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PREFACE 

THE PRop E RT 1 E s of continuous variation are basic to the theory 
of evolution and to the practice of plant and animal improvement. 
Yet the genetical study of continuous variation has lagged far 
behind that of discontinuous variation. 

The reason for this situation is basically methodological. Mendel 
gave us not merely his principles of heredity, but also a method of 
experiment by which, these principles could be tested over a wider 
range 'Of living species, and extended Into the elaborate_ genetical 
theory of today. The power of this tool is well attested by the 
speed with which genetics has grown. In less than fifty years, it 
has not only developed a theoretical structure which is unique in 
the biological sciences, but has established a union with nuclear 
cytology so close that the two have become virtually a single 
science offering us a. new approach to problems so diverse _as 
those of evolution, development, disease, cellular chemistry and 
human welfare. Much of this progress would have been impossible 
and all would have been slower without the Mendelian method of 
recognizing and using unit differences in the genetic materials. 

These great achievements should not, however, blind us to the 
limitations inherent in the method itself. It depends for its success 
on the ability to assign the individuals to classes whose clear 
phenotypic distinctions reveal the underlying genetic differences. 
A certain amount of overlap of the phenotypic dasses can be 
accommodated by the use of genetical devices; but where the 
variation in phenotype is fully continuous in its frequency distri­
bution, so that no such classes can be defined, the method cannot 
be used. A different approach is required, one based on the use 
of measurement rather than frequency. 

The first steps were taken nearly forty years ago, when· the 
theory of cumulative factors or multifactorial inheritance,· as it 
was variously called, was formulated. The full implications of this 
theory have, however, only gradually become realized. In the 
same way the special t.ypes of experiment and statistical analysis 
necessary for the study of continuous variation have only gradu-

vii 
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ally become available. Nevert.heleRs, t.hongh slow, progress has 
been real and we are now in a position to see not merely how con­
tinuous variati011 can be explained genetically, but also how 
experiments can be con(h.teted enabling us to understand and to 
measure the special genetical quantities in terms of which con­
tinuous variation can be analysed and its behaviour in some 
measure predicted. 

The present book does not aim at covering the whole literature 
of the subject. I have concentrated attention rather on trying to 
show the kind of evidence upon which the genetical theory of 
continuouR varia.t.ion is based, to bring out the special problems 
which it raises, to see how the familiar genetical concepts must be 
adapted to their ne\v use, and to outline an analytical approach 
which can help us to understand our experimental results, par­
ticularly those which can be obtained from plant material. In 
doing so I have assumed some knowledge of genetics and statistics. 
To have done otherwise would have made the text unnecessarily 
long, for this information can he gaiuod from a variety of other 
sources. 

The data with which I have had to work have been limited by 
the paucity of experiments adequate in both scope and description 
and I have therefore been unable to try out the methods, which 
are described, in as wide a variety of circumstances as could have 
been wished. These methods are in no sense exclusive or final; 
indeed their limitations require no stressing. But improvements 
can be brought about only as more and better experiments are 
undertaken; and such experiments cannot be planned until we 
have explored the scope and limitations of those we already have. 
Improvement of experiment, refinement of analysis and develop­
ment of theory must be simultaneous and progressive. 

Among the experiments upon which I have been able to draw 
none has been more instructive than that on ear conformation 
in barley, hitherto unpublished. This experiment was made in 
collaboration with Dr. Ursula Philip, now of the Department of 
Zoology, King's College, Newcastle-on-Tyne, and I wish to express 
my indebtedness to her for allowing its results to be published in 
this way. 

K. M. 
April1947 
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CHAPTER 1 

THE GENETICAL FOUNDATION 

1. BIOMETRY AND GENETICS 

THE GROWTH of genetical science as we know it today began 
with the re-discovery of Mendel's work in 1900. Nevertheless, at 
the time of that event there were· already genetical investigations 
in active progress; investigations which, although contributing 
relatively little to the development of genetical theory, still have 
an importance of their own. These were begun by Francis Galton, 
who published a general account of his methods and findings in 
Natural Inheritance (1889), and were continued by Karl Pearson 
and his pupils. From them the application of statistical mathe­
matics to biological problems received a great impetus, and if for 
this reason alone they mark a significant step in the growth of 
quantitative biology. 

The relative failure of this work in its avowed purpose, that of 
"elucidating the relations of parent to offspring in heredity, stems 
from a variety of causes. Mendel himself regarded the failure of 
his predecessors as due to their experiments not making it possible 
'to determine the number of different forms under which the off­
spring of J:lybrids appear, or to arrange these forms with certainty 
according to their separate generations, or definitely to ascertain 
their statistical relations'. While Galton's work can hardly be 
regarded as failing in the third respect, the nature of the material 
he chose rendered it impossible for him to succeed in the other 
two. His extensive use of human data, with its small families and 
genetically uncertain ·ancestries introduced difficulties enough; 
but it was the choice of metrical or quantitative characters, like 
stature in man, that foredoomed the work from the point of view 
of the laws of inheritance. These characters show continuous 
gradations of expression between wide extremes, the middle 
expression being most common in any family or population, and 
the frequency of occurrence falling away as we proceed towards 
either extreme (see Fig. 2). The distributions of frequencies of the 
various grades of expression sometimes, as with stature in man, 
approximate closely to the Normal curve; but while retaining the 
same general shape they depart in other cases from this precise 
form, for example by being asymmetrical. The simple Mendelian 

1 
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ratios, with their clear implication of the particulate or discon­
tinuous nature of hereditary constitution and transmission, depend 
on the use of characters by which individuals could be classed 
unambiguously into a few (usually two) distinct groups: they 
cannot come from continuous variation. Indeed, Mendel himself 
deliberately neglected such variation in his material, presumably 
with the clear recognition that it could only have a distracting 
influence in his analyses. 

Yet this continuous variation could not be completely over­
looked. Darwin himself had emphasized the importance of small 
cumulative steps in evolutionary change, and observation on any 
living species, especially the most familiar of all, man, showed 
how much of the variation between individuals was of this kind. 
The genetical problem of continuous variation remained therefore 
a challenge to geneticists; the inore so as biometrically Galton and 
Pearson had clearly shown such variation to be at least in part 
hereditary, even although they had failed to discover the mode 
of transmission. Neither the Galtonian nor the Mendelian method 
was of itself capable of supplying the solution. The understanding 
of continuous variation awaited a fusion of the two methods of 
approach, the genetical and the biometrical, for each supplied 
what the other lacked. The one gave us the principles on which the 
analysis must be based; the other showed the way in which to 
handle continuous variation, the way of representing it in a form 
which made fruitful analysis possible. 

Fusion was, however, delayed by a rivalry which arose between 
Biometricians and Mendelians as soon as Mendel's work was redis­
covered. This was aggravated by divergent opinions on the import­
ance of continuous and discontinuous variation in evolutionary 
change, and acerbated by the polemics of the protagonists. In 
time, attempts to reconcile the two views became welcome to 
neither party. The original discordance seems to have arisen 
because neither side understood the full implications of Mendel's 
fundamental separation of determinant and effect, of genotype and 
phenotype. The Biometricians seem to have regarded continuous 
somatic variation as implying continuous genetic variation, and 
the Mendelians seem to have considered discontinuous genetic 
variation as incompatible with anything but obviously discon­
tinuous somatic variation. Indeed, de Vries took continuity of 
variation in the phenotype as a criterion of its non-heritability. 

Two important steps had to be taken, therefore, before the bio­
metrical and genetical methods could be brought together. In 1909 
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Johannsen published his Elemente der exakten Erblickkeitslekre. In 
it he described the experiments with beans which led him to 
formulate his pure line theory. In particular he showed that herit­
able and non-heritable agencies were jointly responsible for the 
variation in seed weight with which he was concerned; that their 
effects were of the same order of magnitude; and that there was 
no means, other than the breeding test, of distinguishing between 
their contributions to the variation. The relations between genotype 
and phenotype were thus becoming clearer. The effects of discon­
tinuity of the genotype could be smoothed out and continuous 
variation realized in the phenotype by the action of the 
environment. 

In the same year a second Scandinavian geneticist, Nilsson­
Ehle, took the other step. He found that in wheat and oats there 
existed hereditary factors whose actions were very similar, if not­
exactly alike. There were three such factors for red versus white 
grain in wheat. Any one of them, when segregating alone, gave an 
F 1 ratio of 3 red : 1 white. Two of them segregating together gave 
15 : 1 for red : white, and all three gave a 63 : 1 ratio. That the 
red-grained plants in these F 11's were of various genetical constitu­
tions could be shown by growing F 3 families. Some of these gave 
3 red : 1 white, others 15 : 1, others 63 : 1 and still others all red. 
Yet there were no detectable differences in colour between plants 
owing their redness to the different factors. There were certainly 
some differences in redness, but these appeared to be associated 
more with the number of factors, than with the particular factors, 
present. The first degree of redness would be given equally by the 
three genotypes Aabbcc, aaBbcc and aabbCc; the second by the 
six genotypes AAbbcc, aaBBcc, aabbCC, AaBbcc, AabbCc 
and aaBbCc; and so on. It thus appeared that different factors 
could have similar actions, and actions which were, at least in 
some measure, cumulative. 

These factors in wheat and oats had effects sufficiently large for 
:Mendelian analysis to be possible; but it was realized by Nilsson­
Ehle, and also independently by East, that similar factors of 
smaller individual action could account for continuous quantita­
tive variation if enough of them were segregating. Each factor 
would be inherited in the Mendelian way, and its changes would 
be discontinuous or qualitative. Yet with a number of such factors, 
having similar and cumulative action, many different dosages 
would be possible, of which the intermediate ones would be the 
most common (Fig. 1). With phenotypic expression proportional 
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to factor dosage, variation would be quantitative, would follow 
Galton's frequency curves and would be nearly continuoUs. Con­
tinuity would be completed by the blurring effect of non-heritable 

FIG. 1 

The polygenic or multiple factor theory. The distribution of phenotypes 
obtained in a F 2 with two genes of equal and additive effect but without domin­
ance, neglecting non-heritable variation. The phenotypic expression is propor­
tional to the number of capital letters in the genotype. There would be seven 
phenotypic classes with three such genes, nine classes with four genes, and 2n+ l 
classes with n genes 

agencies, which would of course make th~ phenotypic ranges of 
the various genotypes overlap. 

During the next ten years this multiple factor hypothesis, as it 
was called, was applied to data from a variety of organisms, not­
ably by East and his collaborators, and by Fisher. The former 
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showed that the inheritance of a number of continuously variable 
characters in tobacco and maize could be fully accounted for on 
this view {e.g. East 1915, Emerson and East, 1913). Fisher carried 
the integration of biometry and genetics still further. He demon-

• strated that the results of the biometricians themselves, particu­
·larly the correlations which they had found between human rela­
tives, must follow on the new view {Fisher, 1918). From the 
biometricians' own data he was able to produce evidence of domin­

: an~e of the multiple factors, and he attempted the first partition 
of continuous variation into the components which the multiple 
factor hypothesis led him to expect. 

2. POLYGENIC SEGREGATION AND LINKAGE 

The essential features of the multiple factor hypothesis are two: 
that the governing factors or genes are inherited in the Mendelian 

·.fashion; and that they have effects similar to one another, supple­
. menting each other and small in relation to the non-heritable 
· variation, or at least in relation to the total variation. In this way 
smooth, continuous variation of the phenotype could arise from 
discontinuous, quanta! variation of the genotype. 

There is an obvious danger in postulating these multifactorial 
or polygenic systems. The constituent genes are so alike in their 
effects and so readily mimicked by non-heritable agencies, that 
they cannot be identified individually within the systems. Since 
such genes obviously cannot be followed by the Mendelian tech­
nique, how may we be sure that they are in truth borne on the 
chromosomes and so subject to Mendelian inheritance? 

On the negative side there is the evidence of reciprocal crosses. 
Though these sometimes differ a little in respect of continuously 
variable characters, presumed to be under polygenic control, they 
do so no more often than is the case with discontinuously variable 
characters. The two parents therefore generally contribute equally 
to the genotype of the offspring in the way expected of nuclear 
heredity, and not unequally as might be expected if inheritance 
was of some other kind. 

More positive evidence is, however, available. The properties 
characteristic of nuclear borne genes are two, viz. segregation and 
linkage. Although neither segregation nor linkage of the genes 
under discussion can be observed by the usual methods, the 
necessary tests can be made in other ways. 

If we take two different inbred, and therefore very nearly true­
breeding strains, both they and their F 1 will show variation 
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virtually only in so far as non-heritable agencies are at work. But 
genetical segregation of the nuclear genes which differentiate the 
parents will occur in F 2 , and the heritable variation to which it 
leads will be added to the non-heritable. The F 2 should therefore 
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COROLLA LENGTH IN MMS. 
FIG. 2 

The inheritance of corolla length in Nicotiana longifiora (East, 1915). For ease 
of presentation, the results are shown as the percentage frequencies with which 
individuals fall into classes, each covering a range of 3 mms. in corolla length and 
centred on 34, 37, 40, etc., mms. This grouping is quite artificial and the apparent 
discontmuities spurious: corolla length actually varies continuously. 

The means of F 1 and F 2 are intermediate between those of the parents. The 
means of the four F 3 families are correlated with the corolla length of the F 2 
plants from which they came, as indicated by the arrows. Variation in parents 
and F 1 is all non-heritable, and hence is less than that in F 2 which shows additional 
variation arising from the segregation of the genes concerned in the cross. Varia­
tion in F 3 is on the average less than that ofF 2 but greater than that of parents 
and F 1 . Hs magnitude varies among the different F;s, according to the number 
of genes which are segregating 
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be more variable than the parents and the F 1 : its frequency distri­
bution will be broader and flatter. Furthermore, as Mendel 
showed, each gene is homozygous in half the F 8 individuals. Segre­
gation will still occur in F 3 families, but it will be for only half the 
genes on the average. The average variation of F 8 families will 
therefore lie between that ofF 1, on the one hand, and parents and 
F 1 on the other; but the families will differ among themselves, 
some having variances approaching one extreme; some the other 
and most being intermediate. At the same time the homozygous 
genes by which the F 8 individuals differed will give rise to differ­
ences between the mean phenotypes of the F 3 families; and these 
means will be correlated with the phenotypes of the F 1 parents. 
Even where the parental strains are not nearly true-breeding, the 
F 1 will generally (though not inevitably) show greater variation 
than either F 1 or parents. 

Thus the necessary test of segregation is to be found in the 
relative variation of the different generations following crossing. 
It is sufficient to say that whenever a critical test has been made, 

. and many have been made, the results have accorded with the 
expectation based on nuclear inheritance. A characteristic case is 
shown in Fig. 2. 

Tests of linkage, the second property of nuclear genes, may be 
of two kinds. We may seek for linkage of the quantitative genes 
(or polygenes if we name them after the polygenic variation they 
determine) with genes of major effect, capable of being followed 
by Mendelian methods. Or we may seek for linkage between 
polygenes themselves. 

The first case of apparent linkage between polygenes and a 
major gene was reported by Sax (1923). He crossed a strain of 
Pltaseolus vulgaris, having large coloured seeds, with another whose 
seeds were small and white. Seed size showed itself to be a continu­
ously variable character, but pigmentation proved to be due to a 
single gene difference, the F 1 giving a ratio of 3 coloured- : 1 white­
seeded plant. By means of F 8 progenies the coloured F 1 plants 
were further classified into homozygotes and heterozygotes. On 
weighing the beans from the three classes of F 1 plant, PP, Pp 
and pp (P giving pigment and p no pigment), the average bean 
weights shown in Table 1 were obtained. 

The standard errors show the differences in seed weight to ·be 
significant. As in the parents, P is associated with large seeds and 
p with small ones. Indeed, the average weight is nearly propor­
tional to the number of P allelomorphs present. 

B.o.-2 
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TABLE 1 

Bean Weight (in Centigrams) in a Phaseolus vulgaris F 2 
(Sax, 1923) 

Number of Plants Colour constitution Average seed weight . 

45 
80 
41 

pp­
Pp 
pp 

30·7±0·6 
28·3±0·3 
26·4±0·5 

This is not, of course, final evidence of linkage of one or more 
polygenes governing seed weight :with the major gene governing 
pigmentation. The effect could be due to a pleiotropic secondary 
effect of P itself. Such a criticism has, however, been ruled out in 
other experiments. Rasmusson (1935) investigated the variation 
of flowering time in crosses of the garden pea. Flowering time was 
expressed as a deviation, in terms of days, from the average flower­
ing time of certain standard varieties grown each year for this 
purpose. A positive deviation indicated later flowering, and a 
negative deviation earlier flowering than the standard. 

To take one of his crosses as an example, the variety Gj with 
coloured flowers gave a mean flowering time of 8·5, while Bism 
with white flowers gave -9·3. Colour versus white in the flower 
depends on a single major gene, A-a. In the F 2 between these 
varieties the coloured plants had a mean flowering time of 
5·37±0·31 and the whites 2·11±0·76. The difference is significant 
and the coloureds are later than the whites, as would be expected 
from the parents.- The difference is smaller than that between the 
parents, but this only shows that the association between the 
pigmentation gene and the polygenic system governing flowering 
time is incomplete. 

So far the results are like those in beans; but the cross had been 
made on an earlier occasion, and from it an early coloured strain 
(HRT-11) had been selected. Its mean flowering time was nearly 
as early as that ofBism, namely-6·1. In the F 2 ofHRT-II x Bism, 
the coloureds gave a mean of -7·97±0·36 and the whites 
-8·30±0·81. The flowering-time difference associated with colour 
had vanished. Hence the difference in the original cross must 
have been due to one or more flowering-time genes linked with 
the major gene governing pigmentation. HRT-11 contained the 
recombinant chromosome carrying the colour gene from Gj and 
early flowering gene or genes from Bism. 

To round off the case, it may be observed that in a cross of 
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HRT-11 with alate flowering white variety, St, the coloured plants 
of F 1 had a mean flowering time of -1·24±0·20 and the whites 
1·63±0·23. The relation is here reversed in the way to be expected 
from linkage. 

TABLE 2 

Flowering Time in Peas (Rasmusson, 1935) 

Mean flowering time of F 1 plants 
Flowering time 

Cross difference 

Coloured (A) White (a) 
(A-a) 

' 
Gj K Bism 5·37 2·11 3·26 
HRT-11 K Bism -7·97 -8·30 0·33 
HRT-11 K St -1·24 1·63 -2·87 

Many cases of linkage between major genes and polygenes con­
trolling continuous variation have been reported, although in the 
majority of them the possibility of pleiotropic action of the major 
gene has not been finally excluded by the demonstration of recom­
bination. In Drosophila melanogaster, where all the chromosomes 
can be marked by major genes, it has been possible to show. that 
they all carry polygenes affecting a single continuously variable 
character, such as egg size (Warren, 1924). In several of these 
experiments it has also been shown, by comparing a. number of 
unmarked chromosomes with the same marked tester chromo­
some, that the differences cannot be due to the major gene 
itself. There must also be polygenes acting. The case described by 
Mather (1942) in this fly may be taken as an example. 

The distribution among the chromosomes of the genes affect­
ing the number of abdominal chaetae, a continuously variable 
character, was followed in four stocks, 0, B, Hand L. Each of 
the four was crossed to a common tester stock in which the large 
second and third chromosomes were marked by the genes Pm and 
Sb respectively. The small fourth chromosome was not marked 
and so could not be followed. The X chromosome was marked by 
the gene B in B and H themselves, and so could be traced in their 
test crosses; but it was unmarked and could not be followed in the 
test crosses with 0 and L. F 1's were raised from the four F 1's, 
which were also backcrossed to the parent 0, B, H or L as the 
case might be. Recombination is of course absent from male Hies. 
In the females it was largely suppressed for the second chromo­
somes by an inversion, and partly in the third chromosomes by 
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a smaller inversion, but was not affected in the X. The average 
chaeta numbers of flies in the various classes distinguished by the 
marker _genes were counted, and the effects of the various chromo­
somes thereby assessed. The results from F ,_'s and backcrosses are 
pooled in Table 3. 

TABLE 3 . 

Number of Abdominal Chaetae in Drosophila melanogaster 
(Mather, 1942) 

Mean chaeta number 
Chaeta number differences ascribable 

to chromosomes* 
Stock 

<1 ~ X II III 

0 39·9 44·6 - 0·93 -0·67 
B 36·1 43·5 0·89 0·23 -0·96 
H 44·4 52·3 3·10 3·09 0·48 
L 27·6 34·5 - -1·05 -2·65 

Average 
. 

OandB 38·0 44·1 - 0·58 -0·81. 
H , L 36·0 43·4 - 1·02 -1·09 

*Expressed in all cases as the excess over the tester. 

Difference in Chromosomes 

Comparison 

I 
X II III 

··-

0-B - 0·70±0·91 0·29±0·85 
0-H - -2·17±0·91 -1-15±0·85 
0-L - 1·98±0·85 1·98±0·85 
B-H -2·21±1-12 -2·86±0·98 -1·44±0·85 
B-L - 1·28±0·91 1·69±0·85 
H-L - 4·14±0·91 3·13±0·85 

The excesses in action of the four tested second chromosomes 
over the common tester, as measured by average number of 
chaetae, range from -1·05 to 3·09, and those of the third chromo­
somes from -2·65 to 0·48. These results may also be expressed as 
comparisons of the excesses with one another, thereby eliminating 
the tester chromosomes and with them the effects of the major 
genes used as markers. Thus the excess of the second chromosome 
from 0 over that from the tester was 0·93. The excess of the second 
chromosome from B was 0·23. The chromosome from 0 therefore 
has an excess of 0·93-0·23 over that from B. The comparisons 
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arrived at in this way are shown in the lower part of Table 3, and 
it is clear from the standard errors that the polygenic contents of 
the second and third chromosomes from 0, B, H and L must be 
regarded as differing amongst themselves. There is a similar differ­
ence between the X chromosomes of B and H, the only two in 
whose crosses this -chromosome could be followed. 

We may take the analysis still further. The lines B and H 
differed by 8·3 chaetae in males and by 8·8 in females. The differ­
ences associated with the three major chromosomes X, II and III 
proved to be 2·21, 2·86 and 1·44 respectively, giving a total of 
6·51 chaetae. The test therefore accounts for t~ree-quarters of the 
difference between the stocks themselves. Now the technique of 
raising F 1's and backcrosses would, in this case, reveal the full 
action of only those genes from 0, B, H and L genes, which were 
fully recessive to their allelomorphs from the tester stock. Fully 
dominant polygenes from 0, B, H and L would entirely escape 
detection, and the effects of partially dominant polygenes would 
be observed only in proportion to their recessiveness. The total of 
6·5 chaetae accounted for by reference to the chromosomes cannot 
therefore represent the action of all the polygenes by which B and 
H differed, except in the unlikely event of them all being fully 
recessive to their allelomorphs from the tester. So far as we can 
judge from this test, therefore, not only is the continuous varia­
tion in chaeta number under the control of polygenes in the 
chromosomes, but all the heritable variation between the stocks 
can reasonably be ascribed to such polygenes. 

This experiment is of interest in a different connection. Lines H 
and L were originally derived by selections for high and low chaeta 
numbers respectively from the cross between B and 0. It is clear 
from the table that the genic contents' of the various chromosomes 
have been changed in this process. Thus 0 and B do not differ 
significantly in either the second or the third chromosome, though. 
0 is slightly above B for each. But 0 is certainly lower than H 
and higher than L in both chromosomes, while H and L differ 
even more markedly. 

Now the average excess of H and L over the tester is 1·02 for 
the second and -1·09 for the third chromosome. These values 
resemble those of 0·58 and -0·81 obtained when the excesses of 0 
and B are averaged. It would appear that H and L between them 
contain the same polygenes affecting chaeta number as 0 and B, 
the process of selecting Hand L from B x 0 having resulted mainly 
in a redistribution of these genes. New differences do not a.ppear 
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to have arisen to any extent. This agrees with findings that muta­
tion would be incapable of explaining any but a small part of the 
selective responses obtained in establishing the H and L lines 
(Mather, 1941). In other words, the polygenes affecting abdominal 
chaeta number must have been recombined in the selected lines, so 
that +- and -+ combinations within the chromosomes of 0 and B 
have been replaced by++ and-- in Hand L respectively. Not only 
do polygenes show linkage with major genes, they show linkage 
with one another. Both the types of linkage that we foresaw are 
therefore demonstrated in this experiment. 

In such a selection experiment, where response depends almost 
entirely on the redistribution by recombination of the genes within 
chromosomes, continuously variable characters other than the one 
for whose expression selection is practised must often be affected. 
For wherever the genes controlling a second character are inter­
mingled along the chromosomes with those controlling the opera­
tive character, recombination of the one set will mean recombina­
tion of the other. Fixation by selection of the redistributed gene 
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combinations for the one character will then mean fixation of 
redistributed gene combinations for the other with the consequent 
possibility of a change in phenotype (Fig. 3). The second character 
can thus show a correlated response to a selection which did not 
aim at altering it, although the direction and· magnitude of this 
correlated response may well be unpredictable (Wigan and Mather, 
1942). 

Such a correlated response must have occurred in selecting the 
H and L lines from B x 0, for the fertility of the flies fell in both 
the selected lines. Falls in fertility are indeed a general accompani­
ment of selective changes in chaeta number in Drosophila. They 
have also been found in fishes (Svardson, 1944). This effect Inight, 
of course, be ascribed to pleiotropic action of the polygenes if the 
relation of the two characters proved to be constant. Evidence is, 
however, now available against the assumption of pleiotropy 
(Mather and Harrison, 1948). 

Selection was practised for increase in chaeta number on flies 
from a cross between two Drosophila stocks (Fig. 4). The mean 
number of chaetae rose for 20 generations and, as usual, fertility 
fell at the same time. After these 20 generations of selection the 
fertility was so low that the line could not be maintained under 
selection. Mass culture was then resorted to and the fertility 
immediately began to rise, doubtless as a result of natural selec-­
tion for fertility within the culture bottles. This increase in 
fertility was accompanied by a correspondingly rapid fall in chaeta 
number, as indeed we should expect whether the effects on fertility 
arid chaeta number were pleiotropically determined by the same 
genes or whether they were due to linkage of genes lowering 
fertility with those increasing chaeta number. 

Mter three generations of mass culture selection was again prac­
tised for increased chaeta. number. Four generations ofsuch selec­
tion restored the chaeta. number to the peak value originally 
obtained at the time when mass culture became necessary. But 
this time there was not the same loss of fertility, and the new high 
line maintained this peak value for over eighty generations after 
selection was again replaced by mass culture. Furthermore, not 
only did this new mass culture maintain itself at the level where 
fertility after the first selection had been so low, but it did so even 
though it had within itself all the genic materials for a fall in 
chaeta number, as was shown when a downward selection was 
successfully attempted with it later. Thus lower fertility was now 
associated, not with higher but with lower chaeta. number. 
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Selection for increased number of abdominal chaetae in Droaophila melanogaater (Mather and Harrison, 1948). In the first 
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The conclusion is clear. In the second high selection the linkage 
of low fertility with higher chaeta number was broken, so that the 
second massed line had not the incubus of poor fertility combina­
tions which had been present after the first selection. Such a 
reassociation must often follow by recombination on the assump­
tion of linkage. It is capable of no simple explanation on the 
alternative assumption of pleiotropic action. It would thus appear 
that polygenes controlling different characters may be linked, as 
well as those controlling the same character. 

Nor is this linkage confined to the polygenes controlling chaeta 
ri.umber and fertility. In the selection experiment which we have 
just described, selection for chaeta number was observed to pro­
duce correlated responses in number of spermathaecae,- mating 
behaviour, and the frequency of appearance of certain eye 
abnormalities as well as in fertility. Other characters may also, of 
course, have been affected but have escaped notice. However this 
may be, the number of correlated responses actually observed 
gives an indication of the complexity of the linkage relations 
between the different polygenic systems. 

We have now seen that the genes controlling continuous varia­
tion segregate in the same generations as do those major genes 
controlling discontinuous Mendelian variation; and that they show 
linkage with one another as well as with the major genes markirig 
particular chromosomes. Furthermore, there is little evidence of 
differences in reciprocal crosses in the way expected if cytoplasmic 
inheritance were involved. Andin the case where a partial balance 
sheet could be struck it accorded as well as could be expected with 
the view that all the heritable variation was accountable by genes 
carried on the chromosomes. The nucleus is apparently as potent 
relative to the remainder of the cell in its control of continuous 
variation as it is in its control of major discontinuities. 

3. POLYGENES AND MAJOR GENES 

The use of major genes as markers has allowed us not merely to 
see that the polygenes are borne on the chromosomes; it has 
enabled us to show that in Drosophila different members of the 
same polygenic system are carried on all three of the major 
chromosomes, X, second and third (Table 3). Each of these 
chromosomes gave evidence of change through recombination of 
the polygenes it carried, so that there must be at least six poly­
genes in the system governing continuous variation in the number 
of abdon1inaJ chaetae. 
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Now other crosses in Drosophila do not behave the same as the 
one described, in respect of this character {Mather, 1941), and we 
must therefore assume that they differ in other genes which are 
also members of this polygenic system affecting the number of 
abdominal chaetae. The number of polygenes in the system must 
thus exceed our minimum of six, although we cannot say by how 
much this minimum is exceeded. . 

'Student' {1934) has estimated that at least twenty polygenes 
must control oil content in maize, and many geneticists who have 
studied continuous variation would tend to put the number higher 
{see Rasmusson, 1933). Indeed, 'Student' himself was of the 
opinion that the number of genes in his ca~e was nearer to two 
hundred than to twenty. This question of the number of genes in 
a polygenic system is, however, one to which we must return later: 
It is sufficient for the present to observe that the minimum is 
several rather than few. 

We shall show later {Section 13) that the non-heritable variance 
of abdominal chaeta number in the cross of B x 0 was 6·7. The 
non-heritable standard deviation was therefore about 2·6. Now the 
lines H and L differed by some 17 chaetae, so that if no more than 
the minimum of six polygenes were responsible, the average effect 
of each gene difference would be less than 3 chaetae. The average 
effect of the individual polygene is therefore at most only of the 
order o~ the non-heritable standard deviation. If six is an under­
estimate of the number of polygenes, their average effect must 
be correspondingly smaller than the non-heritable component of 
variation. 

The different members of this polygenic system could be distin­
guished one from another only by their linkage relations. They had 
siinilar effects on the phenotype, and the siinilarity even extended 
to the gross actions of the whole chromosomes. Further, the effects 
of the different genes must have been supplementary as well as 
similar, for no one chromosome, and a fortiori no one gene, could 
of itself account for a difference in number of chaetae so large as 
that seen between lines H and L. All the chromosomes played 
their parts, and more or less equal parts, in producing this differ­
ence. The same is true of the polygenic system governing heterosis 
in egg production by Drosophila females {Strauss and Gowen, 
1943). 

The two assumptions that had to be made to link continuous 
variation to Mendelian genetics have thus been vindicated by 
experiment. The polygenes responsible are similar in their trans-
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mission through the nucleus to those recognized by, and used in, 
Mendelian analysis. But they differ from these major genes in that 
they occur in systems, the members of which have small, similar 
and supplementary effects. Each of these properties has conse­
quences of importance to us. The similarity in transmission makes 
it possible to use the laws of inheritance established by Mendelian 
methods for the analysis and interpretation of continuous varia­
tion, in the way to be discussed in later chapters. The dissimilarity 
in effect on the phenotype means that the two types of genes, 
major genes and polygenes, must play different parts in the control 
and adjustment of the phenotype. This is particularly true in 
relation to the action of selection. 

Each of the genes normally recognized by Mendelian means 
appears to be highly specific, in that aside from the special case of 
polyploids, the part it plays in development can rarely, if ever, 
be duplicated by other such genes. Or to put it another way, if the 
gene is not playing its part, the deficiency cannot be made good 
by other genes of the nucleus. Furthermore, the part played by 
each gene seems to be so important that when the gene has 
changed, the mutant form is drastically different from the normal, 
even to the extent of being completely inviable. Such drastic 
differences must be disastrous from the standpoint of Darwinian 
fitness. In short, these genes are of major effect and hence of major 
importance to the proper functioning of the orgallism. They seem 
seldom to have been concerned in specific differentiation (Mather, 
l943a}, and though their deleterious mutant allelomorphs often 
occur hidden under the cloak of dominance in wild populations, 
these mutants are seldom found in homozygous condition outside 
the laboratory. The homozygotes which will occur by mating of 
heterozygotes in the wild must be weeded out by natural selection. 
Such genes are the backbone of the genotype; and being essential 
like a backbone, the normal allelomorph of each has an uncon­
ditional selective advantage over its mutant alternatives. 

The polygene is in a different position. It is one of a system 
whose parts are apparently interchangeable in development. 
Although individually their effects are not large, the members of 
a system may act together to produce big differences, as between 
H and L, or they may act against each other so that similar 
phenotypes arise from different genotypes, as in 0 and B. No 
allelomorph of one polygene has therefore an unconditional 
advantage over the other; its advantage depends on the allelo­
morphs present at the other loci of the system. Great potential 
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variability can lie hidden in the form of the balanced combina­
tions. Equally great genetical diversity and change may occur 
behind the fa~ade of phenotypic uniformity. Polygenes are the 
genes of fine adjustment, clothing, as it were, the indispensable 
skeleton of major genes, and moulding the whole into the fine 
shape demanded by natural selection. They are the genes of 
smooth adaptive change and appear to be at the root of speciation 
()lather, 1943a). They are also the genes with which the plant 
and animal breeder is generally concerned in his endeavours to 
produce improved forms. 

These special properties of the polygene in selection arise from 
its relatively small individual effect and from its membership of a 
polygenic system whose parts are interchangeable in function. 
Now natural selection acts on the phenotype as a whole, and so 
the t-otal action of a gene must be small and interchangeable if it 
is to show the special selective properties of a polygene. A gene 
which, while contributing to smooth- polygenic variation in one 
character, simultaneously has a further major and more specific 
effect on another, cannot have the properties of a polygene in 
re.spect of its t-otal action, because it cannot be part of a system 
whose members may balance or reinforce one another in the way 
on which the special selective properties of a polygene depend. It 
is therefore of import.ance to inquire how far the various contribu­
tions to polygenic variation in a character are merely the secondary 
or pleiotropic outcome of gene differences having simultaneous 
major effect-s. 

Characters which show polygenic variation may also be subject 
to alteration by major genic effects. The number of abdominal 
chaetae in Drosophila showed only polygenic variation in the 
experiments which we have discussed, but it is also subject to 
drastic change by major genes such as 'scute' and 'Hairless'. In­
deed, it seems that no character is subject· only to polygenic or 
only to major genic change. All characters may be expected to 
show both if sufficiently extensive observations are made on them. 

In some cases it is possible to see that a major gene is con­
tributing by pleiotropic action to variation which otherwise seems 
polygenic. Such a case is that of nicotinic acid content in maize 
grains ()lather and Bart-on-Wright, 1946). The content of this 
vitamin varies between strains, and in particular starchy and 
sugary strains, distinguished by the gene Su-su, differ in that the 
former have on the average only half the content of the latter. 
Differences among the starchies and among the sugaries are, on 
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the other hand, relatable to no detectable major genes. It is there­
fore noteworthy that these apparently polygenic differences are 
smaller than that produced pleiotropically by the action of Su-su. 
The nicotinic acid contents of the starchy and sugary classes do 
not overlap even though there is considerable variation within 
each. Even apart from its simultaneous action on the carbo­
hydrates, the Su-su gene would hardly be confused with the 
polygenic system which is also involved. Its effect is too large. 

The results of the Drosophila experiment on abdominal chaetae 
are even more positive. Differences in the second and third chromo- · 
somes between the tester stock and any one of the four strains 
tested, 0, B, Hand L, could be ascribed to pleiotropic action of 
the major genes used to mark these chromosomes in the tester. 
The differences among 0, B, H and Lin the chromosomes cannot, 
however, reasonably be ascribed to pleiotropic action of major 
genes, for no major genes, or at least no known major genes, 
distinguished them. In other words, the polygenes that were 
detected cannot be merely major genes exhibiting themselves in 
a different way. 

General observation points the same way. Quantitative differ­
ences of the kind which experience has shown typically to be 
under polygenic control, commonly occur between individuals or 
strains which are not differentiated by any detectable major gene,· 
even in the most intensively studied plants and animals. Thus 
whatever transitional stages may exist between them, we must 
recognize that polygenic systems can and do exist distinct from 
the major genes. 

This conclusion is supported by evidence of another kind. 
Cytologists recognize two kinds of chromatin within the nucleus, 
euchromatin and heterochromatin. Special methods may be 
required to permit the distinction to be observed, and it also seems 
possible that in some cases the heterochromatin cannot be identi­
fied by any known technique. Nevertheless, it is clear that a single 
chromosome may be partly euchromatic and partly heterochro­
matic, and that even whole chromosomes may be heterochromatic. 
The heterochromatin is of special interest because wherever tests 
have been possible, it has proved to be devoid, or virtually so, of 
major genes. In this sense it is inert, and it is often so termed by 
geneticists. 

Heterochromatic chromosomes, supernumerary to the normal 
complement, are known in a number of plants. They must be 
.'inert' in the above sense, because neither have they an effect 
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on the phenotype comparable i.r{ magnitude with those of extra 
chromosomes or chromosome parts from the normal complement, 
nor are they essential to the organism in the way that the normal 
chromosomes are. Yet their mechanical properties are such that 
they must either disappear or increase indefinitely in frequency 
in the absence of some countervailing selective action. That they 
have not done so is therefore evidence of such action (Darlington 
and Thomas, 1941 ), though in what way they affect the phenotype 
so as to introduce selective differences is generally not clear. Their 
action is, however, obviously not essential and therefore most 
probably not unique, and it is equally obviously small in magni­
tude. They have the properties of polygenes, or more likely of 
groups of polygenes. The slight effects on vigour and fertility 
traced in a few cases (Ostergren, 1947) accord with this view. 

The same is true of the heterochromatic Y chromosome and 
the homologous heterochromatic portion of the X, in Drosophila 
melanogaster. Apart from the bobbed gene and the male fertility 
genes, which are confined to the distal half of the Y, both Y and 
the heterochromatic part of the X are inert in that they contain 
no genes of major effect. Yet both vary in their effects on the 
number of sternopleural chaetae, and they vary in a way which 
points to the conclusion that the variation is due to a number of 
genes having small, similar and supplementary action; in fact, to 
polygenes (1\Iather, 1944). Thus although heterochromatin contains 
few or no major genes, it is polygenically active. The cytological 
and genetical evidence agrees therefore in showing that polygenes 
must be capable of existing as a class distinct from major genes. 

