The Secular Movement of Corn Prices

By Gibofficy S. Shepraxid

AGRICULTURAL EXPERIMENT STATION IOWA STATE COLLEGE OF AGRICULTURE AND MRCEANIC ARTB

C. F. OURTISS, Dersetor

AGRICULTURAL ECONOMICS SBCTIOA

June, 1931
 Dhananjayane Gadgil Library
 The Secular M GiPE-PuNE-047628
 n Prices

 By Grouybey S. Sheprerd

AGRICULTURAL EXPERIMENT STATION
'IOWA STATE COLLEGE OF AGRICULTURE AND MECHANIC ARTS
c. F. CURTISS, Director
agricultural economics section

AMEs, IOWA

Errata: p. 193, table 1, under "Consumption of corn in bushels per head," read 3.7 instead of .37 in column headed "Human."
p. 222, appendix IX, in column headed "J. read (1×3.7) instead of (1x0.37).
p. 223, appendix $1 X$, in column headed "J," read (1x3.7) instead of (1x0.37).

CONTENTS

Page
Summary 180
Introduction 183
Period from 1866 to 1919 184
Changes in the Demand for Corn 188
Effect of Changes in Livestock Population 189
Effect of Changes in Livestock Purchasing Power 194
Effect of Changes in Feeding Methods 197
Post-War Changes in the Purchasing Power of Corn 197
Post-War Changes in the Demand for Corn 198
Effect of Changes in Livestock Population 198
Effect of Changes in Feeding Methods 200
Effect of Changes in Livestock Purchasing Power 201
Post-War Changes in the Supply of Corn 202
The Future of Corn Prices 203
Trend of the General Price Level 203
Prospective Future Demand for Corn 204
Effect of Changes in Livestock Population 204
Prospective Future Supply of Corn 206
The Outlook for Profits 210
Conslusion 212
Appendix 213

SUMMARY

PERIOD 1866 TO 1919
The price of corn declined after the Civil War from 50 cents a bushel at the farm in 1866 to 34 cents in 1896. After that date the direction of the trend changed; it turned upward, rising more rapidly than it had previously fallen. By the outbreak of the recent World War, the price had risen to 65 cents a bushel.

During the inflation period of the World War, the price of corn rose as high as $\$ 1.40$ a bushel at the farm. Since the war, the price has fallen to about 75 cents.

If these prices are reduced to purchasing power, the movements are considerably reduced. The decline from 1866 to 1896 disappears entirely, leaving only a steady and gradual rise from 1866 to 1919. During this period the production of corn kept pace with the increasing population of livestock consuming corn. The rise in the purchasing power of corn was due mainly to the increasing purchasing power of the livestock to which the corn was fed. This, in turn, resulted from the fact that from 1866 to 1919 the demand for meat increased faster than the supply of it.

DEVELOPMENTS SINCE THE WAR

Since the war, the trend of the purchasing power of corn has fallen about 25 percent.

This lower purchasing power is not due to any inerease in corn production, for production hás fallen off about 5 percent. It is due to a decrease in the demand for corn and an increase in the supply of it.

In the first place, the number of horses and mules has fallen off 30 percent since the war. Cattle numbers have been reduced. The numbers of hogs on farms have also decreased, altho the numbers of hogs slaughtered have not.

In the second place, the purchasing power of hogs and beef cattle has fallen about 25 percent. This has reduced the demand for corn per head of livestock. Changes in livestock production practices have also had a similar tho less important effect in reducing the demand per head.
Finally, improvements in corn production methods and the northwestward movement of the Corn Belt have increased the supply of corn.

The price of corn will be affected in the future as in the past by the movements of the general price level. The future course of this general price level is uncertain. The outlook for the purchasing power rather than the price of corn will therefore be considered.

First as to the prospective demand for corn. The number of horses and mules may be expected to continue to decrease. The trend of cattle numbers will probably be horizontal. Hog slaughter is likely to increase slowly, altho the numbers of hogs on farms are declining. The total hog demand for corn will probably continue at about its present level.

The supply of corn is likely to continue to increase, due to continued improvement in corn production methods, the northwestward spread of the Corn Belt and perhaps to decreased competition from the smaller grains.

The trend of the purchasing power of corn. thercfore, is likely to move slowly downward in the future. Those who are in a pasition to continue to cut the cost of producing corn should be able to preserve their profits-in some cases to increase them-but those on small, rough farms may not.

