EDUGATION DEPARTMENT.

REPORTS
 ON THE
 PhilabelṕHas International exhibition

1876.

VOL II.

LONDON:
PRINTED BY GEORGE E EYRE AND WILLLAM SPOTTISWOODE,
prunders to thr queen's most exclllent majeety FOR HER MAJESTY S STATIONERY OFFICE
1877.
[C.-1848] Pruce 4s. $4 d$.

CONTENTS.

40609. Wt. 1147.

INDIA.

British India occupies an area of nearly $1 \frac{1}{2}$ millions of square mules, and Area, population, contains about 240 millions of zahabitants. The greater part of the country and Government. is placed durectly under British admmistration, whilst the remaining portion continues under the rule of different native princes, who, however, all acknowledge the supremacy of the British Crown. The exact figures are as follows :-

	Area.	Population.
	Square mules	Inhabitants.
Provinces under Britush admunstration	- 897,004	189,613,238
Native States	- 589,315 -	50,325,457
Total British India	- 1,486,319	239,938,695

The new era of Indsa opens with the transfer of ats government from the Moral and old East India Company to the British Crown, the announcement of which material prowas pubhely proclaimed on the 1st of November 1858, immediately after the grane of the suppression of the mutiny The title of "Empress of India," assumed by transfer of the proclamation on the lst of January of the current year, is only a sequel to from the East the first step taken in 1858, and is the outward symbol of the indussoluble Irona Company connexion betwreen India and the British Crown.
During the 20 years which have elapsed smee the outbreak of the mutiny, India has undergone a profound trdnsformation Two causes-one a moral, the other a material one-have mainly contributed to bring about this result These causes are, first, the gradual progress of education, and, second, the extraordinary development of means of communication If we compare the year 1857, the last before the mutiny, with the present state of things, we find that the progress"made in both these durections has been very great.

As regards education, the total expenditure on that account, as far as the educational Government is concerned, amounted in 1857 to 231,4791 ., whereas the esti- progress mated expenditure in 1877 is more than four times as large, amounting to 1,044,130l, whilst the number of pupils, which in 1857 hardly reached 200,000 , amounts now to about $1,700,000$, and is rapidly mereasing Such Number of numbers, though they appear small when measured by the standard of pupis civilised countries, conclusively prove that education is already beginning to affect the masses They also indicate an extraordinary progress in so short a time, and compare very favourably with the condition of other semcivilised countries Thus Russia possesses not much more than one-half the Compansonwta number of the pupis in Indian schools, and event taking nato account the Russia difference of population, the Indian numbers compare not unfavourably with the Russian ones, the school attendance in both countries amounting in most of the provnces to a little below 1 per cent. of the population

The progress of education is also shown by the yearly increasing number Uurersitus of graduates issuing from the three Indian Universities of Calcutta, Bombay, and Madras, established in 1857 at a time when India was in the very throes of the mutiny, as also by the large number of pupils in the special Envineening art, engineering, art, and medical schools. Equally striking is the rapid growth and medical of the native press and literature

Notwhthstanding, however, the great progress which has been effected, education has hitherto had, a smaller share in bringug about the ehanges Deaumormento wrought in India during the 20 years under discussion, than the other cause means of conim just mentioned, namely, the development of the means of communication Although in the end the results which will follow from the introduction of European ideas and civilisation will be the most far-reaching and abiding of the changes produced by the English administration of India, it is "yet true that the results which have hitherto been obtamed are valuable cluefly as the

Statistics of ralways, telegraphs, \&c.
promise of a better future, and that the full advantages will be percelved only when the present generation shall have grown up. The changes brouglit about by mprovement in the means of communication have been, on the other hand, almost instantaneous, and have already transformed the whole face of the country.
The progress effected since 1857 in this respect is shown by the following figures:-
Ralways -

	1876.	1857.
Length of, open	- 6,497 miles	274 miles
	1875.	
Number of passengers carried	- 26,779,000	1,825,000
Quantity of goods carred	- 4,389,000 tons.	
Gross recelpts -	- 7,412,000l	198,000l.
Net receupts	- 3,648,000l	116,000l.
Telegraphs Length open		
Post Office - No of letters and packets co	116,119,000	79

Equally important in this respect was the opening of the Suez Canal, which took place on the 18th December 1869, a date which marks a turning point in the trade not only of Inda, but of the East generally.
The mfluence which all these crreumstances have exercised upon the development of the country is manifested both in its finances and its trade, as the following figures show. First, as regards finance:-

		1877.	1857.
		- \mathfrak{E}	£
Revenue : $\underset{\text { Provincial }}{ } \quad-\quad 51,221,000$			
Expenditure:		55,422,00 ${ }^{\prime}$	31,691,000
Imperial (estimate for 1877, inclusive of Famine Relief)	53,079,000		
Provincial, in excess of the			
$\begin{aligned} & \text { Imperial assignments } \\ & \text { (estimate) } \end{aligned}$	4,538,000		
Extranrdınary Expenditure			
on account of remunerative Public Works (estrmate)	3,765,000		
		61,382,000	31,609,000

Causes of excess of expenditure over revenue

Both the revenue and the expenditure have almost doubled in the 20 years It will be noticed that the estrmated expendture in the year 1877 shows a considerable excess over the revenue. This $1 s$ due partly to the large expenditure on account of remunerative pubhe works, which it is only farr should be paid for out of borrowed money, and partly also to the extraordnary expenditure of nearly two millions, occasioned by the famine now ragung in Southern and Western India It must also be observed that there is a large expenditure on account of public works which is not provided for by loans, but pand out of the current revenues, so that the whole sum which has been estrmated for the public works in 1877 amounts to $8,122,2541$. In fact, by addnng together the cost of public works ordinary and extraordinary, the cost of education ($1,044,000 l$) already mentioned, together with that of the trigonometrical, geological, and other surveys, and other scientific operations undertaken by the Goiernment, we obtain a sum of about $10,000,000 l$, whoch
is now being yearly spent by the Government in India for the permanent improvement of the country and its people

The trade and shipping returns prove that the merease of both the public Growth of trade revenue and expenditure has been accompamed by a stll greater increase in the wealth and prosperity of the country

The shipping has increased in the following proportions - -
Shipping, 1857
Tonnage of foreign and coastıng trade -

The value of exports and imports* has increased in even greater proportion .- Exports and urn ports, 1857 and

	1877	1857
	$\frac{\overline{e^{e}}}{48,697,000}$	$\frac{\overline{\mathscr{E}}}{28,608,000}$
Imports (ncluding treasure) Exports (including treasure)	62,975,000	26,591,000
	111,672,000	55,199,000

These figures melude treasure as well as merchandise, but it will be instructive to separate these two items The data referring to the import and export Exports and of treasule are so interesting in themselves that the details for each of the treasure 18 20 years of the period 1858-77 have been inserted in the following table:- $\quad 1877$

		Imports.	Exports.
		$\boldsymbol{\varepsilon}$	\boldsymbol{E}
1858	-	- 15,815,436	822,438
1859	- -	- 12,817,071	669,427
1860	-	- 16,356,963	929,107
1861	- -	- 10,677,077	1,119,549
1862	-	- 14,951,985	683,355
1863	- -	- 20,508,967	1,111,140
1864	-	- 22,962,581	1,270,435
1865	- -	- 21,363,352	1,444,775
1866	-	- 26,557,301	2,165,352
1867	- -	- 13,229,533	1,950,435
1868	-	- 11,775,374	1,025,336
1869	- .	- 14,366,588	776,082
1870	-	- 13,954,807	1,025,386
1871	- -	- 5,444,823	1,587,180
1872	-	- 11,573,813	1,421,173
1873	- -	- 4,556,585	1,273,979
1874	-	- 5,792,534	1,879,071
1875	- -	- 8,141,047	1,592,722
1876	-	- 5,300,722	2,115,145
1877	- -	11,436,118	3,942,580
	Total	-267,582,677	28,804,567

Excess of imports of treasure over exports $238,778,110 l$
The net increase of the precious metals in India during this period thus amounts to the extraordinary total of $238,778,1101$, or an increase of, as nearly as possible, one pound sterling for each head of population in the whole of Buitish and Native India.

[^0]Expolts and umports of mer. chandise, $185{ }^{2}$ and 1877

Stationary
character of the old branches of Indıan trade.

Exports of 1 aw
and manu". factured silk dechning

Imports ancieasing.

Decrease in
export of
Cashmereshawls and woollen manufactures . likewise in saltpetre,
nlso in sugat

Enormous home consumptron of sugar.

The comparative figures of exports and imports of merchandse, excluding treasure but including Government stores, are as follows.-

-	1877.	1857.	Percentage Increase from 1857 to 1877.
-	£	£	$\begin{aligned} & 163 \% \\ & 133 \% \end{aligned}$
Imports of merchanduse	37,260,000	14,195,000	
Exports \% "	59,032,000	25,338,000	
	96;293,000	39,533,000	140%

Thus the exports of Indian produce and manufacture during this period of 20 years have increased 133 per cent., the imports of foreign merchandise 163 per cent, and the total trade by about 140 per cent.
But not only has the trade mereased in volume, it has completely changed in character Nothing as more striking, in looking over the trade returns, than the rapid development of new branches of trade, whilst many of the old staple articles of Indran trade continue stationary, or are even declining Thus silk and sill manufactures, which formerly constituted such an impoitant item in the Indan exports, have rather declined, the numbers beng: -

.	1877.	1857.
Exports of raw sllk " ,, sllk manufactures	$\overline{777,000}$	$\xrightarrow{\text { L82,000 }}$
	- 224,000	281,000
	£1,001,000	1,063,000

Not only have the exports dechned in this respect, but the imports of foreign sllk and silk manufactures have largely necreased, being now more than four trmes as large as in 1857:-

	1877.	1857. ${ }^{\text {• }}$
Imports of raw silk " ," silk manufactures	$\begin{gathered} \overline{\mathfrak{E}} \\ -\quad 452,000 \end{gathered}$	$\stackrel{\mathscr{E}}{120,000}$
	- 585,000	106,000
	£1,037,000	226,000

Thus during the current year there has actually been more silk and silk manufactures imported into India than exported from it
The same decrease can be observed in the export of Cashmere shawls and other woollen manufactures, the numbers being $291,000 l$ in 1857 and only $216,000 \mathrm{ln} 1877$
A decrease may also be noticed m another characteristic Induan product, viz, saltpetre, of which the value exported in 1857 amounted to $576,000 \mathrm{l}$ against 382,000l in 1877
Sugar also has largely decreased, the value exported in 1857 being 1,786,000l, or above 7 per cent. of the entire exports, whereas in 1877 it only amounted to $925,000 \mathrm{l}$, or only a little more than $1 \frac{1}{2}$ per cent of the exports, whilst during the same year colonal sugar to the value of $404,000 \mathrm{l}$ was mported into India But although there have been several years during which India has actually mported more sugar than she has exported, the figures for 1877 already point to a recovery in the trade in this article India has thus been beaten by Mauritus and the other plantation colonies, in the international competition for the sugar trade, but her internal consumption of sugar is enormous, and its cultivation still continues to hold the first rank in Indan agriculture as the most valuable crop, the various gram crops only
excepted The best ground is devoted to it, whatever manure the ryot may Moderate possess 18 apphed to it in preference to other crops, and the total value of the incressem sugar and molasses annually produced in Indla will probably not be less than export of some about $20,000,0001$, or considerably more than the actual value of the cotton Indan otheraple crop
A few of the remanng old Indian staples, such as drugs, spices, lac, with indigo, and other dyes show a moderate merease, which is, however, considerable only in the case of lac, the exports of which have increased almost saxfold durng the period referred to - -

There has been on the whole an mncrease in the value exported, but the proportionate mportance of thus group as compared whth the whole volume of trade has declned, being about 9% in 1857 and only 7% in 1877 .
While most of the old staple articles of Indian commerce have been thus either Extraordanary falling off or remaning stationary, or else have only moderately increased, a do development of gyantic trade has sprung up in artholes which were formerly of very small trade importance These belong mannly to three different classes (1.) the bulky agricultural produce, which in consequence of the mproved means of communication can now be thrown upon the markets of Curope; (2) raw textles ; and (3) several exotic products recently acclumatised in Inda through the instrumentality of European capital and enterprise
P_{1} ryst Group.
The trade in grans and seeds of all kinds sprang up about the thme of the Trade in grans Crimean War in consequence of the closing of the Russan ports, from which and seeds from the maun supply had previously been derived.
From 1857 to 1877, the followng changes have taken place -

-	1877	1857	Increase per cent
	*		
Grains	\pm	\&	
Rice	5,815,000	2,301,000	153
Wheat -	1,956,000	138,000	1320
Other grams \quad *	117,000	148,000	-
Total Grams -	7,888,000	2,587,000	206
On Seeds and Oil. Ol seeds			
Oll seeds OL	$\begin{array}{r} 5,319,000 \\ 353,000 \end{array}$	$\begin{array}{r} 1,119,000 \\ 179,000 \end{array}$	$\begin{aligned} & 376 \\ & 100 \end{aligned}$
	5,672,000	1,298,000	840
Total Grains and Seeds	13,560,000	3,885,000	274

The total trade 1 in grains and seeds has thus increased 1 n 20 years by about Increase in 274 per cent, and in actual figures from $3,885,000 l$ to $13,560,000 l$, and now 20 years constututes 23 per cent of the entire exports as compared with 16 per cent in 1857 The most extraordinary development 18 shown by the trade in wheat, which after being stationary for a great number of years has sprung up suddenly during the last few years, attaning last year a figure of almost two mullions sterling.
rrade in hudes
and skins, 1857
and 1877.

Allied whth agricultural produce is the trade in hides and skins, which lukewise shows a considerable progress -

	1877.	1857.
Exports of hades and skıns	$-\quad \stackrel{9}{-\quad 2,999,000}$	$\stackrel{£^{£}}{573,000}$

Opum The exports of opium have also mereased, although the high figures are due not so much to ats prime cost, as to the duties placed upon it - -

	$\frac{1877}{e^{2}}$	$\frac{1857}{e^{2}}$
Exports of opum	-	$-12,405,000$
$7,057,000$		

Second Group.
Animal and
The second group embraces the vegetable and anımal fibres which now form veretable fibres the most amportant item in the Indian exports, viz, cotton, jute, and wool. Of these, cotton alone belongs to the old staple articles of Indian trade, although its exports never attamed any considerable importance on the olden time. Shortly after the Crimean war the exports began to increase, until the American civil war suddenly made Indıa the chief source of the supply of cotton. During the progress of the cotton famine the prices were raised to such in height, that the values of the Indian exports of cotton increased even more rapidly than the quantities, and in 1865 the exports attained the enormous value of $37,573,637 \mathrm{l}$. Since then the values have fallen steadily and rapidly, though the quantities have been very farrly maintained, and cotton still preserves its position as one of the most mportant articles of Indian trade Jute is remarkable cheefly as beng an article the trade in which has been enturely created during the last 30 years, and although temporarily depressed it has still a great future before it The development of the wool trade is likewise comparatively recent The growth of the trade in textile raw materials from 1857 to 1877 is shown below:-

			1877.	1857.
Exports of raw cotton	-	-	- 11,746,000	$\stackrel{E}{1,438,000}$
\% jute -	-	-	2,637,000	275,000
" wool -	-	-	- 1,077,000	314,000
	Total	-	- 15,460,000	2,027,000

Thud Group. Coffee and tea.

Trmmense development of production and export, 1857 to 2877

Chunchona and other products
or an increase of 660 per cent.
The third group of the new growth of Indaan export trade, viz., the exports of recently acchmatised exotic products, 1 s , perhaps, the most interesting. The following figures show its starting development -

Or an increase of 1456 per cent The importance of the present tea plantations in India may be best gathered from the fact that the production of tea in that country during the past year is equal to the total quantity of tea annually consumed in the United Kingdom so late as the year 1840° Another exotic, the Chinchona, promises to become soon important. Although introduced into Indaa by Mr Clements Markham so late as 1861; there are now nearly three milions of trees in the different plantations in India, and the Government sales of bark during the past year have amounted to 29,000l

There are also several other Indian products which begn to attract attention, and although as yet of no great importance, the past history of Indan commerce shows how quackly a trade may now spring up and attan very considerable dimensions. Among such products may be mentioned tobacco, Tobacco the exports of which in 1874-75 have risen to 215,000 , although in the current year there is a falling off to 75,000l. Another product is Indiam Indaa-rubber. rubber, the exports of which in 1877 amounted to 90,0001 .

The returns of imports during the same period show how greatly the con- Growth of the suming power of India has increased The princupal articles are cotton yarn mport trade. and cotton prece goods, woollens, metals and metal manufactures, machinery Principal and mull work, ralway materials, and lastly, beer, wines, and spirits In respect to several of these articles a considerable progress has been made in Establshment establishing manufactures for theur indigenous supply, a large and rapidly nacreasing number of cotton-mulls being already established in Bombay and other parts of India, and successful attempts in the manufacture of ron on the European method having been recently made, whilst the out-put of coal in the Indian coal mines has considerably uncreased of late, and already supples some of the Indian railways with the whole of the fuel required. The followng numbers show the progress since 1857.-

		1877.	1857	Increase
		\&	2	
Apparel	-	543,000	364,000	49 per cent.
Cotton twist and yarn	-	2,733,000	1,192,000	129 "
Cotton manufactures	-	15,993,000	4,941,000	224 "
Woollen manufactures	"	912,000	144,000	533 "
Metals and metal manufactures	-	4,275,000	1,635,000	161
Machnery and millwork	-	958,000	244,000	292
Raupay materials -	-	1,070,000	951,000	-
Beer, whes, and spirits	-	1,563,000	620,000	151 per cent
Salt - -	-	431,000	301,000	-

It is interesting to observe that in addation to cotton goods, the imports General merease of woollen manufactures have already reached very nearly one milhon in the consumpsterling, and are fast becoming an important article of trade The large nocrease in metals and metal manufactures, as also in machinery and mill. nork, is specially mportant, whilst the merease in wine and spirits is largely due to the increased number of Europeans now residing in India

This brief revievy of the piogress of Indian trade from 1858 to 1877 is instructive, for at shows that India, known usually as the country of caste and immutable tradition, shows herself possessed, under her present rule, of aremarkable power of expansion as regards trade and commercial development. Although several political occurrences, such as the Crimean war and the cotton famme, have contributed much to foster the recent growth of her commerce, yet the steady development of trade continued after these occurrences passed awray, and within a single generation trades have been created, each of which may now be measured by mullons stering It must also be remembered that the figures included in the trade returns refer only to the seaborne trade, whereas of late years the land trade with Central Asia and Thibet bas been acquing some importance If once the communication with these countries and also with China is improved, we may expect a considerable increase of trade in these directions

J Forbes Watson,
India Office,
June 1877.
Reporter on the Products of India, and Director of the India Museum

Descriptive Catalogue of the Collections selected from the India Musetm, Lonuon, and exhibited in the Indian Departient of the Philadelpha Centenntal Eximbition of 1876, under the Superintendence of the British Execttife Comoilssioners.

SYSTEM OF CLASSIFICATION AND CONTENTS.

DEPARTMENT III--EDUCATION AND SCIENCE.
Class 306.-Special treatises, general and miscellaneous literature 39
Scirntific and Philosophical Instruments and Methods.
Class 327.-Musical instruments 39
Engineering, Architecture, Cearts, Maps, \&c.
Class 335.-Topographical maps, coast charts, geological maps, \&c. 39
Physical, Social, and Moral Condition of Man
Class 340.-Physical development and condition 39
CLASS 342 -Domestle architecture 39
DEPARTMENT IV.-ART
Sculpture.

Drcoration with Ceramic and other Materials.
Class 450 -Mosarc and inlaid work in stone . . . 40
Class 452 -Inlaid work in wood, metal, \&o 40
Class 454 -Miscellaneous objects of art (paintings on ivory, mica, \&ce.) 42DEPARTMENT V-MACHINERY.
Class 594 -Boats and salling vessels 42
DEPARTMENT VI -AGRICULTURE
Arboriculture and Forest Products.
Class 601 -Ornamental and other woods - - - - 49
Class 602 -Dye-woods, barks, \&c for colouring and tanning - 43 43
Class 603 -Gums, resins, caoutchouc, gutta percha, \&c.
Agricultural Products
Class 620 -Cereals, grasses, and forage plants - - m 47
Class 621 -Leguminous plants and esculent vegetables 47
Class 623 -Tobacco, tea, coffee, and spices 54
Class 624 -Seed and seed vessel 59
Class 638 -Insects, useful-sulkworms 61
Márine Animals.
Class 645.-Shells, corals, and pearls 61
Class 646 -Isinglass 61
Animal and Vegetable Products.

Class 652.-Glue	-	-	-	-	-
Class 654.-Wax	-	-	62		

Trxtile Subetances of Vegetable or Animal Origin.
Class 665 -Cotton-in the boll, ginned, \&c. 62
Class 666 -Hemp, flax, jute, rame, \&c 63
Class 667 -Wool 66
Machines and Implements.Class 670 -Tllage-ploughs
Class 673 - Preparatory to marketing-thrashers, \&cClass 673 -Preparatory to marketing-thrashers, \&c
Class 682 -Transportation-carts, \&c.6662

Machines and Implements.		
Class 670 -Tulage-ploughs - - -		
Class 673 -Preparatory to marketing-thrashers, \&c $\}$		66
Class 682 -Transportation-carts, \&c. - -		

DEPARTMENI I.-MINING AND METALLURGY.

Minerals, Ores, \&c. Class 100
Iton Ores.

Iron ores exist in great abundance throughout the Indian Pennsula, and are widely distributed; with the exception of the trap area and the alluvial plams, there are few districts where deposits have not been found. The quality is in most cases excellent.
Among the most remarkable deposits are those of magnetio iron ore existing in the nelghbourhood of Salem in the Madras Presidency: here beds of ore from 50 to 100 feet in thickness can be traced for miles On a hill in this district there are five bands of magnetic ore from 20 to 50 feet in thickness running completely round the hili, which is four miles in length. At Lohara, in the Chanda district, Central Provinces, there is a hull nearly two miles long and half a mule broad, apparently formed enturely of an extremely pure ore, a mixture of magnetic and specular ore (see specimen No. 31). This would probably yeld 300,000 to 500,000 tons of uron, without going below the surface. Limestone and coal occur near this deposit, which is likely to become of more than local importance. The ores of Bundelkund and the Nerbudda Valley are chiefly bæmatites. In the Ranggurj coal field, and other coal fields of the Damuda Valley, clay uron ores abound, contaming on an average nearly 40 per cent of ron.

From the Madras Presidency.

Magnetic iron ore. Travancore.
Hxmatite. Travancore.
Iron ochre. Travancore.
Sillcious hæmatite. Pudukota.
Magnetic ron ore. Beypoor. Malabar. Used in makung Induan Bessemer steel.
Magnetic iron ore. Honore Malabar. Used in making Indian Bessemer steel
Magnetic iron ore. Mysore
Magnetic ron ore. Mysore
Hæmatite. Shikarapore. Shimoga Mysore
Silicious hæmatite Anantapore. Shumoga. Mysore.
Hæmatıte. Murdum. Mysore.
Hæmatite. Tumkur. Mysore.
Hæmatite. Mudgeri. Mysore.
Hæmatite. Hassan Mysore.
Fibrous lumonite. Mysore
Magnetre rron ore. Moorakcully Salem.
Magnetic iron ore. Salem.
Magnetic ron ore. Salem. Rusting on surface
Magnetic iron ore. Salem.
Magnetic iron ore. Salem. In transition to peroside.
Magnetic iron ore. Salem.
Hæmatite. Palamcotta. Tinnevell.
Brown hæmatite. Arreanathum South Arcot.
Magnetic ron ore-oxidising. Madras.
Magnetic ron sand. Sautghur 'Ialook. North Arcot.
Magnetic ron sand. Nımmanapully Congoondy Talook. North Arcot.
Magnetic cron sand Vellore North Arcot.
Magnetic iron sand. Anchenamput. Vellore.
From the Bombay Presidency.
Iron ore. Poona.
Iron ore. Mahableshwar.

From the Bengal Prestdency.

Magnetic and specular aron ore Pipalgaon Chanda. Central Provinces. This ore is similar in appearance and composition to the Lohara deposit already alluded to An analysis of the Lohara ore gave 9032 per cent of ferric oxide and 826 of magnetic oxide, together equal to 6920 per cent of metallic uron It contaned but 012 per cent of sulphur, 005 of phosphorus, and 823 of sulica.

Hzmatite	Tendukera. Saugor and Nerbudda territory. Mungrownee Gwalior Central India.
Hæmatite	Mungrownee Gwalior Central India.
Iron ochre.	(Dhaoo) Gwalior, Central India.
Hæmatıte.	Malwa.
Clay aron or	e Tehree. Bundelkund.
Hipmatite.	Nerbudda Valley.
Hæmatite.	Nerbudda Valley
Magnetite	Chota Nagpur Found lying on the high graunds in this state
Magnetic ir	on sand. Kot Kar. Himalayas.
Magnetic ir	on ore. Assam
Brown hæm	atite Luckumpore Upper Assam.
Clay iron or	re Gellaka Mouzah. Seebsaugor. Assam.
Magnetic ir	on sand. North-east Assam.
Bog ron or	R Rangoon. British Burmah.
Crude iron	Assam
Wootz steel	
Native aron	
Native iron	
Native iron	with slag, partially fused.

Laterite Travancore.
Laterite. Mysore.
This remarkable rock is widely spread through the Peninsula, and occurs also in Ceylon, Burmah, Malacca, and Sam. It caps the summits of the Eastern and Western Ghats. Under the surface at is soft, and when first exposed can be cut with a spade, but it hardens on exposure to the aur, the uron, which in the interior is usually in the form of magnetic oxide, becoming converted into brown lyamatite. The oxide of ron is often accompanied by manganese as pyrolusite. The per-centage of iron sometimes reaches 30 or more, when the rock may be used as a source of uron, it is, however, commonly ${ }^{f}$ employed for road metalling and as a bulding material, for which latter purpose, when carefully selected, it $1 s$ admirably suted. Many opmons have been held as to its origin and age. The true laterite seems to have been formed by the subaerial decomposition of trap or gnerss rock, but no one theory accounts for laterite 1 m all its positions, or satisfactorily for the sources whence the large amount of ron is derived
Iron pyrites, crystalline and cut into ornaments.

Chromum Ore.

Chrome iron ore is found in considerable quantity in Salem, forming a vein in the central part of a tract of country, about 10 square miles in area, covered by magnesite veins.

Chrome ron ore. Salem.
Chrome iron ore. South Arcot

Manganese Ores.

Manganese ores, viz , pyrolusite, nad, and psilomelane, are found in the Wardha coal field, Central Pronnces, in the Punjab, Burmah, and several localities in the Madras Presidency.
Manganese ore
Manganese ore
Copper Ores.
Copper has been found and worked on a small scale by the natives in many parts of India The primespal mimes are those in Kumaon, Gurhwal,

Nepal, Darjilng, Jaipur in Rajputana, and in Dalbhum and Singbhum The production of metal is very small.

Carbonate of copper. Nellore Madras.
Copper giance with chessylte Sugghum Lower Provnces.
Copper ore; impure earbonate of copper. Suggbhum. Lower Provinces.
Contans $2 \frac{2}{4}$ ounces of silver to the ton of ore.
Copper glance with blue and green carbonates. Deoghur Brbhum.
Copper and lead ore Deaghur Brbhum.
Malachite Central Indıa.
Copper pyrites Hills of Beluchistan Upper Sind

Lead Ores.

Galena, usually associated with copper, is found in Kulu, Gurhwal, and Surmur, in the north-west Hımalayas, and in Ajmir, Manbhum, Karnul, and Kuddapah, at Sabathu in the Simla district, and at Chicoly near Raipur in the Central Provinces Silver is generally contained in the ore, but in very varying quantities An assay of the Chicoli ore gave silver equal to 9 oz 19 dwts . 6 gras per ton, of the Manbhum ore silver equal to 11^{9} oz 4 dwts 16 grns. per ton A sample of antimonal galena from Chota Nagpur contaned 70 oz silver per ton, while another sample from the same locality contaned no slver
Galena with copper pyrites Malanna Mine Kulu Valley. Kangra. Analysis gave 5732 per cent. of lead and 810 per cent of copper.

Galena Parbutti Mine. Kulu Valley. Kangra. Contans 604 per cent. of lead, with traces of silver, copper, and arsemc.
Galena Catloor near Kuddapah. Contans silver.
Galena Karnul.
Galena. Chota Nagpur
Galena Duttah ${ }^{\text {a }}$ Bundelkund.
Galena Hazarbagh. Lower Provinces. Occurs sparingly disseminated through a garnet (calderte) and augite rock.

Galena. Found on the surface of the soll on the hills of Beluchistan. Upper Sind

Antimony Ores

- Stibnte (Antmonite) is found in Kulu and Lahoul, in the latter district at Shigri on the Cbandra River In one of the two lodes at Shigri there is 20 feet of sold ore in the middle of the lode, which is 40 feet in width, and little or none of the gneiss rock, in which it occurs, is associated with the ore On the surface the products of oxidation, kermesite and cervantite, occur Strbnite is found also in Borneo It is called by the natuves surma, and is used as a cosmetic for the eyes; the surma of the bazaars, however, often consists of galena or even uron or manganese ores

Stibnite Shigri Lahoul
Stibnite. Busoh.
Stibnte Borneo.
Stubnite. Sarawak

Tin Ore.

Rich deposits of tin stone occur in the Tenasserim provnces, British Burmah, and throughout the Malayan Pennsula and its adjacent islands These latter deposits are well known, and have heen long worked, they appear to become ncher towards the southern termination of the tin area in the islands of Banca and Bulliton.

In the Tenasserim provnces deposits of stream tin occur in most of the streams which carry down the débris from the grante mountans separating British Burmal from Slam The tin was worked extensively before the Burmese took possession, and traces of the work of thousands of men are visible m the beds and on the banks of these fivers At Kuhun, 11 miles from Mergul, on the right bank of the Tenasserim River, crystals of cassiterite, associated with chlorite, occur in a grante venn running through a low hill of sandstone, in the other known localites the ore occurs as stream tin in detrital
gravel These deposits are not worked owng to the wridness of the country, the thinness of population, and absence of means of carriage. Near the village of Rinowng, in Siam, just beyond the British boundary, somewhat extensive workings are carned on. In the Indian Peninsula tin has been reported in various places, but from only one locality is anything accurate known of its occurrence. In North Hazanbagh, tin stone was found in three or four lenticular nests in the gneiss rock, but the working was abandoned after a short time, very little tin having been produced
Tin stone Junk Ceylon or Salang Island.
Rubble nich in tin ore. Macham Baboo Provincé Wellesley.
Alluvial soll containing tin stone. Malacea.
Tin stone. Malacca.
Tin stone. Kuhun
Tin stone. Kuhun.
Tin stone. Mergus.
Tin stone. Tenasserim.
Tin stone. Larut Perak.'
Tin stone in quartz Johore.
Tin stone. Johore.
Tin stone Johore.

Gold Ore.

Gold occurs in many parts of India in the stream gravels, but always in very small quantities, only the poorest of the natives are occupled in washing for it It is extracted in some parts of the Pumab, in Chota Nagpur, Manbhum, Singbhum, the Godaver Valley, and a few places in Southern India, and in Assam and Burmah.

The Malabar district has been noted for gold from time immemonal. Two tribes of people obtained it, one from the alluvium, \&c, and the other from quartz "leaders" in the hill country. It is also" found on the sea shore about Beypoor Several aumferous quartz reefs occur in the Wgnad. Prelminary traals on dufferent reefs gave an average proportion of 7 dwts. of gold to the ton of ore, this matrix gold contanngg 8686 per cent of pure gold. The alluvial gold of the same district contams 9195 per cent. of pure gold.

Gold sand. Purulia Chota Nagpur
Gold sand Toradanally, Dhenkanal, Cuttack Tributary Mehals.
Gold sand Dandput, Keonjhur, Cuttack Tributary Mehals.
Gold sand deposited at the mouth of Martaban stream, a tributary of th. Shoay Gyeen River Rangoon.

Gold sand. Ramagherry, Colar district. Mysore.

Arsenc.

Orpiment (Harutal) is found in the northern parts of the Kumanon district as well as in Burmah, \&c

Preparations of arsenic enter largely into the composition of native drugs, and are extensively used both medicinally and criminally.

Orpiment. Pegu
Orpiment. Burmah
Orpiment Tenasserim
Realgar (Manavasala) Bengal
Crude arsenic Madras
Graphite.
Graphite 15 found in workable quantities in Travancore, Kumann, Ceylon, and Sikkim

Graphite from the bottom of a laterite hill at the 'base of the Ghats. Caviatten Coodul.
Graphite Trevandrum. Travancore.
Graphite, washed Trevandrum Travancore
Graphite in laterite, found near the surface, 12 miles from Trevandrum.
Graphite, 20 miles north-east of Trevandrum
40609

Graphite. Trevandrum
Graphite.
Graphite Almorah. Kumaon. Found in nodules near the surface.
Graphrte. Ceylon.
Sulphur.
This element is found in small quantrites in the Puga Valley, NW. Humalayas, in Kumaon, Guhwal, the Pumab, S E. Affghanistan, Beluchstan, and Burmah.

Sulphur Rangoon.
Sulphur mines near Shoruns Beluchistan
Corundum.
This mineral is found in abundance in Salem, Mysore, and other localities in the Madras Presidency; it also occurs in the Punjab and at Rewah in Bundelkund, where it is associated with jade The precious forms of alumina, viz, Oriental rubies, sapphires, amethysts, \&c, are not found in Inda itself, but in Ceylon, Independent Burmah, and the countries north-west of the Himalayas

Corundumn	Madras.
Corundum,	Madras,
Corundum	Salem In hexagonal prisms
Corundum	Salem.
Corundum	Salem
Corundum.	Mysore.

Minerals used for Ornament.
Ruttunpoor agates, unburnt
Ruttunpoor agates, burnt.
Sone river pebbles.
Rough carnelians. Cambay.
The carnelans and agates from Cambay, which have been known since the time of the Romans, are derived from mmense beds in the débris of the trap rock in the Rajpiplee Hills near Ruttunpoor, 13 mules east of Broach. They are cut and polished by the lapidarnes of Cambay and Jubbulpore

Gem sand Ceylon Containing zurcons, spinels, tourmalines, sapphures, \&c. Ruby sand. Travancore
Rough garnets Ruby Raver, Mysore.
Rough garnets. Vizianatram.
Garnets (carbuncles) cut en cabochon and polished.
Calderite A massive ron-lıme garnet found in Nepal and near Hazaribagh
Schorl (tourmalıne) in quartz Nellore. Madras
Tourmaline. Nellore Madras
Epidote grante Carangooly, Chinglepat. Madras.
Epidote granite Bodinatham, N. Arcot. Madras
This handsome rock is found in a few other localities, as in South Mirzapur, Bancoorah, and Rupshu in the N.W. Hımalayas.

Limestones, \&c.
Kunkur South Arcot Used as a flux at Trinamalee
Kunkur Nellore. Madras.
Limestone Tripattur Salem.
Calc spar Masulipatam Madras
Kunkur. Beronda Bundelkund
Kunkur is a nodular fresh-water limestone, occurring in most parts of India It is usually concreted round a fragment of wood, shell, \&c It contans on an average about 72 per cent of calcum carbonate, 15 of slica, and 11 per cent. of clay, the deposits sometimes attain a thickness of 60 or 70 feet.

Calcite. From the coal fields near Ranigunj. Used as a flux and in the manufacture of cement. It occurs in boulders 200,300 , or more cubic feet in capacity.

Calc spar Thus is found in Kabul, and is used by the unhabitants of the Punjab medacinally under the name of "Surma safad,"- white antimony It is used for the same purposes as sulphide of antimony.
Fibrous gypsum and other varieties of sulphate of calcrum. Karnul
Selente Crystallised sulphate of calcuum.
Steatite or soapstone Ava
This mineral is common, the most valuable varneties are found in Karnul, Salem, Mysore, near Chittoor, and at the Naggery Hulls
White mica. Salem.
Black mica
Mica is found abundantly in Behar, and the Northern Curcars.
Agalmatolite or figure stone. Found near Chota Nagpur.
Fullers earth Sind
Zeolites Heulandite, and stilbite, on trap rock. Deccan
Zeolites with apophylinte on trap rock Deccan
Amygdalord rock, contannng zeolhtes, \&c. Green earth Deccan.
These hydrated double slicates, together with calc spar and quartz, are very abundant in the vesicles of the trap of the Deccan.
Reh Buttiana.
A saline efflorescence occurring on soils, and rendering them unfertile. It is especially noticed in the lands arrigated by the Ganges and Jumna Canal, and in parts of the Punjab It consists manly of sodium sulphate and sodum chloride, when dry containing from 76-96 per cent of the former to 24-4 per cent of the latter Kunkur is usually found underlyng the reh It is valuable in the alum manufactures. Some vametres contain considerable quantities of sodum carbonate and are then used for making soap and a rough kund of glass

Coal and Combustible Minerals. Class 101.

The coal fields of India lie in a region bounded on the north by the Ganges, and extending beyond the Godaveri on the south, from east to west, they stretch from the neighbourhood of Calcutta to some distance down the Nerbudds Outside these lumits there are coal fields in Upper Assam, the Khasia Hills, and Burmah The total area over which coal rocks may be presumed to extend is 35,000 square miles, making India fifth in the coalbearing areas of the world, the United States, China, Australıa, and Russia only being before it Nearly all the coal comes from one geological formation called "Damuda," from the river in whose valley some of the principal coal seams occur Some of the seams, meluding partings, are of gigantic size in the Hengir and Damuda fields, reaching 100, 120, and even 160 feet in thickness The coal that has hitherto been worked 18 characterised by its excessive lamination and great quantity of ash, this beng rarely under 10 , and reaching to 30 per cent, the per-centage of fixed carbon is rarely 60 per cent, and averages about 52 per cent The coal of Assam and of the Khassa Hills is of better quality.

Coal Gurrawarra Central Provinces Nerbudda Coal and Iron Company's pits
Coal Oormoo Alubera Near the Banslon stream in the centre of the Rajmahal Hulls Seams 7 feet and 3 feet

Contans-Fuxed carbon	-45.0
Volatile matter	$=446$
Ash	-104

Coal Chigo Alubera Colleries, 5-foot seam.
Coal Malacca
Lignite Darjiling Small irregular masses and strings of lignite are met with in the sandstone.

Petroleum and naphtha Burmah
Petroleum is found in abundance m Burmah, especially in the neighbourhood of Rangoon There are also wells in the islands of Ramree and Cheduba. The specific gravity of the petroleum varies from 815 to 909 . Petroleum is also found in Assam, having a specific gravity of - 971

Clays and other Materials used in Pottery, and Earthy Minerals. Class 104.

Clays for pottery. South Arcot. Madras.
Clay for pottery. Madura.
Powdered mica (Abrak.) Lahore. Ready for muxing with lime for ornam
mental plaster, \&c.
Clay for pottery. North Arcot. Madras.
Clay for pottery. Sadiger. N. Arcot.
Clay for pottery. Bangalore. From decaying grante.
Clay for pottery. Vizianagram From decaying albite.
Quartz, used in the manufacture of glass, \&c.
Yellow ochre. Madras.
Red ochre. Madras.
Fire clay. Madras.
Chuna clay. Madras.
Ball clay. Mangalore. South Canara.
Porcelain clay. Canara. Bombay.
Ball clay. Raepore. Central Provinces.
Raw clay Pattan. Gujerat
Clay, prepared Pattan. Gujerat.
Fine white clay. Pattan. Gujerat.
Powdered marble. Pattan. Gujerat.
Red ochre. Pattan. Gujerat.
Red lead. Pattan. Gujerat.
Litharge. Calcutta.
White lead. Punjab.
White earth Beronda. Bundelkund.
"Geroo" Fine red ochre Raepore.
Pink earth. Paldeo. Bundelkund
Yellow earth. Paldeo. Bundelkund.
White earth. Punnah. Bundelkund.
Yellow earth. Alipore. 24 Pergunnahs.
Pipe clay. Singapore.
Red clay. Duttiah. Bundelkund.
White earth. Kotee. Bundelkund.
Decaying granite.
Lames.
Lime. Bornee. Bundelkund.
Lime from the limestone of the Shevaroy Hills. Salem.
Lime. Bellary.
Lime. Soonporah. Sudujab. Upper Assam.

DEPARTMENT II.-MANUFACTURES.
 Chemical. Ćlass 200.

Salt.

The salt deposits of the Salt Range, hills running through the Jhilam and Shahpur districts, and on to Kalabagh, are equalled by none in the world for extent and purity. Salt 18 excavated at four places-at the Mayo munes, Kheora, and Sardi mines in the Jhilam district, at Warcha mine in Shapur, and at Kalabagh, where the salt $1 s$ quarried from the surface. In the Trans-Indus district of Kohat, salt is obtaned from a chann of hills running from the Indus towards Bohadur Kheyl; that found near the surface is of a black or dark green colour, but the greater portion is remarkably pure.
The consumption of salt in Bengal amounts to nearly 10 lbs , per head per annum, in the Madras Presidency to ahout 12 lbs , and in the Bombay Presidency to 93 lbs . per head per annum. Untll 1863 the districts on the sea-board of the Bay of Bengal were divided into salt agencies, and two kınds of salt were produced,-Pungah salt, obtanned by boling highly concentrated brine to dryness, and Kurkutch salt, produced from sea water by solar evapora-
tion alone. In 1863 the government manufacture was abolushed, and a system of excise, with duty on imported salt, was instifuted. There is a manufacture under excise on the shores of the Chilka lake in the Purn district of Orissa. In the N W. Provinces the salt supply is mamnly derived from Sambhur and other salt lakes in Rajpootana In the Bombay Presidency there are salt works on the shores of Gujerat and at Kheraghora, and large quantities are made by solar evaporation in the Runn of Kutch.
$\begin{array}{ll}\text { Rock salt } & \text { Salt Range. N W. Humalayas. } \\ \text { Rock salt } & \text { Salt Range N.W. Hımalayas. }\end{array}$
Salt. Poorthemauk. Madras.
Salt.
Salt Nellore.
Salt, refined. Nellore.
Common salt Toomlook. Midnapore. Bengal.
Common salt Pungah salt Cuttack.
Common salt Pungah salt Balasore. Cuttack.
Common salt. Cuttack.
Common salt Hidgelee Bengal.
Common salt. Hidgelee Bengal
Common salt Ghat Kissennuggur. Hidgelee.
Common salt. Cuttack.
Common salt. Jeypore. Rajpootana.
Common salt in crystals Patree Ahmedabad.
Common salt, whole Patna Bengal.
Comroon salt, ground. Patna Bengal.
Common salt, used for salting hides.
Common salt Sambhur Rajpootana
Black salt Calcutta Used medicinally in a great number of cases It contans sulphide of sodium, and is manufactured by heating certam fruits, \&c with common salt and sajus or crude carbonate of soduum contanning much sulphate.

Saltpetre.

This salt (nitrate of potassium), called Shorah, occurs in many parts of India as an incrustation on the soil, and muxed with it to some depth, though not lower than the arr can penetrate. The soils producing it must be neh in alkalne, or alkalnee earthy bases, to fix the nitric acid, formed by the oxidation of orgame (especially animal) matter, as soon as formed. It also effloresces on old mud walls, cow-house walls, and about rums and old villages Nearly the whole of the exports of saltpetre are from Bengal. To prepare the saltpetre the nitrated earth is boiled with water, filtered, concentrated by the heat of the sun, and afterwards evaporated with artificial heat. In some parts of the Punjab the earth is packed in coarse vessels with a small aperture at the bottom, a layer of straw is placed at the bottom to act as a filter, then a layer of wood ashes, and finally the mitrated earth, water is then percolated through, and the extract evaporated. This treatment with wood ashes, which converts other nitrates, especially nitrate of calcium, into the potassium salt, is not carried out in Bengal, where the soll already contans much potash. Saltpetre is prepared in many places for local uses only, eg, the manufacture of gunpowder, fireworks, and frigorific maxtures

Alum.

This salt is manufactured to a large extent at Mhurr in Cutch, the works are sand to have been carred on for the last four or five centurnes The material used is a dark pyritous shale, which is exposed for four months in heaps, and sprinkled wnth water The efflorescence, called "seed of alum," is boiled with mitre, or writh an alkalıne salt made by burning the village refuse, treating the ash with water, filtering and boilng down Alum is also made from a black shale at Kalabagh on the Indus, and at Kutki in the Chicall Range beyond the Indus A native sulphate of aluminum, arising from the oxidation of pyrites in aluminous shales, occurs in the mountans of Kumaon and in Nepal. It is called Salant, and wonderful medicinal virtues are attributed to it, in the plains it often sells for its weight in sulver

Alum. Madras bazaar.
Alum. Lahore bazaar. Punjab.
Alum. Bengal.
Carbonate of Soda.
Impure carbonate of soda, Dhobres' earth or sajn muttz, occurs as an efflorescence in almost every district in India It is used in the manufacture of native soap and glass.

Crude carbonate of soda. Sind.
Crude carbonate of soda. Calcutta.
Anhydrous sulphate of iron. Salt Range. Occurs in large masses in the ground.

Borax.
Borax, sohaga or tincal, is obtamed in considerable quantities in Puga'Valley, Ladakh, and from lakes in Thibet. It is collected on the edges of the lakes, and transported across the Humalayas on sheep and goats, and refined at Umritzur and Lahore.
Borax in native crystals Thibet.
Borax. Thibet

Sal Ammoniac

Sal ammonac. "Naushadar." Kurnal Punjab.
Sal ammonac (chloride of ammonium) has been manufactured for ages by the potters of the Karthal and Gula tahsils of the Kurnal district To obtan it, from 15,000 to 20,000 bricks of a duty clay or mure found at the bottom of ponds are placed round the outside of each brick kuln; when about half burnt the raw substance from which Naushadar is made exudes, and adheres to the exterior of the bricks This is purnied by solution, crystallisation, and subsequent sublimation in large closed vessels of thin black coloured glass.

In Oude it is manufactured from the contents of cesspools
Sal ammoniac. Calcutta.
Sulphate of copper Blue vitriol Calcutta
Used medicinally, and in making astringent tooth-powders
Paints and Dyes. Class 202.
Gamboge (Garcina morella) Bombay.
Indigo, four samples (Indugofera tinctoria)
S Arcot, Moorshedabad, Madras, Shikarpore.
The hustory of the commerce of this substance would be emmently interesting, but at is not possible to enter on the subject here; suffice it to say, that on its first introduction into Europe it was almost driven out by the bitter intolerance of persons whose object was to prevent the old-fashioned woad (then in use as much as indigo is now) from being druen out before it In 1557, at Frankfort, it was denounced by the Germanic diet as the "devil's dye," and its use forbidden The prohibition was repeated in 1603 , and as late as 1654, by imperial edict at Ratisbon, the proscription was enforced In England an Act was made in Elizabeth's time, authorising the seizure and destruction of the offensive substance, as well as the detention of peisons
possessing it The Act contnued in force till the reign of Charles II, and "Brazil wood" shared the odnum with it

Indigo is known to chemists under two forms-white indugo (ndagogene) and blue indigo, the latter being only an oxidsed state of the former. The blue colour is entirely due to the oxygen, or at least comes to the substance as it gets access to the oxygen of the aur; this is observable in the vats. When the fermented liquor or infusion of the plant first ferments with the appearance of whitish grey bubbles, afterwards these become blue, and finally a deep metalice lustred purple red Dyed cotton, when just taken out of the dyemg vat, appears green, but rapidly assumes its deep blue tone from contact with the aur. Blue indigo is perfectly insoluble in water, but it is found that it is so only so long as it retains its excess atom of oxygen. If it can be induced to part with that, the remaining mdigogene is soluble in an excess of sulphate of lume, or rather alkalı. Hence, for cotton dyeng, the vat is prepared by grinding up a quantity of indigo with water to the consistency of cream, and then mising it with copperas and an excess of lime or alkaline water The oxygen of the indigo then combines with the protoxide of uron in copperas to form oxide, and then the deoxidised indigo readuly combines with the lime water, forming a yellowish green liquid, into which the fabric to be dyed is plunged, and then, on being taken out and exposed to the aur, the oxygen returns to the solution whth which the fabric has been saturated, and the deep blue is restored and becomes permanent without the use of any mordants. The dye applied in thas manner is used cold. According to the plan adopted by native dyers," chunám"" "sajp" (crude potash), and "gurh" (molasses) form the solvent and deoxidising agents; otherwise the process is identical. They do not use copperas, though they have it in plenty in the form of "lura kasis," or "kalú safed." Wool and silk are not dyed in this way, but in another manuer, taking advantage of another property of indigo. Pure indigo is soluble in sulphunc acid, but the solution is thick and black This has been called caruleo sulphuric actd, sulphondylze aend, \&cc (" murabba" in Urdর́), because it has the nature of both the indago and the acid, nether undergoing the slightest change in itself This latter substance is not a sulphate of indigo ; that would imply a chemical combination between the acid and the dye, and the formation of a new substance, but it is not so. The acid and undigo combine, but neither is changed This solution is capable, however, of destruction by an excess of caustic alkali, and turns by it to a yellow colour, from which nothing will restore it

This sulphindylic acid is principally employed in dyeing wool and silk, and the excess acid is removed by washing in alkaln.

Chemically pure indigo is of specific gravity 150 , and possesses nether taste nor smell, it is a substance "indifferent," having neither acid nor basic properties Good mdago is known by its fine purple blue colour, and by its fracture, which when rubbed with a hard sroooth substance exhubits a coppery red lustre No remarks need here be added on the manufacture of mongo. The ordnary processes of fermentation, of drawing off the liguor, of beating, and of collecting the "fecula," or precipitate of ndago, from the liquor and pressing it, are universally well known, and are followed with but trifling variations in dufferent provinces and dufferent manufactories

The main points appear to be, the watching the soaking plants so as to be able to tap off the infused liquor exactly at the right pomt of fermentation, and next, to beat the hquor in the second vat exactly long enough No doubt in these points the native manufacturers in this province are as yet eminently deficient Knowledge of these things can only be acquued by careful observation and long experience. Another point 18, that the "fecula" is much improved, after being collected, by being bolled in copperas, and then pressed into its boxes.

Indigo manufactured by aumply collecting the fecula, and dropping it down in cakes to harden in the sun, is termed "gaud indigo"-(Baden Powell's "Punjab Products")

Cutch, 4 samples (Acacıa catechu) Calcutta, Madras, Burmah
Gambier, 2 samples (Nauclea gambrr). Bombay, Malacca.
Lac dye (in cakes) Jubbulpore
Lac dye (in cakes) Malwa.

Enamelled Tileg. Class 20ε.
Ornamental thles (2 pieces). Hyderabad.
Ornamental tules (4 pleces). Hyderabad.

Earthenware. Class 210

Water jug. Patna.
Water jug Patna.
Water vessel, painted. Jhallawar.
Box. Allababad.
Hookah bowl (chillum). Patna.
Hookah bottom. Patna.
Water vessel. Madras.
Water vessel, unglazed. Jhallawar.
Water vessel, glazed. Jhallawar
Water vessel. Patna.
Vase Sindh.
Water vessel. South Canara.
Glazed green cup. Hyderabad. Sindh.
Dish and cover. Hyderabad. Sindh.
Glazed vase. Hyderabad. Sindh.
Water vessel. Madras.
Water vessel. Madras.
Water vessel. Allahabad.
Glazed bowl and cover. Hyderabad. Sindh.
Goblet. Vizagapatam.
Pitcher. Madras.
Ptcher Bombay.
Jug Madras.
Mulk pan. Madras.
Soapstone cup Allahabad.

Pottery.

Process of making and glazing earthenware in Sind -The clay required for this purpose is obtaned 10 feet under ground, in situations which have been inundated It is reduced to a fine powder and soaked in water for 24 hours, after which 1 it is kneaded with the hands and feet untul tt becomes doughlike. Lumps proportionate to the artucles to be made are then mounted on a wheel and formed into the required shape. After the vessels bave dried, they are agaun put on the wheel, and finshed by means of an ron tool. Tiles are prepared in moulds, and when dned are rubbed over with a piece of wet cloth and beaten with an earthern "maul" for the purpose of smoothing the surface; they are then kept for two or three days or more till they become sufficiently firm, and after having been cut to the proper size, are piled on layers in the sun to dry
The vessels, tiles, \&c. havng been sun-dred, may then be sent to the kiln, after which the required pattern is traced on them in the followng manner. A perforated paper pattern is placed upon the article, and powdered charcoal sprnkled over tt . . On removing the paper, the pattern remains on the earthenware, and is then brushed over with a solution called "Sahree," the description of which is given below.

When this as dry, glaze of the required colour is prepared and poured over it; the article is then allowed to dry again, after which it is placed in the glazing kiln, and subjected to the requred amount of heat. The articles are only removed after the kuln has become cold.

Preparation of "Sabree"

"Sahree" 18 clay found only mn the vicinity of Sehwan, and vended at Hydrabad (Sind) at a rupee per maund (82 lbs .) When required for use $1 t$ is put into a large vessel over night, with water enough to cover it In the morning it is found to have attaned the consistence of paste, and this being stranned, it is ready for use.

Preparation of " Moordarsing " (Latharge).

For green colourng two pounds of "Sendoor" (red lead), one pound of "Waree" (sand), and a quarter of a pound of carbonate of copper are muxed together and put into an unbaked vessel previously plastered over on the meide whth a mixture of "Waree" (sand) and "Sahree" (clay) This vessel is then placed in a heated oven, when the artucles are melted together and form a hard substance, used for colourng green. When requrred for use it is ground to powder in a hand-mull, sifted, and muxed with wheat paste

For red or yellow colouring, the process is the same as above described, substituting red "Dha" or earth for the carbonate of copper

For purple colounng, instead of a solution of "Sahree" the baked tule or vessel us washed over with black "Dha" (earth), and the "Moordarsing" for red or yellow colounng is used as a glaze
For blue colouring or glazing, lime obtained from fint is freely powdered, sifted, and muxed with wheat paste. This muxture is poured over the unbaked article and allowed to dry. "Lajwurde," a blue colour, is then ground on a stone whth water, to the consistence of paste, and brushed over the prepared artucle. When dry "Kashee" or white glazing matter is put on and the vessel placed in the kilns as before.

If the "Lajwurde" (Lapis Lazuli) used in the last process be omitted, the result will be simply a white glaze

> "Cashee-jo-rung " or glazing composition.

This is made of four parts of "Chaneo" (alkaline earth) and one part of "Jubbul-jee-waree" (hull sand) These are muxed together and placed in the kuln to melt The substance thus obtamed by fusion becomes the glazing materal, when it is added to paste and used as other pigments.

Metal Utensils. Class 224.

Brass box to hold areca nuts. Calcutta.
Copper lamp Calcutta.
Brass cup Benares.
Brass cup Bengal
Copper water vessel. Bengal.
Copper and brass cup. Bombay.
Sweetmeat plate. Calcutta.
Betel plate inlaid with silver. Hyderabad.
Cup made of muxed tin and brass. Odypore.
Spice box. Patna
Rose water sprinkler made of mixed tin and brass. Odypore.
Brass cup Indore.
Brass dush for sweetmeats. Calcutta.
Copper bell. Burma.
Lock and key Indore.
Lock and key. Indore.
Lock and key Indore
Brass bowl (Jumbur) Mirzapore.
Copper bowl Madras
Brass cup. Travancore.
Brass basin Travancore.
Brass basin with figured sides. Nepal.
Spitting dish. Cachar
2 hanging lamps Madras
2 stand lamps. Madras.
1 upright lamp. Madras.
1 swng lamp. Madras
Sacred brass vessel with figures Nepal.
Copper amulet case Thibet
Brass spoon for oll. Madras.
Turner brass bowl and cover. Poonak.

Matting. Class 229.
Phulgat mat. Travancore.
Cotton fabrics, Plain.: Class 230
Muslın (Jamdanee). Dacca.
Muslun, plan Dacea
Muslin (Nyvo Soak) Dacca.
Mushn (Arnee). Madras
Cotton preces (two). Madras.
Cotton Fabrics, Dyed. Class 231.
Striped cotton piece (two samples) Madras
Trousers piece, check. Madras.
Carpets. Class 239.
Carpets imported by Messrs. Vincent Robinson \& Co., Welbeck Street, London, vz. -

Cashmere carpet made of the fine wool used in the manufacture of the shawls of the country.
Woollen carpet. Madras.
Woollen carpet. Scind.
Woollen carpet. Madras.
Woollen carpet. Ferahan, Persia
Woollen carpet. Ferahan, Persia.
Fabrics of Goats' Wool, \&c. Class 240
Cashmere shawls, chuddahs, \&c. Imported by Messrs. Farmer \& Rogers, Regent Street, London, viz. -

Long gold shawl.
Long Cashmere shawl.
Long green shawl.
Long black shawl
Square black shawl.
Square black shawl.
Square black shawl
Square black shawl.
Square black shawl, narrow border
Square black shawl, narrow border
Square scarlet shawl, narrow border.
Square scarlet shawl, narrow border
Long white Umritsur shawl, narrow border.
Square grey Umritsur shawl, narrow border.
Square black and white Umritsur shawl, narrow border.
Square drab Umritsur shawl, narrow border.
Square white net shawl
Square black and white net shawl
Long whte chuddah.
Long white chuddab.
Long white chuddah.
Long whte chuddah.
Blue chuddah.
Blue chuddah
Drab chuddah
Drab chuddah.
Drab chuddah.
Drab chuddah.
Drab chuddah
Drab chuddah
Drab chuddáh.
Scarlet chuddah
Scarlet chuddah.

> White chuddah. White chuddah.
> Cravat.
> Cravat.
> Cravat.
> Cravat.
> Cravat.
> Fue Indıa scarf.
> Fine India scarf
> Fine India scarf
> Fine Indua scarf.
> Fine India scarf
> Fime India scarf
> Black Indıa scarf
> Drab embroidered burnouse
> Drab embroidered burnouse.
> Black Indıa cloak.
> Rach black and gold table cover.
> Ruch black embroidered gold cloak.
> Ruch black gold stripe burnouse

Raw Slle and Cocoons. Class 242.

Raw sulk (yeilow). Surdah, Bengal
Raw sulk (cocoons, yellow) Bengal.
Raw sulk (white) Berhampore, Bengal.
Raw sulk (yellow) Bogra, Bengal.
Raw sllk (yellow) Seetapore, Oudh.
Raw sulk (tape chussum). Bengal.
At the present time the production of mulberry-worm silk is pmocipally confined to the Lower Provinces of Bengal and to the districts of Rajshahye, Maldah, Moorshedabad, Midnapore, Beerbhoom, Hooghly, Burdwan, Bogra, Howrah, Nuddea, Jessore, and the 24 Pergunnahs The five first are the great silk-producing districts In the dastrict of Rajshahye there are 34 filatures owned by Europeans, and 63 owned by natives, or 97 in all, contanning 5,760 basins, and employing between 11,000 and 12,000 hands The yield of raw silk $1 s$ estimated about $400,000 \mathrm{lbs}$, and it is believed that no less an area than 150 square miles is under mulberry cultivation, while a quarter of a million of people derive their support from the trade mm one or other of ats branches in this one district alone

Tusseh silk thread Bengal.
Tusseh sllk thread Gyah
Tusseh silk thread. Bhagulpore.
Tusseh silk thread Bengal
Tusseh sllk thread (dyed) Bengal
Tusseh sulk (cocoons). Cuttack.
The Tusseh silkworm is the most important and widely distributed of the wild silk-producers of Indaa, benng found an the Sub-Hımalayan tracts almost throughout the extent of the range, through the hills from Assam to Chittagong, in the Soonderbuns, everywhere in the great belt of hill and forest inhabited by the Sonthal, the Kol, the Khond, and the Gond, in the Western Ghats, and in portions of the Madras and Bombay Presidencies The worm is multivoltine, but it is not clear how many times in the year it goes through its transformations, or whether its periods of existence may not vary according to conditions of clımate It feeds variously on the Ber (Zuzyphus jujuba), country almond (Termmalia catappa), Asun (Term alata), Saj (Term tomentosa), Seemul (Bombax heptaphyllum), Sal (Shorea robusta), and other trees. In some parts no attention whatever is paid to the rearing of the worms, the cocoons being samply collected by certain classes of the people from the trees in the forests on which they ocour They are afterwards sorted according to size, thickness, colour, \&cc, and carted off to the dealers. In other parts a batch of the wald cocoons are selected, the moths allowed to emerge, and , the sexes parred, the eggs thus procured are hatched, and the young worms
then placed upon the trees; in this partial state of domestication, the rearers tend the msects through all their stages, but depend entrrely on the wild cocoons for each year's stock.
The method of reeling is primitive in the extreme, and to its imperfections is attributed the scant attention this valuable and very beautiful silk has hitherto recelved.

Eria silk ihread Rungpore.
Eria sllk thread (of sorts). Rungpore.
Ema sllk thread. Assam.
Eria silk (cocoons). Assam.
The Eria or Arindy sllkworm 18 reared in Assam, and a tract to the southwest of that province, comprising the districts of Dinagepore, Rungpore, and part of Bhagulpore and Puraeah The worms are fed in the houses princtpally upgn the leaves of the castor-onl plant (Ricinus communns), and yield seven or more broods in the year. It is reared chiefly by low-caste Hindoos, Mekirs, and Cacharees The cocoons are mostly of a light rust colour, some, however, are also white. The silk is carded, not reeled, in consequence of the resinous nature of the binding matrix of the cocoon. Most of the silk is used for home consumption.

Raw Sily, Dyed. Class 243.
Floss silk, dyed (various colours). Umritsur.
Floss silk, dyed (various colours). Punjab.
Floss silk, dyed (various colours). Vellore, Madras.
Floss silk, dyed (various colours). Tatta
Floss silk, dyed (various colours). Cashmere.
Silk Fabrics, Plaiń. Class 245.
Tusseh silk prece, plan Beerbhoom.
Mushroo plece (satin and cotton back). Hyderabad, Deccan. Sulk cloth, coarse. Bogra.

Silk Fabrics, Figured. Class 246.
Silk prece, gold and crimson striped. Ahmedabad. Silk piece Burmah. Kincob prece Benares.
Tusseh silk prece, striped. Bhagulpore, Bengal.
Garments. Class 250.
Woman's garment (Saree) Madras.
Woman's garment (Saree) Dharwar.
Cashmere coat (Choga) Lucknow.
Scarf (Kummerbund). Coorg.
Scarf (red net). Delhi.
Scarf (green muslon). Delhi.
Child's dress (Jubla) Surat.
Satin apron. Sind.
Woman's sllk garment. Sattara.
Man's garment (scarf) Goodaspore. Punjab.
Man's garment (Loongee). Moultan.
Man's garment (Loongee) Sind.
Woman's garment. (Thaming) Pegu.
Pinna sllk dress skirt. Madras
Shoes, \&c. Class 251.
Parr of shoes, embrodered. Hyderabad, Sind.
Pair of shoes, embrodered. Gwalior.
Pair of shoes, velvet, embroidered with gold. Sind
Pair of shoes, velvet, embroidered with gold. Kotah.
Turban, crmson and gold Madura.
Turban, white with gold border. Madura.

Embroidered Fabrics and Lacr Class 252

Net embroidered with gold and beetle wings. Hyderabad.
Net embroidered with gold and beetle wings. Deccan.
Gold-embroidered cloth. Madras.
White net embroidered with gold. Trplicane, Madras.
Muslın dress skurt, embroidered. Dacca
Muslin embroidered with gold and beetle wings. Madras.
Two small circular preces, embroidered. Sind.
Slipper fronts (parr) Sind
Sulk scarf embrondered with narrow gold mbbon. Delhi.
Velvet bodice embrodered. Benares.
Linen coat, embroidered with gold and colours. Bhurtpore.
Silver band strips embroidered with beetle wings Madras.
Cotton piece embroidered with Moonga sllk. Dacca.
Embrodered chess cloth Burhampore C. Indis.
Curcular prece satun, embroldered Madras
Bag piece embroidered with gold and beetle wings Bombay.
Book cover, embrodered, crimson velvet and gold. Sind.
Slipper fronts, three parr. Sind and Looduana.
Sulk gauze prece, embrodered. Trichinopoly.
Kincob scarf Ahmedabad.
Doll figures, dressed. Benares.

Lace.

Sooneri, gold, ootani kınaree. Bombay, Surat, and Ahmedabad.
Leharee, gold kinaree. Bombay, Surat, and Ahmedabad.
Leharee, gold kinaree, small red. Bombay, Surat, and Ahmedabad.
Leharee, gold kinaree, small green Bombay, Surat, and Ahmedabad.
Ootanı, purple kinaree. Bombay, Surat, and Ahmedabad.
Ootani, green kinaree. Bombay, Surat, and Ahmedabad.
Yekputtee hurree, green kore. Bombay, Surat, and Ahmedabad.
Yekputtee jamlee, purple kore. Bombay, Surat, and Ahmedabad.
Yekputtee asmanee, blue kore. Bombay, Surat, and Ahmedabad.
Bé puttee jamlee, purple kore. Bombay, Surat, and Ahmedabad.
Bé puttee soneree, gold kore. Bombay, Surat, and Ahmedabad.
Yekputtee rooperi, slver kore Bombay, Surat, and Ahmedabad.
Yek sapohanee, silver kore. Bombay, Surat, and Ahmedabad.
Tunputtee roopern, silver kore. Bombay, Surat, and Ahmedabad.
Sapoha sadı hurree, green kore. Bombay, Surat, and Ahmedabad.
Tun putteenee, green kore. Bombay, Surat, and Ahmedabad.
Bé putteenee, green kore. Bombay, Surat, and Ahmedabad.
Bé sapolıanee gungajumnee, green kore. Bombay, Surat, and Ahmedabad
Leharnee sapolianee gungajumnee, green kore. Bombay, Surat, and Ahmedabad
Otanee gungajumnee, gold and silver kore. Bombay, Surat, and Ahmedabad.
Yek, sapolanee, gold and silver kore Bombay, Surat, and Ahmedabad
Bé kungra, gold and sllver kore. Bombay, Surat, and Ahmedabad.
Leharnee soneree, gold and silver kore Bombay, Surat, and Ahmedabad.
Leharnee soneree, gold and sulver kore Bombay, Surat, and Ahmedabad.
Plam puttee, gold kore Bombay, Surat, and Ahmedabad
Yek-tara puttee, gold kore. Bombay, Surat, and Ahmedabad.
Gokroo soneree, gold kore Bombay, Surat, and Ahmedabad.
Gokroo rooperie, silver kore Bombay, Surat, and Ahmedabad.
Silver lace, 3 tolas Nagpore
Silver lace, 1 yard Nagpore.
Lacha silver lace, 1 yard Nagpore.
Silver lace Nagpore
Lace, $3 \frac{1}{12}$ tolas Nagpore
Lace, 1 yard Nagpore
Lace, 1 yard Nagpore
Lace, 3 yards. Nagpore.

Collar Madras.
Collar Madras.
Handkerchef border Madras.
Sux specimens of white lace (lyard long each) Madras
Cravat
Sixteen specimens of white cotton lace. Bombay.
Handkercinef. Poona Convent.
Paur of doyleys. Madras.
Specmens of lace. Madras.
Specımens of lace. Madras.
The manufacture of lace in Indıa is entrely of European ongn, and the workers are mostly under European guidance.

Fifteen frames contaiming photo-luthographs, by W. Gnggs, illustrative of the textile manufactures of Indra.

These photographs form portions of the followng work lllustrating and exhbiting the Chief Textile Manufactures of India, now in course of preparation at the India Museum, under the direction of the Reporter on the Products of India, to the Secretary of State for India in Council.

Thas work comprises-
Thirteen quarto volumes, containing 720 examples, in the actual material, of the following textile fabrics, viz ,-

1 volume of kuncobs or gold brocades - 58 samples.
1 volume of mushroos - - 67 samples.
2 volumes of sulks - - 106 samples.
1 volume of cotton and silk muxtures - 60 samples.
2 volumes of cotton trouserings - -121 samples
1 volume of bodice (or cholee) preces - 51 samples.
1 volume of muslins and calicoes - . 57 samples.
1 volume of cotton prints - - 80 samples.
3 volumes of woollens - . -120 samples.
Total - -720

Eight large folo volumes, containing 240 lithographic and chromolithographac plates, exhibiting the patterns of 400 of the richlydecorated scarfs so largely worn by both sexes in Inda, together whth examples of the embroidery apphed to the ornamentation of garments, \&c This section will likewise contain a considerable number of samples showing the actual material of which many of the illustrated fabrics consist.
Thurty glazed frames, with mounts exhibiting the 240 plates last mentioned, suspended around a central pillar, an arrangement which both economizes space, and faclitates the examination of the different subjects

The dameter of the curcle or floor space occupied by the pillar and its projecting frames is about sis feet.
The vanous samples and dlustrations of which the work consists are accompamed by details as to the length, width, cost, and place of production of the fabrics from which the specimens were orignally cut, or from which the allustrations were taken by photo-hthography The work, therefore, affords a large amount of practical information, whist at presents in a convenuent form what may be regarded as a very complete Grammar of Indian Ornamentation in so far as textiles are concerned.
The price of the work complete $1 s 150 l$, a sum which simply covers the cost of its production; and it has already been subscribed for by all the chref centres of commerce in Great Britam, and by several institutions abroad. Fourteen out of the total number of volumes of which the work will consist have been completed, and it is expected that the whole will be finished in the course of the present year

Jewellery. Class 253.
A collection of Jewellery. Exhbited by Messrs. Watson \& Co, Bombay.
Fans Class 254.
Talc fan, embroidered Madras.
Palm-leaf fan, wth lace edgings. Madras.
Two khus khus fans, made from the fragrant roots of the khus khus gras
(Andropogon muricatum). Madras.
Straw fan. Monghyr
Palm-leaf fan. Madras
Palm-leaf fan. Madras.

- Silver-handled fan, embroidered with gold, \&cc. Delh.

Fan made of strips of ivory. Tipperah
Fan made of strups of ivory Tipperah.
Fan of splet straw Monghyr
Painted palm-leaf fan South India
Khus khus fan, embroidered with silk. Poona.
Two fans of tinsel and silk fringe. Madras.
Two palm-leaf sun shades. Madras.
Chowrre, splut peacock quill. Poona.
Chowre, split peacock quill. Poona.
Chowree, split peacock quull, with silver handle. Hyderabad. Decca.
Chowrie, yak tall Punjab.
Chowme, split avory. Sylhet.
Chowre, splut sandal wood. Madras.

Fancy Leather Work. Class 255.

Leather box, embroidered with quill work. Sumla.'
Arms. Class 265 and 268.
Small barbed spear.
Small barbed spear
Large spear head South of India.
Spear with pistol attached.
Steel spear
Steel spear.
Spear with bamboo shaft
Spear with bamboo shaft.
Leather case for arrows. Lahore.
Quver with 24 arrows, green velvet, embroidered with gold Lahore
Quiver with 24 arrows, puce velvet, embroidered with gold. Lahore.
Coat of mail, steel and brass rings. Punjab.
Bow. Delh.
Bow. Delh
Bow. Delhn
Gauntlets (2). Punjab.
Arm cover, green velvet, embroidered with gold. Lahore.
Arm cover, crumson velvet, embroidered with gold Lahore
Battle axe, steel head and kooft. Delhe
Battle axe, steel head and kooft. Nagpore.
Dagger, jumbea shaped, metal mounts, gilt. Deccan.
Iron mace, hilt mland with silver. Bengai.
Iron maoe, shaft covered with leather Bengal
Small sword, with carved blade and rvory hilt Coorg
Sword and leather scabbard.
Sword and wooden scabbard
Sword and wooden scabbard Malayan Archipelago.
Short sword and wooden scabbard, with knife inserted in sheath.
Sword and wooden scabbard. Burmah.

Sword, inlaid with gold, and velvet scabbard.
Sword with horn handle. Malayan Archupelago.
Sword and scabbard mounted with silver. Bengal.
Breastplate (2). Iahore.
Breastplate (2). Lahore.
Helmet, steel and brass rings. Punjab
Matchlock, Kooft, and mounted with silver. Rajpootana.
Matchlock barrel, and mounted with silver. Rajpootana.
Matchlock, silver mounts. Punjab.
Matchlock, barrel washed with gold. Punjab.
Bayhmak, Gwalıor. (India Museum.)

Materia Medica. Clasa 272.

Mossed bark. Cnchona succirubra. Neilgherres.
Cinchona bark. Cinchona succurubra. Neilghernes.
Cunchona bark. Cinchona succirubra. Kangra.
Calisaya bark. Cinchona calisaya.
Neem bark. Azadrrachta Indica.
Conesst bark. Holarrhena antidysenterica.
Satween bark. Alstonaa scholaris. Bombay.
Nux vomica bark. Strychnos nux vomica.
Pomegranate bark. Pumica granatum. Churetta. Ophela chirayta. Indian sarsaparila. Hemdesmus Indicus. Guluncha. Tinospora cordifolia.
Pareira brava. Cissampelos pareira.
Columba root. Jateorhiza columba.
Asgund. Physalis somnifera.
Liquorce, Glycyrrhuza glabra. Bombay. Pellatory. Anacyclus pyrethrum
Jatamansı. Nardostachys Jatamansi. Madras.
Mishmee teeta. Coptas teeta. Assam.
Bish. Aconitum ferox. Humalayas.
Aconite. Aconitum napellus.
Bish. Acontum ferox. Nepal.
Atees. Acontum heterophyllum
Black mooshe. Kala mooshe Source unknown.
Moosle seeah. Murdannua scapifora.
Galunga. Alpina galanga
Indaan pennywort. Hydrocotyle Asiatica.
Tinnevelly senna. Cassla lanceolata.
Senna. Cassia acutfolia. Bombay.
Patchoul. Pogostemon patchoul. Croton seed. Croton tgglum.
Chaul moogra. Hydnocarpus odoratus.
Gaub fruit. Embryopterus glutnifera.
Nux vomica. Strychnos nux vomica. Madras.
Poppy heads. Papaver somniferum. Behar.
The seeds yeld by expression about 50 per cent. of a bland and very valuable oul, of a pale golden colour, flud to within 10° of the freezing point of water. It dries easily, is inodorous, of agreeable flavour, and partally soluble in alcohol. The seed is worth about 61s. in the English market. By simple exposure to the rays of the sun in shallow vessels the oul is rendered perfectly colourless. It 28 expressed by means of a heary crrcular stone, placed on ats edge, made to revolve by a long lever, and the apparatus is worked by draught bullocks.
The seed has no narcotic qualities, but has a sweet taste, and is used, parched, by the lower class of natives as a food; it is also much used by the sweetmeat-makers as an addition in ther wares.

Muenphue. Randia dumetorum.
Colocynth. Citrullus colocynthis
Cassia fistula. Cathartocarpus fistula.
Tamarınds
Stamarndus Indıca
Star anise Ihicum annsatum Bengal

The nuts of the Areca palm form the principal ingredient in the famous Onental masticatory These are gathered between August and November, removed from the husks in which they grow, and are then boled till soft, are taken out, sliced, and dried in the sun

Kamala Mallotus Phillipınensis.
Oak galls of Quercus infectoria
Agar agar Eucheuma spinosum Malacea
Ceylon moss Gracilaria lichenoides S India.
Mysore gamboge Garcinia pictoria Mysore
Pipe gamboge. Garcinia morella
Ammonacum Dorema ammonacum.
Cocum butter Garcinia purpurea.
Rusot Berberis Assatica Nepal
Aloes, Aloe vulgarıs. Bombay
Henbane Hyoscyamus niger.
Untamool Tylophora asthmatica.

Bhang and Ganjah Cannubis sativa

The dred leaves of the hemp plant are called "Bhang," and the flowertops with theur resin, "Ganjah" The dried leaves are sometmes smoked alone or mixed with tobacco, but the more common form of taking bhang is to make it up with flour into a cake or a sweetmeat called, "Majun" Eating this sweetmeat produces great excitement and mania in persons unaccustomed to their use

Cashmere saffron Crocus sativus Cashmere.
Mowha flowers Bassia latifolia. Madras
Cloves Caryophyllus aromaticus. Penang.
Bael Atgle marmelos Bombay.
Lemon rind Citrus hmonum
Singhara. Traps bispinosa Bengal.
Coriander Coriandrum sativum.
Ajowan. Anethum sowa
Bishop's weed Anethum sowa
Carraways Carum carul
Henbaneseed Hyoscyamus anger. North Indaa.
Ispaghul. Plantago ispaghula.
Dhatoora. Datura alba. Bengal.
Gockroo, Tribulus lanugraosus. Bombay.
Cardamoms. Elattaria cardamomum. Mysore.
Cardamoms Cardamomum meduum Calcutta.
The Officinal, or Malabar Cardamoms are well known in Europe for their medicinal uses, but in India they are equally appreciated and used as a spice or flavouring ingredient, entering into the composition of many native dishes. The plant is a native of the Western Coast, and is cultivated in Malabar. In the Travancore forests it is found at elevations of 3,000 to 5,000 feet. The mode employed for obtaining cardamoms is to clear the forests of trees, when the plants spontaneously grow up in the cleared ground.

Black pepper Piper nigrum Travancore.
Cubebs. Piper cubeba
Coculus Indicus. Anamurta coculus
Juniper berries. Juniperus communis. Hımalayas
Neil Kalmee Pharbitis nil
Opium.
"The cultivation of poppy in Inda can be traced back as far as the sixteenth century. An allusion is made to the oplum and saltpetre monopolies of the Emperor Akber in the reign of Queen Elizabeth, in the celebrated Ayeen Akber of Abul Fuzul, prepared during the latter part of the sixteenth century.

The poppy plant has been cultrvated in Nepaul for years, doubtless for as long or longer than in Bengal and the North-western Provinces, and it may be that the oprum from India was first introduced into China by the Nepaulese, and afterwards by the Dutch, who used to purchase the drug for export, long before the East India Company held possessions in India.
The process of the manufacture in India at the present day is as follows -
About the end of January the poppy plant commences to flower, and continues till March; the petals are watched, and are carefully collected in the followng manner,-
The forefinger and thumb encircle the stem just beneath the pod, and with the other fingers drawn inwards a kind of tube is formed, this tube is then gently raised straight over the pod, and of the petals are matured, they come off They are never plucked off, as it would injure the pod. When a sufficient quantity has been collected in this manner, the cultivator proceeds to manufacture them into flat cakes something like pancakes, or, as they are techmeally termed, flower-leaves, and the oprum cakes are wrapped in these leaves.

The manufacture of the flower-leaf is simple and mexpensive. A curcularndged earthen plate, about 12 inches in diameter, is placed over a slow fire, the required quantity of petals is then placed in it, and pressed with a damp cloth pad till they have adhered together; the flower-leaf is then removed and allowed to dry, when it is ready for use in the manufacture of oprum

In February the poppy plant is pretty well advanced, and the prospects of the season can then be farrly ascertamed.

In some instances in January, but generally in February and March, the pods mature, and are lanced in the afternoon, the opium is allowed to exude and remain on the pod till the next morning, when it is scraped off gently with a small iron scraper, and the thumb or finger is then run over the incisions to close them The number of incisions required to complete exudation of all the juice varnes, and ranges from one to five and six, and occasionally to seven and eight in some isolated cases. The opium thus collected is placed in earthen or brass vessels slightly tilted, to dram off the dew and any opium juice it may contann; and when the whole of the drug is collected and thus treated, it is carefully manipulated, put into a new earthen pot, and set aside in some ventulated and safe place Should the opum be of low spissitude, it is exposed in some shady place (not in the sun), turned over occasionally and very carefully, so as not to injure the gran, and is so treated till it reaches the requured consistency, and remains in the custody of the cultivators until it is weighed

After the oprum has been extracted, the pods are allowed to dry, and are then broken off, and the seed collected An ample quantity is kept by the cultivator for next season's sowngs, and the remainder disposed of to traders.

The leaves of the plant are left on the podless stalks, and when withered are collected and delivered unto the Government opium factory, and termed technically trash, for packing the opıum balls in the chests, for which payment is made at the rate of annas 12 a maund

The flower-leaves are weighed in March and April, and are sorted into classes The first is of fine texture and colour, and from 8 to 10 inches in dlameter; the second slightly inferior in both texture and colour, and the third is of a roughish and thucker qualitys as sorted they are weighed, and the weight of each quality is entered in the leaf weighment book, when the ralue of each quality is calculated at the rate of Rs. 10, Rs 7 , and Rs 5 a maund
The flower-leaves are despatched by country boats or carts to the factory at Ghazeepore, and on arrival are weighed, examined, and classified.

Before the oprum weighments commence, the several books are prepared; new earthen jars and pots, with covers, are purchased and carefully weighed; coarse cloth, sealing wax, and twine for closing and sealing the jars, and baskets for holding the filled jars, are also purchased, every scale, beam, weight, pan, and reservour is carefully exammed and tested, and then the werghments take place

After the opium has been brought in by the cultivators, it is tested, and samples of each consignment are taken for a careful chemical analysis to the opium examiner's room to detect adulteration The opium is then stored in large wooden vats.

The pure opium, which is fit for the China provision, and the consumption of the local market, is stored in large wooden vats, each holding about 50 maunds (about $1 \frac{1}{2}$ tons weight), the opium derved hoth from the assameewra and chullan sources is not stored anyhow, but each parcel according to its class is emptied into a vat bearing the designation of that class; the light divisions are arranged in lines

As much opium as can be removed from the vessels by hight scraping is taken, that which adheres is afterwards removed by second seraping, and set aside for lewah, and that which persistently adheres is removed by water; this is called washings, and when evaporated is used in making lewah, the washngs alone are valued at about Ris 65,000 a season at. Ghazeepore Factory, and the oplum thus recovered amounts to over one ton in weight

When a vat is filled, the opium in it is stirred by long wooden poles daily until the drug is used for caking

When there are about 2,000 maunds (about 75 tons) stored-we have accommodation for upwards of 6,000 maunds-we can, of we possess the proper quantities of the various consistencies, comrmence caking One may ask, but why have you not caked before you collected so much ? The reply is, we are bound by order to cake at a consistence of 70°, that 1 s , when the opum contains 70 per cent of the pure dry drug and 30 per cent water We are allowed-as it is very difficult to hit off the consistence of 70° exactly when manipulating such a large quantity (nearly three tons) as we requre darly for caking - to cake when the assay shows the oprum to be above 6950° and under 7050°, so that we are allowed half a grain above and below the standard of 70°.
To prepare the opum for cakng, a certan number of vats are marked of each class, a long ron instrument, something like a cheese-taster, is thrust from the top to the bottom of the vat (it forms half a hollow cylnnder when open, and a complete cylinder when shut), and closed, the sample of opium is withdrawn, the contents of the sample drawn are thoroughly mixed up, and three specimens of 100 grams are assayed, the mean of the three results is taken as the rorrect consistence By the same process the samples from all the vats, which have been marked, are taken and assayed, those which will give, when mixed together in certain proportions (by rule of alligation), opium at a consistence of 6930 or 6940° are exported to the alligation vats, and the contents of the selected vats are equally distrubuted over the seven alligation vats, so that the consistence of each may be unform, the oprum is then well muxed by rakes and by men walkung about in 1t, and kneading it with their feet At about $3 P M$ it 18 removed from these vats into the five caking vats, equal quantities being taken from each of seven alligation vats are distributed over the five caking vats On the following morning the opium in each vat is again mixed by six men allotted to each from 5 Am to 8 Am Four samples are drawn from each vat, and thoroughly incorporated together, and three specimens from this mass are taken for assay, this pertains to every caking vat Should the whole of the assays of each caking vat come out above 6950 and under 7050 , the agent of the Ghazeepore Factory gives the order to cake, or in his absence the principal assistant does so
The cultivation of the poppy plant is rendered as far as possible both profitable and popular

A large room, 944 feet long by 27 feet wide, accommodates the 250 cakemakers, each cake-maker has a number and a place assugned for hum to work at, the cake-maker's number being printed on the wall above his seat Each man is provided with a wooden seat, and is furmshed with a brass cake mould, forming the half of a hollow sphere, he has also a in vessel graduated so as to hold $4 \frac{1}{2}$ chittacks of lewah, the regulated quantity which 18 used in making the shell of each cake

The oprum produce per beegah ranges from one to fifteen seers, according to the quality of the soil, and the attention and care bestowed on the cultivation, and state of the weather The profit varies and ranges from Rs 1 to Rs 50 or upwards per beegah

The following materials are used in making a cake, and as it is necessary that erery cake should be of the same weight, viz , two seers, every precaution $1 s$ taken to ensure the accurate determmation by weight or measure (calculated
for weight from actual experments) of the articles which compose the ca'e The proportion of each article as given in the table below -

-	Seers	Chittacks
Standard opium at $70-$	1	75
Lewah at 53 -	-	45
Flower-leaves -	-	50
Water - - - Trash	-	5
$\left.\begin{array}{l}\text { Total weight of cake on the } \\ \text { day of manafacture - }\end{array}\right\}$	2	175

The lewah now demands attention Lewah is a paste made by breaking down opium in water which has been used for removing the traces of opium which adhere to the jars and vessels in which opum has been placed, this is called washings or technically dhoe, the washings contan about 8 to 10 per cent of opium, the opium is broken down in large vats containing about 800 cubic feet, and about 8 per cent. of pussewah is added to the lewah to render it smooth and glutinous.
When the lewah has a consistence of over 5250 and under 5350 , it is called standard lewah; its consistence $1 s$ determined every morning by assay, and until it is of the proper degree, caking cannot commence
The lewah is delvered in bulk by weight, and the quantity to be used for each cake is measured by a brass cup which delivers $4 \frac{1}{2}$ chittacks at 53°
The poppy flower-leaves agglutinated by the lewah form the shell of the cake, five chittacks of dry leaves are requred for each cake, but as the leaves vary in weight according to the amount of moisture in the atmosphere, ten seers are steam-dried dally to ascertan how much mosture they contan ; knowng this, an exact increase or decrease in the weight of leaves can be made, which is required to compensate for the mosture contaned This control is necessary, since if five chittacks of leaves are used, which contaned much moisture, when the leaves parted with that moisture by evaporation in the dry months, the cakes would be lignt

The loss in weight which the leaves sustain by steam-dryings is determuned on the day previous to theur being required for use, the bulk required for the caking of the next day is weighed out and damped in the afternoon, so as to render the leaves supple and phant; when dry they are crisp and break readuly

Having explaned the prelimmanies of caking, the method will now be described Down the centre of the roon the scales for wenghing opium and the lewah vats are placed, there is a weighman for each scale, and tro assistants, the welghman weighs the opium on a very delicate scale, and one assistant searches the opium to ascertain finally that there are no extraneous matters in it, the second man arranges the moveable tin pan, and places the opium on it

When caking commences the caking vat room doors are opened, and the opium is brought out in tinned sheet-iron vessels holding 20 lbs each One vessel is set before every scale, and a sufficient quantity for one cake having been searched 18 handed over to the weighwan's second assistant, who adjusts the quantity in the pan When the weighman declares it to be correct the tin plate with the opium 18 taken away by a boy to his cake-maker, who has been supplied in the meantime with a tin cup filled with the requisite amount* of lewah for a single cake, he has also recerved the proper quantity \dagger of leaves for one cake Having these by lis side, he now rapidly forms in the brass mould the lower half of the shell of a cake, pasting by means of the lewah, leaf orer leaf, until the thickness of about seven-sixteenths of an minch has been obtaned He allows in so doing the upper part of some of the leases
which he tears in half and places vertically, to hang down outside the mould (with these he forms the upper half of the cake) 'The cake shell is princtpally made of half leaves vertically placed, other halves being mserted horizontally so as to give equal strength in all directions. Having finished the lower half of the shell he takes the tin plate and accurately, to a grain, removes the oprum into the half of the shell now ready for its reception, it is pressed upwards into the shape of a cone, some preces of leaves are apphed honzontally to $1 t$, then some lewah, now some of the parts of the leaves hanging down are pulled up and secured, more pleces are applied horizontally; and at last, having pulled up and properly arranged all the peeces of the leaves which were hanging around the cup, 2 whole leaf is apphed to the top, and the cake is now finished

It $18 \cdot a$ sphere of about the same size as a $24-\mathrm{lbs}$. spherical shot, it is removed from the mould and dusted with a little coarsely powdered poppy trash, so as to prevent its adhesion to the cup, made of burnt unglazed pottery, which is of the same shape as the mould in which the cake was made It is now carefully placed in the cup while still soft, and it is carried out by the cake-maker's boy, who puts it in the sunshine on a little square of brick flooring, which has been allotted to the cake-maker whom he serves, and where a small board stands bearmg his master's number

Before removal a paper ticket is pasted on the cake bearing the cake-maker's number, and the date on which it was made, every cake has its ticket, so that we can at any time trace ats history, and by this means we can hold every cake-maker responsible for the careful manufacture of his cakes; by means of these tickets, should anything be found wrong with any cake, at can be brought home to the man who made it

The cakmg begins generally at 10 A.M, and lasts tull half-past one or two o'clock in the afternoon, usually 20,000 cakes are made dally

The cakes are on the evening of the second day counted and sent to them destination in one of the cake godowns, where they and ther cups are stored in rakes

The great object to be attaned is to make the cake as carefully and compactly as possible by one operation, to have the shell even in thickness throughout, and to spread the lewah unformly between the leaves. This can be attaned by good cake-makers under strict supervision, cake-makers usually make 60 cakes a day, every good cake-rnaker gets 20 or more additional ones to make, for which they recelve an extra allowance

The flower-leaf forms an excellent covering, it is in every way suitable, but it has its drawbacks It is affected by wet, and is liable to be attacked by mildew, borers, and white ants, while it will not resist hard pressure apphed to any small area of its crrcumference, however, it certanly most effectuaily retains the moisture and aroma of the drug enveloped in it, and by its own fragrance adds to that which the opium per se contans

The cake godowns are large and high brickwouk buildings, with galvanized mon roofing, well ventulated by numerous windows and doorways The windows have rron gratings fixed in the masonry outside, and skeleton doors are prowided for the best godowns to admit of the entrance being closed while free perflation of air 18 not interfered with All the doors and windows of the better class godowns are further secured from thieves by galvanized wre netting, so that cakes cannot be cut up and passed out in large pleces

Inside the godowns are wooden racks, extending nearly up to the roof, there are intervening rectangularly-placed passages traversing the fiames to permit of ventilation In these racks the cakes are stored in their cups

Every third day the cakes, wherever placed, come down to the ground, are lightly hand-rubbed with a hittle trash, turned, replaced in their cups, and sent up agan to be placed in the racks. The object of turning is to allow the shell of the cake to dry ei enly

The packing takes place only in dry weather, and after the morning dew has been dispersed

Into a strong mango-wood chest, one yard long and two feet four unches wide, 40 cakes are packed in two layers of 20 each, the balls are prevented from rolling about by each one being placed in a compartment, and in these clests, varying in number accolding to the year, the oprum cakes find their
way to Calcutta, whence they are shipped to China at the close of the annual Government sales, each chest realising as much as $30 l$, or in other words 1,000 rupees, in an ayerage good season. (R. Saunders, Collector of Ghazeepore, 1873.)
Papaver somniferum. Behar
Ball as prepared for the Chinese market, called "Pronsion Opium"
Blisterng beetles (Mylabrss sp) Madras Used as a substivute for European cantharides in Indian Hospitals.

Wooden and Basket Ware; Papier-mâche. Class 289

Three catjan-leaf baskets. Madras.
One catyan-leaf basket. Madras
Catjan-leaf cigar case Madras.
Cane stand, with compartments Singapore.
Two grass window-shades. Travancore.
Three cane baskets Monghyr
Straw baskets Monghyr.
Cane bottle-stand. Singapore.
Papier-mâché dome-shaped box Cashmere
Papier-mâché clgar case. Cashmere.
Paprer-mâché jewel box Kurnool
Paprer-mâché pen case (Kalumdan) Hyderabad, Sindh
Papier-mâché pen case (Kalumdan) Hyderabad, Sindh.
Lacquered wood charpoy leg Sindh.
Lacquered wood charpoy leg Sindh
Lacquered wood box. Burmah.
Lacquered wood box. Burmah.
Lacquered wood box Burmah.
Lacquered wood box. Burmah
Lacquered wood box. Hyderabad, Sindh.
Lacquered wood box (bamboo) Burmah.
Lacquered wood box (3in 1). Sundh.
Lacquered wood box. Sindh
Lacquered wood box (5 in 1). Sindh.
Lacquered wood box Sundh
Lacquered wood box (oval with ivory studs). Punjab.
Lacquered wood box (oval) Sindh.
Lacquered wood map case Sindh
Lacquered wood, 3 solid and 1 hollow balls. Madras.
Lacquered wood table Sindh.
Japanned cabinet Barelly.
1/ Fancy arthcles, boxes, \&e of turned wood, and lacquered in various colours. The object to be lacquered is turned from hard wood, usually shisham (Dalbergra). After being smoothed and cleaned it is again fixed in the turner's frame (a kind of lathe worked by hand), and made to rotate. The sticks of lacquer colour, consisting of a mixture of lac, resin, colourng matter, and, it is said, a certain proportion of sulphur and bees' wax, are then apphed to the rotating object; the heat produced by friction is sufficient to soften the lacquer composition, which attaches itself to the wood, producing, however, a dull and streaky appearance. When sufficient colour has been appled, the surface of the article is sklfully rubbed with a piece of bamboo having a fine edge, by which the colour is evenly distributed, and a polish produced, wheh is finally completed with oiled rags To produce the mottled appearance so much admired, a colour stick of a rather harder composition than that used for producing a unform colour is lightly pressed agamst the rotating object, so as to detach a point here and there. This is repeated with sticks of different colours, and when sufficient colour has been laid on, the object is' polished with bamboo edges and olled rags.

Pleasure Carriage. Class 292.
Model of state carriage (Ekka). Poona.

Travelling Vehicles Class 293 and 294.
 Model of covered passenger cart. Bombay
 Model of palanquin. Bombay Model of luggage cart Bombay.
 Saddlery. Class 296.
 Sikh saddle (green velvet and gold trappings). Punjab.

Books on special Subjects relating to India, published by the India Museum. Class 305 and 306.

The People of India. By J. Forbes Watson, LL.D., \&c., and Sur Johr W. Kaye. 8 vols roy sup. 4 to
The Textile Manufactures of India. By J. Forbes Watson, LL.D, \&c. 1 vol sup roy 4to.
Tree and Serpent Worship By J Fergusson, F R S. 1 vol. sup. roy. 4to.
Ancient Buildings in Kashmir By Leut H. H Cole 1 vol 4to.
Ancient Buldings near Muttra and Agra. By Lieat. H. H. Cole.
1 vol 4to
Report on the Archæology of W. India. By J. Burgess. I vol. 4to.
Primitive Tribes of the Nilagirs. By J. W, Breeks. 1 vol 4to.

DEPARTMENT III -EDUCATION AND SCIENCE.

Musical Instruments. Class 327.

Luther Madras
Sarangi (stringed instrument). Madras.
Kanaga Tappu (instrument of percussion) Madras
Timiry Nagasuram (wind instrument). Madras.
Hanumanta Ottu (wind instrument). Madras.
Horn Moorshedabad.
Kettle drum Bengal.
Topograpey; Maps. Class 335.
A series of maps illustrative of Indian surveys.
10 frames containing photographs of views, \&c in India Relief map of Indıa (small size, coloured).

People of India. Class 340.

12 frames, contauning photographs of the Races and Tribes of Hindustan. (These photographs form a portion of the ullustrations from the work on the People of India, by J. Forbes Watson, MA, MD, LL D, and Sir John W Kaye, FRS. 8 vols sup. roy 4 to $2 l 5$ s. per vol. W H. Allen, London)

Architecture. Class 342
15 frames containung photographs illustrative of Indian archrtecture.

DEPARTMENT IV.-ART.

Sculpture. Class 400
Sculptured stone bull (Nandi).

> Ancient Sculpture. Class 401.
> Sculptures from the Amravati Tope, viz -
> Base of large slab (carved with figures)
> Small panel-figure of temple with Buddha seated.
> Two portions of freze.
> Portion of freze
> Portion of frieze (figures carrying wreath).
> Figure, standing.
> The Amravati Tope is sttuated on the bank of the Kistna River in Guntoor, Madras, and was discovered in 1797 by Colonel Mackenzie. The sculptures were excavated in 1840 by Sir Walter Ellot. Their history will be found in Fergusson's "Tree and Serpent Worship," London, 1873.
> Sculptured slab. Buddha's feet.

Carvings in Wood, Ivory, \&c. Clasa 405

Carved black-wood model of Buman Chuttree, a place where attendants seek sbelter when the bodies of the dead are being burned Booj, Kutch.

Carved sandal-wood model of Hindoo temple (Kullyaneeshion) Booj, Kutch.
Carved black-wood vase Bombay.
Idol, carved stone (Vishnu riding on Garuda). Madras
Idol, carved wood (Vishnu). Nepal.
Idol, carved wood (Chandra) Nepal.
Carved pith figures. Barber, shoemaker, and burdseller Trichnopoly.
Carved sandal-wood glove box Bombay.
Carved sandal-wood fan. Bombay.
Carved 1vory box. Burmah.
Carved elephant with howdah. Berhampore.
Carved horn tazza Gokah.
Carved horn drinking cup. Rutnagherry, Bombay.
Inlaid Work in Stone Class 450.
Inlatd marble box. Agra
Inlard marble box. Myhere.
Inlaid Work in Wood, Metal, \&c. Class 452.
Glove box. Bombay.
Work box Bombay.

Note on Inlaid Work.

Thus work, accordng to Framjee Heerjeebhoy and other craftsmen of the trade, was imported into Bombay from Persia through Scinde, and it seems from inquiries made by Dr. Brdwood on a previous occasion, that they all agree in naming Shraz as the place from which it emanated Three Mooltanees, Devidas and Vulleeram, brothers, and Pershotum Heeralal, were the first, it would seem, who settled about a hundred years ago in Scande, where Kuntaree or Soortee people acquired the art under them, and came to Bombay about sixty years ago, from whence they spread to Surat, Baroda, and other places The trade now is merely mitative, new geometrical combinations are seldom thought of, the woikers content themselves with simply copying the forms which were imported from Persia Manoredas, Nundlal, Lalchund, Thawurdas, Ruttonjee, Pranvulubh, and Narrondas are sald to have been the first who introduced the work into Bombay. A number of Parsees and Soortees have since been educated by them. Dr Burdwood gives a list of
fifty shops now carrying on the business in Bombay, giving employment to about a hundred and twenty people

This work is composed of the followng materials -Ivory, which is always white, Samber Horn (Sawursing), which is always green, the colour is produced by steeping it in verdigris dissolved in lemon juice, toddy, or vinegar.

Sandal-wood used in its natural colour.
Ebony, on account of its colour.
Pattung-Sappan-wood-according to Dr. Burdwood "the wood of Cæsalpinia Sappan " This wood is of a rich burnt slenna colour, and seems to have been unknown to the Persian workers, as vermilion is substituted for it.

Mineral-Tin (the Persians use brass instead), in inntation of slver. This is generally purchased round, and passed through a roller known* by the name of Rat, the lower wheel of which is cut in several places, forming more or less acute angles, the upper wheel being smooth, the tin issues from it in a triangular shape This and all the other materials partake of the shape of the square, the rhombus, the asosceles, equilareral, and right-angle triangles Segmental forms are sometimes given to the ivory, sandal-wood, and ebony filhng in ground, so as to admat of circular designs 'ihe tin employed is sometimes round, when used as a border, and is then know n as "Ekdan," which means one line, and forms a succession of round dots. The sandal-wood is never introduced in borders, but is employed in the larger patterns; the materials are glued together into various geometrical forms, consisting of curcles, hexagons, the square, the rhombus, and the triangle; the glue usually used in preference to all others is Ahmedabad glue, which is considered by native workers stronger than any manufactured in the country or imported from Europe. It is dissolved in brandy or spurts of wne. The length of the preces glued together is generally two feet, and these are sawn off in sections with delicate saws in widths varying between the 15 th and 20 th part of an meh. These are glued on to sandal-wood about a quarter of an minch thick, the latter is fastened on to black-wood (Sissoo), teak-wood (Saag), or deal (Deodar) Not unfrequently the whole box is made of sandal-wood, but this. adds materially to the expense. Some of the designs are known under the names of -

Mhotee Kutkee-no-gool-A design of comparatively large hexagons. The prefix Kutkee is applhed to the work when sandal-wood and ebony are introduced.

Adhee Dhar-no-gool-The rhombus.
Tun Dhar-no-gool-The triangle
Chorus-gool-The square or matting pattern.

- Gool-Round

Poro Hansio, Jafran Marapeck, Sankro Hansio, Lehero, Jerr, Ekdanı, and Baelmootana are names apphed to borders.

A cheap white wood known as "Dooblo" has been tried as a substitute for ivory, but its use has been discontinued, as it does not answer it 1s, however, still used in the Ceylon inlard woodwork"

Card basket of porcupine quill work. Vizagapatam.
Box of porcupine quill work. Vizagapatam.
Bowl and cover of Bidm ware Hyderabad.
Spittoon of Bidrı ware Hyderabad.
"Bidri" (from Bider, in the Deccan, where this art-industry 15 said to have been first practised in India) is the name given at Purneah to a composite metal, the chief component of which is zive With this is muxed, in small quantities, copper and lead Roughly the proportion may be given thus -In every 13 oz of the compound metal rather mone than 12 oz would be zinc; rather more than $\frac{1}{2}$ an ounce would be copper, and less than $\frac{1}{2}$ oz would be lead Upon vessels and other articles made in this composite metal, patterns are traced and cut out in shallow intaghos by chisels of various shapes, and the hollows so formed are filled with thin silver plates which are made to adhere firmly to the bidri ground by the use of hammer and punch. The work then receives a polish by friction, first with cakes composed of lac and powdered corundum, and finally with charcoal, after this the ground or bidri metal receives a permanent black colour by being rubbed with a paste of which the chef ingredients are sal ammonac and nitre. This blackening of the
bidri ground not only heightens the effect of the silver mlay, but prevents the tarnish which otherwse would in time disfigure the ground The industry is of Mahomedan introduction, and Purneah has long been celebrated for it

Casket of Koftgan ware. Sealkote
Basket of Koftgart ware Sealkote
Process of Manufacture of Koftgan Ware (Steel inland whth Gold) -The pattern on the steel is engraved by the hand with a fine-ponted tool, called "cherma" The golden is beaten out into a very thin wre, which is laid into the design so engraved The surface is next scraped to an exact level, by an instrument called "Tor" or "Slat." The article is then exposed to a moderate amount of heat, and when taken from the fire as rubbed and polished with a smooth stone called " mohari" (Punjab Catalogue) Koftgar1 work is produced chrefly in Goojerat and Sealkote, in the Pumab, that of the latter place being distinguished by higher finish It was formerly much in vogue for the decoration of arms, but as the manufacture of arms has been generally discouraged sunce the rebellion in India, its application us now chefly confined to the ornamentation of fancy articles, such as paper-kmves, paper werghts, jewel caskets, \&c

Paintings on Ivory, Leather, and Mica, \&c Class 454.

Twelve minature paintings on ivory (buildings), mounted in carved sandwood frame Delh

Three writing pads of ornamental painted leather Kürnool Paintings on mica (in frame) Trichnopoly
Eleven samples of Callgraphy or ornamental writing in colours. Inda

DEPARTMENT V-MACHINERY.

Models or Boats. Class 594.
(Bhar) For heavy cargo Calcutta

- (Hudu) Used in coasting about Chittagong. Calcutta
(Balam boat) Deep-water passenger boat Calcutta
(Budgerow) Passenger boat. Calcutta
(Mayur Pankı) Peacock-prowed boat Calcutta
(Khega Dhingı) Ferry boat Calcutta

DEPARTMENT VI-AGRICULTURE.
Arboriculture and Forest Prodects.
Ornamental and other Woods. Class 601.
Woods.

Acacia catechu. Khar Acacia diluta Acacaa julibrissm.
Acacia leucophoea.
Acacia marginata
Acacia paludosa.
Acacia spinosa.
Acacia sundra.
Acacia tomentosa.
Acacia sp.
Acacla sp.
Acer oblongum

Acrotarpus frammufolus
Actephila Neilgherrensis.
Adenanthera paromina.
Ægle marmelos Bé
Agatı grandiflora.
Aglaia Midnaporensis.
Ailanthus excelsa
Albizzia lebbek
Albizzia odoratissima.
Albizza procera
Albizza stipulata.
Albizzıa sp
Alstoma macrophylla.

Alstoma scholans	Cambessedea oppositifolia.
Amygdalus commums	Canarium Bengalense
Anacarduum occidentale	Canarium commune
Ancestrolobus carnea.	Canella alba.
Andrachne trufoluata.	Carallia integerrma
Antidesma diandrum.	Caralla lucida.
Antidesma sp	Careya arborea
Aquularia agallocha	Casearia? pentandra.
Araucaria Cunninghamu	Cassıa fistula. Amaltas
Areca catechu	Cassia florida
Artocarpus chaplasha	Cassia grandis
Artocarpus echinata	Cassia Roxburghn.
Artocarpus hursuta	Castanea Indica.
Artocarpus integrifolia Jack	Castanea sp
Artocarpus lakoocha	Casuarma equsetıfoha
Artocarpus mollis	Casuarına muricata.
Artocarpus polyphema	Cedrela toona. White cedar.
Artocarpus sp.	Celtis Roxburghi.
Averrhoa carambola.	Chelonsa sp.
Azadurachta Indica Margosa. Neem	Chickrassia tabularis, Chittagong wood.
Barringtomas sp.	Cinnarnomum mers,
Bassua latifoha	Cinnamomum parthenoxylon.
Bassia longifolia. Bassa.	Citrus decumana
Baubina Malabarica.	Cleidion Javanicum.
Baubima purpurea	Cocos nucifera.
Bauhinia racemosa.	Colvillea racemosa.
Bauhinas Ruchardians.	Combretum trufolatum.
Bauhins vamegata.	Conocarpus acuminatus
Berrya ammonilla. Trincomallee	Conocarpus latifolius Dhowra.
Berrya mollis	Conocarpus myrtufolıus, Kındahı
Betula sp	Conocarpus sp
Bignomas sp	Cordia Bantamensis.
Bischoffia Javanica.	Cordia angustufoha.
Blighia sapida	Corda latifolia
Bombax Malabarrcum. Seemul.	Cordia Macleodi
Bombax sp	Cordıa myxa. Sussora.
Borassus flabelliformis Palmyra	Cordas sp.
Boswella serrata.	Cossignia Borbonica.
Briedelia Berryana.	Cupressus funebris
Bredelia retusa	Cupressus sempervirens.
Briedela sp	Cupressus tomalosa
Briedela stipularis	Cynometra polyandra.
Buchanania latifolia Chernjı.	Cynometra ramiflora
Butea frondosa Palas.	Dalberga alata
Buxus sempervirens	Dalbergia lanceolania
Byrsonima sp.	Dalbergia latifolas. Rosewood.
Byttneria sp	Dalbergıa oojemensis.
Cæsalpinıa sappan	Dalbergia ovata
Callicarpa arborea	Dalbergia sissordes
Callistemon salygnum.	Dalbergia sissoo.
Calophyllum bracteatum	Fagrea fragrans
Calophyllum sp	Heterophragma chelonordes
Calosanthes Indica	Homalium tomentosum.
Calyptranthes sp	Spathodea strpulata.
Calysaccion longufohum.	Vateria Indica
Dxe Woods.	Class 602

India produces a large variety, and amongst thern the most valuable of organic materials for the use of the dyer Those which are not indigenous have been introduced with success, and when we name indigo, cutch, madder, sappan wood, safflower, mangrove bark, nut galls, myrabolams, and many others, it will be judged that our "Empire in the East" has great resources
in dye stuffs. The collection sent to the present Exhibition is neither large nor numerous, but it is useful as an indication of the resources at command.

Sappan wood. Casalpinia sappan
Wood of Morinda tinetoria Madras
Jack wood Artocarpus integryfolia.
Cutch wood Acacia catechu Shahjehanpore.
Avarum bark Cassia auriculata.
Bark of Cassia fistula Cuttack
2 samples of mangrove hark. Rhizophora sp Burmah, and Singapore.
Aroogay bark Madras.
Sambooram. Sindh
Babool. Acacza Arabıca.
Puph. Ventrlago Maderaspatana Madras.
Chay root Hedyotus umbellata Nagpore
2 samples Aal root. Morinda catrifolaa Central Indıa
The principal trade of Kotra in the Jaloun district is in the dye from Aal (Morinda citrifolia) The best solls for Aal are,--

Mar	-	-	-
Kabur - Black soll			
Perooa -	-	-	Ditto, wrth more clay.

The rate per acre is, -

Mar	-	-	-	-	-	Rs	2	8
0	0							
Ditto	-	-	-	-	-	2	0	0
Kabur	-	-	-	-	-	1	0	0
Ditto	-	-	-	-	-	0	12	0
Perooa	-	-	-	-	$-m$	0	8	9

The seed of the Aal is sown in July. The land is first ploughed, then raked by the native harrow called bakkar.
The seed is then sown broadcast, to one beegah of land one maund of seed is given The plant begins to show in one month, or in August
It is weeded in September, October, and November following
In the following July the soll round the young plants is turned up to allow therm to grow and receive the rains.
The second year it flowers in August and September. The flower is white and sweet-smelling The yueld per beegah of seed is in the first year about 20 seers, and the two following jears only 10 seers The third year the plant is dug up. The roots go down about three feet. All other parts of the plant are of no use
The roots are dug up in December, January, February, as may be requared. The yueld in roots per beegah is five maunds
The roots are divided into three distinct sorts:-
1st. The best is the thinnest, called bharía, found at the greatest depth. The yeld is about one maund, valued at Rs 8 per maund in the market, formerly it fetched Rs. 20 per maund
2nd. The next size is called ghurrun The yield is about $2 \frac{1}{2}$ maunds per beegah. It now fetches in the market Rs 4 per maund. It formerly sold at Rs. 10.
3rd. This sort is thickest, is called ghattea. The yield per beegah is about $1 \frac{1}{2}$ maunds It sells now at Rs. 8 per maund, formerly it fetched Rs. 9.
The three sorts are mixed in the following proportions:-

Then chopped up fine; then ground in a hard mill, and for each seer of root 2 ounces of alum are added All are put into a vat holding $2 \frac{1}{2}$ maunds, or 28 gallons of water
The cloth to be dyed is first washed To one than (prece) of cloth, a quarter seer of castor oul and a guarter seer of fuller's earth (sujeee) are used, with
four seers of water, in which it is well stamped upon by the eheepee (cloth printer) The cost of this process by the cheepee is 3 pre per "than" of 8 yards
In the root mxture above mentioned, fine thans of white country-made cloth called patul, or fine thans of markhanı, a better sort of cloth, are put, and allowed to remann for elght days The cloth is moved up and down to make the dye equal throughout. After this the cloth is taken out, washed, and dried in the sun, and pressed

The present market price of patu is Rs 1-8-0 per than of 87 yards, murkhans is Rs 2 per than A profit of 2 annas per than $1 s$ generally madem the markets of Hatrass, Plibheet, and Lucknow. These cloths are used by women as headcoverings
Munjeet. Rubua cordifolia. Nepal, Assam, and Bengal.
Munjeet Rubia munjista. Bombay.
Madder Rubuatanctoria Madras
4 samples of turmeric. Curcuma longa. Dehra-Doon, Bombay, Bengal, Bimlpatam
Sample of round turmeric Curcuma longa Madras
Sample of Bengal turmeric Curcuma longa. Calcutta.
Sample of ground turmenc Curcuma longa
Mara munjll Coscineum fenestratum
Rutanjot. Onosma echaordes. N W. Provinces.
Green dye Jatropha Malda.
Henna. Lawsonia inermus
Usburg. Delphinuum sp Lahore.
Sumac Rhus $s p$ Cawropore
Dhawa flowers Grislea tomentosa N.W. Provinces.
Palas flowers Butea frondosa Burmah
Palas tlowers Butea frondosa Ahmednugger
8 samples of safflower. Carthamus tinctorus, from Indore, Burmah, Hydrá-
had, Hooghley, Moorshedabad, Sarum, Dacca, Ahmednugger.
Ball safflower Carthamus tinctorus
Hursughar Nyctanthes Arbor tristis. Madras.
Divi Divi Casalpinta comaria Cawnpore
Marking nuts Semecarpus anacardium Burmah.
Kamala Mallotus Phulıpprnenszs
Aomla Embluca officunalis Bombay
3 samples of myrabolams Terminalua chebula Bombay, Calcutta, BengaI.
Beleric myrabolams Termanaha belerica Madras
Crushed myrabolams Terminalua chebula. Cawnpore.
Usneh Parmela perlata Umritsur
Chulcheleera Parmelia Kamtschadalıs Bengal.
Orchella Roccella fucyforms Travancore.
Mochurrus Areca catechu Bombay
Blue galls of Quercus infectora.
Galls of Terminalua chebula
Tamarisk galls Tamarix furas. Bombay.
Pulas kino. Butea frondosa.
Gums and Resins -Class 603.
5 samples of sal dammar Shorea robusta, from Central Provinces, Raepore, Gyah, Burmah, Chota, Nagpore.
6 samples of black dammar Canarıum strictum, from Madras, Coorg, Salem, Burmah, Cochin, I
Pwai Nyet Canarium structum9 Burmah.
Thingan Hopea odorata Pegu
Resin Harduıckua binata Salem
Dhoop resin Vateria Indica W India.
5 samples of piney resın Vatera Indica, from Mysore, Bangalore, Madıas, Tharancore
Salaı Terminalıa sp Berar.

Olibanum. Boswellha Bhaudagiana. Bombay.
Myrrh Balsamodendron myrrha Bombay.
Jalmaram incense. Salem
False bensomn. Terminaha angustyfolia. Bombay.
Muttipal. Allanthus Malabarica Bombay.
Dika Mall. Gardenia gummıfera. S. Inda
Asaffetida. Narthex asafeetuda Bombay
2 samples of Mysore gamboge. Garcinua pictoria Bombay.
Palas Kıno Butea frondosa Central Pronnces.
Banapu Termnala tomentosa Madras
Kıno, inferior Pterocarpus marsupium Madras
Kino Pterocarpus marsupum Madras.
Vengaygum. Pterocarpus marsuptum Madras
Khara Sterculia urens Indore
Karree gum Stercula urens Central Provinces.
2 samples of Kuteera gum. Sterculua urens, from Indore and Central Provnces
Kıcteera Cochlospermum gossypum Madras.
2 samples of Babool Acacza Arabrca, from Baroda and Central Inda.
4 samples of Babool gum Acacia Arabica, from Calcutta, Gyah, Salem, and Central Provinces
Kheir Acacla eatechu Madras
3 samples of Kheir gum. Acacza catechu, from Central Provnces, Goonah, Chutterpore
Caroo Velar Acacta sp Madras.
Velan gum Acacia leucophlcea. Madras.
Velar gum Acacia odoratissima. Salem.
Gum of Mela azadarach Salem.
Wood-apple gum Feronza elephantum. Madras.
Woodier gum Odina wodier Central Provinces
2 samples of woody gum Odina wodier, from Bengal, N W. Provinces.
Dowra Conocarpus latyolla Ahmedabad
Kuthla gum Indore.
Veckale Conocarpus latyfolza Madura
2 samples of Dinduga Conocarpus lutifolia, from Sajem and Madras.
2 samples of Dowra Conocarpus latifolia, from Goonah and Central India
2 samples of Chronjee. Buchananza lattofola. Central Provinces and Madras
Gum of Chironjee Buchananaa lattfoha. Berar
Moorkalee gum Salem
Marking tree gum Semecarpus anacardum. Salem.
Gum of Macaranga tomentosa Madras.
Kattumandu Euphorbra cattemandu
Panchontee. Bassa elluptca. Madras.
Coorta gum. Source uncertan
Gutta-percha Isonandra gutta. Malacca.
These products have as yet not been farly and completely sought out and developed in India. The supply could doubtless be very large, but so long as indiscrimmate muxing and careless collection is the rule rather than the exception, the gums and resins of Indan forests will fall to secure a remunerative market
Strck lac, from various parts of India and Burmah.
Cake lac Bombay
Gran lac Mirzapore.
Seed lac Mirzapore and Central Indaa.
Flake lac. Bengal
Shell lac. Mirzapore. Bengal.
Silk lac. Jubbulpore
Strck lac consists of the resinous incrustation formed by the female lacinsect upon the small branches of various trees and shrubs, being found abundantly throughout most of the forest districts of India and Burmah.

Agricclutural Products.

Food Grains Cereals and Pulsz - Classes 620 and 621
Fifteen samples of wheat (Triticum oulgare) from Sind, Punjab, Faridpur, Bengal

Wheat is largely cultivated in the north as a spring crop Dr Royle mentions that he has not seen wheat hugher than $\mathrm{S}, 000$ feet, but Gerard speaks of it at 10,000 , and Capt Webb at 12,000 , on the southern slope of the Himalaya The extreme limit is given at 13,000 to 15,000 feet. The varieties cultivated in India are not many; white wheats are generally preferred. Bearded wheat is most commonily grown in the Deccan, Gujerat, and Kbandeish Wheat is much grown in the Burmese territories. The natives generally do not consume much of this gran, but it is reserved for sale, Wheat flour is muxed with the flour of some of the pulse, and un this form made into cakes, bread or cakes made of pure wheaten flour being too expensive a luxury for the mass of the population

Ten samples of barley (Hordeum distichon), from Belgaum and other places.
Barley is cultivated in the Humalayas up to 15,000 feet There are several varieties belonging probably to more than one species, some certanly to Hordeum hexastichon. The latter is said by Dr Stewart to be freguently cultivated as a cold-weather crop in the plans of the Pupjab, as at requires less labour and gives more produce than wheat, even in inferior soll and where the water is deep below the surface. In some parts of the Humalayas, ahove 8,000 feet, it $2 s$ much more common than wheat, while at lower levels it is less grown. In Lahoul and Ladak it is abundantly cultivated up to 13,000 feet, in the latter some kinds of barley may be seen to over 14,000 feet, about Haule near the Tsomorirn lake. In the plams at is frequently cut two or even three times, when young, as fodder, with little or no mjury to the ear, which 18 formed afterwards. In Lahoul, on the Sutlej, and in Ladak a kind of beer 1s made from this gran, and in the latter a kind of spirit which is used by some of the richer inhabitants. A dark purple variety of barley is cultwated near the Sutle, and a clear translucent barley of superior quality called "paughambrn." A simular naked barley is grown in Nepaul.

Five samples of oats (Avena sativa) from Patna and Monghyr.
Oats were introduced some years ago, and are now grown sparingly at Patna and Monghur, the orgginal stations, and in one or two other localities, but beyond these does not seem to meet whth favour, and the cultrvation shows no tendency towards expansion. The paleaceous envelopes develop in greater laxumance than in Europe, to the deterioration of the grain

Two samples of maize (Zea mays) from North-Western India
Maize introduced into India is now whdely distributed, not only in India proper, but in Burmah, and is universally employed for human food In the Deccan, Colonel Sykes says, that the spikes are seldom allowed to ripen, while the grann is yet soft and milky the spake is taken off It is fried or parched and eaten with ghee and pepper or sugar; when the Koonbee and his friends cannot consume in this way the produce of a field the gram is allowed to ripen and is ground into flour Baden Powell observes in his "Punjab Products," that "marze grows everywhere throughout the hills, and appears to "flourish just as well in a temperate as in a tropical climate" At 7,000 feet or " more, it is the favourite crop of the people, and for six months of the year "forms their common staple of food Although superseded in the valleys "by rice, there is always a little plot of maze around the cottage of the "peasautry which is reserved for themselves, while the rice is disposed of "to wealtherer classes To the uplands maize is an admirably suited crop " It is very hardy, requires little rain, and is rapidly matured In sixty days " from the day of sowng the cobs are fit to eat, but the grain will not keep
"Weevis attack it in preference to any other grain, and it is a popular sayng " that the life of maze is only a year long "

Seven samples of jowaree (Sorghum vulgare)
This grain is the most unversally cultivated of any grain in the wet crop, it is in fact (an some parts) the principal support of man and beast It will grow upon most souls, but luxuriates in the black soll (Sykes). There
are several varieties, but principally one with red seeds, and one with white. When grown for fodder it 1 s much more thickly sown than when grown as a grain. As a fodder plant it is highly esteemed. A single plant found growing by itself is descrived by Sir John Hearsay in the Journal of the Agri. Hort Soc of Itdia for 1858 which produced 12,700 seeds. Some botanists recognise at least three species in cultivation, more or less, in India, vz , the present Sorghum vulgare, Pers, Sorghum cernuum, W, and Sorghum bicolor, Monch, whilst others regard these as mere varieties of the one species nhich is extensively cultivated over the world, and exhibits, hike all largely cultivated plants, a great tendency to vanation

Nine samples of bajra (Pencerllaza spreata).

The spiked mullet is as common in Africa as in Assa, at a distance bearing some resemblance to our indigenons cat's-tail mace, in the form and size of 1ts spikes Many stems often proceed from the same root, and these are from three to six feet in height The fruit spike is dense, compact, and thicker than a man's thumb, from six to nine inches in length (twice as long in Africa). The seeds are obovate and compressed, so that they are largest upwards, almost in shape like a small grape stone, pearl coloured, and smooth Except Sorghum, this is the most commonly cultuvated gran Roxburgh says, that " it is sown about the beginnng of the rams, viz, the end of June and " beginning of July, and is ripe in September. it is much cultivated over the " higher lands on the coast of Coromandel The soil it likes is one that is " loose and rich, in such it yields upwards of an hundred fold; the same " ground will yyeld a second crop of this or some other sort of dry gran "durng Oct, Nov, Dee, and Jan "
Colonel Sykes says, that it affects a reddish light gravelly or marly soul, but it is sown at times on the black soll Under favourable circumstances one seed will produce etght stalks, each stalk furnished with a spike full of seed. Commonly, however, each seed produces only one or two good heads From a head of ripe bajree, growng by accident in the month of August in a field of kodra, I obtamed 2,120 perfect seeds. Supposing, therefore, elght heads to each plant, there would be 16,960 seeds, and the plant will commonly average 8,000 seeds. From a field of bayree, repening of the 27 th Sep. tember, the plants average four stalks each, each stalk $\mathrm{with}^{\text {th }}$ a spike of 2,175 seeds, or a return of 8,700 for one. One plant had ten stalks and 15 heads of gran
The stalk is almost useless as fodder when dry, but cattle are sometumes fed with it when green. The seeds are considered rather heating, and are used in cold weather mostly as flour. Although in Afnca a kind of beer is sald to be made from the malted gran, we have no record of such use being made of it in India

15 samples of Itahan millet (Setaria Itahia).

This is considered by the natives one of the most delicious of cultivated grains It is culturated in many parts of India, and delights in a light elevated tolerably dry soll The seed-time for the first crop is June-July; and harrest in September. A second crop may be had from the same ground between September and the end of January. Dr Roxburgh states that it produces about fifty-fold in a favourable season. Dr Anslle writes, "This small round "gran is much prized by the native Indians of all descriptions, who make "cakes of 1 t , and also a kind of porndge, for the purposes of pastry 1 it is " little, if at all, inferior to wheat, and when boiled with milk it forms a light " and pleasant meal for invalids. The Brahmins hold it in high estimation, " indeed more than any other gran" In the Pujab, Baden Powell states that "this grain is much used for feeding poultry, \&c It is sery little " used as food otherwise, it is nutritious, but is sald to be heating, and apt "to produce diarrhoea", Thes gram is commonly cultu ated in the Himalaya, occasionally up to 6,500 feet. At places on the Chenab the leaves are used as a pot herb
9 samples of millet (Panicum maliaceum).
This grain is extensively cultivated in most parts of India In the Deccan Col. Sykes reports that it is sown in June-July by hand, is sometimes trans-
" planted, requres weeding in August-September, and is reaped in No" vember-December In crops not weeded the return was only twelve to one, " but in good seasons, and well weeded, the return would be eighteen for "one The grain is cut down with the 'yela,' tied up in sheaves, and
"trodden out by bullocks. The straw 18 eaten by cattle whulst a little grain "remains in it" At Kundalleh, Colonel Sykes intimates that the yield was far greater, being equal to 192 seers for 4 seers of seed, or 48 for 1
Dr Stewart reports that it is common in many parts of the Humalaya up to the Indus, being most common from 3,000 up to 8,000 feet (at places on the Chenáb) It is also grown at $10,000-11,000$ feet in Ladák. Its grain is considered digestible and nutritious, and in some parts is mostly consumed unground
10 samples of little millet (Panicum milaare)
This millet 18 by no means extensively cultivated in India. It is known as Kutki in the Punjab, but is sparingly grown In its uses it does not differ from the Italian and Indian millets, but is far less known
15 samples of Sawa mollet (Oplasmenus frumentaceus)
Dr Roxburgh says briefly of this plant that he had "only found it in a "state of cultivation It delights in a light, tolerably dry rich soul, the "same ground yields two crops, between the first of the rams in June and "July, and the end of January. The seed is wholesome and nounshing;
"it is an article of diet, particularly amongst the lower classes of the natives, " and yields about fifty-fold in a good soul. Cattle are fond of it."

In a letter to the Agri Hort. Soc of Indaa, Mr. C B. Taylor strongly recommends this grain as being much cheaper and better than mazze It is " light and easy of digestion, it makes very palatable puddings, whech chil" dren appear more partial to than those made of nice, to which grain, when " bouled, it bears a striking resemblance, both as to taste and in appearance" This grain is much less cultivated than Panncum miluaceum

15 samples of Koda mullet (Paspalum scrobrculatum).
This is a very common and cheap grain, grown to some extent in most parts of India Dr Roxburgh writes of it that it delights in a light dry loose soil, but will grow in a very barren one It is cultivated in the raing season The seed is an article of diet with the Hindoos, particularly with those who inhabit the mountans, and most barren parts of the country, for it is m such countries only where it is cultivated, it being an daprofitable crop, and not sown where others more beneficial wall thrive It is a very common belef that this grain is unwholesome, this was mentioned by Dr Ainshe, and has since been often repeated Dr Grbson says that "a variety of it called Hurreek often induces temporary insanity, and spasms, \&c Large numbers of "people may occasionally be seen this affected" Dr Stewart writes that in the Biynour district this grann "is sald to produce cholera and vomiting, " and I find that some authors mention a simular phenomenon as occasionally " occurring in all three presidencies The native generally hold that with " the ordinary koda, and undistinguishable from it, grows a kind they call " majna or majni, which produces the above effects, but it has been with "greater probability suggested, that these depend on the use of the new grain "under certain conditions These results, however, cannot be common here, " as a very intelligent old gentleman of the dustrict informed me that he had " never seen a case"

20 samples of raggee (Eleusine coracana)
This grain is of great importance to the poor, from its hardiness, and from the abundant return it gives The best method of cultivation is that which is pursued with rice, but it does not require a similar quantity of water, and it is planted on spots which the farmers have not thought is advisable to appropriste to rice It will grow on almost any soll, but the return will be proportioned to the quality of the soll and to the attention bestowed on the cultivation (Sykes)

The seeds are usually ground into flour by the handmul, this beng chiefly a bread grann The straw, though tough, is employed as fodder, and cattle seem to be fond of it, especially horses, which will even prefer it to any other kind of dry forage In the south this gram is very largely cultivated, and it 40609.
extends north,' over the Punjab planns to the Himalaya, where it is pretty frequent as far west as the Chenab up to 6,000 and 7,000 feet

1 sample of buttee (mullet)
1 sample of ralee (mullet).
Bamiboo seed (Bambusa arundinacea).
Bamboo grain has consideralle resemblance to oats, and is collected in some localities as food by the poorer classes in times when other food grans are scarce and dear Mr. Blechynden, in a letter published in Agri Hort. Soc. of India Journal, gives particulars of the service rendered by this grain after fallure of the rice crops in Orissa in 1812, when a general farmine was apprehended. "The grain obtaned from the bamboo was most plentiful and "s gave sustenance to thousands, indeed, the poorer, and therefore the greater cc portion of the inhabitants subsisted for some time solely on this food. So "great was the natural anxiety that was evinced to obtain the grain, that " hundreds of people were on the watch day and night, and cloths were spread "under every clump to secure the seeds as they fell from the branches"

5 samples of raggera (Amaranthus frumentaceus).

Dr Wight writes of this species that it is much cultivated on the slopes of the higher hills in several districts of Southern India In Cormbatore, Salem, and Madura, he had frequently met with large fields of at, often on very steep slopes. In such situations it often grows upwards of six feet high. The seed ground noto meal forms the principal food of the wild uhabitants of the hills Several species of Amaranthus are found in the hilly districts of Northern India, where the leaves are eaten as a vegetable, and the seeds as gram. Dr Jameson mentions two species cultivated at Kullú

3 samples of buckwheat (Fagopyrum esculentum) from the Himalayas
This food grain, sard to have been origmally brought fiom Central Asia, is found sparingly cultivated in the Himalayas iti grows at about 6,000 feet, according to Dr Sterwart, on the Jhelam ; 5,000 to 10,000 on the Chenab and Ravi ; 8,000 to 9,000 on the Blás; and on the Sutlej it is grown commonly to 11,500, Gerard states that he has seen it at 13,600 feet Thomson notes it at 13,000 feet in Zanskar; and Cayley mentions it as cultivated to 14,000 feet in Ladak, where Dr Stewart saw it to over 13,500 In Lahoul, Artchison says that the leaves are much used as a pot herb in summer, when other greens are not easlly got. One or two other species are believed to be cultivated in the same region for the same purposes Buckwheat is occasronally seen as a cultivated product in the Deccan, the grain being eaten toasted as a fast-day food by the Hindoos

2 samples of quinoa (Chenopodium quinoa) (portion of seed despatched to India for expermental cultivation on the slopes of the Himalayas)

Oryza satıa,

of which there are innumerable varneties, is the favourite food gran of the people, but with the exception of Arracan and a few other districts in which it constitutes the chaef and almost only artucle cultivated, its use is confined to the richer classes throughout the country It grows readily on low lands, which are well urigated, heat and moisture being the two great essentials for its development There are three modes of culture -The first and simplest consists in sowng the seed broadcast in its natural state In unirngated land this method is unversally followed In the second, the seed is steeped and then forced under warm grass to germinate The seed with the tender shoots is then thrown into the soll which has previously been flooded to receive it This method prevals wherever water is abundant. In the third the crop is ransed in a nursery, and when about a month old the young plants are planted out at stated intervals, in a well-flooded field. This system of transplanting involves a great deal of trouble and is only followed in heavy swampy ground where the plough cannot work, although by it the yield of rice as greater than by any of the other methods These modes of cultivation are followed in the Kangra Valley in which the celebrated "básmatı" rice is grown Another celebrated varnety is the "vara" or scented rice, which is grown exclusively on lands urrigated by the river Bara, in the Peshawur Valley. The nice crop is sown on May or June and reaped in October.
Very many varieties of rice are grown in Oude. A heavy soll and plenty of water suits them best There are five kinds which are considered among the best; "Mihee" and "Bansee" are foremost. The pecullanty in the cultivation of these two kmds Ls , that they are transplanted and placed about 5 unches apart And by thas method, if the soul is good, they grow to the height of an ordinary-sized man, and produce a much larger quantity than if otherwise treated The odour and flavour of these two kinds, when cooked, are supemor to those of any other kind. They are only used by those who can afford to buy them
As the labour in cultivating them makes them dearer than the other sorts, the three other vareties which are considered good are the "Bateesa," the ","," and the "Phool-Buring" They are sown broadcast in June, and left so, and they are the kinds mostly used by natives The first two mentroned, when new, sell for 10 or 12 seers per rupee, and become dearer according as they become older The other three kinds sell for about 19 seers per rupee, and are dearer if older. Some consider "Phool-Birng" the best, as it swells in boiling, and has an agreeable odour

15 samples of Cajan pear (Cajanus Indrcus)

There are numerous varnetres of this pea, which is most extensively grown in almost all parts of India It is sown in the fields at the commencement of the rains in June, and is mpe in December. The young and green pods are used as a vegetable The seed is split to form Dál, and is used in soups; or it is parched, especially the black varety ; or it is ground unto meal and mixed with wheat flour made into cakes The leaves and pods, after the seed is removed, are used as fodder. Sir Walter Elliot says that this pulse when split is in great and general esteem, and forms the most generally used article of diet among all classes. It is chiefly eaten mixed with nce, a mess known as " khichri," vulgo" kedjam" Roxburgh assigns to it a comparative value in native estimation after Phaseolus radıatus, to which he gives the first place, and Cicer arvetınum, or Chick pea, which he reckons the second But as far as the general and daly use of the several kinds may be taken as an indication of taste, the Cajanus, or Pigeon pea, must be considered as number one

15 samples of gram (Cicer artetinum).

The Chick pea is largely cultivated, and much esteemed in Inda as an article of diet, and also as food for cattle. There are three distinct varieties according to the colour of the seed, the white seeded, the brown seeded, and the black seeded The latter appears to be by no means common The natives use the seeds parched and ground mixed with wheat four. Split, it constatutes
one of the Dals. The green gian eaten raw is called Solaneh The haulm is used as fodder. Colonel Sykes examned a middle-sized plant collected at Gunnehgoon, and found upon $2 t 116$ fine pods, some contamng three, others two, and some one seed, altogether 170 seeds. This pulse does not appear to be much cultivated in the hill tracts of the North Barnes says a belief is current in the hulls that "there is some affinity in the grain field which "attracts the lightning, and, after a storm he had certanly observed whole " tracts scorched and destroyed as if by fire" Some attempts have been made to grow gram in Britain, but the chmate does not seem to be suitable for the perfection of the seeds in ordinary seasons, although ripe seeds have been produced. Fine large-seeded varneties are grown in Span
5 samples of pea ($P_{\text {ssum }}$ sativum).
5 samples of common pea (Pasum arvense).
The grey field pea is common in India. In the Deccan, Colonel Sykes states that it is sown in October by the hand and brought to perfection by the dews in January or February

Peas are used precisely in the same manner as gram, with the exception of their not being given to horses, and not being made into Lashoo (a kind of Dál puddnge) The haulm and remans of the pods are considered good fodder for cattle The Mahrattas distinguish three kinds, the grey seeded, dark seeded, and whte seeded Although it is generally supposed that our common peas onginated from a Mediterranean stock, the small grey Himalayan pea of Lawson's "Synopsis" is there cited as the probable orgin, as follows.
"Its seeds were sent from the Himalaya under the name of Kullaoo, and beng from a district of Assa which is supposed to have produced many others of our most useful cultivated plants, it is not improbable but that it may be the origin from which all the improved varieties of the pea at present in cultivation have been derived "

Lentils, 5 samples (Ervum lens)

This pulse is widely, but not largely cultivated in India, where it is eaten etther bolled whole, or split and used as other spht pulse are used In Northern India it is also ground and mixed with flour. The legumes are eaten green as a regetable
In Southern Inda the return in cultavation is reckoned as 30 for one Dr Stewart beleves that he has seen it growing as high as 5,500 feet on the Chenab, and it is cultyyated in parts of Ladak to 11,500 feet
Chickling vetch, 5 samples (Lathyrus sativus)
This Chickling vetch is cultivated in various parts of India where it is used as food, chiefly as Dál It will be remembered that Duvernoy ascribed such perncious qualities to this pulse, as causing rigidity of the limbs, delurum, and other dreadful effects to such an extent that the Duke of Wuitemberg, in 1671 , prohibited its use by edict, which was confirmed by his successors In the recent Pharmacoperat of Indaa, attention was called to this plant in a special note, because "the continued use of its seeds as an article of diet is " apt, under certan crrcumstances, to induce paralysis of the lower extremities
"In one district in Bengal, nearly 4 per cent. of the population π ere
" sufferers from it"
Wall or Nankın bean, 15 samples (Lablab vulgaris)
Of this there are numerous varieties, and it is found both wild and cultivated, chiefly in the southern part of India. 'The pods are eaten green as a vegetable, the seeds are split for Dál and are eaten by the poorer classes, especially when rice is dear The remans of the plant are used as a fodder for cattle Dr Anslie remarks that this pulse "constitutes the chief part of the food " of Lascars on ship board, and the sepoys, in making long marches, often "carry it ready bolled in their knapsacks."

Chowhe, 15 samples (Doluchos stnensss)

This is a very variable plant both in flower and seed, the latter being white, red, dun, brown, black, \&c, and also varying very much in size It is at any rate extensively cultırated, and the seeds are used as Dál or ground up and mixed with other grans as flour. The green legumes are eaten as a vegetable.

Horse gram, 20 samples (Doluchos uniforus)
The flat, almost lentreular seeds of this gram are so pecular that they are easily recognised The plant is extensively cultivated in Southern India, where it is known as Horse gram, from its forming the staple food of horses and cattle The poorer classes also employ it as a Dál in theur soups, \&c It is rather a free producer, Colonel Sykes having in the Deccan counted 309 seeds from a moderate-sized plant Roxburgh observes that "in a good "soul and favourable year the produce will be sixty-fold " In the Hımalsya, Dr Stewart notes that it is commonly cultivated for its pulse up to 7,000 teet or more. It is a very useful plant, since it will grow in a very meagre soll

Burbutt, 3 samples (Dolechos catjang)
This pulse is grown alike in fields and gardens, and is eaten dry or green The young pods are esteemed as a vegetable, and the ripe seeds are split as Dál and used in soups and in other ways As this is a strong clumber it yields a considerable return, flowers and legumes being produced successively as the plant contmues to grow It is difficult to make accurate, or even approximate estimates of the relative cultivation of these plants, but it seems to be true that this is not so much cultivated for its pulse as the allied species Dohehos stnensus Whether botamcally they are really distinct species, as some doubt, is not important economically, only that the two are so often confounded, and the names applied interchangeably to the seeds in collections sent to Europe, that it is difficult to ascertain localities for each form separately It is the Pee-yan of Pegu

Horse bean (Faba vulgars).
The common field bean or horse bean of Britan is rare in Indıa, but it seems to have been cultuvated in a few localitues, especially in the north of India, although not of much repute Its Hindustanu name is Bakla, and in the Punjab it is known as Chastang, modified in Ladak to Nakshan.

Sword bean (Canavalıa gladıata).
It is the opinion of Sir Walter Elliot that this bean is only the cultivated form of Canavalia virosa; the latter 18 found wild an almost every hedge m India, and the former is only known under cultivation. It is a perennal clumber, ascending to the summit of the loftest trees, and bearing year after year from the end of the rains, through the cold season, an abundant crop The seeds are large and of different colours, the white-seeded is most esteemed, but there is also a red-seeded and a brown-seeded vaniety. The unripe pods are used as a vegetable, and the seeds as a pulse.

Gowar, 5 samples (Cyamopsispsoraloodes).
This pulse is not much cultivated in fields, but is common as a garden vegetable in many parts of India The green pods are employed as a vegetable m the same manner as "French beans" The seeds are relished by cattle, but do not enter largely into human food. The plant produces its legumes abundantly in succession as it grows, and is so cultivated that the green pods can be obtaned all the year round In the Punjab, Dr Stewart states that it is occasionally cultivated as a hot-weather crop for its pulse, west to the Rave at least The Rohtak Local Committee communicated to the Punjab Exhibition of 1864 the information that the pulse is there " made into Dál, to be "used principally for cattle, at is bouled in a pan, and then the grains are " rubbed and worked about with the hand till a froth rises on the mass, a " hittle mustard-seed oil 18 then added; it $2 s$ given to cattle to fatten them"
Bean, 5 samples (Phaseolus vulgarrs)
Mutt, 15 samples (Phaseolus acontitfolus).
The plant is low and herbaceous, the leaves are so deeply cut as to be almost palmate It is seldom sown alone, and ripens in November-December. Spht, it forms one of the Dáls, and ground unto flour is used for bread and cakes by the natives, and sometimes is used mixed with wheat flour The steeped gram 18 also given to cattle The plant after the seeds are removed is used as fodder Two varieties are cultivated, the white and black, in the higher promnces of India It is commonly culuvated as a bot-weather crop all over the Punjab plans, but chiefly in the arid parts with light soll.

Green gram, 15 samples (Phaseolus Roxburyliin)'

According to Sir Walter Ellot, "this is perhaps the most esteemed of all the " pulses, though not the most extensively grown. It bears a higher price, " and is more in request among the better classes, enterng largely into many " of the more delccate dishes, and cakes, such as the paparam or relish cakes,
" and those baked for religous ceremonies Mixed with grain it is considered
" to be strengthening for horses ; the straw makes good fodder for cattle"
There are several varneties distinguished by the size and colour of the seeds, and the plant has a wide distribution in India The gram es split for Dál, or ground into meal. In the hills it is cultivated up to 6,500 feet There has been, and still 1s, considerable confusion of this species with Phaseotus mungo, and P max, so that it is difficult to determine in many cases which is really intended, and the native names alike seem to partake of this uncertanty, and therefore give very little help towards the determination of species in the absence of specimens
Moog or mungo, 10 samples (Phaseolus mungo).
"Moog 18 sown," says Colonel Sykes, " wrth the first fall of rain in fields by itself, in favourable seasons it attains the height of two feet. It succeeds very well in a stony soll, and 18 frequently sown on lands at the base of the low hulls, and on the table land above, where the soll is not to be seen from the multitude of stones on the surface In a small field, planted vear a well, and occasionally watered, I counted 62 legumes on one plant with from 7 to 14 seeds in each The average of 10 seeds to a legume would give a return of 620 for one The remains of the plant and legumes, when the seeds are beaten out, make excellent fodder for cattle The grain is eaten in various ways it is boled whole, and eaten with salt and pepper. It 18 split, and becomes one of the Dáls It is parched, ground into flour, and made into balls with sugar and spices, and in this way forms food for travelling. In times of scarcity a bread is made from 1 t. It 18 also used in porndge or soup The unrpe legumes are eaten as a vegetable."
It is one of the most extensively cultivated of Indran pulse, up to 3,500 feet on the hills, and it is considered nutntious and digestible
10 frames contaning illustrations of food plants of India.
Tea. Class 623.
12 samples of orange Pekoe from Bishnath, Assam, Cachar, Dehra-Doon, Punkabaree, Kangra, Kumaon.
12 samples of flowery Pekoe from Cachar, Assam, Kumaon, Kangra, Telwarree

10 samples of Souchong from Assam, Dehra Doon, Kangra, Kumaon, Telwarree
6 samples of Pekoe Souchong from Assam and Kumaon.
9 samples of Pekoe from Assam, Bishnath, Kumaon, Telwarree
Sample of scented Souchong from Kumaon.
2 samples of Souchong and Pekoe ends from Kangra.
Sample of Mıxed Black from Kangra
3 samples of Hyson from Kumaon, Kangra, Telwarree.
3 samples of young Hyson from Kumacn, Telwarree.
Sample of Chulan from Kumaon.
Sample of rose-scented orange Pekoe from Kumaon.
Sample of black Gunpowder from Kumaon.
Sample of Gunpowder from Telwarree.
Sample of Congou from Kumaon.
Sample of Oolong Souchong Kumaon
Sample of fine Souchong. Gurhwal.
Sample of broken Pekoe Sylhet
Sample of rose Pekoe Kumaon
Sample of curnous Pekoe. Kumaon.
2 samples of Pouchong. Kumaon.
Sample of Black Tea Nelgherries
Sample of Imperial Telwarree
Sample of Telwarree mixture. Telwarree
Sample of tea buds. Silcoorie

An exmbition of teas from localities other than the well-known ones in China possesses more than ordmary unterest There can be no doubt that tea will be extensively cultivated in India, land spread over a district exceeding 1,000 miles in length beng more or less adapted to its growth The production of tea in Assam has taken very firm root, and is spreading with almost unexampled rapidity. But the cultwation of tea $2 s$ not confined to Assam, the , Government of India having succeeded, through the able agency of Dr Jameson, in introdueng its cultivation into Dhera-Dhoon, Kumaon, Gurhwal, and Kangra. As the result of this, private enterprise-as represented by a number of individuals and several companies-is now engaged in extending ats cultivation in the districts in question, the Government still, however, continuing to foster its growth, not with the vew to immednate pecunary profit, but simply to encourage so mportant an article of commerce. In the Nellgherries also, the introduction of a culture has proved tea success.

Both in Kumaon and Gurwhal, and the Deyrah Dhoon, Government plantam tions, as well as those of unduviduals and companies, are to be found. In the year 1861 alone, the Government distributed to priwate planters throughout Kumaon, Gurwhal, Deyrah-Dhoon, and the Punjab upwards of 130 tons of seed, and $2,400,000$ seedlungs

The first trial of the tea plant at Darjeeling was made in 1841, with a ferv seeds grown in Kumaon from Chma stock It was quite successful os to its growth, and the quality was approved of by the Assam tea planter who visited Darjeeling in 1846, and made the first tea here The original plants are now to be seen All are of giganticsize, one 15 a bush 50 feet m circumference and 20 feet high

Nevertheless 7,000 feet, the elevation of Darjeeling, as too great for profitable planting; the frost kulls the seedlings, and there is not a sufficiently rapid succession of leaf in the warm season to make the manufacture pay. At 7,500 feet the plant does not thrive at all. Elevations of 4,500 feet and under that to 2,000 , are the best for tea, and from 3,000 to 1,200 feet will probably be found the best for coffee Tea and coffee plantations at hugher elevations than these mav eventually come into occasional use to secure high-flavoured produce wrthout reference to profit

Although experiments continued to be made on the growth of the tea plant, and seed from Agsam and Kumaon was distributed graturtously by Government, it was not till 1856 that the first plantation was started at Kursing, and another near Darjeeling, by Captam Samoler, who was also the first to try coffee The success in both cases has been complete, and others have followed in the same path. Indeed all that is now required is careful and liberal encouragement by the Government, to render these hitherto valueless mountains a rich and productive field for European enterprise, a profitable source of pleasant labour to the Hill tribes, and through these channels a source of strength and stabilty to our power

The manufacture of tea in Darjeeling begins in April and ends in October. During the period twenty pickings of leaves are reckoned on The tea of April, May, and October is the finest. The coffee is cured from October to January

The number of tea plants per acre varies from 1,860 to 2,700 , according as they are placed at 5 or 4 feet apart. The produce of tea per acre looked for from the first year of manufacture to the fourth or fifth, when a plantation is at maturity, cannot be correctly estmated The produce per plant in the fourth year of age is variously estumated at $\frac{1}{3}$ to 3 ounces Captan Massan, in a memorandum of his operations at Tuckvor, states "he got last season "from a few undigenous Assam plants grown at an elevation of 5,000 feet " above the sea one pound of manufactured tea from each tree The trees "were seven years old" This is an immense return, and not to be reckoned on on a large scale

Labour is still abundant, and is likely to contmue so from the absence of demand in Eastern Nepaul, the great source of supply. The plantations give steady employment to about 3,000 persons, with extra hands occasionally. Wages of Cooles $4 s 8 d$ to $5 s$ per mensem

Employment on tea and coffee is preferred to that on roads and buildings Wages of manufacturing Coolies amount to 8 rupees per mensem; that of European assistants to from 100 to 150 rupees; of managers from 200 to 400 , with house, \&c

Copres.

15 samples of coffee from Aden, Bombay, Tinnevelly, Paradise Estate, and Chittagong.
Sample of coffee berries from South Inda
Sample of plantation coffee from Coors.
3 samples of pea-berry coffee from Coorg, Tinnevelly, and Mysore.
The coffee berry is being extensively cultivated in the highlands of Southern India, and large tracts of country are avalable for the extension of its growth.
The subjomed remarks on coffee-planting in Mysore are by Coronel Onslow:-
"According to the traditions of the country, the coffee plant was introduced in Mysore bya Mussulman pilgrim, named Baba Booden, who came from Arabia about 200 years ago, and took up his abode as a hermit in the uninhabited hills in the Nuggur Dinsion named after hirn, and where he established a muth or college, which still exists, endowed by Government. It is said that he brought seven coffee berries from Mocha, which he planted near to his hermitage, about which there are now to be seen some very old coffee trees. However this may be, there is no doubt that the coffee plant has been known in that neighbowhood from time immemorial; but the berry has never come into general use among the people for a beverage. It is only of late years that the coffee trade of these districts has become of any magmitude, or that planting has been carried to any mportant extent There is no record of elther farther back than the year 1822, when the revenue was under contract. In the year 1837, when the country had been some years under Brtush rule, the Raja's authority having been suspended in 1832-3, the contract system was discontinued, and a duty of one rupee per maund of 28 lbs was fixed From that time the production of coffee and duty 1 duly recorded In 1843 the duty was reduced to half a rupee per maund on exportation, and in 1849 to a quarter of a rupee Together with the reduction of duties, regulations for taking up and holding coffee lands were adopted. At the same time prices continued to mse. Native coffee sold in the country has risen from 1 rupee per maund of 28 lbs . to 6 and 8 rupees.
The encouragement thus given to coffee planters has resulted in the great extension of planting, the prosperity of the planters, and an increase of revenue to the state.
Under the contract system the revenue averaged from 1822 to $1832,4,270$ rupees annually, and from 1832 to 1837, 7,472 rupees annually. The yearly average during the next six years under the duty system, the duty being 1 rupee per maund, was 15,238 rupees on that number of maunds. During the next six years, the duty being half a rupee per maund, the average yearly produce rose to 52,236 maunds, givng a revenue of 26,118 rupees yearly. During the next 12 years, that 1 s , up to 1861 uncluswe, to which time the accounts are made up, the yearly average of produce rose to 346,083 maunds, and the revenue to 86,524 rupees, the duty havng been reduced to a quarter of a rupee per maund. This short statement serves to show the good effect of liberal measures
More than 30 years ago a few Europeans were engaged in coffee plantings, near Chickmoogloor, a few mules from the Bababooden Hills "Bad mountain" were commenced by two enterprising gentlemen. The success of these has induced many more Europeans to plant coffee in Mysore The consequence 1s, that the coffee trade of Mysore bids farr to emulate that of Ceylon It has given also an example to other parts of India, and the plant originally taken from the Bababooden Muth is now extending over tens of thousands of acres in Coorg, the Wynaad district, the Nelgherry Hulls, and along the Western Ghauts, North and South.
In Mysore the number of European coffee-planters has withn the last 10 years noreased to 20 or 30 The number of native planters is estumated between 3,000 and 4,000 The quantity of land planted or taken up cannot be ascertaned with any degree of accuracy The revenue depending upon the quality of the coffee produced, not upon a tay on land, there is no regular correct system of land measurement Thes way of taxing is bad, it leads to bad cultivation and smuggling It is to be hoped that a land tay will be adopted instead, which would have a good moral and fiscal effect It would
put an end to smuggling, and would be a great inducement to the natives to improve their cultivation, which is now very slovenly If the tax were on the land they would make more effort to increase the produce of it The average produce per acre in Mysore is probably not half that of Ceylon
The coffee districts are confined to the region of the Western Ghauts and the Bababooden Hulls. Some attempts have been made to cultivate coffee in the open country, but without success, it seems to requre forest land and considerable elevation and moisture.

Elevations of 3,000 feet and under that to ${ }^{\circ} 1,200$ are probably the best for coffee Plantations at higher elevations than these may occasionally come into use to secure hygh-favoured produce without reference to profit The whole of the coffee distnct, with here and there an exception of feverish spots, possesses a clumate in which the European can live and work with comfort, and, with moderate care and prudence, with health The presence of the Borer insect, which of late has proved so destructive to the coffee plantations, has been attributed by the natives to over-clearing and cultivation This explanation seems more probable from the fact that the more roughly cleared and less cared-for gardens of the natives are seldom subject to the attacks of these insects, and as it is certam that they do not attack the younger and more sappy wood, the native idea of leaving a few forest trees and stumps for them to feed upon is not so far-fetched a notion as we, in our supposed greater wisdom, may happen to thunk

Planting has of late years been carried to such an extent by Europeans and natives in Mysore, that but little available land remains. These mountain and forest wastes have been turned into mich productive gardens. From being the most wild and desolate parts of Mysore, these districts have become very prosperous, and the people have been rassed from poverty to comfort, and in many instances to wealth The natives are benefiting largely by the capital and example of European planters, and are learning the science of planting

Mysore generally, especially the coffee districts, affords a most promismg field for European capital and enterprise."

Spices.

Spices are very extensively employed in the cooking operations of Oxiental nations, including many which are scarcely known in that character in the West This is the case especially with the carmmative seeds, such as coriander, carraway, \&cc, which we are not accustorned to see mi company with mustard. and pepper, but are associated with them in the Asiatic cuisine
Pepper, white and black; six samples (Piper nıgrum) Bombay, Travanacore, Oudh, Bengal, Penang.

Consists of the dried berries of a climbing plant, which is indugenous to the forests of Malabar and Travancore The pepper vine is propagated from cuttings or suckers, laid down at the commencement of the monsoon, in a rach and tolerably mosst sonl In three years it begins to bear, each plant yielding on an average $1 \frac{1}{2} \mathrm{lbs}$ of pepper per annum The crop is gathered in March and April The fruit is plucked when not quite ripe, and dried on mats in the sun. White pepper differs from black only in being deprived of the outer skin by a short maceration in pure water, and subsequent gentle rubbing In North Canara it is most successfully grown above the ghauts, although it succeeds well below An acre of land will bear 2,500 plants, and as they require little care, the cost of cultivating and bringing into bearing one acre does not exceed 40 rupees at the most, and as the annual yield when the plants come into bearing is worth upwards of 800 rupees, the investment is a very profitable one

Long pepper Bombay.
Red pepper, two samples Indore and Dehra-Doon
Mustard, ten samples (Sinapss sp) Berar, Maunbhoom, Sarun, Chittagong, Oudh, N W Provinces, Punjab, Sind
The seeds of several species or varieties of Stnapts are employed in Indaa. It is scarcely possible to determine the species or varieties from the seeds themselves, hence they are grouped together under the above general heading.

Probably a large proportion may be referred to Sinapis juncea. Ol is also expressed from these seeds to a considerable extent, and they appear again under the heading of Materna Medica
Ginger, 5 samples (Zinziber officinalks). Oudh, Bengal, Rajshahye, C.

India

The following account of the cultivation of ginger has, been received from the Hill States adjonnıng the Ambalah dustrict Ginger 13 principally produced in Mahúr Mássá, Patrá, Dárrá, Kothı, Kotahi, Bágal, and Jayál. The best pieces of last year's harvest are selected and placed in the corner of a house in the month Phágan; the heap is then smeared over and covered with cowdung to keep the roots from drying up in Hár month; when the first rain falls, they plough up the land two or three times; they divide the land off into beds with a little raised edge round each bed, taking care to make openings to let superfluous water run off, for if water stands on the crop, the roots will rot They then bury little pieces of the roots three inches deep in the soll at intervals of mine inches; they next cover over the field with the leaves of trees, which keeps the soll mosst, and over the leaves they spread manure, to a depth of half an inch; when it rains the water impregnated with manure filters readily through the leaves to the roots Artificial irngation 18 not employed while the rain lasts, but from Assuh to Poh it is necessary. In the month Poh the plants are about two feet high; for every one shoot there are eight tubers or parts of the root, these are dug out and burred in another place for a month; then they are taken out, exposed to the sun for a day, and are then fit for use.

In the months of Sawán, Bhadon, and Assúh, three tumes, the field is weederl. A begah of land requires eight maunds of ginger to plant it, and yields 32 maunds for a first-rate crop.

Ginger fit for planting again sells at eight to ten seers per rupee; that for use only, at 24 to 32 seers per rupee.

In order to dry ginger into "sonth," the fresh roots are put into a basket which is suspended by a rope, and then two men, one on each side, pull it to and fro between them by a bit of rope attached, and thus shake the roots in the basket; this process is carred on for two hours every day for three days. After this, the roots are dried in the sun for enght days, and again shaken in the basket. The object of the shakmg together is to take off the outer scales and skin of the roots. A two days' further drying completes the process, and sonth sells three seers to four seers per rupee

Turmenc is cultivated in the same manner, when ready it is dug up, steeped in hot water a day and a night, and then dred.

Capsicums Shahabad.
Chillies. Nepal.
Chulhes. Vizagapatam, Chittagong.
Cayenne. Madras.

A large number of species, probably chuefly Capsıcum fastıgutum and Capsicum frutescens, appear under the name of chilles or red pepper. The dried ripe fruit is the part used, and some one or more of the numerous species of Capsıcum yielding them are cultrated all over India. When powdered, they constatute chilly powder, or cayenne pepper.

Curry powder Madras.
Turmeric, five samples (Curcuma longa). Berar, Bimlipatam, Nagode, Deyra-Doon.

Is the dried rhizome of a simular plant to ginger, which likewise is whdely cultivated. The bright yellow powder of these rhizomes forms one of the chief ingrednents of the renowned "curry powder," which has such an important place in Indian cookery

Wuld nutmegs and mace, 2 samples. Bombay.
Mace Malacca
Tej Pat leaves Madras
Cinnamon. Malacca
Kalı Jeera. Farıdpur.

Adjwan, 4 samples (Ptychotes ajowan). Berar, Oudh, Farndpur, Vizagapatam. These little aromatic seeds are employed by the natives for medicinal and culnary purposes They may be purchased in any bazaar in Indaa, and are one of the most common of carmunative seeds

- Conander, 3 samples (Corzundrum satvrum). Berar, Oudh, Famdpur

The Coriander plant is cultivated extensively in India for the sake of atsseeds, which enter into the composition of curry powder, and are employed in other ways as a spice or condument, and as a medume The green plant is also used as a vegetable, and is exposed for sale in the bazaars during most of the year.

Dill seed, 2 samples (Anethum sowa). Faridpur, Dharwar
Fennel seed, 2 samples (Fcenculum panmorium) Oudh, Sind
The fennel seed found in the Indian bazaars is the produce of this species, which is regarded by some as only a variety of Foeniculum vulgare Its uses and properties are simular to those of the other umbelleferous seeds, such as Carraway, \&c

Fenugrec, 4 samples (Trıgonella foenumgrecum). Vızagapatam, Faudpur, Sind, Kattywar.

Water-lily stems (Nelumbrum spectosum). Sund
Onl Serds. Class 624.
: Linseed Lanum ustatussumum 10 samples from Fandpur, Ahmednuggur, Khandeısh, Nagpore, Berar, Central Provinces, Rajshahye, Bengal, and Indore.
Large quantitues of Imseed are imported into Britain from Inda ${ }^{\circ}$. The oll is obtained either by simple expression whthout the and of heat, when it is of a pale yellow coloury or by the apphcation of a temperature of not less than 200° Fahr In the latter case it is of a deep yellow or brownsh colour and disagreeable odour. The oll prepared in India is inferior to that of Europe, from the fact that the Indian seeds beng muxed with those of mustard, with which they are grown, the dyeing properties of the oll are impared Linseed contans one tufth of rts weight of mucilage (entirely resident in the testa) and one suxth of its weight of fixed oul
Teel seed. Sesamum Indıcum. 10 sampies from Bombay, Bengal, Vizagapatam, Dharwar, Berar, Central Provinces, Bombay, Ahmedabad, and Madras.
Three varieties of sesame seed are cultivated in India--the white-seeded (Suffed-tal), the red or parti-coloured (Kala-tıl), and the black varrety (Tillee), it is the latter which affords the greater proportion of the Gingelly oll of commerce At the commencement of 1861, white seed was worth in the London markets 65 s , black and brown, 58 s and 60 s . per quarter.
A second sort of sesame oul, sometumes called "rape," is obtamed from the red-seeded variety

Black sesame is sown in March, and ripens in May. Red sesame is not sown thll June
Sesamum seed has of late been exported largely to France, where it is saxd to be employed for mixing with olve oul.
Curdy seed Carthamus tinctortus. Four samples from Dharwar, Central Provinces, Ahmednuggur, and Faridpur.
These seeds yield by expression an on which when properly prepared and refined is transparent, and of a light yellow colour It is used in India for culmary and other purposes This oll deserves more attention than it has hitherto received in this country; and if once faurly introduced, there is no doubt whatever of its becoming a staple mport it is used in some of the Government workshops as a "drying oll" It is believed to constitute the bulk of the celebrated "Macassar ov" The seed is exported under the name of Curdee or safflower seed. In. Oude it is sown in October, either alone or along the edge of wheat crops, both light and heavy sonls are adapted to it. It is cultivated in every village, but not extensively There would be no difficulty in farther cultivating it to any extent. The cost of the seed, which
is called "Barré" $1 \mathrm{l} 18 \frac{3}{4}$ seers per rupee, and the cost of the onl $1 s$ from 3 to 4 seers per rupee.
Sunflower seed. Helianthus annuus Khandessh.
Niger seed Guzzotza oleeffera Five samples from Dharwar, Ahmednuggur, Bengal, Kolapore, and Tanna
These seeds of a composite plant are much esteemed as an oll seed, and, as such, enter minto Curopean commerce. The plant is commonly cultivated in Mysore and the Deccan. The oul is sweet tasted, and is used for the same purposes as Gingelly oul.

Poppy seed Papaver somnuferum Five samples from Central Provinces Bengal, Central India, Oudh.
The seeds yield by expression about 50 per cent of a bland and very valuable oil, of a pale golden colour, flud to within 10° of the freezing point of water It dries easily, is inodorous, of agreeable flavour, and partially soluble in alcohol The seed is worth about 61s. in the English market. By simple exposure to the rays of the sun in shallow vessels the oil is rendered perfectly colourless. It is expressed by means of a heavy crrcular stone, placed on its edge, made to revolve by a long lever, and the apparatus is worked by draught bullocks.

The seed has no narcotic qualities, but has a sweet taste, and is used, parched, by the lower class of natives as a food; it is also much used by the sweetmeat makers as an addition in therr wares.

Mustard	Sinaps glauca. Maunbh
Mustard.	Sinaps dichotoma. Calcu
Mustar	Sinapis dichotoma Punjab.
Mustar	Sunapes sp. Central India.
Mustard.	Sinapis ramosa. Dharwar.
Mustard.	Sinapıs sp Dacca.
Mustard.	Sinapss dichotoma.
Mus	Sinaprs glauca
Mu	Stnapis glauca. Sa
Mus	Sinaps glauca.

Several species, or at least distinct varreties, of Sinapıs are cultivated throughout India for the suke of theur onl, which is much esteemed for cookery, for medicine, and for anointing the person.

Ground nuts Araches hypogoca. Five samples from Ahmednuggur, Khandersh, Berar, and Indore.
The ground nut is extensively cultivated in various parts of India; the kernels yeld about 44 per cent. of a clear pale yellow oll, which is largely used as food, and as fuel for lamps The value of ground-nut kernels in London is about $16 l$ 10s. per ton, and of the oll $42 l$ to $43 l$. per ton For orduary purposes it is quite equal to olive oul.

Castor-oll seed. Rucnus communns mınor. Five samples from Baroda, Bombay, Dharwar, and Bumlipatam
Castor-oil seed Ricinus communs major. Five samples from Bombay, Central India, Central Provinces, Baroda, and Khandeish
The castor-oil plant is extensively cultivated all over India It is sown in June by almost all the villages, not extensively, but principally for their own use. Its cultivation can be extended all over Oude. The oll is extracted by bruising the seed and then boilng it in water; the oul is afterwards skimmed off This is the only seed out of which the oil is extracted by bollng, as in this case it is found cheaper than the method used for other seeds, which is by pressure.

The cost of the seed is one rupee per maund, and the price of the oll is from two to five seers per rupee, according to the abundance of the crop in the season. The proportion of the ol yielded is pbout half the weight of the seeds boiled; it is only used for burning

In Cuttack, the plant is grown all over the province, a good deal in patches of newly clearea land in the jungles of the Tributary States and Sumbulpore.

The oll is extracted in two ways It is used for burning and culinary purposes, and medicinally also The local market is now $11 \frac{1}{2}$ peculs of the seeds per rupee. Both the native methods of extracting ol are wasteful and tedious, and therefore expensive. European oll presses and a knowledge of some methods of clarifying the expressed on seem only to be required to render the oul-seed crops of this extensive division of great value.

The large seeds, Ricinus communts major, are employed for lamp oll, and the small seeds of the variety Riconus communzs menor yield the medicinal castor oll

Physic nut Jatropha curcas. Khandesh.
These euphorbiaceous seeds yield a valuable oul, which has for some tume been known to a limited extent in the Englsh market.

Croton seed	Croton tıglum.
Hone seed.	Calophyllum mophyllum, Madras.
Churonjee.	Buchananza latzfolua Ben
Mowah seeds	Bassta latifolia. Central Provnces.
Poonja Pon	ngama glabra
Cress seed	Lepnduum satıvum Aden.
Radish seed	Raphanus satuvus Sindh.
Black cumin	Nugella satva Bengal
Black cumin	Nogella satsva. Aden.
Amadee. Hi	lbescus cannabznus. Khandersh.
Cotton seed	Gossypuum herbaceum. Berar.
Moringhy	Mornga ptergyosperma N. Indıa
Kamala seed	Mallotus Philpppenensts.

Usenul Insects -Sileworms Class 638

Cases contaning specimens of various kinds of sulkworms of India; prepared by Mr. F. Moore, Assistant Curator, India, Museum; via.,-
Bombyx morr (cocoons and moths) Cashmere
Bombyx Croesus (cocoons), the Nistry of Bengal
Bombyx fortunatus (cocoons) ; the Dasee of Bengal
Bombyx textor (cocoons), the Boropooloo of Bengal.
Cross between Cashmere and Nustry (cocoons). Bengal
Cross between Bengal and French (cocoons) Bengal
Bombyx Huttont (worm, cocoon, and moths), the wild sulkworm of N W. Himalayas
Antheraa paphat (Tusaeh silkworm); worm, cocoons, and moths Bengal.
Attacus recmu (Eria silkworm), worm, cocoons, and moths. Bengal.
Pearl Shells Class 645.
Pearl oysters (Meleagrina margartifera) Kurrachee
Pearl-oyster banks exist off the coast at Kurrachee in Sind, and on the eastern coast off Tinnevelly and Tuticorin.

Isinglass, \&ce Class 646

Edible burds' nests Junk, Ceylon.
These are collected from the rock caves along parts of the Burmese coast, the Andaman and Nicobar Islands, for exportation to China, where they are considered a great luxury as an article of food The nest is composed of inspissated mucus from the large salivary glands with which these burds are provided

Fishmaws Bornbay
Fishmaws are the swimming bladders or sounds extracted from the fish and dred in the sun They are numerously prepared on the Malabar coast, and exported to Bombay, from whence large quantities are re-exported, principally to China and the Strats Settlements.

Shark's fin. Bombay.
Sharks' fins are largely exported from Bombay and Madras to China, where they are much esteemed, being used for the making of soups. From $\overline{7,000}$ to 10,000 cwts. are annually exported there from Bombay.

Glue. Cawnpore. Class 652
Wax. Class 654.
Bees wax. Travancore.
Bees wax Travancore.
Bees wax. Pegu.
Bees wax. Pegu
Bees wax. Pegu.
Bees wax. Rangoon.
Bees wax. Singapore (via Calcutta).
Bees wax (black) Chota Nagpore.
There are several knds of honey-bees common in Inda. One species (Apus $s p$) is kept in a semi-domestic state by the natives along the $\mathrm{N} \mathbf{W}$. Hmalayas, and in Kumaon, Kashmur, \&c, the bees beng hived in the walls of the houses. The hive consists of an earthen pot or other receptacle contained in a small chamber in the wall, and having but a small external opening for the entrance and exit of the bees, but closed anternally by a cover, through which the honey is removed after the bees are stupufied by smoke.

The large wild bee (Apis dorsata) constructs its nest on the boughs of trees, making a comb about balf the size of an ordinary cart-wheel. It is common throughout India.

Textile Substances of Vegetable Origin. Class 665. Cotron.

In the followng series of cottons, each kind is represented by sample marked a in the seed, b roller-ginned, c saw-gnned, d and e seed obtained by each method of ginning.

Broach
Broach grown in Dharwar.
Dhollerah. Kala kuppas grown at Nagurah.
Dhollerah. Poomalia kuppas near Dhollerah.
Khandersh
Hinghunghaut
Oomrawuttee Bunnie.
Oomraruttee Jerry.
Coompta.
Westerns.
Timnevelly.
Sind.
Dharwar American.
Dharwar American
Dharwar American.
Dharwar American, half pressed.
Dharwar American, half pressed.
Dharwar American, half pressed.
Dharwar Amencan, full pressed.
Dharwar American, first picking.
Dharwar Amencan, 2nd picking.
American Upland
In each of the following series, a represents the kuppas, b cleaned, c seed, d yarn, all from the same cotton.

Broach	Coompta	
Dhollerah.	Westerns.	
Khandersh		Sind
Hıngunghaut.	Dharwar American Oomrawuttee.	Pressure experiments.