Heterochromatin has another property which now becomes of . 
interest to us. It does not always divide cleanly at mitosis. There 
is reason to believe that, at least under extreme conditions, one 
daughter nucleus may receive more than the other (Darlington and 
La Cour, 1941). Polygenic systems carried by heterochromatin 
may therefore show a certain measure of disorderly behaviour. 
This would presumably appear as mutation in genetical experi­
ments, but mutation which affected the linear arrangement. 

·Later, crossing-over in an individual heterozygous for such a 
structural mutation would lead to further variation by producing 
duplications and deficiencies. 

Now duplication or deficiency for a small number of polygenes 
is not likely to be unconditionally deleterious. The small effects of 
the change could be balanced by other members of the polygenic 
system. By this means the heterochromatin might well assume a 
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somewhat disorderly genic structure. Allelomorphs might not be 
of like action in development, in the way that is clearly obligatory 
for the major genes of the euchromatin. Crossing-over of such 
allelomorphic, but genetically non-corresponding, heterochromatin 
would bring together, side by side in one chromosome, unlike genes 
which were not so together in the parent chromosomes. Since we 
know from the observation of position effect, that adjacent genes 
may affect one another's action, we may thus have possibilities of 
variation in polygenic systems borne by the heterochromatin 
wider than those which have been established from the study of 
major genes. 

Although major genes are confined to euchro~tin, polygenes 
are not confined to heterochromatin. The X chromosome of 
Drosophiln, melarwgaster is divided into a proximal heterochromatic 
and distal euchromatic portions. A survey of its polygenic activity 
shows no corresponding division (Wigan, 1948 ). Polygenic varia­
tion is associated more with the ends of the chromosome than it is 
with the middle. It occurs in euchromatin as well as heterochro­
matin, and indeed is greater in the euchromatic left end than in 
the heterochromatic right. · 

It does not seem likely that this activity of the euchromatin is 
to be accounted for by the inclusion of small pieces of heterochro­
matin within it. Such pieces are known to be present in the 
otherwise euchromatic end of the X chromosome, but the distri­
bution of polygenic activity does not seem to be associated with 
their positions. Rather it appears that polygenes, as well as exist­
ing separately from major genes, may exist side by side with them. 
Indeed, it is difficult to see how the euchromatin at the left end 
of the X chromosome could show such polygenic variation as it 
does without the association between polygene and major gene 
being in this case a close one. It would appear likely that at a 
locus recognized as that of a major gene by the existence of a 
major discontinuity of effect between two allelomorphs, there 
can also exist allelomorphs differing in action only in the way 
typical of polygenes. If this is so the major gene must be so con­
structed that it may vary to produce on different occasions a 
major and specific change of action, and a smaller non-specific 
change. · 

A gene that can vary in these different ways, must have a 
corresponding complexity of parts. Furthermore, the assumption 
is difficult to avoid that the drastic and unique effect of the 
change, which leads us to class the gene as major, must imply a 
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greater disarray of parts or a disarray of more parts than does the 
smaller effect, reproducible by other genes, by which we recognize 
the polygene. On this view the polygene represents a simpler 
difference of the structure than does the major gene, a dissimilarity 
in one or a few of the parts, the rest working normally, as opposed 
to dissimilarity of many parts, or, perhaps more likely, of the 
integration of these parts. Again, since the simpler dissimilarity 
may apparently be shown at a number of loci, while the more 
complex one is unique, one is led to suppose that the structures at 
different loci often contain the same parts. If this is the case the 
genes must then owe much of their individuality to their organiza­
tion, just as two proteins might contain similar amino-acids yet 
differ in properties because these amino-acids were carried in 
.different proportions and in different arrangements (Mather, 
l946b). 

The relations possible between polygenes and major genes affect­
ing variation in the same character are therefore two. While 
affecting the same character they can be distinct classes of gene, 
the one having nothing to do with the other. In other cases, how­
ever, it would appear likely that different variations of the same 
structure can lead to its being recognized both as a major gene and 
as a polygene, though on different occasions. This second relation 
is nevertheless not one of pleiotropy iii. action, because the poly­
genic effect is observed when the characteristic major genic effect 
is absent. Rather it follows from a complexity of structure and 
mutation. Thus in either case, whether the difference which we 
recognize as part of a polygenic system is due to change in a 

· structure which can never be associated with a major genic differ­
ence, or whether the difference recognized as due to a polygene is 
consequent on change in a structure which can also ·change 
independently so as to appear as a major gene, the small non­
specific difference is not a mere secondary action of any major 
difference. Though in any given instance the polygene may or 
may not exist as a physical structure independent of major genes, 
its difference can always exist as the determiner of variation 
independent of any major discontinuity. It will then contribute 
only to the polygenic variation and will be acted on by selection 
only as part of a polygenic system. 



CHAPTER 2 

CHARACTERS 

4. PHENOTYPE AND GENOTYPE 

IN GENETICS, the term character is applied to any property of 
an organism in regard to which similarities or differences, especi­
ally those of a heritable nature, are recordable between individuals. 
A great variety of characters is now known to show heritable 
variation. It includes gene and chromosome behaviour, cell shape, 
gross morphology, physiological and biochemical properties, 
psychological characteristics, mating behaviour, resistance to 
disease and toxic agents, ability to infect a host, ability to act 
as a vector in virus transmission, and antigen production. Indeed, 
few geneticists would question the proposition that no character 
of an organism would fail to show heritable variation, were it 
subjected to adequate examination. Furthermore, the magnitude 
of the heritable differences shown in a character may range from 
the smallest that is detectable to the largest that is possible. 
· Our discussion of the genetical basis of continuous variation has 
already led us to touch on the relations between gene and char­
acter. Three principles have emerged, whose consequences we must 
now examine in more detail. . 

The first of these, and one which we owe· to Johannsen, is the 
principle that the phenotype is the joint product of genotype and 
environment. Variation in a character may therefore result from 
variation in either genotype or environment, and, a8 Johannsen 
showed, the two kinds of variation in the character, heritable and 
non-heritable, cannot be distinguished by mere inspection. A plant 
or animal may be small because of insufficient feeding or because 
of its ancestry, and only a breeding test can distinguish the one 
situation from the other. 

The second principle is that the variation in a character may be 
caused by alteration in any of a number of genes. The genes causing 
differences in the same character may be related in various ways. 
They may, of course, all be members of a polygenic system, as in 
the case of the genes affecting the number of abdominal chaetae 
in the four strains of Drosophila. They may, on the other hand, 
all be major genes whose effects on the character are neither 
small nor supplementary. The changes produced by such major 
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genes may be distinguishable by inspection, as is the case with 
many genes affecting for example flower colour in plants or eye 
colour in Drosophila; or the changes may appear alike. Many 
chlorophyll-deficient barley plants, for example, look alike though 
caused by different genes, and the same is true of 'minute' bristles 
which can be brought about by any of some 70 known genes in 
Drosophila. Again, variation may at the same time be due partly 
to a major gene and partly to a polygenic system as we saw with 
the nicotinic acid content of maize grains. Thus, not only is a 
breeding test necessary to show how far the difference between 
two individuals or strains is heritable, it is also necessary to reveal 
the nature and relations of the genes determining any heritable 
differences that may be found. 

Furthermore, just as two individuals or strains may owe their 
difference to any of a number of genes, two which are alike may 
owe their similar phenotypes to different genes. This applies to 
comparisons between species as well as within them. In cotton, for 
example, Gossypium hirsutum and G. barbadense each have forms 
with large coloured spots on the petals. They look alike, but breed­
ing tests have shown that the genetical architecture of the char­
acter is different in the two cases (Harland, 1936). Indeed, Harland 
regards such differences of genetical architecture as both wide­
spread and of great importance in evolution. 

The genetical basis of any one of a range of phenotypes can be 
discovered only by breeding. Sometimes a single test will serve to 
clarify the situation once and for all, because where the responsi­
bility of a major gene is demonstrated, the genotype can be 
inferred subsequently from the phenotypic appearance within the 
range for which the difference has been established. This is, how­
ever, never possible where the variation is under the control of a 
polygenic system, because of the regular interchangeability in 
effect of the polygenes both with one another and with non­
heritable agencies. 

The third of our principles relating to gene and character is that 
just as one character may be influenced by more than one gene, 
one gene may influence more than one character. The simultane­
ous effect of the Su-su gene on carbohydrates and nicotinic acid 
in maize has already given us one example of this property of 
pleiotropic action, which is indeed quite common among genes. 
Sometimes the connexion between the various effects is fairly 
obvious. Genes initially detected in plants by their effects on leaf 
shape are often, for example, observed also to affect the shape of 
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the petals. This is to be expected, but other associations are more 
surprising. A series of four allelomorphs affect the size of the 
coloured 'eye' round the mouth of the corolla tube in Primula 
sinensis. So far as is khown this is the only effect of three of them, 
but the fourth also shortens the style in such a way that flowers, 
otherwise of the pin type, become homostyled. This is all the more 
remarkable because the effect of this fourth allelomorph on the 
eye is indistinguishable from that of one of the other three, which 
itself causes no shortening of the style. 

The common developmental origin of a number of apparently 
u,nrelated changes caused by one gene is sometimes made clear by 
embryological studies. A recessive gene is known in the rat which 
kills the animals soon after birth. The affected animals show a 
wide range of peculiarities. These are especially marked in the 
circulatory and respiratory systems, but also appear in the form 
of the snout, the occlusion of incisor teeth, and the ability to 
suckle. When traced back, however, they all arise from an initial 
breakdown of the cartilage (Griineberg, 1938). The complexity of 
the gene's pleiotropic effects is thus traceable to a single initial 
action, which changes the general course of development and so 
leads to the gene change expressing itself in a syndrome of 
varied abnormalities. 

The longer the chain of events between the first action of the 
gene and its final expression in the phenotype, the greater the 
complexity of effects which can arise from a simple alteration. 
Conversely where a character, such as the production of a par­
ticular antigen, is a more immediate expression of gene action, a 
simpler correspondence would be expected, as is indeed observed, 
between gene change and character change. M:uch, though we 
cannot say all, .of the complexity of relations between gene and 
character is thus to be attributed to the multiplicity of stages 
intervening between initial action and final expression. It is a 
multiplicity which permits one gene to show a number of appar­
ently different effects and at the same time offers opportunity for 
its consequences, and with them the character, to be changed by 
other genes and by external agencies. This would be so even if as 
Beadle ( 1945) suggests, each gene has a single primary action and 
each primary action is characteristic of one gene. The complexity 
will be all the greater if a given gene can in fact have more than 
one primary action and if, as is suggested by polygenic systems, 
the same primary action can be shared by a number of genes. 

It is therefore clear that while a given phenotype, taken as 
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a whole, can be related to a given genotype, acting as a whole, 
in a given' set of circumstances, no similar correspondence can be 
expected between the parts of the phenotype and the parts of the 
genotype: the genes of a nucleus must be related in action, and 
the characters must be related in development. 

-This complexity of relation between genes and characters has 
many consequences outside the scope of our present discussion. 
It has, however, an immediate importance for us because, as we 
shall now see, it determines the lines to be followed in making the 
genetical analysis with which we are concerned. 

5. GENETIC ANALYSIS AND SOMATIC ANALYSIS 

The object of most genetical experiments has been to throw light 
on the organization and transmission of the genotype. In such 
experiments the relations between the genes which are used and 
their phenotypic expressions are of secondary interest. They are of. 
importance only in so far as they limit recognition of the geno­
types, with which the experiment is primarily concerned, through 
the changes they produce in the phenotype. An unfortunate choice 
of 'marker' genes, whose effects are indistinguishable or overriding, 
results in confusion of the phenotypes associated with certain of 
the genotypes. Genotypic classification is thereby made less com­
plete and information is lost. The most useful choice of genes is 
clearly that which, in an appropriately arranged experiment, leads 
to each of the possible genotypes giving rise to a unique and dis­
tinctive phenotype. All the genotypes can then be identified with 
confidence and analysis is complete. In this type of experiment, 
therefore, the nature of the changes brought about by the genes 
in the phenotype is of purely technical interest. Emphasis is on 
the analysis of the genotype rather than the adjustment of the 
character. 

In the practical utilization of genetical knowledge, however, the 
main interest centres in the adjustment of the character. The plant 
breeder is basically concerned with improving yield, disease resist­
ance, or some other feature of his crop, and he seeks knowledge 
of the genetical architecture of the character with that end in 
view. He cannot choose the genes with which he will work: he is 
concerned with all the genes that contribute to the variation in 
the character, whether they are major genes or polygenes and 
whether they have pleiotropic effects or not. He therefore requires 
analytical methods capable of dealing with all types of genetical 
variation. 
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In so far as there are discontinuities in the variation of the 
character, the breeder can use the methods of Mendelian genetics . 

. The inheritance and interactions of any major genes recognizable 
in this way can be ascertained, and by appropriate breeding any 
desired type can be produced and recognized at will. The success 
of this approach derives from the recognition and isolation of the 
genes involved, so that they may be put together in any way that 
is desired. It may be found that a given phenotypic difference can 
be produced by more than one gene; but, as Nilsson-Ehle has 
shown us with his cereals, we can still isolate the genes one from 
another and put them together in the way we wish, provided they 
can be recognized as. units· through their production of discon­
tinuities in the variation of the character. 

The application of the Mendelian type of analysis can be 
extended by special methods, notably the use of inbred lines, to 
permit the examination of particular gene differences on a uniform, 
or isogcnic background. In this way the obscuring effects of other 
gene segregations may be removed and genes recognized by the 
production of discontinuities in variation which would otherwise 
have been swamped by the mass of segregation. This method is 
powerful, but it is also laborious and expensive of time. Further­
more, even were we prepared to adopt these measures for the 
analysis of any polygenic systems governing variation in the 
character in which we are interested, we should still come up 
against two further limitations. In the first place, though it might 
be possible to analyse the system using a series of individually 
isogenic lines, the synthesis of any desired type by crossing these 
lines would bring back all the difficulties which arise from the 
obscuring effects of the genes on one another's segregation. The 
second and perhaps more important limitation is imposed by the 
obscuring effect of non-heritable variation on the segregation of 
polygenes. This is not, of course, eliminated by the use of inbred 
lines. In fact the inbreeding depression seen in organisms which 
normally cross-breed may be accompanied by an increase in non­
heritable variation. 

'\Vhile, therefore, we may conceive of all genes as capable of 
isolation and handling by 11Iendelian means, given an ideal uni­
formity of genetical background and elimination of non-heritable 
variation, we must in practice accept a situation falling short of 
this ideal. We can reduce non-heritable variation but at present 
we cannot eliminate it. Indeed, we have no certainty that it 
ran ever be wholly eliminated even under the most rigorously 
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controlled conditions. Equally, the most inbred stock still has a 
residuum of genetical variation, if only from mutation. Finally, 
even could we achieve this ideal state in which genes of small and 
like effects could be separated and handled by the Mendelian 
method, the cost in both labour and facilities would prohibit its 
general use in handling polygenic variation for practical purposes. 
We must thus be prepared to accept the situation in which genes, 
though contributing as units to the variation, are not recognizable 
as such by means of their effects on the phenotype and therefore 
are not separable in analysis. The genetical analysis is thus limited 
by the complexity of relation between gene and character. • 

Attempts have been made to simplify the genetical analysis by 
a prior somatic analysis of the character. Many characters, such as 
yield in crop plants, can be regarded as made up of a number of 
sub-charact~rs. H each of these were under separate genetical con­
trol, the inheritance of its variation would be simpler than that 
of the whole character. A preliminary somatic analysis would then 
make the genetical analysis easier. · 

Consideration of the relations between genes and characters has 
shown us, however, that there is no ground for expecting the sub­
characters that we can recognize in the phenotype to be under 
completely separate genetical control. Rather we must expect that 
some genes will affect both of any pair of sub-characters while 
others may affect only one of the pair. The variation of the two will 
then be correlat~d but not completely so, and the degree of corre­
lation cannot be predicted. It will depend on the sub-characters in 
question and on the genes which are contributing to the variation. 

This basis of the partial correlation can be illustrated from the 
action of major genes on flower colour (see Beadle, 1945). This 
depends on the presence of anthocyanins and anthoxanthins, 
among other pigments. Now genes are known which affect the 
type and intensity of anthocyanin pigmentation while having 
relatively little effect on the anthoxanthin. Others in turn change 
the anthoxanthin pigmentation while leaving the anthocyanins 
almost unaffect~d. It appears, however, that the two kinds of pig­
ment have a common precursor. Thus, even in addition to any 
negative correlation between variation in the two types of 
pigmentation which may arise from competition for this precursor, 
a positive correlation may be produced by change in the action of 
genes whose chief effect is on the supply of precursor. The degree 
of correlation observable in any group of individuals will depend 
therefore on the developmental relations between the two types 
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of pigmentation and on the genes which happen to be contributing 
to the variation. Furthermore, where the variation is due to 
immediate segregation, the linkage relations of the genes must 
also have its effect on the correlation. 

In the case of variation determined by major genes, the correla­
tion between the sub-characters, in this case anthocyanic and 
anthoxanthic pigmentation, need cause us no concern. We can 
isolate the genes, determine the individual effects of each and also 
discover their interactions in effect. The partition of the character 
into its constituents even helps us with the genetic analysis to the 
extent that it enables us to distinguish the various genes through 
the differential effects on the sub-characters which we can establish 
by experiment as characteristic of each. The analysis is, however, 
primarily into units of inheritance. The somatic analysis is built on 
to the genetic analysis and must be justified at every stage by 
reference to it. Pleiotropic action and linkage can then be detected, 
and the subsequent use of somatic analysis -can be confined to 
effecting the distinction between those genes which it has shown 
itself in practice as capable of distinguishing. 

The. situation is quite different when the genes themselves 
cannot be isolated in experiment. Somatic analysis cannot then 
be founded on a prior genetic analysis and its limitations there­
fore cannot be gauged. Though the sub-characters may each have 
a simpler genetical basis than the whole character, we know neither 
how many genes have been separated by the analysis into sub­
characters nor how far any failure to achieve separation depends 
on linkage as opposed to pleiotropic action. Furthermore, each 
sub-character will still be showing the effects in its variation of an 
unknown number of individually unrecognizable genes. Such a 
somatic analysis does not simplify the genetical problem. When it 
has been made we still have to deal with a system of genes affecting 
each sub-character and we do not know how far these systems are 
interlocked. 

It may be argued that genes which affect the same character but 
do so by altering different sub-characters, cannot be regarded as 
members of the same polygenic system, because the similarity of 
their effects is only superficial. However this may be theoretically, 
we have no practical means of distinguishing them from genes 
which affect both sub-characters simultaneously. Thus where 
we are dealing with continuous variation, due to genes which we 
cannot expect to be readily recognizable as individuals in segrega­
tion, we do not overcome the intrinsic difficulty of the situation 



30 CHARACTERS 

by attempting a prior somatic analysis. We must in any case use 
methods capable of dealing.with systems of genes taken as wholes, 
and we may as well do so first as last. 

Somatic analysis is therefore of use for genetical purposes only 
where experiment has shown its application to be both justifiable 
and helpful. So far we have been considerjng it as a possible help 
for genetical analysis and we have seen that such justification can 
be given for its use in sorting out major genes, but. that it cannot 
be expected to be of great help in the sorting out of genes govern­
ing continuous variation. It may nevertheless have its uses in pre­
dicting the average breeding behaviour in respect of a character 
showing such continuous variation. 

Yield in wheat plants may be regarded as built up from the sub- · 
characters, number of ears, number of grains per ear and average 
weight per grain. The genetical variation of these characters has 
been shown by Smith ( 1936) to be correlated in Australian varieties. 
The somatic analysis does not therefore simplify the methods 
which must be used in genetical analysis of the polygenic system 
affecting variation in yield. It does, however, aid us in partially 
disentangling the heritable and non-heritable variation. Plants 
may have the same yield but have it for different reasons. 
Excellence in one sub-character may be balanced by poor per­
formance in respect of another. In so far as these balancing effects 
are genetic the somatic analysis does not of itself help us to predict 
breeding behaviour in respect of yield as such (though, of course, 
it may help in so far as we are concerned to breed for, say, ear 
number as a desirable character in its own right, rather than as a 
mere sub-character of yield, in which capacity its improvement is 
no more a desirable means of increasing yield than is the improve­
ment of any other sub-character). But where the genetical quality 
is being obscured by non-heritable effects somatic analysis may 
help us, because one or more of the sub-characters may show 
relatively less of this obscuring variation than the character does 
as a whole. In his wheat, Smith found that this was indeed the case. 
In particular knowledge of the sub-character, average weight of 
the grain, was helpful in lessening the error caused in the assess­
ment of the genotype from the phenotype by the intervention of 
non-heritable agencies. Prediction of breeding behaviour in respect 
of yield was therefore capable of improvement by use of the somatic 
analysis into sub-characters, information about any of which could 
be used to supplement that about yield as a whole. 

The value of somatic analysis for the improvement of prediction 
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of average breeding behaviour cannot of course be assumed with­
out evidence, any more than its value in aiding genetical analysis 
could be assumed without evidence. It requires experimental 
justification each time. Smith supplied this by his observation 
that average weight of grain showed relatively less non-heritable 
variation than did the. yield as a whole. Somatic analysis may 
prove to have other genetical uses, but in every case its application 
must be based on adequate genetical evidence. 

6. THE COMBINATION OF CHARACTERS 
(in collaboration with Dr. U. Philip) 

· Just as a character may be capable of resolution into a number 
of sub-characters, it may itself be only one of a number of charac­
ters in whose joint properties we are interested. Thus yield is only 
one of a number of features on which the general merit of a wheat 
plant depends. Baking quality, ~tra.w properties and resistance to 
various diseases are other characters which tlie breeder cannot 
ignore. These, together with yield, may be taken as the components 
of a super-character which is itself the overall merit of the plant. 

Just as two sub-characters may not be independent in their 
genetic control, whether for physiological or mechanical reasons~ 
so we may not be in a position to treat any two characters them­
selves as independent. And just as the division into sub-characters 
does not simplify the genetical problem posed by continuous varia­
tion in such a way as to permit the use of simpler genetical 
methods, so the aggregation of characters into a super-character 
does not necessitate the use of more complex genetical methods in 
its analysis. The two relations, of sub-character to character and 
of character to super-character, differ in one respect however. The 
former is a precise relation since the character is itself definable 
and measurable, while the latter is not precise because the super­
character is not generally capable of final definition and measure­
ment. The method of combining the characters is not clear. Thus 
the yield in grammes per w)leat plant, for example, is obviously 
the product of the number of ears, the average number of grains 
per ear and the average weight in grammes per grain. But what 
coefficients should be given to yield, baking quality, &c.~ in arriving 
at a measure of the super-character, overall merit? And by what 
method should they be combined? 

If some measure of overall merit were available the problem 
could be solved by treating this as a single character, with yield, 
&c., as sub-characters. Then for any range of material the multiple 
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regression of overall merit on its sub-characters could be found and 
used as a means of predicting or estimating merit from the 
measurements of its components. The question is therefore that 
of finding a measure of overall merit. It would be possible in this 
case to use the free market price of the produce from a variety as 
such a measure. The objections to such a course, fluctuations in 
price even when taken relative to some standard, and the undesir­
ability of confining attention to the features which preponderantly 
determine market price at any given moment, are too obvious to 
require stressing, even where free markets exist. Nevertheless this 
means of evaluating the emphasis placed by commerce on the 
various qualities of a biological product may well have its uses, 
albeit limited uses. 

Another and more generally applicable means of combining 
characters into a single measure is afforded by Fisher's dis­
criminant functions. These bear a formal resemblance to multiple 
regression equations, although their aim is a different one. They 
may be illustrated by reference to Smith's consideration of yield in 
wheat, mentioned above. The phenotypic relations of the various 
sub-characters of yield to yield itself are clear and fixed. Since, 
however, yield and its sub-characters are subject to non-heritable 
variation, the relations of genotypic value, in respect of yield, to 
the various phenotypic measurements are not so obvious. The 
problem is that of how best to predict the genotypic value in 
respect of yield, as opposed to yield itself, from the phenotypic 
observations on the sub-characters. This Smith has approached by 
finding a function of the phenotypical measurements, number of. 
ears, number of grains per ear and mean weight per grain, selec­
tion for which would give the maximum advance in yield. In this 
way coefficients are calculated for the combination of the sub­
characters with one another in the way most useful for the purpose 
in hand. The function obtained, as the best for discriminating 
between genotypes, is a discriminant function. 

Discriminant functions are linear functions of the various 
measurements which are available and which may themselves be 
correlated with one another. The coefficients given to the various 
measurements in the function are chosen so as to maximize the 
differences between two or more classes of objects or individuals 
relative to the variation within the classes. In other words, they 
afford the best available means of discriminating between the 
classes. The theory of these functions has been described by Fisher 
(1936, 1938) and they have been used for a variety of purposes as 
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different as the classification of Egyptian skulls, the selection of 
wheat plants, the recognition of different species and the inves­
tigation of the psychological qualities essential in a good salesman. 
The estimation of the coefficients by which the measured quanti­
ties are combined is at its simplest where the discrimination is 
between only two classes; but the calculations necessary in a more 
complex case, as well as the way in which the functions can be 
used, may be illustrated by reference to .a genetical experiment 
on ear conformation in barley. We are indebted to Professor 
R. A. Fisher for his help with the calculation of this discriminant 
function. 

The object of the experiment was the investigation of the 
genetical control of ear conformation in barley. The conformation 
of the ear depends on its absolute length, its absolute width an.d 
the absolute lengths of the internodes between the spikelets; but 
it also depends on the relative values which these various measure­
ments bear to one another. It was therefore decided to represent 
ear conformation by a discriminant function compounded of 
all three measurements in the way best suited for genetical 
investigation. · 

The two varieties Spratt and Goldthorpe were chosen as both 
having fairly broad ears (Table 4), but as differing in the genetical 
architecture of their ear characters. No simple Mendelian differ­
ences could be detected between the varieties: variation was con­
tinuous in the F 1 raised from the cross Spratt x Goldthorpe. Two 
ears were taken from each of 170 plants ofthis generation. On each 
ear three measurements were made, all in millimetres, viz. the 
overall length neglecting the awns (L), the maximum breadth (B) 
and the combined length of the central six internodes (0). The 
averages of these three measurements are given for the parent and 
F 1 in Table 4. The analysis of variance of L, and the results of the 

TABLE 4 

Mean Values of L, B, 0, in millimetres and X in the Barley Parents, 
F 1 andF1 

' L B a X 

Spratt 70·2 10·2 28·6 321·7 
Gold thorpe 70·5 11·3 27·8 302·3 

Fl 85·3 10·1 33·6 398·0 
Fa 78·1 10·3 31-1 358·2 

-· 
X=L-5B+60 
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analyses of variances and covariances of all three measurements 
on the 340 F 1 ears, into the two parts, between and within F 1 

plants respectively, are given in Table 5. 

Between plants 
'Yithin plants 

Total 

TABLE 5 

Analysis of Variance of L 
S.S. N. 

91385·438 169 
10692·500 170 

102077·938 339 
--- ---~--------~--~~-

M.S. 
540·742 

62·897 

V.R. 
8·597 

Mean Squares and Mean Cross Products between and within 170 F 1 
Barley Plants 

--c--- ~----~------- ~--~ 

c• 

I 
N L' B 0 

~--I-l--l-

Between plants 169 540·742 8·406 
Within plants 170 62·897 1·388 
Variance ratio 8·597 6·055 

72·699 
5·038 

14·429 
-~--------~----- ~-~~~-~--- ~----

----------------~~-- -~ --- ~~- - ----

Between plants 
Within plants 
Variance ratio 

LB 

-44·503. 
0·408 

La 

177·224 
7·612 

~·-~--- -----~--'----

BO 

-19·658 
-0·820 

7119·254 
415·429 

17·137 

From these analyses it is clear that L, B and C are correlated 
in all combinations between plants, and also in all combinations 
except LB within the plants. The information that each contri­
butes about ear conformation is not independent of the others. 
Nevertheless, since the correlations are not complete, each can 
contribute information unique to itself. A measure compounded of 
all three should therefore be superior in specifying the plants to 
any one of them taken individually. The problem is, of course, that 
of finding the most suitable compound. 

Leaving out of account the possibility of somatic mutation, the 
variation within plants is obviously non-heritable. The variation 
between plants is not wholly heritable, but as will be seen later 
(Section 18) approximately t of it is of this kind in F 2• If therefore 
a function of L, B and C is found which maximizes variation 
between plants relative to variation within plants, it should go a 
long way towards giving a measure of ear conformation whose 
genetical variation is at a maximum compared with at least one 
important kind of non-heritable variation. 



THE c6MBINATION OF CHARACTERS 35 

The Coefficients b L• b B and b0 of L, B and 0 respectively in this 
function are found from the equations 

b L(A LL -!foa u) +b B(A LB-!foa LB) +bo (A w-!foa w)=O 

bL(ALB-!foaLB)+bB(ABB-!foaBB)+bo(ABo-!foaBo)=O 
b L(A w-!foa w) +b B(A Bo-!foa Bd +b0 (A00-!foa0 o) =0 

where A LL• .A BLJ &c., are the total sums of squares of L, total sums 
of cross products of Land B, &c., aLL• aLB• &c., the corresponding 
sums of squares and cross products between plants and !fo is an 
adjustable quautity whose value is to be estimated. The necessity 
for estimating !fo leaves, of course,· only two equations relating to 
the three b coefficients. We can therefore estimate only their 
relative magnitudes. 

!fo is first estimated from the condition, implicit in the equations, 
that the determinant 

-

ALL-!foaLL ALB-!foaLB ALo-!foaw 

.ALB-!foaLB .ABB-!foaBB ABo-!foaBo =0 

A w-!foa w A Bo-!foa BO Aao-!foaoo 

substituting for .ALL> aLL> &c., this becomes 

102077·9-91385·4cfo -7481·6+7521·1!fo 31244·9-29950·9!fo 

-7481·6+ 7521-l!fo 1656·6-1420·6!fo -3461·8+ 3322·3!fo =0 

31244·9-29950·9!fo -3461·8+3322·3!fo 13142·6-12286·1!fo 

which gives the equation in !fo 

264715-607453!fo+458047!fo2-1l3767!fo3=0 
The derivation of this equation can be found from any text-book 

of matrix algebra. 
The lowest root, !fo=1·05893, is the solution needed. Substitution 

for !fo in the original equation then gives 

5307·1bL+482·7bB-471·0bo=O 

482·7bL+152·3bB+ 56·3b0 =0 

-471·0bL+ 56·3bB+132·5b0 =0 

These are satisfied by bbB=-5·320 and ~=5·816. 
L bL 

Then, putting bL=1, the desired discriminant function repre­
senting ear conformation becomes 

X=bLL+bBB+baO 
.. L-5·320B+5·8160 
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which is approximated sufficiently well by the more easily applied 
function 

Then 

X=L-5B+60 

X~L2+25B2+3602-10LB+12LC-60BC 

from which its analysis of variance may be written down as shown 
in Table 5. Whereas L 2, B 2 and 0 2 gave variance ratios of 8·597, 
6·055 and 14·429 respectively, X 2 gives a variance ratio of 17·137. 
The variation between plants relative to that within plants has 
been raised by nearly 19% over the previous best. 

The inheritance of ear conformation in this barley cross is con­
sidered in Sections 18 and 21, where, however, the discriminant 
function X=L-9B+12C, mistakenly found by an earlier calcula­
tion, is used. The most striking difference between the two dis­
criminants is one of absolute magnitude, which arises from the 
convention of putting bL=l. Such a difference can of itself cause 
no distortion of the final analysis, since its effect is only to intro~ 
duce a constant factor into all the first-degree statistics and the 
square of that factor into all the second-degree statistics. A change 
of the same kind would, for example, follow the use of inches in 
place of millimetres for taking the initial measurements. Apart 
from this, the difference between the effects of using the two 
functions is small. The variance ratios they give in partitioning 
the variation of the F 2 differ by less than 2!% (16·75 against 
17·14). The relative ranges covered, and the positions occupied 
in them, by the means of the parents, F 1 and F 2, differ by about 
2%. Such differences Cllll have only trivial effects on the outcome 
of analysing statistics whose standard errors range over higher 
percentages than these. The great labour of recalculating the data 
from nearly 15,000 measurements was not therefore considered 
justifiable and the results are presented in terms of the earlier 
discriminant . 
. It would appear, in fact, from empirical trials that while 

X=L-5·320B+5·816C is the best discriminant, very similar results 
can be obtained with quite a wide range of others of the same 
pattern. Evidently the essential features of a discriminant function 
defining ear conformation in barley are that bB should be of 
opposite sign to bLand b0 , and that L should be given only a 
fraction of the weight of Band C in finding X. 

Ear conformation is not a character which can be measured 
directly. In fact, before we could measure it we had to define it. 
This was done by specifying that it should be compounded of ear 
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length, ear width and ear internode length in such a way that the 
compound would maximize the variation between plants, which 
is largely genetic, relative to that within plants, which must be 
almost wholly non-genetic. We thus combined the three characters 
into a single super-character, defined in a way specially suited to 
our needs. 

The method is open to use whenever it is possible to represent 
our needs in the form of a maximization of differences between 
recognizable classes, in our case the F 11 plants. It may therefore 
be applied to the definition of characters which are either undefin­
able or not capable of measurement by other means. Thus flavour 
in fruits is generally incapable of measurement. We can, however, 
measure such characters as pH, and sugar concentration. If we can 
classify a range of fruits into good and poor, it is possible to calcu­
late the discriminant function of pH, sugar concentration and such 
other measurements as are available, which maximizes the differ­
ence between the flavour classes. In this way a usable definition 
can be given to the flavour character. The definition cannot be a 
final one, since some new measurable property of the fruit may 
be observed which supplements or even partially replaces one or 
more properties of which an earlier discriminant has been com­
pounded. The success of a discriminant function in achieving the 
desired discrimination can be tested in a simple way (Mather, 
1943b) and so compared with that of its predecessors or successors. 

Where different classifications have led to the calculation of 
different discriminants by unlike combinations of the same 
ingredients, a further investigation is possible. We may consider 
a discriminant as a vector specifying the deviation of one class 
from another in a space of as many dimensions as there are 
measured properties used in making the discriminants. Discrimin­
ants may therefore be regarded as differing in either direction or 
distance or in both. Methods are available for separating these two 
kinds of difference (Fisher, 1938). These have yet to be used in 
practice, and indeed the statistical development of discriminant 
functions has in general outrun their practical application. These 
functions promise to be a powerful tool for use in combining and 
analysing metrical characters in genetical work and to offer means 
of overcoming many of the difficulties met with in the past. 



CHAPTER 3 

SC.ll.ES 

7. THE PRISCIPLES OF SCALISG 

WITH DISCO:STI:St;OUS VARIATIO:S such as that produced by 
genes of major effect, individuals are assignable to one or other 
of a number of distinct classes. The resulting data consist of the 
frequencies "\lith which the various classes are represented in the 
group of individuals under examination. The characterb""tics by 
which these alternative classes are recognized may also be ex­
pressed, if we so wish, in terms of some convenient metric or 
metrics, but this is not essential for the analysis of the data. To 
take an example, the tall peas of a. segregating family such as 
~Iendel considered may average 6 feet in height and their short 
companions may be only 2 feet high; but it would make no differ­
ence to the treatment of the frequency data if the tails were I 0 feet 
as against only I foot for the shorts. Xor would the analysis be 
different if the tails were only 4 feet with the shorts up to 3 feet 
provided that each individual fell unambiguously into one class 
or the other. The analysis requires no assumptions about the 
metrical relations of the das...-:es, because the genetical situation in 
question is completely described by the frequencies of tails and 
shorts. The only essential is that the shortest tall be clearly taller 
than the tallest short; that, in fact, the db-tribution of heights be 
discontinuous. Granted that this is so, the precise metrical relation 
between the characters of the two classes is a matter of indifference 
so far as the treatment of the frequency data goes. The result 
would in fact still be the same if the plant heights were expressed 
in the terms oflog feet, or antilog feet, or indeed on any reasonable 
scale, for the discontinuity would still exist and the regular 
separation of the cla..;:;ses would still be possible. With frequency 
data therefore there is no problem of choice of scale. 

With continuous variation the situation is different. Each 
observation is a measurement which mn:.-t be regarded as potenti­
ally unique, even where, o"\ring to the shortcomings of our measur­
ing ifu.-truments, two or more individuals appear in the recorru as 
having the same measurement. Without regular discontinuities we 
have no natural means of grouping into frequencies, and each 
datum can have no significance other than as measurement of 

33 
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character expression. Thus the usual variation of human stature 
cannot be described adequately for genetical purposes by saying 
that there exist so many tails and so many shorts. Such a classifica­
tion has no genetical foundation. Even if the variation were to be 
expressed in the form of frequencies of individuals with heights 
lying within successive ranges of, say, I inch, the representation 
would still be inadequate because the classification into these 
ranges is justified by neither genetical nor biometrical considera­
tions. Indeed, some of the biometrical characteristics of the varia­
tion are distorted by such artificial grouping. 

We are therefore in the position of necessarily using biometrical 
quantities, means, variances, &c., to replace frequencies in describ­
ing the variation. Now the resulting description can be valid only 
n terms of the scale on which the measurements are taken. A 
change of scale by, say, the logarithmic transformation, will change 
the values of these descriptive quantities, and it will change them 
unequally for measurements of different magnitudes. The descrip­
tion of such a body of data, and a fortiori the comparison of two 
or more such bodies of data, must therefore depend on the scale 
used in measurement. Clearly the choice of an appropriate scale is 
the first step in the analysis of polygenic variation. 