APPENDIX I

In this bulletin mathematically fitted curves are used wherever advisable and free-hand curves wherever possible.
Free-hand curves are open to one or two serious objections. They are unscientific in that where they are used the work cannot be repeated with accuracy by others; no two investigators will draw in curver alike; and one is always open to the accusation, from himself If not from others, that he bent the curve a little here and there to make the work bear out whatever preconceptions he may have had, while others with different ideas might inflect the curve differently so that the work in thelr hands would lead to different conclusions.

The use of mathematically fitted curves is admittediy open to some of these objections also; one may reach certain conclusions, partly because he chose a certain type of curve, as easily as because he drew In a free-hand curve where he wanted it to go. But such liberties can be taken with mathematical curves only by breaking a straight inne into many short sections, or by using a curved line the equation to which becomes very complicated, involving an almost prohibitive smount of labor; in elther case the attempt stands convicted by its own objective characteristics.

In the case of this corn prices series, the secular movement before the war abruptly changes its direction in 1896 from downward to upward. It appears that a straight line broken at 1896 and discontinued at the war period would fit the data reasonably well. The post-war period is too short to be well represented by a trend line, but one is inserted for what it is worth.

The equations to these three consecutive trend lines, all of the type $y=a+b x$, ere as follows:

1. 1866 to 1896, inclusive, $y-41.19-.5611 \mathrm{X}$ with ortgin at 1881
2. 1896 to 1915 , inclusive,
3. 1922 to 1928, inclusive, $y-73.79-.1429 \mathrm{X}$
with origin at 1926
The corn production data are given in table 1 of U. S. D. A. Statistical Bulletin No. 28. The data from 1866 to 1888 have been revised slightly by Dr. O. C. Sitne, in charge, Division of Statistical and Historical Research, B. A. E., U. S. D. A. As Dr. Stine stated in a letter to the author under date of April 30, 1929, "These revisions are merely mathematical adjustments to bring the figures at the end of a decade in Hine with the census figures. The revisions ave made by distributing the difference between the estimate and the census figure back thru the previous 10 years, on the assumption of accumulative error. Acreage only was revised in this manner, the production revision being merely the revised acreare times the reported yield." These revisions "have never been published except as charted in the yearbook of 1921." They are shown in table 1 which came direct from Dr. Stine.

The equation for the unbroken trend line in fig. 2, the Secular Movements of the Purchasing Power of Corn, is:
$y=49.03+.58 x$
With origin halpway between 1893 and 1894.
The trend line fitted to men production in fig. 10 if a cubie parabola. The equation to it is:

$$
\begin{aligned}
y= & 2283.81+1.9956 x-4281 x^{9}-.012369 x^{4} \\
& \text { with origin at } 1897
\end{aligned}
$$

The trend lines in the rest of the charts were drawn in free-hand.

TABLE III. UNITED STATES: CORN PRODUCTION, REVISED FIGURES 1866-1888

APPENDIX II

A later study shows that the relationship between fuctuations in the size of the corn crop and in farm purchasing power December 1 for the period $1886-1905$ is 1 to 1.5 . That is, a crop 10 percent larger than average results in a purchasing power 15 percent lower than average.

The infuence of the large crops from 1895 to 1900 , inciusive, can be removed according to the method shown in the following table. Columns A and B are taken directly from the original corn production and purchasing power series expressed as percentage fuctuations about their trend value.

TABLE IV

Year	A Production in percent of trend	$\stackrel{\mathrm{B}}{1.5 \times \mathrm{A}}$	C Purchasing power in percent of irend	C and B	$\underset{100}{D} \underset{\operatorname{and}}{ } B+$	$\underset{\substack{\text { Tremd } \\ \text { value }}}{\mathbf{E}}$	$\begin{gathered} \frac{D x E}{100} \\ \text { Plar } \\ \text { chaging } \\ \text { power cor } \\ \text { rected for } \\ \text { size of } \\ \text { grop } \end{gathered}$
1895	$+5.8$	+8.7	-28.4	-19.7	80.3	49.88	40.01
1888	$+27.3$	+40.95	-38.7	+ 4.25	104.25	50.38	52.50
1807	+9.8	+14.7	-23.6	-8.9	01.1	50.89	46.36
1898	+4.6	+6.9	-20.7	-13.8	88.2	51.42	4.38
1898 1900	+8.8 +8.5	+14.7 +12.75	-23.2 -16.8	-8.5 -4.15	91.5	51.85 52.48	47.53 50.30
1900	+8.5	+12.75	-16.9	- 4.15	05.85	52.4	50.30

The squations to the twe atraight linee fitted to the date thum corrected are:
Period 186t-1896, y equals $42.8+.477 x$, origin at 1881
Period 1800-1915, y equale $64.6+88 x$, origin halfway between 190\%-1006.