Addittonal Specimens of Indran Cotton.
Kala bolls from Pahlunpore, Guzerat
Bourbon bolls grown in Sind
Broach bolls grown in Sind
Dhakanoo bolls from Veerumgaum.
Dhakanioo bolls from Wudwan.
Jooria kuppas from Ahmedabad.
Lalloo kuppas from Bhownugger.
Bunnee kuppas from Boolundshur.
Lana kuppas from Palunpoor.
Laria (open podded kind) from Ahmedabad.
Joorza from Ahmedabad (machne-ginned)
Lalloo from Veerumgaum (machine-ginned). Kala (cleaned) from Kutch.
Broach (churka-ginned) from Sind. Akote (cleaned) from Berar.

, Fibres. Class 666.

Flax, 3 samples Lanum usitatisswnum. Kangra; Punjab
Flax is mentioned by Strabo as one of the staples of this part of Indxa. A small quantity of higa seeds, which had been imported experimentally by Dr Jameson, Superintendent of the Government Botancal Gardens at Saharunpore, was distributed amongst the peasants, with instructions as to the mode of cultivation; an agent of great practical experience was deputed to examine and report upon the qualifications of different districts for the growth of flas, and a staff of natives were tranned by him to act as scutchers

In 1856, two tons of flax produced under his superntendence in the district of Goojranwalla were sent to England, and were sold for $92 l 2 s .2 d$., realising a net profit of 47 per cent

In 1857, 8 cwt of flax, grown at Juddura, a tract of country in the Kangra district, bordering on the river Beas, were sent home, and were valued at from $55 l$ to $60 l$ a ton
In consequence of the success of these experiments, an association, called the "Induan Flax Company," sent out an agent to buy up flax produce He made the district of Sealkote his head-quarters, and as far as could be judged, had every prospect of ultimate success, but, for reasons which it is unnecessary to enumerate here, the enterprise proved a falure

Rheea stems. Bcehmeria nives.
Rheea fibre Boehmeria nuvea. Assam.
Puya fibre Bohmeria puoya. Runipore.
Puya fibre Bahmeria puoya Assam.
Neilgherry nettle. Urtica heterophylla Madras
Yercum fibre. Calotropis gigantea. Shahpore.
Prepared as follows.-
The branches are gathered and dred in the sun for from twenty-four to thirty-six hours, when they are taken up, the bark peeled from the woody parts, and the fibres gathered If placed out in the dew for a night they lose their greenish tint, and become white.

Bendolee Sutta fibre Pæderia foetida. Assam
Jute Corchorus olitorius.
Barriala Sida rhombordea. Bengal
This fibre is very simular to jute in nppearance, but it is considered to be intrunsically so superior that it is worth from $5 l$ to $6 l$ more per ton, and at has accordingly been placed next to that fibre, in order to attract to it the attention which it deserves

Brown hemp. Hibiscus cannabinus. Bombay.
This plant furnishes a portion of the so-called "brown hemp," exported from Bombay. It is readuly cultivated, and with more attention to its preparation as calculated to compete with jute

Every ryot sows a small quantity along the edges of his usual crops for his own use It is not, but it might be, cultivated extensively all over Oude, and in all kinds of soil It is sown in the beginning of the rains, and when it commences to flower, it is cut and treated exactly in the same way as "sunn
hemp" from Crotolarna juncea. The proportion of fibre is about half the weight of the plant It is used for making rope, sackcloth, twine, paper, \&c The cost of the prepared fibre is from three to four rupees per maund, according to its strength, length, and cleanliness

> Roselle (cleaned). Hibiscus sabdariffa.
> Roselle (uncleaned) Hlbscus sabdarifa.
> Indian mallow Abutalon Indicum. Madras.

The plants are gathered and freed of their leaves and twigs, and are put out to dry in the sun for a couple of days. They are then taken up, tied into bundles, and placed under water for about ten days, after which they are taken out, and the fibres are well wasked to remove the bark and other foregn matter that may be adhenng to them, and are placed in the sun to dry.

> Urena lobata Krotalaraa juncea. Kangra hemp. Cannabis satıva Kangra.

It grows spontaneously and in abundance everywhere in the submontane tracts, but is cultivated for the tibre only in the eastern portions of the Kangra, and in the Simla Hulls In 1859 an experimental consignment of two tons of Himalayan hemp was valued in the English market at from $30 l$ to $32 l$ per ton, and during the past year another larger consignment of hemp has been despatched at Government expense, by request of the merchants of Dundee. The price at Lahore $1 s$ about $15 l$ or $16 l$ per ton.

> Sunn fibre. Crotalara juncea. Bengal.
> Sumn hemp. Crotalaria juncea. Berar

Cultivated near cities by hundreds of beegahs; but in the vicinity of sullages only in small quantities, princpally for the purpose of making fishing nets Its cultivation can be extended all over Oude, and primecpally where a light soll exists It is sown very thickly at the beginnug of the rains, so that it may grow tall and thin. When it begnes to flower, it is cut near the root, tied in large bundles, and immersed in water, putting some weight on it (generaily mud) to prevent its being carred away After remaning immersed from four to elght days it is withdrawn from the water, taken by handfuls, beaten on a prece of wood or stone, and washed till quite clean, and the cuticle with the leaves completely removed from the other portion of the plant. Each handful is then piled musket fashon, and left to dry. When perfectly dry, the woody portion, which has been more or less broken, 18 separated from the fibre by farther beating and shakng From 3 to 6 maunds of fibre are extracted from each beegah of plant. The fibre is used for making rope, sack-cloth, nets, twne, and paper. The raw maternal on the field, as plant, costs from two to four rupees per beegah, according to quality, and the prepared fibre costs from four to ten rupees per maund, according to strength, length, and cleanliness of fibre.

Jubbulpore hemp. Crotalaria tenufola. Jubbulpore.
The cultivation of "hemp" in the district has receved considerable impulse of late. Several years ago, Mr Willhams having occasion to send to Calcutta samples of wax, oll seeds, and other maternals, filled up the box with ind ${ }_{1}-$ genous hemp to prevent breakage of the bottles On arrival at Calcutta, the cleanness and brightness of the fibre struck the consignee, who had it immedrately examined by one of the propretors of the patent Ropewalks, who pronounced it equal to the best Russian hemp, and at once sent an order for 400 maunds of 1 t. The trade has since gradually nocreased, and Mr Wilhams now sends about 6,000 maunds of this fibre annually to Calcutta The plant is regularly cultivated, but the cultivation is limited About 10 per cent of the fibre is lost in the process of heckling, and the cost vares according to the several places in the district and seasons of the year The price of the prepared fibre $1 s$ from 3 R . 8A. to 4 R per maund. The present means of inland transport 13 by country carts to Mirzapore, which costs lr 8A. per maund, and from thence to Calcutta by boats, at a farther cost of $1_{R} 4_{A}$ to $1_{R} S_{A}$, which, with other contungencies, such as coverng for carts, or guards' hure, duty in native states, and agency charges at Mirzapore, brings up the cost of the material to 7 rupees per maund before it reaches Calcutta Muzapore is, at present, the nearest place of export. The great length of time in getting
down bulky produce from Central Indıa, and the enormous expense of transport, have hitherto prevented Mr Williams sending his hemp to England; but all thas will be overcome the moment the rallway line from Bombay to Jubbulpore opens, when the hemp can be landed at Laverpool in as many days as it now takes weeks by country carts and native boats to convey it from the station to Calcutta, and there is no doubt that in a very few years hemp, and also flax, will become large artucles of export from the Saugor and Nerbudda territones.

> Pine apple. Ananassa sativa. Malacca.
> Pine apple. Ananassa sativa Mangaiore

The leaves are gathered in the same way as the aloe, and are placed on a prece of board and scraped with a blunt knife The fibres that are loosened are drawn out, the leaves turned over, and from four to six inches of the stem end scraped as before, and as soon as the fibres are loosened by the removal of the pulp in that part of the leaf, the fibres are taken hold of by the fingers and drawn out. These fibres are agan laid on the board, and any remaining portion of the pulp gently scraped out with the and of water, when they are gathered and dried in the sun.

By another mode of treatment, the leaves are ladd in the sun so as to dry up a portion of the sap, when, on being taken up and brused by the hand, the fibres become loosened, and may be taken hold of, and drawn out. But a great loss of fibre results, so that this method cannot be recommended.

Sanseviera Zeylanica Mysore.
Aloe fibre Agave Amercana. Madras
Aloe fibre. Agave Americana. Madras
Great aloe. Fourcroya gigantea. Madras
The leaves, cut close to the stem, are placed on a prece of board, and beaten with a short stout stick. After being thus brused, the pulpy portions are scraped out with a blunt knfe, and the fibres subsequently washed in clean water and dried in the sun

> Adam's needle Yucca gloriosa. Madras.
> Plantan Musa paradslaca Madras.

These fibres were prepared from the inner foot-stalks of the plantann tree. These were taken of certain length, placed on a plece of board, and the pulpy mass scraped out with a blunt knife Both sides of the stalks having been thus scraped whilst clean water was poured on to wash away the remans of the pulp, the fibres were dried in the sun.
Mamila hemp Musa textills
Screw pine Pandanus odoratissumus
Screw pne fibre Pandanus odoratissimus Madras.
Brush fibre. Cocos nucifera Singapore
Coco-nut fibre Cocos nucifera. Mysore,
Yor or Gomuts Arenga saccharrfera.
Kittul. Caryota urens Mysere
Palmyra Borassus flabelliformis Madras.
Moonj Sacharum moonja Punjab

Grows wild all over Oude, and is planted in hedges The moonj or fibre is prepared from the vagina of the leaf just when the stem begno to bear flowers, ropes for towing boats on rivers, and twne for bottoms of charpoys (bedsteads), are made from this fibre If it is not occasionally wetted, and allowed to become too dry, it easily breaks when used. The prepared fibre costs two rupees per maund

This grass supphes a strong good fibre, which 18 begmonng to attract attention in this country, and is now being exported from Kurachi in Sude.

$$
\begin{aligned}
& \text { Mat grass Cyperus textilis Madras. } \\
& \text { Khus Khus Anatherum muricatum Bengal. } \\
& \text { Gyeegywot Shaw Akyab } \\
& \text { Shaw Laybway. Sterculis species Pegu } \\
& \text { Mat grass for common mattung. Bengal } \\
& \text { Corah grass for matting Tinnevelly } \\
& 5 \text { frames contanung allustrations of tibre-producing plants of Inda. } \\
& 40609 .
\end{aligned}
$$

Sheep's wool.	Wook. Bombay.
Sheep's wool.	
Mysore.	
Sheep's wool.	
Ladakh.	

Sheep's wool is an article whose export is confined almost exclusively to Bombay and Sind It is principally obtaned from the fat-taled vanety of sheep. These abound in the N.W. frontier districts of Peshawur, Kabul, Kandahar, Herat, and other places. Large flocks of sheep are reared also in the Thull and Bar districts of the Punjab, whose shearngs are estrmated to produce annually about 400 tons of wool. Large quantities of wool are annually brought down the hills from Kunawur, on the backs of sheep, to the farr at Rampur.

In the Kangra dastrict vast flocks are also found, the wool from which is of good quality.

The flocks of Thbet are immensely numerous, and their wool of the finest quality; the cold clumate having the usual effect on the fleece of supplying that pecular quality which is found in the shawl-wool of the Tibet goat.
Goats' wool (white). Umritsur.
Goats', wool (hair). Punjab*
Goats' wool (pushm). Umrntsur.
Goats' wool (pushm). Turfan.
Goats' wool (pushm). Yarkand.
Goats' wool (pushm) Yarkand.
Thread of pushm wool (white).
Thunjab.
Thread of pushm wool (dyed). Punjab.

Pushm or shawl-wool, properly so called, is the downy substance growing next the skin and under the thick hair of the goats mhabiting Tibet, and other elevated regions to the north of the Himalayas. It is of three colours, white, drab, and dark grey. It is cut once a year, and if not shorn as the summer advances the anmals themselves rub off the wool.

Before 1867 none of the fine Turfan pushm was allowed to pass through the Maharajah of Cashmere's terntory into the British provinces. The Amrntsar and Ludianah looms were consequently worked chefly with a fine sheep's wool from Kerman, which, however, by no means comes up in softness and other qualities to the shawl-goat's down. A considerable amount of pushno from Changthan (or Chinese Tibet) always comes down to the Punjab, but this is much inferior to that of Turkstan. Even now, when free importation of shawl-wool is allowed, the cheaper Kerman material still holds its own with the Punjab weavers, hence the greater part of it stll goes to Kashmir:

> Camels' wool. Bokhara.
> Camels' wool. Punjab

Camels' wool is produced in the Bar and Thull or waste tracts of Shahpur, Rohtak, Jhang, and Gugaira. The soft underwool is used for the manufacture of cloth for chogas of a common. kind. An immense number of camels are empioyed by the merchants who carry on that portion of the trade of Indaa with Central Asia which finds its egress and uggress on the borders of Scinde.

Agricultural Implements and Vehicles. Class 670, 673, and 682

Plough and yoke. Berar.
Churka (native cotton gin). Bengal.
Water cart (model). Bombay
Covered cotton cart (model). Bombay.
Covered cotton cart (model) Bombay.
Cotton cart (model) Bombay.

THE

DOMINION OF CANADA.

Commission from Canada to the International Exhibition, Philadelphia, 1876.

Senator Luc Letellier de St. Just, Mimster of Agriculture, President.

Honorasy Commssioners.
Hon. S. C. Wood, Prorincial Treasurer.
Hon. P. A. Garnead, Minister of Agriculture.
Hon. P. Carteret Hill, Provincial Secretary.
Hon. J. J. Frazer, Provincial Secretary.
Hon. L. C. Owen, Attorney-General.
Hon. W. J. Armstrong, Minister of Agriculture.
Hon. Mr. Nolin, Minister of Agriculture.

Executve Commessioners.

Hon. E. G. Penny, Senator, Montreal.
Hon. R. D Wilmot, Senator, Saxbury.
D. Macdovgall, Esq., Berlin.

Joseph Perradlt, Esq., Secretary.

Report of the Canadian Commission at the International Eximbition of Philadelpaia, 1876, communicated by His Excellency the Earl of Dufferin, Governor-General of Canada, to the Lord President of the Councl.

To Hus Excellency the Rught Honourable Sur Frederve Temple, Earl of Address to H_{18} Duffern, Viscount and Baron Clandeboye of Clandeboye, in the county of Down, in the peerage of the United Kingdom, Baron Dufferm and Clandeboye of Ballylendy and Kulleleagh, in the county of Down, in the peerage of Ireland, and a Baronet, Knight of the Most Illustrious Order Commassioners of St Patrick, and a Knight Commander of the Mast Honourable Order of the Bath, Governor-General, \&c \&c. \&c.

May it please your Excellency,
We, the Canadian Commissioners at the International Exhibition, Philadelphaa, 1876, beg leave to report -
Atan early day after the formation of the Canadan Commission for the Centennal International Exhibition at Philadelphia, the character of the report to be made at the conclusion of its labours came up for consideration An inspection of the reports of the British Commissions at Pars and Vienna, showed that these documents were rendered voluminous by disquisitions in separate papers upon the progress of science as apphed to the arts, and by comparisons between the progress in this direction made respectively by the leading nations of the civilsed world It was a grave question for the Canadian Commission whether they should attempt to present any essays of that kind as a part of their report, but after mature consideration it was determined that it would be unwise to do so Several reasons concurred in causing the Commissioners to arrive at this decision If such a report was to be made it ought to be of a character intrinsically valuable, and likely to reflect honour upon the Dominion throughout the world But it was obvious, even of they possessed the necessary amount of varied technical knowledge for such a work, that the Commissioners personally would be too much occupied wnth the practical administration of the charge commutted to them to make it possible for them to devote adequate time to investagation and study It might have been possible to procure assistance competent to deal with some of the subjects embraced in such a report in a manner creditable to the country: but several men of lessure as well as knowledge would be required for the work if it were to have any completeness, and the expense of a competent and sufficient ataff engaged for the requisite time on the subject, and that of subsequently printing several volumes as the result of their labours, seemed to be far greater than would be justified by the fund at the disposition of the Commissioners It was thought possible that upon some special subjects there might be value in techmical reports made from a peculiarly Canadian standpoint, but in general it seemed obvious that students of the useful or fine arts would be sure to find a more comprehensive view of the lessons to be learned from the Exhbition in the elaborate productions of the specialists employed by the governments of the great nations of the world, than could be looked for from anything the Canadıan Commissioners could hope to produce
It is for these reasons that the following report is almost confined to an account of the manner in which the Commissioners fulfilled the duties which arose out of their acceptance of office. Any other observations will be of a very general nature.
Initiative
Formation of
Commission

Consultations as to adequate
representation of the Dominion

Question of expenditure and and to exhibitors

Assumption of charges for freight, to and fro, arraugement of and care of exhibits by the
Commission
Invitation to
Provincial
Governments, and call for assistance in carrying out ncheme Pecunary

REPORT.

When the Government of the United States determined, by way of celebrating the Hundredth Anniversary of therr Independence, to hold a great International Exhibition at Philadelphia, it invited all the nations of the world to take part in the festival Very soon after this mevtation had been issued, many gentlemen engaged in the industries of Canada were impressed whth the idea that this country should join in the proposed Exhibition Representations having been made to this effect to the Government of the Dommon, it was determined that Canada should appear in the great assembly of nationalities In pursuance of this determanation, the subject was placed in the hands of the Hon LL Letellier de St Just, Mınster of Agniculture, and ${ }^{2}$ Commission was appointed, of which that gentleman became the ex officio President This Commission consisted, in the first mstance, of the Honourable Senator Penny, of Montreal, Francis W Glen, Esq, president of the Joseph Hall Manufacturing Company, of Oshawa, and the Honourable Senator Wilmot, of New Brunswick, these three gentlemen being intended to represent the pronnces of Ontario and Quebec and the group of Marime Provinces Joseph Perrault, Esq, was named secretary to the Commission.
Mr Glen resigned very shortly after his appointment, and the Commission thus lost the advantage of his practical mechanical knowledge, which would doubtless have been very valuable He was succeeded by David McDougall, Esq, of Berlin, but the Commission afterwards lost the important services of the Honourable Senator Wilmot, a practical agriculturist, by his declining to proceed to Philadelphia

Very soon after the organization of the Commission at became a subject of great anxuety to ats members to determine the method in which the work before them should be carried out by the collection of an adequate number of specimens of the various products of the Dominion Canada and some of the other provinces had already made their appearance at several International Exhibitions, but it was felt that the manner in which she should show herself at Phuladelphia must be on a much more extended scale than at London, Paris, or Vienna. This was made necessary by the crrcumstance of the exhubition taking place on the Continent of which Canada forms a part, where, therefore, if she was seen at all, it must be to take rank as an important American power Moreover, her proximity to the place of exhibition made at obvously necessary that the plan adopted should be a widely comprehensive one, embracing not a few exhubits selected by the Commission itself, but affording far scope to the ambition of the whole body of the Canadian people. It seemed to be impossible, for pecuniary reasons, to mutate the example of preceding Exhibition Commissions by purchasing any considerable part of the objects to be shown It would be, on many accounts, unsatisfactory to accept only a small number of chosen articles, and it would be a task too gigantic and invidious for the Commissioners themselves to make selections of objects deemed meritorious enough for national display Within certann limits it was desirable that every person anxious to exhibit at Philadelphia should find his appropriate place there, but as it was also found necessary that the Commission should provide for the larger part of the expenditure, this condition manifestly demanded an authority by which some scrutiny should be exeresed to prevent a large outlay on comparatively insignificant and unworthy articles The Commission, after mature deliberation, and having first discovered great difficulties in the way of inducing exhibitors to take part in the enterprise unless guaranteed against unknown expense, determined that it would be necessary to assume the whole cost of the conveyance to Philadelphia, the arrangement of, and the care there, and the reconveyance to Canada of all goods destined for the Exhibition. In order to reconcule this very liberal undertaking wnth the conditions already described, the Commission invited the assistance of the several Provincial Governments, which was at once heartily accorded them, and each of the Provincial Governments obtaned from their respective legislatures some pecuniary appropriation for the purpose of aiding in the general design An Advisory Board, composed of competent gentlemen, was named in each province, under the direction of
one of the members of the Provincial Ministry, who also appointed a secretary. appropriation The names of the gentlemen composing these bodies will be found in the from Provincial Appendix The chairman of each Advisory Board was also constituted an Governments. Honorary Commassioner
'To all these Advisory Boards the Commission committed the task of Task of selection deciding what articles should be accepted, it being understood that in extra- left to Advisory ordunary cases only reference should be made to the Commission itself By this elastic and comprehensive plan it was hoped to obtain extended sympathy throughout the country, and that hope was justified The method adopted enlisted in the puble service official and unofficial gentlemen of great zeal, good results experience, and local techmeal knowledge mall parts of the country, and from them connected with all departments of industry; and this early opportunty is taken of acknowledging how much the success that may be thought to have been attamed is due to the luberal support and confidence of the Provincial Governments, and the active and intelligent co-operation of the Advisory Boards In spite of the offers to exhibitors, beleved to be very liberal, already described, considerable difficulty was still experienced in procuring an adequate representation of our products and industries, but this was overcome by the earnest and judicious efforts of these gentlemen

It may, perhaps, be fitly stated that twa things appeared at first to be great Obstacles to be obstacles to obtaining the co-operation of the industrial interests of the country, and no doubt did at last prevent many interesting articles from being sent to Philadelphia One of these was the alliberal tarff of the United States, which made it mpossible to hope that any transactions with the citizens of that country could arise from the comparison of goods and prices; the other was the great financial depression so universally felt.

With a new to create emulation and unduce exhubitors to offer therr goods, it was also resolved by the Commission to give a certain number of Gold, Silver, and Bronze Medals to Canadian exhibitors only, and in order to secure impartiality in the awards it was promised that they should be made by foreng judges

When the subject was brought before Parlament great interest was manifested by members of both Houses, and a strong wish was expressed that the appearance of Canada, as one of the nations of the civilued world, at Philadelpha, should be worthy of the country and its enterpnising people An item was placed in the estimates and unanimously carried to appropriate a sum of money, which it will be seen has proved amply sufficient to carry out the intentions of Parliament in a manner which the Commssioners venture to hope has been in accord with this patriotic feeling

In previous exhbitions Cansda had ganed high reputation for the scientific Arrangements and complete collection of manerals which she there displayed The extension for proeuring of her territory by the addition of other Provinces, some of them rich in display of mineral deposits, made it extremely desirable that she should mantann this mineral rereputation in the United States For this purpose the Commission early sources of thon invited the assistance of A R C. Selwyn, Esq, of the Geological Survey of the Dominon A sum of money was also at once set apart for the special expenditure he was expected to incur in procuring new specimens of this kind of public wealth As many of these were expected to come from the Western Provinces, the intelligent services of this gentleman were also obtained for collecting, at the same time, other natural and economical products of these extensive territories Mr Selwyn and his staff exerted themselves with much spirit in carrying out the wishes of the Commission in both particulars

In the Provinces of British Columbia and Manitoba, sums of money were in each case appropriated by the Commission to be used in such a manner as should seem good to the Advisory Board for procuring interesting illustrations of ther respective Provinces

As soon as the Government of the Dommon had determined to accèpt the Earlyapplication invitation of the Government of the United States, and had for that purpose for space constituted a Commission, application was made for the space likely to be required in the various buildings which at was intended to erect in Fairmount Park, the place chosen for the Exhubition This apphcation was one of the earhest which reached the American authorities and the Commession has reason to beheve that its promptitude was regarded as a compliment by those to whom it was addressed It was acceded to with much cordiality Large
spaces were devoted to the purposes of the Dominion in all the departments of the Exhibition, and it may be sard that Canada obtained an excellent position in each of them

The Exhibition in Phladelpha was placed under the direction of a Board of Commissioners, appointed by the Federal Government, and a Board of Finance, appointed by and representing the stockholders, who supplied a large part of the capital The Board of Finance was ably presided over by John Welsh, Esq , of Philadelphia, and all other arrangements, including especially those which concerned Forelgn exhibitors, were confided to the Commssion, under the Presidency of General Hawley, whose chef executive officer was General Goshorn, with the title of Drector-General The ground selected consisted of 236 acres of Faumount Park, a large space of ground owned by the City and devoted to the recreation of the population
The buildings properly belonging to the Centennal Commission were scattered around this area, and consisted of the followng - -

Organisation at Philadelpha by United States Stockholders
Heads of Departments

Site selected

Bulldings and extent

Special structures

Special Grants

Arrangements
 Arrangements

 with firms seekmg separate
dusplays

Comparative
Extent and Cost
of previous
International
Exhibitions.
-

Besides these, special buildngs were erected, chiefly at the expense of par. ticular mnterests Amongst these may be noted the Federal Buldıng, for collections belonging to the Government of the United States and objects illustrative of the equipment of their army and navy, and of the processes employed in their civil departments. This was under the able supervision of Professor Baird.
Special grants were also made graturtously to the various States of the Union, and to several nationalitres, of sites upon which to erect buildings for their particular purposes The Commission in this way granted to the Canadian Commission one of these sites in the best part of the grounds
Firms and individuals desirous of making large displays in special buldıngs were allowed to erect them on payment of various sums The whole number of buildangs of one kund or another within the gates was about one hundred and seventy-five.
It may be interesting to compare the space thus occupied with those which were taken up by the buldings in the previous Great Exhibitions of the world, with the cost.

Acres under cover of various Exhibition Buildings

London	-	-1851	-	-20 acres	-	$-81,464,000$	
New York	-	-1853	-	-	6	$\%$	-

At a short distance from Farmount Park was a space devoted to the Live Stoch Show Exhibition of Luve Stock, consisting of an area of forty acres, with surtable sheds

The duty umposed upon the Canadian Commission embraced the illustration Task maposed of all departments of Canadian industry The Mining, Lumber, Agricul- © Commassion tural, and Manufacturing interests, as well as those concerned in the rearing of cattle, were all to be suitably represented Accordingly, some room was Requirements requured in almost all of the buildings above enumerated, as well as surtable of space space upon the ground devoted to the display of cattle In the Mam Building, Extent of allotchiefly devoted to manufactures, the Commission received the allotment of a mentin Man space of 30,000 square feet, which it may, perhaps, be well to say was exactly equal to that devoted to Spain and Russaa together. It occupied the floor Position between the main avenue and the northern wall in one durection, and two cross avenues of the building in the other, was immediately adjoining the space occuped by Great Brttann and Ireland, and faced that of Span and Russia on the other side of the avenue The other British Colomes adjoned it on the west side The Canadian exhibits occupied a space, taking all the buildings into consideration, larger than that devoted to any nationality other than the United States, with the exception of England

In the Machanery Hall, the area of 5,000 square feet devoted to Canada Extent of was immeduately in front of one of the man doors of the buildng, and con- alotment sequently remarkably conspicuous She was favoured by a somewhat simular Han Machmery arrangement in the Agricultural Bulding, her space having been allotted at Space saven in the corner formed by the two mann avenues, close to one of the doors The Agricultural area here was 15,000 square feet She had also appropriate spaces devoted to her in the Women's Pavilon and the Carriage Annexe, a complete room in the annexe to the Art Gallery, two compartments in the Photographic Gallery, about 3,000 feet in the Darry Bulding; and 5,000 feet in the Pomological Hall Women's Pa-
valon Carriage Annexe, Art graphic Gallery

Inasmuch as the Commission had undertaken the task not only of trans- Hall Darry Building, porting, but of canng for the goods commutted to their charge, it became Question of necessary for them to provide the requisite number of show cases for that arrangement purpose. With this object the Secretary devised a surtable plan for glass cases It was also necessary that these cases should fulfil certann condutions They must be sufficiently handsome, not to degrade the general effect; at the same time, as a very large number of them were required, they must be purchased at a reasonable rate It was also desirable that they should be capable of beurfy used after the Exhibition, without loss To meet these requirements the cases must be more or less adapted to every class of exhibit, because it was impossible for the Commission to be aware beforehand of the nature and the vanety of goods which they might have to display And agan, economy could only be obtaned by the whole being made upon the same plan, so as to permit of the manufacturer repeating in theur construction the same process a great many times It as beheved that the design prepared for the Commission met, in a large measure, all these requirements The cases were almost wholly of glass, and thus enabled the interior space to be fully occupied by goods, which could be seen from all sides In point of utulty, Successfulfitilicapacity, and beauty, they fulfilled, to a large degree, all the essential con- ment of all in ditions, and they compared in these respects very favourably with other cases used at the Exhibition, which had been made to meet sumilar exigencies The number of the cases of upright pattern was minety, besides which there Number were ten counter cases At the close of the Exhibition they were sent to Ottawa, and are being used by the Government, for the Patent Office and Subsequent Museum

Another care of the Commission was, of course, as to the means of transport, Means and rates and arrangements were at once made with the Grand Irunk and other of transport railroads of the country by which these roads were brought under the general system adopted by the railroads of the United States engaged in convering goods to the Exhibition These ralroads undertook to convey all goods to and from the Exhbibition for a single fare, it being understood, however, that no rebate would be made on account of goods that were sold at Philadelpha, Single fare to or that for other reasons were not returned to the place of export. This and reo. without arrangement was regarded as favourable, and has been carried out by the any rebate-

Steamship
"Ladv Head"
placed at dis-
position of
Commussion

Arrival of first
and last cars
Total number of cars taken up by Exhibits from Ontarno, Quebec, the Martime Provinces, and Britsh
Columbis
Severe stran
placed on Com.
mission to secure
punctuality in opening

Platforms
requred for
special exbrbits
Geological and
Ontario Educa
tional Depart-
ment
Direct super-
vision of Pro-
fessor Selwyn
and Dr May
Action in
Machinery Hall,
and Agriculfural
Bualding
rallway companies with good faith and a manufest desire to facilitate all the operations of the Commission.

To expedite the conveyance of such goods as were to be forwarded from the Maritime Provinces, the Hon Minister of Marine and Fisheries placed at the disposal of the Commission the steamship "Lady Head " This vessel, under the command of Captain George Matson, accordingly carmed all but a small portion of the Maritime Province goods to the port of Phladelphia, from whence they were transported by rail to the Exhibition grounds The Secretary of the Commission arrived at Philadelphas to prepare for the opening, on the 24th day of March The first cars arrived at that place on the lst day of April, and the last on the 4th day of May

The whole number of cars arriving before the opening, which was fixed for the 10th of May, was 150 , of these 100 came from Ontario and 30 from Quebec. The goods from the Maritime Provinces, as already stated, were brought by steamship When unloaded they requured cars for their transport, which together with those coming from British Columbia made up the addutional 20

The Commission, on arriving at Philadelphia, found that the task of receiving, unpacking, and assorting the goods committed to their charge before the opening on the 10 th May, requred no little exertion for its accom. plishment Besides preparing the cases in the Main Bulding and filling them with goods, it was necessary that every package should be passed by the Custom House authorities, and that after the packing cases had been emptied they should be duly recerpted for in order to their storage by what was called the Terminal Agency

Platforms were also required for musical instruments, sewing machınes, and some other objects in the main building, and some goods had to be set up in a particular and expensive manner The Geological Department, and the very striking display of the Ontario Educational Department, provided by the Hon. Adam Crooks, both requured much time and labour, but the Commission were relieved from more than the general care of these exhubits by the direct supervision of Professor Selwyn, of the Geological Survey, and Dr. May, of the Educational Department of Ontario

In the Machnery Hall agan, and in the Agricultural Building, machines had to be set up by skilled mechanies, and preparations had to be made to connect them with the shafts or steam pipes by which many of them were to be set in motion It was also necessary to supplement the shafting and belts provided by the Centenmal Commssion Operations were gomg on at the same time in six buildings, and some of these were at a distance of nearly a mile from the others This dispersion naturally made the work of supervision much more laborious than it would otherwse have been However, by the zealous assistance of the superintendents and workmen employed by the Commissoon, everything was sufficiently advanced by the opening of the Exhibition for that event to come of without discredit to the Canadian Department, and the Commission had the satisfaction of knowing that the work of no other nationality was farther advanced towards completion than that of Canada upon the 10 th of May.
The exbibition of lumber was, from the first, matter of much anxiety to the
Difficulties on the way of adequate representation of Lumber

General action by Governments of Quebec, New of Quebec,
Brunswrek, British Columbia, and cooperation of Commission Gentlemen connected with that highly important interest were generally anxious to exhbbit a large quantity, amounting, according to estrmate, to three hundred thousand feet It was thought by them that the lumber interests of the United States would be very largely represented, and that in order to impress the spectator with the extent of our forest resources it would be necessary that we should cover a great area with this description of goods The charges, however, of transporting such bulky material were so considerable as to anduce the Commission to object to this, as they thought, exaggerated proposal They finally consented to take ten thousand feet of each description of lumber, on condition that they should be allowed to sell it, and to pay freight out of the proceeds Several firms engaged in the trade furnished considerable quantities of the choicest description of sawn lumber, and the Quebec and New Brunswick Governments expended money libeaally in procuring round and square logs, some of very large size Much interest was excited among visitors by specimens of the Douglas Pine from British

Columbia, four of these had their places in the so-called Log House The two largest were a section and a plank, both from trees elght feet in diameter On the arrval of this tumber, however, at Phladelphia, the Commussioners ascertaned that, as they had warned the gentlemen connected with the lumber interest, no place had been approprated for the exhibition of sawn lumber in large quantities Indeed there was no other exhbbit of that kind After much consideration, therefore, they arnved at the conclusion that it would be umpossible to show the deals and planks in their hands, except it were in the internor of the building designed for the plot of ground already mentioned, as having been conceded to them by the American Commission This building was at first intended only for the purpose of showng square and round tumber, the anterior to be vacant, and to serve, like the various houses erected by the different states, as a place of meeting for visitors from Canada They felt that it might be considered a breach of the understandmg upon which the pround was granted if they used it as the mere site for a pile of lumber, and for some tume there appeared to be a strong objection on the part of the Drector General to allow them to do so, partly on account of the combustible nature of the maternal thus to be disposed The objection was, however, at so last overcome, and both square, round, and sawn lumber-the latter, according to invocces, about eighty thousand feet in quantity-were all built up into an edifice, which eventually attracted a great deal of attention, and of which Novelty and dramngs have been published in most of the llustrated papers of the world For the ingenuity by which this building was contrived and completed, the Comminssion owes many thanks to J Larochelle, Esq, of St Anselme
The Commissioners are glad to belheve that this exhibit was not frutless in Good results in the way of promoting the trade of the country It is withun their knowledge apractical point that gentlemen of 'Toronto and Ottawa have recelved orders as a consequence of the display in question

It may be mentioned that at the corner of the Log House the Canadian flag Tallest flag-stafif was hoisted upon the tallest flag-staff in the grounds, a spar from New Brunswck, about nunety feet from the ground to the truck

In placing the heavy preces of machinery and lumber the Commission Add by Brtush recelved very material asssistance from à loan by the Brtush Commission of a traction steam engine from the factory of Aveling \& Porter, which was capable of conveyng welghts of several tons at a time over the ordunary paths between the buldings
One of the most important and nsing branches of Canadian manufacture The cheses is that of cheese, of which not less than $35,000,000$ lbs were exported in the manuficture last fiscal year The Commission felt that it was of the greatest importance that a growing interest of this kind should be farly represented to the world, and that the object of Canada in appearng at the Exhibition could not be better subserved than in promoting the best display of this part of the national products Accordingly, when at was found mppossible to expose dary products in the Agricultural Hall, it was determined to come to the asssistance of the darymen of the Dominion, who were invited by the darrymen Coolition of of the United States to join them in the construction of a suitable building diarymen of For this purpose the Canadian Commission acquired $\$ 2,000$ worth of stock and the of the Centennal Company, the money being expended as the share of Dommion Canada in the cost of the Dary House The stock 18 held by the Commis- Erecton of sion, and will probably be worth from 20 cents to 90 cents 12 the dollar, Darry House US currency, according to the determination of a pecuniary question Canadiansection between the American Government and the Centennial stockholders In this building monthly exhibits of butter and cheese took place, from July to October inclusive. The collection of Canadian dary products, however, was entrely managed by the Ontario Association, through Mr Caswell, of Ingersoll, the Commission merely provided the necessary funds, and they were relieved from all trouble by this gentleman carrying out their arrangements There were four car-loads of dary produce brought to the grounds from the Dommon
Another and most mportant branch of Canadian products consisted of Hoorese, Horned various kands of Horses, Horned Cattle, and other Live Stock With respect Cortese, and other to these the Commission, after much deliberation, felt it necessary to adopt a Live Stock rule differing from that which they appled to other exhibits, and to throw all risk of loss or damage upon the owners, who nere also obliged to provide the

Number of ammals on show

Number of car-loads Representation of Fruits

General scope
of Report

Gaps in display natural to a young nation

Admırablephoto graphic display

Artistic marble mantel-piece, MIr Reid, Montreal.
Specimens of panellug.
Mr Grelg, Montreal

Strong points in representation.

Edge Tools,
Mr Smith, of
St Catharine's
necessary assistants This regulation no doubt, to some extent, contracted the number of this class of exhbitors, and the Commission feel that much credit is due to those gentlemen who, notwithstanding the possibility of loss, enabled them to demonstrate conclusively the vast capabilities of Canada for the breeding even of the highest class of stock

The number of anmals exhibited at different times between the months of August and November inclusive were as follows.-

*Horses	-	-	-	-	-	68
Horned cattle	-	-	-	-	-	72
Sheep	-	-	-	-	-	56
Swne	-	-	-	-	-	50
Poultry and pigeons	-	-	-	-	300	

The number of car-loads of these ammals, was 45.
The frut growers of the Dominion were well represented by frut sent to the Exhbition by associations in Ontario, Quebec, and Nova Scotia. The frunt was sent at different times, as it mpened, and on that which came from Ontario the Commission pard freight in a lump sum. There was probably in all freight for about three cars
It is not the intention of the Commission to make any report involving special technical studies upon the enormous number and great vanety of articles of value exhibited throughout the grounds and buildings of the International Exhibition. The reasons for abstanng from doing so have been set forth in the preface; nevertheless it is proper for them to speak generally of what appears to them to be the faur conclusions derved from a comparison between the products of Canada and those of other nationalities which were brought together at Phuladelpha

There are of course a number of branches of human art in which a country so young as ours cannot hope to compete with the older nations of the world. This is especially the case with painting, sculpture, and ornamental industries of various descriptions, embracing jewellery, decorative works in metal, and the finer descriptions of china, glass-ware, and pottery Comparatively few of these adorned the Canadian department It may, however, be said that in photography the specmens exhibited by our artists were not inferior to any that graced the bulding In painting our display was creditable, and in sculpture, for purposes of house decoration, our department contaned what was unversally acknowledged as the finest specimen of workmanship in the buildung, a much admured marble mantel-plece from the manufactory of Mr Reid, of Montreal So agam we believe we may say that the specimen of panelling, consisting of amitations of various woods and marbles, with medallions, birds, \&c, by Mr A M Greig, of Montreal, was not surpassed by the work of any competitor. The prizes taken in the departments representing the Fine Arts were six in number. Here, too, it may be proper to mention the very valuable collection of insects sent from London, Canada West, a collection which for comprehensiveness and scientafic arrangement cannot be surpassed, and which was without a rival on the ground

It was in manufactures of articles of prime necessity that Canada was likely chiefly to excel, and in these she took high rank among the otber manufactunng nationalities In Leather of all descriptions, including the finer classes, in boots 'and shoes, in Tweeds and knitted goods, and domestic cottons, in stoves, Tools of all kinds, Printed Books, and similar articles, she compared favourably with any other nationality In Woollens of all kinds shown by her it was acknowledged frankly by competitors from various parts of the world that she took the first place, though, of course, she did not show broadcloths, nor other goods of very finest make She made no great display of Cottons, but the few goods in this class were very excellent in the same way it may be affirmed without unduly boasting that her edge tools, amongst which a large case of saws from the works of Mr Smith, of St Catharme's, was conspicuous, were second to none in the buildings They were especially noticed and commented upon by gentlemen of high experience in Great Britam, acting as Centenmal judges, as were also the assortment of nails and

[^1]tacks by Messers Pillow, Hersey, \& Co, and of ron goods from Messrs. Iron poody, H R Ives \& Co, both of Montreal. In this connection the Commission Messrs Pillow, also may remark particularly upon the skates shown by the Starr Company Messrs H. R , of Halifax Large orders from different parts of the United States were the Ives \& C_{0}, consequences of this particular exbibit. Several lots of woollen goods, and an exceedingly well made case of boots and shoes, by Mr Sutherland, of Kingston, as well as a large quantity from a New Brunswick manufacturer (the Sussex Company), were disposed of in Philadelpha, but owng to the high duties it is to be feared that no profit accrued upon these transactions to the manufacturers The sewing machines from different parts of the Dominion also obtanned high praise, and a large number of musical instruments of various kunds proved the successful efforts that are being made by our manufacturers in this important branch of the arts

It is difficult in any comment of thes kind to avoid some appearance of invidious selection, but it is intended to point out not such exhibits as were absolutely the best, but those which from special curcumstances attracted most attention We must not pass by the noble display made by the Ontario Ontano DepartDepartment of Education, which excited marked interest among all classes of ment of Eduvisitors It is known to the Commissioners that the representatives of Japan, and of other nations, eagerly procured some of the instruments used in the instruction of the children of Canada Very much of the mportance which the school books and mplements assumed in the Canadian Exhibition, was undoubtedly due to the intelligent explanations afforded by the gentlemen of the department who were at Philadelpha, Dr May and Mr Hodgins, to whom the Commission are under many obligations for their courteous cooperation.

In manufactures and machinery of all kinds, meluding Books and Educa tional apphances, Models of vessels. Musical instruments, Ralway Plant, \&c., the Canadıan exhubitors took 170 prizes

The Geological Department m the Main Bualding was also highly approved, but it, of course, mainly commended itself to persons of scientific tastes and knowledge The experts who visited it declared it to be one of the most complete and best arranged collections of the kind which the Exhibition could boast of Among the specumens of mmerals having economic value may be noticed especially the wonderful mass of plumbago, and the preparations Illustrating its varied application to the arts, shown by the Dominon Plumbago Company There was a single block of the mineral which weighed more than 2,800 lbs

A case of Petroleum and its products, from the manufactory of the Messrs. Petroleum and Waterman, of London, Canada West, was also among the more interesting and Wrotucts, Messrs beautfful attractions of this part of the Canadıan Department, nor must we forget London, C W to notuce the many specimens of coal, as well from Nova Scotia as from British coa Columbia and the Saskatchewan The Gold column, indicating the quantity Gold column, of that metal mined in British Columbra, was a source of curiosity and some Britsh astonishment to many visitors This column represented a mass of gold of the value of $\$ 37,000,000$, obtaned within the last 13 years

For the collection and arrangement of the Geological Department, illus- Thanks forad in trated by an admurable special catalogue, the Commission has again to thank collection and Professor Selwyn and his accomplished assistants, Messrs Ruchardson, Bell, arrangement and Dawson Dr Honeyman, the Provincial geologist of Nova Scotia, was Department also always ready with valuable aid, rendered more mportant by his long experience in sumular exhibitions. In this department the Canadıan exhibitors carried off 28 prizes

In the larger kinds of machinery, and in the various ingenious contrivances Superionity of for turning it to account in the saving of labour, the American display was American display evidently superior to that of any other nationality The proximity of any other American manufacturers to Philadelphia would be sufficient to account for this superiority, but it is probable, so far as the Commissioners were able to judge, that in versatility and power of adaptation the American machunsts would take the first place in the world In our own machnery department the display was comparatively small, notwithstanding which some of the machine tools exhibited were spoken of by experienced and practical men as being of high value, not only an account of the excellence of ther fimsh and the soludity of

Mr Rarasay, of Cobourg

Messrs
McKechnue and
Bertram,
Dundas, Ont

Agmcultural Hall

Practical proof of excellence of display

Possible trade
between
Canada and
Australasia

Purchase by
Queensland
Commissioner

Exhibition of corn and products.

Generaus gupt of
Count Bielsky,
Russian Com-
missioner
the parts, but for the novelty of their construction and the mgenuity of the contrivances brought to bear in adapting them to their several purposes To show that our inventors are not deficient in this capacity, it may be noted that Mr. Ramsay, of Cobourg, was enabled to place throughout the great Pennsylvamia Railway, as well as 10 many foregn countries, his valuable invention for facilitating the removal of ralway carriages from their trucks, whether for the purpose of changing the gauge of the wheels or for repairs Messrs. McKechme and Bertram also exhibited a Radial Drill, which attracted great attention from machinists, and would, no doubt, have been sold in the United States but for the high duties. As it was, they placed a very fine machine tool in New York. It must, however, be acknowledged, that in this department the Canadian display was an inadequate representation of the enormous capital, skill, and energy employed in the construction of machinery in the Dominion.
In the Agncultural Hall, on the contrary, the show of mplements attracted close attention and cordial prase from all who examined them They had tocompete wnth a very numerous and varied collection of umplements of the same class from other manufacturers. But, though the implements sent by the United States were in some cases of an excessively high finsh, intended merely for show, the Canadian machines, most of them made for actual work, were admitted to be at least equal to any in the bulding
The practical proof of their excellence, combined with ther cheapness, is to be found in the desire manifested by gentlemen from Australasia to purchase them, and to procure for the mhabitants of their Colones the opportunity of seeng mplements of so much sumplicity and utility, and capable of being produced at so reasonable a cost It is not for the Commission to speculate upon the success of the attempts made 'to maugurate a trade between Canada and the Antipodean parts of the Emprre, but this much may be said, that but for the opportunnty of showng their productions, afforded to our manufacturers at the Exhbition at Philadelphaa, there is no reason to beleve that any prospect of such a trade would have been opened up It 1s, at all events, a matter of good augury that gentlemen acquanted with agricultural life in the Australian Colones are confident that several of our Canadian agricultural mplements will be found suitable and saleable in those distant markets It is worthy of particular mention that Mr Angus Mackay, the Commissioner from Queensland, a large agriculturist and a man of great experience, was induced to buy several Canadian implements for the use of his Government, chiefly from Mr. Watson, of Ayr The Commissıoners feel also that this is the place to point out the important services of Mr R W. Cameron, of New York, a native Canadian, now established in that city as a merchant This gentleman largely, we believe, from patriotic motives, by purchase or advances of money upon goods, has enabled a number of our manufacturers of agricultural implements to test the Australian markets.
The exhibit of Grain was exceedngly satisfactory, and the qualities of many specimens were pronounced by good judges to be of the very highest order. Amongst new and very successful attempts at manufactures there were shown in the Agricultural Hall specimens of Maccarom and Vermicell, sent by the firms of Spinelli and Catell, of Montreal, and various preparations of meat and other edibles by the Sherbrooke Meat Company. The Commission recerved numerous applications from persons desirous of ascertaning where they could procure these goods The Commissioners were glad, in connevion with this part of therr work, to be able to render some assistance to the agent of the Government of Ontario, the Hon D. Christie, in procurng several specimens of grann which are thought by good authorties likely to become of particular value to the farming interests of the Domimon. All the Forelgn Commissions who exhibited grain were kind and liberal in affording specimens of this class of ther products, but we ought especrally to mention the name of Count Belsky, the Russian Commissioner, who, at the request of the Canadian Commissioners, presented Mr Christie with a large quantity of wheat, supposed to be of remarkable ment for our climate He deserves the greater thanks on this account, because the quantity given was very much greater than can be regarded merely as a specimen
Canadian Fruts.
In frut the Dominion of Canada occupied a place in the Pomological Hall very much larger than would be her farr share, judging by her geographical
proportions and her population, compared with that of the United States. So far as the Commissioners were able to form a judgment, they beliete that, excepting in grapes, in the growth of which Callfornia far exceeds any other part of the North American Continent whose products were displayed in the Pomological Hall, she could find nothing to excite her envy It may be remarked that the Calfornian grapes are all from European sources, while $1 t$ 18 understond that most of those grown on the eastern side of the Rocky Mountains are derived from indigenous vines The Calfornian fruits were very much larger than those from the Dommon, or mdeed from any other places, but they lost in flavour the advantage which they might be supposed to have in size A remark something similar apples with truth to one or two Western States, but in general the apples, pears, and plums of Canada were equal in appearance and size to those of the United States, and sometimes superior in flavour.

In darry products, notwrthstanding the high reputation of the Amercan Darry producta. cheese manufacturere, those from Canada established conclusively that they are not one whit behind the best of therr Southern competitors in the quality of their products This is demonstrated by the large number of prizes awarded to them by the Centennral Judges, who were, except one, American citzzens, but who honourably discharged theur duty without partialty. The Energy of Canadian darrymen certainly showed superior energy, it being a remarkable Canadian darryfact that there was more Canadian than American Cheese exhibited in the men Dary House 2,086 packages were exhibited in all, weighing $55 \frac{1}{2}$ tons, made up as follows from the United States 1,012 packages, weighing over 26 tons; from Canada, 1,003 packages, weighng over 29 tons, from other countries, 65 packages, estumated at 500 lbs One hundred awards were recommended for exhbits of cheese of these, forty-five were for the United States, fortynine for Canada, and the remainder for other countries In Butter our exhibit was small, reaching only to some $1,700 \mathrm{lbs}$ out of $1,950 \mathrm{lbs}$ from all countries; but in proportion to their number, the prizes taken by Canadian buttermakers were very numerous. There were one hundred and twenty-three exhibits from the Unted States, to which twenty-three prizes were awarded, and sixteen exhbits from Canada, which obtaned five prizes.
Wine was an artccle which, of all those shown at Pbladelphua, was perhaps the Wine most largely exhibited, as to the number of specimens and vanety of descriptrons, and as to the aggregate of nationalithes which sent this kind of merchandise. In this artucle Canada alone had 10 or 12 varreties, and some of them were pronounced by competent judges to be very respectable as ons ordinaures The Brandy of the Wine Growers' Association of Ontario was especially commended.

Of ail departments, however, Canada most excelled in the exbubtion of Luve Stock. Live Stock About one-third of all the Horses exhbited came from the Dominion, and out of sixty-elght exhibited by her, fifty-two carried of prizes A considerable number of these animals were also sold In Horned Cattle the Canadhan anmals did not bear so large a proportion to those of the United States as in horses, nevertheless a large number of prizes were taken relatively to the number of anmmals. The number of exhibits was seventytwo, and the number of prizes was thirty-three
The proposals of the American Comnnssioners embraced the offer of Thesweenstakes Sweepstake Prizes for the best Bull and the best Cow on the ground The question for Commissioners have little doubt that had those sweepstakes been thus given. Horned Cattle the prize for the best bull must have been adjudged to a Canadian, even if Canada had not also carned off that for the best cow, of which there was also some prospect The Judges, however, declined to make this award, and though the Director-General, upon a remonstrance addressed to him by the Canadian Commissioners, issued an express order to the Judges to determine the sweepstakes, it was afterwards found that they had left the city whthout doing so
Sweepstake prizes for the best anmals on the ground, were, however, sweepstake adjudged to a Canadian Boar, and to two Canadian Long-Wool Sheep The rerzes, swine and Canadian sheep were of the long or medum-wool varieties The American sheep. exhibit of this kind consisted of seventy-two sheep, about forty of that number were bred in the United States, and of these few or none were con-

Total number of sheep exhubited

Good results of ${ }^{\prime}$

Hopes of Intercolonal results.

Wisdom of dis-
play as not only evincing natural productive
powers, but also
manufacturing progress of
progress of
sidered by the Judges as worthy of notice. The rest were recently imported from England. The latter obtained twenty-one awards and a first prize in the Inter-State competition The position which Canadan stock occupied was so superior that, but for the importation of Mr Coope, she would have swept everything before her in the breeds which she cultuvated.
The whole number of sheep of these breeds brought under the notice of the Centennial Judges was one hundred and seventy-five Of these Canada showed fifty-six, consisting of Lancolns, Leicesters, Cotswolds and South Downs. For them she recelved twenty-four awards, besides the two sweepstakes already mentioned and the Inter-State award for the best flock of six Ewes and one Ram of the long-wool breed England was represented by forty-seven sheep all from first-class breeds. She took thurty-five prizes, and one sweepstake for the best Ram of any age of the middle-wool breeds
In Swine, the Dominion was well represented, the number of grown anmals shown was twenty-seven, some of them accompanied by litters. Twenty-nine prizes were awarded; some of the anmmals taking more than one prize, the Canadian swine, as already remarked, being also successful in the competition agamst the world.
No sweepstake prize was given for poultry, but while some breeds of burds from the United States were generally supposed to be superior to those from Canada, in several others it was as generally admitted that Canadian fowls held the first rank. The Commissioners gathered from the judges that the American fanciers excelled chietly in the larger, and the Canadians in the smaller breeds But, owing no doubt greatly to the careful choce made for the Canadian exhibits, a very disproportionately large share of the honours fell to therr lot The medal was the same for all awards, but the Judges distinguished three classses of merit in making up their note books, and we are thus able to arrive at the relative excellence of the two displays Out of one hundred and thirty-three Canadian exhbits, not ancluding pigeons, one hundred and twenty-nme received the highest mark of mertt, while the United States exhibitors only had two-hundred and twenty-two highest marks out of four hundred and thurty-four Fifty-one prizes were obtained for Canadian poultry, but each one was for an exhibit comprising more than one bird
Taken throughout, there can be no doubt that the Exhbition at Philadelphia has had the effect of enhancing the feeling of self-respect and patriotrism of many thousands of Canadians who visited it, and who saw that, except in some special classes of production, sometimes depending wholly upon the clmate or other aceidental circumstances, Canadian industries were in no respect behund those so much vaunted in the United States They had reason, indeed, to believe that while they produced articles of as great excellence, they produced them at lower prices than their rivals, and that nothing prevented a valuable trade in many articles between the two countres, except the excessively high tariff of the United States At the same time, the Exhibition has afforded proof that the demand for useful artucles is not limited to a single nation, and has given cause to hope that, if our products are debarred from a particular market, they may, nevertheless, find a ready sale in other parts of the world
Nothing can be more encouraging than the manner in which many of our manufactures have been sought for by the Australian colonists, and it is to be hoped that other nations wll be found hereafter not insensible to the possiblitites of profitable Canadian trade In many visitors to the Exhibition, not belonging to the British Emprre, the display made by Canada excited not only lively interest, but great astonishment The Commissioners were repeatedly told, as well by the citizens of the United States as by highly intelligent gentlemen from other countries, European and Amercan, that until they saw the variety and perfection of the goods in the Canadian department, they had formed no just dea of the country from which those articles came They were, of course, aware that the Dommon had a place on the maps of the world, and of North America, but they had no conception that what they had regarded only as a strip of land, remarkable chiefly for ice and snow, could be capable of furnshing domestic anmmals of the greatest perfection, all the grain used for food in equal plenty and excellence, wine
of a quality by no means despicable, and a variety of manufactures 'which extend throughout all the articles necessary for the use, if not for the ornament and luxury of life In thes respect, even of no direct pecumary advantage should arise from the Exhibition, there can be little doubt that its value must be incalculable Hitherto, when Canada has appeared at an International Exhibition, it has been as the exhibitor of a few articles, which, excepting lumber and cereals, were looked upon as curiosities For the first time she has met the nations of the world as a nation, and has held her own wnth all but those of the very first class, giving inducations, at the same time, of an ambition, in due course, of taking rank among the latter The intelligent interest excited in Canada by the Exhibition was manufested by the large number of our fellow-countrymen from all parts of the Dommion who flocked thither Registers were kept at the office of the Commission, in which Register of Canadian visitors were invited to enter their names These entries amount numbers of in number to 15,000 , but as a very large number of persons neglected tors this formality, it is believed safe to put the Canadian visitors at not less than 30,000

Among the visitors from the Domimon were mermbers of the Senate and Vistors House of Commons, and of the Provincial Legislatures, several members of the Dominion and Provinctal Minstries, and the Premiers of the Dominion, Ontano, Quebec, and Nova Scotia His Excellency the Governor-General also spent some days in inspecting the most interesting features of the collection, paying especial attention to the various branches of the Canadian Department He was recerved with marked respect by the American authorities of the Exhibition, and by Colonel Sandford, the British Commissioner He did the Canadian Commissioners the honour of residing at their house during his stay in Philadelphia, and, after his departure, was pleased to address a letter to them through the senor member, in which he thus expressed his satisfaction wrth the Canadian display .--

[^2]Total number of Judges.

Judges. They are not at all disposed to impute these omssions to any partuality on the part of those gentlemen On the contrary, the large number of prizes awarded to our fellow-countromen andicates that no spirit of jealousy was conscously present. Mistakes and omissions were more or less unavoidable in a task so extensive as that of adjudication on the merits of this vast assemblage of valuable objects; and it may be a reasonable subject of congratulation on the whole that causes of far complant were not more numerous The only case in which the Canadan Commissioners thought they detected anything like unworthy jealousy was in the refusal of the Judges of horned cattle to award the sweepstakes in the manner already described But if that feeling were present, it was confined to the Judges in that class The Drector-General, on the remonstrance of the Canadian Commissioners, as already mentioned, specially directed that the programme should be carued out, although in fact that was not done The Commssioners, however, felt it necessary, in the interests of therr exhibitors, to send in to the Supplemental Judges appointed to correct omissions, a hist of articles which the owners believed would have received prizes had they been properly examined Of the articles on this list only two finally obtaned awards
The whole number of judges were 250,140 were American, and 110 foregners Those named by the Canadian Commission were as follows - -

H Joly, M P P, Quebec,
Anmal and Vegetable products
Hon Senator Skead, Ottawa,
Productions of the Forest
E Empex, Esq, Hamilton,
Ready-made Clothing and Furs.
Wm Durrus, Esq, Halfax,
Carrages
Ira Morgan, Esq, Ottama, Horses
Alex. Barry, Esq, Dumfres, Horned Cattle
Col Rhodes, Quebec.
Surne
John D. Moore, Esq, Dumfries, Swne.
F W. Fearman, Esq , Hamilton, Cheese, Butter, and Poultry
It is proper in this place for the Canadian Cornmission to give some account of the manner in which therr own medals were distributed Thas will be best done by the followng extracts made from a pamphlet printed for distribution at Philadelphia:

Programme of prizes.

PRIZES

20 RE GRANTED BY MEE
Canadian commission
The Canadan Commission, with the intention of affording inducements to exhabitors at the Exhibition of Phuladelphia, offered Gold, Silver, and Bronze Medals as prizes, promising that the awards of such medals should be made by foreign judges
In pursuance of that engagement, they addressed a letter, of which the following is an extract, to the British Commissioners, Colonel Herbert Bruce Sandford, R.A, and Professor Archer, FRSE
"Canadıan Commission,
"Gentlemen,
Phuladelphıa, May 23, 1876.
"The Canadaan Commissioners have promsed to give to their exhibitors gold, sulver, and bronze medals, to be awarded by forenga judges In order to carry out this design they respectfully ask the and and comoperation of the Britush Commissioners, whose nommation of judges, if they will consent to nomuate them from Enghsh gentlemen here on the business of the Exhibition, will, they beheve, be received with complete satisfaction and confidence by all concerned in the awards
"The Canaduan Commissioners, hoping that you will afford them your assistance, submit the following scheme as one which they think may be successfully acted
upon, and they therefore ask your approval or opmon thereon They propose to subdiade the artucles exhibited in the Canadian Section, omitting, for the present, live anumals, butter and cheese, new fruts, beers and other fermented and distulled liquors for the table, into several classes, ancluding one for unenumerated articles. They wull ask from you the nomuation of a judge for each This judge will be requested to name the persons to whom a definte number of bronze and silver medals shall be awarded Each judge will be further requested, of the persons to whom he shall have awarded silver medals, to designate any whom he shall think deserving of one of a number of gold medals, lumited to five
"In order to determine who shall recelve the gold medals, the judges will be asked, after having made their awards of silver and bronze medals, to select the successful competitors from the candidates for the gold medals, named by the above process, the votes to be delivered in writing on a fixed day to the British Commonssoners, and in case of a the vote for two canddates, one of the British Commissooners, as agreed between themselves, to act as umpire
"The persons receiving the gold medals will abandon the silver ones, and to prevent delay or other embarrassments in the final determination, it is to be understood that the chooce of the successful candidates for the gold- medals shall not be rendered invalid by the absence of the votes of any judge or judges, but that the decision shall follow the majority of votes actually cast, and the day for recelving the votes shall be notified to the judges by the Commissioners"

Upon this letter, Colonel Sandford endorsed the following memorandum
"Copy forwarded to Mr Trendell, Delegate for judges, who is requested to bring the proposal before the British judges, and ask for the co-operation and assistance of any of these gentlemen who can spare the requiste tume
"The sanction of the Lord President of the Council has been already obtansed; by telegraph, to any of the Brtish judges undertaking the duty of awarding prizes in the proposed Canadian competition who may feel unclined to do so
"If a sufficient number of the Britush judges will be kind enough to consent to the request of the Canaduan Commission, backed as it has been to the Britush Commissioners by a cequest from the Governor General of the Dominion of Canada, ${ }^{\text {it }}$ will, perhaps, be convement to call a meeting at St George's House, when the Commissioners from Canada will be unvited to attend"
"(Signed) HB Sandford
"St George's House, May 30, 1876 "
On the 5th of June, a meeting was held at St George's House to consider the Meeting at Sta request made by the Canadian Commissioners, that the medals to be given by the George's House. Dommion to Canadian exhubitors might be awarded by British judges

Col Sandford presided, and there were present The Hon E G Penny and Mr D Macdougall, Executive Commissioners for Canada, and the folloming Bntish judges

Dr Odhng, FRS R-Chemstry and tis Applecations
Mr J H Soden Smuth, M. A-Cerames, Pottery, and Glass
Mr Isaac Watts-Cotton, Yarns, and Woven Goods.
Mr Henry Mitchell-Woollen Goods
Major W H Noble, R A - Weapons
Mr D M'Hards-Hardware and Edged Tools.
Sur Willam Thomson, LL D, D C L -Phulosophecal Apparatus
Mr Charles W Cope, R A - Sculpture and Paunting
Mr Peter Graham-Industrial Desıgns
Mr John Anderson, LL D - Metal and Wood Machnery
Mr W W Hulse, C E - Spinnung and Weavnng Machnery
Mr Frederick Paget, C E-Sewing and Clothing Machinery
Mr W H Barlow, C E-Motors
Capt Douglas Galton, C B - Ratway Plant
Col F H Rich, RE-Pneumatic and Water Transportation
Mr John Coleman-Agricultural Machunes
Mr A J R Trendell-Secretary to British Commssion and Offictal Delegate to the Judqes

The followng resolution, proposed by Dr Odling, and seconded by Mr. Coleman, was put from the chair and carried unammously
"That the British judges here present accept with pleasure the proposal made to them to award special medals to the Canadian exhibitors"

Mr Penny and Mr Macdougall expressed the warm thanks of their Commission for the ready response thus given to the request made, and antacipated that all concerned would accept the awards of the British judges with enture satusfaction

Selection of Britush Judges to decude special a wards

British Lave Stock Judges

The following are the classes and number of Siver and Bronze Medals to be awarded therenn, with the names of the judges, any of whom will be competent to make the award, or, if they thnik it necessary, they may invite assistance in their several classes

1. Machunery of all kinds, excepting agricultural machinery, including all objects in the Machnery Hall, type setting and sewing machines Three silver and six bronze medals
Judges - Dr Anderson, Mr Hulse, CE, Mr Henry Mitchell, Capt Dauglas Galton, Mr Barlow, CE., Mr Paget, C E
2. Agricultural machinery and implements, such as ploughs, harrows, \&ce, of all descriptions, except spades, forks, and sumilar tools to be used merely by hand. Three silver and six bronze medals

Judge -Mr John Coleman

3 The Fine Arts, neluding paintngs, photographs, and scalpture, whether intended chiefly for decorative purposes or otherwise, and wood carving not on furniture Two silver and four bronze medals

Judges -Mr C W Cope, R A, Mr Peter Graham, Mr Soden Smith, M A.
4 Manufactures from all kinds of metals, including aron safes and all descriptions of tools to be used by hand Four silver and elght bronze medals

Judges -Hon J Bain, Dr Anderson, Mr D M'Hardy.
5 Wool raw, articles of clothing, and fabrics of all kinds intended to be made up into clothing, blanketing, and furs, raw or dressed, no matter for what purpose Four silver and eight bronze medals
$J u d g e s-M r$ H Mitchell, Mr Isaac Watts, Mr Hulse, CE
6 Leather and its manufactures (all boots and shoes) Three silver and six bronze medals

Judge - Mr Hulse, C E.
7 Musical instruments Two silver and four bronze medals
$J u d y e$ - Sir Charles Reed
8 Carmages and furniture, including frames for looking-glasses and parquetry work Two silver and four bronze medals
Judges - Col Rich, Mr. Peter Graham
9 Grain and meal, and manufactures thereof, nncluding maccaron and vermicelli Three sulver and six bronze medals
$J u d g e s$ - Dr Odling, Mr John Coleman
10 Cured meats, fish, and other preparations of anmal food, and glue One silver and two bronze medals

Judges -Dr. Odhng, Mr John Coleman
11 Minerals, including coal, marbles, slates, clays, and plaster, not belonging to ether the Dominon or Provncial surveys Four silver and elght bronze medals Judge -Mr Lowthian Bell, M P
12 Pharmaceutical preparations, soaps, candles, \&e, and such as result from distillation, or other chemical process, except beer, liquor, including products of petroleum, together with plant of all kunds One silver and two bronze medals

Judges-Dr Odling, Major Noble
13 Ladies' Department Two silver and four bronze medals Judges - Col Ruch, Major Noble, Capt Douglas Galton
14 Philosophical instruments, and such as are intended for educational purposes or for measuring with precision One silver and two bronze medals.

Judges - Sir William Thomson, Sir Charles Reed
15 All articles not meluded in the above Four silver and eight bronze medals Judge - Mr Soden Smith, M A
The judges in awarding the medals will be governed by considerations of the skill and ingenuity exhibited in the manufacture or production of the articles submitted to them, and to their value and moportance in the arts of life

In case the judges should think proper to merease the number of sulver or bronze medals in any class, their recommendation to that effect, and the awards based thereon, will be carried out by the Commission

The above applies only to such articles as made a portion of the permanent exhibit throughout the season. But the rest of the Canadian prizes, with
exceptions hereafter mentioned, were awarded in like manner by Centenmal
Judges from England, named by the British Commssion as follows, viz.:-
For Horses, by Thomas Parrington, Esq
For Horned Cattle, by S Duckham, Esq.
For Sheep, by Owen C Richards, Esq
For Swine, by G W Baker, Esq
All these gentlemen were requested, whenever they might judge it necessary, Judges from to associate themselves with experts It was found impossible to carxry out other nationalcompletely the design of taking British judges in every case For wnos, the Commassion therefore requested the assistance of M Rebours, an emment wine grower of France , and for malt hquors, that of Mr Massey, a very large brewer of Philadelphaa Both of these gentlemen kindly gave the benefit of their knowledge and experience In cheese the Commission accepted the nomination of Mr. Fearman, made by the parties interested in that branch of manufacture, and for poultry they named Mr Halstead, an American judge, who, it was represented, would afford general satisfaction
Owing to obvious omissions made by some of these gentlemen, such as have and colones already been said to be mseparable from such adjudications, the Commussioners requested Mr Morris, one of the Commissioners from New South Wales, to act as a supplemental judge on a very few classes of goods, and this gentleman, added by such experts as he found necessary, awarded a small number of prizes, almost all for manufactured goods But the Commissioners did not permut these awards to disturb those previously made, and only asked the help of Mr Morris when they had a moral conviction that articles had been accidentally passed by without examination, or, as in one case, when less than the appomted number of medals had been awarded. It should be noticed that in order to avoid farlure on the side of liberality, a special clause in the instructions to the Judges authorized those gentlemen to uncrease the number of prizes mentioned by the Commussioners for any class whatever, if they should believe that the merits of the artucles shown justried such addrion The Commissioners feel that they, and the body of their exhubitors, owe many thanks to these gentlemen for the pains and care whth which they executed the charge committed to them, which they accepted with great cheerfulness, and, as the Commissioners believe, carred out with a most conscientious desire to do justice to all parthes concerned
The number of prizes awarded for the Canadian distribution were as Number of follows.-

The Commussioners think it proper to explain that the delay in returning Delays in return the exhibits from Phuladelphis was caused by the obstacles thrown in the way of goods,of repacking and shapping by the rules of the United States Customs Depart- Causes ment The Exhibition closed on the 10th of November, but it was the 22nd before they were allowed to pack anything, and after they had begun to do so, on permission from the Deputy-Collector, many difficulties occurred at each stage of the process up to the actual re-shupping of the goods The consequence was, that the Canadian Department was not cleared until the 29th December, by which date everything might have been at home, had these obstructions not occurred As it was, however, on the lst January when every Canadian package had left, fully two-thurds* of the British goods remaned, and several of the other foreign countries had not even commenced shipping, so that Canada was the first to close its department in Philadelphia Besides the annoyance caused by the delay, itself, there is reason to belneve that several losses of property, by theft, and some damage, occurred during the period between the loth November and the 29th December, whech would not have happened had greater despatch been possible

It has been already mentioned that many States of the Umon, and foreıgn National and nationalities erected houses to serve as meeting places for visitors from these Sate'sBuldings

St George's

States and countres, and for other purposes, on sites granted them by the Centenmal Commission. Among the most beautiful of these was St George's House, bult by the British Commission, and sance presented to the City of Philadelphaa. In this buildng the Bratish Commission luberally afforded the Canadian Commssioners two handsome and handsomely furnshed apartments, which became of great use to them durng the excessively hot weather of summer, and at times when their office in the Man Buildng was so much frequented by vistors as to make it impossible to carry Thanks to Brtush on any continuous work. For this kindness the Commissioners feel

Commissioners
and Staff

Testimonial to
Mra J R
Trendell from
Canadian Com-
missioners

Thanks to members of Centennaal Com. mission ard Board of
Fmance

Hospitality of
Mr Geo W
Childs and Mr.
A. Drexel

Acknowledge-
ments to
Exhibitors themselves obliged to return their warm thanks to the British Commissioners, who, as well as their staff, afforded them every possible assistance During the latter part of the Exhibition Colonel Sandford remained alone in charge, and to the last afforded the Canadian Commassion every kind of help and encouragement which they needed at has hands Mr. A. J. R. Trendell, Secretary to the Britsh Commission, and Official Delegate of the Judges, acted as Secretary to the Judges who awarded the Canadran prizes, and it was thought by the Canadian Commissioners that his special services merited an acknowledgment from them. They, therefore, requested his acceptance of a gold chronometer with an appropriate inscription The deare of the Commissioners to make this gift was formaily reported to the Lord President of the Councl, and his Grace was pleased to sanction Mr. Trendell's acceptance of the compliment offered hum.
The Canadian Commissioners also have to express their thanks to all the gentlemen holding office as members of the American Centennual Commis. sion, and Board of Finance, as well as to the heads of departments and officers acting under them, They would particularly mention (because they had business particularly with them) General Hawley, President of the Commussion, General A T Goshorn, Director General; John Welsh, Esquire, President of the Board of Finance, General Walker, Chief of the Bureau of Awards; Mr. Albert, Chief of the Machınery Department; Mr Pettit, Chief of the Bureau of Installation; Captain Torrey, of the Transportation Service, and Colonel Myer Asch, Secretary to the Executive Committee
They also owe much gratitude for hospitality to many of the citizens of Philadelpha, and for that, as well as for services of a sem1-official character with the American Government, to George W Childs, Esquire, and A. Drexel, Esquire, who were Honorary Members of the British Commission.

Above all, the Commissioners feel that they owe cordial acknowledgements to the exhibitors with whose goods they were charged. It was impossible that a business such as they had to transact could be carried out without some inconvenience, delay, and occasional expense to individuals. They can truly say, however, that these were lessened as much as lay in their power, but they gladly recognize the forbearance and kundness with which they were met almost unversally by those gentlemen whom they had occasion to meet on the business of the Commussion in Philadelphas They have reason to hope that therr efforts were understood and appreciated, and they feel that in general everything was done by the owners of goods to and them in the discharge of there frequently onerous duties
Trusting that the result will be regarded by their fellow countrymen as not unworthy of the national effort which has been made, and that their part of the work may meet with approval, it is but right for them to acknowledge that the prase for the honours which the country has receved must belong chiefly to the men who, in various branches of industry, supplied the admurable materals which it was their duty to display.

APPENDIX.

Canadian Comprtition

Machinery.

R M Wanzer and Co, Sewing Machines John D Ronald, Chatham, Ont, Steam Fire Engine	- Gold Medal. - Solver
McKechnie and Bertram, Dundas, Ont, Engneere' Tools	
W Kennedy and Sons, Owen Sound, Ont, Water Wheel	.
IH T Smith, Toronto, Ont, Soda Water Fountan	- " \#
G H Copping, Toronto, Ont, Lozenge Machine	- "
Toronto Car Wheel Company, Car Wheels	- " "
John McDougall and Co, Montreal, Car Wheels	
W C Nunn, Belleville, Ont, Railway Signals	
C W Wilhams Manufacturing Co, Montreal, Sewngg Machinem	
Wilke and Osborn, Guelph, Ont, Sewing Machunes	
O St. Amant, Quebec, sewng Machime Attachment	- " "
Goldee and McCulloch, Galt, Ont, Water Wheel	- \#
Barber and Harrns, Meaford, Ont, Water Wheel	
F W Tuerk, Berlin, Ont., Water Wheel	
S H Powers, Woodstock, N B , Self-acting Hand Loom	
Toronto Car-Wheel Co, Toronto, Ont., Wheels and Axles	
G S Tiffany, London, Ont; Combined Brick and Tile Makn	
Machine	- " "
Robt Bustın, St John, N B , Fire Escape	
Ahearn and Welsh, Ottawa, Bread, Dried Meat, and Vege	
Sheer	
J L Adsms, Montreal, Tobacco Cutter	
Waterous Eng Works Co, Brantford, Ont , Portable Saw Mill	
H Larue, Quebec, Magnetuc Separator	- " "
K Freeland, Toronto, Soap Machune	- "
H W Cox, Peterborough, Ont., Rotary Force Pump	
Wm. Englsh, Peterboro, Huntung Canoe	
D Herald, Gore's Landing, Patent andjPlain Hunting Canoes	
Wm Power and Co, Kingston, Models of Ship, Schooner, Centr	
Board, and Schooner Yacht	- m
Stephen Webster, St Catharines, Ont, On Storing Tank	- "
Brown and Howe, St John, N B , Woodturner's Lathe	
J I Fisher and Co, Kincardine, Ont, Shearing Machines	
Ellott's Washing Machine Co, Guelph, Ont , Washung Machune	
d E Popham, Montreal, Steam Peg Breaker	- " "
G. C. Couvrette, Montreal, Ship's Rudder	

Ageictutural Machaneity

John Watson, Ayr, Ont, large and excellent dssplay
John Abell, Woodbridge, Ont, Portable Engine and Threshung
$L_{\mathrm{D}}^{\mathrm{D}}$ Machine Sawer and Co°, Hamilton, Ont, Mower and Reaping Machines
Haggert Bros, Brompton, Ont, Horse.Power and Threahng
Machune
David Maxwell, Paris, Chaff
-

David Maxwell, Paris, Chaff Cutters - --
A Anderson, London, Hand-Power Straw Cutter
Massey Manufacturing Co, Newcastle, Self-actıng Horse Rake
J E Stong, Newton Brook, Excelsior Self-acting Gate - " "
Acton Plough Co , Acton, General Purpose Plough - . " "
Thos Yeandle, Stratford, Collection of Ploughs
Geo Wilkinson, Aurora, Collection of Ploughe
Sulver "
"

P M Bawtenheumer, Clifton, Potato Digger
PM Bawtenhemer, Clitton, Potato Digger - - - - - " " "

Fine Art	
R Reid, Montreal, Marble Chumney Prece	Silver Medal
J C Spence, Montreal, Stained Glass Window	
Smith and Gemmell, Toronto, Architectural Designs	" "
J C Way, Montreal, On and Water Colour Paunings	" "
F Van Luppen, Montreal, Busts	" "
D Fowler, drawings in Water Colour (Howers and landscapes)	Bronze
A Edson, Montreal, Water Colours (landscape)	
A N Greng, Montreal, Decorative Painting	
Langley and Co, Toronto, Architectural Designs	" "
Mantractures of Metal.	
R. H Smith and Co, St Catharne, Ontario, Saws, Hay Knives, Trowels, \&e	
Pillow, Hersey, and Co, Montreal, Spikes, Nails, Tacks - -	
Dates Steel Co, Toronto, Axes, Adzes, Edge Tools, \&c	
Spiller Bros, St John, New Brunswick, an assortment of Tools suitable for coopers, founders, bricklayers, \&c	
S R Foster and Son, St John, N B , Tacks, Nauls, Brads -	
Starr Manufacturing Co, Halifax, N S , Spikes, Nals, Screw Bolts, \&c, also "Acme Club Skates," a variety of styles and excellent	
James Morison, Toronto, Steam Gauges	" "
J Ritche and Son, Toronto, Brass Work	
G Gilmore, Montreal, Augurs of good quality and finsh	
Coldbrook Rolling Muls Company, St John, N B, an extensive vanety of Cut Nals and Spikes	
James Harris, St John, Marbleized Mantels	
James Warnock and Co, Galt, Ont, a variety of Axes and other	
Edge Tools handled - - -	Bronze
Peter Robertson, Ottawa, Ontario, lumberman's Tools, and Tools for	
Thomas Moore, Cooksville, Ontario, a large variety of excellent Tool	
Handles	" "
J. M. Willams and Co , Hamulton, Tuware	" "
Boivin and Co., New Liverpool, Edge Tools	" "
A S Whitng Manufacturing Co, Oshawa, Ont., Steel Hay and	
Manure Forks, Gavden Tools, \&e	"

Woollen and Cotron Fabrics, Yarns, Furs, \&c.

Leather

Musical Instruuments

Carbiages and Furniture

Danuel Conboy, Uxbridge, for the design and fimsh of the Sleigh, and the ingemous contrivance for changing the seat of Sleigh R Hay and Co, Toronto, Sideboard

Silver Medal.
" n
B Ledoux, Montreal, for Double Half Landau, the Double Sleigh - " "
John M De Wolfe, Halfax, N S, for Pony Carnage, Victona
Phaeton and T Cart
Bronze "

Agriculuturar Products

Preserved Meats, Fruits, etc					
Canadıan Meat and Produce Co, Sherbrooke, Canned Meats, \&ce - Silve					
J D Bain, Restigouche, N B , Canned Fish	-	-		Bronze	\%
Ewing and Wise, B C, Victoria, Isinglass	-			,	"
Batellı Bros, Montreal, Macaronı, Vermicellı				"	"
R Spinell, Montreal, Macaron, Vermicell	-	*	-	"	"

Minerals

Chemical and Pharmaceutical Preparations.

Ladies' Work

Educational and Philosoprical Apparatus

Wines and Makt Liquors

- Unenumerated Articles

Lee Brothers, St John, N B , Bricks and Dran Tiles
Toronto Fire Extinguishing Co, "Fire-king" fire extinguisher
H R Ives and Co, Montreal, Ornamental Wrought-rion Work
A A Murphy, Montreal, Pneumatic Fire Extingusher
G Chaplean, Montreal, Safe
silver Medal

- - - - " "

Dartmouth Rope-walk Co, Halıfax, N S , Ropes - - - " "
Smith and Kaye, Halifax, N S , Bricks and Tiles - - Bronze »
Ralph Smith and Co, Toronto, Engraving and Lithography - \# "
Hamulton and Sons, Surgical Applances
" $\quad \geqslant$

Ewring and Co, Toronto, Mouldings
n \quad "
John Date, Montreal, Diving Dress (made at a low price) - " "
M Stanton and Co, Toronto, Room Paper Hangings
Geo Bishop and Co, Engraved and Coloured Monograms
Elujah Ross, St John, N B , Oars
W G Rawbone, Toronto, Patent Cartridge Creaser
Geo Copeland, Hamılton, Ont, Twines, Cords, \&re. " "
G F Norvell, Hamilton, Stuffed Birds _ - - - " "
T Epan, Hahfax Tayidermist

- *

T Egan, Hahfax, Faxidermist
-

LIVE STOCK DEPARTMENT.

> HORNED CATTLE

Shorthorns, Aged Bulls.
J and R Hunter, Alma, Ont, Lord Aberdeen
James Russel, Richmond Hill, High Sherff
James Gardhouse, Highifeld, Count Grindewald
Jacob Terryberry, Glanford, Glanford Prince -

Two Years old Bulls

Thomas Boak, Miltou, Ont , Duke of Cumberland - - - Slver Medal J and R Hunter, Alma, Ont , Bawon Booth, of Killerby - - Bronze "

Bulls under Two Years old

James Russel, Richmond Hill, High Sheriff 2nd - - - Slver Medal
J and R Hunter, Alma, Ont, Ranger

- Bronze .,

W B. Telfer, Ponsonby, Ont , 3rd Duke of Kent - - - "

Shorthorn Cows

$\underset{\text { do }}{\text { James Russel, Ruchmond Hull, Isabella }} \underset{\text { do }}{\text { Duchess of Springbrook }}$			Gold M Silver	
W. B Telfer, Ponsonby, Ont, Mald of Kent	-		Bronze	",
J and R Hunter, Alma, Ont, Rose Blossom	-		"	"
W. W Kıtchen, Grimsby, Jessie	-		"	"
do. do. Duchess of Grimsby	-		",	"

Three Years old Heifers in Milk or in Calf

Two Years old Herfers.

Cows
George Hood, Guelph, Ont, Victoria - - - - Slver Medal.
Devons, Bulls.
George Rudd, Guelph, Hartland - - . . . Bronze Medal.
Bulls under One Yeiar old.
George Rudd, Guelph, Duke of Norfolk Slver Medal.
Ayrshries, Aged Bolls
Wm Rodden, Plantagenet, Carrick Lad - - - - Slver Medal.
George Thompson, Dwight, Ont, Tarbolton 2nd

- Under One Year.

Wm Rodden, Plantagenet, General Montgomery - - - Sulver Medal.
Axrshire Cows

Audegnexs, Bulls

Wm. Rodden, Plantagenet, Baronet - - - . Slver Medal.

Cows and Hitrers

Cows and Hyipers.

Herds.

HORSES.

Wm Clarke, Light Thoroughbred Stallion, Warmanbie	Gold Medal
T and J Little, Agncuitural Stallion, Young Wouder	- "
John White, Thoroughbred Stallion, Terror	Sulver
Charles E Mason, Heary Draft Stallion, Glenelg	"
Wm Long do do Royal Tom	"
M A. Burgess do do Honest Sandy	- "
James and D, Boag, Heavy Draft Mare, Jean	- \%
do Agricultural Mare, Fancy	- "
do Heavy Draft Stallion, Marquis	Bronze
C J Douglass, Heavy Draft Stalhon, Dundonald -	*
James Swnerton, Agricultural Stalhon, Glory of Dommon	Sulver
J C Sanderson do. do Duke of Newcastle	- \quad \%
J P Fisher do do Pat Molloy	"
James McDonnough, Agmeultural Mare, Fanme -	- " "
do Heary Draft Stalion, Scotsman	" "
Andrew Somerville, Carrıage Stalhon, British Splendor	n
do Roadster Stallion, Gladstone -	"
Edmunston and Snyder, Heavy Draft Stalhon, Loch Fergus	"
Jeffrey Bros, Heavy Draft Mare, Coldstream Lass	"
W H Hurdman do Black Bess -	"
do Agricultural Stalhom, Farmers' Fancy	"
Wm. Boyd, Heavy Draft Span, Tom and Bill -	- "
Wm Gerre do Polle and Sue	- "
F K Hıcks, Agricultural Stallion, Lord Logan	- " \quad \%
Jamen McSorley do. Young Cumberland	"
George Doidge, Agneultural Mare, Empress	- " \quad "
J Smuth do do Dash	- "
George Carre, Agricultural Span (Mare and Geldung)	- "
F McEwen, Roadster Mare, Black Mary -	- "
H Kennedy, Carmage Span (Mare and Gelding)	- "
W. Long, Horse, Emperor - -	- "
do Zetland . . .	- " "

Sheep.

Lincolns.

South Downs.

Sweepstakeb

Samuel Longford, Granton, Ont, $\underset{\substack{\text { Best Ram (Lincoln) } \\ \text { Ren Breedıng Ewes (Lincolns) }}}{-} \quad$ Silver Medal. Do. do. Best Pen Breeding Ewes (Lincolns) " "

SWINE.
Strfoliss

Chebter Waites

DAIRY PRODUCTS
Sayple of Buttra, 200 Poundos on more

Pacrage of Butter, 10 to 35 Pounds or more

Sample of Butter of 5 Pounds, in 1 Pounds or Rolls

Tharee Cherse (coloured) of 40 Pounds or over
Made any time in the second or thrid weeks of June, July, August, and September 1876, respectively

Peter Dunn	-	-	-	-	-	-
Hugh Matheson	-	-	-	-	-	-
Daver Medal						
Darto Moronze						

Datrix Cherse

Michael Ballantyne - - -
Thomas Hawkins

Three Cheese (coloured) over 40 Pounds

Three Cheesa (oolokrd) under 40 Pounds.

Three Cheese under 20 Pounds

Peter Dunn - - - - -
Threer Cheesf (White) over 40 Pounds

The Judges subjoin a statement to the effect that Mr' Peter Dumn's exhibit was the best in Four Classes.

By order,
Canadıan Commssion,
J Perrault, Secretary.

Awards to Canadian Exhibitors, International Competition

I-Minerals, Mining, Metallurgi, and Machinert

P T Somerville, Arpprior, Ont, Monuments of Dark-clouded Marble of Armprior New Rockland Slate Co, Montreal, Roofing Slate and Slate Slabs from Melbourne, Canada.
Ontario Luthographic Stone Co , Marmora, Ont , Luthographic Stone
Is Robertson, Halifax, N S , Gold Specmen
A Seaman and Co, Lower Cove, N S, Grndstones.
Daniel and Boyd, St John, N B , Block of Freestone.
Dorchester Union Freestone Co, Dorchester, N B , Buldang Stone
Robert Forssth, Montreal, Red Granite Monuments, \&ce, from Gananoque
Geo J McDonald and Co, Cornwallis, N S , Buldrng Stone
John Kelly, Belleville, Ont, Lathographic Stones
Bay of Fundy Red Granite Co, St George, N B, Wrought Red Grante
Gray, Young, and Sparlng, Eclipse Well, Seaforth, Ont, Retned Salt.
Waterman Bros, London, Ont, Petroleum
Lake George Antmony Co, Prnce Wilham, N B , Regulus of Antimony.
Joseph Goodfellow, North Esk, N B , One large Grindstone
Dominon of Canada Plumbago Co, Graphte and Products manufactured therefrom
Danville Slate Co, Danville, Que, Slate
Alex Cowan, Brockville, Ont , Phosphate of lume, Pyrites, \&te
Hopewell Quarry Co, Hopewell, N B, Sandstone
W W Stewart, Montreal, Native Copper
John Rankın, Actonvale, collection of Coloured Slates.
Gating Gold and Silver Muming Co, Marmora, Ont, Gold Ores
Dr Honeyman, Halifax, N S, Geological Collection
Steel Co of Canada, Londonderry, NS, Ores, Iron and Steel
Nova Scotia Section of Canada Commission, Nova Scotia, Collection of Bulding
Stones
Nova Scotia Advisory Board, Coals
Geological Survey of Canada, Geological Collection
Silver Islet Minng Co, Silver Islet, Ont , Silver and Siver Glance

II.-Potterx, Glags, Artchichal Stone, \&e.

St John's Stone Chinaware Co , St John"s, Que, White "Grante" Wares.
Lee Bros, St John, N B , Common Hard Bricks
Albert Manofacturing Co, Hullsborough, N B, Rav and Catened Gypsum
Bulmer and Sheppard, Montreal, Common Bricks
Wm McKay, Ottawa, Hydraulic Cement
George Sylvester Tiffany, London, Ont, Brick and Tie-Making Machme.
P. Gauvreau and Co, Quebec, Hydraulic Cement and Artificial Stones

Dormmon of Canada Plumbago Co, Buckingham, Plumbago Crucibles

IV-Amimal and Vegetable Pronucts.

J A Robins, Avon, Cheese
E Hunter, Mt Elgm, Cheese
Anra Paddon, Beachville, Cheese
James F Wilhams, Galloway, Ingersoll, Cheese
Hugh Mathison, Emhro, Cheese
E Hunter, Mt Elgin. Cheese
D Chambers, Stratford, Cheese
David Morton, Cassels, Cheese
Thomas Ballantyne, Ont , Stratford, Cheese
Wiliam Huxley, Fullerton, Cheese
John Butler, Mt Elgna, Cheese
J W Cahoe, Derham, Cheese
D B Cahoe, Holbrook, Cheese
Peter Dunn, Ingersoll, Cheese
Biodie and Harve, Montzeal, Elour
George Smuth, Verschoyle, Cheese
W P Howland, Toronto, Wheat
Christie, Brown, and Co, Toronto, Biscuits and Ciackers
T Raukine and Sons, St John, N B, Fancy Biscuts.
James Collns, Erin, Ont, Wheat
R. Sugg, Minto, Ont, Wheat.

John Campbell, Hullet, Ont, Wheat
R Tuck, Nelson, Ont, Wheat
Wm Beattie, Nichol, Ont, Wheat
Catell, Bios, Montreal, Macaron, Soup Pastes, \&c
M R Spmell, Montreal, Macarom, Soup Pastes, \&e
Wm Wilkinson, Ingersoll, Cheese.
H S Losee, Noiwich, Cheese
Wihnam Anderson, Woodstock, Cheese
Shirk and Snider, Bridgeport, Ont, Flour from Winter Wheat
Matthew Meams, Durham, Ont, Wheat
Wm P O'Nel, Watertown, Ont, Wheat
James S Morton, Salsbbury, N B., Wheat
Thomas J. Skinner, Courtsher, B Col, Wheat
R Shearer, Nagara, Ont, Wheat
Wm. McGill, York Co, Ont, Wheat
James Bell, Tuckersmith, Ont, Wheat
Wm Bell, Tuckersmith, Ont, Wheat.
Jacob Scrp, Petersburgh, Ont, Wheat.
George Stonehouse, Scauborough, York co, Bailey
C H Moyer, Campden, Ont, Bohemian Oats.
Thomas McKay and Co, Ottawa, Oatmeal
H Warton, Guelph, Oatmeal
Lawrence Rose, Georgetown, Buckwheat Flour.
Scott and Co, Highgate, Oatmed (four varteties)
Aspden and Pritchard, London, Oatmeal (four varreties).
James Wilson, Fergus, Oatmeal
E D Tuson, Tulsonburg, Oatmeal and Buckwheat Flour.
Start Mills, Bridgetown, Buckwheat Flour
P Fikaners, Brooklin, Oatmeal (three samples, different varieties)
Howard and Noxthwood, Chatham, Malt
John Labatt, London, Malt.
Canadıan Meat and Produce Co, Sheibrooke, Que, Prckles, Sauces, and Soups.
Lamus Smoth, Chatham, Ont, Oats
Thomas Manderson, Myrtle, Ont, Oats.
Charles Anderson, Hastings, Ont, Oats
Mrs Jaue Taylor, Stanley, Yoik, N B, Oats
John Stewatt, Horton, Renfrew, Rye
T M Howser, Camden, Lmeoln Co, Ont, Clover Seed.
William Smith, Farfield Plans, Ont, Clover Seed
Robert Agur, Pond Mills, Ont, Coloured Cheese
John Chisholm, East Missoun, Ont, Coloured Cheese
Whllam Wilkinson, Ingersoll, Ont, Coloured Cheese
Mark Challeroft, Thamesford, Coloured Cheese
J F Wilhams, Galloway, Ont, Pale Cheese for shipping

Adam Bell, Blapford, Pale Cheese for slurpping
Willam Mannug, Belmont, Ont , Coloured Cheese
Mission of Chupugan, Iake Alatska, Wheat and Barley
Edwn Casswell, Ingersoll, Ont, Hams, Breakfast Bacon, Smoke-dried Sides, Prime Mess Pork
Chnstam Netz, Hallfax, N S , Bologna Preserve in Lard
Do do Smoked Goose, Ham, Ox Tongue
W Woodll, Halifax, Nova Scotia, Mess Beef
Canadian Meat and Produce Co, Sherbrooke, Canned Meat in great vanrety
Edwardsburg Starch Co, Edwardsburg, Starch.
R B Noble, Richibucto, N B , Preserved Frut (bluebernes).
J W. Butcher, Halıfax, N S, Preserved Frutt (Strawberry and Cranberry Jelly).
J D Bam, Restigouch, N B , canned Roast Beef.
S. Davis and Co, Montreal, Cigars

James Ireland, Ingersoll, Cheese
T Manderm, Myrtle, Ont, Wheat.
R McGull, Erin, Ont., Wheat
Alex Stewart, Brussels, Ont, Wheat
Willaam Rennie, Toi onto, Garden and other Seeds
J H Allan, Picton, Ont
Advisory Board of Halifax, N S , Exhubit of Seeds
Do. do Nova Scotna, N S, Various Seeds other than Cereals.

Do do. Manitoba, Manitoba, Seeds, Wild Hops, Wild Tea, \&cc.
Do do Ontario, Sundry Seeds other than Cereals
Do do P, E Island, Charlottetown, Oats
Conncil of Agriculture, Montreal, Sundry Field Seeds.
Charles Henry, Conestoga, Ont, Limseed
E Casswell, Ingersoll, Ont, Cheese
P Hemmingway, Corinth, Ont, Cheese
Thomas Hankıns, Holbrook, Ont, Cheese
W Weatherston and Co, Toronto, Ont, Flour
J G King, Canada, Fort Hope, Toronto, Ont, Flour from Winter Wheat.
Indians of Douglass Lake, British Columbia, Wheat
John Labatt, London, Ont, Ale and Stout
T Davies and Bro, Toronto, Ale and Porter,
Cosgrove and Co, Toronto, Bottled Ale
Agnew L Farrell, Cayuga, Ont, Wines
James Hustangs, White Church, Wine
$\stackrel{R}{V}$ Blackwood and Co, Montreal, Ginger Ale
V Casci, St Vincent, Toronto, Cherry Wine
Growers' Association, Toronto, Wine and Brandy
D Nuxon, Allisonville, Ontario, Wine.

V-Fisi and Fise Products-Apparatus of Fishing

D Scribner, St John, N B, Rods for catching Salmon, \&ce.
F St John, Victoria, B C, Specimens of Prepared Fish
Ewing and Wise, New Westminster, Frazer R, Isinglass
Andrews and Co, Hallfax, N S , Canned Lobster and Mackerel
R B Noble, Rxehebucto, Canned Lobster
Chebucto Packıng Co, Halifax, NS, Canned Lobster
T Doyle, Halifax, N S , Tongues and Sounds, Herring, Mackerel
J D Bain, Restigouche, N B, Canned Mackerel, Lobster, and Salmon
Holbrook and Cunningham, Victoria, B C , Canned Salmon
James Barber, Halufax, N S , Canned Lobster and Canned Mackerel
A Logge and Co, Vactoria, BC,Salted Salmon, Tront, and Oolachen in bbls and kits
A H Crowe, Halifax, N S, Salted and Dried Haddock, and Smoked Herring, \&e
S P May, M D, Toronto, Ont, Prepared Fish

VI -Timber, Workrd Lumber, Parts of Bulidings

Farrbanks and Hawes, St John, N B , Doors, Blinds, and Newel-Posts.
A N Greig, Montreal, Paunted Imitations of Wood and Marble.
Bronson and Weston, Ottawa, Pine Lumber
Pike and Richardson, Chatnam, Ont, Barrel Hoops
G B Hall, Montmorency Mills, Pine Boards
H P Cusack, Newburg, Ont, Barrel Hoops

Levi Young, Ottawa, Pine Lumber. John Rochester, Ottawa, Pine Lamber. Perley and Pattie, Ottawa, Pine Lumber. George Newell, Ottawa, Ash Pillars John Oliver, Ontario, Worked Lumber. Quebec Advisory Board, Worked Lumber Wilson, Gilmore, and Co, St John, N B , Marblezzed Slate Mantels

VIL-Furniture, Dpholstery, Wooden Ware.
Joseph Rye and Co., Montreal, Invald Char. Wulliam Lee, Toronto, Furniture.
J Wright, Montreal, Parquetry, Floorıng
Q W. Tuerk, Berlm, Ont., Clock-case and Chandelhers m Oak,

VIII -Cotton, Linen, and other Fabryce, \&c
 Dundas Cotton Mills Co , Hamilton, Brown Sheetings and Seamless Bags. S S Fuller, Stratford, Ont, Flax

IX - Wool and Silk Fabrics.

S. H Powers, Woodstock, N B , Hand Loom.
T. Stavert Fisher, Toronto, Ont, Woollens

John Harrey, Hamilton, Ont, Wool.
Toronto Tweed Co, Toronto, Woollens
Adam Lomas and Son, Sherbrooke, Flannels.
Samuel F. Willett, Chambly, Flannels
Mulls and Utchunson, Montreal, Woollens.
John Wardlow, Galt, Ont, Woollen Yarns.
Rosamond Woollen Co, Almonte, Woollens Smath and Walby, Toronto, Elannels.
Oxford Woollen Mulls, Oxford, N S, Woollens
H. Winger, Elmira, Ont , Flannels.

J L Woodworth, St John, N B, Woollen Yarns.

X.-Clothing, Furs, Indla-rubber Goods, \&c.

Thibault, Lanther, and Co , Montreal, Furs, Ermune Muffs, \&c. Hudson Bay Co, Montreal, Raw Furs, Esqumanx Sealskin Coat, \&c. C. Kaser and Son, Halfax, Natural Raccoon and Black Bear Robes, \&c.

Reynolds and Volkel, Montreal, Wolf Robes, Rugs, \&c.
Skelton, Tooke, and Co, Montreal, Shirts, \&c.
Brown and Clagget, Montreal, Costumes for Ladnes
J S. May, St John, N B , Gents' Clothing.
C. Boeck, Toronto, Ont , Broshes

Whitehead and Turner, Quebec, Brushes.
G. R Grind, London, Ont , Brooms and Whisks.
W. E Clarke, Toronto, Ont, Trunks, \&c

Miss Kate Farrell, Toronto, Ont., Carriage Rugs
Grey Nuns of Montreal, Montreal, Embroidered Handkerchef
Gencral Hospital, Quebec, Artnficial Elowers.
Convent Jesus and Mary, Quebec, Embrodery, Priests' Vestments
Hochelaga Convent Montreal, Embroldery, Presta' Vestments.
Mrs D B McDonald, Montreal, Gobeln Tapestry
Miss Isabella Farbanks, Halıfax, N S , Lace Handkerchef
Mrs Sutchffe, Halifax, N S, Needlework, "Last Supper"
Mrs Constant, Halfax, N S, Leather Work for Murror Frame
Mrs Farrel, Halifax, NS, Fancy Wool Work
Mrs. R A. Wicksteed, Ottawa, Ponnt Lace.
Miss Lizzie Farquharson, Whitby, Painting on Velvet, Designs for Painting.
Miss Park, Watertown, Knitting and Tatıng.
Mrs. Neville, Ottawa, Leather Work
Miss Sidney Smith, Dundas, Lacework Handkerchief
Mrs Nunn, Belleville, Pount Lace
McCrae and Co, Guelph, Ont , Hossery
Ancaster Knitting Co, Hamulton, Ont, Knitted and Fancy Goods.
R F Taylor and Son, Toronto, Ont, Men's Clothing.
T. G. Furnival, Hamilton, Ont, Clothing

XII -Leather and Manofactures of Leataer, \&c.

David Ramsay, Cohurg, Ont, Boots and Shoes
Willham Cravg and Son, Port Hope, Ontario, Leather.
Heath and Northey, Montreal, Sole Leather.
Moseley and Ricker, Montreal, Leather.
*XIII - Paper, Stationery, Printing, and Book maknge
Saint Croix River Mills, Saint Croix, N S , Binders' Pasteboard
Louss Perrault and Co, Montreal, Comnercial Printing
XIV.-Hardware, Edge Toons, Cutlery, and Metanlic Products.

James McElvey, St Catharines, Cream Gatherer.
Alexander Anderson, Bread Knife.

XV.-Bumdrrs' Hardware, Tools, Cuthery, \&c.

Dates Pat Steel Co., Toronto, Axes and Edge Tools
James Warnock and Co, Galt, Ont, Axes and Edge Tools for Wood, Iron, and Stone
W and M Ambern, Ottawa, Ontario, Lumbermen's Tools
Peter Robertson, Ottawa, Ont , Lumbermen's and Stonecutter's Tools.
Thomas Moore, Cooksville, Ont, Axe and Tool Handles.
R A. Smith and Co, St Catharines, Ont, Saws
Spiller Bros, St John, N B , Edge Tools.
S R Foster and Son, St John, N B , Nals, Tacks, Brads, \&ce.
Pillow, Hersey, and Co, Montreal, Quebec, Nauls, Tacks, Brads, and Horse Shoes. Starr Manufacturing Co, Halıfax, N S , Skates
Gauen Gllmore, Cote, Montreal, Augurs, Bits, \&c
A. S Whting Manufacturing Co, Oshawa, Ont, Forks, Hoes, Scythes, \&e.

XVII - Cabrigers, Vehicles, and Accebbories.

Hunt, Carrns, and Co, St Catharnes, Ont , Wheels and Wheel Stock.
Robert Malcolm, Toronto, Ont , Harness and Saddles.
William Vahey, Forrest, Ont, Collars and Collar Blocks.
Wllham Kerr and Son, Beamsville, Ont, Dog Cart Sleugh.
B Ledoux, Montreal, Sleigh.
John M De Wolfe, Halifax, N S , Lught Carnages
S. and H. Borbridge, Ottawa, Ont, Harness and Saddles

Daniel Conroy, Uxbridge, Sleugh.

XVIIL--Railway Plant, Rolling Stoce, Engines, \&c.

Toronto Car-wheel Co, Toronto, Ont, Car Wheels of Chulled Iron
John Mc Dougal and Co, Montreal, Car Wheels of Chilled Iron.

XIX - Yerbrls and Ayparatus of Teangportation.

William Englash, Peterborough, Ont, Huntıng Canoe
D Herald, Gores Landıng, Ont, Hunting Canoe
Coldbrook Rolling Mill Co, St John, N B, Iron Ship Knees

> XX - Motore, Hydratlic and Pnrumatic Apparatue.

C C Jones, Fredericton, Barrel Pump
Wilson, Clark, and Co, Yarmouth, NS, Shup Pump.
John D Ronald, Chatham, Ont, Steam Fire Engine
A A Murphy, Montreal, Pneumatic Fire Extinguisher S Webster, St Catharines, Ont, Oil Storing Tank
Waterous Engıne Works, Brantford, Steam Engues
H. W Cox, Peterborough, Ont , Rotary Force Pumps

Oakville Manufacturing Co, Oakville, Ont , Pumps
Robert Patrick, Galt, Ont, Rotary Pump
Robert Bustm, St John, N B , Fire Escape
Dixon, Smith, and Co, Toronto, Belting
Barber and Harris, Meaford, Ont, Water Wheel
Wm Kennedy and Sons, Owen Sound, Ont, Water Wheel
George Fleming and Sons, St John, N B., Oscilatıng Engines
Bowes and Sons, Stratford, Ont, Force Pumps
C. Barns, Sackville, N B , Rotary Pumps

John Ritchie and Sons, Toronto, Ont, Cocks, Valves, and Lubricators
James Morrison, Toronto, Ont, Steam Vacuum Hydraulic Gauges
George Brush, Montreal, Steam Engme
M E. Dalley, Ottawa, Ont , Telescope Trestle
Small and Fisher, Woodstock, N B, Barrel Lifter.
Thomas Williams Manufacturing Co, Stratford, Ont, Stationary Engıne
John Date, Montreal, Diving Apparatus
Goldie and MeCulloch, Galt, Ont, Turbine Water Wheel and Steam Engıne F. W Tuerk, Berlin, Ont , Working Model Water Wheel.

XXI -Machine Tools for Wood, Metal, and Stone

R. Mitchell and Co, Montreal, Lead Tube Bending Machine

Brown and Howe, St John, N B, Turning Lathe
W M Kemuedy and Sons, Owen Sound, Ont, Facing and Jointing Machne.
J F Fisher and Co, Kinkardme, Ont, Clipping Boiler Plate Machine
McKenhmie and Bertran, Dandas, Ont, Wood Moulding Machine
Mitchell and Taple, Harrison, Ont, Wood Sawing Machune
R. H Smith and Co, St. Catharnes, Circular Saws

Waterous Engine Works Co, Brantford, Ont, Portable Saw.
XXII -Machine and Apparatus used in sewing, \&e.
Wikie and Osborne, Guelph, Ont , Sewing Machine Treadle
R. M. Wanzer and Co, Hamulton, Ont, Lock Stitch Sewing Machne

XXIII--Agricultural Machines, Implemenys of Agriculture, \&e

David Maxwell, Paris, Ont, Power Chaff Cutter
Mossey Manufacturng Co, Sharpe's Patent Dumping Horse Rake
L D Sawyer and Co, Hamilton, Ont, Mowers and Reapers
Peter Grant, Clinton, Ont , Hay Fork and Conveyer.
Thomas Yeandle, Stratford, Ont, Single Plough
Monroe and Agar, Seaforth, Common Plough
C Duperrow, Stratford, Ont, Iron Diagonal Harrow
Acton Ploughng Co, Acton, Ont, Geneial Purpose Plough
Thomas Wilson, Ont, Fanning Mill
Clegg, Wood, and Co, Horse Rake
Haggert Bros, Brompton, Ont, Threshng Machunes and Horse Gear
Jacob Bricker, Waterloo, Little Champion Thresher
Jos E. Strona, Ont, Swingıng Farm Gate
Rowland Dennis, London, Ont, Combined Potato Digger and Ridgıng Plough.
John Watson, Ayr, Ont, Collection of Agricultural Implements.
G Wilkinson, Aurora, Ont, Double Plough
John Abell, Woodbridge, Ont, Portable Engine and Threshing Machine
A. Anderson, London, Ont , Haud Chaff Cutters

XXIV -Instrlments of Medicine, Surgery, \&c
R Blackwood and Co, Montreal, Mineral Waters
Charles Wilson, Toronto, Mineial Waters

XXV -Instrdments of Precision, Researce, \&e

Dominion Organ Co, Bowmanville, Ont , Reed Organs
Hearn and Harrison, Montreal, Surveying Instruments
Weber and Co, Kingston, Ont, Square Piano

XXVI-Architecture and Enginexalng.

H R lves and Co, Montreal, Medirval Wrought Iron Gates, \&e Geographical Survey of Canada, Geological Maps

XXVil-Plabtic and Graphic Art.
Fowler, Canada, Painting in Water Colours
A N Gretr, Montreal, Imutations of Wood and Marble
W Notman, Montreal, Photographs
A Walker, Halifax, N L, Gilhing on Glass
Wm J Booth, Toronto, Sign Painting on Glass
J C Spence, Montreal, Window of Stamed Glass.
Hovenden and Meldrum, Toronto, Painting on Glass

XXVIIL-Eiducation and Soience

Lovel Printing and Pubhshing Co, Montreal, Quebec, School and other Books
Huuter, Rose, and Co, Toronto, Iseful Publications, Good Printug
Nelson Loverın, M D , Montreal, Loverın's Historical Centograph
Canada School Apparatus Manufacturing Co, Toronto, Laboratory and other Apparatus
S P May, MD, Toronto, Ont, Collection of Stuffed Anmals for Teachng Zoology
Department of Public Instructọn, Province of Ontarıo, Canada, Maps, Charts, Models, Text Books, \&ce
Young Men's Christian Association of America and Canada, Chart showing the Location of Agency and Branches, \&e. /
Wm Browne, Toronto, Map Stand

EXIX - Hortroultmal Appliances.

V Cascl, Toronto, Fruit Models
Prof Macom, Belleville, Ont , Herbarium
XXX,--Honses
J W White, Ont, Thoroughbred Stallion, Terror
C J Douglass, Ont, Heary Draft " Marquis.
Wm Harns, Ont , Carriage Horses
Halliburton Kennedy, Ont , Mare and Horse, Carriage Span.
Wm Long, Lansing, Ont, Coach Stallion, Emperor.
David Fisher, Colburn, Ont, Stalhon, Carriage
Wm McKenzie, Columbus, Ont , Stallıon, Cleveland Boy
Andrew Somerville, Huntingdon, Stallion
J P Fisher, Ont, Stallion, Pat Molloy
John Galbrath, Kırby, Ont, Roadster Stallion
Do do do Mare
Wm Newhouse, Brompton, Roadster Stallion
Ezra Holt, Orono, Ont, Stallion, Carriage, Performer.
Hugh Cooper, Roadster Stallion
J T Jenkins, Prince Edward's Island, Trotting Stalhon
Wm Clark, Thoroughbred Stalhon, Warmambe
T and J Little, Sandhill, Ont , Draft Horse
Wm Long, Lansing, Ont, Enghsh Draft Stallion
W Hurdman, Ottawa, Ont, Draft Stalhon, Farmer's Fancy
Do do. do Mare, Black Bess
J and D Boag, Ravenshoe, Ont , Flly

Do	do.	Mare, Agricultural Fancy
Do	do	do
Do	do	do
Do	do	Draft Mare, Jean
Do	do	Heavy Draft Stallon, Dunclonna
Do	do	Mare

Jeffrey Bros, Whitby, Ont , Mare
Do do Draft Mare
John Smuth, Raglan, Ont , Filly.
Do do. - Draft Mare

Henry Sarter, Pontonby, Ont , Draft Mare.
$\underset{\text { Do Go Glen, Carlow, }}{\text { do }}$ Ont, Draft Mare.

John Glen, Carlow, Ont, Draft Mare.
Do do Filly.

George, Dodge Columbus, Ont., Draft Mare.
Do do. Filly
W. H Hurdman, Ottawa, Ont., Draft Mare.

George Currie, Ingersoll, Ont, Draft Mare.
C J Douglas, Oak Ridge, Ont, Stallion.
C E Mason, Brucefield, Ont, Stallon.
Alex. Burgess, Weston, Ont, Stalhon.
D R. Hick, Matchell, Ont., Stallion.
T J. Little, Sandhill, Ont, Stallion
Joseph P Fisher, Ben Muller, Ont, Carriage Stallion, Young Peacock.
James McDonnough, Carlow, Ont, Mare
Wm, Gerrie, Dundas, Ont., Mare
Do do Heavy Matched Draft Teams
Wra Boyd, Toronto, Ont, Heavy Matched Draft Teams

XXXI.-Cattle.

George Rudd, Guelph, Ont , Devon Bull, Hartland.
Do do do. Duke of Wellington.
G Hood, Guelph, Ont, Hereford Cow, Victona.
Do. do. Bull, Victor 3rd
Do do. Robin Hood.
Do do Hero
George Thompson Bright, Ont, Ayrshire Cow, Mermaid, four years old
Willam Miller, 3 r , Athens, Ont , short-horn Heifer, 2nd Rose of Oxford.

Do	do.	do.	Necklace 7th
Do	do.	do	Young Arabella

J and R Hunter, Alma, Ont, Herd of Short-Horn Cattle, one Bull and four Cows.
Do. do shorthorn cow, Rose Blossom.
Do. do. bull, Ranger
Do. do. herfer, Belle of Sunnyside.
Do. do Maud of Honour, 2nd
Do: do. bull, Lord of Aberdeen.
James Russell, Richmond Hill, Ont, Short-Horn Bull, High Sheriff, 2nd

Do.	do.	do	cow, Isabella.
Do	do.	do.	bull, High Shenff
Do	do.	do	hexfer, 3rd Duchess of Springwood.

George Hood, Guelph, Ont, one black Galloway Cow, Lady Isabella
Do. do do Lily Dale.
Do. do. bull, Roger.

Do do. one herd of Galloways, one Bull and four Cows.
Satchell Bros, Ottawa, Ont, Shurt-Horn Heifer
Do. do. Grade, Short-Horn ox, Lord Dufferm.
Thomas Boak, Short Horn bull, Duke of Cumberland.
Dommon of Canada, Canadian herd of Short-Horns, one Bull and four Cows
W. B Telfer, Ponsonby, Ont., Short-Horn Helfer, Dachess of Kent

Do	do	Mard of Kent 2nd
Do	do.	Mard of Rosedale 2nd
Do	do.	Bull, 3rd Duke of Kent

Wilham Rodden, Plantagenet, Ont, Jersey corv, Pride of Home, two years old.
XXXII.-Sheer.

Robert Marsh, Richmond Hill, Three Ewe Lambs, Southdown

Do.	do.	Six Shearlng Ewes, do
Do	do.	Three Breeding Ewes, do
Do	do	Flock, one Ram, four Ewes, do
Do	do	Southdown Ram (lamb)
Do.	do.	Ram, four years old, Southdown
Do.	do.	Ram, three years old, do.

XXXIII -SWINE.

Wright and Butterfield, Sandwich, Ont, Suffolk Sorrs, Faith, Hope, and Charity
Do do. Suffolk Boar and two Sows, Longback, Chanty, Saffolk Queen
Do do. Essex, three Sows, Negro, Best Negress 2nd, Negress 3rd
Do do Essex Boar and two Sows, Negro, Prncess, Queen of Essex.
Do do Negro 1st, Negress 2nd, and Negress 3nd
Do do Essex Sow and mue Pigs, Negress 2nd
Do do. do and four Pigs, Negress 3rd
Do do do Queen of Essex.
Do. do. do. Negro's Best.
Do do do Negress 2nd
Do do. do Negress 3rd.
do Princess
do Essex boar, Negro 4th.
$\begin{array}{ll}\text { Do } & \text { do } \\ \text { Do } & \text { do Essex boar, Negx } \\ \text { do }\end{array}$
Do do. Esser Boar, Negro 3rd
Do do Suffolk Boar, Longback
Do do Essex Boar, Negro 2nd
Do do Suffolk Boar, Suffolk Kıng
Do do Suffolk Sow, Charity.
Do do. Essex Boar, Negro lst
Do do Suffolk Sow, Faith.
Do do. Essex Boar, Negro
Do do Suffolk Sow, Hope
A Frank and Son, Cheltenham, Ont, Suffolk Boar and two Sows, Tom Bush, Maggre, White Rose

John Bogae, London, Ont, Dacks.

Do	do.	Fowls.
Do.	do	Fowls
Do	do	Fowls

M W Smith, Farfield Plaıns, Ont , Ducks -
Do do Geese

Do do. Fowls
W IM Campbell, Brookhn, Ont, Hamburgs
Duncan Kay, Galt, Ont , Hamburgs
Do do Fowls
Do do One Pair Silier Dack-Wing Bantams
H T Waddell, Hamilton, Ont, Hamburgs
Ruchard McMillan, Galt, Ont, Hamburgs
Do do Fowls.
Do do Vanety of Fowis.
Thomas Pillow, London, Ont, Fowls
John Weld, London, Ont, Fowls
W G Hewson, Oakville, Ont, Fowls
William Campleell, Brooklin, Ont, Fowls
H Cooper, Hamilton, Ont, Pigeons
Do do One Pan Stlver Duck-Wing Bantams
MI M Campbell, Brooklin, Ont, Varnety of Fowls
Perley and MeCammings, Paris, Ont, Varety of Fowls
Tames H M Thomas, Brooklin, Ont, Variety of Fowls
James Beswack, Toronto, Ont, Variety of Fowls
XXXV-Speclal Awards

PROVINCIAL ADVISORY BOARDS

Oxtario
President-Hon A Croons, Minster of Public Instruction.

Hon Senator Chnstue
Hon. S C Wood (afterwards Prestdent)
Hon. D McKellar, Minster of Agricultare
Ira Morgan, Esq
Rev F Burnet
S White, Esq
W H Howland, Esq
W Hancock, Esq
Rev G Barber
Δ Warnock, Esq
James Rennet, Esq
S G Wilkes, Esq
N Dickey, Esq
John Turner, Esq
J Moorehead, Esq
W Toole, Esq
James Watson, Esq
H Millar, Esq
E Caswell, Esq

Thomas Ballantyue, Esq
C Whitelaw, Esq
C N Smith, Esq
J B Aylesworth, Esq
M Mathews, Esq
James Watson, Esq
R Rosamond, Esq
A Copps, Esq
G Booth, Esq
J D Tandy, Esq
Thomas Wilson, Esq
J Waterman, Esq
T G Witherow, Esq
N C Perley, Esq
W Crag, Esq
A U Ramsay, Lsq
L Shickluna, Esq
Rev J Ryerson
George Murton, Esq
George Leshe, Esq

- Quebrc.-

Presudent-Hon Prezre Garneat, Minster of Agnculture.

J Browning, Esq
L. EI Massue, Esq

W Clendınneng, Esq
George Stephen, Esq.
Auguste Cantm, Esq
W Green, Esq
Henry Lyman, Esq
James Thompson, Esq.

- Jos Christin, Esq

Robert Mitchell, Esq.
Thomas Workman, M P
Hon J L Beaudry, Legislative
Councillor
V Mudon, Esq
Theodore Lyman, Esq
W Evans, Esq
E E Gulbert, Esq
3 Ledoux, Esq
John Ostell, Esq
Thos White, Jr, Esq
G Bolvn, Esq
L Beaubren, Esq , II P
Secretary-S Leesage, Esq

Nova Scorta.
President-Hon P. C Hric, Premier.

James W Carruchael, Esq, M P	J MeCulloch, Esq.
H H Fuller, Esq	W Silver, Esq
W Duffus, Esq	Joseph Burrell, Esq
Alex Anderson, Esq	Fred Curne, Esq
Dr Hamlton	E Davison, Esq
A H Crove, Esq	M Dwyer, Esq
H Peters, Esq	Hon Senator Archibald
W Roche, Esq	Dr Gulpin
W Gordon, Esq	W. Barron, Esq
James Turner, Esq	G Mitchell, Esq
Secretary_-Dr. Honeraras, Provncial Geologist.	

New Bronswick

President-Hon J J Fraser, Provincial Secretary
J Harris, Esq
J U Parks, Esq
J Domville, Esq, M Y
W Peters, Esq
J Robinson, Esq
W J Edgcomb, Esq
R Thompson, Esq
G Murdock, Esq
T C Staurs, Esq
R Fnlay, Esq
T L Inches, Esq

J B Rolland, Esq.
A Chanteloup, Eisq
N Larivière, Esq.
Dr Poulin
W. Woodley, Esq

Col Rhodes
E Bovin, Esq
H Larue, Esq
J Ross, Esq
W Dunn, Eisq
Joseph Plamondon, Esq
C W. Crevier, Esq
F Kerouse, Esq
G Bresse, Esq
A Terroux, Esq
E Sewell, Esq
Hon Senator Chme.
$\mathbf{P} \mathbf{V}$ Valin, Esq
G B Hall, Esq
S Peters, Esq
U. Germann, Esq .
\qquad

J MeCulloch, Esq.
W Silver, Esq
Freph Burrel, Esq
E Davidson, Esq
M Dwyer, Esq
Hon Senator Archibald
W. Barron, Esq

G P Mitchell, Esq
Secretary=-Dr. Honemman, Prowncial Geologist.
\qquad
\square

Prince Edward Island.

Presudent-Hon. Senator T. H. Haviano, Pronncial Secretary.

Hon. Mr. Justıce Hemsley	J C. Pope, Esq, M.P.
Hon. Senator Howlan.	Alex Larrd, Esq.
Cornelus Howitt, Esq	A C Macdonald, Esq.
J. Jardıne, Esq	H Longworth, Esq.

Mantroba.
Presudent-Hon. Chales Norin, Minister of Agriculture.
Hon. Senator Gurard
Hon D. A. Smith, M.P
K Mackenzie, Esq
T. E Cornish, Esq

Secretary-Thomas Spence.

Britibh Columbia.

President-Hon. W. J. Armstrono, Mimister of Agriculture.

Hon. Senator Carroll
Hon Senator Macdonald.
W. J. Deans, Esq.

N T. Tolme, Esq
T. M. Russel, Esq

Secretary-W. Dawson, Esq

[^3]
Commission from New South Wales to the Philadelpita International Exhibition, 1876.

His Honour Sir James Martin, Knight, Chef Justice, President. The Hon. Joun Hay, President of the Legislative Council
The Hon. George Wigram Aulen, Speaker of the Legislative Assembly

Commessoners.

Thie Rer. Cinas. Badham, D.D.
Samuel Bennett, Esq.
James Brrns, Esq.
R. W Cameron, Esq.

The Hon. G. H. Cox, M.L.C. J. R. Fairfax, Esq.

Andrew Garran, Esq, LLD.
The Hon. S. D Gordon, M.L.C.
Henry Harloran, Esq.
Edw S. Hill, Esq, J.P.
The Hon. Thomas Holt, M.L.C.
P. A. Jennings, Esq.
G. W. Lord, Esq., M.P.

The Hon. Sir Wm. Macarthur, Knt., M.L C.

Williah Macleay, Esq, F.L.S.
T. S. Mort, Esq.

Benjamin Palmer, Esq., Mayor of Chistopher Rolleston, Esq. Sydney.
Commander Thomas Stackiouse, R.N.
Alexander Stuart, Esq., M P.
George Thorntुon, Esq, J.P.
William Wallis, Esq.
James Watson, Esq., M.P.
The Hon. J. B. Wart, M.L.C.
Fitz-William Wentworth, Esq.
John Williams, Esq.
W C. Wandeyer, Esq.

Robert Wisdom, Fisq, M.P.
Jonn Woons, Esq.
William Worffen, Esq.
P. F. Adams, Esq.

Robert Adams, Esq.
John Belisario, Esq.
Rev. W. B. Clarke, M.A.
The Hon. Edward King Cox, M.L.C.
Edward Flood, Esq.
Edward Knox, Esq.
Archibald Liversidge, Esq., Professor of Geology in the Unıversity of Sydney.
Join Living, Esq.
The Hon J. L. Montefiore, M.L.C.
James Powell, Esq.
Charles Moore, Esq.
James Norton, Esq.
Archibald Thompson, Esq.
H. C. Rossele, Esq.
P. N. Frebeck, Esq.

The Hon. Tames White, M.L.C.
Charles Smith Wilkinson, Esq.
James Newton, Esq.
Julian Salomons, Esq.
Joan Badgerx, Esq.
Josepa Thompson, Esq.

Resudent Commissoners at Philadelphaa.

Augustus Morris, Esq, Executive Commissioner.
George Russell, Esq.
Roderick William Cameron, Esq.
Dr. R. W. Forbes
William Morris, Esq.
Patrick Alfred Jennings, Esq.
Marsiall Burdekin, Esq.
The Hon. James Whute, Member of the
Legislative Assembly.
Andrew Garran, Esq., LL.D.

Sir Daniel Cooper, Baionet. Edward Flood, Esq.
Christopaer Rollliston, Esq. A. D. Sherard, Esq.

The Hon. Jacob Levi Montefiore, Member of the Legislative Council.
George Oakes, Esq.
Joseph James Phelps, Member of the Legislative Assembly.

Charles Robinson, Esq., Secretary.

NEW SOUTH WALES.

Report for the British Commission.

New South Wales was the first British Colony planted in Australia Its Itsorigiual bounboundaries extended along the whole of the eastern coast of the Island, and daries. included all the territory lying between the Pacific Ocean and the 135th parallel of east longitude In the progress of settlement it became expedrent to subdivide this extensive area, and to call into existence the colomes of Subdivisonsinto Tasmania, Victoria, and Queensland Remote from the seat of government, New South and almost excluded from traffic and intercourse whth the civilsed populations Queensland, of the globe, the progress made by the pioneers of civisation was slow, and, and Tasmania prior to the discovery of gold in New South Wales an 1851, the total European Progress from population of the cuntment was less than 300,000 souls From that time the discovery or gold occupation and umprovement of the country have been accelerated, and Australia has now become the home of upwards of $2,300,000$ thriving and contented people. The aggregate revenue of her governments in 1875 was $11,264,646 l$, and the value of her trade $77,822,042 l$. An area of $3,480,297$ acres had been brought under cultivation, and the live stock, almost wholly supported by the natural pasturage of the country, included $52,000,000$ sheep, 6,389,000 horned cattle, 835393 horses, and 549,808 pigs. There had been constructed 1,666 mules of rallway, 21,616 mules of telegraph, and many large public works for the improvement of the country

Of the estimated area of Australia ($3,000,000$ square mules), New South Proportion of Wales includes 323,437 square miles or less than one-tenth of the entire area of Colony surface Its eastern boundary, extending from Cape Horn, in $37^{\circ} 28^{\prime}$ to of the Continent Point Danger in $28^{\circ} 10^{\prime}$ south latitude, is washed by the Pacific Ocean. Boundaries Queensland bounds the colony on the north, South Australaa on the west, and Victoria on the south-west The coast line is formed of rugged promontarnes, rounded bays, and precipitous cliffs of sandstone The indentations are nowhere strongly marked, but there are numerous capacious harbours for Harbours shipping, some of them almost unrivalled for their facility of access, their great extent, natural beauty, and perfect safety Of these Port Jackson, on whose shore the City of Sydney has been built, is pre-eminent, and that of Nencastle at the mouth of the Hunter River is as well known by reason of its large coal trade in the southern hemsphere as as Nerr castle-upon-Tyne in the northern Among other commodious havens for shipping, Twofold Bay and Jervis Bay to the south of Sydney may be named, and to the north of it are Broken Bay, Port Stephens, Tail Bay, the estuaries of the Clarence, the Ruchmond, the Manming, and other rivers Sand bars occur near the entrances to most of the rivers, but the umpediments which exist to navigation are such as may be removed by the construction of breakwaters, and by the employment of dredgers whenever the exigencies of the local trade shall justufy the carrying out of such improvements
A chain of mountans, commonly described as the Main Dividing Range, Mountan runs almost parallel with the coast-distunt from it in some places not more chams than 25 mules, while in others it recedes about 120 miles Its peaks attan their highest altitude (7,000 feet) in the south, but the general elevation above the sea level is not more than from 2,000 to 3,000 feet These mountans determine the watershed of the country They intercept in great measure the ran clouds which drift from the south and east, and hence it is that the ranfall on the eastern slope averages from 50 to 60 inches per annum, while to the west of the Man Range it 18 uncertaun, and ofien does not exceed 20 noches The streams flowng eastward are comparatively small, and as they have but little fall, the adjacent valleys are subject to inundation in times of beavy rain The Hawkesbury, the Clarence, and the Richmond are navigable Rivers for a distance of 50 miles and upwards, but not for ships of heavy tonnage. Tracts of country, more particular of the district of Illawarra, and along the Products. banks of the northern rivers, were densely covered with forests of cedar and other woods of great economic value, whule climbing vines, arborescent ferns, and stately palms also occurred in tropical luxuriance.

Ship bulding is carried on at the mouths of some of the nvers Upon a large portion of the cleared lands lying between the mountains and the ocean maze, wheat, lucerne, and the sugar cane are cultirated, while the orange and the grape vine, the apple, peach, nectarine, plum, almond, banana, in nearly all therr rarietes, and many other edible fruits are grown in the ricimty of the towns, and reward the labour of the hortculturist with abundant crops A considerable portion of the mountan country offers a tempting field for mining explorations. The rugged grandeur of much of it cannot fall to inspire feelings of admuration and even awe in the mind of the spectator, but its barrenness and comparative maccessibulity forbid the approach of the agricultural settler. There are, however, very extensive tracts of fertue soll upon the table land, and immediately to the west of it. The districts in which are situate Tumut, Young, Orange, Mudgee, Tamworth, and Armidale, are probably destined to become thickly peopled centres of farming industry. Wheat, oats, barley, and other cereals flourish in these regions; leaving the mountain heights and going westward, the forests give place to thiniy-timbered country and treeless planns. This whe territory is watered chiefly by the Murray, the Murrumbidgee, the Lachlan, and the Darlung rivers The Murray is nav yable for several hundred miles by steamers of very light draught of water, and during portions of the year they can run eastward up the Murrumbidgee as far as Wagga Wagga, and in a north-easterly durection up to the Darling as far as Bourke. The country towards the extreme west of the colony becomes very arid, the result of a dmmoshing rainfall and excessire eraporation. Nearly the whole of this terntory, however, is now stocked with sheep and cattle which fatten upon the nutritive properties of the saline herbage, eren after the grass has been burnt up by the parching heat of summer. The mean temperature of Sydney, which is centrally situated on the coast, $1563 \cdot 4$, the ranation in the annual temperature being only from 598 to 643 , a difference of $4 \cdot 5$, as compared with $8 \cdot(1 \mathrm{~nL}$ London; and the extreme range of the shade thermometer at Sydnev is from 1066 to 360 , or 706 , while in

Clumate.

Propartion

Population.

Density of population, London it is from $97 \cdot 0$ to $5 \cdot 0$, a dufference of 920 . The clumate of Sydney resembles very nearly that of Lisbon or Naples, the extremes of heat and cold beng 5° less at Sydney than at Naples. It is thought that the equable temperature which prevals along the coast region of New South Wales is partly owng to the influence of the warm ocean current which flows in a southerly direction, parallel mith the coast, and at a distance of four or fire mules from it. The number of days on which rain falls at different places along the eastern slope averages from 100 to 150 m the year.
The proportion of persons of Bntish or foreign orgin born in the colony was 61 per cent. of the total population.
The population of New South Wales at the close of 1875 was estimated at 606,652. The last census was taken in the year 1871, when the population was 503,981 , of whom more than 96 per cent. were born in Great Britam or in the colones, of British parents. The mequality of the sexes, which is apt to exist in all newly-settled countries, is every year becoming less observable in New South Wales The males at the last census were 975,551 , and the females 228,430 Of the total population $41 \cdot 71$ per cent were under the age of fifteen, $56 \cdot 17$ per cent were between the ages of 15 and 65 years, which ages are thought to correspond π ith 20 and 60 respectively in the United Kingdom; and $2 \cdot 12$ per cent. were older than sutts-fire. It will thus be seen that out of every 10,000 persons comprising the population at the date of the last census, 5,620 would be classed as producers, and 4,300 as noneffective. With the growth of the communty, and the ncrease of famly life, it is found that the proportion of non-effectues, a class largely consisting of infants, increases; and that the relative proportions of these classes more nearly resemble those of England than was the case a few jears ago. Were New South Wales to become as densely peopled as England is, the colony would contan upwards of $100,000,000$ mhabitants There is a strong tendency in the population to concentrate upon towns, more so than is the case in older countries. In 1871 the mhabitants of towns and vullages numbered 234,162 , and of the rural districts 267,417 , while of the total population it was found that 134,736, or 2673 per cent were resident in Sydney and its suburbs. The average density of the population in the settled districts was $9 \cdot 37$ persons to the square mule Including the whole
area of occupred country it was only $1 \cdot 64$, while in the county of Cumberland the returns show an average of 10539 to the square mule The number of dwelling-houses was 93,690 , the proportion of occupants being 511 to each. In England the summer months are most prohfic in births, and the winter Rate of months most fatal to life, but in New South Wales the greatest number of mortailty burths occur in the wniter, and of deaths in the summer quarter of the year The ratio of marriages in 1874 to every one thousand persons living was 760 , of burths 3887 , and of deaths 1516 The deaths of chlldren under five years of age amounted to 4385 per cent of the total mortaity. The educational returns of the last census showed that 7033 per cent of the population could read and write, that 1294 per cent could read only, and that $16^{\circ} 73$ per cent. were wholly lliterate

Much of the progress of New South Wales is due to the sutability of the Sheep breeding climate for the production of fine wool, and the pastoral industry still contributes more largely to the support of manufactures and the extension of commerce than any other The narrow tract lyng between the sea and the mountanns 13 better adapted for depasturng long coarse woolled sheep, and there the Lincoln, Leicester, and Cotswold breeds are found The table Breeds lands and western plangs are almost wholly stocked with Merinos, descended from the focks of Germany, France, and Span The process of acclumatisation has modified the type of the Spanush Merino There has been a decided Modfication of gain in the softuess of the wool and an mprovement in tis elasticity, but, Merno breed. while it has increased in length, it has dmminshed in density, so that the weight of the flecee remanns about the same. The ncrease of the Merno sheep has been great and contunuous; and, having much varety of soll and climate, New South Wales can produce in perfection all the dufferent kunds of wool which manufacturers may requre-from the very finest elothing sutable for broadcloths to the silky lustrous combing wool now in demand for the production of merinos, delanes, and other delcate fabrics Nearly one half the total number of sheep in Australa are depastured within the Proportion of limits of New South Wales, and, estimating the average welght of washed sheep in colony. wool at 3 lbs per fleece, the chp of New South Wales flocks for 1876 would amount to $73,147,608 \mathrm{lbs}$ Sixty-three samples of fine wool and one sample of Angora goat's harr were shown in the New South Wales Court at the Exhibition The former were classified in their order of fineness of staple, the earher numbers being from sheep bred in the western slopes of the Man Dwiding Range, and the latter from sheep fed upon the more succulent herbage of the interior plans, showng the deeper growth and stronger staple which those pastures tend to produce The lumit of possible production has not yet been reached The merease has been threefold during the last decide, and an experienced pastoralist estimates that with favourable seasons and a continuance of remunerative prices for wool in the English market, the flocks of New South Wales ten years hence will reach an aggregate of from forty to fifty milhons Official returns of live stock show that on the 3 1st of March Offial returns. 1876 there were 357,696 horses, $3,134,086$ horned cattle, and $24,382,536$ sheep The Customs returns for 1874 state that the exports of the princepal pastoral products-wool, live stock, preserved meats, hides, and leatheramounted in value to upwards of $6,200,000 \mathrm{l}$

Among the vegetabie products and manufactures exhbibted were wheat and Veeetable proflour, maize and maizena, arrowroot, farm seeds, wne, sugar, oranges, and ducts preserved fruts All the dufferent branches of husbandry followed in Europe may be carried on under equally favourable conditions in New South Wales, and some paits of the colony are fitted for the growth of semi-tropical products Snow is of rare occurrence excepting in the Southern Alps and occasionally upon the mountan plateaux; and, viewing the colony as a whole, there are few localities in which it is absolutely necessary that hive stock should be housed, or that special provision should be made to feed them duung the winter months One of the chief hindrances to agriculture has lan in the Difficulthes of cost of tansporting produce from lands in the interior to the seaboard Rail- trausport wavs have now been made to the verge of districts considered most sutable for the growth of cereals, and it may be expected, therefore, that additional mpetus will be given to the cultivation of the soll The average production of wheat $1 s$ about twenty bushels to the acre, and of maze about thirty busbels, 60 lbs to 64 lbs per bushel are not unusual weights for wheat, and

Kauze.
from 60 lbs . to 66 lbs for mazze. As the roots of large trees are suffered to remain in the ground, the yeld per acre over a large area of only partly cleared land must be proportionately less than in older countres where the whole arable surface is brought under tillage. In exceptronally fertule solls 120 bushels of maize have been obtamed as a first crop, and with good farming an arerage of 60 bushels per acre can be secured in first class solls. The cultivation of the sugar cane $2 s$ comparatively a new industry. It has been entered upon on the northern rivers; and on the Clarence one company has established three mills having an aggregate manufacturnng capacity of seren thousand tons durng the season. The produce of the crop for 1875 amounted to $15,355,648 \mathrm{lbs}$. Cotton has been grown, but has not proved remunerative, and while a large extent of country is suitable for the growth of tobacco, the manufacture of the home-grown leaf is not sufficiently nell understood to enable the agriculturst to supersede the mportation of foreign grown leaf, which brings the highest prices in the Australian markets. There is scarcely a district in which the grape vine does not flourish, and there is reason to suppose that the production of wine will become one of the great undustries of the country Dr Lindemann remarks.-
"The soll and clumate of many parts of New Sonth Wales are emmently " adapted to viticulture; from the Murray in the south to the Clarence in the " north there are ferr places where the vine will not flourish, yielding wnnes in " great rariety and of rare quality Many of the wnes grown on the Murray
"are rich and alcoholic, surpassing in these qualities the wines of Portagal;
" while others with therr soft luscous fulness and delcate flavour rival the first
" growths of the far-famed Constantia Agan, the wnes grown upon the
" Hunter and more northern rivers are hght, dry, and fragrant, bearng close " resemblance to the sauternes, clarets, and burgundies of France. And there
"can be little doubt that the produce of the vine in the not very distant future
" will become a raluable export"
The qualhty of the manufacture has steadly improved. The produce for 1875 was 684,258 gallons, and the total produce of the vineyards would include about 2,000 gallons of brandy, and upwards of 1,000 tons of frutt for home consumption and export to the adjounng colones. The value of oranges exported exceeds 50,0001 per annum, and there is a large extent of country in which the cultivation of the citron has been most successful. The export of maize in 1874 exceeded one million bushels, and of wheat and flour the balance of mports over exports was of the value of 186,532l. The extent of land under cultration on the 31st of March 1875 was 464,958 acres, and the extent enclosed (exclusive of pastural holdngss), but not cultwated, was 6,098,988 acres.
Two very excellent samples of sllk cocoons were shown. Many varnethes of the sulkworm have been acclumatised, and the alanthus and mulberry trees hare become general. The experience which has been gamed mindicates that the colony possesses every climatic advantage requisite for the production of silk Sericulture, however, cannot yet be said to exist as a colomal industry
The geological survey of New South Wales has only recently been commenced, and it is not possible, therefore, to estimate otherwse than approximately the extent and value of her mineral deposits. Coal was the first mineral to attract attention. The approximate area of the carbonferous strata is estmated at 24,840 square miles. The prncipal coal beds exist along the coast to the north and south of Sydney The mines first opened are situate in the immedrate vicminty of Newcastle, and it is from these that the colony obtains its largest supply The coal les near the surface, and the greatest depth to which shafts have yet been sunk is less than 250 feet In many districts the coal crops out on the face of the hills, and can be cheapls got by drung tunnels The cost of mming is from 3 s to $5 \mathrm{~s} 6 d$. per ton. The coal shipping faclities at Newcastle are by staths and steam cranes whose total loading capabilities hare been increased to 12,300 tons per dem. Experiments with the New South Wales coal at the Royal Arsenal, Woolmich in 1858 and 1859 show that for steam purposes it was only seven per cent. inferior to the best Welsh coal; and that, as regards the manufacture of gas, it produces upwards of 9,000 feet per ton with an ulluminating power twenty-four per cent. greater than the Englsh varety knomn at Whitworth The Government Director of the Indian Ralway Companies in
his report to the Secretary of State for India (1868-9) refers to the quality of Australian coal He says "It has been tried on some of the lines of "Western India and has been well reported on, the experience of the "Locomotive Superintendent of the Scinde Company is that 'it is equal to " "Welsh coal in all respects, its evaporation power is nearly equal to Welsh " 'coal, and the consumption per mule is less' The price hitherto has been "under that of Englash Welsh coal" The Government Exammer of Coal Fields (Sir John Mackenze, F G S) estmates that one seam of coal, after allowing one-thurd for loss and waste in getting, will yield 84,208,298,667 tons. It has been ascertanned by the Rev W B. Clarke and the exammer of Approximate coal fields that there are in the upper coal measures at least sixteen seams of extent coal, each more than three feet thick One seam, described by the late Mr W. Keene, the outcrop of which is near Stroud, is more than tharty feet thick, as tested by'several trial pits sunk on the dip side, and another, recently examined by Archibald Liversidge, Esquure, Professor of Geology in the University of Sydney, the outcrop of which is near Wallerawang, is seventeen feet six mehes thick The principal seam from which coal is now being obtained is from eight to ten feet thick, the coal being free burning and bituminous, suitable for house use, steam, smelting, gas, and blacksmaths' purposes Mr R W Moody, a mining enguneer, gives the following description of coal land on the south-eastern coast. "The five seams of coal "contaned in this six hundred acres will yield $31,250,000$ tons of coal, which " will supply a vend of one thousand tons a day for over one hundred years, "" and this is independent of the exceedingly rich bed of kerosene oul shale, "which is sufficient to yeeld 2,000 gallons of refined oul per week, for over "s seventy-two years The position of all the seams is so favourably situated, "that the coul from each can be got by tunnelling moto the mountan range, " and conveyed to the proposed ralway terminus below, by self-acting inm. "clined planes." Writing of the upper coal measures in the westenn distruct, the Government Geologist (C S. Wulkinson, Esq, F G S) says
"They are 480 feet thick, resting conformably on the marne beds of the
" lower coal measures, and overlaid by more than 500 feet of Hawkesloury " sandstone Eleven seams of coal have been counted in them The " lowest, wheh is ten feet thick, hes about twenty-five feet above the " marine beds, and is the same searm worked by the Bowenfels, Eskbanh, "Lithgow Valley and Vale of Clwydd colleries This seam of coal crops " out on the surface on the rallway hne near Bowenfels. It dips at a low " angle of three to five degrees to the north-east, and is, therefore, easily " worked, and as it passes under the vast extent of mountain ranges to " the north and east, at wnll be nexhaustbble for generations to come" The production of coal has moreased very rapidly of late years, In 1833," 323 tons were rased, and in 1874, $1,304,567$ tons, the value of the last-named year's production being 786,1522 Nearl 900,000 tons were exported to the Lippont other Australaan colomes and New Zealand, to China, Japan, and Indıa, Mauritus, New Caledonia, and San Francisco Several seams of cannel coal have been found, and the produce of two of them is retorted for the manufacture of kerosene oul Theur thickness vares from two to five feet The Hartley shale yields 160 gallons of crude oll or 18,000 cubic feet of gas per ton, with an illuminating power equal to forty candles The total production of coal to December 31, 1874 was $12,387,279$ tons, of the value of $6,655,3281$, and of petroleum oll shale 96,141 tons, of the value of 261,414 Sections of the coal seams worked in the northern, western, southern, and Hunter Rivei coal fields were exhibited, and also samples from several of the seams of petroleum oll coal

The weight of gold obtamed to the end of 1874 was $8,205,2320 \% s$, of the Gold value of $30,536,246$ Except in some few localities quartz veins have not been worked to a great depth, and the aurferous resources of the colony have scarcely been touched Alluval lands have, in some instances, been worked to a depth of 200 feet, and there are the strongest indications of deep beds in various parts where no attempt has been made to work them Gold mining, as hitherto carned on, has been princrpally confined to the working of riser beds and shallow alluvial claims Extensive areas of country are known to te aunferous, and there is still ample scope for the remunerative employment of a large population in both alluvial and quartz minmg The
indifferent success which has often attended the working of quartz veins is largely attributable to 11 -judged speculation, mexperience, and the absence of proper ore-separating and other mining applances. The Rev. W B Clarke, referring to a recent visit to the western district, says that he "passed ove: " many miles of country in which the rocks that belong to a golden area yet "remann in their orignal condition, and will so remann until some fortunate "adventurer stumbles by acendent upon a tangible encouragement" The approximate area included within the boundres of proclamed gold fields is 13,650 square mules Forty-six samples of gold from the northern, southern, and western gold fields, specimens of aurferous quartz, and a model representing the total production of gold in New South Wales were shown at the Exhibition
Tin.
existence of tin in New South Wales was known for many years, but it was nor untal 1871 that any attempt was made to turn this mineral to account as a marketable commodity The most extensive deposits of ore have been found in the northern portion of the colony, but tin has also been discovered in other districts The value of the tin obtanned in 1872 was $47,703 l$, in 1873 the value amounted to $334436 l$, and ml 1874 to $484,322 l$, the total value of the production to that date being $886,461 \mathrm{l}$ The ore has hitherto been obtamed in the beds of watercourses, and is separated from the soll by slucing In some localities extremely rich deposits of drift tin have been found in the beds of ancient streams, at a depth of from 60 to 80 feet below the surface, but it more frequently happens that the overlying soll 18 only a very few feet in thickness Valuable lodes or reefs have also been discovered and in some cases crushing machunery has been erected to extract the ore. The profits of ton mining have been greatly diminished by the reduced price of the metal consequent upon the large addtinonal supply obtaned from the Australan fields The tin bearing granites of New South Wales belong to the same geological era as those of Derwent and Cornwall Specmens were forwarded to Dr David Forbes, who, stated that they were "perfectly identical " with the stanniferous granites of Cornwall, Spain, Portugal, Boluya, Peru, "and Malacca" Warden Buchanan reports that many years will elapse before the ground now being worked will be exhausted, and says he is convinced that the tin fields open a wide scope for the employment of the - labouring classes The specimens of tin ores exhbited in the New South Wales Court were very numerous, and showed all the different forms in which the mineral has been found in the colony The approximate area of the tin fields is 6,250 square miles
There are several lodes of copper in New South Wales, but some of the richest are at present beyond the reach of ralway communcation Those which have been hitherto worked vary in thickness from one to five feet. Analyses show that they contan from seven to twenty per cent of metal, and that the copper is not unfrequently associated with gold, sllver, lead, and sulphur the production of copper has increased in value from 1,400l in 1858 to $156,626 l$ in 1873 The export of copper for the year 1874 was valued at $311,519 l$, but it probably meluded a portion of the product of South Australlan mines sent to Newcastle to be smelted
Iron. Important deposits of uron ore are found in close proxumity to coal and limestone in various parts of the colony Attempts to make rron at a profitable rate have farled It is thought, however, that the financial falure of these experiments has arisen from preventible causes, and it is expected that the demand for rron in the colony will be suppled by metal locally produced Hæmatite, magnetic, chrome, and other iron ores were shown in the mineral collection The ore found at Mittagong in the southern district contains about 66 per cent of iron Speaking of the deposits of uron ore at Wallerawang, Professor Liversidge says - "They contain two varieties of uron ore, " magnetite, or the magnetic oxide of rron, and the brown hæmatite or goethite
"-the hydrated oxide; then, in addition to these, there are deposits of the so=
"called clay band which are interstratified with the coal measures. These clay
" bands are not what are usually known as clay iron ores in England, they
" are brown hæmatites, var himonice, whale the Enghsh clay ron ores are
" ampure caibonates of ron, which seldom contan much more than thirty per
" cent of metallic rron, aganst some fifty per cent contaned by the harmatites
" A highly ferrugnous gannet accompanies the veins of magnetite, this garnet

117

" is very rich in iron, and $1 t$ will probably be found advantageous to smelt it , " wrth the other ores, not only on account of the large per-centage of metal
" which it contans, but also on account of the nncreased fluidity at would
" impart to the slag"
In view of the smallness of the population, and rts dispersion over a wide Manuracturng
area, the manufacturing activity of the people of New South Wales is neces- industry.
sarily confined to artucles which can be produced without much sub-dinsion of labour, and for which there is a large demand The first industries commenced were those which naturally arose out of the conditions of settlement, and were largely dependent upon pastoral and agricultural pursuits for the faculty and success with which they could be carred on. Manufactures of Sundry this class were the flour mills, wool washing establishments, and tanneres, with derellopments. the morease of the people and the multiplcation of dwellings there has been a corresponding development in industries connected with building, the requirements of a growing commerce have called into existence extensive engineering and ship buulding establishments, and the activity in munng has resulted in the erection of many quartz mulls for extracting gold, in the construction of smelting and hast furnaces for the reduction of tin, copper, and aron ores Manufactures of leather have attamed to a high degree of excellence, and the production of woollen goods may be expected to assume great dimensions. Richly endowed with coal and uron, "the main factors in all recent progress," New South Wales may aspire to a position of manufacu Prospects. turing preeminence in the southern hemisphere There are many skilled artuicers in the communty competent to construct locomotive engines, steam ships, and other important works which demand for their production considerable technical ablity on the part of the operatives 1 n wood and ron The principal manufactories at the close of 1874 are enumerated in offcial returns as follows -Agricultural implements 45 , tobacco 23 , home manure 10 , sugar 67 , maizena and starch 1 , woollen cloth 8 , soap and candle 31 , tanners, \&c. 104 , fellmongers 35 , salting and meat preserving 23 , boilng down 33 , woolwashing 33 , steam ditto 10 , glue 2 , distillers 49 , sugar refiners 6 , breweries 31 , contectionery 42 , spice works 7, jam 3 , ginger beer, aerated waters, vinegar, ink, blacking, \&e 99, brick 282, dran pipes 8 , lime 104, pottery 13, the works 11 , steam saw mills, 140 , maclune manufactories, brass, lead, yron, and tin works 76 , type foundries 2 , account book 12 , basket 3 , bone charcoal 1 , bedding 3 , boot 50 , brush 1 , steam cabinet works 1 , chemical 1 , clothing 17 , coach and waggon 99 , comb 1, fire-works 1 , gas 10 , glass 3 , hat 12 , ce 4 , mast and block 2, metallic paint 1, organ 1, paper 1, rope 6 , rallway carrage 3 , salt 1, ship and boat 103, smeling fron 5, surgical instruments 1 , whe 1 , window bind ! There has been a fourfold increase in manufacturng industry during the last ten years, while the augmentation of the population of the colony has been less than one half
Sydney, the capital of New South Wales, 18 favourably situated for external Sydney, commerce, and the development of trade has been more than commensurate wth the increase of the people In 1850, with a population of 265,503 , the Its population. total ralue of the umport and export trade of the colony was 4,477,918l, while in 1874, a quarter of a century later, after Victoria and Queensland bad been sepaated from the parent colony, the population had mereased to 584,278 , and the total trade to $23,639,342 l$, being equal to $40 l .9 s 2 d$ per head The Trade mports for 1874 (the latest year in respect of which the compler of this report has access to official Custome returns) were 11,293,739l, or at the rate of $19 l$ 15s $114 d$ per head of the estimated population at the middle of the year, and the exports $12,345,603 l$, at the rate of $21 l 12 s 9 \frac{3}{4} d$ per head The $1 \mathrm{~m}-$ ports of the last decenmal period amounted to $87,229,173 l$, and the exports to 8,2 20,3581 The aggregate real value of the trade was thus $165,499,531 l$, but, large as these figures are in comparison with the population, they do not express the total value of the commerce of New South Wales, especially of her exports, for during three of the years included in the decenmal period no record was kept of the overland export trade to Victoria, the value of which, during the portion of 1874 for which the acount was kept, amounted to nearly three millons stering of the total trade of the ten years ending 1874, which in round numbers may be set down at one hundred and sixty-five and a half wullion pounds sterlung, $151,906,364 l$ is the value of the commodities exchanged between New' South Wales on the one hand, and the United

Kingdom, the Australian colonies, and other Britsh dependencies on the other During that period, the eolony purchased goods from Great Britan to the value of $36,317,9601$, and she supplied the manufacturers of the parent country with wool and other commodities, amounting in value to $40,534,6041$. The total recorded value of artecles, the produce or manufacture of New South Wales, exported durng the decennal period was $56,047,961 l$ The actual value was considerably more, but from the incompleteness of the Customs records already referred to, it is not easily ascertaned
The martime interests of New South Wales, as indicated by the tonnage of the ships built and owned by her merchants, is greater than that of any other Australian colony The tonnage of ships bult to the end of 1874 was 82,294 , and of ships registered 101,008 Of the vessels owned in the colony 131 are propelled by steam. The number of ships whech-entered the ports of Ners South Wales in 1874 was 2,217 , of the aggregate tonnage of $1,016,369$, the outward bound ships numbering 2,168, and having a total tonnage of 974,525
Much of the internal commerce of the country converges upon the three principal lines of rallway, which have been constructed by the government and are managed under their direction. The northern line starts from Newcastle and runs through the adjacent coal fields, and up the fertile valley of the Hunter to Murrurundt The traffic of the western and southern centres upon bydney. Divergng at Parramatta, they are each taken across the Nepean by stone naducts of colossal proportions; and whle the western road runs over the mountan range which at ascends near Penrith, and descends near Bowenfels by massive and ingenious engineering works, the southern intersects the dividing range through a steep pass near Mittagong Each of these roads passes through country abounding in rron, coal, and other minerals, and in some portions of ther course through extensive tracts of land well adapted for fruit growng and general farming purposes Bathurst and Goulburn are the principal towns in the western and southern interior, and they are situated on the verge of valuable pastoral and agrecultural country By the end of 1876 the northern line wall have been completed to Quirndi (148 miles), the western to Blaney (175 miles), and the southern to Murrimburrah (230 miles), making the total length of the rallways opened for traffic 553 mules. Contracts for additional lengths have been taken, and it is the policy of the government to extend theur railways as fast as the difficulty of obtannng labour will permit them to do, untl the lines reach the northern, western, and south-restern houndaries of the colony The average number of mules of rallway open durng traffic in 1874 was 398 , the number of passengers carried was $1,539,044$, and the tonnage of merchandise $1,076,068$.
The electric telegraphs of the colony were also constructed by the govern- ment, and are managed by them. Every township of any trading importance has the advantage of telegraphic communcation with the rest of the world, and there are also severat stations on the coast used in connexion with the system of storm signals and for other mantime purposes The cost of sending a telegram of ten words between any two places in the colony, however iemote from each other they may be, is one shilling There have been more than 8,000 mules of line constructed, and the number of telegrams forwarded from the 137 stations open in 1875 was 719,145 Telegraphic communcation with the various towns in the other Australian colonies 18 equally avalable, and almost equally cheap The line constructed through the centre of the continent to Port Darwin by the government of South Australa affords the means of communication with India and Europe, and the governments of New South Wales and New Zealand have, by the payment of annaal subsidies procured the laying of a submarine cable connecting the two colonies which has been in successful operation during a large part of 1876.
Postal facinties are still more widely extended. In 1875 there were 752 post offices, the mileage travelled by the postal conveyances was $3,787,557$, over routes having an aggregate length of 17,670 miles The postage on duland letters is $2 d$ the $\frac{\stackrel{i}{2}}{2}$ oz, and newspapers are carried without charge The number of letters carined durng 1875 was $13,717,900$, of newspapers $6,262,000$, and of packets 357,000 Three separate lines of manl steamships establish regular and frequent communication with the Unted Kingdom, the service by the way of San Francisco being subsidised by the governments of New South Wales and New Zealand, that vấ Torres Stuats by Queensland, and that tuà Galle by Victoria
-
There were ten banking compames carzying on business in New South Bauks. Wales during the last quarter of 1874 Theur total habilitiss were $13,206,3591$, and their assets $17,030,320 l$ Their labilities were, notes in curculation, $1,053,1081$; bills in curculation, $36,792 l$.; balances due to other banks, 231,499l, and deposits, $11,884,957 l$ Theur assets were, coin, $2,351,693 l$, bulhon, $255,960 l$, landed property, 324,7716 , notes and blls of other banks, 45,453l; balances due from other banks, 3,367,791l.; notes and bills discounted, and all other debts due, $10,685,250 l$ 'Kheur paid-up capital amounted to 7,894,656l, the amount of theur dividends for the year, 485,719l, and of therr reserved profits at the trme of declaring such dividends, $2,346,730 l$ The amounts at the credrt of 37,606 persons in the savings banks of the colony on the 31st of December 1874 was $1,579,0151$, or at the rate of nearly $42 t$ to each depositor The amount of com and bullion held by the banks and the mint on the 31 st of December 1874 was $2,522,533 l$, and the total amount, conned at the Sydney Branch of the Royal Mint at that date was $35,857,000 l$.

The 'wages of carpenters, smaths, wheelwnghts, bricklayers, masons, and Rates of wages. most other skilled workmen has durng the last ten years ranged from 8s. to lids per diem of eight hours For farm labourers 301 to $35 l$ a year with board and lodging is the average wage, and the earnings of domestic servants vary from $26 l$ to $40 l$ The average prices of the following commodities during the Price of comyeat $18 / 4$ were, wheat, $5 s 6 d$ to $6 s 6 d$ per bushel ; bread (first quality), $1 \frac{1}{4} d$ modtues to $2 d$ per lb ; flour (first quality), $1 \frac{1}{2} d$ to $1 \frac{3}{4} d$ per lb ; rice, $2 \frac{3}{4} d$. to, 3 d . per lb , teea, $1 s 2 d$ to $2 s 6 d$ per lb ; sugar, $3 \frac{1}{2} d$ to $4 \frac{1}{2} d$ per 1 lb ; fresh meat, $3 \frac{1}{2} d$ to $4 \frac{4}{4} d$ per 1 lb ; fresh butter, $1 \mathrm{~s} 7 d$ per lb , cheese, $6 d$ per lb ; potatoes, $4 s$ to $5 s 6 d$ per ewt, coap, $2 \frac{3}{1} d$ per 1 lb These are the prices for Sydney. Of the whole colony it may be affirmed that work is easily to be obtaned, that wages are generally high, and that the cost of living is almost unformly cheap

The forms of muncupal a and parliamentary government have been modelled covernment on those of England, and it is the arm of colonial statesmen to keep representative government in New South Wales in harmony with the spirit as well as the procedure of the House of Commons Justice is impartially administered throughout the colony, and public schools, chiefly supported by parlamentary appropriations, are also general In the ahenation of the waste lands Land laws it has been the policy of Parliament to facilitate the acquisition of homesteads by persons of small means who desire to occupy the sonl for agncultural or mining purposes, land not so required being left in the occupation of the pastoral settler at a nominal rental The total area of land alienated prior to 1874 was less than twenty million acres, leaving upwards of $180,000,000$ acres which may still be purchased, excepting such portions as have been reserved for the preservation of timber and other public uses The upset price of land is 18 per acre, and that also is its absolute price when taken up for agricultural For agricultural operations under conditional purchase It is competent for any person over operations sixteen years of age to select any unsold and unreserved government land, either before or after survey, in a block of not less than forty acres nor more than 640 acres, upon the payment of $5 s$ per acre, the balance of the purchase money to be paid at the expration of three years in mstaiments of not less than ls per acre per annum, these instalments being a liquidation of the interest at five per cent as well as in payment of the principal sum The land is sold under conditions of residence and mprovement by the purchaser. Mineral lands may be leased from the government at the annual rental of $5 s$ For mineral per acre, for a term of 20 years, renewable at the option of the lessee, or they lands may be bought at $2 l$ per acre, the purchaser covenanting to spend a luke amount in mprovements within three years The revenue of the colony for Revenue. the year 1874 amounted to $3,509,9661$, the rate per head of taxation being \mathfrak{g} Is $8 d$ The principal sources of revenue were the customs, which yrelded $951,233 l$, the sale, rent, and interest of land $1,426,166 l$, and raulway and postal recelpts 635,7221 . The Customs tarff consists wholly of specific duties levied Customs tariff. upon 55 articles, and New South Wales umposes less restrictions upon trade than exist under the fiscal system of any other Australian colony The public Publiedebt. debt amounted to $10,516,371 l$ on the 31st December 1874, being at the rate of $1 ; 119 s 11 d$ per head of the population This indebtedness was incurred for the construction of railways, electric telegraphs, breakwaters, and other public improvements Of these the ralways and the telegraphs are largely reproductive,

Concluding remarks
and it is expected that they will eventually return a profit upon the capital borrowed for their construction
Subjomed is an enumeration of the principal articles forwarded to the International Exhibition. The Commissioners are aware that the difficulties attending a complete representation of the products of the soil and mine, and of the arts and industries of New South Wales were not fully overcome in the display which was made on the part of the colony in the International Exhibition which has just been closed. While untoward circumstances, other than those inseparable from the transportation of goods for a distance of twelve thousand mules by a route which anvolved five transhapments, combined to prevent the full realisation of their aims, still they feel that the liberality of Parhament and the pubhe spurit of nodividual exhibitors enabled them to present in a suitable maaner a view of the great wealth of the country in coal, uron, tin, copper, gold, and other maneral products, to show the capahility of its pasture for the production of fine wool; and to exhabit the fertulity of its sonl and the great range of its clumate as exemplified by the unequalled collection of forest woods, the samples of fruit, wheat, maize, wine, sugar, and other products of temperate and semi-tropical zones. They are very sensible of the appreciation and interest manifested by visitors to the Exhibition, and by none more than by the American people, in the progress of Australian colonisation, and they have not been unobservant of the material advantages which may spring from the more intimate relations into which the United States and Australıa have been brought They have, however, desıred especial gratification from the association of New South Wales with the other dependencies of Great Britam which have co-operated with the parent country at the celebration of the one bundreth anniversary of American Independence; and they trust that the unity which has exasted at this representative gathering of the nations will be influential in intensifying those sentiments of loyalty and affection which happly exast between the United Kingdom and her colomes, and in binding together in enduring concord all the widely separated portions of the empure.

Chárles Robinson, Secretary.

Catalogue of the Principal Exhibits sent by the Commissioners for New Sodth Wales to the Internätional Exhibition, Philadelphia, 1876.
 P signties Award for Exhıbut
 ('The Government of New South Wales received an award for Collective Exhibit)

(The Commissioners for New South Wales received also two awards for barks and woods from trees indigenous to the Colony:)

MINERALS, ORES, BUILDING STONES, AND MINING PRODUCTS Clabs 100
PCollection of Ores and Associated Minerals, illustrative of the Mineral Resources of New South Wales Exhibited by Department of Mines, Sydney [For gold and copper ores]

Carbonates and sulphide of copper Three Male Flat, near Wellington. Assay 1315 per cent. copper
Carhonate of copper (auriferous) 13 miles north-east of Wellington
Carbonates of copper Gordon Brook, Clarence Raver,
Copper ıngot Goodnch Copper Mine
Red oxide and carbonate of copper Mount Hope, Lower Lachlan.
Sulphide of copper. Wellbank, 4 mules south of Wellington Assay, 1339 per cent copper.
Sulphide of copper Wellbank, 4 mules south of Wellington Assay, 1339 per cent copper
Carbonate of copper Mitchell's Creek Δ ssay, 1257 per cent copper, gold equal to 1 oz $2 d \mathrm{dwt} 20 \mathrm{grs}$ per ton
Native copper and red oxide 10 miles north of Wellugton Assay, 876 per cent copper
Sulphide of copper Hurley and Wearne's Copper Mine, Wellington District
Sulphide of copper Hurley and Wearne's Copper Mune, Wellington District. Sulphide of copper Goodrich Copper Mine, Wellington Distruct
Carbonate and sulphides of copper Cadumble Range, 4 mles west of Newrea Assay, 198 per cent copper
Carbouate of copper. Mitchell's Creek Assay, 948 per cent copper, gold

- equal to 402 s 10 dwts 8 grs per ton
 equal to 140 ozs 10 dwts 6 grs per ton
Native copper, red oxide, and carbonate of copper Wellington.
Carbonates of copper Goodrich Copper Mine, Wellington District
Sulphides of copper, at depth of 88 feet 10 miles north of Wellungton.
Red oxide and carbonate of copper Cadumble Range, county of Gordon
Red oxude of copper Belara Copper Mine, 20 miles from Gulgong Assay, 39 per cent copper
Sulphide and carbonate of copper Jones' Mount, Tuéna
Red oxide of copper (ferruginous) Belara Copper Mine, 20 mules from Gulgong Assay, 30 per cent copper
Carbonate of copper Bobby Whitlow Copper Mine, Bingera
Carbonate of copper, at depth of 87 feet Belara Copper Mune, 20 miles from Gulgong
Red oxxde of copper Bobby Whutlow Copper Mine, Bingera. Assay, 1994 per cent of copper
Black oxide and sulphide of copper Bobby Whitlow Copper Mine, Bingera,
Red oxide and carbonate of copper Bobby Whitlow Copper Mine, Bingera
Native copper and red oxide, at depth of 40 feet Peabody Copper Mine, county of Ashburnham
Sulphide of copper Narragal, county of Gordon
Carbonate and sulphide of copper Hurly and Wearne's Copper Mine, Wellungton District
Native copper Hurley and Wearne's Copper Mine, Wellington District
Sulphide and red oxide of copper Belana Copper Mhae, 20 miles from Gulgong. As ay, 404 per cent copper
Metallic Copper Lxtracted by Hunt and Douglass new process, from copper ore, from the Goodrich Copper Mine
Natue copper Bulara Copper Mine, 20 miles from Gulgong

Carbonate and sulphide of copper Belara Copper Mine, 20 moles from Gulgong. Assay, 25 per cent copper.
Black oxide of copper. Belara Copper Mine, 20 miles from Gulgong. Assay, 40 per cent copper
Sulphide of copper Near Bingera Assay, 1994 per cent conper
Red oxide and carbonate of copper Bobby Whitlow Copper Mine, Bingera.
Sulphide and carbonate of copper Bobby Whitley Copper Mine, Bingera
Red oxide and carbonate of copper. Great Western Copper Mine, Milburn Creek, near Bathurst
Red oxide and carbonate of copper Frog's Hole, parish of Bala
Sulphide of copper Frog's Hole, parish of Bala
Sulphide of copper. Solferino
Carbonates of copper Cow Flat Copper Mine, near Bathurst
Sulphides of copper, with galena Cow Flat Copper Mine, near Bathurst
Carbonates of copper Frog's Hole, pansh of Bala
Sulphude of copper Cow Flat Copper Mine, near Bathurst.
Red oxide and carbonate of copper Great Western Copper Mine, Milburn Creek, near Bathurst
Sulphides of copper Milburn Creek Copper Mining Company, near Bathurst
Sulphide of copper, with galena Wiseman's Creek, near Bathurst 'Assay, 1130 per cent copper
Sulphide of copper, with galena Wiseman's Creek, near Bathurst. Assay, 1130 per cent copper
Carbonates of copper Wiseman's Creek, near Bathurst Assay, 1672 per cent. copper.
Red oxide and carbonate of copper Cow Elat Copper Mine, near Bathurst
Red oxide and carbonate of copper Apsley Assay, 1872 per cent copper
Sulphudes of copper Cow Flat Copper Mine, near Bathurst
Sulphide of copper Between Condoblin and Parkes
Native copper, red oxide and carbonate of copper Between Condobhn and Parkes.
Sulphide of Copper Armstrong Copper Mine, near $\left\{\begin{array}{l}\text { Copper, } 18 \text { per cént }\end{array}\right.$ Bathurst

Assay - $\left\{\begin{array}{l}\text { Gold, } 7 \text { dwts peı ton. } \\ \text { Sulver, } 3 \text { ozs per }\end{array}\right.$
Red oxide and carbonates of coppel Armstrong Copper Mine, near Bathurst. Assay, 33 per cent copper
Carbonate of copper Armstrong Copper Mme, near Bathurst Assay, 287 per cent copper
Sulphide of copper Molong
Carbonates of copper Armstrong Copper Mine, near Bathust Assay, 215 per cent copper
Caibonates of coppel Wiseman's Cieek, near Bathurst
Red oxide of caibonate of copper. South Wiseman's Creek, near Bathurst Assay, 2706 per cent copper
Inouclad Reef Cargo Assay, $23 \cdot 16$ per cent copper
Carbonate of copper Copabella, Southern District
Sulphide of copper, with galena South Wiseman's Creek, near Bathurst. Assay, 2875 per ceat copper
Red oxide of copper, at depth of 30 fathoms, lode 4 feet thick Peelwood, 10 mules south of Tuena
Carbonates and red oxide of copper Apsley Assay, 2282 per cent copper
Carbonates and sulphides of copper. Apsley
Sulphides and black oxide of copper Apsley Assay, 1872 per cent copper
Carbonate of copper Armstrong Copper Mine, near Bathurst
Carbonate of copper Armstrong Copper Mine, near Bathurst Assay, 364 per cent copper
Sulphide of copper 'Armstrong Copper Mine, near Bathurst Assay, 327 per cent copper
Sulphude and black oxide of copper South Wiseman's Creek, near Bathurst
Carbonates of copper South Wiseman's Creek, near Bathurst
'Sulphide of copper Gordon Brook, Clarence River
Red oxide and carbonates of copper Wiseman's Creek, near Bathurst
Red oxide and carbonates of copper Gordon Biook, Clarence River
Sulphide of copper Jacqua Copper Mine Nerrmunga
Sulphide of copper Peelwood, 10 miles sonth of Tuena Assay, 2138 per cent copper
Red oxide and carbonates of copper, at depth of 40 fathoms Peelwood, 10 miles south of Tuena Assay, 4927 per cent copper
Carbonate of copper, at depth of 20 fathoms Peelwood, 10 mles south of Tuena

Auriferous Quartz	
$\underset{\text { Auriferoue }}{\substack{\text { duartz }}}$	
Do. from depth of 120 feet Pembrake Reef, 6 miles from	
Do With yron pyntes United Miner's Snob's Reef, near	
Do. with tron pyrites	
Do $\quad \begin{gathered}\text { mith iron pyrites Proneer Lune of Reef, depth } 240 \text { feet } \\ \text { Trunkey }\end{gathered}$	
Do	at depth of 70 feet No 4, North Garbaldx Reef, Solferno.
Do with iron pyrites 50 feet Star Reef, Solfermo	
Do with ron pyrtes 100 feet Lombardy Reef, Solfen	
Do. With rron pyrites 65 feet Laird and Bacon's Lease,	
Do	reef, 2 feet thuck, Major's Creek, near Braidwo
Do. Spa Reef, Nerrmunga	
Do	with sulpburets of ron, lead, and zane Snob's Claim, Big Hull, Major's Creek, near Braidwood
Do near Forbes.	
Gold in cleavage planes of clay slate, sandstone reef Cowarbee, Murrimbidgee Distnct	
Aurferous quartz . Prospectors' Band of Hope Reef, Solferno Do with uron pyrites Victora Reef, Adelong. Yield, 5 ozs	
Do	at depth of 50 feet Gilmandyke, 12 miles from Trunkey. Yield, 1 oz gold per ton.
Gold in brown iron ore Lucknow Gold Field, Fredernck's Valley * , ic	
Auriferons quartz, reef 1 foot thick, depth 40 feet. Loussana Re	
Do at depth of 80 feet, No 1 North Lion Reef, Solfermo.	
Do at depth of 50 feet Sonthern Cross Reef, So	
Do with uron pyrites Spring Cr	
Do	with large cubical crystals of mron pyrites, at depth of 50 feet Snob's Clam, Bag Hill, Major's Creek, near Braidwood
Do	at depth of 50 feet Mac's Reef, Gundaroo
Do at depth of 80 feet Gulgong	
Do	at depth of 30 feet Kearns, White, and party's, No 4, Sucks-all Reef, Oberon
Do	William the First Reef, Nermmunga
Do.	Prospecting Clam, Manton's Reet, Nerrimunga.
Do Eureka Clam, Nerrmunga	
Do at depth of 300 feet Trunkey Creek Quartz M	
Do	at depth of 500 feet Trunkey
Do at depth of 70 feet Arthur's Lune of Reef, Trun	
Gold in quartz Easter Gift Reef, Crow Mountains, near Barraba	
Auriferous quartz Kangaroo Reef, Nerrimunga	
Aurferous Porphyry Dy ke, 15 yards wide, at depth of 67 feet, near Forbes	
Auriferous quarta	at depth of 100 feet Old Gulgong Reef, 4 miles from
Gulgong	
Do at depth of 130 feet Welcome Reef, near Gulgong	
Tin Ores	
Stream tin Tent Mul, near Vegetable Creek	
	table Creek Thn-mining Company, O'Daly's Mine, Vegetable ek
Do Little	Britan Tin Mine, Vegetable Creek
Do Rotl	schild's Mine, Vegetable Creek
Do Boro	Creek, 'Tumbarumba
Do Veg	table Creek Tin-minng Company, O Daly's Mne, Vegetable

Stream tin	Ancient Briton Tin Mine, Middle Creek, near Inverell
Do	Speare's and Moore's Tin Mine, Vegetable Creek
Do.	Wyle Creek, New England Assay, 744 per cent tin
Do	Ram's Gully, Gulf Creek
Do	Great Britain Tin-mimng Company, Vegetable Creek
Do	P Sexton and Co, Yellow Waterholes, Vegetable Cieek.
Do	Head of Ruby Creek
Do	Glen Creek Tru mining Company, Glen Creek.
Do.	Baal Gammon Tin Mine, Vegetable Creek
Do.	Hall, Bros, and Co, Kangaroo Flat, Strathbogle Run, near Vegetable Creek
Do	Hall, Bros,, and Co, The Springs, Strathbogie Run, near Vege table Creek
Do	Main Range, between Herding Yard and Ruby Creeks
Do	Herding Yard Creek
Do	Yellow Waterholes, near Vegetable Creek
Do.	Deepsinker's Mine, Vegetable Creek
Do	M'Master's Mine, Tent Hill
Do.	Gordon's Tin Mine, Vegetable Creek
Do.	Hall, Bros, and Co, Vegetable Creek Mine, Vegetable Creek
Do.	Little Wonder Tin Mine, Vegetable Creek
Do	Victoria Tin Mine, Cope's Creek
	Hall, Bros, and Co, Grampran Hills, near Vegetable Creek
Tin ore shoad	ad stones Grampran Hills, Vegetable Creek
Stream tin	Ruby Creek, New England Assay, 76 per cent tin.
	Hogue's Creek, Dundee
	Wylie Creek, New England
Do	Oban, New England
Cassiterte Butchart	(alluvial) Deepsinker's, the Gulf, New England From Mr G H.
Stream tin	Bengonoway Tin Mine, Borah Creek, near Cope's Creek
	Britanma Tin Mine, Cope's Creek.
Cassiterite	"Toad's-eye" tin, Grenfell
Stream tin	Glen Creek
Do	Sydney Tin Mine, Middle Creek, near Inverell
Do	Pine Ridge Tin Mine, Cope's Creek, near Inverell
Do	Wearne's Tin Mine, Cope's Creek
Do.	Prde of the Ranges Tin Mine, Auburn Vale, near Inverell
Grain tin	Australian Tın Smeltrng Company, Sydney
Stream tin. Do.	Pime Ridge Tin Mine, Cope's Creek, near Inverell. near Maryland, Queensland Border
Black sand	Lady Emily Tm Mine, Cope's Creek
Stannufer ous	s wash dirt Head of Pond's Creek, near Inverell
Stream tin	Great Britan Tin Mine, Vegetable Creek
	Gulf Tin Mining Co, Gulf Creek.
Do	Glen Creek
Crystallized	tin Pyrmont Tin Smelting Works, Syduey
Stream tin	Campbell's Mine Vegetable Creek
	Range between Wyle and Bookookoorara Creeks, New England
Pebbles from	m Older Tertary Drift, Stannifer Tin Mine, Middle Creek, near
Inverell.	
Stream tin.	Bald Rock Creek.
Do	Fobert's Tin Mine, Long Gully, Cope's Creek
Lode tın F	Riley and Cohen, Tent Hill, New England
Do	Elder and Co , Graveyard Creek
Do	Glen Creek
Do	M‘Donald's Lode, Glen Creek
	Bolitho Tin Mine, near Cope's Creek
Stanniferous	s wash dirt. Britannia Tin Mine, near Inverell.
Tin ore (cas	ssiterte) in quartz Glen Creek
Lode tin, fro	om the Mole Tableland, near Tenterfeld
Lode tn, fro	om the Mole Tableland, near Tenterfleld
Tin ore (cas	essiterite) in quartz Tent Hill, Vegetable Creek.
Lode tin. M	M'Master's Lode, Tent Hill
Do	Graveyard Creek, near Vegetable Creek
Do M	Moonbah Ranges, near Snowy River, 40 miles fiom Cooma, three lodes from 1 to 2 feet wide, strike north and south
Do C	Cope's Creek, near Inverell
Do, B	Bohtho Tin Mine, Cope's Cieek.