The scales of the instruments which we employ in measuring 
our plants and animals are those which experience has shown to be 
convenient to us. 'Ve have no reason whatsoever to suppose that 
they are specially appropriate to the representation of the charac­
ters of liv1-ng organisms for the purposes of genetical analysis. 
Nor have we any reason to believe that a single scale can reflect 
equally the idiosyncrasies of all the genes affecting a given 
character. 'Ve cannot even assume without evidence that a scale 
appropriate to the representation of variation of a character in 
one set of individuals under one set of conditions will be equally 
appropriate to the representation of that same character either in 
a different set of individuals, which may be heterogenic for different 
genes, or under different conditions. It may, therefore, never be 
possible to construct an a priori scale for the representation of 
variation in a character. Certainly with only our present knowledge 
of gene action, the construction of such a scale is impossible. 
Observations already available, such as those of Powers (1941), 
serve merely to emphasize this conclusion. · 

The scale on which the measurements are expressed for the 
purposes of genetical analysis must therefore be arrived at by 
empirical means. It should obviously be one which facilitates both 

B.G.--4 
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the analysis of the data and the interpretation and use of tha· 
resulting statistics. Now sums, sums of squares, and sums of cross­
products, on the partitioning of which the analysis mJISt depend, 
may be most conveniently regarded as composed of various com-

. ponents, individually determined by the various genes and by the 
non-heritable agents, which are summed to give the quantity in 
question. The scale should therefore be one on which such summa­
tion of effects is possible. Ideally this would mean that any given 
gene substitution would lead to the same phenotypic difference 
no matter where on the chosen scale its effect was measured. The 
replacement of A by a or of B by b in any genotype and under 
any set of environmental conditions should make the same differ­
ence, no matter what the measurement associated with the 
original genotype and conditions might be. In the same way the 
difference associated with the action of any non-heritable agency 
should be independent of the effects of other agents, heritable and 
non-heritable. The genes and non-heritable agents should all be 
additive in action. 

In practice, of course, such a scale may be impossible to find. 
Each gene and each non-heritable agent may be acting on its own 
unique scale, or at least all may not be acting on the same scale. 
Since, however, the genetical analysis ca.nnot pretend to determine 
the individual effects and properties of genes which are not indi­
vidually distinguishable, it should suffice to discover a scale on 
which the genic and non-heritable effects are additive on the 
average, so far as the data go. But having found such a scale, its 
limitations must not be forgotten. The discovery of a scale which 
is suited to our needs empirically cannot of itself justify theoretical 
-conclusions concerning the physiology of gene action, though it is, 
of course, legitimate to test the agreement of any empirical scale 
with one expected theoretically from other considerations of gene 
action. 

8. THE CRITERIA OF SCALING 

A scale empirically adequate for analytical purposes must 
satisfy two criteria. On it the genic effects must on the average 
be simply additive; and the contribution made by non-heritable 
agents must be independent of the genotype. If the chosen scale is 
deficient in either or both of these ways, the statistics by which the 
distributions are described will be distorted in greater or less 
degree.-

Allowance may be made for the lack of additiveness due to 
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'genic interaction by the inclusion of a special term in the analysis; 
but the wide range of possible interactions makes the interpreta­
tion of this term and. its use in predicting further breeding­
behaviour far from clear. Non-additiveness of effect may of course 
also be shown by allelomorphs of the same gene. Such dominance,· 
however, covers a more limited range of relations than does inter­
action and so it presents little difficulty in either analysis or inter­
pretation and prediction. Furthermore, we have no reason to 
expect that a scale which eliminates or minimizes the effects of 
interaction, will also eliminate or minimize the effects of domin­
ance. We must therefore aim at removing, so far as is possible, the 
effects of interaction between genes, allowing dominance to take 
its own value on the scale so reached. The success of this policy 
will be discussed in Section 24, when we come to consider in more 
detail the phenomena of dominance and interaction as they appear 
in biometrical genetics. 

As we have seen, it is always possible that no scale can be found 
which wholly removes non-additiveness in effect of the various 
contributions made to the variation by either the genic or the 
non-heritable agencies; but the adoption of a scale which at least 
minimizes and balances such bias, by satisfying so far as is 
possible the criteria of additive effects, must always make inter­
pretation easier and more confident. A small departure from 
additiveness is not in any case likely to engender serious difficulties 
or errors. It may well be that the computational work involved in 
re-scaling would be uneconomical under these circumstances, par­
ticularly if the deficiencies of the scale in use were not discovered 
until late in the analysis. Such a case is afforded by the investiga­
tion of ear conformation in barley, discussed in Sections 18 and 21. 

The tests of satisfaction of the two criteria by a seal~ can never 
be final. They can never do more than detect departures from 
additiveness greater than a certain minimum-a minimum which 
must itself vary with the range of variation in the character 
covered in the tests, and with the number of observations avail­
able. A scale satisfactory over any given range of variation must 
generally be satisfactory over any narrower range contained 
therein and for any smaller body of observations. It cannot, how­
ever, be assumed to be satisfactory over a still wider range of 
variation or for a larger body of data. 

These limitations apply more particularly to the use of & scale 
derived from one set of observations for the analysis of another set, 
without further testing of the scale. Within a body of results the 
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scaling tests will be made over the range that will be involved in 
analysis and their limitations will not therefore become sources of 
error. In a word, the potential danger lies not in using an empirical 
scale for the analysis of the data from which it was derived, but in 
the general application of an empirical scale to data which have not 
been tested for conformity. In using a scale which is empirically 
obtained, due tribute must be paid to the limitations of the 
empirical method. 

The additiveness of genic effects required by the first criterion 
of scaling may be tested by comparisons of the mean measure­
ments of backcross, F z and F 3 families with each other or, bette~ 
still, with those of the true breeding parental lines and the F 1 from 
which the segregating generations have been derived. In respect of 
any one gene, the backcrosses (B1 and B 2) ofF 1 to the true breed­
ing parents (P1 and P 2 respectively) will consist of individuals half 
of which are heterozygous like the F 1 and half homozygous like 
the parent. Where the effects of a number of such genes are addi­
tive on the average, the mean measurement of B 1 must fall half­
way between the mean measurements ofF1 and P 1 , provided that 
no complications are introduced by differential viability or 
fertility. This relation may be expressed as 

B1=!(P1+l\) 
and similarly Bz=HPz+.l\) 
where B1 is the mean measurement of the individuals in the back­
cross B 1, P1 the mean of P 1 , F1 that of F 1 , and so on. 

On the same assumptions it is not difficult to see that 

F z=HP1+ P z+ 2F 1)=!(B1+ Bz) 
and F 3=!(P1+P2+2F2)=}(3P1+3P2+2F1 ) 

Corresponding expressions can be found for F, and the means of 
other types of family. 

These relations can, of course, hold only within the limits of 
accuracy set by the sampling error to which the various mean 
measurements are subject. When using the relations as tests of 
conformity with the first criterion of scaling, regard must tnere­
fore be paid to the variances of the backcross means, &c. This may 
be done by putting, for example, 

A=2E.-P.-F1 

whereupon V ..f=4 Vm+ V Pl+ VFl 
with VB1 as the variance of the mean measurement of B1, &c. 
The standard error of A is then obtained as VV ..f and a test of 
significance is applied by the customary methods. 
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If the gene effects are additive on the average, these various 
relations must all hold whatever the situation may be with regard 
to dominance and linkage. Individual relations may, however, also 
hold or appear to hold even where additiveness is not the rule. 
Generally the test based on the F 1 will be expected to be more 
sensitive than those based on the backcrosses in detecting depar­
tures from additiveness, because it will cover a wider range of 
genotypes and phenotypes. This expectation is on the whole 
horne out, but there are cases, as we shall see in the next section, 
when backcross tests reveal non-additiveness which fails to appear 
in the test using F 1 • 

· The tests of average additiveness may be rendered nugatory by 
differential viability or fertility in the segregating generations. 
Coarser tests then become necessary. One general rule may be 
mentioned as useful in at least some cases. In the absence of certain 
extreme forms of interaction, F1, F2 , F3, &c., must all, apart from 
error variance, lie on the same side of M, the average pf the 
parents or mid-parent as we may call it, though with diminishing 
deviations from it. If therefore a scale is obtained upon which F 1 

and F1, &c., fall reasonably close to, but on differing sides of, M, 
their departures must be due largely to the error variation, which 
differential viability and fertility may be inflating beyond the 
level assumed in the precise tests of additiveness. In such a case 
the scale must be regarded as adequate within the limits of the 
system even though the precise tests show significant discrepancies, 
for these discrepancies will generally be caused by failure of the 
genetic assumptions rather than by inadequacy of the scale. 

Little comment is required on the tests of conformity with the 
second criterion of scaling, that of independence of the magnitude 
of non-heritable variation from the genotype. Two or more geno­
types showing different mean measurements are clearly required 
for the test, and each must be represented by a number of indi­
viduals whose variation, due to non-heritable agencies, can be 
measured. Clones can be used, or the tests can be based on true­
breeding lines, or on first crosses between such lines. The variances 
of true-breeding parents and of their F 1 in an experiment will in 
fact generally supply the material for a test. The variances of these 
families may be compared by variance ratios, such as are used in 
the analysis of variance technique. Significant differences among 
the variances will show that the scale does not satisfy the criterion. 

The variance may fall off with the mean measurement and 
re-scaling can then usefully be undertaken. Cases are, however, 
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known where an F 1 intermediate between its p·arents in mean 
measurement, has a variance higher or lower than those of both 
parents. An example of this situation is given in the next section. 
Where this happens re-scaling by one of the usual simple trans­
formations could not equalize the variance, though a more com­
plex transformation might do so. The causes of such behaviour 
are, however, likely to be such that a scale which fully satisfies 
this criterion would not be one on which gene effects are additive. 
Some compromise is therefore likely to be necessary in such cases. 

9. SOME EXAMPLES OF SCALING TESTS 

Data on the mean measurements of the two parents, the F 1 and 
F 2 generations and the backcrosses of the F 1 to the parents have 
been given by Powers (1941} for six characters in certain tomato 
crosses. Powers has discussed the adequacy of the scales used in 
taking the measurements for representation of the characters and 
for analysis of the variation. In a later paper (1942} he has dealt 
further with the use of the logarithmic transformation for data 
on fruit weights. The data on loculus number will serve to illus-
trate the scaling tests. · 

The mean numbers of loculi per fruit in the derivatives of four 
crosses, one of which, Danmark x_ Johannisfeuer, was grown in the 
two years 1938 and 1939, are repeated in Table 6. The quantities 
.A, Band C and their variances have been calculated to test the 
adequacy of the scale in each case, using the formulae 

A=2BcPcF1 V ..... =4Vm+Vp1+VF1 
B=2B2-P2-F1 and VB=4VB2+Vp2+V F 1 

0=4F2-2FcPcP2 V c=16V F2+4 VF1+ Vp1+ V P2 

TABLE 6 
Mean Number of Loculi per Fruit in the Tomato (Powers. 1941) 

D X J 1938 D X J 1939 J X BB 1939 D X RC 1938 J X RC 1939 

.P, 5·475±0·057 6·183±0·065 9·028±0·084 5·405±0·068 9·028±0·084 
ii, 5·575±0·064 5·898±0·097 7·034±0·162 3·473±0·037 4·356±0·140 
F, 5·500±0-086 6·051±0·096 6·329±0·111 2·395±0·018 2·517±0·029 
F, 6·595±0·118 6·826±0·150 6·781±0·208 2·570±0·022 2·886±0·078 
ii, 7·500±0·100 7·344±0·136 5·452±0·077 2·205±0·015 2·183±0·016 
.P. 9·125±0·091 9·028±0·084 6·318±0·069 2·050±0·014 2·034±0·004 
A 0·175±0·164 -0·438±0·226 -1·289±0·353 -0·854±0·102 -2·833±0·294 
B 0·375±0·236 -0·391±0·300 -1·743±0·202 -0·035±0·038 -0·185±0·043 
c 0·780±0·581 -0·009±0·639 -0·880±0·887 -1·965±0·118 -4·552±0·328 

- -A=2B,-F,-P, B=2B1-F,-P1 0=4F1-2t"1-P1-P1 

In each case P 1 is the first and P, the second variety in the column heading. 
D=Danmark, J=Jobannisfeuer, BB=Bonny Best, RC=Red Currant. 
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If the scale is adequate these quantities A, B and 0 will each equal 
zero within the limits of sampling error. Powers gives the standard 
errors of his means and by squaring these the corresponding vari­
ances can be found. V A• VB and V 0 are then determined from the 
formulae given above. The standard errors of A, B and 0, entered 
in Table 6, have been fonnd as the square roots of the correspond­
ing variances. For example, in the cross Danmark x Johannisfeuer 
as grown in 1938, 

A=2x5·575-5·500-5·475=11·150-10·975=0·175 

and V .d=(4x0·0642}+(0·0862}+(0·0572}=0·0270 

giving a standard error for A of V0·0270 or 0·164. The values of 
A, B and 0 together with their standard errors are also entered 
for the various crosses in Table 6. 

The data from the cross Danmark x Johannisfeuer, whether 
grown in 1938 or 1939, give insignificant values of A, Band 0. 
Hence the scale used is perfectly adequate for the analysis of the 
variation in these single sets of data. If no other data were avail­
able no suspicion would rest on the scale, because empirically 
it would be satisfactory. The cross Joha.nnisfeuer x Bonny Best, 
however, shows significant deviations from zero of both A and B 
and the scale must be judged inadequate for this set of data. in 
consequence. It may be observed that this difference b_etween the 
crosses is 'not due to the second one including a greater range of 
loculus numbers than the first. The limits are in fact almost the 
same in the two sets of data as recorded in 1939. The two crosses 
which include Red Currant both indicate the inadequacy of the 
scale, the values of A and 0 being, as would be expected, especially 
large where the range of loculus numbers is greatest, viz. in the 
cross Johannisfeuer x Red Currant. 

Returning to the cross Danmark x Johannisfeuer, the values of 
A, Band 0 are all positive for the 1938 data, but all negative for 
1939. Even though neither set is significant of itself, the differences 
between the values for the two years are worthy of being tested. 
If A 8 and A 8 are from 1938 and 1939 data respectively we can test 
the significance of the difference between them by comparing 
A 8-A 8 with its standard error, found as VV..4s+ V ...t9 • Applying the 
same calculation also to both B and 0, we find 

A 8-A 1=0·613±0·279 

B 8-B8-0·766±0·382 

o .-o ,=0·789±0·864: 
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which at least strongly suggests a difference in scale between the 
two years. Interestingly enough the differences- show up more 
strongly in the backcrosses than they do in F 2, as was also observed 
in the direct test of Johannisfeuer x Bonny Best. 

Thus two conclusions emerge in regard to loculus number. 
(i) A scale which is adequate for one cross may not be adequate for 
another which covers the same range of variation, and still less 
for other crosses covering wider ranges of variation. (ii) A single 
cross and its descendants may require different scales when grown 
in two successive years. The difference between years argues 
that the non-heritable variation is not independent of the geno­
type, but it does not seem large enough to cause serious difficulty 
in analysing the variation. It may be that a scale could be found 
which would prove adequate for all these data. This has, however, 
not yet been obtained, and the possibility cannot be tested further 
without resort to the original data, which have not been published. 
The preponderantly negative values of A, B and 0 suggest a 
transformation which would foreshorten the upper end of the scale 
and Powers tried an approximation to the logarithmic transforma­
tion on the data. This, though giving a better fit with additiveness 
than the untransformed scale, was, he thought, still not fully 
adequate. 

Of the remaining five characters, four, of which two showed 
heterosis in some crosses, demanded no rescaling. The data on 
mean weights of individual fruits resembled the results on loculus 
number, however, in showing some departures which suggest the 
need for a transformation to foreshorten the upper end of the 
scale. Powers (1942) has tested the use oflog grammes for repre­
senting the weights in the cross Danmark by Red Currant. Even 
after this logarithmic transformation the values of A, Band 0 
differ significantly from zero. In being still negative they show 
that a more powerful transformation is needed (Table 7). 

TABLE 7 
Individual Fruit Weight of Tomatoes in Log Grammes (Powers, 1942) 

Cross:-Danmark x Red Currant 

P, B, F, F, B, P, 

1\Iean 1·6715 1-1619 0·7074 0·6720 0·2870 -0·0534 
S.E .. ofmean 0·0280 0·0093 0·0167 0·0126 0·0159 0·0122 
Non-heritable 

variance 0·0210 - 0·0179 - - 0·0129 

A=-0·0552±0·0376 B=-0·0801.:1::0·0379 C=-0·34!9±0·0676 
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The same conclusion is suggested by the variances of fruit 
weights due to non-heritable causes, shown by the parents and 
F 1 generation. These are not equal, but rise linearly with the mean 
measurement. Powers consid~rs that there is theoretical justifica­
tion for regarding as suitable a scale on which non-heritable vari­
ance is proportional to mean measurement; but, as we have seen, 
a scale on which these quantities are independent is desirable for 
analytical purposes. Since the differences on the log scale are not 
large, there seems a possibility that a transformatio~ which would 
satisfy the criterion of average additiveness of genic effects, would 
also satisfy that of independence of non-heritable variation and 
genotype. Again this cannot be tested in the absence of the 
original data; but as the departures from satisfaction of the two 
criteria are small on the log scale, it may well be that the labour 
of finding a. still more satisfactory transformation would not prove 
to be justified by the extra. precision obtained in the analysis of 
the variation into its components. A compromise between extra 
precision and economy of labour may be regarded as reasonable 
for most purposes. 

In some cases the use of an approximate scale is unavoidable. 
An example is afforded by the data on corolla length in a species 
cross, Petunia axillaris x P. vialacea (Table 8). The measurements 
were originally taken in Inillimetres, but it is quite clear from the 
calculation of C that this scale is not a desirable one. Backcrosses 
are available and they give values of A and B which also suggest 
inadequacy of the scale, though the scaling tests based on the back­
crosses are here less trustworthy than that based on F 1, owing to 
the possibility of high selective eliinination of certain classes of 
gamete (Mather and Edwardes, 1943). The inadequacy of the scale 
is also brought out by the highly unequal variances of the two 
parents and the F 1• 

TABLE 8 
Corolla. Lengt.h in Petunia (Mather, unpublished) 

Millimetre& Log measlll'8 

---
~ lllean Variance Mean Variance 

P. axillar ill 61·28±0·7-15 35·62 7·871±0·0585 0·22-l 
Ft 35·20±0·122 2·97 5·467±0·0152 0·048 
F• 29·90±0·366 - 4·953±0·1315 -

P. violacea 18·51±0·333 2·38 2·669±0·0800 0·118 
c -30·60±1·692 - -1·662±0·5361 -
lllid-parent 39·89±0·408 I - 5·270±0·0496 -

I 
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On transforming the data into log measure the scaling criteria 
are much more nearly satisfied. 0 is still significantly negative, and 
this might be taken as suggesting the need for a still stronger 
transformation. The F 1 and F 2 means are, however, on opposite 
sides of the mid-parent value, so showing, that in regard to this 
test at least, the scale is adequate. It therefore appears that some 
agency other than the mere matter of scale is involved. Some 
differential viability and selective fertilization are to be expected 
in the offspring of a species cross, and indeed there is evidence of 

-such from the Fa data themselves (though not to extent observed 
in the backcrosses by Mather and Edwardes ). The significant value 
of 0 is therefore not to be taken as evidence so much of inadequacy 
in the scale as of the existence of sources of error in the test which 
the standard errors, as calculated, do not cover. The log scale is 
consequently an approximation sufficiently good for the purpose 
of analysis. 

With regard to the parental and F 1 variances, it will be seen 
from Table 8 that on the log scale the larger parent still has twice 
the variance of the smaller parent. But the F 1 , whose mean is 
intermediate, has a much lower varianc,e than either. Now the 
smaller parent P. violacea consisted of a clone, while P. axillaris 
was grown from seed. The line of P. axillaris was not known to 
have been highly inbred previously to use in the experiments, and 
so some of its variation may have been genetic. This coupled with 
the unexpectedly low variance ofF 1 makes it doubtful whether any 
further adjustment of the scale is worth while. Any simple trans­
formation which made the parental variances more nearly equal 
must increase the difference between parents and F 1• Any simple 
adjustment which brought the F 1 variance up to that of P. violacea 
would exaggerate the parental difference. Thus, from the point of 
view of the variances as well as of the means, the log scale is prob­
ably as good as any that is likely to be found. 

The low variance of the F 1 families is of some genetical interest. 
It has generally been supposed that where the non-heritable vari­
ance ofF 1 differed from the non-heritable variances of the parents, 
it should exceed them. The present unexpectedly low value of F 1 

variance as compared with that of the P. violacea clone was 
observed in both the years in which the plants were grown, and so 
must be regarded as reasonably well established. 

Scaling difficulties due to selective fertilization or differential 
viability are likely to be especially common with species crosses, 
but disturbances of the kind produced by these agencies also occlir 
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in varietal crosses. Quisenberry ( 1926) has recorded grain length in 
two varieties of oats, Sparrowbill and Victor, and in the F 1 and 
Fa generations of reciprocal crosses between them, all plants being 
grown in 1924. From his data, it appears that the mean length in 
S'parrowbill is ll·48 mms. and in Victor, 16·36 mms. The F 1 is not 
available for comparison, but the F 1 means are 14·29 and 14·20 in 
Sparrowbill x Victor and its~ reciprocal respectively. The mean of 
the Fa Jileans in the former cross is 13·90 and in the latter is 13·77. 
If we calculate Fa-lF1-!PclP1 we find -0·82 and -1·16 for the 
two crosses, the expectation being 0. The standard errors of these • 
values are 0·449 and 0·467 respectively. The deviation is significant 
in the second cross at least. Taking the two crosses together we 
obtain as the departure from expectation -1·99±0·648, and this 
must also be judged significant. The scale is therefore apparently 
suspect. Yet the mid parent is 13·92, which lies between the F 1 

and Fa means . .AB in the case of the Petunias it must therefore be 
concluded that the scale is adequate, the discrepancy revealed by 
the more exacting test being due to slight departures from the 
simple 1\lendelian expectations in F 1 and Fa· Such small departures 
are, however, not likely to prejudice the conclusions obtained from 
an analysis of the data as they stand. 

10. TRANSFORMATION AND RESIDUAL INTERACTION 

Transforming a set of data by taking antilogs is equivalent to 
measuring the character on a scale graduated like a slide rule. In 
fact, any such transformation is equivalent to the use of a 
measuring instrument graduated in some appropriate way. It is, 
however, clearly more expedient in the great majority of cases to 
take the measurements on a conventional scale and to transform 
them later, than it is to use a specially graduated instrument. The 
only possible drawback is a slight distortion of the errors of 
measurement, for equal errors on, say, a scale of millimetres will 
become unequal when the data are transformed into log milli­
metres. This is not likely to be a serious consideration over the 
ranges of variation ordinarily encountered. 

It is essential that the original measurements themselves be 
transformed individually, before the means, variances and other 
statistics are calculated. Otherwise the statistics will be distorted, 
because, to take an example, the log of a mean is not also the mean 
ofthe logs (see Mather, 1946a). Nor can we test the adequacy of a 
log scale by finding geometric means of the statistics based .on 
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untran.sformed measurements. The statistics must be recalculated 
from the indiridually transformed measurements. 

The transformation to be used in order to adjust the data to a 
more adequate scale must, in the absence of any theoretical con­
siderations, be a matter of expediency. The log transformation is 
an ob-rious choice w-hen the upper end of a scale needs foreshorten­
ing. It has also been regarded as especially appropriate on the 
grounds that growth is more likely to proceed on a log scale than 
any other. Little if any e-ridence has, how-ever, been obtained t{) 
support this new-. Generally the argument ha.s been simply that 
development must proceed on either an arithmetic or a geometric 
basis so that if F 1 and F 21 means agree better with the geometric 
than the arithmetic mean of the parents, the geometric basis must 
be inferred (see :Mac..!rthur and Butler, 1938). This argument is 
w-holly nn..."'und as Pow-ers' data show-. The fruit w-eights in his 
tomatoes demand a scale with even more foreshortening of the 
upper end than is afforded by the log transformation. 

Our chief concern must be to secure a scale permitting the type 
of analysis w-hich is enri..«aged. In so far as it is desired t{) be able 
to neglect interaction, the scale used must be one upon w-hich this 
neglect w-ill not Yitiate the conclu.:,--ions reached about other com­
ponents of variation. If all the genes bear the same relation to each 
other the choice of an appropriate scale w-ill make all their indi­
Yidual effects additive, and no interaction w-ill remain. 1\here, 
how-ever, the interrelations of one pair of genes in action are not 
the same as those of others, the scale can at best be merely one 
on w-hich effects are additive on the average. Such residual, though 
balanced, genic interactions must constitute a source of error 
variance; but, as Fisher, Immer and Tedin (1932) point out, there 
is no reason to suppose that they w-ill introduce any bias similar to 
the metrical bias w-hich arises from an inadequate scale. In other 
w-ords, residual genic interaction, like non-heritable variation and 
sampling variation, may low-er the precision of the genetic analysis, 
hut it w-ill not he expected to fab-ify interpretation w-here valid 
estimates of error are calculated. 

Complementary and epb--tatic relations, if they occur betw-een 
polygenes, w-ill have effects w-hich cannot w-holly be removed 
though they may be minimized and balanced one agairu,--t another 
by scaling. The extent to w-hich such types of interaction occur in 
polygenic variation mu..<:t be explored progres:,--ively by experiments 
w-here variation in hackcrosses is compared with that in F 1 and 
F 3• Xo such experiments are available yet, hut some eridence is 
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obtainable from comparisons of variances and ·covariances in F 1 

and F 3 alone. As we shall see later (Section 24), evidence of this 
kind has failed to reveal any suggestions of genic interaction. It 
would, however, be unwise to conclude from the little evidence to 
hand that such types of genic interaction are absent from all 
polygenic systems. 



CHAPTER 4 

THE COliPO}.~""'TS OF V ARIATIOY 

11. DOMINANCE AND POTENCE 

VARIATION MEASURED by suitable experiments in a way 
which satisfies the criteria of scaling can be partitioned into three 
components. First there is non-heritable variation, resulting from 
the action of environmental agencies. Some effects of irremovable 
genic interaction may be included with this. The second com­
ponent depends on the differences in average character expression 
associated with the two homozygotes for each of the gene pairs 
involved. Heritable variation between true breeding strains must 
always be of this kind and in this sense such variation may be 
described as fixable.- The third and final component of variation 
arises from the differences between the expression of heterozygotes 
and the average of the two corresponding homozygotes. The 
magnitude of this last contribution to the variation mu.:,--1; depend 
on the dominance relations of the genes. In so far as such variation 
cannot be utilized in the selection of true breeding strains, it may 
be described as unfixable. 

A method has been developed by Fisher, Immer and Tedin 
(1932) of determining the contributions of each gene to the fixable 
and unfixable components of variation, especially as measured by 
second- and third-degree statistics of the various generations fol­
lowing crossing of true breeding strains. Following these authors, 
let the average effects of the three genotypes for gene A-a on the 
magnitude of the character in question be 

AA da; Aa h~ aa -da 

The designation of one allelomorph by A and the other by a does 
not here have the conventional implication with regard to domin­
ance. Similarly for gene B-b the three effects will be 

BB db; Bb hb; bb -d,, and so on. 

In all cases d represents an increment in a constant direction along 
the scale of measurements from the zero point, termed for con­
venience the+ direction, while h may be an increment in either 
direction, + or -, according to the dominance relation (Fig. 5). 
With adequate scaling, d and h will have constant average values 

52 
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over the length of the scale, though irremovable interaction may 
lead to some variation from these average values at certain points. 

a a 
Aa · 0 
~h-+i 

I I I 
AA 

I )to 

d -~~1 + 
FIG. 6 

The d and h increments of the gene A-a. Deviations are measured from the 
point 0, mid-way between the homozygotes. Aa may lie on either side of this 
point and the sign of h will vr.ry accordingly 

A true breeding strain will have an average measurement of 

S(d+)-S(d_)+a 

where S(d+) indicates the summed effects of those genes under 
consideration which are represented by their + allelomorphs, i.e. 
those adding increments in the + direction, S(d_) indicates the 
corresponding sum of effects of genes represented by their - allelo­
morphs, and a is a constant depending on the actions of genes not 
under consideration and of non-heritable agencies. If two such 
strains are grown under comparable conditions their mean 
measurements will differ by 

2[S(d+)-S(d_)] 
where only the genes by which they differ are taken into account, 
and the smaller mean measurement is subtracted from the larger. 
The mean of the strain means is a, and is independent of th.e 
distribution of the genes between the strains. This mid-parent 
value is the natural zero point from which measurements can be 
expressed as deviations. 

Where all the k genes by which the strains differ are represented 
in one strain by their + allelomorphs and in the other by their 
- allelomorphs (i.e. are isodirectionally distributed), the difference 
between the strain means becomes 

2S(da) or 2kd 

in the special case where da~db= • . • d1:. 
The F 1 between these strains must be heterozygous for all k 

genes, and when grown under comparable conditions its mean will 
deviate from the mid-parent by • 

S(ha) or kh 

in the special case where ha=hb- • • • hk, taking sign into account. 
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In such a cross the ratio which the deviation of F 1 from the 
mid-parent bears to half the parental difference is frequently 
regarded as a measure of average dominance of the genes concerned. 
We now see that this measure is, in fact. 

S(h) 

S(d+)-S(d_) 

Its use as a measure of average dominance is therefore tantamount 
to assuming (i) that the genes are isodirectionally distributed and 
(ii) that all the h increments have the same sign. Neither assump­
tion can be justified, and so it is better to speak of it as the potence 
ratio measuring the relative potence of the gene sets (Wigan, 
1944; Mather, l946a). This is made the more desirable by the 
possibility of measuring the average dominance of the genes in a 
way to be discussed later. 

The potence ratio can in fact theoretically take any value 
between 0 and oo. This is true even with the restriction that h<.d 
for each gene, i.e. that for any gene the heterozygote never falls 
outside the range delimited by the two homozygotes. If the h incre­
ments are balanced, in the sense that the sum of h increments of 
the genes whose heterozygotes resemble the + homozygote more 
than the - homozygote ( + allelomorph dominant) equals the 
summed h increments of the genes to which the opposite (- allelo­
morph dominant) applies, then 

S(h)=O 

and the F 1 will fall on the mid-parent. Potence is zero, no matter 
what the average dominance may be. Similarly where the parents 
do not differ in mean measurement, i.e. S(d+)=S(d_), potence must 
be oo with any condition other than S(h)=O. Heterosis will follow 
wherever 

S(h) >[S(d+ )-S(d_)] 

even though d >h for all genes. 
In short, observable potence of sets of genes indicates domin­

ance of the individual genes preponderantly in the same direction; 
but zero potence does not of necessity indicate absence of domin­
ance. Equally heterosis indicates dominance, h~O, but not of 
necessity super dominance, h >d. 

Ill. VARIATION IN F2 AND F3 

The variation of the measurements of true breeding parents and 
their F 1 must be exclusively non-heritable. The variances of these 
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measurements consequently afford estimates of the non-heritable 
contribution to the variances of later generations, such as F 1, 

where heritable components will also be present. With no differen­
tial fertilization or viability the constitution of F 1 in respect of a. 
segregating gene A-a will be !AA; !Aa; !aa, and this gene will 
contribute increments of da; ha; -da to the measurements of plants 
in the three classes respectively. The contribution of A-a to the F 1 

mean, expressed as a deviation from the mid-parent, will therefore 
be !ha since the contributions of AA and aa cancel one another. 
Taking all k genes into account the F I mean will be !S(ha), i.e. half 
the F 1 mean. 

The contribution of A-a to the sum of squares of deviations 
from the mid-parent will be !d!+!h!+H-da)2 so that the contribu­
tion to the sum of squares of deviations from the F 11 mean becomes 
!d!+!h!-<!haP' or !d!+lh!. Since the frequencies of the three geno­
types total unity, the contribution to the sum of squares is also 
the contribution to the mean square measuring heritable variance. 

Provided that the genes neither interact nor are linked, the total -
heritable variance given by k genes in F 1 will be the sum of the 
k individual contributions, viz. 

!S(d!)+!S(h!) 
The fixable and unfixable heritable components are separable in 
this variance, for d measures the difference of effect between homo­
zygotes, while his the measurement characterizing the heterozygote. 

In F 3, the families from AA and aa F 1 individuals will be wholly 
AA and aa respectively, while those from heterozygous F 11 indi­
viduals will repeat the F 1 segregation. The means of families from 
AA, Aa, and aa parents will therefore be da, !ha, and -da in 
respect of this gene. The grand mean of these means must be !ha 
from the mid-parent, and the contribution of A-a to the variance 
of F 3 means will be 

!d!+!(!ha)1+H-da)l1-(!ha)l1 or !d!+ -i\-h! 
Since the situation will be similar for other genes, the general mean 
of all F 8's will be !S(ha) and the total heritable variance of F 3 

means will be 
!S(d!)+ -i\-S(h!) 

It can similarly be shown that the covariance of F 8 mean with 
its F 1 parent's measurement is !S(d!)+!S(h!) and the mean vari­
ance ofF 8 families is !S(d!)+!S(h!). 

These results are given by Fisher, Immer and Tedin together 
with similar ones for progenies of the third generation, which are 

B.G.--5 
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obtained by intercrossing pairs of plants taken at random from F 2 

(biparental progenies) or by exposing one F 2 plant as mother to 
pollination by the pollen of the F 2 as a whole (maternal progenies). 
In each case the formula is expressible in two parts, one depending 
on S(d~) which is contributed by the fixable variation, and the 
other on S(h~) contributed by the unfixable variation. These com­
ponents may be conveniently denoted by D and H respectively so 
that the F 2 variance, for example, becomes !D+!H. 

These various formulae have been collected into Table 9. The 
variances must contain a non-heritable component in addition to 
the two heritable portions. This is denoted by E in the table. 
Covariances will, of course, be free from non-heritable components 
since the pairs of measurements, which give the cross-products 
from which covariances are calculated, are as likely to be affected 
in opposite ways as the same way by non-heritable agencies. ' 

TABLE 9 

Components of Variation in F 2 and its Derivatives 
VF2 -F2 variance fD+!H+E 
V:n -Variance ofmeans ofF3 progenies . l-D+-i\-H+E 
W .F2/F3 -Covariance of F 3 mean and F 2 parental measure-

- ment 
V F3 -Mean variance ofF 3 progenies 
V BIP -Variance of means of biparental progenies 
W F2/ BJp-:Covariance of biparental mean and F 2 parental 

measurement · 
-Mean variance of biparental progenies 
-Variance of means of maternal progenies 
-Mean variance of maternal progenies 

where D=S(d2 ) 

andH=S(h2) 

E is not constant (see in text) 

l-D+lH 
!D+lH+E 
!D+-i\-H+E 

!D 
!D+fe-H+E 
lD+E 
iD+!H+E 

With linkage D and H are no longer related to da and ha, &c., in the way 
shown. They remain constant, however, over the range of formulae except 
for Vpa, VBIP and VMAT (see Section 16). 

Where estimates of a number of the variances and covariances 
shown in Table 9 are available, D and H can be estimated separ­
ately; and, what is more, their error variances can also be found 

(see Section 13). It is then possible to obtairi an estimate of~ 
which affords a measure of the average dominance of the genes 
concerned. In fact, if we care to assume that da=db . . . =dk and 
ha=hb •.. =hk, sign being neglected, a direct measure is available 

for ~=J ~· This assumption will doubtless seldom be true, but the 
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ratio ~will serve to measure dominance sufficiently well to enable 

the composite nature of the potence relation to be demonstrated 
and appreciated. · 

The effects of linkage on these variances and co variances will be 
considered in the next chapter, but a. word about irremovable 
genic interaction is necessary here. With such interaction the d 
and h increments depending on a. given gene will not be constant 
over all the genotypes. In particular it can be shown for particular 
types of irremovable interaction, epistasis, &c., that not only are 
the relations D=S(d2) and H=S(h 2) no longer strictly true, but also 
that the magnitude of the disturbance will vary between the 
different variances and covariances. The error variance of D and 
H as estimated from these various statistics, must reflect these 
interaction effects as well as the outcome of non-heritable agencies. 
Interaction may therefore distort the estimates of D and H some­
what, but the simultaneous inflation of their error variances will 
introduce a due measure of caution into the interpretation of their · 
relations. The detection of such residual interactions from their 
effects on D and H will be discussed later. 

Before leaving the F 1 generation and its derivatives, it must 
be mentioned that Fisher, Immer and Tedin have derived the 
formulae for certain third-degree statistics. These are all com­
pounded of two components, viz. S(hd 2) and S(h3), which are 
deno~ed by F and G respectively in Table 10, where the formulae 

TABLE 10 
Contributions of d and h to Third-Degree Statistics 

Skewness of F 1 -iF 
Mean skewness of F 1 progenies -iF 
Covariance of means and variances ofF 8 progenies iJ,F+ ~G 
Covariance ofF 1 parental measurement and F 1 variance lF+ iJ,G 
Skewness of F 8 means - iF 
Mean skewness of biparental progenies - *F 
Covariance of means and variances of biparental progenies - lF 
Covariance of F 1 parental measurements and biparental 

variance - nF+ ~G 
Covariance of biparental means and biparental product - lF 
Skewness of biparental means - *F 
Mean skewness of maternal progenies - iF 
Covariance of mean and variance of maternal progenies - iF 
Covariance ofF 1 parental measurement and maternal variance- *F 
Skewness of mean of maternal progenies 0 

Where F=S(hds) 
and a~.;S(h1) 

Skewness is measured by (n-l~n-2) S(x-%)1 
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are reproduced. It should be observed that in these third-degree 
statistics the sign of h is taken into account, in contrast to the 
second-degree statistics of Table 9 where h" is used exclusively, 
sign being removed from account in consequence. Thus with 
balanced dominance F and G will approximate to zero, even 
though h4 , hb, &c., all have values departing from 0. The balancing 
effects of sign will not, of course, operate in H, which will therefore 
reflect the existence of dominance even where potence is zero. 

13. PARTITIONING THE VARIATION OF Fa AND ITS 
DERIVATIVES 

The use of the various second-degree statistics in estimating the 
contributions made by non-heritable, fixable heritable and unfix­
able heritable variations may be illustrated by Quisenberry's 
(1926) data on grain length in oats, to which reference has already 
been made. The partitioning operation in this case is made some­
what more complex than usual, because the various families were 
not grown in accordance with modern principles of experimental 
design. This disadvantage is, however, outweighed by the wealth 
of data which this author presents. 

The varieties Sparrow bill (S) and Victor (V) were crossed recipro­
cally in 1922, the F 1's being winter grown in the greenhouse. 
Fa's were raised in 1923, and from them 150 F 3's were obtained, 
7 5 from each of the reciprocal crosses. These were grown together 
with the parent varieties and further Fa's in 192!. The 189 F 1 

plants of S x V and the 22! F 1 plants of V x S, were not further 
subdivided, but the 1290 plants of Sand the 1291 plants of V were 
each divided into 36 groups of average sizes 35·83 and 35·86 plants 
respectively. The 75 F 3 families from S x V and the 75 F 3's from 
V x S contained on the average 32·!7 and 32·31 plants respectively. 