APPENDIX III

The question may be asked whether there is any difference between the effect of a vertical and horizontal shift in dmand upon the market price for a good.

Fig. 12. Effect of vertical and horisontal mifte in the demand earve.

There is. This is shown most clearly if a strongly curved demand curve is considered, as in the chart (lig. 12). The original position of the demand curre is shown at D; the location of the curve after a 10 percent vertical rise is shown at D_{1}, and after a 10 percent horizontal move to the right, at D. The difference between D_{3} and D_{3} is considerable.

It appears that with conditions of inelastie supply, a abift in demand to the right will result in a higher price than an equal shift in demand upward. The intersection point of the supply curve S and the demand curve D_{y} is higher than the intersection point with the demand curve D_{1}. This situation would be reversed if an elastic supply curve were used.
Apparently, a horizontal shift in demand has the same effect on price as an equal veritcal shift only if the supply curve cuts the intersection of D_{2} and D_{3}; that is, it its slope is such that ay divided by $\pm \times$ equals 1.
The main reason, however, for distinguishing between vertical and horizontal shifts in the demand curve is the asetulness of the distinction as a conceptuat tool in rational analysis.

APPENDIX IV

LIVEATOCK NOT ON farms

It is shown in tife text that annual data on the numbers of livestock not on farms are not available. The figures given in the decennial census reports must therefore be used, and even they run back no farther than 1900.

Almost the only thing that can be done with this item is first to decide on a priori grounds whether the numbers of livestock not on frms bore a fairly constant relation to the numbers on farms before 1900. If they did, the next thing is to work out what that relation (proportion) has been since 1900, and then to correct the annual data showing the numbers on farms accordingly. The correction cormula, If the original datum is called y, and the proportion is designated x. ix $\bar{y}=; \frac{x+100}{100}$.

Data tor 1930 are not yet complied, but it is safe to assume that the proportion between horses and nules not on farms and those on farms has very heavily declined since 1920 due to the advent of the moter truck and automobile in the cities. This decline was already in progrese before 1980, as the reduction in numbers from 1910 to 1920 shown in tahle V reveals. Probably, however, the proportion remained
fairly constant before 1900 since it changed little between 1900 and 1910.

The proportion between the number of hogs not on farms and those on farms fluctuated rather widely between 1900 and 1920, as table V shows; but that was probably due to the movements of the hog production cycle. The cattle proportion apparently rises steadily from 1900 to 1920. There is no way of telling, however, whether or not this is a continuation of a rise before 1900 .

The whole situation is very unsatisfactory. The only redeeming features are that the proportions for hogs and cattle, which fluctuate considerably, are small (about 3 percent), so that the effect of the fluctuations is not great; while the proportion for horses and mules, which is rather high (running over 14 percent), does not fluctuate much.

The procedure that will be followed in compiling the index of demand from all livestock (on farms and not on farms) will be to multiply the annual livestock-on-farms data from 1866 to 1920 by the average

TABLE V. RELATION BETWEEN LIVESTOCK NOT ON FARMB AND LIVESTOCK ON FARMS
A. Not On Farms

[^0]proportion existing between it and the figures for livestock not on farms for the period 1900 to 1920 (for horses and mules, however, the average 1900 to 1910 will be uged because of the marked decline in their proportion after 1910) plus 100, and dividing them by 100.

This compntation, and the index figures obtalned are shown in Appendix IX.

APPENDIX V

INCREASE IN CORN EXPORT DEMAND

If the purchasing power of corn had remained constant from 1866 to 1919, an increase in exports would accurately reflect an increase in export demand. The gradual decline in exports since 1877 (except for the perlod of big crops and business depression in the late 'go's) shown In Ifg. 13, would then be evidence of a gradual decline in export demand. The purchasing power of corn, however, did not remain constant; it rose gradually from beginning to end of the period, as earller sections have shown. From 1877 to 1918 , the trend of corn purchasing power lose from 40 to 62 cents.