Stanmferous wash dirt. Arden's Mine, Tent Hill
Do O'Daly's Tin Miming Co, Vegetable Creek
Do * Great Britan Tin Mining Co, Vegetable Creek.
Stream tan Britannia Mine, Cope's Creek
Lode tun Myall Creek, near Bingera
Do Thompson and Burrage's Tin Mine, Sutherland's Water, Cope's Creek.
Do. Bismarek's Mine, Cope's Creek
Do Tenterfield
Do Butchart Tin Mine, Cope's Creek.
Older Tertiary (Miocene) drift, tun-bearing Stannifer Mine, Inverell
Stannuferous wash durt Lady Emily Mine, Cope's Creek.
Do cement O'Daly's Mine, Vegetable Creek
Do wash dirt Karaula Tin Mine, near Inverell
Do cement. Rose Valley Mine, Vegetable Creek.
Lode tin Elsmore Tin Mine, New Eagland
Do Mowamba, County Wallace, Monaro District
Do Butchart Iin Mine, Cope's Creek
Do From the Mole Tableland, near Tenterfield
Do Hit-or-Miss Tin Mine, near Cope's Creek
Grain tin Pyrmont Tin Smelıng Works, Sydney
Lode tin Canning and Hution's, Sutherland's Water, Cope's Creek
Tin ore Cassiterite, with fluor-spar in quartz, Boundary Tin Mine, Cope's
Creek
Quartz crystals, enclosing erystals of cassiterite Albion Tin Mine, Cone's
Creek
Lode tin Elemore Tin Mine, New England
Do The Mole 'Tableland, near Tenterfieid.
P Tin ores Arthur Dewhurst, Tamworth

Various Minerais

-Garnetiferous schist. Washpool Creek, Solferıno
Petrified wood Castlereagh River from Mr T Brown, MLA
Asbestos Wentworth, Lacknow Gold Field, from Mr. James Jackson
Calcite Lunatic
Opal Bland, near Forbes
Opalized wood Bloomfield, near Orange, from Mr W, O'Halloran
Talcose schist Upper Silurian, near Bathurst
Dendrites in grante, near Mount Lambie, from Mr T Brown, MLA.
Schorl, from tin-bearing gramte, Cope's Creek, New England
Chalcedonic quartz Andrew and Company's lode; 30 feet from surface, Tent

Hill

Herschellite in basalt Inverell
Metamorphic slate, Silurian Sheppardtown, Adelong Creek
Grante Wagga Wagga
Gem sand Dramond District, Two-mile Flat, Mudgee
Sapphure Rocky River
Samples of drift, from Diamond Fields, Bingera
Fluor spar and quartz, with sulphides of couper, lead, rron, and molybdenum in
granite Middle Creek, New England.
Serpentine, near Barraba
Asbestos Lewis Ponds Creek, Wellington.
Epidote Old Gulgong Reef, Gulgong
Quartz crystal, from carbonferous conglomerate Coerwull, Bowenfels, from
Mr T Brown, MLA
Quartz erystals, Hill End, from Mr T Brown, M L A
Calcite Fish River Caves, from Hon J Lucas, M. L.A, Minster of Mines
Quartz and mica, Devoman grante Fish Hiver, from Mí T Brown, M L A
Carnehans Big or Castlereagh River, from Mr' T Brown, MLA
Jasper, from vein in tertuary basalt Newstead, New England
Fragment of tree, two feet in diameter, embedded in basalt, Inverell
Mica sehist Wagga Wagga
Fluor-spar in Devoman buds, Mount Larmbie.
Quartz crystals Solfermo
Petrified wood Castlereagh River, from Mr T Brown, MLA
Obsidian stones Rocky River
Tale Fish Riser, near Bathurst, from Mr T. Brown, MLA

Cinnabar 'Sulphuret of mercury Cudgegong
Grante veins, intruding Devonian beds Mount Lamble
Porphyritic trap antruding carbonferous beds Kiama

Iron Orbs

Clay band, rron ore, brown hæmatite From Upper Coal Measues, Jamberoo Clay band, aron ore, brown hæmatite From Coal Measures, Lithgow Valley Iion Company
Ironstone Below Hawkesbury Rocks, Woods' Point, Broughton Creek
Clay band, uron ore, brown hæmatite From Upper Coal Measures, Wallerawang Iron and Coal Company Analysis, 4928 to 56 per cent metallic aron
Magnetic ron Near Barraba
Chrome ron Near Barraba
Biown hæmatite Coal Range, Clarence Ruver
Concretionary uronstone Newstead, New England
Stalactitic uron ore (limonite) Lithgow Valley From Mr T Brown, MLA
Stalactitic ron ore (limonte) Lathgow Valley. From Mr. T Brown, M.L A
Titamferous iron Rocky River From Mr Cleghorn.
Micaceous and magnetic non ore Blackford's Lease, near Mount Lambie
Magnetic oxide of ron Devoman beds, Wallerawang Iron and Coal Company Analysis, $40 \cdot 89$ per cent metallic 1 ron
Brown hxmatite Devonan Beds, Wallerawang Iron and Coal Company Analysis, 3784 to 512 per cent metallic ron
Magnetic oxide of aron From Devonian Beds, Mount Lambe, Lithgow Valley, Iron Company
Brown hæmatite From Devoman Beds, Wallerawang Iron and Coal Company. Analysis, 3784 to 512 per cent metallic iron
Iron ore garnet rock From Devonian Beds, Wallerawang Iron and Coal Company Analysss, 2105 per cent. metallic ron
Magnetrte. Solferino
Brown hæmatite Devonıan Beds, Wallerawang Iron and Coal Company Analysis, 3884 to 512 per cent metallic aron.
The above-mentioned analyses were made by Professor Liversidge, University of Sydney

Auriferous Quartz, Wash Dirt, Gaeena, and Antimony

Auriferous quartz Dayspring Gold Mining Company's reef, 2 ft 6 in thick. Avelage yield. of 5,674 tons of this quartz gave 11 dwts 12 gis of gold per ton. Lachlan District
Aurfferous quartz Strickland's Reef, near Forbes Assay, 4 oz 6 dwts. 6 grs gold per ton
Aurferous wash dirt Uralla
Tertiary auriferous cement with silicate of iron. Two-mule Flat, Cudgegong River From Rev W B Clarke, MA,'FGS
Auriferous ferruginous quartz drift, with coarse gold visible From "Wapping Butcher" Lead, near Forbes
Auriferous wash dirt Home Rule Lead, Home Rule
Auriferous wash dirt. No - 24, Black Lead,-John M‘Lachlan and Party, depth 160 feet
Aurferous ferruginous quartz drift with bed-rock Jones and Party
Aurferous wash durt Prospecting Clanm, Canadian Lead, near Forbes Do Nol Desperandum Lead
Aurferous quartz Quong Tait's clam, Lady Belmore Line of Reef, Bradwood Yield, 19 oz gold per ton
Aurfferous quartz Court's 4-acre Lease, Hawknns' Hill View From Mr. James Daw
Black sand with gold, zucons, tin ore, magnetic aron, \&e Tumberumba.
Auriferous quartz Old Hill Reef, Adelong
Do
Strickland's Reef, Forbes District
Do with iron pyrites Average yield, 8 ozs gold per ton, depth 90 feet Quong Tat's claim Lady Belmore line of reef, Braidwood
Do
Bingera
Do with galena Sebastopol Reef, near Junee.

Aurferons quartz with arsemcal pyntes and galena Strickland's Reef, near Forbes Assay per ton -gold, 1 oz. $10 \mathrm{dwt} .1 \mathrm{gr}$. , salver, 1 oz .19 dwt 4 grams.
Broken aurnferoas quartz County of Clive, from Rev W B. Clarke, M.A, FGS
Auriferous quartz Depth, 45 feet Harper and Party's, No 1, South Suck's-all Reef, Oberon
Petrified wood 20 feet from surface, 5 miles from Trunkey.
Aunferous quartz. Depth, 420 feet Yeld 4 oz per ton gold" North Willaams Clam, Adelong
Auriferous quartz (burnt). Yield, 12 oz gold per ton Depth, 60 feet Quong Tat's Clam, Lady Belmore Line of Reef, Braidwood
Aurferous quartz Depth,' 30 feet From Liewis E Johnson's lease, Crudine Creek
Sulphade of antumony Solferino
Galena in quartz Major's Creek, near Braidwood
Carbonate and sulphide of lead and sulphude of copper. Solferino
Sulphide of aximony Nundle gold field.
Do
Near Gundagar
Do Near Wallerawang
Arseme Lunatic Reef
Wolfram New England
Aurferous quartz Depth, 300 feet Adelong Presented by Mr Seymour C Stewart, J P
Galena Eurongilly, Murrumbrdgee District
Aurferous quartz Junce Reef
Do Depth, 40 feet Fagan Beatach's Reef, Oberon
Do Hansen and Party's Reef, near Oberon
Do Depth, 70 feet Lambert and Davies' Clam, Oberon
Auriferous brown oxide of iron Alfred Town Reefs, near Wagga Wagga
Aurferous quartz Hill End, from Mr Hagarty.
Copper Ores
Sulphide of' copper Goodrich Copper Mining Company, county of Gordon From Mr H A Thomson
Green and blue carbonate of copper South Wiseman's Creek, near Bathurst From Capt Armstrong, RN
Sulphide of copper Ophir Copper Mine, epunty of Bathurst Assay, 27-49 per cent copper
Do Banden and Fisher's Copper Mune, Clarence District Assay, 2419 per cent copper.
Do. Cow Flat, near Bathurst
Green carbonate of copper (ferrugmous) Goodrich Copper Mine
Sulphide of copper, with galena Wiseman's Creek, near Bathurst
Sulphide of copper Wiseman's Creek, near Bathurst
Carbonate of copper Armstrong Copper Mine, Wiseman's Creek
Copper ingot Carangara Copper Mue, county of Bathurst
Sulphide and black oxide of copper Armstrong Copper Mine, near Bathurst
Sulphide of copper. Hurley and Wearne's Copper Mine, Wellington District
Carbonate of copper Armstrong Copper Mine 35 per cent copper; 4 dwts gold, 6 ozs silver, per ton
Red dxude of copper Belara Copper Mne, 20 miles from Guigong Assay; 30 per ceut copper
Sulphide of copper
Sulphide of copper Ophur Copper Mine, county of Bathurst
Carbonate of copper Goodrich Copper Mine, county of Gordon
Red oxide of copper Bobby Whatlow Copper Mine, near Bingera
Sulphide of copper Ophur Copper Mine, county of Bathurst
Sulphide of copper Cow Flat, near Bathurst

Ibon Ores

Brown hæmatite Berruma
Do Clay-band iron ore From coal measures Wallerawang Iron and Coal Company Analy61s, 4928 to 56 per cent. metalle aron.

Palecozorc Deroman

Lepidodendron nothum Range, 10 miles north of Goulbarn.
Spirfer, rhynchonella, \&c. Mt Lambie, near Rydal
Favosites Gothlandıca. Mt Lambie
Modrola, rhynchonella, \&c Mt Lambie.
Spinfer, rhynchonella, \&e. The Gulf, Turon Piver, From the Rev. W. B.
Clarke, M A F G S.
Favosites Gothlandice Wallerawang
Encrinte stems Mt Lambie
Spirfers Wolgan Valley
Modiola, rhynehonella, \&c Mt. Tambie
Encrinte stems Mt Lambie
Pecten, spirifer, and ${ }^{+}$rhynchonella Mt Lambse.
Lepidodendron nothum. Mit Lambie.
Palunozorc-Carbonyferous, Lower Coal Measures.

Otopterıs ovata	Stroud, Port Stephens.	
Knorria	Do.	do.
Otopteris ovata.	Do	do.
Do	and calamites	Stroud,
Do.	and sphenopterns	do

Knorria Stroud, Port Stephens.
Otopteris ovata. do do
Sphenopteris? do. do.
Knorria do. do.
Calamites do. do.
Fossil plant stem do do.
Undetermined do do
Lepidodendron do do
Exomphalus, strophomena, productus, orthis, corals, \&c Stroud, Port Stepheus
Spirffer, productus, \&c Stroud, Port Stephens
$\begin{array}{lll}\text { Do. euomphalus, \&ec do } & \text { do } \\ \text { Do strophomena, \&e } & \text { do. } & \text { do }\end{array}$
Strophomena do do
Sprifer, strophomeua, rhynchonella, 8 sce Stroud, Port Stephens
Productus cora. Stroud, Port Stephens.
Spirifer do do.
Euomphalus, corals, \&e. do. do.
Productus do do
Lepidodendron Northern District
Do
Brush Hull Creek, county of Brasbane
Fenestella. Northern District
Do Quarrybylong, county of Northumberland
Lepidodendron Alex Cameron's, Davis Creek, parish of Doon, county of Durham.
Retepora Parish of Doon, county of Durham.
Strophomena, spumfer, \&e Northera District
Sprifer, fenestella, productus, \&ce Quarrybylong, county of Northumberland.
Cyathophyllum Cameron's 198 acres, Rouchell Brook, parnsh of Doon, county of Durbam
Encrinte stems Parish of St Aubin, county of Durham
Encrinte stems
Chætetes radıans Singleton.
Chætetes radians Singleton
Pachydomus? Singleton
Calcareous concretion Singleton
Chztetes radans Dry Creek, near Barraba, county of Northumberiand.
Bellerophon Singleton.
Spirifer Sungleton
Notomya? Siagleton
Conulara torta Kavensfield
Do tenustriata Do
Bellerophon, spirifer, pachydomus s \&e Ravensfield
Pachydomus Ravensfield
Orthoceratite Ravensfield
Spinfer Ravensfield
Orthoceratute Ravensfield

Spirifer and produetus Ravensfield.
Pachydomus and pleurotomaria Harper's Hill.
Bellerophon Ravensfield
Pachydomus gigas and favosites. Harper's Hill.
Spirfer.
Pachydomus gagas. Harper's Hill.
Pleurotomaria Harper's Hill
Pecten and Bellerophon Ravensfield.
Pachydomus? Harper's Hill.
Spirifer. Harper's Hill.
Do 'Wollombi
Euomphalus, \&e Wollombi
Fenestella Wollombr.
Spurfer, productus, \&c Campbell's Bill.
Inoceramus Mitchellu Greta.
Pleurotomara Greta
Productus Campbell's Hill.
Conularia torta Greta
Fenestella. Campbell's Hull.
Euomphalus Greta.
Crinold stem Greta.
Spirifer. Greta
Pecten Wollongong
Bellerophon Wollongong
Spirfer Jamberoo
Do. Wollongong
Pleurotomaria. Jamberoo.
Spirfer vespertilo Wollongong.
Productus, fenestella, crinord stem. Cajolla Creek, Ulladulla
Pachydomus Jamberoo.
Spirifer. Marangaroo.
Productus, sprifer, \&ce. Malangaroo.
Productus. Marangaroo.
Spirifer verspertilio Marangaioo.
Do. productus, \&c. Marangaroo

Paleozorc-Upper Coal Measures

Glossopteris Brownana, \&e Berrma.
Vertebrarıa Australis Jamberoo
Glossopteris Browniana (various forms) Blackman's Flat, near Wallerawang. Glossopteris, \&e Wallerawang
Vertebraria Australus. Near Wallerawang
Do do Coerwall, near Bowenfels

Peltate Leaf and Vertebraria Australis Near Wallerawang
Peltate Leaf and Vertebrana Australs. Near Wallerawang.
Strobilites? Coerwull, near Bowenfels
Phyllotheca Hookern and Glossopteris Browniana. Newcastle
Sphenopteris Newcastle
Phyllotheca Newcastle
Glossoptens Brownana The Nobby's, Newcastle.
Sphenopteris, glossopters, and phyllotheca Newcastle.
Sphenopteris, glossopteris, and phyllotheca Newcastle.
Glossopteris and phyllotheca Hookerı. Neweastle
Do Newcastle.
Unknown. Newcastle
Comfer stem and phyllotheca Waratah Coal Mune, Neweastle
Glossopteris and phyllotheca. Newcastle.
Phyllotheca Newcastle From Austrahan Agricultural Coal Seam

Paleozoic -Hawkesbury Serzes

Columnar sandstone Botany Heads.
Plant mpressions Woolloomooloo
Phyllotheca Woolloomooloo
Photograph of clethrolepis granulatus, found in railway cutting Brachheath Blue Mountains, Great Western Ralway. From Mr. T. Brown, II LA.

Palarozorc.-Wranamatta Sertes.

Photograph of palxoniscus, found by P. F. Adams, Esq, Surveyor General in the Gib Tunnel, Great Southern Ralway.
Palzomscos Gıb Tunnel, Great Southern Railway Found by P.F Adams, Esq, Surveyor General.

Mesozoic?

Pecopteris ? Clarence River.

Cannozoro-Pleistocene and Recent

Bone 16 feet below surface Castlereagh River, from Mr T. Brown, M TA.
Molar teeth of wombat. Wellington Caves
Portion of canune teeth (canis dingo) "Wellington Caves.
Molar teeth (macropus) Wellington Caves
Bone of wombat (phascolomys) Wellington Caves
Dorsal vertebra of wallaby (halmatarus) Wellıngton Caves.
Molar tooth of wallaby (halmaturus) Wellington Caves
Upper and lower canine teeth of Tasmamian devil (sarcophulus ursinus) Wellungton Caves
Left ramus lower jaw (bettongia) Wellington Caves .
Molar tooth of Tasmanian devil (sarcophulus ursunus) Wellington Caves
Three molar teeth of kangaroo rat (bettongia) Wellington Caves
Bones of opossum (phalangista vulpina) Bone Cave, near Mount Lambie
Bones of native cat (dasyurus) Bone Cave, near Mount Lambie
Bones of kangaroo (macropus). M'Intyre's Cave, near Mount Lambie
Mogo, or stone tomalawk; found 14 feet below surface at Bodalla from Mr
T S Mort.
Mogo or stone tomahawk Bodalla, from Mr TS Mort
Mogo or stone tomahawk Western District, from Mr T Brown, M L.A
Sandstone bored by shell-fish Newcastle Harbour
Atlas vertebra of diprotodon Austrulis (Owen) Bennettu (Krefft). New South Wales
Portion of rught lower jaw of diprotodon Australis New South Wales.
Upper incisors of a large daprotodon, probably from Queensland
Lower jaw of thylacoleo (restored from a right and left of two ammals), from Wellington Caves
Portions of lower jaws of thylacoleo from Wellington Caves
Portion of right lower jaw of gagante wombat New South Wales
Portion of ulna, a gigantic wombat New South Wales
Humerus of wombat New South Wales
Aunferous quartz tallngs Forty-five samples from the gold-fields of New South Wales
Stanmferous-wash tallungs Seven samples from tin fields of New South Wales
Kerosene shale, from the rune of $\mathbf{M r} \mathbf{J}$ de V Lamb and $\mathbf{M r}$ J. Brown, Joadja Creek, Bermma
Kerosene shale American Creek, Wollongong (showing ampressions of glossoptens)
Fireclay Luthgow Valley Iron Company Eskbank
Exhibited by New South Wales Commissioners
Lode tin (411 specumens) from a lode in euritic gramte at Bolitho Tin Mine, Cope's Creek, New England, New South Wales
Collection of minerals (134 specimens) exhibited by Arthur Dewhurst, Government Distmet Surveyor, Tamworth, New South Wales
Collection of minerals (33 specimens) from the New England District, New South Wales Exhubated by Cleghorn, Wulham, Mount John, Uralla
Collection of minerals (13 specimens) from the Iichmond River, exhibited by W Wilson, Monaltme, Richmond River
Collcetion of Minerals, exlmbited by McCullum, Argyle, Good Hope, near Yass
Samples of aunferous chlonte schist, containing magnetite and specular iron ore, from Mount Lambue Coulter, Mr

Samples of aron ore from Gosford, Brisbane Water Exhibited by Fountain, John
Auriferous quartz. Exhibited by Steuart, Seymour, C, Adelong
Fossils and minerals. Exhibited by King, Philip G, Goonoo Goonoo
Collection of tin ores, from New England, New South Wales Butchart, J H. Mort's Rooms, Pitt Street, Sydney
Iron ore from Lithgow. The Lithgow Valley Iron and Coal Company.
Auriferous quartz and wash-dut. Curtus, T. J., engineer and manager
Class 101.
Department of Munes, Sydney.
Section of coal seam worked in the Northern Coal Field

Do.	Western Coal Field
Do.	Southern Coal Field
Do	Hunter River Coal Freld

Blocks of coal from the Northern Coal Field
Do. Western Coal Field
Do. Southern Coal Field.
Do Hunter River Coal Field
P"Kerosene shale," petroleum ol coal, from the New South Wales Shale and On Company's Mine, Hartley Vale.
"Kerosene shale," petroleum onl coal, from the mune of Mr. J. De V. Lamb and Mr J Bıown, Joadja Creek, Berrima
"Kerosene shale" From America Creek, near Wollongong (showing mpressions of glossoptens)
Coke From J. Fletcher, manager of the Co-operative Mine, Newcastle District
Kerosene shale The New South Wales Shale and Ol Co., 3, Hunter Street, Sydney
Kerosene shale from Murrurunds Towns, R, \& Co , Sydney
Coal, from Lithgow. The Lathgow Valley Iron and Coal Company.
Class 102.
Department of Mines, Sydney Samples of marble (polished and rough)
Marble. Five samples from Wallerawang Limestone Reserve, near Wallerawang
Marble Cow Flat, three samples.
Marble Marulan, three samples.
Marble Terrabandra, near Tumut
P Sandstone, block of fine-granned, from West Matland. Browne, Thomas, Bishop's Brage
Sandstone, block of, from Pyrmont Quarry. Specımen of the ordınary buildıng stone used in Sydney Macready Bros
Sandstone Two blocks Young, John, contractor, Sydney
Slate (surface specmen), from a slate quarry near Goulburn. Douglass, W., 434, George-street, Sydney.
P Grante One block, from Moruya Young, John, Contractor, Sydney
P Marble Two blocks, vemed and light-coloured, from Cow Flat. Young, John, Contractor, Sydney.
Marble, black. From Bungonia. Young, John, Contractor, Sydney.
Marble, dark mottled. From Marulan Do
Marble, dove-colour From Marulan Do.
Class 104.
Depaitment of Mines, Sydney Specimen of Fireclay from Upper Coal Measures, Lithgow Valley Iron Company's Mine, Eskbank.
Kaohn Maemtosh and Oakes, Bathurst
Kaohn Warden, David, Ulladulla
Class 107.
Brown, Thomas, Member of the Legislative Assembly, New South Wales Samples of alum and magnesian salts, from Caverns in Coal Measures Rocks, Cullen Bullen, Turon District

Class 110.
Gold trophy, bearing the following inscription - "This model represents the quantity of gold obtained in New South Wales, from 1851 to 1874. Weight, $8,205,232598$ ounces. Value, $30,536,2461.10 s 6 d$ "

Depantment of Mines, Syoney.
Samples of gold characteristic of the Gold Fields of New South Wales, and assayed at the Royal Mint, Sydney.

Loculity	Description of Gold	$\begin{gathered} \text { Weught } \\ \text { of } \\ \text { Sample } \end{gathered}$	Lose in melting per cent		and 1,000 after ng	Value per Oz atter melting, at $3717 * 10 \mathrm{kd}$ Standard
Wegtery DigTEICT		O2S		Gold.	Sulver	s d
Sofala - -	In fine scales, and coarse plates	250	154	0280	72	818 93
Bathurst	Find graung.	200	200	923*5	71	S 1810
***	with some spongy and stringy Fine scales, plates, and coarse	200	147	9180	76	S 18 47
Hargraves	Fime dust and coarse grams	200	223	9205	70	818 64
Harcraves *	Fine dust and coarse grans -	200	115	9610	33	41
Tambarcors	Fune and coarse scaly and grauns	200	181	9400	54.	401
Lambata	Fue scales and graus - -	200	155	9435	50	405
*	Reef gold, reticulated *********)	200	277	9445	51	406
*	Coarse waterworn grains or nugrets	253	200	9855	54	81981
Full End	Fine dust and coarse grams -	200	247	9455	47	407
\%	Scaly, with comrse spougy grams	200	141	9455	10	407
"	Fune scales and coarse orystalm line gold.	200	818	9470	47	4088
	Scaly and coarse fihform gold. -	200	197	9425	49	404
Muḋgee	Fue scales and coanse grams -	250	193	9410	56	4022
Mugeo	Coarse granins with some scales m	200	204	9280	68	8190
"	Ene and comrse scales ************)	200	177	9870	58	819 10*
Gulgong -	Coarse spongy grams and some scales	200	178	9880	58	819 11
m	Dusti and coarse scales . -	200	178	9165	79	818 8
\%	Coarse picces-filuform and sporiky	200	178	9250	70	31811
	Scaly, with some grams	200	159	9480	48	4078
Carcoar	Fine ocsles, very porous, with	200	1092	8780	119	8152
\% .	some magnetic uron Fine and coarse filform gold of a dark colour	200	284	9600	36	$418 \frac{1}{2}$
Orange *		200	267	9430	51	40 4 ${ }^{2}$
Orange		200	953	9306	62	8194
Stomy Creek *	Scaly - - -	200	156	9420	54	$44^{4} 8$
Southrem DigTRICT						\cdots
Bradiwood	Plates and fine scaly	200	179	9590	34	- 1 7 7
Araluen	Trine dust, "gunpowder gold" -	200	219	9515	42	4103
Adelong *	Fme sealy and coarse filform -	200	268	9440	52	40 5
***	Scaly - - -	200	127	9410	53	402
* -	Coarse filuform with some scaly	250	169	9460	50	407
Tumut	The and coarse, some very spongy	200	628	9275	70	319 It
Young	Scaly dust gold -	200	289	9570	30	4151
Hou -	Fme dust, "gunpowder gold" -	200	152	9430	49	4042
Nerrigundah -	Strings, scales, and plates -	\& 50	164	9805	15	
Kuaudra	Scales and plates with some grams and threads	200	815	9870	68	8191
Goulburn	Coarse grains and reticulated -	200	687	9750	22	48114
Bombala	Very fine scaly dust, "gunpowder gold"	200	268	9830	3.4	4111
Cooms **	Fillforin crystallune and some	200	817	9880	56	81911
!	sealy Fhiform crystalline and some scaly.	200	422	9240	70	81810
NORTHERN District						
Nundle -	Fine scaly and coarse filiform -	200	883	9195	73	3186
	Fcales, plates, and coarse fillform , of a brownish colour	200	828	965	90	\$ 17 17
Tamporth	Spong, filform, and crystalline, some with a litulo quarts attached.	200	888	9120	83	817102
		200	381	9140	80	* 18 0\%
$\stackrel{*}{* *}$	Fine dust a ${ }^{\text {ad }}$ shotty mranus	800	831	8495	93	81610%
Armidale	Scales with some threads	200	830	9480	44	409
armal	Finerales * *	800	191	8886	105	8160

Department of Mines, Sydney
J 360. Pig ron From the Lathgow Valley Iron Company's Works, Esk Bank
Class 112
Copper. 71 ingots NS.W Commssioners. -

Class 113.

P Tun refined in ingots One ton. Moore \& Co, Sydney.
Tin One nggot Vegetable Creek Co.
$\left\{\begin{array}{l}\text { Tin } \begin{array}{c}\text { Twenty ingots } \\ 123 \\ \text { Two bags grain tin }\end{array}\end{array}\right\}$ Commissioners for New South Wales
Class 121.
Model of shaft of Vegetable Creek Thin Mue
Tin ore Twelve specumens trom do
Specumens of washdirt taken from depth of 52 feet
Report, plan, and photographs Cadell, Alfred, C E.
Comet kerosene oul, \&c The Shale and Oll Company, Sydney
P Stearme candles Mahufactured by Robertson \& Co, Sydney
Soap, common yellow Manufactured by Layton, Fred, Grafton, Clarence River Candles, mould. Manufactured by Layton, Fred, Grafton, Clarence River Stoneware, \&e Manufactured by Baldock \& Co
Stamed glass starrcase window, subject "Captam Cook" Lyon, Cottıer, \&\& Co , Pitt Street, Sydney

Class 227.

P Window sashes, cedar, outside hall door, inside fonr-panel door, drapery panel door, French casements, set of cedar table legs, Hudson Brothers, Steam Jonery Mills, Sydney

Class 229

P Mats and mattmg, made of cocoa-fibre yarn, manufactured by aborigmes of New South Wales and Frazer's Island, they having learned the trade in Darlinghurst Gaol Read, John Cecıl, Daılinghurst, Sydney.

Class 235.
$\mathcal{P}\left\{\begin{array}{cccc}27 & \text { preces colonal tweeds } & - \\ 19 & \text { do. } & \text { do. } & - \\ 6 \text { plards } & - & - & - \\ 11 \text { Shawls } & - & - & -\end{array}\right\}$ Manufactured by J Vicars, Sydney
Class 254.
Wool flowers, copied from Australian native flowers, exhibited by Mrs Midgles
2 stuffed platypus (Ornithorhyncus paradoxus), male and female
1 travelling rug of tanned Platypus skus.
P 1 set of collaret and cuffs of do
Exhibited by P A Jennings, Karoola, St.' Mark's, Sydney.
Furs and skims of opossum, platypus, wallaby, and kangaroo, all procured in the Claience District Tanned and exbibited by Layton, Fred, Grafton
Wallaby skin rug New South Wales Commissioners.
\mathbf{P} Books, bookbinding, and pronting from the Government Printing Office, Sydney. Richards, Thos
Lindt's Portfoho of Austrahan aborigines New South Wales Commıssioners
Grevile's Post Office Directory New South Wales Commissioners
Australian orchids-l st Part. Fitzgerald, R D
Mines and mineral statistics The Honourable the Mimster for Mines
Christran psychology-2 vols Sutherland, Rev G
Minerad map and general statistics of New South Wales New South Wales Commissioners
Abornginal implements Exhibited by Wilcox, J F, Clarence River
Ditto Exhibited by Brown, Thos., M L A , Eskbank, Bowenfels
Twenty aboriginals' mplements Stone hatchets in various stages of manufacture and wear, composed of indurated sandstone, conglomerate, slate, trachy te and basalt W Wilson, Richmond River
P Industual woik Asylum for the Blind
P Meteorologacal results Thomas Ruchards, Sydney

Cuass 277.
T Mechameal dentıstry. Exhibited by Spencer, John, 8, Wynyard Square, Sydney.

Cuass 286.

Brashware. Manufactured by Taylor, S, Sydney
6 corls, assorted, best Manilla rope; 4 coils, assorted, New Zealand flax rope; 4 doz. lues New Zealand flax nope., Manufactured by A. Forsyth \& Co., Sydney.

Class 289.

Basket ware R Green, 50, Park Street, Sydney.

Class 293.

Concord buggy with canoe front, woodwork and ironwork enturely of New South Wales material. The body 15 made of colomal beech (Vitex), the naves and felloes of spotted gum, the spokes of box, and the under carriage and shafts of spotted gum. The tures of the wheels, axdes, and springs were also manufactured by exhubitor.. Robertson, John, coach builder, Pitt Street, Sydney
Stockman's Saddies, No 1.
Lady's side-saddle Manufactured by John Elder, 294, Castlereagh Street.
1 set sugle horse buggy harness.
1 set double buggy harness for par of horses.
1 gentleman's hogskun saddle
1 gentleman's huntugg taddle. Manufactured by W. H. Simpson, 385, George Street, Sydney
Gentleman's saddie.
P Stockman's saddles, No. 2. P Guerm, 472, Eluzabeth Street.
Corporate seal and catalogue of the Sydney Mechanucs' School of Arts
Class 312.
25 specimens of natural history of Australia Exhibited by the Trustees of the Australian Museum, Sydney
100 specimens of the birds of Australia. Exhbited by the Trustees of the Austrahan Museum
137 specimens of the burds of Australa Exhibited by the NS W. Commussloners
A sematrope An instrument designed by exhibitor for army sagnalling purposes Parrott, T S, Surveyor General's Office, Sydney.

Caass 335.

-

Maps of the Colony of New South Wales. The Honourable the Mmister for Lands
$\left.\begin{array}{l}\text { Views of Port Jackson. } \\ \text { Vews of Newcastle }\end{array}\right\}$ New South Wales Commissioners
Map of Northern Carcumpolar Stars Butterfield, G , Homebush
Lithograph (mounted on rollers) of Pioneer Narrow Railway-1 ft. 6 in gauge. Exhibited by Trengrouse, N , Stanmore Road, Newtown.

Classers 411 to 432.

2 water-color drawings of Pubhe Works Office and General Post Office, Sydney. Exhibited by Barnet, J, Colomal Architect
Panorama of Sydney, harbour, and suburbs- $36 \mathrm{ft} \times 5 \mathrm{ft}$
P View of Sydney Heads, Port Jackson-7 $\mathrm{ft} \times 2 \mathrm{ft}$ Exhibited by B 0 Holtermann
2 views, interior of Sydney Exhibition.
1 view, extemor of Syduey Exhubition
Exhibited by NSW Commissioners

- $\left\{\begin{array}{l}20 \text { views, Clarence River scenery } \\ 12 \text { portrauts of abongines, \&ce }\end{array}\right\}$ Photographed by W. T Lindt. Exhibited by NSW Commissioners
-2 views of Puble Offees, Sydney, and 4 views of Post Office Exbubited by Barnet, J, Colonal Architect
P Photographic portrats (4 cases) Newman, J Hubert, photographer, 12, Oxford Street, Syduey

103 photographs of buldings, \&se, m and around Sydney, New South Wales. Exhibuted by T. Ruchards, Governmeut Prunter
22 photographs of Blue Mountann scenery and Valley of the Grose New South Wales Commissioners
Photo-mechanical Printing John Degotard, Sydney.
F Seven photo-lithographs. (By John Sharkey)
Class 568.
P Ice-maker and water-cooler Postle, J. D.

Classes 600 to 605.

Woods or New South Wales

Observe -The first name, in small capitals, is the botancal name The seconl name, in italics, is the natural order. Then follows the description of the tree, and after that, the aborigmal name in small capitals,- the local name in italics, -the dameter in inches,-the height in feet and inches
Eucalyptus sp. Myrtacece From Illawarra, the most valuable perhaps of all the ron-barks, remarkable for its smooth unform outer bark and its very hard tough inlocked strong wood Bireemma Whte or palefrom-bark d 36-48. H 80-120
Edcanxptus sp. Myrtacce Varety from Brsbane Water, 1eported to be more tough and durable, and more pleasant to work, than the common aron-bark. White Irom-burk
Edcariptos sp Myrtacea From Illawarra, duffers apparently from the aronbark of Cumberland and Camden, a strong and most durable timber Iron-bark. D. 36-60 $\begin{gathered}\text { E. } 80-130\end{gathered}$

Eucalyptus sp. My taceae From Appin, common in Cumberland, one of the strongest and most durable of timbers. Terri-barra. Broad-leaved Rough Iron-bark D 24-48. н 80-120
Eucalyptus sp Myrtacea From Camden; of smaller and more tortuous growth than either of the first four varieties, its timber redder, closer, softer, more eassly worked, and probably not so durable A most highly-valued tumber-tree Mokarago. Narrow-leaved smooth or red Iron-barh d 24-43. H. 50-90

Eucalyptus sp. Myrtacee From Appin, harder and much coarser in the grain than the last Narrow-leaved Iron-barh. \quad D $24-48$ н 60-100
Eucalyptus sp Myrtacea A tree with magnuficent timber, of first-rate quality for size, hardness, toughness, and duability Gnooroowarra Box of Illawarra \quad D 48-72 H 120-180
Lucalyptics sp Myrtacea An excellent timber The tree of most unsightly appearance, and almost invariably hollow, or decayed at heart, before attaining full stature 'The wood greatly prized for plough beams, poles, and shafts of drays and carts, spokes of wheels, \&e Barroun Gouraie Bastard Bov. D 24-48 女 60-100
Eucaliptos sp Myrtacea A famous timber for ship-bulding and for house carpentry. Thutrambay Flooled Gum
Eucairptus sp. Myrtacea A good gum timber, a lulk apparently between that great dirision and the one called box. Dthackax Courroo. d 36-45. H. $80-120$

Eucalyptos sp. Myrtacece A maguficent timber for ship-bulding, and a favourte wood for house carpentry, not nearly so hard or heavy, and not so durable as the iron-barks. Couranga. Blue Gum of Coast Districts. D 40-72 1. 100-160
Edcalyptus sp Myrtacece Very valuable, harder, closer, and more inlocked in grain than the last, excellent for naves and felloes of wheels, and for work under ground The minute grub holes often found m this and other varieties of Eucalyptus are not symptoms of general decay Tublat Zarbas Blue Gum of Camden D 36-48. H 70-100.
Eucalyptus sr Myrtacece An excellent gum tumber Mandowie Grey Gum D. 24-48 ㅌ 60-100
Eucalyptus Sp. Myrtacece A magnificent tumber tree, in very high repute for wheelwrights' woik GNaourie Woolly Butt of Illauarra D $36-72$ н 100-150
Edcaliptes sp Myrtacea A good hard-nood thmber Burmav-merring. Rough-barked Gum D 36-48 н 80-90
Eucalpptos media Mryptacece One of the very largest of the Euculypth, the tumber of eacellent quality for house carpentry, or other purposes where
strength and durabulity are objects The compiler lately measured a specimen at Bullai, Illawarra, still an full vigour, and with no external symptoms of decay, 41 feet in circumference, with the bole of immense height YazrWakrari Black Butt Gum d. 36-72 in 100-130
Eccalpptos $8 \mathbf{P}$ Myrtacee Of no value for tumber, but excellent for fuel Lead-coloured Gum \quad D. $18-30 \quad$ स. $30-40$.
Eucalyptis sp. Myrtacea Sald to produce good timber. Red Gum. D. 24-40 H 40-80
Eucalyptus sp Myrlacee A fine timber tree, very like strugy-bark, except. ing towards the butt. Wariekai.. Messmate o 36-60 in 80-130
Eucarypros sp Myrtacea A useful tumber for inside work, but not equal to the better sorts of Eucalypti in strength or durability. Borrar Murra. Suamp Mahogany D 36-60. i 60-100.
Eucalyprtes sf Myrtacee A noble tumber tree, the wood much prized for its strength and durability Booar Malogany D 36-60 \& 60-130.
Eucalyptus sp Myriacece. A distmet variety. Stringy-barh, Appin. $\mathbf{1}$ 3648 ㅍ 70-100
Angophora sp Myrtacea A fine tree, the largest of the gemus, the connecting link between Angophora and the smooth-barked Eucalypti, tumber appled to no useful purpose Kajmmourra Red Gum D 36-70 \mathbf{H} 60-100
Angophora sr. Myrtacere Usefal for naves of wheels and boards, but generally much deteriorated by gum veins Yen-DTHEDER. Apple-tree of Coast \mathbf{D} 34-48 H $40-60$.
C-Symcarpia 6y Myrtacere A magnuficent tree, often measuring 20 to 30 feet in curcumference, and with great length of bole, the timber valued for posts in timber fences, and said to be most durable under ground, very hable to rend in drying Boorekaf, KubLa Warmai. Turpentine, io 59-100. il 120 -180
Tristana Nermpolis Myrtacea A fine tree with lofty bole, timber very close-graned and elastic, much valued for boat-bulding, common at Illawarra high up the mountain, very difficult to season without rending Oorixumar. Water Gum \quad 2 24-48 Fi 80-120
Tristania sp Myrtacese Much valued at Brisbane Water for knees and mbs of boats, quite distinct from the preceding three species Water Gum. D 12-24 H 30-50
Melaleuca Styprelioides Myrtacea The timber of this and the two following specres of Melalcuca appear to possess the same qualities It is hard, close, rends very much in seasoning, but is said to be almost imperishable under ground The outer bark can be easily detached in innumerable thin layers, very soft to the touch The leaves in No 100 contan, in common with several other species of humbler growth, an essential onl, which, when extracted by distullation, $1 s$ only distingushable by the colour from the "Cajeput." Naambare Prachly Tea-tree d. 18-36 H 40-80
Acmena elliptica Myrtacere Beautiful tree with dense follage, producing a profusion of fruit in clusters, very acid, but eatable and wholesome, wood close, apt to rend in drying Tprebail Laly Pily \quad D. $24-36 \quad$ u. 60-80
Acmana Myrtacea At Mlawara occasionally a fine tree, but generally branching low and attaining no size, wood exceedingly hard, close, and heavy, formerly much used by the abongines for their offensive weapons Common in almost every rocky ravine east of the Blue Mountans Kangloon. Myrtle D. 12-40 H 33-80

Stenocarpus afignus Proteacea A tree with very sparse follage, the only Protaceous tree common in cedar brushes, produces wood of great beauty, which promises to be useful for veneers in cabmet work Manexn Beef Wood, Selky Oak \quad D $18-36$ н $50-80$.
Acacia br Fabacea One of the largest of the genus-in some of the brushes attaning the stature of a fine tumber tree, remarkable for its narrow sparse phyllodia and rugged bark, wood very handsome, tough, and hight, excellent tor axe helves and bullock yokes. Manrai-do. Sallow. d 12-36 H. $40-80$

Acacra pendula? Fabacere A species well known for its violet-scented wood, common on the open sheep pastures in the interior, Myall $\mathbf{D . 9 - 1 8 . ~ m . ~} 30-$ 30.

Casuarna sp Casuarmacece Usually found in groups or small detached dense thickets in moist places, or "open forest ground", wood much used for purposes in which lightness and toughness are requred Coom-ban. Forest Suoamp Oak. \quad b 12-30 \quad н 40-70
Trochocarpa hatrina Epacridacede Suall tree, generally of crooked growth, wood very close-grained, useful for turning and other purposes
demanding a tough fine-gramed wood, requires to be seasoned carefully Barranduna. Beech Brush Cheryy \quad d $10-16$ н 20-30
Cryptocarta obovata Lauracees A magmficent tree, producing a soft, white, but useful wood. Myndee. Whte Sycamore. D. 24-60 i 80-130.
Cbxtocarya sr Lauraced A handsome brush tree, the wood nore beautiful than most of the lauraceæ D l2-30 H $50-80$
Cruptocarya sp? Lauracea. A tree of noble dmensions, in general habit resembling Cryptocarya obovata, but with smaller leaves, wood soft, light, in request for decking small craft The local name would seem to be a corruption of Elindersia, with which, however it has no affinty Flandosa
Endiandra gladea Lauracea A noble tree, with lofty cyhudrical stem, and ample head; wood hard, close, and fine in gram, duramen dark-coloured, and frequently very handsome, with a powerful aromatic fragrance throughout, common at Brisbane Water, and sald to be a very valuable timber Murrogen Teak Wood
Doryphora sassafeas Atherospermacece, A charming tree, with dense, bright glossy fohage and aromatic odour, filling the brashes with the most delicious fragrance Infusions of its aromatic bark in repute as a simple tonce. Wood soft, weak, and of little repute Toseundegong, Caalang Sasafras or Sasafrax. D 24-36. 世. 80-120
Cargmia sp Ebenacere A much finer tree, and with tougher wood, produces large quantities of small frut, eaten by the aborigines, wood in repute for strength and toughness Casramboos Grey Plum $\quad \mathrm{D}$ 12-24 \quad н $30-40$.
Pitrosporum indulatum. Pattosporacea a small tree, with very closegramed, hard, whte wood, which when, seasoned carefully, is excellent for turning, and promses to be good for wood-engraving, sound transverse sections of more than 10 to 16 inches would be tare Wallandun deyren D 18-30 H $50-80$
Aphanopetandm sp Cunonzacece. A noble tree of great beauty, producing in terminal racemes large quantities of acid frut, wood close-gramed and easily worked, hkely to be useful. Tojeunen. Whate Myrtle, Blue Ash, Ash D $30-48$ H $80-120$.
Ceratoretalum apetalum Cunonacea A beautiful tree, with elongated cylndrical stem, wood soft, light, close-grained, of agreeable fragrance, good for joiners' and cabunet work; much no request for coach-bulding Boowa; Ngnalrewing Lught Wood, Leather Jacket, Coach Wood D. 24-40 H 80-128.
Podocarpos spindlosus Taxacece A fine tree with elongated trunk, rarely cylindrical ; wood free from knots, soft, close, easuly worked, good for joiners' and cabinet work, some trees affording planks of great beauty, common from latitude 35° to 24° Drrben dxrmen Pine, White Pine d. $25-60$. - 70-130

H $70 \rightarrow 130$
Epicarpurus sp
sp glossy, very rigid, nettle-shaped leaves, wood hard, close-graned, tough, and firm, common at Illawarra Marrunang Rough Frg of 8-16 н 30-50
Genus unknown Rhamnaceca. A noble tree, with a magnaficent canopy of folage, and lofty erect cylndrical bole; wood very close, firm, and hard, evidently a serviceable wood, found at Illawarra and at Brisbane Water ग $24-43$ н $60-120$
Mrrsine Sp Myrsinacea Handsome, small, slender tree, with prettuly-gramed, white wood D 8-14 H 25-40
Yitex sp Verbenacea A noble tree, the wood of which is said never to shrink in drying, much prized for the decks of vessels. Coo-rn-New White Beech, Beech D 36-70. घ 80-120
Beech D
Elesocarpus Sp Tiluacea A noble tumber tree, the wood light and tough, used for oars and other purposes requirng lightness and toughness. YanderAIRX Mountaun Ash D 24-60 \quad H 80-130.
Mrartus Becrelerit F Muell Myrtacea From 60 to 80 feet in height, about 2 feet in dameter, umbrageous and graceful in appearance, timber of a reddsh colour when fresh, becoming pale when dry, said to be durable. Tree very plentiful Ginugal. Ballina, Richmond River
Cryptocarya sp Lauracea. A tree of general occurrence in the cedar brushes, timber hard and durable, and may be obtained of considerable size, but not used by settlers Goorois Ruchmond River
Crxptocarya sp Lauracea A magnificent tree in size and appearance, attanng a helght of 100 feet, and from 3 to 4 in dameter. Timber of great durability GoLaI Richmond River
Loprostemon Austrairs Myrtacea. Attaming a height of 100 feet, and 4 to 4 feet in diameter; one of the most valuable timbers in the Colony, on
account of its durabilty, it is averred on creduble authority that instances are known of this timber remaining perfectly sound after being nearly thirty years worked up as ribs of vessels Germ. Brush, Bastard or White Box Port Stephens to the Tweed, plentuful within the coast range in open forests as well as in brushes
Nelitris sp. Myrtacece This fine tree occurs only on the coast, in situations facug the sea, where it attains a height of from 70 to 80 feet, and from 3 to 4 feet in diameter Its tumber has been osed for ship-buiding purposes, but on account of its hardness is now seldom employed It is very close-graned, and when fresh is quite red in colour. Very plentiful. Burranna. Richmond River, near Balluna.
Frenella verrdcosa far levis Conferc. The root of this tree is valued by cabinet-makers for veneering purposes, and largely employed in this way some years ago, but from some cause, not explaned, it seems to have fallen into disuse It attains a height of about 60 feet, and from 18 mehes to about 2 feet in dameter Coonong Cypress Pine Near the coast, at the mouth of the Richmond and Clarence, plentiful.
Cayptocarya? sp Lauracea A magnificent tree, from 80 to 100 feet in height, and 3 to 4 feet in diameter Abundant in the brushes Timber of apparent value, but not used for any purposes by settlers. Menem Balina, Ruchmond River.
Aradcaria Cunningeamin. Confera. This noble tree bears the sameabonginal name as the cypress pine ; it grows in the greatest profusion in all the brush forests on the Richmond, the timber from the inland or mountain brushes is preferred to that from the coast. It is exported to Sydney and elsewhere in large quantitues, the sawyers recerving at the present nme $2 l 10 \mathrm{~s}$ per thousand feet. Some trees will yield as much as ten thousand feet of saleable tumber. Spars for shups may be obtaned in any quantity, from 80 to 100 feet in length In some unstances the tree attauns a height of at least 150 , and from 4 to 5 feet in dameter-much smaller on the Clarence, where it is also in less abundance Coorong. Moreton Bay Pine. Richmond river, in brush forests
Fimbersla Australis Cedrelacea A large-sized tree of very general occurrence in the northern distncts, from 80 to 100 feet in height, and from 2 to 4 feet in diameter Timber valuable for staves, for which purpose it is extensively used an the Clarence district W yagemie or Cugemie Ash, Beech, and Flindosa Clarence and Ruchmond
Curavia Australis Sapindaceae This tree, remarkable for its large and suggular foliage, attauns a considerable size on the Clarence, from 60 to 80 feet in height, and as much as 3 feet in diameter, is valued by the settlers on account of its sub-acid frut, whech it yields in great abundance, and of wheh a very good preserve is made Timber, although compact and durable, seldom used Acouloby Natve Tamannd All along the coast in brushes, a common inhabitant
Castanospermum Adstrane Fabaceae A very beautiful and magnificent tree, the principal occupant of many extensive forests in the localities referred to On the table-land of the Rachmond at attans the height of at least 130 feet, and from 5 to 6 feet in duameter Although the timber is dark and prettuly grained, not unlike walnut, yet it is seldom used for any purpose, if durable, it is worthy of attention It is sometimes split for staves Limaine Moreton Bay Chesnut, of Bean Tree Richmond and Clarence brushes, abundant
Ailantos ? 8 P Xanthoxylacea A good-sized tree, timber notused. Agdndicondis Clarence Plentuful near Grafton
Genus? Ebenacear Very abuadant A fine tree of large growth, attaning a height of 100 feet, and 2 to 3 feet in dameter, somewhat rigid in habit Tunber soft when fresh, but so tough as to admit of its fibres being worked meto a rope without breaking, said to be durable Worthy of particular notice Uria Wabie Black Myrtue Clarence River brushes
Banognia lucipa Euphorbiacea Frequent on the coast, abundant on the Clarence. A good-sized tree Timber not used Nun Naia. Clarence River Srionm glandulosum Mehacea One of the largest trees in the districtin which it is found, varying in height from 70 to 100 feet, and from 4 to 5 feet in diameter Timber when fresh of a deep red colour, emutting a scent similar to the common rose. Used for cabinet purposes, for which it has long been highly valued, as well as for the inside liming of houses and ship-building Moconnie Rose-wood Open forest brushes on the Clarence and Richmond.
Srnoum Landmenr (Moone) Afelacea Plentiful, a fine tree, called by the aborggines by the same name as the Rose-wood, No 47 , but from which it is very diffriut, timber red when fresh, wathout scent, simular in appearance and in the gram to the cedar used for penculs, hence the name. the bark smells some
what like a Swedish turnip, employed in house work and general purposss Mocoundie. Pencel Cedar, Turmup Wood Clarence and Richmond brashes
Supanla anacardiotdes Sapendaceo Abundant, this tree attauns a height of 70 or 80 feet in good situations, and 18 unches to 2 fept diameter, tumber occasionally used for house-bulding purposes, but not highly valued Clarence and Richmond brushes.
Flindersia greapesix (Moore) Cedrelacea A magnificent tree, the monarch of the northern forests, attaning a height of 150 feet, 3 to 6 feet in dameter, distinguishable from every other species of the genus by 1ts dark brown and rough scaly bark, as well as by other characters, tumber used tor house-building purposes Wragerie. Fhintamendosa Mountain brushes on the Clarence
Callistrmon salignidm. Myrtacea. A tree of moderate size, tumber used for posts in damp situations, as it stands well in water Unorie Tea tree In moist situations, Clarence and Richmond
Alphitonia excelsa. Rhanuncec. Of general occurrence along the coast, a fine tiee, often attaning a height of 100 feet, tumber dark when old, used for varous purposes in the Southern districts, but not valued on the Clarence. Nono Gwyinandie Clarence River brushes
Angophora subveldina F Mull Myrtacece A fair-sized tree, tumber very strong and durable, used for posts and ranls. Illarega Apple-tree. Clarence and Ruchmond open forest country, abundant
Mrrtus acmenoides F Munh Myrtaceas. A fine tree, from 60 to 70 feet in length, and from 2 to 3 feet in dameter; tumber very hard and durable, but seldom used Whate Myrtle Brush forests on the Clarence and Richmond
Acacta sp, near Cunninghamir. Fabacece. A moderate sized tree, timber dark, suitable for cabinet work. Seldom used Bastard Myally Clarence and Richmond open forests
Acronychia Hmlif. F Muml Aurantacece. A small-sized tree, tumber not used Clarence brush forests
Eucalypxos sp Myrtacece This well known tree attanas a very large size in the Northern districts, upwards of 100 feet in height, and as much as 5 feet in diameter Timber very highly valued for its unequalled strength and durabilty; it is used for all kinds of fencing, shingles, beams, dray poles, plough beams, and various other purposes, when properly seasoned it will not shrmk Apparently distinct from the iron-bark of the south Algerega Iron-barh of the Clarence. Open forest country, abundant on the Clarence river
Owenta venosa F Muelc. Sapindacece This very handsome fohaged tree, which occurs in most of the northern brush forests, is well worthy of attention on account of its timber, which as exceedingly strong, and very highly coloured with different shades from black to yellow; it takes a good polish, and is used for cabinet work Movinime Tulpp-wood Clarence River brush forests
Petalostigma quadriloculare F Muele. A low-sized tree, with somewhat pendulous branches Timbel not used for any purpose Open forest country, invariably adjoinngg brush lands.
Eucaliprus sp Myrtacece Plentiful on the Clarence This timber is extensively' used for building purposes, such as scanthing, battens, flooring boards, and for posts, rails, ships' planks, \&ce, it is often 7 feet in diameter, with a stem, whthout knot or flaw, of from 70 to 80 feet m length. Many trees yield from 6,000 to 8,000 feet of timber, which is worth at the present time $18 s$ per 100 feet; its specific gravity is said to be less than any of the other gums. Umbagga Flooded Gum Near watercourses, or on rich deep alluvad soil, in many parts of the colony
Eucaiprtus sp Myrtaceer Plentiful in the Clarence district This is litte, if at all, inferior in size to the preceding, its tumber 2s, however, harder and more durable, but is used for the same purposes, and is of the same market value Grey Gum On strong stiff alluvial soils throughout the colony
Rhus rhodanthemum F Muell Aneardiaceas A good-sized tree, tumber sound and durable, of a light-yellow colour, close-grained and beautifully marked, will take a fine polisn, and is one of the most suitable timbers in the colony for cabinet work Leght Yellow Wood Richmond brush forests; plentiful near Richmond
Grevillea robusta Proteacea This tree grows to a moderate size, and is very geneal in the northern districts Tumber extensively used for staves for tallow casks, and is, m consequence, becoming very scarce Warramgarrit Silky Oak General in the Clarence and Richmond brush forests
Lormostemon sp Myrtacea This fine tree, and a variety called forest mahogany, grows to a large size, and is very plentuful near Grafton, its timber is tound to be very durable in wet situations, and is therefore useful for posts or sleepers,
at is easily worked, but possesses the property in an unusual degree of blunting the edges of tools, and is therefore, no great favourite with sawyers Urcanga Swamp Mahogany Open forest country in the Clarence district
Cedrela Australis Cedrelacece. The tumber of this best known and perhaps the most valuable tree the Colony possesses, is used very largely for all kunds of purposes, it is easily worked, and in dry situations very durable A good specimen of this wood is equal m qualty to the best mahogany, to which it is very sumular in appearance The tree grows to an enormous size on the tableland of the Ruchmond, from which and the adjoming district of the Tweed the princıpal supply is now obtaned A tree of this, lately cat down near Lismore, measured 10 feet in diameter at the base, and was calculated to yield 30,000 feet of saleable tumber Wooura. Red Cedar. In theck brush forests withun the coast range.
Iron-bark timber Exposed for three years in salt water. Turpentine timber Exposed for nune years in salt water. Exhibuted by Shoobert, James, Sydney Exchange, to show the quality these timbers possess of resisting the attacks of mari $2 e$ insects, \&e.
1 piece of tmber, from Bellinger River. Hodgson, George, Thanet Lodge, Redfern
3 logs tumber Penzer, J, Bundamar, near Dubbo, Lower Macquarie Very useful for station purposes
Specımens of tumber from Mount Victoria. Du Faur, E, Rualto Terrace, Sydney. Specimens of Cedar
Iron-bark
Tallow wood.
Blackbut
Blue gum
Spotted gum
Hudson Bros, Botany Road, Redfern.

2 pieces scented Myall (Acacıa pendula). Used for pipe bowls Stock-why handles, and occasionally for meense. Exhbited by E S Hill, Pont Piper
Pressed ferns Mrs Haring and H. H Field, Clarence Street, Syduey, New South Wales

Class 605.

Quondong Nuts Derepas, R, Youngara
Copra (dried cocoo-nut) Hennungs, F W, Loma Loma, Fyı
Copra (dried cocos-nut) Ryder, Bros, Mango Island, Fyl.
Seed of macrozamua denisonu
Seed of castanospernum Australe.
Gunger root
Alstoma constricta. The New South Wales Commissioners
Medscinal bark, used in the northern parts of New South Wales as a specific aganst fever and ague. Armstrong, Á , Bridge Street

Class 620
Maze Lovegrove, W, Terrara, Shoalhaven River.
Maıze Ryder Brothers, Mango Island Fiyl.
Marze Peden, M J
Maze Demestre, E, Shoalhaven
Mazze Small red core in cob and thrashed. Eggins, James, Grafton, Clarence River
Maıze, golden drop By Eggins, James, Grafton, Clarence River
Marze, early white and golden drop By Blann, C R Grafton, Clarence River
Flat maize
Nanety-day maze $\}$ New South Wales Commussioners.
$\left\{\begin{array}{l}\text { Large yellow flint maize }\end{array}\right.$
Sorghum
Imphee
Buckwheat
Sir Wilham Macarthur, Camden Park
Whte German millet
Yellow Itahan millet $\}$ Sir Wilham Macarthur, Camden Park
Canary seed
Wheat, 50 lhs Lewis Bros, Tamworth
p

Class 621.
Beans Ryder Bros, Mango Island, Fyı
Canadraa wonder bean.
Large harncot bean.
Harcot bean
Rice haricot bean
Canterbury bean
Whate lupin
Laxton's Willam the Ist pea Sir Wilham Macarthur, Camden Park.
Laxton's popular pea
Laxton's superlative pea.
Laxton's omega pea
Veitch's perfection pea
Queen of Dwarf pea
Blue field pea
Tobacco leaf 12 lbs Dixson and Sons, York Street
Tobacco Manufactured from leaf grown in New South Wales (two samples) Dixson and Sons, York Street, Sydney
Tobacco Leaf Grown on the Clarence River-cigar leaf Jaeschke, Gustave
p Cagars Manufactured by W. Schwergert \& Co, from leaf grown in New South Wales.
Cigars From leaf grown in the Clarence River District. Manufactured by Murhead, R, Grafton, Clarence River
Cigars, from leaf grown in the Clarence River District Manufactured by Jaeschke, Gnstave, Grafton, Clarence River

Cuass 651.
Preserved milk, in a condensed form, prepared by a new process The inventor -Seccombe, R, Milton, Ulladulla, New South Wales
P Leather Sole, yearling runners, horse tweed, waxed calf, waxed splits, waxed wallaby skins, waxed kangaroo skins, enamelled kangaroo skins, russet kangaroo skms Wright, Davenport, \& Co , 5, Barrack Street, Sydney
Leather. Sole J Forsyth, and Sons, Paramatta Street, Sydney
P Leather Japanued, enamelled, enamelled kangaroo skins, japanned kangaroo skins, levant kangaroo skins Alderson and Sons, Elizabeth Street, Sydney.
Tallow Bell, H, Sydney.
Tallow Hewntt, T G, Grafton, Clarence River
Neat's foot oul Bell, H, Syduey
Neat's foot oll Berry, J S, Gany, Sydney
Neat's foot oll Hewitt, T G, Grafton
Glue Manufactured by Berry, J. S , Botany.
Class 654.
Beeswax, prepared. Layton, Fred, Grafton, Clarence Ruver.
Class 656
P Preserved meats
12 2-lb tins bolled beef
$66-\mathrm{lb}$ tuns boled beef
66 -ib tins boiled mutton
$124-\mathrm{lb}$ tıns bonled beef
124 -lb tins boiled ox tongues
The Sydney Meat Preserving Company, Margaret Street, Sydney.
\mathbf{p} Preserved pine apples, 5 tins. $\}$ Grown and prepared by Camille Hoff.
Specimens of a few of the kinds of lemons and oranges grown in New South Wales
Navel oranges, common orange, Siletta orange, Seville orange, Mandarin, Poor man's, Maltese blood, Lisbon lemon, Bergamot lemon, citrons, preserved by Messrs Biddell, Brothers, George Street, Sydney
Bergamotte lemon, Lusbon lemon, Navel orange, Parramatta orange, Queen's orange, Graham's seedling orange, Rio orange, St Muchael's orange, Pye's seeding orange, Seville ooange, Siletta orange, Thorny mandaun, Cumquat orange, Canton mandarin orange, Emperor mandarin orange Preserved by J L. Lackersteen, Sydney

Fruts preserved-

Cuass 657.
(P) Flour Watson Bros, Young

Flour. Lewis Bros, Tamworth
Flour Cohen \& Levy, Tamworth
P Flour. Dalton Bros, Orange.
Flour Nelson Bros, Orange.

Cuass 658.

Arrowroot. Waters, James, Ravensdale, Brisbane Water.
Arrowroot Cole, W, \& Son, Tomago, Hunter River
Arrowroot." Laure, A. L , Rawdon Vale, Gloucester, Port Stephens
Arrowroot. Ryder Bros, Mango Island, Fyy.
Arrowroot Payne, George, Grafton, Clarence River.
Arrowroot $\}$ Champion, George, Ulmarra, Clarence River.
Mauzena $\left\{\begin{array}{l}2 \text { cases, } 1 \mathrm{lb} \text { packages } \\ 1 \text { case, } \frac{2}{2} \text { lb packages }\end{array}\right\}$ Munn, A L, Merumbula.
Raw mugars Manofactured from cane grown at the Clarence Ruver. Colonial Sugar Refinng Co, New South Wales
3 Refined sugars Produced at the Refinery of the Colonal Sugar Refining Company, New South Wales
Sugar Martın, George, Grafton, Clarence Rıver
Sugar. Chowne, E G, Ulmarra, Clarence River.
Sugar. Chowne, E G, Dlmarra, Clarence Biver
P Confectionery 36 Jars. Made of New South Wales sugar, by Biddell Bros, Sydney

Wines

Vanety of Grapes	Vrn- tage	Colour	Character.	Price	Information as to soll, aspect, \&e

Grower, Jas T Fallon. Locality, Albury.

Grower, A. Munro Locality, Bebeah, Singleton

Growers, G L \& J B. Carmichael Locality, Porphyry, Wulham River.

| Varety of
 Grapes | Vin.
 tage | Colour | Character | Price. |
| :--- | :--- | :--- | :--- | :--- | | Information |
| :---: |
| as to soll, aspect, \&c. |

Grower, Carl J P. Brech. Locality, Rosemount, Deaman.

Grower, Edward Powell Locality, Rechmond.

| Muscat $\&$ a few |
| :---: | :--- | :--- | :--- | :--- |
| black hambro'. |$|1869|$ White Full-boded $\left\lvert\,-\quad 20 /$| Alluvial soil on the |
| :---: |
| hanks of the |
| Hawkesbury. |\right.

Grower, Montague Parnell. Locality, West Maitland, Hunter River.

Grower, Wadham Wyndham. Locality, Bukhulla, Inverell.

Grower, George Wyndham. Locality, Fernhull, Brauxton, Hunter River.

Pıneau		1873	Whate	Full-bodied		4/ to $6 /$	16/ to 20/		
Bergundy		1873	Red				1 /		eep sandy loam (porr), producing
Hermitage	and	1872	"	"		"	"		liyht crops, pro-
Ame	black	1873	"	Medıum					ducing about 300

Grower, J, F Doyle. Locality, Kaludah, Lochuvar.

$\left.\begin{array}{l}\text { Malt Vinegar, } \\ \text { Wine Vinegar. }\end{array}\right\}$ Monk, D. J , Sussex Street, Sydney.
$\left.\begin{array}{l}\text { Botlled Ale, } 1 \text { dozen. } \\ \text { Bottled Porter, } 1 \text { dozen }\end{array}\right\}$ Marshall, J, Paddıngton Brewery.
P Aerated Waters and Cordials Barrett \& Co, Sydney
P Twenty-four samples of biscuts varying in weight from 12 to 17 lbs each. Manufactured by Hardue, John, George Street, Sydney

Cuass 662

Castor Oil Prepared by exhibitor from seed grown on the Clarence Rıver, New South Wales. Layton, Fred., Grafton, Clarence River.

Class 665.

Cotton, South Sea Island Cotton. Hennings, F. and W, Loma Loma, Fijl.
P Cotton, South Sea Island Cotton Ryder Brothers, Mango Island. Fyı
Cotton, 1 show glass Grown and prepared by Hoff, M Camille, Nakutakina, New Caledona
No 1 Fibre of Doryanthes excelsa, or Gugantc Luly of colomsts This amaryllidaceous plant grows in great abundance in varrous parts of the coast districts, north and south of Sydney. It yields a valuable fibre of a fine quality.
No 2 Fibre of Gymnostachys auceps, Travellers' Grass of eolomsts This arondaceous plant is very common along the coast districts of New South Wales, and its leaves are extensively used by settlers for tying purposes. Thus yelds a fibre of such strength that at requires a strong man to break a portion of a leaf half an anch in breadth
No 3 Fibre of Furcreea gigantea This South American amarylldaceous plant is well suited for cultration in New South Wales It grelds a strong and durable fibre, and mught be grown for this quality on poor solls whea not wanted for any other purpose

No 4 Fibre of Fourcroya cubensis A Cuban amarylldaceous plant, whech yields an excellent fibre and grows most luxurnantly in New South Wales
No 5 Fibre of Agave americauum This well known American aloe, which produces such an excellent fibre and of such strong and durable quality, is well suuted for cultivation for its fibre alone It will grow in almost any situation, and so freely that under favourable curcumstances it will flower in from seven to eight years
No 6. Fibre of Musa sapientum, or Common Plantan This plant, so generally planted in New South Wales for ats fruit, grelds a fibre second only in value of its kund to that of the Mamula hemp, which is obtamed from Musa texilis.
No 7 Commersonia echinata, Brown Kurrajong of colonists The fibre of this tree is of a very tenacous nature, and is preferred to all others by the aborigunes for making nets
No. 8 Fibre of Sterculia lanida, Sycamore of colonists This fibre is the unner bark of the tree When fresh it has a lave-like character, and is in consequence made up into a variety of fancy articles by the colonsts. Moore, Chas, Director of Botanic Gandens, Sydney.
P Fibre of Gigantic Nettle Tree (Urtuca Gigas), with duly bag manufactared from it by Australian aborigunal This tree is very abundant on the Macleay and other northern rivers, and is easily converted unto material for strong cordage Rudder, E W, Kempsey

Breeder	Brand	Breed.	Description

Washed Woor.

combing.

clothing

ADDITIONAL AWARD FOR WOOL
P Whliam Long
CLOTHING

E \& A Bowman, Rotherwood	GB in dmnd	Merno	Fine clothing
D H Campbell, Cunnurham Plams	SKS	Ramboullet -	do

P A. H. Lowe, Dynevor. Angora pure

Class 668

P Mas, J M.
P Asylum for Destutute Children, Randwick, near Sydney
Silk Materials, from the gran to the manufacture, showing the cocoon, raw silk, organzine, grain, \&ce, produced by exhibitoi, assisted by the mmates of the Asylum
P Cocoons of Bombyx moni, and cards of eggs desiccated and pierced, grown at Claremont, Rose Bay Sydney, from Italaan, Japanese, and Indian grain, Thorne, George, 90, CIarence Street, Sydney

Class 681.

Bone dust for manure. Exhibuted by H Bell, Sydney
Bone dinst for manure Exhibited by J S Berry, Botany.

NEW ZEALAND.

Commission from Neti Zealand to the Interiational Exhibitiox, Philadelphia, 1876.

COMMISSIONERS.

Hon. Walter Baldock Dubant Mantell, MLL.C., F G.S, Chairman.
Hon. William Gisborne.
Whllam Hort Levin, Esq.
Dantel McIntyre, Esq., United States Consul at Wellington.
Representative Commissioner to Pliladelphia.
James Hector, Esq, C.M.G., M.D., F.R.S.
Secretary and Agent in charge.
Artacr T. Bothamet, Esq.

NEW ZEALAND.

In ats relation to the International Exhibition at Philanelphia, 1876.

Prepared for the Commissioners by James Hector, Esq. C.M.G., MD, F.RS, Special Commissioner, Wellington, New Zealand, 17th November 1876.

CONTENTS

Commissioners	$\begin{aligned} & \text { Page } \\ & -148 \end{aligned}$	5.-Geology and Mfunng	Page
Action 'taken by Commishoners		a. Geological formations	197
		$b^{\text {b }}$ Coal Mines	- 197
$\begin{aligned} & \text { Description of the New Zes- } \\ & \text { iand Covet } \end{aligned}$		c. Gold Mines	-200 -204
	- 150	${ }^{\text {d }}$ Sulver Ores	-204
Officlar Catalogue of Exhibits	152	f Chrome Ores	-208
		g Copper Ores	- 209
		h. Lead Ores	-209
Notes on tab Colonx in 1 atg		2. Zinc Ores	- 209
1-General and Geographeal		k Manganese	- 210
a Situation and area -	- 158	m Oil Shales	- 211
6 History	- 159	${ }_{n}$ Graphite	-212
c Native Race -	-160	0 Buildung Stones	- 212
d Vegetation	- 160	Basalts and Diorıtes	214,215
e Agnculture	- 161	Trachytes and Granites	-215
f Anmal Life	- 162	Lumestones -	- 215
g Whaling h. Fisheries	$\begin{array}{r} -162 \\ -163 \end{array}$	Sandstones	- 218
2-Form of Government		6.-Produce and Industries	
	- 163	a Paunts, Dyes, and Barks	- 221
		b. Wools	-22
3-Clumate		c Phormum	22
a Nature of observations	- 164	d Grain -	22
b. Temperature	- 165	e Tumbers	- 22
c Raintall -	- 166	7 -Eduratıonal and Art :	
d Pressure of aur	- 168	7 -Eduratoonal and Art :	
e Wunds -	- 169	a Plans and Maps 6 Classified Plants	$\begin{array}{r} -242 \\ -245 \end{array}$
4 -Statistucs		c Photographs	-
a Census results	- 170	8 -Ethnological.	
Digest of latest statustics	- 183	Garments and Implements	
		Maors	-2

Memorandum of Action taken by Commissioners

The Commissioners were appointed on 15th July 1875, and with the assis- Appomtment of tance of local committees collected a series of articles for exhibition under Commissioners regulations and conditions which were published throughout the colony; all in New Zeuland. artucles were collected at the expense of the Commissioners, and in most cases were either presented to, or purchased by them The exertions of the Commissioners were unfortunately not well responded to, some of the most important and best developed districts of the colony displaying no interest in their being represented in the exhubition In January 1876 the artacles collected were shipped in charge of a special agent by the mall steamer to San Francisco, Shpment of and thence trans-shipped by way of Panama and New York, so that they goods. were not delivered in the exhibition building untul the 20th April, meanwhile the Special Commissioner collected in London a large number of articles pertaining to the colony and aruved with thm in Phladelphia on 23rd April.

Arranzement of exhibits

Presentations to United States Government

The erection of the New Zealand court was at once commenced, and by the 10th May the exhbits were in place, although the final arrangement and catalogung of the collection was not completed till the 10th June.
The Spectal Commissioner remanned in charge of the court until the judges had completed their examination of the articles exhibited, and returned on 8th July to New Zealand, leaving an agent in charge for the remainder of the period durng which the Exhibition was open to the public
The majonty of the articles exhibited were presented by direction of the Commissioners to the United States Government, and assigned to the different Public Museums.

Description of the New Zaland Colrt.

Dimensions of Court

Position

Decoration

Cllustrations of cold mining

Muler's process
for removal of sllver from molten gold

Statistics

Shetches and
Photographs of colony
Collection of ferns.
Yield of gold
since 1862

Minerals and
tumbers

The New Zealand Court in the Philadelpha Exhbition was an oblong space, with $2 \overline{5}$ feet frontage to the mann corridor that traversed the enture length of the building, and extending in depth 64 feet, so as to have a frontage to a second corridor. On the west side was the New South Wales Cuurt. and on the east the Courts of Jamaica and Bermuda. The space was enclosed in an unform manner with the other Australian courts, the Commissioners having joined in one design and contract (with the exception of Queensland) so that Australasia thus combined formed a striking feature in the Exhibition. The colouring was a delicate French grey, picked out with blue and black, and the courts were further decorated with flags and bannerets, affording bright points of colour that relieved the general neutral tint.
Over the entrance was a Maorl carving supported by taiahas and mats, and with the "Unon Jack" over the New Zealand flag, which was supported on either side by the Stars and Stripes and Norwegran flags Entering the court from the main corrndor, in the centre was a handsome plate glass case 7 feet high and 4 feet wide with four glass shelves. This case was secured to the floor, and was specially fitted for the securty of its valuable contents which comprised about 160 samples of golden sand, nuggets, and aurfferous quartz specimens from the New Zealand goldfields The samples were contaned in glass and ebony cups and were marked in accordance with the printed catalogue which described therr assay,' value, and other qualities. Cards giving statistics of the goldfields were also placed in this case, and the intmate structure of the golden quartz was illustrated by a beautifully polshed specimen exhibited through a large magnfying glass. This exhibit was of great interest to practical miners and mineralogists and attracted so much attention that a barrner was required to keep off the pressure of the crowd. In the upper part of the case were a series of models lllustrating the mode of prepanng the gold for export, and espectally Miller's ingenously smple process of removing the silver by the injection of chlorne gas into the molten gold.
The statistics accompanying the gold stated that in 1874 there were 12,948 alluval gold miners, producing gold valued at $6,470,315$ dols., and 2,119 quartz miners, the value of whose production was $1,745,000$ dols.
In the rear of the gold case was an ron safe to which the more valuable specmens were removed at night.
On each side of the central space of the court was a screen 17 feet long covered with water coloured sketches and photographs of New Zealand scenery, by W. M. Cooper, Deveril, Burton, McCombie, and other artists of note in the colony; alsu sixty sheets of New Zealand ferns, mounted by Hay of Taranakı
In the centre of the court was a huge gilt pllar, 25 feet high, representing the yield of the New Zealand goldfields since 1862. This pillar, which towered above every other object in this part of the building, represented the bulk of 246 tons of 23 carat gold, or 497 cubic feet, valued at $30,810,137$, or 151,271,293 dols gold, all of which information was written on the sides of the pillar in bold characters

In front of the pillar was a small relef map of New Zealand, modelled and geologically coloured by Dr Hector

Still continuing dona the centre of the court was a trophy of large blochs of coal and minerals, surmounted oy tall glass cylhders of petroleum from the East Cape, also another trophy of polished timbers, some of the large slabs of kauri, resins, and totara being verv attractse
Sreleton of moa.
Between these trophies and facing a sude door was the sheleton of a larse moa burd, lent by the Smithsonian Institute, and organally sent from the

Canterbury Museum by Dr Von Haast Continuing to the back of the section was a table case, 14 feet long and 7 feet wide, containing examples of hams, soap, candles, glue, grann, veneer tmbers, tan barks, wine, beer, sauces, \&e, and surmounted by a magmificent collection of all the varieties of kauri gum as sold in the American market, and eight dufferent kinds of varnish which is made from it by Felton and Co. of Philadelphia

Aganst the walls of the court on each side were three handsome upright cases of walnut wood alternately with ebonised table cases In the first on either side of the man entrance were placed a selection of beautiful articles of ladies' dresses manufactured from the feathers of seabirds by Liardet of Wellungton. Over these on one side were suspended the plates from Dr Buller's great work on the ornthology of New Zealand, and on the other groups of photographs of Maons, all mounted in inlad frames, which showed to great advantage

The first upright cases and the table cases in front were occupied by a most $1 \ldots \ldots$ interesting collection of Maor mats made of feathers and flax, and by me mplements. plements of stone, bone, and wood, forming a very mstructive ethnological series, part of whuch was lent by the Smuthsontan Institute, from collections brought by the Wulkes' expedition in 1839, and the Transit of Venus expedition of 1874

On the left hand followed a long glass case containing a classified series Mineralogical of the minerals and ores found in the colony, over which were hung geological specimens maps and sections

The next case was filled with an exhibit of 31 kinds of tweed cloth made Tweeds by Messrs Webley of Nelson, in front of which was placed a series of the works published in the colony, handsomely bound

The remainder of the west side of the court was devoted to phormum fibre Phormum fibre. in all its forms of preparation and manufacture, from delicate textile fabrics to large hawsers, the coils of which were piled up in several great pillars

On the opposite side of the court was a range of glass cases, 30 feet long, Wools containing selected fleeces of wool, the bulk of which, and also the grann, was shown separately on the Agricultural Hall

Nailed up to the wall over part of the wool cases were an extensive exhibit Leather of leather by 'T Wilson of Canterbury, and in a good light Mundy's celebrated series of photographic landscapes, and Sealey's views of the Southern Alps were grouped round Dr. Von Haast's elaborate map of the glacerss and mountann system of Canterbury

H Severn's panoramic views of the Thames goldfield were also against the Panoramic wall, while in various vacant places other maps and vews and 50 sheets of photograply Auckland ferns, and 12 exquisite views of the Rotomahana geysers, by McCombie of Auckland, were suspended

The total number of views exhibited in the court was 549 , all of which had been specially mounted in walnut by Mr Creamer of Philadelpha.

Over the centre line of the court were suspended two large maps of the Maps, geological colony, by Dr Hector, the one geological and the other physical, contrasting and physical the present surface features with those of later tertiary times
The ared of the New Zealand Court was 1,600 sq feet, and the number of Area. exhibits entered was 1,114.

[^4]

Catalogue

Nelson. - Dep. I Minerals, Ores, Stone, Mining Products. 1. Parapara Iron and Coal Company, Nelson

Iron ore	Cl 100. a	Brown hematite ore	
Coal	Cl. 101.	b	Coal from the Arore river
Limestone	Cl. 103	c. Lamestone used as a flux for hematite ore.	

Iron. Cl. 100. Hematite iron ore
3 Nelson Commattee, Nelson
Sundry ores Cl 100. a. Iron, plumbago, galena aınc, blend copper, antımony, and argentaferous lead ores
Coal. Cl 101. b Coal from Coalbrookdale, Mount Rochfort, and Reefton.
Marble.
Porcelain clays
Cl. 102. c Marble from Ruatanuka, Golden Bay
Cl. 104. d. Porcelann clays from Pakawar and Ruatanuka, steatite from Golden Gully, Collingwood
4. Lousson, T. B, Nelson.

Iron ore Cl 100. Iron ore, calcined uron ore.

$$
5 \text { Washbourn, W. E, Nelson. }
$$

Lead ore.
Opficial Catalogue of New Zgaland Exhibits in the Philadelphia Exhibition, 1876.

Der. I -Mining and Metallurgy
Dep. II-Manufactures
Dep. VI-Agriculture
Dep. VII.-Horticulture.
North of Nave, Columns를 10 to 17.

Brown hematite ore
Cl. 101. b Coal from the Arore river
C. 103 c. Lumestone used as a flux for hematite ore.

2 Johnstone Brothers, Nelson.
C. 100. Argentiferous lead ore

6 Taranakz Commıttee.

Taranaka Com- Cl 100. a Titanic ron sand, older tertiary marl, trachyte pebble, trachyte with crystals of hornblende, obsidian, nephrite taranakate, carnelian.
Cl. 101. b Lignite from Urenni.
Cl. 101. c. Potter's clay from Urenm.

7 Colonal Museum, Wellington (James Hector, Director)			
Cl 160	a Collection of minerals, containing magnetic uron, hematite, ColomsilMuseum, chrome, copper, lead, zmc, and manganese ores		
Cl 101	b Specimens illustrating the classification of New Zealand coals, petroleum from Sugar-loaf Point, Walapu, Wapawa.		
Cl 102	c Marble from Collingwood, Nelson		
Cl 104.	d Steatite from Parapara Volley, Nelson.		
	8 Kennedy Brothers, Nelson.		
Cl 101	a Coal from the Brenmer mine, and coke manufactured from it	Coal and fire-	
Cl 104	b Raw and ground fire-clay		
9 Albron Coal Company, Nelson			
Cl 101.	Coal from Negakanaw	Coal	
10 Retd, Alexander W., Canterbury.			
Cl 101	Coal from Kowar Pass	Coal	
	11 Oakden, J J, Canterbury.		
Cl 101	Anthracite coal from Lake Colerıdge	Anthracite.	
	12 Rowley, Wilson, \& Co, Otago.		
Cl 101.	Coal from Shag Point, Palmerston.	Coal	
13 Ross, A, Poverty Bay, Auckland.			
Cl 101.	Petroleum	Petroleum.	
	14 Wilson, W., Christchurch.		
Cl 102	Hewn white and yellow limestone.	Lupestone	
Metallurgical Products.			
15 New Zealand Commasstoners.			
C. 110	Specimens of alluvial gold, and gold bearing quartz from Auckland, Westland, and Otago, collected by the Bank of New Zealand	Gold and silver in quartz and bars	
16 Government of New Zealand.			
Cl 110	Specimens of alluvial gold from Nelson and Westland, and of auriferous quartz from the West coast, specimens of alluvial gold from Otago, bars of melted and refined gold, bars of chloride of silver, and silver, model representing gold exported from New Zealand, 1872-75		
17 Nelson Committee.			
C1 110	Specimens of auriferous quartz from Reefton		
	18 Reefton Committee.		
C. 110	Specmens of aurferous quartz from the Inaugahua and Lyell districts, Nelson		
Cl 110	19 Tolhurst, Gearge E, Bank of New Zealand Models of gold ingots.		
	Dep II-Chemicals	Candles, ouls, minerals, paints, varmishes, and pharmaceutical	
	1 Horter, John, Woolston, Canterbury		
Cl 201	Soap and mould candles		
3 Loutsson, T. B, Nelson.			
Cl 202	Paint made from hematite ore		
4. Johnston Brothers, Nelson.			
Cl 202	Umber and red pigments made from hematite ore		
4a Felton \& Co.			
C1 202	Varnısh made from Kaurı gum		

Fabries of vegetable, anımal, or mineral materials.

Fabrics of Vegetable, Animal, or Mineral Materials.
16 Moyle, Edward, Taranakı
Cl. 287. Cord made from phormum tenax.
17. Bevan, Thomas, jun , Otaki, Wellington.
Cl. 287. Rope made from Maorı dressed phormum, fish line, horse halter lead line twine.

18 Bevan and Sons, Otakr, Wellington
Cl 287. Cord and twine made from Maorl dressed phormum.
19 Kinross \& Co., Hawke Bay
Cl 287. Cordage and twines made from Maorl dressed phormum
20 Grant \& Co, Otago
Cl. 287 Cordage made from phormum

21 Auckland Patent Steam Rope Company
Cl, 287 Phormium rope
22 Canterbury Flax Association, Christchurch
Cl. 287. Taured and untarred coldage made from phoimium

23 Lennon, T, Chrstchurch.

Cl. 237 Cordage, ropes, and twines, made from phormium

24 Cook, James, Nelson
Cl 237 Mats and matting made from phormum
25 Sumons and Malcolm, Nelson.
Cl 287. Door mats made from phormium
26 Colonzal Museum. (J. Hector, Dırector)
Cl 237. 10 Maorı mats

26A Tarahora

Cl 2871 fancy mat, Maon manufacture
26в Chunnery, Charles, Addengton, Canterbury.
Cl 2871 bale, machıne dressed, washed, \&c 26c Taranakı Committee.
Cl 287. 1 bale machine dressed.
260 Cook, James, Nelson.
Cl 287 Mats and matting
26e Taylor, Mrs Rıchard, Wanganu, Wellıngton.
Cl 287 Ornamented satchel and table mat.
Institutions and Organizations.
Institutions and
26p Colontal Museum (J Hector, Dtrector) orgamzations

Cl 312 Garments and ornaments of the Maoris 27 National Museum at Washangton. (J Henry, Secretary)
Cl. 312. Garments of the Maoris

27A New Zealand Commessıoners
Cl. 312. Weapons of the Maoris.

Engineering, Architecture, Maps, \&c. 28. Government of New Zealand.

Cl 335 Geological maps of New Zealand, by J Hector.
29 Geological Survey Department (J. Hector, Director)
Cl 33j. Geological plans and sections.
30. Canterbury Museum (J. Von Haast, Director.)
C. 335. Geological plans and sections.

31a Hector, J.
C. 335 Rehef Model of New Zealand, geologically coloured.

32в Government of New Zealand
Cl 335 Topographical maps of the colony, engraved by E. Ravenstena.

33 Natıonal Museum, Washengton (J. Henry, Secretary)
Engmeering,
architecture, \&c.
Cl. 340 Canoe paddles of Maoris, skulls of Maoris and Moriorn from the Chatharm sslands

34 Woon, R W, Wanganuz
Cl 340 Canoe paddles of the Maoris
35 Government of New Zealand
Cl. 345 Statistics and census of New Zealand for 1874, prepared by - W R E Brown, Regıstrar-General
35A Hector, J

Cl 345 Translations and proceedings of the New Zealand Institute, Vols I to VII

35в Vogel, Str Juluus.
Cl 345. Handbook of New Zealand

Water colours		Painting.
	$\mathrm{Cl} 411$	35c Geologıcal Survey Department (James Hector, Director) Water colour sketches by W Cooper
Engraving and lithography		Engraving and Lithography. 350 New Zealand Commessioners.
	Cl 422	Pictures from W L Buller's "Burds of New Zealand," drawn by J. H Kenlemans
Photography		Photography
	Cl. 430	36 Burton Brothers, Dunedin. Views of scenery of South Island.
	Cl 430	36A Bothamley, A. T. Photographs of Maoris
	Cl 430.	37. Government of New Zealand. Views of scenery, dic, by H Deverıl
	Cl. 430	38 Taranaki Committee. Views of New Plymonth and surrrounding country
	Cl 430.	38 A Hector, J. Photographs exhibiting domestic life of the Maoris.
	Cl 430.	39 Mundy, D. L. Views of scenery, buildings, gold mining, \&c
Ranlway plant, \&		Railfay Plant, Rolling Stock, \&c. 40 Government of New Zealand
	C. 570	Photographs of engines and engmeering works used in New Zealand.
Arboriculture and forest products.		Arboriculture and Forest Products
		41. Cruickshank, J. D, Upper Hutt Sawing Mills, Wellington.
		42 Westland Committee. Specimens of woods with barks
		43 Taranakı Committee
	Cl. 601.	a. Specimens of woods
	Cl. 602.	b Barks of the Atawhero and the Pakatea, earth used by the Maoris as a mordant for dyes
	Cl. 602	c Dried ferns, fungus exported as food to China, esculent fern root, bird's nest fungus and curious parasite.
	Cl. 601.	44. Black, W. B, Amertcan Coach Factory, Wellington. Spectmens of woods.
	Cl. 601.	45 New Zealand Commessıoners Specimens of woods
	Cl. 602.	46 Graylıng, W S, Taranakı Bark of Hinau; blue earth used by the Maoris mixed with shark onl as blue pant
	Cl. 602.	4i. Colonial Museum, Wellington. (James Hector, Director) Tan barks native to New Zealánd
	Cl. 603.	49. Walker, Renwrcks, \& Co , New York. Kaurı gum.
	Cl. 603	50 Forbes, R. W, New York. Kauri gum.
Agricultural products.		Agricultural Products
		51. Banks, E H, Christchurch
	Cl. 620.	Oats and other cereals
	Cl. 620	Wheat 52 Wood, W D, Christchurch.

53 Cunningham, P., \& Co, Christchurch.
Cl 620 Wheat grown in Canterbury
54 Ruddenklaw, J G, Addıngton, Canterbury.
Cl 620 Wheat
55 Hooper and Dodson, Nelson
Cl 623. Hops.
56 Wilkin, Robert, Chrstchurch
Cl 624 Perenmal rye grass and cocks foot seed
57 Armstrong, J B, Chrstchurch
Cl 624 Phormium seeds
Animal and Vegetarle Products
58 Wilson, Thomas, Woolston, Canterbury
Anımal and venetable products.
Cl. 652. Saddle, harness, and shoemaker's leather, fancy coloured skins for shoemakers and bookbinders

59 Armitage, Taranakz
CL. 652. Dressed kip and calf leather.
60. Morrs, Thomas, Oamaru, Otago.

Cl 652 Gentleman's town saddle.
61 National Museum, Washangton (J Henry, Secretary)
Cl 652 a Specimens of Kıw, skeleton and bones of Moa
$\mathrm{Cl} 653 \quad \mathrm{~b}$ Egg of the Kıwı, model of egg of Moa.
62 Gllmour, John, Christchurch., •
Cl 656. Hams and bacon.
63 New Zealand Provisıon and Produce Company, Chrstchurch.
C. 656. Preserved meats
64. Narrn, Davzd, Addington, Canterbury
Cl. 656. Tomato sauce.

65 Trent Brothers, Woolston, Canterbury
Cl 657. Chicory in different stages of preparation.
66 Smuth, James, Nelson
CI 660 Fruit vines
67. Henderson and Farrah, Wanganuı

Cl 660 Ale and Porter
Horticulture
68. Coates, Laning, Christchurch
Cl. 707 Lave ferns.

East Aisle, Columns 1 to 5
Dep. VI-Agricultural Products.

1. Banks, E. H, Chrıstchurch

Agricultural products
Cl 620 Oats and other cereals
Oats, \&e.
2. Wood, W D , Christchurch.

Cl 620. Wheat
3 Cunnıngham, P, \& Co , Chrestchurch
Cl 620 Wheat grown in Canterbury.
4 Ruddenklaw, J G, Addıngton, Canterbury.
Cl. 620 Wheat

5 Wilkins, Robert, Chrestchurch
Cl 624 Perennal rye grass and cocks foot seed
6 Peter, W. S, Anama, Ashburton, Canterbury.
Cl. 667. Merino Wool.

	7. Bealy, Samuel, Canterbury. Menno and Romney Marsh wool
C. 667.	8. Rutherford, A. Wr., Amuri, Nelson.
C. 667.	Merino wool.
	9. Anstey, G. H, Amuri, Nelson
C1. 667.	Mernno wool.
	10. Wason, J. Cathcart, South Rakaia, Canterbury. Wools.
C. 667.	11. Hall, John, Hororata, Canterbury. Merno wool.
C. 667.	12. Ruckman, F. M., Rangiora, Canterbury. Romney Marsh wool.
CL. 667.	13. Braithwatte, Arthur, Hutt, Wellington. Romney Marsh wool.

Dep. VII-Oriamertal Trebs and Shrebs.

1. New Zealand Esculent Fern Root.

Cl. 707. Root will germinate if crushed and planted in nch soll and shady place. Collection of ferns.

I.-General and Geographical.

a. Sutuation and Area.

North and South Islands

Total area.

Separate areas.

Forth Island prorinces.
*uth Island provinces. 14 15\%.

Sinus of 601t!
colony of New Zealand consists of two principal slands called the North and South Islands, and a small island at the southern extremity called Sterrart Island. There are also several small uslets such as the Chatham and Auckland Isles that are dependent on the colong. The enture group hes between 34° and $48^{\circ} \mathrm{S}$ lat and 166^{3} and $179^{\circ} \mathrm{E}$ long. The two princupal islands with Sterrart Island extend in length 1,100 mules, but their breadth is extremely variable, ranging from 46 mules to 250 mules, the average being about 140 mules , but no part is anywhere more distant than 73 mules from the coast.

Sq miles. Acres
The total area of New Zealand is about The total area of the North Island being The total area of the South Island being The total area of Stewart's Island bengg

$$
\begin{aligned}
& \text { - } 160,000 \text { or } 64,000,(x 00 \\
& \text { - 44,000 „ } 28,000,010 \\
& \text { - 55,000 ", 36,000,000 } \\
& 1,000 \% \quad 640,00.0
\end{aligned}
$$

It wll thus be seen that the total area of New Zealand is somewhat less than Great Britan and Ireland. The North and South Islands are separated by a strait only thurteen miles across at the narrowest part; presenting a feature of the greatest importance to the colony from its facilitating inter-colomal communication between the different provinces without the necessity of saling right round the colony.
The North Island was up to this rear divided into four promnces, riz, Auckland, Taranakı, Harke's Bay, and Wellington ; Taranaki and Harke s Bay lie on the west and east coasts respectivelr, between the two more important provinces of Auckland on the north, and Wellington on the south
The South Island was divided into five prornces, viz , Nelson, Marlborough, Canterbury, Otago, and Westland (Southland was for a short time an inilependent provnce), Nelson and Marlborough are in the north, Canterbury in the centre, Otago 10 the south, and Westland to the west of Canterbary.
These prorinces will, however, in 18 i7 be abolished and dinded into counties and Provinchal Government whll cease to exist
The following are the names of these counties -
In the North Island-Mongonu, Hohanga, Bar of Inlands, Whargare, Hobson, Rodner, Waitemata, Eden, Manukau, Coromandel, Tbames, P'abo,

Waıkato, Waıpa, Raglan, Kawhıa, Taranaki, Patea, Tauranga, Whakatam, Cook, Warva. Hawke's Bay, Wanganu, West Taupo, East Taupo, Rangitike1, Manawatu, Waipawa, Hutt, Wairarapa West, Warrarapa East, counties.

In the South Island-Sounds, Marlborough, Kaikoura, Wamea, Collngwood, Buller, Inangalma, Amuri, Cheviot, Grey, Ashley, Selwyn, Akaroa, Ashburton, Geraldine, Waimati, Westland, Waitakı, Waikouarti, Mamototo, Vincent, Lake, Peninsula, Taierı, Bruce, Clutha, Tuapeka, Southland, Wallace, Fiord counties, and Stewart Island county

New Zealand 18 very mountanous with extensive plamns lying princpally on Mountams and the eastern side of the mountain range in the South Island, while in the North plans Island they lie on the western side, the interior or more mountanous parts being covered with dense forest, while those of the South Island are open for the greater part and well grassed and used for pastoral purposes.

In the North Island the mountains occupy one tenth of the surface, and do not exceed 1,500 feet in height with the exception of a few volcanic mountans that are very lofty, one of which Tongariro (6,500 feet) is still occasionally active, Ruapelm (9,100 feet) and Mount Egmont (8,300 feet) are extunct volcanoes that reach above the limit of perpetual snow, the latter is surrounded by one of the most extensive and fertile districts in New Zealand.

The range in the South Island, known as the Southern Alps, is crossed at intervals by low passes, the greatest height of the main range is 10,000 feet to 14,000 feet and it has extensive snow fields and glaciers

b. Hestory.

New Zealand appears to have been first discovered and first peopled by the First settlement Maorn race, a remnant of which stull inhabits parts of the islands At what time by Maoris the discovery was made, or from what place the discoverers came, are matters which are lost in the obscurity which envelopes the history of a people without letters. Little more can now be gathered from their traditions than that they were immigrants, not indugenous, and that when they came there were probably no other inhabitants of the country Smularity of language indicates a northern origin, probably Malay, and proves that they advanced to New Zealand through vanious groups of the Pacific islands in which they left deposits of the same race, who to this day speak the same or nearly the same tongue When Cook first visited New Zealand he avaled himself of the assistance of a native from Tahit, whose language proved to be almost adentical with that of the New Zealanders, and through the medrum of whose interpretation a large amount of mformation respecting the country and its mhabitants was obtaned which could not have been had without it.

The first European who made the existence of New Zealand known to the Discovery br civiluzed world, and who gave it the name it bears, was T'asman, the Dutch Tasman in 1642 navigator, who visited it in 1642 Claims to earlier discovery by other European explorers have been rassed, but they are unsupported by any sufficient evidence Tasman did not land on any part of the islands, but having had a boat's crew cut off by the natives in the bay now known as Massacre Bay, he contented himself by sailing along the western coast of the north island, and quitted its shores without taking possession of the country in the name of the government he served, a formality which, according to the law of nations (which regards the occupation by savages as a thing of small account), would have entitled the Dutch to call New Zealand thers-at least so far as to exclude other civizzed nations from colomzing it, and conferring on themselves the right to do so From the date of Tasman's flying visit to 1769, no stranger is known to have risited the rslands In the latter year Captan Cook reached them in the course of the first of those voyages of great enterprise which have made his name illustrious

The first of Cook's voyages of discovery began in August 1768, when he Visited by was sent to Tahiti to observe the transit of Venus, after a run of 86 days from Captan Cooh Tahiti, having touched at some other places, he sughted the coast of New ${ }^{1 n} 1769$ Zealand on 6 th October 1769 On the 8th he landed in Poverty Bay, on the east corst of the North Island

c. The Natire Race.

Orisin of the Maon race.

Traditional hustory

Native popula.
tion. Northern Island.

Forty years ago

South Island, native populatwon.

Veretable products.

There is not any record as to the orginn of the Maori race Its arrival in New Zealand, according to tradition, is due to an event which, from its physical possibulty, and from the concurrent testimony of the various tribes, is probably true in its main facts.
The tradition runs, that generations ago a large mgration took place from an island in the Pacific Ucean, to which the Maons gives the name of Hawanki, quarrels among the natrves having driven from it a chief, whose canoe arrived upon the shore of the North Island of New Zealand. Returning to his home with a flattering description of the country he had discovered, this chef, it is said, set on foot a scheme of emigration, and a fleet of large double canoes started for the new land. The names of most of the canoes are still remembered, and each tribe agrees in its account of the doings of the principal "c canoes," that is, of the people who came in them after therr arnval in New Zealand, and from which the descent of the numerous tribes are specified. Calculations, based on the gemealogical sticks kept by the tohungas or prieste, have been made, that about 20 generations have passed since this migration, which would indicate the date to be about the begnning of the 15 th century. The position of Hawauki is not known, but there are several islands of a somewhat simular name
The Northern Island now contains a native population of about 45,000, divided into many tribes, and scattered over 45,156 square miles.
The most important tribe is that of N gapuh, which mhabit the northern portion of the North Island, in the province of Auckland. It was among the Ngapuhi that the seeds of Chinstianty and of civilzation were first sown, and among them are found the best evidences of the progress which the Maor can make.
Forty years ago the only town in New Zealand, Kororareka, Bay of Isiands, existed withn their terntones Their chiefs, assembled in February 1840, near the "Wattang1" or "Weeping Water" Falls, were the first to sign the treaty by which the Maoris acknowledged themselves to be subjects of Her Majesty; and although under the leadership of an ambitious chief, Hone Heke, a portion of them in 1845 disputed the Enghsh supremacy, yet when subdued by English troops and native allies (their own kansmen) they adhered imphicitly to the pledges they gave, and since then not a shadow of doubt has been cast on the fidelity of the "Loyal Ngapuhi."
The South Island natives number but 3,000, and they are spread over an immense tract of country, living in groups of a few famules on the reserves made for them, when the lands were purchased-for the whole of the South Island has been brught from the native owners by the Government. Whatever may be the cause, it is a fact that the natives of the South Island are apathetic and careless, as compared with their brethren in the north.

As a rule the Maons are middle sized and well formed, the average height of the men being 5 ft .6 in ; the bodies and arms being longer than those of the average Enghshman, but the leg bones being shorter, and the calves largely developed. In bodily powers the Englishman has the advantage. As a carrner of heavy burdens, the native is the supenor, but in exercises of strength and endurance, the average Enghshman surpasses the arerage Maon

d. Vegetation.

The indigenous forest of New Zealand is evergreen, and contans a large varnety of valuable woods (see section on this subject) Amongst the smaller plants the phormium tenax, or New Zealand flax, is of especial value, whilst large tracts of country are covered with indigenous grasses of high feeding quality, which support mullions of sheep, and have thus been productive of great wealth to the colony. Many of the more valuable trees of Europe, America, and Australia have been introduced and have flournshed with a vigour scarcely ever attained in their natural habitats In many parts of the colony the hop grows with unexampled luxurance, whlst all the European grasses and other useful plants produce returns equal to those of the most favoured localities at home. Frut too 13 abundant all over New Zealand. Eren as low as the latitude of Wellington, oranges, lemons, citrons,
and loquats are found, whilst peaches, pears, grapes, apricots, figs, melons, and, indeed, all the ordinary fruits of temperate climates abound. Root and vegetables of all kinds grow abundantly

e Agruculture.

Allusion has been made to the area of country occupied by mountain ranges Agriculture in New Zealand, and the general position they occupy with reference to the geography of the country; and it may be further stated that, with the exception of the alpine ranges, every part of the country is more or less adapted for settlement of some kind A clearer idea of the value of the country, and the purposes to which it is applicable is, however, obtanned by a comparison of the rock formations, the decomposition of which produces the soils, as shown in the following table, from a study of which it will be found that in the whole of the colony there are about $12,000,000$ acres of land fittel for agriculture, wheren the form of surface is surtable, and about $50,000,000$ which are better adapted for pasturage; but from these estimates allowance must be made for about 20,000000 acres of surface at present covered by forest

The following table gives a classification of the lands according to the Classification of geological subsoll.-

		North Island.	South Island	Totals
1	Fluviatile drifts, one-third agricultural	8,447	6,286	14,733
2	Marine tertiary, two-thurds agricultural (rest pastoral)	13,898	4,201	18,099
3	Epper secondary, coal bearing, pastoral	2,390	2,110	4,500
4	Palcozore, pastoral . -	5,437	20,231	25,668
5	Schistose, pastoral - -	-	15,308	15,308
6	Granite, worthless -	-	5,978	5,978
7	Volcanic, one-sixth agncultural (rest pastoral)	14,564	1,150	15,714
	Square miles - -	44,736	55,264	100,000

It would be beyond the scope of this description to give in detail the endless Varieties of sori varieties of sonl which are found in New Zealand, but attention may be drawn to the chief pecuharities. In the north of Auckland, including the lower portion of the Waikato valley, light volcanic soils prevall, interspersed with areas of clay marl, which in the natural state, is cold and uninviting to the agriculturst, but which may, nevertheless, under proper dranage and cultivation, be brought to a high state of productiveness The latter are, however, almost universally neglected at the present time by the settlers, who prefer the more easily worked and more rapidly remunerative solls derved fiom the volcanic rocks
In the western district, which extends round to Taranakı and Wanganui, Western district the soil is all that can be desired, and is probably one of the richest areas in the southern hemssphere The surface soil $1 s$ formed by the decomposition of calcareous marls, which underhe the whole country, intermuxed with the dubris from the lava-streams and tufaceous rocks of the extunct volcanic mountains The noble character of the forest growth which generally covers the area, proves the productiveness of its soil, although at the same tume it greatly impedes the progress of settlement.

In the central district of the North Island, from Taupo towards tiue Bay of Central district Plenty, the surface soil is derived from rocks of a highly siliceous character, and large areas are covered with little else than loose frable pumicestone Cowards the coast and in some himited areas near the larger valleys, such as the Wakato and the Thames, and also when volcame rocks of a less and description appear at the surface, great ferthity prevals, and any
southern district

Western side

Anmals

Whaling

Sperm whale

Black whale.

Value of whale oul

Fur seal.
deficiencies in the character of the soil are amply compensated for by the mag. nuficence of the climate of this part of New Zealand On the eastern side of the slate range, which extends through the north island, the surface of the country is cenerally formed of clay marl and calcareous rocks, the valieys Géng occupied by shingle deposits derived from the slate and sandstone rocks of the back ranges, with occasional areas of fertile alluvium of considerable extent It is only the latter portions of this district which can be considered as adapted for agnculture, while the remander affords some of the finest pastoral land to be met with in any part of the colony.

In the south district the chief agricultural areas are in the vicinty of the sea coast, but there are also small areas in the interior, in the vicinity of the lake districts, where agriculture can be profitably followed The alluvial soil of the lower part of the Canterbury plains and of Southland are the most remarkable for their fertulity; but scarcely less important are the low rolling downs formed by the calcareous rocks of the tertiary formation, which skirt the higher mountan masses, and frequently have their quality improved by the disminegration of interspersed basaltic rocks.
On the western side of the sland the rapid fall of the nvers carres the material derived from the mountan ranges almost to the sea coast, so that comparatively small areas are occupied by good alluvial soll but these, faroured by the humidity of the clumate, possess a remarkable degree of fertulity
By the proper selection of soll, and with a system of agriculture modified to surt the great variety of clmate which necessarly prevals in a countiy extending over 12 degrees of temperate latitude, every variety of cereal and root crop may be successfully rassed in New Zealand; and with due care in these respects, New Zealand will not fail to become a great producing and exporting country of all the chief food staples

f. Anumal Lufe.

Until the systematic colonization of the sland New Zealand was very destitute of terrestrial or anmal life surtable to the wants of civilized man, the only animals being a small rat, a dog (which had probably been introduced since the islands were peopled by the present race), and pigs, the produce of some animals left by Captain Cook and the navgators that succeeded him, through the agency of the early missionaries and by whale ships, many useful anmmals and plants were then introduced In more recent years all kunds of domestic ammals, many of very high quality, have been monorted, meluding valuable breeds of sheep and the American llama. Domestrc poultry of almost evers species has also been introduced and, through the agency of the Acclimatization Societies. many species of game (such as hares, pheasants, partridges, black game, red grouse, quall, \&c) and a host of the smaller burds of Europe and other countries have been spread throughout the islands The rivers too of New Zealand, which formerly produced only the eel and a few small salmonord fish of little value, are gradually being stocked with trout, whilst perch, tench, and carp have also been satisfactorly acclımatzed.

g Whalng.

New Zealand is the chief centre of the Southern Whale Fisheries, and at certan seasons the less frequented harbours are visited by whalers for the purpose of refitting and carrying on shore fishing and barrelling their oul These are generally American ships, but Otago and Auckland whalng ships are also equipped by New Zealand owners The sperm whale abounds in the region of the ocean lying to the NE of New Zealand,but stragglers are found all round the coast In the open sea and to the south the most prized whale next to the sperm is the black whale or tohoro (Eubalonus Austrais) n hich is like the right whale of the North Sea, but with baleen of less value Along the shore the chief whales captured are the Humpback (Megaptera) and Rorguals (Sibaidus), which become rery abundant when not disturbed for a ferr years In $1875,20,845$ gallons of black whale oll were erported, valued at 4,100 l and 7,775 gallons of sperm, valued at $2,894 l$
The sea bear or fur seal (Arctocephalus cincrius) is found in the remote parts of the coasts, a thousand skus beng taken every year by boating partes

Value of eal

 shins.
h Fisheries.

The fikherres promise to become an mportant industry About 180 species 180 speceses of of fish have been found in the New Zealand seas, and in the nvers, and of this fish number about 40 are commonly used as food The supply is abundant on some parts of the coasts, and the quality of the fish on the whole $1 s$ better than in most other countries The deep sea fish are not yet well known, as the Deep sea fishery fiahermen rarely leave the haubours and the mmodiate vicinty of the island. neglected.
Several companies have been formed for developing the deep sea fisherres, but they soon break down, as there is not yet in the colonv a sufficiently concentrated population to consume the enormous supply of fresh fish they bring to market Fish-curing establishments, however, thrive well, especially in the, south, where species alled to the haddock are found abundantly
The chief species of fish used as food on all parts of the coast ane the hapuka Vareties (Oligarus gigas) a sea perch that grows to 130 lbs weight The tarakih1 (Chello-dactylus macropterus), mokn (Latris cllans), both sea breams, the ana (Dajus lorsteri) sea mullet, the patiki, by which name are known several delicious kinds of flounders, soles, and other flat fish In the north we have as peculuar species the grey mullet (Mugil perusu), the snapper or sea braze (Payius unicolor), the trevally or yellow tall (Caranax georgianus), the hautur or horse mackerel (Trachurus trachurus), and in the south the lohikohn or trumpeter (Latris hectea), the most hughly prized fish in the colony, and generally sold at $2 s$ ($6 d$ per 1 ib , the marere or butter fish (Coridodas pullus) and the red cod (Lotetta bacchus) from which admirable smoked fsh like the famous Findon haddock of Aberdeen are prepared
Bessdes the above are many occasional and seasonal vistors to the coast, the Occasional chief bemg the kngg fish (Serold lalandu), the true mackerel (Scombar ${ }^{\text {nsitors }}$. Australasicus), the frost fish (Lipidopus candatus), the warehon (Neptonemus brama), the John Dory (Teus faber), the barracouta (Thyrsites atun), the pilchard (Clupea sagax), and many others

On the whole the fish found on the New Zealand coasts resemble those on Resemblance of the coast of Spann in the Bay of Biscay The rivers and lakes are full of large fisay of Biscay and excellent eels, and a few species of indigenous salmonoids like the grayling (Piototrectes oxyhynchus), and smelt (Retropinna richardsom), but of late years the brown and speckled trout and the sea trout have been successfully established in many of the streams Salmon, both from Scotland and the Pactic coast of North America, have also been named for mported ova, and it is anticipated, that in a ferw years they will be equally well established
There is a singular absence of crabs and lobsters, the only edible crustacea in New Zealand being the sea and fresh water crayfish or roura, the latter heing of enormous size Shell fish of all kinds are very ubundant, and form the staple food of the native population on the coast

II -Form of Governmbnt

The colony has up to 1876 been divided into mine provinces, each of whach Dirision unto has had an elective Superintendent, and a Provinclal Counci, also elective 1876 has In each case the election was for four years, but a dissolution of the Promncial Councl br the Governor could take place at any time, necessrāting a fresh election, both of the Councl and of the Superntendent The Superintendent was chosen by the electors of the old province, the members of the Piovincial Council by those of electoral districts
The Provncial form of government has this year (1876) been abolshed, and Present sulthe country divided into counties and road boards, to which, and to the dinsinn iuto municipalities, local adminstration formerly executed by the Provincal counties Government is confided The full extension of this important change in the form of government does not come unto operation untal January 1877
Executive power is nominally vested na a Governor apponted loy the Queen, Form of but he $1 s$ bound to act, as is Her Majesty herself, in conformity with the Gooeriment principles of responsible Goverument, which for practical purposes vests the direction of affars in the representatives of the people In cases of duect Imperial interest the Governor would no doubt act under orders of the Imperial Government Legislative power is vested in the Governus and two chambers, one called the Legisiative Council, consisting at pesent of forty-mue members
nominated by the Governor for life, and the other the House of Representatives, elected by the people from time to time for five years, and now consisting of seventy-eight members
Electoral franchise

Any man of 21 years and upwards, who is a born or naturaluzed British subject, and who has held for six months a freehold of the clear value of $£ 50$, or who has a leasehold with three years to run, or of which he has been in possession for three years, or who is a householder having occupied for six months a house in town of the yearly value of $£^{3} 10$, or if not in a town, then of the yearly value of ${ }^{2} 5$, can by registration quallfy himself to vote for the election of a member of the House of Representatives Every man who has for six months held a miners right on a gold field is entitled to vote in a district partly or wholly situated within the limits of the gold fields, provided Qualficationsfor that no such person is otherwse qualfied to vote within such district Any membership of the House of Representatives person qualified to vote for the election of a member of the House of Representatives is also, generally speaking, qualified to be humself elected a member of that House
Disqualifications. There are, however, certam special disqualifications for membership, such as grave crime, bankruptcy, and paid office (other than what is called political) in the colonial service Four of the members of the House are natives, elected under a special law by natives alone
The Colonal Legsslature, which meets once a year, has power generally to make laws for the peace, order, and good government of New Zealand The Acts passed by it are subject to the disallowance, and in a very few cases are requred to be reserved for the stgnification of the pleasure of Her Majesty, but there have not been, in the course of the twenty years since the constritution was granted, more than half a dozen instances of disallowance or iefusal of assent The Legislature has also, with a few exceptions, ample power to modify the constitution of the colony Executive power is administered as before stated in accordance with the usage of responsible government as it exists in the United Kingdom
The Governor represents the Crown, and his munsters must possess the

Form of Government assmmulated to the Impental

Crown lands and cold fields vested in Colomal Parlament
Munieipal government
Powers of -
Colomal
Legislature confidence of the majority in the House of Representatives Except in matters of purely Imperial concern, the Governor as a rule acts on the advice of his minsters He has power to dismiss them and appoint others, but the ultimate control rests with the representatives of the people, who hold the strings of the public purse
Legislation concernng the sale and disposal of Crown lands, and the occupation of gold fields, is exclusively vested in the Colomial Pariaament
There are in most towns in the colony, muncipal bodies, such as mayors and town councils in England, invested with ample powers for sanitary and other municpal parposes, and there are in various country districts elective road boards clarged with the construction and repar of roads and bridges, and with other local matters There are also central and local boards of health appointed under a Public Health Act, and having authority to act vigorously, both in towns and in the country, for the prevention and suppression of dangerous infectious diseases
The above short summary of the system of government in New Zealand suffices to show that the leading characteristics of the British Constitution-self-government and localised self-administration-are preserved and in fact extended in the New Zealand Constitution, that there is ample power to regulate its institutions, and to adapt them from time to time to the growth and progress of the colony, and to its varied requirements, and that it is the pruviege of every colonist to take a personal part to some extent, etther as elector or elected, in the conduct of public affars, and in the promotion of the welfare of the community

III-Climate

a. Nature of Observatoons.

Meteorological obser vations
undertaken by a department established by Government In that year eleven Stations of stations, equipped with carefully compared mstruments, were established at instruments Mongonul, Auckland, Napier, New Plymouth, and Wellington in the North Island, Nelson, Christchurch, Dunedin, and Invercargil, and some years later at Hokutika and Bealey in the South Island

- At a later date several new stations were established, making in all fifteen Total number 15 stations, from which monthly returns are sent to the head office in Wellnggton.
From these the following returns are prepared for publication -
I A provisional return obtaned by telegraph of the results at the chief towns, and which is appended to the monthly report of vital statistics
II An abstract of the results for each month compared in the averages for Publieation of the same month in previous years is published in the Gazette and crrculated in returns a separate form to all correspondents These abstracts are intended for the guidance of agricultursts and other persons who require to watch the pecuLuarties of each station closely
III. Tabular abstracts in the same form that has been followed since 1853, are prepared for the annual volume of statistics.
IV A bl-annual report on the climate, embodying all the most interesting results, 18 published in 8 vo pamphlet and largely creulated
In addition to the above, dally telegraphic reports of the weather are oltaned Daly telegraphic at 9 am from 25 stations, and are suspended for public information at all the ${ }_{25}^{\text {reports fations }}$ shippung ports in the colony Sunce 1874 this branch has been placed under the charge of a special signal officer, who 1 ssues warnngs of the probable arproach of storms to the different seaports
The followng tables embody the averages which have been ascertained for the different elements of the climate of New Zealand.

b. Temperature.

The elumate resembles that of Great Brtan, but is more equable, the clumate. extremes of dally temperature only varymg throughout the year by an average of 20°, whist London 187° colder than the North, and 4° colder than the South Island of New Zealand The mean annual temperature of the North Island 1s 57°, and of the South Island 52°, that of London and New York being 51°.
The mean annual temperature of the different seasons for the whole colony Mean annual is, in spring 55°, in summer 63°, in autumn 57°, and in wnter 48°.

Comparative Temperatcres of New Zearand.
I.-Generat Abstrict.

H-Monthle Medns

		Dec	Jan	Feb	Mar.	Aprl	May	June	July	Aug	Sept	Oct	Nov
Mongonui	-	6620	6710	6728	6.3 30	6260	5666	5396	5288	5816	5504	58.46	6116
Auckland	-	6530	6782	6782	6548	6170	5630	5288	5180	5234	5486	6774	6026
Taranakı	-	6278	6566	6548	6242	5936	5463	5180	5072	5000	5324	5576	5900
Napier	-	6548	6548	6746	b1 88	5738	5162	4820	4928	5000	5414	5846	6080
Wellington	-	6080	6296	6,14	6026	5702	5270	4946	4838	4838	5180	5432	3720
Wanganu	-	6390	6251	6358	6081	5632	5372	4458	4612	4901	52.97	5511	3823
Nelson		6116	6338	6368	6026	5684	5036	4676	4658	4658	5123	5432	5774
Hokitaka	*	5864	5900	5990	5648	5360	4988	4604	4514	4550	4928	5144	5414
Bealey *	-	5396	5504	5540	5252	4946	4370	3758	3740	3722	4352	4550	4928
Christchurch	-	6062	6188	6188	5792	54, 68	4802	4334	4316	4388	4964	5306	5720
Dunedin	-	5666	5684	5792	5540	5198	4802	4424	4262	4388	4748	5129	5288
Invercargl	-	5774	55 28	5846	5432	5018	4532	4172	4154	$43{ }^{4} 59$	4892	5072	5is 96
Queenston	-	5498	6998	6043	5792	5162	4701	3991	3927	4021	4512	5112	5587

III -Daily Range of Tcmperature

a. Difference of the Mean Daily Extremes

	Dee	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Year
Mongonu	1545	1674	1530	1909	1818	1692	1530	1566	1692	1602	1458	1674	1638
Auckland.	1890	1980	2088	1980	1908	1692	1530	1548	1674	1584	1656	1800	1782
Taranahı	1962	2160	2016	9142	1944	1584	1530	1440	1656	1800	1674	1854	1818
Napier	1872	2160	2178	1782	1512	1494	1386	1530	1512	1800	1818	1908	1746
Wellington -	1332	1350	1242	1242	1170	11. 16	1062	1062	1152	1188	1224	1350	1204
Yelson	2034	2340	2070	2124	1710	1785	1908	1908	1962	2106	2142	2914	2016
Hokitaka	1134	11.16	1832	1260	1278	1386	1458	1368	1476	1566	1224	1152	1314
Christchurch	1710	1836	1656	1746	1710	1638	1494	1656	1602	1620	1854	1908	1710
Dunedin	1620	1566	1566	1512	1368	1152	1044	1062	1206	1332	1368	1530	1363
Invercargal -	2230	2178	2230	2268	1800	1602	1764	1692	1944	2232	2106	2106	2016

Comparison
between clumate coasts

The climate on the west coast of both islands is more equable than on the east, the difference between the average summer and winter temperature being nearly 4° greater on the south-east portion of the North Island and 7° on that of the South Island than on the south-west, on which the equatornal winds impinge This constant mind is the most important feature in the meteorology of New Zealand, and is rendered more striking by comparing the annual fluctuathon of temperature on the opposite sea boards of the South Ysland, which have a greater range of temperature by 18° at Christchurch on the east than at Hokitika on the west

c Rainfall

 Rainfall in The observations that have been taken show that the northein part of New of Insthern portion Zealand is within the influence of the sub-tropical winter rainfall The probability of ramfall in winter in that part of the colony being twice as large as in summerIn southern
In the south, however, the ranfall though uregular, is distributed more equally over the year The chref difference to be observed, is that on the west coast sprmg rains preval, and summer rains on the east coast, whule in the muddle of the colony the driest season is autumn, and in the south it is the winter and spring.
Contrast between The contrast betreen the ranfalls on the east and west coasts, as with the coast and west temperature, is most striking Thus, in the North Island, Napier on the east has only half the amount of rain that falls in Taranakı on the west But the South Island with its longitudinal range of lofty mountans, exhibits the feature in a still more marked manner, for the ramfall on the west is nearly five times the amount on the east The evcess of precipitation on the coast is clearly illustrated by the distribution of the glaciers on the opposite sides of the range Those on the west slope have an excessive supply of snow, and descend to a line where the mean annual temperature is 50° Faht, while on the east slope they descend only to the mean annual temperature of 37°. The winter snow - Ine on the southein Alps, on the east side is 3,000 feet, and that on the west side is 3,700 feet

I－Review of the Proportiong of Rain in New Zealand

Stations	Baxnfall．					Probabulity of Ravn					$\left\{\begin{array}{l} \text { Mean } \\ \text { Max } \\ \text { Mo 24 } \\ \text { Hours } \end{array}\right.$
	$\begin{aligned} & \text { 荡 } \\ & \hline \end{aligned}$	$\stackrel{\text { eg }}{\underset{\sim}{a}}$			Total for Year．	产	$\stackrel{\text { 吴 }}{\stackrel{E}{E}}$	蓸 寝		Year．	
North Xsland	Percentage				Inches			，			
Mongonux	56 24 28 17				$\begin{array}{r} -58182 \\ 47 \\ \hline 008 \end{array}$	0 68	050	083	089	047	3500
Auckland	3829	25	19	24		061	052	038	041	047	3358
Taranakı		27	20	23	59442	0． 52	051	035	038	0 d4	$\bigcirc 520$
Napier	29 39		85	22	$\begin{aligned} & 36 \\ & 51504 \\ & 540 \end{aligned}$	026	022	024	017	028	－
Wellington	$\begin{aligned} & 89 \\ & 89 \end{aligned}$	24	2			051	048	037	040	043	2610
South lsland．											
Nelson－	87	26	29	17	61599	027	085	022	018	028	7189
Hokitiks	24	28	28	20	111658	058	061	057	048	054	3532
Bealey－	22	28	81	18	105840	058	061	056	047	054	3512
Christohurch	31	21	25	28	25583	086	088	088	0 284	080	1622
Dunedin	23	23	23	26	81688	051	055	058	054	054	8079
Southland	26	23	26	26	49732	047	047	040	049	046	1180

II－Totals of Monthay Ratneall in Incues

	Dec	Jan	Feb．	Mar	April	May	June	July．	Aug	Sept	Oct	Nov
Mongonua	2399	3209	7787	1492	2882	5461	8319	6598	6241	5831	3701	4272
Auchland	8409	2071	3278	3150	3402	4771	5721	5279	4331	4331	3520	3758
Taranakı	4921	8251	\＄ 908	2579	3520	7720	5914	6299	5177	5258	5969	4858
Napmer	5630	3571	8650	1180	1358	1532	8409	3681	6870	2441	1539	1291
Wellington	3999	3882	4453	8780	3280	4540	5212	5658	4299	3941	5000	8500
Nelson	4319	5358	8351	2063	3221	5177	4441	6319	6238	6819	5000	4815
Hokitika	12169	8902	9871	6752	8611	6370	8240	9638	9130	5878	13402	12690
Realey	14087.	9681	8902	3021	7433	8079	5019	10378	7799	5811	15501	8738
Christchurch	1622°	2311	2370	1752	1811	2280	8189	8449	2819	1161	2142	2130
Dunedin	3018	${ }^{3} 599$	2142	2220	2122	3949	2441	2600	2228	2000	2500	2869
Southland	3623	5279	3981	3980	3572	5401	5019	3441	4390	2661	3929	\＄ 520

III－Probability of Rain．

	Dec	Jan．	Peb	Mar	April	May．	June	July	Aug	Sept	Oct	Nov	Range．
Mongonus	037	033	030	022	034	060	067	068	069	062	054	034	047
Auchland	098	029	032	030	038	056	064	056	063	056	058	047	035
Taranak	089	081	035	085	038	051	051	050	054	049	055	048	029
Wellington＊	040	034	087	030	040	051	050	052	050	047	044	088	022
Hokutika	064	057	048	046	055	044	046	055	056	047	071	068	027
Christchurch	（1） 80	028	027	024	021	026	088	034	086	027	037	084	017
Dunedin	065	060	058	055	056	054	051	046	056	049	060	058	014
Southland	085	048	035	038	058	055	051	046	044	088	054	054	023

IV－Maxima of Rannfali in Inches．

\square	Auckland．	Taranahz	Wellungton．	Nelson	Chnstchureh	Dunedun．	Southland．
Monthly Max．	14149	16598	10858	19961	6079	10099	10084
－	February	May	September	October．	June．	May	January
Yearly Max	57800	86099	51542	79370	30041	50795	63＊699
Yearly Min	86780	4885	41150	46311	19408	20780	41618

IV-Maxima of Rainfati in 1 nches-contenued

	1859	1860	1861	1862	1863	1864	1865	1866	1867	1808	1869
Temperature	543	54.4	586	51.2	504	520	509	507	498	490	510
Rain	227	291	275	473	580	510	637	472	416	464	427

Ramfall Periods of lasting drought are almost unknown in New Zealand, -and only in two instances do the records show a whole month at any station without rain The greatest day's rain recorded is $6 \frac{1}{2}$ inches at Auckland and 91 $\frac{1}{2}$ inches in Nelson.

Such heavy showers occur at the north-west stations, where the general average shows 70 inches in 85 days in the year. The opposite extreme is on the south-east, where 34 inches fell in 180 days

> d. Pressure of Avr.

Averagepessure The mean atmospheric pressure in New Zealand between lat 37° and $46^{\circ} \mathrm{S}$. decreases from $29 \cdot 981$ to 29804 nehes. The average pressure being for all stations 29919 For the corresponding north latitudes the average pressure is 30005 , but in the New Zealand area the fluctuations are much greater, and
Maxinum though frequent, are tolerably regular in those periods The maximum pressure occurs in April and the minimum in November. The extreme range of the Barometer is a little over 2 inches, and the average danly range from hourly observations is 0.043 inches

The following are the observed averages of pressure for a few of the principal stations:-

I-Pressure or Air in Incees, 29000 . .

-	Dee	Jan	Feb	Mar	A.prel	May	June	July	Aug	Sept	Oct	Nov	Year
Auckland	417	402	'433	508	535	425	390	-413	382	378	398	354	29981
Taranakı	346	339	354	480	492	394	358	370	308	287	284	280	29918
Nelson .	366	-307	350	417	-439	366	402	433	3 ar 0	-350	154	$\cdots 32$	29906
Christchurch	230	256	319	406	421	354	366	358	819	323	-220	173	29874
Fiokttra -	331	343	327	465	472	469	406	437	354	386	-276	260	29946
Southland -	205	232	-291	307	343	321	303	272	213	228	122	'138	29808

II -Monthly Range of Air Presstre

	Dec	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Year
Auckland	0657	0681	0.728	0756	0909	0961	1043	1051	0985	0886	0327	0835	1417
Taranakı	0710	0888	0886	0984	1028	0917	1004	1138	1024	1051	0929	0752	1594
Southland	1•193	1*122	0854	1039	1079	1240	1256	1248	1197	1094	1240	1169	1732

III.-Daily Amplitudi:

Dec	Jan	Feb	March	April	May	June	July	Ang	Sept	Oct	Nov
0038	0034	0038	0014	0050	0016	0041	0018	0041	0050	0022	0012

V-Hofrly Flucfuation of Atmospheric Pressore and Elastic Force of Vafour

e. Winds.

There is a marked prevalence of westerly winds thronghout all seasons, and Westerly winds. in all parts of New Zealand, but they are much modified by the form of the land North-east or countertrades impmge on the north-east coast especially North-easterly; during the summer months, bringing rain; and cold south-easters, having winds heavy storms of rain and snor, occur during winter in the south, but only on rare occastons

The westerly winds begin in the N N W. with heavy rain on the west coast, Action of winds and gradually veer to $S W$., when far brignt weather sets in on that coast; but the same south-west wind sweeping along the east side of the islands, bring heary strong weather locally known as "southerly bursters" and which from the shape of the coast reach the region of Cook's Strats as S E. storms; all the other winds are either land or sea draughts, with fine light weather, except on a few very rare occasions, whule curcular storms pass over the area

I-Approxtmate Winomose
Vartatuons fram the Mean, 29919 unches

\mathbf{N}	NE.	E.	SE	S	SW	W	NW.
+0009	+0.096	+0082	+0071	+0127	+0097	-0064	-0112

II-Frequenct of Wind in Pre-centages

Thunderstorms are most frequent in the districts where the changes of wind Thunderstorms. are most suddenly felt, from the moist equatorial currents to the cold polar currents of the S.W.

Peroods
ack bulb and radiation thermometer

Colony founded in 1839

White populathon

They are most frequent in spring on the west coast, except in the extreme southwest of Otago, where during winter some thunderstorms are of almost dally occurrence

There bemg no westerly station on that part of the coast this does not appear in the followng abstract -

Average Frequency of Thunderstorms

	Mongonul.	Auckland	Taranakı	Hokitika	Bealey	Christchurch	Dunedin	South. land
Winter	40	10	20	30	28	06	08	60
Spring	77	30	72	55	70	04	32	60
Summer	60	100	55	40	62	10	27	110
Autumn	05	40	20	20	18	10	05	65
Year -	18 2	180	167	145	173	30	72	295

The difference in the amount of cloud in the atmosphere is best illustrated by a reference to the average readings of the black bulb and radiation thermometer, for which comparison the stations on the opposite sea coasts of the Southern Alps has been tabulated, but the extreme readings of the black bulb thermometer, especially at the southern stations, are very remarkable, as they frequently reach to $175^{\circ} \mathrm{Fah}$.

		Christchurch, East Const, $42^{\circ} 33^{\prime} \mathrm{S} \mathrm{L}_{\text {. }}$			Hokitika, West Coast, $42^{\circ} 42^{\prime}$ S L		
		Insolation	Raduatron	Dfference	Insolation	Raduation	Difference
Seasons	Summer	18172	4478	86.94	8402	4838	3564
	Autumin	11192	3794	7398	7304	4172	3182
	Winter -	9122	2804	6318	61.70	3344	2826
	Spring	124 52	3434	9018	7502	3956	3546
	Year	15800	1454	14346	9734	21.92	7542

IV -Statistics
 a. Census Results.

The colony of New Zealand was founded in 1839. Since that period seven censuses have been taken. While seven years elapsed between the first and second census, the succeeding enumerations were taken at intervals of about three years Recent legislation has caused the date of taking the next census to be postponed so as at may approximate to the date on which the Imperial Census is taken

The following table exhibits the population exclusive of the aborignes when each census was taken-

Date of Enumeration,	Population.			Centesımal increase	Number of Inhabited Houses
	Persons	Males	Females		
December 1851	26,707	15,035	11,672	-	-
24 December 1858	59,413	33,679	25,734	12246	12,812
December 1861	61,062	37,959	99,021	3999	22,398
December 1864	106,580	65,578	172,158	7386	37,996
December 1867	131,929	86,739	218,668	2701	54,015
February 1871	150,356	106,037	256,393	1682	57,182
1 March 1874 -	170,981	128,533	299,514	73.98	61,356

Milatary not meluded.

In the above numbers the military and their famules have not been noluded, as they did not constitute a portion of the settled population of the colony and have now been all removed.

In March 1874 there were $75 \cdot 17$ females to every 100 males, but in that prom Proportion beportion the Chinese population were included, and as they do not come to the tween the sexes colony with en vew to permanent settlement and do not bring theur women with Chinese them, a juster estimate of the general population would be made by estumating Exclusive of the proportion exclusive of the Chinese The proportion thus arrived at would Cumese be 100 males to 7735 females The number of Chinese amounted to 4,816 , of Number of Whom two were females

As in 1871 there were 100 males (exclusive of the Chinese and Maoris) to Incresse of 71.88 females, the proportion of females largely mereased during the three $\begin{gathered}\text { proporthon of } \\ \text { white females }\end{gathered}$ years 1871-1874 In 1874 the proportions between the sexes varsed in different portions of the colony, having been lowest in Westland, caused by the piesence of a consideralle male gold-digging population The following were Proportions the proportions (excluding the Chinese) in the different provinces in 1874 - in different proAuckland to every 100 males, 8180 females

Taranıka	\#	7964	3
Wellington	"	8340	"
Hawkes Bay	\%	7042	\%
Marlborough	"	6794	\%
Nelson	"	6815	"
Westland	*	6283	"
Canterbury	\%	8203	\%
Otago	"	$75 \cdot 16$	\%

The extent to which the proportion of females is reduced by the presence of Proportion of addigging population may be shown by the followng proportions. -

In Otago withun the goldfields to every 100 males there were 5888 females | and without |
| :--- |
| radus of gold |

outside	"	100	"	7966	"
In Nelson within	"	100	"	4167	
outside		100		9216	

Densty of Population - The population of the colony, exclusive of Maorss. amounted in March 1874 to 2855 persons to a square mile, but as 105,213 In torns pergons resided in towns, the population-outside towns, numbering 194,301, Outside towns only amounted to 185 persons to a square mule. The population was most dense in the Province of Canterbury, amounting there to 4328 persons to a square mile, and least dense in the Province of Marlborough, where it only amounted to 1446 persons to a square mule

The average number of persons to an inhabited dwelling throughout the Average number colony was 488 in 1874, aganst 448 in 1871, and 405 in 1867 But while the average number of persons to each dwelling was on the increase, the average character of the dwellings was evidently mproming, and their capacity for occupation by a larger number of persons becoming greater

The following table will show the increase or decrease in the number of the dwellings containing respectively one or two rooms, three or four rooms, and five or more rooms -

	Total Number of Dwellings, including Tents	Number of Dwellings containing				Number of dwellings
-		One or two Rooms, 1 n cluding Tents	Three or four Rooms	Five or more Rooms	Number of Rooms not stated	
1871 -	57,182	22,998	17,738	16,446	-	
1874	61,356	19,612	21,02i	19,679	1,038	
Increase -	4,174	-	3,289	f 3,233	1,038	
Decrease -	-	3,386	-	-	-	

In adilition to the 61,356 inhabited dwellings there were 3,967 unoccupred Unoccupied dwelings and 535 dwelling houses that nere being built Of this total of dwellugs 55458 dwellings, 2042 were bult of brick or stone, 54,523 of wood and non, Materials

Comparative population of towns

Ages of the people.

2,546 of sod, or sumlar material, 572 of raupo (vz , a framerork thatched with raupo or bullrush), 2,937 were described as huts of sod clay, wood, or stone, and 1,967 were tents or dwellings with canvas roofs The materials of 1,271 dwellings were not specified In addition to the above dwellings, 4,401 bulddngs were returned as stores, warehouses, workshops, business premises, and buildngs used for offices only.

Cuties and Towns -There were, in 1874, 85 defined cithes or towns having a population of 100 persons and upwards

1 had a population exceeding 18,000 .
3 had each a population between 10,000 and 13,000 .

2	$"$	$"$	5,000 and $10,000$.
9	$"$	$"$	2,000 and $5,000$.
4	$"$	$"$	1,000 and 2,000
14	$"$	$"$	500 and $1,000$.
52	"	"	100 and 500.

Of these towns 35 were in Otago, 16 in Auckland, 11 in Wellhngton, 6 in Westland, 5 m Canterbury, 6 in Nelson, 2 in Hawkes Bay, 2 in Taranaki, and 2 in Marlborough
The followng are some of the principal towns whth ther population in 1874. As the population of Christchurch and Auckland cannot farrly be estumated mothout taking the suburbs into account, these have also been given -

	-		Persons.	Males.	Females.
Towns, whth ther population	Auckland borough - -	-	12,775*	6,648	6,127
	" suburbs, Parnell Newton	-	8,815	4,350	4,465
	Thames borough - -	-	8,073	4,345	3,728
	Onehunga - -	-	2,044	987	1,057
	New Plymouth - -	-	2,044	1,020	1,024
	Wellington -	-	10,547	5,344	5,023
	Wanganui -	-	2,572	1,318	1,254
	Napier - -	-	3,514	1,845	1,669
	Nelson	-	5,662	2,765	2,897
	Hokutika	-	3,352	1,695	1,657
	Greymouth -	-	2,551	1,421	1,130
	Christchurch borough	7	10,294	5,330	4,964
	") suburbs	-'	6,665	3,361	3,304
	Lyttelton	-	2,974	1,612	1,362
	Oamaru	-	2,819	1,547	1,2\% 2
	Dunedia	-	18,499	9,529	8,970
	Invercargal - -	-	2,479	1,290	1,189

Ages of the People - Of the 299,514 persons enumerated on the lst March 1874, 5,850 males and 5,576 females, were infants under the age of one year. There were, moluding these infants, 51,888 under five years of age, vz , 26,111 males and 25,577 females The numbers at the ages usually recognised as the school ages, $i e$, five and under 15 years, amounted to $\overline{72,147, ~ v i z, ~}$ 36,423 boys and 35,724 garls The total number under 15 years of age was thus, 124,035 , vz $, 65,534$ males and 61,501 females. There were 13,351 youths and 12,926 young women, or a total of 26,277 persons at the ages of 15 to 21 . Thus while during the first year of age there were 100 males to 95.32 females (the proportion of females being somewhat less than that in which the burths occurred, to every 100 males born in 1873 , there havng been 9664 females born), there were 100 males under 21 years of age to 9808 females at the same ages The chuldren under five years of age amounted to 1736 of the population, the children of five and under 15 years amounted to 2414 per cent. of the population, and the young persons of 15 and under 21 years of age amounted to 879 per cent. of the population, the total number of persons of 15 and under 21 years of age amounting to $50 \cdot 29$ per cent of the population The total number of persons of 21 years and under 40 was $99,120, \mathrm{vzz}, 61,867$ males and 37,253 females The persons of 40 years of age and under 65 numbered $45, \mathrm{~s} 34, \mathrm{viz}, 30,583$ males and 15,251 females. The number at 65 years of age and upwards amounted to $3,651,2,171$ being males and 1,480 females. There were 197 persons, riz, 100 males and

97 females, between 80 and 90 years of age, three males and six females between 90 and 93 years of age, and four males and three females between 94 and 97 years of age One male was returned at the advanced age of 103 , Centenarnans and one at the extraordinary age of 116 The latter repeatedly stated that he remembered Captain Cook heing at 'Tahuti
The following table shows the proportion per 10,000 persons at the ages Papulation, with specified in New Zealand and the adjacent Australian colonies:proportion at

Ages.	$\xrightarrow[\substack{\text { New } \\ \text { Zealand }}]{ }$	Victoria	South Australia	New South Wales	Queensland
	1874.	1871	1871.	1871.	1871,
Under 15 years -	4,150	4,233	4,180	4,513	3,896
15 to 65 jears -	5,728	5,629	5,607	5,304	6,005
65 years and upwards	122	138	213	183	99
Total	10,000	10,000	10,000	10,000	10,000

The proportion of the population of New Zealand at the supporting period Worhng proporof life, $\mathrm{viz}, 15$ to 65 , in 1874, was greater than in the adjacent colonies in 187 , tion of populaQueensland excepted

The followng are the numbers per 1,000 persons at the age periods under Cormparson
20,20 to 60 , and 60 and upwards in New Zealand im 1874, and the corresponding between mothe numbers in England and Wales in 1871

colony

The following table represents the total number at each age period specified.-

General Summary of Ages of Popdlation
Table showing the Nuaber of Presons, Males and Females, (exclusive of Maons) living at 3 periods of ages.

Chunese

Half-castes

Religions

Numbers to each creed

The Chnese neluded in the above numbers amounted to 4,516 persons, viz , 4,814 males and two females

Of these, 200 males and one female were of ages up to 20 years, 4,581 males and one female from 20 to 60 years, 16 males over 60 years, and 17 unspecified

Of the Chinese population those unden 15 years of age should more conectly be styled half-castes, as it appears that in most of not all cases they wete the offspring of Chinese men and European women their wives
Religrons - Out of a population of 299,514 , the persons who objected to state their religious belref amounted to 6,760 No entry was made on the column for "religion" in the household schedules opposite the names of 955 persons
The following table gives a summary of the numbers of each religious denomination -

Relgious Denomination	Persons.	Males	Females
Chuich of England and Protestants not otherwise defined.	127,171	72,357	54,814
Presbyteuaus -	72,477	41,030	31,447
Wesleyans and other Methodists	25,219	12,980	12,239.
Baptists	6,355	3,232	3,123
Congregational Independents	5,441	2,896	2,545
Lutherans	3,914	2,668	1,246
Unitarians -	349	224	125
Soclety of Friends	156	111	45
Other Protestants	2,679	1,429	1,250
Roman Catholics and Catholos undefined	40,271	22,543	17,828
Greek Church -	41	40	1
Jews -	1,215	701	514
Mormons -	62	56	6
Mahometans	17	17	-
Pagans (Chnese)	4,764	4,764	-
Other denomuations	135	92	43
No denomination	1,281	785	496
No religion	152	121	31
Unspecified - -	955	704	251
Objecting to state their religion	6,760	4,231	2,529

Total number of Protestants of all denommations
Of Roman Catholics
Percentage of Protestants, of Presbrtenans, of Methodists,
of Romen
Catholhes

The Protestants of all denominations amounted to 243,761; the Catholics, including the Greek Church, to 40,412 . Of the Protestant denominations the members of the Church of England (including Pratestants not othermse defined) amounted to 127,171 or 4246 per cent of the population The Presbyterians numbered 72,477 or 2420 per cent, and the Methodists numbered 25,219 or 842 per cent of the population The Roman Catholics numbered 40,371 or 1348 per cent of the population Of these pincipal denominations the Church of England has increased most in proportion smee 1871, the moportions to the 100 of the population having been respectiv ely in 1871 and 1874 as follows -
1871, 1874

| Church of England | - | $-\overline{41 \cdot 83}$ | $\overline{42 \cdot 46}$ |
| :--- | :--- | :--- | :--- | :--- |
| Presbyterians | - | -2484 | 2420 |
| Roman Catholics | - | -1389 | 1348 |
| Methodists | - | -858 | 842 |

Increase of vamous sects

Of the smaller bodies the Baptists increased from 4,732 or 1.85 per cent to 6,355 or 212 per cent, the Congregational Independents from 3,941 or 154 per cent to 5,441 or 1.82 per cent, and the Lutheans from 2,341 or 091 per cent to 3,914 or 131 per cent Hebrews decreased from 1,262 or 049 per cent to 1,215 or 040 per cent Pagans (embracing nealy all the Chinese) increased from 2,612 or 102 per cent to 4,64 or $1 \cdot 59$ per cent The number of persons who objected to state ther relighous belief was reduced from $8,630 \mathrm{in} 1871$ to $6,760 \mathrm{in} 18,74$.

Berthplaces -The barthplaces of 299,008 persons were yeturned in the house- Burthplaces hold schedules No burthplaces were given for 506 persons. Of these 506 there were 365 who had British names, 21 had forergn names, 120 of the 506 omitted to give any names in the achedules

Allegrance -The number of British subjects in the colony in 1874 amounted Allegance to 286,109 , or $95^{\circ} 56$ per cent of the population whose allegrance could be ascertained In this number was included all persons born in Brisish possessions, all naturalised British subjects, British subjects born in foreign countries, persons havng British names born at sea, and those whose burthplaces were not given, but who had British names. The foreign subjects amounted to 13,285 or 4.44 per cent.

Numbers born in New Zealand -The persons in New Zealand in March Number born in 1874 who were born in the colony numbered 122,635; of these 61,779 were Colony males and 60,856 were females The total amounted to $40^{\circ} 94$ per cent of the whole population The number of New Zealand born in 1871 was $93^{\circ} 474$. There has thus been an increase of 29,161 or 3120 per cent on the New Zealand born population. (The population as given does not include the Maors or native aboriginal tribes.)

Numbers born outsude the Colony -The Australian born were 13,601 in 1874, Born outside an uncrease in the three years of 1,175 or $9 \cdot 46$ per cent The Englush born Colony. increased from $67,044 \mathrm{~m} 1871$ to $74,628 \mathrm{in} 1874$ or $11 \cdot 31$ per cent. The Scotch mereased from 36,871 to 38,431 or 424 per cent, the Irish increased from 29,733 to 30,255 or $1 \cdot 76$ per cent; and the Germans increased fiom 2,416 to 2,819 or 1668 per cent

The Colony, Cities and Towns, Outside Towns, and Gord Fimbs

Table nhowing the Number of Persons, Males and Females of different Nationalities in the Colony of New Zealand (exclusive of the Maoms), in the Towns (of a Population of 500 and upwards), Ouxsme Towns, and on Gold Fields
** The Numbers for the Colony are the addutions of the Town and Outside Town Populations, the Gold Field Numbers belong to each of these Divisions

* 699 persons, namely, 501 males and 198 females, returined ther burthplace as America only, and are meluded in other countries

Conjugal condition of the people - In 1874, out of every 100 of the male Proportion of, population (excepting Chnese) 2728 were married, and 7272 wese single, marrnei and and, of the fermale population, in every 1003472 were married, and 6528 were single, while the proportion of married males has increased from 2623 per cent in 1867 to 2728 per cent in 1874, the proportion of married females decreased from 3759 per cent in 1867 to 3472 per cent in 1874 The decrease in the proportion of married in the 100 females is attributable to the greater increase in the number of females under 21 years of age In 1867 the females under 21 years amounted to 5487 per cent of the whole number of females, in 1871 to 5682 per cent, and in 1874 to 5796 per cent 117,085 males were returned in 1874 as unmarried, of these 73,232 were under 20 years of age, and 43,853 were over 20 years of age Of the females 79,888 were unmarried, of whom 61,500 were under 15 years of age, and 18,388 orer 15
There were thus 25,465 bachelors of 20 years of age and upwards in excess of the number of spinsters of 15 years of age and upwards To every 100 spinsters there were therefore 238 bachelors Of the 18,388 spinsters 9,942 were from 15 to 20 years of age, and 8,446 at 20 and upwards The marrages in 1873 of spinsters under 20 years of age amounted to 473 , and of spinsters at 20 and upwards to 1,578 , at that rate about 476 per 100 of the spinsters under 20 years of age, and 1868 per 100 of the spmsters over 20 years of age, would be married in the year
The husbands in 1874 numbered 45,034 , the wives 44,624 , the husbands Husbands and being most numerous by 710 . There was an excess of husbands over wives wives in every province except Westland, where the wives were the most numerous, the husbands having been 2,084 , and the wives 2,094
The widows amounted to 3,990 , beng in excess of the widowers by 719 , the Widows and latter only amounting to 3,271 The widows were more numerous than the widowers widowers at all ages, except at the periods $40-45$ and $45-50$ At the ages 40 to 45 the widows were 431 , and the whdowers 483 , at 45-50 the widows were 373 , and the widowers 419 , butif more extended periods are taken the widows will be found in all cases most numerous, but espectally so at the extremes, 1.e, at the youngest and oldest periods. Under 30 years of age the widows numbered Under 30 years, 275 , the widowers 107 , from 30 to 50 years of age the widows numbered 1,565 , from 30 to 50 the widowers 1,494 , at the age of 50 and upwards the widows were 2,150 , the years upwards widowers 1,670 Thus to every 100 widows under 30 years of age there were Proportion at 39 widowers, at the ages 30 to 50 to every 100 widows there were 95 widowers, varmous ages up and at 50 years of age and upwards to every 100 widows there were 78 to 50 widowers

At the higher ages the married men (with wives living) were more numerous at the higher than the married women, but at the same ages the widows were mole ages numerous than the widowers At the ages 65 and upwards there were 1,385 married men to 646 marred women, while at the same period there were 785 widows to 545 widowers The number of married women in the colony in 1874 between 15 and 45 years of age was 36,588

The number of legitimate burths in 1873 was 11,063, or 3024 brths to every Legitrmate 100 married women at $15-45$, or on an average one child was born to every buths married woman at that age period every 331 years In England in 1871 the number of married women of 15 to 45 amounted to $2,600,768$, the legitrmate brrths in 1870 to 748,050 or 2876 births to every 100 marryed women at 15 to 45 , or one birth to each such married woman in 348 years The married women comprised in the age period $15-45$ are generally younger than the marred women of the same age period in England Taking the whole number of married women in each country between the ages $15-45$ as a basis of comparison, the following figures show the proportions per cent at the respective ages in England and New Zealand -

Pioportion to the 100 married women at the ages 15 to 45

Ages	England	New Zealand
Under 20 *	- 133	- 237
, $20-40$	- 8001	- 8370
, 40-45	- 1866 -	- 1893

Proportion of married women from 15 to 45

Chinese married] Conjugal condition of Chinese.-The instructions in the household schedule and unmarned were that Chinese were to be set down as unmarred unless they either have, or have had wives in New Zealand 28 Chinese have thus been returned as married, one of whom had a Chinese wife The schedules erince the fact that in many of the instances the whfe was a European resident in New Zealand, butin some cases the correctness of the description cannot be tested, as men alone are given in the schedule There is not however any reason to doubt the correctness of these returns
Occupations
Occupatzons of the people - Of a total of 299,514 persons there were only 1,911 whose occupations could not be ascertanned. The following table shows the occupations classified into certan orders and sub-orders :-

The Colony, Cities and Tomns, Outsion Towns, Gold Fields -Occupations
Table showing the Occupations of the Colony, of Cities and Towns having a Population of 500 and upwardq, Outside Towns, and on Gold Fields, Pensons, Males, and Fifmales (exclusive of Maoris) on the 1 at March 1874
** The Numbers for the Colony are the additons of the Town and Outside Town Populations, the Gold Fields Numbers belong to each of theqe Divisions

Occupations of Persons of both Sexes	The Colony			Citres and Towns of beo Inhabitants and upwards			Outade Cities and Towns			Gold Fiolds		
	Persons	Males	Females	Persons	Males	\| Females	Persons	Males	Females	Persons	Males	Females
Total Population	\|, 299,514	170,081	128,533	105,213	64,765	50,448	184,301	116,218	78,085	40,159	32,865	18,287
Clarg 1 Prafesmonal - Persons engaked in the General or Local Governments, or in protection of the country Persons engaged in the learned prolessions and teachers												
	2,470	2,46s	27	1,121	1,112	8	1,949	1,541	8	- 208	202	1
	8,620	2,452	1,088	2,156	1,510	689	1,838	1,387	499	404,	517	87
Class 2 Domestic - Persons engaged in the domestre offices of wives and mothers, and in personal offices for men -												
	184,063	68.747	122,216	70,200	23,380	46,880	114,708	88,367	75,380	24,289	8,601	15,638
Class 3 Commercial - Persons who buy or sell, keep or lend money, houres, of goods of various kinds Persons engaged in the oonveyance of men, smimals, goods, and messages												
	5,088	4,836	252	2,892	2,724	170	- 2,106	2,114	82	801	768	38
	8,209	8,182	27	8,881	8,397	14	4,828	4,815	13	708	\% ${ }^{798}$	-
Class 4 Agrtcultural - Persons possessing, working, or cultivating fand, rasing or dealing in anmals, or pursuite subsiduary thereto												
	\$4,590	33,689	701	2,020	1,985	25	32,370	31,694	676	8,019	2,975	-41
Class 5 Industrai -												
Persons engaged in working and dealing in art and mechamisal productions	10,402	10,330	72	6,138	6,082	56	4,264	4,248	16	968	963	5
Persons working and dealing in textile fabnics, in dress and hbrous materals	7,169	4,076	3,094	4,489	2,361	2,128	2,680 2081	1,714	980	789	403	376
Persons working and deaing in food and drink-	4,429	4,312	117	2,348	2,281	67	2,081	2,011	50	806	785	20
vegetable substances Persone working and dealing in minerals	8,127 $\mathbf{2 1 , 1 6 0}$	3,118 $\mathbf{2 1 , 1 5 4}$	0	$\begin{array}{r}\text { 5938 } \\ \hline 8,964\end{array}$	3,698	- ${ }_{-2}$	-17,1834	-2,588	8	[889	3888 $-16,395$	$\frac{1}{3}$
Chass 8 Indefinte and Non-productze -												
Labourers and others	0,682	9,603	28	3,649	3,682	17	6,888	5,974	9	880	877	3
Persons of property or rank (not retmmed under any office or occupation)	344	278	06	183	146	37	101	132	29	16	15	1
Persons supported by the Communty - -												
(Pensioners, mmates of charitable matitutions) -	1,671	1,149		8885	503 897	${ }_{2}^{242}$	836 201	- 566	280 48	${ }_{189}^{189}$	130 38	39 16
	1,911	1,748	${ }_{163}^{107}$	8888	727	100	1,089	1,021	${ }_{63}^{46}$	$2{ }^{68}$	38 210	18

Educationon the standard writing

Rates from 1861 to 1874

Reasons why
lowest in 1874

Education of the people-The information required to be given on the household schedule was, as to the measure of education. limuted to rearing and writing, reading only, or not able to read Of the 299,514 persons enumerated the information under the above heads was not ascertained in respect of 2,243

The instruction in the census schedule was, that only those Chmese wno could read and write English were to be enumerated as able to read and wite Of the 4,816 Chinese in the colony, 60 males and the 2 females were returned as being able to read ard write, and 11 males as being able to cead only Dealing with the population, exclusive of Maoris and Chinese, except for the census years previous to 1867, when the numbers of Chinese were not separately shown, it appears that in 1874, 6815 per cent could read and write, 809 per cent could read only, and 2376 per cent could not read The per-centageof those who could read and write is less than in any census year since 1858. The rates in the inter ening years have been as follows -

The rate having been lowest in 1874 is attributable to the fact that in the earher periods the proportion of males 21 to 40 years of age was greater than. in 1871, and in 1874 the proportion of children under 10 years of age was greater than in the preceding years, the pioportions in 1864 and 1874 respectively of persons of those ages having heen in the whole population as follows.-

		Under 10 years		21 to 40 years
1864	-	- 2637 per cent	- 44	453 per cent
1874	-	- $32 \cdot 36$	- 32	251

The perocentage of females who could read and write was at each of the census periods considerably less than the per-centage of males who could read and write In 1874, while 7140 per cent of the males could read and write, only 6394 per cent of the females could read and write. The per-centage of females able to read and write was less at all quinquennial periods of age, except at the periods 5 to 10.10 to 15 , and 15 to 20 years, when at was shghtly in excess of the simular per-centage of the males

Attendance at School - In 1874, 34,407 chuldren attended Government schools ; 13,752 attended private schools, 7,947 attended Sunday schools only, 30,584 attended both week day and Sunday Schools, and 8,368 were receiving tuition at home Thus 56,527 children were receiving secular tuition at school or at home, and religious instruction was being imparted in Sunday schools to 38,531 chuldren The total number of children at what is generally defined as the school going ages, 5 to 15 , was 72,134 , but the above numbers of those attending school, also noclude children under 5 years and over 15 who were attending school

While the population at 5 to 15 years increased 3173 per cent between 1871 and 1874, the numbers attending school during the same period increased 5187 per cent, and the proportion of chaldren attending sehool to the total number of the children at the ages 5 to 15 , mereased from 5793 per cent to 6678 per cent

Suckness, debuluty, and accudent - The total number of persons at 15 years and over returned as suffering from sickness, accident, or infirmity was 2,219, or $126 \cdot 45$ per 10,000 living at those ages, the proportion was greatest among the males, on account of accidents being included, having been 13703 per 10,000 of males, and 10935 per 10,000 of females, but the suck males amounted to $99 \cdot 40$ and the males suffering from accident to 3080 per 10,000 , while the sick females amounted to $97 \cdot 41$, and those suffering from accident to 5.82 per 10,000

The proportion of sick and infirm increased regularly and rapidly at each quinquennal period in the case of the males, while the increase was far more irregular in the case of the females; at 35 to 40,8308 per 10,000 of males, and

9562 per 10,000 of females were returned as sick, at 40 to 45 the numbers were respectively 11588 males and 10582 females, at 45 to 50,16821 males and 17018 females, at 50 to 55 , 18469 males, and 21535 females
The cases of deblity and nfirmity commenced to be numerous at the ages 55 to 60 , where they amounted to 1415 per 10,000 males, and 28.42 per 10,000 females, àt 60 to 65,4525 per 10,000 males, and 2978 per 10,000 females, at 65 to 70,9399 per 10,000 majes, and 5814 per 10,000 females, and at 70 to 75,33557 per 10,000 males, and $286 \cdot 30$ per 10,000 females

The proportion of females at the higher ages who were sufferng from stckness or infirmity was on the whole considerably less than the proportion of males at the same ages who were sick or infirm
Spectfied infirmatzes - The information with respect to the followng infirmities Spectied was given without regard to age, althongh the cases of sickness and infirmity infirmities previously mentioned only referred to persons over 15 years of age The number of persous at all ages returned as suffering from specified infirmities amounted to 1,034 The following are the infirmities referred to.-
Deaf and dumb - 57 persons were tabulated under this head Of these Deaf and dumb 28 were under 15 years of age, and 29 of various ages from 15 to $75 \quad 12$ of these persons were returned as having specific occupations. These were 1 female domestic, 3 bootmakers, 2 farm labourers, 1 dressmaker, 1 miner, 1 labourer (unspecified), 1 farmer, 1 bushman, and 1 carpenter.
Blind -70 persons, $v i z, 42$ males, and 28 females were returned as being Blund. blind Of these 17 were under 20 years of age, 16 between 20 and 40,16 between 40 and 50,6 between 50 and 60 , and 15 over 60

Lunatics - 597 persons were returned as lunatics- 398 males and 199 females, Lunatics 10 were under 20 years of age and 19 between 20 and 25 . There was a larger number at the ages 35 to 40 , than at any other quinquennal period, the males numbering 85 , and the females 44

Mandfactories, Machines, Wories

Genrbal Summary of certain Mantfactures, Works, \&e (speciñed in the General succeeding Table) in operation in the several Provinces of New Zearand in Summary of the Month of December 1879, with the Natlie and Amount of Power, and the Number of Hands employed

Abstract

Mandpactories, Machines, Works Detailed List Table showing the Number of Mantfactories, Woris, \&e, of the undermentioned description, which were in operation in the several Proninces of New Zealayd in the Month of December 1873

Manufactomes, Works, \&c.	No	Manufactones, Works, \&c	No
Agricultural Implement	6	Furmiture	6
Bacon - - -	3	Gas Works	8
Basket and Toy making	1	Glass Works	1
Biscuit - -	4	Hat and Cap	3
Block and Pump -	1	Glue -	2
Borler making - .	2	Hearthrug and Matting	1
Bolling down and Meat preserve	10	Iron and Brass Foundries Lime Works	22
Bone Manure -	3	Malt Kilns - -	19
Boot - -	5	Mechanis, Engmeers, and Mill-	10
Brick, Tile, and Pottery	84	wrights	
Candle and Soap -	12	Panl, Tub, and Washboard	2
Cigar -	2	Paurt - -	1
Clothing -	2	Petroleum Works -	1
Coachubulding - - -	19	Printugg Establishments	67
Coffee, Chicory, Spree, and Pearl	8	Rope, Cordage, and Mat -	- 17
Barley		Saw Mrill, and Sash and Door	162
Colheries and Coal Pits	44	Ship and Boat Building -	20
Colonal Wine - -	1	Stone Quarries (Bulding)	13
Cooperage -	2	Turming Wood or Ivory -	1
Distilleries - -	2	Varmsh - -	
Fellmonger, Tanner, Currier, and Wool Scourer	71	Woollen Cloth	2
Fish-curyng and Cod Onl	2		657

Maori Population

Maores and hall rastes

Tribes.

Comparative ages of Maons and English population

The total number of Maons, and of half castes living as Mroris, was in 1874 estmated at 45,470 , of whom 43,538 were in the North Island and 1,932 in the South and its adjacent islands
The number of the principal tribes is 19 ; of these the Ngatikahungunu is the strongest, numberng 6,065 persons, of whom 3,262 were males, and 2,803 females The Ngapuhi rank next in point of numbers, having a following of $5,867, \mathrm{vz}, 3,235$ males, and 2,632 females The Warkatos are third on the last, their numbers being estimated at 4,518, viz , 2,438 males, and 2,080 females. The N gatiporon numbered 4,024, viz $, 2,234$ males, and 1,750 females; and the Arawas, $3,294, \mathrm{nz}, 1,733$ males, and 1,561 females Of the Maors in the colony, 24,363 were stated to be males, and 20,335 to be females The sex of 772 was not given

As much dufference of opimion has existed as to whether the numerical dechme of the Maon race has not been, at any rate-in certain districts, arrested, it may be interesting to compare, so far as they are given, the ages of the Maoris with the ages of the settled and steadily mereasing population of England The numbers and sexes of some of the Maors tribes have been imperfectly given It is therefore necessary to deal only with those tribes for which full information as to numbers, ages, and sexes is given This was
Maorimales and the case in respect of the numbers belonging to 13 of the principal tribes, amounting in the whole to 31,645 . Of these 6,079 were males under 15 , and 5,225 females under 15 The males over 15 amounted to 11,209 , and the females over 15 to 9,132 There was a total excess of males over females of 2,931 , or to every 100 males there were 8305 females In England, in 187, the males under 15 amounted to 3715 per cent of the whole male population, the Maori males, of the tribes given, under the age of 15 , amounted to 3516
per cent. of the whole male population of those tribes The females of sumular Female perages were respectively, in England 3512 per cent of the whole female popu- cantane, , England lation, and smong the Maors 3639 per cent If the numbers of the males and Maons and females under 15 be respectively compared, the following result is shown -

To draw any conclusions from these figures, it would be necessary to have Fuller niformore exact information as to the numbers of the Maors living at the various mation as to higher age periods, but the information has only been given for the periods for correct conunder and over 15 .

The existence among the Maoris of a hugher proportion of females under 15 (ultumately to become wives and mothers) to the total female population than obtains in England, the numbers under 15 to the total females being respectively 3639 per cent among the Maors, ard 3513 per cent in England, might at first sight lead to the belief that the dechne in the numbers of the race had been arrested, and that even an increase might be expected.

It will however be mamfest that if there are causes in operation which such idea falincrease the mortality of the adult Maoris without increasing the mortality lacious of the children, the actual proportion of chldren to the whole population would be thereby much greater and an appearance of productiveness shown which did not really exist

Do such causes exist? Does the fact of the partial adoption by the adult Causes of mMaorn of civilsed habits and costume, and the continual reversion to the creased adult babits and costume of barbarism, with a system rendered more susceptible to external influences, especially those of a humid and changeable clumate, tend to promote the spread of diseases, notably of tubercular diseases, and consequent mortality? Does the spread of drinking habits tend to shorten the lufe of the adult Maor 2 These and other sumilar questions have an important bearing on the subject

The examination of the numbers of some of the tribes points rather to the conclusion that some such causes of mortality among the adults do exist The Ngatikahungunu show 4191 per cent of the males, and 4121 per cent of the females as being under 15 years of age The Rarawa show 4058 per cent of the males, and 4830 per cent of the females as being under 15

It is hardly concervable that the women of these tribes should have been so exceedingly prolific, and that, as in the case of the Rarawa, nearly one balf of the female population should have been under 15, unless a large number of adult women had died before reaching middle age, thereby increasing the proportion of younger females by reducing the proportion of the adults

It may be noticed in connection with this subject that in 1871 the Maoris were estumated at 37,502 , and in 1867 at 38,540 , while in 1874 they were estumated at 45,470 The estimates formerly made were, however, from the then state of feeling in the Maori population, necessarily much more imperfect and unrelable than those recently made

b Digest of Latest Statistics

Population and vital statustics -The estimated population on the 31 st Decem- Direst of latest ber 1875 was, exclusive of the Maoris, 375,856 , an increase on the estimated statistics population of the $313 t$ December 1874 of 33,996 , or an increase at the rate of 994 per cent for the 12 months As the increase for the three quarters ending the 30th September 1876 18 now known, and the ncrease for the remainning three months estimated with tolerable accuracy, the population on the ensuing 31st December 1876 may be estrmated approximately at 397,300

These figures do, not include the aboriginal natives, who numbered in 1874 45,470 As no record of their burths or deaths are kept it is impossible to estimate the difference in tueir numbers at present If that number be added to the rest of the population there would thus be given a total of 442,70 inhabitants on the 31st December 1876 The nacrease during 1874 (the abonginal natives not being included in any of the figures herem given unless specially stated to be) was 8,726 The increase by excess of immigration over emigration was 25,270

Births
sex.