Now the variance of plants within the same group was 0·28!! in 
S and 0·3356 in V. The variance of plants from different groups 
was 1·3583 in S and 1·67 n in V, so that position is clearly 
affecting the grain length. Since the parental groups and F 3 

families approximated closely in average size, the variance within 
parental groups may be taken as a measure of the non-heritable 
component of mean variance ofF 3 progenies. Equally the variance 
ofF 3 means will contain a non-heritable component related to the 
inter-group variance of the parents. The actual measure of this 
non-heritable component in the variance ofF3 means will be given 
by the ratio of the inter-group variance to the number of plants in 
each F 3 progeny; but since this number varied, the harmonic mean 
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of the number of plants in the 150 F 8's must be used. The inter­
group variance of the parents is therefore divided by 30·6413 to 
obtain the estimate of the non-heritable component of variance of 

F Th s t . . this 1"3583 . 0 0443 d a means. e paren g~ves m way 
30

_
6413

, 1.e. · an 

the V parent 0·0546. 
The reciprocal F 1's of 189 and 224 plants were not divided into 

groups and so require still a third estimate of non-heritable varia­
tion. The most reasonable estimate of this non-heritable com­
. ponent of F 1 variance can be found from the gross variance 
(pooled intra- and inter-group) of the parents. This is 0·3135for S 
and 0·3719 for V. 

The F 1 variance (VF2), variance of Fa means (VF3), covariance 
of Fa means and F 1 plant values (W F2/F3), and mean variance of 
Fa's ( V F3) are set out together with the estimates of the three non­
heritable components in Table II. Since duplicate estimates of each 
of the three non-heritable components are available, one set from 
the variances of each parent, and since F 1's and F 3's are equally 
available from the two reciprocal crosses, duplicate values appear 
in each line of the table. The averages of the duplicates may be 
used in partitioning the variation, the differences between dupli­
cates then being available for finding the standard errors of the 
estimates of the various components of variation, as we shall see 
later. 

TABLE 11 

Quisenberry's Data on Grain Length in Oats 

Parents V 16·361 
• . . 8 XV 14·291 

{ 

{
s n-484 

:Mean Length m :Millimetres Fa {v x S 14·201 

0'-rved 

8or8xVVorVX8 

Vn !D+lH+E1 1-1968 1·4348 
Vn !D+nH+E1 0·8523 0·9095 

Wn;n !D+lH 0·6614 0·7707 
Vn lD+lH+Ea 0·8069 0·7687 

~T·· 
E• 0·3135 0·3719 

a!= . Ea 0·0«3 0·0546 -~~ mF1 mean 
11 8. in mean · 
§ § variance 

Ea 0·2844 0·3356 z" ofF1 

{
s x v 13·901 

Fa V x S 13·771 

Eipected Devlatioos 
Mean 

1·3158 1·2932 -0·096-l O·U16 

0·8809 0·8289 0·0234 0·0806 

0·7161 0·7942 -0-1328 -0·0235 

0·7878 0·7809 0·0260 -0·0122 

0·3427 0·3653 -0·0518 0·0066 

0·0495 0·1015 -0·0572 -0·0469 

0·3100 0·3169 -0·0325 0·0187 

-
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Five components of variation are involved, as shown by the 
expectation of Table 11, viz. D, H and the three non-heritable 
items EcE3• Seven equations are, however, available for their 
estimation from the statistics in the table, which must therefore 
be undertaken by a least squares technique. The various statistics, 
V F2, &c., are not known with equal precision and so should be 
weighted if a rigorous least squares analysis is desired. The extra 
labour of weighting is, however, hardly likely to be 'justified by 
additional rigour obtained, and so no weighting will be attempted. 
A further advantage ofunweighted analysis is that, as we shall see, 
the matrices developed for the analysis of any one experiment can 
be used for all others of the same design. This would be impossible 
if weights were introduced. 

The seven basic equations, one from each line of the table, are 

v F2=!D+iH+El=l·3158 

VF3=-!D+ -f&H+E2=0·8809 

W F2/F3=tD+i-H=0·716l 

V F3=!D+i-H+E3=0·7878 

{

E 1=0·3427 

Direct estimates E 2=0·0495 

E 3=0·3100 

These may be combined to give five equations yielding least 
squares estimates of the five components of variation as follows. 
Each of the seven equations is multiplied through by the coefficient 
of D which it contains, and the seven are then summed. Where D 
does not appear the equation is omitted. Then we have 

l-D+i-H +!E1 =0·65790 
!-D+ nH + fE2 =0·44045 
!-D+ it;H =0·35805 

it;D+ nH +l-E3 =0·19695 

Total HD+!H+tE1 +lEa+l-E3 =1·65335 

The four further equations are found in the same way using the 
coefficients of H, E 1, E 2 and E 3 as multipliers in turn. The solution 
of these five simultaneous equations gives the desired estimates of 

. D, &c. 
The left sides of the equations are concerned only with D, Hand 

Eu E 2, and E 3: they will be the same for all experiments of this 
kind. The right sides of these equations are derived from the values 
of V F 2, &c., observed experimentally, and the solution of the five 
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equations as they stand can refer only to the experiment in ques­
tion. Other similar experiments may, however, be analysed using 
the same solution if the right sides of the equations are replaced 
successively by I, 0, 0, 0, 0; 0, I, 0, 0, 0, and so on, to give five sets 
of five equations in the way Fisher (I946) recommends for multiple 
regression analyses. On doing this the equations become 
0·812500D+0·250000H+0·500000E1 +0·500000E1 +0·250000E1 =1, 0, 0, 0, 0 
0·250000D+0·097656H+0·250000E1 +0·062500E1 +0·125000E1 =0, I, 0, 0, 0 
0·500000D+0·250000H +2·000000E1 =0, 0, I, 0, 0 
0·500000D+0·062500H +2·000000E1 =0, 0, 0, I, 0 

· 0·250000D+0·125000H +2·000000E1 =0, 0, 0, 0, I 

On solving these five sets of equations we obtain a matrix: of 
multipliers of which cDD is the value of Din the first of the five 
sets, and cDH• eDt• em, and cD3 the value of Din the second, third, 
fourth and fifth sets. Similarly cHD• cH~• c81, CHz and cH3 are the 
values of H in the five sets, and so on. This matrix: turns out to be 
as shown in Table 12. 

TABLE U 

D H B, Ba Ba 

-
1 1 "DD 11·978498 "aD -27·526894 "J.D 11-1146237 ~D -1·83«011 f:sD 0·4731111 

~ I f: Dtc -27·526894 "ate 93·591441 "liC --4·817207 ~ 1·956991 f:stc -Z·to8603 

~ I "Dl 0·946237 "n -4·817207 "n 0·86559Z ~~ -0·086022 "sl 0·182796 
<:1' .. ' "m -1·63«011 "n 8·956991 e~ -O-G86022 ~ 0·7841146 "n -O-G43011 

~ li "DJ 0·473119 "m -lH08603 "u 0·182796 ~ -0-643011 "sa 0·591398 

"" 
It will be observed that as c»rcHD• &c., the matrix: is sym­

metrical about one diagonal. 
Now in Quisenberry's experiment, as we have already seen, the 

sum of the F 1 variance, variance ofF 1 means, &c., each multiplied 
by the corresponding coefficient of D, is I·6534. This we may 
denote as S(Dy). Similarly from Table I2 

S(Hy)=0·5720 
S(EJ!1)=1·6585 
S(Ez.'/)=0·9304 
S(EaY)=l·0978 

The least squares estimate of D in this experiment is then found 
from the D column of Table I2 as -

D=c D~(Dy)+c DHS(Hy)+cD1S(EJ!1)+c m8(EzY)+cD3S(EaY) 
·=(9·978498x 1·6534)+(-27·526894x0·5720)+ 

-1·3211 
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H is found from the H column of the table as 

H=cHv8(Dy)+cHH8(Hy)+cH 18(E1y)+cmS(E2y)+cH3S(Ea]j) 

=1·0694 

Similarly from the remaining columns 

E 1=0·:3653, E 2=0·1015 and 

On sub;.;tituting these estimates for D, &c., we find as the 
expected Yalue of V F2 

1D+ lH+E1=!( 1·3211)+!(1·069±)+0·3653= 1·2932 

Thi,.; and the remaining expectations, found in the same way, 
are giwn in Table ll (see Fig. 6). The two values for Vp2 , found 

II NON-HERITABLE -£ 
UNFIXABLE GENETIC -H 
FIXABLE GENETIC -D 

FIG. 6 

OATS: GRAD< LEXGTH VARI.ATIOX 

The partition of variability in Quisenberry's (1926) data on grain length in oats. 
The centre columns show the mean value observed for each statistic, the difference 
between the two replicates of the experiment being indicated by the box at the 
top. The left columns show the values expected for each statistic, and the com­
position of these ,·alues, when D and H are estimated assuming no linkage. The 
right columns show the same when D_and Hare estimated making allowance for 
linkage by assuming a perfect fit in VF3 . The results give no evidence of linkage 

from the reciprocal crosses, deviate by -0·0964 and 0·1416 from 
the expected value. There are 14 such deviations, two from each 
line of the table. On squaring and summing, 0·065005 is obtained 
as the sum of squares of these deviations from expectation. This 
conesponds to 9 degrees of freedom, for of the 14, contributed I by 
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each deviation,* 5 have been sacrificed in estimating the 5 para-

D E Th d . . ( V) . h r 0·065005 meters - 3• e mean square eVIatwn IS t ere.1ore ---
9 

or 0·007223. 
Now the variance V D of our estimate of Dis given by the 

relation -

V D=l VcDD=!(0·007223x9·978498) 

=0·03603 

the factor of ! being introduced by the use of mean values of V Fz• 
&c., from duplicate observations. The standard error of D is 
~orO·IS9s. 

Similarly 

8 3=0·0462 

and the components of variation in this experiment .are 

D=l·3211:!:0·1898 
H=l·0694:!:0·5814 
E 1=0·3653:!:0·0559 
E 2=0·1015:1:0·0532 
E 3=0·3169:1:0·0462 

Since H nearly equals D it would appear that there is a. marked 
degree of dominance, but the high value of sH makes this conclu­
sion somewhat unreliable (~141=1·84; P=0·10-0·05). The approxi­
mation of the F 1, F 1 and F 8 means to the mid-parent in Quisen­
berry's data. may therefore be due either to an absence of 
dominance or, perhaps more likely, to balance of dominance in the 
two directions. The experiment is not fully discriminative on this 
point, and indeed F 1 and F 3 data. by themselves can seldom be 
expected to give a very precise value o( H owing to the low 
coefficients of H in the expectations. In backcross data., as we shall 
see in the next section, the coefficients are higher, with the result 
that more reliable values of H are to be expected from them. 

• The direct estimate of E 1 is partially correlated with those of E 1 and. 
E 1 • There are not, therefore, fully 14 initial degrees of freedom, but there 
must be at least 12. The assumption of 14 leads, however, to no false 
conclusions, though the standard errors of D, H, &c., are somewhat under· 
estimated. In adequately designed experiments, such as that with barley 
(Section 18), this difficulty will not arise. 
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Certain third-degree statistics were also calculated from these 
oat data. The skewnesses of the two F 3's were 0·7889 and 0·2791, 
of which the former seems significantly large, though the latter 
does not. The mean skewnesses of F 3 from the two crosses were 
0·001255 and 0·001171. These are expected to be half the F 3 skew­
nesses if attributable to genetic causes. It is therefore clear that no 
reliance can be placed in the apparently significant single F 3 value. 
The covariances of mean and variance of Fa were 0·0628 and 
0·0546 in the two reciprocals, and the covariances of F 3 parent 
value and Fa variance were 0·0467 and 0·0490. Thus none of the 
third-degree statistics may be regarded as departing from 0 for 
genetical reasons-a state of affairs which, like the approximation 
of the F 1 , F:! and F 3 means to the mid-parent, would follow either 
from the absence of dominance (i.e. h=O for each gene) or from the 
dominance of increasing ( +) allelomorphs in some genes being 
balanced by dominance of the decreasing (-) allelomorphs in 
others (i.e. h being+ and - in balanced proportions). In either 
case F and G (see Table 10) are expected to be 0. 

The matrix of c multipliers calculated for the oat experiment can 
be used in partitioning the variation of any set of results from an 
experiment of that kind. The values of S(Dy), &c., are found from 
the observations, and on combining with the appropriate columns 
of Table 12 they give estimates of D, &c. In an experiment con­
stituted differently from that of the oats however, a different 
c matrix is needed. A more common type of experiment may be 
illustrated by the Petunia species cross already mentioned in 
Section 9. In this case parental, F 1 , F 3 and Fa families were all 
much of the same size, though their sizes varied somewhat on 
account of the varying viability of the seed from which the differ­
ent families were grown. The non-heritable components of varia­
tion in F 3 and the Fa's may, however, be taken as the same, a.s 
opposed to the situation with the oats where they could not be so 
regarded. An estimate of this component may be obtained from 

. the variance of parent and F 1 families. These, as we have seen in 
Section 9, differed somewhat, that of F 1 being the smallest. A 
reasonable estimate of the non-heritable component in F 3 and F 3's 
may be found a.s the mean of the three variances from the two 
parents and the F 1 • This is }(0·2243+0·0483+0·1177)=0·1301 (see 
T~ble 8). The numbers of plants in the 18 utilizable Fa families 
varied round a harmonic mean of 9·259, and so the non-heritable 

f . fF be . :1 0·1301 component o vanance o 3 means may estimater as -- or 
9·259 
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0·0141.* These estimates are set out together with the F 1 and F 3 
variances and covariances in Table 13. 

TABLE 13 

· Corolla. Length in Petunia 

Mean Length in log measure Parents {P. ~ria 7·871 
P. molacea 2·669 

Observed 

, 
VF2 iD+lH+E1 0·5249 
Vn !D+nH+Ez 0·4250 
WF2/F3 !D+tH 0·3331 
Vps lD+tH+E1 0·2762 

F 1 5·467 
F 1 4·953 

Expected 

0·4963 
0·4022 
0·3674 
0·3104 

Deviation 

0·0286 
. 0·0228 

-0·0343 
-0·0342 

Non-heritable components 
Single plants Et 0·1301 0·1244 0·0057 
Means of families Ea 0·0141 0·0370 -0·0229 

Since there are only 4: parameters involved, D, H, E 1 and E 1, 

there will be only four least squares equations for their estimation. 
These are found from the table in a way exactly analogous with 
that used for the oats. The equations whose solutions give the c 
matrix are then 

0·812500D+0·250000H+0·750000E1+0·500000E1=1, 0, 0, 0 

0·250000D+0·097656H+0·375000E1+0·062500E1=0, 1, 0, 0 

0·750000D+0·375000H+3·000000}J1 =0, 0, I, 0 

0·500000D+0·062500H +2·000000E1=0, 0, 0, 1 

and the c matrix itself appears as shown in Table 14:. 

TABLE U 

D H E, Eo 

CDD 10·526316 CHD -30·315789 cw H5789S C2D -1·6842ll 
CDH -30·315789 CHH 107·789473 CtH -5·894 737 C2H 4·210526 

CDl 1·157895 CHl -5·894737 en 0·780702 C21 -0·105263 
CD2 -1·684211 CH2 4·210526 cu -0·105263 C22 0·789474 

• The direct estimates of E 1 and E 1 are thus correlated. but the calcula­
tion is made as if they were not, in order to illustrate the procedure and 
matrix appropriate to an adequately designed experiment where these 
estimates would be independent. • 
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Then with 

S(Dy)=0·7106, S(Hy)=0·2340, S(EJJJ)=0·9312, S(E2!J)=0·4391, 
D=0·7258±0·1494, H=0·0361±0·4 781, 
E 1=0·1244±0·0407, E 2=0·0370±0·0409. 

The values expected for V F2• &c., found from these estimates 
of D, H, E 1 and E 2 are given in Table 13 and the sum of squares of 
deviations of observed from expected values is 0·0042408. Since 
there are 6 quantities observed and 4 parameters fitted, 2 degrees 
of freedom will remain for this sum of squares so that the mean 
square becomes 0·0021204. The standard errors of D ... E 2 given 
above are then found from this mean square using Cnn• &c., as 
multipliers before taking the square root, in the way already 
described for the oat analysis. No factor of lis used in calculating 
these variances as each of the statistics, V F2• &c., is a unique 
observation. 

Again there is no evidence of dominance. Indeed, with a standard 
error of 0·4781, evidence of dominance must be hard to obtain. It 
may be remarked, too, that if estimates of the non-heritable com­
ponents are derived by combining the parental and F 1 variances in 
ways other than that used, the estimate of Dis changed but little. 
That of His, however, markedly altered, sometimes even being 
negative, though not of course significantly so. 

With most animals, F 3 families are unobtainable. Instead, 
biparental progenies are available from pair matings between 

, males and females taken at random from the F z· The c matrix 
in such a case must of course differ from those used above. The 
use of biparental progenies may be illustrated by the inheritance 
of number of abdominal chaetae in a cross between the 0 and B 
stocks of Drosophila melaMgaster (Mather, 1941) already men­
tioned in Section 2. The means of the parents and later generations 
differ by relatively few chaetae (Table 15). 

The :flies were raised in the customary half-pint bottles, there 
being five such cultures of each parent and of the F 1" Twelve F 1 

culture.~ were raised, six from each reciprocal cross, and there were 
thirty-one biparental progenies of the third generation, each in its 
own bottle. V F2 was found using the deviations from the bottle 
means, and so its non-heritable component must be that occurring 
within bottles. The same will be true of the mean variance ( V BIP) 

of the thirty-one biparental progenies since each was raised in a 
single bottle. This non-heritable component (E1 ) was estimated by 
pooling the variances within bottles of the parents and F 1• The 
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variance of biparental means ( V nzp), on the other hand, must be a. 
variance between bottles and its non-heritable component was 
therefore estimated as the pooled variance between bottle means 
of parents and F 1, round the parental and F 1 means respectively. 
Males have fewer chaetae than females but seem to show the so.me 
variances. All deviations were therefore calculated from the appro­
priate sex means, but were pooled in finding the variances and 
covariances. Sex linkage is a potential source of disturbance. 
Since, however, theY chromosome appears to be polygenically 

. active like the X (Mather, 1944), it was not thought likely that 
sex linkage could distort the results seriously, provided male and 
female deviations were pooled in the calculations. In any case 
these data will serve to illustrate the use of biparental progenies. 

-

N 

TABLE 15 

Abdominal Chaetae Number in Drosophila 

Mean Numbers 

VF2 iD+lH+E1 

VBJP lD+fs-H+E1 

WF2jBIP lD 
VBIP lD+fe-H+E1 

on-heritable components 
Within bottles El 
Between bottles E• 

Observed 

6·6214 
1·2518 
0·4227 
7-1377 

6·5505 
1·2172 

Males 
36·06 
39·88 
37·80 
38·35 
38·54 

Females 
43·48 . 
44·59 
43·43 
44·20 
44·55 

Expected Deviation 

6·9012 -0·2798 
1-3130 -0·0612 
0·1956 0·2271 
6·7442 0·3935 

6·6642 -0·1137 
1-1560 0·0612 

The results, together with the expectations in terms of D and H, 
are set out in Table 15. The equations whose solutions give the 
c matrix are then found as 

0·437500D+0·187500H+0-750000E1+0·250000E1=1, 0, 0, 0 

0·187500D+0·101563H+0-437500E1+0·062500E11=0, 1, 0, 0 

0·750000D+0·437500H+3·000000E1 =0, 0, 1, 0 

0·250000D+0·062500H +2·000000E1=0, 0, 0, 1 

giving the matrix shown in Table 16. 
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TABLE 16 

H E, E,. 

CDD 12·394372 CHD -24·338047 CJD 0·450705 cw -0·788733 
CDH -24·338047 CHH 75·718367 C1H -4·957750 C2H 0·676057 
CDl 0·450705 CHI -4·957750 en 0·943662 C21 0·098592 
CD2 -0·788733 CH2 0·676057 CJ2 0·098592 C22 0·577465 

Further 

S(Dy)=5·5138, S(Hy)=r3·0719, S(E&)=20·3096, S(E21J)=2·4690,· 

whence D=0·7823±1·3751, H=-0·6166±3·3988, E 1=6·6642±0·3794, 
E 2=1·1560±0·2968. The sum of squares of deviations, for 2 degrees 
of freedom .as with the Petunias, turns out to be 0·305123, from 
which the standard errors of D ... E 2 are found using the 
appropriate multipliers from the c matrix. 

The H item is negative-an apparently impossible result which 
is, however, meaningless in view of its large standard error. 
Indeed, even the value of Dis less than its standard error, a result 
which is to be expected in view of the overwhelming preponder­
ance of non-heritable as opposed to heritable variation. This low 
value of D would be expected to make selection for increase or 
decrease of chaeta number largely ineffective. As we shall see, 
however, in Section 17, the heritable variance was not really 
absent. It was only hidden in the genotypes. Its release made 
selection effective in the third and later generations (Mather, 
1941). 

14. BACKCROSSES 

On backcrossing an F 1 to either of its true breeding parents, 
each gene will be homozygous in half the progeny, and hetero­
zygous in the other half. The contribution of gene A-a to the 
mean magnitude of the two backcrosses, as measured from the 
mid-parent, will therefore be · 

B1 !(da+ha), B1 }(ha-da) 

B1 being the backcross to the AA parent homozygous for the allelo­
morph giving the + deviation, and B2 that to the aa parent. 

The contributions of A-a to the variances of the backcrosses 
can easily be shown to be 

Bl !(da-ha)l&, B, !(da+ha)1 

The contributions of d and h to these variances are not separable 
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as they stand, but if the variances are summed, A-a contributes 
!(tf!+h!) to the total, and the contributions of d and h can now 
be separated. 

Then, with independent genes, the summed heritable variances 
of the backcross ( V BI + V m) will be fS(tf!)+fS(k!) or fD+fH. This 
compares with !D+lH for V F2• and hence the excess of V Bl+ V m 
over V F2 must be.a measure of lH. It will indicate the presence of 
dominance, and this irrespective of the direction of dominance for 
each gene, because H=S(h2). · · 

The difference between the variances of the two backcrosses is 
S(dh), the sign of h here being taken into account. This difference 
must be zero wherever either the parents are of equal magnitude 
or the F 1 equals the mid-parent; for in these cases the d and h 
items are balanced respectively in the sense that the sum of the dh 
products with a positive sign will be equalled by the sum of those 
with a negative sign. Where, however, S(dh) does not equal zero 
it supplies additional evidence of the existence of dominance. At 
the same time it supplements the evidence from the relation ofF 1 

to mid-parent in showing which parent carries the preponderance 
of dominant allelomorphs, for, as we have seen, the backcross to 
this parent his the lower variance. 

Powers {1942) has used this method for showing the dominance 
of the genes governing fruit weight (expressed on a log scale) in the 
tomato cross Danmark x Red Currant. The parental means were 
1·672 and -0·053, giving a mid-parent of 0·809. The F 1 mean was 
0·707, suggesting preponderant dominance of the genes from 
the smaller parent, Red Currant. The heritable portions of the 
backcross and F 1 variances Powers estimated as Bnc 0·01353, 
B0 0·01907, F 1 0·03192. The summed backcross variance exceeds 
that of F 1 by 0·00068 and so gives H=0·00272. It then follows 
that D=0·06248 and S(dh )=0·00554. Dominance seems clear, though 
it is not marked. Furthermore, S(dh) indicates that the genes from 
the small fruiting parent are preponderantly dominant, as has 
already been suggested by the comparison of F 1 mean with the 
mid-parent. 

Dominance appears to be more marked in the case of corolla 
length (measured as 1000 tim~ log tube length+ log lobe length) 
in the species cross N icotiana Langsdorfii x N. Sa'TIA!£rM- (Smith,· 
1937). The parental means wereB=I292 and L=37,giving a mid­
parent of 664·5, as compared with an F 1 mean of 742. The average 
variance of the reciprocal backcrosses to N. Sanderae was 85·5, 
and of that to N. Langsdorfii 98·5. S(dh) is thus in the direction 
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agreeing with the excess of F1 over the mid-parent. Each back­
cross variance includes a non-heritable item which may be esti­
mated, from the average of parental and F 1 variances, as 42. V F 2 
contains a similar item. Deduction of this quantity leaves 43·5 and 
56·5 as the ·heritable components of the two average backcross 
variances and 88·5 as that of the average F 2 variance. Then 
!D+!H=43·5+56·5=100, and !D+!H=88·5, so that H=46 and 
D=l54 (Fig. 7). If we care to assume that hand dare constant in 

L6L +~s tf2 
FIG. 7 

The values observed for the F 2 and pooled backcross variances of corolla length 
in Nicotiana Langsdorfii x N. Sanderae (Smith, 1937), and their compositions in 
terms of D, Hand E. The expected totals and observed values agree perfectly, as 
only these data were available for the separation of D and H 

magnitude, though not of necessity in sign, for all the k genes 

involved, J ~= J t:[0·55=~ and provides therefore an estimate 

of the degree of dominance. 
If the individuals of backcross families B1 and B 2 are again 

backcrossed to the parents P 1 and P 2, each individual being back­
crossed to both parents, further estimates of D and H can be 
obtained. Let B 11 be the backcross of B 1 individuals (themselves 
from the backcross F 1 x P 1 ) to P 1 , B12 the backcross of these same 
individuals t~ P 2 (i.e. [F1 x P 1] x P 2), and so on. The mean vari­
ances of the B11 ( V Bn) and B21 ( V B2l) progenies are each iS(d-h) 8 

and of B 12 ( V B12) and B 22 ( V B22) are 1S(d+h)8 so that 

v Bll+ v B12= v B21+ v B22=!D+!H 
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The variances of the means ofB11 (VB11) and B11 (VB21 ) progenies 
are each J,;S(d-k)" and of Bu1 (V B 12) and Bu (V B 22) are J,;S(d+k) 1 

so affording, by appropriate summation, an estimate of lD+lH. 
All these variances will, of course, also contain non-heritable 
components. 

The covariance of the means of Bw &c., with the values of B1 

or B1 individuals from which they were derived are even more 
informative. Covariance B11• with B1 (W Bl/Bu) is lS(d-k)1, and 
B11 with B1 (W BZ/B22) is lS{d+k) 1, giving on summation !D+!H. 
Covariances B11 with B1 ( W Bl/Blz), and Bu with B1 ( W B 2/B21), 

however, are both lS{d1-k1) or lD-lH, and on summing give 
lD-lH. D and H may be separately estimated solely by the use of 
these covariances, which, of course, also have no non-heritable 
item. Furthermore, the estimates of D and H will be equally pre­
cise-a marked advaatage for the detection of dominance over 
the unequal precision of the estimates obtained from F 1 and its 
derivatives. Unfortunately no double backcross data are available 
for this method of separation to be tested further. 

It is, however, clear that continued backcrossing should form 
part of any experimental programme aimed at partitioning 
polygenic variation, unless, of course, it is rendered impossible by 
technical difficulties. 

TABLE 17 

Components of Variation in Backcross Progenies 

V Bt+ V ,82""-8um of variance of B1 and B1 !D+lH+2E1 

V Bl-V m-Difference of variance of B 1 and B 1 S(dh) 

V Bn+ V Bl2}-Sum of mean variance of B 11 and 
j" B2t+ j" B22 B11 or B11 and B11 

~Bn-~Bl2}-Difference of mean v&riance of B 11 

V B2t- y B22 and B11 or B11 and B21 

V Bn+ VJiU}-Sum of variance of means of B 11 
V B2t+ V .8"!2 and B11 or B11 and B11 

VIJTI- V Bit}-Difference of 1.·ariance of means of 
V B"!l- V .8:!2 B11 and B11 or B11 and B11 

WB1/BU+WB'>-/BZZ-8um of covariance of B1/B11 and 
Ba/Bn 

WBt/Bll-WB2;~Difference of covariance of B 1/B11 

and B1/Bu 

WBl/B12 and w.B'>-/B2l-Covariances B,/Bu and B.!Bu 

D and H as in Table 9 
B.o.---6 

!S(dh) 

lS(dh) 

lS(dh) 

lD-lH 



72 THE COMPONENTS OF VARIATION 

15. RANDOMLY BREEDING POPULATIONS 

Where the initial cross is between true breeding lines, and where 
self-mating, intercrossing and backcrossing can be practised at 
will, a great multiplicity of statistics is available for the estima­
tion of D, Hand E. Most organisms will, however, by their own 
special properties set limits to the range of statistics which can be 
obtained. In such plants as wheat, oats and barley, self-pollination 
is easily secured, whereas crossing of any kind is tedious. Data by 
means of which the contributions to the variation can be separated 
will therefore generally come from measurement of F 2 and F 3 

families, as in the case of Quisenberry's oats. With self-incompatible 
and dioecious plants, and with most animals, self-mating is pre­
cluded. The statistics available will then be those from successive 
backcross generations and from F 2 and biparental progenies. 
Either can lead to a satisfactory analysis. 

'!'he value of true-breeding parental lines to experiments of this 
kind is, of course, very great. Using such lines, simple Mendelian 
theory can be applied to the transmission of the genes, even 
though they cannot be followed individually in transmission. In 
particular, we can be sure that, barring selective elimination of 
certain classes of gametes or zygotes, corresponding homozygotes, 
i.e. AA and aa, will be present in equal numbers in the material. 
This equality is so important that, as we have seen, backcross data 
can be used to full advantage only when variances and covariances 
complementary in their contents of homozygotes are summed. A 
further advantage following from the use of true breeding lines is 
their availability for the direct assessment of E, and for any back­
crossing that it may be desired to undertake. Even where the 
backcrosses are not intended to play a major part in partitioning 
the components of variation, their means afford valuable tests of 
adequacy of scale when compared with parental and F 1 means. 

The partition of variation into its components is therefore much 
easier where true breeding lines are used in the initial cross. It is, 
however, possible to make a partition even where such lines are 
not available. If the genetic differences between individuals within 
two stocks are small compared with those between the stocks, the 
stocks may be treated as true breeding without serious error. The 
genetic variation within them is confounded with the non-heritable 
variation, and this may indeed be of very small consequence in 
crosses such as those between species. 

Where a species is capable both of easy self-fertilization and 
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of easy crossing, every member of any population may be itself 
treated as an F 1 between hypothetical parents. Self-pollination 
will yield an F 1, which may be used in its turn to give both Fa's 
and biparental progenies. D, Hand E may be estimated from such 
families even in the absence of the hypothetical parents or of a 
sufficiently large F 1 from which a direct estimate of E could be 
obtained. With a clonally propagatable plant, this absence of 
parents would not be felt, since a clone of any individual of any 
generation could be used to give the necessary estimates of non­
heritable variation. There would remain the question of scaling, 
Unless this had been settled from ancillary experiments. A scale 
could be chosen to make the fall from F 1 mean to mean of all Fa's 
twice that from mean of all F 3's to mean of all F .,'s, though the 
test of adequacy so obtained would not be sensitive. By these 
means the genetical properties of the various individuals of any 
population could be determined by treating each individqal as a 
unique F 1• When compared with each other these individuals 
would give a picture of the genetical properties and composition 
of the population as a whole. 

The success of this method of analysing a population of unknown 
composition and of unknown gene frequencies depends on enforc­
ing a situation, by the initial selfing of the individual, where the 
gene frequencies become known and gene behaviour predictable 
from Mendelian principles. The same type of analysis can be put 
to good use in at least two ways in the later stages of an experi­
ment which itself began with a cross between true breeding lines. 
First, if each F 1 plant is regarded as an F 1 , its Fa as the correspond­
ing F 1, and so on, the F 1 population can be analysed plant by 
plant and its composition compared with that expected on the 
basis of the first analysis which will have already been obtained 
in the experiment and in which the F 1 was used as a whole for the 
understanding of the properties ofF 1• Secondly, lines raised from 
F 1 by selective breeding can be analysed in this way in later genera­
tions in order to observe the effects of the selection on the decay 
of variability. In both cases, the parental lines can be employed to 
give direct estimates of E 1 and the question of scale will already 
have been settled. 

Still other means must be employed where it is desired to under­
take the analysis of a population of unknown constitution, whose 
constituent individuals cannot be self-fertilized. Scaling problems 
can only be settled by ancillary experiments or considerations, 
unless it is proposed to undertake the whole analysis by first pro-
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ducing a number of inbred lines, intercrossing these and then pro-. 
ceeding as before-a task which will usually be prohibitive if only 
by its requirements in time. Where a single true breeding line is 
available, the heterogenic population may be analysed by succes_­
sive backcrossing of single individuals to it. Otherwise the 
population must be treated as it stands. 

The early biometricians developed the method of correlations 
between relatives for this purpose of analysing poplli:ations 
over whose breeding no control could be exercised. This method 
has been thoroughly reviewed from the standpoint of Mendelian 
inheritance by Fisher (1918), but it is not confined in its applica­
tion to the analysis of heritable variation. It has been extensively 
used for the partitioning of non-heritable variation into its various 
components (see Wright, 1934a; Lush, 1943). Its use depends on 
the fact that where a correlation r exists between two variates, a 
proportion r 2 of the variation of one variate may be accounted for 
by reference to variation in the other, leaving 1-r2 as residual 
variation for which other causes must be sought. In this way, an 
analysis of variance may be arrived at. 

When used for the separation and analysis of heritable varia­
tion the method of correlation between relatives is, as· would be 
expected, related to the methods already developed for the special 
case of crosses between true-breeding stocks. It leads, in fact, to 
generalized formulae for D and H, and at the same time shows us 
the special advantages of the type of data already discussed. We 
shall assume that the scale on which measurements are taken is 
adequate for the elimination of interaction. If it is not, a special 
term must be introduced into the analysis to take care of the 
interaction (Fisher, 1918, Wright, 1935). 

Where, in a population mating at random, the two allelomorphs 
A and a of a gene occur with frequencies Ua and va (=1-ua), respec­
tively, in the gametes taken as a whole, the three genotyPes AA, 
Aa, and aa will occur with the average frequencies u!: 2uava: v! 
in each generation. Then, if as before the contributions made by · 
the three genotypes to the character metric are da, ha and -da 
respectively, the mean will be da(Ua-va)+2hauava. The contribution 
which this gene makes to the variance of the population will be 

d!(u!+v~)+h!2uava-[da(ua-va)+2hauava] 2 

the last term being the correction for the mean. On simplification 
this expression becomes 

2uava[d!+2hada(va-Ua)+h!(1-2uava)] 
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This can be recast in the form 

2uava[£l!+2hada(va-Ua)+h!(va-ua)~2h!uava] 

or 2uava{[da+ha(Va-Ua)]2+2h!uava} 

Where the genes are independent in action and uncorrelated 
in distribution, the total heritable variation will be the sum of 
the series of such items, one from each gene, viz. 

S {2uv[d+h(v-u)]2+4h2u!v=} 

_It will then be seen that if we put 

D=S {4uv[d+h(v-u)]2 } and 

the heritable variance becomes !D+lH. Apart from sampling 
variation, this heritable variance will be constant from generation 
to generation. 

When U=V=l for all genes, as in the F 1 of a cross between two 
true breeding lines, these general expressions for D and H reduce 
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FIG. 8 

Change in the contributions made by a. gene to D and H according to the 
frequency of its dominant allelomorph in a. randomly breeding population. In 
calculating the variation it was assumed that d-h=l 
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to S(d2) and S(h2), and the heritable variance itself"reduces, as it 
should, to that already found for V F 2• Thus if, and only if u=v=l 
the contribution made by d and h to the heritable variation may be 
separated in the a;nalysis. Otherwise D includes some effect of h, 
and H is correspondingly less than the summed effects of all the 
squared h deviations. D may be greater or less than S(d2), accord­
ing to the relative frequencies of the more dominant and more 
recessive allelomorphs (Figs. 8 and 9). 
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FIG. 9 

Change in the contribution (!D+!H) made by a gene to the variation of a 
randomly breeding population according to the frequency of its dominant allelo· 
morph. The separate items !D and !H are also shown. Calculations are based on 
d=h=l 

Turning next to the parent-offspring covariance, the parents 
will be of the three types AA, Aa, aa with the relative frequencies 
u! : 2uava : v!. The population of gametes, with which those of 
each parent will combine in giving the next generation, will carry 
A and a with the relative frequencies ua and va. The offspring of 
AA parents will therefore be AA in ua of cases. and Aa in va of 
cases. Now the former group will have an expression, in regard 
to this gene, of da and the latter an expression of ha. Taking all 
the types of parent in turn we can in this way build up a table 
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showing. the frequencies of the various relations of expression in 
parent and offspring thus: 

OJ!spriWJ 
AA Aa aa 
d, h, -d, 

"''!. • AA d, f/.3 

" 
u!v, 

Parents 2uava Aa ha u!v, u,v, uav! 

v! aa -d, Uav! 1}3 
" 

The sum of cross-products of parent and offspring will there-
fore be · 

£l!( u!+v!) +2daha(u!va-uav!) +h!uava 

from which must be deducted a term correcting for the means 
of parents and offspring. This will be the same as that used in 
calculating the variance, since the mean measurement of all off­
spring is the same as that of all parents. 

The contribution of this gene to the covariance of parent and 
offspring thus becomes 

£l![u!+v!-(u4 -V4 )
1]+2hadJu!v4 -U4V!-2uava(u4 -Va)]+h!(u4V4 -4u!v!) 

which reduces to 
Uava£l!+2U4 V4 (Va-Ua)h4 d4 +U4 V4 (1-4u4+4u!)h! 

or U 4 V4 (d4 +h(v4 -u4 )]1 

and summing over all independent genes, we find W P;o=lD, .since 
a covariance has no non-heritable component. 

The covariance of full sibs may be calculated similarly. There is 
but one complication to bear in mind. In a family from, say, the 
cross AA x Aa, equal numbers of AA and Aa offspring are 
expected. Then of pairs of sibs taken at random, l will be both 
AA, 1 will be both Aa and l will include a sib of each kind. Such a 
cross between AA and Aa parents will be expected with frequency 
u!.2ua"a• and so will contribute l2u!vad!+l2u!v,h!+l2u!vadaha to 
the sum of cross-products. The correction term will be as before 
and so we obtain for the contribution of A-a to the covariance 
of full sibs 

or 

Uat14 [d!+2hada(Va-Ua)+h!(l-3U4V4 )] 

UaVa {[ da +ha( V a -ua)]l+h!uava } 

which on summation of all independent genes yields 

W81s=iD+}\H 



78 THE COMPONEN.TS OF VARIATION 

The covariance of half-sibs is similarly lD. Those for other rela­
tives can be calculated in the same way. 