Fig. 1s, United Staten domestic exporth of corn.
At the same time, as fig. 13 shows, the trend of exports declined from 70 million bushels to 50 million . Was this decline simply the result of the rise in the purchasing power of corn, the position of the export demand curve remaining unchanged, or does it represent a decline in the export demand for corn in the full schedule sense?

Figure 14 throws light on the answer. It shows the relation between annual fluctuations in corn purchasing power and exports.

Fis. 14. Exports-and-parchasing-power enrve for corn.
The freehand curve drawn thru the dots indicate that the export demand is very elastic at the lower end but only moderately so in its upper ranges.

It has been previousiy stated that from 1877 to 1918 the trend of corn purchasing power rose from 40 to 62 cents. This is a percentage (of the mean of 40 and 62) rise of 43 .

If the corn exports and purchasing power curve had remained unchanged during this period, reference to fig. 14 shows that this 43 percent increase in the purchasing power of cors would have cut exports down two-thirds.

Actually, exports were cut only one-third, from 70 million bushels in 1877 to 50 million in 1918. The export demand for corn then must have increased 20 or 25 million bushels from 1877 to 1918.

This is only a rough approximatation, because the exporis-and-pur-chasing-power curve based on long-time movements does not necessarily, or even probably, have the same slope as one based on annual fluctuations.

On the one hand, the exports-and-purchasing-power curve based on annual nuctuations might be expected to be more elastic than the exports-and-purchasing-power curve based on long-time changes. The surplus from an occasional bumper crop of corn would be readily taken up by European buyers who could expect to sell it at higher and more normal prices within the next year of two after they had purchased it. A persistent export surplus of corn, however, would not be so readily absorbed. It would have to be sold each year as purchased.

On the other hand, it must be remembered that in general the longer the time on which the individual exporta-and-purchasing-power curve data are based, the more elastic is the curve likety to be. Buyers have more time then to adjust the uses to which their purchases are put, so as to take large quantities more easily, ie., at higher prices.

The period of bumper crops and 10 prices from 1895 to 1900, inclusive, seems to support the latter view rather than the former. During that period of sir successive large crops and low prices, the export takings continued to be very great; the export curve remained very elastic right uD to the end of the five years.

The assumption is apparently justified, then, that the long-time ex-ports-and-purchasing-power curve should be fully as elastic as the exports-and-purchasing-power curve based on annual fluctuations.

APPENDIX VI

The rise in the purchasing power of hogs cannot be taken as a direct measure of the vertical rise in the position of the demand curve for corn.

Simply because en increase has taken place in the price of a good, It does not follow that there has been an equal vertical rise in the position of the demand curve for it. Whether a shift in the location of a demand curve, either upwards or to the right, will result in an increase in the price or in the quantity taken, or both, depends upon the conditions of supply, that is, upon the slope of the supply curve.

If in this case the number of bushels of corn fed per hog remained substantially unchanged over this whole period and the total numbers of livestock also kept pace with the growth of total corn production, the conclusion would be that the vertical rise in the position of the demand curve was roughly as great as the rise in the marginal cost of production for the larger quantity of corn being produced.

If, however, the number of bushels fed per hog increased, then the vertical rise in the location of the hog-demand curve for corn must have been greater than the rise in the marginal costs of producing the larger production of corn.

This second situation appears to be what actually happened; because. as pointed out in a later section, the consumption of corn per head increased to some extent in the later part of the period.

The conciusion is, then, that a somewhat greater vertical rise took place in the demand curve for corn than is indicated by the increase in the purchasing power of hogs thruout this period.

APPENDIX VII

The changes in the small items have been slight.
The first item is the exports. In the perind just before the war they amounted to 1.5 percent of the total crop. After the war they fell off: the simple average of the exports from the United States for the lasi four years, 1923-1927 inclusive, is 0.7 percent of the total crod. The reduction in exports therefore accounts tor only 0.8 percent of the total production of corn. ${ }^{3}$

The smounts taken by merchant mills have decreased. The data are shown in table VL.