Illegrtımate burths

Narriages

Marriages br different rell grous bodies, from 1866 to 1875

Births -The chuldren born alive and registered in 1875 amounted to 14,438 , or at the rate of 4023 per 1,000 of the population. The average birth-rate in England is about $35^{\circ} 3$ per 1,000. As in the English yopulation the females are wore numerous than the males, while in New Zealand the males are largey in excess of the females, to compare the birth-rate in the colony with the birthrate in England, the rate should rather be estimated on a total population of which the males lo not exceed the females. Deducting from the population the surplus males, the burth rate in New Zealand in 1875 would have been at the rate of 4656 per 1,000 of equal males and females.

Sex.-Of the children born ahve 7,990 were males and 6,948 females, or at the rate of 1078 boys to 100 gurls
Illegtimate Brrths - These births registered an 1875 numbered 197, or 136 per cent. of the births registered This is far lower than the Englsh rate (5 2) in 1873

Marriages -The marnages in 1875 numbered 3,209, the number of persons married beng at the rate of $17 \cdot 88$ per 1,000 of the population This is somewhat in excess of the English rates for 1872 and 1873, which were respectively 17.5 and $17 \cdot 6$ The rate in New Zealand 13 higher than the prevaling rate in the Australian colomes. Although the àverage rate for 10 years in Queensland was higher in 1875 at only amounted to $17 \cdot 25$. The following table shows for a perod of ten years the number of marriages by mmisters of each denomination, and by lay registrars :-

Marriages by different Rprigious Bodieg -Decennial Retcra

Retury of the Ntmber of Marbiages solemnized in New Zealand by Officiating
Mimisters of the several Religious Bodies and by Registrars, danng the
Decennal Period 18 h 6 to 1875 inclusive also for the Year 1875, the number of
cases in which one or both of those marred were anable to sign therr names
in the Marrage Register.

Religious Bodues	1866		1868	1869	1870				1854	1875	Signed with Marks in 1875			
											Men.1	Women	One	Both.
Unted Church of England and Ireland	509	514	518	508	453	422	496	635	718	8.1	26	67	9	10
Church of Scotland - -		11	11	${ }_{6}$	-	-	5	5	11	-	-	$\underline{-1}$	$-$	
Romar Catholic Church	314	328	332	311	279	281	277	300	349	381	38	80	80	19
Free Church of Scotland -	657	690	428	342	363	374	828	448	5\%8					
Presbrterian Church of New Zea-		-	-	-	-			-	-	529	13	26	29	5
Presbyterinin Church of Otago and Southland		-	292	246	272	279	246	300	417	44*	13	30	38	3
Presbrterian Couprepations .	2	4	6	$2 \cdot 5$		3	1	-		-	-	-	-	
Weslevan Methodist Socrety	207	194	205	190	182	215	915	211	278	406	13	31	50	7
Congregational Independents		57	49	49	43	29	57	47	5019	63	1	4	-	-
Baptists	43	52	4	33	52	40	4	4	59	63	3	7	-	9
Primuive Methodist Society	41	20	33	23	31	32	14.	40	56	88	3	7	${ }_{6}$	2
Lutheran Church * - *		2	1	4	4	3	5	8	2	9	2	1	1	$\underline{1}$
German Evangelical - . - Hebrew Concrecations		4	3		$\overline{5}$	\pm	-	-6			-	$=$		-
Hebrew Congrecations Churches:-	$\overline{15}$	40	3 9		6 10	10	24	-68	95959	60	2	-4	2	2
Christian Brethren - - -		10	-	7	6	5	3	5	3		-	-	-	-
Church of Christ - -* -		-			-	-	-	4	4	5	-			$=$
No Denomination specified	177	- 16	156		135	170	- 160		291		19	45	$\overline{52}$	
Performed by Regustrars	177	164	156	165	133	170	160	211	291	336	19	45		6
Totals	,041	2,033	2,087	1935.	1,556	1,867	1,574	2,277	2,831	3,209	131	993	316	

[^5]It'wall be observed that of the 3,209 men who were marred in 1875 only 131 or 408 per cent signed the register with marks This was a higher rate than in 1874, when it was 392 per cent The number of women signing by marks in 1875 was 295 or 919 per cent. agaunst 930 per cent in 1874 In 1873 these rates were, respectively, men 294 per cent and women $7 \cdot 86$ During the penod a large free immigration from the United Kingdom has taken place
Ages of persons marred - In 1875 of 3,209 women married, 921 were under Ages of persons 21 years of age, and 2,288 were 21 years and over, 1,216 mammed at the ages married during 91 to 25 , and 592 at the ages 25 to 30 . Of every 100 men married 206 , and of year 1875 every 100 females married 2870 , were under 21 years of age.

ages of Persons Mareimd.

Return showing the Ageb of Persons Marrird in New Zealand during the Year 1875

Deaths -The death-rate in 1875 was exceptronally high, having amounted Deaths, excepto 1592 per 1,000 of the population, the highest rate for the last 10 years
The following table shows the number and proportion of burths, marriages, and deaths for the last 10 years -

Proportion of Birthe, Marrages, and Dratas to the Populatoon Decenniar Return

Burths, Marriages, and Deaths

Year	Estumated Mian Population of New Zealand.	Numerical			Proportion to every 1,000 of Population		
		Births	Marriages*	Deaths	Burthen	Marriages *	Deaths
1886	197,380	8466	2088	2640	4289	1088	1286
1 1687	211,991	8,918	2,050	2,702	4218	969	1278
1868	$222, \times 25$	9991	2,085	2,662	4214	935	11.94
-1889	281934	9718	1,932	2,721	4190	838	1178
1870	9242 824	10877	1,851	8708	42 \$8	762	1118
1871	2601430	10452	1864	2,642	4064	71.5	1013
1878	- 273278	10745	1873	3194	3950	685	1168
1873	247252	11222	2276	3,645	8890	790	1866
1\%74	3230697	12,814	2318	4,161	4005	881	1297
1875	$3 \mathrm{w} 0,638$	14,438	3,209	5,712	4023	884	1592

[^6]Per-centage of chuldren in 1875

Of the deaths in $1875,2,777$, or 4862 per cent., were of chldren under five years of age The deaths of chuldren under one year amounted to 12.58 to every 100 briths, the corresponding proportion in 1874 having been 1085 . The mortality of infants was, in 1875, exceptionally great in the majority of the boroughs of the colony, and generally in the colony
Sexes of deceased Sexes of deceased persons.-Of the deaths, 3,376 were of males, and 2,336 persons . of females, which, upon the estimated mean number of each sex hiving in the year, gives a rate of mortality among the males of 1656 per 1,000 , and among the females of 1507 per 1,000 That is, in equal numbers living 110 males died to every 100 females. This is a larger proportion of male deaths than obtamed in 1874, the numbers then having been, in equal numbers hiving, 9961 males to the 100 females
Causes of death Causes of Death -The followng table gives the classification of diseases which have terminated fatally, with the per-centage of each class and order of disease to the total mortality in 1874 and 1875

Class I-Zymotrc Diseases

				1874	1875
Order 1.	Miasmatio	eases	-	- $2 \overline{6 \cdot 92}$	${ }_{26}{ }^{-8}$
, 2	Enthetic	,	-	- 114	- 28
" 3	Dretic	",	-	- 185	$2 \cdot 05$
" 4.	Parasitic	"	-	- 41	-87
				2932	3004

Class II —Constıtutıonal Diseases

Order 1. Diathetic diseases	- 293	238
, 2 Tubercular ,	- $9 * 40$	982
	1233	1220

Class III -Local Diseases				
Order 1	Nervous diseases		- 1067	961
" 2	Circulation, diseases of		- 471	483
" 3	Respiratory organs, dis	ases of -	- 1228	1287
" 4	Digestive "	"	- 637	621
$\geqslant 5$	Urinary "	"	99	109
" 6	Generative "	"	26	12
" 7	Locomotive ",	"	22	-12
" 8	Integumentary system	"	53	25
			3603	35-10

Class IV --Developmental Diseases			
Grder 1	Children, diseases of	- 480	476
2	Adults	- 147	121
" 30	Old people	- 132	1.32
" 4. N	Nutrition	- 558	616
		1317	1345
Class V-Violence			
Order 1. A	Accident or negligence -	731	686
" 2. 1	Homicide -	- 07	- 26
" 3 S	Suicide -	- $\cdot 48$	$\cdot 51$
" 4.	Fxecution	02	-02
	Violent deaths not classed	- -	'18
		-7.88	$7 \cdot 83$
Causes of death not specified - - 127			138

Notwithstandng the increased death-rate last year (the increase havng Cuases of inamounted to 295 per 1,000 of the population), yet there was not any marked creased rate in difference between the proportions of deaths m any particular class or order from those obtaning in 1874 The increase appears to have been general in all classes of disease While the proportion of zymotic diseases, as a whole, was shghtly increased, the proportion of deaths from masmatic diseases was rather less The principal fatal masmatic diseases in 1875 were, measles (289), diphtherna (106), typhus and typhoid fever (311), and dysentery and diarrhoca (510) Measles in 1875 was epidemic in nearly all the provinces.
There was a large reduction in the deathe from diphthena, the numbers in Diphtheria 1874 having been 187 The greatest number of deaths in 1875 from this cause occurred in Canterbury (44), Otago (24), and Auckland (20)
The deaths from typhus and typhoid fever chefly occurred in--

The proportion of deaths from that cause to the 1,000 of population was, in each of the above provinces, as follows -

Of the 510 deaths from dysentery and diarrhcea, 458 were of chldren Dvsentery and under five years of age, of whom 331 were under one year.
The deaths from tubercular diseases were in the proportion of 9.82 per Tubercular cent of the total deaths in 1875 aganst 940 mn 1874 Of these the deaths diseases from phthisis were in the proportion of 593 per cent in 1875 , and 673 m 1874 This is only an apparent, not a real, decrease, caused by the largely increased general rate of mortalty The actual number of deaths from phthisis was 339 in 1875 , aganst 270 in 1874 , the proportion to the 1,000 of population having been 94 in 1875 and 84 in 1874
The number of volent deaths has increased in the same ratio as other violent deaths deaths, the proportion to the total deaths being very little different from the proportion in 1874 Of these deaths 164 were from drowning, viz, 142 males and 22 females, against 92 males and 11 females in 1874 Of these deaths five males and two fermales committed eulcide The total number of sucides in 1875 was 29 , of these, $81 \times$ were females
Hosptals - 4,033 males and 1,130 females were admutted rnto the various Hosptals hospitals in the colony durng the year 1875, 407 males and 87 females ded, and 3,596 rales and 1,063 females were discharged The total number relieved amounted to $5,724 \mathrm{in}$-door patients, including inmates, at the commencement of the year, and 9,121 out-door patients There was provision in the hospitals for 714 males and 217 females, or a total of 931 beds The aggregate number of cubic feet in the sleeping wards amounted to 915,305 , or an average of about 983 cubic feet for every bed, the amount of space in each hospital vares considerably In 10 hospitals the space in the sleeping wards amounted to 1,000 cubic feet and upwards for each bed, the highest being Westport, $1,56 \%$ feet, in 12 hospitals the amount of space is between 5010 and 1,000 feet and in three cases the space 18 under $500, \mathrm{vz}$, Timaru, 379 feet, Coromandel, 475 feet, and Switzers, 491 feet
Lunate Asylums - The number of patients remaining in the various lunatic Lunatic asylums. asylums at the end of the year amounted to 479 males and 251 females Of these, 112 males and 64 females were supposed to be curable, and 367 males and 187 femaies supposed to be ancurable, 224 males and 108 females were admitted durng the year, and 14,3 males and 75 females discharged, 669 males and 337 females, or a total of 1,006 persons, were treated as inmates of these asylums durng the year The asylums in the aggregate afford

	a.commodation for 512 males and 273 females, or a total of 785 As the aggiegate number of cubic feet in the sleeping wards amounted to 414,746 , there was an average space of 528 cubic feet in the sleeping wards for each patient, or rather more than equal to a room measuring eight feet each way
etters recelved	Letters recewed-The total numbers of letters recelved in New Zealand durng the year 1875 were-From places without the colony, 699,963 , aganst 585,530 in 1874 , and from places within the colony, $4,353,440$, against $3,753,635 \mathrm{~m} 1874$, makıng a general total of $5,053,403$, against $4,339,165 \mathrm{in}$ 1874, being an increase of 714,238 , or 164 per cent
and despatched	Letters despatched.-The total numbers of letters despatched were-To places wnthout the colony 642,575 , ugainst 589,706 in 1874 , and to places withn the colony $4,731,873$, against $4,129,585$ in 1874 , makıng a general total of $5,374,448$, aganst $4,719,291$ in 1874, being an increase of 655,157 or 13.8 per cent
Papers recelved	Paper's receved -The total numbers of papers recelved were-From places without the colony $1,250,788$ aganst $1,144,579$ in 1874 , from places within the colony $2,77,669$ aganst $2,728,089$ in 1875 , making a general total of $4,026,457$ against $3,872,668$ in 1874 , an increase of 153,789
and despatched	Newspapers despatched -The total numbers of newspapers despatched were -To places without the colony 514,239 , aganst 441,731 in 1874 , to places within the colony $2,270,581$ aganst $1,992,293$ in 1874 , making a general total of $2,884,820$, aganst $2,434,024$ in 1874 , being an increase of 350,796 .
Postal revenue	Postal Revenue - The total amount of postal revenue in 1875 was 122,495l 18s 9d, against $104,361 l 2 s$ 11d in 1874 Both these accounts melude the sums that would have been chargeable on the franked correspondence if such had been paid for The actual cash postal revenue for the year was $72,113 l 10 \mathrm{~s}$. II d, aganst a smular cash revenue of $65,581 l$. $18 \mathrm{~s} 10 d \mathrm{in}$ 1874.
$\underset{\text { graph }}{\substack{\text { Slectrict trle- }}}$	Electric Telegraph - The telegraph stations in the colony on the 31st December 1875 numbered 133, an ncrease of 22 on the number of stations in 1874 The number of miles of line was 3,156 , aganst $2,632 \mathrm{in} 1874$ The number of miles of wre was 7,065, aganast $5,284 \mathrm{in} 1874$ The number of private telegrams was 849,919 , against $724,582 \mathrm{in} 1874$, yielding a revenue of $59,678 l$ 10s The Government telegrams amounted to 143,404 The aggregate number of public and private telegrams amounted to 993,323 , aganst 844,001 in 1874, an merease of 149,022

Finance, Accumulation, and Production.

Revenue - The customs revenue in 1875 amounted to $1,234,967 l$, aganst $1,188,948 l$ in 1874 , bemg an marease of $46,019 l$, or 387 per cent. The following figures show the comparative amounts realized by this branch of the revenue during the 10 years 1866 to 1875 , inclusive. -

The total ordmary revenue in 1875 amounted to $2,047,234 l$, aganst $1,873,448 l$ in 1874, an merease of 173,8661 The ordmary revenue as above given, includes ordinary provincial revenue The territorial revenue in 1875 amounted to 688,722l

The incidental receipts and rembur \times ements amounted to 77,972 , thus making the general total of the revenue-oidmary, territorial, and incidental, 2,813,938l

Expenditure - The expenditure may be classed as expenditure charged on Expenditure. revenue, expenditure charged on loans, and expenditure of a special character charged on trust funds It is not necessary here to deal with trust fund expenditure

The expenditure charged on revenue is partly by the Colonal Government, partly by the Pronncial Government This class of expenditure, after deducting all transfers, Treasury bills redeemed, and bank overdrafts repaid,' amounted in 1875 to the following -

Thus making the total expenditure charged on revenue amount to $3,431,972 l$ 12s. $6 d$. I his sum does not anclude the same amounts twnce as expenditure, such as payments out of the consoldated revenue to the provinces, and agan the apphcation of those sums by the provinces The actual expenditure in services is only included

The excess of expenditure over income was covered by balances in hand at the commencement of the year, and a repayment of an advance made from revenue of the previous year of the sum of $150,000 \mathrm{l}$. to the Puble Works Loan Account

In addition to the above $45,000 l$ worth of Treasury bills (in excess of renewals), and $15,425 l$ worth of debentures were redeemed, and a provincial bank advance of $5,377 \mathrm{l} 12 \mathrm{~s}$ lod repand out of revenue

The actual expenditure charged on loans, after deductung all transfers from one fund to another by way of account, and the redemption of debentures and advances repaid, amounted un 1875 to $3,107,867 l$ l1s $10 d$, meluding the amount of $95,614 l 3 s$ ld authonzed to be expended from loans for provimal purposes

Debt of General and Provincual Governments -The total debts of the General and Provincial Governments, consisting of debentures and Treasury bills in crrculation on 31st December 1875, amounted to $17,400,031 l$, the total annual charge on which was $946,974 l 5 s$, of which the sum of $832,556 l 5 s$ was for payment of interest, and the sum of $114,418 l$ was for payment to the sinking fund The total accrued sinking fund on the 31st December was 1,100,119l 10s $6 d$
Of the above totuls, the indebtedness oif the General Government amounted to $13,897,185 l$, with a total annual charge, for interest and sinking fund of $732,04513 \mathrm{~s} 10 \mathrm{~d}$, and the indebtedress of the various Provincial Governments amounted to the sum of $3,502,846 l$, with a total annual charge for interest and sinking fund of $214,929 l$ 1s $2 d$ The total debt per head of the population on the 31 st December 1875, was 46 l 5 s 10 d , apportioned thus: colomal debt per head, $36 I 19 s 5 \frac{1}{2} d$, provincial debt per head, $9 l 6 s 4 \frac{1}{2} d$. The total annual charge per head for interest and sinking fund, amounted to $2 l 10$ s $4 \frac{1}{2} d$ against a total annual charge of $2 l 4 s 7 \frac{7}{4} d$ per head on the 31 st December 1874 As the sinking fund amounted to $2 l 18 s 6 d$ per head, the debt per head may be estimated at so much less

Accumulation

Banks - The total average habilties of the banks within the colony Banbs during 1875 amounted to $6,987,318 l$ 3s $2 d$, the total average assets to $10,957,17 \mathrm{kl} 14 s$, the total capital paid up on the lst December 1875 to $4,681,7 / 6 l 9 s .8 d$, the total amount of last dividends $3,171,404 l \mathrm{l} 3 \mathrm{~s} 3 d$, and the total amount of reserved profit at the time of declaring such dividends,

Post Office Savings Banhs -At the close of the year 1875 there were Post Office 119 post office savings banks, being an increase of 16 compared with 1874 Savngs Banks The total deposts (including addition to open accounts) amounted to $657,653 l$ is The average amount of deposit to the credit of each account has $29 l 17 s$. $9 d$ aganst $35 l 9$ s. m 1874 .

Other Savings
Banks,

Armed Constabulanly

Other Savangs Banks - In savıngs banks, other than those of the post office, the deposits in 1875 by Europeans amounted to $99,916 l 17 \mathrm{~s}$. $2 d$, and by Maoris to $117 l$ The total amount to the credit of depositors in these banks in 1875 was, Europeans 169,789l 10s 8d, Maoris $241 l$ 3s $8 d$ The total accumulated deposits in both classes of savings banks thus reached the amount of $897,326 l 2 \mathrm{~s}$.
Money Orders

Volunteer's

Electors
Money Orders - The total number of money orders issued in New Zealand In 1875, was 73,027 , representing a total of $293,481 l$ 10s 9 d . The number of money orders drawn on the colony in 1875 was 52,575 , representing an aggregate amount of 187,284l 14s $1 d$ in 1874

Constabulary and Volunteers.
Armed Constabulary -The total strength of this force on the 31st December 1875 was 728 , distributed over 65 posts in the North Island There were 43 commissioned officers, and 595 rank and file

Volunteers -The various branches of the volunteer force gave a total strength of 6,080 officers and men, belonging to 127 corps

Representation.

Electors - The number of persons registered as electors amounted to 58,744, equal to 28 per cent. of the mean male population for the year 1875 .
-

Section H-Trade, Agriculture, Productions, \&c.
 Trade Imports and Exports

Value of mport and export trade in 1875

The total value of the import and export trade of New Zealand in 1875 amounted to $13,857,799 l$., of which the imports amounted to $8,029,172 l$, and the exports to $5,828,627 l$. employing a total of shipping n wards of 926 vessels of 416,726 tonnage As the first body of settlers only arrived in 1839 this trade is the growth of 35 years
Table of imports The followng table gives the total value of imports and exports for each of and exports from 1866 to 1875
the last 10 years .-

Growth of Trade

Rapid growth as compared with previous decade

A comparison with the trade in the premous 10 years shows a much more rapid growth in that period. The trade in each of the years 1856 and 1865 was as follows -

Thus in the decade 1856 -1865 the trade increased by $8,278,894 l$ or 804 per Decade $1856-1865$. cent, but in the decade 1866-75 the trade only nereased by $3,442,862 l$ or 33 Decade $1866-1875$ per cent
The large growth of trade in the years 1856-65, is attributable to the discovery during that period of the gold fields of Otago, and the large mflux of population that took place un consequence.
A mining population is generally such as to materially affect the amount of trade by the production of a larger and valuable export, as well as by therr generally lavish habits of expenditure
The dimunished yrelds in the alluvial gold fields similarly tended to materially Dimimshed retard and even diminish the growth of trade during the earker years of the yivids meldilluvial decade $1866-75$, for while the export of wool was steadly increasing the gold gold fields export was steadily decreasing, the last export having falling from $2,897,412 l$ in port of wool 1866 to $1,407,770 l \mathrm{~mm} 1875$. "The increased trade in the last four years of the decade has no doubt been caused by the operation of the immigration and pubuc works policy, not only by the introduction of a consuming population, the distribution of larger sums of money on account of vanous public works, and the consequent largely increased spending power in the labouring classes, caused by the higher rates of wages, but also by the values of the materials mported by the Government for the extension of public works The imports of bridge and telegraph materials and ralway plant, \&c amounted to 796,626l in 1874, and to $487,079 \mathrm{ln} 1875$.

Trade with different Countrues.

Of the total trade in 1875 the bulk, amounting to $9,331,370 l$, was with the ${ }^{W}$ ith Unted United Kingdom, the exports therefrom having amounted to $5,103,6102$ and $\frac{\text { Kinfdom }}{W}$ the exports thereto to $4,227,760 l$ The total trade with the Australian colomes with Australan amounted to $3,719,353 l$ The trade with the United States amounted to 306,728l ; that with China (neluding Hong Kong) to 222,650l, and that with the Pacific aslands to $150,024 l$
The following table exhibits the value of the imports from and exports to different countries in 1875.-

Lmports and Exports from and to mppeerent Countries

Return of the Value of the Imports and Exporta of the Colony of New
Zealand, from and to each under-mentioned Country, Colony, or Port,
during the Year 1875
Zealand, from and to each under-mentioned Country, Colony, or Port,
during the Year 1875

$$
-
$$

192

* This meludes gold to the value of $802,617 \mathrm{l}$.

Listof articles, The following table shows the total quantity and value of the principal total quantity, and value articles (the produce of the colony) exported in 1875 .-

Articles	Quantity	Value
Wool -	54,401,540 lbs	$\stackrel{\text { ¢ }}{3,398,155}$
Tallow - -	1,811 ewts	55,765
Hides	33,261 number	30,818
Sheeprkins	237,504 "	36,629
Leather	2,295 cwts	15,971
Gold -	355,322 ounces ।	1,407,770
Sulver	29,085 \%	7,560
Coal -	3,385 tons	3,129
Flour - - -	636	7,700
Bran and Sharps -	121	679
Wheat - +	548,095 bushels	115,093
Barley - -	91,622 "	20,546
Malt - -	6,885 "	2,510
Oats -	630,325, "	93,268
Oatmeal -	7,891 tons	6,652
Potatoes	415 "	2,281
Butter -	104 cwts	660
Cheese - -	442	1,862
Bacon and Hams -	539 "	2,792
Salt Beef and Rork	1,082 "	1,717
Preserved meats -	2,844 packages	7,180
Kaurn gum - -	2,230 tons	138,523
Phormium, (New Zealand hemp)	639 "	11,742
Cordage - - -	544 cwis	1,261
Timber, sawn and hewn	5,225,627 . feet	- 26,914
" logs, spars, lumber	1,791 number	12,945

The imports may be stated in general terms as consisting of such artucles of Imports necessity and luxury, except the agrcultural or pastoral products of the colony, as are generally required by a muxed population of Englshmen of the 19th century. The presence of a considerable aborigmal population has not gren any special development to any particular branch of trade, as when muxing with the settlers, the Maons have generally required such artcles as might be in use among Englishmen of the more prosperous labourng classes. While many manufactures have been established in the colony, their growth has not been sufficient to enable the imports of such articles as are locally manufactured to be dispensed with.

Pastoral Pursuts.

The mildness of the wnter season, which does not require that any specal Adaptabilty by prorsion for the keep of stock durng that period should be made, and the reasson of mild general suitability of the country for grazing purposes, and the growth of a ness of winter. superior class of wool, caused the attention of the early settiers to be much guen to pastoral pursurts; grass lands were looked up as sheep or cattle runs. The success attending the pursuit enabled the runholders to a large extent to purchase the freehold of their runs, or the best portions of them; and by improvementsin fencing and sowing with Enghsh grasses, which thrive remarkably well in the colony, the bearng capabilttes of the land were increased many fold While for the North Island there are considerable tracts of grazing ground wth natural herbage, a large extent of the country consists of hill land of varying quality covered with forest or bush, as it is called in the colong.
Thus land, after the bush has been cut down and set fire to, if grass seed be Reclummation and sown upon the ashes, is converted in a few weeks into good grazing land. Much conversion of has already been reclaumed from the bush, and supports large flocks and herds, and the same system will doubtless be extensively followed, as a large portion of country that would be so used, 18 not avaulable for agrcultural pursuits In the Middle Island the bush is chefly confined to the western slopes of the dividing range, the open hills, planns, and downs to the east of the range beng avalable for grazing purposes The extent to which pastoral pursuts have been followed may be estimated by the quantity of stock in the colony in 1874 (when the census was last taken). The numbers of the undermentioned kunds were as follows -

Horses	-	-	-
Cattle	99,859		
Sheep	-	-	-
494,917			
	$-11,704,853$		

These numbers do not include the anmals in the possession of aboriginal natives, no estumate of which can be given, while, however, possessing a constderable number of horses, they own but small numbers of sheep and cattle. The export of wool has grown, since the first settlement of the colony in 1839, to an export in 1875 of $54,401,540 \mathrm{lbs}$, estimated in value at $1,354,152 l$. In ten years the increase in their quantity has been at the rate of 138 per cent
While much of the country 18 only surted for sheep, a considerable portion Specala adpptais well adapted for the graing of cattle Much attention has been pard to, and bilty for steep captal expended on the mprovement of the various kunds of domestic anmals; and some of the sheep and cattle fattened on grasses only may well bear comparison with the ammals fattened on arthicial food for the English markets
The horses in the colony vary much in qualuty, for some years they realized Horses. such low prices that but little attention was pand to the breeding of good saddle horses, and as the Maorss possess large numbers of mares (not included in the census numberss, and bred from them without much regard to the improvement of stock, there has been a large increase in the number of small weedy animals. Where care has been taken, excellent results have been obtaned As both cart horses and thorough breds of the best strains of blood have been imported, first class animals of either sort are obtanable.

Agriculture.

From various causes agriculture has only been pursued on an extensive scale Number of acrea in the provinces of Canterbury and Otago, both in the Middle Island Out of under grail 236,712 acres under gran crop in February 1876, 146,842 acres were in the crop. province of Canterbury, and 12,184 in the province of Otago, having only 27,686 acres under gran crops in the rest of the colony.

Averaze yneld of wheat per acre	ry at $30 \frac{3}{4}$ bushels. In the North Island the
	Hawke's Bay to 193 bushels in Auckland.
Yeld of oats and barley	The yield of oats for the colony was estimated at 35 bushels to one acre, of barley at $29 \frac{1}{4}$ bushels.
produce in	The following were the number of acres and the estimated produce of earh d of grain crop in February 1876 .-

and produce in 1876.
kind of grain crop in February $1876 .-$

			Acres	Prod	
Wheat		-	90,804	2,863,61	ushels
Oats	-		168,252	6,357,431	
Barley		-	27,656	993,219	

Under potatocs and average
yreld

No mdigenous anımals

Anımals liroited to those introduced by Euro. peans
Numbers.

There were 14,655 acres under potatoes at that time with an average yield of $4 \frac{3}{4}$ tons per acre.

Productions, Animal and Vegetable.

Before the advent of the Europeans there were not any animals, either domestic or wild, to graze on the natural herbage of the country, or to act as food for the natives. Pigs were first introduced by Captain Cook.
The animal productions are, therefore, confined to the domestic animals introduced by the Europeans. The following table shows the number of the principal kinds in each province at the time the census was taken, the numbers belonging to the Maoris not being included -

Supply in excess of demand

Exports in 1875.

The supply of anmal food is thus far in excess of the requirements of the population, and endeavours have been made to utilize the excess by boiling down for tallow and by preserving the meat for the Enghsh markets.

A large surplus of such produce in excess of the requirements of the population would be available for the supply of mulitary or naval forces.

Transport

Coastal traffic a necessity.

Steam traffic.

The configuration of the colony and the difficulties of traversing the country without roads has caused a considerable coastal traffic to be developed In December 1875 there were 428 sailing vessels of 31,759 tonnage, and 74 steam vessels of 7,266 tonnage on the New Zealand Register
There is now a regular steam trafic between all the principal ports in Cook's Straits, leaving almost dally either for the north or south The inland means of transport are being rapidly developed Metalled roads are
beng extended throughout the country In the North Island coaches now ply between Wellington and Taranakr, Wellington and Napier, and Napier and Auckland
District roads are undertaken by the road boards of the colony. The total District roads. number of these boards in the North 1sland in 1875 amounted to 200, they expended in that year the sum of 51,5291 om public works, chuefly or the ${ }^{-}$ formation and repairs of roads, bridges, \&c
Large drays, capable of holdıng three or more tons, drawn by several horses, are in ase for conveying timber and heavy goods to and from the chief towns, In the mountanous portions of the northern and ceastern parts of the Middle Island the difficultes of travel are chuefly on account of the broken character of the country, for these hills being bare of timber, the impedıments afforded by the forests of the North Island do not exast
Faculty of transport is not attaned in the Middle Island until the province of Canterbury is reached, where, of the mvers can be crossed, a cart can travel with ease from one end to another of the planns. There does not seem much prospect of an immednate direct road or railroad communication between Cook's Straits and the Canterbury Plains (although traffic on horseback is possible), but roads and ralways are being rapidly extended through the length and breadth of the province, the man line of railway being extended south towards the province of Otago, and thence being in progress through Dunedin to the extreme south at Invercargil, with branches into the interior.

Excellent metalled roads have been made tbrough the piovincial portions of the province of Otago, but the rivers cannot be regarded in any way as ands to transport or communication
Since the organization of the Public Works Department in 1870, for works Orgamization of in which more than one province is concerned, there have been 1,833 mules of Publio Works roads constructed, or in progress, in the North Island, and 271 mules in the 1870. Middle Island, a large proportion being good traversable dray roads, the cost up to 30 th June 1876 being respectively $491,63615 s$ and $194,721 l$ 11s $11 d$. Out of these totals $8,964 l 2 s$ were expended on roads in native districts, many thousand of good and substantial roads had been constructed by the vanious Provnacial Governments previous to these works
The construction of railways has been vigorously proceeded with. The Construction of following tables show their length and cost. -

		North Island	Middle Island	Total.		
		\& $30 \begin{array}{ll} & s \\ & d\end{array}$	\& s. ${ }_{\text {c }}$	£	s	d.
Land and expenses		51,350 3 3 5	$\begin{array}{llll}126,048 & 15 & 8\end{array}$	177,398	19	,
Preluminary survey -		50,212 1810	54,251 711	104,464	6	9
Construction		1,323,251 165	2,550,823 515	3,874,075	1	10
Rolling stock - -		$\begin{array}{llll}158,511 & 12 & 9\end{array}$	276,224 96	434,736	2	3
Workshops, \&c -		132,771 114	293,535 113	426,306	12	7
Engineering and offices		57,577 $10 \begin{array}{ll}10 & 9\end{array}$	92,388 3 3 4	149,965	14	1
Incidental -	-	7,280 5 $\quad 1$	$10,267 \quad 13 \quad 7$	17,547	18	8
Total Expenditure	-	1,780,955 18 7 7	3,403,538 $16 \quad 8$	5,184,494	15	3

Worked by Government

There are eight railways now worked by Government, with the following results for the past year -

Average recerpts per mile

The average recenpts per mile are thus 101 ll . 8s. There is at present one mile of rallway to every 595 of the population, and when the whole of the lines under construction are completed, the proportion will be one to every 365.

Expenditure and luability of Publ Works Depart ment
"Total Expenditura and Liabilitibs of Public Works Department.

	$\begin{array}{c\|} \text { Total Expend. } \\ \text { ture to } \\ 30 \text { June } 1876 . \end{array}$	Liabilties on 30 June 1876, extending over a period of years	Total Expendture and Liabilttes.
Roads North Island - -	$$	$\begin{array}{ccc} t^{t} & s & d \\ 9,918 & 2 & 8 \\ 4,158 & 9 & 10 \end{array}$	$\begin{array}{ccc} £ & s & d . \\ 501,554 & 7 & 8 \\ 198,880 & 1 & 9 \end{array}$
Raulways bridges, rollmg stock -	5,215,018 00	983,253 197	6,198,271 1911
Water supply on goldfields -	280,919 16	81,368 611	362,288 3
Advance, Thames Deep Sink. ing Association.	45,908 00	4,092 00	50,000 0
Coal exploration and mine development	8,940 106	1,070 12 1	10,000 2
Telegraph extension -	228,284 10 5	-	228,284 10
Graymouth Protection works -	4,000 0 0	-	4,000 0
Payments to Provinces and Road Boards.	150,000 00	-	150,000 0
Departmental - -	82,602 77	1,640 $15 \quad 2$	84,243 2
Refunds of stamp Revenue	37780		377
Refunds, interest on deposits	$\begin{array}{lll}88 & 4 & 4\end{array}$	-	884
Unauthonsed - -	530114	-	53011
Total - -	6,703,027 4	,085,502 663	7,788,529 $10 \quad 5$

Price of Labour.
The great demand for labour, in consequence of the progress of public works, has caused a considerable rise in wages. The prices of some kinds of
labour vary in different portions of the colony. The following table represents the extremes of certain wages - -

With board, agricultural labourers,
Without board
With board, shepherds,
Without board, masons,

* carpenters, , smiths,
With board, female domestics servants, $8 s$ to $16 s$ per week.
needlewomen,

Without board, general labourers,
With board, seamen,

15s. to 25s. per week. 5s. to $9 s$ per day. $45 l$ to $80 l$ per annum.
8s. to 16 s per day.
$8 s$ to $14 s \quad "$
$8 s$ to $14 s$. ",
15s. to 25 s . $5 s$ to $9 s$ per day. 4l. 15s. to $8 l$. per month.

V-Grology and Mining.
 a. Geological Formations.
 Coal.

Coal mines are being worked in the pronnces of Auckland, Nelson, Can-Coal mines. terbury, Otago, meluding Southland
The different varieties of coal may be classed as follows -
Class I -Hydrous, containing an excess of combined water
a Lignite.
b Brown coal.
c Patch coal.
Class II -Anhydrous, containing very little combined water.
a Glance coal.
b Semu-bitumınous coal
c. Bituminous coal.
I. Hydrous, contaming 10 to 20 per cent of permanent water.

Hydrous.
(a) Lngnute, shows dustnctly woody structure lamunated, very absorbent of water
(b) Brown coal rarely shows vegetable structure, fracture urregular, conchordal, colour, dark brown, lustre feeble, cracks readily on exposure to the atmosphere, losing 5 to 10 per cent of water, which is not reabsorbed, burns slowly, contains resin un large masses.
(c) Putch coal, structure compact, fracture smooth, conchoidal, jointed in large angular pieces, colour brown or black, lustre waxy, does not desiccate on exposure nor is it absorbent of water, burns freely, and contains resin dasseminated throughout its mass

II Anhydrous coal, contanung less than 6 per cent. of water.

Anhydrous.
(a) Glance coal-Non-caking, massive, compact or frable, fracture cuboidal, splintery, lustre metallic, structure lammated, colour black, does not form a caking coal, but singhtly adheres. This variety is brown coal altered by yneous rocks, and presents every intermedrate stage from brown coal to anthracite.
(b) Semt-betuminous coal-Compact, with lammæ of bright and dull coal alternately, fracture urregular, lustre moderate, cakes moderately, or is noncaking
(c) Butuminous coal-Much jointed, homogeneous, tender and frable, lustre pitch-like, glistening, often irridescent, colour black with a purple hue; powder brownish, cakes strongly, the best varieties forming a vitreous coke, with brillant metallic lustre

General Descruption.

Class II -The anhydrous kinds of coal prove to be quite equal to any where found imported, experiments having been undertaken in 1865 for ascertaining their Anlydrous coal, value for steam vessels Both these and the hydrous coals occur at the base of a great marine formation, underlying hmestone, clays, and sandstone of cretaceous and tertiary age, which have a thickness of several thousand feet,
the coal seams occurring whenever the above formation ss in contact with the older rock The anhydions kinds are more limited, and appear to be produced by local disturbance of the strata, and in some cases are evidently due to the intrusion of volcanic rocks

Bztuminous coal is worked chiefly in Nelson Province At Mount Rochfort or Buller mines the seams are on a high plateau and are 10 to 40 feet thick, and from 900 to 3,000 feet above sea level ; accurate surveys of this coal field show it to contain $140,000,000$ tons of bitumanous coal of the best quality and easily accessible, a ralway 19 miles an length is in course of construction At the Brunner coal mine on the Grey River, Nelson, the workng place of the seam is 18 feet, and at has been proved to extend one-third of a mule on the strike without disturbance, and to be avalable for working in an area of 30 acres, the estimated amount of coal being $4,000,000$ tons in this basin alone, most of which can be worked above the water level. A second mine is being opened on the south side of the river, which, whth a 370 feet shaft, will command 300,000 tons
Coal fields in Nelson have also yrelded excellent coal. At Tuangahua, Murray Creek, an 18 feet seam of bituminous coal is worked, associated with quartz grits At Pakawan, and in the same formation at Collingwood, thin seams of hard bright bituminous coal have been worked from the sandstones of the cretaceous period The area of the coal field is about 30 square miles and the facilities of access and shipping, and the abundance of rron ore and limestone will probably make this an rmportant minung district. The chief coal mine has been opened by a tunnel 700 feet an length prercing the mountan at 600 feet above the flats along the Arorere River, the coal being brought down by a self-acting incline.
Glance coal has been woiked since 1865 m Auckland at the Kawa Kawa mine, Bay of Islands, from a seam 13 feet thick in green sand, it contans much sulphur This coal is also worked at Walton's mine, Wangares Harbour, in a five feet seam, it contams sulphur and much ash A better kind is worked in Canterbury in the Malvern Hill district, where there are extensive but detached seams from two to three feet thick in micaceous and argillaceous shales

Class I -The hydrous coals occur on the eastern coast chiefly

Pitch coal Putch coal has been worked since 1867 at West Wanganuu in Nelson; and in Otago at Shag Pont, 40 mules north of Dunedin, it has been worked since 1862 together with brown coal.

Lignites Brown coal is worked in Auckland on the Warkato River, and in the Cluttia and Tokomarriro district. at the latter mine the seams are from five to 20 feet thick The area of this coal field is about 6,000 acres, and the quantity of coal has been estumated, from surveys to be 140 million tons, nearly the whole of which would be available without sinking In Southland at Preservation Inlet thick seams are worked on the mannland south of Coal Island In Otago thack seams of brown coal m grits and clay shale have been worked since 1861 at Green Island and Saddle Hill
The Lagnites occur in the interior of Otago, and at other places in superficial deposits of limited extent, and have been used chuefly by daggers

The following is the description of the exhibits that were shown in this class.-

1 -Parapara Iron and Coal Company, Nelson.

b Coal from the Arorere River Block taken from a 3 feet seam, a farr specimen of the general qualty of the field The coal occurs in a rugged mountan range on the north bank of the Arorere Raver, and is tapped by a drift or tunnel on the side of the hill between 800 and 900 feet above sea level By actual survey the field has proved of consideable extent, and in the drift alluded to above five seams have been cut, varying in thickness from 18 inches to 3 feet, out of which 6 feet of workable coal is found. It is unsurpassed in the colones for gas purposes, is an excellent household coul, and very superior for steam use

3.-Nelson Commattee, Nelson,

Coal exhbits
b Block of Coal from Coalbrook Dale, Mount Rochfort, Nelson, two seams of 8 feet and 18 unches respectively, at an elevation of 2,200 feet above sea level Estmated area of field 12 square mules

6 -Taranakt Committee.

Lignite, shows distinctly woody structure, laminated. very absorbent of water Specimen from Urenar, North Taranaki.

7.-Colontal Museums, Wellington

b. Specimens exbibiting the classification of New Zealand coals

Anhydrous Coals.

A. Bituminous coals (cakng) Specimens from Brunner Mine, Nelson, also of vitreous coke, with brilhant metallic lustre, made fromit. Average evaporative power of several samples, $7 \frac{1}{2}$ lbs of boilng water converted unto steam for each pound of coall ; occurs whth grits and conglomerates of Upper Neoaove age, corresponding to the horizon of the Gault or Upper Greensand In the Buller, Grey, and Collingwood cosil fields on the West Coast of Nelson, the seams are from 2 to 40 feet in thickness
B. Semı-bitumenous coal-Specimens from Pakawan, Nelson, showing lamine of brght and dull coal alternately Occurs in thin irregular seams in sandstone of Upper Neozole age (Jurassic and Lower Cretaceous), Kawa Kawa and Wangaren, Auckland, Pakawan, Nelson; Mount Hamlton, and Waikava, Otago, rarely cakes strongly ; evaporative power commonly $6 \frac{3}{2}$ lbs.
c Glance coal-Specimens from Hill's Drive, Selwyn, Canterbury This coal does not form a caking coke, but slightly adheres, and is a variety of brown coal, altered by faulting or by igneous rocks, and presenting every intermediate stage from brown coal to an anthracite Occumng at Preservation Inlet and Malvern Hills, of Lower Cretaceous age, in extensive but detached seams from 2 to 3 feet thick in micaceous and argillaceous shales

Hydrous Coals

A Putch coal-Specumens from Upper Buller, Nelson (contams resin disseminated throughout its mass); Waikato and Wangaros, Auckland; West Wanganu, Nelson; Shag Point, Otago; Morely Creek, Southland (Upper Cretaceous period) Evaporative power 42 lbs 1
в Brown coal-Specimens from Kartangata, Otago Shows no vegetable structure, has lost 5 to 10 per cent of water since first extracted, contanns resim like Kauri gum in large masses; occurs generally throughout the 1slands (Upper Cretaceous and Greensand age) Evaporative power 42 to 56 lbs Saddle Hill, Otago, evaporative power 5 lbs

8 Kennedy Brothers, Nelson

Block of coal from the Brunner Mine, struated on the Grey River, Nelson, seven miles from the north of Greymouth The seam now being worked 18 of a uniform thickness of 16 feet, all pure clean coal, and bas been worked on a small scale durng the past twelve years The output for the year ending July 1875 was 20,000 tons A ralway is being constructed by Government to connect the mine with the port. and harbour improvements are in progress, whereby a larger class of vessels than at present will be enabled to enter The Company now produce 2,000 tons per week Present price free on board at Greymouth is $15 s$ per ton The small quantity of this coal hitherto obtainable in New Zealand and Austrahan markets has been eagerly bought up for gas works and ron foundres, who geneally pay for $1 t$ from 10 to 20 per cent more than for any other coal Engneers of local steamers esteem it 20 per cent better than the best New South Wales coal for steam purposes

Coke made from No 2 Value $3 l$ per ton

9 Alboon Coal Company, Nelson

Block of coal from Ugakawan Seam 10 feet thick, ascends from the sea level to $1,400 \mathrm{in}$ Mt Frederic range 20 miles north of Westport, with which place the mine is connected by ralway

10 Rend, Alexander W, Canterbury
Altered brown coal from Kowar pass 3 feet seam Area of field 108 acres Value at pits mouth $1 l$ 'The pit is 6 miles from a rallway, and 50 miles from port of shipment.

11 Oakden, J J., Canterbury

Anthracite coal from Lake Coleridge, Canterbury Two seams of 5 feet . each. Supposed extent of field 100 acres Contains 90 per cent of carbon. Pit is distant 28 miles from a railway, and 70 mules from port of shipment .

12 Rowley, Walson, \& Co, Otago
Block of coal from Shag Point, Palmerston, Otago. Value per ton at pit's mouth $12 s$

Gold.

Gold was discovered in 1840, less than three years from the foundation of the

Gold First discovery 1840 Frrst practical woiking 1852

Lodes.

Alluvial

Auriferous sand,
three kinds.
Fust.

Second. colony, but it was not practically worked until 1852 , when the mines at Coromandel first attracted attention to the district of Cape Cosville peninsula, which at the present time forms the chief seat of true mining operations in New Zealand. The yield from those mines has up to the present time been small, when compared with the quantrity of alluvial gold obtanned in the South Island, subsequent to 1861, at which date the gold fields of Otago became prominently known. The principal mines are in Coromandel and in the Thames districts, about 30 miles apart
At Coromandel the lodes have been "proved" to a depth of over 300 feet from the surface, but the best mines at the Thames have as yet been principally confined to the decomposed and comparatively superficial work. Vems have been discovered and gold obtamed at all levels on the ranges, from the sea level to an altutude of 2,000 feet. The quantity of gold that has been obtaned from some of these quartz reefs is very great, and for considerable distances the guartz has yielded very unformly at the rate of 600 ozs. to the ton, such reefs are, however; very exceptional.
Alluval gold is chiefly found in the South Island in the provinces of Otago, Westland, and Nelson, in which districts mining operations are carried on over an area of almost $20,000 \mathrm{sq}$ miles.
The auriferous sand, or gold drift as it is usually termed, is of three distinet kinds. First, that which is found in the beds of rivers, and which is worked by small partes of miners, as the process requires no large expenditure of capital to effect the separation of the gold

Secondly, immensely thick deposits of gravel of more ancient date occupy the wider valleys and the flat country, from which the gold can only be obtamed by means of considerable expenditure and large engineering works for the purpose of bringing a supply of water for undermining and working the aurferous deposits This description of mining is of a more permanent character than the former, and provision has been made by the Colomal Government for assisting the miners by the construction of water races, which will supply the means of profitable employment to a much larger number of persons than at present gain a livelhood by this description of mining

Thrdly, along the sea coast, the contrnued wash of the waves produces a shifting action on the sands which are brought down by the rivers and drifted along the shore, thus producing fine deposits of gold, which by and of simple mechanical contrivances afford employment to a large number of diggers, who can labour without incurring the hardships and privations which attend the occupation of the miners in the more inland districts.
Collingwood and Hokitika.

Otago.

Alluvial diggings at Collingwood were discovered in 1858, and in 1864 the great goldfields near Hokitika attracted the majority of the mining population of New Zealand. In Otago the golddrifts rest on the denuded surface of their parent rocks The auriferous gravels in the western district as a general rule rest on the surface of recent tertiary rocks of marine orign. They thus have a general distribution parallel to whatever was the western shore of the sland at the time of their deposit

The richest Westland alluvial diggings usually occur in very naccessble places for a water supply. The streams having cut their channels much below the surface of the country, so that an organized system of urrigation is necessary - to obtain the reaured amount of water for the gold washing

South Island (chiefly obtanned from the metamorphic
rocks, by alluvial washing)

$$
6,960,129 \quad 27,432,819
$$

North Island (This gold is obtained by lode-mining

$$
\begin{aligned}
\text { in igneous rocks belonging to the Neozore epoch) - } & 995,166
\end{aligned} \begin{aligned}
& \text { 3,551,967 } \\
& \text { Total Yeld }
\end{aligned}
$$

Metallurgıcal Products.

15. New Zealand Commsssoners.

Specmens of alluvial gold and gold-bearing quartz from Auckland, West- $\begin{aligned} & \text { Gold specmens, } \\ & \text { exhbits, and }\end{aligned}$ land, and Otago, collected by the Bank of New Zealand.
List of Gold Spbcomens collected for the New Zimatand Commesioners by the Baikic of New Zeakand.
Gold from Auckland

Gold from Otago

		Locality	Werght.	Cost Price	Average Assay (decimally expressed) y 167 British Standard Gold.	Average Loss per cent. $1 n$ Melting	Remarks
I.			$\underset{1}{0 x}{ }_{0}^{\text {oxs dwts grs }}$	$\left\|\begin{array}{ccc} 2 & 8 & a \\ 8 & 15 & 6 \end{array}\right\|$	- * -	- -	Terrace clam, tunnel work Has pard $3 l$ 10s per mam perweek for past 12 months
	1	Queenstown,					
	2	Queenstown, Moonlight Creek	100	3156			Terrace clam, tunnel work At work for seven years averaging almost $4 l \mathrm{Ml}$ man per week.
	3	Queenstown, ${ }_{\text {Wranches of }}$	100	3156	9 475 alloy silver		Ground slucmen.
	4	Queenstown, Moonlight Creek	0	5156	- - -		Ditto. Ditto
	5	Moonlight Creek Queenstown, Tu-	100	3156	*	- -	
		den Mill, side of	10	31.0			
	6	Queensland, Big Beach, Shotover	100	8150	9545 allay silver	-	Ground sluncme Clann worked by 40 Chmamen, the weekly earnings being 2502
II	7	Arrowtown Macetown Cardrons	$\begin{array}{llll}7 & 0 & 12\end{array}$	26117	9545 alloy silver	197	Large sized nuggets, charncteristic of the ycld of the district
	8 9		$\begin{array}{rrrr}1 & 0 & 0 \\ 0 & 17 & 12\end{array}$	815 6 8 6 1	(${ }^{9} 540$	$\begin{aligned} & 825 \\ & 175 \end{aligned}$	Ditto Ditto.
III	${ }^{9} 10$		4218	${ }^{15} 128$	6600 - "	175	\longrightarrow
	11		100	8156			Obtaned by cradiug bauk
	-		100	3156	-	- -	Of the Clitha river

Gold: specimons, Specimen 42. Auriferous quartz from the Phœenix Claim Skippers. Width exhibits, and of lode 8 feet; sample taken from a depth of 240 feet. The battery used for of lode 8 feet; sample taken from a depth of 240 feet. The battery used for Messrs. F. and G. T. Bullen. Manager, Mr. F. Evans. A first crushing of 40 tons of this stone yielded 239 ozs. gold,

No. 43. Auriferous quartz from the Nugget and Cornish Quartz Mining Company. Width of lode from 12 to 18 feet; sample taken from a depth of 80 feet. The mine is worked by adits running into the hill and back sloped. Machine for crushing, consists of 12 head of stampers, the motive power being a turbine wheel (Whitelow and Kerrat's patent). Manager, Mr. T. F. Roskrye.

16. Government of Nero Zealand.

Specimens of alluvial gold from Nelson and Westland, and of auriferous quartz from the west coast ; specimens of alluvial gold from Otago; bars of melted and refined gold ; model representing gold exported from New Zealand, 1862-1875.

Class 100.-Allurial Gold from the Province of Nelson and County of Westland.

1. Alluvial gold from Moonlight Creek, Nelson, procured by washing the teds of creeks.

2 Alluval gold from Waimea, Westland, obtained by washing beds of Gold specimens, creeks Samples taken from district through which the proposed Great exhibits, and Waimea Water Race would run
3 Fine sea drift, Okarito, Westland, obtained by washing and slucing the sea beaches.
4 Alluvial from Ross, Westland, obtaned by deep sinking, where the use of steam machinery is found to be necessary

5 Equal parts of coarse and fine alluvial from the Lyell, Nelson, obtained by washing the beds of water-courses
6 Alluvial from Grey Valley, Nelson, obtaned by sluncing . .
7. Alluval sluced, from Duke of Edinburgh Terrace, Greenstone Creek, Westiand The locality whence this sample came is traversed by the extensive Greenstone and Eastern Hohonu Water Race.
8 Allunal from the Ho-Ho, Westland, obtanned by sluicing ground that had been previously worked by shafts and tunnels
9 Fine alluvial gold from iron-sand cement, Charleston, Nelson. This sample of gold is usually saved by amalgamation with mercury, and is most difficult to obtain in its present form
10. Ruby sand from Charleston, Nelson This sand is found in granite, and the gold it contans is heavier and of better quality than that in cement.
11. Gold-bearing black sand from the Black Lead, Charleston, Nelson
12. Auriferous cement from Mokihnur River, Nelson. Obtained 50 feet below surface of river terrace.

13 Aurferous cement from black lead, Charleston, Nelson.
14 Aurferous sand from Addison Flat, Nelson
15 Alluvial gold. Wahamarino River, Marlborough.
165 ozs, washed from the ocean beach below high-water mark
175 ozs, obtamed from a black sand lead about 50 yards mland from haghwater mark

18 Sample of the ordınary obtauned from slucing clarms about 12 miles inland.

19 Sample nuggetty gold obtamed from Moonight Creek, rising in high ranges about 20 mules nuland.

Quartz specimens are from the Inangahua district. The gold being fine is not easily seen in the stone.

Enterprise Company, Regstered -These specmens were taken from the middle tunnel, at a distance of 120 feet from the mouth of the drive, at a depth of 85 feet from the surface

Energetıe Company, Registered-The stone was taken-(1) from a shaft sunk 85 feet below a tunnel and 210 feet below the surface. A trial crushing In February 1872 of 10 tons of this stone gave a result of 43 oz 1 dwt retorted gold (2) From No 2 tunnel, 265 feet below the surface, and at a distance of 298 feet from the mouth of the drive, at which place the reef is 4 feet 6 mehes thick, and very solid

Ramy Creek Company, Registered -The width of the reef where discovered is 30 feet, and it carrres this extraordnary width for 900 feet. Gold appears to be well distributed throughout the reef, and at the lower level it is heavier than at the surface

Thompson's Clatm, Boatman's Inangahua -Shows a width of from 2 to 5 feet, and will yeld from 1 to 2 oz to the ton

El Dorado Company, Regıstered-Several small specimens. The reef where first opened was 3 feet in whdth Further south it was cut 5 feet in width The gold is fine, and well distributed throughout the stone Zrcons, garnets, cubical pyrites, manganese, and sulphides of antimony are also found

Justun-Time Company, Regastered-The reef is 3 feet 6 unches wide Specimens taken 15 feet below the level of the tunnel

Victoria Company, Registered-Reef averages 3 feet in thickness The specimens are taken from a level 360 feet below the highest point proved

All Nations -This reef is making to the south-west and has an average thuckness of 2 feet

Gold specimens, exhibits, and description

Silver ores
Exhibits and descruptions

Nelson.

United Band of Hope Company, Regrstered-Specimen 1 was taken from the surface where the reef first opened. From this about 100 tons of stone crushed gave a return of 2 oz 6 dwts. per ton. From this level to a depth of 140 feet, about 80 tons crushed gave at the rate of 18 dwts. per ton No. 2 is from a depth of 160 feet From this last 31 tons crushed at Westland machine gave a gross yueld of 41 oz melted gold.

Golden Hzll Company -The reef varies from 4 feet to 1 foot 6 unches, average 2 feet 6 inches About 480 tons of stone crushed at the Westland machine gave a yield of $\frac{1}{2} \mathrm{oz}$. to the ton.

North Star Company, Regrstered.-The specimen was taken from a level of 50 feet from the surface, a foot on the reef. The reef is 5 feet in width, bearing about E and \mathbf{W}.

Invincible Gold Mining Company, Registered-This specimen is from the surface, at a width of 2 feet on the reef, which is here 4 feet 6 inches thick.

Wealth of Natzons Company, Registered --Two large bodies of stone have been intersected, each about 10 feet thick, showing gold simular to that in the outcrop

Silver Ores

The sllver exported from the colony has been chiefly extracted from the gold obtaned at the Thames, which is alloyed with about 30 per cent of the less valuable metal
Within the last two years, however, several munes have been opened where the ore is argentiferous galena that yrelds 20 to 50 ozs of silver to the ton In some cases the galena is mixed with iron pyrites that yields a far percentage of gold

A mine has recently been opened in Nelson at Richmond Hill, where the ore is a form of shermerite, a muxed ore contannug silver, bismuth, and copper, the silver being at the rate of 70 ozs per ton.

1. One bar of melted gold from West Coast, Kokıtıka, Westlandoz. dwts. grs.

2. One bar of melted gold from Thames District, province of Auckland -

	6565 = Fine Gold	oz. dwts. grs
Silver	- $33390=$ Silver	- 3813
Copper	- 0045	
Wergh	10 oz 2 dwts. 6 grs	

3 One bar of refined gold, as extracted by Chlorine Refining Process, and as exported by the Bank of New Zealand, Auckland-

$$
\begin{aligned}
& \text { Assay-Gold - } \quad .9942=\text { Fine Gold } \quad-\quad 9 \quad 19 \begin{array}{ccc}
\text { oz } & \text { dwts. grs. }
\end{array} \\
& \text { Sulver - . } 0058 \\
& \text { Weight, } 10 \text { oz } 1 \text { dwt. }
\end{aligned}
$$

4 One bar of chloride of sllver The gold having been separated by the Chlornne Refining Process, the chloride is reduced to metallic salver by the galvanic action of ron plates and acidulated water. Weight, 8 oz 2 dwts. 6 grs., containing 6 oz . of silver

5 One bar of sllver, extracted from Thames gold, province of Auckland, by Chlorine Refining Process. Very nearly fine silver, only a trace of gold left Werght 10 oz. 4 dwts. 18 grs.

6 Model representing a bar of gold, weighing 375 oz ., as exported by the Bank of New Kealand, Auckland.

North of Nave, Columns 10 to 17.

Dep I-Minerals, Ores, Stone, Mining Products.
The mining capabilities of the colony promise an extensive field for development, as yet comparatively little has been done compared to the pastonal - Industries. Ores, mining products, minerals, and stones are plentiful.

Iron.
No mon mines are at present worked, though almost every known Iron manes variety of uron ore has been discovered in the colony, the workings being workings, limited to the black sands, which occur plentifully on the coasts There are black sands. also few soils or stream gravels that will not yeid a considerable quantity when washed The chief deposits are, however, on the sea shore of the west coast of both islands, the best known being that at Taranakı

Several companies have been formed both in England and the colony to manufacture steel direct from this uron sand; they have not, however, succeeded, but a partial success has been attaned lately by a new company by smelting in furnaces bricks formed of the ore and calcareous clay and carbonaceous matter, it remains to be proved, however, if it can be treated in, large quantities by these means

At Parapara, Nelson, immense quantities of brown hematite ore occurs on Brown hematite the surface of the ground; some of this was converted into uron at Melbourne ore in 1873, and gave on analysis -

Its principal characters are colour uniform, approaching white, structure homogeneous, and finely granular, hard, brittle. 'This is therefore the variety called white uron

1 Parapara Iron and Coal Company, Nelson.

a. Brown hematite ore.

2. Johnstone Brothers, Nelson.

Hematite iron ore, similar to No 1, easily convertible into the best steel. Brown and red paints are made from this ore. (See Paints and Dyes)
Red hematite as specular ron ore occurs in large 'quantities in the serpentinous rock near Nelson, and near Maor Point, on the Shotover River, where it forms a bed 6 feet in thickness, it occurs also at Helensborough, Otago At D'Urvile Island a compact ore occurs in diorite slate yielding 63 per cent of uron. The pebbles of thus ore are known to diggers as "Black Maorl"

.

Magnetic uron ore, though occurring chiefly as black sands, is found in several parts of the colony, it occurs as vein ore 16 inches thick in serpentinous slates at Dun Mountain, Nelson, and in a vein in mica schast at Wakatipu Lake, Nelson, and at Maramara, Frith of Thames, in a vein in ferriferous slates, and contans also oxndes of titanum and manganese.

3. Nelson Commattee, Nelson

a Chrome iron ore from the Dun Mountain, Nelson, obtanable in unlımited quantities, and uron ore from Bedstead Gulley, Collingwood, Nelson.

4. Loussson, T B , Nelson.

Iron ore as found in the Parapara District, Collngwood, and calcined mon ore

6 Taranaka Commattee.

a Trtanic iron sand.

7. Colonal Museum, Wellington (James Hector, Director)

a Red hematite Anhydrous oxide.
Specular Iron Ore --Dun Mountan, Nelson Occurs in irregular veins in greenstone rocks ; contains 63 per cent of metallic rron.

Specular Iron Ore-Maor Point, Shotover, Otago A 6 foot vein in mira schist, equally rich with the above; extent unknown.

Compact Iron Ore -D'Urvile Island, Nelson Vein, thickness unknown, in dorite slate, with serpentine and chrome, yields 63 per cent. of uron.

Iron ores
exhibits and
descriptions－ cont

Magnetuc Iron Ore－This valuable ore，though occurring chiefly as black sands，is found in several parts of the colony．

Magnetıc Iron Ore－Dun Mountain，Nelson．From a venn 16 unches thick in serpentinous slates．

Magnetic Iron Ore ${ }^{-}$Wakatıpu Lake，Otago From a vein in mica schists．
Magnetıc Iron Ore－Maramara，Frith of Thames From a vein in fer－ riferous slates，contauns also oxides of titanium and manganese．
Black Iron Sand－From beach at Taranahi
Iron Band Ore－Contains 70 per cent of uron，Also Wyndham River， Otago，and Manuka，Auckland；formed by the black sand layers becoming cemented with hematite．Thas would be a most valuable ore if obtaned in large quantities．

Tabular Statement of Iron Sands

Locality	Matrix from whence probably derived，		淢	菭		－
Upper Buller river，Nelson	Hornblende rocks		94		702	
Lower Buller river，${ }^{\text {L }}$	Tertary yold drift of dionite slate			428	590	Aurferous
Upper Molyneux river，Otago	Mica schist ${ }^{-}{ }^{*}{ }^{*}$			7	659	
Lower Molyneux river，＂	Mica schist and tertiary strata		－	25	587	Aurfferous and with 12 percent｜ of glaucomte
Mountam stienm，Canterbury	PaJreozoic slates－		${ }_{10}^{37} 2$	二	662 585	Auriferovs
Tuapeha，Ot \％\％${ }^{\text {a }}$	Old gold drat		928	－	－ 638	
Wakatipu，Otago－	Mica schist＊－		76		529	＂，
Mataura river（Upper）	Diorite slate－：	${ }_{6}^{98}$		709 80	412	
Stewart island	Gramtic rocks with greenstone dykes	635	161	8.0 20.1	606 573	Auriferous
	Hornblende rocks ${ }^{\text {ce＊}}$	715	200	8	701	
Anatoke Nelson ${ }^{\text {Ma }}$	Granite and hornblende－－	798	77	$3^{3} 4$	602	
Mahnepoa lake（old channel of Hokatika）	Rlver drift from diorite rocks－		－	680	291	Auriferous，with garnets，topaz， dothene，dic
Sea beach，Hokıtika	Sea sand drift－				540	Auriferous
Motueka river，Nelson－	Tertary strata and granite－－			5	430	＂
Warran river，Mariborough	Tertuary strata and granite schust			4	389	＂
Wanganui river，Nelson	Granite and tertiary	$\begin{aligned} & 540 \\ & 588 \end{aligned}$			－ 43.4	＂
Gareen ssland，Otago－	Basaltic or soa beach				50 3	
Hooper milet－					530	
West Bluff，Southland，Foveaux	Diorite or sea beach		－	406	286	Aunferous and
D＇Urville island，Nelson－	Drabase and granite		－	－	574	Chrome rron
Taranaki beach＂．．．	Trachyte		$\underline{-}$	62 80	$\begin{array}{r} 801 \\ 561 \end{array}$	Olivine and
Tauranga beach	＂－．－－－		86	－	$68^{\circ} 0$	

！
Massive Iron Ores，Oxides and Trtanites

Variety．	Locality．	Centessmal Composition						Remarks
			\＃			\＄ \％ $\stackrel{\omega}{*}$		
Impure magnetate	Manakan，Auckland	$6^{60} 20$	3790	Traces	190	－	7006	
Magnetute－	Dunstan gorge，Otago	8632		Traces	1868	－	6360	
Hematite－	Dunstan，Otago ${ }^{\text {d }}$－		${ }_{96}^{96} 11$	二	389 380 7	－ 80	${ }^{68} 30$	
Mrxed magnetite and	Maramarna，Auckland ：－		87 80	Traces	1066	180		
hematite	Spor							
Bog rion ore ${ }^{\text {Brown ron ore＂}}$－	SpringSwamps，Auckland	－	7817 7269	二	$\begin{array}{cc}13 & 83 \\ 9 & 68\end{array}$	19 17 60		
	Raglan＂＂－	二	7269 6793	二	1368 1965	1760 12 37	－ 4788	Manxınese ovide 138
Hydrous hematite－	Parapara，Nelson＊		6268	－	2408		4387	Contans a hittle man－ ganese

Black Bands or Spathic Iron Ores

Spathe Iron Ores -Thus occurs in considerable quantity in the Collingwood Iron ores district, in most cases more or less oxidized, one ore known as Black Band is exhibits and one of the most valuable kunds known, and alternates with the coal seams. cont descrionsA specimen of a sulceous and spathe ron ore from Otamatana gully is approximately constituted as follows -

$$
\begin{aligned}
& \text { Carbonate of uron - - } 569 \\
& \text { Carb lime and magnesia - - } \quad 28 \\
& \text { Silceous matters - - - } 40^{\circ} 3 \\
& 1000
\end{aligned}
$$

The uron amounts to about 27 per cent.
Carbonaceous sron ore with cosil seams, Collnggwood.
Hematite, Collingwood, exhibited by Johnston and Loussson, Nelson.
Hernatite (about 40 per cent. of iron) Collingwood, Nelson, occurs intermixed with quartz pebbles, in a strata 100 ft thick exposed over several acres.

Anarimis of Two Spectrieng.

Ironstone, Malvern, Cauterbury, exhubited by Wilson, Cbristchurch, Canterbury
Ironstone, two specimens, exhubited by E. Ford, Christchurch, Canterbury.
Brown hematite or hydrous oxide also occurs in Assurı in great quantity.
Rentform eron ore, Mongona.

Iron ores
exhibits sad descriphonscont

Bog iron ore, Spring swamps, Auckland, forms thick layers at the bottom of swamps. Though rich in uron the ore is inferior on account of the sulphur and phosphorus it usually contans.
Hemattete.-Exhbbited by W. Loddar, Auckland.
An analysis of this ore from Raglan gave-

Sesquioxide of uron	72.69
Oxide of manganese -	31
Alumina -	- 202
Magnesıa	-69
Lime --	-58
Phosphoric acid	not estumated
Sulphade of rron -	-11
Hygroscopic water -	$4 \cdot 61$
Constrtutional water	1302
Sllicates undecomposed by acids	597
	$100 \cdot 00$

Chrome Ores.

This ore, which is a mixture of chromic uron and alumina, is associated with magnesian rock, resembling olivine in composition, named dunte by Dr Hochstsetter It occurs in veins often 12 feet in thickness, and sometimes contans as much as 80 per cent. of chrome ore This ore has been largely exported from Nelson, and has been used for the manufacture of salts of chromic acid, possessing the properties of brullant dyes. The pure ore contains 50 per cent of the chrome oxide, and 18 worth 11l. to 20l. per ton, according to the state of the market.
Massive chromic aron.
Crystallized chromic aron. From irregular lodes in serpentine bands, Dun Mountain, Nelson

Colonaal Museum, Wellington. (James Hector, Director)
Compound of ron saind, ferruginous earth, and ground charcoal.
Iron sand cemented by heat.
Bloom of iron
Bar of crude metal, as from the blast furnace.
Bar of crude titanic steel.
Bar of workable steel.
Copper mines have been worked in Auckland on the Barrier Island, and in Kawan Island, and to a small extent in Doubtless Bay. It has been found associated with the metamorphic rocks in Otago and at Waiporn, where a four foot sulphide of copper (pyrites) lode exists; an attempt to trace this lode was made for a short time and then abandoned.

A carbonate of copper is found in the same vicinty, but only in rolled fragments.

3 Nelson Committee.

a Copper ore from Dun Mountain at Nelson.
Sulphuret of copper from Parapara Valley.

7. Colonzal Museum, Wellington.

Copper pyrntes.
a. Cupreous iron ore in serpentine, Dun Mountan. Interesting from its being slightly aunferous. The present value of crude (unrefined) copper is $30 l$ per ton.
Copper pyrutes at Wakatipu Lake
Copper pyrites, from a lode 3 to 5 feet thick in mea schist, Moke Creek, Wakatipu Lake; it is associated with carbonate and native copper The ore contans the high proportion of 11 to 55 per cent. of metallic copper, the usual average of Cornish ore being only 5 per cent There is limestone in close vicinits to the lode, so that there would be no difficulty in reducing the ore to a "regulus," in which state it would save cost in shipuent.

Copper Ores.

Decrmal Company's mine, Collingwood, Nelson
Copper ores
This lode has been opened up and contams 22 to 25 per cent. of metallic copper.

Grey sulphade, Wangareka, Nelson, contans 55 per cent of copper, together with a little siver and gold
On the west coast of Otago, at Charles Sound, there is a copper bearing lode, associated with granite rocks
In Kawan Island, Auckland, the lode first produced 16 per cent of copper, and then fell off to 8 per cent, and at the bottom of the workings about 5 per cent The width of the lode was 8 feet The workings were discontinued on account of the high price of coal consequent on gold discovertes
In Barrier Island the ore (pyrites) occurs in a quartz matrix; a fair sample of the muxed specimen afforded 2662 per cent of copper The Otea Copper Mining Company have worked a pynites ore to a considerable extent.

Lead Ores.

Lead occurs as galena in the province of Nelson and also at the Thames Lead ores. Gold Field
It invariably contans sulver to a considerable amount.
3 Nelson Committee, Nelson
a. Galena from Bedstead Gully, Collingwood.

Galena.
Galena and zunc blende from Parapara Valley

5 Washbourn, W E, Nelson.

Argentrferous lead ore from Ruchmond Hill, Parapara, value $50 l$ per ton.

> 7. Colonal Museum, Wellengton.
a. Galena, Wangapeka, Nelson Sulphude of lead, with quartz that contans also sulphides of iron, and antimony with gold, in veins of felspathic schist, the galena contans 26 ozs of silver per ton. The gold is only in those parts of the ore that contan aron pyrites.

Galena, whth zunc blende, Perseverance Mine, Collingwood, Nelson. Occurs Galens in a band, 2 to 5 feet thick, parallel whth aumferous quartz veins, those two ores are both pure, but so intermixed in the lode, that they could not be reduced separately 100 tons have been sent to Great Britan to test the value of this ore

Zinc (Yellow or Honey Blende).

This ore occurs at the Perseverance Mine, Collingwood, Nelson, and in zinc. small quantity in Tararua Creek, Thames, in white cement with aurferous veins It contains 60 per cent. of metallic zinc, which is worth about 151. per ton

3 Nelson Committee.

$a_{\text {a }}$ Zinc blende and galena from Bedstead Gully, Collingwood.

7 Colonal Museum.

Zinc or yellow or honey blende from Perseverance Mine, Collingwood, Nelson

Antimony.

Stibnite lodes were discovered an 1873 near the coast of Queen Charlotte Antumony. Sound, Marlborough, and proved to contain from 5112 to 6940 per cent of antumony, the matrix being quartz It also occurs at the Wakatipu Lake, and in a lode in the Shotover district, and in the neighbourhood of Waipori.
A sulphide of antmony lode occur three miles south of Collingwood, containing no less than 757 per cent of sulver, which is equal to 18588 troy ounces per ton

' 3 Nelson Committee

a Antimony ore from Inaugahua
Antimony from Rainy Creek, Reefton. 40609.

Manganese.

This ore is useful for generation of chlorme for bleaching purposes, also for calico printing, \&c
The values of these common ores are from $3 l$ to $4 l$ per ton

7 Colonal Museum, Wellington.

Rhondonite (slucate of manganese), Dunstan, Otago, as rolled masses, percentage of manganese about 40

Wad (hydrous oxide), Port Hardy, D'Urvile's Island, NeIson, per-centage of manganese about 45
Braumite or manganese, on Malvern Hills, Canterbury Exhibited by E. Ford, Christchurch, Canterbury.

Ores are also found at Whangarei in Auckland, and in Napier, the latter contams 44 per cent. of manganese oxide, the remander is mostly clay

Mineral Orls

- In 1866 attention was directed to the recourses of the colony in respect to petroleum, and some very fine ouls were found There are three principal localities, and these produce each a distinct kind of oll

1. The Sugar Loaves in the Taranaki Province.
2. Poverty Bay, on the east coast of the province of Auckland.
3. Mauntahi, Waiapu, East Cape

The oll from the first has a very high specific granty, 960 to $\cdot 964$ at 60° Faht, water at l. It has thus too much caibon in its composition for ats commercial success as an illuminating oll, but is capable of producing a valuable Jubricating oll. It resembles oll occurring in Stanta, Barbara County, Califorma
The second kind from Waiapu, Poverty Bay, is a true paraffin oll resembling the Canadian oll. By three successive distillations, and treatment with acids and alkalies, about 65 per cent. of a good ulluminating oul is obtainable with specific gravity of " 843
The thrd produces a pale brown oll, nearly or quite transparent, specific gravity 829 at 60° Faht, burns well in a kerosene lamp for some time, and is therefore of a very superior class, it contans only traces of paraffin, and produces 84 per cent of an obtamable oll, fit for use in kerosene lamps, by means of a single distillation
By two more distllations 66 per cent of the crude onl has a specific gravity of 811 , which is that of common kerosene

7. Colonzal Museum, Wellangton

b Petroleum (rock onl), oozes from cracks in trachyte breccia, Sugar-loaf Point, Taranakı. Wells have been bored to the depth of many hundred feet, but no steady supply of oll has been obtaned. Crude oll has a specific gravity of " 962 at 60° Faht, and yields by fractional distillation ols having the following gravities -
per cent. of onl of specific gravity 874

10	$"$	$"$	$\cdot 893$
8	$"$	$"$.917
60	$"$	$"$.941
80	total distılled off.		
6	1 solld bitumen.		
12	4 fixed carbon		
15	5 ash.		

Petroleum Waipawa Rıver, Poverty Bay, Auckland
Mineral olls
2 per cent of ol, specific gravity 809 (colourless)

2125 paraffin oul.
9375 total distulled off 625 residue in retort, pitch.

10000
Petroleum. Wanapu, East Coast, Auckland Province The crude oll has a specific gravity of 872 at 58° Faht, boulng pount, 290° Faht, flashing point, 230° Faht A sample wth a specific gravity of 8294 gives-

ecific gravity ${ }^{\text {c }} 800$ (colour			
330	"	"	826
12.5	"	"	840
625	"	,	-860
425	"	"	870

9600 total distilled off.
400 residue in retort.
10000
Another analysis yelded-

1600 " \quad paraffin.

9064 total distulled off
936 bituminous residue
10000

13 Ross, A, Poverty Bay, Auckland

Petroleum Oıl Shales -Pyroschist or bitumnous shales These accur to Ol shales. a small extent in the upper portions of the coal formation Specimens have been examuned from D'Urvule's Island, in Cook's Strait, Uongonin, Kakkorar, in Otago Torbann Hill
A splendid series of oul produeng shale 18 obtamed from the Chatham Islands It contans traces only of sulphuretted hydrogen
These shales have been distilled for oll, those fiom Taranakı and Chatham Islands producing excellent results

Oil Shales

Geolomieal

Geological Specimens

6 Taranakı Committee

Older tertiary marl, North Tarendur
Trachyte pebble.
Trachyte, with crystals of hornblende
Trachyte cast fiom a well in New Plymouth, ancient sea beach 500 yards inland of present beach
Older tertiary marl, white cliffs-
Hornblende.
Obsidıan.
Nephrite.
Tarakanite.
Cornelian, found on beach, New Plymouth.

3. Nelson Committee, Nelson.

Steatite from Golden Gully, Collingwood.

7. Colonial Museum, Wellington

Steatite, Collingwood, Nelson, occurs in a large mass or dyke in the Parapara Valley

Graphite.

Graphite

Bualding stones
Abundant supples of excellent stones for roads and bulding purposes are found in every part of the colony of New Zealand.
The varieties useful as such, may be divided into-

1. Basalts and diorites
2. Trachytes and granites and crystalline schists.
3. Limestones (freestones in part).
4. Sandstones (freestones)
5. Basalts, locally called "bluestones," occur of a quality useful for road metal, house blocks, and ordnary rubble masonry They are found partly underlying and partly overlying the tertiary rocks, interstratufied with tuffaceous clays and local beds of altered volcanc ash In this North Island these volcanic rocks are largely developed, and include some of very recent date.
True lavas and scoriz are of frequent occurrence over a large portion of the islands The latter have been quarred by Maori prisoners at Mount Eden, Auckland, their colour $1 s$ dark grey, and though absorbent they are very hard and coherent.

In the South Tsland, on the other hand, the igneous rocks appear to be of much earler date, and to have been nearly all of submame ongin. They are principally confined to the eastern sea-board, only ravely occurring at greater distance than 40 miles from the coast.

The Halswell quarres, Canterbury, produce an exceedingly hard and closegramed stone of a dull leaden grey colour, but its excessive hardness will necessarnly lumit ats usefulness

In Tables I, and II, the constituents of these rocks are shown.

Table I -Basaltic and Traceytic Rocks.-Ultimatri Constituents.

No 3 contains 304 per cent of carbonic acid.

Table II -Basaltic and Trachytic Rocrs.

Name and Locality.	Specific Gravity			Nature and Amount of Soluble Substances.							Achon of Glauber's Salts	Colcur
				買		$\begin{aligned} & \mathbf{8} \\ & \text { 플 } \\ & \hline \end{aligned}$		第				
Vesteular basalt, Auckland =	-	1880	8120	1380	Trace	62	301	${ }^{77}$	60	45	Shight	Dark grey
Basalt, Dunedm, back of Laboratory - -	2745	-	7534	1183	275	150	76	393	385	-	--	Grey.
Basaltic conglomerate, Port Chalmers, Otago -	2558	2907	7098	318	951	604	Trace	245	68	45 -	Shight	Grey. Carbome acid 875
Basaltic conglomerate, Pine Hill - -	-	3279	6700			160	145	318	205	-	-	-
Basalt, Portobello - . . . -	3085	4000	6000	1700	1080	302	-	728	100	-	-	Dark blush grey.
Basalt, Kakorat - - - -	2875	4179	5821	1501	1087	897	329	675	190	-	-	Blunsh grey.
Angitic basalt, south of Mungaroa -	-	5112	4888			974	385	933	41	\cdots	-	-
Diorite, Waipero - . -	3049	5551	4449	1362	1983	965	645	493	103	-	- -	
Trachyte porphyry, Portobello - . -	2259	304	9696	Trace	-	Trace	-	191	-	6	Noaction	White
Quartzose trachyte, Governor's Bay, Lyttleton	2309	470	9530	-	121	109	Trace	Trace	$1 \cdot 80$	55	Do	Black and white
Trachyte porphyry, Canterbury - .	$\begin{gathered} 2329 \\ t o 8402 \end{gathered}$	980	9020	320	180	-98	-	156	120	0	Do	Dirty green
Trachyte, Creighton Vale - . -	-	2879	7621	720	926	260	-	287	* 66	6	Do.	Dull lead grey
Granite, Anchor Island - - . -	2*681	-	7420	-	120	$\bullet 80$	60	$7 \cdot 60$	20	-	-	Grey,
Grante, Passage Island . . -	2699	-	6818	-	6.01	190	10	1061	43	-		Red.
Spherodal clankstone, Bell Hill, Otago	2621	1755	8245	208	661	151	Trace	99	104	6	No achon	Blushgrey Carboncacts 94
Tufa, Anderson's Bay, Otago - -	-	1949	8051	767	594	Trace	${ }^{*} 44$	149	395	4	Muoh affected.	Light grey

Diorites.-This stone occurs at Warroa Gorge, Nelson, Ballymore Clam, and Diontes. Tararu Creek, Thames.

Aphante occurs as a conglomerate at Dog Island, and elsewhere as a breccia Aphante.
Porphyrates --These stones are found at Flagstaff Hill, Water of Leith. Porphyntes.
Syentes occur at Dog Island, and the Bluff, and at various localities on the Syentes.
west coast, and in Stewart Island, but the chief supply now available for industrial purposes is at the Bluff It is hard, compact, and of a unformly blush grey tint of great beauty, consequently it is suitable for kerbing, paving, and massive masonry, as well as for monumental and archutectural work.

In Isthmus Sound a vem occurs of a uniformly grey tint, but it is rather coarse
A beautiful green syente occurs at the north head of Nelson Harbour. These localities would be easily accessible for shipment

2 Trachytes.

This group contains many varieties both of composition and texture, but Trachytes. they all, together whth the granites, are distinguished from the first group by containing a large proportion of quartz

At Port Chalmers a fine grev stone occurs Another kind, a good freestone, is obtained at Harbour Cove, Otago, and Creightonville, Canterbury.

Granular trachytes are obtaned from Governor's Bay, Lyttleton
Trachyte porphyry is found at Tarroa Head, and Moeraki and Portobello, and from Port Chalmers a breccia is obtained, with which the graving dock there is entirely built All the kerbing in Dunedin 15 from the quarries of this stone.

Sanadine trachyte is found at Portobello, Otago Harbour.
Phonolite or clinkstone of a columnar character occurs at Bell Hill, and a laminated and spherordal varietv at Blanket Bay
The gaol and some other old buildngs of Dunedin are built of a spherondal clinkstone, which is of a mottled grey colour, and exceedingly hard and compact The foundations of buldings in the city are frequently constructed whth the same stone, which as emmently surted for the purpose. The stone is probably metamorphosed tuffaceous sandstone.
Grantes-Gramite is only found as mountan mass at Preservation and Grantes. Chalky inlets, on the western coast of the South Island, but exists in large veins and blocks in Stewart Island and the whole of the west coast.
At the first-named localities the granite is of a pinkish tinge with grey spots, and rather coarse in the grain

The vems and blocks supply a fine graned, beautufully coloured stone, more sustable for architectural and monumental work than the former
At Seal Island a fine grey granite vein occurs, having a smooth grain.
Granite rocks occur in detached areas in the western part of the provinces of Canterbury and Nelson, but not in accessible situations, being very different in that respect to those occurring on the south-west coast, where they admit of being quarried and shipped with great facilty

A variety with garnets is found at Metal Mountann, west coast. .
Crystallene schasts -Gnerss of equally good quality with the gramite fiom the Crystallune south-west coast is to be found in many other inlets, and on the north shore sclusts of Milford Sound there is one point where there is an mmense accumulation of blocks of a grey variety mottled with crystals of garnet, and of all sizes and shapes, lying as if for shipment Other localities are "Connecting Arm" and Anchor Harbour.

3. Limestones

Lumestones
Marble - The purest form of this series is found in many localities in the Marbles South Island, statuary marble occurs among the gnews and hornblende schists of the west coast, the grain of samples hitherto found are rather coarse, but probably closer gramed kinds exist
Granular or crystalline and sub-cry stalline limestone of every shade and colour, texture and hardness, occur plentifully, cheffy in the Middle Island
Extensive masses of the harder compact kinds occur in the lower Mesozole mica slate series They are, generally speaking, of a blue colour and unfossulferous

One mass or stratum occurs in the slab of the Kahanui range, it is sereral hundred feet thick, with an outcrop of five mules in length, and is probably the best in the province of Otago.

A large variety of excellent building stones might be obtained from the Horse Range (Shag Valley side), at Twelve Mule Creek on Lake Wakatipu Malvern Hills, Canterbury, and Hokionu Hills, Southland In the latter province a very fine kind is obtamable, very slightly coloured, it belongs to the terthary series.

A white granular limestone called the Oamaru stone is worked in extensive quarries in the Oamaru district, it occupies a large tract of the country in the north part of Otago, and has a remarkable uniformity of colour and texture, its weight, wet from the quarry, is 105 lbs . per cubic foot, and when perfectly dry 92 lbs. A considerable quantity has been exported to Melbourne
The principal buildings of Dunedin are built of this stone, which shows a very fair amount of durability.

At Warroa, Auckland, there is a good hard close grained stone, light buff colour, mottled with black grans.

The Dun Mountain Company work a hard compact close graned stone of a blussh grey colour on the Maitai River, Nelson, which can be brought to the port by the Dun Mountain Raulway

1. Parapara Iron and Coal Company, Nelson

c Limestone, occurs in quantity at a considerable distance beneath the outcrop coal measures, intended to be used as a flux in the reduction of the brown hematite ore which is found in great quantities in the distict.

3 Nelson Committee, Nelson.
c. Marble from Ruatanuka, Folden Bay.
7. Colonzal Museum, Wellangton.
c. Marble from Collingwood, Nelson.

14 Wilson, W., Christchurch
a. White limestone. b Yellow lime-stone obtamable in block of from 1 to 10 tons.

Earthy Limestone.

Freestone -A fine limestone of a brown tint occurs near Dunedin at

Earthy limestone.

Varrities.

Luthographie limestone.

Boat Harbour, it works freely, seems durable, and is said to exist in large quantities and be procurable in moderately sized blocks, it has the disadvantage of not being in an easily accessible situation
A hard, shelly, and white hmestone occurs at Kakanul, and as used in some structures in that locality, it is of a uniform colour and consistency and easily worked, and procurable in large blocks The supply is unlimited

Southland possesses a faur stone of this kind
A valuable limestone occurs on the Otago Peninsula, near Port Chalmers, in two beds, one dark coloured and the other yellow, the last cuntans a rather large amount of fine gramed sand, yellow and black, they burn to pretty good quick lime

A good stone for lime occurs in the Isle of Scinde, Napier, it is fossilferous and of upper tertiary series

At Oamaru a limestone is largely burnt for lime by Mr D. Hutchinson; it is found in dislocated and concretionary masses intermued with quantities of worthless rock, which greatly increases the expense of extraction. It is fossilhferous

A hard very compact grey coloured stone of considerable purity occurs near the Moke Creek copper lodes, and affords the flux required for reducing the ore. It is fossiliferous and of lower tertiary date.

Varzetıes.

Travertine limestone is found at Dunstan Gorge, Otago; it makes very white lime. It has the usual porosity of this kind of stone.

Geodic limestone -This occurs at Hampden, Otago, and has numerous sparry cavities of crystallized calc spar and the like.

Cellalar limestone occurs at Nelson. This knod has numerous angular cells or holes
A limestone breccia occurs at Ruatanuka
A lithographic limestone is found at Oamaru; it is a very fine giamed stone, hard and compact, its fracture is conchoidal. It occurs in concretions in the limestone and not in slabs The quarry is situated where the upper tertiary strata have undergone alterations by the extension of submarine rocks, probably during the depositions.

Limegtones in the Order of their Purity

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character． \& Locality \& \& \& \& \begin{tabular}{l}
Soluble \\
Sulica，
\end{tabular} \& \begin{tabular}{l}
Oxido of \\
Iron
\end{tabular} \& 童 \& \& Colour． \& Remarks， \\
\hline Crystalline \& Southland＝ \& \(\rightarrow\) \& 9880 \& Trace \& Trace \& － \& 120 \& 120 \& White． \& \\
\hline Sub－crystallune \& Canterbur \& \& 9790
07
01 \& 119 \& ＊ \& Trace \& \(\underline{00}\) \& 180
1
180 \& Blush． \& \\
\hline 1 assilferous \& Onmaru，Otago \& \& \({ }^{35} 58\) \& 217 \& \({ }_{6}\) \& Trace \& 45 \& 1 \& Light yellow \& \\
\hline Granular－ \& Tokomairro，Otago－ \& 2324 \& 9570 \& Trace \& \(-\) \& dreo \& － 02 \& \(832 *\) \& Whate \& ＊Slica Fossuliferous，absorbent， \\
\hline Compact \& ＂\(\quad\) • \& 2588 \& 866 \& ＂ \& － \& ＂ \& 128 \& \(405 \dagger\) \& Light yellow－ \& tsilica．Fossiliferous，very co－ \\
\hline Lathographue \& Oamara＊ \& 2867 \& \({ }^{05} 81\) \& 159 \& 16 \& \& Trace \& 209 \& Rich yollow \& Compart \\
\hline Traverime－ \& ＂ \& 2867 \& \begin{tabular}{l}
9518 \\
9504 \\
\hline 80
\end{tabular} \& － \& Not egtumated \& 47 \& 120
60 \& 283
180 \& Yellow \％－ \& Trace of sulphato． \\
\hline Compact \& Nelson ．＂－＂ \& － \& \({ }^{84} 88\) \& 268 \& Nat estimated \& Trace \& \(1 \begin{aligned} \& 20 \\ \& 120\end{aligned}\) \& 1880 \& Grey and yellow
Blusk grey． \& \\
\hline Vemet \({ }^{\text {Granular }}\) \& \& 二 \& 9437
8542
84 \& － 23 \& \& 1800 \& Trace \& 880
245 \& Grey． \& \\
\hline \& Sauthra－－－ \& 二 \& 89 \({ }^{82}\) \& Trace \& Not estimated \& \begin{tabular}{c}
Trace \\
820 \\
\hline 18
\end{tabular} \& Trace \& 245
560 \& Fawn \& \\
\hline Shempyrt－ \& Napter \({ }^{\text {Wabatip Lake }}\) Otaro－ \& \& \({ }^{91} 80\) \& \& － 203 \& 140 \& ＂ \& \({ }^{62} 20\) \& Grey \& \\
\hline Closcrrained \& Knikoura，Mariborough \& 2702 \& \({ }_{81} 17\) \& \(2{ }^{2} 92\) \& \(\underline{-20}\) \& Trace \& \(\xrightarrow{\prime}\) \& \({ }_{6} 81\) \& ＊ \& \\
\hline Compact－ \& Oamaru，Otago \& 2698 \& 9099 \& \({ }_{2}{ }^{2} 16\) \& 310 \& \({ }_{68}\) \& \& 290 \& Bluigh \& Loss， 23 \\
\hline \(\underset{\text { Grelly }}{\text { Granular－}}\) \& Southand \({ }^{\text {Oamaru }}\) O－ \& 二 \& \({ }^{90} 80\) \& Trace \& Not estimated \& Not estimated \& 229 \& \({ }^{689}\) \& Grey \& \\
\hline Compaet－ \& Oamaru，Otago－ \& 二 \& 8014
89 \& \(1 \overline{7}\) \& \& \({ }_{4}^{54} 9\) \& 154 \& 78 \& White \& Loss， 18 ，tr chlondes \\
\hline \& Oambr Otaoo＂ \& 2580 \& 689 \& 15 \& \& － 29 \& － \& 268 \& \& \} tincludes alumina. \\
\hline Compact－ \& \begin{tabular}{l}
Oameru，Otago \\
Portobello，（itago
\end{tabular} \& 2583 \& 8708
8680 \& Trace \& Not estmated \& \[
\begin{gathered}
79 \\
\text { Trace }
\end{gathered}
\] \& 285
80 \& 858
1240 \& Noarly white－ \& Less，78，tr．chlorides． \\
\hline Shëly \& Napier－．－－ \& － \& 8110
8110 \& 1780 \& ＂\(\quad\)＂ \& \({ }^{80}\) \& Trace \& 1680 \& Yellowish． \& \\
\hline Compact \& Kaikourar Mountains，Marl－
borough \& － \& 6904 \& \({ }^{1} 60\) \& \& \＄62 \& \＄11 \& 21738 \& \& §Silhcious sand \\
\hline Impure silicious－ \& Kawru Auckland \({ }^{\text {Near Waikunaita，Otago }}\) \& \(2 \overline{S N}_{07}\) \& \begin{tabular}{l}
6490 \\
87 \\
\hline 60
\end{tabular} \& 150

53 \& 63 \& $$
\begin{gathered}
\text { Trace } \\
83
\end{gathered}
$$ \& 190

60 \& $$
\begin{aligned}
& 8170 \\
& 2958
\end{aligned}
$$ \& － \& Carbome aed， 28 6，water and

\hline Dolomite－ \& Taraunkı－． \& － \& 3668 \& 1583 \& 189 \& 1524 \& 02 \& 20 \＄414 \& Blush gray－ \& $$
\begin{aligned}
& \text { loss, } 422, \text { te sul lime } \\
& \text { IIS.hcous saind and clay } \\
& \text { alkalies in aed } 30
\end{aligned}
$$

\hline
\end{tabular}

(4.) Sandstones (Freestone)

Sandstones

Siliceous

Calcareous.

Argillaceous

Sandstones are very plentiful throughout the islands, and are very varred in hue

The different kinds may be classed under the followng heads - -
A. Siliceous sandstones, in which the cementing paste is a silicious infiltration
B. Calcareous sandstone, having carbonate of lime for its cohesive power
C. Argillaceous sandstones, or claystones, in which clay replaces ether of the above substances -
A The true siliceous sandstones are found at the base of the tertiary and in the upper secondary formations, where they are associated with beds of coal.

The province of Otago has an extensive development of this kind of stone in the Horse Range and South of the Molyneux River, and throughout the central districts of the Middle Island, capable of producing the most valuable kinds of bulding materal. In Otago, at Moerakı, Saddle Hill, Mount Pleasant, Warkava, and Arden Bay, in Canterbury, at Governor's Bay, in Auckland, at Bar of Islands, produce stones of this class.

In the North Island, Mungaroa produces a good stone.
The Warkato district, and the range of mountans from Hawke's Bay to East Cape, have large tracts where quarries of good stone might be worked
B. Calcareous sandstones.-These are confined to the upper tertiary rocks, and are variable and concretionary.

In the South Island, the valley of the Warrau, in the neighbourhood of Dunedın, Wakava, and Oamaru yreld many varieties of compact hard stone suitable for building

From Caversham, in the vicinity of Dunedin, a well-known hard and compact stone is worked, bluish-grey or yellow in colour; its texture is remarkably unform, but it is not durable Other places in Otago are Pleasant River, Cornssh Mount, Waikouarti, Walkava, Kaikorat Valley, Hawkesbury, and in Auckland at Motupipi

In the North Island there are much more extensive districts where this stone occurs The greater part of the province of Wellington, and also of Hawke's Bay, being upper tertiary age, in which this stone occurs.

C Argillaceous sandstones or mudstones, claystones --These, hke the last kind, are found only in the upper tertiary beds, and are as variable; occur at Saddle Back, Moeraki, Mount Pleasant, and at Anderson's Bay

Selected Analyser of Sandstone to allustrate theur Generax Composition

Selected Analybes of Sandscone－continued

Sulcious Sandstone． Localaty	\square				Nature and Amount of Substance soluble un Acid．									Colour．
						$\begin{aligned} & \text { 甹 } \\ & \text { 总 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 꿍 } \\ & \text { 음 } \\ & \text { 荡 } \end{aligned}$	品						
Arden Bay，Jpper Hax－ bour，Otapo	2445	1	872	98＂28	Trace	Trace	788 2080	＊28	${ }^{-29}$	－89	－77	$*$ 100 -60	－	Iaght colour． Mottled yelliow
Governor＇s Bay，Canterbury Moeraks，Otago	2485	1 8	4＂05	5959595	＂	Trace 177	Trace	4t50	track	280		$\begin{array}{r} 900 \\ 99 \end{array}$	－	Mottled yellow Lught grey
Moerak，Trotter＇s Creek． Otago	2400	5	841	91． 56	＂	272	200	56	－	299		Trace	－	Busty red．
Pay of Islands，Auckland－	－	1	1060	18950	\cdots	474	Trace	124	${ }^{-63}$	$1{ }^{19}$		－	－	Whise

Calcareous Sandstones Loeality	Aquerp oyrods			Inscluble in Acid．	Composition of part soluble min Acd．					Colour．
Dunedin，vicumity of Otago	2549	7	7235	2765	72	179 －79	6851	Trace		Grey
Canterbury	2248		6999	3002	80	260 Trace	6596	68		Light buff
Oyster Point，Otayo Harbour	－ 50	\rightarrow	6998	3001	100	300	6460	116	22	Dark grey
Pleasant River，Otago－	2307	－	7046	2963		$\underbrace{* 60\} 83}$	6308	110	422	－
Cornish Mount，Waikouarti，Otago		－	6860					Trace	－	
Waheme－－	－	－	6590	3480	－ 5	180 180 80 1	6160	7 28	38	Light yellow
haikorar Valley－－－		－	6981	3019	157	$\underbrace{290 \mid 178}$	6086	199	－71	Dark grey
Subhald＇s Quarry，Caversham， Otazo	2200	－	5636	4364		${ }^{2} 92$	51.22	1＇56	266	Greenish grey
Hawksbury，Otago		－	5706	4294	＊70	$2 \underbrace{94 \mid 80}$	5005	170	77	Dark grey
Yount Hacket，Basalt，Otago		－	4780	5280		${ }^{5} 50$	4120	Trace	140	
Kankoral Quarry	2170	－	5320	4680	340	$\underbrace{175 \mid \text { Trace }}$	4045	170	590	Pale yellow
trekland－		－	4540	5480	－	440	3760	210	130	Red and black．
Motuprip，Auckland	－	－	${ }^{85} 10$	6480	－	481	3027	72	－	Lught greeu
Moeraki，Otago－	－	－	32 20	6780		Trace ${ }^{4} \mathbf{4 0}$	2040	220	540	Bed and white

Cement

Natural cement stones or septaria occur in the lower part of the Marine Cement stones． tertiary series，and in some cases are quite equal in quality to those which are burnt for the manufacture of hydraulic cement in Europe The cement hitherto used so largely in New Zealand has been umported，but with the great resources that the colony possesses in the raw material for the manu－ facture，this will probably not be long continued．

In the following Table，Nos 1 and 3 are analyses of the whole nodule，whule Nos 2 and 4 are without the calcareous veins Those from Moerakı are very hard and compact，colour mottled grey，specific gravity 2655 ，hygroscopic water 60 per cent at time of analysis Those from Amuri are simular in character， Septaria used in England and France for manufacture into Roman cement are added for the sake of comparison．

Obtained.	New Zealand				England	France
	Moerak1		Amur		Sheppey	Boulogne.
			3	4		
Carb of Lume - -		50.8	686	549	690	639
Carb of Magnesia -		$\overline{7}$	17	15	-	-
Alumuna and Iron Oxides	8.7 .8	76	65	64	105	123
Soluble Slica Sand and Clay - -	88 178	416	$1 \cdot 0$ 312	10 319	$\} 180$	150
Water - -			11	12	13	$\cdot 6$

Materials for Portland cement.

The manufacture of Portland cement might be made an important industry in New Zealand, excellent lime and non-ferruginous clay being obtainable
The Italian pozzuolano might be imitated also, as there are extensive deposits of volcame tufas occuring in the North and Middle Island. Those volcanic sands would require then to be ground up with an admuxture of lime, and making, when correctly proportioned, an excellent hydraulic mortar.

Bricks.

The matertals for brickmaking are plentiful throughout the colony The

Materals for bricks

Mineral Exports from 1853 to 1875，inclusive

Year	Coal		Copper		Iron		Chrome 0		Silver		Gold	
	Amount	Value	Amount	Value	Amount		Amount	va	Amourt	Falue	Amou	Value
	ns．	$\stackrel{2}{124}$	${ }^{\text {Tons }}$	125	Tons		Tons		$\stackrel{\text { Oz }}{-}$	$\stackrel{L}{2}$	$\stackrel{\text { Oz }}{ }$	e
	$\underline{41}$	$\underline{114}$	${ }_{\substack{170 \\ 312}}^{10}$	$\xrightarrow[\substack{1,50 \\ 3450}]{\text { 3 }}$		${ }_{\substack{254 \\ 189}}$	＝	二	二	三		
1885 1856 1	94	$\stackrel{268}{ }$	$\underset{514}{140}$		654	－${ }^{20}$	ב	二	－			
${ }^{1857}$	5	${ }_{9}^{9}$	$1{ }^{12}$	5000	－	二		${ }_{9}$		E	10，297	${ }_{\text {cosen }}$
			245	2，605		－	${ }_{8}^{8}$		－		${ }^{2} 3836$	${ }_{88,47}$
	${ }^{1}$	${ }^{2}$	${ }_{110}^{137}$			三	${ }_{\text {c2 }}^{116}$	1，40	－		${ }_{\text {19，}}^{19238}$	
	＝	－	${ }_{61}$	1，1，124		二	3，483	79			410，669	1，591，389
	こ	二	二		105	52		${ }_{4}^{4,910}$		－		ci，
	${ }^{261}$		－			＝	$\overline{291}$	1，915	－	－		
		1，22	${ }_{24}^{246}$						二	＝	${ }_{\text {Bra }}^{68,753}$	${ }_{2 ; 2947276}$
	${ }_{1}^{1,276}$	${ }^{1,8}$	6	${ }^{179}$	1	${ }_{8}^{80}$	ニ	－	11，063	$2 \overline{298}$		退，
	${ }_{1}^{1,695}$	${ }_{\substack{1,912}}^{1,108}$		$\underline{\square}$	＝	－		＝	cince	${ }_{\text {2，}}^{1,45}$		2，
	${ }_{7}^{990}$		二	二		三	－	－	¢	${ }_{9}^{9,980}$	${ }^{4650,397}$	（1，
	1，463	1，363	－	－		－	－	－	${ }^{40,566}$	10，380		${ }_{1,506,331}^{1}$
1875	8，385	8， 29	－	－				－	29，085	7，560	355，322	1，407，769

Appronmate return for period pror to 1853 － $\mathbf{~ 2 , 4 0 0}$ tons 70,0002
VI－Produce ano Industriks．
Cl 202，602．Paints，Dyes，and Tanning Barks．
An excellent paint is manufactured from a hydrous hematite ore obtained Pants，pigments， in large quantities from Parapara，benng a pure peroxide of iron，it is the best varnishes preservative for that metal．Wood coated with this paint is comparatively un－inflammable；it is therefore much used in painting shingled roofs．Value， $25 l$ per ton．

Dep II．3．Loursson，T．B，Nelson
Paint made from hematite ore．

4．Johnstone Brothers，Nelson．

Umber and red pigments made from hermatite ore
4a．Felton \＆Co．
Eight samples of varnish made from Kaurı gum
A number of the native forest trees and plants furnsh good dyes from their bark．The natives were acquanted with most of these，and dyed their flas mats and baskets with them．

A black dye can be made from the bark of the binan（eleocarpus dentatus）， and by adding a rust of iron an excellent non－corrosive mk is obtained．

Brown and red dyes are obtained from the barks of the towan（weinmanma racemosa），a red dye from that of the atanhero（rhabdothamnus solandri）The native mode of producing this is by first brusing and boing the bark for a short thene，and when cold，the flax to be dyed is taken out and steeped thoroughly in red swamp mud，rich in peroxide of ron，then removed and dried in the sun＇

The towal 18 a forest tree abundant in many parts of New Zealand．The bark has been successfully used as a tanning agent It is also used by the Maorsis in producing their red and brown colours．The dye obtained from this gives a very fast class of shades upon cotton，it can be sold at the same price as gambier and catechu，also sample of phormium dyed therewith by the Maoris． This extract is more astringent than that of the hinan，and needs only to be introduced to be accepted by tanners．

Dep. II. 5. Grayling, W. S., Taranakt.
Extract of towal (weinmanma racemosa).
Extract of hinan (eleocarpus dentatus)

Dep. II 43. Taranaki Committee.

b. Bark of the atanhero (rhabdothamnus solandri), produces a red dye.

Bark of the pukatea (atherosperma Nova-Zealandı); the inner bark contans a powerful anodyne earth used by the Maorss as a mordant for dyes.

Dep II. 46. Graylng, W. S, Taranakı.

Bark of hunan.
Blue earth used by the Maoris moxed with shark oll, a deep and brillant blue paint; it is supposed to be vivianite or a phosphate of ron.

Tanning materzals.

Tannıng Materals.

Dep. II. 42. Westland Committee.

Specimens of the towal or red brch (fagus menzesu), suitable for tanning purposes; also a sample of the extract fluid.

47 Colonial Museum, Wellington.

Tan barks native to New Zealand.

Name.	Native Name.	Percentage of Tannu
Bark of phyllocladus trichamanoides	Kiri toa toa	23.2
" elxocarpus dentatus	Kiri hunan	218
" coraria ruseffolia	Tutu	$16 \cdot 8$
" eugenia maire	Whan halko	167
" Weinmannia racemosa	Tawheri - -	127
" elxocarpus hookernanas	Pokaho -	98
Wood of fuchssa excorticata -	Kotukutuku	5.3
Bark of knıghtia excelsa	Rewa-rewa	2.7 1.4
" myrsine urvillei " hoheria populnea var angustufolia	Mapan	$1 \cdot 4$
"\# herneola auriculx-judee,exported largely	-	-
to China by Chnese emıgrants Leaves of celmisia cornacea (tikapu), from the hulls of the South Island.	-	-

C. 667. Wool

Wools

Combing wools. Clothing wools.

Long stapled wools

Wool is undoubtedly one of the most important productions of New Zealand, and its value in export is only second in value to that of gold.

Wool is divided into two classes, combing wool and clothing wool; from which are produced the two leading kinds of manufacture in the cloth trade, viz , worsted and woollen goods.
The first comprises the long stapled wools grown by the Lincoln, Leicester, Cotswold, and Romney Marsh breeds of English sheep

They are required for worsted goods, and being combed for bombazines, camlet, \&c. This is a class of wool for the production of which the sonl and clomate of New Zealand are very suitable. The long wooled sheep of Great Britain improve by the change; the length of the wool is increased, and all its valuable properties preserved, owing doubtless to the gemal clumate and absence of exposure to the extremes of an Einghsh temperature.
The Leicester breed has received great attention in New Zealand, and $1 s$ the favourite with the Auckland sheep farmers.

The Cotswold is a wool very smular to the Leicester, but of a somewhat Cotswold. deeper and harsher character, and lacks the "lustre" so much in demand for certan classes of manufactured goods `The Cotswold appears quite as much in favour with the New Zealand breeder as the Leccester, and probably its habits and character are more generally adapted to the clmmate of the South Island and the mountann pastures of the colony, than any other long wooled sheep The Cotswold bears exposure better than the Lincoln or Leicester; will live and thrive on poor land, and come to more weight than any other breed, often reaching 80 lbs a quarter
The value of this breed as a cross with either Lencester or short wooled sheep Romney Marsh. cannot be too mach spoken of, and the favour in which crosses with the Cotswold are held, is a sufficient proof of therr excellence
The Romney Marsh partakes in a measure of the qualtres of the Leicester Cheriot. and Lincoln, beng a soft, nich, and good handling wool, rather finer in quality than the Leicester, and having the glossy or "lustre" appearance of the Limcoln Wool of this description is much in deniand for certain fabrics, and 1s much sought after in the French markets
The Chevint is a wool that has grown into considerable popularity of late years, and is largely used in the worsted manufacture It is a small fineharred wool, of medium length and moderate weight of fleece
The vameties of fabics manufactured from these long staple wools are almost mnumerable, and are perpetually varying according to the changes of fashion, though there are certain fixed kinds which may be interesting to mention; viz, Says, which 18 used for clerical and academical vestments, Serge, Satteens, light woven cloths for ladies dresses; Reps are heavier, and from the method of weaving have a transverse ribbed appearance, Cords, like the last, but with longitudnal ribs Moreens, watered cloths Mernos, finely woven cloths, orggnally made from the fine Spansh wool called merino. Paramattas, fine cloths ongnally made from the paramatta wool with sllk warps, though now woollen Camlets, thin plan-woven cloths Damasks, Snalloon, and when made wth cotton warps, producing crapes, coburgs, tammes, delanes, lasting, and Orleans cloths.
The second kund or clothng wool comprises the short stapled wool grown short stapled by the Southdown and Shropshire Down breeds of English sheep, and the wool Merino (Spanish) sheep, from which are manufactured woollen goods, uncluding broad cloths and fancy kinds.
The Southdown is a shortstapled fine-haired close growing wool, used southdown. chiefly for clothing purposes The value of this breed to New Zealand sheepfarmers consists manly in the improvements which crossing with it impait to the carcase Some breeders have crossed the Southdown with the Merino, and with cross bred Romney Marsh and Merno
The Sbropshure aown is a breed which is growing every year into more Shropshuro mportance It produces a wool longer in the staple, and more lustrous than down any other down breeds It has been cultivated in New Zealand to a small extent only
The Merno is the most valuable and umportant breed culturated in New Menno Zealand, and of sheep of this class the flocks of the colony are cluefly composed, they are of the Australian merino variety, mproved through the importation of pure Saxon merino rams from Germany The excellence of the Menno consist in the unexampled fineness and felting property of its wool, which in fineness and in the number of serrations and curves exceeds that of any other sheep in the world Fine Saxon menno wool has 2,720 serrations to an inch, Merino wool 2,400, Southdown wool 2,000, and Leicester 1,850 . These figures represent the felting properties of the various wools The Merinos adapt themselves to every change of climate, and thrive and retain, with common care, all there fineness of wool under a burning tropical sun, and in cold mountann regions
In New Zealand the length of staple and weight of fleeces have been Increase in length increased, without any deterioration in the quality of the wool
Of the fabrics manufactured from these kands of wool may be mentioned, well whot of delece Doeshins, technically called seven larness cloth Casstmeres and kerseymeres nithoution in are four harness cloths, that ss, four instead of seven threads in warp and weft, qualty. and in the kersermeres the web being sulbected to an extra "millng " 15 rendered more compact Sataras, ribbed cloths, highly dressed, lustred and hot
pressed Venetians, woven as twills. Meltons, stout cloths not dressed or fimshed except by paring. Beavers, deer skins, diagonals, or fancy cloths. Bedford cords, usually drab coloured nbbed cloths, of great strength and durablity Tweeds, which are lightly felted, and are mostly of Scotch manufacture

Up to the present tume the weaving industry in New Zealand has been confined to tweeds, plaiding, and blankets, and various woollen underclothing.

Quantity and Value of Wool exported.				Quantity and Value of Wool exported.			
		lbs.	6			1 lbs	$\stackrel{\text { f }}{1}$
1853	-	- -	66,507	1865		19,180,500	1,141,761
1854	-	- - -	70,103	1866		22,810,776	1,354,152
1855	-	1,772,344	93,104	1867	-	27,152,966	1,580,608
1856	-	2,559,618	146,070	1868		28,875,163	1,516,548
1857	-	2,648,716	176,579	1869		27,765,636	1,371,230
1858	-	3,810,372	254,022	1870		37,039,763	1,703,944
1859	-	5,096,751	339,779	1871		37,793,734	1,606,144
1860	-	6,665,880	444,392	1872	-	41,886,997	2,537,919
1861	-	7,85,920	523,728	1873		41,535,185	2,702,471
1862	-	9,839,265	674,226	1874		46,848,735	2,834,695
1863	-	12,585,980	830,495	1875		54,401,540	3,398,155
1864	-	16,671,666	1,070,997				

Exhubits and descriptions.

The following specimens were exhubited:-
Dep VI. 6 Peter, W. S., Anama, Ashburton, Canterbury.
Merino wool, male, 12 months old, not previously shorn, first combing in grease Average weight 6 los ; average price of previous chps ls. Id all round, except locks. Sold at Christchurch privately.

7 Bealey, Samuel, Canterbury.

Ten fleeces, second cross from Merino ewe by Romney Marsh or Kent ram, ewes and wethers 14 months old, not previously shorn, first combing in grease. Average weight 103 lbs ; average price of previous clups in London ls. $3 d \mathrm{in}$ grease and $1 s .10 d$ to $2 s 6 d$. cold water washed.

8 A. W. Rutherford, Mendip Hill, Amuri, Nelson.

Menno ewe hoggets, 14 months old, not previously shorn, dipped, in February 1875, in lime and sulphur for ticks, greasy super first combing. Average price of previous clups in London, 1873, greasy fleece ls 4d. to $1 s 5 d$; 1874, greasy fleece, $1 s .5 d$. to 1s. $6 d$.

9. Anstey, G. A, Canterbury.

Merno, bred by John Hartland of Mount Parnassus, Amurn, Nelson, four year old rams, date of previous shearing 25th November 1874, - months growth, dupped, in November 1874, in lime and sulphur, first combing in grease. Average price of previous clips in London, 1874 , portion of clps (without rams) 1 s . $1 \frac{3}{4} d ; 1875$ portion of clip (without rams) 1s. $3 \frac{3}{7}$ d

10. Mason, J. Cathcart, Corwar, South Rakana, Canterbury.

Merino, six tooth wethers, 12 months' growth, greasy. Average price of previous clups in London 9d. to $1 s$ sd
Lincoln, full mouth ewes, bred by Thomas Kurkham of Baresthorpe, and Dudding of Pantin, Lincolnshire, England, Imported in March 1874 from England, being then four tooth 12 months' growth, in grease

Cross, between Lincoln and Merino, two taoth ewes, 12 months' gronth. Average price of previous clips in London 1 s. 1 d to $1 s .4 d$. in grease.

11. Hall, John, Hororata, Canterbury

Merino wool.

12 Rrckman, FM, Rangıora, Canterbury
Romney Marsh wool
13. Bratthwate, Arthur, Hull, Wellington

Romney Marsh wool

Cl 666 Phormium Tenax.

The New Zealand Hemp

The history of what 18 termed the flax industry in New Zealand affords a History of flax $r \in$ markable instance of the difficulty experienced in developing the natural industry resources of a country if the commodities to be disposed of have not a prevously established market value.

When the colonists first arrved in New Zealand, the valuable qualities of Phormum used the phormum fibre were well known, as it was in constant use by the natives, by natives and a very considerable trade in the article existed as early as 1828, when the 1slands were only visited by whalers and Sydney traders, $50,000 \mathrm{l}$ worth of the fibre being sold in Sydney alone between 1828 and 1832 At Grimsby', in Lincolnshire, a manufactory was also established in the latter year for the production of articles from the New Zealand fibre, which falled from some unexplamed cause, notwnthstanding that, the results were not considered at the time unsatisfactory From 1853 to 1860 the average annual value of Averase value of the fibre exported was nearly $2,500 l$, reaching as high as $5,500 \mathrm{l} \mathrm{m} 1855$, but exports from up to this trme the only fibre exported was that prepared by native labour, no machinery of any kud being employed in producing the exported artacle. In 1860, therefore, when the native disturbances affected the Warkato, and other intenor districts in the North Island, the preparation was confined to the native tribes north of Auckland, so that the average export was only 150l. per annum Attention was then durected towards the contrivance of machinery with the aid of which the fibre could be profitably extracted by European labour In 1861 the mereasing demand for white rope, and the limited quantity of manilla, wheh fibre depends for its production on native manual labour in the Philippine islands, led to a mse in its value from $21 l$. to $56 l$ per ton, and even to $76 l$ per ton in America durng the late civil war These high prices stmmulated the endeavour to introduce phormaum fibre to compete wrth mamilla, and several machnes were invented for rapidly producing the fibre from the green leaf. With these machines the export trade again increased, so that from 1866 to 1871 the yearly average was valued at $56,000 l$. This sudden revival of the trade led many to embark in it who were unacquainted, not only with this new form of manufacture, but unaccustomed to any kind of business that required special mechanical skull and careful elaboration of the details of management
Commissioners were appointed in 1869 and 1870 to investagate and report on the manufacture and cultivation of the plant and particular requirements of the market

Appointment of Commission to report on cultivation.

During the last year the term flax has been changed to hemp, with great advantage to the position which the fibre holds in the broker's sale rooms; but the fibre can be prepared so as to mix advantageously with true hnum flax in the manufacture of textile fabrics, and the shortness of the ultimate fibre 18 not an insuperable obstacle even to its being spun into unmixed yarns It will, therefore, in all probability, be necessary to adopt two names for the fibre to andicate the purpose for which it has been specially prepared, such, for instance, as phormium hemp and phormium flax specially of serge sheeting, canvas sacking, and other varieties of cloth, from unmixed phormium fibre have been manufactured in Arbroath and sent out to the colony, and also samples of a very superior kind of canvas made from an admuture of phormuin with Riga flay The fibre used in these experimental manufactures was prepared by Mr C Thorne by the use of alkalme solutions, and it is stated that such fibre would find a ready market in lange quantaties at from 601 to 901 per ton 1 hether this nould be as profitable an application of the fibre as the pooluntion of hemp is, however, not yet
established
40609.

Table of export of Phormium from 1865 to 1876

Table showing the Valum of Phormium Exported from New Zealand up to the end of the Year 1864, and the Quantity and Value of each subsequent Year to 30th December 1875

Exhibits and description

Dep II.

8. Government of New Zealand.

Specimens of fabrics made from phormium tenax.
16. Moyle Edvard, Taranaki.

Cord made from phormium, 3 samples.

> 17. Bevan Thomas, Otakı, Wellington.

One hank of native dressed fibre The Maoris only use a portion of the fibre on one side of the leaf, the leaves being selected with great care. They scrape the leaf with a mussel shell or a prece of hoop ron. The fibre is then soaked in cold water and dred

Rope manufactured from native dressed fibre, two fish lines, horse halter, lead line, twine, double twine

18 Bevan and Sons, Wellington.

Assortment of cords and twines. Manufactured from native-dressed fibre by exhubitors.

19 Kinross and Company, Hawke Bay.

Nine exhibits of cordage and twines, made from Maori-dressed fibre.
20. Grant and Company, Otago

Assortment of cordage.-Manufactured by exhibitors.
21. Auckland Patent Steam Rope Company, Auckland.

1 coll, 6 -inch 4 strand white rope

1 coll of white rope.
22 Canterbury Flax Assoctation, Chrstchurch, Canterbury.
Assortment of cordage, tarred and untarred, 7 exhibits.

23 T. Lennon, Chrstchurch, Canterbury

Assortment of cordage, ropes, and wines Manufactured by exhibitor.
24 W Cook, Nelson.
12 exhibits, all manufactured by exhibitor, viz. -2 hearth-rugs, 2 parlour mats, 2 bedroom mats, 4 hall mats, 1 railway mat, and 1 carriage mat
25. Sumons and Malcolm, Nelson.

2 door mats.
26. Colonal Museum, Wellınyton.

10 Maori mats, viz :-
1 flax and kaka feathers.
1 flax and pugeon feathers (Kereru)
1 flax and kuwn feathers (Eheruheru).
3 parawai mats
1 piu piu
1 korowa.
1 pota
1 pureke
Shoes, apron, bag, dyed fibre, of Maor manufacture.
26a Tarahora.
1 fancy mat, Maon manufacture
26b. 1 Charles Chinnery, Addıngton, Canterbury.
1 bale, machne dressed, washed, bleached, scutched, and hackled. Valued by exhibitor at $30 l$ per ton free on board.

26c. 2. Taranakı Commuttee
1 bale, machine dressed.
26d. James Cook, Nelson.
Mats and matting
26e. Mrs Ruchard Taylor, Wanganuı, Wellungton.
Ornamental satchel and table mat
Cl. 620. Dep II , North of Nave, Dep. VI , East Aisle.

Agricultural Produce.
Taking the agricultural produce as an index of the permanent settlement of Plour and gram. the country, the following table shows a most satisfactory progress in this respect

Quantity and Total Valur of Flour and Grain, \&e Exportrd
Exports from

-	Flour	Bran and Sharps	Gram				Total
			Whent	Barley	Malt	Oats	
	Tons	Tons.	Bushels	Bushels	Bushels	Bushels	${ }^{2}$
1886 1865	1	=	8,478	2,390	二	3,540 19585	\%,785
${ }_{1866} 186$	${ }^{2}$		\% 4,769	${ }^{2} 898$	二	77,49	7,371
1867 1888	9714	184 8624	$\underset{\substack{181,915 \\ 84,297}}{ }$	${ }^{81,258}$	2.360	$\begin{array}{r}17,638 \\ 484.588 \\ \hline\end{array}$	38,090 188934
1869	449	3,174	81,758	${ }_{82,557}$	3,564	${ }_{342,675}$	${ }_{105,855}^{184,344}$
1870	${ }_{926} 787$	807	${ }^{88771865}$	${ }_{\substack{114915 \\ 1156218}}$	12094	${ }^{840,703}$	158,660
1871 187	${ }_{5024}^{9264}$	${ }_{4714}$	871,941 477455 481	156,218 11,517	10599 8587 58		179499 788.15
${ }_{1878}$	931	${ }_{48}$	- 4376,677	11,687 247	-	6655,901 40,487	188,113 148,587
1874	28101	85	983814	9081418	8,428	139.959	
1876	636	121	548,095	91,622	6,686	830,325	2030,796

Exhibuts and description

The following were exhibited.-

Grain and Agricultural Produce.

Dep II, North of Nave, No. 51 ; Dep. VI., East Assle, No 1.
E. H Banks, Chrıstchurch, Canterbury

1 Rye, grown in Ashburton district Soil, fine black loam, shingle bottom, formerly covered with native flay (Phormuum); sown in May, 2 bushels of 60 lbs. per acre ; crop average, 40 bushels per acre, value, $4 s$. per bushel
2 Malt, made in Christchurch, from barley grown in Selwyn district Soll, rich black loam, formerly ladd down with Englsh grasses, sown in September; $2 \frac{1}{2}$ bushels of 50 lbs . per acre; value $8 s$ per bushel of 40 lbs
3 Barley, grown in Leeston district Soll, light porous, made rich by sheep feeding upon turnips and mangolds, and by artificial drainage, sown in October; 2 bushels of 50 lbs per acre, crop average, 45 bushels, value, 5 s . per bushel.
4 Broad beans, grown in Lincoln district Soll, old flax (Phormum) swamp, with stuff clay subson, sown in July, $1 \frac{3}{4}$ bushels of 60 lbs . per acre ; crop average, 30 bushels, value, $4 s$ per bushel.
5. Canadian oats, grown in Rolleston district. Soll, very light, formerly a sheep run, sown in August Two bushels of 40 lbs. per acre; crop average, 45 bushels; value $2 s .10 d$ per bushel
6. Black Tartarian oats, grown in Ashburton district; solls, alternate down and flax (Phormuum) swamp, at present an extensive sheep-breeding station; sown in August, $2 \frac{1}{4}$ bushels of 40 lbs per acre, crop in 1875 about 30,000 bushels, three-fourths of which are crushed and consumed on the station, feeding long wool sheep and horses Value, $2 s 6 d$. per bushel

7 Horse beans, grown in Kalàpoi district Soll, very heavy swamp land, strong clay bottom, covered by a silt deposit caused by a periodical overflow of the Wammakarix river, sown in July; 2 bushels of 60 lbs per acre, crop average, 35 bushels; value, $5 s$ per bushel.
8 Field peas, grown in Prebbleton district Soil, light loam, shingle bottom; sown in July; 2 bushels of 60 lbs . per acre; crop average, 40 bushels, value, $4 s 6 d$ per bushel.
9 Chaff from oaten hay, grown in Heathcote district, cut by a Buncle (of Melbourne) patent cutter, screen and packer combined, packed and pressed ready for shipment to the different gold diggings, in bales of 5 sacks, weighng about $3 \frac{1}{4}$ cwt and measurng 17 feet; value, $5 l 10 \mathrm{~s}$ per ton.
10 Field peas, grown in Templeton district Soll, very light, well dranned, mostly shingle bottom Sown in July, 2 bushels of 60 lbs per acre, crop average, 30 bushels; value, $4 s 6 d$ per bushel
The above are intended to show the produce of the different districts in the province of Canterbury
The quantity per acre given in the actual result in these particular cases. The price is what each exhibit would command free on board at Port Lyttelton, in large parcels, nett cash.
11. Twenty-erght samples of grain, \&c , a faur average of farmers' delivery at exhibitors' store All grown within 50 miles of Christchurch. Season, 1875
12 Four sheaves of prime Tartarian white oats, cut green for fodder
Dep 2, No. 52, Dep 6, No. 2
W. D Wood, Chrstchurch, Canterbury.

125 lbs tuscan wheat, weighs 68 lbs per mperial bushel
2. 25 lbs rough chaff wheat, weighs 66 lbs per imperral bushel
3. 25 lbs. velvet chaff wheat, weighs $65 \frac{1}{2}$ lbs per impenial bushel.

425 lbs red chaff wheat. welghs $64 \frac{1 \mathrm{lbs} \text {. per mperial bushel }}{}$

Dep 2, No 53; Dep. 6, No. 3
P. Cunnıngham \& Co, Chrstchurch, Canterbury

11 ordinary samples of wheat, grown in the provnce of Canterbury.

		pearl wheat	
2	"	Hunter's white	heat
3.	\#	tuscan	
4.	"	Hunter's white	"
5.	"	velvet chaff	"
6	\#	red chaff	"
7.	"	purple straw	"
8.	"	velvet chaff	"
9	"	pearl	,
10.	"	red chaff	"
11.		tuscan	

Dep 2, No 54; Dep 6, No 4.
John G Ruddenklau, Addıngton, Canterbury
1 bag Champion white wheat, yield, 45 bushels per acre; value, $4 s .6 d$ per bushel.

Dep 2, No 55.
Hooper and Dodson, Nelson.
Hops, picked in March, 1875. Crop off 5 acres, 106 cwt

$$
\text { Dep 2, No 56; Dep. 6, No. } 5
$$

Robert Wilkens, Chrestchurch Canterbury

Half-bushel of perennial rye grass seed (Loluum Perenne), grown by Rev. T R. Fisher, Selwyn district; soll, sandy loam; yield, 30 bushels per acre, value, $6 s 6 d$ per bushel of 20 lbs ; weight, 18 lbs or 36 lbs per bushel

Half-bushel cocksfoot seed (Dactyls glomerata), grown by executors of Ebenezer Hay at Banks Penussula. Soul, volcanic hills The seed was sown on cleared bush land, but not ploughed or cultivated in any way; yield not known ; value, $7 d$ per 1 lb .; weight, 10 lbs or 20 lbs . per bushel.

Timber and Forest Trees.

The general character of the New Zealand woods resembles the growths of Tumber and Tasmania and the Continent of Australia, most of them being harder, heavier, forest trees and more difficult to work than the majority of European and North American tumbers They vary, however, very much among themselves. Many varnetres are very durable, and Manuka, Totara, Kaurn, Black Burch, Kohwan and Mata, appear to be the most highly esteemed on the whole

The export trade in tumber is shown in the following table --

Exports from 1864 to 1875.

Value of Timber Exported

				Sawn Tımber		Logs, Spars, Paings, Shungles, and other Tumber	Totals
				\pm		生	£
1864	\cdots	-	-	24,124		646	24,770
1865	-	-	-	9,680		3,045	12,725
1866	-	-	-	17,106		7,218	24,319
1867	-	*	-	14,902		1,208	16,110
1868	-	-		-7,878		7,775	15,653
1869	*	-		14,849		7,488	22,337
1870	-	-		11,137		7,186	18,323
1871	*	-		14,200		5,914	20,114
1872	-	-	-	19,431		7,942	27,373
1873	-	-	*	22,757		20,880	44,039
1874	-	*	*	33,410		11,040	44,450
1875	-	-	-	23,950		16,096	40,046

Oider, Conferex Genus Damnara (L'Hérıtier)

No. 1 -Damnara australis (Lambert).

Woods
Exhibits and
descriptions

Kaurı. The Kaurl is the finest forest tree in New Zealand, and attains a height of 120-160 feet. The trunk is sometimes $80-100$ feet high before branching, and attains diameter at the base of 10 to 20 feet.

The timber is in high repute for masts and spars, deck and other planking of vessels, and is largely used for house fimshings There is abundant evidence of its durability for more than 50 years m some of the old mission buldings at the Bay of Islands. The buried logs of an ancient Kaurl forest near Papa Kura were excavated and found to be in perfectly sound condition, and were used for sleepers on the Auckland and Waikato Ranlway On the Thames goldfield it is used for mine props, struts and cap pieces. It forms the bulk of the trmber exported from New Zealand.
Some of the largest and soundest Kauri timber has richly mottled shading which appears to be an abnormal growth, due to the bark being entangled in the ligneous growth, causing shaded parts, broad and narrow, according as the timber is cut relative to their planes It makes a rich and valuable furniture wood.
The Kauri Pine occurs only in the North Island and north of Mercury Bay and grows best near the sea, on wet clay land. The Kauri forests are largely composed of other trees, as well as their characteristic tree.

The turpentine of thas tree forms the celebrated Kaurı gum, which is extensively excavated from the sites of old forests as far south as Taranakı In 1871 there were exported 5,053 tons valued at $167,958 l$., and in 18752,230 tons valued at $138,528 l$

Number 4 in Alphabetical List.
43. Taranakı Committee.

No 33. Damnaria Australis var Mottled Kaurn.

Genus Libocedrus (Endl.)
No. 2 -Labocedrus Doniana (Endl.)
Kawaka (Col) Cypress, Cedar. This noble tree attans a height of $60-100$ feet, and 3-5 feet diameter Wood reddish, fine grained and heavy, used by the Maoris for carving, and said to be excellent for planks and spars; grows in the North Island, being abundant in the forests near the Bay of Islands and North of Auckland.

No 5 in Alphabetical List
42 Westland Committee.
No. 41. Libocedrus Doniana

No. $3-L \imath$ bocedrus Bidwillı (Hook).

Pahauter (Col) Cedar A handsome conical tree $60-80 \mathrm{ft}$ high, $2-3 \mathrm{ft}$ diameter. In Otago it produces a dark red free-working timber, rather brittle, chefly adapted for inside work. Found on the central ranges of the North Island, and common throughout the forests of the South Island, growing at altitudes of from 500 to 4,000 feet This timber has been used for sleepers on the Otago rallways of late years, is largely employed in that district for fencing purposes, and is frequently mastaken for totara. In former years it was believed to be suitable only for inside work

Genus, Podocarpus (L'Hérıtier)

No. 4 -Podocarpus ferruginea (Don)
Mro (Col) Called Bastard Black Pine in Otago A large ornamental and useful timber tree, attains a height of 40-60 feet, trunk $2-3$ feet dameter A useful wood but not so durable as the Mataior true Black Pıne-wood; reddısh,
close grained and brittle; the cross section of the tumber shows the heart wood Woods star shaped and irregular. The timber is generally thought to be unfitted for Exhibits and pules and marne works, except when only partally exposed to the influence cont. of sea water, as shown in the rallway embankment at the Bluff Harbour where it is reported to have been durable Grows in the North and Middie Island and in Otago at altitudes below 1,000 feet

Number 16 in Alphabetical Last.
42 Westland Commattee
No 37. Podocarpus ferrugnea (Don)
43 Taranakt Commsttee
No. 26 Podocarpus ferrugınea (Don)
No. 5.-Podocarpus totara (A. Cum).
Totara A lofty and spreading tree 60 to 120 feet high, 4-10 feet drameter Wood very durable and clean grained, in appearance like cedar, and works with equal freedom, it is adapted for every kind of carpenters' work. It is used extensively in Wellington for house building and ples for marine wharves and bridges, and railway sleepers, sec, it is one of the most valuable timbers known The wood when felled during the growing season resists for a longer time the attacks of teredo worms, it splits freely and is durable as fencing and shingles, Totara post and ral fences are expected to last 40 to 50 years. The Maoris made their largest canoes from thas kind of tree, and the palisading of their pahs was constructed almost entirely of this wood

Grows throughout the North and. Middle Islands upon both flat and hilly ground; the timber from trees grown on hills is found to be more durable.

No 25 in Alphabetical List
42 Westland Commattee
No 35 Podocarpus totara (A. Cum).
43 Taranakı Committee.
Nos. 28 and 30 Podocarpus totara (A. Cum).

No. 6 -Podocarpus spıcata (Br)

Matal (Col) Mal (Cum) Black pine of Otago. A large tree 80 feet high, trunk 2-4 feet dameter Wood yellownsh, close gramed and durable, used for a variety of purposes, pules for bridges, wharves, and jetties, bed plates for machinery, millwnghts work, flooring house blocks, rallway sleepers and fencing Bridges in various parts of the colony afford proof of its durability. Mr. Buchanan has described a log of Matar that he found had been exposed for at least 200 years in a dense damp bush in N E valley, Dunedn, as proved by its being enfolded by the roots of three large trees, all Griselina littoralis 3 feet 6 inches diameter, with uver 300 growth rings. Grows in both North and South Islands at altitudes under 1,500 feet

Number 16 in Alphabetical List.
42 Westland Committee
No 36 Podocarpus spicata
43. Taranakı Commetlee.

No 7. Podocarpus spicata

No 7.-Podocarpus dacrydondes (A. R1ch)
Kahikatea White pine. A very fine tree 100-150 feet high, trunk 4 feet diameter Timber, white and tough, soft, well adapted for indoor work, but will not bear exposure

Abundant throughout the northern and middle islands, when grown on dry soil it is good for the planks of small boats, but when from swamps it is almost useless A variety of this tree known as yellow pine is largely sawn in Nelson, and considered to be a durable bulding tumber

Number 3 in Alphabetical List.

42 Westland Committee

Nos. 38 and 39. Podocarpus dacrydordes.
43 Taranakı Committee.
No. 5. Podocarpus dacrydordes

Genus, Dacrydium
No 8-Dacryduum cupressinum (Soland).
Rimu (Col) Red pine Tree, pyrimidal with weeping branches, trunk 80 to 130 feet high, and 2-6 feet diameter

An ornamental and useful timber, wood red, clear grained, heary and sohd, much used for joisting and planking, and general building purposes from Wellington southward Its chief drawback is in being liable to decay under the influence of wet $l t$ is largely used in the manufacture of furniture, the old wood being handsomely marked like rosewood, but of a hghter brown hue.

The juice of this pine is agreeable to drink, and was manufactured into spruce beer by Captan Cook.

Grows throughout the northern and southern aslands, but is of best quality in the south

No 19 in Alphabetical List
41. Cruzekshank, J. D, Upper Hutt

Sawing mills, Wellington Section of trunk of Rimu (Dacryduum cupressinum)
42. Westland Committee.

No 42. Dacrydium cupressinum
43. Taranakı Commattee

No 15 and 25 Dacrydıum cupressinum

$$
\text { No } 9 \text {-Dacryduum colensot (Hook) }
$$

Monoao (Col) Yellow pine A very ornamental tree from 20 to 80 feet high Wood, light and yellow It is the most durable tumber in New Zealand. Posts of this wood have been in use among the Maors for several hundred years. Grows in northern and southern islands up to 4,000 feet altitudes. This tree is curious from having two kinds of leaves of the same branches.

> Genus, Phyllocladus.

No. 10 -Phyllocladus trichomanondes (Don)
Tane kaha (Col) Celery leaved pine. A slender handsome tree, 60 feet high, trunk rarely exceeds 3 feet diameter, wood pale, close grained, and excellent for planks and spars, resists decay in moist positions in a remarkable manner

Grows in the North Island, especially in the hilly districts.

42 Westland Commıttee.

No. 43. Phyllocladus trichomanoides

> No. 11.-Phyllocladus Alponus (Hook)

Toa toa. A small ornamental and densely branched tree, sometimes 2 feet diameter. Bark used for dyeing and making tar. Found in both North and Middle Island.

Order, Cupuliferæ. Genus Fagus (Linn).
No 12.-Fagus Mengiesu (Hook).
Towai Red burch (from the colour of the bark). A handsome tree 80-100 feet high, trunk 2-3 feet diameter. The timber is chiefly used in the lake
district of the South Island Durable and adapted for mast makung and oar Woods and for cabinet and coopers' work

Grows in the North Island on the mountain tops, but abundant in the South descmptionIsland at all altitudes to 3,000 feet.

No 26 m Alphabetical List.

42. Westland Committee

No. 46. Fagus mengresu (Hook).

No 13 -Fagus fusca (Hook).

Tawa (Bidwell) Towar, Tawhar-ran-nu(Col) Black birch of Auckland and Otago (from colour of bark). Red birch of Wellington and Nelson (from colour of tumber) This is a noble tree from $60-90$ feet high, the trunk 5 to 8 feet in darmeter The timber is excessively tough and hard to cut. It is highly valued in Nelson and Wellington as being both strong and durable in all situations

It is found from Kartaia in the North Island to Otago in South Island, but often locally absent from extensive districts, and grows at all heightgrup to 3,000 feet altitudes

No 27 in Alphabetical List
43 Westland Commettee
No 45. Fagus fusca

$$
\text { No } 14 \text {-Fagus solandrn (Hook). }
$$

White birch of Nelson and Otago (from colour of bark) Black heart burch of Wellington. A lofty beautiful evergreen tree 100 feet high, trunk 4-5 feet diameter The heart tumber is darker than that of fagus fusca and is very durable This wood is well adapted for fencing and bridge pules, and the bark is useful as a tanning material

- This tree occurs only in the southern part of the North Island, but is abundant in the South Island up to $3-5,000$ feet

Order, Mystacze-Genus, Leptospermum (Forst)

$$
\text { No. } 15 \text {-Leptospermum scoparum (Forst) }
$$

Kahukatea Tea tree of Cook It is ornarnental and useful for fuel and. fencing, generally a small scrub but occasionally 20 feet in height in the south
Abundant throughout the slanda
42 Westland Commattee
No 44 Leptospermum scoparium (Forst).

No 16-Leptospermum erecotdes (A Rich).

Manuka A srall tree 10 to 80 feet high, highly ornamental, more especially when less than 20 years old The timber can be had $28-30$ feet long, and 14 inches dameter at the butt, and 10 anches the small end. The wood is hard and dark coloured, largely used at present for fuel and fencing, axe handles and sheares of blocks, and formerly by the natives for spears and paddles.

The old timber from its dark coloured markings might be used with advantage in cabinet work, and its great durability might recommend it for many other purposes Highly valued in Otago for jetty and wharf piles, as at reasts the marine worm better than any other timber found in the province. It is extensively used for house pies The lightest coloured wood, called "White Manuka" is considered the toughest, and forms an excellent substrtute for the "hornbeam" in the cogs of large spur wheels. It is abundant as a scrub and is found usually on the poorer soils, but is rare as a tree in large tracts to the exclusion of other trees.
No 12 in Alphubetical List.

Woods
Exhibits and descriptioncont
43. Taranaki Committee.

Nos 21, 22 Leptospermum erecordes.
Genus, Metrosideros (Br)
No. 17.-Metrosideros lucuda (Menzies).
Rata. ' Ironwood. A very ornamental tree, attans a helght of $30-60$ feet, and a diameter of 2-10 feet. The timber of this tree forms a valuable cabinet wood; it is of a dark red colour, splits freely

It has been much used for knees and timbers in shipbuilding, and would probably answer well for cogs of spur wheels.

Grows rarely in the North Island, but is abundant in the South Island, especially on the west coast.
No. 17 in Alphabetical List.

$$
\text { No. } 18 \text {-Metrosideros robusta (A Cum). }
$$

Rata (Col) A tall erect tree 50-60 feet high, dameter of trunk 4 feet, but the descending roots often form a hollow stem 12 feet in diameter Timber closely resembles the last-named species, and is equally dense and durable, while $1 t$ can be obtaned of much larger dımensions. It is used for shıpbuilding, but for this purpose is inferior to the Pohutukawa. On the tramways of the Thames it has been used for sleepers, which are perfectly sound after five years use Grows in the North Island; usually found in hilly situations from Cape Colville southwards
42. Westland Committee.

No. 34 Metrosideros robusta

43 Taranakz Committee.

Nos. 14 and 27. Metrosideros robusta.

> No 19.-Metrosuderos tomentoza (A. Cum).

Pohutukawa (Col) This tree has numerous massive arms; its height is 30-60 feet; trunk 2-4 feet in diameter

The timber is specially adapted for the purposes of the shipbulder, and has usually formed the framework of the numerous vessels built in the Northern Provinces Grows on rocky coasts, and is almost confined to the provnce of Auckland

Order, Melacæ. Genus, Dysoxylum (Blum).
No. 20-Dysoxylum spectabile (Hook).
Kohe-Kohe (Col) A large forest tree $40-50$ feet high. Leaves are bitter and used to make a stomachic mfusion Wood tough but splits freely, and is considered durable as ples under sea water Grows in the North Island

No 6 in Alphabetical List

43. Taranakı Committee

No, 6 Dysoxylum spectabile

Genus, Eugenia
No 21 -Eugenaa mare (A Cum)
Marre-taw-hake (Col) A small tree about 40 feet high, trunk 1-2 feet dameter. Timber compact, heavy, and durable Used for mooring posts and jetty piles on the Waikato, where it has stood well for seven years It is highly valued for fencing Common in swampy land in the North Island

Nos 8, 9, and 28, in Âlphabetical List
43 Taranaki Committee
Nos. 3, 19, and 20. Eugenia mare

Order, Onagrariea Genus, Fuchsia (Linn)

$$
\text { No } 22 \text {-Fuchsun excorticata (Linn) }
$$

Kohutuhutu (Col) The frut is called Konine A small and ornamental tree 10-30 feet high, trunk sometimes 3 feet in dameter It appears to furnish a durable timber House blocks of this which have been in use in Dunedin for more than 20 years are still sound and good. The wood might be used as dye stuff, if rasped up and bled in the usual way, and by mixing uon as a mordant shades of purple may be produced even to a dense black, that makes good writing ink The juice is astringent and agreeable, yelds a medicinal extract Its frut is pleasant, and forms the principal food of the wood pigeon
Grows throughout the islands.
42 Westland Committee.
No. 53 Fuchsis excorticata

> Order, Arahacæ. Genus, Panax (Linn)

No 23 -Panax crassefolium (Dem and Pland).
Ohoeka (Lindsay) Horoeks. Ivy tree An ornamental slender and sparingly branched tree It has a singularly graceful appearance in the young state, having long reflexed leaves The wood 18 close gramed and tough Common in forestis throughout the islands.

$$
42 \text { Westland Commıttee. }
$$

No 58. Panax crassifolum

> Order, Cornece Genus, Griselinia (Forst).
> No 24 -Griselnnta Littorahs (Raoui)

Puketea (Col) Broad leaf, Hector, An erect and thickly branched bush tree 50 to 60 feet high, trunk $3-10$ feet dameter. Wood splits freely, and is valuable for fencing and in shiphuilding, some portions make handsome veneers Grows chiefly in the South Island and near the coasta

$$
\begin{gathered}
\text { Order, Compositæ Genus, Olearia (Mauch). } \\
\text { No } 25 \text {-Olearia avtceunuefolıa (Hook) }
\end{gathered}
$$

Mike-mike Yellowwood An ornamental shrub tree, flowers numerous, trunk 2 feet dameter Wood close grained, with yellow markings, which render it desurable for cabinet work, wood good for veneers Occurs in South Island.

$$
42 \text { Westland Commtttee }
$$

No 61 Olearia aviceumrefola

No 26.-Olearia nttda

An ornamental shrub tree, 20 feet high and 2 feet diameter. Wood close gramed with yellow markings, useful for cabinet work Found in the mountainous region of the North Island and throughout the South Island

$$
\text { No } 27 \text {-Oleria Cunnınghamı }
$$

An ornamental shrub tree, $12-20$ feet high, with very showy flowers Found abundantly on west coast of South Island and not uncommon in
North Island

Woods
Exhubits and descriptioncont

> Order, Ericeœ. Genus, Dacrophyllum (Lab)
> No. 28, - - Dacrophyllum longyfoluum (Br)

An ornamental snrub tree with long grassy leaves Wood is white, marked whth satin-like specks, and is adapted for cabinet work Grows in South Island and in Lord Auckland's group and Campbell's Island; none of the South Island specimens are as large in the follage as those in Auckland Islands. The tree in the vicinity of Dunedin attains a diameter of 10 to 12 inches.

Order, Verbenacece. Genus, Vitex.
No. 29.-Vitex littorals (A Cum).

Purm (Col) A large tree, $50-60$ feet high, trunk 20 feet in girth. Wood hard, dark olive brown, much used, said to be indestructible under all conditions. Grows in the northern parts of the North Island only.

43. Taranakı Commattee

No 16. Vitex littoralis.

> Order, Laurinæ Genus, Nesodaphne (Hook).

No. 30 -Nesodaphne tarairi (Hook).
Tarairi (Col) A lofty forest tree, 60-80 feet high, with stout branches. Wood white, splits freely, but not much valued Grows in northern parts of North Island
No 21 in Alphabetical List.

> No 31 -Nesodaphne tawa (Hook)

Tawa (Col) A lofty forest tree, 60-70 feet high, with slender branches. The Wood is light and soft and is much used for making butter kegs Grons in the northern parts of the South Island, and also on the North Island, chiefly on low alluvial grounds; is commonly found forming large forests in river flats.

No. 22 in Alphabetical List
43 Taranakı Committee
No 13. Nesodaphne tawa

> Order, Moninacæ. Genus, Atherosperma (Lab)
> No. 32 -Atherosperma nova-Zealandie (Hook).

Pukatea (Col) Height 150 feet, with buttressed trunk 3-7 feet diameter ; the buttresses 15 feet thick at the base.

Wood soft and yellownsh, used for small boat planks
Grows n the North Island, and northern parts of the Middle Island
43 Taranaki Commattee
No. 2. Atherosperma novæ Zealandıæ

Genus, Hedjcarya (Forst).
No. 33 -Hedycarya dentata (Forst)
Karwhira (Col) A small evergreen tree $20-30$ feet high. The wood is marked and sutable for veneering

Grows in the North and South Island as far south as Akaroa.

43. Taranakı Commattee.

No. 17. Hedycarya dentata.

```
Order, Proteacex Genus, Kunghta (Br)
```


No 34. Knıghtta excelsa (Br.)

Woods
 Exhibits and description cont

Rewarewa (Col) A lofty slender tree 100 feet high Wood handsome, mot tled red and brown, used for furniture and shingles, and for fencing, as at splits easily. It is a most valuable veneerng wood. Common in the forests of the Northern Island, growing upon the hulls in both rich and poor soils.

No 18 in Alphabetical List
43 Taranaki Committee.
Nos. 9 and 32. Knightia excelsa.

Order, Magnoliacæ. Genus, Drimys.'
No 35 Drmys axnllarts (Forst)

Horopito (Col) Pepper tree of Colonists, and Winter's Bark. A small slender evergreen tree, very handsome Whole plant aromatic and stimulant, used by the Maoris for various diseases. Wood very ornamental in cabinet work, making handsome veneers. Grows abundantly in forests throughout the islands At altitudes of 1,000 feet the fohage becomes dense and reddish coloured.

No 36 -Dramys colorata (Raoul)
This is a very distinct species, very common near Dunedin; it is a very ornamental shrub-tree with leaves blotched red

42 Westland Committee
No 60, Drimys colorata

> Order, Violarex Genus, Melicytus (Forst)
> No. 37-Melecytus ramuflorus (Forst)

Mahoe (Col), or Hinehina (Geol Sur) A small tree 20-30 feet high, trunk often angular, and 7 feet in gurth The wood is soft, and not in use Abundant throughout the uslands, as far south as Otago, leaves greedily eaten by cattle

42 Westland Commzttee.
No 56 Melecytus ramiflorus

> Order, Malvaceæ Genus, Hoherıa (A. Cum).

$$
\text { No } 38 \text {-Hoherta populuca, (A Cum) }
$$

Houhere (Col) Rubbon wood of Dunednn An ornamental shrub-tree 10-30 feet high Bark fibrous and used for cordage, and affords a demulcent drnk Wood splits freely for shingles but is not durable Grows abundantly throughout the islands

Order, Tilhacae Genus, Arsstotela
No 39 -Arstotelıa racemosa (Hook).
Mako A small handsome tree 6-20 feet high, quick growing, with large racemes of reddish nodding flowers Wood very light, and white in colour, and might be apphed to the same purposes as the hime tree in Britam, it makes veneers

$$
42 \text { Westland Commıttee. }
$$

No 55 Arstoteha racemosa (Hook)

Woods

 Exhibits and descriptioncont> Genus, Elæocarpus (Linn)
> No 40.-Elcoocarpus dentatus (Vahl).

Hinan (Cum). A small tree, about 50 feet high, and 18 inches thick in stem, whth brown bark whech yelds a permanent blue black dye used by the Maoris for colourng mats and baskets, and is used for tanning. Wood a yellowsh brown colour and close grained, very durable for fencing and piles.

Common throughout the islands.
No. 1 in Alphabetical List.
42. Westland Commettee.

No. 48 Elæocarpus dentatus.
43. Taranakı Committee

Nos. 10 and 31 Elæocarpus dentatus.

Order, Olacınex. Genus, Pennantıa (Forst).
No. 41.-Pennantia corymbosa (Forst).
A small, very graceful tree, with white sweet smelling flowers, height 20-30 feet. Wood used by the natives for kindling fires by friction. Grows on the mountains of the Northern Island, and more abundantly throughout the Middle Island.

Order, Rhamnz. Genus, Discaria (Hook).
No. 42.-Discarsa toumaton (Roul).'
Tumata Kuru (Col) "Wild Irıshman" of settlers A bush or small tree with spreading branches; if properly traned would form a handsome hedge that would be stronger than white thorn. The spines were used by the natıves for tatooing.
' Order, Sapindacæ. Genus, Dodonea (Linn.).
No. 43 -Dodonea viscosa (Forst).
Ake (Col) A small tree 6-12 feet high. Wood very hard, varnegated black and white, used for native clubs, abundant in dry woods and forests.
43. Taranakı Committee

Nos 1 and 25 . Dodonea viscosa

Genus, Alectryon (Gartner)

No. 44.-Alectryon excelsum (D.C)
Titoki (Col) A beautiful tree with large pinnacles of reddish flowers. Trunk 15-20 feet high, and 12 to 20 inches diameter Wood has sumilar properties to ash and is used for similar purposes. Its toughness makes it valuable for wheels, coach building, \&c, the on of the seeds was used for anointing the person. Grows in the North and Middle Island, not uncommon in forests.

No. 24 in Alphabetıcal List.

43. Taranakı Committee

Nos 11 and 18, Alectryon excelsum

Order, Corianæ Genus, Coriaria (Linn)

No. 45 -Corıaria ruxyfolza (Linn).
Woods.
Exhibits and descriptioncont.
Tuta-kihn (Col) Tree tutu. A perennal shrub 10-18 feet high, trunk 6-8 inches diameter

The so-called berries (fleshy petals) vary very much in succulence, the less jucy bearng seeds which according to Colenso are not poisonous The juice is purple and affords a grateful beverage to the natives, and a wine like elderberry wne has been made from them The seeds and leaves are sand to produce convulsions, delirums, and death. and are fatal to cattle and sheep. Abundant throughout the aslands.

No. 42.-Westland Commuttee.
No 59. Corama ruxifolia.

> Order, Leguminosæ Genus, Sophora (Linn).

No 46 -Sophora tetraptera (Atton)

Homma (Hector) Kohwai A small or middling sized tree It has a splendid appearance, with large pendulous yellow flowers Wcod red, valuable for fencing, being highly durable; 18 also adapted for cabinet work. It is used for piles in bridges, wharves, \&e Abundant throughout the islands. No. 7 in Alphabetical List

$$
\text { No. } 43 \text {-Taranakı Committee }
$$

No 12 and 24 Sophora tetraptera

$$
\begin{gathered}
\text { Order, Saxifngex Genus, Carpodetus (Forst). } \\
\text { No 47.-Carpodetus serratus (Forst). }
\end{gathered}
$$

Tawrrs White mapan or white birch (of Auckland). A small tree 10-30 feet high, trunk unusually slender, branches spreading in a fan shaped manner, which makes it of very ornamental appearance, flowers white, profusely produced The wood is soft and tolgh, and might be used in the manufacture of handles for agricultural implements and axe handles Grows in the northern and southern islands, frequent by the banks of rivers.

> Genus, Weinmannia (Linn).
> No. 48 -Wernmannaa racemosa (Forst).

Towhal (Col) Karmal (Hector) A large tree, trunk 2-4 feet dameter and ' 50 feet high. Wood close graned and heavy but rather brittle, might be used for plane making and other joiner's tools, block cutting for paper and calico printing, hesides various kinds of turnery and wood engraving The bark of this tree is largely used for tanning An extract of bark by Mr W. Skey gave on analysis a result that showed it was chemically allied to the gum kino of commerce, their value being about equal. Grows in the middle and southern parts of the northern islands, and throughout the southern islands.

42 Westland Committee
No 50 Weinmannia racemosa
43 Taranak: Commattee
No. 8 Weinmanma raceroosa.

Order, Rubiacæ Genus, Coprosma (Forst).
No 49 -Coprosma linarufoleat (Hook)
An ornamental shrub tree, wood close graned and yellow; might be used for turnery. Grows in mountain localities of the North and South Island.

Woods
Exhubits and descriptioncont

Results of ex perments as to strength

Order, Jasminez. Genus, Ohe (Linn)
No 50 -Olua Cunnenghamu (Hook fil).
Black maire 40-50 feet high, 3-4 feet drameter, timber close graned, heavy, and very durable Murh of this tumber is at present destroyed in clearing the land.

Order, Santalaceæ Genus, Santalum (Linn)

No 51-Santalum Cunnunghamı (Hook fil)

Mare A small tree 10-15 feet high, 6-8 nnches dameter, wood hard, close gramed, heavy, used by the natives in the manufacture of war implements

Resdets of Experiments on New Zealand Timber
The dimensions of the specmens experimented on were one unch square and twelve mehes long

No		Natıve Names in Alphabetical Order			Greatest weight carried with un. imparred elasticity	
				lbs	bs.	lbs
1	40	Hınan or Pokako (Elæocarpus dentatus)	562	3503	940	1250
2		Kahika, supposed white pine -	- 502	3128	573	77
3	7	Kahlkatea, white pine, Podocarpus dacrydordes	488	3043	579	1060
4	1	Kaurı (Dammaria Australis) -	-623	3896	976	165
5	2	Kawaka - -	637	3969	750	120
6	20	Kohekohe (Dysoxylum spectabule) -	678	4225	920	117
7	46	Kohwal (Sophora tetraptera var grandiflora)	884	5511	980	207
8	21	Mare Black mare (Eugena marre)	1159	7229	1930	3142
9	21	Mare (Eugena mare) -	790	4924	106.0	1797
10	39	Mako (Aristoteha racemosa)	593	3362	$62 \cdot 0$	122
11		Mangı or mangeo (Tetranthera calicans)	621	$38 \cdot 70$	1090	137
12	16	Manuka (Leptospermum ericoides)-	943	$5900{ }^{\text {a }}$	$115 \cdot 0$	239
13	-	Mapau, red mapau, or red birch (Myrsine Urvillen)	-991	6182	920	1924
14	-	Mapau or tarrata, black mapau (Pettospermum teanifolum).	965	6014	1250	2430
15	4	Matal (Podocarpus spicata) -	787	4907	1230	1972
16	6	Miro (Podocarpus ferruginea) -	658	4079	1030	190
17	17	Rata or uron wood (Metrosideros lucida)	1045	$65 \cdot 13$	$93 \cdot 0$	1960
18	34	Rewa-Rewa (Knghtia excelsa) -	785	4892	$93 \cdot 0$	161
19	8	Rımu, red pine (Dacrydium cupressluum)	563	3694	928	140
20		Ruino, supposed red pine -	604	3763	940	163
21	30	Tarare (Nesodaphne taraire)	-888	5534	996	112
22	31	Tawa (Nesodaphne tawa) -	$\cdot 761$	$47 \cdot 45$	1424	205
23	47	Tawir-Kohu-Kohu, white mapau or white birch (carpodetus serratus)	-822	5124	800	1776
24	44	Titokı (Alectryon excelsum) -	916	5710	1160	
25	5	Totara (Podocarpus totara)	- 559	3517	77	
26	12	Towal, red birch (Fagus mengiesin)	- 626	3899	736	
27	13	Toway, black birch (Fagus fusca) -	780 637	4862 3969	1088 75.0	2025 120
28	21	Wawako (see also Mare) (Eugena marre).	637	3969	$75 \cdot 0$	120
29	-	Whau (Eutetia arborescens)	$\cdot 187$	11*76	13.0	320

The experiments were conducted in the following manner -A pressure of
Method of conductung expenments. 50 lbs was appled for two minutes (as measured by a sand glass) and the comple was then released; 75 lbs were then apphed for the same time, and then 100 lbs , and so on increasing by 25 lbs each time Each time the somple was released the point on the deflection scale to which it returned was read, and when it came to be notably under the original reading it was allowed to remain unloaded for two minutes, to see whether it would in time recover itself Then the pressure was gradually mereased, without being removed, untal it broke.

19. Rotokakahi, near Rotomahana.

20 Roto Tarawera, near Rotomahana
21 Tokanu, head of Lake Taupo, showing the Geysers.
22. Roto Pounamu, Rotomahana, or Cold Green Lake, showing the steam
holes in the Hot Taupes
23 Fumaroles, or Bouling Mud Cones, Rotomahana
24 General View of Rotomahana, looking east
25. General View of Rotomahana, looking west.

26 The Te Tarata Geyser, Rotomahana.
27. The Otukapuarangı or Pink Terrace, Rotomahana.

28 Side View of the Te Tarata Terraces, Rotomahana
29 Side View of the Pink Terrace, Rotomahana, showing the Great Stalactite Terraces.

30 The Te Tarata Terrace, Rotomahana, looking down on the Lake from the Crater
31 The Crystal Slope of the Te Kiwn Geyser, Rotomahana.
32 Captan Cook's Bay, where he took the transit of Mercury, November 9th, 1769

33 Cabbage 'Tree Palms, Governor's Bay, Canterbury
34 Dyer's Pass Road, Head of Lyttleton Harbour.
35 Government Buildings, Christchurch, Canterbury.
36. Craigieburn Cutting, West Coast Road, Canterbury

37 Study on the Otira River, Southern Alps, Canterbury.
38 The Bealey River Bed, Canterbury
39. The Rolleston Range, with Glacier, Arthur's Pass, Canterbury.
40. Summit of Arthur's Pass, Westland, looking west.

41 Summut of Arthur's Pass, Westland, lookng east
42 Looking through the Forest on the Teremakau River.
43 On the Teremakau Ruver Bed, Westland
44 In the Kahikatea, or White Pine Forest, Westland.
45 An Hotel on the Gold Fields near Fox's Diggings, Westland
46 White Pine Forest, West Coast Road, Canterbury
47 Thames Gold Field, from top of Moanataiarl Tramway, 1,200 ft. above the sea

48 Akaroa Bay, Banks' Peninsula, Canterbury

Maps and plans

Collection of
aboriginal his. tory of labour

$$
\text { Cl. } 300-\text { Maps and Plans }
$$

Collectzon made by Dr Hector for the Commissioners.

28A 1. Official Maps of the Colony of New Zealand. Published by E Ravenstein
29a. 2 Geological Map of New Zealand, by Dr. Hector, MSS
32B 3 Geological Map Small scale Published by E. Ravensten.
31a 4 Model of New Zealand in Relief
29B 5 Plans and Diagrams of Gold Fields, \&c
28b. 6 Physical Map of New Zealand by Dr Hector
30 Geological Plans and Section by Dr. Von Haast

Cl. 312.-Garments, Ornaments, Weapons, \&c, of the Maorls

27A. Collection made for thé Commissioners by R. W. Woon, R M.
1 Haimona Te Ao o te Rangi, chief of Ngatipanıaua tribe - A patuparaoa, whalebone weapon, called "Pai a te Rang1," handed down from ancestor named Kahunuı, four generations back Has been used in many battles, in which several chnefs and heroes "were made to lick the dust"
2. Horma Katene - A whalebone weapon called "Nga Kanae a Titokowaru," lately the property of the celebrated chef Trokowaru, who devastated the West Coast Settlements in the war of 1868 Is an heuloom of ancient date.
3 Thakara Tukumaru - A Tewatewa-wooden weapon.
4. Uranga Kazwhane-A Kakati-carved whalebone weapon called "Kaskanohi" (face eater) handed down for 12 generations.

5 Takarangı Mete-A patuparaoa-whalebone weapon called "Tohora" Collection of This is much prized, having been used by Te Maro, a member of the native aborignal hisContingent in " knocking on the head, and despatching" the great prophet cont. and leader of the Hauhau forces at the battle of Moutoa, in May 1864.
6 Hohata -A patuparaoa-whalebone weapon.
7 Te Retmana-A patuparaoa-whalebone weapon.
8 Te Rermana -A patu-stone weapon called "Kororarik" "
9 Te Koroneho-A putuparaoa-whalebone weapon
10 Rechana - A patu Kohatu, a stone weapon.
11. Aperaniko Tamatte -A patu kohatu, a stone weapon

12 Captain Wirchana - A patuparaoa-whalebone weapon, small size.
13 Keepa Rangitautra - A tewatewa, wooden battle-axe.
14 Keepa Rangttaura -Taaha Kwra, ornamented spear.
15 Epzha Aokokırt -'Taıaha, plain wooden spear
16 Mete Kıngı -Taahis, wooden spear, ornamented with feathers.
17. Mete Kingi -Tewatewa, wooden battle-axe with feathers

18 Poutint-Tewatewa, wooden battle-axe.
19 Rewi Raupo - Taraha, wooden spear.
20 Te Renvana - Taaha, wooden sppar
21 Paora Kahuatua of Ranana-Taaha kura, ornamented wooden spear.
22 Kiritakama -Taaha, plan wooden spear
23 Taıanhus -Taıaha, plain wooden spear
24 Tamihana te Aewa - Tauaba, wooden spear
25 Petna -Tewatews, battle-axe.
26 Paora Patapu -Taaha, spear
27 Paora Patapu - A long spear, taken as spoils of war at a battle in the Taupo conntry in 1869, lately the property of Te Heuheu

28 Major Keepa -A Pouwhenua, ancient spear, much prized, called
"Aketaurangal" This was used by the Wanganui chef Amarama in kulling the great Ngapuhi chief Tuwhare in 1830 on the Wanganu Rwer, when the Sgapuhm invaded that part of the island

24 Te Mawae - Tewatewa, a wooden battle-axe
31 Hoanz Maramara - Korowar, flax (Phormium) mat
sl Hoani Maramara. - Flax mourning cap and shank's tooth ear ornament

32 Uranga Kanzhare - Motumotu, ornamented flax mat Much prized by Maoris

33 Rem Remoata, chef and assessor - Kakahu Kura, flax mat ornamented
with tne red feathers of the Kaka or mountan parrot Much prized
34 Menehira - Parawat, flax mat with rich border
35 Renet Tapa - Flax met, interwoven with feathers of the native wood pigeon, called Watahupara, intended as a gyft to the Prestdent of the United States

36 Hori Te Roł́ha-Ugare, flax mat
37 Major Keepa - Dyed flax cap
38 Captain 1 arthana Puna - Kakahu Kura, ornamented flax and feather mat, intended as a guft to the President of the Unated States
39 Captarn Met Hunza - Parawal, ornamented mat
40 Pehra Turen, Queen's pensioner - Tou mat made from Tou plant found at foot of Tongariro, or the burning mountain

41 Pehira Tures-Dyed flax mourning cap
42 Maorı Adze, called an Aronui Two anctent fish-hooks, tipped with
human bone Wooden flute, called a Koauan, used for warbling love ditties
43 Aperahama Tahunuzarange - Carved mmage from front of ancient Maorn
house, called "Tamahakı," descended from ancestors 10 generations back
\$4 Carsed pıpe, made of reta, called "Takrau," and specmen of dyed flax.

45 Hakarıa -Heı Tikı, ancient greenstone neck ornament
± 6 Pehunana-Carved calabash top, called "Toka Taha"
47 Ham-Tro carved wooden "mplements, used in planting Kumaras
(sneet potato), called " ho Kumara"
ts Te Hora-Specimens of fiax, plain and dyed black'
f) Karaituana - Hatchet, with: carved handle Patitı

50 Poart Wharehuia -Heı Tiki greenstone neck ornarnent.

Collection of aboriginal his* tory of labourcont

51 Hir Te Roha-Ancient paddle for steering a canoe.
52 Shark's Tooth ear ornament and a fish-hook (made of Pawa shell) used as a bait to catch the fish called Kahawn
53 Te Hira - Skin of the Hua (Heteralocha gouldr). A chnef's head ornament.

Te Hira.-A Pounamu (greenstone) ear pendant of great lustre
54 Pikikotuku - Pounamu ear ornament
55 Hine Maaka -Native comb, called a karau.
56 Hine Maaku -Greenstone ear pendant
57 John Mark -Two whale's teeth garment fasteners and a greenstone ear ornament
58 Major Keepa -Greenstone adze, called an Aronul, very ancient.
59 Major Keepa -Skin of the Hual (Heteralocha gouldz), head ornament of a chief
60 Rev B K. Taylor, Wanganui -Hat made of Kıekıe (Frycenıtcaa banksii), manufactured by Hori Mutumutu flax for the wast.
$61 R W$. Woon, $R M$, Wanganul.-Ancient stone axe of 10 generations back

62 Hori Kıngi Mawae -Faddle with carved top.
63. Te Mawae -Stone hatchet of 10 generations back

Cl 340. 3464 Reupea Taurza-Paddle
65 Maon Image with head dress and ear ornament of Toroa feathers called "Ru celk furoa"
66. Heretara - Whakakal, greenstone ear ornament.
67. Turahur -Pigeon feather mat, Eheruheru, with greenstone ear pendant attached
68 Taranakı Commuttee - Heı Tıkı, greenstone rmage worn round the neck; 2 ancient axe head of stone

69 Taranakı Committee-Talaka, ornamented with Kaka (parrot) feathers

Sundry manu.
factures, exhibits and description

Manufactures

Anmal and Vegetable Products.

Tomato sauce
-
Soap.
Candles
Chucory. 65

Pruct wines
Ale and porter
Preserved meats 63
 67

Cl 6561 New Zealand Provision and Produce Company, Christchurch, Canterbury - 4 tins ox tongues, 5 tins sheep tongues, 4 tins corned beet, 3 tins bolled beet, 4 tins corned mutton, 4 tins boiled mutton All hermetically sealed and preserved so as to keep good for years

Cl 6562 Daved Narrn, Addington, Canterbury - Tomato Sauce Value $16 s$ per doz pints, $8 s$ per doz. half-pints.
3. John Horler, Woolston, Canterbury.-56 lbs. Soap, value $28 l$ per ton

Cl 6594 John Horler, Woolston Canterbury-40 lbs. Mould Candles, value $4 \frac{1}{2} d$ per 1 b

Cl 6565 Trent Brothers, Christchurch, Canterbury.-Chucory in two stages of preparation Can be put free on board at Port Littleton at from $5 d$ to $6 d$ per lb , according to package Photographs of the works and descriptive pamphlet.

Cl 660 6. James Smuth, Nelson - 12 sorts of Fruit Wines
Cl 6607 Henderson and Farrah, Wanganu, Wellington 6 bottles Ale (No 1) Prepared from malt and hops both grown and made in Nelson Value 8s. per dozen. Brewed 18th June 1875; bottled 18th July 1875
Cl. 660. 6 bottles Ale (No 2) Prepared from malt grown and made in Canterbury, and from hops grown in Nelson. Brewed 2lst August and bottled 14th September 1875 Value $8 s$ per dozen

Cl 660. 6 bottles Porter (No 1) Prepared fiom malt and hops both grown and made in Nelson Brewed 21st June and bottled 2 ned July 1875 Value 10 s. per dozen.

245

Cl 660. 6 bottles Porter (No 2) Prepared from malt grown ind made in Canterbury, and from hops grown in Nelson Brewed 24th August and bottled 21st September 1875. Value 10 s per dozen

Cl 6601 keg of Bulk Ale, prepared from malt grown and made in Canterbury, and from hops grown in Nelson Brewed 15th October 1875 Vslue 5l. per hogshead.
Cl 6528 Thomas Wilson, Woolston, Canterbury -Saddle and Saddle and Harness Leather 1 side black Harness, 1 side brown Harness, harness leather 1 side black Rein; 1 side faur Skirt, 1 side faur Saddle Seat; 1 side Thong Jide, 1 side staned Sturrup, 1 side stained Bridle, 1 side stamed Bag, 1 stamed Hogskın, 1 faur Hogskın
Cl 652 Shoemakers' Leather : 1 side waxed Kıp; 1 side shoemakers' gramed Kıp, 1 waxed Calf Skın, 1 gramed Calf Skin, 2 Kıd leather.
Skins, 1 black graıned Goat Skin, 2 black Basils, 1 sole Butt'
Fancy Coloured Skins for Shoemakers and Bookbinders.
1 stranned Basu, 1 soft Bası, 3 dyed Sheepskms, 5 dyed Goat Skins, 7 coloured Mats of vanious colours.

Cl 6529 Armitage, Taranakı-Dressed Kip and Calf Leather Dressed kip and prepared with bark of Acacua decurrens. calf leather
Cl 29610 Thomas Morres, Oamara, Otago - Improved Town saddle. Gentleman's Town Saddle 'The umprovement consists of the skirt being joined together and intted all round the cantle. Value in New Zealand, with furniture complete, 10l. 10s

Woven and Felted Goods

Cl $23 \overline{3} 11$ Webley Brothers, Nelson-3 samples of Nelson Tweeds. Tweed, made from New Zealand wool Price 5s 6d per yard

Cl 23512 Webley Brothers, Nelson-1 case of samples of Nelson T'weed, made from New Zealand wool
Cl 23713 James Cook, Nelson -Woollen Rugs woven and Rugs dyed at Nelson
Cl 237. 14 James Cook, Nelson -Woollen Mats woven and Mats dyed at Nelson
Cl 200 Cl 27215 W MI Innes, Port Chalmers, Otago - Cod hver oll 3 half-pint bottles of Cod Liver Onl.

