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PREFACE 

This book is an outgrowth of lectures on the theory of probability 
which the author has given at Stanford University for a number of 
years. At first a short mimeographed text covering only the elementary 
parts of the subject was used for the guidance of students. As time 
went on and the scope of the course was gradually enlarged, the necessity 
arose of putting into the hands of students a more elaborate exposition 
of the most important parts of the theory of probability. Accordingly 
a rather large manuscript was prepared for this purpose. The author 
did not plan at first to publish it, but students and other persons who had 
opportunity to peruse the manuscript were so persuasive that publication 
was finally arranged. 

The book is arranged in such a way that the first part of it, consisting 
of Chapters I to XII inclusive, is accessible to a person without advanced 
mathematical knowledge. Chapters VII and VIII are, perhaps, excep­
tions. The analysis in Chapter VII is rather involved and a better way 
to arrive at the same results would be very desirable. At any rate, a 
reader who does not have time o; inclination to go through all the 
intricacies of this analysis may skip it and retain only the final results, 
found in Section 11. Chapter VIII, though dealing with interesting 
and historically important problems, is not important in itself and may 
without loss be omitted by readers. Chapters XIII to XVI incorporate 
the results of modern investigations. Naturally they are more complex 
and require more mature mathematicai preparation. 

Three appendices are added to the book. Of these the second is by 
. far the most important. It gives an outline l • the famous Tshebysheff­
~1arkoff method of moments applied to the pr()of of the fundamental 
thf'orem previously established by another method in Chapter XIV. 

No one will dispute Newton's assertion: "In scientiis addiscendis. 
<'Xf'tnpla magis prcsunt quam praecepta." But especially is it so in the 
theory of probability. Accordingly, not only ar,. a large number of 
illustrative problems discussed in the text, but at the end of each chapter 
a !'\election of problems is added for the benefit of students. Some of 
them are mere examples. Others are more difficult problems, or even 
important theorl'ms which did not find a place in the roam text. In all 
l'Ueh ('a."el'l suffirit>ntly explicit indications of solution (or proofs) are given. 
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vi PREFACE 

The book does not go into applications of probability to other sciences. 
To present these applications adequately another volume of perhaps 
larger size would be required. 

No one is more aware than the author of the many imperfections in 
the plan of this book and its execution. To present an entirely satis­
factory book on probability is, indeed, a difficult task. But even with 
all these imperfections we hope that the book will prove useful, especially 
since it contains much material not to be found in other books on the 
same subject in the English language. 

STANFORD UNTVERSITY, 

September, 1937. 

J. V. UsPENSKY. 
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