TABLE VI: GORN: QHANTFTY MHLLED IN THE ENETED STATES.
CRNALE YEARA 1014-1927 (IN MILHIONS OF BUSHELS)

	1008	1014	1919	1921	1223	1925	19837*
United Stitee	.200 .3	180.1	178.8	122 . 2	125.2	105.3	927

Consited from repmerta of the Cosaus of Manulacturee.
*Treliminary report.
Tablet VI, VI and VIII are taken mompp. 80 and 81 of U. S. D. A. Stativeticel Bulletin No. 28. "Corn Statitilea," 1928, prepared by the Euresa of Apriculturil Beonamle, Warhineton, D. C.

[^1]The table shows that since 1920 there has been a reduction of about 30 million bushels in the amount of corn taken by merchant mills.

Other industrial uses take only small amounts of corn. The changes in these items are negligible, as tables VII and VIII show.
table vil CoRn: quantity ubed for the production of alcohol AND OTHER DISTILLED SPIRITS

1901-1928
(000 omitted)

Year ended June 3 U	Corn used	Year ended June 30	Corn used
1015	14,260	1022	3,093
1916	32,070	1923	3,106
1017	33,973	1924	4,835
1918	14,345	11925	7,201
19020	3.890 2,003	1826 1827	7,048 8,383
1821	4,811	1828	6,189

Compiled from reporty of the Bureau of Internal Revenue.
TABLE VII. COHN: GHNDINGS, IN THE MANTFACTOJE GF COHNSTARCH GLECOSE, ETC. 1920-102s
(000) unitted,

Compiled from monthly zeports of the Survey of Current Business, J'nited States Department of Commerre. Grindings of corn by the wet process in the masufacture of cornatarch, giurove. eto., as compiled by the Associated Corn Products Manufacturers from reports of mana facturers.

These tables show that there has been a decrease in the quantity used for alcohol and other spirits; but this has been more than offset by the 30 or 40 million bushel increase in the grindings by cornstarch and glucose mills.

It must be remembered, however, that this does not show that the total industrial demund for corn remained unchanged. The amounts taken remained roughly unchanged, but this was in the pace of a reduction in the purchasing power of corn. The total industrial demand for corn then must have decreased considerably since 1920 .

APPENDIX VIII

There are several reasons for the lack of agreement between the numbers of hogs on farms and total hogs slaughtered.

In the flrst place, with the passage of time a larger proportion of total hog slaughter has been coming under federal inspection. The proportion grew from 48 percent in 1900 to about 66 percent in 1925. Most of the increase in this proportion, however, took place before 1920.

A more important change since 1920 is the shifts that have occurred in the geographical distribution of hog production. "Rather significant changes took place in the geographical distribution of hogs between 1920 and 1925 and very slight changes between 1925 and 1929. In 1920 about 37 percent of the hogs in the United States were in the West North-Central states; in 1925 the proportion had increased to 50 percent. In 1920, 31 percent of the hogs of the country were in the South Atiantic and South Central states: in 1925 only 20 percent. Changes in other sections were small, altho there was a tendency for production in both the North-Atlantic and East NorthCentral states to decline in relative importance. This tendency toward concentration, which has brought hall of the hogs in the country into the West North-Central states, where hog production is conducted rather efficiently, accounts for a part of the increase in the output of pork."
An additional effect of these geographical shifts is that it has brought hogs into the area in which the highest proportion of total hog slaughter comes under federal inspected slaughter. This would increase the proportion of federal inspected slaughter to total slaughter.

Furthermore, improvement has taken place in the technique of hog production.
"Apparently the campaign for more sanitary methods of production, which has resulted in appreciably larger litters of pigs saved and reduced the losses from cholera and other diseases,-and the use of better animals" are enabling a given hog population on farms to produce more hoga for market now than formerly.
Finally, either one or both of the two series may be revised in the light of the 1930 census figures. Such a revision might lessen the disparity between the two series.
"Universiky of Illnots Agricultural Experinent Station Bulletin siss. Prices of Illinols Farm Products from 1921 to 1929 , by L. \mathfrak{J}. Norton, page. 589.
${ }^{\text {BU }}$ U. S. D. A. mimeographed publication, Regional Chancen of Farm Animal Froduction In Felation to Land Utilization, by 0. E. Bakar, 1929. Page 25. See albo U. 8. D. A. Yearbook, 1990. page 848, table 878.