Miscellaneous Goods. *
Cl 3001 P W. Tatton, Nelson-Map of the province of Nelson, showing localities of mineral deposits

[^7]Esculent fern root

Burd's nest fungus.

Plate 11 Asplentum umbrosum
Plate 12 Lomaria lanceolata, Cyathea dealbata
Plate 13 Nephrodium hispidum, Lomaria elongata, Polypodum lillardicru

Plate 14 Hymenophyllum ærugnosum, Hymenophyllum pulcherrimum, Polopodium grammitidis

Plate 15 Leptopterss superba, Dawsonia superba
Plate 16 Polypodum pennıgerum
Plate 17. Polypodıum bullardierı
Plate 18. Cyathea medullaris, Cyathea dealbata; Asplenıum
umbrosum, Lomaria nigra, Trichomanes renforme.
Plate 19 Pteris macilenta, Cyathea smithu
Plate 20 Nephrodium hispidum
Plate 21 Gleichemà cunninghamu, Millefolium distans
Plate 22 Lamaria bulbiferum, Aspıdıum richardu, Nephroduum
hispidum, Pteris scaberula
Plate 23 Asplenium falcatum
Plate 24 Lomaria bulbiferum
Plate 25 Asplenıum obtusetum, Pterı-scaberula, Pteıs esculenta, Lomaria fluvias tilis

Plate 26 Leptopters hymenophyllondes
Plate 27 Pteris tremula, Cyathea dealbata; Aspidium cystostegıa, Hymenophyllum densum, Hymenophyllum pulcherrimum,

Lomama migra

Plate 28 Lomaria elongata; Aspidum richardu
Plate 29 Lomara vulcanıcum, Hymenophyllum ærugnosum, Lomaria bulbiferum, Cyathea dealbata, Asplemum umbrosum
Plate 30 Polypodium, several species
Plate 31 Trichomanes elongata, Hymenophyllum ærugınosum, Hymenophyllum pulcherrmum

Fungus	3. Taranakz Committee - Fungus (Hırneola polytricha) used as food by the Chinese Largely exported from the colony Gions princpally on the Tawa
Esculent fern root	4 Taranaki Committee -Esculent Fern Root Will germinate If crushed and planted in rich soll in a shady place
Bird's nest fungus.	5 Taranakz Commttee - Burd's Nest Fungus and cunous Parasite

Furniture, \&c
6 Greenfield and Stewart, Ifellington-Door made of Rimu (Dacryduim cupressinum) Red Pine of settlers

QUEENSLAND.

Commission from Queensland

TO THE
International Exhibition, Philadelphia, 1876.

Angus Mackay, Esq.
Robert Tooth, Esq.
Walter Hill, Esq., Curator, Botanical Gardens.
Richard Darntree, Esq., late Agent-General in England.
P. R Gordon, Esq, Chief Inspector of Stock.
Carl Staiger, Government Chemist.
S. Webster, Esq , Secretary.

Resident Representative Commissoners.
Angus Mackay, Esq.
Hon. Arthur Macalister, Agent-General in England
Robert Tooth, Esq.

QUEENSLAND.

General Report upon the Philadelphia Exhibition.

The space occupied by the colony of Queensland was 35 by 120 feet Space and poss . Lengthways this space was bordered by walls 15 feet high The space completed tollony at Exhlthe square occupied by the Australasian Colonies in the Mann Centennal bultoun Building
The Queensland Court, formed as described, was filled with exhbits Detals of essentally Australuan in character, and they 'very farly represented the exilubits general appearance and clmate of the colony, its productions, and the everyday life of the colonists At an early date of the exhbition the Queensland Court won a high reputation for systematic arrangement This reputation was held to the end, and the judges took occasion to put upon record therr admiration of this feature
The colony represented in this department is one of the Australan group Position, area, It occupies the north-eastern section of the island The total area of the and general colony is $433,920,000$ acres The land is well broken up by rivers, the coast cosonn line being particularly fortunate in this respect In its natural state the great bulk of the whole area of Queensland is rech in indigenous grasses Grazing is the prineipal industry; but mining, sugar-growing, and agriculture generally are progressing steadily The country is rich in coal, gold, tin, copper, ron, Resourcesantimony, and many other metals-each of which was well represented at the minerul Cententizal, and recerved much attention from mercantule men
The wool of the country (Australlan merno), although not largely, was well Wool represented This exhibit was forwarded by the Inspector of Sheep in the colony, PR Gordon, and was most effective as illustrative of Queensland wool Fleeces in the grease, just as cut from the sheep's hack, were shown The judging in this department was carefully done, several weeks being occupied The Queensland wools, in the awards of the judges, are found to occupp a first rank
There were fifteen exhibits of sugar shown, farly representung the sugar Sugar. industry of the country; the Mackay, Maryborough, Brisbane, Logan, and southern districts being represented
The mineral products of Queensland were represented by seven blocks of Mineral exlubits. coal from mines in the West Moreton (Ipswish) district, by some four tons of refined $t \mathrm{tn}$ in ungots, by an equal quantity of copper from Peak Downs, Mount Perrr, and Normanby, by gold-beaing quartz from each of the gold mining districts An obelisk, 22 feet in height, showed how much the gold got since its discovery in Queensland in 1868 would make in bulk-in all, 6.5 tons by weight, and worth $35,000,000$ dollars The various minerals were also shown in the crude state, the tin districts being specially well represented
The usual avocations of colonists-in minng, agriculture, traveling, timber- Avocations of gettung, and other avocations-were illustrated in a series of over 200 colored evonusts photographac pictures, sent by Richard Dauntree, late Agent-General for Queensland in England The collection was very handsome and effective
Queensland exhibited a fine collection of botanical specimens, sent by Flora-exluhut F M Balley This collection-the most complete sent, up to that time, from Australa to America-has been taken over by the US Agricultural Depart-
 at Washington
Of filres, also, the court had a fine collection, prepared by Alexander Filres McPherson These fibres have been distributed to various public institutions in America, the greater portion, however, remaning in the Agricultural Department
Printed matter-the public journals from all parts of the colony, neatly Pruted matter. bound the statutes and other public docurnents, and maps, charls, and
plans of the colony-was shown and distributed in great plenty, and selections of each sent to the puble institutions of the United States and Canada
Tmber . The nmber shown, although abundant in number-there beng over 300 vareties shown-did not fairly represent this portion of colonial wealth Queensland is rich in tumbers, but the specimens shown were poor The best of them were presented to the National Museum of the United States at Washington.

Gram.
Freserved fruts
Skins and
leather.

Commissioners
Very fine grann; wheat, oats, barley, maize, \&c, were shown, llustrating the gran-producing capabilities of the country Preserved fruts, of semıtropical kinds, were shown by W H Hayes

Prepared skins of Australian amımals, and leather of the varous kinds known to commerce, were shown by T B Stephens. The skins were a great attraction, and the quality of the leather well spoken of.
The Commissioners in Queensland, who got the exhibits together and sent them to Phladelpha, were P R Gordon, Chief Inspector of Stock; Walter Hill, Curator, Botanical Gardens, Angus Mackay; Carl Stager, Government Chemst; S Webster, Secretary. Ruchard Dantree was gazetted as a Commissioner for Philadelpha, and sent off from England the collection of articles collected there At Philadelphia the Commissioners were Angus Mackay, Hon. Arthur Macalster, Robert Tooth

Amards

Opals	- J Bushop, Barcoo.
Leather and Skins	- 'T B Stephens
Barks	- J C Barrd, Cardwell
Spices -	- J. H Boreham.
Case of Butterfies	- G Richland, Cardwell District
Dugong Oil and Specimens	- John Ching, Hervey's Bay, Maryborough

In a supplementary list the following Queensland exhibitors were awarded Supplementary prizes -

Government of Queensland-
For Collective Exhubit
For gold

For raw cotton

The Commussioners of Queensland, for model of obelisk of gold This had all through been a feature of the court, and Professor Barrd decided that it should find a place in Washington.

For systematic arrangement of exhibits
For coal exhibits
For vegetable fibres
J E Davidson, Port Mackay, for rum. The other exhibits of this kind were mured on the passage over
The Sheriff of Queensland tor saddlery
John M‘Donald, St Helena, for sugar.
Government Lithographe Department, for maps. Very highly reported on
Irwn Brothers, for wine
J H Hocker, Brisbane, tobacco leaf.
Angus Mackay, for cotton Works on tropical agnculture
T B Stephens, for furred skins.
W H Hayes, candied Austrahan fruts.
Normanby Copper Mine, copper ores
The present Governor of Queensland is W W Cairns, Esq The Executive Governor and of the country are -Colonial Secretary, Hon R M Stewart, Treasurer, Cabinet
Hon J R Dickson, Postmaster-General, Hon C S Mein; Attorney-General, Hon S. W Griffith, Minister for Lands, Hon $\sqrt{ }$ D Douglas, Premier and Minister for Works and Mines, Hon G Thorn
The form of government is simular to that of the "mother country" There Form of govern18 an Upper and a Lower House Education is free, and well provided for in ment schonls all over the country Raulroads, roads, and bridges are under the Education control of the Executive Postal and telegraphic communication are available Ravways all over the country, and are under the care of the Executive The population Postal and teleof the colony, accordıng to prelımınary census taken May 1,1876, was 173,180 , mumcation of whom 105,016 were males There is absolute freedom in religious affiars in Population Queensland, each denornination managing its own spritual affars as seems $\frac{\text { Relignous free- }}{\text { dom }}$ best and fitting The State exercises no control in such matters.
In order to afford information regarding the country, an Eraggration London offices Department is maintamed in London at 32, Charing Cross. From this office free and assisted passages to the colony are issued Passengers are despatched in ships chartered by the Emigration Department of the Queensland Goverament, and special care is taken of them durng the voyage

November 19, 1876.

Queensland

Physical features and natural pro* ductions

Darling Downs

Wide Bay and Burnett district,

Gympre

Rivers

Minerals
Vegetation

Norlhwryd and westward

Pastoral wealth

Copper munes,

Queensland, the north-east section of Australia, is a colony of vast sue, and indeed, if we bear in mind that the most of it is avalable land either for pasture, agriculture, or mining, it may be called the largest in the Austrahan group. Its area is nearly three times that of the vast territory of Texas, in North America, and ats seaboard equals in length, and greatly resembles in shape, that of the United States, from Maine to Loussana, the Florida peninsula corresponding to that of Cape York, and the Gulf of Mexico to that of Carpentaria To give a sketch of the features of so grand an area, one must be content with a mere outlune in a work like the present The most southerly point in Queensland consists of the highlands of Stanthorpe, the seat of the rich tin mines, a granite table-land, with an average elevation of some 2,800 feet, and a chmate resembling that of the south of England Th3 splendid black and amber crystals of tin oxyd are lavishly scattered in this district. Immediately adjoming, and on the north, lie the far-famed Darling Downs, at a general altitude of 1,600 feet above sea level, with the chmats of Southern France, and one of the finest pastoral districts in the world Open lagoons (so to speak) of rich treeless herbage are bounded, as it were, by shores of sheltering, open-timbered land, wath jutting capes of forest here and there running out and dividing the grassy spaces into maginary bays and lakes of verdure, and the natural herbage, being grown on decomposed volcanic soll, is so rich that, in nutritive power, it equals the best corn and hay combined. These Darling Downs he on the western escarpment of the great Australian Cordılera, which runs parallel to its east coast for 1,800 mules, and at about 70 mules back from the sea, and which separate the Darling Downs from the Moreton and Logan districts, a country rich in the finest cannel coal, and with good soll, well watered The Wide Bay and Burnett district follow next, as we go northward, and in addition to their rich pastoral and agricultural capabilities, here he the lucrative gold and copper fields of Gympie, Kılkıvan, and Mount Perry, of which more hereafter Gympie is famous for its rare mıneral developments, such as walls of ghttering calcspar, whth rich imbedded gold all through them, and this gold and copper in any other part of the world, nearer to civilisation and capital, would be centres of attraction and busy population to one hundred times the extent of their present census The rivers of Queensland, in the part we have at present descubed, consist chiefly of the Brisbane and the Mary, both as wide as the Thames, and farrly navigable for sea-going vessels for mules up from the mouth Immedrately to the north of the district last described, comes that of which Rockhampton is the shipping port Here we cross the tropic, and nature begins to show on a vaster scale-larger rivers, larger plams, and langer anmals are found The two rivers, Fitzioy and Burdekin, dram a country larger than the ancient kingdom of France, and the great Australian alligator, 25 feet long, is found in them Here, again, we have gold and copper in abundance, gold, silver, lead, and copper all being visible at once mone prece of quartz in many. of the lodes bereabout The zamais and other tropical palms begin to appear, as well as those gorgeous "scrubs" which obtain throughout the whole colony, and in whose moist, cool, green aisles the sun can seldom intrude, and the bush fire never, and where the giant fig-tree (macrophylla) towers like a cathedral cupola above all its fellows

Still passing northward from the country which makes Rockhampton its centre, the constant westerly trend of the Queensland coast becomes more noticeable, and soon the rich sugar plantations on the Pioneer river are reached, spread over almost treeless plains with rich soll of measureless depth, and then come more nich mines of gold, plenteous coal and copper, with countless interspersed lead and silver lodes, carrying associated gold, but all quite neglected and unnoticed amid so much other wealth Tracts of country near the Burdelin river as large as some English counties are covered with networks of mineral reefs, made up of richly golden mundic, whose untold wealth could only yield fully to the scientific eftorts of an anmy of chemicallyskilled miners, and which is all lost to the present rough openators We have not sand much hitherto of the pastoral nealth of the colony, but the whole of it is, none the less, abounding in sheep, cattle, and horses, whose interests all the minerals and sugar tend to keep yoing instead of interfering with The the minerals and sugar tend to keep roing instead of interfering with The
Cloncurry copper mines are abundantly rich in the beautiful clear red crystals
of the famous ruby oxde-the most valuable and easiest-smelted copper ore known They lie on the Cloncurry river, which runs into the Guif of Carpentaria, as does also the Gubert, which, besides the universal gold, affords some of the most superb oriental agates and sardonyxes in the world, fully agates and rivalling, if not surpassing, the best deposits of Uruguay and Brazil in the sardonyxes. size, transparency, and brillant colouring of the stones. It would sumply be monotonous to follow the description of the colony northward and to describe the golden wealth, in reef and alluvial, which stretches away into the Cape York Peminsula, so we will be content, and work our way back and south to the opal mines of Western Queensland, after a farewell glance at the coralline beaunes of the Great Barrier Reef on our north-eastern sea frontier, which ably bears the palm as premer coral bank of the world, 1,200 mules in length. Coral banks. Western Queensland introduces us to the great water-shed of the Warrego, Western QueensThomson, and Barcoo rivers, which mostly find their final outlet in the land Murray river system of South Australia. Thus part of Queensland is so open and level that many a nater-shed is imperceptible in dry weather, and it is often not until the beavy monsoon rams of the wet season send the water along in a wide and almost mevitable wall on to the unwary traveller that he perceives, for the first tame, that there is a depression and a watershed under his feet at all In Western Queensland he the trachytic conglomerates which form the matrix of that gleaming and gorgeous gem, the priceless opal, Opals in its varied hue and shades of purple, green, ruby, amber, blue, orange, and other fiorescent fires This stone, with the large, clear glowing red chrysolites Chrysolites. of the Burnett river, and the delicate aqua-marme of Stanthorpe, are the Aquarmannes leading gems of Queensland The sapplures are small, so are the diamonds, Sapphres, diathe true ruby is no larger than a grain of sand, and the emerald is absent monds, and altogether All this vast western country is rapidly being filled up with the rubies. sheep and cattle it so well can carry, its distance from the eastern sea coast being atoned for by river navigation on the Darling to South Austraha

This notice of the topography of Queensland would be all incomplete of no Seaboard. mention were made of the lengting seaboard which mark its glant frontiers on the east, and the equally vast rolling prairies of the west, in which either Germany Prarres or Austria might be comfortably placed, and with plenty of room all round the edges to spare The coast of Queensland is dotted with some of the most Coast beautiful islets in the world, grassy and fertile to the water's edge, some being low, open, park-like, and clean beached, and some being high, woody, and grand of aspect. 'They he chiefly between the 18 th and 22 nd parallels of latitude, inside the Great Barrier Reef, in the smooth shallow sea which is enclosed between it and the mamland The east coast of Queensland, therefore, is distinguished by many picturesque beauties of reef, island, mountan, and river, and the sunset of the tropics sheds its glory on many a tranquil scene by the shore where a new Robinson Crusoe might meet with romantic adventures to eclipse even the old time-hallowed escapes in Defoe's original and charming tale And for the vast western plans of the Warrego and Thomson, the Barcoo and the Bulloo, who shall measure the limit of their pastoral and productive wealth m the future?

The foregoing description is copied from the "Queenslander" newspaper in its special edition for the Philadelphaa Exhubition

The general arrangement of the Queensland Court at Phyladelphia was Arrangement of carried out with the vew of showng at a glance the physical character and exmbits. natural products of the colont The physical chanacter was shown by a series of photographs illustrating the varous geological formations of the country, and beneath the photographs the natural products of such formations were presented to view in specimen cases

One side of the Queensland Court was devoted entirely to a delnneation of the colony fiom a geological point of view, the other illustrated its minng, pastoral, agricultural, and other industries, and over each division was a tablet of information *

[^8]
Division I.-Alluvial

Geologreal fea-
tures
Division I -
Alluvial

Illustrative photographs

Samples of souls
and products.

From the illustrative tablet in this division we learn that -
Sorl-Rich vegetable mould on scrub land Various composition, other wise, according to rock débrıs forming it Generally adapted to agricultural purposes

Products - Cotton, sugar-cane, maize, \&c in perfection; cereals where climate suitable Alluvial gold in auriferous districts
These facts, as given in the descriptive tablet, indicate that in the alluvial districts valuable agricultural products can be freely grown, and that gold exists in other parts

Photograph No. 1 is a view near Brisbane, showing a small villa residence on the alluvial banks of Breakfast Creek. Every kund of garden produce can be easily raised on any of the tributary creeks of the Brisbane river

No 2.-A view of a portion of the Mary river, considerably north of the township of Maryborough. The left bank shows the thickness of the alluvium which, so far as cultivation is concerned, is apparently inexhaustible
No. 3 -Also a view of a Queensland river, showng a dense growth of scrub on the one side, and open forest country on the other

No 4-A view of Maryvale Creek, lat 1930 north. On the banks of this creek the older alluvia of the country are rather extensively developed, and in them the remains of extinct marsupials abound, such as enormous kangaroos, the extmet dyprotodon, \&c.

No. 5 -This is a characteristic view of mining for gold in the deep alluvial drifts. Here the miners are seen worising in the alluvium, the depth of which varres from 50 to 120 feet Handsome returns of gold are yielded at the latter depth. Such deep sinking, however, is rather rare in Queensland, as nearly all the allumal gold is found in shallow drifts, rarely exceeding 20 feet in depth

No 6 -This may be taken as a faurly representative view of the coast country in Queensland The alluvial deposits are generally very extensive, and the country ordinamly flat from the absolute coast line to the first mland range.

No. 7 -Another view of Maryvale Creek, presenting the same characteristics as Photograph No 4 The bones of some of the extinct anmals are shown in the ammedrate foreground

No 8 -Here is depicted a rough method of sluncing the beds of creeks for the extiaction of gold in the mountanous parts of the colony

No. 9 -Ths photograph shows another method of working the beds of creeks for the extraction of alluvial gold In the foreground are shown the operations of the well-known Californian pumps, as employed in throwing out the water from ordinary alluvial claums

No 10 is intended to illustrate the style of building adopted at a new "rush" on the gold fields Here, in the first instance, bark stripped fiom the Eucalypti, the common tree of the country, is made to serve all kinds of building purposes, so far as the exterior of the habitations is concerned At a later date, if the promising character of the diggings warrants a more permanent settlement, comfortable buldings of wood and stone are substituted
No. 11 represents ordinary alluvial mining in Queensland In the foreground the pudding tub employed in soaking the aumferous drift (if of a clayey character), and the cradle for finally extracting the gold from the concentrated débris will be observed

The table cases ranged under the above photographe vews contaned the variety of souls found an various alluvial districts in Queensland Here also, were specimens of the products, compising cassava, arrowroot, taro, su eet potato, flour, maizena, sllk cocoons, wheat, maize, barley, tobacco, \&c The larger cases on the table contaned samples of the souls with analyses attached, and there was one case enturely devoted to the fossuls found in the older alluvia

The annexed table of analyses of characteristic alluvial solls from varoous districts in Queensland is a summary of the contents of the alluvial sonls exhibited in the table cases They were mostly chosen by the Durector of the Botanical Gardens，Brisbane，as characteristic of large areas in the various districts from which they were taken．

Tables of Analyses of Allevial Sorls from various Agriculutural analyses of allu－ Districts on the East Coast of Queensland

Mechanical Analysis．
Mechamcal analysis

Chemical Anarisis．
Chemical
sunalysis

	Socurir in Watrr．							
	产	㤩免		㫨	告	总	易㫛	
入o								
1 Bent serub sonl	5995	07152	0051	0057	0029	0007	0050	0011
2．Bent forest soul．	6745	0193	00185	0635	0021	0005	0022	0187
8 Forent soll ${ }^{\text {－}}$	3676	0110	0055	0033	0019	0012	0016	0063
4 Morayfield	8338	0240	0040	0072	0033	0107	（0） 158	0050
${ }_{6}^{5}$ M Tonduh sonl，Alexandra	2660 2950 8	$\begin{array}{ll}0 & 181 \\ 0 & 260\end{array}$	0 0 0 050	0152 0 0 0	$\begin{array}{lll}0 & 154 \\ 0 & 058 \\ 0\end{array}$	$\begin{array}{lll}0 & 0 & 003 \\ 0 & 0022\end{array}$	（0）130	
7 Suhsorl	274	${ }_{0} 10200$	${ }_{0} 0414$	${ }_{0}^{0} 1107$	O 030	$\begin{array}{ll}0 & 1022 \\ 0 & 1419\end{array}$	$\begin{array}{ll}0 & 1858 \\ 0 & 1521\end{array}$	00185 0 0
${ }_{*} 30 \mathrm{~mm}$ deep，	2354	0 ano	00.0	0078	0034	00012	01518	0025
	± 070	0110	$0_{0} 060$	0117	0 （tag	00015	0109	0 072
10 Nind © Camp	\＄bly	0118	0 U13	0037	0017	0430	0041	0006

Chemical Analysis－cont

	Soluble in Acid						
					总	皆	틀 䔍 気 気
${ }_{1}^{\text {No }}$（ Best scrub sol	3610	10＊741	0457	6937	7021	1259	1043
2 Best forest soll－	4498	11641	0343	8369	11270	${ }_{0} 1522$	0302
3 Forest soil＊	2204	7797	0214	6009	6991	0566	0158
4 Moraytield	4189	6359	0226	6361	9823	0281	0207
5 Imdah－－	2837	5022	0236	3831	5361	0696	0258
6 Top soll，Alexandra	3 464	4825	0306	8843	8124	0380	0372
7 Subsorl，＂	3973	3284	0082	4955	9320	0326	0288
830 m deep，＂	3422	1751	00022	4612	10030	0253	0492
9 Garrlock＊＊＊＊＊＊＊＊＊	${ }^{2} 634$	4687	0128	3872	6986	0280	0211
10．Nand＇s Camp	4482	7352	0288	7823	11380	0458	0555

Detauls
No．I is an alluvial scrub soll from＂Yellowwood＂plantation on the Albert river in the Moreton district of Queensland，and was selected as a typical sample of the best scrub land in that chstrict
No 2 is an＂alluvzal sol＂＂considered of second quality from the same plantation

No． 3 is marked＂best forest soll，＂also from＂Yellowwood＂
No 4 is from the＂Morayfield Plantation＂Caboolture lat $25^{\circ} 30^{\prime}$ ，long． $152^{\circ} 28^{\prime}$ ，the estate of Messrs Raff \＆Co，one of the earlest formed sugar plantations in Queensland It may be considered a charactenstic sample of scrub soll on the Caboolture river
No 5 is from＂Indah Plantation＂Maryborough，the estate of Messrs． Ramsay Brothers，lat $25^{\circ} 30^{\prime}$ ，long． $150^{\circ} 41^{\prime}$ ．It was selected as a charac－ teristic＂scrub soll＂from the banks of the Mary river，along the course of which for many mules sugar cane is now beng cultrated， 4 tons of sugar were made from 10 tons of Bourbon cane on this estate，equal to a gross return of $120 l$ per acre
Nos． $6,7,8$ are the top，sub，and 30 －nch deep，sonls taken from the estate of J．E．Davidson，Esq，Alexandra Plantation，Mackay，lat $21^{\circ} 11^{\prime}, \mathrm{S}$ ， long． $149^{\circ} 10^{\prime} \mathrm{E}$ These are characteristic alluvial sols of a considetable area in the Mackay district，they are underlad by a coarse pebble drift affording excellent natural dramage．
The crop of sugar from 200 acres on this estate for the season 1873 was 395 tons，the gross money value would be nbout $11,000 l$ ，or $55 l$ per acre
No． 9 is the surface soll from the estate of Messis Machenzie Brothens， Garlock Plantation，Lower Herbert ruer，lat $18^{\circ} 37^{\prime} \mathrm{S}$ ，long． $140^{\circ} 10^{\circ} \mathrm{E}$ ．

The crops taken from thas estate for season 1873 grelded $2 \frac{1}{\frac{1}{2}}$ tons sugar per acre of a gross money value of $70 l$.

No 10 is a sample of "alluvial scrub soll" from the junction of the north and south bianches of the Johnston river, known as Nind's Camp. lat $17^{\circ} 32^{\prime}$, long $146^{\circ} 3$, and may be accepted as a typical sample of the "jungle covered alluvium" of that river, of which there are large areas, both on at and the Daintree river, as yet unoccupied by planters

Of these solls Dr Voelcker, the emment chemist, thus speaks -
"All these soils are distingushed by remarkable fertility, and are naturally well adapted for the cultivation of the sugar cane A glance at the analytical tables giving their composition clearly shows that they contain all the more important mineral elements of fertility in considerable proportions, as well as a large amount of organic matters capable of producing by theur gradual decomposition, and finally by oxidation, a constant supply of nutrates whech, in my opimon, are the combinations in which nitrogen is assimilated by plants
"Thus it will be seen that the soll marked No 1 , "best scrub sonl, Yellowwood Plantation, Albert niver,' contains nearly a half per cent of nitrogen in the shape of readily decomposable orgame matters or a larger proportion than was found in any of the remanmeng soils
"It is very interesting and practically important to notice in the analytical tables that the large proportion (comparatively speaking) of nitrogen in the best scrub soll, No. 1 , is associated with corresponding large proportions of available potash, phosphoric acid, and lime
"The best alluvial scrub soils are not only richer in nitrogen (organic plant food) but also in the more important mineral plant constituents The scrub soul No 1 shows a remarkable sumlarity in composition, and, I may add, in appearance, to the celebrated prairie souls of Mlinoss, several of which I had occasion to examme some years ago
"I gather from the report and notes accompanying these soll analyses that most of the alluvial scrub soils are of great depth They therefore contam, practically speaking, inexhaustible stores of plant food, and with deep cultivation, and the occasional application of appropriate top dressings, no fear need be entertamed that they will become gradually less and less productive, and finally be rendered infertile"
There can be no question indeed that the "alluvial scrub lands" of the East Adaptabulity of Coast of Queensland are admirably adapted for the growth of any agricultural allunal anand to product, but such products must be adapted to the chmate of the district parposes where the settler is located
The ordmary alluvial land not covered with scrub is also of good quality for agriculture, but of course requrres the application of manure at an earlier period in the cropping than the "scrub land"
On all the eastern rivers, there is more or less alluvial soil, the greatest extent near the embouchures of the largest rivers, the Herbert, Burdekm, Fitzroy, Mary, Brisbane, \&c, but this. though fine pasture land, is only in parts suitable for the agriculturist on account of its lability to periodical inundation

The cause of this comparative absence of large tracts of alluvial soll, free from partial mundation on the coast, is that the whole coast of Queensland 18 one of subsidence.
At no great distance back in time the barrier reef formed the eastern coass line of the culony, and the outlet of the Fitzroy and Burdekin on that old coast line are as marked a feature as are theur outlets on our present shore
Had elevation taken the part of depression, vast allurial deposits, now covered by the sea of the Inner passage, would have been available for agriculture, as it 18 there remain only those which border the present streams of the country, and where those streams passing through them have cut such broad and deep channels as to carry away with ease the storm waters which may be swept down them.
Large tracts, however, of such alluvials still awart the plough of the agricul- Locality of alio turalist and the planter

In the Moreton district, on the Brisbane, Bremer, and Logan.
In the Wide Bay district, on the Mary and Burnett

In the Kennedy district, on the Mackay and Herbert.
In the Cook, on the Johnson and Dantree.
Such lands are classed as agricultural, and are sold at 15s. per acre, payable in equal instalments over a period of 10 years.

Division II Cannozole

Illustrative photographs

Specmens of soils.

Drvision III.Mesozonc.

Drvision II -Cainozoic.
The information given on the tablet under this head was as follows .-
Rock - Sandstone and conglomerate.
Sorl-Coarse sand, valueless for pastoral or agricultural purposes, locally termed "Desert Country."
Products-Gold has been found at the "Cape" and "Charters Towers." Diggings at ws junction with the aurferous metamorphic rocks, suggesting great possible value in other districts where similar conditions are found.
Extent-Approximate, 150,000 square mules.
This division is devoted to the illustration of a geological formation which has, doubtless, at one time covered the whole of Queensland, and it may be the whole of Australia, and which, had not subsequent denudation removed it over enormous areas, would have left the entree continent-sland a desert waste. This has been by the geologist who described it (Mr. Daintree), termed "desert sandstone," and is supposed to represent one of the lower members of the Cainozoco group, the Eocene or Lower Miocene Terthary of European geologists
The results of the late expeditions undertaken and carred out in the face of immense difficulties by Colonel Warburton and Mr Forrest in Western Australia tend to prove that a vast proportion of Australia seems still to be covered by this desert sandstone, thus rendering it quute useless for pastoral or other settlement.

Photographs 12, 13, 14, 15, 16, and 17 furnish admirable 1deas of the appearance and pecularities of the desert sandstone On photograph 18 are shown the so-called "pantings" of the Australuan natives These, as is abundantly apparent, are works of art of the most primitive descrption, being simply negatives in ochre of hands, feet, boomerangs, shuelds, \&c. on the surface of the sandstone rock The object is placed upon the rock and masticated ochre forcibly ejected from the mouth of the native artist leaves the imprint as described The blacks are very active in adorning the interior of ther caves, where the atmosphere does not destroy the work, with these rude designs.
No. 19 is sufficiently illustrative of the way in which denudation has rendered the country sutable for settlement. The huts in the foreground form the township at the Gulbert diggings, the flat-topped hills in the distance being capped with the outhers of the desert sandstone which at one period covered the enture district
No. 20. Here we have the abrupt edge of the desert sandstone, it can be frequently followed for 20 or 30 miles without a break.
No. 21 shows the ordmary character of the creeks traversing the Cannozorc formation It may here be remarked that durng the summer season water 1 s .only to be found in this sandstone country at rare intervals.

No 22. A cave m the sandstone used by a prospecting party of diggers These caves are favourte campring places for the Australian natives, the sandstone districts contaning abundance of wallaby, a small species of kangaroo, and opossums, and thus forming capital hunting grounds

The table cases, which, in this as in the other dinsions, were 'placed beneath the photographs, contamed specimens of the soils and the rocks from wheh they have been derived. The only useful products are varieties of bark used in tanning, and gum resins taken from the Eucalypti.

Diviston III.-Mesozoic.

The information given on the tablet was as follows -
Mesozorc (Cretaceous).
Rock.-Calcareous shales and sandstones, with bands of argillaceous wos : limestone
Soll.-Marls and light calcareous sands form the vast "plains of the 11 "Western Interior," covered with salne plants and rich herbage in favourable is seasons. Excellent pastoral country where water is avalable.

Products-Beef, mutton, wool, and tallow, opals, coprolites, hydraulic limestone, gypsum.

Extent -(Approximate) 200,000 square mules.

Mesozove (Carbonaceous).

Rock.-Sandstone, conglomerate, shale, ferruginous limestone
Sorl-Varied, generally poor sandy, rarely fit for agriculture, grows scrub and tine timber, where not covered with scrub, yields grasses on which cattle thrive, but do not fatten readuly

Products - Coal, rron ore, hydrauluc limestone, fine timbers.
Extent -(Approximate) 10,000 square miles
This division us devoted to two separate geological formations, which are, however, embraced in the same mann group by European geologists as the mesozolc The first four photographs, Nos 23 to 26, illustrate the cretaceous portion of the system, and the succeeding seven the carbonaceous, a part of the Mesozorc group which is probably oolitic Ther fossils, and the relative extent of each, are shown upon the map and in the cases of the division.

Photograph 23 is a new of Betts' Creek, Northern Queensland, about Illustrative lat 20 deg 40 min S It affords an excellent illustration of the horizontal photographs character of the Cretaceons series, over the enormous area of quite 200,000 square mles, which it occupies in Western Queensland, and at the same tume describes the character of the strata composing $1 t$, viz, interstratified bands of sandstone and shale, with occasional beds of calcareous limestone intervening

No 24 gives a farthful picture of the great praurie country in Western Queensland, as taken from Marathon station, on the Flanders River, in about lat. 20 deg $20 \mathrm{~min} S$ The soil in these plains is in every way suted for the growth of all kinds of agricultural products if the clumate were only suitable. At present they are sparsely covered with native grasses and herbs of the most fattening characters, and the district is noted in all the Queensland markets for the excellent quallity of the meat they yeld. Cattle are taken from these downs to as great a distance as Melbourne, where the fat bullocks find a ready market The splendid condition of the prairie-fed stock may be estrmated from the fact that frequently two thurds of the beasts, after travellung nearly a thousand miles, are still saleable in the Melbourne markets as fat cattle

A very small extent of this formation is found on the eastern side the divding ranges, and this in the vicinity of Peak Downs, in the Leichardt district, and in certain portions of the East Cook. Its soil corresponds in character with the chalk marls and greensands of Cambridgeshure and adjoining counties, and is very fine for agriculture or for the growth of natural grasses Whist, however, the extent on the east coast 18 very insignificant, on the western portions of the colony in the Burke and Maranoa districts it is the prevailing feature
Here it forms those almost boundless plans which may be called the Western Prauries of Queensland, the value of which for pastoral purposes are becoming more and more appreciated

An analysis of a sample of the soil from these praures of the Upper Flunders River is attached
(This sol was taken from a point on the prairies about three mules west of Hughenden Station, on the Upper Finders)

	Chemeal Analyss	
Water lost at $212^{\circ} \mathrm{F}$	st at $212^{\circ} \mathrm{F}$	5114
Portions soluble in water -		
	Orgame matter	$\cdot 0307$
"	Lime - , -	$\cdot 070$
"	Orides of ran and alumina	-002
	Magnessa -	trace $>^{181}$
	Chlorne - -	$\cdot 002$
	Alkalies, sulphuric acid, and carbonic acid	071
"	Finely dıvided silica -	$\cdot 006$
Portions soluble in acid -		
	Water of constitution -	- 3097
	Organic matter	- $2 \cdot 145$
	Oxıdes of rron (cheefly perovide)	- 5491
"	Alumina	- 10311
"	Lime -	- 11685
"	Magnesta	- 1088
	Potash	714
"	Soda	
	Sulphuric acid	
	Garbonic acid ${ }^{\text {Phosphonc acid }}$	$\begin{array}{r}\text { - } 7.089 \\ \hline .\end{array}$
	Phosphonc acid " ${ }^{\text {a }}$	- $18{ }^{2} \mathbf{2 0 0}$
"	Soluble sthea (set free by Alkali)	18193 34270
		100000

Ammonites, Belemnites, and the remanns of extnct Saurians are scattered over the surface of all these "Western Pramres" of Queensland.

Mesozorc (Carbonaceous).

Nos $27,28,29$, and 30 represent this formation of the mesozonc carbonaceous age It is very largely developed in the colony of Queensland In photograph 30 a cosl seam appears cropping out at the foot of a cluff on Pelican Creek in Northern Queensland, and many such natural sections of coal have been observed through the carboniferous districts, but have as yet recelved little attention for economical purposes. Several coal mines have, however, been opened in the southern portion of the colony, chefly on the Darling Downs and in the West Moreton distriet The coal obtaned from them has been chiefly used for satisfyng local requrements, but when the railway is completed to the coast there can be no doubt that an export trade will arise It is a well-established fact that coal in almost any quantities can be obtaned within no great distance of the capital, Brsbane.
In photographs 31 and 32 a good adea is given of the character of the forests usualiy met with on the areas occupied by the coal formation Dense scrubs, and tumber invitung the axe-man, are the common accompanments of the coal formation of the whole of Queensland
Occassonally, however, this general feature is varied by open forests, of which photograph 33 is an example, and it may be as a rule assumed that these districts are very sutable for pastoral pursuits In addition to the fossils, solls, and products, there are shown in the cases samples of gypsum and septaria. The latter are emmently sutable for the manufacture of hydraulic lime, in fact most of the limestones occurring in the cretaceous rocks of the country are surtable for that purpose.

Division IV -
Paleozonc (Carkoniferouk).

Division IV.-Palazozotc (Carboniferous)

The tablet attached to this dvision gave the followng information -

Palcozotc (Carbontferous).

Rocks - Sandstone, shale and limestone, generally horizontally stratified. Sorl-Varrous, according to composition of strata. Locally, where much limestone and shale occur, the soll is good, but as sandstone and grit preval,
the soil is qenerally sandy, and rarely suitable for agriculture, except in the alluval flats Most of the carbonferous areas in Queensland are covered with dense scrubs of brigalow, \&e Second-class pastoral sold for 5s. per acre.

Products -Coal, fire-clay, iron ore, hydraulic lımestone, buldıng stone.
Extent-(Approximate) 20,000 square mles
This division is devoted to the carbomferous group of the Palæozonc age, and
Illustrative the photographs are 12 in number.

No 34 depicts the outcrop of a coal seam about 8 feet thick on Rosetta Creek, Bowen River, Northern Queensland. The Bowen River district may, as a rule, be described as one vast coalfield, numerous seams, varying in thickness and quality, having been observed in natural outcrops in various portions of its watershed

No. 35 farly ullustrates the upper strata of this formation, which consists of sandstones and conglomerates, interstratified with occasional beds of shale The lower members of the group consist more of limestones and shales, in which beds of fine iron ore are by no means infrequent

No 36 presents a remarkable example of the junction of two different geological formations at the base of the cluff. We have a series of slates and sandstones nearly perpendicular, in which are imbedded auriferous quartz strings and veins On the denuded upturned edges of these slates occur hornzontal sandstones and conglomerates of the carbonferous age In these conglomerates, at the junction of the two formations, in certann localines of the Peak Downs, drifted gold has been found in the carboniferous conglomerates, distinctly proving that some gold, at all events, existed in the veins frior to the deposit of the carboniferous rocks.

One of the ordinary occurrences to be met whth throughout the whole of the Bowen River district is delineated in photograph 37, namely, the intrusion of a dyke of volcance rock, without any apparent movement of the adjoinng strata, so common in the carbonferous rocks of England It may be well, perhaps, to explain, for the benefit of unscientific readers, that the dyke is the feature of the picture over which a slight trickle of water is falling
No 38 shows the open forest country as the ordinary physical characteristic of the lower portion of the carbonferous senies, and here it is that the decomposition of the rocks forms soil admirably adapted for either agricultural or pastoral purposes
In Nos 39, 40, 41, 42, 43, 44, and 45, we have other views of scenery characterising the upper group of the carbonferous series where sandstones are most predomimant, and the sool is of inferior quality
In No 45 is depicted a group of cycadx, representatives of which are found fossilized in the mesozonc group of the carbonferous rocks prevously mentioned Groves of palms, zamia, and cycas are quite common throughout most of the eastern coast country of Queensland The frut of the cycas, after being steeped in running water for 48 hours, is used by the Australian native as a substitute for bread After being steeped in water it 18 pounded, dried, and converted into damper
The chief objects in the table cases of soils, rock, \&c, are the coal and iron Specimens of ore, characteristic of the group intended to be pourtrayed in this division. souls, rocks, acs
The prevaling rorks of both systems of carbonferous rocks in Queensland are sandstones, and coarse grits, yelding a barren soul, and usually covered with brigalow and other hard wood serubs.
In some parts of the series, however, especially in the lower portions of both, shales and himestones occur, and there belts of fertale soil with rich alluviums are met with

Such fertile belts in the coal measures make excellent selections for the farmer, as these rich alluvial bottoms can be utilised for the growth of maize, lucerne, \&c, whulst the forest country affords good, sound, healthy pasture land for his stock

The surface of fully one third of the Moreton, Wide Bay, and Burnett and Leicharddt districts on the east coast of Queensland 18 occupied by souls derived from the older and newer coal formations, and perhaps the area of both would not be less than 40,000 square mies.
The character of the scrub of the coal measures such as, for instance, on the road between Gympie and Brisbane, is shown in Photographs No. 31 and 32,
and the character of the open forests in carboniferous districts is well shown in Autotype No 38

These are the troo descriptions of country the emigrant will principally meet with in the districts marked on the map as occupied by both systems of carboniferous rocks, and there can be no question that when the best coal seams are explored, and utilized for manufacturng purposes, and for export, and local mining communities are so formed, many fine farms will be formed in the coalmining districts to supply the miners with produce
The coal-mung area of the Bowen River, in the Kennedy district, has some fine land for occupation, and coal, rron, and hmestone are abundant, and in mmedrate proximity to each other.

Dinkion V Paleozoic (Devoman).

Division V.-Paleozoic (Devonian)

The tablet attached to this division gave the followng information.-

Palaozorc (Devonan).

Rock--Crystalline limestone, slate, sandstone, conglomerate in highly melined strata
Soll.-Clay or sandy according as slate or sandstone predominates Faur pasture, naturally unsuitable for agriculture, except in the alluvial flats
Products -Gold, copper, lead, and bismuth ores, especially where the strata are broken up by the antrusion of diorite, felsite, \&c Marble abounds in the lowest rocks of this series Bulding stone, roofing slates.
Extent - (Approximate) 50,000 square miles
In this division we pass to a geological formation corresponding with the so-called Devonian of Cornwall and a portion of Devon This is, in fact, the youngest formation in which metallic minerals of commercial mportance are first met with in Queensland The extent has been estmated at 50,000 square mules, and this is probably very much below the actual area Already ores of almost all the valuable metals have been found in this formation in Queensland, but, as suggested in the tablet overhead, only those localities broken up by the intrusion of certan trap rocks, \&c, were found worthy the attention of the miner In the lower part of the seres enormous masses of limestone and marble have been discovered In one case, in the Clark River district, Northern Queensland, the writer has ndden along a barner of solid marble for 80 mules, with an average thickness of one mule, without any break except such as have been forced by the natural draunge of the country. samples of the marble are exhibited immediately under in the table cases
The trend of the rocks is admurably shown by these interstratified limestone barners, and from the top of the hill on any of these districts there is no difficulty whatever in following the strike of the beds to the extreme ionzon by the lune of deep tunted vegetation Trees groming out of the chinks of the marble add to the picturesqueness of the country, the follage invariably exhbitung large, green, glossy leaves, and the entire landscape offering innumerable subjects for the pencll of the artist. The marble an some instances extends to the coast, or rather is found in some of the islands of the coast In one of the Cumberland group it has been quarried and sent into the colonial market, it is of a delicate cream colour. A sample of this will be found un one of the cases beneath the photographs.

Photographs 47 and 49 are points on the Gulbert Ruver selected to illustrate the instrusion of a greenstone dyke, at the junction of which, with the slates and sandstones of the district, an auriferous quartz vein may be observed in one of the pictures. This, mndeed, is invariably the condition under which mineral vems of any consequence have been discovered in the Devonan rocks of Queensland It will be seen in Photograph 47, that the sandstone rocks on which the figure in the foreground is standing are sharply cut of by the greenstone dyke between him and the river On the opposite side of the ruer the honzontal strata of the desert sandstone series cap the palæozooc rocks of the river bed, and these are the general conditions of the mining district of the Glibert, Palmer, and Cloncurry minng districts of Queensland
No 50 is a view of the mung township of the Gilbert River, and this will give a pretty correct idea of the general physical character of the Devonian
formation as developed in Queensland, gently undulating, lightly tumbered, and scantily grassed, but still formung country surtable for pastoral occupation for stock-breedmg purposes

No 51 is a section ulustrative of the rocks of the group and general angle of dip developed throughout the whole country Sandstones, lumestones, and slates interstratified make up the entire formation.

Nos $52,53,54,55$, and 56 show the varned physical characters of the same district In No 53 mining on a line of reef on the upper Cape district in Queensland us pourtrayed, the hull in the distance bengg a massive dyke of porphyry, and the flat ground occupied by slates, \&c. At the intersection of these the line of reef has been followed, and was for a long time profitably worked

In the table cases varieties of soll from the lumestone districts and polished specimens of the hmestones themselves are exhibited; also varieties of soll from districts where slates, sandstones, \&e abound, and the rocks from which the soils have been derived There also may be seen illustrative examples of the dufferent ores which have been exploited in the Devonian rocks Here too are shown samples from the great Australan mine of the Conclurry River, a branch of the Flinders in Northern Queensland.

It will be found on examination that the ores from this "Great Australian" Specimens of mine are of the nchest possible character, exemplifying as they do the masses sons, stones, at the mine, of metallic copper, red oxide, and carbonate This is only one of ${ }^{\text {ores, \&c }}$ a number of most valuable copper lodes which have been discovered in the same district, but at the present time they remain unworked on account of the distance from a shipping port, a drawback which trme and increased faclity of transit will ultunately remedy. It is asserted on the best authority that these are the most valuable mines of copper which have yet been discovered in Australia

Adjoining these valuable specimens are to be seen samples from the Star - River, in the Kennedy mining district, about 80 mules from the port of Townsville This also is representative of one of a group of copper lodes recently discovered in the Star Ruver district, and which promeses to afford a large and permanent export of copper in the future

There are further shown samples of copper ore from various, outcrops in other parts oi Queensland, for example, the Dee copper mine near Rockhampton, the copper mine near Nebo in the Broadside district, and other small outcrops in the south of the colony on which sufficient work has not yet been done to prove their value as permanent mines Samples of manganese ore are shown in the same place, one of these, from the immediate neighbourhood of the township of Gladstone, contans according to careful analysis about 77 per cent of peroxide of manganese.

Division VI-Metamorphic

The tablet over this division gave the following information -

Metamorphec

Rocks - Mica and hornblende, schist and quartz rock
Soil -Sandy or cold clay, unsuitable for agriculture except in the alluvial flats, natural grasses have hittle or no fattening properties All such country would be rated second-class pastoral, and would be sold at $5 s$ per acre

Products -Gold, tin, copper, lead, \&c Lodes of various kinds are found in all the areas in Queensland occupied by metamorphic rocks, especially where penetrated by "Elvan Dykes"

Extent -(Apprownate) 50,000 square mules
The character of this division is sufficiently indicated in the above com- Mustrative plation, and the photographs from 57 to 67 illustrate the physical character of photographs the formation, which is a most important one to the future of Queensland Lodes of all kinds of mineral have been discovered throughout its entire extent, and they are apparently not so much dependent on the mtrusion of volcanic dykes as in other systems, such as the Devonian, to which a previous division was devoted In addition to the copper and gold which are the chief materials found to be assoriated whth the Devonian rocks, ores of tin, antimony, bismuth, and lead have been discovered in the Metamorphic, and fresh discoveries are being made almost dally.

Photographs 57, 58, 59, and 60 indicate the nature of the level country of the metamorphic districts, which is usually covered with open forests contaning valuable but by no means largely growing trees The wood is very sound and good, but the timber is as a rule somewhat small in size.
In No. 61 we have an example of the desert sandstone resting ummedately on the top of perpendicular cliffs of metamorphic schist
In No 62 a section of the ordmary mica and hornblende schists with ther interlaminated, quartz viens and strings are well shown. The view is taken from the junctions of the Copperield and Lynd rivers, Northern Queensland The distant peak on the left is a hill of porphyry, at the intersection of which with the mica schists, \&e, mineral land is generally to be expected.
No 63 is taken from the top of the Black Mountann of the Cape River district, and admurably exemplifies the mode in which the physical outline of the country is determined by the strike of the more or less undurated character of the rocks which made up the geological formation On the left is a steep range formed by a barrier of extremely hard quartzite, the trend of which may be easily followed for quite a hundred miles. The valley between the two rudges has been easily denuded by the removal of very soft mica schists, abutting on much harder hornblende schists. These have been shown to resist denudation only in a degree somewhat inferior to that of the quartzites, as exemplified in the mammilated ridge immedrately on the right of the picture. The artist himself is sitting on a hill which has been formed by a dyke of volcanic rock traversing these at right angles.
Nos $64,65,66$, and 67 are views taken promisouously from various points of the metamorphic distucts in Queensland
The usual specimens of sols and rocks appeared in the table cases, and in a series of small bottles there were stored varieties of alluvial gold from various Queensland dygings In this collection there were also specimens of drift cinnabar, carbonate of bismuth, tin ore, garnets, zurcons, rubies, topazes, \&c In other compartments were samples of the different copper ores found in this ${ }^{\circ}$ formation in Queensland.
Amongst the soils, \&c in the table cases were samples of copper ore from the Mount Perry mine in the Burnet district During last year this mine paid to its shareholders a dividend of 80 per cent. on the actual paid-up capital it forms one of a group of lodes lymg on the same locality, and they will all probably be worked with profit as soon as the railway is completed with the port of Bundiburg on the Burnet River, a scheme which is now under consideration by the Parlament of Queensland. Specimens from the Normanby, one of the mines of the same group, were shown in the adjoning case, and samples of black oxide, carbonate, red oxide, and pyrites, ores from the Peak Downs mine From this mine, copper to the value of one millon pounds has already been shipped, and active work is still continued in that and other munes of the same district Ores from the Maxford mine in the Broadsound district were shown next to the compartment which holds the specimens from Mount Perry mine. Some very good cre was taken from the surface of this mine, but it has not been found to be productive at any depth

Division VII-Granite.

The illustrative tablet gave the following information-
 Granate.

Rock -Granite, syemte, \&c.
Soll.-Various, according to composition of rock, generally poor sandy, on the ridges sometimes of far quality for agriculture in the alluvial flats, where syenite contans much hornblende soll of better quality.
Farr pasture on the whole, would be classed second-class pastoral, and sold at $5 s$ per acre.
Products.-Molyden, glance, tin ore, auriferous quartz, building stone.
Extent --(Approximate) 70,000 square miles
It is heely that the area given in the abore tablet is excessive, as it has been found by recent exploration that much of the country supposed to be granite in the Cape York peninsula is occupied by metamorphic rocks, and is now being extensively worked for gold and other commercially valuable minerals

Several of the photographs in this division furnish a characteristic outhne Mlustrative of the weathering of granite Nus. 72 to 79 illustrate the scenery of the com- photographs paratively level country The natural grasses in the granitic districts of the colony are not ordinarily of a fattening quality, such districts are, therefore, mostly taken up by pastoral settlers who, in the breeding of cattle, have found the country to be of the most valuable kind, and the young stock enjoy a comparative mmunity from pleuro-pneumonia Where, however, granite country hes near the coast, so that stock depastured on it can have access to salt pans and the salne herbage around them, cattle fatten very rapidly

The table cases afforded the usual practical illustrations of what the gramitic Specimens of area produces Most worthy of note were the specimens of tin ore from the tin ore Stanthorpe district, from which, during the last three years, tin ore equal in quantity to about one half the amount rassed in Cornwall and Devon has been annually shipped to European markets There were also to be seen speclmens of the alluvial dift in which the tin ore occurs

Division VIII-Trappean.

The term trappean has been adopted to express that form of volcance action which is represented by the pipes or cores of rock in connexion with which volcance matter may or may not have reached and overflowed at the surface. Certan forms of these trappean rocks have been found to be of the greatest importance m Queensland, with reference to the mineral lodes of the country, especially throughout the areas occupied by the Devoman rocks It is at the intersection of these wath palæozove, metamorphic, or gramitic rocks that the most valuable minerals have been discovered an the colony

Trapdykes are, commonly speaking, of two characters The bassc traps as influencing mineralization are usually hornblendic syentes or dorites, If acid, felsites or felspar porphyrys The basic traps are usually associated with basic rocks, the acid traps with acid rocks; that is to say, the doontes are more commonly found in the Devonan rocks in which limestone and calcareous slaty beds abound, and the acid traps are usually to be found in gneiss, quartzite, and mica schist of the metamorphic series
Photographs 81 and 82 afford characteristic views of the structure of these Mustrative diortes as represented in the bed of the Gilbert River, near ats junction with photographs the Percy This particular dyke is especially massive, and in some places half a mule broad, but at its junction with the metamorphic rocks of the district, it has been tound on both sides to furmsh auriferous quartz veins, and both the bed of the Gilbert and its smaller trlutaries have yrelded alluvial gold in paying quantities, in its immediate vicinity.
The ordmary appearance of the country occupied by trap rocks is shown Trap rocks m Photographs 80 and 83 It is hghtly timbered, possesses gently undulating ridges, and a stiff ferrugnous clay suitable for both agricultural and pastoral purposes, and Photograph 85 shows that, where of sufficient extent, it is admirably adapted for the latter.

No 86 is a trap dyke cutting through desert sandstone on the Gulbert River district This dyke is a dolerite, and that is a type very common through both of the carbomferous systems of Queensland, but in no case have dolerite dykes been found associated with mineralising action there
No 88 is a veew of the Black Mountain in the Cape River district, and is an instance of the intrusion of a dolerite dyke through the metamorphic schist of the district Here, however, no mineralising action has occurred
Nos 89,90 , and 91 are allustrations of the intrusion of felsitic and felspar porphyry dykes. The pecuhar dome-shaped appearance of the rocks depicted in these photographs is quite characteristic of this kand of plutonic disturbance, which has extended over the entire eastern districts of Queensland
No 89 is a nerv of the well-known glasshouse mountain lyıng to the left of the road between Brisbane and Gympre, and No 90 is an equally well-known land mark, Mount Wheeler, abnut 15 miles from Rockhampton, at the base of which the Cawarral daggings have been and still are extensively worked The intrusion of this Mount Wheeler felsite in fact seems to have been the parent of the auriferous reins so extensiv ely worked at its base, but in rocks quate forengn to atself

No 91 represents the domate hills named Scott and Roper's Peak by the traveller Leichardt in his first exploration of the Peak Downs district. They

Serpentines

 exhibitedare eminently characteristic of the outhne of numerous such hills on the eastern seaboard of Queensland.

Attention may be directed to the set of polished serpentines, since serpentine of almost every known variety and tint can be obtamed in any quantity in several Queensland districts.
Examples of the useful metallic ores found throughout the system were given in the wall cases, $e g$, the chrome aron ore found near Ipswich is in a serpentine district, which is sald to occur in almost mexhaustible quantities; this ore was exhibited by Mr John Harrs of Ipswich The specular iron from the Gulbert River, this ore is found in all the diorite districts of Queensland in veins of more or less thickness and persistency, and is one of the troubles of the muners, who find it a difficult task to free their gold from the heavier metallic substances with which the more precious mineral is associated

There are also samples of the extremely rich copper ore found in the serpentine district near Princhester, the assay of which gives 65 per cent. of metallic copper. Adjoining thas are samples of copper ore from the Dotswood mine in the North Kennedy district of Queensland The ore occurs dissemmated in the form of metallic copper throughout a trap dyke, and also in guartz veins in the same, in a somewhat sumilar to that of the copper ore of the Lake Superior distruct of Canada Small bosses of metallie copper, weighng as much as 25 lbs , have been found in the exploration of this mine Somerwat resembling this in its mode of occurrence is that of the Byerly mine about 40 mules south of Rockhampton The assay of this ore ss as high as 38 per cent. lyng as it does at the intersection of a trap dyke with the adjoming country, it was found on explotation to be very difficult to follow, the lode which appeared solid on the surface, breaking up into numerous thin irregular veins when followed in depth Specimens of hyalite and semi-opal are here to be seen from the nerghbourhood of Bottletree Creek, near Springsure Fine specimens of noble opal have, though rarely, been found in the district, and this form of slica is by no means uncommon in other acid dykes of this serres
From the rocks of this series also the natives of Australa have been accustomed to obtain most of ther stone umplements They yield also most ornamental and durable bulding materrals The solls of the Basce traps are usually either black or red in colour The latter is due to the excess of iron, and probably in all cases to excess elther of hornblende or olvinne in the parent rock The acid seres, felsites, felspar, porphyry, \&c, yield on disintegration sols of a comparatively inferior character for etther agriculture or the pasture of stock
On the whole, however, the trap country of Queensland may be sald to be one of the best guides to the successful explorer, whether he be on the lookout for mineral, pastoral, or agricultural settlement, for it is a guide to the volcanic districts which are most especially adapted to agricultural and pastoral occupations; to the miner it is an almost unerring finger-post to success

Division IX -Volcanic.

Volcanz.

Rock -Dolerte, ash, tufa, \&c.
Soll -Ruch black clay-marl very sutable for agriculture, also fine pastoral land.
Products.-On "Darling Downs," wheat and other cereals, vines and fruts of Southern Europe, cotton, cane, \&c. Wool, beef, and mutton on both. Copper has been found as metal and ore in the Volcanc rocks of the Bowen River and Collaroy ranges; agates in lange quantities, Agate creek, Gilbert River
Extent -(Approximate) 20,000 square miles.
Photographs 93 to 101 are typical of the volcame districts of Queensland. For example, in No. 93, which is a view taken near the Lolworth Station in the North Kennedy districts, we have the level nchly grassed planss common m such distriets surrounding an isolated pinnacle of granite which formed an asland in the sea of lava that orgmally flowed around 1 it. These conditions are
common to all the volcanic districts in Queensland; the lava-flows filling up the old valleys in the neighbourhood of craters from which theur material was derived
No 94 is a view illustrating nearly the same physical conditions as the above, near the township of Springsure

No 95, taken from near Bluftdowns Station on the Basalt River, illustrates the well-watered type of the volcanic districts.

No 96 is a new from near the head of the same stream. It is frequently experrenced that permanent springs of water are found at the heads of creeks in volcanic districts, capable of supplying a running stream throughout the whole of the year, and filling all the watercourses connected with them, for a long distance from the source of supply Especially 18 this the case where beds of volcame ash are interstratified with porous basalt, and the beds have a gentle inclination from the crater. Natural artesian springs are thus formed, supplying permanent water to the districts which,'had all the lava-flows been of a porous character, without the intervention of impervious beds, would have probably been waterless during the dry season

No. 97 (and also 99) as a portion of the Peak Downs, near the Wolfang station, with one of the before-mentioned domate peaks in the distance This country has been admurably described by Lexchardt in his book of travels descriptive of hus first passage through the country On the Peak Downs the soul is of the richest character, and the native grasses are of the most fattening description About three-quarters of a mllhon of sheep are at the present time depastured upon them

No 98, however, expresses in the most characteristic manner the ordnnary appearance of the Downs country of ordinary volcance fareas in Queensland. The downs are usually those portions of such areas where the rock has been much more easily decomposed than the generality of the "basalt" of which these districts have been formed The harder beds of lava and those more difficult of decomposition are covered with thinly timbered forest country; the soll being shallow and muxed up with rocky boulders, which, though suitable for pasturage, is comparatively unfit for cultivation.

No. 100 This view, which was taken from the Maryvale Station, in the North Kennedy district, is a good average illustration of the physical character of the open country un volcanic districts of the Upper Burdekin, Northern Queensland It is in latitude 19 deg 30 mm . S , and at an elevation of 1,600 feet above the level of the sea In the garden attached to the homestead were grown pumpkins, sweet potatoes, Englush potatoes, cabbages, lettuce, yams, mauze, sorghum, beans, peas, pune apples, oranges, peaches, lermons, mulbernes, vines, \&e Whilst this photograph is fairly characteristic of the Downs country adjoining the watercourses of the volcanic districts of Queensland, No 101 is quite as representative of the rocky table lands

Volcanic rocks and solls were sampled in the cases, and among the specimen Specmens of products were those of agate, cornehan, and various kinds of silica. These are solls and maner found in connexion with such rocks, and notably is this the fact on Agate rals Creek in the Gulbert district, where enormous quantities of agates freed from the matrix are scattered over the surface Copper and copper ores are also found filling cavities in some localities, notably in the Basalts of the Bowen River district.

An analysis of five samples of soils derved from basic volcame rocks of Queensland, which were exhibited in the table cases in this division, is appended

No 1 From the Government Penal Establishment, St Helena, in Moreton Bay, is that in which experiments in cane growing has been for a semes of years carned on successfully

No 2 is from the Ormiston Plantation, the property of the Honourable Lours Hope, the proneer sugar planter of Queensland

No 3 is soll taken from near the Kullarney Station on Darling Downs, and it and No 5 may be considered as fair typical representatives of the "black soils," of the "Volcame Downs" country in Queensland.

No 4 From the "Queen's Park," near Ipswich, is a "black sol," denved from the decomposition of a local intruston of basalt near that town.

Analysis of solls Analygis of Soils derived from the decomposition of Volcance Rocks in Queensland.

Chemical Analysis.

	Soduble In Water.							
	$\begin{aligned} & \text { Water } \\ & \text { at } \\ & 212^{\circ} \mathrm{F} \end{aligned}$	Organic Matter	Oxndes, Iron, andalumuan	Lime	Má nessa	Chlonne	Sulphune Acid and Alkalues	Silicas, finely divided
St Helena	1746	0110	Trace	0084	0023	00005	01635	0020
Ormiston ${ }^{\text {a }}$	2639	0110	Trace	0089	0029	0017	0114	0051
Wheat sol, Kullarney -	5769	0124	0101	0094	0008	0002	0288	0080
Wheat sol, Queen's Park	13523	0158	$0 \cdot 046$	0056	0036	0005	0 054	0047
Wheat soll, Jumbour -	-	0089	0035	0067	0 084	0408	0101	0.075

(continued)

	Sondele in Acti						
	Water of Con- gtstution	Orgame Matter	Equal to Nitrogen.	$\begin{gathered} \text { Oyides } \\ \text { of } \\ \text { Iron } \end{gathered}$	Alumins.	Lume	Magnesua
St Helena	2564	4007	0084	20366	14628	0117	0070
Ormiston -	6001	4836	0441	16765	24540	0054	0070
Wheat soil, Killarney	$30 \hat{5}$	4.076	0072	6727	11011	0369	0269
Wheat sonl, Queen's Park	7696	4062	0137	9553	11934	1368	2123
Wheat soil, Jimbour -	4352	2610	0061	9283	12156	1856	1081

(continued)

	Soluble in Acid-continued.						
-	Potash	Soda	Sulphurie And	Carbome Acid.	Phosphortc Ackd	Suluca, soluble in Al. kales	Insoluble Shicious Ressdue.
St Helens	0100	0101	0032	Trace	0073	13719	41936
Ormeston -	0097	0041	0219	Trace	0044	16025	28759
Wheat soll, Killarney	0223	0118	0271	Trace	0057	1794	49416
Wheat sonl, Queen's Park	0099	0077	0012	0129	0060	26236	23691
Wheat sonl, Jımbour *	0 454	0218	0054	0481	0343	25687	\$1863

The table of analysis of volcanic souls docs not give the determination of the portion insoluble in acid, and therefore hardly expresses therr full value to the agriculturist.

The analyses of three vancties of Queensland "basalt" (for under this techmeal term the rock from which these soils has been derived is generally known in the Colony) are therefore added to show what the comparatively unaltered rock is composed of, and how rich it is in all the mineral ingredients required for the perfecting of gram and grasses

No 1 is from the Black Mountann in the Cape River district, and is composed of a micro-crystallic felspathic and augitic base in which occur numerous isolated crystals and crystalline aggregations of augite, olivine, and magnetite.
No 2 is from the "native cat-scruj" in the Rockhampton district, and 18 composed of a micro-crystallic felspathic and augitic base, in which occur large crystals and crystalline aggregations of trichme felspar.
No 3 is from near Jumbour Station on Darling Downs, and is composed of a base which was probably nearly all augite, but which from decomposition has become almost opaque, thickly studded with incomplete crystals of triclinic with some mono-clinuc felspar

All these soncalled "basalts" are muxtures in various proportions of trichnic felspar, augite, olivine, and magnetite, in equally varying conditions of structure, sornetimes the augitic portion is in excess, sometimes the felspathic ; when the former, the rock is more basic, when the latter, more acid (that is, contains more silica), the quantity of magnetite in each rock of course modifying this deduction

It may probably be held to be a fact that the red soils in valcame districts are demved from the basalts contaming a large proportion of olivine or augite or both
The black souls orginate from the more felspathic series.
Analyses of Typical Queensland "Basalts," from which the black and Analyses of red Volcanc Solls of Queensland have been derived

	$\begin{aligned} & \text { Black } \\ & \text { Mountann, } \\ & \text { No } . \end{aligned}$	$\begin{aligned} & \text { Native Cat, } \\ & \text { No } 2 \end{aligned}$	$\underset{\text { No } 3}{\text { Jumbour, }}$
Sllica	44801	55801	57870
Alumina	19441	16147	14086
Ferric oxde	4902	${ }^{2} 265$	1801
Lime -	${ }_{9}^{8438}$	6818 7 466	9 6160
Magnesia -	5694	8149	2902
Potash -	1505	1756	1408
Soda -	3878	4305 0448	8429 0 832
Carsphome ach	-	0448 0340	${ }^{0} 838$
Sulyhuric achd	-	0360	0 494,
Lows on agmition	1716	1146	- 1.559

To show the action of atmospheric decomposition on these "basalts," and the value of their exposure to this influence, to the agriculturist, a comparative table of the analysis of the Jmbour rock and the soil derived from it as appended
The water lost at 21^{2} has been eliminated in the calculation of the analysis of the soil.

It will be observed from this that whilst only about one-fourth of the rock is decomposed by hydrochloric acid, two-thirds of the soil is in this condition
That the man difference between the rock and the soll is the loss of alkaline earths and alkalies by the percolation of carbonated waters, and the substitution of water in their places; the felspars and augites of the rock passing into clays and reolites in the soul.
The protoxides of ron in the augites and olivines of the rock passing into per-oxides in the sool, and determaning by ther abundance or otherwise the
colour of such soll.

Division Xa.
General map of colony,

Gold fields

Drvision IXa.
This division was devoted manly to the display of the geological map of the colony of Queensland, and on it were marked in distinctive colours the areas occupied by the various geological formations represented in Divisions I. to IX.
It could only, of course, be accepted as an approximate estimation of such distinctive areas, as very much remans to be done before any such delneation can approach the reallty; it $1 s$ hoped, however, that by its and, and the description which has been given of Divisions I. to IX., and the specimens of rock solls and products arranged in the table cases, a farr adea of the geology, physical characteristics, and natural productions of Queensland might be arrved at by the visitor to the Queensland Court at Philadelphia

Division Xa.

In this division the wall space was occupred by the general map of the colony, showing the position of the various gold, copper, and other mining districts, and detalled maps of some of these were exhibited under the general map
The table cases contanned representative specimens of ores from these mining areas represented on the map.
The gold fields of Queensland are very numerous, and have in fact been discovered at intervals on the slopes on erther side the main dividing range which separates Eastern and Western waters, and also on spurs of the range which forms the watershed to the Gulf of Carpentaria.
The names of these gold fields are Talgai, Gympie, Kilkivan, Calliope, Canoona, Cawarral, Mornush, Peak Downs, Cape River, Charters Towers, Ravenswood, Star River, situated on streams running to the East Coast; and Etheridge, Gilbert, Palmer, Cloncurry, on tnbutaries of rivers falling into the Gulf of Carpentaria.
It is difficult to arrive at the produce of these gold fields elther in detall or in the aggregate, as there is now no duty on gold in Queensland.
The banks, however, which buy most of the gold produced, always report the same when exported to the Customs.
The gield of gold alone from this source would in 1874 be about one million stering, but in 1875 this amount would be greatly mereased owing to the large produce from the Palmer diggings, which during 1874 exported from the port of Cookstown alone gold of the value of more than $500,000 \mathrm{l}$
The alluvial deposits in which gold has been found in Queensland have hitherto been very shallow, and therefore easily riffed of their contents, the river 'beds, however, which can only be worked durng the dry season, will probably for years afford subsistence wages to parties of miners, a portion of whose number may erther be engaged opening aurferous quartz veins, or prospecting for more remunerative alluvial deposits m other portions of the same district

It is to the auriferous quartz veins in all these districts that the principal attention is now given, and there can be no doubt that these will afford remunerative employment to miners for centuries, especially when a more economical system of mining is adopted, and the facilities for conveying mining plant to the various mining centres are moreased by railway communication.

The average yield from the aurferous quartz veins in the colony has always Aunferous stood very high as compared with that of other Austrahan colomes.

The yreld per ton of the Gympre quartz up to 1870 was at the rate of Its quality $2 \frac{1}{2}$ ozs per ton, and the statistical register for the colony gives the followng as the average of some of the gold fields previously mentioned for 1873 -

Return of the Averagr Yield from Auriferous Quartz crushed, in Average geld

 1873, on the several Gold Fields whene Crushing Machunes were in operationTotal tons, 80,064 ; total produce, 139,527 ozs.; average yield per ton, 1 oz 14 dwts 20 grs.

The total quantity of gold rased at Gympie from the date of its discovery in 1867 to 31 st December 1874, has been 380,825 ounces, which, valued at $3 l$ 10s per ounce, gives a yield of $1,332,872 l$

The followng particulars respecting one of the quartz claims of Gymple was given in the "Queenslander" of February 20th, 1875.
"The half-yearly meeting of the shareholders of Nos 7 and 8 Monkland was held on the 10th instant This claim has now been formed into a company under the Limited Labiuty Act, with a capital of $75,000 \mathrm{l}$ in 15,000 shares of $5 l$. each, 14,000 shares are allotted to the present shareholders, and the remaming 1,000 are kept as a reserve fund. From the balance sheet submitted we gather the followng particulars:--Proceeds of gold for the half-year, $15,026 l$ 14s $8 d$, to amount pand away in dividends, 7,500l , wages and working expenses, $3,186 l$ 8s 3 d ; carting, crushmg, and assaying, $1,143 l$ 5s. $3 d$ From the manager's report we learn that the clam has crushed during the half-year 1,818 tons of quartz for a yield of 4,257 ozs. of gold, the cost of rassing the stone has been about $2 l 2 s 9 \frac{1}{2} d$ per ton, including dead work. The reef was struck in the company's deep shaft at 348 feet from the surface, and sinking was continued to the depth of 372 feet, levels were put in north and south of 360 feet, from which level 66 tons 5 cwt of quartz obtained yielded 989 ozs The mann drive at the 247 -feet level was broken through to the Nicholls' workings on the 8th January There is a block of quartz left to stope out, which is expected will take from five to sux weeks, the stone 18 considered good Sinking was recommenced in the winze from the 247 -feet level on the 4 th December, and since then 26 feet (making the total depth from the 247 -feet level 68 feet) have been sunk The directors' report states that "although the " dividends declared for the past-half year have not been so much as on "s previous occasions, we consider there is no ground for discouragement, " masmuch as, when the machnery is completed, we expect the lower levels " to be highly remunerative Had we not had the machinery to pay for, we "s should have been able to divide $1,849 l$ more than what has already been "pand in dividends For the information of shareholders, we may state that " your secretary informs us that from the commencement of the clamm there
" has been rassed and crushed 7,847 tons of quartz, for a return of
" 28,572 ozs 11 dwts 18 grs of gold (melted), and pard m dividends,
"77,130l 11 s" The following are the returns from the clam from May l, 1872, to December 18, 1874, 7,028 tons, $24,406 \mathrm{oz}$

Although the Gympie gold field has undoubtedly borne away the palm at Gold fields preseat from the other Queensland gold fields for the extreme nchness of Descriptive some of its auriferous quartz, stull others, especially in the North, are becom. notice. ing quite as attractive to the miner, from the more uniform and yet highly remunerative returns from the auriferous lodes opened there, these are Ravenswood, Charters Towers, Etheridge, and Palmer.

Ravenswood gold field

Ravenswood

Has at present a population of about 700, and produces about 20,000 ounces of gold per annum, which could be very largely nocreased if the pyritous ores which are there associated with the gold were treated by the skulled metallurgist.

The present crushing power on the field is 64 stamps, the reefs occur in syentic granite; their number and extent is given in the mining map of Ravenswood, constructed by Mr. T. R Hacket, the late resident Government Gold Commissioner, which was displayed in Division Xa.

Charters Towers

Is distant from Townsville about 100 miles Its present annual yield of gold as about 60,000 ounces; its population is between 2,500 and 3,000 . The crushing power on the field is 79 stamps The following return of crushings from the principal reefs daring 1873, 1874, and to June 1875, will indicate the value of this field as a permanent mining district.-

Total crushings for the year $1873,59,835,1874,50,212$; to June 25, 1875, 22,601. By escort, $1873,74,145,1874,62,345$.
N B.-The escort returns urclude alluvial gold collected on the gold field, and so give the total yield of the metal from all sources.

Etherzdge.

The Etheridge gold field is distant from Townsville about 350 mules, from Cardwell 190 miles, and from Normanton 200 miles.
It draws its supplies chiefly from the latter port; the Government escort, however, conveys the gold produced on the field to Cardwell for shipment.

Its population is about 500 ; the production of gold is at the rate of 25,000 ounces per annum

This might be nocreased to a large extent if the mines were worked with more capital, and some of the rock-drilling machines in such common use in America were substituted for the present hand drilling.
Indeed, no great increase in the production of gold can be hoped for from such fields as Ravenswood, Charters Towers, and Etheridge, where the aurfferous lodes are walled by grante or syenitic granite, unless drills driven by machinery are brought into play.

Tin Mining.

Early in 1872 discoveries of drift tin ore were made in the southern portion of Queensland near the borders of New South Wales, and since that period a supply has been obtaned from this locality, which is known as the Stanthorpe district, at the rate of about 5,000 tons per annum, equal to about one half the English production for the same period, and about one-sisth of the total production of the world
Although tin ore has only yet been worked in Queensland in the Stanthorpe district, it is known to exist in several other localities, for example on tribu-
tares of the Star river and on the Western creek, and is especially plentiful in portions of the Palmer district
The present low price of tin, and the cost of conveyance to a port of shipment from the last-mentioned locality, has, however, kept any of this ore from being thrown on an already glutted market
A map of the Stanthorpe district and full report on the same were shown in Division XA.

Copper Minang

Copper minne.
Has attracted great attention in Queensland for several years on account of the great success of the Peak Downs mine
This mine commenced operations in 1865, and had in the outset great difficulties to contend with The prncipal one was, that Rockhampton, the port first used for shipping the copper, was 278 mules distant from the mine.
At the end of 1872 , however, more than $1,000,000 l$ worth of copper had been smelted and sold, and more than $200,000 l$ had been paid in dividends.
Active operations are still being carried on there, and other centres for copper mining industry have since been discovered
These are cbiefly the Mount Perry (about 70 miles from Maryborough) and the Conclurry, from both of which districts large supplies of copper may be depended on as soon as cheap carriage to the seaboard is assured
Specmens from these and numerous other copper lodes in all parts of Queensland will be found in the centre of the Court opposite this division, and it may safely be asserted that Queensland may be depended on in the future for the continuous supply of large quantities of this metal.

Coal Mining

Is quite in its infancy in Queensland, the colony however possesses a very large extent of the carbonferous rocks, with interstratified coal seams of varied quality and thickness, which in future years will doubtless be one of her most rehable sources of wealth, and will afford remunerative employment for a large settled population.

The extent and position of her coal felds were shown in the mining map in Dinsion No A, whule samples of the coal from the few mines at work were exhabited.

Division X.-Mining.

It is only within the last few years that mining exploration has been systematically carried on in Queensland. Every month tends to show mereasing activity in this direction, and increasingly satisfactory results. In 1864 the exports of all mining produce from Queensland amourited only to $87,000 \mathrm{l}$; in 1874 they amounted to more than a million and a half
Photographs 102 to 112 are devoted to the illustration of some phases of Illustrative miming life and mining operations in Queensland In No 102 we have depicted photographs. the ordinary rough accommodation of a prospecting party of diggers. Their hut, constructed in 48 hours, though sufficiently comfortable for the climate, is certanly not luxumous in appearance, nor indeed in reality, but the miners thermelves give evidence that the tollsome and rough life which they have chosen does not injure their health or temper 'They are representatives of the stalwart men who are found in thousands preferring thas work to that of any other, and rejoicing in what many would consider unbearable hardships. The stock in trade of an ordinary alluvial miner is on view around the hut; viz, the pick, shovel, tin dish and cradle, and, as cleanliness is said to rank perhaps before godnness with the Australian digger, his outfit 18 not complete wnthout his bar of soap and rough jack-towel, as shown in the photograph.

No 103 shows McGann's Flat on the Upper Cape diggings in Queensland, and allustrates at the same time one of those rare cases in Queensland where deep alluviai mining has been carred on As has been before remarked, nearly all the alluvial diggings of Queensland are shallow and easily worked out. Here, however, the depth of mining in order to reach the bed rock on which the gold was found, varies from 30 to 120 feet

No 10418 taken from near the junction of the Lynd and Copperfield rivers, Northern Queensland. In the foreground is shown the outcrop of a 40609.
copper lode which at a depth of 40 feet was known to be 20 feet thick; but as the ore did not average more than 10 per cent, the cost of cartage to the coast was an effectual bar to further exploration.
No. 105 is a view of the townshup of Ravenswood shortly after the discovery of the diggings there. The ore from the reefs is of a highly pyritous character, in some cases attaning as much as 30 per cent of copper pyrites, and occasionally yeeldıng as much as 15 ounces of gold per ton. From the surface to the water level these ores were decomposed and assumed the form of oxides, there was in consequence no impediment to the satisfactory amalgamation of the gold by mercury, and so long as this surface work was carried on the miners were well content with the results, and the whole of the lodes were in consequence worked down to the water level.
No. 106 well represents the peculiar feature in Queensland gold mining, "ravine working" Here the gold is found among the rolled boulders of the creek bed, and imbedded between the crevices of the rock, sometimes to a depth of 6 or 8 inches The tub, cradle, and tin dish, the only machnnery applied to this form of minng, will be duly noticed in the picture
No. 107 shows the ordmary method of raising quarta from the mine until steam 18 matroduced to the work. This photograph was taken in the early days of the Gympie diggngs. Now, however, all the modern apphances of steam machinery, both for rasing and crushing quartz, are in full operation. The quartz rased from some of the mines in these diggings has already been noted as perkaps the richest in Australia
No 108 is also a vew in the Gympie mining district. The next picture (109) is an illustration of the method of conducting business in some cases on the diggings : a shoemaker wishes to purchase a cradle-(not to rock a baby,) but to separate the virgin gold from the dirt with which it is associated, and he brings a parr of boots to effect his purchase. Such a primitive mode of conducting business has, however, ceased long ago; gold in con and in its native state are the crrculating medium on the Queensland gold fields.
No. 110 represents the digger enjoying his otrum cum dig. on that one day in the seven which even he sets apart for cessation from labour. The strictness in which Sunday is observed is in fact one of the features of life at the Austrahan diggngss.
Nos 111 and 112 are views of the rough plant erected for smelting on the Peak Downs copper mine Here copper to the value of more than a million sterling has already been rased, smelted, and shipped to the European markets, and the mine is still in active operation. No ore has yet been ralsed from below the 40 -fathom level.
The wall cases contaned samples of aurferous quartz from various dyggings and refuse tallings from the stamping mills The loss of gold from imperfect manipulation on the tallings 18 more than equal to the yield obtained; with improved nachnery and a more economical system of mining the aurferous quartz veins of (Queensland offer endless remunerative employment to the enterprising muner.
Amongst the various mining products of Queensland arranged in the table cases were auriferous ores from various diggings; lead ores from the Gilbert district, Cloncurry, Western Creek, and Stainton Harcourt in the Burnet district; copper ore from Cloncurry, Peak Downs, Star River, Princhester, \&c.; antimony ore from St. John's Creek in the Burnet district; bismuth ore from Cloncurry, silver ore from New Zealand gully in the Rockhampton district, stream and lode tin from the Stanthorpe, Palmer, Star, and other districts, and a variety of ores a description of whech was attached to the specimens themselves.
The regulations affecting the acquistion and holding of land for the purpose of mining for alluvial gold, and those affecting the holding of auriferous reefs in Queensland, were displayed in frames in this division. They are as follows:-

Regulations for acquiring muning claims.

Redulations affecting the Acauisition of Land for the purpose of Mining for Alluvial Gold - The holder of a "Miner's Right" (acquired by an annual payment of 10 s) is entitled to hold an ordnany alluvial clam of 50 by 50 feet, and a Company can hold 50 by 50 feet for every member: each block to be rectangular, and no side being less than 50 feet; or, in wet
alluval claims, 50 by 100 for one person, 100 by 100 feet for two, and so in proportion for any greater number of a party ; or, in nvers or creeks, 50 luneal feet in the general direction of the stream.

Conditions - To be continuously worked, but transferable
Regulations affecting the Holding of Auriferous Reefs in QueensLand -The discoverer of a gold-bearing reef is awarded as follows - \rightarrow

The holder of a" Miner's Right" (which is acquired by an annual payment of $10 s$) is entitled to 50 feet by 40 deep along the line of reef, or a Company is eutitled to 50 feet by 40 deep each man.

Condutions-Clam must have boundaries marked at right angles to base line, registered, and worked by half the number of miners to whom clams are allotted

Leases of land not exceeding 25 acres may also be obtanned for a term of 21 years, after a gold field has been two years proclamed, at a rental of $1 l$ per acre per annuma

Division XI -Agricultural

Division XI Agricultural.
Photographs 113 to 124 and 124A to 124 L represent various phases of agricultural life in Queensland In Nos 113, 114, and 115, we have a view of selector's homesteads in the Mary river district. The clearing has here been effected on the river bank, formerly occupied by dense scrubs This land, technically known as "scrub," is of the nchest description, and has been found admirably adapted for the growth of any kind of agricultural produce, and notably, where the climate is suitable, for the growth of sugar-cane. At present the banks of navigable rivers have chrefly been chosen for proneer nccupation on account of the fachities of sending the produce to market at a cheap rate
No 116 is a new of the Messrs Raff \& Co 's sugar plantation, Moray-fields, on the Cabulture river, in the Moreton district. The crushing plant is seen in the foreground, with the cane plantation behind
No 117 represents a sugar mali in the Mackay district, the type of a large' number of mills erected on many thriving plantations in the same district
No 118 illustrates the means adopted to convey the sugar from the plan. tation to the wharf, where water carrage is not available.
No 119 shows us the hut of an agricultural proneer, a class of building probably not unknown, and not for the first time seen in the United States It is a slab hut roofed with shingle, pigs, poultry, and children thrive naturally in all such settlements in Queensland, and in this picture representatives of each were present in force when the photographer happened to pass that way
No 120 is a view of a sugar manufactory in the Maryborough district, and is a type of plant sent out from England to the order of settlers in the Mary River district
In No 121 are shown the usual adjuncts of a sugar plantation, beds of pineapples and groves of orange trees, throughout the whole of the coast district of Queensland the pine-apple flourishes most luxuriantly, yielding the finest and most full-flavoured fruit
No 122 is a view taken on the plantation of Mr Davidson, a ploneer planter of the Mackay district The luxurious growth of the cane is here unmistakeably apparent
No 123 presents a view of the estabhshment of a sugar planter, and in No 124 we have a satisfactory proof of the capacity of the alluvial banks of Eastern Queensland for the production of sugar-cane.

Division No. XII-Agricultural

Thie dirision is also devoted to agriculture, and 28 ullustrated by photographs

No. 129 a shows a clearing in the scrub for sugar plantation on the Herbert

 River in Northern QueenslandNos. 1248 and 124 c are views of the residence of a sugar planter on the Macnade plantation, Herbert River These are examples of a considerable number of planters' residences situated on the same nver; where a large area is taken up for the purpose of forming plantations, but the proprietors are at present engaged more at clearing therr land than in bulding houses
No. 124 d is a view of the sugar mill erected on the same plantation.
No. 124 F shows the means adopted by the planters on the Herbert River for forwardng their sugar to market by means of flat-bottomed punts sutted to the navigation of the river
No. 124g is a characteristic view met with on the banks of the Herbert River.
No $124 \mathrm{~m}, \mathrm{I}, \mathrm{J}, \mathrm{K}$, and t , are characteristic views of such areas in Queensland as could be selected at the rate of $15 s$. per acre in the settled districts of the Colony These are classed as First Class for agriculture, and the payments are made by equal mstalments, extending over 10 years The richest alluvial scrub sols, and the volcanic districts of Queensland, are the only ones usually classed as agricultural, and as open for selection at the above-named rate
Underneath the photographic illustrations in Divisions XI and XII were the usual table cases contaning representative samples of cotton, manze, wheat, barley, coffee, tea, sugar, arrowroot, tobacco, \&c
Also samples of cocoons and raw and manufactured silk; the production of silk is now recelving careful attention in the colony.

Farming statisncs.

Necessity for irrigation.

Farming Statstrcs.

The Queensland farmer differs materially from his brother operator in other parts of Australla, in the kind of clmate, ranfall, soil, and crops he has to contend with. He has little frost and no snow to fear or provide aganst. He can, in some favoured localities-such as the Daring Downs-turn out a far wheat at the rate of from 20 to 30 bushels to the acre, and his bacon, hams, and butter are here almost up to the mark of the New Zealand, Tasmaman, Victorian, or Shoalhaven production in firmness and favour. Gatton, too, near the approaches of the great Man Range to the lower country of Ipswich has a specialty for potatoes, almost rivalling the far-famed Brown's River product of farr Hobart Town. The farmers in Queensland grow arrowroot and sugar, and they make wne, but not rassins as yet. They rassed enough wheat in 1873 to turn out 1,300 tons of flour, bessdes meal, \&c ; and there were, during the same year, $125,968 \mathrm{lbs}$ of arrowroot made in the colony Maize is also greatly cultivated, and both it and arrowroot are grown to an extent nearly equal to all the home consumption Tobacco to the amount of 8,568 lbs. was manufactured in the colony in 1873, as well as 41,979 gallons of wine The ordnary vegetables of domestic life, such as the carrot, turnip, caulffower, asparagus, artichoke, \&c., can all be well grown in Southern Queensland, and the fruit of the hibiscus, known as rosella, and that of the Cape gooseberry (Physalis Capensts) make a jam and jelly more suutable for nuvalds afflicted in liver or lung than any other in the word. But ordmary farming is an avocation not followed up to the fullest as yet in Queensland, or the imports would never show nearly a thousand tons of hay per annum still brought into the colony, as is the case. The mountam slopes of the southern parts will support a faur proportion of farmers; but fewer of them (in the general sense of the term) will take root in the north Honey 13 plentiful and delicious, as the native flowers are abundant and full of refreshing fragrance. In short, when the science of urrigation has been a little more mastered and matured than it is at present, and when a little pastoral is blended with the agricultural industry on each farm homestead in Queensland, then there will be few happier or more independent men on the face of the earth than the yeomen of the southern parts of this colony Wool, cotton, silk, maize, oul, wine, honey, rasins, figs, olives, tea, coffee, oranges, lemons, ctrons, pme-apple, banana, cheese, butter, ham, and bacon, and still more sources of profit are open to him, and, in a word, all the varred products of Spain, Portugal, France, and Italy are at the command of man's industry in this new territory of Queensland. Operations are, however, chiefly confined
to lands within 100 miles of the sea, for the ranfall steadily dmmishes with
every degree we recede from the coast

Sugar Growing in Queensland.

This universally important article of commerce is destined to figure heavily and increasingly among the products of North-eastern Australia, or Queensland In the year 1866 there was no sugar grown here at all In 1867 a modest 168 tons were made, the returns swelling to 619 tons in 1868, and increasing to 1,490 tons in 1869. In 1870 the product had grown to 2,854 tons, and in 1871 to 3,762 tons; 1872 again saw this nearly doubled, in the shape of 6,266 tons, and in 1873, the latest year up to which full official returns have been made, the quantity was 7,987 tons The yreld for 1874 is no less than 14,000 tons ! And as the quantity has increased so has also the quality of the article; and the refined whites from Yengarie, and the splendid "raws" from Eaton Vale, are able to recall the palmest days of glorious old Demerara, with its superb saccharine crystals, drawn from those measureless depths of rich vegetable soil in the great South American Savannah. The quantity of molasses, too, it is needless to say, has kept pace anth the yield of sugar, and has gradually crept up from 13,100 gallons returned in 1867 , to 442,253 gallons in 1873 The sugar mills were sux in number in 1868, and they had become 66 mn number by 1873 There were 1,238 acres of cane crushed during the year 1869, and by 1873 there were no less than 5,380 acres of it put under the rollers The rum of 1867 is now prized above any Jamanca for its nch mellowness, for in those mexpernenced days they did not, in Queensland, stint the sugar in making it, as as now done in the more sophisticated West Indies In that year they distilled only 12,045 gallons in Queensland, but in 1873 they made 161,413 gallons Sugargrowing 18 carried on in all the Logan country which lhes between the Brsbane River and the stupendous M'Pherson's range, the southern boundary of the colony. This Logan district includes the Albert, the Pimpama, the Coomera, the Nerang, and other divistons of that agricultural communty which is found on the south side of the metropols of the colony. Another large centre of sugar-growth is found in the Maryborough district, where Messrs Tooth and Cran's great refinery at Yengarie supplies a want in the way of costly machunery and finmshed applances which other parts of Queensland do not enjoy But the sugar country, par excellence, of North Australia is found on the Pioneer River, of which Mackay $1 s$ the shipping port. The climate is here no longer a matter of doubt and question, as it is at Maryborough and the Logan, in respect of its suitability for sugar growth The absence of frost and the presence of rich depths of treeless soil put this at rest, and it is here that some of the heaviest returns per acre have beeni realised The country at the back of Cardwell, still further north (and in the latttude of Jamaica), turns out a splendid article in sugar. One pleasing feature in the growth of it is found in the lucrative return made to the small working farmer, who, even more than the capitalist, has found farr profit yıelded from his sugar-cane patch, which has put his maize and potatoes quite in the shade in has yearly balance-sheet

The yyeld of sugar per acre of cane throughout the colony, although in some Yeeld of fatoured cases it has reached as high as four tons to the acre, has averaged as saccharme follows - In 1869 the return was $1 \frac{1}{6}$ ton to the acre, in 1870 nt was I_{5} ton to the acre, in 1871 it was 14 ton to the acre, in 1872 it was the same, and in 1873 it constderably exceeded a ton and a half to the acre through the colony We are just beginning to have sugar for export, and shall soon be able to pay Adelade for her flour in something more satiafactory to ourselves than bank drafts, and as with South Australa so with other places in which the balance of trade is at present decidedly agamst us As before stated, in farming statistics, the operations are carried on near the coast, as the raunfall decreases as we go westward Thus at Brisbane, 10 mules from the sea, it is 52 inches per annum, at Warwick, 90 miles from the sea, it is 32 inches per annum, and at Springsure, 160 miles from the sea, only 25 mehes
It is noticeable in connexion with this industry, and indeed with farming generally, that those engaged in it take a living interest in their business. In no countiy that we know of is anformation furmshed more freely than by the farming classes of Queensland.

Decresse of raip fall towards the internor.

Sugar growing

Division XIII.-Pastoral

Photographs 125 to 136, and from 136 A to 136 K , illustrate various phases of pastoral life in Queensland

Nos 125 and 128.-Here we have a typical view of an Australian squatter s homestead. This is the kind of home formed by men who, when once they have enjoyed the freedom and health-giving qualities of the occupation to which their hives are devoted, rarely return to the restraints of civilization with pleasure, or without a continual longmg to return to their Australan homes

Nos 126 and 127 show one of the princrpal means by which the wool is brought down from the stations to the coast for shipment. The bullock drivers are camped for them mud-day meal, and the beasts are turned out to rest for a short time from that pulling and haulng which is the normal condition of then existence Hundreds of men find profitable occupations as teamsters on the road to supply the miners and settlers with stores, returning to the coast with collected produce

No. 129 is a picture of a proneer squatter's homestead. This, as may be supposed, is generally rather rough, and built of the mevitable slabs and bark which the timber of the country everywhere affords in abundance, except on the great prames of the west

No 130 is a wool shed on the Darling Downs, and under cover of such a building something more than a million sheep are annually shorn on these downs alone.

No. 131 is a view of Westbrook Station, on the Darling Downs, one of the earhest formed in that district.
Nos 132 and 133 are also views of station homesteads of the rougher description, such as are erected by the proneer squatter.
No. 134 Sweep washing.
No. 135. Cattle branding.

Dinsion XIVPastoral.

Division XIV.-Pastoral.

This division was also devoted to the illustration of the pastoral districts of the colony, and is represented by photographs running from No. 136A to 136 m Nos. 136a and 136B ullustrate the usual mode adopted by holders of stations of delivering therr wool at the port, and carting the stores to their stations. Although horse teams have latterly been very much in use, bullock teams are still found to be the most generally suitable for rough bush roads.

No 136 c deprets the talling of cattle after a muster has been made on the stations by stock men

No 136 D is a characteristic view of "coast country" in the nexghbourhood of Maryborough.

- No 136e is a veew of a portion of the "Peak Downs," with the Peak Range in the distance. The discovery of this fine volcame district was first made by the explorer Leichhardt, and no terms of admuration seemed to be too great, in expressing his ideas of it, as a magnificent pastoral district if sufficient water supply could be obtamed.

Wells and dams have supplied this natural want, and now nearly a million sheep are depastured on the Peak Downs proper

Nos. $136 \mathrm{~F}, \mathrm{G}, \mathrm{H}, \mathrm{I}$, are devoted to the pllustration of the various descriptions of country which can be selected eather as first-class pastoral at $10 s$. per acre, or second-class pastoral at 5 s . per acre over certan districts of the colony, payment by equal instalments spread over 10 years

In the table cases under Divisions 13 and 14 samples of some of the principal brands of wool produced in the colony are exhibited

Pastoral Statzstics.

The great pastoral or "squatting" interest has the merit of having steered Queensland in safety through her early primeval struggles towards the goal of her present prosperous existence, and it is still, though now becoming ably nivalled by the mineal interest, and (now that the article of sugar has entered the field) by the agncultual and manufacturing ones also, the leading andustry of the colony The introduction of the paddock system, has, how-
ever, in many places reduced the number of hands, and the field for the employment of labour, but as no machinery for shearing sheep, driving bullocks, \&e has yet been patented, the squatting interest still continues to creculate much money in the colony. The number of horned cattle in Queens- Horned cattle. land at the close of 1872 was $1,200,992$, and at the end of 1873 the muster had uncreased to $1,343,093$, showing an augmentation of 142,101 for the year, or nearly 12 per cent; and of we take the same rate of merement to obtain for the year 1874, it would give us on the lst January 1875 somethong over a million and a half of horned cattle in the colony at that date

With respect to the sheep, the close of 1872 was $6,687,907$ of them in Sheep Queensland, and by the end of 1873 that number had necreased to 7,268,946, showing a gain of nearly 9 per cent. for the year, which rate, if taken to represent the accession of numbers for the year 1874, would bring us up to nearly $8,000,000$ of sheep in the colony of Queensland on the lst January 1875. The stock in our territory is on the whole very healthy and free from disease. Great mistakes were made at one time in stocking the far north country with sheep. They did not thrive there, and had all to be replaced with cattle, which do well up to the very Cape York itself. The number of horses in the Horses colony at the close of 1873 was 99,243 , an merease of about 7 per cent on the preceding year; and the prgs increased from 35,732 to 42,884 m 1873. With respect to the income derivable from these vast pastoral resources, the exports of live stock borderwise for 1873 were-

Add to this- Hides	*			
Tallow	-	-	50,809	Exported
Wool	-		1,374,526	seaward.
Preserved meats	-		62,085	

And we have a total of $£ 1,947,044$
in exports derived from pastoral sources, and even this does not include the meat, hides, leather, \&c used for home consumption, these and sugar being some of the few items for which Queensland is not dependent on extraneous and, as she is for clothing, breadstaffs, \&c On the vast array of storekeepers, agents, drovers, and banks, who thrive and fatten on all this teeming produce, we need not here enlarge Suffice it that squatting still contmues to be the leading industry of the colony, though of late years it naturally enough has not continned to grow with the same raprd strides which have marked the other and younger branches of our productive wealth

The wool, in lbs, exported in 18,3 , was $19,763,113 \mathrm{lbs}$ The wool exported Wool. in 1874 was $20,859,346 \mathrm{lbs}$, of the value of $1,420,881 \mathrm{l}$ The gross exports for 1874 were of the value of $3,750,048 l$, which, reckoning population at 160,000 , 1s 23l. 10s. per head per annum, unrivalled in the world The above are official returns.

Division XV.

Illustrations of
Was devoted to the llustration of Queensland towns and villages The towns.
numbers of the photographs run from 137 to 144, and melude views of Somerset, Rockhampton, Townsville, Cardwell, Gladstone, and Maryborough.

[^9]
Rise and Progress of Brisbane.

Brisbane, the metropols of Queensland, occupies a fine hilly, bold site on the banks of the river of same name, which is here about 1,000 feet wide. It is nether the prettiest nor yet the uglest capital in Australia; it lacks the noble harbour of Sydney, and the snow-capped background of Hobart Town; but still it has its distingushing advantage, for none of the sister cities command anything approaching such a sweep of really grand vew in every drection as Brisbane does, and extending 160 miles from north to south, and 100 from east to west-an area nearly equal to all Tasmania. On the south are visible Mount Lindsay, nearly 100° miles ride from Brisbane, also the great rany M'Pherson's Range, a wall at right angles to the coast, and nearly 6,000 feet high in places, while, on the north, the eye commands the Kulcoy and other ranges which shed the distant head waters of the Mary and Burnett mivers on their northern slopes. To the west, the dim blue peaks of the Main Range, serrated by the gaps of Koreelah and other passes, loom 70 miles away, and mark the site of Darling Downs; whle, to the east, the sea view is shut in by the cypress pine hills and sandy chiff of Moreton and Stradbroke islands, thirty mules away. Brisbane is built on a cape of land formed by a bend of the river, the sand cape pointing to the south-east On the north-east and south-west of Brisbane is the rver, 1,000 feet wide; on the south-east of the city lie the Botanical Gardens, and on the north-west rise the Windmill Hill and Wickham Terrace Reserves, so there are fresh air and "lungs" in plenty all round the pretty metropols of Queensland. And speaking of fresh aur we are remunded of fresh water, with which no city in the world is better supplied in proportion to ats population than Brisbane 1s. About seven miles back from town, and at an elevation of 240 feet above the tidal river level, the waters of Enoggera Creek are dammed back to form a lake of about 200 acres in extent, and 40 feet in depth, creating a water supply which, for volume and pressure, surpasses that of Sydney, with six times the population of Brisbane. The reservor is thus constantly fed by the waters of a pure mountan stream which rises in broken granitic country that surpasses in unfrequented wildness and dufficulty of access even the lofterer ranges of the tin country, and so fortunately guarantees a continued freedom from any impurity. Beautiful villas-commanding extensive and picturesque views of mountain, sea, river, garden, farm, and forest, in every shade of pleasing tint and sharp outline, under the clear sky of Australia-are found on all the suburban roads. The present population is about 25,000 .

Rise and Progress of Ipswich.

This town, formerly called "Limestone," from its geological formation, was established as a branch penal station in connexion with Brisbane, at the same tume as the latter was, and being at the head of river navigation, and the spot where the steamers and bullock drays met and exchanged their respective loadmg, such as wool for station supples, in the old days before railways were thought of, Ipswich soon became a thriving place after the settlement of Darling Downs, and contanned at one tmee no less than 30 "hotels," and the boilng down of stock added still more to the bustle of its dauly life So great indeed were its vitality and growth, and the energy of ats inhabitants, removed as they were from the enervating influence of the sea arr, that at the time of separation, its population and electoral roll being about equal to those of Brisbane, it disputed the right of the latter place to be declased the seat of Government of the new colony Since that tme, however, Ipswich has, owing to the advent of rallways, and the cessation of boilng down of stock, and other causes, not progressed so rapidly as in the first fewy years of its existence It is a neat, clean town, with some four or five thousand inhabitants, a creditable volunteer force, numerous branch banks, and Government offices, and depends at present for its support on the magnificent agncultural district by which it is surrounded. The abundance of coal in its immediate vicinity gives promise of its being the seat of manufacturing industry in the future, and theie seems little doubt aboul its becoming ultimately a large and populous town. Its present population is about 6,000.

Ruse and Progress of Toowoomba.

Toowoomba
This township was once the site of a grassy camping ground for the Darling Downs bullock teams in olden times; and, it being a well-watered open dell near the edge of the Mann Range, and some 2,000 feet above the sea level, teams used to rest here both before making the descent and after accomplishing the ascent of the Corderilla, especially as the grass was splendid, the soil a dark red, and the open timber of gigantic stringy bark and green wattle, rich in gum and bloom, bespoke a wholesome, pleasant country to dwell in Two large swampy "sponges," separated from each other by a ndge, gradually converge, and unite to form the head of Gowne Creek. This place, known once as "Drayton Swamp,"-m honour of the ancient healthy and now almost obsolete township of Drayton, of 1843-57-1s now the leading township of Daring Downs It had in 1854 but one house on it, in 1857 it was still anferior to Drayton, but by 1859 it had asserted itself, and the parent township had to take a secondary position. Since that time Toowoomba, nourished by the trade arising from pastoral and agricultural sources aluke, and with some hope of minerals too looming in the future, has contunued to go ahead, its only check having been during 1866 and the following years. Its public buildings, stores, streets, shops, churches, chapels, and volunteer corps (captanned by Sydney Smith, a Crimean officer), all denote substantial prosperity and genume publec spurt, and a healthier, pleasanter, "pluckier" township does not exist in Queensland It enjoys rallway communication with Brisbane, Ipswich, Warwick, and Dalhy, the two latter lines convergung at Toowoomba, A powerful well-organised agricultural and pastoral society holds its useful periodical show meetings here, and the mountan aur, keen breeze, rich pasturage, and the grand wine and wheat country around this favoured spot of earth, all help to mpart a vigour to its denizens and doings which is thoroughly English m character, and the cheeks of the people are quite as rosy as their apples, which $1 s$, indeed, saying a great deal. The mean temperature 1s 62°, which is considered by physicians to be the happy meduum furthest removed from undue heat and cold alike, and the one most suted to the human constitution. Its present population is about 4,000

Rase and Progress of Warwick

Warwick is situated on the southern part of Darling Downs, on the banks of the Condamune Ruver, a gravelly dry site, and a very Englsh-looking place altogether. There are fine farms and vineyards all round it, and the splendid pastoral properties which are close at hand, as well as the tin mines only fifty miles away from its ralway station, give Warwick comfortable status amongst the Queensland towns Its present population is about 3,000 .

Maryborough

Maryborough.
Is a municipal township on the River Mary, 60 miles from its mouth, about 180 mules north of Brasbane
It is the port of shipment for the greater portion of the Wide Bay and Burnett district, and is in the centre of a large agricultural population settled on the banks of the Mary River, both above and below the town

It will be seen from the panoramic view of the town exhibited in Division XV that there is still plenty of room for the erection of buildings even in some of the man streets

That these gaps will soon be filled up, however, there can be little doubt, since it is one of the soundest business towns in the colony, and has a large and increasing trade, from the miming, agricultural, and pastoral district of wheh it is the port

The present population of the municipality is about 5,000 , of the suburbs and the agricultural settiements in the neighbourhood about 4,000 more.

Rise and Progress of Rockhampton.

Rockhampton.
This torn n did not exist in 1857, when the announcement at the SurveyorGeneral's office in bydney (by a Brisbane gentleman visiting there,) of the fact that there evisted in Keppell Bay a navigable river called the Fitzroy, as whde and as deep as the Thames, caused a surveyor to be sent up and a township to
be lad out at once, about 45 miles from the niver mouth, and just below a reef of rocks wheh barred all further navigation upward for large vessels The streets were judccoously planned, like those of Melbourne, two chans wide, and Rockhampton is consequently a well-bult and fine-looking town, and being the focus and shipping port of a vast rich mineral and pastoral belt of country on the Dawson, Mackenzie, Isaac, Comet, and other rivers, as well as of the Peak Downs country, it possesses a great trade, and will in time, when railways pierce the interior, become a place of very considerable importance The Athelstan Range, at the south of the town, rises to the height of about 150 feet, and on it are situated the suburban residences of the leading townspeople Water 18 supphed from the Yeppen Yeppen and Crescent Lagoons, and there is steam communication with Yaamba, some distance further up the river.
Mount Berserker affords a rich field of research to the botanist and geologist In fact, Rockhampton is the centre of a rich gold and copper district, and minerals are found in nearly every drection you can travel from it. The present population is about 5,500

Ruse and Progress of Gympue

A wild and unfrequented spot on the banks of the Upper Mary River, and one of little use for pastoral purposes, and so, consequently, seldom traversed, was suddenly, towards the close of the year 1867, awakened to brisk life by the discovery, at the hands of a man named Nash, of a ruch deposit of alluvial gold contaning some $17,000 l$ worth of dust He took $1 t$ up very quetly, and sold some of it in Brisbane as "Cape River", gold; but the secret oozed out at last, and Gympie Creek was worked for alluvial digging Strange and wonderful adventures befel the few citizens of Brisbane who essayed the perils by flood and field of an overland trip to that unexplored country (supposed in olden days to consist of mahogany swamps and sour grass ranges) which lay between the metropols and the golden creek (for the Moololah, Maroochydore, and other rivers with rich soil banks were unknown to fame then) By and by, however, the alluvial was found to be a shallow myth, and rech reets of quartz and calcspar traversing a greenstone or doonte rock were found to contann fabulous wealth in gold, and the New Zealand, Lady Mary, Smithfield, Monkland, Caledoma, and other famous reefs began to send forth their splendid specumens to astonsh the metropolitans, and the machine crushings soon placed Gympie at the head of the world in the return of gold per ton of quartz. the magnificent and unrvalled average of nearly $2 \frac{1}{2}$ ounces to the ton havng been mauntained on thes field up to the end of 1870 . The road to Brisbane was put in order, and Cobb and Co. began to appear on the scene. A well-conducted newspaper soon graced the new township, and Gympie from 1868 to the present time has continued to be one of the "great facts" of Queensland Like other large quartz-crushing centres of industry, it has been afflicted with one drawback, and that is in the manner in which all the luck seems to flow into few hands, who became mordnately rich, and all the rest of the people correspondingly poor. This is the case at Gympie, where many a man, who never would have owned $100 l$ anywhere else in the world by his own exertions or brains, has found the gold grow, as it were, wherever he went to dgg Some of the early crushungs at Gympie were wonderful; there was really more gold than quartz in some of the veins, even in mere bulk, and the machine had to be stopped sometrmes, as the soft, malleable, ductile metal remanned momovable and insensible under the stampers to the action of the water, clogging like so much "toffy" or cobbler's wax, and so had to be cleared away before the steel hammers could be effectually brought to bear on the ordmary quartz. Gympre continues to flourish, and presents as fine an opening for capital as any gold field in the world. The present population of Gymple and its suburbs is about 6,000.

Ruse and Progress of Townstulle.

That "trade makes the port," and not the port trade, cannot be better exemphnied than in the case of Townsville
This port is situated in latitude $19^{\circ} 10^{\prime}$ south, and $146^{\circ} 58^{\prime} \mathrm{E}$ longitude, and is only about 80 miles from the town of Bowen, which enjors one of the finest harbours in Australia, whilst every facility can be given to the shipment of produce, yet Bowen has suffered a continued decadence since the formation of

Townsville, the progress of the latter (with not a tithe of its facilities for trade as far as the port is concerned) having been continuous, as the following comparison of exports and imports, between 1865 and 1875, whll show -

Port of Cleveland Bay. 1865, mports $570 l$, exports 8,145l, customs receipts $112 l$ 15s $4 d$; half-year ending 30th June 1875, mports $67,116 l$, exports $168,885 l$, customs recenpts $17,411 l$. $5 s ~ 8 d$
The agricultural resources of Townsville, and the mmediate district around it, are not great ; but extensive and permanent gold fields, and a vast area of pastoral country, for which it forms the natural port, have combined to raise it into importance

These gold fields are Star River, Rayenswood, Charters Towers, Cloncurry, Gulbert, and Etheridge
The copper mines principally awaiting the pushing out of a railway from Townsville westward before development, are situated on Star Kiver and Copperfield River
The amount of gold exported from the port of Townsville is as follows, and there can be little doubt that the mineral wealth of the district, for which Townsvile is the port, is as yet only developed to a very small extent, and wil be greatly increased in the future. Its population is about 1,800

Total of gold exported since its discovery in 1866 to June 30th, 1875, 569,818 ounces, value $1,990,610 l$
Although situated well within the tropics, the heat to be naturally expected at Townsvile is tempered by the influence of the south-east trade winds, and with properly constructed residences, and attention to keeping them cool, there seems no reason why the inhabitants should not enjoy as good health as those who reside in Brisbane or Maryborough.

Cardwell, ets Rese and Progress.

Cardwell
In Rockingham Bay, some 90 miles to the north of Townsville, is the pretty httle town of Cardwell The bay which it faces as one of the most beautuful, as well as the finest harbour in Northern Queensland. Its picturesque situation at the foot of the loftrest mountans of the coast range, its elegant public buldings, and tropical scenery, render it a study for the painter The difficulty of overcoming the coast range has hitherto presented an obstacle, not altogether insuperable, to its rapid progress; but this drawback, it is confidently expected, will shortly be overcome, as an accessible road has lately been discovered over the range Its population, ucluding that of the neighbourhood, is estimated at about 300. The gold escort from the Etheridge has $2 t s$ headquarters here The surrounding districts are pastoral principally, and large numbers of sheep and cattle are reared on its rich pastoral lands. Tropical fruits grow here in wild luxuriance it 18 from this port that the squatters and Herbert River planters draw a large proportion of therr supplies. A jetty, 2,000 feet long, extends into the bay Cardwell contains a court house, two hotels, two stores, a natioual school, a branch of the Bank of New South Wales, a telegraph office, a post office, and a dugong oul factory.

Should the Palmer River diggngs approach Cardwell as closely as they at present fpromise to do, a great future 18 yet in store for this lovely town, Springs of fresh water which are constantly running on the beach, even below high-water mark, are a peculiarity of Cardwell A piot, pilot cutter, and crew are stationed here. The steamers of the Eastern and Australian Company call here

Cooktown.

A newly proclamed minng township satuated on the northern bank of the Endeavour River, about 1,050 mules N W of Brisbane
Though the town has been born in a day, it will most likely take its place as one of the most important centres of the colony, should the yield of gold continue from the Palmer River district for which it forms the port

Alieady a large population has settled at Cooktown, and as the avalable sites for building are limited, it is likely that such sites will become very
valuable.

Somerset
Is a small township situated at Cape York, 1,550 miles N.W. of Brisbane.
It 15 a harbour of refuge and a place of call for the vessels engaged in the Bèche le mer and pearl shell fishery of Torres Strats, which is now employing 2 large fleet of ships
At the present time there are fifty large boats engaged in the fishery.
As an mstance of the profitable nature of this trade, it may be mentioned that a vessel made in one season no less a sum than 6,0007 .

Divisions XVII. and XVIII.

Were devoted to miscellaneous subjects, photographs of public buildings, views on the ralnay lines of the colony, \&e, and in the table cases were grouped miscellaneous products and manufactures
A few statistics of a miscellaneous character selected from the "Queenslander," will be here introduced.

Chmate of Queensland.

On this subject we must needs have a "chequered tale to tell," in traversing 19 degrees of latitude. One thang, however, is certan and universal, and that is, that there is a most decided and palpable yearly winter met with in every part of the great colony. Furst, we have the wnter of Scotland, which obtains amongst the huge Aberdeen carngorms, blue topazes, and smoky quartz crystals which head the gulles in the tin-bearing mountans of Stanthorpe. Then we have the winter of Southern Queensland, which ranges intermediate in mean temperature between those of Maderra and Bermuda, and is most grateful to all lungs weamed of battle wnth the gales of New Zealand and Bass' Strats; calm, clear, equable, pure. No weather ever seen in England can recall it A linen suit does not feel too cold to wear, nor a monkey-jacket too warm; the one feels just like the other to a new arrival in this elysium of an atmosphere. Back, however, from the sea and its equalising influences, the wntry cold, especially on the table lands of Darling Downs and the Burnett, ranges from 15° to 35° on the nights of June, July, and August, and no matter how far north or west you may go, the winter cold, either from ats own actual thermometrical register or from its contrast with summer heats, is yery marked and much felt, and enjoyed or dreaded, as the case may be, according to the constitution and habits of the individual who experiences it. Thus in June, at Brisbane (the metropolis of the colony), the nudday is that of a London June, while the midnight is that of a London February, owng to clear skies and rapid radration of heat from the earth, hence arises much rheumatism to those who neglect to change therr alture at nightfall. Strange to say, however, some people lose all their previous tendency to rheumatism by a visit to the clumate of Brisbane, whose mean temperature is that of Madera, 68°. Rockhampton is the same as that of Algiers, and Stanthorpe the same as London is, the resemblance being carried out month by month, except that spring comes on six weeks or so earher in Australia. In Northern Queensland, which is within the monsoon's influence, there are, of course, the wet and dry seasons yearly, almost without interruption; whlle in the southern parts of the colony the periods of fiood and unusual wet are farther apart. The prevaing winds in Southern Queensland are, north-east, from the sea, in summer, and south-west, over the land, in winter, the former being full of ozone and life, the latter, though bracing, is and and urritating to dehcate bronchals, unless in those cases where dryness is the object sought, and then Queensland is the very place of all others. Further north, the south-east trade wind acts as the ordinary sea breeze, and finds ats southern limit at the tropic of Capricorn, as a rule; below which the sea breezes blow from the north-east quarter. The great feature, after aill, of tropical Queensland and its clumate is that it is the only country in the world, lying in the torrid zone, which is destitute of snowy ranges to feed rivers and make an artificial sanatorrum (if we may so call it). Sonth America, Africa, Asia, and even the Islands of Polynesia and the Malayan Archipelago, can show mountams carrying perpetual snow, affording in all cases a change of clumate, and in many cases a means of inland navigation, which Queensland is altogether destitute of.

The only considerable mountans, apart from the Cordillera, are Mount Mountans. Lindsay, on the south boundary (this is a wall-sided peak of some 5,700 feet, now inaccessible ever since a bush fire destroyed the vine ropes by which it used to be scaled); Mount Barney, a noble, graceful double peak, of 5,000 feet, near the Richmond River, and the famous Bellender Ker Mountan, which hes in the latitude of Tahith, and looks out on the coral-broken waves of the Great Barrier reef from a helght of 5,300 feet, and is clothed with thickets of wild bamboo, which hide many an ambushed precipice, withn arm's length almost of the unsuspected clumber, on its steep but richly covered sides The Main Range (as the Cordillera is called) averages 4,500 feet in its peaks and summits, and 2,000 feet in 1ts gaps and passes. Snow 18 unknown in Queensland, except at the Stanthorpe Highlands, and very rarely falls even there The mountans of Queensland, therefore, except in their influence on the ranfall, are of ittle importance to her.

Eastern Queensland is an excellently watered country, almost every valley contanng its deep pools of this vital necessary, and all beautfied by the superb pale blue water-llies and mmense floating leaves of the Nymphæa grganten, the lovelest water plant in the world.

Population and Vital Statustres.

Population and vital statishics ${ }^{2}$
It ${ }^{\text {ss }}$ generally (but erroneously) supposed by many who reside out of Queensland, that its death-rate per thousand must be high every year as compared with those of other communities, and considering the risks to human life in a newly-settled country, where the natives on the frontiers are savage, where the rivers are mostly unbridged, and all the hazards inseparable from a bush life must be encountered in their full force, and this, too, in addition to the extreme heat of the clumate-when we consider all these, the opimon formed by outsiders of Queensland in this respect, erroneous as it may be, is nothing more than natural after all, yet, on refermng to the RegistrarGeneral's official report, latd before Parlament, of deaths for the seven years extending from 1867 to 1873 mellusive (retarns for 1874 are not yet made up), we find the average annual deaths per thousand to be 1639 , a result which will compare favourably with that of any country in the world, the more especally so when we take into consideration the latitude of Queensland, the number of new arrivals and consumptive persons who land in bad health, and the numerous resident South Sea Islanders, who generally refuse physic, and die, when ill In short, when we have regard to the varned dangers to which people in a new country are exposed, the healithness of the colony 18 little less than wonderful, and would be quite meredible of the evidence of it were not derived from official and reliable sources.

The deaths for the seven years named were respectuvely as follows.-

The veritable true winter which prevails as far up as the latitudes 12° and 15° south, where the thermometer at sunrise in June, July, and August, even near the sea and at little above its level, goes down to 45°, is sufficient to account (at all events in part) for this exceptional salubrity, for considering the latitude, no such low temperatures are ever being met with so near the equator in any other part of the world, either north or south of the line, or in any portion, whether insular or continental.

Diseases yield readily to treatment, too, for of 2,658 cases treated in the vanous hospitals of Queensland, during the year 1873, only 208 deaths were recorded, thus showngg 93 per cent of cures, and at the various gaols, in 756 cases of sickness only five resulted in death, showng a percentage of 993
of recoveries. These returns are from the Registrar-General's report land before Parliament, and prove conclusively etther that the climate must be healthy, or else the doctors very skulful (one or the other, or possibly both) beyond a doubt
Taking the population of Queensland, at the close of 1873 , at 146,690 souls, and allowng the past average yeally morement by births and immigration, it would bring the population, on July lst 1875, to as nearly as possible 168,700 people, exclusive of Chinese on the Palmer river, the average increase to the population, from all causes, during the last 10 years having been steadily kept up to 8 per cent per annum There are fully 15,000 white men, miners, at the gold fields, and about 6,000 Chmese. There are also some 2,000 Polynesians resident in Queensland, as more than half of those who arrive reman permanently in the colony. Taking the year 1873 for an example, we find 5,097 axrivals from Great Britan, against 78 departures ; 2,502 arrivals from Germany, and no departures; 6,291 arrivals from other colonies, as aganst 5,090 departures, and 1,023 arrvals from the South Sea Islands, aganst only 288 departures. The brrths in Queensland for 1873 , in a population of 146,690 , were 5,720 , or nearly 40 per thousand, againt 2,250 (or 16 per thousand) of deaths.
The following table shows the official return of population in Queensland from 1860 to 1873 (inclusive) at the close of each year.-

1860	-	- 28,056	1867	-	99,849
1861	-	- 34,367	1868	-	107,427
1862		- 45,077	1869		- 109,897
1863	-	- 61,640	1870	-	- 115,567
1864		- 74,036	1871	-	125,146
1865	-	- 87,804	1872	-	133,353
1866		- 96,201	1873		146,690

To conclude this notice we may briefly observe that the average yearly burths for 14 years are 435 per thousand of the population; the average yearly marriages are 106 per thousand of the population; or 212 people per thousand get married yearly, and the average yearly deaths per thousand for seven years are 16.39 These results we can fearlessly place by the side of those of most other places and colonies in the world, with every confidence that we shall not suffer by the comparison, taking all collateral matters into due consideration

Revenue and Expenditure.

As the population of the great colony of Queensland was once very small, so were 1ts revenues and expenses then very modest In 1846, 13 years before separation, it contaned only 2,257 people, chiefly convicts, in all its length and breadth; in 1851 but 8,575 people were counted Since 1856, its separate existence commenced, and its census will be found elsewhere. It is of the revenue and expenditure we would now speak, and (omitting loans and their disbursement) it stood as follows from 1859 to 1870, and melusive of land-orders:-

The gross revenue for 1873 was $1,124,107 l$ 12s. $3 d$, and the expenditure for the same year, $956,707 \mathrm{l} .2 \mathrm{~s}$. 10 d , showng a very satisfactory state of progress
as compared with its population, products, \&e, as well as in the habit, too long neglected, of keeping expenditure within the bounds of revenue The three great items of revenue in Queensland are customs, land revenue, and rallway receupts; the first ttem furnished $480,913 l .0 s 4 d \mathrm{in} 1873$; the second one yielded $340,083 l 2 s, 6 d$; and the thrd amounted to $107,270 l .3 s 10 d$. The excise and heense sources of ancome are on the uncrease, so ts the postage one.
In the expenditure department, the Colonsal Secretary heads the list wrth an outlay of $228,924 l$ 7s 7 d .; the Secretary of Works coming next, with $161,203 l$ 8s. $7 d$; the Postmaster-General and Colonal Treasurer following in order, with $83,109 \mathrm{l} 12 \mathrm{~s}$. 8 d . and 74,5601 . 15 s . 7 d . respectively From the returns made it will be seen that as the recelpts from postage only come to $25,413 l 17 \mathrm{~s}$. 5 d. , and those from the Electric Telegraph Department, $22,131 \mathrm{l} .14 s 8 d$, the Postal Service still costs the colony nearly $40,000 l$ per annum, which is after all very moderate, considerng its vast area, and the immense convenience afforded to busimess operations in all departments of mercantile, minugg, slipping, and pastoral enterprise.

Imports and Exports.

Trade.

That Queensland has little need to be ashamed of her posstion with respect to her contributions to the general stock of the world's industrial products, 1 s shown by her splendid list of exports, which now compares nobly wth her imports. In 1863, New South Wales exported 15L.17s per head of population; Victona, 17l. 12s 6d per head; South Australua, 15l. per head; and Queensland. $17 l 9 \mathrm{~s} 2 \mathrm{~d}$ per head. In 11 years from this time, Queensland (which has been gradually drawng to the front, and has held the leadng place for three or four years past) became able to export nearly 241 . per head per annum
In the four years, 1867-1870 nolusive, Queensland stood as follows wth respect to mports and exports.

		Imports		Exports
		£		
1867	-	: $=1,747,735$		1,989,600
1868	-	- 1,899,119		2,107,437
1869	*	- 1,804,578		2,166,806
1870	.	- 1,577,339	,	2,533,732

Thus swelling the balance of trade in her own favour in four years from a little over $200,000 l$ to nearly a million, and ganing the foremost place in exporting power per head of population over all the other colonies in Australa, and (we beleve) over all the other countries in the world
In 1873 the gross imports were $2,885,4991$, and the gross exports amounted to $3,542,5132$; and when, in 1874, we come to add about half-a-million extra from the Palmer Gold Field to the ordinary yearly percentage of increase in exports, the position of our colony in this branch of her statistical annals is still more favourably cllustrated
Commercial panics and fluctuations of trade must all fall lightly upon a communty with such a vital otgorous producing power. Their terrors are reserved for those countries where there is more paper money than production floating about, and where the umports exceed the weekly item of exports. In four years, as we quoted, viz, 1867-70, whle the population only nereased 15 per cent, the exports grew by 25 per cent It was then that we began to take our place in the foremost rank of the producers in the world, a position which, thanks to the discovery of the tin mines and the Palmer Gold Field, we still continue to mantain.

Natural History of Queensland

In this department, Queensland, though strictly Australian in nearly every type, yet differe somewhat from her southern sisters It is not our provnce here to enlarge fully on the field which Krefft, Diggles, Gould, Coxen, and others have made therr valued researches in, but we will endeavour merely to touch on those points where Queensland varies from the other colonies

Abstract

The alligator (so called), 25 feet long, 3 tons in weight, and with holes in the upper jaw, through which the two great teeth of the lower jaw protrude (and form a fatal "clench" indeed), is abundant in the Burdekin and other northern streams. This reptrie is a specialty of Queensland Its sight is not keen, but its hearing is very acute, and so it exaggerates all noise, and it 1s, consequently, easily terrified by splashung or shouting, \&c. Brads. The ruffe bird of Cape York, with its black purple velvet plumage, and goldgreen markings, is the handsomest bird of ats class in Australia The goiden oriole of Queensland is far more beautiful than the duller plumaged ones of Manilla and Chma are; and although we have no parrots that can vie with the immense and multi-coloured macaws of Guiana, and no bird of any class, perhaps, that could compete for beauty with the calurus resplendens of Guatemala, or the Impeyan pheasant, stll our small ground parrot and some of our doves and cockatoos are very elegant. We are unable to state whether our wide-winged eagle 18 identical with the species which carries off lambs on the Lower Murray; but we have some formidable owls, a cassowary, and a Reptiles. tiger-cat of farr size. Our snakes daffer little from those down south, and the death-adder, whth its flat belly, triangular back, and mercfuilly repulsive shape, does duty for tic polonga, cobra, and rattlesnake, in Northern as in Southern Australia Our pythons are somewhat larger than those of the south, and so are our butterflies and moths, amongst the former the ornithoptera and papiliones are conspicuous for size and beauty. The lycenedæ and uranidæ Fish. scarcely less so. In the quality of 1 ts fish, Queensland 15 behind the southern colomes There is nothing here to approach the matchless "trumpeter" of Hobart Town in flavour, but our crabs and prawns can vie in point of size and relsh with any known ones. Our inferiority 10 table fish simply arises from our position in latitude, which spols fish for English palates all the world over. You cannot reasonably look for salmon, turbot, and soles in the

Wid fowl Forest game. tropics; but our smipe and wild pigeons, ducks, \&e, are as good as need be wnshed for anywhere; and of forest game, of the limited Australan repertorre in this line, we are as well off as any of our sister colomes.

In the body of the Court the exhibits were arranged in four groups, viz , " Minng," "Agricultural,"" "Pastoral," and " Miscellaneous" Products.
Opposite Diyisions 10a and 10, were placed samples in bulk of the principal

Exhibition of munis products

MINING PRODUCTS, including-

Class 100.
Large Nugget of Gold from Cawarral Diggings. Exhubted byäa Queensland Government.
Two other Gold Nuggets. Exhbited by Queensland Government
18 specmens, Aurferous Quartz, Gympie Diggngs. Exhibited by Queensland Goverament
Gold specimens from Cloncurry Diggings. Exhbited by Queensland Government.
Auriferous Quartz from Ravenswood Diggings. Eixhibited by Queensland Government.
Aurferous Quartz from Rockhampton Diggings. Exhibited by Queensland Government
Nugget of Gold from Diggngs near Bowen Exhubted by Queensland Government.
Large collection of Aurferous Yyrites from Ravenswood. Exhibted by Queensland Government.

Copper.

Half ton Smelted Metal (ingots) from Mount Perry Mine This mine paid in dividends last year a sum equal to two-thirds ats workng capital. Exhibited by Queensland Government
Half ton Smelted Pure Metal (ingots) Peak Downs Mine Copper to the value of more than $1,000,000 l$ sterling has been ransed from this mine since $1 t$ was first opened. Exhbited by Queensland Gevernment

One ton Smelted Pure Metal Peak Downs Mine (for "sale), Exhibited by Peak Downs Company.

Corprr Ore.

8 cwt Native Copper Cloncurry Exhibited by Captain Henry, Great Australian Mining Company
Malachite, Peak Downs Mine Exhbited by Peak Downs Minng Company
Large slab Copper Ore, showing theckness and character of Normanby Mine, Mount Perry District Exhibited by Normanby Muning Company
Varieties Copper Ore, Mount Perry Mine Exhibited by Mount Perry Mining Company
Vanieties of Copper Ore from Warroo, 45 mules from Stanthorpe Exhibited by Queensland Government
Four preces of Copper Pyrites Exhibited by Mr Matthew Perry
One piece of White Metal (copper sulphuret) One prece of Green Carbonate
Exhibuted by Mr Matthew Perry

Trs.

One ingot, Pure Tin, exhibited by J Harris Three ingots Pure Tin, Mount Marlay Smeltung Works, Stanthorpe, 1 ton Pure Tin (Ingots) smelted by Bulımba Tin Smelting Company, from Stanthorpe Tin Ore. Exhibited by Queensland Government
One ton Pure Tin (ingots), smelted by Bulimba Tin Smelting Company (For Sale) Exhibited by Bulimba Smelting Company
Complete Collection of Tin Ores and rocks from the the miming distriet of Stanthorpe Collected and arranged by Walter O Hume, Esq, Government Commissioner for Mineral Lands, Stanthorpe Exhubited by W C Hume, Esq
Three half cort samples of Stream Tin, each coarse, madding, and fine, from Stanthorpe District. Exhibited by Mount Marlay and Brisbane Tin Mining Company
Wash durt (rich), and Conglomerate, 1 cwt Exhbited by Mount Marlay and Irisbane Tin Mimng Company
Twenty-four bottles, Tin Ore, each corresponding to number on Map of tin selections, prepared by J De Fore Tyrell, Esq Exhibted by J. De Fore Tyrell, Esq
Thirty-six bottles of Tin Ore, Powder and Assay, 12 waneties from Stanthorpe District Exhibited by J De Fore Tyrell, Esq

Trophy of Tin Ore, indications, \&ce Exhibited by D Aplin, Esq
Glass case of Stratified Alluvum in which Tin Ore is found Exhibited by Brısbane Tin Mining Company
Class 101 Iron Ore - Iron ore.

Chrome Iron Ore, from large lode, near Ipswich Exhibited by Proprietors of Mine
Chrome Iron, 1 ewt Exhibited by Mr Alfred Foote
Iion Ore, Flagstone Creek, near Ipswich, contains 52 per cent Metallic Iron. Exhibited by Proprietors of Mine
Hematite from Pine Mountan, West Moreton Distrïct, contanns 45 per cent Metallic Iron Exhibited by Proprietors of Mine N B -Iron Ore of all kinds, and in unhmited quantity, occurs in all parts of Queensland, in greatest abundance in the older Coal Measures
Bag of Iron Sand from Stanthorpe, as separated from Tin in last cleaning process

Antmony Ore

Antimony ore.
Block of Antimony Ore, from lode on St John's Creek, in the Burnett Districts Exhibited by Proprietors of Mine N B -Lithographed copies of the Report of Carl Staiger, Esq, Government Geologist, were placed for reference near this epecimen

2 cwt of Antimony Ore from St John's Creek. Exhubited by A C Gregory.
Half ton Star Regulue of Antumony, prepared from Ore from St John's Creek Exhibuted by A C Gregory

Mercury Ores.
Mercury ore.
Cinnabar. From Kilkivan, about 50 miles from Maryborough Exhibited by Proprietors of Mine

Bismuti Ores
Bismuth ore.
Samples of Native Bismuth and Carbonate of Bismuth from the Cloncurry Mining District Exhibited by Queensland Government.

Manganese ore

Manganese Ore

Samples of Manganese Ore from near Gladstone; contains 77 per cent of Per Oxide of Manganese. Eixhbited by Queensland Government.

Plumbago	Plompago
	1 cwt . Plumbago, from mine opened in Stanthorpe District Exhibited by
	Proprietors of Mine
	Kaolin and Fire bricks, as used in the smelting works of the Mount Marlay
	Company, near Stantho"pe, obtamed in that District Exhbited by Mount Marlay Company.
Buldıng stone	Buthding Stone
	From Brisbane and Warwick Exhubited by Queensland Gorernment.
Coal	Coas
	Sample of Coal from Aberdare Mine, Which is situated five miles from Ipswich. Exhibited by Proprietors of Mive
	Sample of Coal from Tivoli Mine, situated two mues from Ipswich Exhibited by
	Proprietors of Mine Sample of Coal from Allora Mfine, situated about milewest of Allora
	Sample of Coal from Allora Mine, situated about 1 mile west of Allora Exhibited by Propretors of Mine
	Sample of Coal from Flagstone Creek Mine Exhibited by Proprietors of Mine
	Sample of Coal from Rosewood Mine. Exhibited by Proprietors of Mine
	Sample of Coal from Blackfellows Creek, near Gatton Exhibited by Proprietors of Mine
	Sample of Coal from Buggera Mine Exhibited by Proprietors of Mine
	1 Block Coal Exhibited by Bland and Wright, Perspverance Mine, Ipswich
	Samples of Coal from Ipswich, three Collections, Coke prepared from same, with
	collection of Fossls Exhibited by Qaeensland Government
	Samples of Coal, Fossuls, Kaohn, and Glass Case showing strata passed through at
	the Clifton Coal Mine Exhibited by Proprietors of Mine
	1 block of Coal from Warwick Exhibited by Queensland Government
Precious stones.	Precious Stones
	100 specumens of Opals from the Barcoo Exhibited by Mr Bishop
	Specimens of Calcedony, Agate, from Agate Creek, Gilbert River Exhibited by
	Queensland Government
	Polshed specimens of Serpentine, from near Marlboro, Queensland Exhbited
	by Queensland Government.

Exhibition of agricaltural products Sugar

Opposite Divisions 11 and 12 were ranged exhbits in bulk of

AGRICULTURAL PRODUCTS, including-

 Cl. 6591 bag of Sugar Densty of hquor, 9° to 10° Baume Price of crop, 26 s tc $27 s$ per cwt Soil-Medum Clay Loam Exhibted by H. G Grimes
1 bag of Sugar, Garrock Plantation, Albert River Prepared in open battery Wetzei Pan, from Salangore Cane, 15 months old Exhbited by McKenzie.
1 bag of Sngar, Herbert River Exhibted by F Neame \& Co
1 bag of Sugar, Clydesdale Prepared in open flat pans, made by R R Smellie Wetzel Pan, from Chicago cane, 10 months old; 20 tons of cane per acre, yiel 30 ewt of Sugar per acre; black soll, sandy subsoll, well drained Exhibited b. Whllam Grbson and Sons.
2 bags of Sugar, Loganholm, Logan River Exhibited by Fryar and Strachan
1 bag of Sugar, Moyea Exhibted by J M Black
1 bag of Sugar, Loganholm, Logan River Exhbited by Fryar and Strachan
1 bag of Sugar, Alexaudrá Plantation, Mackay Made from black Java Cant 15 moniths old $8 \frac{1}{2}$ measured acres yrelded 3 tons $2 \mathrm{cwt}$.2 qrs. dry sugar net, ani 48 gallons of molasses per acre Exhibited by J E Davdson
1 bag of Sugar, Helenfield, Tingalpa Exhibited by Johnson Brothers
1 bag of Sugar, Ageston Plantation, Exhibted by W H Cauldery
1 bag of Sugar, Antigua, Maryborough Exhbited by A H Brown
2 bags of Sugar, Beenleigh Exhbited by Davey and Goody
1 bag of Sugar, Benowa Prepared in common pan, direct from battery (a : steam boler, made from one year old Ribbon cane "Ratoons") Exhibited b Robert Murr

1 bag of Sugar, Government Penal Establishment. Exhibited by John McDonald 1 bag of Sugar, Yengare Exhibited by Tooth and Cran.
Spirits distuled from Queensland Sugar and Mowasses
Cl. 660
1 keg of Rum, Ageston Exhibited by W H Couldery.
1 keg of Rum, Indah Exhibted by Ramey Brothers
1 keg of Rum, Caboolture Exhbited by G Raff
1 keg of Whte Spirt, Ageston Exhibited by W. Hi Couldery.
1 keg of White Sprit, Lindah Exhbited by Ramsey Brothers.

Epirits distilled from sugar and. molasses

Wine.
12 bottles of Red Wine Locality-Assmanshausen, Sandy Creek, Agricultural Reserve, Warwek Date of vintage-1873 Name of grape-Black Spanish Name of wine-Assmanshausen Colour-Red Character-Light-bodied wine, pure juce of the grape Age of vine- 10 years or less Nature of soul-Gravelly loam, greyish colour, 10 acres cultwated How cultuvated-Land subsoled and trenched yearly, 1 foot deep How traned-Trained to stakes and wires

12 bottles White Wine Locality-Assmanshausen, Sandy Creek, Agricultural Reserve, Warwick Date of Vintage-1873 Name of Grape-White Verdillo Name of Wine-White Assmanshausen Colour-White Character of Wine-Light-bodied wine, pure juice of grape Age of Vines-10 years and less Nature of Sonl-Gravelly loam, greyish colour, 10 acres cultivated. How cultivated-Land subsoled and trenched yearly, 1 foot deep Vines, how traned-Tramed to stakes and wires Exhibited by Kircher

12 bottles of White Wine Location--Silverburg, Agricultural Reserve, Swan Creek, Warwick Date of Vintage-1873. Name of Grape-White Renshng Name of Wine-White Silverburg Colour- White Character of Wine-Lightbodied wine, pure juce of the grape Ages of Vines-Six years Nature of solBrown loam, 9 acres under cultuvation How cultivated-Land subsolled, and trenched yearly Vines, how traned-Trained to stakes Exhibited by David Mauch

12 bottles of White Wine Location --Warrill Creek, Ipswich Date of Vintage -1874, February 15th Name of Grape-Verdellhg Name of Wine-Warrilla. Colour-Golden Yellow Character of Wine-Liqueur Age of Vines-3 years Nature of soil-The soll is a shallow alluvial, resting apon a subsoll of argillaceous. clay, the whole beng thoroughly dramed to a depth of from 4 to 5 feet The aspect is southerly, and the area under cultivation is 13 acres How cultivated-The cultuvation w mannly with horse labour, the implements used being the "Georgia Bull Tongue," and a "Cultivator" to strir the ground to a shallow depth, the soll more immediate to the vines and underneath the trellising being well dug with forks Vines, how transed-The vines are planted 6 by 5 feet, and are tranned to a 3 -wire trellis Exhibited by Irwin Brothers

Samples of Sulk (cocoons and Japanese Varieties) Ipswich Exhibited by Mrs Hine
Samples of Sulk and Cocoons The Penal Establishment. Exhubited by John MeDonald

Coffee
Cl 623
Cofreer
1 packet of Coffee Beans Exhubıted by F E Chubb
Coffer Leaves drued as Tea. Redbank. Exhibited by W R Alexander
Gondued iruts.

Canded Erutits, \&c.
1 case of Candred Ginger Exhibited by W H Hayes
1 case of Candred Orange Peel Exhibited by W H Hayes
1 case of Candied Lemon Peel Exhibited by W H Hayes
1 case of Candred Pine Apple. Exhubited by W H Hayes
1 case of Candıed Rock Melon Exhibited by W H Hayes
1 case of Candied Citron Exhibited by W H Hayes
6 bottles of Chutney Stanley's, South Brisbane. Exhibited by J H Boreham
6 bottles of Tomato Sauce; 12 vanetzes of Chil Pepper, Rosella and other Jams Exhibited by Mr MacFarlane

Opposite Divisions XIII and XIV were arranged the bulky Exhbits of

2 Fleeces Clothing Wool, from Ewes bred by Mr Bertie le Parr Chiverton, lat $28^{\circ} 12^{\prime} \mathrm{S}$; long $152^{\circ} 16^{\prime} \mathrm{E}$ Fed solely in paddocks on indigenous grasses Eleven months' growth, shown in the grease

Pure Australıan Merino fleece Exhibited by Bertie le Parr Chiverton
I Fleece Clothing Wool, washed, grown by Mr Donald Gunn, of Pikedale, lat $28^{\circ} 43^{\prime} \mathrm{S}$, long $151^{\circ} 38^{\prime} \mathrm{E}$ Flocks orignally from Negrettı Fed in paddocks on undigenous grasses only. Geological formation, trap and slate One of the most healthy sheep-runs in Queensland The maximum price per lb. Was forty-one and a half pence ($3 s-5 \frac{1}{2} d$) and the general average thirty-three and a half pence (2s 91 $2 d$), at last London sales, 1874 Exhbited by Donald Gunn

1 Ram's Fleece Clothang Wool, grown by Mr Donald Gunn, Pikedale Shown in the grease from a three years' old ram, weight of fleece, $12 \frac{1}{3}$ lbs Exhubited by Donald Gunn.

1 Ewe's Fleece Combing Wool, grown by Messrs Gore and Co, Yandulla Lat $27^{\circ} 50^{\prime} \mathrm{S}$, long $131^{\circ} 35^{\prime} \mathrm{E}$ Sheep bred within therr own blood for 21 years; fed in paddocks entirely on indigenous grasses; shown in the grease Soil principally black voleanic Exbibited by Gore \& Co

1 Young Ram's Fleece fine Combing Wool, grown by George Clark, Esq, East Talgan, lat $27^{\circ} 38^{\prime} \mathrm{S}$, long $151^{\circ} 59^{\prime} \mathrm{E}$ Funest combing wool grown in Queensland Sheep mproved by Tasmanian mernos, bred pure for more than 50 years Shown in the grease Exhbited by George Clark

4 Fleeces pure Merno Clothing, 320 days' growth Bred by C H Green, Esq, Goomburra, Darling Downs, lat $28^{\circ} 5^{\prime} \mathrm{S}$, long $152^{\circ} 10^{\prime} \mathrm{E}$ Fed solely in paddocks of indggenous grasses Shown in the grease Exhbited by C H Green

3 Ram's Fleeces, pure Anstralian Clothong Merino in the grease, bred by B C Parr, Esq, 11 months' growth Exhibited by B C Parr

1 Fleece from pure Clothng Merimo, bred by Messrs Marshall and Slade, Glengallan, lat $28^{\circ} 5^{\prime} \mathrm{S}$, long $152^{\circ} 20^{\prime} \mathrm{E}$ From ram "Sultan," for two years champion clothing ram at the Agricultural Soctety's Show, Toowoomba (1874-5), eight years old, weight of fleece, $11 \frac{1}{4} \mathrm{lba}$ an the grease, with samples kept back for station Exhibited by Marshall and Slade

1 Fleece, pure Clothing Merino, from the ewe "Empress" Bred by Marshall and Slade Weight on the grease, 9 lbs , with samples kept back This ewe was champion at the Royal Agricultural Company's Exhibition in 1874 The brand of this clip, M and D, has been long favourably known in the London market Exhibited by Marshall and Slade

1 Fleece, Clothung Wool, from ram bred by the North British Australan Investment Company (L E Lester, Manager), Rosenthal, lat $28^{\circ} 12^{\prime}$, long $152^{\circ} \mathrm{E}$ Flocks originally from Saxon menno, weight of tleece in grease, 12 lbs at 11 months' growth Exhibited by L E Lester

1 Eve Fleece Clothang, from a ewe belongung to same breeders; weight an grease at 10 months' growth, 8 lbs. 10 oz Exhbited by L E Lester.

1 Ewe Fleece Clothing; same breeders ; weight in grease, 6 lbs 8 oz Exhibited by L. E. Lester.

I bale washed Wool, from Westbrook Station, grown by Messers Jennugg and Shanahan, lat $27^{\circ} 40^{\prime} \mathrm{S}$, long $151^{\circ} 24^{\prime} \mathrm{E}$ Pure Australian merno Exhibited by Jennings and Shanahan
3 Fleeces pure Merino Combeng Wool, from two years old Rams bred by C B Fisher, Esq, Headington Hull, lat $27^{6} 51^{\prime}$ S , long, $151^{\circ} 49^{\prime} \mathrm{E}$ This clup has been bred in Adelade 40 years in and into their own blood, and have been acclimatused in Queensland for seven years The clip was pronounced by the Bradford Chamber of Commerce the most essentially combing menno wool recerred in that market Exhibited by C B Fisher
Bale Washed Wool, Messrs. Shanahan and Jennings Exbubited by Shanahan and Jenmings
Large Wardrobe, with three fleeces wool, from G H Davenport, Headingtom Hull, Darkag Downs Exhbited by G H Davenport.

Sample Case contaning the following Descriptions of Wool.

No.	Description	Condtion	Breed of Sheep
1	Fine clothing	Cold water washed	Pure Australian Merino
2	Combing -	In the grease -	Lelvester cum Merno, froma twoyear old, the oftispring of a pure Leicester ram, and a pure Merino ram
8	Fine clothing	Cold water washed	Pure Australian Merino
4 to 12	Fine combing	In the grease -	Ditto
18 to S1	Frue clothug	Ditto	Sheep descended from pure Saxony Merino
${ }_{84}^{82}$	Very fine clothing	Cold water washed -	Pure Australian Merino
88 to 48		In the grease, lambs -	Same as 13 to 81
47 to 49	Ditto	Jitto -	Ditto
50 to 68	Ditto	Ditto ewes -	Ditto

The exhibitors, Mescrs Fenwick and Scott, give the following information -
Sheep in Queensland, 31st December 1874, 6,000,000 sheep, clothing wool produced, $15,000,000 \mathrm{lbs}$, Washed, or say, $30,000,000 \mathrm{in}$ grease $1 \frac{1}{4}, 000,000$ sheep, combing wool produced $3 \frac{3}{4}, 000,000 \mathrm{lbs}$, washed, or say, $7 \frac{1}{2}, 000,000 \mathrm{~m}$ grease Total, $7 \frac{1}{4}, 000,000$ sheep, producing $37 \frac{1}{2}, 000,000 \mathrm{lbs}$ wool in grease

Opposite Divisions XV , XVI, XVII, XVIII. were arranged exhibits of a

Miscellaneous Character.

Furst in importance were the two collections, one in the rough, the other polished, of

Timbers

The first consisted of 206 slabs of the most useful Queensland timbers, 3 ft. long by 6 in equare with bark on
Ornamental Inlad Table Top to lllustrate the sume
About 2 cwt squared timber, 2 ft long, from Warwack district
Ornamental Inlard Table to illustrate the same
Timber from Lower Herbert, Dauntree River Cedar, and Endeavour Gum
A full description of these was attached to the specimens They were collected and described by Walter Hill, Esq, the Durector of the Government Botanical Gardens, Brisbane.

The second collection of polished woods was also arranged by Walter Hill, Esq, they were, however, when in the rough, subjected to long immersion in sea water, owing to the wreck of the ship in which they were being conveyed to England, and on that account hardly do justace to ther value to the cabinet maker
Theur description is as follows:-
THE TIMBERS OF QUEENSLAND
Cl. 600, 601

Contreres
1 Araucana Bidwilln, Hook Bunya Bunya Dameter, 30 to 48 ins, herght, 100 to 220 ft
11. Ditto
18. Ditto.

2 Araucaria Cunmnghamı, Aıt. Moreton Bay Pine Diameter, 36 to 66 mn , height, 150 to 200 ft

2A Ditto
3. Dammara robusta, Moore Kawre or Dundathu Pine. Diameter, 36 to 72 in , helght, 80 to 130 ft
4 Callitris columellaris, F Muell. Cypress Pine Diameter, 20 to 30 in , height, 40 to 60 ft
5 Callitris verrucosa, R Br The Desert Cypress Pine Diameter, 12 to 24 in ; height, 50 to 70 ft
6 Calhtris Endichern, Parl The Mountain Cypress Pine. Dhameter 9 to 18 in , helght, 40 to 50 ft
7. Podocarpus elatus, R Br She Pine. Diameter, 20 to 36 in , height, 50 to 80 ft

Amentacean

8 Casuarina tenussima, Sieb, River Oak. Diameter, 18 to 22 in , height, 40 to 70 ft
9 Casuarina leptoclada, Miq The Erect She Oak Dameter, 9 to 15 in, height, 20 to 30 ft
10 Casuarma equsetıfolia, Forst Swamp Oak Diameter, 12 to 20 m , height, 50 to 70 ft
11. Casuanna torulosa, Ait. Forest Oak, Beefwood Diameter, 9 to 15 in , height, 30 to 35 ft

11a Ditto
12. Casuarna Cumnıghamana, Miq. Fire Oak. Dıameter, 6 to 10 1n., height, 20 to 30 ft .
12A. Ditto

Meriacese

13 Cedrela Toona, Roxb. Red Cedar Diameter, 24 to 76 m , height, 100 to 150 ft
13a Ditto
13s Ditto.
14 Flundersia Australıs, R. Br Flindosa Diameter, 36 to 48 in ; height, 80 to 100 ft

15 Fhndersia Oxleyana, F Muell Laght-Yellow Wood Diameter, 24 to 42 in , height, 80 to 100 ft .
16 Flindersia Bennettana, F Muell Bogum Bogum Diameter, 18 to 26 mm ; height, 70 to 90 ft
16a. Ditto.
17. Flundersia maculosa, F Muell. Spotted Tree of the Colonusts. Diameter, 12 to 18 m , height, 30 to 40 ft

18 Owema venosa, F. Muell Sour Plum. Diameter, 12 to 24 mn , height, 40 to 65 ft
19 Owema cerasıfera, F Muell. Sweet Plum Diameter, 9 to 18 in; height, 25 to 35 ft
20. Amoora nitudula, Benth Diameter, 18 to 30 m ., height, 70 to 90 ft

20A Ditto.
21 Synoum glandulosum, A. Juss Drameter, 15 to 24 m. , height, 35 to 60 ft .

21A Ditto
22. Dysoxylon Muelleri, Benth. Pencil Cedar. Diameter, 20 to 35 nn. , height, 70 to 90 ft

22A. Ditto
22n Ditto.
23 Melia composita, Willd Drameter, 15 to 20 in , height, 50 to 60 ft
23a Ditto.

Simarubees.

24. Aulanthus imberbifora, F. Muell. Drameter, 20 to 28 m ., height, 50 to 70 ft

24A Ditto

Rotaces.

25 Bosistoa sapmiffortmis, F. Muell Diameter, 6 to 12 in ; height, 15 to 20 ft . 25. Ditto.
26. Citrus australis, Planch. Native Orange. Diameter, 6 to 14 mn .

27 Citrus australasica, F. Muell Natue Lime Diameter, 6 to 10 in ; height 15 to 20 ft
274. Ditto.

28 Atalantia glauca, Hook The Natıe Cumquat Diameter, 2 to 6 m , height, 8 to 15 ft

29 Acronychia Baneri, Schott Diameter, 6 to 12 in , height, 16 to 24 ft
30 Acronychia lævis, Forst Diameter, 15 to 20 un , height, 30 to 50 ft
31 Zanthoxylon brachyacanthum, F Muell. Satin Wood Diameter, 6 to 9 in , height, 20 to 30 ft

32 Geijera parvifiora, Liudl Diameter, 6 to 12 in ; height, 20 to 30 ft
33 Geyera Muellen, Benth Balsam Capav Tree Diameter, 12 to 18 m .; height, 40 to 60 ft

34 Erodia micrococca, F Muell Diameter, 6 to 10 in ; height, 20 to 30 ft .
Celastrineat
35 Celastrus Dispermus, F Mnell Diameter, 3 to 5 in ; height, 12 to 16 ft 35A. Ditto
36 Denhama pittosporoxdes, F. Muell Diameter, 6 to 8 in ; height, 20 to 30 ft
37. Denhamıa obscura, Meisn Dıameter, 3 to 5 in ; height, 12 to 20 ft

Rhamneat
38 Alphitoma excelsa, Ressek
Mountain or Red Ash Diameter, 18 to 24 is height, 45 to 60 ft

Pittosporese.
39 Pittosporum rhombifolium, A Cunn. Diameter, 6 to 12 mm , height, 40 to 55 ft .

40 Pittosporum bicolor, Hook Diameter, 6 to 21 m , height, 20 to 40 ft .
41 Pittosporum phillyreordes, D C Diameter, 4 to 6 in , height, 20 to 35 ft

Sterculiaceze

42 Tarrietia argyrodendron, Beath Silver Tree. Duametex, 24 to 34 in ; height, 70 to 90 ft

43 Tarrietia actinodendron, F. Muell Dameter, 18 to 30 in , height, 60 to 70 ft .

44 Commersoma echinata, Forst. Diameter, 6 to 12 mm , height, 20 to 30 ft .

Sapindacesis

45 Cupania xylocarpa, A Cunn Diameter, 12 to 24 mehes; height 40 to 60 feet

46 Cupanıa serrata, F Muell Diameter, 8 to 14 inches; height 20 to 30 feet
47 Diploglottis Cunninghamu, Hook Nattve Tamarind Diameter, 12 to 20 unches, height, 40 to 55 feet
48 Cupana semuglauca, F Muell Diameter, 10 to 20 unches; height, 30 to 60 feet

49 Ratonia pyriformis. Benth Diameter, 10 to 18 maches, herght, 30 to 45 feet
50 Nephelum tomentosum, F Muell Diameter, 10 to 15 inches, height, 30 to 40 feet
51 Heterodendron oleafolum, Desf Diameter, 4 ty 10 unches; height 20 to 30 feet

52 Heterodendron diversifolum, F, Muell, Diameter, 4 to 6 nuches, height, 0 to 15 feet
53 Harpulla pendula, Planch Tulip Wood Drameter, 14 to 24 inches; height, 50 to 60 feet
54 Dodonea triquetra, Andr Hop Bush Diameter, 3 to 4 inches; height 10 to 12 feet.

Anacardincest

55 Rhus rhodanthema, F Muell Dark Yellon Wood, K Drameter, 18 to 24 anches, height, 50 to 70 feet

[^10]59. Canthuna lucidum, Hook and Arm. Diameter, 6 to 12 m, height, 20 to 30 ft
594 Ditto
60 Canthium oleifolium, Hook Diameter, 4 to 10 mn , height, 25 to 30 ft '
61 Canthum latifolium, F Muell. Diameter, 8 to 12 in , height, 25 to 30 ft
62 Canthum vaccimufoluum, F Muell Diameter, 2 to 4 in , height, 6 to 10 ft
62A Ditto
63. Cæelospermum paniculatum, F. Muell Diameter, 3 to 5 m , , height, 100 to 150 ft .

Mrrtacese

64. Callistemon lanceolatus, D. C Bottle-brush Tree Diameter, 12 to 18 in, height, 30 to 40 ft .
65. Callstemon salignus, D. C Broad-leaved Tea Tree Diameter, 18 to 24 m. , height, 40 to 60 ft
66. Melaleuca lmarufolia, Sm Diameter, 20 to 24 in , height, 30 to 40 ft
67. Melaleuca nodosa, Sm Tea Tree Diameter, 10 to 20 m , height, 30 to 40 ft
68. Angophora subvelutina, F Muell Apple Tree. Diameter, 20 to 26 m , height, 40 to 60 ft
69. Eucalyptus pilularıs, Sm. Black-butt. Diameter, 24 to 40 in, height, 60 to 80 ft
70. Eucalyptus mucrocorys, F Muell Diameter, 18 to 30 mn , height, 60 to 80 ft
71. Eucalyptus hemiphlora, F Muell Yellow Box Diameter, 20 to 30 mn , neight, 40 to 60 ft

71A Ditto
72 Eucalyptus sidercophloa, Benth Ironbark Diameter, 20 to 30 in , height, 60 to 80 ft
73. Eucalyptus melanophloa, F Muell Silver-leaved Ironbarh Diameter, 18 to 20 in , helght, 30 to 60 ft
74. Eucalyptus maculata, Hook Spotted Gum. Drameter, 20 to 30 in , height, 60 to 80 ft
74A Ditto
75 Eucalyptus salgna, Sm Grey Gum Diameter, 24 to 34 nn , height, 60 to 80 ft
76. Eucalyptus resinfera, Sm Red Mahogany Diameter, 20 to 30 m , height, 60 to 70 ft
76A Ditto
77. Eucalyptus corymbosa, Sm Bloodwood Diameter, 24 to 30 in , heıght, 50 to 60 ft
77a Ditto
78. Eucalyptus globulus, Sm Blue Gum Diameter, 30 to 48 in , height, 70 to 90 ft
79. Eucalyptus tereticorms, Sm Red Gum Diameter, 18 to 30 in, height, 60 to 80 ft
80 Eucalyptus Stuartiana, F Muell Tuspentane Tree Diameter, 24 to 36 in , height, 60 to 80 ft
81 Eucalyptus fibrosa, F Muell. Stringy Bark Diameter, 18 to 24 in, height, 40 to 60 ft

82 Eucalyptus tesselaris, F Muell. Moreton Bay Ash Diameter, 14 to 24 in , height, 30 to 60 ft
83. Myrtus acmemondes, F Muell Diameter, 12 to 18 in , height, 30 to 40 ft

83A Ditto
84. Lugema Smithu, Pour Lilly Pillees Diameter, 12 to 18 in , height, 30 to 40 ft
85. Myrtus Hilln, Benth Scrub Ironwood Diameter, 6 to 12 in , height, 20 to 40 ft
86. Rhodamnia trinervia, Blum Diameter, 10 to 18 na , , height, 20 to 30 ft
87. Rhodomyrtus psidioides, Benth Diameter, 12 to 20 nn , height, 30 to 40 ft
88. Rhodamma argentea, Benth. Diameter, 15 to 22 in , herght, 40 to 60 ft
89. Tristamia conferta, R. Br. Box Diameter, 36 to 50 m , height, 80 to 100 ft .

Proteacee.

90 Grevillea robusta. Cunn. Silky Oak Diameter, 30 to 40 mn , height, 80 to 100 ft
91. Macadama ternfolia, F. Muell. Queensland Nut. Diameter, 30 to 40 nn ., height, 30 to 50 ft

92 Ontes excelsa, R Br. Diameter, 6 to 14 m , height, 30 to 60 ft
92 Ditto.
93 Banksia untegrifolia, Linn Beef Wood Dıameter, 8 to 12 m ., height, 20 to 30 ft

94 Persoona lucida, B Br, Var. latifolua, A. Cunn Drameter, 3 to 7 in ; herght, 10 to 20 ft
95. Grevillea Hullana, 17 Muell Diameter, 10 to 18 m. , height, 10 to 60 ft .

Thymaleds

96 Exocarpus latifoha, R Br. Broad-leaved Cherry Tree Diameter, 6 to 9 in , height, 12 to 25 ft ,

97 Exocarpuis cupressuformis, R. Br Cherry Tree Diameter, 4 to 8 in . height, 10 to 16 ft

Santalacrat

98 Santalum lanceolatum, \mathbf{R} Br Sandal Wood. Diameter, $\mathbf{3}$ to 6 m, hexght, 15 to 25 ft
984. Ditto

Mroporines
99 Eremophila Mitchellu, Benth. Bastard Sandal Wood Diameter, 6 to 12 m. , height, 20 to $30 \mathrm{ft}=$

100 Myoporum acumunatum, R Br , var parnflorum, Benth Dıameter, 4 to 6 in , height, 12 to 15 ft

Verbenacem
101. Avicenna officinalis, Linn Mangrove Diameter, 19 to 20 mn , height, 20 to 30 ft

102 Gmehna Leechhardtu, F. Muell Beach Diameter, 24 to 36 m. , height, 80 to 100 ft

103 Vitex hgnum-qite, A. Cunn Scrub Lignum Vita Diameter, 20 to 24 in , height, 50 to 70 ft

103A Ditto
Trimacesa
104. Elsocarpus obovatus, G Don Diameter, 12 to 20 m ., height, 30 to 40 ft

Lequminosz.

105. Acacia falcata, Willd Dhameter, 6 to 12 in ; height, 20 to 30 ft .

106 Acacia glaucescens, Willd Diameter, 12 to 18 mm , height, 30 to 35 ft .
108. Acacia fasciculffera, F Mnell Diameter, 10 to 16 in ; height, 30 to 40 ft
109. Acacıa salicina, Inndl Diameter, 6 to 12 in ; height, 30 to 40 ft

110 Acacia harpophylla, F Muell Dhameter, 12 to 20 in, height, 40 to 70 ft
111 Same as 110 in a younger stage
112. Acacia excelsa, Benth. Brigalow Diameter, 20 to 30 mm , heught, 50 to 80 ft
113. Acacia nerufolia, A Cunn Diameter, 6 to 12 m, , height, 20 to 30 ft .
114. Acacia doratoxlyon, A Cunn Dismeter, 6 to 12 in , height, 25 to 35 ft

114A Ditto
115 Acacia pendula, A Cunn. Weeping Myall Diameter, 6 to 12 in.; height, 20 to 35 ft .

116 Acacia stenophylla, A. Cunn. Ironwood. Diameter, 15 to 24 in ; height, 40 to 60 ft

1164 Ditto
117 Acacia leptostachya, Benth. Diameter, 4 to 10 mn ; heught, 20 to 25 ft.
118 Acacia uncifera, Benth Diameter, 8 to 5 mn , height, 6 to 10 ft
119 Acacia decurrens, Willd. Green Wattle Diameter, 8 to 8 m , height, 30 to 40 ft .

119A Ditto
120 Acacia amblygona, A Cunn Diameter, 6 to 10 mn , height, 20 to 25 ft .
121 Acacia decurrens, Willd, var. mollis, Landl Sulver Watlle Diameter,
6 to 10 in , herght, 30 to 40 ft
122 Albizza thozetiana, F Muell. Diameter, 12 to 30 m , height, 40 to 60 ft .
123 Acacia limfoha, Wild Drameter, 3 to 4 in , height, 10 to 15 ft .
124 Acacia penninervas, Sieb. Diameter, 2 to 4 in , height, 6 to 12 ft .
124A Ditto
125. Pithecolobium pronosum, Benth Diameter, 5 to 12 m , height, 40 to 50 ft

126 Hovea acutifolua, A. Cunn. Drameter, 2 to 4 in ; height, 6 to 10 ft .

127 Barklya syringifolia, F. Muell. Diameter, 12 to 18 m , height, 40 to 60 ft

128 Cassia Brewsten, F Muell Diameter, 3 to 6 in , height, 30 to 50 ft
129. Jacksonia scoparia, R Br Dogwood Diameter, 3 to 8 in , height, 10 to 15 ft

Cornacef

130 Marlea vitiensis, Benth Musk Tree Diameter, 6 to 12 in , height, 20 to 30 ft

130A. Ditto
Jasmineze
131 Olea paniculata, $\mathrm{R} \operatorname{Br}$ Native Olive Diameter, 18 to 24 in , height, 50 to 70 ft
132. Notelæa ovata, R Br Dunga Vunga Diameter, 6 to 12 m , height, 20 to 30 ft .
133 Notelæa mıcrocarpa, R Br Diameter, 9 to 12 ma , height, 30 to 45 ft .
Laurines.
134 Endıandra pubens, Meissn Diameter, 18 to 24 in , helght, 40 to 70 ft
135. Tetranthera ferruginea, R. Br Diameter, 14 to 20 m , height, 30 to 40 ft
136. Litsæa dealbata, Nees Diameter, 18 to 24 m ., height, 40 to 60 feet 136A Ditto
137. Cryptocarya patentmervis, F. Muell Diameter, 12 to 20 m. , beught, 30 to 40 ft
137A. Ditto

Ebenaceat

138. Cargillia australis, R. Br. Diameter, 6 to 12 m. ; height, 30 to 40 ft

Euphorblacen

139. Mallotus philippinensis, F. Muell Drameter, 6 to 14 in ; height, 30 to 45 ft .
140. Mallotus nesophnlus, F Muell Diameter, 12 to 18 m. ; height, 35 to 45 ft
141. Croton insularis, Baill. Cascarilla. Diameter, 8 to 12 mn , height, 30 to 40 ft .
142 Croton Verreauxı, Ball Diameter, 3 to 5 m , height, 15 to 20 ft .
142. Petalostigma quadriloculare, F. Mueli Crab Tree Diameter, 12 to 18 m ., height, 40 to 50 ft
143. Excrecara Agallocha, Linn River Poisonous Tree Diameter, 6 to 18 mn ; height, 20 to 30 ft

145 Bridelia exaltata, F. Muell. Diameter, 12 to 18 nm , height, 30 to 45 ft
146. Bradleat australis, R Br. Diameter, 12 to 18 m. ; height, 13 to 50 ft

Monimracees

147. Daphnandra micrantha, Benth Diameter, 18 to 30 in ; height, 60 to 80 ft .

Sapotaceze.

148. Hormogyne cotimifola, A. D C. Diameter, 6 to 9 m ; height, 20 to 35 ft .
149. Chrysophyllum pruniferum, F Muell Diameter, 12 to 20 ins., height, 30 to 70 ft

Urticee.
150 Celts phulhppinensis, Blanco. Diameter, 4 to 12 m. ; height, 20 to 40 ft .
151. Morus calcar-gall, Cunn Cockspu, Thorn

Saxtrragess.
152. Ceratopetalum apetalum, Don. Coaciwood. Diameter, 24 to 36 m . ; height, 70 to 90 ft

Collected in the neighbourhood of Rockhampton, by Mr. P. A. O'Shanesy, and forwarded for exhibition.

Introductory Remarks.

With the exception of two or three species, the following woods, indigenous to Rockhampton, had not hitherto been exhibited from that place, and were chiefly intended as an ullustration of the nchness of that district in useful and ornamental trmber In the neighbourhood of Rockhampton alone there are nearly 200 different species of woods available for every purpose from cabinetwork to ship-building, several of which, as the eucalyptio or gumas, surpass all other known timber in strength and durability, and, as these constitute the main bulk of vegetation in the open forest, the supply is inexhaustible.

Rutaces.
1s Acronycha mperforata, F. Muell 10 to 15 ft. 2s. Acronychas Bauen, Schoth 20 to 25 ft .

Rublacee

Randua densiffora, Benth A middle-sized tree, with an arregular truak. 4s Is ora Pavetta, Roxburgh 10 to 12 ft 4a Ditto

- Burseraces

58. Ganophyllum falcatum, Blume, 30 to 40 ft

Myrtacee.

os Eucalyptus melanophlona, F. Muell Broad-leaved or silvery Ironbark 25 to 30 ft 7 s Eucalyptus crebra, F Muell Narrow-leaved Ironbark An erect tree of 50 to 60 ft , often with a clear trank of 25 to 30 ft 88 Eucalyptus polyanthemos, Schauer Box 40 to 50 ft . 9s Eucalyptus tereticornis, Sm Gum 80 to 100 ft 9a Ditto 10s. Encalyptus corymbosa, Sm Bloodwood 11 s Tristania suaveolens, Sm Mahogany and Stringy-bark 30 to 40 ft 12s Eugeua eucalyptordes, F Muell. 15 to 20 ft 13 s Backhousia adophora, F. Muell 30 to 40 ft 14s Myrtus acmenoides, F Muell Myrtle. 10 to 15 ft .

Ebenacest

15s Maba humilis, F Muell. Ebony 10 or 15 ft 16s. Maba fasciculosa, F Muell Ebony. 25 to 30 ft 17s Maba laxifiora (?), Bentham. 15 or 20 ft

Euphoreblaces.

18s Mallotus tunctorius, F. Muell 19 s Mallotus claoxylondes, J. Mull 12 to 15 ft 20 s Croton msularis, Baill 25 to 30 ft 21 s Croton acronychiodes, F Muell 20 to 25 ft

Loganiacee.

22 Strychnos psilosperma, F Muell Strychnme
Celabtringes
23s Celastrus dspermus, F Muell. 15 to 20 ft . 24 s . Denhama obscura, Melssn

Legeminosas

258 Lonchocarpus Blackn, Benth Bloody Bark

Ubticesas

26s Ficas Fraseri, Miq Fig Tree 27s Ficus macrophylla, Desf Moreton Bay Fig 28 s Morue Brunomana, Endl 25 to 30 ft 29s. Epicarpurus orientalis, Blame 40 to 50 ft

Sapindacers

30 s Nephelium divaricatum, F Muell 25 to 30 ft . 318 Nephelıum connatum, F Muell 35 to 40 ft 32 s Nephelium tomentosum, F Muell 33 s Harpulha Hilln, F Muell Tulip Wood 40 to 50 ft 84 s Ehretia membranfolia, R Br

Santalacele
$35 s$ Santalum lanceolatum, $\mathrm{R} . \mathrm{Br}$ Sandal Wood 15 to 20 ft
Cabutarinkete
36s. Casuanna suberosa, Willd, Uak 40 to 50 ft

Araliacese Panax elegans, Moore and Mueller 30 to 40 ft

Cornaceas.

38s Marlea Vitiensis, Benth

Solanaceas

39 s Solanum verbascifolium, $\mathrm{L}_{\text {。 }} \quad 10$ to 12 ft
Owing to its vast area, and the diversity of its soll, climate, and altitude, there is a greater variety of indigenous trees in Queensland than in the rest of the Australian colonies, and perhaps more than could be found within a simular extent of country in any other part of the world The specumens of woods exhibited are from a collection that were easily procured, and were cheefly chosen for their economic value The list, however, does not include one-fourth of the species that have already been described, and there are many which have not yet been classified. Each district of this immense territory is characterised by features in its vegetation peculiar to itself, and years must elapse before all are known and botanically arranged
It will be for the practical builder, the shipwright, and the cabinet maker, to pronounce an opinion upon the utility of the woods represented in the Court, and it is probable that several of them will have a greater value put upon them in America than they receive in Queensland. It appears inseparable from the state of affars in a young colony, that very little time or trouble is devoted to experiment, or to the improvement of existing processes The same woods that the first settiers made use of are still employed, as a matter of course, for the same purposes, and timbers, probably of a superior description, are neglected, or used only as firewood

The value of some descriptions of the Australian Eucalypti for buulding or rallway purposes, has for some time past been fully recognised; and the number of species is greater in Queensland than in other parts of the continent The case is the same with other woods, the variety of which is very great, that are remarkable for ther strength, durability, fineness of grain, or ornamental appearance.