The correlation between parent and offspring is found as 

r - WP/O WPto, since Vp=Vo=V 
Pto- VVp. V

0 
V 

!D 
}D+!H+E 

The correlation between full sibs is similarly 

Wsts !D+isH 
r sts=----y-= 1. D+l. H + E 

2 4 

Knowledge of these two correlations of itself enables us therefore 
to estimate the relative magnitudes of D, Hand E. 

Fisher (1918) records that Pearson and -Lee's data yield 
rp10=0·4180 and r81s=0·4619 for the human cubit measurement. 
Now 

and 
1D+-?-6H=r 818( !D+!H +E) 

1D=rp10(}D+!H+E) 

The general solution to these equations is 

H 
E 

l-2rp10-Drp10 
H = 4(rsts-rPto> and 
D rp10 D 4rp10 

Substituting we find H=0·4201D and E= -0·0069D. 
In other words, the non-heritable variation must be very small, 

our estimate becoming negative through sampling error, while H 
is nearly half as large a.s D. Taking E as zero, the variation in the 
population would bepartitionable into 17% duesolelyto dominance 
and 83% also including a portion due to dominance but mainly 
reflecting the d items of variation. 

These results can, however, only be regarded as approximations, 
because the analysis itself is over simple for two reasons. In the 
first place, the assumption of random mating is not fully justified 
in man. There is, in fact, a. marital correlation of 0·1 between the 
cubit measurements of mates. This must result in higher values 
for both rp10 and r818 than would be obtained with the same 
genetic structure under a. system of random mating. Our estimate 
of E will therefore be too low, and H seems also to be under­
estimated. The results are not, however, made seriously inaccurate 
by the assumption of random mating. Fisher describes a method 
of making allowance for the marital correlation. On using it he 
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still finds that the contribution made by E to the variation is 
negligible, but that 17% of the variation is due to homogany and 
that the ratio of the H and D contributions is approximately 
1 : 3. The values reached by both methods of partition are, how­
ever, subject to considerable sampling errors (Fisher, 1918). 

The second difficulty arises from the assumption that the non­
heritable variation is simply additive to the heritable. This cannot 
in fact be the case in man. As a result of family life both parents 
and offspring on .the one hand and sibs on the other will tend to 
enjoy environmental conditions more alike than the environments 
·of unrelated persons. Genetical similarity is, therefore, accom­
panied by some similarity of environment. The estimate of E 
obtained in the analysis must tend to be spuriously low for this 
reason, as well as by reason of the marital correlation. It is, how­
ever, difficult to believe that if non-heritable variation between 
families were at all sizeable, the E component would be found to 
be negligible in the analysis. Though our estimate must be too 
small, E is not likely to constitute more than a small fraction of the 
variation between the individuals measured, even when estimated . 
without bias. Furthermore, the estimated ratio of H to D should 
not be seriously affected by this false assumption about the 
distribution of environmental differences. 

These difficulties with the environment and the mating system 
are likely to arise whenever the data are obtained, as they are with 
man, by simple observation. Where experiment is possible bias 
due to difficulties of these kinds may be avoided, or at least materi­
ally reduced. One experimental design which avoids at least those 
difficulties which arise from a marital correlation, is that known 
as diallel crossing. In such an experiment each of the male parents 
is mated in turn to each of the female parents, so that a progeny 
is raised from every possible cross. The genetic values of the 
various males on the one hand, and of the various females on the 
other, can therefore be compared with some· precision, because all 
of them are assayed over the same range of mates. 

The frequencies of the various types of mating, the mean 
measurement and the variance of the offspring from each mating 
are given in respect of gene A-a in Table 18, assuming the various 
parental genotypes to be used with frequencies proportional to 
those found in the randomly breeding population. The mean taken 
over all families, assumed to be of equal size, is of course that of · 
the original population. The mean of all offspring from one parent 
varies with the parent itself, the covariance being lD, as we have 
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already seen. The regression of offspring on parent is equal to 
rp10, and therefore has the maximum value of! when H=E=O. 

TABLE 18 

Diallel Crosses 
Mean Expressions and Variances in Progenies 

Male 

Parents AA A a aa Mean 
u2 

a 2UaV01 
v2 
a 

AA x=da f(da+ha) ha Uad01+Vahe~ 
u2 

a Vz=O !(d01-ha)2 0 

Female A a t(da+ha) tha f(h01-da) -Hda(Ua-Va)+ha] 
2uava i(da-ha)2 !(2d!+h!> i(da+ha)2 

a a ha f(ha-da) -de~ Uaha-Vada 

v! 0 !(da+ha)2 0 

Mean Uade~+Vahe~ !-[ da( Ua-Va)+ha]uaha-Vada ( U11-Va)da+ 2uavaha 

In addition to the variance and the different covariances which 
may be found from such data as are available from man, diallel 
crosses afford a number of new statistics which may be used in the 
evaluation of D, Hand E. These are listed in Table 19. Some of the 
variances and covariances in this table represent the general cases 
of the statistics derivable from biparental progenies and maternal 
progenies of the third generation from crosses· between true­
breeding lines as given in Table 9. They have the same structure 
in terms of D, H and E; but where originating from the cross 
between true breeding lines, u=v=! for all genes, and so D and H 
are themselves defined more closely. 

This range of statistics obtainable from a diallel crossing experi­
ment is sufficient to yield an adequate partition of the variance 
into its components, provided that sufficient parents are used. 
The chief difficulty will generally arise from the geometric increase 
in the number of progenies required to complete the experiment 
when the number of parents increases arithmetically. There is, 
however, no necessity for the numbers of parents of the two sexes 
to be kept equal. In general, it will be easier to test a limited num­
ber of male parents on a wider range of female parents. The struc­
tures of the various statistics will still be the same, whether 
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TABLE Ill 

Components of Variance and Co-V a.ria.nce in Randomly 
Breeding Populations 

D=S {4uv[4+h{v-u)]•} H=S(l6hZulv•) 
E 1=non-heritable variance 

of individuals 

General 
(Vn)Varianceofindivid~m 

(W n;BIP) Covariance Parent/Offspring 
Covariance of full sibs 
Covariance of half sibs 

In Dia1lel CrotJ~Je~~ 

E:a=non-heritable variance 
of means 

=!D+lH+E1 
=lD 
=lD+J\-H 
=lD 

(VBIP) Variance of all family means =1D+J\-H+E1 
(VM .. .tT) Variance of means of all offspring of single 

parents =lD+E11 (or Ea 
under special 
circumstances) 

(V BIP) Mean variance of all families =lD+J\H+EJ. 
Mean variance of family means from single 

parents =lD+J\-H+E1 
(V MAT) Mean variance of all offspring from single parents=lD+lH+E1 

A number of these statistics are general forms of some listed in Table 9 
obtained from the descendants of a cross between true-breeding lines. These 
comparisons are indicated above by the symbom in brackets. 

obtained by dividing the families up upon the basis of the male 
parents or of the females; but their precisions will not, of course, 
be identical when the numbers of male and female parents differ. 

A similar experimental design is used in progeny testing bulls. 
A limited range of" males is tested over a wider range of females, 
but the same females are not of necessity used for testing all the 
males in turn. Provided that the set of females used for mating to 
each male is itself a fair sample from the population of females, no 
bias is introduced. An additional source of sampling error is, how­
ever, obviously brought in. The necessity is thereby made the· 
greater for securing a range of statistics sufficiently wide to provide 
empirical estimates of the error of estimation of D, Hand E, in 
the way illustrated earlier in this chapter. Indeed, it is clearly 
a general principle of experiments made in order to partition the 

·variation of a population or the segregating generations of a cross, 
that their designs should yield not merely the statistics necessary 
for the partition, but also the means of determining the errors of 
estimation of the components of variation which are obtained by 
the partition. The more statistics there are made available, the 
greater will be our knowledge of the errors of estimation, and the 
further will it be possible to pursue the analysis. 



CHAPTER 5 

LINKAGE 

16. THE EFFECT OF LINKAGE 

THE CONTRIBUTIONS of the various genes to the fixable and 
unfixable components of the genetic variation are additive, in the 
way assumed in the previous chapter, only if the genes themselves 
are independent both in action and inheritance. Independence in 
action means, of course, that the increment added to the character 
in question _by one gene is uninfluenced by the remainder of the 
genotype. & we have already seen, this must usually be a problem 
of scaling, and it has already been discussed in that.connection. 
No further general comment is required, though the effects of 
certain special types of genic interaction on linkage detection will 
be considered later. 

Independence of two· genes in inheritance means that the two 
allelomorphs of one gene are equally likely to be transinitted from 
parent to offspring together with a given allelomorph of the second 
gene. Apart from special cases, therefore, dependence of genes in 
inheritance means linkage. 

Where the genes in question have no lethal or seini-lethal effects, 
linkage does not effect the frequencies with which the allelomorphs 
of each gene are recovered. in segregating generations. It only leads 
to particular combinations of these alternatives appearing with 
frequencies other than those expected from independence. On a 
scale where the increments added to the phenotype by the various 
genes are themselves additive, the total effect of a gene on the 

·phenotypes of a fainily of given size will be the same, apart from 
sampling variation, no matter what its linkage relations may be. 
The relative frequencies of the particular combinations in which 
the allelomorphs occur with other genes will have no effect, because 
every one which is over-common will be balanced by another being 
correspondingly rare. Linkage, therefore, can of itself have no 
effect on the mean measurements of segregating families, provided 
that the scale chosen for representing the phenotypes satisfies the 
scaling tests developed in Chapter 3. Equally then the operation 
of linkage does not vitiate these scaling tests. 

Linkage, though not affecting the means, shows its effect in the 
second-degree statistics, the variances and covariances used in 

82 
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partitioning the variation. Consider the_ simplest case of two genes 
A-a and B-b. When in the coupling phase with recombination 
value p(=l-q), the ten genotypes of F 1 are expected with the fre­
quencies shown in Table 20. This table also gives the phenotypic 
deviations of each class from the mid-parent, and the mean pheno­
types of the corresponding F 1 families. It is not difficult to see 
from these data that the mean phenotype of F 1 is unaffected by 

TABLE ZO 

Frequencies, F 1 Phenotypes and Mean F 1 Phenotypes of the 10 Genotypic 
Classes in an F 1 for Two Coupled Genes 

The a.mmgement with-
in each cell is :­

Frequency 
F 1 phenotype 
Mean F 1 phenotype 

BB 

Bb 

bb 

AA 

,. 
d.+dt 
d.~ 

2pq 
d.+ht 
d.+lh• 

p• 

d.-4 
d.-4 

Aa 

2pq 
h..+dt 
lh.+dt. 

c 
2q• 

h..+ht 
!(h.+ A,) 2p• 

II,.+ I&, 
l<h.+h,) 

R 

2pq 
h..-4 
lh.-4 

All frequencies should be divided by f 

• 

aa 

p• 

-d..+dt. 
-d,.+d, . 

2pq 
-d.+ lit 
-d.+lhf; 

qll 

-d,--4 
-d.-4 

the linkage, being !(11,.+116) as before. But the sum of squares of 
deviations from the mid-parent is now 

l[q1(d.+db)l+2pq(d,.+11b)• ••• +q!(-d,.-d,)!] 

On subtracting [l(h,.+h,))l to correct for the departure of the F 1 

me.an from the mid-parent, the sum of squares of deviations from 
the mean, and with it the heritable variance (since the frequencies 
sum· to unity}, becomes 

v n=Ud!+t1I+2(I-2p}d_d6l+Hll!+A:+2(I-2p)1h}I-,J. 

Two new terms are to be observed in this expression, both 
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involving the recombination value, in one case combined with the 
product dadb and in the other with hahb. With free recombination 
p=!, so that l-2p=0 and these new terms vanish to leave the 
expressions obtained in the last chapter. When linkage is com­
plete p=O, giving l-2p=l and, aside from non-heritable variation, 
V F 2=!(da+db) 2+Hha+hb) 2• The two genes then act as one. Even, 
however, where recombination occurs, recombinant types will be 
rare if p is small, and the genes will effectively act as one except 
in so far as selection may isolate one of the rare recombinants. 

H we now write D=d!+d:+2(1-2p)dadb 

and 

in place of the earlier definitions of these two components of herit­
able variation, we can again put V F 2=!D+!H+E. It can then be 
shown that, as before, VF3=!D+is-H+E and W F 2/F3=!D+lH. 

H the two genes are in repulsion, the expression for D is changed 
to d!+d:-2(1-2p)dad,, but, as might be expected, that for His not 
changed. It should be noted, however, that the term 2(1-2p)2ha~ 
will be positive only if ha and hb are reinforcing one another by 
acting in the same direction. H they are opposing each other, this 
term must be negative. Thus opposition of the heterozygous 
increments resembles repulsion of the genes, and reinforcement 
resembles coupling in their effects on the variances and covari­
ances (Fig. 10). It must nevertheless be remembered that opposi­
tion v. reinforcement is a physiological distinction, while repulsion 

· v. coupling is a mechanical one. 
When we turn to the mean variance of Fa we find that it too 

can still be written in its old forms of V F 3=lD+lH + E, but not only 
are D and H in this expression different from the corresponding 
items in the case of independent inheritance, they also differ from 
those given by V F 2, &c., with linked inheritance. Taking the 
coupling case, the four corner genotypes of Table 20 are true breed­
ing, and so give Fa variances of 0. Two of the remainder will give 
segregation for A-a in Fa and two more segregation forB-b. The 
doubly heterozygous types in coupling and repulsion will give Fa's 
having variances like those ofF1 families showing the correspond­
ing phase of linkage. Combining these variances in proportion to 
their expected frequencies we find, in respect of these two genes, 

V F3=![d!+d:+2(1-2p) 2dadb]+l[h!+h:+2(1-2p) 2(1-2p+2p 2)hahb] 

The repulsion case gives the same expression, but with the sign 
of the term in dadb reversed. 
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Then D=d!+~±2(l-2p)!d,db 

and H=h!+hi+2(l-2p)1(l-2p+2p1)h,)i.b 
the ± indicating the change in sign of the d,d,. term according to 
the phase of linkage. These expressions for D and H differ from 
those given by V F2• VF3 and W F2/F3 in that (l-2p)1 replaces (l-2p) 
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Change in the contribution made by two Begregating genes to D and H in F., 
Fa and backe~ according to the genes' linkage relations. Calculations are 
based on d.=dt=A.=Ia,= l 

and (l-2p) 1(l-2p+2p1) replaces (l-2p)1 in the d,.rJ.b and h,)i.b terms 
respectively. 

In.the same way VBIP and WFt,BIP can still be written as 
lD+.nH+E and lD respectively, with D and H having values as 
in V Jl'l1· When we come to the mean variance of biparental pro­
genies we find that V 81p=lD+ /gH+E, but D and H have changed 
from their V Fl1 values just as they did in the case of V n· . 

Turning to progenies raised by backcrossing, the expectations 
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for which are given in Table 21, we find thatD=d!+d~+2(1-2p)dad, 
for coupling, and D=d!+d:-2( 1-2p )dadb for repulsion, H being given 
by h!+hi+2(1-2p)h)!, irrespective of linkage phase: In H the sign 
of the term in p will, of course, vary according to the opposition 
or reinforcement of the ha and ~ increments. When D and H are 
redefined in this way the summed variances of the two first bac~­
crosses still equal !D+!H+2E, and the various combinations of 
variances of means of second backcrosses as well as covariances 

TABLE 21 

Linkage in Backcrosses. Frequencies and Phenotypes of the Classes 

Coupling 
xAABB xaabb 

_AA Aa Aa aa 

q p q p 
BB da+db ha+db Bb ha+hb -d .. +hb 

p q p q 
Bb da+hb- ha+hb bb ha-db -d,.-db 

Repulsion 
xAAbb xaaBB 

AA Aa Aa a a 
--

p q p q 
Bb da+hb ha+hb BB h,.+db -d .. +do 

q p q p 
bb da-db ha-db Bb h,.+hb -d,.+hb 

All frequencies should be divided by 2 

of means of second backcrosses with their first backcross parents 
also have the compositions shown in Table 17. Once again, how­
ever, the expressions for D and H change when we turn to the 
mean variances of the second backcross progenies. Though the 
formulae of Table 17 apply, Dis now d!+d:±2(1-2p)(l-p)dad6 and 
His h!+hi+2(1-2p)(1-p)h)!,, the phase of linkage determining the 
sign of the recombination term in the expression for D. 

Fig. 10 shows the changes in value of D and H from F 1, F 3 and 
the first (1B) and second (2B) backcrosses with the recombination 
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fraction, when d4 =db=h4 =hb= I. The effects of repulsion and coupling 
on Dare paralleled by those of opposition and reinforcement on H. 
All the various D's and H's are equal when p=O or p=0·5, i.e. for 
complete linkage or free assortment. At any other value of p, the 
values of D and H in F 3, and in 2B, approach more nearly to those 
given by free assortment than do the values of D and H in F 1 and 
I B. The difference is greatest between p=0·20 and p=0·30. 

In the absence of linkage, i.e. where p=0·5, the heritable portion 
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FIG. 11 

Change in the contribution ( lD+lH) made to V nand 2 V n by two segi-e,ating 
genes according to the genes' linkage relations. Calculations are based on 

d.=d.=h.=ht=l 

of V F3 is half that of V F2• and the heritable portion of V Bn+ V BlZ 

or V Bn+ V B 22 is half that of V Bl+ V BZ (Table 17). 2 V FS and V Fil 

are compared in Fig. II over all recombination values in the various 
combinations of repulsion and coupling with opposition and rein­
forcement when d

4
=db=h4 =hh= 1. Fig. 12 shows the same comparison 

for V Bt+ V BZ and 2( V Bu+ V Bu) or 2( V B 21+ V B 22). Again it will be 
seen that the effect of linkage on the variances is greatest at the 
intermediate values of p, whatever the combination of linkage 
phase and dominance co-operation. 

The presence of linkage may be detected by comparing the 
B.o.-7 · 
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magnitudes of the heritable portio~ of the variances in F z and F 1 

or in IB and 2B. With linkage 2 V n no longer equals V F2• and 
2( V mt+ V nu) or 2( V 1121+ V 1122) no longer equals V m+ V m· Before, 
however, turning to the application of this test, we must consider 
the general case of linkage of more t~ two genes. 

Cases where three or more linked genes are involved can be 
worked out by the same methods as were used above for two 

Chan,oe in the contribution ( !D+!H) made by two segregating genes to 
Y n+ Y '-' and 2( Y ~+ Y .--) according to the genes' linkage relations_ Calculations 
&1'e based on d.=d6=h.=ht= 1 

genes. The algebra is, however, over-tedious for detailed presenta­
tion. In general it appears that the formulae of Tables 9 and 17 
still hol<L but with chan.:,aed expressions for D and H. These new 
expressions are set out in Table 22. Sc and SR stand for the sums 
of all the items with the two genes in coupling and repulsion 
respectively. It should be noted that pis the recombination value 
shown by the two genes in que::.--tion irrespecth--e of any gene 
between them. In the same way the phase of a linkage is inde­
pendent of intermediate genes. Thus where there are three linked 
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TABLE 22 
General formulae of D and H with Linkage 

D H 

89 

__________________________ _, _______________________ _ 
F 1 S(d2)+2Sc[(l-2p)dadb] S(h2)+2S[(l-2p) 2hahb] 

-2SR[(l-2p)dadb] 
F 8 S(d2 )+2Sc[(l-2p) 2dadb] S(h1)+2S[(l-2p)2(1-2p+2p1)Ttahb] 

-2SR[(l-2p) 2dadb] 
lB S(d 2)+2Sc[(l-2p)dadb] S(h2)+2S[(l-:2p)hahb] 

-2SR[(l-2p)dadb] 
2B S(d 2)+2Sc[(l-2p)(l-p)dadb] S(h2)+2S[(l-2p)(l-p)hahb] 

-2SR[(l-2p)(l-p)dadb] 

Sc=sum over all pairs of genes in coupling 
SR=sum over all pairs of genes in repulsion 

genes, arranged as ABbC, the recombination values are A-B p00, 
a c . 

B-C Pac• and A-C Pac (=p00+Pbc-2cp00pbc, where cis the coincid­
ence value). Also A and B and B and C are repulsed, but A and C 
are coupled. Then in F 1 

. D=d!+d:+d:-2(1-2p00)dadb-2(1-2pbc)dbdc+2(1-2pac)dadc 

H is unaffected by linkage phase and so 

H=h!+h:+h:+2(1-2p00 ) 2hahb+2(1-2pbc) 2hbhc+2(1-2pac) 2hahc 
but the remarks made above about the effect of linkage phase on 
the value of D will here apply to reinforcement and opposition 
relations. The F 1 values of D and H apply to V FS and W F 2;Fs• 

i.e. to all cases where only F 1 phenotypes and/or F 3 means are 
involved. The changed F 3 values are found in V Fa· In the same 
way the lB values apply to the variances of the first backcrosses, 
to the variances of second backcross means, and to the correspond­
ing co variances. The 2B values apply to the mean variances of this 
generation. The general test for linkage is therefore that of the 
homogeneity of D and H over the F 1 and F 8, or over lB and 2B 
generations. The values of D and H may also vary as a result of 
sampling error between statistics which are expected to show tha 
same values for them, e.g. between V F2 and VFa· Such differences 
afford a measure of error variation. Agents, such as genic inter­
action, can inflate variation of this kind and they must conse­
quently lower the precision of the linkage test. They will not, 
however, bias the test unless they affect the various statistics 
differentially. An effect simulating linkage could result only from 
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the e.xcessive increase or decrease of D and H in V F3 on the one 
hand as compared with V F 2, VF3 and W F 2;F3 taken as a group on 
the other, or by corresponding differential inflation in the back­
crosses. It appears that most forms of genic interaction will not 
bias the linkage test in this way, though some forms of epistatic 
action may do so. 

The linkage of a number of genes will exert its maximum effect 
on the variances and covariances when all are coupled and all their 
heterozygous effects are reinforcing. All the terms containing p will 
then be positive. The effects of repulsion and opposition can never 
be so great, except where only two genes are concerned, since more 
than two genes can be neither all repulsed nor all opposed to one 
another. The maximum effects of repulsion and opposition might 
be expected when adjacent genes are in repulsion and opposition. 
Even in such a case, however, the 1st, 3rd, 5th, &c., must be 
coupled and reinforcing, as must the 2nd, 4th, 6th, &c. Inequality 
of the d and h increments of the various genes will also reduce the 
effect of linkage on the variances and covariances. 

The effect of linkage on the value of a statistic could be zero 
even though linkage were in fact present; for the coupling and 
repulsion items, as well as the reinforcement and opposition items, 
could balance. The circumstances in which such a balance will be 
achieved must depend on the relative magnitudes of effect of the 
genes and on their recombination frequencies, as well as on their 
phasic relations. Even, however, where linkage items balance in D 
and H ofF 1 they will not do so exactly in D and H ofF 3• The test 
for linkage would seem to hold good, though under such circum­
stances it may well be insensitive. 

These various considerations will, perhaps, be more easily seen 
from Fig. 13. This compares the heritable portions of V n and 2 V Fl 

for the various arrangements of four genes. It is assumed that all 
the d and h increments are of unit magnitude (though the h incre­
ments differ in sign as indicated), and that there is no interference 
in recombination between different segments, i.e. that all coin­
cidence values are I. The three primary recombination values Pab• 
Pbc and Pro are further assumed all to be 0·125. 'Therever V F 2 
markedly exceeds or falls short of the value it would have in the 
absence of linkage, 2 V F3 occupies an intermediate position. In such 
cases D and Hare changed in the same direction. But where D and 
H depart from their unlinked expectations in opposite ways, the 
pooled departure being therefore a relatively small one, 2V F3 may 
depart more widely than V F2 or it may even depart in the opposite 
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direction. The difference between V F2 and 2 V F 3 must then be 
following that of the D item, which is itself tending towardS the 
unlinked equilibrium value, since D preponderates over H in 
determining the magnitudes and changes of these variances. 

~ 
LINKAC£ PHASE 

CCC CCR CRR CRC RCR RRR .,. • r ~ ~ -----T ---- ---
<: .,. _._ 
0 

.,. ---J::::O 
~ ---- ------ ------~.,. 

~0 _._ 
-C\.o ---- ---- ---- -----0 

Or _._ uo ---l.,Jr --- --- ~ ----(J 
<:O _._ 
~T --- ---- ----- ~ -----....:0 
~ 0 0 
Cl 0 

_._ 
0 
~ ----- ----- ~ ......-

--!s . 
. SCALE~ V,.2 ANo2~-NO LINKAGE 

I 

FIG. 13 

The effect of linkage phase ·and dominance cooperation on the contributio1 
made by four segregating genes (all d's and h's assumed to be 1), to V ,, left 
and 2 V ,,, right. The zero line is the value 3, contributed by four genes to bott 
v I'll and 2 r 1'1 when they are unlinked. values above 3 are represented by solidi 
above, and tho~ below 3 by solids below the line, 88 indicated on the sca.le 
The value for 2 V n is generally, but not always, between that for V I'll and th1 
unlinked value of 3. Adjacent genes are IISSUDled to show p=O·l25 with no inter 
ference. O=coupling, R=repulsion, r=reinforcement, o=opposition. These rele.tioru 

are shown for adjacent genes so that, for exsmple, ORO indicates~:~~· Simils:rlJ 

orq indicates that h. and h 4 have signs similar to one another but opposite tc 
those of h1 and Ia,, where a, b, c, d is the order in the chromosome 

Curiously enough with this tight linkage, the maximum changE 
relative to the value of V.n in the repulsion series, and hence thE 



92 LINKAGE 

easiest detection of the linkage, does not come with adjacent genes 
repulsed and opposed. It is in fact obtained with the arrangement 
ROR and oro where R indicates repulsion, 0 coupling, o opposition 
and r reinforcement of adjacent genes, the four genes being treated 
as three successive pairs. But at p=0·250 the maximum change is 
found with ROR and ooo, and at p=0·375 with the extreme arrange­
ment RRR and ooo. On the coupling and reinforcement side, of 
course, the extreme situation COO and rrr always gives the 
greatest variance drop. 

It is clear, therefore, that although a significant difference be­
tween V F 2 and 2 V F 3 will give evidence of linkage, the phasic 
balance cannot be inferred with full certainty from the directions 
of the change between F 2 and F 3 when dominance is present arid 
the change is small. If D and H were assessed separately in F 3, as 
they are in F 2, the situation would become much clearer, for any 
counteracting effects that their changes might have relative to one 
another, would then become apparent. Such a separation could be 
made ifF 4 data were available to do for F 3 what F 3 data do for F 2• 

17. THE TEST OF LINKAGE 

Basically the test of linkage is a test of homogeneity of D and H 
over F 2 and F 3 or over lB and 2B, or over both sets of data if 
available simultaneously. No data are, however, available to illus­
trate the test as applied to back crosses. F 2 and F 3 data will be used 
to show how it can be carried out. 

Quisenberry's oat data (Table ll) will serve for the purpose. 
V F2, V F3 and W F2;F3 are available for the estimation of the D and 
H of the F 2 generation, while V F 3 involves D and H of the F 3 

generation. Now if we assume that DF3 and HF3 may differ from 
DF2 and HF2 respectively, a perfect fit must be obtained for VF3• 

In fact, adjustment in either D or H alone will secure this perfect 
fit. Thus DF3 and HF3 cannot be assessed separately. Nor is there 
any necessity to assess them separately for the purpose of a linkage 
test: the important thing is that as a result of such adjustment the 
sum of squares of deviations of the observed statistics from their 
expectations, based on the best fitting D's and H's, will be reduced 
by this perfect fit in V F3• And since only one adjustment is neces­
sary to achieve this fit, only one degree of freedom is used up in 
separating DF3 and HF3 from DF2 and HF2• So our test here 
devolves itself into estimating D and H from V F 2, V F3 and W F2/ F3 
alone, assuming a perfect fit in V F3• The residual sum of squares 
is then calculated and compared with the sum of squares of 
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deviations from expectation when a single D and a single H are 
estimated from all the data together. The comparison shows us 
how far the assumption of linkage reduces the sum of squares of 
deviation, and so enables us to judge whether the effect is a 
significant one. 

Part of the work for the linkage test, the estimation of D and H 
from the whole data, has already been done in Section 13. We must 
now undertake a similar calculation with V Fa excluded. We then 
have 

V F2=lD+!H+E1 ·=1·3158 

V Fa=!D+-t\H+E11 =0·8809 

=0·7161 

E 1=0·3427 

E 11=0·0495 

E 8 vanishes with the exclusion of V FJ• as a perfect fit must also 
be secured for E 3 by the adjustment of DF3 and/or HF3• 

Four least squares expressions may then be found for the 
estimation of D, H, E 1 and E,, by the same method as before. 
These expressions are 

0·750000D+0·218750H+0·500000E1+0·500000E1 

0·2187 50D+0·08203IH +0·250000E1+0·062500E11 

0·500000D+0·250000H+2·000000E1 

0·500000D+0·062500H +2·000000E1 

Inversion of this least squares matrix by equating these expressions 
to I, 0, 0, 0, &c., and solving, gives the c matrix of Table 23. 

TABLE 23 

D H El Ea 

CDD 10·526316 CBD -30·315789 ClD 1-157895 C9..J) -1·684210 
CDB -30·315789 CBB 107·789473 ClH -5·894737 C2B 4·210526 
CDl 1·157895 CHi -5·894737 en 0·947368 C21 -0·105263 
CD2 -1·684210 CB2 4·210526 C12 -0·105263 1>22 0·789474 

And since S(Dy)=l·4564 the c matrix gives D=l·3294 
S(Hy)=0·4735 H-1·0275 
S(E1y)=l·6585 E 1=0·3685 
S(Ea!/)=0·9304 E 1-0·1007 
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From these the expectations for V .N• &c., may be found as in 
Table 24. 

VP2 
Vn 
Wn;F3 
El 
Ez 
VF3 
Ea 

TABLE U 

Grain length in oats 

Expectations Deviations 

1·2901 -0·0933 0·1447 
0·8296 0·0227 0·0799 
0·7931 -0·1317 -0·0224 
0·3685 -0·0550 0·0034 
0·1007 -0·0564 -0·0461 
0·7878 0·0191 -0·0191 
0·3100 -0·0256 0·0256 

The differences between these expectations and the values 
observed in the two halves of the experiment (see Table 11) are 
shown against the corresponding expectations. It will be noticed 
that V F3 and E 3 have deviations entered against them. The esti­
mation of the D's, H's, &c., gave perfect fits with the mean values 
of these two statistics, but the deviations are introduced by the 
departures of these quantities in the two halves of the experiment 
from their means. The sum of squares of all the deviations is 
0·064772 as compared with a sum of squares of 0·065005 obtained 
previously. Thus making allowance for linkage has reduced the 
sum of squ2.res by ody 0·000233. As we have seen, l degree of 
freedom is used up in this allowance for linkage, leaving 8 of 
the original 9 for the residual sum of squares. The linkage mean 
square, 0·000233, is therefore less than the remainder,_ or error, 
mean square of 0·064772/8, i.e. 0·008097. There is no evidence 
of linkage. 

The remainder sum of squares can be analysed further. The 
differences between the duplicate observations of the seven quan­
tities, V F 2 , &c., from the two halves of the experiment, account 
for a sum of squares of 0·039730. This will correspond to 7 degrees 
of freedom, and the full analysis of variance then becomes: 

Item s.s. N M.S. 1(1) p 

Linkage 0·000233 I 0·000233 
Residual Interaction 0·025042 1 0·025042 2·10 0·10·-0·05 
Duplicates 0·039730 7 0·005676 

---------
Total 0·065005 9 
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The item for Residual Interaction measures the variation in D 
and H between V F 2, V F3 and W F 2;F3, such as would be produced 
by genic interaction. It gives a ~71 of 2·10 when compared with the 
estimate of error based on differences between duplicate observa­
tions. Such a tis just not significant and so tnere is neither evidence 
of linkage nor trustworthy evidence of any other disturbance in D 
and H. 

The Petunia corolla length data of Table 13 can be tested for 
linkage in the same way. Here a perfect fit to V F 3 does not also 
remove a non-heritable item from the analysis, since both V F 3 and 
V F 2 contain E 1• The c matrix for the estimation of D and H ex­
cluding V F 3 is therefore the same as that used for the oat data, 
even though the latter originally included an extra environmental 
component E3• Using this same c matrix (Table 23), and conduct­
ing the analysis in the way used for the oats, linkage is found to 
account for a sum of squares of 0·001756 out of the total sum of 
squares of0·00424lfound in Section 13. We have seen that the total 
corresponds to 2 degrees of freedom, so_ that the remainder, 
0·002485, left over after allowing for linkage, has only 1 degree 
of freedom. This corresponds to the Residual Interaction item of 
the oat analysis, the Duplicates item being missing because all 
observations were unique. The test of linkage is clearly very insen­
sitive in this case, but since the linkage mean square is less than 
the remainder mean square, there is no valid evidence of disturb­
ance from this cause. We shall, however, see later that linkage was 
most likely in operation. It may well be that some residual genic 
interaction was present too. This would not be surprising in a 
species cross. 

The data on abdominal chaetae number in Drosophilo,, also con­
sidered in Section 13, require a different c matrix in the linkage 
test, since the third generation families were biparentals, not F 8's. 
In this case r BIP must be excluded from the estimation of D and 
H, since linkage would permit a separate adjustment of D and H 
in fJ BIP corresponding to the separate adjustment in fJ F 3• The 
least squares matrix from Table 15, excluding r BIP• is 

0·375000D+0·140625H+0·500000E1+0·250000E1 

0·140625D+0·066406H +0·250000E1+0·062500E1 

0·500000D+0· 250000H + 2·000000E1 

0·250000D+0-062500H +2·000000E1 



96 LINKAGE 

the inversion of which gives Table 25. 

TABLE 25 

D I H E, E. 

CDD 14·315790 CHD -30·315790 CJD 0·210526 e-m -0·842105 
CDH -30·315790 CHH 94·315790 ClH -4·210526 

I 
C..].H 0·842105 

CDl 0·210526 CHl -4·210526 en 0·973684 e-n 0·105263 
CD-2 -0·842105 CH'!. 0·842105 Ct'!. 0·105263 C..22 0·578948 

And since S(Dy)= 3·7293 we find D= 1·5263 
S(Hy)= 1·7336 H=-2·9323 
S(EtY)=13·1719 E 1= 6·5709 
S(E-z!J)= 2·4690 Ez= 1·1353 

compared with D=0·7823, H=-0·6166, E 1=6·6642, Ez=l·l560 found 
when no allowance was made for linkage. TQ.e deviations of 
observation from expectation are now much smaller than before as 
Table 26 shows. 

TABLE 26 

Abdominal chaetae in Drosophila 

Expectations Deviations 
Statistic Observed 

Inclusive Exclusive Inclusive Exclusive 

VF2 6·6214 6·9012 6·6010 -0·2798 0·0204 

VBIP 1·2518 1·3130 1·3336 -0·0612 -0·0818 

WF2jBIP 0·4227 0·1956 0·3816 0·2271 0·0411 

VBIP 7·1377 6·7442 7·1377 0·3935 0·0000 

Et 6·5505 6·6642 6·5709 -0·1137 -0·020-l 

E'!. 1·2172 1·1560 1-1353 0·0612 0·0819 

'Inclusive' items are based on the inclusion of V BIP as in Section 13. 
'Exclusive' items are based on the exclusion of V BIP as in this section. 

The sum of squares of inclusive deviations differs from that of 
the exclusive deviations by the linkage item, which has 1 degree 
of freedom. As in the Petunia case, the inclusive sum of squares is 
based on 2 degrees of freedom. The remainder or error sum of 
squares derived directly from the exclusive deviations will, there­
fore, have 1 degree of freedom. The analysis of variance thus 
becomes 

Item 
Linkage 
Remainder 

S.S. N 

0·289203 1 
0·015920 1 

------:--:--:-----c 
Total 0·305123 2 

li.S. 

0·289203 
0·015920 

I[J) 

4·26 
p 

0-2~·10 
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A t for only I degree of freedom requires to be very large before 
it is significant. Consequently there is no trustworthy evidence of 
linkage in the present case, even though the linkage mean square 
is some 18 times as large as· the remainder. It is, however, of 
interest that this suspicion of linkage, which if it exists must be 
in the repulsion phase since V F 2 < V BIP• is borne out by the 
behaviour of the flies under selection. Mather (1941) found it 
necessary to assume linkage in the repulsion phase to account for 
his selection results after the fourth and fifth generations. The 

. present test strongly suggests, even if it does not prove, that such 
linkage was already displayed in the third generation. 

18. COUPLING IN BARLEY (in collaboration with Dr. U. Philip) 

In 1941 an experiment was conducted on the inheritance of ear 
conformation in the cross between Spratt and Goldthorpe barley. 
The metric used was the discriminant function, compounded of ear 
width, total ear length, and length of the central six internodes of 
the ear, whose calculation has already been described in Section 6. 
In design the experiment consisted of five randomized blocks, each 
containing ll7 plots. Of these, 100 were devoted to 100 different 
F 3 families from the F 1 plants of 1940 (taken from those used in 
calculating the discriminant function), 10 were devoted to F 1 

plants, 3 to F 1 plants, and 2 to each parental variety. The plots 
were intended each to contain 10 ·plants, but owing to adverse 
circumstances this number was not reached in every case. Indeed, 
all ten plants or nine out of ten failed in a few plots. These plots 
were excluded from the analysis. The blocks differed owing to the 
effects of soil fertility on ear conformation, so that all calculation 
of variances and co variances were made using deviations from the 
plot mean, for V F 2 and V F 3, and the block mean, Tor V F 3 and 
W F 21F 3, (as opposed to the general mean) for each family. Sums of 
squares and sums of cross-products of deviations from these means 
were pooled for all blocks to give the total sums of squares and 
cross-products for the whole experiment. 

The inclusion of parents and F 1 several times in each block 
permits an empirical determination to be made of E 1, the non­
heritable variance of plot means round the block mean. This non­
heritable variance of plot means is a component of V F3· The 
non-heritable variance of plants within a plot, E1, necessary for 
the partition of V F2 and V F 3, was also estimated from the parent 
and F 1 plants in the experiment, the sums of squares of parental 



98 LINKAGE 

and F 1 plants round the plot means being pooled over the block 
and finally over the experiment as a whole. 