APPENDIX IX
CHANGES IN UNITED GTATES DOMESTIC DEMAND FOR CORN DUE TO LIVESTOCK AND OTHER POPULATION CHANGES 1867-1930
(000's omitted)

DATTE	A No. of hoge on farms \& chlagwhere* (No. on farms \times 1.032)	B Entima ted hog candumption of corn ${ }^{\text {* }}$ (Ax19.7)	C No. of horses \& mules on farms \& elsewhere (No. on farms x 1.145)	$\begin{gathered} \text { D } \\ \text { Eatimated } \\ \text { horse \& } \\ \text { mule con- } \\ \text { sumption } \\ \text { of corn } \\ \text { (Cx22.3) } \end{gathered}$	E No. of cattle on farms \& chem where (No. on) farmin x $1.020)$	F Fatimated ebattle consumption of cora (Ex6.B)	C No. of poultry on farmas Jan, lat	H Estimated poultry consump- tion of corn $(\mathrm{Cx0.33})$	I U. 5. hutnan population	J Eistimated human consump- tion of corn (1ะ0.37)	K No. of sheep on farma	L Estiman ted sheep consump tion of corn (Kx0.01)	$\begin{gathered} \text { TOTAL } \\ \text { of B.D.F. } \\ \text { H. J. } \\ \text { Bnd. } \end{gathered}$	
1887	25.484	\$02,084	7,125	158,888	20,802	130.369	92,347	30,475	35,078	129,789	39,385	24,025	981,580.	
1863	25.095	494, 372	7.572	108,806	21.232	140,131	94.898	31,316	38,238	134,081	38.992	23.785	992.541.	
1889	24,062	474,021	8,307	185.240	22.055	145,503	77.449	32,158	37,398	138.383	37.724	23.012	998,373	
1870	27.807	543, 858	9.409	211,159	20.223	173,072	100,000	33,000	38.558	142.865	28.478	17.372	1,121,126	
1871	30.401	598,900	11,386	253, 908	28,998	178,174	102,551	33,941	39.718	146,957	31,851	19,429	1,231,209	
1872	32,814	646,438	11.756	262,159	27.488	181.289	105,102	34,884	40.878	151,249	31,079	19,324	$1,295,141$	
1873	33,676	668,417	12,059	288,013	27.773	183,302	107.653	35.525	42,088	155.541	83,002	20.131	1.396 .832	
1874	31,849	627.425	12,221	272,528	27,704	182,848	110,204	30,367	43,198	159,833	33,938	20.702	1,299,701	
1875	28.980	570.512	12.478	278,259	28,009	184,859	112,755	37.209	44.358	164,125	33,784	20,608	$1,255,572$	
1870	26,550	523,035	12,085	280,789	28,678	180.295	115,306	38,051	45.518	188.417	45.935	21.820	1,230, 487	
1877	28.976	570,827	13,281	206,146	30,084	188,422	117.857	38,803	46,078	178.709	35.804	21.850	1,298,857	
1878	33,294	655,982	13,703	305,577	31,408	207, 293	120,408	39,735	47.838	177,001	35.740	21,801	1,407.299	