It is mpossible to state, at the present period, the price for which all of the Queensland timbers can be placed in the market, for some of which there is no local demand The cost, when placed on board ship, will not, however, be great, as most of our valuable woods grow on the coast or the banks of the rivers, or are found within reach of the facilities for transport provided by ralway communication.
The following articles made from Queensland wood were exhibited .-
2 Model Rum Hogsheads
2 Model Tallow Casks
2 Model Sugar Vats Exhibitor, Mr D Hume, Brisbane
8 Axe and Pick handles Exhibitor, Mr W Peltugrew, Brisbane

Fubres.
Cl. 666.

Fubres
Near the collection of woods were arranged Samples of Fibre, prepared, from barks of trees of plants indigenous to Queensland, by Alexander Macpherson, Busbane

No 1. Camersonia echinata
2. Sida retusa, Sida rhombifolia.
3. Currygong Heterophyllus.
4. Ficus Macrophylla
5. Kerandrinia Hookerianana

6 Abutilon oxycarpus.
7. Lyonsia reticulata

8 Hibiscus titiacus
, 9 Hibiscus mutabilis
" 10 Hibiscus rosa sinensis.
"11. Hıbiecus surbifolia, Exhibited by Alexander Macpherson.

Another collection of Fibres, prepared by Walter Hull, Esq, consisted of -
1 Queensland Hemp (Sida retusa)
Queensland Hemp (scutched)
Queensland Rope (Sida retusa)
4 Bowstring Hemp (Sanseviera cylindrica)
Ceylon Hemp (Sansenera Zeylanca).
Gunea Hemp (Sanseviera Gunneerisis).
Guinea Hemp (Sanseviera latifoha)
Mexican Hemp (Furcrea gigantea)
Pete Hemp (Agave Americana)
10. Cuba Hemp (Furcrea Cubensis)

Jute Hemp (Corchorus capsulars).
Jute and Pete Hemp (Corchorus olitonus)
Bengal fibre (Crotalana uncea)
Mamilla Hemp (Musa textlis)
Plantain Hemp (Musa paradisiaca)
Rosella Hemp (Hibiscus sorbbfola).
(Hibiscus mutabilis)
Flax (Linum nsitatıssimum)
Collection of Botanical Specmens, full description attached to them
Leather.
Collection of leather from the Tannery and Curners' Shops, Eblkin, three miles out of Brisbane, and manufactured from Colonal hides and skins They are tanned with the bark of the Acacia indigenous in Queensland, samples of which can be found in the wall cases of Division II.

2 sides of Black Gramed Kıp, 12 lb ; 1 side of Plain Granned Kıp, $6 \mathrm{lbs}, 1$ sıde of Tweed Graned Kıp, $6 \mathrm{lbs}, 2$ sides of Waxed Grained Kıp, $12 \mathrm{lbs} ; 5$ skms of Kangaroo, Waxed, 3 lbs, 1 skin of Kangaroo, Tweed, $1 \frac{1}{2}$ lbs, 1 skin of Kangaroo Plann Graned, 2 lbs, 1 skin of Wallaby, Black, $\frac{8}{4}$ lb 1 skin of Wallaby, Waxed, $\frac{1}{2} \mathrm{lb}, 2$ skins of Goat, Plain Grained, $1 \mathrm{lb}, 3$ skins of Goat, Black, 3 lbs ; 4 Black Gramed Basils, 2 Plan Basils, 1 side of Brown Harness Leather, 16 lbs , 1 side of Black Harness Leather, 27 lbs ; 1 sude of Sole Leather, $19 \mathrm{lbs}, 1$ side of Kup, Waxed, $8 \mathrm{lbs}, 1$ side of Black Granned Kıp, $7 \mathrm{lbs}, 1$ Calf Skn, Waxed $14 \frac{1}{2} \mathrm{lbs}, 1$ Black Graned Kangaroo, and 1 Flat Graned Kangaroo, $3 \frac{1}{2} \mathrm{Ibs}$, 3 Wax Wallaby Skuns, $1 \frac{1}{2}$ lbs, 2 Wallaby Skms dressed wth fur on

- Furkid Skins

1 Kangaroo, 2 ditto, Mauve; 6 Rock Wallaby, 3 Forest Wallaby, 1 Scrub Wallaby, 3 Mauve Wallaby, 1 Blue Wallaby, 1 Fox Wallaby, 5 Wallaroos, 1 Paddy Melon, 3 Seal Skins Exhibited by T B Stephens

The various Tanneries around Brisbane produce about 450 Hudes or 900 Sides of Harness, Sole, and Kip weekly, whust in 1871-2 they did not turn out more than 200 , a number of inland Tanneries have also been started since then.

Kangaroo and Wallaby, especially the latter, can be obtaned in great abundance, as the inland districts for 150 miles distant from Brisbane have been fenced in, and as the aboriginals and native dogs disappear, the Wallaby multiply enormously, and are being killed in thousands to save the grass As the demand for skins, however, is limited, not many of them, however, find their way to the Tanneries.

Miscellaneode Exhibits
Muscellaneous
1 Case of Butterfles, collected in the Cardwell District Exhibited by G. Butterfles Ruchland.

Skull, Tusks, and Teeth of Dugong Exhibited by John Ching.
Dugong onl and
4 dozen bottles of Dugong Oil Exhibited by John Ching
Dugong Calf in Spirit Exhibited by John Ching
Sample of Dugong Oıl Exhibited by Berkley and Taylor.
1 Hunting Saddle, Bndle, Breastplate, Martmgale, and Pouch
1 Trooper's Saddle, and Brile, complete
1 Stockman's Saddle aud Bridle, complete
1 Pack Saddle with Harness, complete
Large Parr of Saddle Bags
1 Pair of Leggings
3 Maps of the Colony
1 Telegraph Curcuit

2 Maps of Port Curtis District
1 Geologeal Map of the Colony
1 Map of Brisbane
1 Map of Wide Bay
2 Maps East and West of Moreton.
1 Map of Tin Selections.
1 Squatter's Map.
Cl 306 Books bound at the Government Printing Office. -
Ornithology of Aristralia
Pugh's Almanac.
Sugar Cane, by Angus Mackay.
Semi-tropical Agriculturahst
Hockung's Gardener
Flonculture in Queensland.
Salter's Almanac
Maryboro" Almanac
Balley's Ferns
2 Volumes of Newspapers of Queensland to November, containing "Summary " description of each district

500 copies of the "Queensland," with summary
12 copies, Bound Catalogue of Queensland Exhibition, 1875
1 Case of Almanacs, sent by Mr. Willmett, of Townspille,' Northern Queensland.

CI 430
Photographs
12 large sized Views un and about Brisbane
Panorame Views from Wickham Terrace
" $\%$ Bowen Terrace.
" " of Ipswich
Bells, manufactured by Hopwood and Sutton, from Queensland tin and copper
Packet of Castor Ol Seeds, from R W. Alexander
Catalogue of Seeds, by Clarke
" H Hockungs
At the extreme ends of the Queensland Court are exhibited:-
2 Life-size Photographs of Australian Natives Exhbitor, Richard Daintree. And numerous smaller ones. Exhibited by the Queensland Government.

Number of natives insigntficsnt

The Queensland natives are by no means numerous in the unoccupred portions of the country; in the settled districts they are fast sharing the fate of the American Indian

Richard Daintreg.
(Contributed to the Catalogue for British Section, Philadelphia, 1876)

SOUTH AUSTRALIA.
\qquad

Commission from South Australia to the Philadelphia International Exhibition, 1876.

H. E. Sir Anthony Musgrate, K.C.M.G., Governor-in-Chief, \&c., \&c. (President).

Hon. William Everard, M.L.C., Commissioner of Crown Lands and Immigration.
Hon. H. E. Bright, M.P., Commissioner of Public Works
Hon. Jorn Crozrer, M L C.
Wentworth Catanagh, Esq., M.P.
R. D. Ross, Esq., M P.
E. T. Smith, Esq, M.P.
E. W. Andrews, Esq.

Jostah Boothby, Esq, Under Secretary.

Caleb Peacock, Esq., Mayor of Adelande.
Dr Schomburgh, Director of the Botanc Gardens.
George M‘Efen, Esq.
Joseph Crompton, Esq
F. G. Waterhouse, Esq, Curator of Museum
J. A. Holden, Esq
S. V. Piser, Esq., Vice-President, Chamber of Manufactures.
Walter Hackett, Esq.
Samuel Davenport, Esq., J.P.
C. J. Coates, Esq, Hon. Secretary.

Executive Commissioner at Philadelphia.
Saml. Davenport, Esq., J.P.
Honorary Commissioner at Phladelphia
W. A. E. West-Erskine, Esq.

SOUTH AUSTRALIA.

Tux name of the Colony of South Austraha never exactly fitted her geography, Prehminary. and since a recent reward of her exploring enterprise extended her ternitory northwards, the divergence has been greatly increased In a purely topographical sense, she is nearly as much entitled to be called North as South Australia.

Embracing a surface roundly described as 250 mules east and west of a line Extent drawn north and south for 2,000 mules from sea to sea, her area is estimated at 914,730 square miles, or $585,427,200$ acres, being about a third of the area of the United States of America, or ten times that of Great Britan On the east, Boundaries. she is bounded by the colonies of Queensland, New Sonth Wales, and Victona, and on the west by that of West Australas
A comparison of areas as above is made in order to mduce a juster appre- Areas as conciation of Australia To the eye, distant objects look small, and consequent trasted between mental impressions naturally share in the dumınutive Australia is remote country and from England, and I wish the " mother country," freed from optical illusions, offispring. should fully recognse the magnitude of her possessions there For Empires, as for individuals, there $1 s$ much in broad acres after all, or I should apologize for intruding a reflection here forced on me by this Phuladelphia Exhibition. After crossung from San Francisco to these Eastern States, and seeing what vast resources of wealth in soll and minerals and natural highways for trade the United States possess, and that, wrth $40,000,000$ of people, two-thurds of these States are yet barely occupied, I, as an Enghishman, felt a sense of regret that Great Britain ever lost them It is certann she did not, could not have known what she was losing She knew, perhaps, in figures to what probable area her American Colonies might expand, but she did not recognise the depths of sold substances involved in the possession of this extra $3,000,000$ square mules of the earth's surface

The Austrahan Colonies combined, measure a simular area; and who can say Australian but that their united inherent wealth, though differing in character, may not coloneasequal be as great as that of the United States. At least, I venture to think that United States, Englishmen in Great Britain owe it to themselves and to their successors to regard Australa in this light

Of the 914,730 square mules of which South Australia is comprised, the General quescolonists as yet may be sard to occupy those portions only which the highway tions as to preeof the ocean has made most accessible The settlement of mner lands awarts and future the construction of raulways Still, within her settled limits, she has abundant prospects room for fresh population Lands that furnish herds of cattle, and of horses, and flocks of sheep, all unsurpassed for quality, productive of the finest wheat, wne, and ohve onl, of the pomegranate, the almond, and the fig, from out of whose hills you may dig brass, and over whose surface grow those modern guardans aganst malarial atmospheres--the eucalypt,--bear witness in themselves of therr qualifications for the sustenance and happiness of mankind, and no mean share of such is the occupied portion of South Australia As to the extent of the powers of the Colony in these durections I am bound here to add that tume and experience are essential elements ere their value may justly be determined, even if (as I have ventured to hope) Englishmen would think more of their present and prospective interest in Australia generally More is needed than the report of an explorer, however intelligent and truthful he may be Neither the capabilities of the soil nor the nutritious qualities of vegetation are known till tested What amelorations of condition may result from climate to the ammal or vegetable hife we propagate, or what fertilzing powers may rest latent in the soil till consoldated by pasturing, or oxygenated by exposure to the air, are all questions only soluble by experience.
No country has been first unvelled to civilization by more intelligent, Explorers intrepid, and truthful men than the occupied portion of South Australia Her seacoasts by the Lincolnshure Finders, her chef river and interior by Charles Sturt, her coast ranges and other interior by Governor Eyre. Yet neither

40609

Personal experience.

Population
Live stock
Oamels and
mules

Imports
Exports.

Revenue
Expendxture

Public debt
Natural wealth
Transport
fachities

Telegraph

Banks

Manufactures.

Charles Sturt nor the colonsts of three years' settlement (from 1836 to 1839) thought the Adelande plains would grow wheat, and it was only when imported flour had reached $100 l$ a ton, that they made the attempt to grow it Sturt found the interior an desert to the near sacrifice of his life, so did Eyre, with corresponding bravery and results, and how many of us have subsequently seen the same condtion, interchanged for consecutive seasons with such fertility that the desert really waved with vegetation, fatteming the sheep and cattle placed upon it rapidly and well. Of some portion of that so-called desert, Hargraves, a gold discoverer of New South Wales, in an official report to the Adelande Government not many years since, declared it was the finest pastural country he had seen in Australia, and there he had travelled much
The need of proofs thus illustrated by experience would, I am sure, be supported by older colonists than myself, though I am of 33 years of country life there, and speak mostly from personal observation. I do not here attempt explanations (the introduction of the question even 1s, I fear, a trespasss), but I may escape under the truthful general assertion that many things are dufferent at the Antipodes. Beyond doubt, the stone of the native cherry grows outside the pulp, a quadruped has the bill of a duck, the native hare has a rat's mouth, and the desert often rejoces, at certam seasons blossoming as the rose, facts, perhaps, sufficiently enforcing the new that Enghshmen in Great Britain may suspend theur estmate of value until the proofs of experience are established
Withm the limits of the occupied portion of South Australia the population is 213,271 . The live stock consists of $6,120,211$ sheep, 185,342 cattle, and 93,122 horses. Camels and mules, which have been introduced successfully by enterpnsing colonists, might also be mentioned, as they undoubtedly have a future of most useful service in the far interior About 200,000 square miles are rented from the Government for pasture, whilst private freehold lands, to be bought at an average of 25 s per acre, amount to $6,283,881$ acres, of which 1,424,000 are cultuvated, the last wheat produce of that cultivation being 10,739,834 bushels
The imports of South Australia for 1875 amounted in value to $4,203,802 \mathrm{l}$, of which $2,381,673 l$ were from Great Britan The exports of 1875 were of the value of $4,805,051 l$, of which $2,612,817 l$ were to Great Britan The chef products exported were wool, value $1,885,5191$. , wheat and flour, value 1,650,661l., and minerals, mostly copper, 762,386l
The revenue of 1875 was $1,143,312 l$, viz. \cdot Customs $399,104 l$, Land sales 289,568l, Raulways $183,096 l$, and from other sources $271,544 l$.
The expenditure of 1875 was $1,176,413 l$, under the followng heads. Public works $460,012 l$, Interest on bonds $142,476 l$, Redemption of bonds $34,400 l$, Immigration $27,140 l$; other items 512,3851 .
The public debt on 31st December 1875 was $3,320,000 l$; in adjustment of which there is a nearly equal amount recervable for lands sold.
The natural wealth of the Colony an bealthy clumate, frutful sol, and abounding minerals, has been dargely augmented by useful and substantial improvements In addition to numerous ports made serviceable for coasting trade, inland traffic $1 s$ provided with 884 miles of good macadamised roads, at a cost of over $2,000,000 l$, and with over 300 miles of railway at a nearly equal sum The public and private buldungs, both in town and country, are mostly of well-bult stone, with slate or ron roofs Gardens, wrth here and there a vineyard, orchards, pasture and arable fields cover those districts assigned to agriculture, whilst thousands of miles of good "post and wire" sheep-proof fences enclose a great portion of the pastural districts rented from the Crown, and subdivide them into paddocks of various areas, from 5 to 50 square miles, accordng to feed and water supply
In 1872 South Austraha erected 1,973 mules of telegraph wue across her territory, and, at a cost of $350,000 l$, connected Australia with India and Europe.
The assets of six banks, takang an average on the last quarter of 1875 , equalled $5,157,8681$, ther average labilty being $3,278,122 l$, and on the 1 st of January 1876, 22,662 persons had the sum of $816,818 l$ deposited in the Government Saving's Bank.
Of manufactures, the Government statist reports " 85 steam flour mills in " the Province, with 1,500 horse-power drivng 275 parrs of stones, 4 meat" preservng estabhishments; 8 bollng-down works, 60 tanneries and fell-
" mongeries; several large wool-washing works, 10 soap and candle factories;
" 5 bone-dust mills, 2 glue and size works; 31 steam sawmulls, 27 foundries;
" 86 agricultural mplement works (chrefly for reaping and winnowing
" machines), 29 coach and wagon-buiders' shops; 5 patent shps; 8 ship and
" 12 boat-bulding yards, several marble, 16 slate, and over 100 bunlding-
"stone quarries, 70 brickyards (including 6 for firebricks), 60 hmekins,
" 7 potteries and tile and pipeworks, 8 gasworks (of which two are for the
"supply of the City of Adelande and suburbs, one as at Port Adelande, and
"the remaning five are in the principal country towns); 1 woollen tweed
" factory, 6 clothing factornes; 4 hat factories; 12 boot and shoe factories;
" 4 dyeworks, 3 flaxmills, 3 ropewalks; 2 brush manufactones; 29 breweries,
" 30 sodawater and cordial factories; 102 wne-making establishments; 10
" biscuit bakeries; 10 jam and preserves, and 7 confectionery manufactories;
" 6 dried fruits, and 3 olve oll factories and 1 iceworks. Among other
" rmscellaneous local productions and manufactures are barilla, billiard tables,
" baking-powder, blacking, cayenne pepper, cement, cigars, fibre, glass bottles,
"plaster of Paris, washing-machines, sauces and pickles, salt," safety-fuze,
" gas stoves, uron safes, bedsteads, galvamized iron, and tin-ware"
The government, the laws, and the social institutions, like the people of Government
South Austraha, have an Anglo-Saxon character. There is the fullest civil and religous freedom under a Vice-regal Governor, whose minsters are chosen by, and are responsible to, a majonty of two Houses of Parhament elected by ballot, as to the larger house, of manhood suffrage alone, and as to the smaller house, by a slightly restricted property qualification. These organizations have worked harmonously to the contentment of the people
The means of religious and secular mstruction are generally distributed, Education namely, Government schools (1874) 320, number of children on the rolls 17,426, average attendance 11,969 Government grants for educational purposes voted in 1875 teachers' stipends, \&c 60,000l, building school-houses, 60.000 l , manntenance of institutes, $16,000 \mathrm{l}$ Also 120,000 acres of land as endowment of public schools, and 50,000 acres endowment of University Number of churches and chapels in the Colony, 610, of which the followng Religions are in the City of Adelaide 5 Church of England, 3 Congregationalist, 3 Wesleyan Methodist, 2 Bapist, 3 Presbyterians, 3 Primitive Methodist, 1 Bible Christian, 1 Methodist New Connexion, 2 "Christian" denomination, 1 Church of Christ, 1 Lutheran, 1 Society of Friends, 1 New (Jerusalem) Church, 1 Unitarian, 1 Synagogue. The Press of the Colony issues 4 daly, 4 bi-weekly, 14 weekly newspapers, and 11 monthly magazines and other periodicals.

Of Muncipal Corporations in the Colony there are 16; of District Counculs 0 Hos munipal and lodges of Oddfellows, Foresters, Druids, Rechabites, and Good Templars.
The fachities for acquirng real property in the Colony are great, and laws Laws for acquir well secure its quet enjoyment. The public lands are mostly sold on credit; mg property one tenth per cent as pand down as interest on the purchase money, which is not less than 20 s per acre The balance is deferred to the sixth year, a second ten per cent on the purchase money having been paid on the third year as interest. At the sixth year half the balance may be renewed for four years at four per cent if needed, but that the State may secure certan benefit from the sale of its lands under a credit system, the purchaser is bound to effect annual improvements All metals, precious or other, go to the purchaser The title to real estate from the Crown is by registration, of which the purchaser gets a certficate in simple form. This system 18 popular, for it 18 ready and inexpensire at the outset, and is returnable to the registration office for recora on at of all subsequent dealings, or for substituted certificate, or certificate as needed, in the court of sales At the close of 1874 the value of landed property, which had passed under it, amounted to $9,260,186 l$ Adjoining colonies have adopted thas law *

The settled portions of the Colony of South Australia are sectioned off into Subdivision of counties, and these counties, when arable cultivation requires it, are subdivided land in settled into hundreds, whose municipal governing bodies can be elected for local public portions woiks and education Outside the hundreds, in the southern portion of the Colony, the public lands are left for purely pastural occupation, for which 14 or 21 years' leases can be procured at moderate rents, regulated much by

[^11]In Northein terntory

Sales of land

Causes of progress.

Increase yearly
of propertied
classes

Sundry augmenting causes

Good results of emigration both to " mother country" and colony
distance from ports of shipment, except that, both as to public lands unside or outside the hundreds, rights to search for and work minerals are readily granted. The rent of a mining lease is fixed at 10 s an acre per annum, and 14 years' term renewable
For the Northern territory of South Australia, with its tropical climate, the land laws are modified Land there is open for selection and sale at 7s. $6 d$. per acre, or for lease over ten years at $6 d$ per acre per annum And for the special growth of sugar, cotton, tea, nce, and tabacco, selections varying from 320 to 1,280 acres can be made at a rental of $6 d$ per acre per annum for five years, when, if the land has been enclosed and one half under cultivation, a free grant is procurable

> The number of acres of land sold m the first year of the Colony's existence (18363) was -
> By the year 1850 , the sum had reached And by 1875

The steady and progressive settlement of colonists on the lands of South Australa owes much to the favouring conditions of soll and climate A small outlay in dwelling-house and fences alone suffices for the farmer to plough, rase, and reap his crop No barn, no warm stables are necessary to his success So that fodder is sufficient, his live stock may rove unsheltered throughout the year, not losing condition. Eventually, the farmer has his good store-house, and surrounds it with other comforts of home
The laws also facilitate the acquisition of freehold lands, and are assisted by that national passion to possess land, which characterises the Saxon race; and from these joint causes the labouring classes of the Colony require frequent replemsbment to fill up the vacua created by the constant passage of members of their body into the property classes Ther ranks are chiefly recruted by mmigration from Great Britain and Ireland, provided for by funds voted by the South Australian Legslature, and disbursed by Mr F S Dutton, CMG, the Agent-General for the Colony in London This year 120,000l is avalable for free or assisted passages : and a further $100,000 l$ is proposed for the year 1877
In addition to this Immogration Fund, a special law provides, for persons paying their own passages, that, if elggble, the Emigration Agent may give them Land Warrants, which shall entitle them in the Colony to receive Land Orders of the value of $20 l$ for each adult, and $10 l$ for each child between the ages of 1 to 12, and this Land Order is avaulable as deduction in payment of any land they may purchase. Thus, an emigrant and his wfe with 6 children from 1 to 12 years old would recerve Land Orders of the value of 1000 .

And further, under the same law, "any person or persons, shippers, com" panies, societies or associations desirous of bringing out to South Australua, " at his or their own expense, suitable emigrants from Europe, approved by " an Emigration Agent, for the purposes of settling on the Crown Lands "thereof, and cultuvating the same, or for engaging in any Colomal mdustry, " and who shall enter into an agreement with the Commissioner of Crown "Lands and Immigration for the conveyance of such emigrants from Europe "for the purposes aforesand, and also enter into a covenant with the said Com" missioner that such emigrants shall reside continuously un the sald Colony "for two years at the least from the date of therr arrival, shall be entrtled to " recerve, on the amival of such sutable emigrants in the said Colony (and, " of ahens, after naturalization), a Land Order" of the value of $16 l$. for each adult emigrant, and of $8 l$ for each child from 1 to 12 years old, available in the purchase of land as in the previous case
This immigration is one of the remaining functions of joint life in action between the Colony and mother country, and is mutually advantageous.
Thereby, the old nation, having started its offspring with outfit and instructions to take root in independent life on ats own estate, has the happiness to see her offspring thive, and the young nation, whose provisions for board and lodging and work are beyond its requrement, minvtes, members of the old family to a share.
The Colony 15 benefited by these additional powers of rasing increased productions and of constructing fresh means for their distribution and utilization, whllst Great Britan is relieved of surplus population. But "surplus population" means "unitilized forces," not purely mechanical, but of the
joint mechamsm of momd and matter found in human structures, and therefore capable of useful work, and to these the colomes give a vent Still, "unutilized forces" are capital lying idle; indeed their manotenance costs money; thus 2mmigration relieves Great Britain of a burden. Removel to the colomes, these "unutilized forces" come into contact with conditions which arouse their latent energies Even the voyage has educational effects, and, after the voyage, come the interests, which even the dullest head must in some degree admut, of new scenes, new life or hopeful chances of life, stumulating the better souls at least to new resolves Work is found the profits of labour and uncreased production follow. Thus emigration is a reproductive operation for Great Britan; for by it her surplus populations both find employment and become producers of additional raw material for her manufactures, or for provisioming and clothing her people, whilst, out of the profits of the labour involved, they arise as fresh customers for her goods. And singe moreased production and customers call forth also increased means of transport and a general expansion of trade, the results of a utinzed emgration are of service to Great Britain, and she is, therefore, directly concerned in the peopling and materal development of her colomes

The imports of South Australia for 1875 amounted to 20l. per bead of her Imports and population, and the exports to $24 l$ per head, and about the half of these sums were in the trade with Great Britan On these data 1,000 emugrants from Great Britain in 1876 would, in 1877, buy $10,000 l$ of British goods, but, as such newly arnved classes would not be average consumers or producers, it may be fairer to halve the amount, and say they buy $5,000 l$ worth only. Still, at this rate, 1,000 emigrants per annum for ten years would pay the mother country 275,000l. out of the profits of their "uthized forces"

It ze clear, then, the abulty of the mother country to supply emigrants, and Comeludus the means of the Colony to employ them, conduce to the wealth of both remarks Therefore, in thas sense alone, the prosperity of the colonits bears directly and intimately on that of the old country The more land the colonists cultivate, the more minerals they rase, or materials and food from pasture, the more people they sustain, and the better for Great Britain. By at she enlarges her domann, her national wealth, and the number of her subjects The Empire by so much is extended as an mheritance for future generations

Let Great Britan encourage her colonies as integral parts of berself in the production of what their natural powers favour, and their existence being in so many climes, her ability of self supply of all those things she gathers ordınarily from various foreign nations will, in the event of possible adverse action, be found within herself.

The report on South Australia by His Excellency Willam Robinson, Governor of the Bahamas, dated December 1873, and land before Parlament in connexion with that of other colomes exhibiting at Vienna, is so full and just in its records to that date and the work of Mr Harcus, compled for the Philadelphan Exhibition,* has haked facts in detail so effectually to speak for themselves, that I have thought it undesirable and unnecessary to msert any but general statements in this memorandum

Of the share South Austraha took as an exhibutor at the Centennial Philadelphian Exhibition, it may farly be allowed that her Commessioners could have more amply illustrated her resources, but for the tine lost in acquisition of details through long course of post, and for the fallacy, had not a popular opinion intervened, of which amilar remoteness from the centre of action delayed the refutation, namely, that the proposed Exhbibition partook rather of the nature of a mercanthle speculation than the undertaking of a great nation, certam to prove a success

It is hoped, however, that her exhibit was neither uncomplimentary to the Americans nor discreditable to a British Colony, as she shared with others the greatest courtesies from, and the unhounded hospitalities of, the Americans

[^12][^13]
Exhibits of the Colony of Sodth Australia at the Philadelphia Centennial Exhibition, 1876.

(The Government of South Australio recerved also an A ward for its Collective Exhibit)
Department I-Mining and Metallurgy

Defartment II-Manufactures

Department III-Education and Science

Department V-Machunery.

$\underset{505}{\text { Class }}$	Model of umproved ore dresser The slime separator and piston continuous Jugger combined Patented Juggag machune. Patented	Robert Saunders, Manaper of the Burra Burra Copper Mıne, near Adelande. H. R. Hancock, Moonta Copper Mines, near Adelande	Dresses ore at 50% less labour, and saves one third returmug charges Combined motion, up and down, backwards and forward, making 150 pulsations per monute and dressing 150 tons per duem

Defartment VI -Aghiculiture.

$\underset{600}{\text { Class }}$	Woods, useful and ornamental, from the neighbourhood of Adelande.	Nouth Australian Commissioners, Adelaide.	Of these, 19 polushed and 18 unpolished specimens were supphed by Mr H O Mair, Engineer-m-Chief, Adelade
	Woods, useful and ornamental, from the Northern Territory of South Austraila.	South Australian Commisgioners	Forwarded by Mr J B Scott, Governaent Resident, Northerm Territory
	Woods, useful and ormamental, from 200 mules North of Adelande	Saml. Davenport, Adelaade * *	One of these woods (the Myall) dustilled, produces valuable scent
	Cork, specimen of -	Arthur Hardy, Mount Lofty, near Adelade.	Tres from acorn umported from Spain, 1864.
	Barks, valusble, for Tanning 1 Ground Mimosa (Black Wattle) \& Ground Acacia - 8 Chopped Mimosa (Black Wattle)	H Wulke and Co, Port Adelade	London Agents, D \& W. Murray, 16, Houssell Street.
604	Fungr * - . -	South Australian Commissioners -	Suppled by W B. Hughes, Northern Territory of South Australia.
605	Eed Berries (seeds of the Creeping Liquorice), called by the natuves Mancel Mancel Cork-screw Pue seeds -	$\text { \}South Austrahan Commissioners }$	From J E Kelsey and W B Hughes, Northern Terntory of South Australia.

Department VI-Agriculture-contuned

$\begin{gathered} \text { Class } \\ 610 \mathrm{p} \end{gathered}$	Wax Models of Fruit, taken from originals grown in South Australıa	South Australuan Commissioners, Adelande	
620		Thomss Carimg, Adelande John Riges, Adelade John Riggs, Adelade C B Young	
	Wheat, Nonparen " 1874 Wheat, PurpleStraw $"$ " Wheat, Wheat, Red Straw F " ", Wheat, Frame hybrid " ", Wheat, Red Lammas " "		
,	Wheat, Iuscan Barley Barley, Cape Barley, Skìnless		
\mathbf{T} \{		South Australuan Commissioners	Collection of cereals Field ant garden seeds
623	Hops, grown at Mount Gambier, near Adelande.	J E Kelsey, Mount Gambier, Adelade	From volcanic sorl
664	Trepang, cured at the Fishery, Port Essington, in the Northern Territory of South Australia.	South Australian Commissioners -	From Robert Cardwell, Port Essungton, Northern Territory
652 P	Sheepskin Mats, 12 Sheepskin, of pure Lincoln Ramlamb, aged 9 months . Sheepskin, of pure Lincoln Ewe, 9 months' growth of wool - Skims of the Spotted Emu	$\left\{\begin{array}{l} \text { W Kemp, Adelande. } \\ \left\{\begin{array}{l} \text { J Angas, of Collingrove, near } \\ \text { Adelande The breeder } \end{array}\right. \\ \text { H. Aness. } \end{array}\right.$	
	Skins of anumals mdigenous to South Australia, made up in desigus - Skins of Kangaroo and Wallaby, \&c, dressed Skins of mdigenous mmmals, manufactured Skins of andigenous birds and animals of South Australia, made into muffis, collarettes, de Skins of native animals and birds	South Australian Commissioners Saml. Davenport, Adelasde	
658	Emu eggs Emu eggs Emu eggs, made up in mitation of jewellery.	South Australuan Commussioners Saml. Davenport Saml Davenport	
656P	Meat, Dry extract of, m $1 \mathrm{oz}, 2 \mathrm{oz}$, Rasins, Sultanas	E M Bagots of Adolajde .	London Agents are Atkins \& Co 6, St Helen's Place
	Rausins, Muscatel, in layers .		
	Raisins, Muscatel, loose Zante Currants	$\}^{\text {Mhomas Hardy, Adelande. }}$	
	Raisins, Sultanas - - - -		
	Rawsins, Muscatel, in layers - -		
	Ransus, Muscatel, loose -	South Australian Commissioners	
	Plums, Dried - " - -		
	Plums, Blue-gage : :		
5	Fruits, Dried - - .	Wurm, Frederick, Adelarde	
	Jams, Collection of . -	Alexander Murray, near Adelande.	
\mathbf{P}	Jams, Assorted Jelhes and Marmalade, Collection of	George M'Ewen, near Adelande Alexander Murray, near Adelande	
657	Flour, from wheat of 1874 Flour, from wheat of 1874 Flour, from wheat of 1874	John Dunn \& Co, Adelajde Thos Magarey \& Co, Adelade Thos Cowsn \& Co, near Adelaide	

Drfartment VI-Agriculture-contenued

$\underset{860}{\text { Class }}$	Wines - Section A. Light White Wines	South Australian Comomisshoners, Adelaide -	Varnety of Grape	Soll, Aspect, Elevation, \&cc.
	1 Riesling - Vintaje 1865		Reeslung	
	2 Verdeulho - ${ }_{\text {\% }}$		Verdeilio	
	8 Mornalta Swreetwater - 1865		Sweetwater	Gravelly, 2000 feët over level of ses
	${ }_{4}^{4 .} \begin{aligned} & \text { Resiling } \\ & 5\end{aligned}$		Riesling ${ }^{\text {Palomin }}$ Blanco-	Shale soil.
	5 Palomino Blanco ** * 1869		Palomino Blanco	Red clay with calcareous subsoil
	6 Mornalta Sweetwater - 1870		Sweetwater	Gravelly soll, 2000 feet over sea level.
	7 Temprana $\quad=1867$		Temprana	
	${ }_{9}^{8}$ Droradilla $\quad * \quad * 1867$		Doradilla	
	10 Old Spansh. * 1864			
	11 Sweetwater - - 1872		Sweetwater	
	12 Moorooroo Rreshng - 1878	Thomas Hardy, Adelaide-	Ruesling	Calcareous loam
	13 Pewsey Vale Rueshing - 1868	Joseph Gilbert, Pewsey Vale, Adelado	Rueslung	Sandy and gravelly, 1500 feet above sea
	14. Pewrey Vale Riesling - 1869 15 Dweetwater - Vintage 1865	Clark and Crompton, Ade"	Riesling * Sweenwater	Do do
	16 Rresling $*$ $"$ 1871 17 Grenache $"$ $"$ 1871 18 Grenache $"$ 1870 19 Whute Spanush $"$ 1870 20 Dry Hock $"$ $"$ 1869		Grenache	
		$\}$ wale, S A Mo. Water-	Grenache	Limestone, hilly, red loam
		H C Quick, Marden, Adelande	Sweetwater and Verdellio	
		$\left\{\begin{array}{c} \text { R D Ross, Hughercombe, } \\ \text { Adelande } \end{array}\right\}$	erdelihc, Rnessung: and Spanush	Loam with rroustone, 1300 feet above sea
		John H Kaines, Adelarde Patrick Auld, Magill, Adelande	Verdenlho	Sandy clay, hilly
			Verdeulho, Tokay, and Palomino Blanco	Ironstone, calcareous and decayed slate soul, 600
				feet above sea, and. north aspect
	27 Chasselas . . 1873		Chasselas ${ }^{\circ}$	Loamy
	28 Dalomino Bianco \quad : $\quad 1867$		Palomino Blanco	
	30 Doradilla - " 1869		Doradilla .	
	31 Pedro Xumenes " 1871		Pedro Ximenes	Light red loam
		$\left\{\begin{array}{l} \text { Isabells Baker,Monalta, } \\ \text { Adelaide. } \end{array}\right\}$		ell
				2000 feet
	n B			
	Fuki-bodird Whitre Wines 1. Morialta, Whate - Vintare 1866			
	1. Morialta, Whute - Vintage 1866	(${ }_{\text {a }}$	Madeurs \& Sweetwater Maderra. Rieshng	-
	${ }_{8}^{2} \quad$ Do - - $\quad 1887$			
	8 Reesling " $\quad 1870$			
	4. Douth lan Sherry - $\} \quad 1868$		Sherry Grape	
	5 Prontignac : $\quad 1880$		Frontignac	
	${ }_{7}^{6}$ Prineau - - - "		Pineau	Slake, gravolly
	7 Mhraz " \quad Moorooroo Ver.? $\quad 1871$		Shiraz.	
	dellho - $\quad 181869$		Verderlho	Calcareous loam
	9 Mixed White - " 1869			
		\}Joseph Gillard, Adelande	Frontignac -	Loamy
		G L Barnard, Adelande	Frontigasc Madera	
	13 White Auldana, ${ }^{\text {No } 18}$, " 1874		Palommo Blanco,	Calcareous ronstone
	14 Nois)	(Patrick Auld, Magnl!,	Tokay, Verdellho, \& PedroXimenes	decayed slate, 600 feet
	14.4 Do, No 9 $\quad 18078$	\{ Adelande $:\{$	Ruesling, Verdellio, and Palomino Blanco	over ses, N, aspect
	15 Larac, No 1×18186	\% ${ }^{\text {C }}$ Quick, Marden, ,	Maderra	
	16 Do, No 2. * 1864	$\}$ Adelaide - -	Pedro Xumenes a Muscat	
	$\left.\left\lvert\, \begin{array}{c} \text { Grenache and } \\ \text { Verdellho } \end{array}\right.\right\} \quad \text { m } 1872$	G F Ind, Paraduse Adelande	Grenache \& Verdellho	Loaing, aspect N E.
	18 Rueslung : : $\quad \geqslant \quad 1885$		Ruesling	
	19 DO \cdots \vdots \because 1869 20 DO $:$ \square 1871	$\}$ Henry Foote, 1 delarde -	Do	
	21 mlesiung - \quad - $\quad 181871$	J W Richman, Water-	Do Ruesling	
		vale, S A	Ruesing	Calcareous loam, buliy
	22. 1871 28 Verdeilho	Thomas Hardy, Adelande -	Pedro Xumenes, dc.	
	24 Gouans ${ }_{25}$ Colonial Sherry \quad " 1871	\} J D Holbrook, Adelande \{		Loamy soul.
	25 Colomal Sherry $\quad 1869$	C A Hornabrook, Adelaxde.	Goums : - -	Do

Department VI-Aarioulture-contanued

Department VL.-Agriculture-continued.

Nots - Some of the Exhibits, specially the samples of Flour and Wheat, samples of W ool, and portions of Bagot's Extract of Meat, had suffered dannge from salt water on board the "Skerryvore," amporthing them
The best of some of these were too much destroved to be exhbited.

Sam. Dayenfort.

Manuractures of Soutir Austraila.

[^14]TASMANIA.

Commission from Tasmania to the International Exhibition, Philadelphia, 1876.

H. P. Welsh, Esq., Resident Representative Commissioner.

P. A. Jennings, Esq., Resident Commissioner.

TASMANIA.

"Tasmania, the recognised sanatorium of Australia, was undoubtedly Introductory. formed by nature in her kindliest mood. The whole island is replete with natural beaunes Mountams frown in majesty on peaceful valleys and extensive plains, framed as it were by sinuous rivers, the banks of which form a fit theme for the pen of the poet or the pencil of the artist. The prosperity which Pragress of marked the progress of the colony in the year 1873 still contmues, and the colony first half of the year 1876 will bear favourable comparison with the mprovement in the condition of the colony whech caused such general satisfaction at the date of the Intercolomal Exhibition On the 7th February 1870 the popu- Census in 1870 lation, according to the census then taken, numbered 99,328 souls, of whom 52,853 were males, and 46,475 were females The estmated population on the 31st December 1875 was 103,663 , the number of males being 54,643 , and Census in 1875 the number of females 49,020 The revenue* for the year 1875 was 343,6761 , Revenue, 1875 and the expenditure $\dagger 385,731 l$. The value of imports in the same year was $\frac{\text { Imports and }}{\text { Exports } 1875}$ $1,185,942 l$, while that of exports was $1,085,9762$.
"Education $1 s$ compulsory, and of a most comprehensive character; there Education is scarcely any remote district in which there is no school, and no loophole is allowed to the careless parent to permit him to let his children drift into ignorance Numerous industries have been established, and those who were once content to observe the wool growing on the sheep's back are astomshed at seeing how rapidly and beautufully the Hobart Town and Launceston mills convert the raw material into articles of luxury as well as of domestic Home mannconsumption
"The total area of the ssland of Tasmanua is $16,778,000$ acres, of which Total area $4,024,808$ acres are alenated from the Crown by grant and sale; $1,463,923$ acres are held under depasturing heenses from the Crown The total area Area under under cultivation in the colony is 332,782 acres. Wheat takes first rank in cultivation extent and importance, 42,745 acres being allotted to this cereal; barley, 5,939 acres, oats, 32,556 acres Consequent on the high duties enforced on agri- Inter-colonal cultural produce by the other Australian Colones, and the fluctuating state dutnes on agriof the inter-colonial markets, the attention of Tasmanian agriculturists has of cultural produce. late years been turned to the production of wheat for the Enghsh market, and this has become the most mportant artacle of strictly agricultural produce. The export of grain m the year 1875 was valued at 109,637l.
"Salubrity and comparative coldness of clumate, owng to higher latitude, make Tasmania an excellent breeding station of stud stock for all the Austrahan continent, especially as regards animals whose features of excellence consist in that massiveness of form of muscular development, in the dewy mellowness of skin, and that hardy constatution so requisite on the ox, the sheep bred for killing in contradistinction to that reared for wool, and the draught horse The number of horses in Tasmania in 1875 wras 23,473, cattle 118,694 , and sheep $1,719,768$. The bulk of the wool produced is Merino. The export of wool during the year 1875 amounted to $6,199,248 \mathrm{lbs}$, which Export of wool represented a value in the Colony of 433,5501 .
"The mming industry for many years past was confined to gold and coal, Mming undustry but during the past year tin, uron, and slate have attracted much attention. Goid, tin, ron, The yreld of gold for the last twelve months was-alluvial, 270 ozs ; quartz, $2,740 \mathrm{ozs}$ The quantıty of quartz crushed was 3,889 tons. The average yeld per ton of stone was 14 dwts 2 grs The average value of gold per ounce was $4 l$ for alluvial; quartz, $3 l 19 s 6 d$ The total value of the produce of gold for 1875 was 11,982l Since the beginning of 1876 a great revival in gold mining has taken place, the reefs at Nine Mile Springs having been proved to be of singular richness The yreld of gold in the present year will exceed that of any former year.

[^15]Tin deposits

Sulver
Iron.

Bismuth and
antimony
Coal measures

Slate deposits

White clay
Brick clay
Kaolnn or porcelam clay
Limestone.

Timber trees

Tanning biuk

Wild anmals

Birds

Fresh water
fish,
"The mineral which occupred the greatest share of attention in that jear was tin, the supply of ore being practically unlimited-the character at the deposits at Mount Bischoff admitting of no question. The total amount of time rassed in 1875 was 607 tons, the quantity in 1876 will be greatly multipled. Silver has been proved to exist at Pengun Creek, but is not at present worked With respect to iron, the quantity rased during the year 18 set down as 3,200 tons, and 510 tons of manufactured rron were exported Extensive works were completed and opened at the middle of the year, and the production of this metal will thus be very largely increased.
"Bismuth is also known to exist in the Colony, as well as antumony
"The island of Tasmania is intersected by many valuable coal measures. At present the output of Tasmanian coal is not extensive, and the island is mainly supplied from Newcastle, New South Wales, although, for domestic purposes, Tasmanian coal is used to a considerable extent
"During the past two years attention has been directed to the slate deposits of Tasmania; the high prices ruling for Enghsh slates in the colonial markets has induced the Australan Slate Company to commence work on a fair scale The Tasmanian slates are sard to be superior to the English
"At Iffracombe Bay there 18 an extensive bed of pure white clay which seems very refractory, and which, when mixed wth fine quartz (also abundant and close at hand) forms an admurable fire brick. Common clays are found in all directions, and the uron companies are now manufacturing bricks. Kaolin or porcelann clay is also found at Crcular Head
" In the West Tamar district, as also in numerous other places, limestone quarres have been worked for many years past. There is an mmense mountam of blue limestone, situated about two miles from the township of Latrobe, on the River Mersey. At the River Don there are very large deposits of pure carbonate of lime, and the eastern districts, especially. Fingal, abound with lume of various kinds and qualities
"The principal timber trees of Tasmanıa,-such as blue gum, stringy bark, white gum, or gum-topped stringy bark, swamp gum, and peppermint tree,furnish a hard, close-graned, and strong tumber Huon pine is very durable, and 18 employed for boat-buldang and for house-fittings, \&c Blackwood makes excellent billard tables and furniture, naves and spokes, cask staves, \&e Myrtle is valuable for house-fittngs Swamp gum yields the finest palngs and other split-stuff in the world Sassafras affords timber for housefithings, bench screws, \&c Celery-topped pine is chefly used for masts and ships' spars In addition to these, silver wattle is used for wood staves and treenals. Mallets, sheaves of blocks, and turnery are manufactured from iron wood, while the native cherry is used for tool handles, gun stocks, \&c White wood is a fit wood for engraving purposes, while pink wood and native pear are surtable for turnery Tonga bean wood and native box have both a pleasant odour, that of the latter being fleeting

- Bark is largely exported to England and New Zealand for tanming purposes. The price of ground bark varies from $4 l$ to $6 l$ per ton at the ports During the year 1875. 6,507 tons were exported, valued at $40,542 l$ Hops also are largely cultivated In 1875, 767,444 pounds welght were exported, valued at 55,149l
"The principal anımals are the kangaroo, wallaby, opossums, and bandrcoots, the skins of which are all of avail for tanning purposes, the fur being highly valuable for rugs, \& The devi and Tasmanian tiger are formidable beasts to sheep, and used to make great havoc amongst the flocks The thger is a low long-bodied anmal, with powerful forequarters, and a dog-lhke head, weighing sometimes from 60 lbs to 70 lbs . The devil, though not so large, is more hideous in appearance than the tiger
"Of birds, 171 species have been observed, but of these only 20 species are supposed to be peculiar to Tasmama. The notes of many of the brds are very musical, the most remankable being the reed warbler, the tones of which approach those of the maghtingale, the black and white magpie, and the butcher bird The principal edible birds are varieties of quail, duck, snipe, golden plover, and prgeons.
"There are many species of fresh water fish, the most valuable beng the cucumber grayling Amongst the estuary fish, those most appreciated as edible are the sole, whiting, gar-fish, and rock-cod. The best of the deep
sea fish are the trumpeter and king-fish Durng the last ten years the salmon trout and brown trout, the tench and perch, have been established in many of the rivers and lakes Salmon and salmon trout have been successfully acclim Acchmatisation matised Many of the rivers are now well stocked with the brown trout, of salmon (salmo which are found to thrive remarkably well, and grow to a large size
salar), salmon
"The chief industries are brewing, mulling, jam making, fellmongering, trout tanning, and coopering Most of the beer is excellent, and is fully appreciated Chuef industries. in the other colonies The quantity of jam exported in the year 1875 was $2,851,830 \mathrm{lbs}$, and 159,224 bushels of frut, valued together at $116,576 l$. Tasmanian leather is excellent, all varieties from kip to kangaroo being supphed of such quality that a great falling-off in the importation of anferior leather from European ports has taken place, and in 1875, 21,937l, worth was exported
"The exhbits from Tasmania will be found interesting in elucidating the Resources and natural resources and industrial progress of the colony" (Extracted from the andustries shown Offical Report of the Vectoru Exhtbizon, 1875)
There is one remarkable feature distingushung Tasmania from all other Noteworthy countries, whose statistics have been compared with hers, whech ought not to Peature in Tasbe passed by unnoticed, namely, -the small mortality among children, parti- mama. cularly those under one year of age. Taking an average of five years the Small infant following results have been arrived at Out of 100 infants born, there died within the first year in Tasmania, 945 , in New South Wales, 957 ; in Queensland, 1107 , in Victoria, 1186 , in South Australia, 14 24, the number in England being about 16; in Scotland about 12 $\frac{1}{4}$ The percentage of deaths of children under five years to the total deaths was-Tasmana, 2808 , New South Wales, 4214 , Victoria, 4550 , Queensland, 4633 ; South Austraha, 5417 The proportion of children under five who died to 1,000 chaldren of the same age living was-in Victoria (10 years), about 52t, in England and Wales (30 years), about $67 \frac{1}{2}$; in Tasmanis less than 27 Thus it appears that the mortality of chldren under five years of age in Tasmama is little more than half that of the least healthy of the Australian Colonies It is also considerably under that of New Zealand, which, as regards the general death rate, is the most healthy of all the Australian group -(Nowell, Statesticuan)

With regard to Tasmanian tomber, it may be remarked that by some of the shplbuldung most experienced local shipbuilders the Tasmanian blue gum is classed next wood. to teak for shipbuilding, oak being regarded as only third in value The undigenous wood known as Huon pine is stated to be superior to elm for boat building, since it bends equally well, and does not break when old

From a series of experiments made by Mr James Melville Balfour, C E, Analysis of Provincial Marine Engineer of Otago, on specimens of the Tasmaman blue Tasmanuan blue gum, the following mean results were obtaned -

Breaking weight at centre of a beam, 20 feet clear space (supported at ends), reduced to a unform weight of 20 lbs per lineal foot, and of the proportions, depth equal to twice breadth, tons
The above figures are taken from Appendix C. to the Report of the Com- Opmon of New missioners for the New Zealand Exhibition of 1865 The same report also Realand experts contams the followng remarks -"The collection of Tasmanian timbers ex- as to Tasmanum
"\% hibited is both interesting and extensive, and certainly proves the right of
" that colony to rank very high among the timber-producing countries of the
" world The specimens exhibited may be assumed faurly to represent the
" pecular qualities of Tasmanian woods, which are probably as a whole
" inferior to none in density, toughness, and remarkable durability, as well as
" the ornamental vanieties in striking beauty." (p 137)
40609.

Iron manufactur
Deposits

Proportion in ore.

Proportion in earth

Quantity of manganest contained

Reference has already been made to the manufacture of aron A ferv words may here be added on the sulject fron ore is found in many parts of the Colony, but perhaps the most valuable deposits yet discovered are those in the neighbourhood of the new works before adverted to, on the west bank of the Tamar They exist in the form of hematite and magnetic oxide in immense quantities-the whole of a hill being described as consisting of iron, whence it can be quarred at a shight cost The proportion of metal contamed in the ore is very high, one sample giving 70 per cent, as to which the assayer remarks that "ats fitedom from all obnoxious constituents will render at of "great value for rron and steel manufacture" The red oxide or earthy matter, of which the sonl in parts is said to be almost wholly composed, yielded about 45 per cent of metal It was found to be free from sulphur and phosphorus, and therefore "calculated to make ron of the very hughest " quality The presence of such a notable quantity of manganese renders the " ore particularly suted to the manufactuve of the variety of pig ron known " by the name of 'Spregelesen,' which is of such importance in the manu"facture of Bessemer steel" Hardness is a special characteristic of the uron made from these ores.

Tasmanian Contributions to the Philadelphia International Exhibition, 1876

Notas -The letter v before the name signufies a Prizeholder for the same Exhibit in the Victoraan Exbibition, 1875
P.-This letter before the name signifies that the Exhibitor has been awarded a prize at the Phuladelpha International Exhibition, 1876 'The Government of Tasmama received also an award for its Collective Exhibit, and the Commissioners representing the Colony an award for the Collecton of Ores and Rocks

* This star denotes that the Exhibitor presented the objects to the Academy of Natural Sciences, Philadelpha.

Department I.

Cl. 100. * *British and Tasmaman Charcoal Iron Company (Limited), T. H Lempuere, Manager, 56. Queen Street, Melbourne. 1 Iron Ore from Ilfracombe on the River Tamar, a block

2 Earthen Brown Hematite
3 Iron Ore and Crystallised Brown Hematite
4 Oxides of Iron from Anderson's Creek, Western Tasmamia
Cl 101. Groom, Frederick, Harefield.
5. Coal from Harefield, St Mary's, near Fingal
C. 100. Hammond, W, Hobart ' Town

6 Bismuth from Mount Ramsey.
Cl 100. \vee Harcourt, James, Hobart Town
7. Samples of Pig 1ron
8. Iron Ore, calcined and uncalcined

9 Iron Ore, from Bruny Island
10. Smelted Iron, from Derwent Iron Works, Hobart Town.

Cl 101. Harrap, A, Launceston
11 Petrfied Wood
Cl. 100. J H. Innes, Hobart Town.

12 Tin Ore from Ringarooma and George's Bay.
Cl. 100 *Hematite Iron Works, West Tamar.
13. Pıg Iron.
14. Iron Ore, caleined.
15. Iron Ore, uncalcmed
Cl. 102. $\quad 16$ Marble Limestone, Blue
17. Marble Lamestone, White
C. 100. *Hull, Henry Jocelyn, Hobart Town

18 Tin Ore, from the deposit, George's Bay
Cl 100 *Just, Thomas Cook, Journalist, Charles Street, Launceston,
19 Magnetic Iron Ore.
20 Oxide of Iron and Asbetos in Serpentine Rock
Cl. 102 *Lyell \& Gowan, 46, Elizabeth Street, Melbourne (Australasian Slate Company, Limited)

22 Slate from the Piper's River, on the North-east Coast, in the County of Lewrsham, about 15 miles east of George Town
$23^{\text {Tin Ore and Ingots, from the Don Tin Mining Com- }}$
pany, Mount Bischoff
24 Marble Lumestone, Black, Blue, and White, from the River Don
25 Coal from the River Don
Cl 100. $\nabla \mathrm{P}^{*}$ Mount Bischoff Tin Mining Company
26. Tio in Ingots (a ton), from Mount Bischoff.

Cl 102. *Rayner, E, Bridgewater.
27 Lumestone, with large Fossils
C. 100. *Smart, Dr, Hobart Town.
23. Gold in Quartz, from the City of Hobart Mine; Fingal
Cl. 100. V^{*} Smith, James, Launceston

29 Bismuth from Mount Ramsey.
CI. 100. *Stanhope Company, Tasmania
30. Tin Ore

CI, 200. *Strachan, \mathbf{R}, Cambridge
31 Salt, from Salt Works, Cambridge
Cl. $200 \quad$ P *Kermode, W A , Mona Vale.

21 Salt, from Saltpan Plaus, Mona Vale estate.

Department II

Cl. 620. Archer, W H D, Longford.

$\int 32$ Wheat
C. 620 Creswell, C F , Hobart Town
[35 Wheat (Red Tuscan)
36 Wheat (Golden Drop).
37 Wheat (Farmer's Freend).
38 Wheat (Goldsmath's)
39. Enghsh Barley (Malting)

40 Oats (black) (Black Tartarıan)
41 Oats (Norway)
42 Oats (Poland)
43 Rye
4. Tares (Golden Spring)

45 Horse Beans
46 Grey Peas
47 Peas (Blue and Whute)
48 Red Dutch Clover
49 Meadow Soft Grass Seed
50 Perennal Red Clover Seed.
51 Sanfoin Seed
52 Lucerne Seed.
53 Linseed
54 Canary Seed
55 Rape Seed
56 Cocksfoot Grass Seed
57 Itahan Ryegrass Seed
158 Evergreen Perennal Ryegrass Seed

Cl 624	59. Seed of the Blue Gum (Eucalyptus globulus)
Cl. 602.	- 60 Seed of the Stringy Bark (Eucalypta obliqua).
Cl 600,	P 62 Forest Trees, 24 Varieties.
620,624	63 Ryegrass Seed
	64 Olover Seed (white)
Cl. 620.	Dalgety, Moore, \& Co, Launceston. 65 Wheat (Brown Veluet)
	66 Wheat (Sulver Drop)
	67. Wheat (Purple Straw).
	68 Oats (Tartarian)
	69. Oats (Poland)
Cl. 620.	Gibson, Whllam, Hobart Town. 70. Wheat
Cl 620	*Graves, J W, Hobart Town.
	71 Natwe Bread (Mylutta Australus)
Cl 624.	Gullver, B, Hobart Town
	72 Blue Gum Tree Seed (Eucalyptus globulus)
	73 Blackwood Seed (Acacia melanoxylon).
	74. Black Wattle Seed (Acaca molzssrma).
	75. Sulver Wattle Seed (Acacau dealbata)
Cl 620	v Harrap, Alfred, Launceston
	76 Wheat, Boucher's Velvet
Cl 620.	v Hogarth, D, Launceston
	77, Wheat, Winter (Braemar Velvet)
	v *Hull, Hugh M , Hobart Town
Cl 600,	78 Cubes of the followng Woods of Tasmania:-Blue
601.	Gum (Eucalyptus globulus), Stringy Bark (Eucalyptus
	obliqua), †Huon Pine (Dacydum Franklinu), Peppermint
	Gum (Eucalyptus vimenalus) ; †Curly Gum (Eucalyptus),
	\dagger She-oak (Casuarına quadruvalıs), †He-oak (Casuarina
	stricta); Honeysuckle (Banksia Australss), Kıng William
	Pıne, †Oyster Bay Pıne (Callitıes Australıs); Swamp Gum
	(Eucalyptus) ; \dagger Myrtle (Fagus Cuninghamı), †Musk (Eurybia
	argophylla), Box (Bursaria), Tea Tree (Leptos-permum)
Cl. 620.	*Kemp, George, Upper Bagdad
	$v \mathrm{p}\{79$ Wheat (Armstrong's Prolufic).
	\checkmark P 80 Wheat (Lamont's Prolyfic)
Cl 620	v Lupscombe, Frederıck, Sandy Bay.
Cl 624	81. Seeds of the Blue Gum Tree, 50 lbs . weight (Eucalyptus globulus)
Cl 623	v Sharland, W C, New Norfolk.
	82 Box of Hops, grown at New Norfolk.
Cl 623	v Shoobridge, Ebenezer, New Norfolk.
	83. Box of Hops (Golding), grown at New Norfolk.
Cl 620.	*Thomson, Mrs John, Cormiston
	84 Native Bread (Mylatta Australes).
Cl 657.	v Degraves, John, Hobart Town
	85. Malt from Tasmanian barley.
Cl. 657.	v Gracie, Wullam, Hobart Town.
	86 Malt from Tasmanian barley.

Department III

Cl. 681. Anglo-Australian Guano Company.
87. Guano from Bird Island, procured by a Company whose establishment is in Hobart Town.

Group 13

Cl. 603. *Edwards, G W., Hobart Town
88. Grass-tree Gum (Xanthorhoea), two samples.

Group 14.

C. 104 * Coverdale, Dr John, Port Arthur. 2
Cl. 20289 Earth for Pannts, red ochre.
90. Earth for Paints, red ochre in powder, from Port Arthur
91. Pipeclay from Port Arthur.

Laughton, James, Hobart Town.
C. 104
C. 202
C. 662
92. Earth for Paints, umber coloured.

93 Earth for Paints, sienna coloured.
Cl. 603. Mitchell, Mrs.

94 Oll from the Blue Gum tree (Eucalyptus globulus)
95 Gum from the Oyster Bay Pine Tree (Callitrs Aus-
rals) trals)

Department Vi.

Group 17.

C 667.

* Silver Medal to Tasmanaan Commissioners
*Archer, Willam Henry Davies, Brickendon, Longford.

96. Fleece of Pure Merino Lamb's Wool, hot water
p 97 Fleece of Pure Merno, ditto
98 Fleece of Pure Merino Ewe, ditto
99 Fleece of Wool in the grease.
$\mathbf{P} *$ Brock, J , Campana.
$99 a$ Fleece of Pure Merino, which took the first prize at
Cl 667 *Cameron, the Honorable Donald, Burnside and Fordon
97. Fleece of Pure Merino.
98. Fleece of Pure Merno

102 Fleece of Pure Merino
Cl. 667. *Gibson, James, Belle Vue, Cleveland

103 Portrait of "Sir Thomas" Pure Merino Ram.
104 Fleece of Pure Merino Ram, in grease, 365 days ${ }^{\text {P }}$ growth
$\mathbf{P}\left\{\begin{array}{l}105 \text { Fleece of Pure Merno Ewe, in grease, } 365 \text { days' } \\ \text { growth }\end{array}\right.$ 106 Fleece of Pure Mernno Lamb, about four months' Lgrowth

Note.-Mr Gibson is the breeder of "Sur Thomas," a Ram which was sold in Melbourne for $714 l$
CL. 667
*Gibson, Willham, \& Son, Scone, Perth
107 Fleece of Prize Mermo Ram "The Dake" (in the grease)

108 Fleece of Pure Merno Ewe (in the grease).
109 Fleece of Pure Merino Ewe (washed)
110 Fleece of Pure Merino Hoggett (washed).
111 \& 112 Portrats of "The Duke," a Prize Ram, and other Prize Merino Sheep, photograph by W. Gibson, jun.
Cl 667. *G Gbson, Willam Henry, Fairfield, Sanke Banks
$\mathbf{P}\{113$ Fleece of Pure Mernno Ram, 2-tooth

Cl 667
*Headlam, Charles, Egleston, Macquarie River.
\{15. Fleece of Pure Merino.
$\mathbf{P}\left\{\begin{array}{l}116 \\ 117 \text { Fleece of Pure Merino }\end{array}\right.$
117 Flece of Pure Merino
\mathbf{P} *Keach, George Willam, Chaswick, Ross.
118 Fleece of four-year old Ram, 364 days' growth; weight of fleece, $9 \frac{1}{2}$ lbs , combing Merino (in the grease).
119. Fleece of two-year old Ewe, 364 days' growth; weight of fleece, 8 lbs when shorn, slightly skirted owing to scour; combing Merino (in the grease)

C1. 667. *Mac Lanachan, the Honourable James, Ballochmyle
$\mathbf{P}\left\{\begin{array}{l}\text { 120 Fleece of Pure Merino Ram, in the grease, } 11 \mathrm{lbs} \\ 121 . \text { Fleece of Pure Merno Ram, in the grease, } 10 \mathrm{lbs} \\ \text { ditto } \\ 122 \text { Fleece of Pure Merino Ram, in the grease, } 10 \mathrm{lbs} \\ \text { ditto }\end{array}\right.$
Cl. 667. *Parramore, Thomas, Beaufort, Ross.

123 Fleece of Pure Merino Ram (in grease), 14 months old 124 Fleece of Pure Merino Ewe (warm water washed) $\mathbf{P}\left\{2 \frac{1}{3}\right.$ years old. 125 Two Fleeces of Pure Merino Eives (warm water washed)
C. 667 Lindley, George Wm, Runnymede, Richmond 127. Fleece of Leicester Wool.

Cl 667 P *Shaw, Frederick, Redbanks, Swansea 128 Fleece of Letcester Wool
Cl 667. *Sharland, William Stanley, Woodbridge, New Norfolk.
P $\left\{\begin{array}{l}129 \text { Fleece of Pure Mermo }\end{array}\right.$
P $\left\{\begin{array}{l}130 \text { Ditto ditto }\end{array}\right.$
Cl. 667. *Page, Samuel, Belle Vue, New Town
$\mathbf{p} \begin{cases}131 & \text { Fleece of Pure Merino, hot water washed } \\ 132 & \text { Ditto } \\ \text { ditto. }\end{cases}$
.C1. 667. *Taylor, George, Mulford, Campbell Town
$\mathbf{P}\left\{\begin{array}{lll}134 & \text { Fleece from Stud Merrno Ram } \\ 135 & \text { Ditto } & \text { ditto } \\ 136 & \text { Ditto } & \text { ditto } \\ 137 . & \text { Ditto } & \text { ditto. } \\ 138 & \text { Ditto } & \text { ditto } \\ 139 & \text { Ditto } & \text { ditto } \\ 140 & \text { Two } & \text { Fleeces from } \\ 141 & \text { Dreedng } & \text { Dito }\end{array}\right.$

Cl 667. *Taylor, John, Winton, Campbell Town
$\mathbf{P}\left\{\begin{array}{l}142 \\ \begin{array}{l}\text { Bale of Wool from yearling Merino Ewes, washed and } \\ \text { skrted. }\end{array} \\ \begin{array}{ll}14.3 & \text { Fleece of yearling Merino } \\ \text { 144. } & \text { Dwe, washed and skirted. } \\ 145 & \text { Ditto }\end{array} \\ \text { ditto }\end{array}\right.$
(The bale of Wool to be forwarded after exhibition to Messrs
H. G Ashurst \& Co, Fenchurch Street, London)
Cl. 667. *「aylor, David, St. Johnstone's, Macquarie River.
$\mathbf{P}\left\{\begin{array}{lll}\text { 146. Fleece of pure Merino, in the grease. } \\ 147 . & \text { Ditto } & \text { ditto. } \\ 148 & \text { Ditto } & \text { ditto }\end{array}\right.$
Cl. 667. Wilson, George, Huntsworth and Ashgrove, Oatlands. .
$\mathbf{P}\left\{\begin{array}{lll}\text { 149. } & \text { Fleece of } & \text { pure Merin } \\ 150 & \text { Ditto } & \text { ditto. } \\ 151 . & \text { Ditto } & \text { ditto. }\end{array}\right.$
Cl. 667. Ralston, John, Logan, Evandale
$\mathbf{P}\left\{\begin{array}{lll}\text { 152. } & \text { Fleece of pure Merino. } \\ 153 . & \text { Ditto } & \text { ditto. } \\ 154 & \text { Ditto } & \text { ditto. } \\ 155 . & \text { Ditto } & \text { ditto. }\end{array}\right.$

Defartment VIII.

Group 20.

Cl. 650, *Coverdale, Dr. John, Fort Arthur
656. $\quad 156$ Gelatinous Sea-weed, said to produce a valuable jelly for the table.
157. Jelly made from the Seaweed.

V Davies, R H, Torquay
158 Tasmaman Shells -Halotis abicans, Quoy, Voy, of Astrolabe III, p 311, Halotis noevosa, Martyn, Cassis sempranosa, Lamk, Cassis pyrum, Lamk; Voluta fusiforms, Sw, Voluta undulata, Lamk, Dosima grata, Reeve; Pupura textilosa, Lamk ; Fusus pyrulatus, Reeve; Fusus Tasmaniensis, Ad and Aug, Proc Zool Soc, 1863, p 421, Fusus Becku (2), Reeve, Icon VIII, 35, Natica Strangel (?) Reeve, Natica conica, Lamk, Sigaretus zonalıs, Gray, Fissurella macrochisma, Gray, Fissurella scurella, Gray, Modiola albicostata, Lamk, Modiola Australis, Lamk., Triton cutaceus, Lamk, Triton subdistortus, Lamk, Triton Barthelemy1, Bernard, Phasianella Australis, Gmelin, Phasianella ventricosa, Quoy and Gamard, Fasiolaria fusiformis, Phil ; Fasiolaria coronata, Lamk, Nerita atrata, Lamk, Lophyrus Australis, Sowerby, Lepidoplearus variegatus, Ad and Aug , Proc Zool Soc, 1864, Mrtra glabra, Swann, Exot Conch, p 21 , Patella tramoserica, Martyn, Patella costata, Sowerby; Patella sp, Patella Gealn, Ancıllama margnata, Lamk., Emarginula Australis, Quoy, Zuzyphnnus armillatus, Wood, Myrtilus Menkeanus, Mactra rufescens, Lamk., Conus Nove Hollandıx, A Adams, Waldheıma Australıs, Quoy, Rısella melanostoma, Gmelin, Risella aurata, Quoy, Voy Astrolabe, Risella nana, Lamk., Turrtella Tasmanica, Chitonellus Gunnu, Reeve, Stomatella umbricata, Lamk; Scalaria granulosa, Sowerby, Amphibolima fragilis, Lamk; Uvanilla squamifera, Koch in Phil Abbild, p 4, f 9, Bittium granarium, Kiener, Diloma Odontis, Woods, Cyprea angustata, Gray , Cyprea Comptonı, Gray, Silhquaria Australis, Quoy, Marginella muscarna, Mesodesma triquetra, Reeve, Mesodesma erycina, Dsh ; Mesodesma natida, Turbo undulatus, Chem ; Arca velata, Sow, Proc Zool Soc, 1833, Vulsella Tasmanica, Reeve, Eleuchus nitidus, Phil. , Eleuchus urrisodontes, Quoy, Siphonaria denticula, Quoy; Littorina unfasciata, Gray, Nassa Pauperata, Lamk, Venerufris carditoldes, Lamk; Venerufris Diemensis, Semele sp, Murex triforms, Vermetus dentiferus, Quoy; Tellna albida, Lamk, Trochocochlea striolata, Wood, Buccinum alveolatum, Kıener; Parmophorus Australis, Lamk, Clanculus undatus, Montfort, Sanguinolaria livide, Auricula cornea, Swanson, T'apes sp , Venus aphrodmoides, Venus gallinula, Lamk, Venus robo. rata, Venus aphrodnoudes, vara, Venus lamellata, Lamk. Venus gallinula var a.
(These Shells were named and arranged by the Rev. Juhan Woods, M A , and Mr Le Grand)
C. 641. vis *Salmon Commissioners of Tasmana

159 Brown Trout, in spirits of wine

Department IX.

Cl. 652. \boldsymbol{v} Tasmamisn Commissioners

160 One large Black Opossum, Rug, made by Omant, one ditto, made by Schmetht. one large Grey Opossum Rug, made by Omant, one ditto, made by Schmidt, Grey Native Catskin Rug, made by Schmidt. Kingtaled Opossum Rug, made by Omant, Skins of the Kangaroo, Skins of the Wallaby; Skins of the Grey Opossum; Skıns of the Black Opossum, Skins of the Wombat, Tıger Skins; Seal Skin, Skins of Albatross, Pelucan, and Pengun, Skins of Platypust, Ringtaul Opossum, Tuger Cat, Natıve Cat, Kangaroo Rat.

[^16]Cl. 652. Archer, W. H. D., Longford.

161 Large Forester Kangaroo skins (6); small Forester Kangaroo skins (6); Wallaby skins (6), Black Opossum skins (10), Grey Opossum skins (10), Black Natıve Cat skins (6); Tıger Cat skins (8); Grey Natıve Cat skıns (4), Ringtailed Opossum skins (2), Rock Opossum skins (3), Bush Rat skıns (3) ; Tiger skıns (3), Platypus skıns (5), Penguın skins (6) ; Grebe skıns (3); Flyıng Squirrel skıns (3), Sea Hawk skin (1), Pelıcan skıns (3); Wombat skins (2), Devil skıns (2); Kangaroo Rat skins (2), Bandıcoot skın (1), tone cream-coloured Opossum (stuffed), †one Platypus (stuffed)

Group 22.
Cl. 656. v Holroyd, Kennedy, \& Co , Hobart Town. 162 Jams and Tart Fruits (5 cases).

Department XIII.

Group 34

Cl 218. V Carisen, P. O., Port Arthur 163. Carved Ivory and Wood Egg and Cruet Stand.

Department IV

Group 36

Cl. 219. v Coverdale, Dr , Port Arthur
164. Spinning Jenny, made of Tasmanian Myrtle, carved and made by P.O Carlsen.
Cl. 219. v Blyth, Miss, Hobart Town.
165. Ornamental Table Top, with wreath of Tasmanian flowers painted on top
Cl. 219. v Hope, Miss Mary, Hobart Town

166 Ornamental Table, with wreath of Tasmanian flowers panted on top.
Cl. 219. V Graves, Mrs John Woodcock

167 Table top, with Tasmanian Ferns
C. 25l. P Bidencope, J, Hats and Caps

Department XVIII

Group 49
Cl. 269. v *Moir, Joseph, \& Co.
168. Assortment (19 sizes) of Shot, made at Queenborough Shot Tower.

- Derartment XXII

Group 60.
C. 306. *Hull, Hugh M , Hobart Town

169 "Hull's Hints to Emigrants," 200 copres, from the Author
Cl. 306. *Tasmania, Commissioners of
170. Newspapers, 1,000 copies of "Mercury," 50 copies of "Chrastran Witness"
Cl. 304. 171. Volume of Statistics, from the Government Statistician.

172 Volume of Legislative Council Journals for Session 1874, from Clerk of the Councl.
173 Volume of the House of Assembly Journals for 1874, from Clerk of the House

[^17]Cl. 306. *Walch \& Sons, Hobart Town
174. "Guide to Tasmania"
"Walch's Tasmanian Almanac for 1875," from the Pubhshers

Group 61.
Cl. 300, *Cemetery Commissioners of Hobart Town
301. 175 Chart of the General Cemetery, Hobart Town.

Cl 300, *Hull, Hugh M , Hobart Town
301. 176 Map of Tasmania, showng the alienated portions, the ralways and roads, towns and villages
C. 300, *Moore, Hon William, Minister of Lands, Hobart Town.
301. 177 Map of Tasmamia, showing the gold, coal, yron, and tin deposits.
Cl 300, *Walch \& Sons, Hobart Town.
301. 178 Chart of the City of Hobart Town, showing the electoral divsions.
179 Chart of the Town of Launceston, showing the electoral divisions.

Group 66
C. 300, *Royal Socrety of Tasmanza
301. 180. Meteorological Tables, published by the Society for 30 years.
Cl 300, Walch \& Sons, Hobart Town
301. 181. Tasmanıan Postage Stamps.

Group 82

Cl 300, Hull, Mrs Hugh, Hobart Town
$301 \quad 182$ Pencil Drawng, "Avoca, in Tasmana, by Moonlight"

Group 83.

Cl. 300, *Randall, A, C E , Engineer to the Hobart Town Waterworks, 301. Hobart Town

183 Chart of the Hobart Town Waterworks
Cl 300, Dibbs, T F, Launceston
$301 \quad 184$ Chart of Launceston

Group 84

Cl $430 \quad$ V Baily, H H, Hobart Town
185. Photographuc Rembrandt Portraits

186 Photographe Portrait Album.
187 Tasmaman Views, 2 books
Cl 430 . ${ }^{\text {*Corporations of Hobart Town and Launceston. }}$
188. \& 189 Plates of Photographic Views of the Cty of Hobart Town and of the Town of Launceston
C. 430 Hull, Hugh M , Hobart Town.

190 Portrait of last Tasmanian Aboriginal Man, "Billey Lanney," photographed from life by Charles Woolley Framed in musk wood

191 Portraits of Aboriginal Women, "Wapperty" and "Patty" Photographed from life by Charles Woolley.

192 Portratts, "Lalla Rookh," the sole survivor of the Tasmanran Aborigines, and "Bessy Clarke" Photographed from life by Charles Woolley Framed in myrtle wood
Cl 430. Tondeur \& Lempriere, Melbourne
193 Photographs of the British and Tasmaman Charcoal Iron Company (Limited), Tasmania

Department XXVI

Group 88
Cl. 304. *Tasmania, Commissioners of

194 Statistical Tables of Tasmana, 1870-74

VICTORIA.

Commission from Viotoria

TO THE

International Exhibition, Philadelphia, 1876.

Sir Redmond Barry, K.C.M G., Acting Chief Justice of the Supreme Court, President
The Hon James Joseph Casey, M.P. \mid Rev John Ignatius Bleasdale, D D. The Hon. James Forrester Sullivan, The Hon Sir John O'Shanassy, M P.
The Hon.Caleb Joshua Jenner, M L C The Hon. James Munro, M P.
John M'Ilwrath, Esq Count de Castlenau. K CMG.
The Hon. Su James M‘Culloch, M.P. The Hon John Alexander Macpherson, M P

The Hon S H Bindon.

 Joseph Bosisto, Esq, M P.James Gatehouse, Esq, Mayor of Melbourne.

The Hon John Thomas Smith, M.P.
Leshe James Sherrard, Esq
John Danks, Esq., Mayor of Emerald Hill.
John McIntyre, Esq
George Colhns Levey, Esq, Secretary.

Resident Commissioners at Philadelphia.

Sir Redmond Barry, K.C.M G.
J. M‘Ilwrath, Esq

- John McIntyre, Esq , and

George Collins Levey, Esq, Secretary.

VICTORIA, AUSTRALIA.

Victoria, the most populous colony in Australia, is situated on the Position southern extremity of the contment, and extends from the 34th to the 39th parallel of south latitude, and from the 141st to the 150th meridaan of east longitude Its extreme length from east to west is about 420 geogra. phecal mules, and 1 ts greatest breadth 250 miles The extent of coast-line is nearly 600 mules The area of Victoris is 88,198 square mules, or $56,446,720$ Arean acres, or the thirty-fourth part of the whole surface of Australia, an extent about equal to that of England, Wales, and Scotland, which contan 89,644 square mules Victoria is therefore very much smaller than any of its neighbours on the manaland of Australia, although its population is very near as large as all the others put together The highest mountann in Victora, Bogong, Mountan has an eleyation of 6,508 feet, and there are several ranging from 4,000 to 6,000 ranges feet The Murray runs along the northern boundary for 670 mules, but the Ruvers. Gouldburn, with a length of 230 mules, as the longest river which throughout its course flows wholly in Victoria
Owing to its geographical position Victoria enjoys a climate cooler and more Clumate invigorating than any other Australan colony The mean temperature of the air in Melbourne, derived from a series of observations extending over a period of 14 years, 18576 Upon examing a chart showing isothermal hnes, it will be found that the Victorian capital is situated upon or near the line corresponding with that on which, in the northern hemsphere, Marselles, Bordeaux, Bologna, Nice, Verona, and Madrid are situated The difference between winter and summer, between the hottest and the coldest month, is, however, less in Victoria than in any of the places mentioned, and the European city whose climate most resembles that of Melbourne is Maffra, 18 miles north-west of Lisbon, and 700 feet above the level of the sea
The three months from September to November are considered to be the Dates of seasons spring quarter, those from December to February the summer, from March to May autumn, and from June to August winter January and February are the warmest months, June and July the coldest The observations taken for 17 yeare show that on 61 occasions the thermometer has risen above $100^{\circ} \mathrm{Fah}-$ renhert, and that there are $5 \dot{2}$ instances of its having fallen to or below freezing point The mean temperature of the arr during the two hottest Mean temperamonths has been 667 m January, and 656 in February, whule the coolest, tures June, shows 490 , and July 477 The above figures give the , temperature of Melbourne The hill districts in the interior, which enjoy an elevation of from 1,000 to 2,000 feet above the level of the sea, are rather cooler, whule the plans are slightly warmer than the metropols The mean temperature of the aur throughout the year at Ballarat, 1,438 feet above the level of the sea, is $53^{\circ} 9^{\prime}$, as compared with $57^{\circ} 6^{\prime}$ in Melbourne, while at Sandhurst it is as high as $58^{\circ} 6^{\prime}$

The rainfall at Melbourne differs very considerably in different years The Ranfall year of the greatest rannfall was 1849 , in which 4425 nches of ran fell, next came 1863, with 3642 inches, and 1870 , with 3377 inches The year when the least rain fell was 1865 , with 1594 neches The rainfall is tolerably well distributed throughout the year, the mean number of days upon which rain fell during the past 35 years being 1355 , of which the spring quarter contributed 403 , the summer 244 , the autumn 289 , and the wnter 419 The mean annual raunfall is 2758 inches, compared with 4995 in Sydney, and 2136 in Adelande

The hot winds of Victoria form the pecular feature of its chmate which is Hot winds most talked about in other countries and is most dreaded by new arrivals They frequently set in about 9 am , and blow from the north with great violence, raising clouds of dust Vegetation becomes parched up, fruit falls

Sudden falls \mathbf{n} thermometer

Average number of hot winds per aunum

Hot winds not without adrantage

Present population

Farious censuses

Chmese and aborigmes in Victoria
Population to square mile of Victoria,
of Melbourne
s
'fhe various censuses which have been taken since the first settlement of Melbourne give the accompanying results -

Date of Enumeration.	Population			Number
	Persons	Males	Females	Houses
25th May 1836	177	142	35	-
8th November 1836	224	186	38	-
12th September 1838	3,511	3,080	431	-
2nd Maich 1841	11,738	8,274	3,464	1,490
2nd March 1846	32,879	20,184	12,695	5,198
2nd Mareh 1851	77,345	46,202	31,143	10,935
26th April 1854	236,798	155,887	80,911	-
29th March 1857	410,766	264,334	146,432	102,001
7th April 1861	540,322	328,651	211,671	134,332
2nd April 1871	731528	401,050	330,478	158,481

from the trees, and anmals as well as human beings appear to be greatly oppressed The tame is a trying one for young children and invalids The wind often changes to the south towards evening, but sometimes continues to blow from the north for two and even three days When the welcome southerly wind sets in it frequently does so in a heary squall, accompanied with drops of ram and thunder and lightning, and the thermometer sometimes falls as much as 20 or 30 degrees in half an hour According to Neumayer, the average number of hot winds for the whole colony is eight or nine per annum, but the number is dufferent in dufferent localities, according to the followng classfication.-

	Average Number of Days of Hot Wind per Annim	
Melbourne and Castlemanne	-	14
Sandhurst, Heathcote, and Portland	-	11
Beechworth, Ararat, and Swan Hill	-	8
Geelong and Ballarat	-	6
Alberton and Camperdown	-	-

The hot winds are not, however, by any means unmixed evils The intense dryness produced by them acts as a powerful disinfectant, and that dampness which in the south of Europe produces such prejudicial effects is enturely unknown in Victoria
The present population of Victoria is in round numbers 852,000 . The latest census, taken in 1871, gave 731,528, of whom 401,050 were males and 330,478 females, residing in $\mathbf{1 5 8 , 4 8 1}$ houses. The nerease which has since taken place from mmigration and the excess of births over deaths has done much to reduce the difference between the sexes, and the numbers may now be set down at 440,000 males and 405,000 females

$$
0-0=0
$$

Of the present population of Victora, about 17,000 are Chnnese, and 1,330 Aborigines
Victoria contans 8268 persons to the square mile, or rather less than in the empre of Russia, which has 10, and much less than the United States, which has 14 inhabitants The population is very unevenly divided Melbourne, the capital of Victoria, has with its suburbs a population of 250,000 , rather less than Boston, U S, or Sheffield, but larger than Hamburg, while in the county of Weeah, in the extreme north-west of the colony, there was not a single nhabitant on the night upon which the census was taken Ballarat, the second city in Victoria, has 47,201 mhabitants, Sandhurst 28,577 , Geelong 21,459 , then come Castlemaine, with a population of 9,322 , Clunes 6,068, Stawell 5,166, and Daylesford 4,696. The disproportion of the sexes is confined to the remoter dsstricts, for in 18 of the cities, boroughs, and towns, the fenales wree in excess of the males.

The accompanying table shows the various nationalities of the people of Table of Victoria in 1871.

Where born		Numbers		
		Persons	Males	Females
Britush Possesstons				
Victoria - . .	-	329,597	165,573	164,024
Other Australastan Colones	-	28,669	14,308	14,361
Englaud - - -	-	164,287	97,796	66,491
Wales -	-	- 6,614	4,189	2,425
Scotland - -	-	56,210	31,475	- 24,735
Ireland --	-	100,468	49,198	51,270
Other Bratash Possessious	-	3,870	2,641	1,229
Forexgn Countries				
France and French Colonies	-	1,170	857	313
Germany - -	-	8,995	6,591	2,404
Austria -	-	269	256	13
Other European Countres	-	6,206	-5,672	534
United States of America	-	2,423	1,776	647
China -	-	17,857	17,826	31
Other Countries -	-	315	214	101
AtSea - -	-	2,064	1,095	969
Total specified Unspecified	-	$\begin{array}{r} 729,014 \\ 2,514 \end{array}$	$\begin{array}{r} 399,467 \\ 1,583 \end{array}$	329,547 931
Total Population	-	731,528	401,050	330,478
Allegrance				
British Subjects -	-	695,932	369,228	326,704
Forenga Subjects -	-	34,854	31,415	3,439
Allegrance unknown *	-	742	407	335

Of the whole population, 257,835 belong to the Church of England, Number of eacta 112,983 are Presbyteraans, 170,620 Roman Catholics, 94,220 Wesleyans, 18,191 religion in Independents, 16,311 Baptists, 10,559 Lutherans, 3,571 Jews, and 17,650 co'ony Chinese are returned as Pagans

Of every thousand persons over five years, the number who could read and Elementary write was 804, and of those who could read only, 128 , leaving 68 totally Educational uneducated Of the population over twenty-one, 871 could read and write, statistics and 74 could read only, leaving 55 per 1,000 of the adult population wholly upeducated. Primary education in Victoria is now free, compulsory, and secular

The higher education of the people of Victoria is conducted by several Higher educaGrammar Schools, which are attended by 1,800 pupils, and by the University thon. of Melhourne, founded in 1854, which had in 1874, 396 graduates, and 177 matriculated students attending in the different faculties

The public library of Melbourne, which amposes no restrictions whatever on Public Lubrary. its visitors, is an important adjunct in the education of the inhabitants of the country The number of volumes is 87,557 , and the number of readers in $1875-6$ was 339,476
In addition to this, a large number of volumes were lent for periods ranging from three to six months to other towns not possessed of public hibraries of ther own.

Victoria was first discovered by Captan Cook in 1770, but the first per- Discovery of manent settlement did not take place until 1834, when the Messrs Henty colons

Separate exis*
tence as colony - 121851.

Revenues and

 resources the preceding yearestablished a whaling establishment at Portland In 1836 Batman and Fawkner crossed from Tasmania and took up their residence on the banks of the River Yarra, near the site of the present city of Melbourne The fact that, as throughout the greater portion of Australia, the land was well adapted for cultivation, that sheep and cattle could thrive upon the natural grasses of the country, and could live in the open arr throughout the year, attracted a large immigration, and in 1851, when Victoria was separated from New South Wales, and commenced an independent existence, the population numbered 76,000 , the sheep $6,000,000$, the cattle 380,000 , the horses 21,000 , and the land in cultivation 52,000 acres In the preceding year the public revenue had amounted to $260,000 l$, the public expenditure to $196,000 l$, the umports to $745,000 l$, the exports to $1,000,000 l$ The ships which arrived numbered 555 , of an aggregate tonnage of 108,030, and the ships which departed numbered 508, of an aggregate tonnage of 87,087 The wheat grown amounted to 550,000 bushels, the oats to 100,000 bushels, the hay to 21,000 tons The wool exported amounted to $18,000,000 \mathrm{lbs}$, and the tallow to $10,000,000 \mathrm{lbs}$.

Increase from discovery of gold
granted to Aus-
traitan colomes

Their basis

Legislature

Members
Electors

Responsible Mimsters

Defences

Revenue and expendature

The discovery of gold, which took place in 1851, enormously increased the population and revenues of the Yarra colony. For many years the promepal export was gold, but the production of this precious metal us now of less importance than that of the great staple, wool. Of the exports in 1874, amounting altogether in value to $15,441,109 l$, wool was valued at $6,373,641 l$., and gold at 4,053,288l

The important position which the Australian colones had obtanned in consequence of the dascovery of gold, and the influx of population consequent thereon, induced the Imperial Government to determine, in the latter end of 1852, that each colony should be invited to frame such a Constitution for its government as its representatives might deem best suited to its own pecular circumstances. The Constitution framed in Victoria, and afterwards approved by the British Parlament, was avowedly based upon that of the United Kingdom It provided for the establishment of two Houses of Legislature, with power to make laws, subject to the assent of the Crown, as represented generally by the Governor of the Colony, the Legislative Council to consist of thirty, and the Legislative Assembly to consist of suxty members. Members of both Houses to be elective. and to possess property qualifications Electors of both Houses to possess either property or professional qualifications, the property qualification of both members and electors being lower in the case of the Assembly than in that of the Council. The Council not to be dissolved, but five members to retire every two years, and to be eligible for re-election. The Assembly to be dissolved every five years, or oftener, at the discretion of the Governor Certain officers of the Government, four at least of whom should have seats in Parliament, to be deemed "Responsible Ministers" Any member of either House accepting a place of profit under the Crown to vacate his seat, but to be capable of being re-elected. This Constitution was proclaumed in Victoria on the 23rd November 1855, and with certain modifications is stall in force The most important modifications are the reduction by one-half of the property qualifications of both members and electors of the Councl, the total abolition of the property qualifications for both electors and members of the Assembly, the increase of members of the Assembly from sixty to seventy-eight, shortening the duration of their term of holding the seat from five years to three, and paying the members both of Council and Assembly.
No Imperial troops are stationed in Victoria, the defence force consisting of 196 paid artllerymen, 4,100 volunteers of various arms, together with a monitor and line-of-battle ship with 52 heavy guns, and 340 officers and men for harbour defences
The revenue for the year 1874 was $4,106,790 l$, and the expenditure $4,177,337 l$., the revenue being $5 l$. $4 s$ $0 d$, and the expenditure $5 l 5 s 10 d$ per head. Of the whole revenue, about $1,800,0001$ is raised from Customs and Excise, $600,000 l$. from the sale and rents of Crown Lands, $900,000 l$ from the recelpts from ranlways which are the property of the State, and 200,0000 from the Post and Telegraph Offices Of the whole expenditure, the interest upon the public debt of $12,485,432 l$ absorbed $726,142 l$., the ralways were worked at a cost of $442,624 l, 537,758 l$. was expended upon pubhe instruction,

200,0001 upon rallways, $579,500 l$ upon public works, and $272,289 l$ upon charitable institutions, such as hospitals, orphanages, and undustrial schools

The greater portion of Victoria is divided into municipalities, some urban, Muncepalitnes. which, according to their importance, are styled cities, towns, or boroughs; the others rural, which are designated shires Each municipal district is a body corporate, with perpetual succession and a common seal, and is capable of sueing and being sued, holding and ahenating land The number of municipal districts is 60 urban and 110 rural, the population 773,711 , the number of ratepayers 171,746 , and the number of dwellings 166,124 The whole of the colony, with the exception of the mountains, is now inciuded in these muncipalities The annual value of the properties taxed is set down at $5,995,4777$, and the muncipal revenue from all sources at $985,014 l$, including a subsidy from the Government The greater portion of the expenditure is upon public works, the salaries only amounting to $95,569 \%$, or about 10 per cent

The number of electors was, for the Councl 27,930 , for the Assembly 146,937. Number of The only qualification for an elector of the Assembly 1s, that he be either a electors for natural-born subject of Her Majesty, or that, if an alien, he have been naturalized Assembly. for five years, and have resided in the colony for two years

The system of transferring land, whereby a fresh title from the Crown is System of transgiven to every purchaser, was inaugurated in Victoria in 1862 by the Real ferring land Pioperty Act, and has since been perfected under other Statutes. All lands Crown innaugualienated from the Crown after the commencement of the Act named have rated by Victoria come at once under the provisions of this law, and land alienated prior to its passing can be brought under it, provided a clear title can be produced, or a title contanng only a slight umperfection In the latter case, the title is given subject to such imperfection, which is noted on the deed. As the Government takes the responsibility of the title, and may occasionally, notwithstanding every care, pass properties in respect to which clamms may arise at some future time, an assurance and indernnty fund, to spcure the Government against possible losses, is formed, chiefly through the payment by each person bringing property under the Statute of an amount equal to one halfpenny in the pound of the value of such property One claim only, amounting to $\mathrm{E} 50 l$, has been paid out of this fund since the first introduction of the system The balance to the credit of the fund at the end of 1874 was $29,119 l \mathrm{ls} 4 d$, of which amount $23,000 l$ had been invested in Government stock

The number of insolvencies in 1874 was 776 23,856 persons were taken Insolvencies in into custody by the police, of whom 6,929 were discharged, 16,233 summarily ${ }^{1874 .}$ convicted, and 694 committed for trial 10,981 persons were arrested for drunkenness, and 5,058 for other offences against good order. 10 arrests were on charges of murder, 28 of manslaughter, and 3,000 for offences aganst property Of the 694 persons committed, 436 were convicted
The imports in 1874 were valued at $16,953,985 l$, and the exports at Imports and ex$15,441,104 l$, or $21 l 4 s 7 d$ per head of the population for imports and ports in 1874. $19 l 6 s 8 d$ for exports Of the whole exports, $11,352,515 l$ were the produce or manufacture of Victoria, of the 1 mports $8,369,523 l$ were from the United Kingdom, and 5,496,776l from the other Austrahan colones Eighty per cent of the imports are landed, and ninety per cent of the exports are shupped, at the Port of Melbourne
The number of vessels entered was 2,100, of an aggregate tonnage of Number of 777,110 tons, while 2,122, of 792,509 tons, cleared The nationality of the vessels entered ships entering, was Colontal 1,714, British 299, Foreign 97

The number of post offices is 802 , the number of letters despatched and Number of post recerved $15,738,888$, newspapers $6,866,918$ The income of the post office was ofthees 194,339l, and the expenditure $288,574 \mathrm{l}$ 216 post offices 1ssue money ouders There are 1.48 telegraph stations, 4,464 miles of wre, and the telegrams Telegraph stadespatched in 1874 amounted to 701,030
The total number of miles of Government ralway opened or in course of Number of miles construction 1s 485, and of private rallways 17, the total distance travelled in of Government 1874 waq $2,109,227$, the number of persons thavelling beng $5,374,841$, and the wass private ralwerght of roods 904,670 tons The total recenpts on Government and private lnes "is $1,016,926 l$, the rates charged varying from $1 d$ to $2 d$ per mile necording to class

Wages.

Tharket praces

Rent

Land Salrs Act

Crown land sold
2n 1874

Squatters

Land under cultivation in
1875

Wages vary from $15 s$ to $20 s$ per week and rations to farm labourers, and $12 s$ to $15 s$ per week with rations for labourers employed on sheep stations, to $11 s$ and $12 s$ per day, without rations, for mechanics, and $7 s$ per day, without rations, for town labourers Seamen receive from $6 l$ to $7 l$ per month, and female servants from $30 l$ to $60 l$ per annum with board and lodging
The prices of the following articles are given as follows in the official returns -
Wheat, per bushel, $4 s 9 d$ to $7 s .3 \hat{d}$
Bread, $6 d$ to $8 d$ per luaf
Flour from $12 l$ to $15 l$ per ton ${ }^{*}$
Beef, $4 d$ to $6 d$ per $1 b$
Mutton, $2 \frac{1}{2} d$ to $6 d$ per $1 b$
Butter, $1 s$ to $1 s 6 d$ per $1 b$
Cheese, $9 d$ to $1 s$ per lb

Milk, per quart, 6d
Potatoes, $4 / 10 \mathrm{~s}$ per ton
Cabbages, ls per dozen
Horses, $5 l$ to $40 l$
Fat cattle, $5 l 10 \mathrm{~s}$ to $12 l .10 \mathrm{~s}$
Fat sheep, $5 s$ to $20 s$

The weekly rent of a dwelling suitable for a mechanic and his family ranges, in the suburbs of Melbourne, from $8 s$ to 15 s In other towns it is lower, and in country districts the erection, on Crown lands, of a cottage of sawn or split timber, with a shingle or baik roof, which can be accomplished at a trifling cost, often enables the man of small means to save rent altogether In all the large towns, owing to the facilities offered by building societies and other financial instrtutions for obtaning advances of money on eaoy terms, numbers of labouring men possess freeholds of therr own
The mode of acquiring land from the Crown is under the Land Sales Act. 320 acres is the largest amount which any one person is allowed to select The selection is held under license during three years, within which period the licensee must reside on his selection at least two and a half years, must enclose it, cultivate 1 acre out of every 10 , and generally effect substantial improvements to the value of $20 s$ per acre The rent payable during this period is $2 s$ per acre per annum, which is credited to the selector as part payment. At the expiration of the three years' heense, the selector, if he obtain a certuicate from the Board of Lands and Works that he has comphed with these conditions, may etther purchase his holding by paying up the balance of $14 s$ per acre, or may convert his license into a lease extending over seven years, at an annual rental of $2 s$ per acree, which is also credited to the selector as part payment of the fee-simple On the expry of this lease, and due payment of the rent, the land becomes the fieehold of the selector The Crown land sold in 1874 amounted to 531,538 acres, and the extent granted without purchase to 44 acres Of the former, 49,656 acres were sold by auction. The remainder was selected under the various Land Acts The total extent sold, from the frst settlement of the colony to the end of 1874 , was $9,929,388$ acres, and the extent granted without purchase was 3,245 acres, making a total of $9,932,633$ acres The fee-simple of the whole of this land had passed to the purchaser A further extent of land, amounting, at the end of 1874, to about $5,650,000$ acres, was in process of alenation under the system of deferred payments, and this too, should the legal conditions be duly comphed with, will pass away from the Crown in the course of a few years Then there is iand occupied by roads, the sites of towns, State forests, aurfeious pastoral, and timber reserves, and land which is at present useless owing to its mountanous character, or to its being covered with mallee sciub, lakes, or lagoons Deductung the whole of these lands from the arta of the colony, estimated at $56,446,720$ acres, the area a a a lable for selection at the end of $18_{7} 4$ amounted to nearly $15,000,000$ acres

Land, until selected, is held by persons called squatters, who are tenants of the Crown, but can be dispossessed at any moment to meet the wants of the agricultural selector The rent pand by them is 4 s yearly for each horse or head of cattle that the run can depasture, and $8 d$ per head for the sheep The amount recelved from these sources in 1874 was $125,938 l$, or at the rate of about $1 \frac{1}{4} d$ per acre
The land Lnder cultration in 1875 amounted to $1,011,776$ acies, of which 332,936 acres were under wheat, 114,921 oats, 129,505 barley, 35,183 potatoes, 119,031 hay, 254,329 green forage The area under unes was not given. The production, excluding minor crops, was, wheat $4,850,165$ bushels, oats 2,121,612 bushels, barley 169,896 bushels, potatoes 124,310 tons, hay 157,261
tons, wne 577,493 gallons The value of the agncultural produce was estmated at $4,410,435 l$, the average weight per bushel of the wheat being 61 lbs , oats 40 lbs , barley 51 lbs

The live stock amounted to 180,254 horses, 241,137 mileh cows, 717,521 Live stak cattle, $11,221,056$ sheep, and $137,941 \mathrm{pigs}$, and the value of machinery and Value of umprovements upon squatting stations to $13,898,434 l$
The statistics of the other producing interests show that the beer made Beer amounted to $13,653,531$ gallons, and that the number of persons employed in manufacture was, males 20,442 , females 4,649 , the value of the machunery, plant, and buildinge being 4,750,000l

The gold rased in 1874 wras valued at $4,630,000 l$, and the other minerals Gold ransed in 35,453l 'The gold comed in the Melbourne branch of the Royal Mint was. 1874. in 1874, 1,383,417l The rates of discount vary at from 6 to 7 per cent. for Other maerals bulls under 65 days to 9 per for bills bevond 120 . The labiltes of the local banks were estimated in 1874 at 14,105,460l, and their assets to $20,456,852 l$, the average dindends pand beng 11 per cent The balance at the credit of the 64,014 depositors in the sanngs banks was $1,617,301 l$, or an average of $25 l 3 s 4 d$ per head

The number of marriages in 1874 was 4,925, or 627 per head, which is less Marriages in than in England, where it is 824 The burths were 26,800, and the deaths 1874. 12,222, or 1530 per cent. of the population, as aganst 2240 m England and Births and Wales About 125 per cent of all children born die on their first year, as aganst 15 $\frac{1}{2}$ per cent in England and Wales

The Commission which represented Victoria at the Phaladelphis Exhabition Commssion for was appointed upon the recommendation of a prelimmary Cormmission which Philadelphia had suggested that an Exhibition be held in Melbourne at which the nefgh- Exbinition bouring colonies should be invited to compete, and that a selection of the exhibits be sent to Philadelphis

The Commission was apponted under the Great Seal of the Colony in October 1874, and consisted of the gentlemen whose names appear on the page preceding this report

The terms of the Commission authorised them to hold a preliminary Exhibition at Melbourne, to unite the people of Victorna and the adjacent colonies and countries to send contributions and to make a selection therefrom of such commodities as might be judged, by competent persons, the most suitable for the purpose of affording an illustration of the resources of the Colony at the Exhibition at Philadelphia

The Commission went energetically to work to carry into effect the objects set down in their instructions, and obtained from the Trustees of the Public Library, National Museum, and Picture Gallery permission to occupy the Great wor Hall, the Rotunda, and the various annexes upon condition of erecting a new building to be eventually avalable for a lecture hall and laboratory

Great assistance was given by the varous Departments of the Government The Commassion receved from the Hon the Commssioner of Raulways, free passes for officers when upon duty, and free transit for all goods intended for exhibition; from the Commissioner of Customs leave to recerve all foreign goods duty free, until the close of the Exhibition, when they were allowed to be re-exported as of they had been in bond; and from the Postmaster, permission to forward letters and telegrams free A sumilar concession was made by the Governments of New South Wales, South Australia, and Queensland The Melbourne and Hobson's Bay Rallway Company displayed the same liberality as the Government line, and the various steamboat companies and shpowners trading to the port, made large reductions in the ordinary rates for freight in favour of goods intended for exbibition Probable exhibitors in Victoria and the neighbouring Colonies were commumcated with by letter and curcular, and an active canvass was made The manufacturers and producers of Victoria responded nobly to the call made upon them, and notwithstanding the comparatively short tume whech had elapsed since the Exhubition of 1872-73, the Commssioners received the most gratufying assurance of support, assurances which, as the event showed, were more than realised Indeed, the great success of the late Exhubition may farly be attributed to the energy and enterprise displayed by

Victorian exhubitors

Opemung of exhibition

Austialastan exhibitors

Japan and Singapore

Space occupied
by colony in
various exhibm
thons from 1854
the Victorian exhibitors, for while, on the occasion of the first Intercolonial Exhibition in 1866-67, they were, in numbers, in space occupied, and in the variety of therr exhibits, not more than one-half of the whole, they were at the recent Exhibition four times as numerous as all the rest put together No change took place in the plan of the Commisoioners after the publication of their first prospectus on January 19, 1875, except that in consequence of the Philadelpha Exhibition having been postponed from Aprl to May, they were enabled to delay their opening from August to Septermber, thus giving more time to the exhibitors and ensuring finer weather, and that the large increasing and gratifying demands upon their space compelled them to apply to the Trustees of the Public Library for additional accommodation, an application which was cheerfully met by placing the Sculpture Gallery at the disposal of the Exhbition authorities The Exhibition was opened on Thursday, September 2, by Sur Wilham Stawell, Acting Governor of the Colony, in the presence of a large concourse of people.

Sir Kedmond Barry, the President of the Commission, delivered an address reciting the various steps taken by humself and colleagues, and giving some interesting statistics.

The exhubitors included persons from the adjacent colomes of New South Wales, South Australıa, Tasmana, New Zealand, Queensland, and Western Austraha, and the three first-mentioned colonies were represented by duly appointed Commissioners The Empure of Japan and the British Colony of Singapore had also sent large and interesting collections, and the Government of the former nation had despatched to Melbourne two Commissioners and a European Secretary, who were accompanied by two students from the Agricultural College of Yeddo.
The amount of space apphed for and occupied, showed a gratifyng increase over former Exhibitions
The figures were as follows.-

The difference in the character of the exhibits was even more marked than the increase in the number 'The first Exhibition held in 1854 consisted almost exclusively of imported articles. In that of 186] there were a number of raw products and specmens of a few of the more simple and primitive industries Colomial manufactures first legan to assume a prominent, position at the Exhibition of 1866, and both m 1872 and 1875 the skill, ingenuivy and taste of the Victorian workmen, artizans, and artists were the most remarkable teature in the Exhibition
The following statement of the progress made by the colony since the previous Exhibition held immeduately prior to the London and Vienna Exhibitions of 1873 , was made by the Premier of the colony at a banquet given upon the opening day by the Mayor of Melbourne, and is derived from official sources. -
General plogrcss
"The last Exhibition was opened on the 6th November 1872 Since that date at least 50,000 have been added to the numbers of our population, and 75,000 to the acres in cultivation The revenue has increased by $400,000 l$, the shipping inwards and outwards has ncreased by more than 200,000 tons; the imports have swelled from $12,341,000 l$ in the year prior to that of the last Exhibition to nearly $17,000,000 l$, or by over $4,500,000 l$ sterling; and the exports have mereased, in the saine period, from $14,500,000 l$ to $15,400,000 l$, or by $900,000 l$, and this notivithstanding a falling off of $2,500,000 l$ stering in the exports of gold The letters passing through the Post Office have increased by $4,000,000$, and the newspapers by $1,700,000$ Messages by electic telegraph have increased by 164,000 , deposits in savings' banks by 500,0001 , and this notwithstanding the high rate of interest offered by building societies and other competing institutions. Children at school have increased ly

73,000 , manufactones have increased from 1,745 to 2,109 , or by 364 ; the hands employed in manufactones have uncreased from 19,294 to 28,026 , or by 8,732, and the capital invested in manufactores, so far as it is represented by the value of lands, buildings, machinery, and plant, has increised from $4,725,425 l$. to $6,798,820 l$ or by $2,073,695 l$. At the same time crime has diminished, as is evident from the fact that the persons committed for trial have fallen off in three years from 781 to 694 , and not one arrest has been made for smuggling in the past three years"

The Melbourne Exhibition of 1875 was kept open for seventy-six days, a Details of Melprolonged period when the population of the colony, which does not exceed bourne exhs850,000 is considered. The sum taken at the doors was $8,373 l$. and the paying attendance 240,000 The number of exhibitors was 1,060 , of whom 805 were from Victoria, and the number of prizes granted was tharty-six (36) special silver medals, thurty-two (32) sulver medals, two hundred and seventeen (217) medals, one hundred and elghty-six (186) first-class certificates, minety-etght (98) second-class certuficates, thirty-five (35) thurd-class certificates, and eleven (11) fourth-class certficates; total 615.

The medal adopted by the Commissioners in Melbourne represented the globe Medal divided from north to south, displaying the new world of America, Australia, and the Pacific Islands, supported by portrant figures of Christopher Columbus and Captan Cook, while upon the reverse is the quotation from Seneca which has been thought prophetic of the discovery of America, "Ingens pateat tellus nec sit terris ultima thule"

As the system adopted for decidong on the exhibits gave general satisfaction, it is as well to mention it here

The contents of the Exhibition were dunded anto 26 departments, to each Jurres. of which a separate jury was assigned; each jury was asked to specify the degrees of merit possessed by the exhibits in their own department, and to say which deserved a first-class, which a second, which a thurd, and which a fourth prize The Commissioners reserved to themselves the right of deciding in each case what should be the hyghest prize in each group

The punctuality observed by the exhibitors in bringing in the objects dis. Punctuaity dsplayed, and ther dilgence in arranging them in position, enabled the jurors played by exhto undertake their duties before the admission of the public, and to examine the exhibits thoroughly at their leisure, undisturbed by the numberless distractions and interruptions which occur when the buildings are thronged with visitors. It allowed them, moreover, in most instances, indeed in all except where further examination or reference was necessary to determine upon the relative excellence of the matters submitted to therr judgment, to declare which were of the hyghest order of merit, and thus to afford to successful exhibitors the satisfaction of an award in their favour declared before the opening day

By thus means two leadng airos of such expositions were achneved the unlearned visitor was at once led up to the thangs most deserving of his attention, and the exhibitor enjoyed for the longest period an advertisement of the excellence of the object to the production of which he had applied his capital, skill, and labour, while ample time was left for 'the jurors to mature therr opinions, and prepare reports well thought out

The Melbourne Exhabition closed on November 16th, and on the 3rd of Close of exbiDecember trie Commissioners gave up possession of the buildings occupied bition by them. On the 7th December the medals and other awards were distributed, and the business of the Melbcurne Exhibition was finally wound up

The great bulk of the articles intended for exhibition at Philadelphas were Dspatech of forwarded from Melbourne to New York by the "Skerryvore" in December. goods for Philan Smaller shipments were made by the Suez manl steamer of December, and by the March and April manl steamers vî San Francisco delphat by

These latter brought grain and fruit of the season of 1876 Itis satisfactory Fruts and grain. to state that the apples and pears dispatched by way of San Francisco arrived in excellent condition and laigely engaged the attention of pomologists it was conceded that the apecmens were the very finest of their kinds, and they arrived in excellent condition

To the collection of timber fiom Victoria a large and valuable addition n as made by numerous eamples sent from the Botancal Gardens, Kew, under the

Number of exhubits.
Floor and wall space.

Vorsce of
"Skerryrore."

Outlay authorised by Govern. ment

Resident Commissioners at
Phulsdelphia.

Secretary

General commendation of
Fictorian Court
authority of Her Majesty's Government, and some articles the property of the Yictorian Government in London under the charge of the Agent-General were added to the general exhubition

The number of exhbits sent by Victoria was 3,200, they occupied 3,410 feet of floor and 4,652 feet of wall space in the mann hall, 350 teet of floor space in the agricultural hall, and 100 feet of floor space in the horticultural hall, and the value inclusive of those the property of the Commissioners, and of those forwarded by private exhibitors was estumated at 7,0001
The voyage of the "Skerryvore" was marked by a series of disastrous medents, and although the average passage from Nelbourne to New York does not exceed 100 days, it was not until May 6th, 149 days after leanng Melbourne, that the ship arrived in port. Durng the latter part of the passage she sprung a leak, and the greater portion of the cargo was injured by salt water to an amount in value estimated at 1,600l. An expenditure of nearly 1,000 . was meurred in restoring those of the exhibits capable of being made suitable for exhbition. Some of the most valuable objects were, however, urreparably damaged, and were sold, and the Commssioners were thus prevented from displaying some of the most interesting articles entrusted to their care
The accounts for the Yictorian Commussion will show a disbursement authorised by the Government of Victoria exceeding 8,8007 , a sum which indicates a desire on the part of the Executive and Parlament that the efforts of exhibitors should be supported in a luberal spirit

The Commission was represented at Phuladelphia by the President, Sur Redmond Barry, K.C M G., by the Secretary, Mr. G C. Levey, and by two Commissioners, Mr. M•Mwrath and Mr. M'Intyre. The other Commissioner, Mr J G. Francis, was not able to avall himself of the honour of assisting at Philadelpha Mr. Levey, the Secretary, on his way to America through Europe, was instrumental in procuring in Italy some highly interesting objects, including a group of statuary by Summers
The Commissioners direct attention to the encomiums passed upon the Victorian Court by the press and people of America. They present to the Government and people of Victoria their respectful congratulations upon the excellent effect produced on their fellow subjects in the Domimon of Cavada, and on the citizens of the United States by the large and varied display of the products and manufactures of their country, forwarded to the Exhibition; upon the good will which the Exhibition made by the vanous sections of the British Empire has engendered amongst the different branches of the AngloSaxon race, and upon the knowledge of the resources, ingenuity, and enterprise, of the people of Victoria, which has been spreadamongst the inhabitants of the great American continent.

Catalogde of Productions sent to the Peiladelphia Interxational Exhibition 1876.

\mathbf{P}-Thes letter indicates exhbits receivmg auards

Collection of Rocks, Mrwerals, and Fossils, allustrative of the Geologr, Mrneralogt, and Mining Resocrces of Victoria, exhibited for and on behalf of the Gofersmext, by R Brocge Smyth, F G S, FLS S, Assoc Inst. C E , Secretary for Mhes and Chef Inspector of Mines for the Colony

Older Igneous or Plutome Rocks Grantes, porphyries, \&e
Newer Igneous or Volcanc Rocks Older Basalt. (Age betreen eocene and older phocene tertary
Newer Basalt. (Age from phocene tertiary to recent)
Aqueous Rocks Lower Palæozonc Lower Siluran (Including rocks of thes age metamorphosed by contact with granite and other ganeous rocks)
Upper Slurian (Including rocks of this age metamorphosed by contact with granite, \&c)

Upper Palmozole
Mevozoic-Carbonaceous
Tertary
Collectron of Mineral Specimens
Econome Collection Aurferous Quartz

Fac-bimiles of Gold Nuggets Found in Victoria

The "Beauty" nugget welghed 242 ozs It was discovered at a depth of 9 ft . from the surface, in Kangaroo Gully, Bendıgo, in the year 1858 The gold was $222 \frac{7}{8}$ carats fine
The "Platypus" nugget weighed 377 ozs 6 dwts It was found in Robinson Crusoe Gully, Bendıgo, in a pillar of earth in a deserted clam The clam was situated in shallow alluvium, and the nugget was discovered in March 1861. The gold was 22) हarats fine
The "Viscount Canterbury" nugget was found in John's Paddock, Berlin Diggings, at a depth of 15 ft from the surface, on the 31 st May 1870 It weighed 1,105 ozs The gold was 233 carats fine
The "Schlemm" nugget was found at Dunolly on the 11th July 1872, at a depth of 3 ft beneath the surface It weighed 538 ozs and 18 estumated to contain 60 ozs . of quartz
Nugget (not named) found in Broomsfield's Gully, Creswick, on the 8th Angust 1872 It weyghed 24 ozs 3 dwts, and was got at a depth of 100 ft . below the surface

The "Kum Tow" nugget weighed 718 ozs 5 dwts It was found on the 17th April 1871 in Catto's Paddock, Berlin Diggings, at a depth of 12 ft 6 in below the surface It was found by a party of Chinamen. The gold was 233 carats fine
The "Viscountess Canterbury" nugget was found on the 3rd October 1870 at Berlin It was discovered at 6 ft 6 m beneath the surface, and weighed 8 â 4 ozs. 10 dwts The gold was $23 \cdot 2 \frac{5}{6}$ carats fine.
The "Crescent" nugget was found on the 2nd April 1872 at a depth of 2 ft beneath the surface It weighed 176 ozs 8 dwts, and was discovered at Berlm
Nugget (not named), found at Creswnck, in the Key Company's mine It weighed 32 ozs, and was found in January 1871.
The "Oldham" nuggets, found at Turton's Creek, m April 1873 They weighed respectively 2 ozs and 36 ozs , and were got at a depth of 2 ft beneath the surface. The gold was 23 琞-carats fine
The "Spondulix" nugget was found in November 1872, at Eureka Gulley, Jordan's, pear Dunolly. It weyghed 130 ozs, and was estumated to contam 29 ozs. of quartz Discovered at 8 ft beneath the surface in a quartz vern
The "Alma I" nugget was found on the 14th April 1873, at Maryborough It weighed 125 ozs It was discovered at 120 ft . beneath the surface The gold was 231 carats fine
Nugget (not named) found in Broomfield's Gully, Creswick, on 12th August 1872 It weighed 46 ozs 15 dwts , and was got at 100 ft 2 nd depth
Nugget (not named) found at Creswek in the Red Streak Lead, on the 31st August 1872 It was discovered at 180 ft below the surface, and werghed 30 ozs. 1 dat
Nugget (not named) found at Bunnayong, on the 21st July 1875 It was discovered at 73 ft below the surface, and weighed 58 ozs 5 dwt The gold was $23 \frac{1}{4}$ carats fine
Nugget (not named) fonnd at Upper Boggy Creek, on the 9th September 1873 It was discovered at 4 ft below the surface, and weighed 29 ozs
The "Needful" nugget was discovered at 12 ft beneath the surface, in Catto"s Paddock, Berlin Diggiogs, on the 10th May 1871. It weighed 246 ozs 16 dwts, and the gold was 233 carats fine
The "Alma 2" nugget was found at Maryborough, on the 14th April 1873, at 120 ft beneath the surface It weughed 15 ozs . The gold was 231 carats fine
The "Eldorado" nagget was found at Soyythesdale on the 26 th August 1873, at 155 ft beneath the surface It welghed 170 ozs
The "Lothar" nugget found at Clunes, at 307 ft beneath the surface, on the 11 th July 1875 It welghed 77 ozs 6 dwts The gold was 222 号 carats fine
Nugget (not named) found at Sandhurst, in Crusoe Gully, on the 13th July 1875. It was discovered at 3 ft beneath the surface, and weighed 46 ozs
Nugret (not named) found at Creswick, at 150 ft below the surface, on the 28 th April 1874 It weighed 53 ozs The gold 233 carats fine
Nugget (not named). found at Ballarat in the Golden Reef Clam, at 200 ft . beneath the surface It weighed 81 ozs . 5 dwts

The "Welcome" nugget was found on the 11th June 1858, at 180 ft beneath the surface, Bakery Hill, Ballarat It weighed 2,195 ozs

Economic Minerals

P Acadıa Catherine Gold Mining Company, Sandhurst.-Specimens of Golden Stone, from the Arcadia Catherine Mine
P Bleasdale, Rev J L, D D, St Latrick's College, Melboarne-Collecticr of Gems and Precious Stones, consisting of Dlamonds, Blue Sapphires, Oriental Emeralds (the green sapphire), Rubies, Aqua-marines, Topazes, Spinels, Beryls, Opals, Garnets, Tourmahnes, \&ce, \&c, collected by exhibitor

Commissioners for Victoria for the Philadelpha Exhibrtion, Melbourne -Facsimiles of Nuggets found in Victoria

Costerfield Gold and Antmony Mining Company Oftce, 52, Elizabeth Street, Melbourne - Antimony Ore

Hanckar, J H H,52, Bourke Street East, Melbourne -Block of Nıckel Ore, from the Boa Kaune Mine, New Caledoma
M'Gie, James, \& Co, Melbourne -Nickel ()re
Shenandoat, Gold Minng Company, Sandhurst -Gold-bearing Quartz, from stope at the 390 feet level Reef, 7 ft wide This specimen was in one block, and split up to disclose gold
Smyth, R Brough, Department of Mines, Melbourne - Geological Maps
Commissioners for Victoria for the Philadelphia Exhibition, Melbourne - Coal
Mining Department of Victoria, Melbourne-Coal
Commissioners for Victoria for the Philadelphra Exhibition, Melbourne - Sawn
Slate Block of Granite Specimens of Pohshed Marble
Mansfield Shire Council, Mansfield -Slabs of Pohshed Marble Hewn Sandstone
Commsssoners for Vactoria for the Phladelpha Luxhbition, Melbourne - Lumestone, from Major Plains
Arthur and Dogherty, New Zealand --Sample of Luthographic Stone.
Lewis and Whitty, Charles Street, Fitzroy.-Kufe Pohsh.
Hattersley, J, Yackandandah - Acrated Waters
Lyou, George, Spring Creek, Beechworth - Lemonade Soda Water Ginger Ale.
Rowlands and Lewis, Ballarat and Melbourne,--Tonce Water Potass Water. Soda Water Litha Water Seltzer Water Ginger Ale
Metallurgical Products - Class 113 -Lead, zinc, antimony, and other metals, the result of extractive processes
P Bught Brothers \&ico, Little Fhaders Street West, Melbourne -Star Antimony in ingots

Costerfield Gold and Antimony Minng Company Office, 52, Elizabeth Street, Melbourne. - Sulphide of Antimony Refined sulphide of Antimony Crude Antimony of Commerce Oxide of Antamony Pure Regulus of Antmony, reduced from the oxide.
P Ilodgson, Richard, Noon Street, Collingwood -Star Antımony Pigs of Lead Blocks of Tin, all smelted in the colony
On the Contment of Europe the arborial, health-producing and medicinal products. of the Eucalyptus globulus, or Blue Gum tree, have been so much enlarged upon in consequence of having only this species in cultivation, that the whole of the Eucalyptus products have been classified as emanating from this one species, it is necessary therefore to point out that such is not the case
P Bosisto, Joseph, Bridge Road, Richmond - Chemical and Pharmaceutical Preparations obtalned from the Encalyptus and other Indigenous Vegetation, prepared and exhibited by Joseph Bosisto, Richmond, Melbourne, President of the Pharmaceutical Society of Victoria, by whom the Eucaly ptus preparations were first introduced, both in Australia and in Europe -

Eucalypxus Vegetation

Essential Ol, Eucalyptus globulus (Blue Gum) Tonte, stmulant, antiseptic, and anthelmintic A small dose promotes appetite, a large one destroys it In stronger doses of 10 to 20 mmims, it first accelerates the pulse, produces pleasant general evertement (chown by urresistible desire for moving about), and a feehing of buoyancy and strength Intoxicating in very large doses, but unlake alcohol or opium the effects are not followed by torpor, but produce a general calmness and soothing sleep A strong cup of coffee will at once remove any unpleasantness arising fiom an overdose Anthelmintic-By enema, 30 to 60 mimms in muclage of starch Internally-Dose, 3 to 5 mimms in gum muclage, syrup or glycerine

Eucalyptol, Eucalyptus gl bulus (Blue Gum) For unhalation in bronchaial and throat affections Obtamed from the essental on and is a homologue of camphor Quantity employed -From half to one teaspoonful with half a pint of hot water in the inbaler

Encalyptic Acid, ordmary strength \rceil Volatile obtanable hy fractional distullation, Eucalyptus globulus (Blue Gum) $\}$ most abundant in the Red and Blue Gum Eucalyptic Acid concentrated species
Liquor Encalypti globulh, Eucalyptus globulus (Blue Gum) Antiperiodie The tonc or biter principle obtaned from the leaves of the tree in an amorphous condition An ague remedy It appears to counteract malaria mithout exertung the prejudicial effects of qumae on the nervous system For Ague and Dengue Fever, 30 to 60 minims in half a wine-glassful of mucilage and water, or glycerine and water, with the occasional addition of two mimms of Eucalyptol every two or three hours durng the paroxysus of Ague As a general tome, 20 to 30 minms three tunes a day Incompatibles. The Mineral Salts
Tinct Eacalypti Globuh Stumulant, tome, antipenodic and antiseptic Dose, 20 to 30 minims .
Pulv Eucalyptus Globulus Foha Antiseptic, Cataplasma
Cugarettes, Lucalyptus globulus (Blue Gum) Disinfectant employed in bronchual and asthmatic aflections
Essential Onl, Eucalyptus amygdalina odorata (Peppermint Gum) Rubefacient and disinfectant This ou is generally known as the "Eucalyptus Onl," employed externally in rheumatic affections, and in the manufactories chiefly for perfumery, soaps, dec An excellent and very agreeable disinfectant of mixed wath sawdust in the proportion of four ounces of oll to the bushel
Ointment of Eucalyptus odorata. Employed in feetid suppurations and mdolent wounds
Red Gum (From Eucalyptus rostrata of Victoria) The delicate mucilaginous drstringent possessed by this species of the Eucalyptu renders it more effective than the Acacia catechu an all cases of dysentery, duarrheea, and throat affections. Generally employ ed un the form of a syrup
Essential Oil, Eucalyptus oleosa (Mallee Scrub) Employed chiefly in the manafacture of oil and spirit varnushes Yaraish containing this oul in the place of spints. of turpentime 18 said neither to bloom nor crack. It is a perfect solvent of indiarubber without heat.
Inda-rubber wxth the Essentral OI, Eucalyptus oleosa (Mallee Scrub) Showing the two in combination
Potash, Nucalyptus oleosa (Mallee Scrub) Obtanned from the scrub after being deprived of its volatule orl
Essental Oil, Eucalyptus rostrata (Red Gum of Wictoria)
Eissential Ou, Eucalyptus sideroxylon (Ironbark Gum)
Essential Oll, Eucalyptus persicifolaa (Peach Gum)
Specimen Samples
Essential Oil, Eucalyptus citriodora (Sweet-scented Gum, Quecusland)
Essentual Ou, Eucalyptus fissilis (Messmate)
Essential Oll, Eucalyptus Stuartiana (Apple tree Gum) showing the variety of aroma existing in the Eucalyptı
Essentual Oil, Eucalyptus goniocalyx (White Gum)

Indigenaus.

Fssental Oll, Atherosperma moschatum (Native Sassafras), Diaphoretic, duuretic and sedative Obtained from the bark, it exerts a specific lowering influence on the beart's action
Atherospermine, Atherospherma moschatum (Native Sassafras) An alkalord obtaned from the bark Tonc
Salts of Lime, Atherosperma moschatum (Native Sassafras) Obtaned from the bark

Bark, Atherosperma moschatum (Natuve Sassafras)
Essential Onl, Melaleuca ericifolia (Teatree)
Resin, Pinus, callitris (Murray Pine) Obtamable in quantity from under the pines groming on rulges in the Mallee country
Ronn, Xanthorrcea Australıs (Grasstree of Austraha) Soluble in spint, of a deep amber colour, obtainable in large quantities, employ ed for staning wood to umitate cedar

Non-mndigenots

Oprum, Papaver somuifera (Sleeping Poppy) Cultivated in Victoria, yielding ten per centum of Morphia

Morphia, from the Victorian Opum
Capsules, Papaver somnifera (Sleeping Poppy) Specimens of growth
Lt sential Onl, Nentha piperita (Engish Peppermint) Cultivated in Victoria, and distilled by exhibitor four years ago.

Hood \& Co, Elizabeth Street, Melbourne - Pharmacentical preparations, essential oils and chemicals

Commissioners for Victoria for the Philadelpha Exhibition-Chemicals
P
P Fitts, Charles, \& Sons, 67, Cecil Street, Emerald Hill - Neatsfoot Onl, Trotter Ol Kitchen \& Sons, Lattle Fhnders Street W'est, Melbourne -Stearime Candles, Large Carriages Candles Borthwick, Alexander, 35, Market Street, Melbourne - Varnshes, mavufactured by the Victoria Varmish Company, Anti-fouling Composition for Suips' Bottoms, patented by exhibitor, Cast Iron Yedestal Pullars, enamelled by exhbbitor's process, Anticorrosire Paint

Bowman, John S, 31, Russell Street, Melbourne --Colonal Crayons, made principally from colomal clays, contaming 600 shades

Commissioners for Victoria for the Philadelphia Exhibition, Melbourne -Crayons Lews \& Whitty, Charles Street, Fitzroy -Blacking
P Hogg, S P., \& Co, Collins Street West, Melbourne -Curry Powder.
Lewis \& Whitty, Charles Street, Fitzroy - Yerfumed Haur Oıl, Cuhnary Essences, Curry Powder.
Perry, Hunter, \& Co , Forest Street, Sandhurst _-Vaneties of Safety Fuse.

Ceramics, Pottery, Porcelan;'sc

Barningham \& Lacy, Barkly Street, Brunswick -Red Bulding Bneks, White Pressed and Moulded Bricks

Nolan, Luke, Gillbrook Pottery, Brunswick -Stoneware Draıning Pupes
Commissioners for Victoria for the Philadelphia Exhbition, Melbourne - Fireclay
Crucibles, Encaustic 'Tules, Trusses, Vases, \&c
Adams, R T, Prince's Bridge, Delbourne - Earthenware Household and Offee Filters, 10 gallons, 6×3, Syphon Tank Filter, with 12 ft of tube; Hagh-pressure Copper Filter, inside silvered, self-cleansing, for public institutious, schools, \&c, made expressly for the Yan Yean and other Waterworks

Commissioners for Victoria for the Phuladelpha Exhibition, Melbourne -Earthenware and Pottery

Nolan, Luke, Gallbrook Pottery, Branswack -Bronze Vases Stone Porons Jugs
Patent Damp-proof for floor ventilation
Ferguson and Urie, Collms Street East, Melbourne - Stanned Glass for windows
Gledhıll, Melbourne - Glass Bottles
Melbourne Glass Bottle Works Company, Emerald Hull-Glass Bottles
Mount \& Co, Graham Street, Emerald Hill - Assortment of Glassware
Cornmissioners for Victoria for the Phuladelphia Exhibition, Melbourne -Glassware
Alcock \& Co, Fussell Street, Melbourne -Blackwood Billard Table with carved legs, Huon-pine twist mouldings and pannels Bilhard Cues, Rests, and Balls Cue Stand Combination Marking Board Cue Stand, with specimens of spral twist work in Australian wood Console Table

Carr and Sons, 128, Spring Street, Melbourne - Inside Venetian Bhind, with check actipn Wire Blind Spanish and Elorentine Bhods Spring Roller Blind Dwaif Blind Window Sash, with Venetran shutters, \&c

Davis, J, Richmond -Davis's Patent Window Sash
Hodgson Brothers, View Place, Sandhurst - Patent self-acting Venetian Blind Spring Roller Blind. The special feature in this exhibit is the new and amproved method of painting the Venetian Blind, it being superior and more lasting than the usual method of treating the mineral green used for painting

McEwan, James, 361, Spencer Street, Melbourne - Eight-feet Sideboard, made of Picked Richmond Cedar The carving enrichments consist of mine carved figures, the centre ornament on glass back represents the head of Minerva

Muschall, Lous, 102, Collins Street East, Melbourne - Pier Glass Console Table

Baker, John, Emerald Hill -Baker's Patent Safety Steps
Whegmann, August, 45, Post Office Place, Melbourne.- Bashetware Cradles Basketware Perambulators Basketware Chars Basketware Flower Stands Baskets

Walker, A R,40, Latrobe Street West, Melbourne - Reflector Gas Cooking Stove Reflector Gas Cooking Stove with Bonler

Shaw, Alfred \& Co, 13, Little Collins Street West -Millet Brooms and Whasks
Guthrie, G D, Epsom, Sandhurst - Collection of Pottery Ware in cane, rochingham, brownware, granite, \&e, consisting of bread pans, butter jars, cheese dishes and pans, cream pots, churns, jam pots, jelly jars, pudding bowls, baking dishes, jugs, jars, pipkins, wicker, jars und bottles, teapots, gallon bottles, gingerbeer bottles, kegs,
water filters, blackang bottles, footpans, footwarmers, spittoons, fowl fountans, grate backs, 800
Bogle, Andrew, \& Co, 21, Fhinders Street East, Melbourne -The Household Help, -Bogle's Patent Boot and Shoe Brushing and Cutters' Polishing and Sharpening Machine
Pausacker, Evans, \& Co, 8, Lonsdale Street West, Melbourne-Registered-edge Sold Leather Portmanteans, of Colonal make, leather, and workmanship
Draper and Sons, 83, Bourke Street West - Patent Earth-closets and Fitungs.
Yarns and Woven Goods of Vegetabla on Mineran Materule.
Donaghy, Michael, Rope Works, Geelong -Manla Flat Rope Itahan Lash Lme Deep Sea Line Ham Twine
Miller, James, \& Co , 61, Fhnders Street, Melbourne --European and Mamla Rope, Deep Sea and Whale Line
P M•Pherson, Thomas, 205, Bourke Street West, Melbourne -Cornsacks Woolpacks Sugar Baggng
Barwon Woollen Mill Company, Geelong -Tweeds, manufactured at the Barwon Woollen Mill Company, Geelong
P Victoria Woollen Cloth Company, Geelong - Woollens
Gray, Alexander, \& Co, Albion Woollen Mills, Geelong - Plan and fancy Tweeds, manufactured at the Albion Woollen Mills, Geelong
Pr Ballarat Woollen Company, Ballarat - Skawls, Tweeds, Blankets
Barwon Woollen Mull Company Geelong -Blankets, manufactured by the Barwon Woollen Mill Company, Geelong

Botanic Gardens, Directors of, Melbourne - Woollen Cloth and Sulk, dyed with bark of Laportea gigas, the Tree Nettle Queensland and New South Wales Prepared by W R Guilfoyle (A 5) Woollen Cloth and Silk, dyed with husks of Sterculia diversifola, the Native Wattle Tree, Victoria Prepared by W R Guilfoyle (A 6). Woollen Cloth, also prece of Sulk, dyed with bark of Pimelia axiflora, Curriong of the aborigines, Victoria. Prepared by W R Gulfoyle (A 4) Woollen Cloth, also prece of Silk, dyed with bark of Dais continufola, South Africa. Mordanted with acetate of ron Prepared by W R Gulfoyle. Director of Melbourne Botance Gardens
Zoological and Acclmatisation Society, Melbourne -Angora Goat's Hair, grown at Sir Samuel Wuson's Mount Bute Estate, shorn from the Angora flock belonging to the above Society

Commissioners for Victoria for the Phladelpha Exhibition, Melbourne-Silk Cocoons, from the Acclmatisation Society, Victoria Silk Cocoons, from Mrs Bladen Niell Cultrvated Silk, in cocoons and hanks, also bleached, dyed, and worked upon llama
Tumbrell, Ann, Plenty Road, Collingwood - Cocoons produced by silkworms from Japan, France, Italy, and Greece Sulk (raw material in hank) Victonan Silk, worked on Brussels net.

Victoria Lades' Serculture Company (Limited), Mount Alexander, Castlemaine. -Sulk, desiccated and pierced Cocoons
Ford Brothers, 421, King Street, Melbourne - Pith Hats, in Felt, Silk, Merno, \&c.
Rosier, John, 46, Swanstone Street, Melbourne-Boots and Shoes
Commissioners for Victona for the Philadelpha Exhibition, Melbourne -Myail Pipes, Rouleau Boxes, made of myall wood
P Ford Brothers, 421, King Street, Melbourne - Yith Sunshades for horses
P De Richelieu, Madam \mathbb{F}, Union Street, Windsor -Ornaments made from fish scales, \&ce

Commissioners for Victoria for the Phuladelphia Exhibition, Melbourne -Address Case of Inlaid Leather Made by J W Evans
Botanic Gardens, Director of, Melbourne - Paper made from bark, stems, and leaves of Trees, Plants, and Shrubs, found and growing in Victoria-Broussonetia papyrifera (Paper Mulberry Tree), Salva Canariensis, Dais contınifoha, Eucalyptus obliqua (Stringybark), Eucalyptus fissilıs (Messmate), Abutilon mollis (Soft leaved Abutilon), Abutlon venosum (Vemed Lantern Flower), Pimeha axiflora (Currijong), Commersona Fraseri, Queensland (Lye Plant), Pittosporum crassıfolum (Thick-leaved Pittosporum), Pipturus propinquus (Queensland Grasscloth Plant), Melaleuca ericifola (Common 'Tea Tree), Melaleuca genistifoha (Broomleaved Tea Trec), Stercula diversifolia (Victorian Bottle Tree), Stercula acerifolia (Flame Tree), Behmeria nivea (Chunese Grasscloth Plant), Sida pulchella (Victorian Hemp), Sida retusa (Queensland Hemp), Melaleuca squarrosa (Victorian Nettle).

Paper made from stems of Urtica mecisa (Victorian Nettle), Ehrharta tenacissima, Carex appressa, Carex pseudo-cyperus, Isolepers nodosa, Juncus paucifiorus (Fewtlowered Rush)

Paper made from'stems and leaves of Gahnia psittacorum, var erythrocarpum, Lepidosperma elatius (Tall Sword Rush), Cordyline indivisa (Tall Falm Lily); Phormum tenax (New Zealand Flax), Gynerıum argenteum (Pampas Grass); Arundo conspicua (Plume Grass), Fourcioya gigantea (Giant Luly), Cyperus sp , Juncus maritımus (Coast Rush), Juncus vaginatus (Small Sheathed Rush), Juncus vaginatus (Large Sheathed Rush), Lepidosperma gladatum (Coast Sword Rush), Typha angustifolia (Native Bulrush), Scurpus fluviatils, Marica Northrana, Xerotes longifolia (Natıve Tussock Grass), Pandanus utilis (Screw Pine), Cyperus lucidus, Conferva sp (Swamp Moss) ; Dtanella latfolua, Caryota urens (Jaggery Palm)

Fibres of different trees and plants
Gums, resins, vegetable fat, and caoutchouc
Ramsden, Samuel, Prıce's Bridge, Melbourne - Papers
Commissioners for Victoria for the Philadelphia Exhibition, Melbourne - Aboriginal Weapon Native Axe Victorian Aboriginal Implements and Weapons Stanway, South W , Yarra - Models of chaurs for Invalids
P Danks, John, Bourke Street West, Melbourne - Steam Valves Steam Cocks Check Valves Suet Lubricators Injectors Slunce Valves Roscoe's Lubricators. General Brass Foundry
Mellwrath, John, Little Collins Strect East, Melbourne -Tinned Composition Gas Prpe, hydraulic pressed Pure Victorian Tin Tube, hydraulic pressed
Rothwell, Wade, 52, Bank Street West, Melbourne - Lady's Saddle Gentleman's Saddle Set of Buggy Harness Green Hide Gurth Lady's Riding Bride Gentleman's Hunting Bridle Stock Whips, myall-wood handles Glenster, W A , Mercer Street, Geelong - $1 \frac{1}{4}-1 \mathrm{n}$ Colling's Patent Axletree Arm. $1 \frac{1}{4}-1 n$ Mal Patent Axle $1 \frac{1}{4}-1 \mathrm{n}$ Improved Half-patent Axle $1 \frac{3}{8}-1 \mathrm{~m}$ Common Nut Axle Model of Colling's Patent Crank

Stoneman, Alfred, Stephenson Street, Ruchmond -Buggy Side Springs Ellhptie Side Springs Spring-cart Side Springs

Stevenson and Elliott, King Street, Melbourne - Landau, with patent hood, patent steps, and patent fittings for inside sests

Educational Department of Victoria, Melbourne -Photographe Views of State Schools in Victoria, viz Golden Point, Ballarat, Mount Pleasant, Ballarat, Redan, Ballarat, Sebastopol, Ballarat, Golden Square, Sandhurst, Gravel Hul, Sandhurst; Sandhurst, Daylesford, Maryborough, North Clunes, Carisbrook, Mortchup, Talbot, Mount Doran, Cardıgan, North Eaglehawk, Maldon, Beechworth, Buhingyong Coburg, Sandmdge, North Ashby, Geelong, Swanston Strect, Geelong, George Street,' Fitzroy; North Fitzroy, Brighton Street, Richmond, Yarra Paik, Ruchmond; Brighton, North Prahran, Hotham, Emerald Hill, St Kilda, Gold Street, Collingwood, Latrobe Street, Melbourne
Victorian Asylum and School for the Blind, Melbourne -Objects, the work of the Pupils of the Victorian Asylum and School for the Blind

Commissioners tor Victoria for the Philadelphia Exhibition, Melbourue Collection of books printed in Melboune, Official Catalogues of the Victorian Intercolonal Exhibition of 1875 The Land Acts of Victoria 1869 to 1873
Ferres, John, Government Printer, Melbourne-Reports and Statistics from the principal Government Institutions of Melbourne
Commissioners for Victoria for the Philadelpha Exhibition, Melbourne -Portfohos of Music, by W H Glen Bell and Stand
Kilner, Joseph, Bosisto Street, Richmond -Pianoforte Dulciana trichord instrument, full compass, with metal string plates, ivory-fronted keys, with perfect check repeater action, built on the soundest scientific theories, tone dolest, manufactured entrely from Colonal tumber Panoforte Full cottage, trichord throughout, three pedals, full metal plates, extended sound-board of Kaurı proe, improved bass bridge, patent perfect repeater, check action, wory-fronted keys, oval key pins, with the latest improvements Colonial manufacture

Commissicners for Victoria for the Phuladelphia Exhbition, Melbourne -Maps of the Colony of Victoria Map of Coalfield

P

Surveyor-General of Victoria, Melbourne - Maps and Plans of the Colony of Victoria

Commissioners for Victoria for the Philadelpha Exhibition, Melbourne - Maps and Geological Sketches

Cl 201 Apollo Stearme Candle Co, Melbourne Steaune Candles Padfin Candles made from Austrahan Kerosene Shale. Steanne Products

Cl 215, 565 Wilson, George, \& Co, 18, Queen Street, Melbourne Gledhill's Improved Stoppered Bottle and Botthing Rack for Aerated Waters

Cl 276 Blair, Dr John, Melbourne Improved Scissors to be used in removing enlarged tonsils, \&c

Cl 342 Commissioners for Victoria for the Phuladelpha Exhibition, Melbourne Patent Cealing Ventalator, with ornamental centre-piece Model of Victorian Bush Residence, with Huts and various kunds of fencing used in Australna
Cl. 344 Bank of Victoria, Collıns Street East, Melboume Bank Notes, assued by the Bank of Victoria Statistics of the Bank, and its branches

Commissioners for Victona for the Philadelphia Exhibition, Melbourne Sovereigns and Half-sovereigns, comed at the Victornan Branch of the Royal Mint, Melbourne

Commercial Bank of Australia, Melbourne Specimens of Bank Notes issued by the Commercial Bank of Australia Photographs and Statistics of the Commercial Bank

National Bank of Australasia, Melbourne Specimens of Bank Notes issued by the National Bank of Australasıa Statistics of the National Bank.

CI 345 Penal Department, Inspector-General of, Melbourne Warder's Uniform, Prisoner's Clothing, and Sundries

Cl 347 Commissioners for Fictoma for the Philadelphas Exhibition, Melbourne Baskets, Mats, Trays, and Nets, made at Coranderrk Aborigind Mission Station. Vocalvulary of Victorian Aboriginal Dialects. Photographic Portraits of Victorian Aborngines

Cl 349 Commissioners for Victoria for the Philadelphua Exhubition, Melbourne Victorian Ensign, Blue, Local Naval Forces Victorian Ensign, Red, Merchant Vessels
P. Cl 400 Summers, Charles, Melbourne Hypermnestra and. Lynceus, Group of

Cl 402 Commissioners for Victoria for the Philadelphia Exhibition, Melbourne Medals of the Victorian Intercolomial Exhibition, 1875 Seal of the Melbourne Public Lubrary Seal of the Melbourve University Seal of the Melbourne Ex. hibition, 1862

Cl 410 Campbell, 0 R, Punt Road, Windsor Crossing the Plans
Comnissioners for Victoria for the Philadelphia Exbibition, Melbourne Specimens of Heraldic Painting on Panels, including a Viscount's, an Earl's, and a Baron's Coat of Arms

Curtis, J W, Bourke Street Last, Melbourne Track off the Point Nepean Road.

Guerard, E Von, Gipps Street East, Melbourne Pulpit Rock, Cape Schank Phullup Island Ballarat in 1873

Johnstone, H J, Bourke Street East, Melbourne "Summer Sunset-Lagoon near Seymour "

Whitehead, Isaac, Collins Street East, Melbourne Dandenong State Forest
Cl 420 Bowman, John S, 31, Russell Street The Knob in the Austrahan Alpa, Crayon-Mıss Bowman In the Australian Alps, Crayon-Mıss Adams Fall from the Omeo Plains, Crayon Valley in North Gipps Land, Crayon A pool in the Otway Ranges, Crayon-E Shaw Bushey Park, Crayon

Cl 423 Commussioners for Victoria for the Phuladelphia Exhibition, Melbourne Lithographs of Fossil Fruits and Seeds

Photograrky

Cl 430 Ararat, Shire Council of, Ararat Photographic Views and Statistics of the Shire of Ararat

Batchelder \& Co, Collins Strect East, Melbourne Photographs of Persons born in the Colony of Victoria

Bock, Henry, Sale, Gippsland Photographs of Victorian Native Flowers
Chuck, T F, Royal Arcade, Melbourae Photographs of Persons born in the Colony of Victoria

Coldc, Shire Council of Colac Photographic Views of the District of Colac
Commissioners for Victoria for the Philadelphia Exhibition, Mrelbourne Photo. graphic Views
Cresmek, Borough Council of, Creswick Photographe Views and Statistics of the Borough of Creswick
Darebin, Shire Counell af, East Bouke Photographic Vieus and Statistics
of the Shire of Darebin. of the Shire of Dagebin.

Echuca, Borough Council of, Echuca Photographic Views and Statistics of Echuca

Emerald Hill, Borough Councll of, Emerald Hill Photographic Views of Emerald Hill

Hotham, Town Councl of, Hotham Photographic Views and Statistics of the Town of Hotham

Johnstoue, O'Shannessy, \& Co, Bourke Street, Melbourne Photographs coloured in Oll

M•Donald, D , High Street, St. Kulda Photographic Views
Noble, Timothy, Bourke Street East, Melbourae Photographs of Theatrical Celebrities Chevaher Blondin, Hero of Niagara
Phœenx Foundry Co (Limited), Ballarat Photograph of Locomotives, Engne, and Tender, manufactured for the Victorian Government by the exhibutors

Prahran, Town Council of, Prahran Photographic Views and Statistics of the Town of Prahran

Robertson Brothers, Colac Coloured Photographs of Cattle bred by exhibitors
Sandhurst, City of, Sandhurst. Photographe Views and Statisties of the City of Sandhurst
Stewart \& Co, Bourke Street East, Melbourne Photographs of Persons born in the Colony of Victoria
Surveyor-General of Victoria, Melbourne Photographe Views of Botanical Gardens, Fitzroy Gardens, Carlton Gardens, Flağstaff Gardens, Melbourne (14)
Wangaratta, Shire Conncll of, Wangaratta Photographe Views and. Statistics of the Shre of Wangaratta

Willett, G, Bridge Street, Ballarat Coloured Photographs
Wilson, Sir Samuel, Ercildoun Photographs -Team of Hereford Bullocks, bred by exhibitor Residence of Exhibitor (2) Prize Sheep bred by exhubitor.

Cl 432 Commissioners for Victoria for the Philadelphia Fxbibition, Melbourne. Biographical Charts of the Schools of Venice, the Venetran States, Genoa, Cremona, Mantua, Milan, Ferrara, Modend, and Palermo Tools. Impenal foho, morocco, extra gilt

Cl 442 Dowlung, Wulham, Emerald Hill. Centre Flowers Trusses
Heathcote, T S, Carlton Painted Panels, Imitation Siena Marble. Painted Panels, Imitation Italian Pink Marble

Murphy, Edward, Sandrndge Road, Melbourne Centre Flowers and Ventilators. Registered Ornamental Chmney Cap

Paterson, Brothers, Carlton Tablets of Imitation Wood Tablets of Imitation Marble

Pepper, George, Windsor Plasterer's Models Celling and Wall Patent Ventilators
Cl 501 Morrison, L K , Melbourne Patent Abyssiman Tube Wells and Pumps, with Boring Apparatus
Cl 503 White, David, Stawell Patent Model Safety Hook, to prevent accidents from over-winding in Mining Clams Full-sized working Hook
Cl 505 Harkness, A, \& Co, Victoria Foundry, Shamrock Street, Sandburst. Chff's Patent Disc, fitted on screw stamper shank Inside Shell, showing princuple of Disc Cook's Patent Cam or Wiper, for lifting Revolving Stamps

Perry, Davs, \& Co, Sandhurst Stamper Gratings
Cl 571 Cornush \& Co, 2, Elizabeth Street, Melbourne Seats for Rauway Carrages

Cl 573 Stoneman, Edward, Stephenson Street, Ruchmond Raılway Truck Spring

Cl 590 Cornish \& Co, 2, Eluzabeth Street, Melbourne Life Preserving Mat-
tresses Life Buoys Combined Life Belts and Pillows Model of Lafe Saving

- Raft Seats and Couches for general use in Ships Ordıary Mattresses
- Cl 600 Bass River Steam Saw Mills, Bass River Blue Gum Timber
\mathbf{P}
Botanie Gardens, Drector of, Melbourne Carpological collection Woods, timbers, gums, and resins.

Cl 601 Commissioners for Philadelpha Exhibition, Melbourne Boxes made of Victorian Wood

Cl 602. Clark, John, \&i Sons, Lonsdale Street East, Melbourne. Wattle Bark for tanning purposes Ground Wattle Bark, for tannmg purposes

Cl 610 Draper \& Harbison, Melbourne Varnetes of Apples-fresh frut
P Cl 620. Adams, James, Wabring Whate Tuscan Wheat.

P Buckley, Edward, Newbridge, Loddon district, grown in the county of Gladstone

Red Straw Wheat, from the Loddon Red Straw Wheat, grown in the county of Bendigo Oats Connor, James, Allansford Foxtall Oats, grown at Merunga, near Warcnam bool
P Gilmour, Andrew, Colvinsky, Buangor Oats grown in the parish of Ballyrogan Short Oats Tartanan Oats
Jack, John, Oxley Plans, Ovens Dustrict Frampton White Wheat, grown on chocolate sol after English grass

Laldlay, Joha, Bundoora, Plenty-road. Wheat
McNair, Angus, Bellerine East New Fodder Pea; yield, 45 bushels to the acre.
$?$ White Tuscan Wheat
P Myring, Joseph, Campbell's Creek, Castlemanne Barley
P North-Eastern Pastoral and Agncultural Society, Murchison Wheat grown by J M•Nab, Tabilk
w ('Keefe, Andrew, Adelayde Vale, Clare Inn Purple Straw Wheat
? Polson, Angus, Chapman, Moyston Englash Barley Tartarian Oats. Purple Straw Wheat White Wheat
P Rossi, Thomas, Dry Diggings, near Daylesford Purple Straw Wheat
Schmitt, Lous, Mornuggton Wheat
$?$ Scott, James, Indigo, Chiltern Wheat grown by the exhibitor

- St Arnaud Pastoral and Agricultural Socety, St Arnaud. Short Oats Wheat. Barley

Stewart \& Ferguson, Indigo, Chultern. Wheat, grown by exhubitors
Taylor, John, Allansford Adelande Wheat, grown at Merumga, near Warrnambool

West Bourke Pastoral and Agricultural Society, Romsey White Tuscan Wheat, grown by the Hon T F Hamilton. M LC, President of the Society -

Patience, John, Echuca, Victoria Purple Straw Wheat
Kelly, Mortimer, Bridgwater Wheat.
P O'Relly, Thomas, Toolamba Wheat
Paterson, J M, Dyalong Wheat.
P Smith, George, Bailarat Rye Grass Seed White Iuscan Wheat
I Wright, T S, Rochester Purple Straw Wheat
P. Catelm, James, Runnymede Purple Straw Wheat Port Macdonneld Wheat. White Tuscan Wheat.
P Ararat Flour Mill Co, Ararat, Victona Prme Milling Wheat
Buckley, Edward, Newbridge, Victoria Ked Straw Wheat. Oats Flour
Cl 621. McNar, Angus, Bellerine East New Fodder Pea, 1876 Yorkshre Hero Pea. Prussian Blue Pea Long Pod Bean

Cl 623 Aboriginal Mission Station, Corranderrk Victorian Hops grown at the Corranderrk Aboriginal Mission Station
M'Kenzı, Jas F, \& Co, 3, Queen Street, Melbourne Fagle-brand Coffee. Chicory, manufactured from root grown in Victoria Mixed Spice Ground Cinnamon Homeopathe Cocon, manufactured from Trinidad nuts Chocolate manufactured from Trinidad nuts Vanilla Chocolate Sticks, manufactured from Trimidad nuts Mustard, manufactured from seed grown in Victoria

Land Antrals

Cl 635. St John, F, 22, Chetwynd Street West, Melbourne Australiàn Birds Commissioners for Victoria for the Philadelpha Exhibition, Melbourne Stuffed Water-fuwl, by Chas Fiedch

Gaskell, Joseph, Ilizabeth Street, Melbourne Australian Snıpe
Grimwood, Thomas, Eern Tree Gully Specmens of Quall, Snipe, and Landrail
Robertson, W W, 52, Bridge Road, Rachmond Collection of Australian Native Brds

Cl 637 Gaskell, Josepl, 118, Elizabeth Stieet, Melbourne Australian Wuld Ammals

Godfrey, F R, Melbourne Australian Wild Anmals
M'Coy, Professor, Melbourne University Australian Wild Ammals
Cl 638 French, C, Botame Gardens, Melbourne Australian Longscorns, buprestidoe- $\& c$-the majority destructive to Timber by boring Australian
Lepidoptera Lepidoptera
Timbrell, Ann, Plenty Road, Collingwood Japan Black and White Silkworms,
modelled in Wax

Cl 641 St John If, 22, Chetwynd Street, Melbourne. Australıan Fish
Cl 651 Bird, George, Inkerman, Lyndhurst Colonal-made Cheese
Pience, G G, Bourke Street East, Melbourne Cheese from the Heidelberg
Factory
Riddle, J, Lancefield Cheese.
P Cl. 652 Brearley, Bros, Geelong Sole Leather
P Clark, John, \& Sons, Lousdale Street East, Melbourne Sole Leathers Kıp Leather Calf Skins Kangaroo Skins Walidby Skins Sheep Skins Harness Leather Basils
P Commissioners for Victoria for the Philadelphia Exhibition, Melbourne Rags made fiom the Skins of Victorian ammals, viz, Kangaroo, Wallaby, Opossum, Native Cat, Native Bear, \&ce
P Dunchley \& M'Bride, 28, A'Beckett Street East, Melbourne Gut, Sash Lines Fink, M, Geelong Skins of the Wallaby, Native Cat, Native Bear, and Opossum
Fitts, Charles, \& Sons, 67, Cecil Street, Emerald Hill Glue
Pearse Bros, Fremantle, Western Austiaha Dugong Fish Hide Black Farness Leather Hides
Penal D partment, Inspector-General ot, Melbourne Skins of Leatber Calf, Kıp, Han nass, Black Leather and Sole Leather
Quinn, H S , Newton Street, Rechmond Dyed and White Wool Mats, consisting of bught canary, dark amber, roan, magenta, voolet, and white Kangaroo Glove Leathers
Wallis and Co, Burnley Street, Richmond Shoe Leatheis and Furmiture Leathers for jewel cases, \&c, \&c
Cl. 657 Boddy, Edward, Nagambie Fine Flour
P. Commissioners for Victoria for the Philadelpha Exhibition, Melbourne Flour from Winter Wheat
Hood, F \& J , 81, Elizabeth Street North, Melbourne Victorian made Malt
Maitin, P J, Little Flinders Street East, Melboun ne Victorian Mait
P McKenzae, Jas $\mathrm{F}, \& \mathrm{Co}, 3$, Queen Street, Melbourne Oatmeal, manufactured from colomal oats Groats, manufactured from colonal oats Brosemeal

Myring, Joseph, Campbell's Creek, Castlemaue Colonal Malt
Perrin, Wilham, jun, Stepheuson Street, Richmond Victorian Malt, made from Victorian and New Zealand grown barley
Cl 656 Bennett, T K, Bourke Street, Melbourne Preserved Meats, consistıng of Roast Beef, Bolled Beef, Corned Beef, Boaled Mutton, Roast Mutton, Ox-tall Soup, Mock Turtle Soup, and Potted Head
Botanic Gardens, Drector of, Melbourne Jam made from Kan Apples
P Comport, Henry, Cheltenham Tomato Sauce
Grant, Mrs, Bridge Road, Richmond Tomato Sauce
P Lyon, George, Beechworth Tomato Sauce
P Melbourne Meat Preserving Co, 56, Queen Street, Melbourne Pieserved Meats
P Stringer \& Co, 43, King Street, Melbourne Mixed Pickles Sauces Curry Powder
Watson $\&$ Paterson, Bourkẹ Street West, Melbourne Hams Middles of Bacon Mess Pork
P Western Meat Preserving Co (Limited), Colac Preserved Meats, comprisimg Roast Beef, Corned Beef, Roast Turkey, Ox-Tall Soup, Brown Rabbit Soup, 8 sc

Wright, Payne, \& Co, Chapel Street South, Yarıa. Jams made from Victorian fruts, consisting of golden drop, raspberry, gieen-gage, plum, damson, violet plum, magnum bonum plum, black currant, and gooseberry
Zorn, Edward, Clayton's Road, near Oakleigh Tomato Sauce Zorn's Oakleugh Sauce

Ararat District

CI 660 Trouette \& Blampied, Great Wrestern, Burgundy, 1871 Mixed Giapes
Claret, 1871 Reslıng, Little Muscat, 1874
p Best, Joseph, Great Western Hemitage, 1871
Beeghworth District.
Docker, F G. \& J B, Wangaratta Shraz, 1869
Evans, Henry, Beechworth Shuraz, 1872.

Castlemaine District.

Mellon, Francis, Dunolly. Hermutage, 1871.' Pineau, 1872. Botten, Wilham, Eddmgton Bargundy, 1869
P Jung, Otto, Castlemane Hermitage, 1871. Roussette, 1871.
Schroeder, E, Castlemane. Rieshing and Prneau Blanc, 1870. .
P Crippa, Fabrizzo, Hepburn. Hermatage, 1871.

Echitoa District.

Greer \& Co, Echaca Shuraz, 1871. Shuraz, fruty, 1872. Shiraz, 1873.
Vettler, John, Echuea Hermitage, 1870. Grenache, 1870. Verdeilho, 1872. Carbinet Sauvgnon, 1871.

Gerlong District.
Weber, Jacob, Geelong. Hermitage, 1874
Deppeler, Jacob, Gheringhap Hermutage, 1874.
Rutchie, John, Murgheboluc, Geelong Hermitage, 1874
Goulburn District.
P Bear \& Ford, Tabilk Vineyard, near Seymour. Reesling, 1872.
Egl, V., Tabilk Hermitage, 1873
Makbourne Drgticter
P Cl 660 Schmutt, Franz, Berwick Resling, 1872
Francis, Charles, Sunbury. Hermitage, 1871 Gouass, 1870
P St Hubert's Vineyard Co, Yering, Ruesling, 1869. Chasselas, 1869 Chasselas, 1871
P Johnston, J` S, Cranghe Vimeyard, Sunbury Resling, 1872 Verdelho, 1871. Hermitage, 1869 Resling, Shepherd's and German, 1871
P Maplestone, Charles, Iranhoe Lodge, Heidelberg Hermutage and Carbnet, 1870 Resing, large and small, 1872 Rieslng, 1870.
P Brasche, Charles, Sunbary Shepherd's Riesling, 1871
Snowden, E G, Boroondara. Rieshng (large), 1871.
Mureay Dibtrict
P Smuth, G S , Wahgunyah
Muscatel, 1869

Sandiutegt Dibtrict.

P Pohl, Carl, Strathfieldsaye Hermitage, 1870 Hermitage, 1871 Hermatage, 1873 Hermitage, 1874 Carbinet and Hermitage, 1868 Verdellho, 1874
Bruhn, Albert, Strathfieldsaye, Sandhurst, Verdelho, 1872. Hermutage, 1874. Carbinet and Hermitage, 1873 Mataro, 1874

Fuchs, Adolph, Strathfieldsaye, Sandhurst Verdellho, 1873. Hermutage, 1873 Carbinet, 1873
Fischer, August, Shamrock Vineyard, Enuu Creek, Strathfieldbaye Verdeilho, 1874. Verdellho 1873 Hermitage, 1874

Shaw, F K., Goornong Hermitage, 1871
P Grosse, Frederick, Strathfieldsaye Hermitage, 1873 Carbınet, 1873 Grosse, Frederick, Toorongo Vineyard, Bendigo Verdellho, 1873
Greiffenhagen, Wm, Strathfieldsaye, Rieshng, 1871. Hermitage, 1872
Brown, H J, Australian Distllery, Melbourne. Geueva Spirits bf Wine Fuller, Alfred, Kew Bottled Ale and Stout
Henelly, James, 140, Latrobe Street West, Melbourne XXXX Ale
P Latham, Edward, Carlton Brewery, Carlton Ale Porter.
Martin, P J, Little Fhnders Street East, Melbourne Ale Brewed from Victorian Malt and Tasmanian Hops

Reed, Henry, \& Co, Chapel Street, South Yarra Vinegar in bulk, and bottle Lume Juce Cordual Raspberry Vinegar
Stewart, James, Eaglehawk, Sandhurst Ale Bottled AIe
Treacy, John, \& Co, Geelong Pale Ale and Stout, in bottle
Warrenhenp Distullery Company, Sturt Street, Ballarat Whisky, 1874, 1875. Geneva, proof und op Spirts of Wine

Cl 661 Guest, T B , \& Co, Wılham Street, Melbourne. Fancy Biscaits, consisting of Ginger Nuts, Victorias, Meal Crackers, Cracknells, Picmes, Lime Biscuts

Smith \& Son, Muller and Anderson Streets West, Melbourne. Fancy and Dessert Biscuits

Swallow \& Ariell, Sandridge and Melbourne Fancy Biscuits Cabin and Pilot Biscuits.
P Cl 665 Commissioners for Victoria for the Philadelphia Exhibition, Melbourne. Samples of Cotton, grown from New Orleans Seed on the Murray, Victoma. Cl 666. Atknsson, Willam, Camperdown. Teazles, one stave contaming 300 head.
Longmure, Thomas, Kooroocheang, Smeaton. Two Samples of Flax Stalks, and Seeds thereon, Nos. 1 and 2. No. 1 sown on 20th May, 1874, No 2 sown on 1st September, 1874. Both samples grown on sumalar land, the only difference being in time of sowing
M'Pherson, Thomas, and Co., 205, Bourke Street West, Melbourne. Jute, in raw state.
P Cl. 667 Armstrong, Alexander, Warrantme, Shelford. Merino Fleeces.
P Arnold, George, \& Co , Market Buidıngs, Melbourne. Merıno Fleeces.
Commissioners for Victona for the Philadelphia Exhibition, Melbourne. Wool.
P Cuming, F. F, Stoneypoint Wool
Curre, John Lang, Larra, Derımallum, Victoria. Lambs' and Merno Ewe

Wool

Degraves, C \& J, Coliban Park, Elphinstone Washed Fleece Wool, Lambs'.
P Elder, W. \& N G', Elder, Rookwood. Merıno Wool
P Goldsbrough, R. \& Co , Wool Warehouse, Boarke Street West. Wool. Greeves, Edward G , Berriallock, Skıpton Victorıa Merino Wool.
Hastings, Cunmngham \& Co, The Australasian Wool Stores, Collins Street West. Fleeces of Merino Wool from sundry breeders.
Henty, Edward, Portland. Wool
P Lang, Willam, Wargam, Wangamulla, New South Wales Merno Wool and Wool.
P M•Vean, John, Wooloomoonoo, N S W. Merino Wool.
Reeves, Isaac Godfrey, Footscray, Melbourne. Wool
P Russell, Thomas, Barunah Plains, Mount Hesse Wool.
Routledge, Wilham, Farnham Park, Warrnambool. Fleeces.
Rutherford, Andrew, Como, Kensmgton, Geelong Fleeces, Wool."
Synnot, Monckton, Lattle Fhnders Street, Melbourne. Wool.
P Synnot, George \& Co, Geelong Lincoln Wool.
P Timms Brothers, Mount Hesse, Beeac. Wool Watson, Alexander, Warribee Merino Fleeces.
P Wilson, Sir Samuel, Oaklengh Hall, East St. Kılda. Fleeces
P Wilson, John, Lismore Merino Wool.
Cl 688 Commissioners for Victoria for the Phuladelpha Exhibition, Melbourne. Silk Cocoons
Howard, John, near Albury Sample Cocoons, Floss Sllk, \&e
Cl 670. Lennon, Hugh, Elizabeth Street North, Melbourne. Excelsior Double Furrow Plough

Cl 674. Bodington, Robert, 4, Queensbury Street, Carlton Sharp's Patent Sheep Support on Rollers, used in the Washing of Sheep by Spouts or Jets.
P Cl 707 Commissioners for Victoria for the Philadelphia Exhibition. Melbourne. Tree and Todea Ferns.

Cl 709 Commissıoners for Victoria for the Philadelphia Exhibition, Melbourne.
The following fac-similes consist of specimens, the orignals of which were selected durnag the past season, modelled and arranged for the Commissoners by Mr Thos. M'Millan They embrace most of all the mportant species cultivated, and in many cases such assortments of vareties as are calculated to sufficiently illustrate the orchard and other open ground frut-producing capabilities of Victoria.

Arborescent Frutrs.
Pomaceous Fruits, including the Apple and Pear and taelr Allies.
The Apple-Pyrus malus
The Pear-Pyrus communis.
(2) The Qunce-Cydonas vulgaris

The Medlar-Mespilus Germanica.
The Loquat-Eriobotrya Japomica.

.Stone Frdits, or Fleghy Drupeh.

1. Drupacea vera.

The Peach- Λ mygdalus.
The Nectarine-Amygdalus Persic a var.
The Apncot-Prunus Armenaca
The Plum-Prunus domestica.
The Cherry-Prunus cerasas
2. Oleacere.

The Olea Eumpaza (Photograph).

Berried of Baccate Fruits and their Modificatione.

The Grape-Vitus nimfera.
The Mulberry-Morus nigra
The Fig-Ficus cance.
The Pomegranate-Punica Granatum.
The Orange or Citron tribe-Citrus.
The Kan Apple-Abena Caffra
The Gooseberry-Ribes Grossularia.
The Black Currant-Rubes nigrum.
The Red Currant-Ribes rubrum.
The Whate Currant-Ribes rubrum fr. Album
The Raspberry-Rubus adæus.

Nuts and Dey Drupes.

The Almond, Walnut, and Hazel.

Annual and Perenniay Herbaceous Fruits.

The Strawberry-Fragana vesca.
The Tomoto-Lycopersicum esculentum
The Egg Apple. Melongena-Solanum melongena.
The Cape Gooseberry-Physalis edulis.
The Capsicum-C. Annuum
For illustrations of the Melon, Cacumber, Squash, and Gourd, see Photographs.
Book Collection of Phænogamous Plants, Shrubs, Trees, Herbs
Commissioners for Victoria at the Yhladelphia Exhibition, Melbourne. Catron ${ }^{\text {or }}$ Orange Tribe, 17 species Cherries, 25 Species, 3 fruts each. Figs, 4 varieties. Pears. Strawberries. Plums Apples Apmeots. Currants., Gooseberres. Walnuts Peaches

Gaskell, Mrs , 118, Elizabeth Street, Melbourne. Fac-simules of Victoraan Bush Flowers.

BAHAMAS.

Commissioner from Bahamas to the Philadelphia International Exhibition, 1876.

Dr. Edward Y. Webb.

BRITISH COLONIES.

bahamas.

History.

A chatn of slands lying between $21^{\circ} 42^{\prime}$ and $27^{\circ} 34^{\prime} \mathrm{N}$ lat, and $72^{\circ} 40^{\prime}$ and Postion $79^{\circ} 5^{\prime} \mathrm{W}$ long The group 18 composed of about 20 unhabited slands and an immense number of islets and rocks. The principal islands are New Provi- Islands in Group. dence (contanning the capital, Nassau), Abaco, Harbour Island, Eleuthera, Inagua, Mayaguana, St. Salvador, Andros Island, Great Bahama, Ragged Island. Rum Cay, Exuma, Long Island, Crooked Island, Acklin Island, Long Cay, Wating's Island, the Berry Islands, and the Buminis.
St Salvador, one of the islands composing this chain, was the first St Salvador land discovered by Columbus on his voyage in 1492 New Providence was settled by the Englsh in 1629, and held till 1641, when the Spanards expelled them, but made no attempts to settle there themselves. It was again colocised by England in 1667, but fell into the hands of the French and Spanards in 1703, after which it became a rendezvous for prates, who were, in 1718, exturpated, when a regular colonial administration was established, and the seat of Government was fixed there In 1781 the Bahamas were surrendered to the Spamards, but at the conclusion of the war they were once more annexed by, and finally confirmed to, Great Britan at the Peace of Versalles, 1783

In 1848 the Turks and Caicos Islands were separated from the other Turks and Bahamas, and formed into a distinct Government, under the Government-In- Calcos Islands. Chef of the Governor of Jamaca
The Turks and Cancos Islands he between 21° and $22^{\circ} \mathrm{N}$. lat , and 71° and $72^{\circ} 37^{\prime} \mathrm{W}$. long

Trade and Industry.

There are ten colonial custom-houses and ports of entry in the Government of the Bahamas, ozz., Nassau, Abaco, Eleuthera, Harbour Island, Exuma, Rum Cay, Long Island, Long Cay, Inagua, and Ragged Island. Conaderable quantities of pine-apples, oranges, and sponges are exported, chiefly to England and the United States
The pine-apple crop 18 very precarious. The industry of salt rakng has Pue-Apple Crop ceased to be remunerative, owing to the high protective duties imposed on salt salt raking. by the United States.

Experiments in castor oll, cotton, tobacco, coffee and nut planting and other branches of induatry have been commenced under the patronage of the present Governor.
Local Boards of Agriculture have been estabhshed in all the out-1slands Local Baards of with a view to encouraging these new industries.

Constitution
The Executive Government is conducted by the Governor, aided by an Evecutive Councll of 8 members The Legiblative Authority resides in the Governor, a Legislative Councll of 9 members, and a Representative Assembly of 28 members The qualifications of electors are full age, a residence of 12 months, of which 6 have been as freeholder or housekeeper, or a residence of 6 months, and a payment of duties to the amount of $26 l 0 s 10 d$ The qualification of members 18 possession of an estate of real or personal property of the value of 500 t The Executive Council 1 s composed partly of offical and partly of unofficial members They usually have a seat in one of the branches of the Legislature.

> Population.
> 39,162 (Census 1871).
(From "Colontal Office List 1876 ")

Discovers	The history of the Bahamas began on 1492, when Columbus, the great
	pioneer, navigator, and discoverer of the New World, landed on the shore of
	Guanalam and named at St. Salvador Commerce did not immedrately
	low in the wake of discovery, but about 250 years after that event, pine
	apples were grown at and exported from Eleuthera, and 50 years later cotton
	was extensively cultivated, and salt and wood added to the exports
Staple pro- ductions	At the present time the Colony's staples are salt, frut, sponge, barks, dye and furniture woods, guano, and straw, turtle shell, fish scale and shell
Farr repre-	The articles on exhbition farly represented the productions and manu-
	factures of these islands, and both might be indefintely extended. But it is
Extherition a	not the commercial position of the Bahamas only which should make
Salubrty of	knowledge of them general Ther equality and wonderful salubrity of
Group	clmate commend them to all who seek a genial, healthy, life-giving atmosphere As a winter home for the afflicted, Peter Henry Bruce wrote
	ly a century and a half ago, "It is no wonder the sick fly hither for relief,
Natural adval tagea	being sure to find a cure here." Modern travellers also testrfy that as a
	from damp and cold to sunshine and summer for those who require change
	and clumatic benefit the Bahamas offer pecular adıantages The heat is tempered by an ocean breeze of softness and purity seldom experienced
	re. Tropical flowers gladden the eye, and the luscous pine
	orange, and melon tempt the palate with therr freshness and beauty.
	abound in the clear pellucid water surrounding these islands, and the
	northern fowl seek a home on the lakes In a word, the Bahamas seem by
	nature fitted as a grand sanitarium for the aflicted from the North American
	Continent, and as a most desirable winter resort for all who wish to escape the rigours of the Northern Season.