The mean of all Parent I (P1) plot means was 327·9, and that 
of P 2 was 300·6. The F 1 showed heterosis with a mean of 400·2, 
and the F 2 mean was 362·3. This recession ofF 2 mean towards the 
mid~parent value of 314·2 was, of course, expected; and on this 
evidence alone the scale of the discriminant function seems fairly 
satisfactory, as the recession should be to a point half-way between 
F1 and mid-parent, viz. to 357·2. The mean of all Fa mea.ns (343·7) 
was, however, also somewhat higher than expected, whether on 
the basis of a three-quarter's recession from F1 to mid-pa:rent 
(335·7 expected) or on the basis of a half recession from Fz to 
mid-parent (338·3 expected). It would appear, therefore, that the 
scale is probably somewhat exaggerated at its upper end, and this 
view is confirmed when the Fa data are examined more closely. 
The lowest mean among the Fa families was 181·2, a departure 
of 133·0 from the mid-parent. Ten families out of the hundred 
departed equally or in greater measure from the mid-parent in 
the opposite direction, and three departed by over 186. There can 
thus be little doubt of the deficiencies in the scale, but it was not 
felt that the resulting distortion of the data would be sufficiently 
serious to warrant the labour of re-calcuJation after transformation 
to a more satisfactory metric. 

The various second-degree statistics are given separately for the 
five blocks of the experiment in Table 27, together with their 
values obtained by pooling over all blocks. These joint values 
approximate to the means of the individual block values, but do 
not precisely equal them. The small discrepancies arise because 
the joint values were obtained by pooling the sums of squares and 
cross products over. all the blocks and so arriving at a joint value 
weighted according to the contributions of the various blocks. The 
weights of the various blocks were not quite equal because of the 
failure of certain plots in the experiment, as already noted. 

The analysis of the joint estimates of the statistics was con­
ducted with the inclusive (including V F 3) and exclusive (excluding 
V F 3 so as to make allowance for the effects of linkage) c matrices 
used for the Petunia corolla length experiment (Tables l4 and 23), 
which the present experiment clearly resembles in its structure. 
The values of S(Dy), &c., and the estimates of D, H, E 1 and E 1 

derived from them, are given in Table 28, for both the inclusive 
and exclusive cases. From these the inclusive and exclusive ex­
pectations were found for V F 2, &c., as shown in Table 27 and 
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Fig. 14. The analysis of variance, derived from the sums of squares 
of deviations of the separate block estimates of these statistics 
from the expectations, is set out_ in Table 29. 

TABLE 27 

Barley Dat.a-Ear Conformation · 

Block Expectatbns 
Statistie -. Joint ~ 

A B c D E Incln.sive Exclusive 

VP2 9492·0 11540·9 9179·5 8673·7 9926-4 9713-1 9326·2 9710·6 v,. 6289·7 5838·6 5935·1 7148·8 6013·4 6246·7 6241·6 6241·6 
WIll! PI 6934·6 6342·5 6742·5 7439·6 6696·8 6833·0 6840·5 6840·5 v,. 4513·1 4532·5 4342·4 4323·1 3867·9 4314·1 5082·9 4314·1 
Et 1443·8 736·9 1433·1 1720·9 747·6 1221·4 839·6 1224·0 
E2 278·6 57·9 306·8 403·2 54·9 219-1 224·2 224·2 

TABLE 28 

Results of Analysis of Barley Data 

Inclusive Exclusive Inclusive Exclusive 

S(Dy) 12474·9 11396·4 D 10388·8 10388·8±808·9 
S(Hy) 4212·1 3672·8 H 13169·0 13169·0±2588·4 
S(E1y) 15248·7 10934·6 El 839·6 1224·0±242·7 
S(E2y) 6465·8 6465·8 Ea 224·2 224·2±221·5 

TABLE 29 

Analysis of Variance of Barley Data 
Item S.S. - N M.S. 112111 p 

0·001 
0·90-0·80 

Linkage 4590309 1 4590309 3·84 
Residual Interaction 14329 1 14329 0·21 
Replication 7755458 24 323144 

Total . 12360096 26 

Pooled Error 7769787 25 310791 

Six statistics were found from each of five blocks, so that there 
are 30 deviations in all, giving 30 degrees offreedom. Of these 4 are 
taken up in fitting D, H, E 1 and E 1, leaving 26. Since there are 
5 estimates of each statistic, each row of Table 27 contributes 
4 degrees of freedom to a pool of 24 for differences between 
replicate estimates. The remaining 2 of the 26 degrees of freedom 
appearing in the analysis are assignable, 1 to the effect of Linkage 
and 1 to the variation in D and H of the kind ascribable to residual 
genic interaction. This latter item is therefore labelled Residual 
Interaction in the analysis. It is clear that there is good evidence 
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of linkage, but no evidence of any other variation in the values 
of D and B. The shortcomillgs of the scale have failed to inflate 
seriously the item for P..esidual Interaction. These shortcomings 
cannot therefore be having any material effect on the value of D 
and B, though as we shall see, they affect the use of these quantities 
in predicting advances under selection. 

FIG. 14 

NON-HERITABLE - E 
UNFIXABL£ GENETIC -H 
FIXABLE GENETIC -0 

BARLEY: EAB CONFOBJI!ATION V ABlATION 

The partition of variability for ear conformation in barley. The centre column 
shows the pooled value observed for each statistic, the differences between the 
five replicates being indicated by the box, and the lines across it, at the top. 
Less than five values may be indicated in the box where two or more replicates 
gave the same value, or where one or more values coincide with the pooled value. 
The left columns show the values expected, and the composition of these values, 
when D and H are estimated assuming no linkage. The right columns show the 
same when D an_d H are estimated making allowance for linkage by assuming" 
a perfect fit for V 13. Linkage is present 

The value of V F 3 is less than l V F 2 even before E 1 has been 
taken from each, and so there has been a fall in D and B from 
F 1 to F 3• This may well be due, in part, to the linked genes having 
reinforciiig actions in the heterozygotes, but since B contributes 
less to V F2 and V F3 than does D, it seems inescapable that the 
change must be largely due to the linkage being preponderantly 
in the· coupling phase, that is to say, within the linked group or 
groups the + allelomorphs must be preponderantly associated with 
one another in the chromosome from one parent and the - allelo­
morphs in t4e other. The means of the two parents do not however 
differ widely. It must therefore be supposed further that at least 
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two linked groups of genes are involved, coupling existing within 
each group, but the two groups balancing one another in the 
parents. Each parent has the + group of allelomorphs in one 
chromosome together with the - group of allelomorphs of the 
other. 

1 

When the effect of linkage has been removed the remaining 
25 degrees of freedom (which may be pooled once the interaction 
item has shown itself not to be significant) give an error mean 
square of 310791·5. From this the standard errors of D and H, as 
they appear in of course the F 1 generation, may be found in the 
way already described (Section 13), but using Cnn• &c., from the 
exclusive matrix (Table 23). There will be a factor of t in the 
calculation because the experiment contained 5 replicates. These 
standard errors are given in Table 28. It will be seen that though 
sH is 2588·4, the value of H itself is 5·09 times as high. A t1251 of 
5·09 has a probability of less than 0·001, and so it caii hardly be 
doubted that H is significantly greater than 0. Thus the genes 
determining ear conformation show dominance, and since the F 1 

shows heterosis this dominance must be preponderantly in the 
direction of high values. H is actually larger than D, but the 
difference is obviously not significant, and so there is no ground 

1for postulating superdominance, i.e. for postulating that h >d for 
any gene. 

Before leaving this example it should be noted that the estimate 
of E 2 has a standard error nearly as large as itself. This somewhat 
suspicious result is a consequence of the method of analysis which 
gives equal weight to all the statistics, V F 2, &c., used in the esti­
mation of D, H, E 1 and E 1• The variation in the direct estimate of 
E 2 is, of course, actually less than that in V F 2 and the other 
statistics of larger values. The standard error of E 1 arrived at from 
the unweighted analysis may well therefore be somewhat too high. 
Weighting would give a more reliable value, but the extra work 
entailed would hardly be justified by the extra precision achieved 
in assessing the reliability of the estimate of E 1• The values of D 
and H are of much more importance and since the estimates of 
these are affected by the values of nearly all the statistics used, 
the standard errors found for them should be more trustworthy. 



CHAPTER 6 

THE ~"'illffiER OF EFFECTIVE FACTORS 

19. THE SOU'RCES OF ESTHIATES 

THE PARTITIO:s- of variation into the D, Hand E components 
show us how much of it is (a) heritable and fixable in the form of 
differences between homozygotes, (b) heritable but unfixable in 
that it depends on differences between heterozygotes and the 
means of the corresponding pairs of homozygotes, and (c) non­
heritable and hence merely serving to obscure the genetical situa­
tion. The test of linkage enables us to go further and foresee the 
likelihood, the extent, and the direction of change in the heritable 
components of variation in the next succeeding generations. One 
further piece of information is, however, required before the full 
import of the heritable components of variation can be assessed, 
viz. the number of genes or units of inheritance contributing to the 
D and H components. 

If the D component depends on the difference produced by one 
gene only, its distribution among F 3 families, for example, will be 
simple. Half the families will be homozygous and hence will segre­
gate no further. The other half will be heterozygous and will 
repeat the behaviour ofF z· Even in limited groups ofF 3's the full 
potentialities of segregation will be realized. If, on the other hand, 
Dis composed of iteins contributed by 10 unlinked genes, only 
rarely will a trne breeding family be obtained in F 3, and many 
grades of segregation will be encountered among the various 
families. To this question of determining the number of genes 
involved we must now turn, and in answering the question we 
shall see that the gene is in fact no longer the unit of inheritance 
that we must use. 

Where all the + allelomorphs of the k genes, whose differences 
are involved in the cross, are concentrated in one of the trne 
breeding parent lines, and all the- allelomorphs in the other, half 
the difference between the two parental means, i.e. the deviation 
of either parent from the mid-parent value, will supply an estimate 
of S(d4 ). If all these genes give equal increments, i.e. d4 =db= ... =d, 
S(da}=kd. Furthermore, when this is trne, a!=ai= •.. =d1 and 
D=S(d!)=kd 1 in the absence of linkage. Thus the ratio which the 

S 2(d ) (kd) 2 

square of half the parental difference bears to Dis S(d£) kdZ k. 

102 
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This method of estimating k is the one used .by Sewall Wright 
(1934b), except that in the absence of F 8 data Wright could not 
separate H from D, and so was forced to use an inflated value of 
the denominator. Charles and Goodwin (1943) and Goodwin (1944) 
have also used this method of estimation for a number of cases, 
and have indeed given a formula (though without showing the 
derivation), based on the same assumptions, for estimating the 
minimal number of genes common to two polygenic segregations. 
The effect of dominance in lowering the estimate of k has been 
discussed by Serebrovsky (1928). 

Leaving the question of linkage aside for the moment, this 
estimate of k may be distorted in either or both of two ways even 
when D has been freed from H. The genes may not all give equal 
d increments, and the + and- allelomorphs may not be distributed 
isodirectionally between the parents. Both inequality of the d 
increments and incomplete concentration of like allelomorphs· in 
the parents must lead to a spuriously low estii.nate of k. Let us 
consider first the effect of inequality. We may set 

da=d(1+ata), db=d(1+atb), • • ., dk=d(1+atk); 

where d is the mean increment. Then 

S(ata)=O, S(da)=kd and S2(da)=k2dl 

But D=S(d!)=S[d2(1+ata) 2]=d2S(1+ata)' 
=d 2(k+2S(at4 )+S(oc!)] 

Now since S(oc4 )=0, S(oc!)=kV .. , where V .. stands for the variance 
of at. Thus D=kd 2(l+ V .. ), and K 1, the estimate of k found as the 
ratio borne by the square of half the parental difference to D, is 
therefore 

k 2d2 k 
K= =--

1 kd 2(l+ V .. ) 1+ V .. 

Since v .. cannot be negative, K 1< k except in the special case of 
equality of all the d increments. With such equality 

V .. =O and K1~k 
The effect of incomplete concentration will be to reduce the 

difference between the parental means below its maximum of 
2S(d4 ). The value of Dis, however, unaltered, and in consequence 
the estimate, K 1, must in such a case be less thank. 'With a perfect 
balance of+ and- genes, the two parents will be alike, and K 1 

must take the value of 0. 
An estimate of k may be reached in a similar way, but making 
B,G.-8 
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use of the h increments in place of the d's. If all the genes ha\Te 
reinforcing h increments, the departure of the F 1 mean from the 
mid-parent value will be S(hu.), which when ha""'hb= • . • =h, is kh. 
Then the square of this departure divided by H, which in the 
a.bsence of linkage is defined as S(h!), will give an estimate of k. 
Just as with the estimate based on the d increments, this new 
estimate will be reduced by any inequality of the h's and also by 
any opposition of the h's. · 
·- These two methods of estimating k are similar in principle, and in 
consequence they have the same disadvantages. A further method 
of estimation has, however, been proposed by Panse (1940a and b), 
which overcomes the difficulties of incomplete concentration and 
incomplete reinforcement. Half the individuals in F 2 are expected 
to be homozygous for one or other allelomorph of any gene which 
is segregating. This gene will, therefore, contribute nothing to the 
heritable variance of the Fa's obtained from such individuals. The 
remaining F 2 individuals will be heterozygous for the gene, and it 
must therefore contribute !d2+lh2 to the heritable variance of 
their Fa's. Let us denote id!+lh! by xa. Then the contributions of 
A-a to the mean variance of Fa is, as we have already seen, 
!(id!+lh!) or ixa. But the variance of the Fa variances (V vFa) will, 
so far as this gene is concerned, be ix!-(ixa) 2 or !x!. Now with 
independent inheritance and independent action, the contribu­
tions of the various genes will be additive and hence H V Fa will be 
!S(xa) and H V vFa will be !S(x!). Then where Xa=Xb= . . . =X, 

. f2 
H V Fa=ikx and H V vFa=lkx2, so that k=HvFa , the sub-H in front 

H VF3 
of Vindicating that it is the heritable portion of the variance which 
is under consideration. Where xa*xb . . • +xk we can set kx=S(xa) 
and Xa=x(I+Pa), xb=x(I+Pb), &c. Then our estimate of k is 

k 
K2=-­

l+V11 
As an estimate of k, K 2 is superior to K 1 in not being subject 

to reduction by incomplete concentration. Since, however, 
Xa=id!+!h!, the variation in p measured by V11 will be greater 
than the variation in ex measured by V ... This is partly because V11 
measures the variation of d! as opposed to da, and partly because 

V11 must be inflated by any variation in the ratio!!_, 
2d 

It may be noted in this latter connection that an estimate of k, 
similar to K 2, can be obtained from the variances of the second 
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backcrosses. Where H V 2B stands for the sum of the mean heritable 
variances of the two second backcrosses (to the two parental lines) 
of single first backcross plants, we find that 

H f'21FH f' ~n+H V B12=H fT B2l+H fT B2z=l8(d!+h!), 

the mean being taken over the variances of the progenies of all the 
plants in the first backcross. Shnilarly H V v2B= ia-S(d!+h!) 2• Then 

-2 

we can estimate k as nVV 2B and the reduction in value due to 
H V2B 

inequality of (d!+h!), (d~+h~). &c., will depend on the variation in 
value of d 2, in the same way as with K 2, but also on the variation 

in ~· not ~ as with K 2• If this new estimate is lower than K2 the 

difference must then be ascribed to the greater effect of variation 

in~· which should exceed in general the variation in 2~ through 

which K,. is reduced. This comparison, therefore, provides a test, 
though probably not a sensitive test, of the variation in the pro­
portionate dominance, i.e. the ratio borne by the h increment to 
the d increment, from gene to gene. The means of estimating k 
from backcross data is of course especially valuable with animals 
and dioecious plants where F 8 families cannot be raised. 

If F, data are available, the lowering effect of variation in the 

~ ratio can be avoided. Each F 1 individual can be regarded as an 

F 1 and the D and H increments separated within its descendance 
by the means already described. In this way we should have the 
value of D available separately for each F 3 family, and the process 
of estimation could proceed using D and V D in place of H f Fa and 
H V rFS• so eliminating the distracting influence of H. The process 
could also, of co~rse, be carried out with H and V H• and the 
discrepancy between the two estimates would reflect the difference 
between the magnitudes of variations of d and h increments. 

Even, however, when the consequences of variation in hjd have 
been avoided, K 1 will be less thank by an amount depending on 
VII. Now if v .. is small, v r4 v .. ; but if v .. is not small (or, of course, 
if variation in hjd is having its effect), V11 >4V ... In either case 
K 1<K1, unless V11= V .. =O when K 1=K1=k, or unless the K 1 is 
reduced by incomplete concentration of allelomorphs in the 
parents. 

'Where the distribution of allelomorphs is isodirectional in the 
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parental lines so that K 1 is not reduced in value from lack of full 
concentration, we have 

Then putting 

and 

k=K1(1+ Vcx)=K2(1+ V11) 

Vp 
T=-

V" 
V KcK2 

ex rKz-K1 

k K 1Kz(r-1) 
rKz-K1 

When V a: is small and r=4 

To assume that r=4when V"isnotsmall would lead to an under­
estimate of k, a negative value being obtained where K 1 >4K2• 

Thus when both K 1 and K 2 are available, something may be 
learned of the variation in magnitude of d from gene to gene; or if 
the estimate based on the departure of F 1 from mid-parent is used 
in place of K 1 , we learn something of the variation of k. 

''lien, as judged by comparison with K 2, a useful value of K 1 

or of its counterpart is not available, K 1 may still be put to good 
use. It is then possible to calculate from K 2 and D the difference 
between two true breeding strains which would give a K 1 equal 
to the observed K 2, i.e. to calculate the difference between two 
strains which would respectively contain all the + and all the -
allelomorphs. Since the mid-parent value is independent of the 
concentrations of allelomorphs, the mean measurements of these 
two hypothetical strains could be estimated by adding and sub­
tracting half their difference from the mid-parent, and they would 
represent the limits to which selection could push the measurement 
in either direction. Since in general K 2< K 1, these estimates must 
be minimal. They would be exceeded by even more if some linkage 
in repulsion, so tight as to have escaped detection, were broken by 
a fortunate recombination in one of the later generations. Never­
theless, such minimal selective limits would have their use in 
showing the immediate selective progress that could be expected; 
for if these limits lay outside the actual parental range, selection 
would clearly be capable of leading to real progress. If they fell 
inside the parental range, then equally clearly the concentration of 
allelomoxphs in the two parents would be such that selection would 
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be unlikely easily to produce anything markedly transgressing 
what is already available. If selection were judged to be worth 
while, and the experiment was continued in a form permitting in 
each generation the calculation of D and K,. {both of which must 
be diminishing), the prospects of further advance could be esti­
mated at each stage. The selection could then be discontinued 
either when D and K 1 fell to zero, or when the prospective progress 
ceased to be worth while. 

Though K 1 a:r;td K 1 are estimates of k, they cannot be consistent 
estimates unless d and h are the same for all genes. Any variation 
in these increments will lead to underestimation of k. A second 
limitation of the methods of estimating k is imposed by the assump­
tion that the genes contribute to the heritable variance inde­
pendently of one another. Now their contributions will not be 
independent unless the genes recombine freely, and the validity of 
the estimates must consequently be conditional on the linkage test 
revealing no evidence of dependent segregation. 

If two genes are in fact linked they will appear as less than two 
in the contribution they make to the variation. With recombina­
tion in the region of 0·10 to 0·30 we have a good chance of detecting 
the linkage and adjusting our estimates of k accordingly.' With a 
higher recombination frequency, the linkage may escape detection. 
In that case, however, the departure from independence of the 
contributions made by the genes to the variance will be smaller, 
and the disturbance in estimating k will not be serious. But tight 
linkage may also escape detection, and the two genes will then 
appear more nearly as one in the segregation. Under such circum­
stances the true number of genes may be virtually impossible to 
find. Nor need we concern ourselves unduly about the actual 
number of genes. Statistically, less error is involved in treating a 
closely linked pair as one unit than as two. 

The same essential difficulty is of course encountered in Men­
delian genetics when no recombination occurs between two genes 
distinguishable by their different effects on the phenotype. They 
must then be treated as one gene of pleiotropic action. The present 
case differs only in that rare cases of recombination cannot be 
recognized individually. To be detected, recombination must be 
sufficiently frequent for its statistical consequences to be clear, 
and it must be quite free if the genes are to be recognized as fully 
distinct in their contributions to the variation. This difference in 
the level of the recombination frequencies, necessary for the recog­
nition of the genes as distinct units in Mendelian and biometrical 
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genetics respectively, must however mean that genes which would 
be separated in Mendelian genetics may fall within the same effec­
tive unit of inheritance in biometrical genetics. The biometrical 
units need not therefore be ultimate genes. In consequence they 
will be referred to by the more empirical term of effective factors. 
The consequences of linkage and the nature of these factors will 
become clearer as we consider some examples. 

20. THE PROCESS OF ESTIMATION 

Of the four examples considered earlier, the Drosophila data 
afford no means of estimating Kz, because neither F 3's nor double 
backcrosses were included in the experiment. The barley· figures 
must be reserved for special consideration as they show marked 
link~ge. This leaves the oat and Petunia results as illustrative 
material. . 

The mean grain lengths of the two oat varieties, Victor and 
Sparrowbill, were 16·361 and ll·484 roms. respectively. The 

• . 4-8~7 

deviation of each from the mid-parent value was therefore+ 

or 2·4385. D has already been found to be 1·32ll (Section 13). 
2·4385 2 

Hence K 1 1
_
32

ll 4·501. Since no comparable mean measurement 

is available for the F 1 , no corresponding estimate can be found 
from the h increments. 

The mean variance of F 3 was observed to be 0·7878, but this 
includes a non-heritable component, which must obviously be 
eliminated before Ks can be estimated. The. heritable portion of 
V F3 is !D+lH, which from Section 13 is !(1·32ll)+l(1·0694) or 
0·4640. The variance of the F 3 variances is, by direct calculation, 
0·1 022 in one half and 0·0609 in tl;te other half of the experiment, 
or 0·08154 over all the data. The variance of the Fa variances will 
not be affected by the non-heritable components of individual Fa 

"variances, unless the magnitudes of these components are them­
selves correlated with genotype in a way not yet detected, or unless 
the non-heritable agencies are themselves varying widely in effect. 
No correction for non-heritable effects will therefore be made in 
the calculations which follow, though the possibility of the varia­
tion in non-heritable agencies lowering the estimate of K 1 must be 
remembered, and should form the subject of experimental investi­
gation. Professor R. A.' Fisher has pointed out to me, however, 
that V P'Fa must in any case be inflated by a sampling item, since 
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each Fa variance is but an estimate whose accuracy depends on 
the size of the family from which it was'calculated. This sampling 

component will be 
2

1 
Pj-3 (Fisher, 1946), and here V Fa m~st be 

n-
taken as including its non-heritable portion, E., since this will 
serve as well on the heritable portion to inflate the sampling error. 
In this formula n represents the number of plants per F 3 family. 
The number of plants was not, in fact, constant in Quisenberry's 
F 3's, and so the harmonic mean of the family sizes; viz. 32·387, 
must be used. The pooled value observed for V Fa iS 0·7878, so 

. . . f 2x0·78782 hi h 
g1vmg a correctiOn o 

32
.
387

_
1 

or 0·03955, w c on subtracting 

from 0·08154, the value observed for V J7Fa• leaves 0·04l99. The 
correction for sampling variation is much greater than the"'vari­
ance of the variances of the 36 samples of each parental variety 
grown in the trial (0·005 for Sparrowbill and 0·017- for Victor). 
Thus the non-heritable portion of the variance seems unimportant 
as an agent determining the variation ofF a variance in this Citse, 
except in so far as it inflates the sampling correction. It is not, 
however, clear that this will always be the situation. 

. - ' 0·46402 
With !D+lH=0·46401 and V17F 3=0·04199, K 2= 0

.
04199

=5·127. 

It should be observed, however, that the two halves of the 
experiment yielded 0·1022 and 0·0609 as estimates of V J7Fa respec­
tively. After correction these become 0·0607 and...(}·Oz~; . :-l.!e!! 
give the somewhat discrepant values of 3·547 and 9·280 for K 1• 

The joint estimate of 5·127 must therefore be used with some 
caution. A further study of the causes of such discrepancies would 
be worth while in adequately designed experiment. It is clear that 
the magnitude of the correction for sampling variation is here 
responsible for part of the trouble. In one half of the experiment 
it is even greater than the corrected residual. The large size of the 
correction arises partly from the fact that the non-heritable varia; 
tion is fairly high (constituting nearly half of Y F 3), and so has a 
large inflating effect on the sampling variance of Y Fa· Any method 
of reducing the non-heritable variation would therefore be valuable 
in improving the precision of the estimate K 1• 

K 1 from the pooled data is 5·127 as compared with a K 1 of 
4·501. There are apparently some+ allelomorphs in the preponder­
antly- Sparrowbill and some+ allelomorphs in Victor. On the face 
of it, however, the concentration of like allelomorphs cannot b~ 
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far from complete and so selection is not likely to produce lines 
exceeding Victor or falling short of Sparrowbill by much in grain 
length. In fact K 2D=5·127x1·3211=6·7733, and hence the imme­
diate selective limit would be a departure in either direction of 
VK;j5 or 2·603 mms. from the mid-parent. Since the parents 
already depart by 2·439 from their mid-value, selection seems 
likely to be virtually ineffective unless some undetected close 
linkage ill repulsion be broken. 

The lowest F 3 mean observed was 11·70 and the highest 16·18, 
i.e. departures from the mid-parent of 2·22 mms. and 2·26 mms. 
respectively. These bear out the expectations quite well, because 
a family homozygous for all five + allelomorphs, or all five - allelo­
morphs is not likely to occur in a group of 150 Fa's. These two 
departures of 2·22 and 2·26 are therefore likely to represent families 
homozygous for four like allelomorphs out of the five factors. 

The reasonably close agreement of the extreme Fa means "\\ith 
the expectations based on K 2 and D suggests that the value of 
K 2 is not over low, or in other words that V11 is not very large. 
One is, therefore, led to conclude that the five effective factors do 
not differ much amongst themselves in magnitude of action. 

A very different situation is, however, met with in the Petunia 
species cross. The two species of Petunia had mean corolla lengths 
of 7·871 and 2·669log units respectively, giving a mid-parent value 
of 5·270. Therefore S(d)=2·601. D has already been found as 0·7258 
in Section 13. Thus 

2·6012 
K 1= 

0
_
7258 

=9·321 
-. 

Since D=0·7258 and H=0·0361, the heritable portion of V F 3 is 
0·1860. The observed value of VvF3 was 0·04009 and of VF3 was 
0· 27 62. The harmonic mean size ofF 3 families was 9·259 so that the 

· 2x0·27622 
correction for sampling variances becomes or 0·01847, 

leaving 0·02162 as the corrected VvF3• Then 

0·18602 

K 2 0·02162 1"600· 

9·259-1 

This is in striking contrast to K 1=9·32l. The discrepancy may, of 
course, be due in part to the estimate of V vF3 being over high or 
to the correction for sampling variance being estimated at too low 
a figure. But even if the correc'tion is arbitrarily increased by 50% 
K 2 still has a value of less than 3, and the difference between K 1 
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and K 1 remains large. It seems clear, therefore, that the value of 
V11 must be high, or in other words that the individual effects of 
the factors concerned are highly variable. Consequently neither 
K 1 nor even K 1 can be regarded as a reliable estimate of k. Cer­
tainly K 1 affords no suggestion that genotypes can be found to 
give corolla lengths greater than that of P. axillaris or less than 
that of P. violacea. K 1 and K 2 may, however, be used for _another 
purpose. 

We have already seen that given the value of r( = ~:) and know­

ing K 1 and K 1, we can estimate both V"' and k. With K 2= 1·600 and 

K b t 1 t 
9

"
321 

. 5 826 k ill b t" t d 
1=9·321, r must e a eas 

1
_
600

, I.e. · , or w e es 1ma e 

as a negative quantity. With K 2=4, an arbitrary value whicl?- o!le 
might choose to consider in case the correction made to V vFa was 
much too low, r might take any value down to 4, the lower limit 
set by other considerations (Section 19). Fig. 15 shows the values 
of k and V., respectively, given when K 2 is either 1·600 or 4·0, 
when r lies between the fairly extreme value of 10 and its possible 
minimum. From these figures it appears that with K 2=4, k seems 
likely to lie between 17 and 11, and V., between 0·8 and 0·2. If, 
however, K 1=1·600, k seems unlikely to be much below 20 or V., 
below 1·2. In this latter case both k and V., could be very large; 
but even when r exceeds its minimum of 5·826 by only 1, k is 
little over 50 and V., only about 4·5. Thus k seems unlikely to be 
less than 11 or more than 50. Furthermore, so low a value as 11 is 
possible only if K 8 is grossly underestimated. Similarly with 
K 1=1·600, k is rapidly falling away as r increases. If all values 
of r up to about 10 can be regarded as equally likely a priori, 
k is as likely to be below 30 as above it, and it may well be as 
low as 20. • 

In the absence of any further information no more precise con­
clusion may be drawn, but even these somewhat i~definite findings 
have their value. If we are to regard the effective factors, of whose 
number k is an estimate, as the ultimate genes on which the 
inheritance of corolla length depends, the number 50 would ·not 
seem to be any too large. The species are nearly isolated from one 
another genetically, and they differ markedly in this character. 
Certainly under these circumstances 11 . would seem an unex­
pectedly small number, and even a itumber so low as 20 would 
perhaps be somewhat surprising. The indications are therefore 
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that k is not a measure of the number of ultimate genes, and this 
conclusion is also suggested in another way. 

The haploid number of chromosomes in both Petunia species is 7. 
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The values of k (above) and Vat (below), assuming various values for r, when 
K 1=9·321, and K 2=1·600 and 4·000. Fuller details will be found in the text 
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Even the minimal value of k would, therefore, demand the linkage 
of at least five of the units. That this linkage escaped detection in 
the test of Section 17, merely serves to emphasize that, as has 
already been stated; the linkage test cannot be regarded as sensi­
tive in the absence of replication adequate to provide a reliable 
estimate of error, such as was obtained in the barley experiment 
and to a lesser extent with the oats. Residual factor interaction 
could serve to obscure linkage in the only type of test possible 
with the Petunia data. 

Now where a chromosome pair differs in a number of genes 
. scattered along its length and all affecting the character in ques­
tion, any chiasma which may form will, as it were, serve to 
distinguish two super-genes. The gross aggregate of all the genes 
within each of the two segments which have recombined at the 
chiasma will be transmitted as a unit. If two chiasmata form, 
three such super-genes will appear. The chromosome will thus 
appear to consist on the average of super-genes to a number 
greater by one than its mean chiasma frequency. The greatest 
number of effective factors, i.e. the greatest k which can be found, 
will thus be given by what Darlington (1939) has called the 
recombination index:, viz. the haploid number of chromosomes 
plus the mean chiasma frequency. This would be somewhere 
between 17 and 20 in Petunia-a value in reasonable keeping with 
the estimate of k. The effective factor as we have been using it is 
in the general case therefore not an ultimate gene, but merely a. 
segment of chromosome acting as a unit of inheritance and 
separated from other such units by an average recombination 
frequency of 50%. 

Since the positions in which chiasmata form may vary from 
nucleus to nucleus even within the same individual, the super­
genes which the chiasmata distinguish will not be of constant 
content. They will be variable even within a generation, and V11 
will in consequence be high. The value of K 1 should therefore be 
very much lower than that of either k or even of K 1 where there 
are polygenes scattered all along the chromosomes. This ex­
pectation accords well with the results from the Petunia species 
cross. 

Finally, since chiasmata vary in position, a further breakdown 
of the effective factors must occur in later generations. The total 
number of factors found in these later generations will generally 
be greater than the first estimate. The effective unit of inheritance 
is thus a unit only for one generation, and even within this period 
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it may well be a statistical rather than a physical unit. This cannot 
of course prevent us using the unit for our statistical purposes. It 
merely serves to emphasize that the 'gene' of biometrical genetics, 
unlike the gene of Mendelian genetics, is not an ultimate unit. It 
is more like the 'gene' of structural change (Darlington and 
Mather, 1948). 

Our factors may be treated as units for the purposes of calcula­
tion. If the chiasmata were invariable in the way they separated 
the factors within the chromosome, the factors would in fact be 
constant units and could be treated as final genes. With variation 
in the points at which the factors are delimited by chiasma forma­
tion, the factor will itself be variable, but we may still regard it as 
unitary within a generation provided that we recognize the exist­
ence of variation in the effect of the unit. In doing so we are, as 
it were, replacing the factors which potentially merge into one 
another along the chromosome by a series of separate genetical 
centres of gravity, one for each factor. Each centre of gravity will 
have an average effect which reflects the mean genic content of 
the factor it represents, and a variance of effect which reflects the 
variation in genic content of that factor. The centres of gravity 
will normally be regarded as occurring every 50 recombinational 
units along the chromosome, because we would generally find it 
most useful to assume free segregation when estimating the 
number of factors. But in special cases where the linkage test has 
revealed an association between the factors in hereditary trans-

. mission, we may regard the centre of gravity as separated by less 
than 50% recombination for the purposes of our calculations. 
This course of action will be illustrated by reference to the barley 
example. 

The model is, of course, artificial in the sense that it has a dis­
continuity for which there need be no strict physical or physio­
logical counterpart in the chromosome. It can be set up only as an 
approximation for the purposes of calculation, and it cannot be 
used uncritically over a range of generations within which the 
factors may themselves be changing in average number and aver­
age effect as a consequence of variation in the position of chiasma 
formation. More experimental evidence will be needed before we 
can establish the range of validity of the model and see how it can 
be adjusted to meet the needs of any change which may occur in 
the effective factors. 
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21. PREDICTION IN THE PRESENCE OF LINKAGE 
(in collaboration with Dr. U. Philip) 

The prediction of selective advance, as developed for the oat 
experiment, depends on regarding, K 1 as a reasonable estimate of 
k, and hence of the K 1 which would be expected from a cross 
between two lines with isodirectional distribution of+ and- allelo­
morphs. We have just seen that when linkage is encountered K 2 

may be sharply reduced by the variation in individual effect of the 
effective factors. Prediction, based on the value of K 2, is thereby 

. made less efficient, or even completely vitiated in extreme cases. 
Linkage also acts in another and more direct way to reduce the 

values of both K~ and K 1. When two genes are unlinked they 
appear distinct in inheritance. When they are completely linked 
they act as one factor of_ effect (da+db) if in coupling or (da-db) if 
in repulsion. Intermediate linkages will give situations in which a 
number of factors intermediate between two and one appear to be. 
acting, even though once a recombination has been achieved in the 
case of repulsion the selective advance will be that appropriate to 
two units. 

Linkage can be seen at work in these ways in the barley experi­
ment. The deviation of the parents from the mid-parent value is 

13·672 

13·67, and the value of D is 10389. Thus K 1= 
10389

=0·018. This 

small value indicates the association of + and - allelomorphs in 
both parents as already noted in Section 18. 

Low values of K 1 cannot, however, be due to this cause. Now 
the heritable portion of V F3 is 4314-1224=3090, and the har­
monic mean size of the F8's is 7·84. V VFS is 21283108, from which 

. f 2x4314z . b d I . Th a correctiOn o 1s su tracte , eavmg 15841413. us 
7·84-1 

K 
30902 o 603 L" k . di I d z=

15841413
= · • m age cannot many case rect y re uce 

the number of effective units below I, and in the present instance 
it could not be expected to reduce the number below 2, since we 
have already seen that there is evidence of at least two linkage 
groups being involved {Section 18). Part of the reduction must, 
therefore, arise from the variation in expression of the individual 
effective factors. 

This value of K 1 is obviously of little use for the purpose of 
predicting selective limits, except to tell us what we already know, 
that the concentration of allelomorphs is not complete in the 
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parents. We may, however, use another property oflinkage for the 
purpose of prediction. In F 2, D=S(d!)±2S[dadb(l-2p)]; and in F 3, 

D=S(d!)±2S[dadb(l-2p)2], the sign depending on the phase of 
linkage between the individual pairs of genes. In general with 
preponderant coupling DF3 will then be less than DF2, as observed 
in the barley, and the magnitude of the fall from F 2 to F 3 will 
depend on the relative magnitudes of da, db, &c., on the recombina­
tion frequencies, and on the number of genes involved. The fall 
will be maximal when all genes are both coupled and of equal 
action, and when adjacent genes are equally spaced along the 
genetical chromosome. We cannot know of course that our factors 
are either localized in distribution or invariable in genetic content 
like single- genes. We may however regard them as represented by 
genetical centres of gravity spaced out along the chromosomes like 
the genes in terms of which the discussion has been carried on. 
The genetic weight at each centre will be variable, but the varia­

. tion should do no more than make our estimates of the fall in D, 
calculated on the assumption of invariable genes, too high and 
the number of factors correspondingly too low. This underestima­
tion will not be seriously misleading because even if single genes 
were involved we could aim only at a minimal estimate. 

The precise recombination frequency giving maximal fall will 
vary with the number of factors, but it can clearly be calculated 
for any given number of them. One point must, however, be made 
clear before proceeding to the calculation, viz. that maximal must 
be taken as meaning maximal in relation to the value observed 
for DF2 or DF3• Otherwise there is no standard of reference. We 
shall take DF2 as the basis for our determinations of maximal 
change. 

The fall inD is S(d!)+2S[dadb(l-2p)]-S(d!)-2S[dadb(l-2p) 2] and 
--2 -

. . . 2S[dadb(l-2p-l-2p )] hi h b 
1ts ratw to DF2 1s thus S d2 S d d ] , w c ecomes 

{ a)+2 [ a b(l-2p) 
4d 2S[p{l-2p)] · · 

d 2[k S when k factors all having effect dare concerned. 
+2 (l-2p)] . 

W"th k 2- thi . 4p(l-2p) Th . I 1'. ll . . h 1 = s 1s . e max1ma Ja mtw 1st en 0·17 
2+2(1-2p} . 

when p is 0·29. Assuming the absence of interference, and equal 
spacing of adjacent factors, the maximum fall ratio with k=3 
is 0·25 when adjacent factors show p=0·27 recombination. Simi­
larly the ratio is 0·30 at p=0·26 when k=4. Thus a fall of, say, 
0·22 requires a minimum of 3 factors. A fall ratio of 0·28 would 
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similarly require at least 4 factors. With interference between· 
chiasmata, both the maximum fall ratio and the value of p which 
gives it are lower than when it is absent (Table 30). 