1879	35,879	706, 816	14,487	323,000	34,198	225,707	122,959	40.576	48,998	181,293	38,124	23,246	1,500,708	
1880	35.123	691.923	13,935	310.751	34,222	225,865	125,507	41.417	50,155	185, 5774	35,192	21,467	1,476,997	
1881	37,408	736,038	15,058	335,793	34.274	228,208	141,517	79.701	51.434	100.306	43,570	26, 578	1,595,524	
1882	45,534	807,020	14,149	-315,523	36,933	243,758	157.527	51,984	52,713	195,088	45,018	27.460	$1,730,783$	
1883	44,656	879,704	14,552	32, , 510	42,386	279,016	173.537	57.237	58,998	199.770	49,237	30,035	I ,713, 635	
18.84	46,615	888.615	14,981	334,076	43,781	288.015	189,.547	62.551	65.271	204,503	50, 4227	30,382	1,819.582	
1885	45,688	917,784	15,501	345, 672	45,041	297, 271	205,557	67.834	66,550	209,235	80.380	30,720	1,888,516	
1888	47,567	937,070	18,159	360,346	46,830	309,078	221,567	73,117	57.829	213,967	48,322	29,476	1,023,054	
1887	46, 041	907,008	16.738	373,146	49,427	326,218	237, 577	78.400	59,108	218,700	44, 759	27,304	1,930,775	
1848	45,780	901.500	17,593	392,324	50,682	334,369	253,587	833,084	60.387	223, 482	43.545	28,623	1.962,022	
1849	81,012	1022, 660	18,280	409.529	51,791	341,821	269,597	88,967	61.606	228,104	42,599	25,985	2,114,132	
1890	53,254	1049,104	19.768	440.826	54,333	358,598	258,109	85,176	62,176	232,904	35,935	21.920	2,188,528	2, 245,538
1841	52.245	1029, 227	18.725	417,568	54,430	359,238	257,360	84,929	64,252	237,732	43,431	28,493	2,125,187	$2,269.203{ }^{\dagger}$
1892	54,075	1035,278	20,306	464.831	55,635	367,191	258,811	84,882	65,557	242, 561	44,938	27.412	2,241.055	2.412 .970
1803	47.570	937,129.	21,226	473,340	53,897	355,720	255,862	84,434	60,882	247,389	47,274	28,837	$2,128,849$	2,354,881
1894	46,853	919,084	21,106	470,684	54,635	380.591	255,113	84,187	68,167	252,218	45,048	27.479	2,114.203	2,399,243
1895	45.679	807.008	20.899	485,379	52.344	345.470	254.364	83,940	09, 472	257,046	42,294	25.789	3, 075, 540	2,417,588
1866	44.214	871,016	19.924	444.350	49.621	327, 615	253.61 .5	83,603	70.777	261,875	38.299	23, 362	2,011,795	$2.410,801$
1897	41.899	825,410	18,986	423,366	47.797	315,460	252.806	83,446	72,082	2681703	36.819	22.460	1,036,845	2,392,009
1898	41.082	808,330	18,403	412.394	48.413	306,326	255, 117	83,199	73,387	271,532	87.657	22,971	1.904, 752	2,417,824
1899	80,889	785,813	18,000	403,407	45,280	208,716	251,388	82,051	74,692	276,300	39,114	23,800	1,871,107	2,441,188