List of Contributions from the Colony to the Philadelphia International Exeibition, 1876.

P sugnfies Award for Exhubut
(The Government of the Bahama Islands recelved also an award for its Collective Exhibit)

Classs 102.
Dupuch, Joseph. 1 block Bulding Stone, to be presented to Cornell Stone. University.
George, Jno S 2 blocks Bulding Stone, to be presented to Cornell University.

Class 200

Salt
Meadows, Jno G, Inagua, Sargent, D, Inagua, 1 case containing speci- Salt mens of Salt and jar of Table Salt This salt is largely exported to the United States and to British North America.

Class 218.

P Robertson, Mrs S E. Case containing Epergne, valued at $\$ 500$
Epergne.
Class 224.
Dorsette, Thomas. 1 Dripstone manufactured out of Lume Stone, for Filter. filterng water.

Class 253, 254 -Shell and Fush Scale Work.
Atwell, The Misses. Cases containing Memorial Wreath (\$140), Cornu- Jewellery copia (\$45), 1 doz sets Brooches and Earrings, $\$ 3$ each or $\$ 35$ the lot. All manufactured out of shells and fish scales

Evans, Ellen G E Cases contaming 1 Shell Cross (\$100), 1 Shell Basket ($\$ 60$), 1 Bridal Wreath ($\$ 30$). Manufactured out of Bahama' Shells
P-Garner, Mrs Maria E Cases containing 1 Basket (\$60), 1 Frut Basket (\$60), 1 Bridal Wreath ($\$ 20$), 1 Spray ($\$ 4$), 2 do $\$ 3$ each. Manufactured out of Bahama Shells

Palmetto Work and Walking Stıcks
Centennial Exkibition Committee, Nassau 1 case containing Palmetto Palmetto Work work, үuz, 6 Fans, each \$1 50, 3 Pearl Edge Hats, $\$ 3,3$ Edging for Hats, $\$ 2$ Manufactured by Mrs Jno. Taylor, Inagua.

Dupuch, Joseph 1 Card Tray, $\$ 4$, manufactured out of 9 different woods 5 Bread Platters, \$150, manufactured out of various woods. 3 Bread Platters, to be presented to Cornell Unversity, Ithaca, N.Y.

Eldon, Mrs James Case containing 1 Orange Tree (\$25).
Armbrister, James A 18 Walking Canes, nz -12 Green Ebony, $\$ 125$. Walking Canes, 6 Satın Wood, $\$ 125$. Manufactured at Long Island, Bahamas
Dupuch, Joseph 65 Walking Canes, all manufactured out of woods growing in the Bahamas 2 Crab Wood, each $\$ 125$, can be supphed in Nassau from the tree at $\$ 12$ per 1002 Red Crab Wood, each $\$ 125$, in Nassau at $\$ 12$ per 1002 Casava Wood, each $\$ 1$, 1 n Nassau at 4 c per foot 2 Black Torch, each $\$ 125$, in Nassau at $\$ 12$ per 1002 Lignum Vitæ, each 75 c , in Nassau at $\$ 12$ per ton. 2 Cocoanut Wood, each $\$ 1$ 2 Mahogany, each $\$ 1$, in Nassau at 4 c per foot 2 Sabicu, each $\$ 1$, in Nassau at 4 c per foot 2 Satin Wood, each 75 c , in Nassau at 4 c per foot 2 Iron Wood, each $\$ 125$, in Nassau at $\$ 12$ per 100. 2 Green Ebony, each $\$ 1252$ Red Stopper, each $\$ 1$, in Nassau at 4 c per foot 3 White Stopper, each 50 c , in Nassau at 4 c per foot 2 Mastic Wood, each 7 je , in Nassau at 4 c per foot. 2 Saffron Wood, 50 c , in Nassau at $\$ 12$ per $100 \quad 2$ Cascarilla, with bark, each 50 c , in Nassau at $\$ 12$ per 1002 Crab Wood with bark, each 50 c, in Nassau at $\$ 12$ per 1001 Prince Wood, whth bark, each 25c, in Nassau at $\$ 12$ per 100 . 3 Red Stopper Wood, with bark, each 25c, in Nassau at $\$ 12$ per 100 1 White Stopper Wood, with bark, each 25 C , in Nassau at $\$ 12$ per 100. 6 Hercules Club Wood, with bark, set $\$ 4$, in Nassau at $\$ 10$ per 1004 Wild Lemon Wood, with bark, each $25 \mathrm{c} .$, in Nassau at $\$ 12$ per l00, 2 Tamanind

Wood, wnth bark, 25c., in Nassau at $\$ 8$ per 1002 White Torch Wood, with bark, 50 c , in Nassau at $\$ 12$ per 100. 2 Black Torch Wood, whth bark, 50 c , in Nassau at $\$ 12$ per 100.2 Guava Wood, with bark, 25 c ., in Nassau at $\$ 12$ per 100. 2 Wild Coffee Wood, with-bark, $25 \mathrm{c}, 1 \mathrm{n}$ Nassau at $\$ 12$ per 100. 3 Wild Cane, with bark, 25 c , in Nassau at $\$ 4$ per 100. 2 Lemon Wood, with bark, 25c., in Nassau at $\$ 15$ per 100

Wallace, Alexander C. Walking Canes, mz, 4 Crab Wood, with heads $\$ 250$. 2 Crab Wood, without heads, $\$ 150$. 2 Green Ebony, $\$ 250$.

Mimosa Bean Work -Tortorse Shell Ornaments

Tortonse Shell Ornaments.

Tortonse Wolk.

Rope from Aloe Fibre.

Palmetto Bope. the Aloe
Not exported, but extensively used in the Bahamas.
Centenual Exhibition Committee, Nassau.* Specimens of Palmetto Rope, 3 sizes.

Class 287, 289.
Rope from Wuld
Fig Tree Bark.
Palmetto
Baskets.

Bark Products

Wood for furnture, and dyes, gums, \&c.
 Palmetto Leares
 Barks,Cascarilla and Camella Alba

Knowles, Joseph A,* Long Island Wild Fig Tree Bark manufactured into Rope and Net, Palmetto rope. Specimens of Palmetto Baskets (3), -Palmetto Mats.

Class 600

Knowles, Joseph A ,* Long Island. Specmens of Wild Fig Tree (bark), very durable when manufactured into Rope

$$
\text { Class 600, 601, 602, } 603 .
$$

George, Jno S 1 prece Logwood (dye), generally exported to London. Specimen of Palmetto Leaves Indigenous to the Bahamas, can be extensively exported Specmens of Bark (Cascarlla and Canella Alba) Exported to United States and London. 4 preces Braziletto (dye), generally exported to the United States. 2 preces Green Ebony (dye) 1 piece Yellow Pine (furniture). Large forests of pitch pine are in the Bahamas not utuized. 1 prece Sabicu or Horseflesh (furnture) 1 plece Mahogany (furniture) 1 prece Cedar (furniture). 1 prece Satin Wood (furniture). 1 prece Stopper
Por Wax

Pfor Barhs. Canella and Cancarilla Bark*

Grant, Misses Julaa and Mary 1 case contanning Mimosa Bean Work, viz , set of Lady's Ornaments, $\$ 5$, i Card Tray, \$4 50, 1 parr Watch Cases, 8250 , 1 parr Mats $\% 1,1$ case contaming Cross, $\$ 12$.
Centennal Exhibition Committee, Nassau. 1 case Mimosa Bean ornaments, contanıng 1 card basket ($\$ 450$), 2 Bags ($\$ 4$), 2 pars Bracelets, each \$1 50. Manufactured by Messrs. Jarrett, Nassau.
The Mimosa grows wild in the Bahamas.
Minns, Albert C J 1 case contaning Tortoise Shell Ornaments, viz, Lady's set, consisting of Necklace, Pin and Earrngs, Bracelets, Solitarres and Studs, $\$ 140$, Gentleman's set, consisting of Albert Chain and Charms, Scarf Rang, Solttares, Studs, and vest buttons, $\$ 50$; Lady's Necklace and Locket, $\$ 30,1$ Spoon, 1 Paper kmfe, $\$ 10$. All the Tortoise Shell Work is manufactured by hand, and is warranted genuine.
Symonett, Mrs. Matthew. Cases contaming I Palm Tree, \$12; I Watch Stand, \$25
Centennal Exhbition Commattee, Nassau 1 Tortoise Back, cleaned and polished entrre (\$75). Cleaned and polished by J. R. Saunders, Nassau.

Class 287.
Carrol, Richard E , ${ }^{*}$ Long Island. Specimens of rope made out of Fibres of Wood (furniture) 1 plece Orange Wood (furniture), not at present exported 1 prece Lignum Vite (furnture), exported to London. Wax, made from Myrtle berry Exported to London Sawyer, R H, \& Co. Specmens of Bark (Canella alba and Cascarilla). Exported to Unted States, and London 1 log Sabicu or Horseflesh (furniture), very durable wood, used for bulldng purposes 2 crotchets Mahogany or Maderra (furnture), this wood is largely exported to London. 2 pleces Satin Wood (furmiture), this wood is largely exported to London 1 piece

[^18]Bull Wood (furniture), a new wood not at present exported, very handsomely curled. 1 piece Cedar (furmiture), used for building purposes 1 piece Cocoanut Wood (furniture) 1 prece Stopper Wood (furmiture), very durable, used principally for the piles of wharves. 1 ship's knee of Sabicu; knees like the one exhibited can be largely exported 3 preces Green Ebony (dye), largely exported to London. 4 pieces Braziletto Wood (dye), generally exported to the United States. I piece Logwood (dye), generally exported to London Myrtleberry Wax. Exported to London.

Class 604.
Saunders, Saml. P. Specimen of Mammee Sapota or Vegetable Sponge, $\begin{gathered}\text { Yegetable } \\ \text { Sponge. }\end{gathered}$ excellent for bathing purposes, price about 3c. each

Class 623.

Boyd, Adam. Specimens of Tobacco and Coffee cultivated in New Tohaceoand Providence.

Class 645.

Shells and Tortorse Shell.

Sawyer, R H, \& Co 6 King Conch Shells, 6 Queen Conch Shells, 6 Common Pink Conch Shells, 3 Lamp Conch Shells. These Shells are largely exported to London.
George, John S. 7 Quepn Conch Shells. 6 preces Tortoise Shell; obtanned from Hawksbill Turte, largely exported to London 1 lot Loggerhead Shell; obtanned from Loggerhead Turtie, largely exported to London.
Saunders, Samuel P. 1 case containng about 100 varethes small shells, \$100. The shells in thus case were all collected in the Bahamas.
Treco, P. A 1 case contanning Bahama shells, ${ }^{p} 100$. The shells were collected and arranged by J. R. Saunders.

$$
\begin{gathered}
\text { Class } 650 . \\
\text { Sponges. }
\end{gathered}
$$

Sawyer, R H., \& Co 1 String Sheep Wool, 1 Velvet, 1 Yellow, 1 Grass, Sponges. 1 Reef Largely exported to London and the Unted States. Class 654, 658.
George, Jno S Arrow Root and Casava Starch, Bahama manufacture; Arrow Roor, Bees Wax

Farious Spe* cumens of Shells. and Tortouse Shell.

Centennual Exhbition Committee, Nassau 18 bottles of assorted Preserved Preserved Fruts
ruits, each $\$ 150 ; 4$ assorted Pickles, $\$ 150 ; 1$ Pimento $\$ 150$, manufactured out of native fruts by Daphne Fife. out of native fruts by Daphne Fife.

Class 665
Sawyer, R H, \& Co,* Saunders, S P, Brice, D. A* Specimens of Cotton Cotton, produced principally at Long Island and exported to London.

Class 666
Centennal Exhibition Committee, Nassau * 1 case contaning specimens Fibres of Fibres, of the Pita Plant, Plantan Tree, Banana Tree, Pine Apple plant, Aloe, Esparto Grass 1 case contaming specimens of Fibres, viz, wool made from leaf of Forest Pine, Pita Plant, Banana Tree, and Planntan None of the Babama fibres are at present utilized, they could, however, be obtained
and exported in large quantities. and exported in large quantities.

Class 681

Saunders, Saml P* Specimen of Cave Earth (fertulzer), exported to United Fertilizer States

[^19]BERMUDAS.

Commission from Bermudas
 to the

International Exhibition, Peiladelphia, 1876.

His Honour Thomas L. Wood, Chief Justice, President. Hon. Henky Fowler, Receiver-General. Lieutenant-Colonel Bland, R.E. James Tucker, Esq., Colonial Secretary, and Honorary Secretary. Captain Lockhart, Ra., a.d.c.

Assistant Commissioners.

Major Wilitinson.	H. J. Hinson, Esq., M.D.
A. H. Frazer Lefroy, Esq. J. B. Heyl, Esq. W. S. Barr, Esq. C. C. Keane, Esq.	

Resident Commassoner at Phuladelpha.
A. A. Outerbridge, Esq.

BERMUDAS.

Ar an Exhibition where the nchest and most attractive preducts of the world Prelmmary are displayed, it is not to be expected that the Bermudas, almost the smallest remarks. in extent of the Colomal possessions of the Britsh Crown, can supply much matter worthy of notice. It is, however, the object of these few lines to draw the attention of the passing stranger to those points of interest to which they may fairly lay clam
The position of these islands in mid-Atlantic makes them of necessity one Important of the most important maritime stations on the globe 'To this curcumstance position as as of their geographical situation in the midst of a comparatively warm body of martime station. water are also due such physical phenomena as render the Bermudas interesting in (among others) the following particulars.-

Natural beauty - A glance at the map, an enlarged copy of which was ex- Natural features. hibited in the Bermuda Court, wll show the character of the Colony so far as the distribution of land and water is concerned A chain of islets of uregular shape, wrth large inland basins, affords endless modifications of sea-shore scenery, occasionally precipitous and abrupt. a perpetual alternation of hill and valley imparts variety of aspect, and, though there are few, if any, features of sublumity in the scenery, water and sky of singular purtty and softness of colour, and the general accessories of sea-side lapdscape in a sem-tropical country, with babitations of an antiquated character peeping out from amidst redundant vegetation, give Bermuda a place amongst the more attractive spots of the earth's surface.

Climate -From its geographical position within the temperate zone, and Equable clumate. yet surrounded by an expanse of ocean of a comparatively high surface temperature-rarely below 62°, sometnmes as high as 82° Fahrenkeit-Bermuda has a climate varying less in actual range of the thermometer than is to be found in any other spot, not insular, situated without the tropics; being, in that respect, nearly on a par with Madeura It has an equable temperature, Neariy on a par varying in the colder months from 55° to 70° Fahrenheit; and the summer and with y yderrar early autumn, although oppressive frum the moisture of a prevaing tropical Wind, are of but comparatively short duration For seven months of the year For seven Bermuda has a climate singularly free from violent alternations of temperature months and trying extremes, and, though liable to some fluctuation, almost always gental and bland

The following table, compiled by his Excellency Major-General Sir John Table ahowng Lefroy, C B., K CMG, FRS, is inserted to show that the winter tem. temperature as peratures of Bermuda occupy a middle place between those of other famous compared with resorts for invalids They differ but little from the winter temperatures of healch resort Maderra as compared with Cuba and Nassau, they are materially less relaxing As compared with Nice, Mentone, Algiers, and the Nile, materially more genial. In fact, Madeira, Bermuda, and St. Augustine, in different degrees, appear to unite the advantages of all the others in this particular. It 18 only in ats humidity that it compares unfavourably with Continental atations, it is only invaluds for whom a very dry aur is recommended, that may be disappointed in resorting to Bermuda in winter.

Comparative Table.

						嗺	-	吕	
I	II.	III.	IV.	V.	V1.	VLI.	VIII	IX	X.
July	$81 \cdot 5$	821	800	701	828	858	$75 \cdot 2$	750	730
August	$81^{\circ} \mathrm{C}$	$81 \cdot 7$	81.7	709	827	858	765	750	739
September	804	811	798	$70 \cdot 9$	802	792	73.2	690	$69 \cdot 2$
October .	$78 \cdot 8$	778	73*7	68.7	738	723	'68 5	640	616
November	751	748	680	65.0	635	63*0	61 9	540	538
December	73.5	734	$64^{\cdot 5}$	626	609	61.3	$55 \cdot 1$	490	470
January	714	$70^{\circ} 5$	$63 \cdot 4$	619	607	58.1	530	482	445
February	740	715	63.0	627	650	561	54.8	485	$47 \cdot 5$
March .	741	724	$63 \cdot 4$	640	675	64*6	560	520	$50 \cdot 6$
April	$76^{*} 6$	750	$66 \cdot 5$	67 I	$70 \cdot 1$	77.9	59.0	572	548
May	780	783	704	68.4	769	783	663	630	623
June .	81.0	811	760	682	$81 \cdot 4$	837	715	$70 \cdot 0$	686
Mean annual	772	766	709	67-3	$72 \cdot 1$	722	64.3	604	58.9

II, VI, VII, VIII, X, Dove's Temperature Tables, 1848 IV, Governor Lefroy. V, IX, The Climate and Resources of Maderra, by Michael C Grabham, MD, 1870 III, Britısh Army Medical Department, 10 years, 1855-64.

General salubrity

General description

Harbours

Islands

Salubrty.-It is a point worth bearing in mund, that the Bermudas are eminently healthy. From nost of the ordmary ills which pervade large communities they are free A porous sub-soil and free currents of air prevent or dissipate malaria. Nor, if we except occasional visitatoons of yellow fever presumably arising from preventable causes, and prevailing only at long intervals during or immediately after the extreme heats of summer, is there any fever of a local character Cholera and diphtheria have never appeared; skin diseases are almost unknown Acute inflammatory diseases assume a milder form, and yeld more readly to treatment Children are healthy. Practical experience shows that weakly invalids from more extreme climates acquire strength during the winter months Old age--even very old age-1s common It is difficult to suggest why (except in the summer months) Bermuda should be other than extremely favouable to health
Situation - Bermudas, or Somers' Islands, is a cluster of about 100 small aslands, situated on the western side of the Atlantic Ocean, in lat $32^{\circ} 15^{\prime} \mathrm{N}$. and long. $64^{\circ} 51^{\prime} \mathrm{W}$. The exact situation of Bermuda Lighthouse (erected m 1846 on the highest land in the colony, the hght beng 362 feet above the sea, and visible at more than 30 miles distance) is in lat $32^{\circ} 15^{\prime} 4^{\prime \prime} \mathrm{N}$, and long. $64^{\circ} 51^{\prime} 36^{\prime \prime}$ W It is distant from Cape Hatteras, the nearest point of the Continent of America, 580 nautical miles, from New York about 640, from Halifax 800 , and from St Thomas about the same.
Fifteen or sixteen of these islands are inhabited, the rest are of inconsiderable size, the largest, or Bermuda proper, contaning less than 20 square miles of land, and nowhere exceeding three miles in breadth.

Dimenstons - The islands extend from NE to S W. an a curved line bending inwards at both extremittes, so as to enclose spacious and secure harbours; the extreme length from end to end of the enture group being about 26 miles, and the average breadth of the principal island is about $1 \frac{1}{2}$ miles

Besides the mann island, on which the town of Hamulton, the present seat of Government, is situated, the principal slands are St George's, where the ancient town of St. George, the former capital, stands, Ireland Island, where the dockyard is established, Boaz and Watford Islands, occupied entirely by a military detachment, formerly a convict establishment; Somerset, St Daud's, Smith's, Cooper's, Nonsuch, Godet's, Port's, and Ruver's. With the exception of one break between Somerset and Watford Islands, there is contmuous communcation by bridges from St. George's to Ireland Island

Discovery and Settlement - The islands derive their name from Bermadez, History a Spaniard, who sighted them in 1527 The earhest account of them is given by Henry May, who was cast away upon thern in 1593 They were first colonized by Admiral Sir George Somers, who was shipwrecked there in 1609, on his way to Virginia On his report the Virginia Company clamed them, and obtaned a charter for them from James I in 1612. This company sold their rights for $2,000 l$ to an association of 120 persons, who obtaned a new charter in 1616, incorporating them as the Bermuda Company, and granting them rery extensive powers and privileges

Constitution -Thas is the same as that which primarily prevailed in most other Government and colonies settled early in the seventeenth century, and conssists of a Legislature Legsisiture comprising a Governor and Lepislative Councll nommated by the Crown, and an assembly elected by the people The Governor $1 s$ assisted in the discharge of executive duties by a Privy Council, identical with the higher chamber of legsslature

Representative government was introduced in 1620 In 1621 the Bermuda Introduction of Company in London made a Body of Ordinances for the Government of the representative Colony During the civil war, preat numbers of emigrants from England 1620 were attracted thither by the favourable reports of the clrmate and soll. Towards the end of the reign of Charles II, grave complaints were made by the mhabitants of the misgovernment of the plantation by the Company; and its character was annulled by process of quo warranto, at Westminster, in 1684-85 Since then the governors have been apponnted by the Crown, and laws for the colony enacted by a local legislature, consisting of the Governor, Council, and Assembly

The lands belonging to the Company were forferted to the Crown on the annulment of their charter, and with the exception of some reserved for public uses, were granted in 1759 to purchasers on small quit-rents, extingurshable on the payment of a fixed sum of money.

During the Revolutionary War in North America the mhabitants suffered great privations from the scarcity of food, and although they export largely certan articles of agricultural produce, especially potatoes, onions, tomatoes, and arrowroot, they are still dependent on foreign supplies for all the flour and most of the meat consumed

$$
\text { In } 1784 \text { a printing-press was introduced }
$$

Early in the present century the importance of the Bermudas as a naval Introdu station came to be recognized Ireland Island was purchased exclusively by the government, and a dockyard established there By Order in Council, dated June 23, 1824, the Bermudas were declared a place where male convicts might be kept at hard labour on the public works, but these islands never were made a penal settlement, strictly speaking, where convicts might be discharged The establishment was broken up in 1863.

On the abolition of slavery in 1834, the system of temporary apprenticeship Abolition of of the emancipated slaves, permitted by the Act of Parliament in the slave- slavery holding colones, was dispensed with by the local legislature of Bermuda, so as to entitle the slaves to their absolute freedom six years sooner than was required by Parhament They and their descendants now form more than a numerical half of the entire population

Geological formation and soil - Without hazarding speculation as to the Goological notes. origin of the mountain peak whose summit forms the Bermudas, by volcame upheaval or otherwise, it 18 sufficient to say that all that can be seen belongs to the newest of geological formations To a depth at least of fifty feet below low-water mark it is wholly composed of limestone of variable hardness, the basis of which is commmuted shell and coral, or other organic anmal matter of marine origin, the surface soll either a detritus from these rocks, or a pecular red soil of great natural fertility, the origin of which is open to much conjecture

Animal Kingdom - The Bermudas may be said to have had, when first Absence of discovered, no native anmals Those since introduced are of the ordinary native anumals domestic species In sea birds, on the contrary, it was very rich, and besides nine or ten varieties of land birds that still buid there the siands are undes bealth of sea every year by a very large number of migratory birds, in all about 135 species have been killed The most noticable residents are the Red-bird or Cardinal Grosbeak, the Blue-bird, or Scialia Wilsons, the white-eyed Vireo

Marme anmal life

Fishes-various species
calle "Chick of the Village;" the Cat-bird, Mumus Carolinensss; and the Ground Dove, Columba passerina Marine anımal life is varied and abundant, as was attested by the corals and sponges exhibited The beautiful actinea could not be shown Some of the fishes appeared in the Aquarium Department, including the beautiful Angel Fish, the Parrot Fish, the Butterfly Fish, the sea turbot, and others of strange forms or gaudy colours

Vegetable Kıngdom -Bermuda can produce many of the fruits of both

Palms

Arrowroot

Notable works and natural features

Boats and boatmen

Population 10 1871.
tropical and temperate chmes Strawberres, although little' cultivated, bear well in the cool months The fruits, which in their seasons are tolerably abundant, are oranges and lemons, avocado pears, loquats, litchis, the Surinam cherry (a Eugena), figs, grapes, pomegranates, bananas, sugar apples, chirimoyas, mangos, sweet and sour sops, sugar-cane, and melons But many of them are only grown in private gardens, and not generally attainable Of timber, the indigenous Cedar predominates, much resembling the Virginia Red Cedar; but the stranger, in winter, is attracted by the great beauty of the Poinsettia, and in the summer by the "Queen of the Shrubs" (Lagerstrema), the Poinciana, numerous Erythmas, and the profusion of Oleanders of many tints, sometimes twenty feet high, which form the common fence of the country. Many of the palm speces will also attract his attention-the Palmetto, the Sago Palm, not frequently a Cocoa-Nut or Cabbage Palm, and the Thorny Gru-gru Palm.

To say that the Arrowroot of Bermuda enjoys the highest reputation, and that Bermuda chiefly supphes the market of New York with early potatoes, omons, and tomatoes, is scarcely necessary

Topography -There are two principal towns, Hamilton and St George's ; one government floating dock of great capacity, and a private dock or shp, several forts, and two principal stations for military, a dockyard, a first-class lighthouse, a lunatic asylum, and jails, a large hotel, whth public offices and local edifices, as churches, chapels, and schoolhouses of the usual kind. There are ornamental grounds at Government and Admiralty Houses, and several well-known caves, and spots commanding extensive and picturesque views A public library was established in 1839. In 1871 the Island of St George's was connected with the man island by a causervay and road two miles in length, commenced in 1866, and completed at a cost of nearly 30,0001 . An ron girder swing-bridge still permits the passage of vessels

Boats and Boatmen -In a group of islands where water communication is constant, sailing boats and a population inured to sea-faring habits are naturally to be found Bermudians are not only good salors, but they acquire habits of dexterity and accuracy of eye and judgment amdst breakers in heavy weather which are remarkable, whule ther form of boat-a model of which was exhibited-was weil known as combining all the points which enable it successfully to navigate inland waters and tortuous passages in all weathers. Great comparative breadth of beam secures rapidity in turning, simpheity of rig, handness in management, the form of mainsall (a leg-of-mutton sail with a boom), closeness of sailing when on a wind, and depth of keel conbined with much ballast, stiffness under canvas, security in stays, and trifling loss by lee-way.
Population.-By the last Census in 1871 the population was found to be as follows :-

	White.	Coloured.	Total
Males Females	2,118	3,284	5,402
	2,607	4,112	6,719
	4,725	7,396	12,121
Military and Naval Department			305
'Total Bermudian Population			- 12,426

From Naval and Miltary Returns -

Grand Total of all persons then resident in Bermuda - 15,614
From this we find that of the Bermudian population proper, women are to Proportion of men in the proportion of about six to five The Coloured Population to the women to men, Whates as about three to two If the Naval and Miltary are added to the Bermudian population, the White is in excess of the Coloured Population, and men of women To the total resident population of Bermuda from all sources we may add occasional visitors and saulors from ships of war-the latter, at certann seasons, very numerous, raising the total population of Bermuda from all sources, at tumes, to over 17,000 persons

Drscriptive Cataloguz of the Collection sent from the Bermudas to the Centennial Exhibition of 1876 at Philadelphia

> P stgnties Award for Exhibut
(The Government of the Bermudas received also an award for its
Collective Exhilht).
Minerals, Oret, Stone, and Mining Products
Cl. 100. Government of Bermudas -The top of a Pillar of Stalagmite, taken from the floor of a Submerged Cave about $2 \frac{1}{2}$ feet below low-water mark
A small Stalactite taken from the roof of the same cave, where the top was also submerged below low-water mark

These were exhibited in evidence of the gradual subsidence by the operation of which the floors of nearly all the caves are somewhere below low-water mark
CL. 102 Ness, Ph-An assortment of Buldang Stones of varnous qualities A Hard Stone contanning some fossil shells, chiefly used in military works, and for road-making B Bastard Stone, less hard C Soft Bulding Stone, such as 18 commonly worked with a hand-kaw, but hardens a little on exposure. They only duffer. in the degree to which the graus of sand are cemented by the infiltration of carbonate of lime in solution

Furitture, and Objects of General def in Congtruction and in Bulldings.
Cl. 217. Bernuda, Government of -Two Inland Tables, Bermuda wood and workmauship

Clothing, Jewrilerry, and Ornamrnts
Cl. 251, 254

Trimingham, \boldsymbol{J}-Bermuda Straw Plat, Bonnets, \&c Wreath of shell work Palmetto Plart, and articles made from the Palmetto Leaf
Cl 252 Middleton, T D-Artucles in Point Lace, Somerset Island
Cl 252 Smuth, Mrs \boldsymbol{R} T-Fine Point Lace
Cl 252 Ness, Muss - Pount Lace sleeveless basque Pont Lace sofa pullow.
Cl. 252 Lemes, Mrs-Point Lace

Cl 254 Bernuda, Government of -Walking Canes from the exterior of the Gru-gru palm (Astrocaryum Auream) Cedar and other walking canes

Medicine, Surgery, Protarsis
Cl 272
Hugh, J B-Medıcinal Herbs and Drugs
Edicational Syethms, Methong, and Libraries.
Cl $300 \quad$ Educaton, Board of-School Map of the Bermadas
Cl $306 \quad$ Thorpe, Mrs W-"Afternoon in Bermuda"
Cl. 506 Wilkinson, Major $H J$-"The Sand Hills"

Cl 306
Anon -Bermuda Flowers from Nature

		Phybical, Soclal, and Moral Condition of Man
CI 312.		Bermuda, Government of-Examples of the Ancient Records of the Colony of Bermuda from 1616 Thtle Deeds', or Ongmal Grants of land of the Bermuda Company, 1628-9 Fac-simule of the earhest published Map of Bermuda, from Norwood's Survey of 1616 .
		Enginerring, Architectire, Maps, \&c
		Bermuda, Government of-Large general Map of the Bermudas, detanls by Royal Engueers and Major Crawford, R A
	335	Diagram showng the monthly mean temperature of Bermudd compared with other places of winter resort Drawn by Lieut.-Col Bland, R E
		Photography
Cl 430		Somerset, Col Fitzroy, R E-Photographs of Bermuda Scenery, by the Royal Engneers
Cl	430	Hugh, J B-Photographs of Bermuda Scenery.
		Afrial, Pneimatic, and Water Transportation
Cl 594		Huson, $D_{r}, M D-M o d e l$ of a Bermuda Yacht, cutter-rigged, length of keel 4 ft , scale about $\frac{1}{6}$ th
Cl	596	P Admeralty, Lords of the -Model of Her Majesty's Floatong Dock at Bermuda Sectional drawng of ditto.
		Arboriculture and Forest Products
		Several Contributors --Sections and Specimens of Woods
		Astwood, Mrs -Brd's Eye Cedar, and other Ornamental Woods
		Pomology
Cl	611	Commattee, The -Bananas and other fruts. (Forwarded at the proper season)
		Esculent Vegetables, Roots, and Tubers
$\begin{aligned} & \mathrm{Cl} 621,622 \\ & \mathrm{Cl} 622 \\ & \mathrm{Cl} 622 \end{aligned}$		2 Bermuda Tomatoes American seed
		Bermuda Onoons, chiefly from Madera seed, modified by clımate.
		Bermuda Potatoes ralsed from Irish or American seed, but much modified by clmate
Cl. 641 Cl 645		Marlne Animats, Fish Cudttre, and Apparatus
		P Bermuda, Government of-Collection of Live Fish
		Conch shells (strombus gigas) used by Cameo cutters An extinct land shell of relatively large size Sp of Hyallue
		Animar and Vegetable Products
	650	Bermuda, Government of-Sponges, Coral, Nullipores, and Corallines, Sea Fans (Gorgontas), Sea Rods (Plexaura)
	656	Hugh, J B -Dred and Preserved Fruits
	658 P	P Tucher, Tho Fowle-Arrowroot
		Bertram, J T-Arrowroot.-Tous les Mois (Sent at the proper season)
Cl	658 I	P Hayward, J Wing - Arrowroot
		Texture Substances of Animal or Vegetable Origin
Cl	666	Penston, W-Hibre prepared from the leaves of Fourcroye giganta
		Lachines, Implements, and Processes of Manufacture
Cl 672.		Bermuda, Govarnment of-Tools used in freelng the ground of the roots of Sage and Wild Mimosa
		Ornamental Trees, Shrubs, and Flowers
C. 700		Bermuda, Government of - Flowers, Ferns, and Ornamental Plants

BRITISH GUIANA.

 \longrightarrowThe Philadelphia International Exhibition, 1876..

Superintended at Philadelphia by the British Executive
Cummissioners.

Agent at Philadelphia, A E. Odterbridge, Esq

BRITISH GUIANA.

This colony 18 a portion of the South American Continent, exteading from Position of. east to west about 200 miles. It includes the settlements of Demerara, colony Essequebo, and Berbice It is bounded on the east by Dutch Guiana, from which it is divided by the luver Corentyn, on the south by Brazil, on the west by Venezuela, and on the north and north-east by the Atlantic Ocean.
The territory was first partially settled by the Dutch West India Company History in 1580, and was from time to time held by Holland, France, and England It was restored to the Dutch in 1802, but in the following year retaken by Great Britan, to whom it was finally ceded in 1814

It is impossible to determine the exact ares of the colony, as its precise Area. boundaries are undetermined between Venezuela and Brazil respectively, but it has been computed to be 76,000 square mules.

Under the Dutch, Demerara and Essequebo constrituted one Government, and Berbice another, which arrangement indeed continued in force under the British Admınstration down to the year 1831

The constitution of British Guana may be briefly described as follows. It Form of Governconsists of a Governor, appointed by the Crown, a Court of Policy, composed ment of five official and five elective members, and a Combined Court, composed of the Governor and members of the Court of Policy, with sux financial representatives chosen by the electors The functions of an Executive and Legislative Council and House of Assembly are performed by the Governor and Court of Policy, except as regards taxation and finance, which are dealt with by the Combined Court The Court of Policy passes all laws and ordmances except the Annual Tax Ordinance, which is passed by the Combined Court

The Roman Dutch Law is in force in civil cases, modfied by Orders in Laws Council and local ordinances, the Criminal Law is the same as that of Great Britann, and is administered in the same manner, except that there is not the intervention of a Grand Jury

There were but two towns properly so called-Georgetown, the capital of the Towns colony, on the Demerara river, and New Amsterdam, on the Berbice

The cultivated part of the country hes along the sea coast and on the banks Productions. of the rivers Cotton and coffiee were formerly cultivated in considerable quantities, but of late very hittle attention has been given to these articles, all the resources of the colony being concentrated on the production of sugar and rum. There is also a considerable trade in tumber.

The total population at the end of 1871 was 193,491, made up as follows - Population. Natives of British Guiana 113,570, of West India Islands 13,385, Madera and Azores 7,925 , of other places not specufied 9,635 The remainder were Cooles. immigrant coolies working on the plantations From a returnissued in 1874 it appears that there were then 38,597 under indenture, of whom 33,360 were Indians, 3,875 Chinese, and 362 Africans In 1876 the population had increased to 216,000

The aborignal Indians were estumated in 1851 at about 7,000; but Number of Mr M‘Clintock, Superintendent of Rivers and Creeks, an undoubted authority aborigunes in on the subject, carries the number as high as 20,000 or 21,000 , the colony. numbers of the tribes within the British territories vary, however, considerably, and are at all times very uncertan.

Revenue and expenditure

The following is a statement of revenue and expenditure for the decennal perrod ending $1875-$

Revenue. Expenditure.

1866	*		$\stackrel{\ell}{304.817}$	
1867	-	-	- 275,209	307,061
1868	-	-	- 290,881	297,349
1869	-	-	- 311.337	293,636
1870	-	-	- 354,131	325,855
1871	-	*	- 379,647	338,053
1872	-	-	- 449,060	391,219
1873	-	-	- 361,932	399,990
1874	-	-	- 305,457	381,103
1875	-	-	- 352,136	355,979*

The amount of the Publuc Debt at the close of 1875 was $24,447 l$
Trade
The total value of mports and exports during the same period is given below:-

				Imports.	Exports.
				£	£
1866		- -	- 1	- 1,530,675	2,170,967
1867	*	.-		- 1,498,524	2,365,777
1868		- - -	-	- 1,618,378	2,232,212
1869	-	-		- 1,572,275	2,164,014 \dagger
1870	-	-		- 1,572,275	2,164,015
1871	-	-	-	- 1,897,183	2,748,720
1872	-	-		- 2,013,553	2,462,703
1873	-	-	-	- 1,764,571	2,217,432
1874	-	-		- 1,873,219	2,761,837
1875	-	-		- 1,837,151	2,338,121

The above account of Britsh Gutana as mainly taken from the Colonzal Office Last for 1877

P segnifies Award for Exhzbrt.
(The Government of British Guiana received an award for Collective Exhibit.)

Manuractures, Agriculural and Vegetabla Products

Cloxaing, Jewellerty, and Ornaments, Tratelinng Equipments

1. Great Diamond Plantation-Rice straw ornaments

Medicine, Surgert, Prothesis.
2. Fresson, Wilham -Drugs and other medicinal productions of the colony.

Arboriculture and Forest Products
3. Mackey, T H-Greenheart wood, nearly 100 years old

Agricultural Products.
4. Great Diamond Plantation-Rice

Animal and Vegetable Products

5. Fresson, Wilham.-Starches.
6. Bel Air Plantation -Vacuum pan sugar.
[^20]
377

7. Colombia Plantation--Common process sugar.

8 Greenfield Plantation - Vacnum pan sugar
P 9. La Bonne Intention Plantation -Vacuom pan sugar
10 Met-en-Meerzorg Plantation-Vacuum pan sugar.

- 11 Ogle Plantation.-Vacuum pan sugar.

12 Leonora Plantation -
a Vacuum pan and other sugars.
b. Rum
13. Uıtviugt Plantation - Vacuum pan sugar
14. Vreed-en-Hoop Plantation.-Common process sugar.

15 Versalles Plantation -Vacuom pan sugar
16. Great Diamond Elantation.-
a. Vacuum pan sugar.
b Rum
17 Hope Plantation -
a Vacuum pan sugar. b Rum
18 Truschen de Virenden Plantation a Facnum pan sugar ; molasses. b Rum
19. Lusignan Plantation -Rum

Textile Subetancers or Vegetable or Animal Origin
20 Godfrey, B J.-Plantain, sulk grass, mahoe, sweet brier, and monkey ápple fibres

CAPE OF GOOD HOPE. \longrightarrow

Representative Commissioner at Phlladelphia, 1876.
H. Crawford Coates, Esq., Executive Commissioner.

CAPE OF GOOD HOPE

Commission of the Cape of Good Hope, Philadelphia, September 15th, 1876
Sir,
Is reply to your letter requesting me, as the Commanssioner for the Cape Prolluunary of Good Hope, to prepare for you a descriptive report of the Colony I represent, I regret exceedingly that tume and my ablity do not permit me to do so as fully as I wish, and the subject deserves
I spent many years of my life in her sunny land, and chensh a pleasant recollection of her warm-hearted people, a people who under-rate therr advantages and capabilities At none of the International Exhibitions have they made a show that in any way represents their moral and material progress, and their exhibit on this occasion (although it has attracted considerable attention, and appears to be recelved with great interest), is not a tithe of what it should be, to give a stranger an idea of the Colony of the Cape of Good Hope
The report I now have the honour of submitting to you, I have compled principally from a hand-book pubhshed by an old acquanntance-Mr John Noble-(Clerk to the Legislative Assembly of the Cape Parlument), and in my opinion the best descriptive book of the Cape I have ever seen
Hoping it may be satisfactory,
\title{ I have, \&c, }
H Crampord Coates,
Commissioner for the
"Cape of Good Hope"
To
Colonel Herbert B Sandford. R A., British Executive Commissioner

Past History of Colony.

A little more than two centuries ago, the Dutch East Inda Company, under Prst settlement the charter granted to them by the States-General of the United Provinces of the Netherlands, established a garrison on the shores of Table Bay European possession of South Africa may date from that time, although the Portuguese and Enghsh had long before then visited and even formally clamed dominion there
Jan Anthony Van Rebeck, a surgeon, in the employ of the Dutch East First mmmgraInda Company, accompaned by about a hundred souls arrived under the tion shade of Table Mountan on the 5th of April 1652 For the tea years of his admunstration, the settlement, which scarcely extended over the area, now occupied by the City of Cape Town, seems to have answered expectations It was notbing as a colony, but it was considered a flourishing establishment of the cabbage-garden order, and that was all it was then desired to be
A few years after, a small party of Dutch and German farmers were the first Further recruts to recrutt the young colony, and they were shortly aftervards followed by a most valuable body of mmmgrants, French and Pedmontese refugees, exiled by the political and religious troubles following the revocation of the Edict of Nantes Aded by a gift from the Government of Inda, the poorest of them Add from Governwere enabled to obtan seed implements and other requisites, and so marked ment of India was their industry that two years after their settlement they became a self supporting community The illberal and tyrannical treatment, however, that they were subjected to by the government, forced many of them who were no longer able to endure the system, to move away into the interior, beyond the reach of authority, and thus began that nomad haht of "trekking" which, on our borders, has continued until the present day The colony was in this manner extended several hundred mien inland, toward Uxtenson of hand and Graaff Reinet on the other, and a small population greatly to its detriment, was spread over an immense area, solated, uncared for, and consequently, in sone degree, drifung away from cribization Those who lacked courage or inclination to follow those proneers, continued their representa'.jns
and entreaties to the government to abolish the restrictions on trade, but not untll near the commencement of the present century-just as its domination,

Old Dutch Com. pany
Interregnum of British suthority, 1795-1803

Last representative of Batavian Republic, $180 \overline{5}$

Free Colony, 1820

Kafir wars

Ravages by
Kafirs

Extension of Colony was coming to a close-did the Old Dutch Company realize that there was any mistake in its grasping commercalal pohcy, or were steps taken to remedy the abuses which had been committed in its name During the brief interregnum British authority between 1795 and 1803, some restrictions were removed and beneficial changes introduced This was followed bytan extension of privileges under the Batavian Republe, who, for a short time resumed the government, and whose last and best representative, General Janssen, in 1805 announced the new principle that "The Colony," must derive its prosperty from the "quantity and quality of ats productions, to be improved and increased by " general civilization and industry alone" It was this officer who urged upon the farmers the introduction of Merino sheep
The growth of the Cape of Good Hope as a free colony, properly so called, may date from the first British Immigration in 1820, just 56 years ago
Prior to that the only accessions from the United Kingdom were a few merchants and traders and the civil and military officers apponted to the station. The eastern frontier was then sparsely occupied by farmers who were contmually subject to plunder by bands of Kafirs. The successive Kafir wars of 1834, 1846, and 1850 greatly retarded the development of the country, and sorely tried the courage, perseverance, and industry of the frontier farmers. All were sufferers, and many were rumed by these disastrous disturbances. In 1834 the whole border was suddenly overrun by the Kafirs, and there being no precautionary provision by the Government for resisting them, they carried off 111,418 head of cattle, 156,878 sheep and goats, 5,438 horses, and 58 wagons, burnt 456 farmhouses, and pillaged 300 houses, thus commtting ravages of the lowly estimated value of $288,625 l$, besides murdering, in some instances with curcumstances of great atrocity, hundreds of mindivduals. The Kafirs were ultmately subjugated, and it was agreed to by treaty, that British soverelgnty should be extended over them as far as the Kel river, the present limits of the Colony At the same time a large number of Fingoes, who were in servitude with them, but who had kept aloof from the war, wele brought out from Kafirland and located within our border, where they have since proved faxthful subjects, and have now so far risen in the scale of civilization as to constitute to a considerable extent the working peasantry of the Eastern

Another Kafir war, 1846

Agan in 1851

Kaffrarıa proclaimed a British Dependency in 1858.

Exodus of
farmers on 1885
and 1896

Founding of
Colony of Natal,
of Transwaal
Republie,
of Orange Free
State,
State, Griqualand West
Political changer
and privileges. Districts In 1846 another disastrous Kafir war broke out, and after a great sacrifice of blood and treasure (the property destroyed or taken being estumated at half a million pounds sterling) peace was secured In 1851 agan the Kafirs made an unprovoked attack upon Her Majesty's troops, massacred some of the military grantees, and, joined by a number of discontented and rebellous Hottentots, for nearly two years mantaned a guerilla war, involving still greater sacrifices of life and property than before This was brought to a termmation by the submission of the hostile chiefs to Sir George Cathcart in 1853, and the proclamation of Kaffraria as a British dependency, governed by British functionaries Since then, for a period of over 20 years, the blessings of peace have been uninterruptedly enjoyed
In 1835 and 1836 an exodus of the emgrant farmers or old colonists took place. To this they were metted partly by feelings of dissatisfaction and exasperation aganst the English Government on account of having emanclpated their slaves, and stating that they would be compensated in money whach was to be pard in London, but by the dishonesty of agents and muddlemen one half the money never reached the poor "Boers." The depreciation of the paper-money of the time was another cause of annoyance.
They sold ther farms and such effects as they were possessed of at whatever prices they could obtan, and emigrated into the country beyond the Orange Ruver There they separated, one party crossing over the Quathlamba or Drakensberg mountains, and founding what is now the Colony of Natal; another party crossing the Vaal river and planting what is now the aurferous Transvaal Republic; whule another purchased or obtamed leases of the lands of the Griquas near the Orange river, forming what is now the Orange Free State and the diamondiferous territory of Griqualand West.
Among the mportant political changes effected, the foremost was the establishment of a free press, placed under the protection and control of the law. Regularly constituted courts of justice and trial by jury followed, and
the action of the law for the protection of life and property was carried into the most remote districts A liberal and comprehensive system of education, by public schools, was organised for the European population, and religious and civilizing agencles were extended amongst the varous native tribes The unrestramed absolutism of governors was checked, first by an Executive Council and afterwards by a Legislative Councl, partly elected and partly nominated An attempt to make the Colony a penal settlement was successfully yet loyally resisted Local self-government was established by the formation of mumcepal counculs freely elected by the mhabitants, and finally the privileges of a Colonual Parliament were obtained, by which the administration of public affars has been placed under the control of the legislature on the same system of responsible goverument as prevails in Great Britann

The advancement of materal prosperity is strikingly evidenced by the advancement of growth of villages and towns, the increase of population, and the expansion Matenal prosof production and wealth. The Colony, which fifty years ago was divided penty into half a dozen whde spread and sparsely populated districts, has now about 60 magisterial divisions or countres, with towns and villages still more numerous throughout them The population has mereased from a hittle over Increase of popu100,000 souls to considerably more than 600,000 , exclusive of the natives in Basutoland and Kafirland ; and the white population, which in 1821 was below 50,000 , now approaches near to 250,000 The imports and exports of the of Imports and country then scarcely amounted to half a million sterling, now its external Exports, commerce represents nearly $12,000,000 l$ sterling per annum Then there were but a few thousand Merino sheep, and the export of wool was only $26,000 \mathrm{lbs}$, now they are so multiphed that the quantity of wool shipped in 1872 reached $48,822,562 \mathrm{lbs}$ of the value of $3,275,150 \mathrm{l}$

Then the public revenue was not $100,000 \mathrm{l}$ per annum, less than that of the of Revenue. Orange Free State Territory; whle now it is over 1,200,000l Then there were no roads save mere natural tracks, unworthy of the name, scarcely a river was bridged, and formidable mountann passes cut off the solated occupants of the unland districts from intercourse with a knowledge of what was transpiring in the rest of the world Now, a network of hughways spreads out from the Highways and coast to the interior, rivers are spanned, ralways are opened, and in course of Railways construction an all durections, north, east, and west, while the electric telegraph, uniting the southern extremity of Africa wnth Europe, will soon speed the world's sturring news from one end of the colony to the other Besides this, the sea-board has been nearly as well furnished with hghthouses as the Lighthouses. coast of England; extensive works have been constructed at the various ports for the accommodation of shipping, and, what the old Portuguese marners named the "Cape of Tempests," offers a harbour of refuge, and the secure shelter of land-locked docks to the navies of the world

Education bas made great strides There are now no less than 168 undenomi- Education. national schools, 279 mission schools, and 93 training and industrial schools for Aborignes, in operation, in all 540, anded by Government, while four colleges provide for the higher and professional studies, and a University has been estan blished conferring its privileges on the rising youth Religion has also multi- Religion phed its agencies There are upwards of 350 churches and chapels belongnug to the Dutch Reformed, Church of England, Wesleyan, Lutheran, Roman Cathohc, Presbyterian, Independent, Baptssts, and other denominations. Literature and science have not been forgotten The library of the metropolis boasts its 40,000 volumes, danly open to the pubhe; and there are few towns and villages without their reading rooms Museums and Botanic Gardens offer incentives to the study of natural history, in addition to the varied productions of the land The Press has upwards of 40 representatives, and 18 Press conducted with an amount of ability and energy which commands admuration from those who are acquainted with its working in larger communities
The Post Office has vastly multiphed its business The malls dispatched to Post office. England by the ocean mall-steamers consst of 176,882 letters, 158,292 papers, and 11,948 books annually There are nearly 400 inland country post offices, and the extent of roads open for posts $1 s$ upwards of 4,500 miles, of which about 4,000 are travelled by cart, and the remainder by horses Crume is not Orme. by any means rife, notwnthstanding the scattered and mixed character of the native population Even the frontier Kafirs are no longer a terror, the power of therr chuefs has been reduced and broken, and they are now adapting

Opmon of Sir Henry Barkly

Vast extent of territory

Area
Settiements-
Five

Cape Colony

Absence of offical survey

Commencement
by Surveyor
General of the
Colony
Mountain
Chains
themselves to habits of peace and industry, becoming producers as well as consumers, with dauly increasing wants, and they and therr familes are likely in time to prove of 1 mmense adrantage to the colonists as reservoirs of labour
Sir Henry Barkly, in his despatches, truly observes:"It would be adle, of "course, to attempt to predict the future destimes of the Colony, but nothing " assuredly, can be more apparently promsing than its prospects at this
" moment With unbounded stores of mineral wealth, and with a range of " clmate that fits $1 t$ for the growth of most of the agricultural productions
" of the tropical as well as temperate zone, the natural resources of South
"Africa can hardly be surpassed by those of any other portion of the globe"
A reference to the map will give the reader some rdea of the vast extent of territory which has been colonized by Europeans in South Africa From the extreme promontory where Cape L'Agulhus fronts the Southern Ocean in lat $34^{\circ} 50^{\prime}$ South, towns, villages, and settlers' homesteads and flocks stretch northwards over the country till about the twenty-second parallel of latitude The area thus occupred, which may be roughly estimated at about 500,000 square miles, comprises five separate settiements, namely 1st The Cape of Good Hope, 2nd. Griqualand West, and 3rd Natal, all under Brish dominion, 4th The Orange Free State, and 5th The Transvaal, which are under indeperident Republican Governments.
The "Cape Colony" as the Cape of Good Hope is commoniy termed, forms the greater part of this South African possession The present boundaries are, on the north the Orange River, which stretches from east to west over about two thirds of the continent, separating the colony from Great Namaqua Land, Griqua Land, and the Free State Republic, on the east and north-east the Drakensberg or Quathlamba mountams, and the course of the Indore and Great Kel Rivers, while on each side, east and west, it has a very extensive seaboard, that, overlooking the Atlantic beng upwards of 500 miles, and that on the Indian @cean about 700 miles in extent

- Unlike the Australan and North American Colones, there has been no regular systematic survey of this country, so that none of the published maps are correct The Goverument has, however, had its attention (lately) directed to the subject of setting on foot triangulation surveys for the construction of a really trustworthy map, and the Surveyor General of the Colony has alieady commenced the work in a manner which promses to insure, ere long, the accomplshment of so destrable an object.
The mountan chans, ranging from 1,000 to 9,000 feet high, which intersect the country from the west to north-east, rise in successive steps, attaning as they recede a gradual increase of altivude Begmung with the range nearest Cape Town, we have the Drakenstem and Hottentots' Holland Nountans, at an average of 4,000 feet, running eastward, as the Langebergen, Ontemqua, and Fitzikamma, to Cape St Francis. Behind them there is a parallel chann, averaging 5,000 feet high, forming the Cold Bokkeveld and Zwartbergen, bounding the Karroo plains, and running eastrard, as the Lattle Winterhoeh, and Zuurbergen, and still further mland there is another terrace, aveaging about 6,000 or 7,000 feet, commencing in Namaqua land, and extending through the Raggeveld Karoo, the Nieuwvelit, and the Sneenbergen of Grauff Remet and Mddelburg, on to the Stormbergen on the north-east frontier, and thence to the Drakensberg, on the border of Natal There are, besides these, many distinct mountans and groups of hills, whose fantastic peahs, flat, serrated, or comical, are well-known landmaiks
Ruvers
Of the numerous rivers draming the colony it is unfortunate that none are avalable as highways The largest, the Orange River, has a breadth of bed varying from 200 yards to two miles, π ith a length of probably 1,000 miles In many places it forms magnuficent reaches, but throughout its course theie are islands, rapids, and falls, which render it useless as a channel of communcation from the coast to the inierior The next langest, the Sunday's, Fish, and Gamboo Rivers, have their sources in the central mountan range of the Sneenbergen, but they run off rapidly along the sloping plans, orer a length of between 200 and 300 miles to the sea, where their mouths are blocked with sands thrown up by the winds and currents on the coast 't he other risers such as the Berg, the Breede, the Olifants, the Gouritz, and the

Kowne and Buffalo, are of lesser extent, and only two or three are navigable for short distances from their estuaries.

Of the many harbours or ports along the seaboard, there are at least a dozen Harbours and avalable for commerce, and frequented by steamers and other vessels engaged ports in transmitting supplees or receiving produce T'able Bay, with its breakwater, Table Bay. docks, patent slip, and other fachlities for shupping, may be considered first in umportance Close to it is the commodious harbour of Sumon's Bay, the naval Sumon's Bay. station and dockyard for Her Majesty's "vessels Saldanha Bay, St Helena Bay, Hondekly, and Port Nolloth, are the other ports on the west coast. Other ports Eastward of Cape L'Agulhas are the harbours of Mossel Bay, Knysna, Plettenberg's Bay, Algoa Bay, Port Alfred, and East London, most of which afford friendly sheiter to vessels unable to beat to the westward agaunst the wintry north-west gales Algoa Bay is the principal port of trade on the Algoa Bay. whole of the eastern coast of Africa; Mossel Bay 18 advancing in importance; and the same may be sand of Port Alfred and East London, both of which are river harbours, at present avaulable for ships of medium capacity, but where extensive marine engineering works are in progress, designed to render them more accessible and secure

Lighthouses have been erected and are mantained by the Colonial Govern- Positions of ment at the various ports and headlands on the coast. The positions are, Luhthouses. viz , Table Bay (Rotben Island), Greenpont, Cape Pont, Simon's Bay (South Roman rock), Cape L'Agulhas, Mossel Bay (Cape St Blazze), Cape St. Francis, Cape Recuffe, Port Elizabeth, Burd Island, Buffalo Ruver, Port Natal
The Census of 1875 gives the following results:

Western Province.

Cape Town, the principal town, 34,885
Stellenbasch and Somerset West,-population - urban, 4,017; rural, 6,524
Paarl and Wellington,-population : urban, 7,989; rural, 10,125.

North-western Province

Malmesbury		Popula		4,302		1,912
Piquetberg		P	${ }^{3}$	1,500	"	6,718
Worcester	-	"	"	3,863	"	5,938
Tulbagh	-	"	"	3,589	"	6,354
Clanmulham	-	"	"	1,607	"	6,797
Calvina	-	"	"	439	",	7,013
Namaqualand	-			5,703		6,648

South-western Pbovince.

Midland Province

Beaufort West		Population:	urban	1,575,	rural,	6,439
Prince Albert		-	\%	907	*	5,035
Willowmore -		"	"	245	"	
Victoria West.		"	"	1,445	"	11,806
Frazerburg			"	873	3	8,123
Richmond		"	3	990	"	6,617
Hope Town		\%	37	491	"	5,653
Murraysburg		"	\%	699	\%	3,079
Graaff Reinel	*	"	"	5,322	"	11,452
40609				-		B B

South-western

Midland Pro.
Census, 1875.

Western Province Cape Town Stellenbasch and. Somerset West Paarl and Wellington.
North-western Province Province. vince.

Seasons and Clamate

Advantages of Climate

To many persons the clear sky and brulhant atmosphere of the Cape are an attraction in themselves, apart from more material considerations the colony may present. Being situate in the temperate zone, it possesses the mildness and salubrity so congemal to invalids, or those of delicate frame, and yet one may select within ats borders, according to the locality and the time of the year chosen, whatever temperature or weather may be thought desirable for enjoyment, whether pleasant, fine, and dry, or wet and inclement,-extreme heat, or bracing frost and snow,-such are the transitions obtainable by exchanging the coast, at the different seasons, for the uland plans or the high mountain lands The seasons come in reverse order to what they do in the northern hemisphere, and may be thus defined:-

At the Cape.		In Europe.	At the Cape.		In Europe.
December		June.	June		December.
January	Summer	\{ July.	July	Winter	January
February		August	August		February.
March		Septembe	Septernber		March
April	Autumn	October	October	Spring	April
May		Novembe	November		May

The Colony, generally speaking, is not a hot country The greatest heat of Equablo calm summer days is not more than in the hottest parts of Europe; and these temperature are extraordmary, and last but for a short time The prevaling winds and the dry atmosphere temper such excesses, renderng the warmest day quite supportable, and the balmy coolness of the mights is surpassingly agreeable and enjoyable Nearly all the old travellers and visitors testrfy to the beauty of the clumate, and in the statistics of the Army Medical Department it stands as one of the bealthiest in the world
This has led to its being hughly recommended as a sanitarium for European as a sanitarium invalids, especially those suffering from the various forms of pulmonary diseases for pulmonary The health officer of Cape. Town has shown from the books of Somerset Hospital that, out of 2,722 patients sent there for treatment of all types of diseases, not more than 84 have dred of lung complications in five years These facts, as well as the remarkable exemption from cholera, fevers, hepatic and other affections, which colonists have hitherto enjoyed, are set forth by complaints Dr Ross in an interesting paper on "Our Clmate," published in 1869, im Dr Rossin "Our which he says "The best period for arrval is towards the end of clumate"
"August A long sea voyage by saing vessel is an admirable introduction to "the lovely scenes which September, at the Cape, yearly produces The fields
" are then covered wath verdure, the hills and plains are brilliant with patches
" of bulbs and heather in full bloom, and all nature is gay with the surpassing " freshness and vamety of spring The aur is then truly intoxicating, while the " purity and transparency of the atmosphere is such as literally to stagger the " minds of many who have been only accustomed to judge of distances through
" the medium of haze, and cannot be brought to realize the fact that mountains
"" fifty males off are as planly visible as af within half an hour's walk, and to the " naked eye as minutely traceable as by and of telescope . . It is, how"" ever, in winter months that Cape Town forms the most pleasant of residences " for invalids Being well sheltered by mountans, there is always plenty of "calm, clear weather, and even in the stormest season of the year, as in May, " when the north-west gales are tcssing enormous breakers aganst our uron" bound coast, and but for breakwater works would be making wild havoc " " among the shipping of our bays, a might of destruction will be followed by "perfectly heavenly weather, lasting perhaps for five or six days During " this period of exquisitely calm and temperate days we are always blessed " with Italan skies, and with air so cool, so soft, so dry, so grateful to the " lungs, that it is a positive source of happiness to feel oneself to be alvé"

Meteorological observations have been and are still being carried on in various divisions of the colony, under the auspices of a commission appointed by Government, and the tabulated results obtained generally published in the Official Blue book But at the Royal Observatory, in the neighbourhood of Cape Town, there has been a systematic register kept for many years, which shows as a result that the mean temperature of the aur throughout the year is about Mean tempe$61^{\circ} 26^{\prime}$ Fahr in the shade, the hottest days being in January, witi an average rature throughtemperature of $68^{\circ} 92^{\prime}$, the coldest about July, with an average temperature of out the year $54^{\circ} 03^{\prime \prime}$ Elsewhere the observations have not been extended over any long capetown. period, but they are sufficiently reliable to serve as an index to the clumate. For mstance, we have the extreme limits of temperature at the following points.--

Rainfall

Winds

Thunderstorms.

The rainfall in the neighbourhood of Cape Town, and over a considerable part of the colony, is equal during the year to the average fall at Greenwich or Edinburgh During 20 years of observation recorded at the Royal Observatory, the mean quantity was upwards of 24 inches, the lowest being 188 nches in 1844, and the highest 367 mn 1859 But the impression of a wet or dry vear sometrmes depends less on the quantity than on the number of days on which rain falls, so as seasonably to promote the germmation and growth of vegetable productions

The winds which generally prevail at the Cape, as already stated, are the north-west and south-east; others only last a short time, and frequently are merely transitions from the north-west to south-east, and vice versâ Hallstones are not very common in the south-west, but in the northern and border districts they occur with such violence as to cause considerable damage to vegetation and stock

Thunderstorms are also comparatively rare in the neighbourhood of Cape Town, but more inland and along the northern and eastern border they are frequent, and at times very fearful and grand Such striking exhbitions of nature's elements, however, do not last very long, after them the rain ceases, clouds roll up and disperse, and a delicious and exhilarating cool atmosphere succeeds

Cape of Good Hope Trade Returns.

Exports, 1874.

Articles.	Quantity.			$\begin{gathered} \text { Value } \\ £ 5,526 \end{gathered}$
Aloes	lbs	614,272	-	
Argol (wine stone)	"	75,598		2,268
Copper Ore -	tons	'13,646		321,434
Corn, Grain, and Me				
Barley	lbs.	148,260		747
Beans and Peas	\%	70,443		469
Bran	"	91,500		520
Flour	"	303,827	-	3,202
Malze	"	710,766	-	2,197
Oats	"	679,596		5,337
Wheat	"	35,411		496
Cotton		15,117	-	257
Diamonds	No.	2,893	-	8,148
Feathers (Ostrich)	lbs.	36,829		205,640
Fish, Cured	;	4,872,814		34,339
Fruit, Dried	"	332,762		5,078
Haur (Angora)		1,036,570		107,139
Hides, Ox and Cow	No	68,458		49,425
Horns -	,	134,154		1,900
Eorses		48	-	1,925
Ivory	lbs	73,747		26,667
Skins, Goat	No.	1,478,761		194,323
\%, Sheep		1,462,367		144,538
Spurits Brandy	galls.	718		245
Wine, Constantia	g.	1,655		1,272 15876
" Ordinary		77,802		15,876
Wool -	lbs.	42,620,481		2,948,571
Other Articles, Value		-	-	51,299

Imports, 1874.

1ron	£50	
Leather Manufactures	- £247,814	s
Linen	£48,772	manufac
Rice	lbs 13,677,343	Cigars No 4,888,179
Saddlery and Harness	- $\mathbf{2}^{6} 67,128$	lbs 6,745
Silk Manufactures	- £14,177	Wine - - ${ }^{\text {W }}$ - galls. 510,177
Spirts, all sorts	galls. 183,868	Wood, unmanufactured
Sugar, not refined	lbs $21,820,145$	c feet 1,131,274
refined	786,663	Woollen Manufactures - 2295,680
Molasses	- 703,134	Other Items,
Tea	915,816	

Commercual and Industrual Progress

Governor Sir Henry Barkly, in one of his recent despatches to the Secretary Rappd progress for the Colones, remarks that "it would scarcely be much exaggeration to say of ofolony in lasi " that the rapidty of the progress of South Africa during the last three or four years "four years is paralleled only by that of Australia after the discovery of " gold"
No doubt the opening up of the daamond-producing country on the northern Damond border, in Griqualand West, whth the consequent influx and migration of country. population there, derving their chief supphes from the coast, largely stimulated trade transactions and also duffused a great deal of wealth, which has been apphed to the development of new resources and industries But, independently of these adventitious circumstances, the commerce of the Cape Colony and the yield of ats staple productions have of late years been advancing in so marked a degree as to give every assurance of contnued and permanent prosperty
Ten years ago the colonal produce rassed and exported was ralued at Prodncein 1866 2,395,673l Last year, the produce shupped was considerably over 4,138,000l, and im 1876 after supplying the colomal markets, a largely mereased population, and numerous vessels The period of great mercantile activity may, however, be sald to date from 1870, and the progress sance then will be seen from the following comparison of the emports and exports for the last four years :

Imports	1871	1872	1873	1874	Imports.
Specie - Merchandise	- $\begin{array}{r}5,52,540 \\ \hline\end{array}$	1,80,515	5,130,065	5,558,215	
Total -	- 3,107,838	6,189,243	5,451,927	5,725,412	
Exports.	1871	1872	1873	18,4.	Exports
Specie -	$\begin{gathered} \neq 2 \\ -\quad 54,387 \end{gathered}$	72,095	$\stackrel{\text { ¢ }}{\text { 103,416 }}$		
Produce -	- 3,531,609	4,757,494	3,907,911	4,138,838	
Total	- 3,585,996	4,829,589	4,011,327	4,374,024	

These returns of produce exported inelude but an anfintesimal portion of Export retums the value of daamonds sent away, inasmuch as they were forwarded chefly by regratered letter through the post office or by private hand, and not declared through the customs The official statement only accounted, in 1871, for $403,349 l$, in 1872, for $306,041 l$, in 1873, for $25,285 l$; and in 1874, for 8,148l, while there is good reason for believing that durng these four years at least $4,000,000 l$ worth of damonds, in addtion to the above, were sent away If this estimate be correct, the discrepancy between the amount of mports and exports 18 approximately accounted for, a small difference always occurring, from the geographical position of the colony as a place of call for shipping, and the supply of the military and naval establishments
It is worthy of note, too, that the total imports of specie from 1871 to 1874 Large balance amounted to $2,812,114 l$, while the exports of specie for the same period was or of pecele in only $465,084 l$, leaving a balance of over two mullions and a puarter in the colony colong

The most gratifying feature, however, is the satisfactory progress indicated by the multiphication of colonial articles exported, some of which, of course, include the produce of the Free State, Griqualand West, and part of the interior
The following items show a great increase over the maximum of three or four

Increase of varlous product between 1871 and 1874

Gold added to list of exports In 1875

In many respects colony self
producurg
Farous m-
dustries in Cape Town and suburbs

Leather mamufactures

Woollen manufactures

Colonial woods and their uses

Mineral
resources.
Copper
Coal

Diamonds

Other stones

During the year 1875 gold was added to the list of exports, and the first shipment of South African gold officially entered was made at Port Elizabeth, consisting of gold dust $5,735 l$, and quartz and nuggets $880 l$, total $6,615 l$., a small item, but one of important signification in regard to the future of the Colony
The greater part of the colomal productions, it will be seen, consists of raw materials, whuch are sent to the home markets for manufacture, but there are many of them which in their preparation or in therr conversion into articles of domestic consumption, employ a great deal of local capital and labour In Cape Town and its suburbs, the manipulation of wines, the distilling of brandy, and the brewing of beer are industries of large proportions There are also many extensive steam milling establishments for converting wheat into flour, of several descriptions, and for the manufacture of biscuits of firstclass quality The workshops of the harbour and rallway departments are capable of executing any mechancal requirements Boat-bulding, foundres, and smiths' works are also carried on by private individuals. Coach-bulding and wagon-making give continual occupation to many workmen, and besides these, there are the ordnary trades of cabinet-making, building, plumbing, watchmaking, printing, bookbinding, saddlery and harness making, painting, -shoemaking, talloring, \&c \&c \&c

Leather manufacture has been in operation for some years The raw staple and the very best materials for preparing it are to be had in any quantity There are numbers of indigenous plants which yield tannin, some of them unequalled.
Woollen manufactures have not hitherto been tried, although a beginning is now being made by a colonial benefactor (W W. Dickson, Gn), who is constructing a large establishment on the "Breede River," Mitchell"s Pass, Tulbaght district, for wool washing and fellmongering, and where also, ere long, blankets and broadcloths from our principal staple may be supplied. Wool-washing, however, is an extensive business, carried on all over the country
The Woods of the colony comprise upwards of a hundred different kinds and many of them are extensively used for economic purposes, such as housebuilding, wagon-making, furniture, and cabinet work
The mineral resources of the colony are being more and more developed every year. Copper is the most umportant mining undustry, and at present there appears no limit to the production, the old mines of Namaqualand yrelding handsomely, and the new ones, near the Orange River, promising to be still richer in quantity and guality of ore Coal, equal to some of the English varieties as a source of heat, exists over a large area in the border districts, and may be found in other parts, as the country becomes more occupied Dlamonds have been picked up on the surface of the country, at varous places along the basin of the Orange River, and there is a probability that spots may yet be hit upon contannng marvellous treasures corresponding to the Kimberley mine. Besides diamonds, in the category of ornamental stones, may also be included various coloured agates, garnets, amethysts, rose quartz, fibrous quartz, tourmalne, chalcedony, helotrope or bloodstone, red and yellow jasper, steatite, \&c., found along the north-western boider from

Hope Town to the Great Waterfall. Lead ore, manganese, hæmatite, and other Ores ron ore, and similar valuable products, likewne occur un many different localities. Bulding stone is abundant all over the country, and also beds of Bulding stone. clay, some of which could be used for the finest pottery There are several qualities of freestone, some being suitable for mull and grinding stones, as well as for architectural purposes Marbles of different colours are found in many Marbles places-n Namaqualand, Clanwilham, Tulbagh, Worcester, Oudtshorn, and limestones of various ages occur along most of the coast districts, and on the Orange River below Hope Town

In 1854 the privileges of an elective Parhament were granted to the Colony, 1854 Elective and an era of unruffled peace and active progress was entered upon Public Pariament works were undertaken with an energy unknown before; roads and brndges were constructed, harbours were improved, ranways and telegraphs were introduced, the public lands were thrown open to public competition, and ammgration encouraged. In a few years the action of the legislature did more for the colony than it would have been possible for the old Government to have accomphshed in fifty. There have been temporary checks occasionally felt, arising from seasons of drought and low markets, but the spirit of progress and improvernent has not slackened since The past year, again, has witnessed the sanction by Parlament of several important undertakings, including the construction of lines of ralway in vamous durections, extending in the aggregate over nearly 800 miles, and involving an eventual outlay of about five millions stering

This large expenditure is fully justified by the flourishing condition Expenditure on of the revenue-now approaching to a milhon and a half sterling per works annum-and by the consideration that such works will necessarly augment the value of public and private property, will materially dimunish the burdens entailed on all classes by the present tedious and expensive mode of transport, and will also greatly contribute, by the introduction of European skill and labour, to the better occupation and development of the country.

Pastoral and Agricultural Resources

The Colony, in its varied aspects and conditions, gives scope for every kind Farming and of pastoral and agricultural occupation Numerous flocks of sheep and stock raising goats, and herds of cattle and horses, feed entirely on the natural plants and grasses, wheat and all sorts of grain give astomishing returns from the soil; and most of the products of the temperate or sem-tropical zone may with moderate ease and trouble be successfully cultivated Farming here is accordingly, in judicious and induatrious bands, a profitable as well as an mdependent employment,

Sheep and wool form the chief pastoral productions of the Colony, affording Sheep and wool occupation to the greater part of its mhabitants, and contributing the principal amount to its exports Of late years our more intellgent sheep farmers have fully realized the advantages of pure blood, and have imported and bred pure Merno flocks, by which means the general average of the quality of our wool Merno flocks. us greatly improved They have also eschewed the introduction of any kind of Englush long wool sheep into their flocks, but endeavoured to perfect the quality of the pure Merino by judicious breeding and selection By this means several very fine flocks have been established here, and we shall in a few years, of the same sensible course is preserved, be able successfully to compete as to quality wrth the finest clips in the London wool markets. Prior to this, the old colonist had the hary, fat-taled sheep of the country, which made very good mutton, and was prized for cooking purposes; the heavy tall taking the place of lard, while the skin was highly valued for tanning for home-made shoes, fackets, and even breeches, famuliarly known as "velbrooken" Sheep farms are of various sizes, the general average is somewere above 3,000 morgen, or 6,000 acres There are some, however, that are four or five times this extent

One of the chnef diseases to which the sheep are subject $1 s$ the scab, this, Sheep duseases. though not fatal, or only so as it reduces the strength and condition of the sheep, and renders them unable to bear bad weather, is a great trouble to the farmer The "gal zetckte," or gall stickness, is also a common disease, and the chief barrier to the rearing and grazing of sheep in the Zuurveldt. There

Natural meubation

Food.

Artificial incubation
are a few other diseases, such as the geel, tongue, and various torms of fever, which in some parts of the country are occasionally fatal Another of them is the "fluke," the cause of the rot, so well known in England, but is not so destructive here as in the old countries of Europe

Very many of our sheep farmers have flocks of goats, in most cases the common goat of the country, but often mixed with various grades of Angora blood These original goats are a very hardy race of anmals, lise where sheep cannot, and supply meat which, though not equal to Southdown wether mutton, is quite passable, and very useful on a farm They breed and merease very fast, having as many as five kids at a birth, and seldom less than two, and are altogether a usetul anmal, yelding a famous and valuable skin

Angoras are comparatively a recent introduction The first were brought to the Cape by a Colonel Henderson in 1836, and the stock obtained from them found its way to Caledon, Swellendam, Graaff-Reinet, and Richmond, but unfortunately the process of bastardination was perpetrated on the imported Angoras, as was originally tried on the pure Merinos, and, as we beheve, to the detriment of both. So much is the desadvantage of such a method of breeding that many farmers are saying Angoras won't pay, and returning to the old hary sort Several of the larger breeders, however, are fully aware of the value of pure blood, and are raising flocks of true and uncrossed anmals, although it will take a little longer to get a large flock. The advantage of breeding Angoras is that they scarcely interfere with the pasture of the sheep flocks, and will often live on herbage the latter discard, whist the fleece, if improved, commands a high price, and is an important addition to the exportable products of the country
Another new branch of farming, which has now become a very mportant one, is the domestication and breeding of ostriches One of the first to try it in the colony was the late Mr. Kinnear, of Beaufort West He commenced about 1860, and his success in breeding and rearing these birds was such as to induce many persous, far and wide, to enter upon what has since proved to be a very interesting and highly remunerative pursuit. Mr Kinnear's observations on the management and habits of the birds were communicated by hum at the time of our visit, 1870 , as follows -
" The number of birds that can be kept on a given area of pasture depends enturely on ats quality. A full-grown ostrich will consume 20 lbs of chopped lucerne, a sheep 12 lbs , and a horse of 14 hands 70 lbs The birds do not like grass or green forage, they prefer cabbage leaves, fruit, gran, \&c, but for permanent food there ss nothing like lucerne or clover. He says, as far as my experience goes, they do not lay in general untul they are four years old or upwards In a wrld state, there are sometmes as many as five hens to one cock I think there should alwass be two, but then there should be an incubator for the surplus eggs which cannot be covered The birds for the most part begin to lay about the beginning of August, and continue for about six weeks, when they commence hatching. In about a month or six weeks after they have done hatching (at least if the young burds have been removed) they begin to lay agan, and continue a month or five weeks At the first laying they lay from 15 to 20 eggs, and at the second from 12 to 16
"Incubation lasts from six to seven weeks from the time the bird begins to sit I take the young ones away when they are so strong that they can leave the nest, which is in a day or two. The chicks get for food chopped lucerne, cut as young as possible, as they do not like the stalks, and some grains of wheat nay be scattered about for them to pick up, and also maize as they get older Clover would do as well as lucerne, and perhaps vetches. I also give them sand, earth, and crushed quartz and bones, and as much water as they please They like to bathe, and roll in the dust, If taken away from the hen they should be kept warm, especially at night."
Previous to this the artificial incubation of ostrich eggs occupied the attention of others who had followed Mr Kinnear's example in domesticating the birds. Dr Atherstone, of Graham's Town, was one of the first to suggest the process, and his suggestion was taken up by Mr Douglass, of Hilton, near Graham's Town, who atterwards patented an improved appanatus made by himself. Similar applances, with modifications, by Dr Lawrence, of George, and others, are now in use all over the Colony

Considerng that the value of an ostrich a week old is $10 l$, and that its value necreases rapidly as it grows older, it will be apparent that ostrich breeding at present pays remarkably well.

The artificial hatching has proved quite a success. Mr J M. Beyess, of Success thereof Novitgutacht, near Stellenbosch, bas several machines at work, and out of every dozen eggs deposited, in them it is seldom that more than one of the number fals to generate

Horse-breeding was formerly a favourite pursuat, and the requirements for Horse breeding. the remount of the army, and the sporting tastes of Indian visitors, made it both pleasant and profitable But the horse-sickness which spread over the greater part of the colony in an epidemic form in 1853-1854, sweeping away Causesodechne no less than 70,000 , shattered many of the breeding establishments, in many instances, indeed, parties reluiquished them altogether for sheep and other stock Notwithstanding the diminished number of breeders, the demand for horses at the time of the occurrence of the Indan Mutiny, in 1858-1859, served to show the capabilites of the colony were still very considerable The wonderfully hardy and enduring qualities of the Cape horses have been acknowledged by all who know them.

Horned cattle were found in tolerable abundance when the Dutch first Horned cattle settied at the Cape, in time, as the colony became occupied by Europeans, the Dutch breed was introduced to cross with, and although the several Extunction of types of the thorough native species have well-migh become extinct, a dash pure mingenous of the long-horned Hottentent breed as not discarded when long journeys on types bad roads and often starvation allowance as to grass are required The cattle now met aie made up of contributions from nearly every breed known in England and Holland, but some of our more intelligent men, however, now see the advantages of pure blood, and have been selecting their herds for Introduction of some time past, and some good short-horned bulls of undoubted pedigree have shorthorns been got direct from the first breeders in England

Every part of the colon'y seems adapted for the growing of gran crops, the Gran crops only impediments being want of morsture during some seasons in certain localities, the effect of blight in others, and the distance, difficulty, and expense of transport to a market I hese drawbacks, however, never preval over the whole country at the same time, and it is noticeable that, although one part may suffer in dimmished or blighted crops, other places yield abundant harvests. When favoursble seasons prevail everywhere, the production is more than enough for home consumption, and yet when droughts set m , supplies have to be obtaned from Australia, Chilh, or Califorma The portions of the colony most favourably situated for the production of wheat are those regularly visited by copious rains, and where artificial urrgation is unnecessary

The coast districts, especially those contiguous to Cape Town, possess this Prneipal corn . advantage, and form the pnncipal granary. The tracts known as Koeberg districts and Malmesbury mainly consist of corn farms Wheat and oats yeld from 15 to 30 fold, according to the season, barley, from 50 to 100 fold, and rye, from 20 to 40 fold The yreld of wheat per acre, under good cultivation and free from rust, may be taken at an average of 15 bushels to the acre, 2 e , at the rate of 10 to the acre at 15 fold, and 20 to the acre at 30 fold Oats and rye give about the same, but barley generally yields, on new land, in a good season, 50 bushels the acre The weight of wheat per three-bushel sack is from 205 lbs to 208 lbs The Clanwilliam, Tulbagh, and Worcester divisions, and the south-east coast districts, from Caledon to George, yield considerable grain crops in average seasons, while all over the Kauroo, with urrigation, almost fabulous returns, from a hundred fold upwards, may be obtaned In the east, the most extensive arable lands are those in the Zuurveldt districts of Lower Albany and Oliphant's Hoeck, and next to them in the Queen's Town, and other border districts

Indian corn or maze, known under the name of "mealies," is grown all Maze over the country, and yields most abundant crops of good food, both for man and beast Along the frontier especially it is largely cultivated

Kafir corn or millet 18 chiefly rassed by the natives, being largely used by millet them, either boiled for food or malted as beer There are several varietres, one of them being the Sorghum saccharatum, the shoots of which are rich in saccharine juice

Sorghum.

Various vege tables, tubers, and roots

Vimeulture

Cape wines

Home con. sumption.

Ransins

Fruits

Preserves

Canning for

 exportationTobacco culture.
Tobacco is in cultivation in several of the coast districts, Heidelberg, Riversdale, and Oudtshorn, as well as parts of Kaffraria, producing a large quantity There is considerable home consumption for this product, some of it, under the name of " Boers," being used for smoking, the general demand, however, is for sheep-washing purposes

Cotton growing.

Cotton-growing has been tried with some success on the coast lands of Albany, Peddie, and East London The average yeld of the crops ransed is estimated at about 240 lbs of clean or ginned cotton per acre Mr Wright, of Bathurst has obtaned a return of from 500 lbs to 900 lbs per acre in seed, Sea Island sample ; and some lands have yielded as high as $1,200 \mathrm{lbs}$
Coffee planting
Coffee is grown along the Buffalo River, as well as at the Kowe Below Grahamstown, in the sheltered valleys of the Zuurberg, and in various other places about the country, coffee trees bear abundantly There are also some tea plants, which, it is said, will stand the winds and the frosts even better than the coffee.

There are numbers of other undeveloped products and resources in the Other undecolony offerng a profitable field to persons competent to enter upon them, veloped products although at present the ordinary occupations are sufficiently remunerative to sutrable to lough at present the ordinary occupations are sulcenty remunerative to clumate most people without trying new openings Olive culture and linseed would also do well, and the cultivation of chicory and the sunflower, and numerous other products, mught also be undertaken In fact, there is scarcely a valuable plant but can be grown here There are localitess in the colony where anything will grow, if it gets plenty of water; and with water we may grow anything of we have labour These are the great requirements of the country
The ordmary labourers are for the most part natives, ether Hottentot, Kaiir, Labour or Basuto, or some other of the aborgines, or of the tribes immedately beyond us They make careful herds and pretty, good ploughmen, and quickly master the long waggon whip of the "Kurveyor," and so get employed on the roads as leaders and druvers of wagons There is, however, a very scanty supply of field labourers, not but that there are plenty of men in the country, but the larger part of them, raw savages, do not care to work, for their wants are few and easily suppled In the western districtspermanent agricultural labourers of the Wages coloured class recelve about 15s to 20 s per month, with food and quarters, and garden lands to cultuate all the year round, and occasional labourers durng the harvest and nutage season get as high as $3 s 6 d$ a day, bessdes an allowance of wine In the eastern districts the wages to natives at the harvest time is from $1 s$ to $2 s$ a day, with rations European servants are much better paid, generally occupying the places of overseers, and in most instances, if they are steady, active, and prudent men, they speedily rise to the position of masters and employers of labour
New comers wll find that there are continually farms to be sold by private Cost of farms owners, at from $5 s$ to 20 s per acre, and in some parts of the colony large landowners let out lands on "halves," If pastoral, stockng them and charging a rent, and dviding the increase and yeld, if arable, finding the land, and perhaps the seed, and some parts of the necessary teams, the tenant supplyng the labour, and the crops rased beng equaily dvided

List of Samples of Cape Produce, \&c. forwarded to the Peiladelphia Exhibition of 1876 by the Local Comaittee for the Colony of the Capr of Good Hore, on the 16th of December 1875.

$$
\mathbf{P} \text { stgntfies Award for Eshbbtt }
$$

(The Government of the Cape of Good Hope recelved an Award for its Collective Exhibit, and the Colony one for Wools)

Department I Clase 100	$-\quad$ Exhibitor
Artucle	

Artacle.

Exhybitor.
Black oxide of Manganese (pyrglusite) from Her- W W. Dickson, Cape Town. cules Mine, Du Toits Kloof.
Saltpetre from the Stormbergen - - - G. Vice, Stormbergen.
Class 101.

Coal from Vice's Farm in the Stormbergen	G. Vice, Stormbergen.
Samples of various South African Coals, with their	A. Wilson, Gas Works, Cape
respective cokes and ashes	
Sample of lead ore (galena) from " Banghoek	Dr E E B Muskett, Hope Town.
Mine," Hope Town Division.	

Class 106
$P 1$ case of damonds and associated rocks
\mathbf{P} Dramonds \quad - \quad Samuel Stonestreet, Kımberley
Diamond Fields

Department II

Class 201.
Soaps, three sorts (pale, brown, and brown J. and G Smithers, Cape Town. mottled)

Class 217
Table constructed of 15 varieties of Colomal W Lesur, Cape Town. Trmbers
Work-box constructed of various South African R Moulton, Swellendam Woods

Class 230.
Cotton tablecloth - - . - . $\underset{\text { town }}{\text { Hon }} \mathrm{S}$ Cawood, Grahams-
Class 252
Melon-seed necklaces, bracelets, \&e. (five sets) - Mrs Perry, Cape Town

Class 253

Twenty native articles of dress, viz, necklaces, The Local Committee, Cape of armlets, aprons, head-dress, earrings, \&e Good Hope
Har of Pondomiso, surmounted by a ring of F P Gladwin, Kafirland. Euphorbia Jap
Ivory earrings of Pondomiso, Baboon skm, Dress F P Gladwn, Kafirland. of Witch Doctor

Class 254
Skeletonzed flowers - - . . Mr. Ayluff, Grahamstown.
Class 268.

Department III.

Class 306
Books printed, bound, and publushed at the Love- Rev. G Stewart, Lovedale, dale Kafir Mission Institution
Books printed, bound, and published at Morija Rev A Mabelle, Morıja, Mission Station, Basutoland. Basutoland

Article.	Exhubitor
Books published in Cape Town, or elsewhere in the colong	J. C Juta \& Co, Publishers, Cape Town.
Catalogue of South African Public Library, Catalogue of Sir George Grey's Library, two vols, Cape of Good Hope Unıversity Calendar;	The Local Committee, Cape of Good Hope
Reports of the Trustees of the South African	
Museum, the Committee of the South African	
Public Library, and the Commitee of the	
Botanic Gardens	
Dr Bleek's Bushman Researches	
Specimens of book-binding (3)	
2 Bookbudng specimens (astronomical tables, $\}$	S Solomon \& Co, Cape Town
Class 330,	
Models of harbour works and dry docks, Cape Town	Halbour Board, Cape Towns:
Class 335.	
Photograph of Cape Town	H. C. Coates, Commssioner, Cape of Good Hope, Philadelphas.
Photographs of Cape Town Harbour works	Reuben Ayluft, Grahamstown
Class 355.	
Map of South Africa -	C. Solomon, Cape Town.
Geological sketch map of the colony	E J. Dunn, Cape Town.

Defartment IV.

Class 410.
Oil-pannting Vrewá in Knysua Forest, Cape Colony - - -
Oulpannting: View of Three Anchor Bay, near
Cape Town
W. Hermann, Cape Town.

Water-colour sketch of Hangkhp, a spur of the Stormbergen, Queenstown Division
Water-colour sketch of the Mac-Mare Falls, Ly- $\}$ denberg Gold Fields, South African Republic
Water-colour sketch of Native Population, Cape
Miss Anna Hays, Cape Town Town
Water-colour drawings (ixa) of Indgenous Cape Miss F. C. Thwatts, Cape Flowers Town.
Class 430.

Photographs (37) of Colomal Scenery
Views (12) in Cape Town
View of Kloof Lodge near Cape Town
Views of S in book

Department V.

Class 585.

Ostrich Incubating Machne (with two egge and two young ostriches stuffed)
 A. Douglass, Hilton, Grahamstown

Department VI

Class 601.
Specimens (47) of Timber fiom the Alexandria Crown forests, with some (7) of the articles usually made from certain woods
Ebony from Namaqualand - - - E J Carson, Ookuep, Nama-
qualand
B. H Holland, Alexandria, Cape Colony

Class 602.

Class 653
Artucle
Exhubitor.

Ostrich feathers (from domesticated burds), 5 sorts,
from white to black Dressed ostrich feathers, 3 white, 1 vanegated Ostrich egg 3 ostrich egg baskets 2 ostrich egg cups Ostrich eggs

Local Commattee, Cape of Good Hope

H C. Coaten, Commassıoner, Cape of Good Hope, Phuladelpha

Class 654.

Bee's wax (in tin)			
Bee's wax, 21 lbs	-	-	Barry and Nephews, Cape Town.

Class 656.

Class 657

- $\}$
$\begin{aligned} & \text { Barry, Arnold, \& Co, Cape } \\ & \text { Town } \\ & \text { Letterstedt \& Co, Cape Town }\end{aligned}$

E Clear, Cape Town
Class 658
Starch of wheat flour, 1 tin $\sim-\cdots \quad-\quad \underset{\text { Town }}{\text { G }}$ P Heydenrych, Cape
Class 660.

- CEYLON.

The Philadeliphia International Exhibition, 1876.

Superintended at Philadelphia by the Britise Executive Comuissioners.

CEYLON.

An island situated in the Indian Ocean, off the southern extremity of Geographical Hindostan, lying between $5^{\circ} 55^{\prime}$ and $9^{\circ} 51^{\prime} N$ lat, and $79^{\circ} 4 l^{\prime}$ and $81^{\circ} 54^{\prime} \mathrm{E}$. position long, its extreme length from north to south, $z e$, from Point Palmyra to Donders Head, is 266 mules, its greatest width $140 \frac{1}{2}$ mules from Colombo on the west coast to Sangemankende on the east

The centre of the island is mountamous, rising to an average elevation of Physicalfeatures 2,000 feet above the sea level The south-west coasts are low and fringed with cocoa-nut trees, which grow in vast numbers even to the water's edge, while the northern portion forms a sandy plain interspersed with jungle and swamp The coasts are in many parts indented, and present numerous small coast hne. harbours and sevetal large ones Among these may be mentioned Trincomalee, Harbours on the north-east coast, sand to be one of the finest in the world Point de Trmoomalee Galle, in the south, is the point of stoppage for the mail steamers to Indua, Point de Galle China, and the Australian Colonies

The clumate for a tropical country is comparatively healthy; the heat in chmate. the plans, which 18 nearly the same throughout the year, being much less oppressive than in Hindostan. Along the coast the annual mean temperature Mean temis about $80^{\circ} \mathrm{Fahr}$; at Kandy, 1,465 feet above sea level, it is 76° (average of perature 10 years); at Colombo the annual variation is from 76° to 86°, at Galle 70° to 90°, and at Trincomalee 74° to 91°. In the mountain ranges there 18 of course a great variety of clmate, the thermometer at the hill station, Nuwara Elyya, which is some 6,000 feet above the level of the sea, falling at night as low as 32°.

Ceylon was visited in early days by the Greeks, Romans, and Venetians; History n in 1505 the Portuguese formed settlements on the west and south of the island, in the next century they were dispossessed by the Dutch. \ln 1795-6 the British took possession of the Dutch settlements in the island They were annexed then to the Presidency of Madras, but five years later, in 1801, Ceylon was constituted a separate Colony. In 1815 war was declared agannst the native government of the interior, the Kandyan King was taken prisoner, and the whole island fell under the rule of the British

By letters patent under the Great Seal, April 1831, a Councl of Govern: Government ment was appointed, and by a supplementary commission to the then Governor (March 1833) a form of Government was established almost identical with that now existing
The Government is administered by a Governor, anded by an Executive Mxecutive Council of five memhers, and a Legislative Councll of fifteen members, composed of the members of the Executive Council, four other office holders, and six unofficial members In the Legislative Council no vote or resolution Legislative can be passed or any question be admitted to debate, the object of which is to dispose of or charge any portion of the revenue, unless the Governor shall Its powers have first proposed such vote.
The population of the island according to the Census of 1871 was $2,771,889$, Population. exclusive of the military and persons occupied in maritime pursuita The total was made up in the following proportions.-

The number of Indsan coolies on coffee estates is probably over 150,000. Coohes on cotice They are under no indentures, and are free to quit thear employment on giving a month's notice

Area of sland, and proportion underculthvation. Vegetable products Buce

Necessity of urngation

Coffee.

Grain, cocoa-nuts,
cinnamon,
tobacco, \&e
Mineral pro*
ductions
Plumbago.
Exportation to
Europe.
Iron.
Apparent
absence of coal
deposits
Iron manufac.
ture very limited
Preparation of
steel.

Ironstone gravel
used for road-
makng
Woods
Sapan
Milula.
Hahmilla
Cocos-uut
Arecanut
Satin
Ebony
Jack.
Tulip.
Teak.
Calamanda.
Palmyra.

Cottonn
Cattlecultivated
Capabilities of
ducing cotton.

The area of the island is 24,702 square miles, or $15,809,280$ acres, of which rather more than one-sixth is under cultivation. Rice, which forms an important element in the food of the native population of the sland and of the adjoining continent of India, is, as might be supposed, the principal article of production. Large quantities of rice are now annually imported, but as the urrigation works undertaken by the Government become more and more extended, large districts, which from the remains that still exist of deserted villages, evidently supported in earher times a large and thriving population, will agan be brought into a state of fertility, and will limat if not altogether do away with the necessity for seeking a supply of this important article of food from outside the country.

Ceylon has also been found especially well adapted for the cultivation of coffee, which occupies the attention of a large proportion of the British residents and affords a good return for the capital employed. Coffee planting has been rapidly extended within recent years, and this has led to an enture opening up of the country by roads and railways. It is computed that over 290,000 acres are occupied by coffee plantations.
Other important productions are various grains other than rice, occupying about 100,000 acres, cocoa-nuts 26,000 acres, cinnamon 26,000 acres, tobacco 19,000 acres, and areca, palmyra, and other palms 60,000 acres

The minerals found in the colony are not numerous The principal areplumbago, which occurs in veins underlying quartz in the south and southwest, and has bten exported in considerable quantities during the last few years, owing to the extensive European demand for crucibles, and rron, which exists in almost mexhaustible quantities on the surface in several districts of the island, both in the form of pyrites and in fused mixture, indicating volcanic action at some past period. Owing to the large and comparatively cheap introduction of English ron, and to the fact that coal, if it indeed exists at all in the colony, has not yet been discovered, the manufacture of articles of iron by the natives is extremely limited, being confined for the most part to small bars or implements for ordmary agriculture, such as rough knives and the like, which may be purchased in the native bazaars Considerable skill is shown by the natives in the preparation of steel, which in the process of manufacture becomes unusually hard and close in texture, and is sand to possess many of the properties which admitted of the exquisite tempering given in mediæval times to sword blades of eastern production

Ironstone gravel is found in considerable quantities in various districts, and is used generally and with excellent effect in road-making

Ceylon possesses many valuable woods, suitable for building purposes and for the manufacture of artucles of furniture The principal are sapan, a red dyewood, milila, a durable wood, and free from knots, used in bridge bulding and for beams generdlly; halmulla, very light and elastic, much used in the making of casks, for which purpose it is in great demand, cocoa-nut, the outer mad of the tree avalable for working up in small scantlings for furniture; areca-nut, very useful for long flexible spars for temporary purposes, satin, a well-known and exquisitely marked wood which makes most beautiful articles of furmiture-it is also much used as planking for bridges, beng exceedingly durable, ebony, a well-known wood, principally used for ornamental purposes; jack, a common but very useful wood-it is bright yellow when newly cut, but darkens to a rich mahogany colour on exposure and takes a beautuful polish; tulip, gnarled and knotty, but admurably adapted for naves of wheels, for which it is much used, teak, of quality, however, far noferipr to that grown in Burmah, for which it is a very indifferent substitute, calamanda, a beautafully graned wood, used only for making costly furnitue, and palmyra, very valuable for pulng in salt water, where it has been known to stand for 30 years without protection.

An inferior variety of cotton appears to be indigenous, one species being so general and so prolific that it is considered one of the most troublesome weeds in the sland The cultavation of the better sort of cotton is not pursued on anytinng but a very limited scale, although there are large tracts of country of which the soll is remarkably well fitted for the production of cotton of admirable quality It is believed that with liberal encouragement the growth of the finer sorts of cotton might be carried on practically without limit

The following is a statement of, the Revenue and Expenditure for the Revenue and decennal period ending 1875 -

Expenditure
\neq
917,669
927,932
974,950
881,373
$1,026,871$
$1,064,184$
$1,062,994$
$1,176,258$
$1,184,192$
$1,301,525$.

The value of imports and exports has not shown any very considerable Trade variation during the seven years preceding 1873, but there has been a marked increase in the three following years, as will be seen by the table appended. The aggregate tonnage of shipping entered inwards and cleared outwards during Shipping the year 1875 was $1,129,219$ and $1,087,184$ tons respectively A large increase Probablemerease may be expected when the breakwater at Colombo, now in course of construc- in tonnage tion, is firmshed

		Imports.登	$\begin{gathered} \text { Exports. } \\ \underset{\text { the }}{ } \end{gathered}$
1866	-	- 4,961,060	3,586,452
1867		- 4,504,338	3,530,224
1868	- -	- 4,403,177	3,786,721
1869	-	- 4,635,023	3,631,065
1870	-	- 4,634,297	3,803,731
1871	-	- 4,797,952	3,604,853
1872	-	- 5,169,524	3,139,060
1873	-	- 5,574,538	5,439,591
1874	*	- 5,691,860	4,687,388
1875	-	- 5,718,655	5,733,770

Satisfactory progress is being made in education, the number of srholars Education. in schools aided and mspected by the Government having increased from 6, 879 in 1868 to 35,193 in 1875 The improvement is due to the instritution of a Department of Public Instruction and the adoption of the system of payment by results

Great efforts have been made to keep pace with the growing requrements Means of comof the colony as to facility of communication The principal towns are mumcation connected by telegraph There is a railway 74 miles in length from Colombo to Kandy in the interior, and a branch line of 17 miles into the cotton districts ; while there are 905 mules of metalled roads and 529 mules and 922 miles hoads respectively of gravelled and natural roads, exclusive of roads withun municipal limits and minor roads not in the charge of the Department of Public Works The cost of construction is great, and the subsequent expense of mantenance

Cost of mad enormous, owing to chmatic influences and the inferior quality of the metal mantruanance and available To maintan in good order a mule of metal road costs on an average over $90 l$ per annum, and it has not unfrequently exceeded 2001 , where the traffic has been very heavy

Steam commu-
As to means of communication with the outside world there is a fortnightl mail service carried on by the steamers of the Peninsula and Oriental Company betu een Cevlon and European ports and Bombay on the one side, and Madra Calcutta, the Straits Settlements, and China on the other, also a monthly service between Ceylon and Australia. The Messageries Maritımes Company has also a fortmghtly man service between Ceylon and Marselles, and betwee Ceylon and Calcutta, the Stratts Settlements, and Chma The passage to Southampton generally occupies about 30 days, to Brindisi or Marselles 83 or 24 days, and to Bombay, Madras, Calcutta, Singapore, and China, $4,2,6,7$, and 15 days respectively nustion,
Peninsula and
Oriental Com-
Orientai coma
pany, with Indra, Chine Strats Settie strats
ments Australa. Mustraha. Massikeries
Martumes Company There is besides weekly commumcation with ports in India by the steamers of the British India Steam Navigation Company, which leave Colombo at regular intervals for Bombay and Calcutta, calling at intermediate ports.

Publie debt. Rate of interest payable Amount of " sinking fund available in re payment of debt.

The public debt in January 1877 amounted to $798,719 l$, made up of money borrowed chiefly for the construction of public works at interest varying from 6 to $3 \frac{1}{2}$ per cent The amount of the sinking fund applicable to the payment of the 6 per cent debentures was, in November 1876, 370,619l.

The above account of the colony is mannly taken from the Colomal Office List for 1877, and from the able paper on the British Culonies, contributed by Mr. (now Governor) Robinson to the Official Report of the Commissioners for the Vienna Exhubition of 1873

P sugnfies Award for Exhubnt
(The Government of Ceylon recerved an award for Collective Exhubit.)
Minerals, Manufactures, Education, Art, Agriculture.
Minerals, Ores, Stone, Mining Pronucts.
Armitage Bros, Colombo - Tin and plumbago
P Delmege, Rexd, \& Co , Colombo -Graphite, raw and prepared
Clothing, Jewellery and Ornaments, Travplling Equipments
Armitage Bros, Colombo
a Straw hats
b Canes
Fabrics of Vegetarle, Animal, or Mineral Materials. Armitage Bros, Colombo
a. India-rubber.
b Rope
Educational Sxstems, Methods, and Libraries.
Armitage Bros, Colombo -Almanacs and other books.
Sculpture
Armitage Bros, Colombo - Elephant, carved in plumbago.
Photography
Armitage Bros, Colombo -Photographs
Arboriculture and Forest Products
Armitage Bros, Colombo
a Woods
b Dye woods.
c Gutta-percha and gums.

Agricultural Products.

Armitage Bros, Colombo
a Coffee, spices, tobacco, and cygars.
b Seeds
Water Animals; Fish Culture and Apparatus
Armitage Bros, Colombo -Mother-of-pearl and other shells.
Animal' and Vegetable Pronucts
Armitage Bros, Colombo.
a Coco de Mer
b. Vegetable tallow.
c Taproca.
d Sugars
Textile Substances of Vegetable or Animal Origin
Armitage Bros, Colombo
a Cotton
b Fibres

GOLD COAST COLONY.

\qquad

The Philadelphia International Exhibition, 1876.

Manager at Cape Coast of the Collection, W. Melton, Esq.

Superintended at Philadelphia by the British Executive Commissioners.

Agents, Messrs. Peter Wright and Sons, 307, Walnut Street, Philadelphia.

THE GOLD COAST COLONY.

The Gold Coast Colony extends from $4^{\circ} 9^{\prime} \mathrm{E}$, nucluding Jaboo or Leekie Geographical and Palma, whech skurt the seaboard, the Island of Lagos within the Lagoon, position the approach to which hes through a dangerous and shifting bar, and Badagry on the Lagoon, running in a westerly direction, lying between $2^{\circ} 50^{\prime} 55^{\prime \prime} \mathrm{E}$, where British territory ends, and formed the western boundary of the Settlement of Lagos and its Dependencies until 1874, when it was incorporated wnth the Gold Coasi Colony The line of coast lyung between $2^{\circ} 50^{\circ} \mathrm{E}$ and $1^{\circ} 12^{\prime} \mathrm{E}$, comprisung Porto Novo, Cutlanu, Godomy, Whydah, Great Popo, Agwhey, Lattle Popo, and Porto Seguro to $1^{\circ} 12{ }^{\circ}$, a hittle to the west of Flowhow, constitutes the division between Badagry and Flowhow, and is not a , part of the Gold Coast Colony
Flowhow is the easternmost point of the Lagoon, which has its outlet at the Flowhow. mouth of the Volta Between Flowhow and the Volta $1 s$ the British Fort of Quittah, whose district is comprised within these limits, exercising jurisdiction on the Lagoon, which runs at the back of Quittah and communicates with Quittah the Volta and several other places in the interior A little to the westward of Quittah is the trading port of Jellah Coffee, the emporium for live stock on Jellah Coffee. this part of the coast The next place of importance on the Volta is Addah, Fola-Addah near its entrance, the entrepôt for trade with the interior as far as Sallagha, but owing to high rocks the river is only navigable for small craft as far as Amedica

Following the coast to the westward are the trading places of Ningo and Ninmo and Pram-Pram. Accra, the future seat of Government, and, next to Lagos, the Pram-Pram most important place of trade of the Colony, contributing about 20,000l a year to the colonial revenue, lies in a flat country some 60 feet above the level of the sea. The other places of consequence are Winnebah, near the River Winnebah Aginsue, Salt Pond, a place of considerable trade in palm oil, and Anamaboe within about 12 mules of the present head quarters of the Government, Cape Cape Coastr Coast Castle.

Eight miles beyond Cape Coast Castle is Elmina with its fine castle of Elmina. St George situate near the River Benyan, and formerly the chief settlement of the Dutch Government, transferred, together with all their settlements on the cosst of Guinea, to the British Government Near Chama is the celebrated Chams. River Prah, on which at Prabsue a force of Honssas is maintaned not only for the protection of the surrounding country, and as a check upon the introduction of slaves from Coomasse, but also for a political object Beyond Chama ' 19 Seccondee, transferred by the Dutch, and the old Enghsh settlement of Seccondee Dixcove The last place of note is Axim, the western boundary of the Gold Dixcove Coast Colony

Axm
The clumate varies according to locality and its surroundings
At Lagos the climate is very unhealthy and oppressive during the dry Cumateat season, when the heat is great, causing the European residents to become pale, Lagos thin, and haggard In the wet season, when the temperature is much reduced, Europeans are subject to fever, ague, and dysentery, but for those who are fortunate enough to escape or recover from these attacks, the climate for August, September, and October is not unpleasant, the sky being overcast, and fiesh sea breezes prevaing in the afternoon, when the residents pick up in flesh and colour Stull at Lagos from the flatness of its site, and being only slightly elevated above the sea, the defective sanitary arrangements, and the almost insuperable difficulty of successfully handing the subject with a population estimated at 60,000 souls hving chiefly upon vegetable food, will always cause a deleterious effect upon the health of the Settlement Relief however is experienced by the sea breeze in the afternoon which tends to drive away the possonous exhalations Lagos is however abundantly supphed with Water supply fresh water, obtainable from the public wells and private springs.

At Accra
Akropong

It Cape Coast

Scarcity of water

Apparatus for conderising the water

Contemplated aqueduct
At Elmina

At Dixcove

At Seccondee
It Axm
Soll

Timber trees

Coffee tree.

Cocoanut.
Gum copal

Gold dust

Cattle

Wild amnals.

To wnadward the temperature decreases, and although Accra is considered to be the most healthy of all the settlements, yet fresh water and fuel are scarce.

North and north-west of Accra is Akropong, 1,600 feet above the level of the sea, where the Basle Mission has its head quarters, and where, says Sir J D. Hay, "the European may recover in its balmy shades and cool " breezes the energy he has lost in the plans below.'

At Cape Coast where the thermometer ranges from 72° to 85° the chmate is most unhealthy; and from its proximity to the sea exceedingly humd, particularly in the months of July, August, and September The numerous hills surrounding the town interfering in some measure with a free current of air, the rapid growth of bush and its decay in the hollows or valleys at the base of the hulls, all tend to make Cape Coast one of the most unhealthy settlements of the Gold Coast Colony, and the clumate perhaps the most depressing Water is scarce, the inbabitants depending upon supples of an indifferent quality obtaned chefly from the wells at Catocrâba, a short distance from the town, and ran water collected in the tanks of the houses of the well-to-do inhabitants. During the last three or four years an apparatus for condensing sea water has been set up about a mile from the town, and the fresh water produced and distributed daily to government officials to the extent of five gallons per head is one of the greatest hoons that could have been conferred upon them, as, in the opimion of the acting Colonial Surgeon, it has prevented dysentery, at one tune the scourge of Cape Coast

It has been in contemplation to supply Cape Coast with fresh water from the Sweet River between Cape Coast and Elmina by means of an aqueduct
Elmina is consrdered in point of health better than Cape Coast, and there can be no question as to its eligibilty as a place of resideace, beng infintely superior to Cape Coast, although it has yeided the palm to its eastern rival Accra The unhealthiness of Dixcove is said to be attributable to a swamp in which sacred crocodiles live, near the town Seccondee is built on a rocky amphitheatre, and presumably healthy. Axim is well watered, and said to be the most healthy part of the coast, and the town to be the cleanest.
The soll is generally rich, produang in abundance fine timber, palm oul trees, gunea grains, of which $151,783 \mathrm{lbs}$ were exported in 1875, Indian corn, yams, cassada, sweet potatoes, ground nuts, sweet nuts, sugar cane, cocoanuts of which 46,596 were exported in 1875 , and of the dried nut $148,013 \mathrm{lbs}$ ditto, benme seed, cotton, coffee, oranges, limes, tomatoes, ginger, undigo, in fact there is no himit to its capability of production

The timber tree commonly called Odoom abounds all along the coast It is used for house bulding and cabinet work, and according to Gramberg, in his West Coast, Africa, the forests on the banks of the Prah formerly produced a great deal of timber for building the West Inda Company's shaps, and still produce beautiful timber for ship building and furniture There are numerous sllk cotton trees, "Bombax ceiba," from which canoes, stools, and wooden wares are made

From the publicity that has recently been given to the Liberian coffee tree it is expected that it will be shortly introduced into the colony on a large scale, it being "a prodigious cropper" (34 lbs having been obtained in one season at Accra from a single tree) and the quality equal to the finest sorts. The cocoanut abounds along the whole coast, and the dned nut known as capprah figures in the exports of the colony Gum copal is obtained from the forests. and is chefly bought up by the Americans, the quantaty exported in 1875 mas $178,832 \mathrm{lbs}$
The gold dust is found chelly in the Warsaw country, and is dug from pits muxed with earth, and then washed in black dyed bowls; but the quantity that is mostly brought to Cape Coast is found in countries to the north of Ashantee, where it changes hands, the original producers not being allowed to commumicate and trade with the seaboard direct, by the jealous Ashantees.

The cattle in the country are small and sparsely distributed, sheep being the chief domestic anmal, and when well fed make excellent mutton Pigs thrive Goats are common, but of small size Turkeys, ducks, and fonls are abundant on the Gold Coast, and the market of Lagos is well supphed besides these with Guinea fowl and pigeons.

The chief wild animals are the leopard, byena, and the numerous tribe of the smaller "Felidé" The black monkey is plentiful in the forests in the
interior, and their skins, the harr of which 18 long, black, soft, and silky, of the best kunds, are an article of trade, the exports in 1875 being 16,253 skins. Porcupines are common-therr flesh is a bonnebouche, and of their quills 80,841 were exported in 1875 The elephant is nearly extinct about this part of the coast Bosman, in his description of Guinea written about 150 yeare ago, says that they used to nsit the gardens of the settlers on the coast. There are some fine bucks occasionally shot near, and brought into Cape Coast; also at Accra, where a small species of the pet antelope called the fillentambo is common

From preserved specimens that have been exhibited, birds of the most Birds beautiful plumage exist in the interior. Parrots are taken in great quantities, and disposed of to the mall steamers at about $5 s$ each; 2,135 were shipped in 1875
The large snaul, probably a species of " Pleckocheilus undulatus," is found in Snails ummense quantities in the forests, and largely contributes to the food of the natives

Some of the Coleôptera are of the size of a small flattened hen's egg, white Coleoptera. on the upper surface and black underneath, whilst the black scorpoors resemble young lobsters. Their tauls are armed with a point resembling the thorn of the rose, through which the poison 18 expelled when striking a blow in a curved direction over therr vertebra, and they are extremely tenacious of life. Snakes abound in the brushwood, the bite of some of which is Snakes venomous

The Government of the Gold Coast Colony is admmustered by a Governor Gavernment and Commander-nn-Chef who resides at Cape Coast, and a Lieutenant-Governor who resides at Lagos, assisted by a Legislative and Executive Council

The Government of the Colony received an award at the Philadelphia International Exhibition for its Collective Exhibit.

THE ISLAND OF LAGOS.

At a. short distance from the entrance to the bar is the signal station, pro- Situation and vided with a flag staff and a heavy signal gun Having crossed the bar in one description of the small steamers belonging to the port, the first objects that greet the eye are the private coal sheds on the west side of the asland, where the local steamers coal, there being a considerable depth of water close in shore Then we have the gunpowder magazine, the debtors prison, hospital, and gaol Here the Marina, about two miles long, having an excellent carriage road, the sides being planted with mangoe and umbrella trees, and the slopes with Bahama grass may be said to commence

The Marina boasts of some fine houses, several of which have gardens in front, planted with the choicest imported flowers The missionaries, who were among the first comers, secured extensive frontages The Wesleyan Soclety have erected on theirs a commodious lofty and arry dwelling-house, and recently a large school Government House is enclosed by uron gates, and approached through a lawn on ether side, at the rear of which is fine stablung and the Colonial Engineers' yard

Very little can be said of Government House It is chiefly built of wood, and lacks comfort and accommodation There is a large flag mast near the entrance, and signals are interchanged with the vessels in the roadstead

Adjoining Government grounds, the Church Missionary Society possess a large grant of land, on which stands the original mussion house built of wood, and a fine lofty capacious structure of brick, where a boarding and educational establishment for young ladies is carried on On the same plot of land stands the handsome brick-built Christ Church, with its clock tower, also erected by
the Church Missionary Society, and is one of the most striking objects after rrossing the bar It is lofty, well ventiated, titted up with sittungs, made of the celebrated Odoom wood, varnshed and adorned with stanned glass windows It possesses a fine harmomum, with a chor of 40 persons, whose performance is doubtless unequalled on the coast At the rear of the church is a shop attached to the missionary establishment devoted to the sale of rellgious and general literature, \&c The Church Missionary Society have recently erected on their land and the back on the other side of Broad Street, an extensive establishment for the trainng of young men for the ministry. The Catholics have also an educational and ecclesiastical establishment and a convent.
We now approach the Treasury, Custom House, and Post Offices, near to which is the magmficent and capacious customs warehouse, communicating with the Government wharf, opposite where all goods are generally landed that are brought over the bar from the mail steamers, \&e After leaving Christ Church, the Marina declines considerably until it reaches the north-western end of the slland All along the Marina are the merchants establishments and several private wharves. The other primcipal streets are Broad Street, Victoria Street, and Olowogbowo, where there are some good houses and several otber churches, and chapels. The Mahom dans have a mosque bult of brick In Timibu Square stands the Court House, a large and lofty bulding which has lately been remodelled and rebuilt.

The native houses are generally built of mud one storey high and thatched with palm leaves Extensive fires are frequent, and commonly it is believed the work of incendiares, a mode of revenge or anjury adopted by the native people. During the last three or four years, however, the use of galvanized iron roofing has come much into use

The arrival and departure of shipping, the constant movements of the local steamers, and the fleet of cargo bar boats, the special market days named after the places from which produce is brought as "Porto Novo market day," \&ce., the influx of strangers with their large canoes laden with produce from the interior, the varieties of costume, the shades of colour of the different tribes, their peculiar mode of salutation, consisting of genuflexions, clasping the knees and feet, and in some cases extending their bodies full length on the ground, the signal gun indicatng the arrival of the mail steamers, although it announces the capsize of a bar boat on the bar wrth loss of life, the interchange of signals, the performance of the band, the croquet partes, lawn tennis, cricket, hoating, the numerous horses and carriages, billiards, and readng ar the club room, balls, musical entertanments, lectures, \&c, and the annual races round the race course, where a large and substantial stand has been erected, all combine to make Lagos perhaps the most lively, social, and busiest place on the coast The educated natives and Europeans meet on an equal footing, all distinction of colour being disregarded.
Population.
The population is estrmated at 60,000 souls, composed of various tribes, chiefly Yoruba "emancipadoes" from the Brazils, Sierra-Leoneans, and others, besides 89 Europeans males and 5 females. The inhabitants are all industrious, and well-to-do, and nearly every native woman 18 robed in a couple of native dyed cloths, the produce generally of the Niger

A reference to the Tabular statements will show the extent and valiety of the Lagos trade, and from its numerous water ramifications it is admirably situated for trade and developing the resources of the countries around, and in the interior Lagos well merits the tatle that has been bestowed upon her as "The Liverpool of Western Africa," of her exports, palm kernels stand preeminent, and a few remarks respecting this staple which has given such an impetus to the industry of the people may not be uninteresting

The shell of every kernel is separately broken with a stone For those nho may feel disposed to pursue the calculation of the aggregate expenditure of force required to produce 26,456 tons of palm kernels the quantity exported from Lagos last year, they are informed that there are 522 hernels or almonds divested of therr shell in a pound weight avorduposs, and that it requines a stene or other hard substance of at least a quarter of a pound weight to be lifted three inches high to liberate by concussion each hernel from its shell

Accra 18 next to Lagos the most mportant place of trade within the colony. Accra.
It is situate an an open champanga country about 60 feet above the level of situation and the sea A few hours travelling in the interior brings one to Akropong, description. 1,600 feet above the level of the sea, the sanitarium of the coast where the Basle Mission has its head quarters.
The Castle of Christiansborg, ahout four miles east from the town of Accra, has been adapted for the residence of the Governor and the public offices, and between it and Accra stand a handsome Court House, and several detached cottage residences for the officers, all near the sea, and free from malarious influences

There is a good hard carriage road between Accra (commencing from the Basle Mission Factory) and Christiansborg, a great part of which is planted with tamarind trees which when in blossom impurt a pleasing effect Horses thrive at Accra, and one meets with specimens from America, the Gambia, Sallagha, and Lagos.

There is some good shooting three or four miles naland, where there is a shooting club and box; antelopes and partriges with a few wild ducks are the chief game.
The sanitary condition of the town of Accra commands unremitting attention, and in course of time will be cleared of its acres of cactus, on which the cochneal insect feeds, in the rear of the settlement whence emanate the most direful exhalations caused by the filthy habits of the lower classes of the people, who are sad to be naturaliy wild and intractable
There is a good lighthouse at Accra The landing is dangerous, but it is in contemplation to extend by arthicial means a reef or ledge of rocks that runs out from the shore to form a break-water The castles or forts formerly erected by the Enghsh and Dutch were destroyed by an earthquake.
The only public building of note is the Wesleyan Chapel, contiguous to which is a large block of building comprising the missionary and school rooms on the ground floor of the society These premises in point of herght and magnificent propornons of the rooms have been pronounced to be the finest Mission House along the whole coast of Africa The immediate neighbourbood, however, is durty and filthy, and there is a stagnant pond close to it.
Accra, notwnthstanding the recent efforts to mprove it, is still perhaps the most objectionable place on the coast in respect of ats sanitary status. It is made constantly busy by the traffic of numercus parties of women bearng large calabashes of palm oll on their heads for sale, coming chefly from the countries to the eastward.
Cape Coast Castle is at present the seat of Government, and here the principal merchants in this part of the coast have theur head establishments. It is an exceedingly quiet and well ordered place, owing in great measure to the good unfuence exercised by the Wesleyan Missionary Society over the mass of the people, and extending it in 50 different places near to and around Cape Coast where they have estabhshed chapels and schools
There are no public buildngs except the Castle, Christ Church, the large Wesleyan Chapel and Government House, the others being hred The houses are chiefly built of swish (mud and broken granite), and many are very supenor and capaclous, whulst the native places of residence may be termed merely mud huts, generally of a quadrangular form On Connor's Hill, overlooking the sea, there is an Impenal Sanitarium, and on Prospect Hill is the beautful retreat, situate in its own extensive grounds, of the late Mr. Barnes, a merchant of Cape Coast

Government House although lying rather low has an imposing aspect. Its grounds were tastefully lad out by the late Acting Governor Simpson. Almost the only recreation is the afternoon stroll along the Salt Pond Road Horses will not hee, and what few carriages are occasionally seen are drawn by men Travelling is done by hammock, slung upon a pole with flat cross pieces supported on the heads of four men. The Houssa band plays every evening from $8 \frac{1}{3}$ to 9
The landing at Cape Coast when the boats are managed by skilful hands is not usually dangerous or difficult except in the rany season, when the mind and sea set inshore The road to Elimina, until one reaches the Sweet river, lies through the bush not far from the beach. It is a good level sandy road thus far, lined with beautiful creepers and varied flowers Underneath the oush thrives the plant mhose leaves somenhat resemble those of the aloe, which furnishes the fibre for the manufacture of fishing nets for taking the shoals of herrings that vist this part of the coast and which when smoked find their way far into the interior as an article of food The road on the west of the Sweet river to Elmina is hard and rocky, the bush ceases and the country has an open and pleasing appearance

Elmina consists chiefly of one long street in which there are a few good houses. The river Benyan, which is crossed by a wooden bridge, conducts one to the Castle, to the west of which hes the rums of the native town that was bombarded during the Ashantee War. Landing at Elmina $1 s$ at all times practicable, and there is a sufficient depth of water to admit from the sea to the river Benyan small craft. This place offers great advantages for the construction of a dock for the repars of ships, there being no accommodation of that nature along the whole line of coast When under Dutch rule it was sad
Elmina.
Situation and description
to contain 12,000 to 20,000 , 1 nhabitants Here are the Government Agricultural Gardens
Secondee town bas 2,500 inhabitants, and is built in a rocky amphitheatre Seccondee The landing is good At Duxcove the landing is usually good. At Cape Three Dixcove Points a lighthouse has been erected by and is kept up by the Colonial Cape Tiree Government It stands at an elevation of 70 feet above the level of the sea. house. Axirn is well watered, being suppled with streams rising from the hills, Axm very fertule, and is said to be the most healthy place on the coast, as the town is one of the cleanest Population, 750 The landing is good, and ship's boats can enter at at all tumes
The population of the Gold Coast, including the Protectorate, is estrmated Population of at 400,000 . The abolition of slavery within the Protectorate caused great inconvemence to the many persons holding domestic slaves, who elected to leave their masters and mistresses, and return to theyr own family connexions or countries to which they respectively belonged, but that is as nothing compared with the great boon conferred upon those who were in a state of serfdom. The value of freedom is now being practically understood

Owing to the difficulty of obtaining hired domestic labour and the great demand for it, many unprincipled atinerant traders to Ashantee barter theur goods for slave chuldren, and clandestinely introduce them into the Protectorate, where they find ready purchasers. Several cases of slave dealing and pawning have come before the courts, and the delinquents punished with fine or umprisonment with hard labour.

Lagos, 1875.		Lagos. Revenue and expenditure
Revenue, 43,367l,	Expenditure 34,380l,	
Of which $38,812 l$ 7s $5 d$. was derived from customs duties	The surplus being devoted to paying off a moiety of the loan	
Duty on spirits, 6d. per imperial gallon proof		
Duty on tobacco, $2 d$ per lb.		
Impoats, 459,736l	Exports, 517,5551.	Imports and exports
From the United Kingdom - 330,822	To the United Kingdom - 270,975	
From France - - 24,493	To France - - - 42,447	
From Germany - - 59,727	To Germany - - 135,927	
From the Brazls - - 24,628	To the Brazls - - 13,720	
The Chief Imports and Exports were-		
${ }^{\text {E }}$	2	
Cotton Goods - Value 243,110	Bennue Seed, 40 tons - Value 486	
Spirits - - " 32,971	Cotton, 5,127 bales - \# 19,842	
Tobacco - - 30,734	Ivory, 10,265 lbs - " , 3,159	
Beads - - - \quad, 4,693	Hides - - - 146	
Cowrres - - $\quad 12,827$	Palm Onl, $1,802,946$ gallons Palm Kernels, tons 26,456 " 148,919 - , 286,112	
Capr Coast, 1875.		
Revenue, 67,3686.,	Expenditure, 71,6442	Revenue and
Of wheh $59,524 l$ was derived from custom duties	Including $10,663 l$ for public works, contra Parhamentary Grant.	Expenditure
Duty on spurts, $3 s$ per imperial gallon proof spirit. Duty on tobacco, 6d. per lb.		

Chief imports and exports.

Chief Imports and Exports.

Cottons.

Spirzts.

Lagos $\quad-\quad-\quad 52,971$
Cape Coast $\quad-\quad 54,781$
107,752

Tobacco.

Lagos $-\quad-\quad 30,734$		
Cape Coast	-	13,234

Palm Ohl.

Lagos -
Galls O M. £

- 1,802,946 148,919
- 2,686,528 222,594

Total $-4,489,474 \quad 371,513$

Paln Kernels.

Gold Dust.

Cape Coast \quad| Ozs. |
| :---: |
| 11,801 |
| 42,484 |

Note -The export of palm kernels from the lune of coast hitherto known as Final remarks the Gold Coast is on the increase, and having regard to the fact that the exports of palm oll is nearly one half more than from Lagos, the trade in palm kernels in future years as hikely to become a very considerable one

With regard to the part taken by the Colony in the International Exhubition held at Philadelphia, of Lagos it may be said simply nil It would almost be impossible to conceive that so much apathy could have existed The only contribution being made by Bishop Crowther of a few trifles from the Niger. The same spirit of indifference generally prevailed at Cape Coast, and it was with considerable difficulty that any collection worthy of the name was made, nearly the whole of it having been purchased by the Colonal Government.

Some of the workmanship of the gold ornaments was of the most elaborate nature, notably the Queen's bracelets, adorned with representations of the shamrock, thistle, and rose, theur foliage, \&c., by Mr Peter Brown, the princrpal goldsmith of Cape Coast, who well merits the palm for such an unequalled productron.
Indeed it was questroned whether it were possible that native goldsmiths were capable of making such splendid specimens of their handicraft, but the doubt was speedily cleared up Mr Hazeley, a native gentleman who was present at the Exhibition from Sierra Leone, and who convinced all doubters that the workmanship of all the gold ornaments sent to the Exhibition from the Gold Coast was purely native art.

There were some specimens of palm and other ouls, a few nuts and seeds, \&c.; a collection of native forest woods, a specimen of panelling in Odoom wood, a writing and envelope case, and a block of polished grante by native workmen in the Colonial Engineer Department There was a variety of country cloths from the Eastern Districts, Ashantee, and the Niger, and specimens of carved stools cut from blocks of the wood of Bombax cerba. There was also an interesting specimen of coffee produced in eight months after planting

W Melton,

Cape Coast,
20th December, 1876.

Manager at Cape Coast of the Collection for the Phuladelphia Exhibitıon, $18 \% 6$.

JAMAICA.
\longrightarrow

D D 2

Resident Commissioner from Jamaica, то тнв

Philadelphia International Exhibition, 1876.

ROBERT THOMSON, Esq.

JAMAICA.

Report on the Jamatca Collection of Products at the International Exhibition at Peiladelpeita, 1876. By Robert Tromson, Esq., Superintendent, Government Botame Gardens.

Jamaica is the largest and most mportant of the British West Indies It Position is situated to the east of the Caribbean Sea, and to the south of the eastern extremity of the large island of Cuba, the distance between the nearest points of the two islands being about 100 miles. The island is within N . lat $17^{\circ} 40^{\prime}$ and $18^{\circ} 30^{\prime}$, and W. long $76^{\circ} 10^{\prime}$ and $78^{\circ} 30^{\prime}$ It comprises an area of 3,250 square mules From the tume of the discovery of the asland by Columbus, in Discovery 1494, it remamed in the possession of the Spaniards for 161 years, when it was capitulated to England on the 3rd of May 1655

Jamaca was designated "Isle of Springs" by the Spanish discoverers from First name by the abundance of rivers or streams, upwards of 100 of which run into the sea, discoverers most of these, however, must be regarded as mountan streams

The island is traversed in all durections with lofty mountains, of which the Mountan ranges Blue Mountain range forms the main ridge The average elevation of this and heights range throughout, about 50 miles to the eastward of the island, is about 5,000 feet On approsching the higher altitudes the mountains gradually ascend to and culminate un the Blue Mountan Peak at a height of 7,350 feet. The elevation of the higher hills to the westward of the island, which embraces by far the larger area of the colony, averages from 2,000 to 3,000 feet. Extensive plans or savannahs extend along the southern boundary of the ssland

A great variety of climates 18 found at the different elevations At the sea Vamety of cllevel the mean annual temperature $1880^{\circ} \mathrm{Fahr}$, the ordinary minmum being 70°, mates at the and the maximum 90° At a height of 2,500 feet above the sea the summer different elevatemperature ranges from 70° to 80°, and that of the wniter about 8° less At level to 5,000 feet. 5,000 feet, the highest inhabited spot, the maximum temperature recorded is 72°, and the lowest 45°. During winter, however, it rarely falls below 54° or rises above 66°, while in summer it is 6° higher, the average daily variation being only about 5° In consequence of the wholesale clearance of the Clearanoe of original forest in certain localites over hills and plains, especially in the forests neighbourhood of Kingston, the natural humidity in the said localities has been greatly diminished Hence, during about 10 months in the year the clımate is remarkably dry, to such an extent, indeed, that agricultural pursuits have been in a great measure abandoned The chmate in this locality at a general saluheight of a few thousand feet is unsurpassed for salubrity in the world, and at brity. simular heights throughout the island the climate $2 s$ equally healthy, although in most parts the ramfall is considerably heavier. On the planns, as a rale, the chmate is very healthy for a tropical region, except in the vionty of swamps or lagoons

The mountamous character of the sland affords scope for the successful Surtable for both cultivation of most of the vegetable productions of the temperate and tropical $\begin{gathered}\text { tropical } \\ \text { perate }\end{gathered}$ zones

The medical faculty of the United States has strongly recommended Jamaica as a winter resort for those threatened with pulmonary complaints as a sanatarium In this respect it is stated that the seland is eminently adapted to become the Madeirs of the United States It is estimated that about 100,000 patients, and others seeking a milder chmate than is afforded in the Northern States, escape to the milder climate of Florida every winter Unfortunately, most parts of Florida are subject more or less to the influence of malaria fiom extensive swamps, and it is conceded that as a health-goving resort it possesses

Capital.

Population of island.
many disadvantages. Large numbers of Americans would visit Jamaca unstead of Flonda, but the great drawback is the want of hotel accommodation.
Kingston is the largest and most important town in the island, and contaus 34,000 unhabitants. For a tropical city it is very healthy; this is no doubt due to the arid character of the climate in which it is situated, consequent upon the clearance of the forest before alluded to
The population of the island in 1871 amounted to 506,154 , of which 13,101 were white, 100,346 coloured, and 392,707 black.

Revenue and Expenditure.

Imports and Exports.

The prominent position assigned to Jamaica on the grand central arenue

Revenue and expenditure.

Place allotted to
of the Maun Exhibition Bulding secured for the colony the most public expositon of its products
Receding from the centre of the buildng along the main avenue, after England, Inda, and Canada, came Jamaica Farther on were situated New Zealand and the Australian Colomes. To the rear of Jamaca along a secondary assle were placed the remaining Colomes of Grest Britan which were represented

On the upper part of the dirsional wall (35 feet long by 15 feet high) between Jamacea and New Zealand our Fibres were arranged. Under the Fibres two projecting shelves contaned the collection of Woods, and under these to the ground, were closely placed in an upright position about 400 Walking Sticks of some forty species of woods. The only break in this arrangement on the wall was the case of Messrs Soutar \& Co., contanng 21 boxes of cigars, which occupred the actual centre of the sad wall On the ground on each side of this case were placed two small tables on which were exhibited withn four glass domes the unique Flowers, \&c. made of the Lace-bark and the cuticle of the Dagger-plant-the handwork of Mrs. Nash On the centre of the department was erected a trophy on which were exhibited to a height of nine feet upwards of 50 samples of Rums, together with samples of Jamaca Luqueurs. On a separate trophy of simular design were displayed the Coffees, Fixed and Essential Oils, Preserved Fruits, \&ic In four large flat show-cases placed at the four corners of the department, with passages on all sides, nere classified, accordng to the respective groups to which they belonged, the
various remaining products exhibited It should be mentioned that, besides the main avenue bounding the frontage, and the wall separating the New Zealand department, two secondary asles defined the Jamaica section. On the arsle parallel with the man avenue, near the junction with the New Zealand department, was placed the set of Harness sent by Messrs Brass \& Son, and contgguous to this their saddle-these were the only articles exhibited by Jamaica properly excluded from the category of "Raw Products"

The arrangement of the collection, as described, had a very pleasing effect, notwithstanding that it is difficult to render effective an exhibit composed of raw vegetable producta And as a whole the dasplay attracted much attention, as exemplified by the numerous visitors to the department, and the enquiries made by them; as well as by the many complimentary references made by the American and European press

The last International Exhibition to which Jamaica sent a general collection Previous disof products was that of 1862 At the Vienna Exhibition of 1873 cigars were plays the only produce exhibited by the colony. It may be stated that a complete series of the ores and minerals of the island were shown at the London Exhibition of 1862 , at Philadelpha they were wanting These would have added considerably to the interest and effect of the present exhibit.

The collection at the Philadelphas Exhibation consisted, with a few exceptions, Collection manis of raw vegetable products, and it was the largest and most valuable display of consisted of raw Jamaica produce which has hitherto been contributed to an International vegetable proExhibition; and Jamaica took the first place among Britsh Colonies (not moludung Canada) in point of the variety and value of Raw Vegetable Products The collection also took a high position among all countries exhibiting only raw vegetable products, and it was the largest general collection from any West India sland

The position occupied by Jamaica in regard to its large collection of products High intrinsic demonstrated the remarkable fact that this collection was of higher intrinsic value of display value than that represented by any other country which exhibited only raw products Hence, min consideration of the variety of resources and natural wealth thus exemplified, it is to be deplored that an sland so highly favoured and with so large a population, over half a mullon-equal in point of numbers to all the other British West Indies put together-should at a great International Exhibition be utterly incapable of illustrating some advancement in manufactured products

Among articles exhibited from Jamaica for the first time the followng may Details be enumerated -Cinchona barks (three species), Jalap, senna, \&c , paper stock and "half stuffs," varous essential and fixed olls, concentrated lime and Seville orange juice, tea, fruit, both fresh and preserved, uncluding candied rose apples, exhibited for the first time from any country, and awarded a special medal, logwood extract, pumento leaf extract, catechu, sappan and candle wood dyes, collection of economic plants, dried nutmegs, vanilla, and tobacco of high quality
The samples of rum, ginger, pimento or allspice were unequalled from any country, as also the collections of tropical fruits and tropical economic plants The exhibits embraced under the following heads were unequalled in point of value by any other British colony, and, as regards the Colonies, a few of them were contributed exclusively by Jamaica - Tobacco, cigars, medicinal sub. stances, including cinchona barks, bamboo paper stock and "half stuff," dyewoods, fixed oils, essential ols, fibres, woods (as regards their economic value and size of specimens), and walking sticks Among the woods are included a lancewood spar and cashaw and lignum vitæ raniway sleepers.

It is gratifying to note that mereased attention is being devoted to the New and mpordevelopment of new and important products, samples of most of which were tant products exhibited at Philadelpha for the first time from the asland These new features of the productive resources of the island are no dnubt destined to play an moportant part in its progressuce development, especially when it is remembered that the almost exclusive cultivation of the sugar-cane in Jamaica, as well as in the other West India colones, has greatly ampeded the progiess of minor industries

Having been entrusted by the Government to prepare a general collection Collection of of the products of Jamaica for the exhibition, I made apphication to gentlemen exhibits in different parts of the island to ob'ain for eah bition samples of sugars,
rums, coffees, tobaccos, and a few other individual articles, with which to render the collection as complete as possible The applications thus made were cordially responded to, and the artucles thus obtaned, together whth the various other products comprising the bulk of the exhibits, which I had specially collected, embraced the whole collection as exhibited by the Government. Particulars as to the products shown will be found in the subjoined catalogue Comparatively few articles were exhibited by private parties

Comparisons with
displavs from other tropical countries

Increasing prosperity of colony

Expanston of

trude with Nen
Yoik

Presentation ts
New York Park
Central Museum

In drawing up this report on the part taken by Jamaica at the International Exhibition, I have instituted a companson of our products with similar products represented at the exhibition by other tropical countres-those with which useful comparisons could be made Although great care has been taken to render this report useful to the communty, it should be remarked that no attempt has been made to epitomise the exhbits of the countries referred to, other than with the new of elucidating the merits or defects of our products

The different subjects referred to in this report farly indicate the increasing prosperity of the colony Unlike its former condition of prosperity, it is now being formed on the more permanent basis of mixed industrial pursuits, in which there is a growing disposition to embark.
A noteworthy teature of the increasing commerce of Jamaica consists in the expansion of trade with New York Much interest in the collection has been manifested by merchants as well as by the general public, numerous inquires relative to Jamatca products having been made with the view of extending commercial relations With the greal natural advantages the colony possesses there is nothing to prevent it again becoming one of the most prosperous of British colonies
Brief descriptions of most of the exhibits are given in the catalogue, which forms an Appendix to this report, and the information given in the Report has especial reference to the agricultural and commercial progress of the colony as represented by its principal exhibits
The Jamaica Government contributed the great bulk of the collection, which was prepared for and on behalf of the Government by the writer, who was also officially delegated to represent the colony at Philadelphia
The whole collection of Government exhibits, except the plants, has been presented to the New York Central Park Museum-a spacious bulding recently erected In view of our direct commercial relations with that city, this presentation of our collection is most opportune
In reference to the collections of sugar, rum, coffee, tobacco, and a few other individual exhibits, it should be explaned that those shown by the Government were obtaned on application being made to the growers and others
The island is indebted to Her Majesty's Executive Commissioners, Colonel H B Sandford, R A, and Professor T Archer, FRSE, for the valuable ad rendered by them at the exhibition

Sugar.

During the palmy days of slavery in the British West Indas Islands Jamaica acquired the proud title of the "Brightest Jewrel in the British Crown" The prosperity which Jawalca then enjoyed arose from the fact that the colony took the foremost position in the introduction of the extensive culturation of the sugar-cane Hence, during slavery the island became the principal sugar mart of the world The remarkable prosperity attending the extensive culture of the sugar-cane in Jamaica stmulated the spread of the plant throughout the West Indies until sugar was establshed as the great and almost exclusive staple commodity throughout these islands, and mantaned with extraordinary fluctuations to the present time. Thus prior to the abolition of slavery in 1833, these 2slands produced nearly all the sugar found in commerce The abolition of slavery dealt a severe blow to this great industry, as well as to the minor ones, and nowhere so keenly as in Jamaica, where numerous plantations were abandoned, many of ubich have nev er since been restored The export of sugar fell from about 140,000 tons to the present average of 30,000 tons, and this notwithstandang the prodggous expansion of the sugar trade.
It is only during recent years that the island 1 emerging from the conditions of long-continued depression to which it had fallen. As regards sugar
production there is less actual improvement to report than appertams to other products, and in respect of improved cultivation and manufacture of sugar the colony is doubtlessly behnd several of the other British West Inda Islands

The total number of acres under cane cultivation is 48,000 , and the average Number of acres quantity of sugar exported, as before undicated, is 30,000 tons The great under cultivabulk of the sugar consumed in the island, probably 6,000 tons, 18 grown and manufactured by the peasantry, an mmense number of whom cultivate emall plots of canes It is estumated that they own upwards of 5,000 mulls for the manufacture of sugar. It will thus be seen that the yeld of sugar is considerably less than a ton per acre This contrasts unfavourably with the yreld on most of the other West India islands It should, however, be explamed that the principle of "ratooning" or cropping from perennial stools is more generally carred on in Jamaica than elsewhere, a fact which results in dimimished returns

A stimulus is likely to be imparted shortly to the sugar industry of the island in consequence of the utilsation of upwards of 40,000 acres of and land by means of irrigation The waters of the Rio Cobre river, one of the largest in the island, are undergoing embankment and distribution at a cost of about $100,000 l$ for the purpose of convering this hitherto and waste into what it is likely to bcome, the garden of the island It is calculated that most of the land in question will be supplied with water equivalent to a rainfall of 60 meches a year

With this command of water and with good cultivation the average yreld of Increase of sugar can be raised to three tons per acre In cane sugar producing countnes average yeld it has, therefore, been reserved for Jamanca to mitate means for the systematic irrigation of the plant The rapid strides beet sugar is making render every adıancement that tends to enhance the preeminent sugar-cane a matter of the highest importance It is greatly to be hoped that "usines" or central factories will be constructed as a natural consequence of this important scheme Apart from the sugar-cane, this great undertaking will exert a powerful influence on other agricultural pursuits

During the past few years many new varieties of sugar-canes have been New vaneties of introduced and cultivated in the Botamical Garden with the new of selecting improved varieties with which to replace the old stock of plants Several of the new varieties are already very promising To Mauritius is due the credit of directing attention to the utility of cultivatmg new varieties of cane, and it is gratifyng to find that success has already attended the efforts made in this durection

The ten samples of Sugar exhibited faurly indicated the qualities ordinarily Comparison of produced on the best estates One sample consisted of Vacuum-pan Sugar samples whth obtaned from Albion estate, the only plantation in the island on which Sugar is made by this processs Compared with the two great sugar-producing colonies-Mauritius and Pritish Guiana-the character of the Jamaica Sugars evdenced the antiquated system of sugar manufacture still in operation The enterprising colony of Mauritus surpassed all the other countries at the exhibition, in the ramety and excellence of Sugars British Guana had also a magnificent display of Sugar, and two excellent samples were represented from the central factory in Trinidad The other British Colonies which exhibited Sugar were Queensland and New South Wales

In contrasting the less favourable position occupied by Jamaica in its exhibit of Sugars with the other great Sugar colomes, especially in reference to the improved classes of Sugars resulting from improved processes of manufacture, it should be remembered that this asland, from its former preemment position as a Sugar colony, has undergone a complete transition from wellknown causes Hence the prosperous Sugar colonies referred to are in a great measure in the full enjoyment of newly acquired energy Fortunately, however, for Jamaica, it is less dependent upor Sugar as an exclusive industry than most other Sugar plantation colomes.

In a colony once the greatest of all Sugar producing countries, and which Dechne of beethas mantaned this article as its chief staple, under the most adiarse circum- root. stances, it is important to note that Beetroct, whose uninterrupted success has hitherto seriously prejudiced the cultivation of the more important Sugar Cane,

Superiority of the sugar cane
has, according to recent announcement, arrived at the climax of its capacity as a Sugar-yelding plant
The verification of this fact must necessarily exert a powerful influence in stimulating the increased production of the sugar cane, which, in natural saccharne richness, far surpasses any other plant Independently of the ruvalry of the beet-root sugar, as far as Jamaca is concerned, there are abundant prospects and scope for improvement of this great staple West India commodity Irngation, and improved modes of cultivation, as well as improved processes of manufacturing the sugar, are unquestionably destined to double the value of our present acreage returns

Rum

Jammea rum

Exports to
United States

Hope of in-
creased export

British Guana and Queensland

The Rums of Jamance are the best and most famous in the world, and they command at least twice the price of any other The quantity of this article annually exported averages nuneteen thousand puncheoñs, valued at nearly $300,000 \mathrm{l}$ Nearly all this goes to England and Germany To the United States only a comparatively small quantity is exported This is to be regretted, as the high reputation of "Jamaica Rum" is universally recognized in the United States, indeed the name of the island is intimately assoclated with that of this famous product
The varous samples exhibited represented most of the celebrated brands of the island.
The total quantity of Rum exported from Jamaica to the United States in 1875 was only 65 puncheons, valued at less than 1,0001 This is considerably less than is exported even to the British West Indies, nearly all of which are rum-producing colonies Moreover, the quantity sent to the United States 1s inconsiderable when compared with the total value of the quantity exported from Jamanca to all countries in 1875, viz 320,7741 Hitherto England has imported nearly all the rum shipped from the sland, but during recent years Germany is becomung a direct importer on a considerable scale.
In consideration of the established popularity of Jamaica rum throughout the United States, there is ground for believing that an mmense demand will ere long spring up in that progressive country for the genume article. The American rate of duty on rum is 2 dollars per gallon proot, and the usual price for the so-called Jamaica rum is from $1 \frac{1}{t}$ to 2 dollars per bottle.
The only other Britsh colonies which exhibited rum are British Guiana and Queensland Respecting the latter colony, it may not be amss here to refer to a misleading assertion touching the prestige of our rum, evinced in the following extract from the British Official Catalogue of Products at the Philadelphia Exhibition This statement is from the section of the catalogue devoted to the Queensland exhbits, on the subject of sugar growing -"The " rum of 1867 is now prized above any Jamaica for its rich mellowness, for in "these inexperienced days they did not in Queensland stint the sugar in "making it, as is now done in the more sophisticated West Indies" This statement, it is almost needless to say, is contrary to the expressed opmion of the Judges, and to the unassalable reputation of the article
Awards
The list of medals awarded for our rums, according to the Schedule of Prizes received, is somewhat disappounting Six medals are thus awarded for upwards of 40 samples that were exhibited by the producers Rums exhibited by persons other than the producers were not considered by the Judges eligible for examination Although, in the determination of these awards, several of our most famous brands were overlooked, I would most respectfully bear testumony to the diligent conclusions of the Judges
The number of samples exhibited was fifty-elght, and as this collection was displayed in a central trophy in the Exhibition it attracted great attention

Coffes

After sugar and rum, Coffee 18 the next staple product of importance in the

Coffee, acres under cultivation and levels of plantations colony There are upwards of 22,000 acres under cultitation It is grown at all heights between the sea-level and 5,000 feet The quality at the lower altitudes is inferior, but at a height from 3,500 to 5,000 feet the pioduce is the finest in the world The prices realized last year in England for this quality of coffee ranged from $7 l$. to $7 l \mathrm{lls} .6 d$. per cwt.

The abolition of slavery affected coffee cultivation in a manner simular to Previous and that of the sugar-cane With slave labour the export amounted to about present pro$20,000,000 \mathrm{lbs}$ annually Now th only averages about $8,000,000 \mathrm{lbs}$
With slave labour this cultivation was exclusively carried on in large plantations, only a small proportion of which are now kept up, and the peasantry now own the largest acreage, made up of small plots of cultuvation
It is gratifying to observe that during the past few years this cultivation is Extension of again being rapidly extended, this time, however, almost exclusively by the late years. peasantry, 5,000 acres having been planted within the past four years. Unfortunately the coffee produced by the peasantry is of very inferior quality, as compared with that produced on plantations This is due to the indifferent manner in which coffee is prepared for the market With a few cheap applnances and greater care on the part of the small settlers in the mampulation of this important product the value of the article would be enhanced about 50 per cent.

The extensive destruction of the primæval forest on the higher mountains of Hopesforfurther Jamaica, chiefly for the cultivation of coffee, has had the effect of dumunshing extension materially the natural humidity of the localities thus cleared, and the result is that the comparatively dry climate that has been created at a height of from 2,000 to 4,000 feet above the sea-level is pecularly fitted for this product, By far the largest number of plantations now under cultivation in the island are situated on the said cleared land, there is therefore good reason to believe that the changed conditions of humdity to which this locality has been subjected have influenced in a great measure the keeping up of these plantations, inasmuch as nearly all other plantations throughout the asland have been abandoned The samples of coffee exhibited represented the produce grown at the lower, medium, and higher elevations

Two new varieties of coffee, namely, Liberian and Cape Coast, have' been New varieties. recently imported from Kew Gardens Both kinds are beng propagated at the Botanical Gardens, and several enterprising coffee planters have made application for several thousand plants The first named variety is saad to produce a fine qualty of coffee, and also to be very prolific and hardy

The Jamarca samples of Coffee were unequalled in point of quality by any quality unsurother coffee exhibited They consisted of the splendid qualities produced on passed of Jamaica our high mountain plantations, together with several intermediate and exibibts common samples grown at lower elevations, down to the level of the sea The varous qualities thus represented the altitudinal influences affecting this product The other coffee-growing British Dependencres which exhibited this article were India and Ceylon The former showed some 20 small samples obtained from the Indaa Museum, and probably many years old, consequently inferior looking specimens Amongst those from Ceylon were several of excellent quality

The two countries which supply the United States with nearly all the coffee Brasi, Java, and mported thereto, namely, Brazil and Java, displayed numerous samples Sumatra. 59 samples were shown by Java and Sumatra, a few of the specimens were of good quality, but the great majority of them were inferior To Brazil, the greatest of all coffee-producing countries, is due the credit of having made the noblest coffee exhibit at Philadelphia The numerous samples were very effectively arranged on a large trophy, on and around which were arranged in profusion piles of this the most important product of that great country There are about $1,000,000$ acres under coffee in Brazil, and the value of this Δ cres under arthcle annually exported amounts to $10,000,000 \mathrm{O}$ On mstituting a minute coffe in Brazil comparison between the coffees of Jamaca and those from other parts of the world, as represented at the Exbibition, the following distinctive features of superiority in favour of the Jamaica article were exemplified The striking blue colour, the perfect form, and unity of appearance of the berries, and the almost complete absence of the "silver skin"

It 18 noticeable that our exports of coffee to the United States are not only very extensive, but they are increasing at a greater ratio than are the exports to England This is a very encouraging feature of our expanding commercial relations It should, however, be stated that very little, if any, of our famous quality of coffee ever reaches America The difference between the value of the ordmary quahty and the finer quality of Jamaca coffee is remarkable, the prices realised for the first rangrog only from $3 l$ to $4 l$ per cwt, whereas for the
latter the highest prices in the Enghsh market are obtaned, namely, from $6 l$ to $7 l$ 11s $6 d$ per cowt.

The Schedule of Prizes to hand announces that elght medals are anarded for Jamaca coffees

Cocoa.

Dastruction of plantations by epidemic.

Advantazes of chmate for cul. tivation

Stroug reasons for extension of plantations.

Upwards of a century ago this plant w as largely cultivated in the islind but it was suddenly destroyed by an epidemic respecting which no particulars have been recorded The area now under cultivation is only about one hundied acres In the British West India Islands the most amportant articles of production next to sugar are coffee and cocoa, both of which, in the number of acres under cultivation and in the gross value of export, are nearly the same Jamaica and Trimidad respectively produce nearly the whole of these articles, and both aslands have thus a corresponding number of acres under cultivation. Cocoa flourishes in the hottest and most humid districts, whereas a comparatively dry atmosphere in an elerated region is best adapted for coffee Less labour is employed in the cultivation of cocoa than is required for coffee Hence it is a more remunerative crop As an article of Bitish production cocoa is confined to Trimdad, except a small quantity grown in several of the other West Indas Islands

The necessary conditions of soll and climate for cocos cultivation in Jamaca exist in a high degree in most parts of the island, and coffee is now extensiselv cultrited in some localities that are far better adapted for cocoa The steadily expanding demand for this important article of coinmerce, coupled with the possession of a soil and climate eminently adapted for ats culture, are strong inducements to private enterprise

A medal was awarded for Chocolate manufactured in Kingston It should be explaned that the samples exhibited were purchased for and exbibited by the Government. I have from time to time in the strongest possible manner recommended this important plant for cultivation in extensive districts of the island The plant is likewise peculiarly adapted to the limited labour market of the asland, nasmuch as crops are abundantly produced math considerably less labour than is requared for coffee cultivation With the rien of encouraging the cultavation of this plant, premums might be offered by the Government for every few hundred trees arriving at a given age, The adrantages accrung from this nould no doubt in the course of a few years be realised from the enlarged export returns

Tea

Introduction and growth.

Falue.
The samples of the Assam variety of Tea nere grown at the Government Cinchona Plantations Some 600 plants were introduced from Calcutta through the Royal Gardens of Kew in 1863 Since the estabhishment of this small plantation at a height of 4,500 feet above the sea, the plunts hate become quite naturalised, and could now be propagated to any extent Ths plant grows with the utmost igour in our humid mountans- in localities far too damp for profitable coffee cultiration The Judges at the Evhibition considered the tea of good quality, and accordingly avarded a metal for s?me in conjunction with coffee-leaf tea. It has, therefore, been clearly demonstrated that tea of excellent quality can be produced on our mountams
In India, a shilled manipulator prepares on an aserage seven pounds of tea a day. The average produce per acre ranges from 100 to 250 lbs , and the total cost of production is put down at one shilling per pound There can be no doubt that the tea producible in Jamaica would be of superior quality to that imported, and which is sold for about fie shillings per pound 'The ralue of the tea imported in 1875 was 2,8681

Coffer Leap Tea.

This article has been frequently recommended as a substitute for genu ne tea, to which it possesses analogous properties 'This probably was the on, y sample of Coffee Leaf 'Tea at the Exhibition

As before mentioned, a medal nas awarded for thes in conjunction with tea

Dyewoods, \&c.

Logwood.

Notwithstanding that thas plant was only introduced into the island about a Introduction and century and a half ago, it has become so completely naturalized that it occupies spread a much larger area than any other plant in the colony. Roughly estimated, there are some 200 square miles of land occupied by this tree, nearly all of which is within easy access of the sea
Previous to 1854 only a few thousand tons of logwood were exported Increase of annually Since that period the export has rapidly-mereased, and during the export past few years it has been mmensely developed, chiefly on account of the unsettled condition of the neighbouring siland of Hayti, whence the quantities exported are considerably dimmished The average annual export now is from 60,000 to 110,000 tons, valued at from $140,000 l$ to $250,060 l$ The quality of this dyewood varies somewhat with the conditions of the humidity of the clumate in which it is produced.

It is a remarkable fact, in consequence of the enormous development of the Enormous logwood trade during the past few years, that Jamanca now occupies the development foremost rank in commerce amongst all logwood producing countries. of trade. Fortunately for the future mereasmg supply of this commercial wood, the general thinning out from time to time creates room for the exparsion of innumerable smaller stems. There need, therefore, be no fear of exhaustion, such as has hitherto been commonly entertained.

Fustre.
This dyewood $1 s$ gradually spreading spontaneously over the island. The other dyes average export $1 s$ about 3.000 tons, worth about 8,0001

The other dyes represented by Jamaica were candle wood, sappan wood, annatto, \&c

Spicre.

Pamento-As is well known, Jamaca exclusively furnishes the world with Prmento, erthis article of commerce. One-ifth of the total quantity produced is sent to clusivemonopoly the United States, thus the quantity exported to that country in 1875 was of the spice 10,894 cwts The prices realised for this artscle have considerably mereased recentlv, and there is probably some ground for predicting a generally improved market, consequent upon the expanding requrements of commerce. The average export as about 50,000 cwts, valued at about $36,000 \mathrm{l}$. Con- Average export. temporaneously with the clearing of woodland for the establishment of pasture in certain parts of the island a natural growth of pimento springs up Since the Russian war this spice has been greatly lowered in price, and consequently it is not a lucrative crop As no cultivation, however, is bestowed upon it other than what appertains to the keeping up of pasture lands, it is a source of profit, especially when heary crops are obtaned. The average annual quantity exported has remaned stationary for a long series of years There are 55,000 acres, more or less, thickly covered with this beautiful tree

Ginger -This is another famous spice of Jamaica, the prices fetched for which far exceeds that realised for ginger grown in any other country In the United States, this article is in great repute, both as a spice and as a medicine. Moreover "Jamaica Ginger" 18 a household word, and, whether fortunazely or otherwise, nearly all the ginger sold in the shops is denominated "Jamaica ginger," notwithstanding the fact that only a trifing quantity is exported to that country-thus the export in 1875 was 745 cwts It should be noted that not only does this island produce ginger of the finest known quality, in the production of which pecular care is bestowed upon its cultivation and manipulation, but it also produces ginger of the most ordinary quality, to the production of which no particular attention is devoted The value of the Value of rarious superior article averages over $10 l$ per cwt, and that of the ordinary quality qualities from $3 l$ to $4 l$ This latter is the standard price for nearly all the ginger sold in commerce, excepting the celebrated Jamaica product Comparatively little of our superior ginger as shipped to America In view, however, of our rapidly expanding commercial relations with that great country, as a necessary con-

Acres under cultivation. Fluctuation of exports.
Cultivation.

Nutmegs.

Vanilla.

Other spices

Accidental antroduction.

Marvellous results in stock raising

Census of cattle, horses, and sheep
The results of feeding

First cultivation
sequence, the development of this trade will eventually ensue. A very large trade might also be carried on in the export of "preserved ginger"

The area under cultivation is only a few hundred acres The quantity exported fluctuates between 5,000 and 18,000 cwts Like pimento, the annual yeld of this product has maintaned a pretty even average for a long period. The best ginger is cultivated at a height of about 2,000 feet above the sea, in a very humid climate. It is cultivated for the most part by white 1 mm grants, who devote great attention to the cultivation, and to the cleansing, from that scraping, and drying processes.

Nutmegs - The Nutmegs exhibited by Jamanca were not equal in point of value to the remarkably large and fine specimens shown by several other countries. The value of nutmegs depends upon size-the larger the size, the greater the value Our sample of Vanilla was a totally different species from that exhibited by Mexico, and other Vamilla growing countries
The collection of spices consisting of nutmegs, cloves, peppers, \&c from Java and Sumatra was one of the cholcest contributed by any country.

Guinea Grass.

The accidental introduction of a batch of seeds of this precious grass (Paspalum maximum) by an African slaver about the year 1750 has powerfully influenced the welfare of the island. The magnficent and well-kept pastoral farms constatute an mportant industry in various parts of the island. The horses reared upon this grass are the most celebrated in the West lndies, and the horned cattle are remarkably fine for a tropical climate. The area of Guinea grass under actual cultivation amounts to upwards of 110,000 acres, besides, probably, a greater area under spontaneous growth. To this invaluable grass must be ascribed the great success attendant on stock raising, in which respect Jamaica claims an ammense advantage as compared with the other Britsh West India Islands, as is evinced by the fact that the more important of the said islands import cattle, mules, \&c to a large extent, whereas Jamaica with its far larger population supplies its own wants Accordingly, stock is obtanable at far lower prices, and of better quahty, in Jamaica than in any of the other islands. There are in the island nearly 80,000 horses, mules, and asses, 120,000 head of cattle, and 20,000 sheep It is a remarkable fact that gunea grass and pimento thrive best under precisely the same conditions of soil, \&c. that prevail in certain parts, namely, the limestone formation, whose porous structure enables the ranfall to escape by means of sink-holes that lead to subterranean streams; hence the immediate and efficient surface dramage It should also be observed that the rachest natural pastures possessed in the island exist in the same localities.

Cinchona Barks.

Three samples of Cinchona Barks were exhubited, viz, C calisaya, C succurubra, and C. officinalis, each seven years old, and weighing respectively three, four, and two pounds, the said quantities having been procured trom one tree of each species The cultivation of cinchonas was commenced by the Government 1 n 1868, and the plantation now consists of 300 acres, about 40 acres having been planted annually The trees are planted from eight to ten feet apart, and the total number planted out is about 120,000 , and it is expected that 50,000 will have been planted during the present year The average helght of the several species of trees planted the first year ranges from 12 to 30 feet. This umportant plant is now naturalised on the higher mountains, masmuch as self-sown seedhings are springing up plentifully throughout the plantations The climatic conditions requisite for its culture are found on the Blue Mountains at a height of from 4,000 to 6,000 feet, with a mean average temperature of from 60° to $70^{\circ} \mathrm{Fahr}$, and where it rarely falls below 50° or rises above 70°. The first crop of bark is expected to be realised about the tenth year from the time of planting out, as has been the case in the plantations of India. In 1872 samples of these barks were analysed by Dr De Vrij of the Hague, and by the Messrs. Howard of London. Very satisfactory results were obtaned from C. calisaya and C succirubra, but from C officinalis the result was unfavourable. For the extension of the plantations,
therefore, attention has been exclusively directed to the two first-named precious species A stem, measuring 22 feet high, of C. succirubra, from which the sample of bark was taken, was also exbibited

The three specimens of Cunchona barks exhbited by Jamaica were the best Best specimens samples represented by any Britsh Dependency. The Indian Museum shown by exhibited two species of bark, but in very small samples Mauritius was the only other British possession which exhubited this moportant product, one sample, the product of a small tree, having been shown. Mauritius, however, does not grow Cinchonas on a commercial scale, so that India and Jamacea were the only important exhibitors from the British Dominions.

The best samples of Cuchona barks, the produce of the country exhubiting, Javanese were those from Java Sux species were displayed Java also was dis- samples. tinguished by the magnificent display of Cinchona alkalonds, consisting of quinine, quimdine, cinchonine, cmehomidme, and several mixed alkaloids, which were the only alkaloids exhibited by the country growing this plant. The general appearance of the barks, as compared with the Jamaica barks, presented little or no difference. Some of those from Java were perhaps somewhat thicker, owing to their greater age, the cultivation having commenced m that country upwards of 20 years ago. Short sections of Cinchona stems of the several species from 7 to 17 years old, afforded practical information as to their conditions of growth The Cinchona stem, seven years old, shown by Jamaica divested of the bark (which was also shown) measured 22 feet. The Jamaica sample of stem was equal in the dameter of the wond to those from Java 10 years old, and the epecimens of stems from Java, each 17 years old, were very slightly larger than the Jamaica specimen

A very interesting and instructive feature of the Java display, in connexion Photographs of with Cinchonas, was the fine display of photographic vews of Cinchona Java plantations. plantations, individual trees, \&ec., as well as the dried specmens of the different species artistically arranged in an ornamental case.
Several samples of Cinchona bark of fair quality produced by cultivation were exhibited by Mexico, also sections of the stems of the trees
It is a matter of some surprise that Peru, the native habitat of the most Absence of important of all medicinal substances, Cinchona barks, did not exhbit its Peruyan specimost celebrated vegetable product. The only exhubit of Cinchona bark as a forest product was made by Venezuela, the samples, bowever, were of unmportant kinds
The crowning exhibit of Cinchona barks and alkaloids was that made by Dieplay by the firm of Powers and Werghtman, the great chemical manufacturers of Powerr \& Philadelphia

Welghtman of
Philadelphua.

Jalar.

On the cinchona plantation, at a height of 5,000 feet, a few acres of jalap Favourable have been planted, and a crop from the same will be reaped this year analysis Specimens of jalap tubers grown here were analysed a few years ago by the Society of Apothecaries of England whth very favourable results, the percentage of resin in the Jamaica sample being 1071 , whereas in the best commercial jalap imported into England the per-centage of resin amounted only to 1031

The whole collection of Medicınal Substances shown by Jamanca, meluding other Pharmathe Cinchona barks, numbered 23 articles, all of which are of reputed value. centical exhbits. The collection, as before indicated, was the most valuable from any British Colony Our samples of jalap, bitter wood, gum guaiacum, simaruba, cassia pods, pomegranate bark, baobab frut, and kola nut, were objects of especial interest, either for the excellence of the specimens or for their rarity

Tobacco and Cigars,

In consequence of the insurrection in Cuba numerous refugees have during Increase of recent years settled in Jamaica, and great advantage is accruing to the island cultivation and from the superior knowledge of the Cubans in the cultivation and manufacture prokress of of tobacco and cigars

Natural cultivation from 1870 to 1875

Tobacco of inferior quality has been cultivated in small patches in various parts of the island since its early settlement.

To the Cubans is due the credit of having been instrumental in the mitiation of the cultivation and manufacture of tobacco on a planter's scale, according to their own system. Several plantations, each to the extent of from 50 to 100 acres, have been established in different parts of the island As before mentioned, tobacco was the only produce from Jamanca displayed at the Vienna Exhibition The samples in question attracted special attention, and were awarded the Medal of Merit
Land abounds in most parts of the asland suitable for the production of the finest qualities of tobacco, which is fast becormng an industrial occupation.

In addition to the supply of tobacco seeds grown by owners of plantations for their own cultural wants, upwards of 20 lbs of the renowned "Vuelta Abajo" seeds from the district in Cuba bearing this name, were obtanned, at the request of the Government about two years ago, from Her Britannic Majesty's Consul-General at Havaña.
The area under cultivation has steadily nereased, as shown by the number of acres in each of the following years -

1870	-			-	-		cre
1871	-	-	-	-	-	74	"
1872	-			-		J01	
1873	-	-	-				
1874	-			-		267	
1875	-	-	-			360	

Best British exhibtt shown by Jamaica

Hugh reputation suddenly acquired

Display by
Jamaica.

Porto Rico and Manulla.
Brazil and
Mexice

By far the best exhibit of tobacco and cigars contributed by any British Dependency at Philadelphia was that sent by Jamaica The eighteen samples of tobacco sent by the enterprising planters, Messrs Thompson and Weightzman, elicited the admuration of all competent parties On careful examination, the International Judges pronounced the samples of tobacco equal to the finest Havana, an enconrum of the highest merit. The cigars shown by Messrs Soutar \& Co. also received the approbation of the Judges, as is evidenced by their decision It will be remembered that the exhibit of cigars made by this firm at the Vienna Exhibition attracted unusual attention, and obtanned a first-class medal.

The proud position thus assigned to Jamaica in respect to tobacso and cigars, is highly gratifying. A new industry of the utmost importance has not only suddenly sprung into existence, but the articles have in like manner acquired a high reputation. The variety of tobacco grown is from seed obtanned from the celebrated Vuelta Abajo in Cuba, the most famous tobacco district in the world With careful selection of sites and judicious management in the cultivation, over which the Cuban refugees have durect control, and with the acquisition of the skulled Cuban cigar manufacturers, who have adopted Jamaica as their home, tobacco is rapidly becoming a staple artucle of production A noteworthy feature of this promising cultivation thus consists in the high quality of the article produced. With a continuation of the same care and attention that is now bestowed upon this product, there is nothing to prevent its becoming one of our great staple articles of export The misfortunes existing in the neighbouring island of Cuba have been instrumental in establishing this amportant industry in Jamaica Under these most favourable auspices, the island is profiting by the practical experience of the most accomplished of all tobacco planters

The cigars and tobacco shown by Cuba at the Exhibition formed a brilliant display. The cugars were of all grades and sizes, and 1 n great profusion, as were also numerous brands of cigarettes tastefully decorated, in order to impart an attractive appearance Elaborate cases in variety contributed to the array of this, the most celebrated product of Cuba Of tobaccos also the gradation of sizes exemplified was considerable, and the finer qualities were placed in bundles, somewhat more evenly than were the Jamaica bundles. Cigars and tobacco of good quality were exhibited by l'orto Rico, as also a fine case of clgars from the Government Factories in the lhappine Islands Brazil and Mexico also exhibited a great variety of tobaccos, cigars, and cigarettes.

Fibres.

At the London and Paris Exhbitions the great variety and excellence of vanety and the collection of fibres sent by Jamaica attracted much attention The col- excelencoor lection at this Philadelphas Exhibition comprised a selection of some 30 spechmens, together wnth 10 of basts The fibres are adapted for the manufacture of ropes, cordage, and textile fabncs from the coarsest description to the finest. Notwithstanding that this subject has been frequeutly ventilated in Jamaica, and that splendid results await the capitalist in the der elopment of a trade in this durection, no effort has been made to utilise any of the waste substances that are abundantly obtamable. The introduction and application of machinery for the extraction of the fibre is all that is necessary to ensure success The first fibre enumerated in the Catalogue is the celebrated Chana grass, or Rhea ("Ramie") in the United States. This grows wnth the Rhea utmost luxuriance in humid parts of the ssland At the Botanceal Garden a plot of it was expermented upon a few years ago. and it yelded five crops in the year, producing prepared fibre at the rate of over one ton per acre. This fibre would meet extensive and ready sale of offered at about $70 l$ per ton The great desideratum in order to ensure the extensive cultivation of this plant is a machine for the production of the fibre With this object in view the Government of India a few years ago offered a prize of 5,0001 . for an efficient machune, but without success. The Agricultural Department of the United States has also directed particular attention to the importance of the cultrvation of this plant, which thrives admurably in the warmer States. It is noteworthy that the first plants introduced into the United States were Introduction raised in the Washington Botanic Garden from a batch of seeds imported into United from the Jamaica Botame Garden some twenty years previously The Basts exhbibted from Jamaica are valuable substitutes for the lime basts of Russia, so extensively used for making mats, \&c. In Russaa one mullion trees are cut down annually for this purpose, and from six to ten years growth is required to produce grod Lime basts, whereas some of the Jamaica bast-yelding trees grow with such rapidity that they attain to a height of 20 feet in a single season For example, one plant of the "trumpet tree" (Cecropna peltata) would yreld annually 1 lb of bast, and 1,000 could be planted to the acre, thus yielding $1,000 \mathrm{lbs}$ with hardly any cultivation beyond the first planting. Notwithstanding the great vaniety and value of the fibres that abound in the sland, private enterprise lacks the energy requred for their production A profitable lesson might be taken from the colony of New Zealand, where the fibre obtaned from an indigenous fibrous plant (Phormuum tenax), exported un 1865 only to the extent of $70 l$., had in a few years increased the value of the export to $1 \$ 2,578 l$
India and Mauritus contributed collections consisting of fibres analagous Indian and to those exhbited by Jamaica Amongst the other British possessions, Mauntuus Victoria nod Queensland had far collections of fibres, and New Zealand proudly dis to fan (Phormium tenax) in numerous samples New Zealand both raw and made unto cordage Trimidad had also some fine samples of fibres, but they were not exhibited to advantage Brazul, Mexico, \&c , had Brazlian and fine exhbits of fibres The Philppine Islands presented a speciality in the Mesican exway of piles of Manilla hemp, an article in great request in the United States
It is very gratifying to announce that the International Judges have, in Sisal hemp addition to a warding a medal for the general collection, awarded a special medal for Sisal hemp This sa plant that 18 propagated with the utmost facility it requires a mimmum of cultivation, grows alike luxuriantly in the driest and wettest localities in the island, provided the soll be gravelly The first crop is yelded in four or five years from the tume of planting, and a succession of crops every third year is afterwards obtained One ton of filre is a farr estrmate of the yeld for each acre, and it 18 woth $40 l$ per ton A sample of this Value fibre grown in the Botanical Garden here, was sent to London a few years ago, and valued by a broker at several pounds per ton higher than the Sisal hemp imported from Mexico A machine has been invented for the extraction of the fibre with economy This fibre as now largely exported from Central America to the United States, where there is an unlumited market for the artcle

Paprr Stock and Half Stupf.

