·8 10·8 13·3 16·2 21-1 23·7 26·9 29·1 36·1 
16 9·3 12·6 15·3 18·4 23·5 26·3 29·6 32·0 39·3 
18 10·9 14·4 17·3 20·6 26·0 28·9 32·3 34·8 42·3 
20 12·4 16·3 19·3 22·8 28·4 31-4 35·0 37·6 45·3 

22 14·0 18·1 21·3 24·9 30·8 33.·9 37·7 40·3 48·3 
24 15·7 19·9 23·3 27·1 33·2 36·4 40·3 43·0 51·2 
26 17·3 21·8 25·3 29·2 35·6 38·9 42·9 45·6 54·1 
28 18·9 23·6 27·3 31·4 37·9 4H 45·4 48·3 56·9 
30 20·6 25·5 29·3 33·5 40·3 43·8 48·0 50·9 59·7 

When x• is based on more than 30 degrees of freedom, the quantity v(2x1)- v(2/-1) 
(where J is the number of degrees of freedom) has approximately the following distribution: 

>30 l -1·28 -0·52 0·00 0·52 l-28 1·64 2·05 2·33 3·09 

I am jndebted to Professor R. A. Fisher and Dr F. Yates, and also to M~ssrs Oliver and 
Boyd, Ltd., of Edinburgh, for permission to print Table VI as an abridgement of Table IV 
of their book Statistical Table8for Biological, Agricultural and Medical Ruearch. 

20·2 



308 

TABLE VII. Distribution of t 

Degrees of Probability 
freedom ·90 ·70 ·50 ·30 ·10 ·05 ·02 ·01 ·001 

1 ·16 ·51 1·00 1-96 6·31 12·7 31·8 63·7 637· 
2 ·14 ·« ·82 1·39 2·92 4·30 6·96 9·92 31·6 
3 ·14 ·42 ·76 1·25 2·35 3·18 4·54 5·84 12·9 
4 ·13 ·41 ·74 1-19 2-13 2·78 3·75 4·60 8·61 
5 ·13 ·41 ·73 H6 2·02 2·57 3·36 4·03 6·86 

6 ·13 ·40 ·72 1-13 1·94 2·45 3-14 3·71 5·96 
7 ;13 ·40 ·71 1-12 1·90 2·36 3·00 3·50 5·40 
8 ·13 ·40 ·71 1·11 1-86 2·31 2·90 3·36 5·04 
9 ·13 ·40. ·70 HO 1·83 2·26 2·82 3·25 4·78 

10 ·13 ·40 ·70 1·09 1·81 2·23 2·76 3·17 4·59 

12 .•13 ·40 ·70 1·08 1·78 2-18 2·68 3·06 4·32 
14 ·13 ·39 ·69 1·08 1-76 2·14 2·62 2·98 4·14 
16 ·13 ·39 ·69 1·07 1·75 2·12 2·58 2·92 4·02 
18 ·13 ·39 ·69 1·07 1·73 2·10 2·55 2·88 3·92 
20 ·13 ·39 ·69 1·06 1·72 2·09 2·53 2·84 3·85 

22 ·13 ·39 ·69 1·06 1·72 2·07 2·51 2·82 3·79 
24 ·13 ·39 ·68 1·06 1-71 2·06 2·49 2·80 3·74 
26 ·13 ·39 ·68 1·06 1·71 2·06 2·48 2·78 3·71 
28 ·13 ·39 ·68 1·06 1·70 2·05 2·47 2·76 3·67 
30 ·13 ·39 ·68 1·06 1-70 2·04 2·46 2·75 3·65 

40 ·13 ·39 ·68 1·05 1·68 2·02 2·42 2·70 3·55 
60 ·13 ·39 ·68 1·05 1·67 2·00 2·39 2·66 3·46 

120 ·13 ·39 ·68 1·04 1·66 1·98 2·36 2·62 3·37 

00 ·126 ·385 ·674 1·036 1·645 1·960 2·326 2·576 3·291 

I am indebted to Professor R. A. Fisher and Dr F. Yates, and also to Messrs Oliver and 
Boyd, Ltd., of Edinburgh, for pennission to print Table VII as an abridgement of Table III 
of their book Stati8tical Tables for Biological, Agriadlural and Medical Research. 
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TABLE VIII. The Weighting Coefficient in Wadley's Problem 

