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PREFACE-

This book is an outgrowth of lectures on the theory of probability
which the author has given at Stanford University for a number of
years. At first a short mimeographed text covering only the elementary
parts of the subject was used for the guidance of students. As time
went on and the scope of the course was gradually enlarged, the necessity
arose of putting into the hands of students a more elaborate exposition
of the most important parts of the theory of probability. Accordingly
a rather large manuseript was prepared for this purpose. The author
did not plan at first to publish it, but students and other persons who had
opportunity to peruse the manuscript were so persuasive that publication
was finally arranged.

The book is arranged in such a way that the first part of it, consisting
of Chapters I to XII inclusive, is accessible to a person without advanced
mathematical knowledge. Chapters VII and VIII are, perhaps, excep-
tions. The analysis in Chapter VII is rather involved and a better way
to arrive at the same results would be very desirable. At any rate, a
reader who does not have time or inclination to go through all the
intricacies of this analysis may skip it and retain only the final results,
found in Section 11. Chapter VIII, though dealing with interesting
and historically important problems, is not important in itself and may
without loss be omitted by readers. Chapters XIII to XVI incorporate
the results of modern investigations. Naturally they are more complex
and require more mature mathematical preparation.

Three appendices are added to the book. Of these the second is by

- far the most important. It gives an outline ¢ the famous Tshebysheff-
Markoff method of moments applied to the proof of the fundamental
theorem previously established by another method in Chapter XIV,

No one will dispute Newton's assertion: “In scientiis addiscendis
exempla magis prosunt quam praecepta.” But especially is it s0 in the
theory of probability, Accordingly, not only ar. a large number of
illustrative problems discussed in the text, but at the end of each chapter
a selection of problems is added for the benefit of students. Some of
them are mere examples. Others are more difficult problems, or even

* important theorems which did not find a place in the main text, In all
such cases sufficiently explicit indications of solution (or proofs) are given.
v
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The book does not go into applications of probability to other sciences.
To present these applications adequately another volume of perhaps
larger size would be required. ,

No one is more aware than the suthor of the many imperfections in
the plan of this book and its execution. To present an entirely satis-
factory book on probability is, indeed, a difficult task. But even with
all these imperfections we hope that the book will prove useful, especially
since it contains much material not to be found in other books on the

sarge subject in the English language.
J. V. UspeNsky.

STaNFORD UNIVERSITY,
September, 1937.
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