Paper stocks

Bamboo, its
supplanting of
"Esparto"
grass

Use in China and Japan

Process of manufacture

A high authority on paper-making materials, Mr. Thomas Routledge, of London, has recently durected attention, in a pamphlet on the subject, to the desirability of utilizing bamboo in heu of "Esparto" Now that the supply of the latter, which has been imported into England to the extent of 140,000 tons a year, valued at considerably over one milhon pounds, is becoming exhausted, it is very encouraging to find bamboo recommended as the best material for future supply Bamboo contans upwards of 70 per cent of fibre, and no other plant is capable of yieldıng so large a return of fibre per acre. Several crops are obtanable annually, the aggregate yield of fibre from which would probably exceed 50 tons per annum Most of the other plants recommended as substitutes for esparto yield only from one to a few tons per acre annually. Thousands of acres of land in Jamaica are overrun with luxuriant bamboo In large quantities the raw material could be cut, crushed, baled, and delivered at a shipping port for about $1 l$ per ton. It 1s, however, greatly to be desmed that the raw material should be converted into paper stock or half stuff pror to shipment Samples of the last-named preparations made from young and old bamboo, as well as from other substances, are exhibited. It should be stated that a company has been recently formed in Jamaica for the manufacture of paper stock from bamboo, and a firm of New York paper manufacturers obtaned regular supplies of crushed bamboo from Jamaica several years ago In China and Japan paper-making from bamboo is a wellknown industry from time umemorial The following interesting account of the process of manufacture in China is extracted from the excellent Catalogue of the Chinese Section in the International Exhibition. It may bere be mentioned that the Chinese manufacture from the bamboo a great variety of paper, from the commonest qualities to the finest, for writing purposes, the prices for which range from two dollars to twenty-one dollars per pecul "P Paper is made chuefly from bamboo, but also from rice straw, cotton, hemp,
" the bark of the Allanthus broussonetia, the stalks of reeds, and the refuse of
"s sllk cocoons The method of preparation from bamboo is as follows -The
" bamboo is stript of its leaves and split into lengths of three or four feet, "which are packed in bundles and placed in large water-tanks Each layer " of bamboo is covered with a layer of lime, water is poured on till the top" most layer is covered. After remaning in this condition three or four " months the bamboo becomes quite rotten, when it is pounded into pulp in " a mortar, cleansed, and mixed with clean water. This liquid is poured in "quantities sufficient for the size and thackness of the sheets required upon "square sieve-like moulds These sheets (of which a skilful workman can " make six in a minute) are allowed to dry, then taken from the mould and "placed aganst a moderately heated wall, and finally exposed in the sun to "dry The best quality of paper is made from the shoots of the bamboo, "with alum added to the infusion, the second, from the bamboo atself, "though a higher grade of this quality is attained by the previous removal " of the green portion; and the third from grass or bark leaves of the trees " above enumerated."

Woods.

The specimens of woods exhibited were selected for their economic value, and consisted of upwards of 50 species, embracing the most useful woods of the island They were of large size, accordingly their texture, colour, and other quahties were well developed In this respect they contrasted very favourably with the collections of woods from all other countries. Indeed, although nearly all countries exhibited therr characteristic woods, as a rule, only small specimens from young trees were furnshed. Our collection was therefore unusually attractive and instructive, and illustrated the great variety of purposes to which our woods are applicable, in which respect our resources at command were well exemplified
The only other collection of woods comparable to ours in regard to the size and aspect of the specimens exhibited by a British Colony (Canada excepted) was that from New South Wales. In this instance, the Jamaica samples yielded in point of size As regards the economic value of the timbers, however, the palm must be yrelded to Jamaica. The New South Wales specmens
consisted chiefly of Eucalypt1, some of the species of which are the largest trees in the world To indicate the value of the Jamaica woods, allusion need only value and be made to the following - mahogany, teak (Tectona grands). cogwood, specimens bullet tree, cashaw, lignum vitæ, ebony (Brya ebenus), mahoe, yacca, \&c., \&c. The beautful collection of New South Wales woods was first exhibited at the New south London Exhibition of 1862 , and afterwards presented to the Kew Museum, Wales collection. whence they were sent to Philadelphia.

The richest collection of woods contributed by any country to the Phaladelphia Exhibition was that from Brazl These were not unuformly chonce specimens, but they emioraced mnumerable kinds, many of which were in huge logs

Amongst the woods exhibited by Jamaica was a fine specimen of lancewood spar, of which Jamanca exports large numbers This, probably, was the only specimen at the Exhibition. Hence an important error appeared in the "Sctentific American," dated the 28th of October last. This error occurs in an article on "Materials for making carriage wheels," at the Centennial Exhibition In the subdivision of the article in question, entitled "Shafts, whippletrees, and side bars," it is stated "For shafts, hickory is commonly " used by American carriage builders, and answers the purpose admirably. "Lancewood, however, from the West Indies, would, without doubt, be " preferable, but it is difficult to obtan, and very expensive It us much to be " regretted that not a specmen of lancewood in the rough is exhibited at the "Centennial, and although it is used in connexion with several of the "c carrages exhubited, it 18 so disgused by paint or varmish as to give, to those "unacquanted with it, little or no idea of what the timber really is" ". . . The same article continues, "That for wooden side bars, now "so popular in connexion with light road waggons
" lancewood would doubtless prove the best for this purpose, and come into " general use, were it not for its expense, and the difficulty of obtaming it in "6 sufficient quantities; for it possesses those qualities particularly demanded "for side bars, namely, stiffness, toughness, and elasticity."

Tanning Materials.

This collection was interesting as indicating our resources. The most Tanning interesting article was the sample of tanning concrete made from pimento specumens. leaves, for which a patent has been recently obtaned Two samples of leather tanned from this were exhibited. Divi-divi and mangrove, both valuable tanning materials, were exhibited Divi-divn might be cultivated for export on our waste and lands with great advantage. At present, we umport this article to a small extent for tanning

Walking Sticks

The specimens of neatly finshed "walking sticks," numbering about four Vareties. hundred in forty varieties of woods, had a very good effect, arranged at the foot of the woods and fibres Pimento is the most useful of the above, as it is in extensive demand, both for walking sticks and umbrella handles. The manner in which these sticks were prepared reflects credit on the princepal exhibitor, Willam Reid, an industrious black man of Kingston, although a medal has not been awarded for this collection

Fruit and Food Products.

In the Agricultural Hall were displayed a collection of fresh fruits, and an Fruts. assortment of the staple food products grown in the island This was the first exhibit of the kind ever sent to an Exhibition out of the island Among the fruts were several species which probably were shown for the first time in the United States from any country The specimens were not selected for any special merit, but merely represented the ordinary type commonly produced, the samples of the three vaneties of pine-apples, however, were somewhat small, although of excellent quality The expansion of the fruit Expansinn trade with New York is a most encouraging feature of the steadily increasing trace. commercial relations between the asland and the United States. The establushment during the past few years of regular steam commumication

Advantages, geographical, for orange trade
between Kingston and Nerr York has stimulated the trade in question The value of the frute exported in 1870 was 9012 In 1874 it increased to upwards of $10,000 l$ The export value in 1875 cannot be precisely stated, but it shows a large merease. The principal fruits exported are oranges and bananas, the former frut (Jamarca orange) rapidly acquinng a high reputation in the New York market, where they fetch a higher price than is pad for any other imported orange Hitherto nearly all the oranges imported for the supply of the United States have been obtamed from the Mediterranean and Cuba Flonda has recently been making strenuous efforts to produce oranges to compete with the umported frut, and they are now largely sold in the market The advantages Jamaica possesses over the Medterranean, owng to its geographical position, are obvous; and the West Indis trade, of which Cuba has hitherto been the chnef mart, is beng gradually transferred to Jamaica The total number of oranges imported into New York from Kingston in 1875 was, according to the "New York Times," 8,335,270, or 695,041 more than from Havaña durnng the same year The total number of oranges imported from the West Indies in the same year was $22,550,375$. The newspaper above cited remarks:-"The importations of oranges per
steamers from Kingston, Jamanca, show the growng importance of the "trade with that island The imports in 1873 consisted of 7,747 barrels, "in 1874, 14,762 barrels, and in 1875, 21,642 barrels" The value in New "York is at least $1 l$. per barrel, thus, $21,642 l$ From the Mediterranean there were imported unto the Unuted States in 1875 upwards of 310 millions of oranges, of which over 100 mullions, or about one-thurd, had pershed on the voyage.
This number of Jamaica oranges in America would be worth one million pounds sterling Notwithstanding the highly successful establishment of our oranges in the United States, the New York frut dealers complann sadly of

Fauts in paching

Excellence of oranges the careless and unsatisfactory manner in which nearly all the oranges are packed. Thus, as a rule, the barrels of oranges on arnval in New York, if placed in an upright position, are void to a depth of about six mehes But for the short voyage, this want of proper packing would have a disastrous effect upon the frut; as $1 t$ is, they are considerably deteriorated in value, nasmuch as their preservation is rendered precarious Of course it wll be easily perceived that loosely packed oranges in barrels are unsafe. Bearing on this question, there is another point to which it is of great importance that attention should be paid; I allude to the careful handling of the oranges from the time they are picked from the trees until they are packed The reckless manner in which this is at present performed would render therr lengthened preservation impracticable
It is a matter of notorety that a smaller per-centage of the oranges imported into the Unted States from the Mediterranean is lost on the voyage than oranges from Jamaica.
The excellence of our oranges, coupled whth our favoured geographical position, secure for the island advantages that cannot be over-estimated, and as regards the extended production of oranges in Florida, Jamaca need not fear competition, as the latitude in which this fruit is cultwated in Florida skirts the noribern limit of its profitable cultivation; hence the difficulties to be encountered in its cultivation
It wlll be perceived from the foregong remarks that the orange trade of Jamaca is probably destined to become a highly mportant industry it is also greatly to be hoped that Jamaica whll devote attention to the extensive cultivation of lemons, which are imported to the United States to an mmense extent from the Mediterraneau

Bananas-value
Bananas -The number of bunches of bananas mported into New York from Jamaica in 1875 was 37,950 The value of these in New York is at least eight shallings per bunch, or $15,180 l$ for the whole The total number of bananas imported into New York in 1875 from the West Indies and Central America was 657,880 bunches, of which an average of 20 per cent. perished on the voyage.
From rehable sources I was informed in New York that a larger per-centage of the bunches of bananas imported from Jamaica perished than the bananas from elsewhere. This was attributed partly to the system of packing in the
ships, and partly to the insufficient ventilation afforded in the ships Bananas are more perishable than oranges, and consequently requre more careful packing In view of the vast quantity of this fruit which Jamanca is capable of sending to America, no pains should be spared to ensure the greatest attainable success in packing I have been credibly informed that an immense quantity of bananas has been shipped from Jamaica during the past few monthe

The great bulk of the bananas imported into New York are a different variety from the one we export-the kund so largely mported is of a reddish colour

Pine-apples -Among the four varietres of Jamaica pine-apples exhibited Four varietes was our highly esteemed Ripley In the Botanical Garden a few acres of Rupley highly this plant have been planted with the view of attracting private enterprise ${ }^{\text {estoemed, }}$ to the cultivation of this valuable fruit for the American market. Several excellent new vametres have been introduced during the past few years, which are being propagated for distribution. The great bulk of the pineapples amported into New York comes from the Bahamas, but they are Bahama exports not equal in point of quality or size to the better class of the Jamaica fruat. The total number of pine-apples imported into New York in 1875 was $5,258,755$, of which $1,625,989$ perished on the voyage.

A large number are also obtaned from Havana, and recently excellent Havana and consignments have been received from Porto Rico. The pine-apples obtained from the Bahamas are of inferior quality and very small, the average prices realised beng only about sixpence The Havana frut fetches a much higher price. Consignments of shoice Jamaica Ripleys have realised $2 s$ to $3 s$ each Our exports, however, are msignificant What the establishment of steam communication between New York and Kingston has done to develop our, orange and banana trade it is equally calculated to do in faclitating the export of pine-apples The only difference 1s, that contemporaneously with the establishment of the steamers, oranges and bananas were abundantly obtainable whthout special cultivation Pine-apples, however, differ from the above, masmuch as they require for their cultivation considerable labour, skill, and close attention, as well as selected sites Hence to meet any extensive demand this fruit must be cultivated for the purpose.
Pine-apples of superior quality, and at a moderate price, are a great Reasons for desideratum in America There is, therefore, nothing to prevent Jamaica from extendung trade. creating an important trade in growing and exporting choice pine-apples.

Cocoa-nuts -The number of cocoa-nuts exported from Jamaica to New Number exYork in 1875 was about 300,000 The total number umported into'New York ported 1 n 1875 from elsewhere was 7,478,470 In consideration of the great value of the products of the cocoa-nut, namely, coir and oul, there is no reason why Jamaica should not export mullions to America. The average total number of Total number cocoa-nuts annually exported from Jamaica is two millions The number of exported from cocoamnut trees growing in Jamaica has not been computed, but the writer has estimated it at over one million, and the number is constantly being mereased The annual yield of nuts from one million trees would amount to at least fifty mulhons These nuts are largely used by the peasantry for making an edible oul for therr own wants Notwithstanding this ammense number of cocoa-nuts, it is to be regretted that there is no machinery in operation in the duction of oil sland for the manufactur of or cour The and cour sland for the manufacture of on or cor the rude and wastefl process of preparation by the negroes is very unsatisfactory The husk which yields the mattresses, the value of which, instead of being allowed to rot on the ground as at present, would be worth from $30,000 \mathrm{l}$ to $40,000 \mathrm{l}$ a year In Ceylon these articles are important industries. The annual value of the cocoa-nut oll exported is a quarter of a million pounds, and of cour nearly fifty thousand pounds, and there are over 3,000 mills for the expression of the onl, including several large establishments worked by steam power Throughout several of the British West Indies a blight seriously affects the cultivation of the cocoa-nut. Even in Jamaica a district some 50 miles in length along the line of the shore is devoid of this useful tree, owing, doubtless, to a blight, the nature of which unfortunately has not been investigated.

Necessity of fast sauling steam ships.

Good results therefrom

Acres under
eultivation

Yield per sere and in the gros

As before indicated, the Jamarca frut trade with the Unated States is capable of unlumated expansion, and it is found that the allotment of space in the steain vessels employed in the service is quite inadequate for the augmented trade It has frequently occurred that large numbers of oranges and bananas which are brought to Kingston for shipment are rejected for waut of fieight room. The favoured geographical position of the island to America is of great advantage to the export of perishable fruit Steam communication has, therefore, inaugurated a new andustry, and its future expansion will be greatly influenced by increased facilities of transport. An important step towards this end would be secured by fast saling steam ships The av erage time now taken between Kingston and New York is from six to seven days. As the distance is only 1,450 mules the voyage should be made within five days

Among the advantages that would result from rapid transit would be the export of fruts of a more perishable character than those referred to For instance, the mango, which grows in greater abundance than any other fiuit in the island, could be supphed to any extent, and there is no doubt that the better varieties would be prized Three of the best varieties grown in Jamanca were exhibited with the general fruit collection in Agricultural Hall, and a considerable proportion of them hept for about a week Frequently small consignments of mangoes are received in New York from Havaña

Yams, \&c.

Yams and Plantans constitute the staple articles of food throughout the asland. There are about 40,000 acres of yams under cultis ation, and plantans abound in proxmaty to the huts of the peasantry. Cocos (Colocosia esculenta) and sweet potatoes are also largely grown, and the bread-fruit tree is abundantly estabhshed. The cultivation of Yams is an extensive andustry amongst the peasantry The tubers are planted chiefly in the spring, and the crop is reaped in from six to nine months. The area usually planted by each peasant averages about one acre; so that there are probably 40,000 plots of yams scattered over the more humid districts of the asland The yield per acre, perhaps, averages five tons, making the gross yreld amount to 900,000 tons a year, worth $5 s$. per cwt or one million pounds sterling. 'To the self-supporting abilhty of the negroes consequent upon the food produce in question, coupled with other natural advantages, must be attributed in a great measure the somewhat independent position of the negroes as regards contunuous labour on the sugar estates

Candied Fruits and Preserves.

These articles were a source of much interest, as they served to ullustrate the character of our tropical preserves Several of the candied fruits are valuable, for instance, pine-apples, cashew, Seville orange, and lemon; as are also some of the preserves. pine-apple, guava, tamarmds, ginger, and limes It is interesting to note that the International Judges commended im the highest terms the excellence of candied Rose-apples, accordingly, for this a special medal was awarded This article was exhibited by Jamaica for the first time from any country, and consequently it is new to commerce The Rose-apple (Jambosa vulgaris) was introduced from the East Indies, but it is so completely naturalised, by self-sown seeds, that it has become one of our commonest trees. Vast quantities of the fruit may be gathered in all parts of the asland.

- Arrowroot, Meals, \&c.

The samples of arrowroot, plantain, and cassara meals, were equal in point of quality to any similar exhbbits from other countries. 'Enquiries were made as to the extent of production and cost of these articles, and there is no doubt that a ready market would be found for them in the United States Enquiries were also made for considerable quantities of plantan meal. with the vew of testing experimentally its reputed efficacy for inralids. Bermuda produces
the best arrowroot in commerce Our Jamaica sample compared rather Jammea. favourably with the samples shown by that sland Brazil, Venezuela, \&c, Brazu, Venewere the other countries which exhibited assortments of meals and starches zuelasumular to those sent by Jamaica In conjunction with the above products were exhibited the various peas or pulses, Indan corn, Guinea corn, rice, \&re , which were useful as serving to indicate the resources at command. Perbaps the most complete collection of rices, pulses, \&e , from any tropical country was that from India, and exbubited by the India Museum This collection strikingly illustrated the innumerable vaneties of mee, and the influence of clumate on its cultivation in the different parts of India. Thus, there were upwards of 150 eamples of nice and paddy shown. Other grans and pulses were also shown by Indıa in great variety.

Corn -The most important article of food for asland consumption an the above series is corn, which as a staple article of food produced in the asland is next in point of value to ground pronsions Corn is a favourite object of Genexal cultscultivation among the peasantry, by whom it is everywhere produced, although pation by only in emall plots It is the only cereal commonly cultivated in the island, but it is cultivated in the rudest possible manner The total number of acres of this plant cultivated in all parts of the usland, according to the latest returns, is 1,351 The yeld from thes may be safely computed at 20 bushels per acre, which at $5 s$ per bushel is not quite 7,0001 To our great discredst the value of corn and cornmeal mported from the United States, during each of the past few years, has ranged from 24,000l. to 34,0001 . With an mportant cereal already so generally cultivated and thoroughly understood by the peasantry, and of which two crops a year are obtanable, instead of the single crop in Northern climes, it is greatly to be desired that the island should produce sufficient for its own wants New and valuable plants are constantly imported into the island by the Botanical Gardens, with the object of enriching and expanding the agricultural resources of the country. With a new and unknown product there are difficulties and disappomintments to be overcome But corn is already an established product, the augmented cultivation of which can be carried on whth the utmost facility Hence the encouragement of its extended cultrivation clams especial attention

The recent construction of the irngation works on the St Catherine plann, places as the disposal of private enterprise, the command of water for agricultural purposes, the influence of which, in a tropical climate, it would be difficult to over-rate

An increased duty upon the imported articie, or an actual premium offered for cultivation, would in all probability, have the effect of stumulating cultivators to the production of this valuable grain.

In the extension of this cultivation in Jamaica, it is greatly to be desired that the American system of cultivation be initated, thus substituting cultural skull for the primitive and unsatisfactory mode of culture pursued here.

Fixed and Essential Oils.

As already mentioned, the Fuxed and Essential Oils together formed the Largest exhabits largest exhibit of the kind from any British colony at the Exhibition. The from any Brish samples of the ouls were prepared specially for display Out of the collection colony of fourteen specimens of fixed oils, only two are ordinarily made in the asland; and the essential oils, of which there are none specimens exhibited, are not utilised there

On reference beng made to my catalogue of the exhibits, it will be seen that several other materials for making oul could be easily turned to commercial account Amongst these may be especially mentioned the pindar (Arachis hypogea) Of essential ouls there are also several that could be turned to good account for perfumery purposes-these form consuderable articles of commerce in less favoured countries.

Lime Juice, \&c

Among the minor articles of export that are capable of considerable develop- Value of exports. ment may be mentioned Concentrated Lime and Seville Orange Juices.

The value of the Lime Juice exported in 1874 was upwards of 5,0001 .

Limes of equal value with
lemons for juce

Limes.-It is somewhat singular that to many Americans our Limes in the Agricultural Hall were a novelty. This is, no doubt, to be ascribed to the fact that Lemons are in general use in the United States, in heu of Limes. For the purposes to which Lemons are appled, Limes are equally valuable, and as the latter are produced like Oranges, without cultivation, in nearly all varieties of solls and chmates in the island, they could be sent to America at a cheap rate. The most important use of Limes, however, is the juice, which is in extensive demand, Concentrated Lime juce is worth in America £ 30 per puncheon of 100 gallons 150 barrels of Lumes is estimated to make one puncheon of the juice, and Lames are only worth $1 s$ per barrel in certain parts of the asland Sour Orange concentrated juice, also (the fruts abound in the 1sland), fetches $\mathcal{E}^{\circ} 18$ per puncheon The emnent firm of Powers \& Werghtman, in Philadelphas, mport annually from Siculy from 300 to 500 puncheons of concentrated Lime juice These gentlemen thave made special efforts to encourage the production of Limes in Jamaca on an extensive scale
The worn-out and abandoned Coffee huls in the Port-Royal mountains, in the neigbourhood of Kingston, are eminently adapted for the growth of this plant. The trees begin to bear as early as coffee, and when they are established the only cultivation required would be to keep down the high growng bush The manufacture of the juice is of the most simple character.

Artificial Flowers, D’Oyleys, \&c.

The remarkably beautiful baskets of flowers, \&e made of the cuticle of the leaf of the dagger plant (Yucca aloofolia) and lace bark, exhbibted by Mrs Nash, were objects of especial admiration, The exquistely beautiful D'Oyleys and fans made from the lace-bark and indigenous filmy ferns, also elcited great admrration. The latter were exhibited by Mrs. Brooks Magnuficent specimens of the lace bark, pecular to Jamaica, were exhubited by Mr Robert Nunes. At the Exhibition, all the foregong articles were unique, and, owing to therr delicate texture and novelty, elicited general attention.

Plants.

The collection, consisting of upwards of 100 species of our most useful plants, were exhibited in the Horticultural Hall, and were by far the most interesting collection of Tropical Economic Plants exhibited. Some of the species were new to the United States. This was the first collection of Jamaica plants that has been contributed to an exhibitiof out of the island The collection has been presented to the Faurnount Park Commissioners at Phuladelphia, and the plants remain in the same bulding in which they were exhibited.

Wax.

Opportunity for extension.

Collection of plants presented to Fairmount Park Commisssoners

Last of Awards to Exhibitors in the Jamaica Section: Phaladelphia International Exhibition, 1876
P signffes Award for Exhbbt.
(The Government of Jamaica received an award for Collective Exhibit)

These Olls were prepared by Mr J J Bowrey, the Government Analytical Chemist
Note - The A warde marked (a) were included in a list poven to me, at the request of the British Executive Commesioner, by General PA Walker, Chief of the Bureau of A warde, the day before the ceremony of the announcement of the Awards-minis request was granted in consequence of my departure from Phuladelphus on that day The additional Awards marked (b) were includedin a lust forwarded to me unofficially dince my return from Phuladelphia.

A descriptive Catalogue of the Collection sent from the Island of Jamatca to the Centenniai Exhibition of 1876 at Phladelpita. Compiled by Robert Thomson.

Exhbuted by the Government.

Stgars

1. Albion Estate (Vacuum-pan Sugar) -Obtanned from W S Ruchards, Esq.

2 Constant Spring Kistate - Obtamed from W S Richards, Esq
3 Mona Estate - Obtaned from Lours Verley, Esq
4 Monymusk Estate - Obtaned from Ernest Ellıott, Esq
5 Bog Estate -Obtamed from Ernest Elliott, Esq
6 Pusey Hall Estate - Obtanned from Ernest Ellott, Esq
7. Whitney Estate - Obtanaed from Ernest Elhott, Esq

8 Hillside Estate -Obtanned from James Harvey, Esq
9. Taylor's Caymanas Estate -Obtauned from Joseph Reid, Esq.

Rems.
10 Vale Royal Estate - Obtamed from Dand Galloway, Esq Brand, VR Crop, 1873
11. Same Estate -Crop, 1874

12 Do. -Do 1875
13 Do. —Do 1876
14 Frome Estate. - Obtained from Willam Vickers, Esq Brand, ScF15 years old
15 Five years old -From the same.
16 Crop, 1876 -From the same
17. Kew Estate-Obtained from Wilham Vickers, Esq Brand, Q within a damond
18 Fontabelle Estate -Obtaned from Willam Vickers, Esq Brand, S F with a heart between.
19 Bellsle Estate -Obtamed from Willam Vickers, Esq Brand, S e
20 Bluecastle Estate - Obtained from Wilham Vickers, Esq Brand, I W 0
21 Cornwall Estate -Obtaned from Wilham Vickers, Esq Brand, Lc
22 Mount Eagle Estate -Obtained from Wulliam Vickers, Esq Brand, ME.
23. Fort Wilham Estate -Obtamed from Wulham Vickers, Esq Brand, FW.

24 Georgıa Estate -Obtaned from William Vickers, Esq Brand, G P with a diamond between
25 Appleton Estate - Obtaned from M. C. Morgan, Esq
26 Hordley Estate -Obtained from James Harrison, Esq Brand, H Crop, 1865. ML
27. Crop, 1876.-From the same.

28 Amity Hall -Obtaned from James Harrison, Esq. Brand, A Crop, 1876. TC
29 Wheelerfield -Obtanned from Jas Harrison, Esq Brand, $\underset{\mathbf{W}}{ }$ Crop, 1876
30 Belvidere Estate -Obtained from Plato Elphick, Esq Brand, I C F. Crop, 1875.

31 Hopewell Estate - Obtaned from W. S Richards, Esq. Crop, 1875.
32 Chop, 1876 -From the same
33 Bog Estate -Obtaned from Eruest Elloott, Esq. Brand, E N P.
34 Bog Estate -Obtanned from Ernest Elhott, Esq Brand, M Crop, 1876
35 Yarmouth Estate -Obtained from Ernest Elliott, Esq Brand, G.
36 Monymusk Estate -Obtaned from Ernest Ellott, Esq Brand, M with a duamond between.

RS
37 Pusey Hall.-Obtaned from Ernest Elhott, Esq Brand, P H F
38 Hona Estate-Obtaned from Lous Verley, Esq. Brand, M
39 Holland Estate - Brand, H Crop, 1868
40 Blenherm Estate-Obtamed from C W. Steer, Esq
41 Mexico Estate.-Obtaned from F Hall, Esq
42 Hullside Estate - Obtaned from Jas Harvey, Esq
43 Taylor's Caymanas Estate -Obtamed from Joseph Reld, Esq. Crop, 1872
44 Crop, 1873.
45 Ditto, 1874.
46 Ditto, 1875
47. Obtamed from Messrs. J. Wray and Nephew, Merchants -Rum-1st quality.

3)	2nd
*	3rd
33	4th
	5 th

48 Obtanned from George J. Peynado, Esq, "Merchant-3 samples
49 Obtaned from Messrs. Alberga and Mitchell, Merchants -Samples.

Cofree.

50. Chifton Mount No. 1 -Obtamed from John McCean, Esq

51 Clifton Mount Pea Berry,-Obtained from John McLean, Esq
52 Radnor -Obtaned from Francis Chalmer, Esq Brand, R AM
53 Radnor Pea Berry -Obtaned from Francis Chalmer, Esq
54 Sherwood Forest No. 1 -Obtaned from John Davidson, Esq Brand, SF

55 Pleasant Hill No 1-Obtaned from George Menderson, Esq
56 Clydesdale No 1 -Obtaned from Mrs Maclaverty. Brand,
Windsor No 1 -Obtamed from Mrs Lascelles
58 Belle-Vue No 1 -Obtarued from Dr Stephens
59 Belle-Vue Peaberry - Obtained from Dr Stephens:
60 Newfield -Obtained from Jarnes Harrison, Esq
61 Brockenhurst -Obtained from Ernest Ellott, Esq Brand, B
IM
Sample of Lowland Coffee as rudely prepared and sold by the peasantry

Mfals, Ariownoot, \&c

Plantann Mcal (Musa Paradısiaca) -This is prepared by slicung the frunt and drying it in the sun, after which it is ground It is very palatable and digestible, and sutable for invalids or children The composition and nutritive value of this meal closely approach to rice One acre, on an average, would yield upwards of oue ton of meal At present it is only used to a small extent, but it could be prodaced at a cheap rate The fruit atself, when cooked, furmshes an umportant artrele of tood in the usland
Banana Meal (Musa sapientum) --Simular to the precedng
65 Breadfrut Meal (Artocarpus incisa) - Two fruits of average size give one quart of meal An acre would yield about one ton. lalatable, but seldom used, The tree is abundant, and the frut forms a large element of food assava Meal (Manihot utilssima) -Cassava cakes made of this meal are commonly sold un Kingston, and are considered a great delicacy They are very wholesome and nutritious Highly cultivated land yields twenty tons of the fresh tuberous roots per acre, and this, m one year, would be equal to five tons of meal Probably this meal coald be produced on a large scale at the rate of one penny per pound The plant grows best in dry localities
67. Negro Xam Flour (Dioscorea alata) - Very good and nututious flour, bat the proportion obtanable is not large Rarely nsed The yam is a large tuberous root, welghing from 50 lbs downwards, and it constututes the chief food of the negroes, there being nearly 50,000 acres of at under cultuvation in the island
Sweet Potato Flour (Batatus edulis).-Cultivated for the tuberous roots to a considerable extent in some districts
69 Arrowroot (Maranta arundinacea)
70 Cassava Starch - Commonly ubed in the island, and sold at $6 d$ per quart.
71 Negro Yam Starch.
72 White Yam Starch -A variety of the precedng
73 Cocoa Starch (Colocasia esculenta) - Cultivated for the tuberous roots, which are, however, inferior to yams. Yields a large proportion of starch.
74 Sweet Potato Starch
75 Maze (Zea Mays) -This well-known cereal is cultivated largely, but not quite to the extent of supplying our own wants Gunea Corn (Sorghum vulgare) -Cultavated to a small extent Requires less ramfall than maze
77 Rice (Oryza Sativa) -Only a few small patches cultivated, but might be largely cultivated with advantage This is the urrigation variety
78 Conga Pea (Cajanus indicus)-This perennal pea is commonly cultivated, and is valuable owing to its thriving in dry arid situations
79 French Bean, "Red Pea," (Phaseolus vulgaris) -Our most commonly cultrvated legume
Varnety of ditto
80 No-Eye Pea (Cajanus flarus)
81 Cucholds Increase (Dohchos unguculatus)
82 Sugar Bean (Phaseolus saccharatus)
83 Black Eye Pea (Dolichos spherospermum)
84 Bonvis Bean (Lablab vulgaris).
85 Jerusalem Pea (Phaseolus species).

Fodder

86 Guanga Pods (Callandra saman)
87 Candle-tree Pods (Cassia emargıata).
88 Bastard Cedar Fruts (Guazuma tomentosa)

Oins

It may be mentioned that all the essential and almost all the fixed oils contaned in the following list have been prepared and analysed at the request of the Superintendent of the Botanical Gardens by J. J Bowrey, Esq, the Government Analytucal Chemist -
89 Cocoa-nut (Cocos nucifera) -Obtained by pressure. This system of preparation is a desideratum in the island.
90 Cocoa-nut-Obtanned by boing This process of preparation is general throughout the island This edible onl is extensively used by the peasantry It is also used for burning. Producible in this island to a large extent
91 Cashew-nut (Anacardium occidentule) -This on is sweet tasted, and is said to be superior as an edible oul to the olive or almond The kernels have been introduced in Enghsh commerce under the name of cassia seeds The roasted nuts are an excellent dessert frout
92 Cashew-nut - Onl from pericarp of the nut is also obtaned.
93 Oll of Ben (Moringa pterygosperma) -Used by watchmakers and perfumers It does not turn rancid Grows in waste places, produces seed in one jear, and requines little cultivation The great perfume manufactuier, Eugene Rimmel, says of thas oll, "It produces an extremely tine, clear, sweet, and flud onl, qualities very valuable in perfumery" The winged seeds sielded 65.6 per cent of kernels, and these kernels yielded 30 per cent of oul by expression, or 197 of oul from the whole seed
94. Gngelly or Wanglo (Sesamun indicum) - This tasteless onl $1 s$ quite equal to olve cil, with which it is sad to be commonly mixed in France It keeps for years whthout becoming rancid The plant is an annual and grows :n dry places The seeds have medicinal propertues assigned them In India it is used more extensively by the natives than cocoa-nut on, and both seeds and ol form an artucle of extensive export It is also used for perfumery In Egypt and China it is langely produced There are only a few acres of the plant in cultivation in Jamaica - The seeds expressed, as bought in the market without any preliminary cleansing, yielded 40 per cent of oil
95. Ground-nut or Piudar (Arachis hypogoea) - This is a well-known and raluable commercial oll, which, however, is not made in Jamaica, there being oniy a few acres in cultivation "This oil is used as a substitute for that of olves, to which it is equal in quality" It does not soon become rancid Lake the preceding, this plant, which is an annual, might be largely cultivated in Jamaica with great advantage Ground-nut gave 4375 per cent of kernels, and the kernels gave 40 per cent of oul by expression, or 175 per cent of the whole nut
96. Santa Mraria Nuts (Calophyllum calaba) - Onl fitted for burning in lamps Santa Maria nuts yielded 655 per cent of kernels, which yelded more than 50 per cent of oul by expression.
(1.) The dark sample expressed from the kernels as removed from the shells
(2) The lighier expressed from the residual cakes of No 1, after grinding and drying them tor two days in the ar
97. Sand box (Hura crepitans) -Twenty drops of this oll used as a purgative is equal to a tablespoonful of castor ol, and less nauseous Sand box seeds ylelded on expression 255 per cent of oul on the whole seed, the bulk of the shells having been removed before piessure was apphed
98 Antidote Cacoon (Feuillea cordifoha) - Semu-sohd fatty onl Burns well in lamps and sometimes used medicinally Antidote cacoon yielded 55 per cent of kernels, which yielded at a temperature of 84° Fahr 18 per cent of oll by expression From the residue 28 per cent. of a sold fat was obtuned by means of bl-sulphide of carbon, or a total of 46 per cent of fatty matter from the liernels, or 25 per cent on the whole seed.
99. Candleberry-tree or Cobnut (Aleurites triloba) -This is known here as country walnut. In Ceylon it is called Kekuna It is a palatable oil and burns in lamps Sad to be a good substitute for linveed oll The cobnut yielded 33 per cent. of kernels, giving 57 per cent of oll by expression, or 19 per cent on the whole nut
100. Candleberry Tree-Obtaned by boiling
101. Castor Onl (Ricinus commums) -Obtained by pressure without heat Could be largely produced with little cultivation
102. Castor onl -Obtaned by boiling. This is the kind used generally in the sland.

Eserntial Oins.
Pimento Berry Oil (Eugena pimenta) -This oil has been recommended for perfumery purposes It is used for perfuming soap
104 Pumento Leaf -The leaves with twigs yielded rsther more than 075 per cent of oll.
105 Lemon Grass (Andropogon Schonanthus).-Used for perfumery, and medemally
106 Sevile Orange (Citrus Bigaradia) -Distrilled from the rind Tree plentiful in Jamaca 580 oranges werghing 180 lbs yelded 12 ozs of oll
107. Seville Orange Leaves.

108 Lemon (Citras Limonum) -Distilled from the rind. Tree common
109 Sweet Orange (Citrus aurantium) -Distilled from the rind. Tree plentiful
110 Jumper Wood (Juniperas barbadensis).-Distilled from the wood 5 per cent of oll
111 Eucalyptus Globulus -Distilled from the leaves 075 per cent of oil.
Substancks used for Prerfumery.
112 Pimento Berries
113 Pumento Leaves
114 Eucalyptus globulus Leaves
115 Jumper Wood
116 Khus-Khus Rhizome (Λ ndropogon mumeatus)

Oil Cakes

117 Candleberry or Cobnut -Ths cake is of great value in Ceylon for feeding stock
118. Ben or Moringa

119 Earth Nut
120 Sandbox
121 Santa Marıa
122 Cashew
123 Gingelly

> Substances tied for making Orm

124 Cashew Nut Seeds
125 Ben and Moringa Seeds
126 Gungelly datto
12\%. Ground Nut ditto
128 Sandbox ditto
129 Antrdote Cacoon ditto
130 Cob-nuts
131 Castor OLI

Tmbers and Fancy Woods for Genzral Purposes.

132 Mahogany (Swietena Mahagoni) - This, the most important of all furniture woods, was formerly largely exported, but from its scarcity, save in maccessible situations, it is now exported to a comparatively less extent Used in the island for making furmare, \&cc. 1,0001 has frequently been paud for a log of this wood
Cedar (Cedrela odorata) -Large tree, trunk 5 ft in dameter One of the most useful and durable woods in the island Used for housebuilding, for planks, beams, posts, bridges -Wood light and easily worked Lasts from 30 to 40 years in the ground Good logs make beautiful varnegated furmiture
134 Naseberry Bullet Tree (Sapota Sideroxylon)-Large tumber; trunk from 3 to 4 ft in dameter Heavy, very strong, tough, and durable One of the best woods of the ssland Used for housebuilding, planks, beams, posts, and for all kinds of millwork, and water-wheels, for all of which purposes it is of the greatest value Not being affected by damp, it would be invaluable for bridges and pules Millwork has been found sound after 100 years use
135 Fiddle Wood (Cutharexylon Sp) -Large timber, tough, and durable Used for millwork and other purposes to which a good wood is apphed. Wood beautifully grained, and well adapted for fancy work
186 Braziletto Wood (Peltophorum linnoen) - Small tree, with a trunk from 12 to 14 inches in diameter Valuable for ornamental cabinet, work. Employed in turning, aud un makug violin bows.
137. Dogwood (Piscida erythrina) -Small tree, attanung a height of about 30 ft , trunk 18 inches in diameter, very strong and tongh, and not affected by damp
138 Cogwood (Ceanothus chloroxylon) - Height about 60 ft , trunk $2 \frac{1}{3} \mathrm{ft}$ in diameter Extremely hard and durable. Unequalled for cogs of wheels and millwork, for which purpose it is more generally used in Jamaca than any other wood Cogs, \&ce are found quite sound after 100 years use
139 Cashaw (Presopis juhflora).-Herght about 50 ft , dameter of trunk about 2 ft . One of the few gregarious trees of the island Grows only in dry regrons in the vicinty of the sea The trunk is contorted, and seldom straght throughout For out-door posts and small piles it is anvaluable. It is the most valuable and extensively used firewood in the island
140. Mahoe (Paritium elatum).-Herght from 60 to 80 ft , diameter of trunk from 2 to 3 feet Used for making furnture, for wheh purpose, next to mahogany, it is more generally employed than any other wood here. Also used for flooring, doors, shingles, and for house-bulding purposes The colour of the wood is dark green or blue, and beautufully variegated
141. Breadnut (Brosimum alicastrum) -Lofty tree, dameter of trunk from 3 to 4 ft . Used for cabinet work, floorng, and celling houses, and other building purposes The leaves with twigs and seeds are utilized for fodder of a highly nutritious character for horses and cattle. In seasons of excessive drought, when grass and other fodder substances fall, it is of great importance, and therefore deserves extensive planting throughout the tropics.
142 Monntan Guava (Psidium monotanum) -Lofty tree, trunk 3 ft in diameter, very hard, close graned, and durable Used for beams, posts, and planks, and in the construction of mills It would be mivaluable for briges and pules.
143 Jamaica Ebony (Brya ebenus) - Small tree, very hard and heary, and almost mdestructable Used for mnlaying and fancy work, rulers, \&c A cross section of a bloch of wood is also shown The true ebony of the Elast is from a dufferent plant The average export of this wood is about 300 tons per annum. It grows in dry localites in the vicimity of the sea
144. Lagnum Vitæ (Guaacum officuale) - Small tree, hard and heavy Used for blocks, pulleys, rulers, \&c. The fibres of this wood are cross-graned it is of great value where weight is no objection, It is indestructible Small pules have been found quite sound after a lapse of 150 years Grows abundantly m dry savannahs About 100 tons of this wood are exported annually
145. Santa Maria (Calophyllum calaba) -Lofty tree, remarhably straight, wood soft Used for staves for puncheons, but 1 mparts a pecular flavour to rum. Used also for shmgles and boards
146. Oak (Catalpa longasuqua) -Lofty tree, trunk 3 to 4 ft in dameter Used for posts, cart building, \&e , very durable, posts having been known to last 40 years in the ground This is one of the most valuable tumber trees in the island, a fact which is not generally known. It grows rapidly, and thrives in and situations It would no doubt be of great value for ples, ranlway sleepers, and for most constructive purposes.
147. Calabash (Crescentia cujete) - Height 30 ft ., trunk about $1 \frac{1}{3} \mathrm{ft}$ m duameter. Wood very durable and tough. Used for handles of tools, wooden legs, \&c
148. Wild Tamarind (Pithecolobium filhenfolium) -Lofty tree Used for housebuldung, very generally for floorng, \&c It takes a fine polsh
149 Yellow Sanders (Bucida capitat) -Height from 50 to 60 ft , trunk 2 ft . m drameter, Wond close-grained and durable. Used for furniture and fancy work. This is the satinwood of the West Indies.
150. Jumper (Juniperus barbadensis) -Height from 50 to 60 ft , diameter of trunk 2 to 3 ft . Used for house-buldmg, posts, beams, rafters, shungles, and fancy work One of our most durable woods; grows only in the mountans at from 2,000 to $5,000 \mathrm{ft}$ above the sea
151. Yacea (Podocarpus coracea) - Height 50 ft ., trunk 2 ft in dameter. Used for fancy work and for usside work Does not stand damp One of the most beautiful woods of the asland Grows on the mountans at from 3,000 to $6,000 \mathrm{ft}$ above the sea
152 Spansh Elm (Corda gerascanthodes) - Heaght 40 ft , dameter of trunk 2 ft Hard and cross-graned, rery durable Used in fincy work, turning, \&c.
153 Pear (Persea gratussima) Height from 60 to $\$ 0 \mathrm{ft}$, dameter of trunk 3 ft . and upwards Used for maside work in house-bulding. Does not stand damp. Takes a fine polhsh.

154 Prickly Yellow (Zanthoxylum Clara-Herculss) -Height from 40 to 60 ft , trank 2 ft in diameter Used for house-bunding
155 Pumento (Pumenta vulgarss) Heght 30 ft , daameter of trunk 1 ft . Hard and close-graned. Used for fancy work
156 Indan Teak (Tectona grandis) -Cultivated in the Botanc Gardens, where a small plantation of it has been recently formed
157 Breadfruit (Artocarpus meisa) -Wood suited for fancy work, but soft
158 Botany Bay Oak (Casuarnaa stricta) - Cultivated for ornament Wood very hard, heary, and durable An extract of the bark forms a valuable dye.
159 Guanga (Callandra Saman) - Hegght 60 ft , duameter of trunk from 4 to 5 ft This wood has been favourably recommended for gun carrnages.
160 Cactus (Cerens Swartzı) - Small stem Used for fancy work Pecular as a wood from the cactus Soft, and takes a fine pollsh
161 Black Mangrove (Avicenna nitida) -Small tree Wood durable Used for fancy work, and for knees of boats
162 Candlewood (Cassia emarginata) -Small tree Used for fancy work
163 Guava (Psidrum pyriferum) -This has been used for "bold engraving, and blocks for large letters"
164. Coffee (Coffea Arabica) - Shrubby tree Has been tried as a substitute for box, for engraving Well adapted for ornamental carving and mlaying
165 Cocoa Nut Palm (Cocos nucifera) Thas is the porcupine wood of commerce Section of stem exhibited
166 Date Palm (Phaenx dactylffera) -Used for fancy work. Transverse section of stem exhibited
167 Fustic (Maclura tinctoma) - Large tree Used na cabinet work
168 Acacra Catecha -In Indra "this wood is considered more durable than teak, " and is used for house posts, spear and sword handles, bows, \&ce \&e"
169 Corkwood (Anona palustris)-Small tree Light wood Used for making wooden legs
170. Tumber Sweetwond (Nectandra sangumea)-Large tree Well adapted for inside work Used for boards, rafters, posts, \&ce. Free-gramed and easily worked
171 Bastard Cedar (Guazuma tomentosa) -Tree $30 \mathrm{ft} h \mathrm{gh}$, trunk $1 \frac{1}{\frac{1}{9}} \mathrm{ft}$ in dıameter Wood light Used for staves In Ceylon it is extensively used for making furniture, and by coachbulders for panels
172 Prune (Prunus occidentale)..TLarge tree Used for mullwork, \&c
173. Rose Apple (Jambosa vulgans) - Noft and elastic wood Used for makng oxbows, \&c.
174. Bloodwood (Laplacea hæmatoxylon) -Hard and durable wood Very little used.
175. Ironwood, White (Mouriria sp)-Hard and durable wood Not much used
176. Blue Gum (Eucalyptus globulus) -Grown at $5,000 \mathrm{ft}$ above the sea. From seed it has attaned a height of 50 ft in five years, it hanng been mported in 1870 This is the well-known Blue Gurn tree of Tasmania Recommended for its antiseptic properties, and considered one of the best of timber trees
177 Divi-divn (Cæsalpina cornaria) -Small spreadng tree This wood is harder than Jamaica ebony Very durable, and adapted to many porposes to which a good hard wood is applicable
178 Candle Wood, Mountan (Amyris sp):
179 Rose Wood (Gomphis ?) -Hard and heary Not much used.
180 Soap Wood (Clethra tumfolia) -Used for posts, rafters, \&ce.
181 Grey Sanders (?)
182 Bamboo (Bambusa vulgaris) - This gigantic grass grows from 50 to 60 ft in one season It is naturalised in all parts of the island. Extensively used for makng fences, and as laths for building negro huts, and for numerous other purposes.

Suinglers

183. Juniper Shingles (Jumperis barbadensis) -Lasts from 50 to 60 years either in wet or dry climate
184 Cedar Shngles (Cedrela odorata) -Lasts exther in wet or dry clumate from 20 to 30 years

Thmbers used in Carruger and Cart buxlding

185. Lance Wood (Oxandra vrgata) -The number of lance wood spars exported in 1874 was 25,393

186 Dog Wood (Piscidia erythrina).-Used for felloes and naves, for which it is sard to be more durable than hickory
187. Calabash (Crescentia cujete) -Ufed for felloes, for which it is well adapted It is tough, elastic, and very durable
188 Brazletto (Peltophoreum linnex) -Used for spokes. Strong and very durable

Timbers used or faluable for Railway Sleepers

189 Cashaw (Prosopis julffora) - On the Jamaica Railway this is almost exclusively used for sleepers, and it is found to last from 30 to 40 years These could be profitably produced at $3 s$ each.
190 Lignum-vite (Guaracum officinale) -This is extensively used for sleepers on the Panama Ralway For this purpose it would probably last a century, and it is therefore, perhaps, the most enduring of all timbers Five hundred trees could be grown to the acre, each of which at the end of 15 years would probably be worth 8s The cost of Australian sleepers in India is 8s each

Thmier for Boatbuthoing

191. Cashaw (Prosopis juliflora) -For timber of ressels this is very durable The timbers of a vessel of 150 tons, built in this island, on bemg broken up after 21 years' service, were found perfectly sound.

Fibres

192 Chuna Grass (Beehmeria nivea) -The valuable "Rhea " fibre grows with great luxuriance in humd parts of the island at the Botanical Garden here a plot of it was expermented npon a few years ago and it yielded five crops in the year, producing at the rate of nearly one ton of prepared fibre per acre The great desideratum here in order to ensure ite exterisive culture is a machne for the extraction of the fibre
193. Sisal Hemp (Agave Sisalana) -Cultuvated to a small extent. The fibre is said to be nearly as strong as "Manilla Hemp" Thas plant thrives on worn-out land, and could be easily cultivated to a large extent, but a machne is necessary for the extraction of the fibre One plant of average size yields 6 lbs of fibre, and 600 to the acre would give a crop of at least 3,000 lbs, producible every fire years A sample of this grown in the Botanical Garden was sent to England in 1870, and was valued at $60 l$ per ton, and considered superior to any Sisal hemp imported from Mexico
194 American Aloe (Agave Armericana) -Abundant on the dry hills Strong fibre, and well adapted for cordage
195. Pine Apple (Ananassa sativa) - A very strong and fine white fibre, which in the East is woven into the tonest fabrics The fibre endures long in water
196. Pingun (Bromelia pengun) -Abundant in and places, possessed of sumbar propertues to the pue apple fibre, and lukewse admurably adapted for cordage
197 Yercum (Calotropis gigantea) - Grows on the most arid and barren places in the island Considered one of the strongest and best fibres of India. Said to be well adapted for prime warp yarns Ressists moisture for a long trme
198. Bowstring Hemp (Sanseviera zeylamica) -In certan parts of the East the best bowstrings are made of this, hence the name The fibre is fine and tenacious In India it is estmated that $1 \frac{1}{8}$ ton of clear fibre could be reaped yearly from an acre. Grows an arid places
199. Plantain (Musa paradısiaca) -Vast numbers of the succulent stems of plantan and banana are cut down yearly after reaping the frumt, and alloned to rot on the ground, instead of being uthlised, as they well might be, as a valuable fibre
200. Banana (Musa saprentum) --Of equal value to the preceding
201. Screw Pine (Pandanus spiralis) -Fibre from the leaves. Used in some countries for makıng cordage sacks, \&ce
202. (Pandanus odoratissima) - Aerial roots -

203 Kittul (Caryota urens)-Cultvated in the Botameul Gardens This fibre is obtaned from the leaf-stalks of this palm It 18 very strong and durable
204. Cor (Cocos nucifera) -Obtromed from the husk of the cocoa-nut Notwithstanding that there are about a million of trees in the sland, only a very small quantity of coir ${ }^{28}$ prepared for use, the remaunder, which if uthlised
would be worth at least $30,000 l$ a year, 1 allowed to rot on the ground The cour is used to a small extent for stuffing mattresses, for which it is well adapted, and for making a few mats and brushes.

206 Antidote Cacoon (Fewillea cordufolua) - The twining stems of this climber are from sux to t welve anches in duameter, and hundreds of feet long. The whole stem xs composed of a coarse fibre The fibrous structure of the stem is anomalous in an exogenous plant The stem abounds with dyes of various colours
207 Vegetable Harr (Tillandsia nsneordes) -The epıphytal plant from which this is prepared is common in dry parts of the island, but it is never utilised
208. Ejoo or Gomuto Fibre (Arenga saceharifera) - Cultrvated in the Botanical Garden Sample obtaned from one plant This horse-harr like fibre is yelded spontaneously on the margins of the sheathe of this palm It is well known in Eastern commerce, and " $2 s$ celebrated both for its strength and for its impernshable nature even when exposed to wet"
209. Dagger Plant (Yucea aloifola) -Strong fibre

210 (Sida durnosum) -Common weed
211 (Sida periplocifola) -Common weed
212 (Stda sp).-Commou weed.
213 (Sida mollss) -Common weed.
214. (Malachra capitata) -Common weed

215 Sorrel (Hiblscus sabdariffa) -Cultivated Strong fibre
216 Ochra (Abelmoschus esculentus) Cultivated Strong fibre
217. Grass (?) -Common on dry hulls Sard to be equal to "esparto" for paper making
218 Cocoa-nut (Cocos nucifera) -Obtaned from the mudrib
219 (Syngonium auritium).

Basts.

Substitutes for the Lime Basts of Russia abound in Jamanca In Russia one million lime trees are cut down annually for Bast, which is manufactured momats, \&e From six to ten years are required to produce good Lime Bast Some of onr Bast trees grow with such celerity that they attam to a height of 20 feet in a single season
220 Mahoe (Paratium elatum) -Thus is the Cuba bast of commerce
221. Trumpet Tree (Cecropia peltata) -Used for making ropes This could be produced at a very cheap rate One plant would yield annually one pound of Bast, and 1,000 could be planted to the acre, thus yielding $1,000 \mathrm{lbs}$ with hardly any cultivation beyond the first planting
222 Bastard Cedar (Guazuma tomentosa) - Ropes made of this are very strong
223. Burn-nose Bark (Daphnopsis tinifolia) -Strong for ropes

224 Cotton Tree (Bombax ceiba) - Strong bast Rapid growth
225 Lace Bark (Lagetta hutearna) -The mner bark of this tree consists of curiously interlaced layers of fibres Cordage and hammochs are made of. it Much used for making D'Oyleys, and vanious descriptions of fancy work.
226 Baobab (A dansomas digtata).-The celebrated baobab of Afnca The bark of this tree furnishes one of the strongest of fibres, and this has given rise to the saying in Bengal, "As secure as an elephant bound with a baobab rope" The trunk of this tree is remarkable for its great duameter and short stature This bark has been strongly recommended for paper-making material, and it can be constantly barked without losing its vitality.
227 Wild Cotton (?) -Grows rapidly
228 Black Wild Cotton (?)-Grows rapidly.
229 White Wild Cotton (?)-Grows rapudy
230 Silver Thatch (Thrinax argentea) - Thie leaves of this fan palm are extremely stroug and tenacious, it abounds in several parts of the ssland Used for thatehing huts, and for makng brooms and ropes From Panama, Cuba, and Central America large quantities of the leares of what is supposed to be this species are exported for making hats It is also supposed that it is this leaf that is mavufactured into the so-called "straw hats" in Columbia, which are largely exported to the United States
231 Silk Cotton (Bombax cebba) -Obtained from the capsule of this tree, which is one of the largest in the colony The only use made of these silly hairs is for stuffing cushons, \&cc The wood is very soft, and is sometmes used for making canoen
232 Down 1 ree (Ochroma lagopus)-This, like the preceding, is a beautiful silk cotton Used for stuffing pullows, \&c
233. Yercum (Calotropis gigantea) - This sulky down could easnly be obtaned in considerable quantity 0 wning to the short fibre it is difficult to uthise these downy substances.
234. Cotton (Gossypium var) -This sample is obtaned from a plant growng spontaneously near Kingston

Medicinal Substances.

Cinchona Barks
235. Yellow Bark (C calsaya).
236. Red Bark (C sucerrubia).
237. Crown or Loxa Bark (Cinchona officinalis)

238 Jalap (Exogomum purga)
239. Bitter Wood or Quassia (Picrena excelsa) -Lofty tree The "bitter cups," which impart a bitter taste to the water left in them, are obtaned from this wood. About 100 tons of this are exported yearly
240 Sarsaparulla (Simulax sarsaparilla) -The name of "Jamaca Sarsaparilla" ongmated from the fact of this island having been the central mart from which the drug, imported to it from Columbia, \&c, was afterwards distributed over the world. There is still much uncertanty as to the precise species which yields the geaune "Jamaca Sarsaparila" What is grown here fetches a far price It is cultivated and exported to a small extent
241 Senna (Cassia obovata).
242. Gum Guaaacum (Guanacum officmale) - A decoction of this wood is in common use here for rheomatism and shin diseases The resin of commerce is obtained by meisions in the trunk, and by heating the wood alt also exudes spontaneously
243 Aloes (Aloe vulgaris) -This plant tlourshes in sandy and and places, and could be grown with little or no cultivation to a large extent
244. Sumaruba Bark (Simaruba amara).-Bark of root used as a tome in duarrhcea and dysentery, \&c Small quantities are occasionally exported
245. Canella Bark (Canella alba) -Used as a spice by the negroes Aromatic stmulant and tome
246. Bastard Cabbage Bark (Andıra mermis) -A powerful anthelmontic and narcotic Used in the form of a porrder, decoction, or extract An overdose produces "voming, delirium, and fever" Lame juice is said to be an antedote for an overdose
247. Cassia Pods (Casssa fistula) -Cultivated and frequently sold in the shops. A mild laxative
248 Adrue (Cyperus arthculatus) - A decoction of the rhzzome is frequently used by the negroes as an ahti-emetic It has been used with advantage in cases of yellow fever to stop the black vomit Its properties would appear to deserve investigation
249. Mexican Thustle (Argemone Mexicana) -" The seeds possess acrid, narcotic, and purgative propertues " They also contan a medicinal orl.
250. Cow-itch (Mucuna pruriens) - The well-known remedy for zatestnal worms.
251. Bitter Bush (Eupatorium villosum) -A decoction or an extract of the leaves and twigs is used here in cases of fever, and its medicmal propertes have been favourably recommended
252. Castor Oll-See ouls.
253. Frut of Baobab (Adansonia dygitata) -This nut possesses medical propertues that are valued by the Africans. A decoction of the nut is sad to be used for dysentery ${ }^{-}$
254. Kola Nut (Cola acumnata) - This is perhaps the most prized of all the products of tropecal West Africa, where it is largely used as an artucle of medrene, especiully in darrhcea and affections of the liver 10,000 donkey loads of the seeds are conveyed to the interior annually Negroes in Jamaca commonly carry seeds with them when travelling in order to allay hunger and to counteract the effects of bad water or derangement of the hiver The fresh nut contans a larger per-centage of theme than either tea or coffee, but when dried this principle is less abundant.
255. Dogwood Bark (Piscida erythrina) -Used to intoxicate fish. A tuncture of the bark of the root is a strong narcotuc and daphoretue
256. Baobab Bark (Adansoma digitata) - This is stated to have been used with great success in masmatic fevers and also in mitermittent fevers. "It produces increased appette and perspiration"
257. Pomegranate Bark (Fumca granatum) - A valuable anthelmuntic U-ed as a decoction, or an powder It is the root bark that is used in commerce

Spices or Condimpnts

258. Pimento, Allspice, or Jamatca Pepper (Eugema Pimenta) -Jamarca enjoys the monopoly of this product, as nearly all the artucle in commerce is furnished by Jamaica It is extensively cultuvated, the quanuty exported averaging $50,000 \mathrm{cwts}$ The pimento tree furnishes walking stacks and umbrella handles that are in great request
259. Ginger (Zingiber officinale) -Jamanca ginger is the finest in the world, and commands by far the highest prices The quantity exported annually averages from 5,000 to $10,000 \mathrm{cwts}$ Great care is taken with the rhzomes after they are dug up, they being cleaned, scraped, and dried in the sun
260. Nutmegs (Myristica mosehata) -This plant is only cultuvated to a small extent, but there 16 a strong desire to extend its cultivation, ats hundreds are being planted yearly \mathbf{A} few are exported
261. Vanulla (Vanulla plamfola).-Cultivated at the Botanical Gardens

262 Betel Nut (Areca Catechu) Cultivated as an ornamental tree Highly astrin-gent and aromatic. Extensively used in the East for its stmalatung effect upon the nervous system
263. Chilles dred (Capsicum annum) -Grows with little or na care
264. Cayenne Pepper -Made from the preceding

Tea and Cocoa.

265 Assam varnety of Tea (Thea Assamuca) -Grown at the Government cunchona plantations
266. Cocoa (Theobroma Cacao) -Formerly largely cultvated in the sland, but now only to a small extent The quantity exported averages 600 cwts
267. Chocolate -From cocoa grown in the ssland and manufactured in Kingston.

268 Coffee Leaf Tea -Possesses sumular properties to tea

Dyee.
269. Logwood (Hæmatosylon Campechanum) -Notwithstanding that this is an introduced plant, it has become so completely naturalised that it occupies a much larger area of land than any other plant in the colony The extent of land covered by this product is not less than 200 square miles From 60,000 to 100,000 tons are exported annually
270. Fustic (Maclura tinctoria) - The average export of this product 152,500 tons annually. Common in most parts of the island
271. Candle Wood (Cassia emargnata) -This appears to be a new dyewood 264 tons were exported in 1874. It is a small tree, and grows in dry savannahs.
272. Sappan Wood (Cessalpima Sappan) - This tree bas been ıntroduced upwards of 20 years, and its cultuvation is slowly spreading, but not in sufficient quantity for export
273 Logwood Extract - Obtained from the Jamaica Dyewood Extract Company. This extract, as prepared by A Lenormand, Esq, contams only the pure colouring matter of the wood It is stated that the refuse of the wood, afier it 15 operated upon, supplies sufficient fuel for the manufacture of the concrete Manufactures of this character deserve encouragement in the 1sland
274 Cacoon, antidote - Extract from wood
275 Prickly Yellow - Extract from seeds, \&c
276 Oldenlandaa Umbellata (${ }^{\circ}$) - Extract from root
277 Marden Plum (Comocladra integrifolaa) - Extract from twigs and leaves
278 Annatto (Bisa orellana) - Used by suk-dyers and varossh-makers, and for colouring butter and cheese In 1874, 22,338 lbs were exported
279 Turmeric (Curcuma longa) -The rhizome is made nato powder and used ${ }^{*}$ for dyeing It is also used in medicine, and in the composition of Curry Powder.

Tanning Subbtances

Divi-Divi (Casalpinia Coriana) -Produced by a small spreading tree Cultivated to a small extent. Thrives in dry localities. Nearly sufficient is grown for our island manufacture of leather Its cultuvation for export might be carried on with great advantage
281. Mangrove Leaves (Khzophora mangle) - The leaves and twigs are largely used in the Kingston tanneries for manufacturng leather All parts of these thees are rich in tanming The bark has been use d in medicine as an astringent.
282 Pumento Leaves (Eugenia Pımenta) - A patent has bcen recently taken out in Jamaica for the employ ment of pimento leaves as a tannug material

Catechu Extract (Acacia Catechu),--Prepared by bouling the heart-wood, which is cut into chaps and the liquid evaporated. It is highly astringent It is extensively exported from Inda for the use of tanners. The plant is naturalised in Jamaica, and is common in dry localities
284. Mangrove - Extract from twigs and leaves

285 Mangrove - Extract from wood.
286 Mangrove, White.-Extract from twigs and leaves

Toracco and Cigars.

287. Nine samples of Tobacco, crop, 1876, the qualuties corresponding to their respective numbers - Obtaned from Messrs. Thompson and Weitamann (See additional samples furmshed by Messrs. Soutar \& Co)

Candied Frutits and Preserves.

288. Rose Apple (Jambosa vulgaris).-Fruit excellent, with a strong odour of the rose. Probably thus is the first time that it has ever appeared as a candued or preserved fruit Uncultivated, but obtainable in great abundance Rose water is distilled from the frut.
289 Cashew (Anacardium occidentale)
290 Seville Orange.
291 Lemon
.292 Cocoa-nut.
293 Lame.
294 Blımbı (Averrhoa Bilımbı)
295 Carambola (Averrhoa Carambola).
289. Pine Apple

297 Pine Apple-sliced
298 Guava
299 Papaw (Carica papaya).
300 Shaddock Marmalade
302. Tamarinds (Tamarindus indica).
303 Green Tamarinds
304 Guger.
305 Bilberry (Vaccinum menodionale).
306 Guara Jelly.
307. Pune Apple Jam.
308. Mango Jam.
309. Fine Apple Syrup
310 Lemon Syrup.
311 Guava Syrup.
312 Ginger Syrup.
313 Mango Syrap.

Fruts preserved in Alcohol.

314 Arocado Pear (Persea gratissima)
315 Nutmeg (Mynstica moschata)
316 Akee (Blighna sapida).
317 Pomegranate (Punica granatum)
318 Kola Nut (Cola acumnata).
319 Chermoya (Anona Cherimolia).
320 Mammel Apple (Mammea Americana).

Pickles, \&e.

321	Mango
322	Mango Chutney
323	Goat Peppen
324	Derl do
325	Scoteh-bonnet do.
326	Cow do
327.	Sweet do

328 Lady Finger Pepper
329. Mixed Pickles
330. Mountaun Cabbage.

331 Wuld Cane and Peppers
332. Cho-cho.
333. Cayenne Pepper.

3צ7. Sweet do
Baskets, Hans, Hats, Ornamentay Work. \&c.
334 D'Oyleys and Fans, made of Lace Bark and Cabbage Palm.-Obtaned from Mrs Thos. Hendrick
335. Basket made of the cutncle of the leaves of the Dagger plant (Yucca alofoha)
336. Fans made of same
337. Cuticle from which the flowers and fans are made.

338 Baskets made of leaves of a large Fan Palm (Sabal umbraculfara)
339 Fans made of same
340 Hats made of same
341 Table mats made of same
342. Hat made of Yıpi-yapa (Carludovica msigurs) -An indigenous species of the plant from which the celebrated Panama hats are made.
343 Mat made of the leaf stalks of a Palm (Thriaas parritiora)
344 Mat made of the fibrous layers of the stem of Plamann (Musa Paradasaca) Most generally used by the negroes for beds.

```
345 Baskets made of Bamboo --Most commonly used.
346 Baskets made of Supple Jack -Commonly used, and durable
347 Baskets made of Shells
348. Razor Strops made of the flowering stem of Agave Americana
349 Curry Brushes -Made in the General Pemtentiary
350 Scrubbing Brushes ",
351 Shoe Brushes " "
352 Whitewash Brushes ", "
353 Door Mats "
354. Grugru (Acrocomua sclerocarpa) "Necklace, &c. made from the seeds of this
palm
355 Tortoise-shell Combs, Earrings, Brooch, Bracelet, &c
356 Egg Cups made of fancy woods.
357 Napkin Rings made of fancy woods
358 Necklace made of Job's Tears (Coux lacryma)
359 Necklace made of Soapberry (Sapundus saponaria).
```


Ropes

360	Sisal Hemp	369	Sida species.
361	Bamboo	370	Sida mollis
362	Corr.	371	Red Tamamnd
363	Mahce	372.	Burn-nose Bark.
364.	Silver Thatch	373	Silk Cotton
365	Bastard Cedar.	374	Cocoa-nut, Leaf Stalk.
366	Pinguin	375	Grass (?).
367	Lace Bark	376	Cacoon, antudote.
368	Wild Cotton.		

Waliding Sxicks

377 Black Ebony - (Brya ebenus)
378 Green Ebony
379. Grugru-nut
380. Cocos-nat.
381. Prmento
382 Logwood
383. Ironwood
384 Fiddewood
385 Jumper
386 Wuld Jack Frut.
387 Supple Jack (Paulina Jamaucensis)
388 Guava
389 Tımber Sweet-wood
390 Bogum (?).
391. Yellow Sanders.

392 Coffee
393 Orange.
394 Jame.
395 Yacca
396 Jack Fruit
397. Wild Gemp

398 Prickly Yellow
399 Pepper Elder
400 Joint-wood.
401 Black Wattle
402 White Toby (?).
403 Tree Fern Stem
404 Bamboo
405 Bamboo Whip -Thong and handle, made from one prece of bamboo

Rulers.

406. Lignum-vitze.
407. Satm Wood
408. Ebony

> Papez Stock and "Halr-store"
> (As roughly prepared by Wm Mcwatt, Esq)
409. Bamboo Paper Stock

410 Bamboo "Half-Stuff," from young stems
411. Do do from old stems.

412 Pingun do,
413 (Sida Sp) do
414 Lace Bark do.
415. Cocoa-nut, from leaf do

416 Grass (?) do
417. Sulk Cotton Tree, from wood do

Ligunurs
418 Orange Wine -From Messrs Alberga and Mitchell, merchants 419 Orange Bitters
420 Ginger Wine
421 Wine Bitters
422 Pimento Dram
423 Prune Dram
424 Essential Oil of Pepper
425 Orange Wine - From Messrs Wray and Nephew, merchanta
426 Ginger Wine
427 Pimento Dram
428 Stomachic Bitters
429 Creme de Noyeau

Horticulture

Economıc Plants
430 Cinchona calisaja
$\left.431 . " \quad \begin{array}{l}\text { sucerrubra } \\ 432\end{array}\right\}$ (Spectes rich in quinine, \&e)

433 Croton tighum (Croton oil plant)
434 Curcas purgans
435 Andıra nuermis (Bastard cabbage)
436. Exogonuum purga (Jalap)

437 Cypirus articulatus (Adrue)
433 Smilax sarsaparilla (Sarsaparilla)
439 Coculus indıcus
440 Cola acuminata (Kola nut)
441. Adansoma dujutata (Baobab)

442 Aloe vulgaris (Aloes)
443 Swietenia mahoganı (Mahogany)
444 Tectona grandis (Teak)
445 Cedrela odorata (Cedar wood).
446 Junperus barbadensis (Peacil cedar).
447 Podocarpus coriacea (Yacca)
448 Prunus occidentale (Prune tree)
449 Nectandra sangunea (Sweet wood)
450 Catalpa longisiliqua (Yoke wood).
451 Oxandra virgata (Lance wood)
452 Paritium clatum (Mahoe)
453 Thespesia populnea (Sea side mahoe).
454 Clethra tunifolla (Soap wood)
455 Calophyllum calaba (Santa Maraa).
456 Piscidia erythrina (Jamaica dogwood).
457 Eucalyptus globulus (Blue gum).
458 Sapota sideroxylon (Bullet tree)
459 Ceanothus chloroxylon (Cogwood).
460 Crescentia cujete (Calabash)
461 Hæmatoxylon campechianum (Logwood).
462 Cæsalpinia coriaria (Divi-divi)
463 Rhizophora mangle (Mangrove)
464 Coccoloba uvifera (Sea side grape).
465 Indıgofera tinctoria (Indigo)
466 Bixa orillana (Annatto).
467 Cocos nucifera (Cocoa-nut)
468 Blighia sapida (Akee)
469 Aitocarpus incisa (Bread fruit)
470 " integrifolia (Jack frut),
471. Mangıfera indica (Mango)

472 Ctrus aurantium (Orange)
473 Anamassa satıva (Pine-apple)
474 Musa sapıentum (Banana)
475 " paradıstaca (Plantan)
476 " ensete (Abyssman bauana)
47i Vaccinium meriodionale (Bilberry).
478 Carica papaya (Papaw)
479 Mammea americana (Mammee apple)
480 Psidum guara (Guava).

Fiutis

536	Pıne Apples -Ripley	547	Bread Frut
537	" Sugar Loaf	548	Sapodilla.
538	" Black Jamaica.	549	Mammel Apple
539	Bananas	550	Cocos-nut.
540	Oranges	551	Choncho
541	Shaddocks	552	Jam, Indıan.
542	Citrons	553	* Affoe
543	Forbidden Frut	554	\% Negro
544	Limes	555	Coco
545	Mangoes (four varieties)	556	Sweet Potato
546	Jack Frut	557	Plantain

Dried Fervis.-100 Species.
558 Crathea graclis C. serra. C. tenera. C. muricata. C. tussacu.
Alsophilla mitens A. armata. Hemiteha hornda.
Naratua alata.
Polypodum squamatum. P. pectunatum. P trichomanoides. P. crasstfolum P phyllitids
P. lonceam P. angustufohum P. elongata.
P. suspensum P. cultratum $\quad \mathbf{P}$ hastifohum.

Dicksonaa conufulia. D dissecta.
Aspidinm pubescens. A. rillosum. A. countermuam. A. effusum. A asplemiondes. A marcrophyllum.
Aspidum mucronatum. A. apufolium A trfohatum. A. dertuculatum. A. plaschnkianum

Gymnogramme sulphurea. G ruffa. Gymnogramme calomelanos. G tartarea. G chaerophylla.
Cheilanthus merophylla C. marginata. C raduata.
Notholaena trichomanordes. N ruffa.
Nephrolepis pectinata. Hypolepis purdieana
Mertensia furcata.
Adiantum concinnam. A. kunzeanum. A. cubense. A. macrophyllum. A tenerum. A pulverulentum. A. Wilsoni A oblygum A. trapezuforme a cristatum.
Asplemum conchatum. A. pteropos. A. species. A. formosum. A. dentatum. A. grandifolia. A. erosum A serratum. A. fragrans. A auritum Asplemum semihastatum. A. cultrfolnum. A. mynophylla A. furcatum A. rhizophoreum.

Pters longufoha. \mathbf{P} scalaris. \mathbf{P}. necsan \mathbf{P}. arachnondes. \mathbf{P}. lacinuata. \mathbf{P} grandifoha. \mathbf{P} heterophylla
Taentes angustufolia. Vittaria lneata.
Davalha inequalis. Lomania procera
Panagramme lanceolata.
Saccaloma elegans. Fadema prolifera.
Lophosoria prounosa Blechnum oceidentale
Trichomanes bancrofti. T. scandens. T. crispum.
Hymenophyllum hirtellum
Gymnopteris mcotanufoha. G. alhena.
Acrosticum squamosum. A vestitum. A. viscosum. Lıgodıum volubile.
Anema birsuta A. phylutuds.
Botrychum rirgmanum.

Eahbuted by Prrate Exhbitors.

Hon. Robert Ncies

559. Pum from Lansquinet Estate
560. Lace Bark from Pantrepant Estate.

John Brass and Son.
561 Double set of Carrage Harness, of native workmanship.
562. Riding Saddle.
563. Honey.
564. Beeswax-bleached and unbleached

Charles Grant, Esq.
565 Chewstick and Chewstrck Powder.
566. Indian Odontune.
567. Beeswar-bleached.
568. Solution of Bisulphate of Lime.
P. Desnoes and Son, Merceants.
569. Rum-old, 3 samples.
570. Rum-8 samples trom New Works Estate.

571 Ganger Cordial-2 samples
${ }_{572}$ Orange Wme-2 samples
573 Pimento Dram
Megsre Soutar \& Co
574 Cigars-22 samples
575. Tobacco- 3 samples

Mrs G. Brooks
576. D'Oyleys and Fans made from Lace Bark (Lagetta lintearra) and the Spathe of Cabbage Palm-(Euterpe oleracea)

W S Richards, Esq
5:7 Coffee-Rose Hull.
Jabies Melivilife, Esq
578 Rum-Penants Estate
579 Falermian Wıne.
Chas Gadpailite, Ese
580 Rum
P E. AuvELT.
581. Odontune

582 Bleached Wax
Alrx. King \& Co.
5832 Samples Table Rum.
5841 Do Lame Junce
Wh. B. Espritt, Esq.
585 Rum-3 samples
586 Cigars- 5 samples
Wm. Fishea, Esq.
587 Sole Leather tanned with Pimento leaves.
588 Tanmin Concrete from same.
De Major.
589 Nutmegs in Alcohol
A. Fegan, Esq.
590. Bleached Wax.

Wm. Reto.
591. Assortment of Walking Stucks.

592 Razor Strops (Agave Americana)
593. Quassia Cups (Quassia amara)

594 Egg Cups made of vanous woods
595 Napkin Rings do. do
596 Cocoa-nut Cups
James Gall, Esq.
597 Fern Album.

Mas 5 Nash.

598 Basket Flowers, Hat, Fan, Mats, \&e made of Spansch Dagger (Yacea alonfola).
599. Hat, Fan, Scarf, Mats, \&c. made of Lace bark (Lagetta lintearia).

600 Basket of Ferns
601 Seed Necklaces
602 Fans made of Palm Spathe

From Grand Turk, Turks and Caicos Islands.
Messrs Frith and Murpix.
603 Salt prepared by solar evaporation and erystallisation.

Joen Ney Reynolos

604. Salt prepared by solar evaporation and crystallisation

MAURITIUS.

The Phlladelphia International Exhibitios, 1876.

Manager at Mauritius of the Collection, J. Horne, Esq.
$\underline{\longrightarrow}$

Superintended at Philadelphia by the British Execctive Comyissioners.

Agents, Messrs. Peter Wriget and Sons, 307, Walnut Street, Philadelphia.

MAURITIUS.

Report on the Island of Mauritics.

Mauritius is a small island in the Indian Ocean just within the tropics, about 500 miles east of Madagascar, being situate in 20° to $20^{\circ} 30^{\prime}$ south latitude, and in longatude east $57^{\circ} 17^{\prime}$ to $57^{\circ} 46^{\prime}$. Formerly in the possession of the French, and known as Ile de France, this sland became a Crown colony of Great Britain by capitulation in 1810. It is enturely of volcamic origin, and Physical viewed from the ocean presents a most picturesque appearance Indeed by features recent writers Mauritus has been styled the "Gem of the Ocean" Port Lours is the capital of, and the only city in, Mauritius It contains about 66,000 inhabitants, and covers an area of about 10 square miles it is surrounded on the land side by a ridge of mountains which takes the form of a horse-shoe round three sides of the city, and has a fine natural harbour, capable of affording anchorage to a large number of vessels. The mountans in the island, which consist of basalt, tufaceous rock, and lava, vary in height from 2,000 to 3,000 feet In the centre of the island the table land has an elevation of about 1,500 feet above the sea, the distance from the coast being about 15 mules. In the south and south-west portions the features of the country are rugged The districts in the centre of the island are flat, or slightly undulating, and are covered with a red ferrugnous earth. The soil, where it is cultivated, is unusually rich and fertule, but it varies greatly in character, and speedily hecomes exhausted Of late years many thousands of acres in the low-lying lands in the north and north-western districts, which were formerly very productive in their sugar yield, have become waste and unemployed, and it is a question open to discussion whether this has occurred from improvident working of the estates, from scarcity of rann, or from exhaustion of the soll

The mean temperature in the shade for groups of five years has been proved Area to be about 77°. The total area of the island is 432,680 acres, or about 708 square miles, of which there are under-

For so small an area the population of Mauritius $1 s$ extraordinary According Population to the census of 10 th April 1871 it amounted to 316,042 souls, or 446 per square mule (against 180,823 souls in 1851), whilst that of Great Britan and Ireland is estimated at 253, and that of Belgium, the most populous country in Europe, at 430 per square mule The population is very mixed Persons of every nationality are found in the sland Although a British dependency, the proportion of English residents bears a very small ratio to the rest of the nimabitants Out of the population of 316,042 , it appears that of colonists born in the United Kingdom there were only 964, of those born in India 148,300 , and of those born in Mauritus 143,938 America and Australia, Prance, China, Mozambique, \&e, clain the remainder* Between 1843 and 1873 103,050 Indian immigrants have been introduced into the colony

[^21]Public health

Produce.

Means of conveyance.

Raulway com. mumestion

Two hnes

Gradents, and highest level attained.

Revenue and expenditure.

Wrth regard to the health of the colony, the acting Governor recently wrote as follows : "I am afradd it wrould be fallacious to expect that what wath its " over-populated state, to which thousands are annually added, and mith a " malarial fever that has already so terribly proved what malgnant power it "can assume, always lurking in an endemic form through the sland, it will " be ever likely agaun to resume its once celebrated salubrity."

The deaths and death-rate of each of three years, from 1873 to 1875 inclusive, in the total population have been-

$1873-$	-	33.0 per $1,000$.		
$1874-$	-	290	\geqslant	
$1875-$	-	-270	$\#$	

The welfare of the community depends entirely upen the cultrvation of a single staple artucle of valuable produce. With the exception of sugar, the colony rases scarcely anything required for its own consumption, but exports nearly its whole product, and imports all articles requared for its food and for other necessines. Everything grown is sent to Port Louns for exportation, and everthing required on the estates is brought back from that town. Cntil some few years ago the sugar from the estates near the coast was convered to Port Lous by schooners, and from other parts of the island it was carted to town by mules These carts conreyed about 30 or 40 cwt . of sugar each, and requured three or eren four mules; but in ascending from Port Louss to the centre of the island the return load only areraged about 12 or 13 cwt per cart Conveyance by schooners, theugh cheap, depreciated the sugar, oming to exposure, and to the losses consequent on transhipments and pllage, while the cartage was for the reasons mentioned very expensive, notwithstanding the excellent condition of the roads.
The necessity for railway comfouncation was therefore much felt by the Government, and after careful investigation the construction of a ralloay was recommended to and adopted by the Englash Government in May 1861 It was at first hoped that a private company would undertake it, but as no suitable offer was made it was decided that the works should be carried out by the local Government, the funds being obtaned from some large balances in hand, and by the issue of $1,000,0001$ of colonial debentures, bearing interest at sis per cent, and secured by a sinking fund. The total sum which the colony thus became responsible for was at the outset 78,0001 a year.

The Mauritius railways consist of two hoes, the North and Midland, having a common terminusin Port Louss. The north hne, 31 miles in lergth, runs to Grand Ruver, S E, and was opened for traffic in May 1864. It comprises $8 \frac{3}{4}$ miles of cutting, 26 mies of embankments, and 14 bridges varying from 25 to 80 feet in span, built of stone or uron. The maximum gradient on this lue is 1 in 80 feet. The highest level attained is 329 feet abore the sea. This line provides for the traffic of the north and east sides of the asland.

The Midland line traverses the centre of the island, and attans an elevation of 1,822 feet above the sea level The total length is 35 mles, and the gradients are exceptionally steep, $] \mathrm{m} 27$ constantly occurring. In all there are 21 bridges, the most remarkable of π hich is the viaduct over Grand Kiver, in five spans of 126 feet each, and 140 feet above the bed of the river.

This line provides for the traffic of the central and north-eastern porcions of the island, whilst there is a branch hine in course of construction called the Savaune Railway, branching off from the main line, and running in a suuthwesterly durection for about 12 mules, wheh will meet the wants of the southnesterly portuons. It is further contemplated to open another branch to run from the Midiand in an easterly durection, and provide for the wants of a fertile central district lying betmeen the Mulland and North lines.

Revence and Expenditure.

			Revenue			Expexditure
1855	-	-	£348,453	-	-	£317,839
1856	-	-	395.103	-	-	3,20,581
1857	-	-	451,269	-	-	380,501
1358	-		553,166	-		521,514
1859	-	-	609,516	-	-	572,479

			Revenue.			Expenditure
1860	-	-	£553,419	-	-	£500,853
1861	-	-	482,788	-	-	468,849
1862	-	-	492,322	-	-	584,495
1863	-	-	550,618	-	-	528,546
1864	-	-	638,067	-	-	602,279
1865	-	-	646,730	-	"	667,716
1866	-	-	639,576	-	-	700,048
1867	-	-	534,992	-	-	642,602
1868	-	-	577,686	-	-	641,272
1869		-	595,024	-	-	575,180
1870	-	-	608,166	-	-	591,579
1871	-	-	616,952	-	*	600,961
1872	-	-	703,159	-	-	650,327
1873	-	-	690,081	-	-	657,110
1874	-	-	720,130	-	-	727,063
1875	-	-	692,894	-	-	775,836

Public debt 895,6002 , bearning interest 6 per cent
The mean revenue of the ssland for the 10 years ending 1872 was $611,097 l$ The mean expenditure for the same period was $640,051 l$.

Imports and Exports.

			Imports.			Exports	Imports and
1855	-	-	£1,356,301	-	-	£1,848,091	
1856	-	-	2,154,406	-	-	1,804,123	
1857	-	-	2,391,106	-	-	2,303,786	
1858	-	-	2,785,352	-	-	2,209,076	
1859	-	-	2,440,821	-	-	2,559,699	
1860	.	-	2,238,846	-	-	2,661,098	
1864	-	-	2,582,979	-	-	2,249,740	
1865	-	-	2,141,350	-	-	2,629,519	
1866	-	-	2,048,000	*	-	2,501,000	
1867	.	-	1,720,000	-	-	2,003,800	
1868	-	-	2,000,069	-	-	2,321,243	
1869	-	-	1,619,906	-	-	2,601,657	
1870	-	-	- 1,953,993	-	-	2,049,987	
1871	-	-	1,807,382	-	-	3,053,054	
1872	-	-	2,437,512	.	-	3,177,301	
1873	-	-	2,454,101	-	-	3,375,401	
1874	-	-	2,671,109	-	-	3,020,422	
1875	-	-	2,194,824	-	-	2,522,099	

The value of imports and exports since 1866 is exclusive of specie.
The quantities and value of sugar 'exported during the nine years ending Sugar exported. with 1875 were-

The following table shows the exports of that article in $1875 .-$

- Exports of Sugar from the Colony of Maurtius in the Year 1siJ

In 1845 the total amount exported was only 45,600 tons.
The only produce and manufactures of the colony besides sugar and rum which were exported during last year, were-

> Aloes fibre, 3,169 crrt.
> Cocoa-nut oul, 259,390 gallons.
> Vanilla pods, 13,490 lbs.

The sugar estates are rather more than 200 in number, and there are uprards of 70,000 Indians settled on them.
The total immigrant population in the colony on the 10th April 1871, was 153,703, 109,173 males and 44,530 females, but by deaths and departures that number was reduced in December 1871 to $151,985$.
The arerage cost of introduction of cooles charged to employers was, in 1871,91. 15s. 10d. per male adult from Calcutta, and 111. 5s. 6d. per male adult from Madras.
On the 10th April 1871, the Indian population on the sugar estates mas as follows, according to the census taken on that day -

Mortality on sugar estates.

The mortality on sugar estates since 1869 has been as follows -

1869	-	- 3,701 $=30$
1870		- 2,352 $=16$
13^{-1}	-	- $2,341=21$

The estates of Planes Wilhems gave the lowest death-rate, and those of Rivière du Rempart the highest-

$$
\begin{aligned}
& \text { Plaines Wilhems } \\
& \text { Rivière du Rempart } \quad-\quad-\quad 16 \text { per } 1,000 \\
& \hline \quad 25
\end{aligned}
$$

Of the 75,885 men engaged $1 \mathrm{~m}^{\prime \prime} 1871$ wrthin the colony, 47,713 re-engaged themselves to the employers they hat already served. Those who changed masters numbered 28,172*

The Sugar Cane.

The cultivation of the sugar cane is peculnarly exposed in Mauritius to Cultivation of injury from hurricanes, as well as from insect plagues, two of which, the "borer" and the "poua pache blanche," are particularly destructive; the former insect is furmished with a horn luke a screw, by means of which it perforates the canes It was estimated in 1861 that the sugar crop fell short by 20,000 tons of what it would otherwise have been, owing to the destructive agency of this caterpilar

The crop of 1874 fell short, in an equal degree, from the effects of a hurricane, which passed over the island in 1874, whilst the crop of 1875 suffered to a much greater extent from drought.

Fortunately for the interests of the island the crop of 1876 is all that could be desired The yeld is estmated at 135,000 tons, and the average value per ton $1 s$ not expected to come short of last year.

The sugar canes when ripe are about 12 feet high and 2 inches in dameter. As soon as the plant blossoms the leaves begno to wither and die, and the cane changes its colour. The sugar cane in its different stages was perfectly illustrated in the representations painted from nature in Queensland, New South Wales, and Mauntius which were exhbbited at Vienna The cane having rpened, is cut, tied up in faggots, and conveyed to the mill, where it is crushed by means of cylindrical rollers, the juice falling into large vats placed for its reception beneath.
In no part of the world has the manufacture of raw sugar been brought to Manufacture a higher state of perfection than in Mauritus Every mprovement, alike in of sugar the process as in the necessary machnery, which modern science bas brought to hight, has been eagerly taken advantage of regardless of expense

The " modus operands" in the manufacture of sugar is now so generally known that it is needless here to refer to it in detall, suffice it to say, that on almost every estate the vacuum pan system, by which an mmense saving in time is effected, is now adopted. When granulation has taken place-the time allowed for which varies according to the size of crystals it is sought to produce, but may be said to be about four hours-the sugar is allowed to run out through wooden troughs into large uron tanks to cool, and afterwards passed through the "turbines" (centrifugal machines), which, revolving at the rate of 1,000 rotations per munute, elmmate all the syrup from the sugar
Durng this process water is added in more or less quantity, according to the degree of whiteness which it is desured to obtain. For the last three years, to obtann a more perfect degree of whiteness in the crystallised descriptions of sugar, a system has been pretty generally adopted known as the "procédé Icery," so called from tts owing its ongin to the Honorable E Icery, M D.

It consists in the use of mono-sulphite of lime for the better punfication of the veson (cane juice); the "clairce," after leaving the battery, being treated by this process previous to passing into the vacuum pan The syrup as it issues from the turbine is collected in reservorrs, to be again brought back to the vacuum pan, producing sugars known as 1st, 2nd, or 3rd syrups. The residue or molasses as finally appropriated to distulling purposes.

Since the introduction of steqm mulls and machinery the cultivation of the Extension of sugar cane has nearly superseded all other kinds of agriculture. In many cane cultuvation places plantations have been rooted up to make room for the more lucrative and its results. cane, and in others, where the land from exhaustion has become unproductive, hundreds of acres of the primeval forest have been recklessly cleared away for the same purpose The interesting meteorological statistics and tables sent Effect on -to Vienna by Mr. Meldrum of the Royal Observatory, show that although the clmate.
rainfall for several years past has not been on the whole of much less amount than formerly, it is confined in a great measure to particular localithes and the higher parts of the island, instead of being general, thus leaving many districts either entirely without or with an insufficient amount for cane cultivation. Mr. Meldrum calls particular attention to the destruction of the forests as a means of increasing the temperature and decreasing the ranfall. He calculates that at least 70,000 acres, or about one-sisth of the enture area of the island, have been denuded of forest since 1852, and that, too, on the central and elevated parts at or near the sources of the rivers, and in the neighbourhood of swamps and marshes, close to which sugar plantations have been lately commenced it requires no instrumental observations to show that the climate in the interior of the island is much drier than it was some years ago, and as this state of things is prejudicial to the health of the population as well as to the cultivation of the sugar cane, he recommends, as far as practicable, the restoration of certain portions of the forests of which this once beautiful and salubrious island has been deprived.

Many vaneties of fibre are produced in Maurtius; those most valuable are the "Fourcroya ggantea" and "Agave americana," both much used in the manufacture of ropes. The "Sanseviera cylindrica," "Zeylanica," and "Latifolia," are also extremely valuable, and are said to yeld the strongest known fibre.
"Gomuts" fibre
The Gomuti, from the trunks of "Arnaga sacharfera," is lakewnse an exceedingly useful fibre, and is much used as a substitute for horsehair in stuffing cushons, \&c. The process of manufacture was at the outset of the most prumive character. Leaves of the aloe were cut and steeped in sea water on the shore in holes dug for the purpose When sufficiently steeped these leaves were beaten with sucks and rubbed with stones to remove all the pulpy matter, the fibrous portions being then agran frequently washed and bleached in the sun
The farourable results obtained from the first trials speeduly led to a further development of thes industry, which now promises to become important and remunerative Hitherto the aloe, groming wild in most of the uncultivated parts of the island, has sufficed, but of late those persons who have seriously occupied themselves in the matter have commenced regular plantations, both by transplanting the young plants and also by rasing seedlings.

Great improvements have also been effected in the mode of preparation, but there is no doubt that in this respect much yet remains to be done. The more improved method of preparation is by passing the leaves through rollers simular to those used for crushing the sugar cane, with this difference, that the cyhnders employed for crushing the leaves of aloe are furnshed mith teeth, or more correctly speaking scrapers, so that not only is the leaf crushed, but a certain portion of the pulpy refuse at the same tme removed. A great saving in time, as also in manual labour, is thus effected. The fibre is then thoroughly cleansed by steeping, and dried and bleached in the sun.

There were also exhibited six sizes of rope made from the aloe fibre; this is a comparatively new industry in Mauritius, but is rapidly developing The fibre is much esteemed in England and meets with ready sale. The price depends entirely upon the more or less care with which the fibre is prepared, and consequently varies very considerably, say from $20 l$ to $42 l$ per ton Some which was exceedingly well prepared has lately realised as hugh a price as 50l. per ton. The aloe fibre combines extreme lightness with great strength.

Woods.

Tumbers.
The specimens of tumber, 63 m number, 46 of which were from indıgenous trees, are also worthy of more than passing notice.

Those most remarkable are.-
"Labourdonnasia glauca," used for house and ship building, cabinet and furmiture work. Barks good for tanning and dyeing
"Colophonia mauritiana," a resinous, heary wood, much used for framing of carts, felloes of wheels, and in some parts of shipbuilding, breaks
for raulways, carriages, and waggons. This as a large tree, whech often attains a diameter of six feet
"Jossinia lucida," a slow-growang tree. Wood very hard and heavy, much used in bulding, and named from its extreme hardness
"Labourdonnasia revoluta," good for all bunlding purposes These several kinds of "Bors de Nattes" are not excelled in durabilty by any other kind of wood
"Olea lancea," an elastic wood, good for shafts, tool handles, \&c
"Memecylon trinerve," seldom of large size The wood is excellent, and much esteemed by carpenters for handles to axes, \&c. It is very elastre; diameter 6 to 8 inches.
"Syzygium" This tree produces wood of excellent quality, and useful for many purposes.
"Sideroxyion cinereum," a tall, stranght, and durable tree some five feet in diameter Used for house-bulding, planks, shingles, and is almost indestructible of cut in the proper season.
"Mangifera indica," often attains a large size The wood is light but tough, and 18 used for doors, packing cases, \&ce It is scarcely possible to draw nails out of it
"Heriteria littorallss," a large tree, wood excellent, close graned, and dark coloured, makes beautiful furnature
"Acacla alata,", said to be stronger than teak. Heart wood excellent, hard, and durable, useful for many purposes, and stands a heavy strain
There are many other specimens equally deserving of notice if space admitted, but sufficient has been stated to show the value of Mauritius woods, and the various purposes for which they can be used

Fruits and Spices

The fruits of Mauritius are the mango, banana, oustard apple, and avoca, Fruts.
the guava, letch, mabolo, and tamarind The pme apple also grows to perfection The variety is very great, and the finer kinds are not anywhere surpassed in size, beauty, or flavour.
The principal spice trees in the colony are cloves, and nutmegs spices
Cotton, sago, betel, ginger, pepper, camphor, and vamilla also flourish in Other producMauritius, and pods of the latter plant are exported in small quantities
The mamoc, cassava, and arrowroot are not grown in sufficient quantities to export. They are produced more for home consumption.

Madagascar Producr.

In writing of Mauritius one can now-a-days hardly refran from some allusion Trade between to Madagascar, as almost the entire trade with Europe is carried on through Maurtitus and Mauritius Exports from Madagascar are for the present restricted to oxen (for the supply of Mauritius and the neighbouring French colony Reumon), rice, hides, india-rubber, and various gums and fibres The principal articles of import are, cotton manufactures, salt, rum, hardware, and gunpowder. A large trade both in amports and exports is carried on all round the coast by American traders Some idea may be formed of the growing importance of the trade with Madagascar by a reference to the following statistics of that with Mauritius.

Exports	m Mauritius to Madagascar.			
		Cotton manufac	ures	Rum
186\%	-	- E18,296	-	- £ 4,660
1868	-	- 24,106	-	- 3,305
1869	7	- 18,080	-	- 1,340
1870	-	- 32,846	-	- 4,620
1871	-	- 50,070	-	- 11,119
1872	-	- 48,990	-	- 20,262
1873	-	- 57,350	-	- 20,419
1874	-	- 64,814	-	- 17,137
1875	-	- 57,350	-	- 20,419

Indiarubber. India-rubber is now exported in large quantities both to America and Europe. The following table shows the development of this trade with Mauritius alone :

1867	-	-	-*	-	None
1868			-	-	き387
1869	-	*		-	282
1870			-	-	12,932
1871	-	-	-	-	31,310
1872			-	-	84,252
1873	-	*	-	-	37,459
1874			-	-	21,452
1875	-	-		-	14,540

The rubber being for the most part unskilfully prepared is inferior to Para, and compares rather with that exported from Penang Its value in the London market at present is from $1 s 4 d$. to $1 s 9 d$. per lb . The decline in the quantity imported during the last three years is to be ascribed to the reckless destruction of the Caoutchouc plant.

Of the fibres of Madagascar that most appreciated is the raffia fibre, much esteemed in Europe, the present value of which is $65 l$ to $70 l$ per ton.

Silk is produced in Madagascar in some quantity, but has not yet become an article of export A recent attempt to send cocoons to Europe signally falled, owing to the want of skill with which they had been prepared.

Concluston.

From these few statistics it will be seen that Mauritius, a small colony of 432,680 acres, has become, by the energy and enterprise of its inhabitants, one of the most prosperous and important sugar-growing calonies of the British Crown, and that the annual value of that produce is over $2,500,000 l$.
In view of the injury to which the sugar-crop is so constantly exposed, it is gratifying to observe that within the last few years new industries, although small, in the way of cocoa-nut oll, vanilla pods, tumbers and fibres, are gradually coming into notice. Anxiety for the future must invariably be felt by any commumity so long as it relies solely on a single staple produced mainly by the and of an alien and ever-changing population

Official Catalogue of Objects exhbited by the Colony of Mauritius at the International Exhibition of 1876 of Philadelphia.

\mathbf{P} sugnifies Award for Exhbbtt.

(The Government of Mauritus received an award for Collective Exhbbit)

Flove Maurtienne
24 bottles preserved fruits, \&c.
Mauritus Botantcal Gardens -J. Horne, Esq.
Maurtzan Woods.

Syzygrum glomeratum.
Bors de Pomme.
Cupama laevis.
Bois Sagaye
Boutonia Mascariensis.
Acacia Lebbeck
Bors Noir.
Labourdonnaisia revolata.
Bors de Natte.
Monimia ovahfoha.
Olea lancea.
Olivier Sauvage, Bors Cabris, Bois Cerfs, \&c
Tambournssa quadrıfida.
Bors Tambour.

Calophyllum sparium
Takamaka petite feulle.
Labourdonnaisia glauca
Bors de Natte grande feulle.
Sideroxylon cinerum
Moagher
Mimusops Erythroxylon.
Makak, Bois de Natte.
Sideroxylon Boutamanum
Trambalacoque.
Prockia theaeformis.
Fandaman, Bors Goyave.
Tambourissa amplifolia
Bos Tambour, Pomme Jacot, Pot de Chambre Jacots.

Diospyros melauda.
Bois d'Ebène marbré
Calophyllum Sps.
Takamaka blane
Erythrosperum vertacillatum.
Bols gros coco
Calicadapne spectes
Bois de Cannelle.
Nuxia vertucilata.
Bois Maigre
Fropiera Maurtiana.
Bois Bigaignon.
Bois Banane.
Colophania Mauritana.
Bois de Colophane. $?$
Bors Lallo.
Syzy gium species,
Bois de Pomme grande feulle.

Calophyllum spectablus.
Bois de Takamaka, ou Takamaka grande feulle
Quisivia oppositufolia.
Bors Café.
Tabernaemontana Mauritana.
Bois de lart à fleurs jaunâtres.
Hernandia ovigera.
Bors Blanc.
Myrtacae Sps.
Boas de fer
Erythroxylon laurifolium.
Bors de Ronde
Anthurhea verticillata.
Bo1s Lousteau
Elasodendron orientale
Termunalia catappa.

> H. Lemıère, Esq

Salt One sample.
Messrs. H and E. Bouton.
One sample of Manntus Coffee.

- Flore Mixurıcenne.

One sample of Vanulla.
L. Bouton, Esq.

3 Copies of a book on the Medicinal Plants of Mauritius, with
50 Specimens of these Medicinal Plants
8 Copies Transactions of the Royal Society of Arts and Sciences of Maurtion, from 1870 to 1875.

Maurtius Botantcal Gardens. -J. Horne, Esq.
Lust of Fibres

Dracaena species.
Cordia mixta
Hibicus hinforus.
Pandanus uthlis
Alpinia magufica.
Sanseviera zebrina
Livistona Mauntians.
Agave Amencana
Theobroma cacao
Musa species
Rapolocarpus lucidus.
Dracena Maurtiana
Strelitza regina.
Pterospermum acerifolum.
Ficus sp
Ficus sp
Musa textuls.
Latania aurea
Sansequera Zeylanica.
Fices 8 p
Musa paradisıaca.
Sagus Ruffia
Colocasis antiquorum
Agave Americana variegata.

Sida glutinosa. Musa volacea Agave Mexicana Boehmeria nivea. Hehconia gigantea.
Sanseviera latifoha.
Sansenera cylundrica.
Uramua (Ravenala) Madagascariensis.
Carludovica palmata.
Sterculna species.
Hibicus sp.
Guazuma ulmufolia.
Fourcroya gigantea.
Square fruted Banana.
Ficus species
Ixora corylifoha
Melochua linacefolla.
Musa var (Otaheite).
Partinum thaceum.
Caladium species,
Morus tartarica.
Caladıum purpurescens.
Malvaviscus arboreus.
Sagus saccharifera.

6 Walking stricks.
2 Bottles Nutmegs
1 Parcel red bark (Cinchona succirubra)
Mesors L. De Brugadn and E. De Bouchervulle.
2 Specumens of Ramie fibre-Bcehmeria nivea.

15 Samples of Sugar sent by J. A. Wiche, Evq.

"Rose Bell," Ceylon Company, Limuted - White Vesou Sugar, mannfactured for Bombey and Australian markets.
"Astrea," Ceylon Company, Lumited.-White Veson, manafactured for Bombay and Australian markets.
"Astrea," Ceylon Company, Limuted.-Whte Syrup Sugar, for Bombay and Australian markets
" Kledune," Mrs. Widow Konig.-Fine White Syrup, manufactured for Australuan market.
"Medine," Mrs. Widow Konig -Fme White Vesou, manufactured for Australan market.
"Constance," Heurs Pellegrin,-Fine White Crystallixed, for Bombay and Austrahan markets
"Constance," Messrs Manès \& Co.-Finest Whute Sugar, for Australian market.
"Constance, MLessrs. Manès \& Co.-Fine White Srrup, for Anstralhan market.
"Plausance," Messrs. Fiart and de Bissy - Brewers Crystal, manufactured for Australan market.
"Plusance," Messrs. Hart and de Bissy.-Fine Brewers Crystal, manofactured for Australian market.
"Sehastopol," Mr. E. Montocchio-Raw Sugar, fine crystallised, for European market.
"Hewetson," Mr W. Hewetson.-Raw Sugar, fine crystallised, manufactured for European ma ket
"Chamouny," Mr. N. Tourrette.-Raw Sugar, refinng quality for European markets.
"Walhalla," Air C. de Lanux.-Yellow grocery for Australan market.
"Mon Repos," Mr. Noxaic.- Kellow Sugar for Austrahan market.

Mr. Françors Mare.

Sample of Arrowroot.
Mive. Tre. Foncaxd.
Artucles made from Palmiste (Oreodora Regra) leares.

Slippers.
Cugar case.
Small baskets.
Large basket.
Napkin rings.

> J. B. Kyshe, Esq.

Two copies Manntus Almanack, 1874 and 1575.
Mr. S. Moce.
40 Photegraph news of Mauritus landscapes.
36 Ditto types of the Chuese, Induan, Malagash, and Mozambique inhabrtants of Mauritus.

THE SEYCHELLES ISLANDS. \longrightarrow

The Philadelphia International Exhibition, 1876.

Manager at the Seychelles Islands of Collection,
C. S. Salmon, Esq., Chief Commissioner.

Superintended at Philadelphia by the Berrish Execctise Comorissioners.

Agents, Messrs Pfeter Wright and Soxs, 307, Walnut Street, Philadelphia.

SEYCHELLES ISLANDS.

Refort on the Seychelles Yslands by Caief Civil Comaissioner Salmon.

Port Victoria, Mahé,
1st December 1876.
The Seychelles Archipelago contains 34 1slands that he within $3^{\circ} 43^{\prime}$ and Position. $4^{\circ} 48^{\prime \prime}$ latitude south, and $55^{\circ} 16^{\prime}$ and $55^{\circ} 28^{\prime}$ longitude east, twenty-four of them are mhabited and partally cultivated, mine can only be used as fishing stations, one is used as a wharf and coal depôt and for careening purposes in the harbour of Port Victoria.

The total acreage of the 24 habitable islands is about 57,000 acres, in- Acreage. cluding rocky promontories. Of this it is computed that 26,140 acres are in forest. shrub, or lying waste, but mostly capable of cultivation, 5,500 acres are erther barren rocks or only able to support dwarf trees and creeping plants, 22,000 acres are covered with cocos nut plantations more or less well laid out 939 acres are under coffee, cloves, cotton, vanulla, cacao, sugar cane, and tobacco, and 2,421 acres are growing root and other crops for the food of the people or are being prepared for that purpose The waste land is to some extent used as pasturage, and also the cocoa nut plantations when in marshy soil with grass, but only in a few instances.
The smaller islands, except Cow Island and Denis Island to the extreme north, and Flat Island to the extreme south of the Archipelago, are hilly, the larger islands are all mountainous, the highlands varying from 800 to 2,700 feet above the sea Except a few of the very smallest all have water, generally in abundance and well distmbuted The largest island measures 30,000 acres, the second largest about 12,000 acres, and the others vary down to 40 acres.
The extreme variation of temperature in the shade is from 68° to 86° Fah- Clımate renheit, the former is met only in the highlands during the S.W. monsoon from sunset to sunrise, and occasionally and momentarly it may be less during those hours The average temperature on the coast all the year round $18{ }^{7} 7^{\circ}$ in the might and early morning together, 79° in the evening after sunset to 9 PM , and 83° during the day from 7 Am to 6 P M . The thermometer in the shade with no refraction never rises above 86° except occasionally and momentanly There is generally a breeze night and day blowing strongly from the $S \mathrm{~W}$ for one half the year, and lightly from the $\mathrm{N} W$. and $\mathbf{N} \mathbf{E}$. for the other half The rains are distributed over all the seasons, but the rannfall is more general and heavier during the light winds from the northern variations, and while the warmer temperature prevalls The climate is healthy. There are no fevers or diseases except what may be said to be due to excessive imprudence in diet Exposure, when the body and head are clothed and covered, produces no ill effects.

The ascertaned population of the Archipelago this year is about 12,900 Population (men, women, and children). It has increased 15 per cent in five years About 5 per cent. of this is due to liberated Africans, children born to them since their introduction, and immigrants. .The principal island has a population of 10,100.
There are two first class harbours. one, Port Victoria, Mahe, and the Harbours. other Curiense Bay, about 30 miles north of 1 t, between the Islands of Prashn and Curnense They are both perfectly safe in all weathers and easy of access, and provisions and good water are abundant. Coal may be purchased at Port Victoria, and 50 to 75 tons a day put on board; this latter port is in process of being lighted, to enable a vessel to enter and anchor in either the outer or mner harbour during the dark.

Means of com-
mumeation
Postal arrangements.

Imparts.

Esports.

Whaling

Manufactures.

Nstural pro-
dactions.
Cocos nuts and paim
Cultaration

Mode of ex-
tracting the oul.

The average time for a salung vessel to take to arnve from England or Marselles is 90 to $\mathbf{1 0 0}$ days.
The postal and steam communication is once a month, nâ Aden and Suex Canal, by the French mail line.

The value of imports this year comes to about 35,000l. The cotton goods, wearing apparel, and articles of dress (of the value of between $€,(2) 0) l$, and 7,0002) are mostly of Englush manufacture, and generally come indurectly from Mauritios or Marselles, but principally from the latter port by steamer. 1,000 tons of coal were from Cardiff durect. The bulk of the remaning mports are made up of nee, wines and spirits, provisions, hardware and ironware. imported from Mauritus, Réumon, Nosbé, Madagascar, France, England, and America. Machinery of the value of 4,4007 . was imported through Marselles.

The exports this year will amount to about 36,4001 , exclusire of cocos nut fibre, of which 75 tons a month are manufactured, of excellent qualitr, and of the value of 201 a ton. 99,5001 . represent about the ralue this year of cocoa nut oul and cocos nuts exported, 3,660 . the ralue of tortore shell, and $3,240 l$ the value of 28 miscellaneous articles of produce, raw and prepared. All the manufactured fibre is shipped to London. The tortorse shell is principally shupped to France. Three quarters of the cocos nut oul, and nearly all the nuts are shpped to Mauritnus, as well as the majonty of miscellaneous articles of produce, the remaunder goes to Marselles by ruaul steamer. The trade with Europe is increasing, and that with the parent colony Maurtus, is relatively less every year.
An important whalng' trade is carred on by vessels from New Bedford, United States. This year there are about 15 crusing off the Serchelles Islands; they also visit the Arabian Gulf and the Comora 1slands. Their principal fishing ground, howerer, is the deep sea on the edge of the Seychelles Bank.
There is one cocoa nut fibre factory in Seychelles, establshed in 15.4 at Port Victoria. It now turns out about 75 tons of fibre a month, of excellent quality. The ralue is about 201. a ton, giring a gross gield of 1,5001. a month, or 18,0006. a jear. When all the coco nut trees now planted are m bearing there will be sufficient husks to support three factories, turning out betweeu them from 50,0001 . to 60,0001 . of fibre a gear.
The proncipal growth is the cocos nut tree. The number of trees planted is computed to be $1,320,000$, or 60 trees to an acre; this is the average on the ground. Formerly, as many as 75 were planted, but now it is found that 45 trees to an acre of land of average quality pay best, both in rapidity and abundance of yeld. The tume between planting and maturity raries from 7 to l2 years, according to soll, situation, and method of planting There are plantations that will never geeld but sparingly, from being badly lad out, or from the ground being unsutable. 100 trees in bearing average $5,4 \% 5$ nuts a year, and S0 nuts give one relt of onl. An acre of land under cocoa nuts in full bearing gives a gross return of between 7l. and 81 a year in expressed oul This is equal to 51 . a year net profit. The adrantage of the cocos nut is that it requires comparatively no labour or orersight, and the capital once sunk has only to be wated upon for a certaun return Its culture is undoubtedly now preferred to that of other thungs requining more labour and capital and greater energy and assiduity, although, from the nature of the chmate and the soil, the returns from the latter would be infintely greater and quite as certain. The oll is crushed from the nuts in the large estates The process is primutive : the trunk of a tree is hollowed out as a mortar, and in this is worked a large wooden pestle, by means of a shaft 19 feet long fixed to its top, the other end of the shaft is wenghted by pieces of iron or by stones, a donkey or two or a bullock is attached to it to work it. The movement is rotatory and unform Into the mortar the fruit of the cocos nut, premously dried in the sun, is piaced in preces, and by the rotatory movement of the pestle these are crushed betwen it and the side of the mortar. A tap at the bottom of the mortar lets out the oul. The resudue, after the oll is expressed, is used for cattle food and to feed poultry. A modern press wrould extract at least 12 to 15 per cent. more oll, but the stuff remaming would probably be of no value for cattle food untul prepared with conduments.

Large quantities of cocos nuts, estımated at 6,000 a day, are consumed by the people as food The following tables give a résumé of the present and prospective greld, with the values.

Trees planted, not yet bearnng
1,002,270 Trees.
151,840 - Deduct 15 per cent for over planting, \&c.

$$
\begin{array}{r}
850,449 \\
42,525
\end{array} \text { - Deduct } 5 \text { per cent: loss on trees bearng, from blight and other } \begin{gathered}
\text { causes }
\end{gathered}
$$

807,924 Trees $=44,233,839$ Nuts $=552,923$ Velts of Oll.
$\underline{=}$
The full value of the velt of oll is $4 s$ The actual value of the cocoa nut plantations now yrelding is $40,000 \mathrm{l}$ a year The value of those planted, but not yet yelding, will be hereafter 110,584l a year mone The full value has been given to the velts of oul, as the husk of the nut, for which there is a market at the Fibre Factory, has not been taken into account. The yearly value of the cocoa nut plantations of Seychelles, 8 years hence, should be 150,000l.
Cotton was formerly grown in these ralands, and the quality was con- Cotton sidered good Varous reasons, princpally the want of labour, caused this cultivation to be abandoned, except at Denis Island. Much of the ground formerly under cotton is now lying waste

Sugar-cane is only grown at Seychelles for distulling purposes The industry sugar-cana. is hardly a paying one The same labour and capital would yield more returns if expended in coffee, cocoa, and tobacco. The clumate and soil of the Seychelles islands are not so well suted for the sugar-cane as for the tropical produce above mentioned There are at present two small distilleries at work, one at Fregate ısland and one at Mahé island. They produced between them, in $1875,9,500$ gallons of rum.

Tobacco.

Coffee.

Cacao

Cloves,

Cinnamon

Nutmeg, spice, pepper.

Fanilla

Coco de Mer tree.

Palms and
fibrous plants Destruction of tumber.

Seychelles has been long noted at the neighbouring English and French colonies of Mauritius and Réunion for the quality of its tobacco. The pure leaf is pronounced strong but of good flavour by pipe smokers.

The cultivation has been latterly ncreasing The lowland hills and soll are well adapted to the growth of this produce. There is no exportation beyond small parcels for the above colones. The mode of preparation is sutable only for local purposes and speedy consumption.
Plantations of coffee were commenced systematically about four years ago, and promise to bear well. The mountann slopes and ravines are well adapted to this culture, but not more than 300 acres are planted as yet. The plant bears fruit 1 n four years at Seychelles In former years-probably before the abolition of slavery-this plant seems to have been rather extensively cultivated, to judge from the remnants of plantations scattered about the hills

No tropical produce comes on so rapidly, or yields more largely, at Seychelles, as the cacao (Theobroma cacao) The market value of this article, and the manner of its preparation, as in the case of other valuable plants, were evidently unknown to the cultivators, which mostly accounts for the shght attention paid to it heretofore. It is now attracting much attention, and 100 acres are planted whth it

Clove trees grow well. As a rule do not bear regularly every year, the farlure to do so is sadd to be due to the wasteful method of cutting the branches to get at the fruit. Extensive plantations of this tree have been cut down to make timber and firewood It is again being replanted, owing to the latterly mereased value of cloves. The vamilla plant, coffee, and cacao grow well in its shade.

Cinnamon (Cinnamonum quassia) as a tree and shrub is common in the lowlands of Mahé, but is made no use of.

The nutmeg tree and all spice grow well, but are only a late introduction, in small quantities Pepper (piper nigrum) grows abundantly as if it were undigenous, but it is not cultivated by the people

Vanulla is attracting much attention, and is being carefully and systematically cultivated by several growers, a parcel recently shipped to Europe averaged 75 pods to the pound weight of the first quality, the average for 1st, 2nd, and 3rd qualities gave 103 pods to the pound weight The aroma and colour were perfect. The plants begin to bear in the fourth year. There is a species of vanulla indigenous to Seychelles to be met with abundantly. The Vanilla aromatica grows with equal facilhty, and bears well if kept free of weeds and looked after. There are about 100 acres under this cultivation; the majority of the vines have been planted quite recently; about 500 pounds weight only of capsules will be exported this year, nearly all for Europe The value varies accordang to the quality, it ranges from 30 s . up to 60s. the pound weight.

The most noted production of these Islands is the Coco de Mer palm (Liodocea sechellarum) now confined to a few spots at Praslin Island, and a ferv acres of land at Curieuse Island. The tree has been often described. The young leaves are prepared to resemble straw, and this is worked up as hats, baskets, and various ornamental articles that are much sought after. The nuts are worth, on the spot, from one shilling to three shillings each, according to size and shape. Some of the trees at Prashin are 90 feet high; they grow perfectly straight. There is one of these trees at Government House grounds, planted 37 years ago The trunk is only appearing to show above ground; it has 26 leaves, the stalk of each is about 10 feet long and 16 nehes in circumference, the leaf itself being 10 feet long by 8 feet wide. In the Prasin valleys these dimensions would be much exceeded. There is no certannty as to how long the tree takes to bear fruit to maturity. The one above described has young frut that were duly fertilused, but they fall off. The time required is probably over 40 years It as said the nut takes five to seven years to grow to its full size

There are several valuable palm trees pecular to these Islands, and many kunds of fibrous plants are plentiful The timber has been so much cut, and fires have damaged so many forests, that there remams barely enough to supply local wants.

The Fisheries supply sufficient dried fish for local purposes and a slight Pusheres export There is room here for much development The hawksbill turtle(for tortoise shell) and the edible turtle are found in these waters, but yearly in reduced numbers. Considerable quantities of the latter are yet found among the Admirantee Islands and the Islands to the westward of the Seychelles bank
The Admurantee Islands, 20 mn number, lyng between $4^{\circ} 51^{\prime}$ and $7^{\circ} 20^{\prime}$ Admirantee south lattude, and $52^{\circ} 47^{\prime}$ and $53^{\circ} 66^{\prime}$ east longitude, have at present about Islands.
130 people engaged on them, planting and fishing the people are all hired at Mahé, about two thirds of them withun the last five years These Islands come under the jursdiction of Seychelles The more valuable of them have been sold to private individuale, but the fishang stations are generally government property, and sorne are rented. The Islands are all flat Two of them, comprising about 1,900 acres, are under cocoa nuts, half of which are in bearng and half recently planted. Three slsands, comprising about 2,100 acres, are planted generally with Indian corn. Four of the uncultuvable 1 slands are known as excellent fishng stations. The remander are very small, mere patches of rock and sand.
The government of the Seychelles Archipelago and its Dependencies is Govermment itself subordnate to the government of Mauritus The settlement is wholly self-supporting It has a council, with financial and other legislative powers, of a purely local character, composed of five unofficial and three official members
The French Civil Code is the law m civi matters, while the English law Laws. obtans generally in criminal matters. Local ordinances can deal with matters not repugnant to the above.
The revenue for 1875 was 13,3232. 16s. $9 \frac{1}{2} d$, recerved under 26 heads, Rerenue and and the expenditure amounted to $12,614 l$ 15s $11 \frac{3}{4} d$ There is no debt. expenditure There is an average balance in the treasury equal to two months receipts.
The expenses of the varrous departments of Government in 1875 were -

The Government of Maurtus receeved an award for collective exhbibt, which included the contributions from Seychelles

Official Catalogue of Objects from Seychrlles exhbited at the Philadelphita Exhibition of 1876.

The Chuef Commussoner of Seych elles

67 Varneties of Seychelles woods, un vertical sections of 6 unches each. 7 Samples, planks of superior kinds of woods.

> Mr Briard of Praskn Island.

Coco de Mer Nuts-m polished
Coco de Mer Nuts-rough
Coco-ntt, large size
Mr I Ames Bury

Coco de Mer wood walking stick.
Cocoa-nut wood strck
Hardwood sticks

Plum stick
Fancy Hardwood stick, and fancy sticks

Mr. Brzard
Samples of Bark dye black (Bors de Pomme) and of stuff dyed from same. Mr. Syluain Houareau
Roll of Seychelles tobacco.
Mr Madme.
Parcel of cigars made from Seychelles tobacco.
Mr Lemarchand.
Samples of Cacao, Cloves, Coffee, and Vamilla.
Messrs Brooks \& Dupuy
Sample Cotton from Denis Island.
Mr. Brard.
Sample of Cotton.
Mr F. Cheyron.
12 Preces of Hawksbill Turtle Shell
Young Hawksbill Turtle Shell (whole).
Mr. Cauvin's Distillery.
Sample bottle Seychelles white Rum.
Mr Nageon, of La Drgue Island.
Sample bottle of Cocoamut oul

Miss Bouquet.

Baskets fancy Coco de Mer (Lodorcea Seychellarum) straw.

STRAITS SETTLEMENTIS.

\qquad

The Philadelphia International Exhibition, 1876.

Superintended at Philadelphia by the Britise Executive Сомmissioners.

STRAITS SETTLEMENTS.

The Straits Settlements consist of the islands of Singapore and Penang, near Position. the penunsula of Malacca, with small strups of land on the west coast of the mainland, the whole lying between the first and sixth degrees of north latatude

Singapore

Singapore is an island about 25 mules long by 14 wide, stuated at the simgapore southern extremity of the Malayan peninsula, from which it is separated by Position and a narrow strait about $\frac{4}{4}$ of a mule in width There are a number of small extent aslands adjacent to it which form part of the settlement

The seat of Government $1 s$ the town of Singapore, at the southern point of Town of the island, in lat $l^{\circ} 16^{\prime} \mathrm{N}$ and long. $103^{\circ} 53^{\prime} \mathrm{E}$ Singapore
This island was taken possession of by Sur Stamford Raffles in 1819 by History. vurtue of a treaty with the Malayan princes It was at first subordinate to Bencoolen, in Sumatra, but in 1823 was placed under the Government of Bengal It was afterwards meorporated with Penang and Malacca, and placed under the Governor and Council of the incorporated Settlement

Penang.

Penang, or Prince of Wales's Island, as it is officially called, $1 s$ about 20 miles Penang, or Prince long and 9 broad, contaming an area of 107 square males, situated off the of Wailes's west coast of the Malayan penmsula in $5^{\circ} \mathrm{N}$ lat, and at the northern Plastion and extremity or entrance to the Strants of Malacca On the opposite shore of the area mainland, from which the island is separated by a strait from 2 to 10 miles broad, is Province Wellesley, a strip of territory forming part of the settlement, averagng 8 miles in width, and extending 45 miles along the coast, including 10 miles of newly acquired territory to the south of the Krean
The chief town 19 George Town, in $5^{\circ} 24^{\prime} N^{N}$ lat and $100^{\circ} 21^{\prime}$ E. long
This was the first British settlement on the Malayan peninsula, having been History ceded by the Rajah of Kedah in 1785 m consideration of the payment of an annual sum of 10,000 dollars as long as the British occupy the island The strip of land called Prounce Wellesley was acquired from the Rajah in 1798 in consequence of the prevalence of prracy on the shores of the mainland opposite Penang This province is in a high state of cultivation when compared whth the neighbouring territories In 1806 Penang was made a separate presidency under the East India Company of equal rank with Bombay and Madras In 1826 Singapore and Malacca were incorporated with it under one Government, of which Penang was the seat In 1832 the seat of Government was transferred to Singapore

Malacca

Malacca is situated on the western coast of the peminsula betrveen Singapore Malacea and Penang, about 120 miles from the former and 240 from the latter. and Position and consists of a strip of territory about 42 miles in length, and from 8 to area. $24 \frac{1}{2}$ mules in breadth The princpal town, called Malacca, is $2^{\circ} 10^{\prime} \mathrm{N}$ lat and $102^{\circ} 14^{\prime} \mathrm{E}$ long
Malacca is one of the oldest European settlements in the East, having been History taken possession of by the Portuguese under Albuquerque in 1511, and held by them till 1641, when the Datch, after frequent attempts, were successful in driving out the Portuguese The settlement remaned under the Goiernment of the Dutch till 1795, when it was taken possession of by the English, and held by them tull 1818, at which date it was restored to the Dutch, and finally fell into our hands in pursuance of the treaty with Holland, the 440609

17th March 1824, in exchange for the East Inda Company's settlement at Bencoolen, on the west coast of Sumatra. By that treaty it was arranged that the Dutch should not again meddle with affars or have any sertlement on the Malayan peninsula, the Brtush Government agreemg at the same tme to leare Sumatra to the Dutch.

Appozntment of Britush resadents at nstare courts.

Anqusition of territory on mamiand.

Disturbances 10 nature states.

Therr sup-
presson.
Government.

Populanou.

How made up.

Census of 187.

Owng to the anarchy preraling in some states of the Malay pennsula, and
especally in Perak, which has long been a source of disquet to the commonity of the settiements, and a hindrance to the prosperity of British traders, endeavours were made in 1874 to promde a remedy by stationing Brtsis residents in Perak and Salengore, and in the small state of Sungen Cjong, to advise their rulers in regard to the collection of revenue and general admimstration. A strip of land was also acqured south of Province Wellesley, about 10 miles broad, beyond the Krean river, as well as a small terntory on the manland opposite the island of Pulo Dinding, to enable the British authonties to keep order in that part of the peninsula Disturbances broke out in 18:5 in the states in question, and Mr. Birch, the British Resident in Perak, was murdered, but energetic measures beng taken to quell the outbreaks, they were speedily suppressed and the principal delinquents brought to justice.
The Gorernment is adminstered by a Gorernor, assisted by an Executive and a Legslative Councll; the latter body conssisting of 11 official members and 6 unofficial nommated members
In Penang and Prornce Wellesley the Malay race predominates. The Chmese rank next, and constrtute about one-fourth of the whole population, the remainder being made up of Europeans and therr descendants, natires of the Madras and Coromandel coasts (called Chulahs and Klings), Burmese, Stamese, and Bengalees. In Malacea the Malays form a still larger proportion of the population, their nnmbers amounting to more than three-fourths of the whole. Here also the Chmese are found \mathbf{n} great numbers, forming about a surth of the inhabitante; Europeans and their descendants, nature-born Portuguese, natives of Indas and Arabs, making up the rest. The population of Singapore is more raned in its composituon, the Chinese being far the most numerous section of the inhabitants.
The census of 1871 gires the following results :-

The following are the chuef statistics of the census :-

	Europeans	Malars	Chinese.	Satives of Inda.
Smgapore	- 904	19,250	54.120	13,30)
Penang	- 513	20,110	22,720	7,100
Provnce Wellesley	- 96	51,100	14,000	10,000
Malacca	- 47	57,474	13,456	3,000
Totals	- 1,560	147,934	$\underline{104,296}$	35,400

These numbers are not considered to be reliable as regards the Chinese population, as they are unwilling to give correct returns, fearing that a poll tax would follow the census It is estamated that the numbers giren might be increased by 20 per cent, which would gire a close approxmation to the actual Chunese population.
The entire popuistion in 1866 was $2 ; 3,000$, showing an increase in fire years, accordng to the publushed returns, of 34,951 , or nearly 13 per cent
The principal regetable productions are gambier and pepper in Singapore; taproca, chetly in Malsces and Prorince Wellealey; nce in Prornce Wellesley and Malacea; sugar and cocoa-nuts in Prorince Wellesley An attempt has also been made in the province, with partial success, to culirate the tea plant.
Trade
Returns of
Chunese
unrelasble.

Increase sunce 1560.

Yegetable productrons.

When Malacca was taken possession of by the Portuguese in 1511 it was one of the grand entrepoits for the commerce of the East, but as the Portuguese pushed their operations eastward in the Archupelago and neighbouring
countries the trade of Malacea gradually declmed till the establishment of Penang in 1786, when it almost ceased It has since been a place of no commercial importance, but possessing great undeveloped agricultural resources Penang in its turn dechned in importance after Singapore was established, Centres at as the greater part of the extenswe eastern trade centred in the new settlement, Penang and and Penang came to depend chiefly on the local trade, whuch has largely Singapore, increased in consequence of the opening out of extensive tin mines in Laroot, Salengore, and some places on the coast of Sumatra

The Strats ports are wholly free from duties on mports or exports, nor No duntes on are tonnage dues levied for general purposes The only tax to which shpping exports or enterng the port is hable consists of a very moderate one of about $1 \frac{1}{2} d$ per Tonnage dues register ton for the maintenance of certain lighthouses necessary for the safe for maintenance navigation of the Straits.

The chief exports are tin, which, as already mentioned, is found in large Chef exports quantities on the Malay peninsula and in the island of Sumatra, sugar, pepper, nutmegs, mace, sago, tapioca, rice, buffalo hides and horns, rattans, gutta-percha, india-rubber, gambier, gum, coffee, dye stuffs, tobacco, \&c Most of these articles are from countries outside the British possessions, the Few articles the chief productions of which have been enumerated above produce of the
settlements.
The following table affords a comparison between the united exports and comparson of imports in the three settlements in the years 1859-60 and 1875... extent of trade

	1859-60.		1875.
	£)
Singapore	- 10,371,300	-	18,142,559
Penang	3,530,000	-	7,518,889
Malacea	920,000	-	1,033,539
Totals	- 14,821,300	-	26,694,687

There has been also a steady increase in the number and tonnage of the Shipping visiting vessels which have arnved at the settlements during the three years ending the settlemest. 1875, as may be seen by a comparison of the following figures -

No. of Vessels arrived			
$1873-$	-	-	
$1874-$	-	$-8,761$	-
$1875-855,984$			
	-	$-10,473$	-

The sources of revenue are the same in all the settlements. They consist Revenue and chiefly of a stamp duty, of the monopolies of preparing and retailing opuum expenditure for smoking, and of the sale of spints and other exciseable articles, which are farmed out to prosate individuals. The land revenue, derived from sales of publec lands, quit-rents, tenths, and fees on transfer, writh judicial fines and fees, the post office, light dues, and a few miscellaneous items, make up the remaining sources from which revenue is obtained

The following is a statement of revenue and expenditure for the years 1868 , 1874, and 1875 -

There is regular weekly communication between the Straits Settlements, Means of comEngland and Ceylon by the mall steamers of the Messageries Maritimes muncation with Company from Singapore nâ Marseilles, average duration of voyage 30 days, England and and by the Peninsula and Oriental Company's steamers from Penang vấ Brindisi, duration of voyage 29 days Also with Batavia by the steamers of Batava. the Messageries Maritumes and Netherlands Indıa Steam Navigation Company, time about three days, and with Hong Kong by the Peninsula and Oriental and Hong Kong Messageries Maritimes mal steamers from Singapore, tume six to mine days,

Culcutta accordng to the monsoon Calcutta may be reached in about sux days from Penang by the opium steamers, saling once a month, and in about 13 days by the fortnightly contract steamers of the British Indis Company, which sal fortughtly from the same place and touch at Rangoon and other ports.

There are also two distinct services to Australia, viz, by the steamers of the Eastern and Australian Steam Nangation Company to Brisbane (20 days) and Sydney nâ Torres Straits; by Peninsula and Onental steamers to Melbourne viâ Gallé, tıme 27 to 30 days. These are both monthly services

The above account of the Strants Settlements is mainly taken from the Colomal Office Last for 1877

P sugnfies Award for Exhibit.

Mantractures, Ant, Agriculture

Silig and Silk Fabrics
Meyer, Behn, \& Co, Singapore
a Silk floss from Rungpore
b Djed sulk from Rungpore
e Silk thread from Bengal, Gyah, and Rungpore
d Silk lace from Jubbulpore
Photography
Meyer, Behn, \& Co , Sungapore-Photographic views

Arboriccltcre and Forest Prodecrs

Meyer, Behn, \& Co, Singapore
a Woods from Singapore, Madras, Bombay, and Nagpore
b Dye-woods, galls, bark, \&e
Pr Gutta-percha

Pomolegy

Meyer, Behn, \& Co , Singapore -Nuts
Agricultcral Products
Meyer, Behn, \& Co, Singapore
a. Grass
b. Tea, coffee, spices, \&c
c Seeds
Textile Scbstances of Vegetable or Antmal Origin.
Meyer, Behn, \& Co, Singapore
a. Cotton boll, seed, and tlahe
b Hemp and fibres
c Wool
d Cocoon silk

TRINIDAD.

Philadelphia International Exhibition, 1876.

Manager at Trinidad of the Collection, Sylvester Devenish, Esq., Surveyor General of the Colony.
\qquad
Superintended at Philadelphia by the British
Executive Commissioners

Agents, Messrs. Peter Wright \& Sons, 307, Walnut Street, Philadelphia.

Report on the Island of Trinidad, W.I, princppally in connection with the Colony's contribution to some of the Industrial Exhibitions held in Europe and elsewhere (by Sylvester Devemsh, Surveyor General of the Colony).
The object of this very brief and meomplete notice is not to enter into any Prelmmary of the details, descriptive and statistical, which alone could convey a farr remarks. knowledge of this nateresting Colony

It as smply, after a very short outline of ats geographical features and commercial progress, to relate in a most succunct manner, the part it has taken in some of the Industrial Exhibitions held abroad, as well as to give a cursory glance of its own local shows

For any information relating to 1 ts crops, commerce, Indıan immigration (it has been called "the paradise of coolzes") and other material items of its growing importance, reference can best be made to the interesting report of Mr Wm. Robinson (now Governor of the Bahamas), on the British Colonies represented at the Vienna Exhibition of 1873, and to Mr Guppy's very complete and valuable "Trinidad Official and Commercial Register and "Almanack for the year $1877^{7 \prime}$ just published by Asher \& Co, London

The Island of 'Trindad, discovered by Columbus on his third voyage, on the Position 31 st July 1498 , is situated between $10^{\circ} 2^{\prime} 30^{\prime \prime}$ and $10^{\circ} 50^{\prime} 20^{\prime \prime}$ lat North, and $60^{\circ} 56^{\prime} 35^{\prime \prime}$ and $61^{\circ} 59^{\prime} 30^{\prime \prime}$ long West of Greenwnch.

It is almost of a rectangular form, nearly North and South, and East and Form West, with two promontories projecting from ats N.W. and S W. corners, like two arms hugging up the Gulf of Paria and stretching out westward, as If trying to reumte the sland to its parent the Southern American Continent, from which it seems to have been torn off in ages gone by.

It was ceded by Spain to Great Britain in 1802.
Its extreme length is about, on the North 534, and on the South 65 mules, Dmensions. and its breadth, Eastward 484, and Westward 492 miles, and its area about 1,122,880 acres, of which about 276,000 have been alenated, but only about 92,562 are in cultivation

The position of this 1sland, opposite the Delta of the Orinoco, from which Capacities for its S W point is only a few mules distant, renders it a natural "entrepôt"" commerce for the commerce of the western and interior parts of the neighbounng continent, and ats beautiful and placid gulf, which, it has been said, could "contain all the fleets of the world" is so completely out of the range of hurricanes, as to offer the safest anchorage at all seasons of the year

Bessdes almost daily saung commumcations with Venezuela, there are Means of com. now two Venezuelan steamers plying regularly once or twice monthly, venezuelan and between the asland and that republic, one going up the Orinoco, as far as one French and Culdad Bolivas, and the other touching at different ports on the eastern and steamers northern coasts, as far as Laguayara, as do also monthly, one French and two Englush steamers

The sonl of Trimdad is generally exceedingly rich and fertile, and well Soul adapted to the cultrvation of the sugar cane, cacas, coffee, cotton, coco-nuts and tropical provisions, fruits, and spices

The island abounds in excellent timber suitable for ship building, and all Vegetable and sorts of "wood work," in plants yielding fibres, olls, gums, resins, and raw mineral producmaterials for paper making, and contains also deposits of coals, pitch, mineral olls, \&c, \&c

A most promising deposit or mine of very superior glance pitch, valued at
$E 0 l$ a ton has just been discovered in the district of Montserrat
Mr Guppy, in his Trimidad Alinanack for the year 1877, writes as follows - Statistcs of
"In 1797 the population was 17,718 In 1838, it had increased to 39,328 , population.
"c and by the census of 1871, it appesred to be 109,638 , it may now (1876) be
"reckoned at 120,000 , the trade and production of the island have increased Trade
" in a greater ratio than its population, and of late years the increase has been
" more rapid than formerly The average annual export of sugar for the
"three years $1839,1840,1841$, was $26,856,600 \mathrm{lbs}$, and the average annual
" export for the three years $1871,1872,1873$, was about $118,930,000 \mathrm{lba}$.
" The arerage export of cacao for the years $1841,1842,1843$, was $2,810,0001 \mathrm{lbs}$,,
" whilst for the Jears $1871,1872,1873$, it was at the rate of $\overline{7}, 615,010 \mathrm{lbs}$
" annually.
"The increase in the trade of the island may be perceived by the folloning
" figures:-

	Value of Tmports.	Value of Exports.
	\&	£
"1850.	- 554,534	387999.
" 1875.	- 1,507,794	1,65,082"

With all its natural resources of wealth, bowever, the Colony is far from getting an adequate return therefrom, owng to several causes, the princupal of which are to be found m the general apathy and want of enterprisung spint almost mherent in the people of tropical climates (as I hare already stated in my official reports on the woods of Trmidad), coupled with a sort of menncibly exclusive adherence to the old principal staples of the Colony, and, perhaps, a general want, if not of capital, at least of confidence in investing in new industres.
In 1863, two plantations of ennchons were established in the mountans of Trmidad, but although the one in the heights of Arpo (one of the localites chosen) seemed at first likely to succeed, the young trees having rapidly grown to a height of over six feet, they eventually all ded amay, probably from want of proper attendance
The apathy alluded to abore has unfortunately hutherto been but too apparent in the general lukewarmness erinced in getting the Colony creditably represented at the different International Exhibitions held in Europe and elsermere since the year 1851 .
In 1851, under the government of Lord Harris, the contribution of Trimdad to the London Exhubition consisted of a ferw specimens of minerals, five or six different sorts of animals, regetable and mineral ouls, tortoise shells, spices, fibres, sugar, rice, cacao, chocolste, coffee, cotton, tobacco, gums and resms, medicinal products, tanning and dyeing materials, woods for ornamental and other purposes, and a few ornamental baskets and seeds, \&c.
In 1854 the Colony sent a fer artucles to the Extibition held at Porto Ruco, but nothung to the Paris display of 1855.
At the London Exhibition of 1862, an effort was made (rewarded by seven medals and one honourable mention), to respond to the government cali on the Colony, and a faur collection was forwarded, consisting of mineral, chemical, and pharmaceutical products, regetable food, anmal and regetable substances used in manufactures, woods, \&e
At the Paris Exhbition of 1867, the contribution (which carried only two medals and one honourable mention), was sadly mssignticant, and consisted merely of a collection of the publications and newspapers printed in the Colony in 1866; a series of photographs of the Botanc Gardens; specimens of raw pitch or asphalt, and of boiled pitch or aspoalt spuré; 2 collections of wroods, one of 75 specimens by Mr H. Preston, the Colonisl Botanist, and one of 222 by myself; a few bottles of bay rum and of scented bair oll, and one sample of cacao
At the Vienna Exhibition of 1873 , the Colony was, if possible, still worse represented, having sent only a few samples of Balata gum, cacao, asphalt, uron ore, and a collection of woods; howerer, one medal was awarded to the woods, and an honourable mention to the cacao.
The scantiness of the articles sent from the Colony to the Phuladelpha

Contrabutions to
Philadelpha
Exhubition. Exhibition of this year (1876) sadly shows, once more, that no impetus has yet been successfully given to the public spirit of the Colonsts, and that it seems almost mpossable to amaken in them any interest beyond that attached to the old staples of sugar, cacao, and coffee
The contribution to this Exhbition, so discreditable to a Colony abounding in many sources of products, only comprised some samples of Trindad gutta percha, cacao, "resme," and molasses, sugars, birters, carass, and cocoa nut olls. manooc and plantan flours, cassada starch, a few walhing sticks, and baskets and other articles of mecker manufacture, and a collection of woods.

The "insouciance" so lamentably conspicuous in the Colonsts for the Local Exilubrdevelopment and display, at Exhibitions abroad, of the many resources of ${ }^{\text {tions }}$ this rich and beautful island, has been perhaps still more pamfully apparent at all the local shows held since 1851
In that year, the governor, Lord Harris, who ever had at heart the welfare and progress of the Colony, mstrituted, at Port of Span, the first Iocal Industrial Exhibition, hoping that it might be the means of arousing the sleeping energy of the people, and thereby promoting the general prosperity of the 1sland
The interest taken by his Lordship seemed at first to have succeeded in stirring up the country, but it soon became evident that its effirct was not to -be of long duration

Since 1851, twelve Exhibitions have taken place at Port of Spain, and two in one of the richest country districts (Couva), but they have certainly not realized the expectations founded on them, and have on the contrary discouragingly dwindled away to comparative insignuficance

One perceptible benefit however has sprung from them in the improvement Effect on umof stock, particularly horses and horned cattle, and for this almost solitary provement of boon, the Colony must ever be thankful to the founder of those shows
In 1871, the Governor, Mr (now Sir James) Longden, struck with the unprofitable results obtaned from our local Exhibitions, suggested the holding, in Trinidad, of an Intercolonal Exhibition open to all the West Indıa Islands, Venezuela, and the Colonies of Guiana, and, in reply to a dispatch (2nd December 1871) from His Excellency, received the expression of the Earl of Kımberley's concurrence in the desirableness of such an Exhibition Somehow or other however the project fell through, and no more was thought of t t.

Whether the want of enterprise, so characteristic of the people here, is due Want of mdivito the diversity of races and nationalities forming our population, and the dual anterprise consequent absence of unity of purpose, or to a sort of natural moral sluggishness, a "lansser aller" resulting from the climate and the easy living here, it is unfortunately clear that the "vis inertie" opposed to all attempts at starting any new industrial movement in Trinidad, threatens long to delay the progress of the Colony
It is, perhaps, not out of place to observe here, that no step in that direction can be expected to take place in Trimidad unless to a certam extent direction can be expected to take place in Trimdad unless to a certam extent support to
suggested or intiated by the Government, or at least strongly backed by it, render proeets and that the earnestness of the colomists in all such matters depends almost successful entrely on the unterest taken theren by the Governor himself.

The recently completed railway between Port of Spain and Arnnca, a Introductiom of distance of only 16 mules, has, beyond the most sangume expectations, raulways suddenly rassed so unhoped for a taste for travelling in this country of generally slow locomotion, that during the month of August last, upwards of 26,000 passengers have travelled by it

It would be too long to point out here, what new branches of industry might be successfully and payingly opened in this Colony, but I may, in conclusion, express a hope that the tume is not far distant when under a sturring and progressive administration, a true public spint, worthy of this rich and nature favoured Colony, wll cast off the trammels of an obsolete routine, and make determined efforts to attain to the bright future which is doubtless in store for Trimidad

Trimdad,

(Signed) Sylvester Devenish, Surveyor General.

[^22]
Catalogee of Articles disphyed at the Philadelphia Interiational Exhbitios, 1876, by the Gorerrinest of Tarsidad.
 P. signofies Award to Exhibit.

[The Gorernment of Tnmdad receired also an award for its collective exhibrt]

AS FOLLON:

Conumon Sames	Botameal Names.	Spectic Grantr.	Average Drameter of Trunk of full srown Trees.
Swamp Mihoe -	Pterocarpus Rohrin V. .-	"59x	2 feer 6 muches
White Sarnnette	Lonchocarpus latufolins Kth.".	\cdots	1 foot 6
Tellow do.	H \% nolsceus, Kith.		
Locnst or Courbaril	Hrmenea courband, L. -	-979	5 feet.
Guatemare - -	Mrrospermun frutescens, Jear	"904)	3 \%
Mora - -	Mors excelisa, Beath.	10	
furple heart -	- Ingrais span, willi ${ }_{\text {- }}$ -	二	16 frot 6 unches
Lasmowd	Hematoxylon campeachianum	-909	1 fuos.
Queenwoud	Banhinis uneula J 4ma.	940	
Angelune	Andirs mermis, Kth *	- 90	\$fert
Srinkwoud	Acacla tertmesa. Willd.	-	1 finct
Cusias	Cassia spectabulis, DC. ${ }^{-}$	-64	\% fext.
Toke	prpisdenis peregnna Benth.	13	
Gatare	Mrmusops elobusa Grert.	1040	
Srurapple Ssoodula	- Chrrsophylumu camio, ${ }^{\text {a }}$	-30)	1 foot 6 inehes y fert.
Galba -	- Citophrihum culsbar Jscq.	-63	
Mammee Sapote	Mammes Americans, In	" ${ }^{4}$	
Celar -	- Ceirela odornta L. -	* ${ }^{\prime \prime}$	
Curp or Crapaud	Carspa guasinensis Anbl.	-6y	
Mahoengr -	- Swersenia Mahogan, I.	- 0^{60}	
Black Pou	Tecoms serratfotha Mon.	1*35	8 feet.
Tellow Puat	- spectabuns Pl		
Chasrwod	* leucurrlon, Mart..	-	Ifeet 6 maches.
Lexird or Fiddlewood	Fitex divyresias Su.	7\%	
Fuddewood	- Crtharesthom quadrangulare	-4	
	Jecarsinas felicutis	-670	\underline{z} feot 6 unches
Texk (East Indian) Tapane	- Iectora grinus, L .	7×3	
Mrboe - -	Stereulis carives. R. Br.	516	feet 6 unches
Almond (Trovical)	- Terminalia Carapa -	(int	\%
Mangrore-Hed	Rhuzophora Mancte, L.	1003	\pm
llo -minte	- Laxuncularm racemosa St-Grise.	जsil	
Lechero -	- Saprum aucuparrum Jsca	4	1 foots.
Oinmer or Ohrewood	- Chunema olorata Porr	- 7	4 fert.
Pmento	Mrrcas acmas rar pumentodes, Gnise.	\cdots	1 fout.
Caruto *	- Crompa Ameriesins L	87	1 \% 6 anches
Fustic or Drewrood -	Maclura Xanthoxylon, Endl.	$\cdots 11$	- feet.
Laturer Commelle, A, B, and C	- Oreodaphue strumiesa -	*515	1 fuxt 6 amches.
10. Blanc	- letuorslon, Gr	An7	$1 \% 6 \%$
Whate Crpre	Condia sulcta, DC C-	${ }_{-501}$	- fret.
Fint Copre	- geramanimus D C.	53.4	
Corkwood	Ohrowa lasonus Sn	-171	
Pudimerpas		\cdots	
Guvterare	- Lecrthis nianmun Grie. .	N9	
Ina	- Gustarn augusra L.	-	1 frot 6 mehes
Cucumber caliskash	- Crescenia cucurbituna, Im	-	1 finot.
Caishash	* curete $L_{\text {a }}$ *	N	
Gisponte	- Esenlecha atrenunta, Crnse.	11 m	6 minhes
Scap-biary	- Saplndus saponarsa, I.	7-4	\$fert.
Guava	- Psidiam Guara l. -	6iso	1 fund.
Incense wood	Amprss triutatis -	-	\geq feet.
Wild tingrn	Bactrss cutia Crent	二	
Pirijo -	- Gumbemua speckes Mart.		
Mauntan cablage	Euterpe Olerruah Hyry	915	
Lsacemood	- Roilunim Sreber, ADC.	-	1 fow
- -	- Licania Sp.	-	
Acons	- Sideroxtloa mastuchodron, Jmeq	103	1.6 unchet

7 Samples of Woods* (235) - $\quad-\quad \begin{aligned} & \text { Syl Devenish, Esq, } \\ & \begin{array}{c}\text { Surveyor }- \text { General, } \\ \text { Trindad }\end{array}\end{aligned}$
AS POLLOW -

Common Names			Scientufic Names.	Fumiles
Englis'	French	Spanash		
- - -	Surette des grands bois Tamarinier Tapaiza Tendre a Callou Mahaut de Londres Bois Mulatre *	Mureched man- tequero Tamaimdo Tapanare $=$ Charo - Palo Mulato, o clavellino	Byrsonma spicata Tamarindus indica Stillaginella Mimosa lithoxylum vel P1thecolobium filleffolum Thespesia populnea -	Malpughaces Lecuminosese
Trmarnd Tapans				
				Mumosex
				Malvacez.
Wuld Tamarind -			Pentaclethra, Filamentosa	Legummosere.
White Mangrove -	Mangle blanc -		Laguncularia racemosa	Verbenacex
Yoke	Yoke ${ }^{\text {a }}$	Yopo	Astronum obliquum	Leguminoseæ
Cashew tree	Pommerd'Acajou	Merey -	Anacarduma cecidentale	Anacarduacese
Yellow Sanders	L'Epmeux -	Mapurito, o Espina de boloo	Xanthoxylum clava Herculis	Xanthoxylacere.
Surinam or Cam yenne Cherry	Cerister de Cayenue		Eugensa Mitchellı -	Myrtacea
Mangotree -	Mangrotier	Mango	Mangufera indica	Terebinthacea
			Jacaranda cerulea vel fehc follan.*	Bymmacea
	Guatamare	Gnatamare	Myrospermum frutescens	Leguminoser
Guenepe	Guenepe	Mico	Melicocca Bujuga	Sapindacem
Avocado pear	Avocatier	Aguacate -	Persea gratissima	Laurinem
W ild Angelin	Angelin de Grands Bois	Lombricero del Monte	Diplotropis brachypetal	Leguminoses
Scotch friend	Matapalo	Matapalo	Ficus	Artocarpese
Ahee	Ris de Veau		Akeesia (Bluglua sapıda)*	Sapmadacea
Mammee sapote	Sxpote *	Mames Colorado	Lucuma Mammosa	Sapotacex
Bitter asla *	Quassia -		Quassia Amara	Smarubaces
Rough leaf	Feulle rude	Claparro	Curatella Amerıcans	D) ${ }^{\text {dllemacese }}$
Bloud wood	Bois Sang	Palo de Sangre	Croton gossypifolium	Euphorbincex !
Sandbox (white) -	Sablier blanc	Javilo Blanco -	Hura Crepitans	Id
Contrevent	Contrevent		Lucuma multifors	Sapotacere
Frangipani	Franglpamer	Aleluya	Plumieria	Apocynacez
Cassia (long)	Cassier puant -		Cassia brasiliensis	Leguminose
$\bigcirc{ }^{*}$ -	Quashy-Quasha		Thevetia nerufolia	Apocynaces
Malacca apple	Pommier Mala-	- -	Eugenia Malaccensis*	Myrtaceas
Pandanus -	pandane		Pandanus candelabrum*	Pandanacea.
Bermuda cedor	Cedre des Bermudes	- - -	Jumperus Bermudiana*	Coniferea
Fiddle wood	Boıs lézard	Totumo Guaray	Fitex capitata	Verbenacere
Grugra	Grougrou	Corozo	Acrocima sclerocarpa	Paluacere
Pois doux	Pois doux	Guámo	Inga vera - -	Mimosacede
Mabolo	Mabolo	Mabolo	Drospyros Mabolo	Ebenacere
	Porier de la		Prsonia sp ${ }^{-}{ }^{\text {- }}$	Nvetagme
White wood	Porier de la Martinique	Roble blanco	Tecoma pentaphylla*	Bignomacea
	Bos Canarı	Cauta	Firtella silicea	Chrysololqneze
Royoc	Royoc	Royoc -	Morinda - -	Rubuacese
Beef wood	Aguatapana	Aguapatana	Rhopala Montana	Proteacex
Grugru	Grugru -	Corozo -	Astrocaryum - . -	Palmacea
Incense tree	Bols d'encens	Curcucay	Ieica he ptaphylla vel Amyris Trimitenvis	Amyrider
Star Apple	Caumitier	Caminto	Chry sophvilum caimito -	Srpotacer
Noyau -	Noyau " *		Prunus occrdentalis	Drupacea
Sea side almond -	Amandier du bord de mel	Almendron de playa	Terminalia sp	Combretacea
	Ponner -			d
Black Mangrovo -	Pangle nour	Mangle Jara	Avicenma nitida	Legummosa
	Poss doux marron			Leguminos
	Iacque des Grands Bols	- "	Chrysoboladus pellocarpus -	ry sobolanexe.
	Bors Carabe -	Cometure -	Campomanesia aromatica	Mrrtacec
Stave wood	$\begin{aligned} & \text { Rasmer des } \\ & \text { Grand Bols } \end{aligned}$	Uvero del monte	Coccoloba latifolia	Polygonacea
Wald muimeg	Muscadier Sauvage	- -	Rheedra lateriflora -	Guttifera
Garlı pear	Tocque -	Toco *	Cratera granndra	Capparidacea
Cocorite -	Cocorite	Cucurito	Maxmulnans insigmis	Palmaceae
Euse Apple	Pomine Rose	Poma rosa	Jambosa Fulzarmo -	Mivrtacere
	Bourx *		Chry sophth lhm gitbrum	Sapotacer
Mountan Cabbage	Palmiste	Chaguaramas	Oreodoxa 1cras -	Palmacea
		Pata de Vaca	Bauhına varıegata Coidı sukata	Leguminosem.
Sarana Cyp	Prp Sorana	Alatrique	Calda sukata	Cordatase
	Surette -		Cicca dastucha	Euphorb acee

- Not mdigenous

Common Names.			Screntric Names	Famules
Englsh	French	Spansh		
Mawbee stıck Sugar apple Wild coffee		Cupey - -MamonclloYema de huevoBjaguaraBat	Clusia rosea - Ilex Macoucoua Casearia Colubrina reclunata Anona-fquamosa Coffeasp Molliredia Parmium Campestre Capparis Cynophallophora Olyganthus Condensata Tecoma Stans Capparis jamaicensis Croton sp	Clusiacea Ihcineas Samydaceæ
				Rhamnex
		Anon del Monte		Anonacea
				Monum
- - -		Cauturo -		Chrysobolanez.
				Ebenaceæ
- " -				Cappardac
				Compositex
Olve wrod		$\begin{array}{lll} \square & \vdots & \vdots \\ : & \vdots & \end{array}$		Capprial
				Euphorbiac
				yrtacex
				Samydacese
		Algarrobo Dindivi Guallulo $:$ Ban		Polygonese Cactacez Leguminoseæ. Pıperacea
Cactus	CactusDividivaBons mal d'esto"mac		Cactus heptagonus	
Dividin			Crasalpina Coriama -	
		Barbasco Inagua Sardno blanco	Jacquina armillans Micoma prosima	Myrsineze Myrtaces ${ }^{\text {? }}$ Melastomacea. Urtacaceæ
	- - -			
	$\begin{aligned} & \text { Batard } \text { bons } \\ & \text { 'lorme } \end{aligned}$		Spoma	
		$\begin{aligned} & \text { Maraquire } \\ & \text { Aquirire } \end{aligned}$	Ratonia Americana - -	Sapindaceze Mehacea Cordiacex
			${ }^{\text {cords }}$ - ${ }^{\text {c }}$ (red flowers)* -	
	Avoca		Cordas sp (red flowers) * Ruprechtia sp	Cordacea Polygonacez
	Moricyp rouge	Cereza ${ }^{-}$-	Pholacilia trifoluta - -	Melıaceæ
(from Chood careo Island)				
		- ". -	Aspidosperma Solanum Callicarpifolum	,
	Bois lesserre	Palo moroco Cuchape	Coccoloba sp	
	Rasmer			-
			Calliandra sp Artocarpus integrifolia*	
${ }_{\text {Jackwood }}$ Chigoewood	Jacquier -	Mangle dulce 0 de verasco		
	Bors merassa		Bravaisis flioribunda Tabernaemontana .	
upple	Luane persal			- Apocyn
upple	Lrame persa	Bejuco Mulato -	Lerrana sp ${ }^{-}{ }^{-}$	Sapindaceæ. Lythracea
		$\left.\begin{array}{lll} : & \vdots & \vdots \\ : & \vdots \end{array} \right\rvert\,$	$\begin{aligned} & \text { Citriosma } \\ & \text { Coutarea speciosa } \end{aligned}=$	Monımaceex
	Qunquina pays			Cuchonacea Id
		$\because \quad . \quad \square$	Mangifera sp Ebenacea sp, from Carom \& Chasumas	Melastomaceer.
$\xrightarrow{\text { Mangotin }}$	Mangotine	Mangotina :		Terebinthacere. Ebenaceæ
		Quebra hacha-Bucare or madredel cacao		Leguminosex Paphionacex.
Immortal tree	Immortelle		$\begin{aligned} & \text { Copapfera bymimifola * } \\ & \text { Erythrina } \end{aligned}$	
			Posoqueria Longiflora Alchorneo	Cunchonacer.
Timit	Timite	Timi	Manıcara sacci Casuarina Equis	Palmacex Equisetacese

* Not andugenous

 pared in 1866
They are to be regarded as of two classes -
First.-Those obtaned from the bark of the plant, as in hemp, flax, sce, and
Second.-Those obtaned from the substance of the leaves or leafstalks, as in "Manilla," hemp, \&c
Nos from 1 to 11 , and No 20 belong to the first class-the first four being obtaned from the bark of the entire plant, $5,6,7,8$, and 20 are obtaned from the younger branches, and No 9 , from the trunk of the tree

Nos 12 to 19 belong to the second-12, 13, 14, 15, and 16 being obtaned from the leafstalks (forming the stem in the plaitam), and 17, 18, and 19 being obtaned from the leaves

The colour and strength of the fibres depend much on the manner of prepanng them, but with very ordmary care they can be brought out of extraordinary strength and of snowy white, or golden yellow, by simple maceration

The size, strength and colour of the fibre appear not to vary in brauches or stems of different ages in Nos 1 to 4, but in Nos 5 to 11 these characters vary in growths of different ages, being fine and silk-hike in the younger, and coarse, and easily separable in plats as "bass" in the older branches and stems In No 9, the barik of the young branches reaches a maxmum degree of coarseness and 15 scarcely useful, but the bark of the matured branch or trunk furnishes an exceedingly fine and
abundant " bass," mell adapted for any purpose to which such an article is usually apphed
Of the foregong, Nos 1 to 6 , and $9,11,17$, anl 20 are madigenous to Trimalad, and very hardy and abundant The others are introduced plants, but all are completely naturalised, some, such as the vanety of Musa Paradisiaca known here as the "Jứbee Plantan"" and Sansievera, hare become mld plants

> H Prestoe,

Government Botaurst

(Sugar (1 box) manufactured at Usine (Central Fac-tory) St Madelane, Tramdad, W I, the property of the Colomal Company, Limited, 16, Leadenhall Street, London Manutactured drect fiom canes cut on the same day The juice is first treated with temper lime in the claritiers, subsided, passed through

Colonial Company's Agency, Trıudad animal charcoal, then evaporated to syrup in the "trple effet," passed a second time through the charcoal boiled to sugar in racuum pan, and finally cured in Weston's (American) Patent Centritugals Molasses sugar (l box) manufactured at the samue "Usine" from the molasses obtaned from the above The molasses is pumped as fast as it proceeds from the centrifugals into tanks, where it is heated and slightly reduced in density by means of open steam, and is then boled in vacuum pans and cured in cen"Angrostura Bitters," manufactured by Dr J G SieG Sie- $\mathrm{Dr}_{\text {Dr }}$ Siegert, Port-ot

Remarks on the Collection of Natural Woods:

Thus collectson of Trinidad woods meludes nearly all wheh, bemg known and considered of sufficient value, are used in the general building, carpentering, and cabinet-making in the island. It includes also several excellent woods which, being either unknown or not having been put to uses for which they are adapted, are considered by the Trimdad woodmen and carpenters as of no value. In this latter class may be mentioned Mahoe, Savonettes, Caruto, Incense-wood, \&c On the other hand there are a ferv excellent woods occasionally used in different parts of the asland which are not represented in the collection, such as "Roble,","Black Olivier," "Copaivy," and one or two other kinds of "purple heart"" Several kinds of hard wood yelded by trees of small size and used by the peasantry in framing their "trash" houses are also not uncluded. The mahogany, teak, and jacaranda are not indigenous, but are quite naturalized.

The collection might have been increased to the extent of 20 to 25 examples representing timber trees of large suze and first class qualuty which are totally ugnored by the woodmen of the colony, either on the ground of hardness, uregularity of gram, or non-durability of the wood.

Many of the samples in this collection are not large enough to afford any idea of the grand dumensions commonly attamed by their species, or, andeed, by the majority of our fine timber trees. The best specimens even, such as those of the cedar, mahogany, angeline, fustic, \&c, are deficient in this respect, and therefore particular attention is directed to the column of dimensions commonly attaned, introduced mto the list in the Catalogue
The large extent of unbroken forest in Trinidad and the variety and abundance of useful tumber as well as of other valuable products therem, warrant further remark more durectly relating thereto

The character of Trindad forest vegetation is generally mixed, and, except in the swamps and natural Savannas-of comparatively small area, is unbroken In some districts a certain species, or two or three specles, may largely predominate, but the gregarious character, so common in temperate regions, is exbibited here only in the gigantic Mora Tbis species abounds on the south-west corner of the island, and thence in breaks of many square mules stretching across the country north-eastward The other trees which most nearly become gregarious are the Balatas, Caraps, and various species of Ficts. The Balatas are generally confined to the sandy or gravelly districts in the flat country, and the lower stony hills of the eastern portion of the northern range The Caraps are generally confined to districts where the sonl $1 s$ either very good or well watered, and occur most abundantly in the neighbourhood of or mixed with the Moras Many species of Ficus are common everywhete, but toward the centre of the 1sland they become almost gregarious and assume dimensions to mival the Moras This wood-most remarkable in several species for the extreme density and toughness of grain-is never employed. The india-rubber and gutta-percha trees are not utilized as they might be, although they could be made to yreld their products in almost mealculable quantrity.
The trees which may be ranked next to the more or less gregarious, and which with them may be considered trees of the first class, are the Locusts, Coparyys, Cedars, Olivers, and Galbas, although never gregarious, these occur so plentifully in some districts as to be "the commonest trees of the quarter"
The Moras (if of any size seldom touched by the axe), Locusts, Ohviers, and Copainys (one of the "purple hearts") are often so gigantic as to be beyond the power of the woodman to reduce, except by fire
The most important of the timber trees which are alluded to in the foregoing as unappreciated, and therefore unapplied, are the myrtles, commonly known, partacularly in Jamaica, as "Zebra and Leopard" woods They abound in all parts of the sland, and rank with timber trees of second size, such as Caraps, Pou's, Acomas, \&c, and are almost always well grown and sound. The
formation of the trunk is unique, the influence of the contortion of the gran set up in the trunk at the very infancy of the tree by twig branches which at length fall and are superceded in course of further developement, continues and mereases with age, the result is the most beautiful and varied gram, in exceedingly strong and dense wood

Next to these may be mentioned the iron-woods (Chrysobalanece) of which an example. was shown at the Philadelphaa Exhibition Several species, like the Parinari campestre and Licania silicia, in respect of size rank with the trees of the first class These woods too, are largely shlceous, and much on this account, as well as from the unform density of the wood, they are avoided by the woodman

Of tie neglected light or "soft" woods the Mahoes (Sterculia Caribcea), Lancewoods (Rollinuas), Wild Chest-nuts (Paschrra), Swamp Mahoe (Pterocarpus), some Laurels (Phabe Oreodaphne Ayedendron), and "Bors d'Orme" or Elms (Guazuma) may be mentroned as the most umportant Their bad reputation has arisen chieffy from the absurd and deeply rooted notion that wood cuttung should be guided by the phases of the moon The majorty of these trees are deciduous and shed therr leaves twice a year-some do so three times, this indicates that there are seasons at which they are in much more actuve growth, and absorb moisture very much more largely than at others. Thus there are periods of absorption and periods of elaboration, and the tree is correspondingly "sappy" and lable to rot, and sapless and dry ($2 e$ composed of completed wood tissue, and therefore fit for felling. In trees with more evergreen habit, the periods of absorption and elaboration are less marked, such trees are always elaborating, and thus felling them out of season is leas disastrous The fact of the cedar being a deciduous tree, and affording very valuable wood at whatever moon it may be cut, seems at first sight contradictory of this argument, but it must not be forgotten that this is a highly resinous tree, and the growth being outward-as in all exogenous trees, the thin "sapwood" is the only part affected-which every one knows decays rapidly The inner wood has its cells lined whth resin which prevents the ingress of moisture on the absorption of new sap

Thus, some trees, specially deciduous ones, having seasons of very active absorption and of elaboration, the latter must be taken for felling when durable wood is required The woodman observing the moon-any faling moon being considered good-has ten chances aganst him of hitting the right month, for the period of rest- e sap, fully elaborated- $1 s$ seldom more than a month, and thus he has long ago recerved the false conviction that certan woods are useless

Finally, but not of least mportance, are the tumber-producing palms which abound in almost all parts of the island-unappreciated from therr abundance. The beautiful and rare porcupine wood obtaned from a short portion of the foot of the coco-nut palm is well known, and the samples of palm woods exhbited must be classed with it The four kinds which were exhbited may be obtaned an practically unlimited quantity in lengths of 10 or 12 feet. They are eminently sutable for interior decorative work, as pillars, \&c., of high class buldings They rival ebony for hardness, polish easily, and are unique in respect of gran Specmens shown-the hollow ones having been filled with pitch and sawdust, or charcoal and sawdust, have been used as posts in an exposed gallery for over six years, and promise to be exceedingly durable

Henry Prestoe, Government Botanist.

LONDON:

Printed by George E. Exre and Wwhiam Spotitswoode, Prunters to the Queen's most Excellent Majesty. For Her Majesty's Stationery Office.

[^0]: The figures for 1877 are taken from the monthly returns, and are lable to slaght corrections in the final returus for the year.

[^1]: * Tude Report (vol I, page 835) by Thomas Parrington, Esq, of Helmsley, Yorkshure, on the Canadian horses exhibited

[^2]: "Lord Duffernn furthermore desures to express to you the very great satis- Lord Duffemn's "faction with which he has witnessed the admurable arrangements letter "under which the Canadian exhibits have been displayed The whole "organisation of the department is most creditable to you and to your "colleagues, evincing, as it does, good taste, good judgment, and a "thorough appreciation of the manner in which the products and the
 " industries of Canada should be set out to the best advantage
 "Excellent as were the materials with which you had to deal, them
 " effect has been tundoubtedly very much enhanced by the admurable
 " way in which they have been arranged, and I am sure it must have
 " been a great satisfaction to you to have percerved how very much
 "severy one has been struck by the Canadian contributions, and the " important part taken by the Dominion in the geveral display Lord
 "Dufferin also desires that his best congratulations may be conveyed
 " to Mr McDougall and Monsieur Perrault, to whom he is also
 "s anxious that his personal thanks should be conveyed for therr kind-"
 " ness and attention to him during his stay"
 I have, \&c
 Wm Campbeld.
 Highly flattering notices of the Canadian portion of the Exhibition appeared Flattering in most of the languages of the civilized world, through articles in the press It would occupy too much space in this report to quote these complamentary statements, but the following remark by General Hawley may perhaps not be considered out of place here It was made on the occasion of a public reception of Canadian schoolmasters by the General, as President of the Centennal Commission He said that "Canada had done more for the "success of the Centennial Exhibition than any of the thurty-elght States of " the American Union, with the exception of New Jersey and Pennsylvama"
 The number of Centenmal medals taken by Canadıan exhibitors was five hun- Hugh percentage dred and sixty-four in all, which shows a large percentage upon Canadian exhi- of Canadian bits as compared with the percentage of prizes on the aggregate of the World's amards exhibits at Philadelpha Nevertheless, the Commissioners must confess to some astomshment that several valuable articles were apparently overlooked by the

[^3]: NEW SOUTH WALES.

[^4]: - The pollowing Awards were allotted to New Zealand by the International Judges. P stgnifies Award for Exhtht
 (The Government of New Zealand received award for Collective Exhibit)
 Typographic Maps and Entomological Collection.
 Geological Maps and Charts
 Aborignal Weapons and Clothing

 ## The Centenmal Commssion for New Zealand -Phormum tenar

 Dr James Hector, New Zealand Commissioner, and Drector of Colomal
 Museum -

 ## P Kauri Gum

 P Barks for Tanning
 P Yegetable Fibres.
 P Geological Maps and Reports

[^5]: In three cases in 1866, three cases in 1867, two cases in 1869, four cases in 1869, fise cases in 1870, three cave, in 1sin one case in $14 / 2$, one che in 1s73, and two casps in 1s7t, the marnages were solemized by brith Protestant and Roman Carholic officiatine minigters, also in 1s7*, marriage by a registrar was agan solemuzed by ah cinciating munster of the L r.c Church of Scotland on a separate certificate

[^6]: * The number of persons married, and the number marned in proportion to every 1,000 of the population, may be ascertaned by doubling the numbers in these two columns.

[^7]: Cl 7092 J Henry and Company, Taranakt-Dried Ferns.
 Collection of
 Plate 1 Davallia novæ-zealandix, Lindsæa tricho manoides, dred ferns
 Asplenium falcatum, Polypodium regulosum
 Names of species,
 Plate 2 Alsophylla colenson, Asplenum sp, Pteris macilenta
 Plate 3 Adıantum cunninghamu, Pteris incisa, Nephrodıum
 hispidurn, Trichomanes renitorme
 Plate 4 Maratina salicina
 Plate 5 Dicksonia lanata, Doodia caudata; Asplenium hookerıanum, Hymenophyllum densum, Hymenophyllum, Lomaria fluiratils
 Plate 6 Aspidium coriaceum
 Plate 7 Davalia novæ-zealandræ, Lindsæa trichom anordes,
 Lomaria nigra
 Plate 8 Hymenophyllum dilatatum, Hymenophyllum ærugınosum, Lomaria thuratihs
 Plate 9 Cyathea medullars, Asplemum obtusatum, Pteris maclenta
 Plate 10 Pterıs incisa, Aspidum cystostegia, Lomaria bulbı ferum, Hypolepis distans.

[^8]: - Most of these photograplis were taken by Dr \mathbf{R} Duniree, whust travelling in Queenglnnd hy a "div piociss," im which the gum resin of one of the Australian Eucalypti was used as the "preservatne" mixture, they were aftetwards enlarged by the sutotype process, and colourid in onl

[^9]: Division XVI.
 Was also deroted to the ullustration of Queensland Towns.
 Division XVI -
 lllustrations of
 towns,
 The numbers of the photogiaphs run from 145 to 154 , and include views of Mary borough, Brisbane, Ipswich, Toowoomba.
 A short description of the rise and progress of these towns is taken from the
 "Queenslander."

[^10]: Robracezs
 56 Sarcocephalus cordatus, Miq Letchhardt's Tree. Diameter, 24 to 30 in . height, 40 to 60 ft

 57 Ixora Pavetta, Roxb Diameter, 2 to 4 in , height, 8 to 10 ft
 58 Hodgkimsoma ovatiflora, F. Muell Diameter, 6 to 10 in , height, 12 to 20 ft

[^11]: * The credit of this measure is due to Sir Robert Rachard Torrens, IK CM G

[^12]: Samuel Davenport, J P
 Special Commissioner at Philadelphia

[^13]: * South Austmia its History, Rasource, and Productions Edited by Wm Hareus Pub* lished by Sampson Low, Morton, Searle, and Jivinton, 188, Fleet Street, London, 1876

[^14]: Other local manufactures aie Barilla, Baking powder, Bulliard tables, Bedsteads, Blacking; Cayenne pepper, Cement, Cigars; Gas stoves, Galvanized Iron and Tin ware, Glass bottles, Iron safes, Plaster of Paris, Saddlery, Safety fuzes, Salt, Sauces and Prekles, Washing machines

[^15]: * Not meludnc moneys raised by loan
 + Including 52,000 f for repayment of loans

[^16]: + Specimens of the Platrpus were presented to HIM the Emparor of Braril by H P Welah, Eeq, Tasmanian Commissioner.

[^17]: + These two Exhibits are presented by the exhibitor to the Academy of Natural Sciences, Phuladelphua.

[^18]: * For presentation to the Smithsoman Institution, Washungton

[^19]: * For presentation to the Smithsonuan Iustitution, W"ashington

[^20]: * The revenue and expenditure here is exclusive of the sums rased for and expended on immigration by the planters
 + It is a strange connerdence that the total value of the imports in 1869 and 1870 were precisely sumular, whilst there was only the difference of one pound between the exports of the same years.

[^21]: * Census Returns, 1871.

[^22]: 27th December 1876