E~pected Weighting Expected Weighting 
probit coefficient probit coefficient 

y w y w 

1-1 0·00000 004 5·1 0·34242 
1·2 0·00000 009 5·2 0·36344 
1·3 0·00000 02 5·3 0·38069 
1·4 0·00000 04 5·4 0·39359 
1·5 0·00000 08 5·5 0·40173 

1·6 0·00000 2 5·6 0·40488 
1·7 0·00000 3 5·7 0·40296 
)·8 0·00000 6 5·8 0·39612 
)·9 0·00001 5·9 0·38466 
2·0 0·00002 6·0 0·36904 

2·1 0·00004 6·1 0·34983 
2·2 0·00006 6·2 0·32770 
2·3 0·00011 6·3 0·30338 
2·4 0·00019 6·4 0·27760 
2·5 0·00031 6·5· 0·25109 

2·6 0·00051 6·6 0·22452 
2·7 0·00081 6·7 0·19848 
2·8 0·00128 6·8 0·17348 
2·9 0·00197 6·9 0·14993 
3·0 0·00298 7·0 0·12813. 

3-1 0·00443 7·1 0·10829 
3·2 0·00647 7·2 0·09051 
3·3 0·00926. 7·3 0·07482 
3·4 0·01302 7·4 0·061l8 
3·5 0·01798 Hi 0·04948 

3·6 0·02439 7·6 0·03958 
3·7 0·03251 7·7 0·03132 
3·8 0·04261 7·8 0·02452 
3·9 0·05491 7·9 0·01899 
4·0 0·06959 8·0 0·01455 

4·1 0·08677 8·1 O·Oil03 
4·2 0·10648 8·2 0·00827 
4·3 0·12863 8·3 0·00614 
4·4 0·15300 8·4 0·00451 
4·5 0·17926 8·5 0·00327 

4·6 0·20692 8·6 0·00235 
4·7 0·23540 8·7 0·00167 
4·8 0·26398 8·8 0·00ll8 
4·9 0·29189 8·9 0·00082 
5·0 0·31831 9·0 0·00057 
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TAB~ IX. Minimum Working Probit, Range, and 
Weighting Coefficient for Inverse Sampling 

Expected Minimum Weighting 
pro bit working probit Range coefficient. 

y Y-Q/Z Q"/Z Z 1/PQ1 

5·0 3·7467 0·62666 1·2732 

5·1 3·9407 0·53346 1·3784 
5·2 4·1241 0·45269 1·4912 
5·3 4·2982 0·38279 1·6124 
5·4 4·4643 0·32241 1·7428 
5·5 4·6236 0·27039 1·8831 

5·6 4·7770 0·22572 2·0342 
5·7 4·9251 0·18750 2·1970 
5·8 5·0687 0·15493 2·3724 
5·9 5·2083 0·12732 2·5613 
6·0 5·3443 0·10403 2·7647 

6·1 5·4773 0·084485 2·9833 
6·2 5·6074 0·068187 3·2181 
6·3 5·7351 .0·054679 3·4700 
6·4 5·8606 0·043557 3·7395 
6·5 5·9842 0·034460 4·0275 

6·6 6·1060 0·027073 4·3346 
6·7 6·2261 0·021117 4·6613 
6·8 6·3449 0·016352 5·0081 
6·9 6·4624 0·012568 5·3753 
7·0 6·5786 0·0095862 5·7633 

7·1 6·6938 0·0072558 6·1721· 
7·2 6·8081 0·00544!H 6·6019 
7·3 6·9214 0·0040600 7·0528 
7·4 7·0339 0·0030007 7·5247 
7·5 7·1457 0·0021999 8·0177 

7·6 7·2568 0·0015996 8·5315 
7·7 7·3673 0·0011534 9·0661 
7·8 7·4772 0·00082480 9·6214 
7·9 7·5866 0·00058484 10·1971 
8·0 7·6954 0·00041117 10·7933 

8·1 7·8038 0·00028660 11·4097 
8·2 7·9118 0·00019805 12·0463 
8·3 8·0194 0·00013567 12·7030 
8·4 8·1266 0·000092128 13·3797 
8·5 8·2334 0·000062011 14·0762 

8·6 8·3400 0·000041372 . 14·7926 
8·7 8·4462 0·000027357 15·5289 
8·8 8·5522 0·000017929 16·2859 
8·9 8·657\J 0·000011645 17·0607 
9·0 8·7633 0·0000074951 17·8563 
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