TABLE 30 

Maximum Fall Ratios in D and H with k=2, 3 and 4 in Coupling and 
Reinforcement respectively 

. . e D) 8(d1) . (H H ) 8(h1) 
1: :P FallinD ~~ rs Dn 

F&ll in H ";,.~ ' 3 

Hn 

~ --· 
2 0·29 0·17 0·71 0·06 0·85 

No { 3 0·27 0·25 0·58 0·09 0·77 
Interference 4 0·26 0·30 0·50 0·12 0·71 

Complete { 3 0·20 0·22 0·52 0·11 0·67 
Interference 4 0·16 0·24 0·40 0·13 0·54 

In the case of the barley DF2 is known, but DFa cannot be 
separated from H Fa in the absence ofF" data. There will, however, 
be a fall in H, similar ·to, though less than, that in D, if the k 
increments are preponderantly reinforcing (Fig. 10 and Table 30). 
If we therefore use D+!H in place of D for calculating the fall, the 
result will be to slightly underestimate its magnitude. This only 
means a slightly lower value for k, a minimal estimate of which is 
being aimed at in any case. In F 1, D+lH=10389+!(13169)=16974. 
In F 3 , D+!H can be found by subtracting E 1 (as estimated when 
allowance is made for linkage) from f Fa and multiplying by 4. 
It is, therefore, 4(4314-1224)=12360. The fall ratio is then 
16974-12360= 4614 =0·27. 

16974 16974 
Three coupled factors will not quite 

suffice, since their maximum fall ratio is 0·25. Four will be enough, 
since their maximum fall ratio is 0·30. 

We have already seen however that there must be at least two 
linked groups of genes, each with preponderant coupling, but 
balancing one another's actions almost exactly in the parents. 
Now two coupled groups each ·of k factors will give the same 
maximum fall ratio when segregating simultaneously that each 
does by itself. With unequal numbers of factors, the simultaneous 
fall will be intermediate in value between the individual ratios. 
Thus in the present case we must suppose, with two groups acting, 
that more than 6 factors are operating, with over 3 of them lying 
in each group. (Two in one group and four in the other gives no 
better a fit than three in each, the fall ratios being much alike 
in each case.) Eight factors, four in each group, would be ample to 
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explain the results. Seven factors, four in one group and three in 
the other, would also explain the fall, but might not account for 
the close balance of effects in the parents. 

Now with coupling the value of DF2 exceeds S(d 2) by an amount 
depending on the number of factors and their linkage relations. 
When k=2 and p=0·29, the value giving the maximum fall ratio of 
0·17, DF2-S(d2) is 0·29 of DF2 • A factor of 0·71 must therefore be 
multiplied to DF2 in order to give S(d2). The corresponding factors 
for k=3 and k=4 under the conditions of maximum linkage fall are 
given in Table 30. Thus the linkage fall ratio enables us to estimate 
the minimum number of factors which must be involved, and also 
the correction necessary for reducing DF2 to S(d2). 

In the barley case, if we take the underestimate of k=6, 3 in each 
group, then S(d2) is 0·58 of DF2 , i.e. 0·58x 10389 or 6025. If we 
regard each group as comprising 4 factors, giving 8 in all, S(d2) is 
0·50x 10389 or 5195. Then in the former case kS(d 2)=6x6025=36150 
and in the latter kS(d 2)=41560. Since the minimal limit to selective 
change in either directionisgiven by VkS(d 2), it will be V36150 or 
190 with 6 factors, and 203 with 8. The mid-parent was 314, and 
so the minimal limits should be 124 and 504 if 6 factors are assumed, 
or Ill and 517 if 8 are assumed. Actually the means of the extreme 
Fa families were 181 and 568, the former inside and the latter 
outside the limits calculated on both assumptions. We have, how­
ever, already seen that the scale was not fully adequate (Sec­
tion 18) and its distortion is such that the expected upper limit 
would be exceeded before the expected lower limit was attained. 
The difference between the extremes observed in F 3 is 568-181 or 
387, which lies between 2x 190 and 2x 203, the differences between 
the limits expected on the two assumptions. Thus there is no 
ground for expecting that much selective advance could be made 
on the extremes observed in Fa, though some progress might be 
made if the units of inheritance were either not so constituted or not 
so related as to give the maximum possible fall ratio. Since, how­
ever, the linkages are preponderantly in coupling, 100 Fa's would 
be very likely to contain families reaching the limits. Everything 
points, in this cross, to the Fa families having already reached the 
limits of selective progress which might be envisaged as easily 
obtainable. 

A further use may be made of the estimate of the number of 
factors in the present case. The F 1 with a mean of 400 showed 
heterosis. HF2 was found to be 13169. This value will, of course, 
exceed S(h 2) by the item 2S[hahb(l-2p) 2]. The value of S(h2

) will, 
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therefore, be less than H F 2• though not so small a part of it as 
S(d 2) is of DF2• With the values of p found in calculating the 
maximum fall ratios of D (assuming, of course, complete reinforce­
ment of the h increments, ill the same way as complete coupling 
of the factors was assumed when considering the d increments) 

S(h2) 
the values of --n- for k=2, 3 and 4 are found to be as shown in 

. F2 
Table 30. 

If we take k=6, 3 in each group, S(h2) is 0·77 of HF 2 , i.e. 
0·77xl3169 or 10140. With k=8, S(h2) is 0·71 of HF2 or 9350. 
Then kS(h 2) is 60840 in the former and 74800 in the latter case. 
The degree of heterosis to be expected if all the factors were 
reinforcing will thus be V60840 or 247, with k=6; and 274 with 
k=8. The heterosis observed was 400-314 or 86. Thus, even when 
the large error of estimation of H F 2 is taken into account, the 
factors cannot be regarded as all reinforcing one another. New 
inbred lines could be extracted froin the cross, which would 
give greater heterosis through the fixation of the + allelomorphs 
of these factors whose h increments were in opposition to the 
heterosis. , 

Such a calculation has little value in barley where homozygous 
varieties are used in practice; but it might well be of use in certain 
crops in deciding the value of inbred lines for hybrid seed produc­
tion and assessing the prospects of their improvement. 

22. THE SPEED OF ADVANCE UNDER SELECTION 

Not only will the minimal limits of selective advance be deter­
mined by the number of units of inheritance which contribute to 
D and H, but the speed of selective advance must clearly also 
depend on this number. Where only one gene is segregating, l of 
the F 1 individuals will be homozygous for each allelomorph. In the 
absence of obscuring agents, the selection of any number of indi­
viduals up to 25% at either end of the scale will lead to immediate 
fixation of the homozygous type in the next generation. All the 
progress possible will be achieved immediately. 

With two genes, segregating independently, 6·25% of the F 1 

individuals will be homozygous for each of the extreme genotypes. 
Thus the chance of recovering an extreme genotype from an F 1 

of any given size is reduced. Furthermore, the progress made by 
selecting, say, 10% of the individuals at one end of the scale in 
F 1 cannot be complete even in the absence of obscuring agents. 

B.G.-9 
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Some genetically less extreme types must also be taken for 
breeding. 

Where four genes are segregating only 1 individual in 256, i.e. 
0·39%, will be homozygous for each of the extreme genotypes. 
Not merely is the chance of immediate fixation under selection 
very small, it is even unlikely that any extreme homozygote will 
be picked up in an F 11 of small or medium size. The group selected 
for further breeding must, therefore, include individuals of various 
genotypes showing various degrees of heterozygosity in propor­
tions depending, among other things, on the magnitudes of the 
h increments. Progress will be incomplete, and only as the extreme 
homozygotes come to form an increasing proportion of the segre­
gates in later selected generations will the full advance under 
selection become realized. 

The efficacy of selection in such a case must also be reduced by 
the effects of non-heritable agents, which make the phenotypic 
expression of the various genotypes overlap and so reduce the 
chance of effective separation o£ the genotypes in selection. The 
greater the non-heritable variation, therefore, the less effective the 
selection. The variation in proportion of the different genotypes in 
F 2 consequent on sampling error may also reduce the efficacy of 
selection by reducing the frequencies of the more extreme and 
desired types. The efficacy of selection might, however, also be 
increased by a corresponding chance excess of these types in F z· 

Thus the speed of selective progress will depend on 

(a) the rigour of selection (i.e. proportion of F 2 chosen for 
breeding); 

(b) the number of genes, as organized into effective factors in the 
way we have discussed; 

(c) the varia.tion in magnitude of action of the genes or factors 
(variation in magnitude of d increments); 

(d) their dominance relations (magnitudes of h increments); 
(e) their linkage relations; 
(j) the size of the contribution of non-heritable agents to the 

F 2 variation; 
(g) the sampling variances of the genotype frequencies. 

Some of these agents can be assessed in the ways already dis­
cussed. On others information will be less certain or even absent. 
The practical problem is to decide how much can be foreseen about 
the speed of progress from the statistics we have learned to calcu­
late. This problem has been tackled by Panse (1940a and b), who 
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has developed a method of analysis and has shown how it works 
out in one set of cases. 

The character Panse considered was staple-length in three 
cotton ( Gossypium arboreum) crosses. The F 1 families were grown 
in one year and F3 families in the next. It is impossible from 
Panse's data to undertake analyses of the kind necessary to 
separateD, Hand E in his crosses. Panse himself (1940a), how­
ever, estimated what he terms the genetic variance * of two of the 
crosses. This was found by the regression ofF 3 mean on F 1 parent 

value, i.e. as !.~D+1HE. Values of 1·543 and 1·516 were obtained 
2 +l + . 

in his two cases, leaving residual variances (which he regards as 
non-heritable, though these, like the so-called genetic variances, 
will contain items depending on H) of 1·4 72 and 1·697 respectively. 
For simplicity Panse approximated by setting the total F 2 vari­
ance at 3, of which 1·5 is supposedly genetic and 1·5 not genetic, in 
each case. 

The number of effective factors was estimated as K, for each 
cross, the one giving K 11=1·64 and the other K 1=2·77. Panse chose 
to take K 1=3 as the basis of his further consideration. In order to 
consider the effects of both dominance and unequal action of the 
genes involved he set up five genetical models. In three· of them 
only three genes were involved. In the first the genes were equal 
in action and without dominance. In the second, two of the three 
genes were equal in action but showed complete dominance (h=d) 
in opposite directions, the third gene showing no dominance but 
contributing equally to the variance with the other two, i.e. 
!d~=!d!+lh!=!d:+lh:. The third model also had two genes with 
complete dominance in opposite directions and one without 
dominance but it put d4 =db=dc, so that the genes contributed un­
equally to the variance. The other two models involved an infinite 
number of'genes, in the one case showing no dominance and with 
the values of d descending in geometric progression, and in the 
other case falling into two series of equal action, each with com­
plete dominance but in opposite directions, the values of d descend-

• Panse's use of this term appears not to be consistent. In 1940b he follows 
Fisher (1930) in regarding as the genetic variance that which in the present 
notation would be described as the D (as opposed to H) portion of the 
variance. The method of estimating the genetic variance of F 1 used in 
1940a must, however, lead to an estimate which will be affected by the 
magnitude of H. Finally, in setting up his genetic models, Panse calculates 
the contribution each unit makes to the genetic variance of F 1 as id1 +lh1• 



122 THE NUMBER OF EFFECTIVE FACTORS 

ing geometrically within the series. Linkage was supposed to be 
absent from all the models, and the average contributions of the 
genes were adjusted to give K 1=3. 

Taking these five models, the effect was considered of selecting 
the top 10% of the F 1 plants for further breeding by self-pollina­
tion. The mathematical method used for this purpose is over­
elaborate for presentation here: it will be found in detail in Pause 
(19!0b). Briefly, however, it consists of setting down a moment 
generating function for the simultaneous distribution of the F 1 

parent values, the F 3 means and the heritable variances of the F 3's. 
On expanding, quartic regression equations are found relating the 
F 3 statistics to the F 1 parent values. These equations are then 
integrated between limits appropriate to the method of selection. 
The results of the mathematical operations are shown in Table 31, 

. but with the scale changed from that used by Panse, so as to put 
the heritable portion ofF 1 variance (n V F 2 ) equal to 1. This scalar 
change should enable the table to be used more easily with other 
genetical data, since if H V F 2=a, the various columns of the table 
can be multiplied by the factors shown in its bottom row to give 
the values appropriate to the case. 

As would be expected, the selective advances and the F 3 vari­
ances vary with the particular genetical model used; but the 
variation is surprisingly small. The advance achieved is at least 
36% and at most 51% of the maximum possible. The different 
variances show an even smaller relative range. When the errors 
of estimation of the F 3 quantities are borne in mind, it is clear that 
the variation between models is not likely to lead to serious mis­
judgement. The results of selection can therefore be forecast with 
useful accuracy a generation or so ahead by this means. 

In regard to the advance achieved expressed as a ratio of the 
maximum advance possible (and this ratio is the most important 
feature from the point of view of practical forecasting), the chief 
difference in the table is that between the three models assuming 
three units on the one hand, and the two assuming an infinite 
number on the other. The first group shows about! the possible 
advance as achieved, the other just over ! of it. Since the units are 
assumed to be unlinked an infinite number is in practice an im­
possibility, so that the lower limit of advance achievable in F 3 must 
actually lie somewhat above the percentage shown for the two 
models with infinite series. 

Panse developed his models in terms of genes. We have seen, 
however, that there can be no certainty that the units of segrega-



TABLE 31 

Effects of raising F 1's from upper 10% of F 1 whose meim is zero, with Heritable Variance-Non-heritable Variance= I in F 1, 

' and K 1=3. (Panse's models) 

Limit of Advance F 1 advance as 
a.J'n Model selective achieved proportion of aVn Vvpa 

advance in F, that possible 

No dominance 
I Geometric series 3·415 1-235 36% 0·397 0·496 0·071 

No dominance 
II 3 equal units 2·449 1-235 so% 0·399 0·499 0·070 

Balanced dominance ' 
III 2 geometric series 2·642 1-034 39% 0·428 0·446 0·065 

Balanced dominance 
IV 3 genes of equal variance 2-150 l-100 51_% 0·419 0·462 0·068 

Balanced dominance 
v 3 genes of equal action 2-121 l-084 51% 0·421 0·465 0·068 

Where B V F2'"'a multiply by v'a . v'ii 1 a a a• 
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tion with which we are concerned will in fact consist of ultimate 
genes. Rather we must consider the possibility of groups of genes 
appearing as our factors. The surprisingly small effects of domin­
ance and number of genes on the rate of advance under selection 
encourage us to believe that Pa.nse's results will still apply broadly 
to systems of such factors, r{lcombining freely with one another 
through lying in different chromosomes or through being separated 
by chiasmata. if within the chromosome, even though the separa­
tion will not be into uniform factors in the latter case. In so 
applying Panse's results we are of course once again making the 
assumption that the full effect of each factor is concentrated at 
its genetical centre of gravity, which is recombining freely with 
other such centres. This assumption is artificial, but provided its 
limitations are recognized, it enables us to see Panse's calculations 
in their application to a. wider field of experimental situations. 

Though having no observations for illustrative purposes, Panse 
considered the use of his models for the purpose of detecting 
dominance and variation in magnitude of action of the units of 
inheritance by comparison of the various F 3 quantities calculated 
from observed results with those expected on the different assump­
tions. This application of Pa.nse's method will serve to supplement 
the consideration of these questions by the analyses developed 
earlier. The chief use of the method must be, however, in predicting 
the relative advances to be expected in F 3-a. use whose value it is 
difficult to over-rate. The case in question, where H V Fz=E V FZ• 

Kz=3 and 10% selection, is of course only one of the many which 
might be encountered; but it is possible by the use of Panse's 
method to tabulate the advances expected where other selective 
rigours are used, where K 1 takes other values, and where H V Fz is 
differently related toE V Fz· Such tables would be a. powerful aid to 
the geneticist and breeder in the use of his biometrical data.. 

Pa.nse did not take into account the effects of linkage in his 
calculations, but its consequences are not difficult to see in general 
terms. Linkage in either phase reduces the value of K 1• The speed 
of advance under selection, relative to the limiting advance as 
immediately foreseeable from the data., must therefore be greater 
than it would be in the absence of linkage. There is, however, an 
all-important qualification in the case of repulsion linkage. The 
above statement is true in so far as the limits of advance are cal­
culated on the basis of the existing linked combinations; but 
crossing-over will give new combinations, which must widen the 
ultimate limits of selective advance. Thus while the speed of 
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advance relative to the limits set by the existing combinations 
may be greater than in the absence of linkage, relative to the limits 
set by the new combinations which follow recombination, the speed 
of advance will generally be slower than in the case of no linkage. 
This is the reason for the favouring by natural selection of balanced 
polygenic combinations with repulsion linkages (Mather, 1941). 
With coupling linkages, on the other hand, recombination can act 
only to narrow the ultimate limits of advance under selection. The 
sole effect of linkage in coupling is consequently to lead to a greater 
speed of advance towards these limits, as we have seen in the case 
of ear conformation in barley discussed in the previous section. 

The concept of the number of effective factors is thus one which 
in suitable circumstances allows us to estimate the minimal limits 
of selective advance, minimal in the sense that K 1 may be under­
estimated as a result either of linkage, especially in the repulsion 
phase, or of variation in the magnitude of effect of the factors. It 
also allows us to learn something of the rate at which we may 
achieve these advances when using selection of a given rigour. The 
effective factor is thus the basis in biometrical genetics upon which 
our predictions depend~ It is a unit whose properties we shall discuss 
further in the next chapter. 



CHAPTER 7 

RESULTS AND CONCEPTS 

23. EXPERIMENTS IN BIOMETRICAL GENETICS 

MANY EXPERIMENTS have been carried out at various times on 
the inheritance of quantitative differences, but few of these have 
been of a kind which can lead to a partition of the variation into 
its D, H and E components. Even fewer have been designed in 
such a way that the tests are sensitive and the analysis reliable. 
Fifteen experiments, including either F 2 or biparental families, have 
been analysed, with the results shown in Table 32(a). Of these, four 
are experiments, three hitherto unpublished, carried out at the 
John Innes Horticultural Institution, one is Quisenberry's (1926) 
experiment with oats, seven are from Emerson and East's (1913) 
investigations on maize, and three are from Culbertson's (1942) 
experiments with sugar-beet. Though a number of other accounts 
in the literature show clearly that data must have been available of 
the kind needed, they are not presented in such a way as to permit 
analysis. 

Even of the fifteen experiments analysed, only one can be 
regarded as fully adequate in design and magnitude, viz. that on 
ear conformation in barley conducted in collaboration with Dr. U. 
Philip. The Petunia, Antirrhinum and Drosophila experiments 
were made with all the necessary precautions of randomization 
and the inclusions of parental and F 1 lines to provide measures of 
E 1 and E 2; but even in the largest ofthem, that with Drosophila, 
the biparental families numbered only 31, while in Petunia and 
Antirrhinum only 19 and 8 F 3's were grown respectively. Further­
more in each case at least one parental line was not inbred and 
therefore could not be regarded as genetically uniform. This latter 
fault of the th~ee experiments should not, however, be regarded 
as unduly serious for two reasons. In each case the genetical differ­
ences between the parental strains was much greater than those 
within them; and in so far as it is desired to investigate the genetical 
differences between strains, differences within them may be re­
garded as extraneous sources of variation, like the non-heritable 
differences with which they are confounded. A more serious defici­
ency lies in the design of these three experiments, for no provision 
was made for replication. In consequence no basic estimate of 
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SpeciH Author 

A vena sativa Quisenberry (1926) 
Petunia aziUariB 

X fliokuJea 
Mather (unpublished) 

Drosophila melano· Mather (1941) 
gaater 

Hordeum sativum Mather and Philip 
(unpublished) 

Zea mays Emerson and East 
(1913), Table 8 

10 
12 
19 
24 
29 
33 

Antirrhinum majus Mather (unp~blished) 
x glutinosum 

Beta tJUlgariB Culbertson 
(1942), Table 6 

7 
8 

TABLE 32(a) 

No. of 
n F1'sor D H E, Linkage 

BIP"a 

21 150 1-3211 1·0694 0·3653 A 
7 19 0·7258 0·0361 0·1244 c 
4 31 1·5263 -2·9323 6·5709 R 

7 100 10388·8 13169·0 1224·0 c 

10 8 2·7887 -5·1910 1·8261 A 
8 6·3897 -10·5702 1·6764 A 

16 8·4143 -2·7043 3-1752 A 
16 36·6585 -1-5450 8·1399 c 

7. 427·01 -495·82 107-17 A 
16 28·9012 -31·9361 2·7808 A 
16 -194·4866 1542·8651 103·0197 A 

16 8 101-5113 52·5995 17·5360 R 

18 30 0·8379 -1·1074 0·9326 A 
24 0·6046 2·0139 0·9799 A 
23 3·0043 -5·2218 0·9572 A 

In the Linkage column A=absent 
C=preponderantly coupling 
&=preponderantly repulsion 

n•haploid number of chromosomes. 

k or 
K, K, other Charact~r 

K 

4·501 5·127 - Grain length 
9·321 1·600 11-30 Corolla length 

- - - Chaetae number 

0·018 0·603 6-8 Ear conformation 

1·842 0·006 - Row number 
0·312 0·018 - Row number 
0·925 1·094 - Row number 
5·979 - - Diameter of ear 
3·761 4·105 - Breadth of seed 
2·084 5·447 - Height of plant 

(-0·663) 8·708 - Internode length 
0·610 2·634 - Number of flowers 

0·511 0·002 - Sugar% 
5·734 0·198 - do. 
2-107 0·224 - do. 
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TABLE 32 (b) 

Species Author n lD+!H E K1 

----
Goaaypium 

species crosses Leake (1911) 13 24·69 47-30 13-5 Flowering 
time 

Oryza sativa Hoshino (1915) 12 47·76 2·87 3·2 do.· 
Triticum sp. Thompson 

. (1918) 21 6-09 2·68 0-6 do. 
4·51 1-49 1·0 do. 
7·43 2-33 1·3 do. 

17·66 2·03 0·6 do. 
5-72 2·06 3·4 do. 

10-63 2·07 2·5 do. 
26·72 2·09 1-1 do. 
13·95 2·13 2-3 do. 
8·03 2-31 4·2 do. 

27-68 2·26 2·0 do. 
Triticum sp. Freeman 

(1919) 14 6·37 9·63 3·8 do. 
12·94 2-90 1-4 do. 

Triticum sp. Floren (1924) 21 21-91 6·09 2·1 do. 
Piaum aativum Rasmusson 

(1935) 7 2·88 5·10 0·0 do. 
-5·61 13·04 - do. 
-1-09 8·83 - do. 
14·10 5·82 1-0 do. 
13·96 4·60 0·5 do. 

3·20 10·06 3-2 do. 
Solidago Goodwin 9 or - - 5·2 }Floral 
aempervirem (1944) 18 - - 8·7 initiation 

- - 2·5 }Floral 
·- - 0·5 initiation - to anthesis 
- - 5·8 }An thesis - - 6·4 

error was available. Without such an estimate of error the test for 
linkage must be insensitive, as we have seen in regard to the 
Petunia results (Section 17). Furthermore, no test is possible of the 
genic interaction remaining after scaling, such as could be made on 
the oats (Section 17) and the barley (Section 18). 

Quisenberry's experiment with oats is satisfactory in that it was 
large, was made in duplicate, and included true-breeding parents. 
It could have been improved for our purpose by growing the F 2 in 
a number of groups each of the size of one F 3 family, in the way 
used for the parental lines, and also by including parents, F 2 and 
F 3's in a single randomized design. Nevertheless, as has been seen, 
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the data from this experiment have proved both informative and 
consistent to a remarkable extent. 

The seven maize examples were taken from a larger number of 
experiments undertaken by Emerson and East. The remainder of 
these were excluded on either or both of two grounds; (a) that the 
data were incomplete or insufficient in regard to the number ofF a 
families used; and (b) that the F 11 plants listed as parents of the F 3 

families showed evidence of not constituting a random sample of 
the F 1 families from which they were taken. Even out of the seven 
experiments analysed, one had so low a number ofF a's as seven, 

· and none had more than sixteen. The parental lines were not 
inbred, no consistent replication was practised, and randomized 
designs were, of course, not used. Furthermore, the various families 
of one experiment were often grown in different years and were 
of very diverse sizes. Much the same remarks apply to the three 
sugar-beet crosses which complete the table. 

In spite of their various deficiencies in the experimental materials 
and methods, the data given in Table 32 still have their value for 
comparative purposes. Indeed, their very deficiencies are instruc­
tive since they both bring home to us the consequences of inade­
quate experimentation and show us how better experiments may 
be designed. 

The second part of the Table (32b) includes 27 sets of data taken 
from Goodwin (1944). These all relate to the inheritance of flower­
ing time and are all derived from observations on parents, F 1 and 
F 1• They permit therefore neither the separation of D and H nor 
the test of linkage, though the non-heritable and total heritable 
parts of the variability in F 1 can be estiinated separately. In the 
same way K 1 can be estimated using D+!H in place of D, but K 1 

cannot be estimated at all. 
Variability, whether E, D, H or the co~bination of D and H in 

the form of the total heritable portion, is measured as a variance, 
i.e. as a quadratic quantity. All the portions into whicli the vari­
ability is partitioned must therefore have positive values. A number 
of negative quantities appear in the table, but in no case where 
a test has been possible does the negative value differ significantly 
from zero, or even, in most cases, from a wide range of positive 
values. These negative quantities may therefore be fairly ascribed 
to sampling error, which is of course large in the less well-designed 
experiments. It is instructive to note that, as would be expected 
from the various c matrices used, the most efficient partition of 
the variability is that between the non-heritable portion on the 



130 ·RESULTS AND CONCEPTS 

one hand and the combined heritable portion on the other. No 
negative value has been found for E, and !D+!H is positive in all 
cases except for two taken from Goodwin's compilation. The reason 
for this easy separation into heritable and non-heritable is clearly 
the provision of a direct estimate of E measured by the variation 
of true-breeding parents and their F 1's. 

No such direct estimates are possible of either D or H from 
F 3 progenies, though W F 2!BIP is a direct measure of !D. The 
separation of D and H will generally depend on comparisons of 
quantities such as !D+!H, !D+lH, !D+lH, and a.s the c matrix 
shows, the values so obtained forD and H will have a high negative 
correlation and will be subject to higher sampling errors than is E. 
In particular H, when estimated by the use of F 3's or biparental 
progenies, has a very high sampling variance, ranging from 75 to 
130 times as large as that of E, and even from 6 to 10 times as large 
as that of D. The consequences of these relations are brought out 
clearly in Table 32. The two sizeable experiments and the only two 
in which adequate replication was practised, on oats and barley, 
give positive values for both D and H, though only in the latter 
is H significantly greater than 0. The remainder were smaller non­
replicated experiments, and the estimate of H very commonly 
appears with a negative sign. Owing to its lower sampling error 
the estimate of D is negative only once. 

In these cases, whether it be D or H which has a negative 
estimate, the other quantity appears with a correspondingly large, 
and correspondingly spurious, positive value. Thus, in the Droso­
phila experiment for example, D is found as 1·5263 and H as 
-2·9323, giving as the heritable component of the F 1 variation 
!D+!H=0·030l. While this latter may well be an overlow estimate, 
the values found for D and H are clearly untrustworthy. The test 
of linkage is not thereby jeopardized, because it rests on com­
parisons not of D with D, or H with H, in the variances ofF1 and 
later generations, but on comparisons of quantities derived jointly 
from D and H such as !D+!H in F 2• The negatively correlated 
departures of the estimates of D and H from the true values will 
largely cancel out in this test. 

When seeking to estimate the limits and rates of advance under 
selection on the other hand, D must be separated from H. Such 
spuriously large values as that found in the Drosophila experiment 
must then prove to be most misleading. In such a case it may well 
prove more reliable to substitute an adjusted value of D, found as 
f(D+!H), if dominance is assumed, or as D+}H, if no dominance 
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is assumed. In the cases of the only two large experl.ments, those 
on oats and barley, the use of these formulae, particularly j-(D+!H) 
would lead to predictions of selective advance very like those made 
with the aid of the direct estimate of D. The same is also true of 
the Petunia and .Antirrhinum experiments, even though they are 
much smaller. In these cases little is to be gained by the adjustment; 
but in the remainder the use of the adjusted estimate has much 
to commend it. This last group of experiments was, of course, ex­
pected to give somewhat unreliable results, for reasons already set 
out. Thus until a greater body of more adequately designed and 
conducted trials is available for consideration, it must remain 
impossible to say how far adjustment of D will be of general value. 

Though it will be impossible to avoid the negative correlation 
between the estimates of D and H, the relative distortions to 
which estimates of the two are subject by reason of sampling 
error may be more nearly equalized if backcross families are 
included in the experiment. Even biparental progenies have the 
advantage of F 8's in this respect, as can be seen by comparison 
of the c matrices developed for the Drosophila and Petunia experi­
ments in Section 13 (Tables 14 and 16). In backcross progenies D 
and H contribute equally to the various statistics which may be 
calculated from the data. Consequently the sampling errors of D 
and H will be more nearly equal in an experiment which includes 
backcrosses. Additional advantage is secured where the covari­
ances are available of non-recurrent second backcrosses with the 
first backcross parents, because these statistics depend on D-H 
for their values. Their inclusions must therefore reduce the 
negative correlation between the estimates of D and H, as well 
as help to equalize the sampling variances. 

The use of any or all of backcross, second backcross and 
biparental progenies to supplement F 1 and F 8's is of further 
value in a different way. The test of linkage can be made more 
precise merely by replication of an experiment including only F 1 

and F 8's, because in this way an estimate of error, more informa­
tive because based on a larger number of degrees of freedom, is 
made available for comparison with the linkage mean square. In 
the same way the residual genic interaction, against which the 
linkage component must be tested in the absence of replication, 
may itself be tested for significance when replication is practised 
(Section 17). The mean squares for linkage and residual inter· 
action will however themselves each be based on only one degree 
of freedom. Where either backcrosses of the various kinds, or 
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biparental progenies, or both are also included in the experiment 
the mean squares for linkage and residual interaction may them­
selves be derived from a greater number of degrees of freedom. 
The tests of their significance can then be made with an increase 
in precision not achievable by mere increase of replication. 
Furthermore, the inclusion of a greater variety of types of family, 
by giving a wider inductive basis for these tests, should also 
render possible a more searching inquiry into the organization of 
any linkage group or interacting system that may be brought to 
light. 

Some of the properties of linkage groups have already been 
discussed when analysing the linkage fall shown by D and H in 
the barley (Section 21 ). It is also clear from the suggestions on 
the one hand of coupling linkage of the genes controlling corolla 
length in the cross between the two Petunia species, which were 
chosen for their diversity in this character, and on the other hand 
of repulsion linkages in Antirrhinum and Drosophila where the 
parents, in the former case also different species, were not chosen 
for diversity in the character under examination, that the pre­
dominant phase of linkage found in any cross will be related to 
the way in which the parents are selected. A more searching experi­
mental inquiry into the biometrical consequences of linkage is 
obviously needed, and the appropriate selection of parental lines 
for the work should do much to ensure its success. 

The estimation of the number of effective factors also makes its 
own demands on the experimental design. K 1 is found as the ratio 
of the mean parental difference, halved and squared, to D. Any­
thing which improves the estimates of P1-P1 and D must corre­
spondingly increase the precision of the estimate of K 1 • In par­
ticular, randomization is necessary to ensure the absence of bias 
from the measure of PcPz, and replication will serve to reduce 
the error variance of the estimate of this quantity. The measure­
ment of D has already been considered at some length, and it is 
only necessary to add that in this case ·too an adjusted estimate 
may well be more useful than the direct estimate of D. In short, 
an experiment which secures a good partition of the components 
of variation will generally provide an equally good estimate of K 1• 

A new problem arises, however, when we turn to K 1• This is 
estimated as the ratio of the square of the mean heritable variance 
ofF 3 to the variance of this variance. The estimation of the mean 
heritable variance itself brings in no new considerations, for we 
find it as }D+lH. As we have already seen, this quantity will be 



EXPERIMENTS IN BIOMETRICAL GENETICS 133 

estimated with greater precision than either D or H alone. The 
variance of the Fa variance is, however, found directly from the 
F 3 variances. The greater the number of F 3 families, the better 
will be the estimate of V vFa· Estimates from the oat and barley 
experiments, with 150 and 100 F 3's respectively, should be precise. 
Even those from the experiments in Table 32a with 16-19 F 3's 
should be reasonably reliable; but little precision can be expected 
where only 7 or 8 Fa's were grown. The variance of Fa variances 
includes, however, a part which is merely a. consequence of samp-

ling error, and a correction__.!__ ~3 is deducted to adjust for this 
n-1 · 

inflation. The accuracy of the estimate of V Fa will again depend 
on the number of F 3 families; but the magnitude of the correction 
depends also on the number of individuals in each Fa family, or 
on their ~armonic mean where the numbers differ. Large Fa 
families are therefore needed if this correction is to be kept small. 
Thus the reliability of the estimate of V vFa• and with it that of K 2, 

depends both on the number of Fa families and on the number of 
individuals in each family. 

The deficiencies of a number of the experiments in Table 32 are 
clearly shown by the negative values which they yield forD and H, 
particularly H. No such simple criterion is available in regard to 
K1 and K 2• Indeed, on theoretical grounds, K1 may take any of 
a great range of values. The barley data give K 1=0·018, while the 
oats give K 1=4·501, and both these are expected to be statistically 
reliable estimates. A negative, and therefore impossible, value of 
K 1 is recorded only once, and it was then due to a negative 
estimate of D. 

K 1 is a little more helpful. Theoretically it may be larger or 
smaller than K 1, but if smaller, the difference should seldom be 
very great unless the effective factors are themselves highly vari­
able in effect. With the Petunias K 1 is nearly six times the size of 
K 2• This either requires a very high variation of the factors or it 
suggests that although the estimates are not biased, they are of 
low precision as a result of the smallness of the experiment. The 
estimate of K 1 must also be suspect where it is less than l. In 
the barley experiment this happens as a consequence partly of 
the linkage found to exist between the units and partly of variation 
in effect of the factors; but in some of the maize experiments it 
seems more likely to be due to the smallness and poor design of 
the experiments. 

Exploratory experiments using 100 F 8 families each of 100 plants 
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have been suggested by Fisher, Immer and Tedin (1932). A trial 
including 10,000 plants of the Fa generation alone is very large and 
has yet to be attempted. The oat and barley experiments probably 
came nearest to it, with between a third and a half of that number. 
In many cases experiments of such a size will be impossible; but 
until the questions just raised have been explored further, both 
theoretically and experimentally, it will be impossible to say how 
best to divide the facilities which may be available for an experi­
ment between number and size of Fa families. One consideration 
must, however, favour more families oflesser size, at least in plants, 
provided this size is not reduced below, say, 10 or 15 individuals. 
In so far as replication is practised, it is possible to undertake the 
replicated parts of the experiment a few at a time, provided that 
in the first place sufficient seed is produced of each family to permit 
the necessary successive sowing. The number of plants in each Fa 
can in this way be increased step by step, to any extent that is 
shown to be necessary by the accumulating data them.Selves. 

It should also be observed that neither biparental progenies 
nor backcrosses will add to the precision of the estimate of K'l., 
for this statistic is derivable solely from Fa data. Indeed, bi­
parental progenies are valueless for estimating the number of 
effective units, though second backcrosses can be used to provide 
their own estimate, which we may call Ka, of k. The most desirable 
balance between Fa's, biparental progenies and backcrosses there­
fore poses its own problems, which will again need experimental 
investigation. No data exist at present from which either the 
calculation of Ka can be attempted, or the relative merits of K 1 

and K a assessed. 
Clearly the best design for experiments of the kind under dis­

cussion cannot yet be specified; and indeed it must always remain 
to some extent contingent on the nature of the material. With 
animals Fa's are impossible, and reliance must be placed on 
biparental progenies and on backcrosses. With cereals, on the 
other hand, the natural self-pollination mechanism makes Fa's 
easy to obtain, while crossing is sufficiently troublesome by com­
parison to render backcrosses and biparental progenies much less 
profitable for use. In other plants, e.g. maize, there is little to 
choose between Fa's and crossed families in regard to ease of rais­
ing, so that a fully balanced design can be secured without great 
difficulty. The species will in fact itself dictate the type of family 
on which the experiment must largely be based. 

There are, however, certain general principles of design which 
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will hold good whatever the limitations imposed by the species. 
In the first place the inclusion in the experiment of parents or F 1 

is necessary in order to provide a direct estimate of the E portion · 

~ F, -/6 3 F3-24 F3-18 

F3-3 Pt F;-1 F;--25 

~-9 3 F3-22· F:.-2/ 3 F: 2 

Fj F3-20 ~-19 F2 

F3-13 F;-12 F3-4 ~ 

~ F3-14 F2 Fi 

F2 p, F3-ll F3-15 

F2 F3 -2 Fj-6 F3-7 

F2 F3-s Fj-17 F, 

F3-23 P, F3-8 F3-10 

FIG. i6 

Design of a. block including 40 randomly arranged plots. Of these 40 units, 
3 are given to each parenta.l strain (P1 and P 1), 3 to the F., 6 to the F 1 , and 1 to 
each of the 25 F 1's (l-25). E 1 is estimated from the pool of squared deviations of 
the three plot means of P 1, the three plot means of P 1 , and the three plot means 
of F 1 from their respective block means. E 1 is estimated from the pool of squared 
deviations of the individuals in the P 10 P 1 and F 1 plots from their respective plot 
means. V r.a is estimated from the pool of squared deviations of the F 1 individuals 
from their respective plot means, so that its non-heritable component is E1 

B.G.-10 
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of variation. FUrthermore, each parent or F 1 should be included 
several times within each replicate of the experiment so as to give 
a direct estimate of E: as well as E 1, i.e. of the non-heritable­
variation between family means as well as that between individuals. 
In mammals it may also be necessary to make provision for esti..; 
mates of special non-heritable effects arising from the maternal 
influence in prenatal life (Lush, 1943; Chapman, 1946). -

Secondly, the families should be randomized within the experi­
ment to permit the effects of environment to be disentangled from 
the heritable variation. Where it is desired that one family, e.g. a 
parent or the F =• should contain more individuals than another, 
e.g. an F 3 , the larger one should be broken up into parts, each the 
size of the smaller, and the various parts randomized separately. 
The experiment should thus consist of a,number of equal-sized 
units in random arrangement, the increase in size of particular 
families being achieved by allocating to them an appropriate 
number of these randomized units. The variance between means 
of units of the same parent or F 1 then gives a direct estimate of E:, 
the non-heritable variance of V F3 or V BIP (see Fig. 16). 

Thirdly, replication is necessary to provide adequate tests of 
linkage and residual genic interaction. 

Fourthly, as many different types of segregating families as con­
venient, particularly F 3's, biparental progenies and second back­
crosses, should be used in order to facilitate the separation of D 
and H, and to provide as wide a basis as possible for the detection 
and interpretation of linkage and residual interaction. 

Finally, either F 3 's or second backcrosses should be used to per­
mit the calculation of K: or K 3• An appropriate balance should be 
aimed at between the number and the size of these families, to give 
as precise values for these quantities as facilities allow. \Vith these 
precautions, the experiment may still fall short of the ideal, even 
for the size which available facilities permit; but it will certainly 
be both trustworthy and informative within the limits set by its 
design. 

U. DOliiNANCE AND INTERACTION 

The study of continuous variation demands a combination of 
genetical theory with biometrical analysis. The hereditary deter­
minants of continuous variation are carried on the chromosomes. 
Like other genes they segregate and they show linkage. If therefore 
we are to understand the variation which they control we must 
seek to measure their segregation and their linkage; and in doing 
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so we must take account of their physiological relations in the 
form of dominance and interaction. 

Now the partition of variation into its components would be 
impossible without the foundation of Mendelian genetics upon 
which to build. We could no more devise the means of partition 
than we could interpret its results, if we were not familiar with 
the phenomena of segregation and linkage, of dominance and 
interaction. But our biometrical methods do not, and indeed can­
not, lead to measures of their effects exactly like those measures 
which we use in Mendelian genetics. In place of the segregation 
ratios of genes with individually identifiable effects, we observe 
their pooled effects in the form of D. In the same way the pooled 
dominance is measured by H, and all the linkages act together in 
changing the values of D and H over the generations. The genes 
are always dealt with in the aggregate and we therefore learn 
nothing of their individual properties. The first results of analysis 
show us in fact only the combined effects of all the genes, though 
if we can find the number of effective factors it is of course possible 
to determine average effects and sometimes even the variances of 
the distribution of effects. 

Thus biometrical analyses yield results which are in a sense 
complementary to those of Mendelian analysis. Where the genes 
can be followed individually we can discover their individual pro­
perties, but we cannot be sure without further tests that all the 
genes affecting the variation have in fact been traced. Biometric­
ally we cover the whole of the variation, but we cannot measure 
individual properties. We are examining the same basic genetical 
phenomena by the twq methods, but we are examining them in 
different ways. Not only will our measures of their effects be differ­
ent, but properties of the genes which are finally distinguishable 
in simple Mendelian analysis may not be so when we are analysing 
variation biometrically. . 

There exists an ambiguity of this kind between the effects of 
dominance and genic interaction in biometrical analysis. Domin­
ance itself may be regarded as a form of interaction, or non­
additiveness in effect, between allelomorphs of the same gene. It 
was of course observed, and its consequences for genetical analysis 
were understood, by Mendel. In his peas the offspring of a cross so 
closely resembled one of the parents in each character that the 
effect of the other parent 'either escapes observation completely 
or cannot be detected with certainty'. A single dose of the dominant 
allelomorph had the same effect as the double dose. Complete 
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dominance of this kind was generally accepted in the early days 
of genetics as the standard for judging the relations between the 
phenotypes of heterozygous and homozygous individuals. All other 
cases were pooled under the heading of imperfect dominance. 

As used in this way the concept of dominance is precise but its 
application is limited. The need for separating degrees of imperfect 
dominance gradually became felt and the standard of reference 
was moved to the point where dominance was absent. The degree 
of dominance could then be measured, and complete dominance 
would be merely the extreme of a continuous range of possible 
manifestations. 

The new standard of reference, that of no dominance, introduces 
a new problem. At what relation between heterozygote and homo­
zygotes can dominance be regarded as absent? It is easy to see 
that the heterozygotes should have a phenotype midway between 
those of the homozygotes, but the problem is not thereby solved, 
for we must ask upon what scale it should be midway. So soon as 
we cease to be satisfied with seeing merely that the phenotype of · 
the heterozygote falls between those of the homozygotes, and wish 
to say how far it lies from each, we introduce the need for a metric 
and raise the question of how an appropriate scale can be devised 
and justified. The choice of scale can in fact determine whether we 
regard dominance as existing at all, and, if it does, the direction 
in which it is shown ()lather, 1946a). Suppose the character shows 
the levels of expression which we measure as 1 and 9 in the homo­
zygotes, aa and AA respectively, and the level 4 in the hetero­
zygote, Aa. On this scale 5 is the expression midway between the 
homozygotes and we must judge a to be partially dominant over A. 
But if for some reason we should regard a logarithmic scale as 
preferable, the three values become aa 0·00, Aa 0·60 and AA 0·95. 
The point midway between the homozygotes is then 0·48 and we 
must take the opposite view, that A is partially dominant. Finally, 
if a scale of square roots should be regarded as more suitable than 
either of those already considered we should have values of 1, 2, 
and 3, and dominance must be judged absent. 

The history of interaction between genes at different loci is 
much the same. The idea of genic interaction was originally used 
by Bateson in an ali--or-none fashion like that of dominance. He 
found cases where two allelomorphs of one gene led to different 
phenotypes only in the presence of particular constitutions in 
respect of a second gene. Complementary action, epistasis, and so 
on, are all variants of the same principle, differing only in the 
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individual dominance relations of the interacting genes and in the 
symmetry or lack of it in the relations between the genes. What­
ever the special relations might be, interaction, as Bateson used 
the term, implied an absence of difference in effect between the 
allelomorphs of at least one of the genes under particular circum­
stances in respect of the other. 

As with dominance there has been a shift in the standard of 
reference from that of. complete interaction to that of no inter­
action. This has, of course, raised, the same question, that of the 
metric to be used in measuring the interaction; for it is easy to see 
that, as with dominance, the presence, direction a~d degree of 
interaction must depend upon the scale used in representing the 
phenotypes which are to be compared. 

A change in scale may affect the estimates of dominance and 
interaction in the same way. A set of genes whose effects show 
neither dominance nor interaction on a given scale, will ap}lear 
to show both when the scale is transformed by, say, taking 
logarithms of the original measurements. Thus dominance and 
interaction may be simultaneously increased or simultaneously 
decreased, though not of course necessarily to equal degrees in all 
cases. The precise change wrought by the alteration in scale must 
depend on the genetical situation. Indeed, under some circum­
stances the change of scale may cause the measure of dominance 
to increase as that of interaction decreases, and vice versa. 

-suppose that we have two genes, A-a and B-b, which in their 
various combinations produce the levels of expression of a. char­
acter, "measured on some convenient scale, as shown in Table 33a. 

TABLE 33 
(a) (b) 

a a A a AA a a Aa AA 

bb 1 2 3 bb 0·000 0·301 0·477 
Bb 2 4 6 Bb 0·301 0·602 0·778 
BB 3 6 9 BB 0·477 0·778 0·~54 

Direct Scale Log Scale 

No Dominance, Interaction Dominance, No Interaction 

Neither gene shows dominance. The difference in phenotype be­
tween Aa and aa is the same as that between AA and Aa no 
matter what the constitution may be for B-b, and vice versa. 
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There is, however, interaction between the genes because the 
increment added when A is substituted for a is I in bb, 2 in Bb, 
and 3 in BB individuals. The effects of allelomorphs are additive, 
but those of non-allelomorphs are not. 

H, however, we transform the measurements by taking logs the 
situation is reversed (Table 33b). The difference between Aa and 
aa or between Bb and bb is 0·301, and that between AA and Aa 
or between BB and bb is 0·176, no matter what the constitution 
may be for the other gene. The non-additiveness is now associated · 
only with allelomorphs. Dominance is present, but interaction is 
not. 

Our findings with regard both to the presence of any non­
additiveness in effect, and with regard to its distribution between 
dominance and interaction must thus be conditioned by the scale 
used in measuring the expression of the character. This need cause 
us little trouble where the genes can be followed individually. The 
various genotypes can then be built up at will, and their pheno­
types measured on any scale or scales which seem useful. The 
effects of the genes in their various combinations can then be 
completely and unambiguously specified on any or all of the scales 
and a firm basis obtained for any calculation or prediction. 

No such rigorous specification is possible where the genes cannot 
be followed and manipulated as individuals. It is then necessary to 
resort to biometrical analysis of the types we have been discussing, 
and the question immediately arises of the scale to be used. It has 
been shown by Fisher (1918) and Wright (1935) that the cor­
relations between relatives may be broken down into parts ascrib­
able to the additive effects of the genes, to their dominance and 
to their interaction. We have seen how variances and covariances 
can be broken down similarly into parts depending on the so-called 
additive effects (D) and on dominance (H). A third heritable com­
ponent, which for purposes of discussion we may call I, depending 
on interaction in at least some of its forms, could have been intro­
duced and its value estimated by an extension of the same methods. 
An analysis could therefore be carried out of measurements made 
on any given scale; but that is not to say that all scales are of equal 
value for this purpose. 

We have already seen, in Chapter 3, that in our present state of 
knowledge no scale can be regarded as having a special theoretical 
merit. This may be expressed in another way. The relative mag­
nitudes of D, H and I will reflect the scale used for the measure­
ments. They will change as the scale changes, and we have no 
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reason to regard the values arrived at on any one scale as present­
ing a theoretically truer picture of the genetical situation than 
those yielded by any other scale. We are at liberty, therefore, to 
choose a scale which gives values of those components most suited 
to our needs. 

Now the partition of variation must remain little more than an 
exercise in statistics unless we can put its results to some use in 

· understanding the genetical situation in such a way as to enable 
us to see the consequences of inbreeding, selection or whatever 
other adjustment of the system we may have in mind. We seek 
:to understand a genetical situation in order that we can foresee 
its consequences. The reason that it is profitable to distinguish 
between D, Hand I is that these components depend on phenomena 
whose consequences differ. Generally the D component will be of 
most importance to us, and indeed our interest in the other com­
ponents is very often confined to their elimination, for the purpose 
of rendering predictions based on D the more precise. At other 
times, however, as when considering heterosis, we may have a more 
direct interest in non-additive effects. But whatever our interest 
may be, the analysis will be the simpler the smaller the number of 
components there are to deal with. 

The very fact that heterosis is of widespread occurrence warns 
us that a component of variation depending on non-additive effects 
of the genes must be expected, no matter what scale is used. But 
even so, we are still at liberty to explore the possibilities of adjust­
ing the proportions which will appear as dominance and as inter­
action. Now dominance is more limited in its scope and simpler in 
its genetical consequences than· interaction. Indeed, it is not easy 
to see how the consequences of all the types of interaction, which 
we know to occur with major genes, can be represented in as simple 
a way in a biometrical analysi;;; as the separation of h from d 
enables us to represent dominance. Prediction is correspondingly 
difficult in the presence of interaction. Neither the d nor the h 
increments of the various genes will be additive and the correction 
necessitated by their non-additiveness must vary with the kind or 
kinds of interaction which are in operation. It is therefore prefer­
able to have the non-additive effects represented as dominance 
rather than interaction, and this is what the method of scaling 
developed in Chapter 3 seeks to accomplish. If applied, for ex­
ample, to the data of Table 33 the scaling criterion would reveal 
the log scale as adequate but the direct scale as inadequate for our 
purpose, which is of course to eliminate !,leaving only D and Has 
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the components of heritable variation, separable both in measure­
ment and in prediction. 

Only two of the experiments listed in Table 32 allow us to fOrm 
an opinion on the success of this approach, viz. the oat and barley 
experiments. Should an important ·I component remain on any 
scale, the attempt to analyse the variation solely into D and H 
items should lead to inconsistencies in their values even within 
a generation. The test of residual interaction revealed no such 
inconsistencies, even though inQ.ependent evidence showed that the 
scale was not completely adequate for prediction in the barley 
experiment. So far as this evidence goes, therefore, the interaction 
component can be neglected in suitable analyses, for on an appro­
priate scale interaction can either be efupinated or else its conse­
quences can be made so small as to cause no serious disturbance in 
the partitioning operation. This is borne out by evidence from 
Drosophila, where Wigan (1944} and Strauss and Gowen (1943} 
have shown that whole chromosomes are additive in their effects 
on the number of sternopleural chaetae and on egg production 
respectively. 

The oat and barley experiments also teach us something about 
the dominance relation. The dominance component was highly 
significant in the barley, and appeared large though not fully 
significant in the oats. In the oats the evidence indicated that 
the mean grain length of F 1 was midway between those of the 
parents. If dominance was present, therefore, it must have been 
balanced, some genes showing dominance of the - and others 
dominant of the + allelomorph. In the barley, the F 1 fell outside 
the limits of the parent varieties. It was, however, not so far from 
the mid-parent as would have been expected from the value of H 
if all the genes had shown reinforcing dominance. Again, therefore, 
the dominance must have been partially balanced, some of the h 
increments being in opposition to others. Now such balanced 
dominance could not be eliminated by re-scaling. It would appear 
from this evidence therefore that while interaction can be effec­
tively eliminated by scaling, dominance cannot. We are thus led 
to conclude that not merely is it convenient to attempt by scaling 
to eliminate interaction and to throw all the non-additive effects 
of the genes into dominance, but further that this approach accords 
well enough with the genetical realities of the situation. 

Heterosis demands some form of non-additiveness in the effects 
of the genes. Following Jones it has generally been assumed that 
this is due to dominance, and our findings support this view. It 
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has, however, been suggested a number of times that the relations 
of the allelomorphs of the genes involved may be such as to lead 
to super-dominance, i.e. h >d so that Aa exceeds both AA and aa. 
Leaving aside for the moment the question of what can be meant 
by a gene which shows superdominance, it might be thought that 
the barley experiment lent its support to the occurrence of this 
phenomenon, for H was estimated in F 1 as 13169 and D as only 
10389. The difference is, however, not significant. After adjustment 
for linkage the error variance (V) was found to be 323144 
(Table 29). Now with five replications Vv-H=!V(cvv-2cv~cHH) 
which becomes 64629(10·526+60·632+107·789). The standard error 
of D-H is thus 3401, which is larger than the difference itself. 
There is therefore no reliable evidence of super-dominance in the 
barley, and indeed ear conformation could have shown a much 
greater heterosis than that observed if all the genes had possessed 
dominance in the same direction, without any one of them showing 
super-dominance (Section 21). 

25. THE EFFECTIVE FACTOR 

In examining the phenomena of dominance and interaction as 
they appear in biometrical genetics, we have seen that while we 
must continue to regard them as distinct in their genetical con­
sequences, in the way made familiar by Mendelian analysis, they 
lose some of their distinction, even becoming partly interchange­
able, in their biometrical measurement. We can no longer regard 
any given degree of dominance or interaction as a final property 
of the genes in question, beca!lse we can adjust it, or in the case of 
interaction eliminate it, by an artificial manipulation of the scale. 
Thus although the concepts derived from Mendelian genetics must 
remain, our notions as to the ways in which they are used must be 
extended and adjusted to the circumstances ofbiometrical analysis. 
In just the same way, we must still seek to explain our biometrical 
results in terms of the genes which Mendelian studies have led us 
to infer, but the new circumstances of observation make us apply 
the idea of genes in a modified fashion. 

The fine gradation in manifestation of a character showing con­
tinuous variation suggests that the number of genes, whose differ­
ences control the variation, is large; certainly of the order of 101 

and possibly of the order of 101• The values found in Taple 32 for 
the number of effective factors are in striking contrast with this 
expectation. In no case does either K 1 or K 1 exceed 10, and only 
with the Petunias is the estimate of k itself set over this figure. 
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The reason for this discrepancy is, of course, clear. As we have 
already seen, the effective factor is not of necessity the ultimate 
gene. 

The gene is not the only unit to which genetical investigations 
lead. The whole nuclear complement, the haploid set of chromo­
somes, the single chromosome and the chromosome segment can 
all behave as units in one way or another. The gene occupies its 
unique position solely because it is the ultimate unit, the smallest 
into which we are able to see the heritable material as divisible by 
genetic means. 

Genetically we can recognize a gene only by the difference to 
which it gives rise. If the gene does not vary and, in varying, 
produce a detectable phenotypic difference, we cannot know that 
it is there. The inference of a gene is therefore limited by the means 
available for detecting the effect of its variation. If the difference 
produced in the phenotype is too small to be picked up by the 
means at our disposal we cannot identify the determinant, though 
we may be able to detect a group of such determinants of small 
effect when they are acting together. 

Having detected the difference, the second condition that must 
be satisfied before it can be ascribed to a single gene is that it 
cannot be broken down into two or more smaller differences; or, 
amounting to the same thing, that there can be found no evidence 
of two or more smaller genetic differences which can combine to 
give the one in question. Again, since genetic differences can be 
followed only by their effects on the phenotype, the means of 
detecting these effects will limit the genetic test of divisibility. 

Where two gene differences affect characters that are separately 
recordable, it is relatively easy to show that the genes are distinct 
from one another. Reassociation of the genes in the chromosomes 
will then be regularly detectable by the reassociation of the char­
acters in the phenotype. The reassociation of the genes may arise 
by recombination or by mutation (which is not formally distin-. 
guishable from rare recombination), but no matter how rare an 
occurrence it may be, the reassociation of the genes can always 
be recognized in these circumstances as an individual event. A 
single recombination or mutation is therefore sufficient to establish 
the two genes as distinct units. 

The test is less precise where the two genes are less readily dis­
tinguishable by the differences they produce in the phenotype. 
Suppose that the two have complementary actions such that the 
genotypes aabb, aaB and Abb give indistinguishable phenotypes, 
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only the combination AB having a different effect. On crossing two 
true breeding lines, AABB and aabb, the F 2 will contain only two 
distinguishable classes, but we may recognize that two genes are 
involved by the characteristic departure from a 3 : I ratio. If the 
two genes recombine freely the F 2 ratio will be 9 : 7, and there can 
be found types, aaB and Abb, which while phenotypically like 
aabb can be separated from it by their breeding behaviour in 
crosses with one another. If the two genes are linked, however, the 
test is less precise. The two phenotypic classes are expected in the 
ratio 3-2p+ps: 1+2p-p2, where pis the frequency of recombina­
tion, assumed to be the same on both male and female sides. The 
smaller p becomes the more difficult it will be to detect departure 
from the 3: lratio. Thuswithp=0·01, the ratio will be 2·981: 1·019, 
which will be very troublesome to distinguish from 3 : I. Further­
more, the classes Abb and aaB, which afford material for a 
confirmatory breeding test, will be rare. They will occur with 
frequencies of only 2p-p 2 each compared with l-2p+p 8 for aabb, 
or 0·019: 0·019: 0·981 when p=O·Ol. There is therefore no easy 
means of recognizing single cases of recombination between the 
two genes and in consequence the test is basically statistical. A 
unique case of recombination is insufficient: recombination must 
be sufficiently common for us to detect the deviations it causes 
from certain statistical expectations, and we cannot therefore be 
sure of always isolating the ultimate unit of inheritance. · 

Mutation might appear to help in such a case. We might obtain 
aaBB and AAbb by independent mutation from AABB. They 
would appear alike but on crossing would give an F 1 like the 
parental stock, AABB. A situation like this is known at the yellow 
locus in Drosophila melanogaster, but even so there is still doubt as 
to whether this should be regarded as two genes or one, for the 
mutation which would be, in our present two-gene notation, from 
AB-+ab is more common than AB-.aB or AB-.Ab. The final 
conclusion is thus still dependent on statistical considerations. The 
unique observations of mutation to aB and Ab is not enough 
(Mather, 1946b). 

The test of the unitary nature of a genetic difference is therefore 
conditioned by the type of effect on the phenotype, even with 
genes of major effect. This limitation of observation has its impli­
cations for the theory of the gene in general (Mather, 1946b); but, 
more germane to our present purpose, it also shows us that we can 
never be sure of tracing the ultimate polygene. Polygenes, by 
hypothesis, have effects sufficiently small by comparison with the 
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residual variation to prevent them being followed as individuals 
in genetical analysis. Their effects are also similar to one another. 
It is, therefore, in general impossible to detect the recombination 
of two polygenes as a unique event by its effect in the phenotype. 
The test of recombination must be statistical. 

There are two reasons why the test of recombination between 
polygenes will be even less sensitive than the test which we have 
considered in the case of linked complementary genes. The first 
reason is that recombination must be sufficiently frequent for us 
to detect a change in variance depending at best (Section 16) on 
the difference between (l-2p)and(l-2p)(l-2p). This change is from 
0·9800 to 0·9504 when p=O·Ol and is only from 0·80 to 0·64 when 
p is as high as 0·1. Secondly, we have no means of separating the 
effects on variation of all the pairs of genes which are segregating, 
so that change in some of them may be partly swamped by lack 
of it in others. The extent to which we can push the analysis of 
a polygenic system into the ultimate units which genetics has 
taught us to recognize, must thus be limited by the conditions 
under which our observations are made. The less the extraneous 
variation relative to the effect of the gene, and the fewer the genes 
which are segregating, the further the analysis can be taken. But 
in the general case, while we must interpret the properties of a 
polygenic system in terms of ultimate genes, we must be prepared 
to use biometrical units specified by analytical criteria different 
from those of Mendelian genetics, and depending on statistical 
relations rather than unique events. 

Investigations using major genes have given us a picture of the 
chromosomes (satisfactory for most purposes of predicting be­
haviour in hereditary transmission though admittedly unsatis­
factory in other ways) as composed of units, the genes, within 
which recombination does not occur but between which it does 
occur. When we cannot recognize recombination as an individual 
event, we must of necessity modify this picture to one in which 
recombination occurs with a given frequency between neighbour­
ing units, while it still does not occur inside a single unit. Now, no 
matter how low we set this critical recombination frequency, we 
can still have no certainty that the factors so distinguished will 
show no internal recombination. We are in fact assuming a discon­
tinuity which may be spurious in the distribution of recombination 
along the chromosome. 

The number of factors into which a chromosome can be divided in 
this way cannot, of course, exceed the ratio its total genetic length 
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bears to the recombination frequency assumed between adjacent 
factors. Since we may assume that factors in different chromosomes 
recombine freely, their numbers are additive over chromosomes. 
The maximum number of factors we can find is thus dependent on 
the assumption made as to the frequency of recombination between 
them. If we assume that the factors are independent in inheritance, 
statistically the easiest assumption to make (see Chapter 6), 
the maximum number is given by the recombination index, i.e. 
the haploid number of chromosomes plus the mean number of 
chiasmata per nucleus. · 

This assumption of independent inheritance is equivalent to 
supposing that there is no variation in either the number of 
chiasmata formed or in the position in which each forms within 
the chromosome, at least in respect of chiasmata falling in parts 
of the chromosomes carrying genetic differences. In .such a case 
pairs of genes will either recombine freely or will not recombine at 
all, according to whether they do or do not lie astride a point of 
chiasma formation. The factor is then clearly the same as the gene 
which could be detected by Mendelian methods, since chiasma 
formation, upon which recombination within a chromosome 
depends, is either all or none. This situation, or something closely 
approximating to it, is encountered in such spe~ies as Mecostethus 
grossus and Fritillaria meleagris where the chiasmata can be ob­
served, to be localized in _position. In heterokaryotic fungi, too, 
where no recombination occurs within a nucleus and the variation 
arises from the sorting out of whole nuclei, recombination is all or 
none. The nucleus is then the final unit of recombination and trans­
mission, as is the segment delimited by the positions of chiasma 
formation in M ecostethus and Fritillaria. It is at once the gene and 
the effective factor. The latter will therefore be as constant a unit 
as the gene in these cases. 

Generally, however, chiasmata vary in their position of forma­
tion. The linkage test of Chapter 5 is in fact a test of such variation. 
If all pairs of genes either recombined freely or not at all, each 
would contribute either as two independent units or only as one 
to D and H. There could then be no change in D and Hover the 
generations. Such changes have been clearly observed in barley 
and they are strongly suggested in both Drosophila and Antir­
rhinum. In Petunia the linkage was inferred on other grounds, and 
the maize data are insensitive. Only in the oats did linkage fail to 
appear in a test of reasonable sensitivity. Even in such a case the 
failure to observe the type of change in D and H, which recom-
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bination values between 50% and 0% bring about, may only mean 
that the genes were so distributed as not to offer the means of 
detecting the linkage. However this may be, the linkage test offers 
us a means of deciding whether we may safely assume the factors 
to be inherited independently. When linkage is detected we cannot 
fairly make this assumption, and any count of the number of 
factors based on independence must, as we saw with the barley, 
be too low. 

The linkage test has a still further importance. We need not 
. assume our factors to recombine freely. As with the barley we may 

assume other frequencies of recombination which suit our con­
venience, and obtain useful predictions from them. But whereas 
if no linkage is found, we have grounds for assuming that our 
factors, based on the assumption of independence, may be reason­
ably stable for reasons which we have just discussed, the factors 
cannot be stable which we arrive at by assuming recombination 
values of other than 50% when linkage has been demonstrated by 
change in D and H. The assumption that factors are separated by, 
say, 10% recombination is equivalent to supposing that a chiasma, 
while not forming regularly in one given position, must form in one 
or other of only 10 positions, and never fall between them. This 
may be a useful assumption for purposes of immediate calculation, 
but it is obviousiy fictitious. The factors arrived at in this way 
must be in a sense statistical abstractions. Each will vary in its 
genetic content within a generation and will be broken down by 
further recombination as the generations succeed one another. The 
demonstration of linkage carries with it the demonstration that no 
permanent system of factors can be derived. 

The situation inay be explored further by determining the dis­
tribution of the number of factors among Fa's, using F 4 data for 
the purpose. If the factors presented in F 2 were stable, each would 
have a half chance of segregating in any Fa· This enables us to 
formulate an expectation for the distribution of any given number 
of factors observed in F 2 among the Fa families, and the numbers 
observed can be compared with this expectation. The discrepancies 
will tell us sometping of how our factors differ and change in the 
magnitudes of their action and thus of how they are being broken 
down by recombination. 

This breakdown of the effective factors by recombination has 
three consequences. First of all, the number of factors must appear 
to increase as the experiment progresses. Thus with 4 factors segre­
gating in F 2 and no change by recombination within them, F 3 
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families should average 2 segregating factors, F ,'s 1 segregating 
factor, and so on. But with breakdown, the fall in number per 
family in the succeeding generations will be less, so that the 
number which must be assumed in the experiment as a whole will 
increase. At the same time, of course, the average effect of each 
factor must diminish correspondingly. In other words, the gap 
between gene and effective factor will be-narrowing as the experi­
ment proceeds, and if this process is continued for sufficiently long 
we might hope that the biometrical factor would ultimately 
approximate to the individual polygene. The experiment would, 
however, need to be very lengthy for individual polygenes to be 
counted in this way. · 

A second consequence of the breakdown of the factors is that 
they can be used as units only in a temporary sense. They enable 
us to foresee behaviour in the near future, to predict minimal limits 
and rates of advance under selection for one or two generations. 
Where the linkage test reveals _little evidence of change in the 
units, the period over which prediction can be made may be 
increased; but even in this case, the longer the term of the pre­
diction the more hazardous it must be. The number of effective 
factors must therefore be used with reserve: unlike genes, they are 
not final units. · 

Nevertheless, it is worth noting that the factors are the only 
units we have. We can arrive at some estimate of their number; 
whereas we can arrive at no estimate of the number of genes, 
except possibly with great labour. And even could we know how 
many genes were involved the information would benefit us little, 
for their organization within the chromosomes is all-important in 
determining the contributions they make to the components of 
variability and to the selective responses. It is of more use to us 
to consider the system in terms of contributions to the vari­
ability than in terms of individual genes. The factors to which the 
analysis of variability leads us are admittedly neither permanent 
nor constant, so that the predictions which they permit have only 
a short range validity; but a knowledge of the number of genes 
without any knowledge of their organization into factors would 
permit no prediction at all. 

The third consequence of recombination within the effective 
units is that just as the unit is broken down in this way, it can 
also be built up. Genes themselves change only by the rare process 
which we term mutation, and we know that polygenes are no ex­
ception (Mather,1941;Mather and Wigan, 1942). Recombination 
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on the other hand is much more frequent in its occurrence, and 
it therefore offers much greater possibility of useful change in 
the factor. The effects, however, of intra-genic mutation and inter­
genic recombination will not be directly distinguishable where the 
genes have physiologically small, similar and supplementary 
actions. We can recognize change through recombination within 
the factor only by comparison of the speed of the change observed 
with that known to be due directly to mutation as measured in an 
inbred line (Mather, 1941). From the point of view of the effective 
factor, viewed as a whole, the two processes are therefore 
inseparable. 

The effects of recombination in slowly building up linked groups 
of polygenes which will tend to stick together in segregation and 
so appear more or less as one large factor, in the way we have been 
discussing, is well shown by the selection experiment with Droso­
phila described in Section 2 (Mather and Harrison, 1948). The first 
selection line advanced slowly and fairly steadily for 20 genera­
tions, the mean chaeta number increasing by about 20 over that 
period (Fig. 4). Such a change is too slow to be wholly, or even 
largely, due to recombination of whole chromosomes: there are 
only three large chromosomes in Drosophila melanogaster, and all 
their combinations as whole chromosomes would appear and be 
exposed to selection in the first few generations. The main advance 
must have been due rather to recombination within chromosomes, 

a number of repulsion linkages, each of the kind+- being progres-
-+ 

sively broken down and replaced by coupling linkages of the 
kind++. 

This recombination also upset the balance of other systems of 
polygenes one of which affected fertility. As we saw in Section 2, 
fertility fell as chaeta number rose, until finally it became so low 
and the flies so few that selection could no longer be practised and 
mass cultures had to be used. With selection relaxed for chaeta 
number, the fertility system took charge and as fertility rose 
under natural selection, chaeta number fell. But it fell at such a 
speed that 80% of the gain in chaeta number, which took 
20 generations to achieve, was lost in only 4 more. When selec­
tion was again practised for increased chaeta number, the lost 
ground was regained once more in 4 generations. The coupling 
linkages so laboriously built up had persisted with corresponding 
tenacity, so that the original segregation for factors which, by 
reason of their balanced genic content, were of small effect was 
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replaced by segregation for factors of larger effect. The original 
advance had been conditioned by the slow building up of the very 
polygenic combinations whose moPe or less unitary behaviour in 
transmission and segregation permitted later advance at four 
times the original speed. 

Thus in this experiment, as indeed must be the case in all such 
experiments, the speed and immediate limit of advance under 
selection was not determined by the number of individual poly­
genes but by their organization into linked combinations. An 
experiment covering only a few,generations will therefore discover 
the properties of these combinations rather than those of their 
constituents. In consequence the factors, in terms of which we 
interpret biometrical experiments, must be related to the com­
binations rather than to the individual genes. The individual 
polygene must remain, however, as the final unit of action, change 
and recombination upon which the properties of the combinations 
or factors are based. We are in fact working at two levels. In the 
immediate sense the combination is all important, but it is not a 
final unit. Genically it is composite and it can therefore change as 
its constituent genes change or become reassociated. 

This distinction between the gene and the effective factor, 
which we recognize in biometrical segregation, is important to 
our understanding and use of the latter concept. The factor must 
derive its properties from the genes of which it consists, but these 
properties need not be so limited as those of a gene. We have seen 
that change in a factor depends more on the reassociation of the 
constituent genes than on change within the genes themselves. 
We must now observe that we cannot even be sure that a change 
which is not to be traced to recombination is due to mutation of 
one gene. Structural change, leading, for example, to duplication 
of several genes within a factor, cannot be distinguishable from 
single gene mutation, and indeed the apparent mutations of Jones 
(1945) in inbred maize may well be of this kind. 

In the same way, super-dominance (h >d) of an effective factor, 
should it be observed, could always ·be interpreted in terms of 
normal dominance (h <;d) of individual genes of like action which 
were linked, perhaps very closely, in the repulsion phase. Equally, 
too, apparent pleiotropy of the effective factor could always be 
interpreted as due to its containing within the chromosome seg­
ment which is its physical basis, polygenes belonging to unlike 
systems. Genetical experiments have in fact shown that genes of 
unlike effect are characteristically mingled along the chromosomes. 

B.G,-11 
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Apparent pleiotropic action, due really to linked genes, must 
therefore be expected, and the observations on correlated responses 
to selection (Section 2) vindicate this expectation. These corre­
lated responses may in fact be very complex. In the selection 
experiment in question, fertility, spermatheca number and mating 
behaviour all changed as a result of selection for chaeta number. 
Doubtless other characters not recorded in the experiment 
behaved similarly. Pleiotropy in the classical sense is therefore 
almost useless as a concept for application in biometrical genetics. 
We know that apparent pleiotropy can be due to linkage, and we 
know that units of inheritance are linked groups of genes. We 
have, and indeed we can have, no proven case of pleiotropy of a 
single polygene. 

In order to account for continuous variation we have had to 
postulate systems of genes having small, similar and supple­
mentary effects. We have been able to show that these genes must 
behave in transmission in the same way that the major genes of 
Mendelian genetics behave, and on this basis we have been able to 
devise a means of analysing continuous variation. But we have 
also come to see that, in biometrical genetics, observations can be 
made only on linked groups of the genes, on in fact the total genic 
content of factors whose physical basis is to be found in whole 
segmenta of the chromosomes. The properties of the groups or 
factors will reflect not merely the behaviour of each individual con­
stituent gene, but also the mechanical and physiological relations 
of the genes one with another. And since we have no mean.S of 
predicting these genic relations in detail, we can learn the proper­
ties of the factors only by direct observation and experiment. 

Something of the properties of integration within the factors 
has already been discovered, sufficient at least to see the situation 
which faces us. The necessary analytical methods are also taking 
shape. By the future application and refinement of these methods 
we should reach a fuller understanding of the units of biometrical 
inheritance, and thereby gain a greater control over their practical 
use. 



GLOSSARY OF SYMBOLS 
1. GENETICAL SYMBOLS 

A-a, B-b, &c., genes of two allelomorphs; A, B, &c., being the allelo-

BIP 

MAT 

lB 

2B 

Pab 

2. GENERAL 

d,. 

D 

H 

E 

B.G.-11* 

morphs which add to the expression of the character 
the two parents of a cross 
the first generation of the CrOSS, from p 1 X p 1 or p 1 X p 1 

the second generation of the cross, from F 1 individuals 
self-fertilized or interbred 

the third generation of the cross, from F 1 individuals self­
• fertilized 

(biparental progenies) the third generation of the cross, 
from F 1 individuals interbred in pairs taken at random 

(maternal progenies) the third generation of the cross, 
from F 1 individuals allowed to breed as females at 
random with the rest of the F 1 

the first backcross generation, from crossing F 1 to the 
parents; consisting of 

B1 from F 1 x P 1 or reciprocally 
and B1 from F 1 x P 1 or reciprocally 

the S!lCOnd backcross generation, from crossing lB to the 
parents; consisting of 

B 11 from B 1 x P 1 or reciprocally 
B 11 from B 1 x P1 or reciprocally 
B 11 from B 1 x P 1 or reciprocally 

and B 21 from B1 x P 1 or reciprocally 
the frequency of allelomorph A in the gametes of a 

randomly breeding population 
the frequency of allelomorph a in the gametes of a 

randomly breeding population ( = 1-ua) 
the frequency of recombination between the genes A-a 

and. B-b. qab=l-pab 

SYMBOLS 

the increment added to (or subtracted from) the measure­
ment by AA (or aa) 

Thus .AA-aa=2d,. 
the increment added to the measurement by Aa 

Thus Aa-l(AA+aa)=h,. . 
the component of variation arising from the d increments 

of all the genes which are segregating 
the component of variation arising from the h increments 

of all the genes which are segregating 
the component of variation arising from non-heritable 

agencies. It appears as 
E 1 the non-heritable variation of individuals 
E 1 the non-heritable variation of mean values of 

families 
and any other special values, suitably denoted, which 
it may be necessary to estimate 
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v .. 
Vp 
r 

GLOSSARY OF SYMBOLS 

the heritable portion of the variance, including contribu­
tions from both D and H 

the non-heritable portion of the variance 
the number of effective factors 

(P1-P~>' 
the estimate of k found as W 

. nV~3 
the est1mate of k found as -V 

YF3 

where nVF3=l-D+lH and VrF3 is corrected for 
sampling variation 

the variance of d0 , dt, &c., round their mean d 
the variance of (a;+!h;), (d~+!h~). &c., round their mean 
the ratio of Vp to v .. 

3. STATISTICAL SYMBOLS 

n the number of indi"iduals measured 
S(x) 

i the mean of the values of variate x, found as --
n 

V"' the variance of the values of x round z, found as 

-=-8(x-z)1=- S(x1)---1 • 1 [ S
1
(x)J 

n-1 n-1 n 

the variance of the z, found as V"' for single means, or by 
n 

direct estimation where several means are available 
the standard deviation of the distribution of ·x, found 

as vv .. 
the standard error of i, found as v V ~ 
the covariance of variates x and y round their respective 

means, found as 

I I I [ S(x)S(y)J 
n-1S[(x-z)(y-y)]= n-IS(x(y-y)]= n-1 S(xy)- n 

4. SPECIAL STATISTICAL SYMBOLS 

P 1, P 10 F 1, F 10 B1, &c., the mean values of the measurement in the families 
P 1 , P 10 F 1 , F 20 B 1, &c., respectively 

V Pb V P2> V FI• V n. V Bl• V B2> the variances of the measurement in the 
families P 1, P 10 F 1, F 20 B 1, B 1 respectively 

V FJ• V BIP• V Bib V Bl2> VB2b V B-l:!> the variance of the mean measurements 
of all the families in F 10 BIP, Bu, B11, B 11, B11 respec­
tively 

V F.b V BIPt V Bib V Bl2> V B21• V B22> the mean variance of all the families in 
F 10 BIP, Bu, B 110 Bn, B~1 respectively 

V YF3 the variance of the variances of all the families in Fa 
Wntl'3o WntBIPt the covariances of the measurements of F 1 individuals 

with the means of their F 1 and biparental progenies 
respectively 
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W Bl/Blb W BI/ Bl2o W B2/ B2to W B2/ B22• the covaria.nces of the measurements of 
B 1 and B1 individuals with the means of their B 11, B 11, 

B 21 and B 11 progeni13s respectively 
W P/O the covariance of parent and offspring in a randomly 

breeding population . 
W 818 the oovariance of full siblings in. a randomly breeding 

population 
rP/O the correlation of parent .and offspring in a randomly 

breeding population 
ro/O the correlation between full siblings in a · randomly 

breeding population 

&. SCALING TESTS 

A=2B1-FcP1, V.t=4V.m+Vn+Vn 
B=2B1-F1-P1, V .B=4V m+Vn+Vn 
0-=4F1-2F1-P1-P1, Vc=l6Vn+4Vn+ V.n+ Vn 

A =B =0 =0 on an adequate scale 
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