CFANGES IN UNITED BTATEX DOMESTIC DEMAND FOR CORN DUE TO LIVESKOCK AND OTLER POPUKATON CEANGEG 1887-1030
($0000^{\circ} \mathrm{a}$ omitted)

OATE	A No. of hryes on farrna elise where* (No. or) farmss 1.032)	B Entims- ted boe romump tion of corn $(A x 19.7)$	C No. of horeen * mulen on farms \& elionhere (No, on (arman: 1.145)	D Eatimated horre A caule con- sumption of corn (Cx22.3)	E No. of rattle on farcms * elaswhere (No. on) farmas x 1.029)	$\begin{gathered} p \\ \text { Entimated } \\ \text { natele convi } \\ \text { sumption } \\ \text { of corn } \\ \text { (ExG } 6) \end{gathered}$	G No. of poutery on iarma Jan. 1at	E Estimated prultry comampp tian of corn ($\mathbf{x} \times 0.33$)	$\mathrm{u}^{1} \mathrm{~s}$ humsa popula- tion	J Eatimated humana comawamp tion of corn (1×0.37)	$\begin{gathered} \text { K } \\ \text { No. of } \\ \text { sheep } \\ \text { on farmas } \end{gathered}$		TOTALof.D.FH.andt.	
1900	64, 283	1060.375	24,654	549.784	59.186	300,716	250.623	82, 700	75.	281. 178	61.504	37.517	2,441,188	
1901	51.9002	1081,5889	22,452	500.679	82.300	411,180	254,149	84.199	77.582	287,090	59.757	36.452	2.401.169	
$1(10) 2$	15.2088	$00^{61} 171$	22,085	492 , 448	81,019	422,525	254, 675	85, 693	79.190	203,003	62.039	37.844	$2.283,032$	
1908	4\%.710	9.59,587	22,081	492, 063	65.638	433,211	264 ,201	87.180	80.788	298.916	63,985	39,019	2.309 .882	
1064	61.054	1006, 3 355	22.321	497.758	$66^{6}, 997$	435,580	283.727	88,840	82,386	304.828	51.830	31.493	2, 364, 685	
1908	3 3 , 684	1087 , 181	22.839	509.310	63.8049	434,669	273.233	80.173	83.054	310.741	45,170	27.834	2,429 8028	
10×10	56.347	1110,036	25,331	504.881	64.805	428.057	277, 779	91, 6887	85.582	316,653	50.632	30.886	2, 541, 110	
19×17	59.134	1164,940	26.881	601.676	64.182	423.601	282,305	93,161	87.180	322,566	53,240	32,476	$2.638,420$	
1908	63.262	1246.261	27.321	609.258	82.657	412,876	288, 831	94, 6.54	88,778	328, 479	54.631	33.325	2,724,853,	
1904	588.824	1158, 833	28.273	630,488	61.383	404, 948	291,3577	08.148	90, 376	334.389	50.084	34, 211	$2,659.01 .5$	
1910	10, 878	10122, 297	27,529	613,897	50,020	393,492	205.880	97.640	91.972	340,296	52.448	31,993	2,479,025	
1011	57,482	1132.345	28,167	628,124	57,849	381, 803	303.575	100.180	93, 246	345,380	53, 633	32,716	2,620,598	
1912	57,442	1132, 395	28,477	635,037	56,618	373,679	311.270	102.719	94.720	350.501	52,362	21.941	2,626,272	
1013	55, 728	1097 , 1042	28,848	639,698	5.7 , 4.52	379.183	318,965	105,258	96.0594	355.548	51.482	31,404	2,008,033	
1914	53,458	1053 , 123	29.096	648,841	80,440	398,904	328 ,680	107, 798	97.488	380, 362	49,710	30,329	2,599,357	
1918	38,824	1158.833	29,397	655,553	64.345	424,677	334,355	110,337	98,842	385, 715	49,956	30,473	2,745,588	
1018	61.810	1213.717	29,483	657,538	88,310	450,905	342,050	112,877	100,216	370,799	48,025	20,681	2,835,497	
1917	58, 515	11:32,726	29.693	862.154	71.548	472,223	349.745	115.416	101.500	375, 8883	47.618	29.040	2,807.448	
1918	63.1518	1244, 213	30,260	674.798	73.295	483.747	357. 440	117.935	102, 904	380.987	48,603	29.818	2,031, 328	
1919	65.842	1297,087	30,269	674,008	72,209	477.173	385,135	120,496	104,338	386,051	48.886	29,808	2,985,612	
1920	61.878	1218,097	28,846	643.265	70.868	467.729	372,825	123.032	105.710	391,127	39,025	23.805	2,889,958)	
1921	60.177	1191.397	28.239	629.730	69.132	450.291	380.620	128.572	107.117	3197,443	37, 452	22.846	2,823, 2791	
1922	61.485	1210,861	28.079	626.162	69.215	456.819	388.215	128.111	109.123	403,755	36,327	22,159	2,847,867	1
1023	71.258	1403,684	27,608	615.658	68,075	449.295	395,910	130.650	110.829	410,067	37,223	22,706	3,032,060	
1024	68.485	1349,165	27.135	605,111	64.318	437,099	403,605	133,190	112, 538	416,383	38.381	23,400	2,904,038	
1925	57.348	1120.716	28, 412	586,710	63.754	421.640	411.300	135,729	114.242	422,695	38,112	23,248	2,649,138	
1928	43, 817	1000.195	24,608	550.785	60.837	401,534	418.908	138,268	115,949	429,011	39,730	24,235	2,604 , 008	
1927	68.541	1113,858	23.790	630,718	58.480	385,968	426,690	140,808	117.655	435,324	41.881	25.547	2,632, 223	
1928	62.358	1228,354	22.082	518,499	57,296	378, 154	434,385	143,347	119.362	$44 \mathrm{C}, 639$	44,564	27.178	2,731, 171	:
1929	88.715	1117,286	22,300	497.280	57, 369	378.628	442.080	145,886	121.088	4 47.952	47.171	28.774	2,615,816	
1920	62, 600	1036,220	21,482	479.048	59,648	303, 377	449, 775	148,426	122,775	454,268	48,913	29,837	2,541, 477	1 .

Liveatock data from U. A. D. A. Yearbooks; humann population data frame canaus resorts.
Numbert on farms multipilied by a factor to include thowe not on farms. Factor given in Appendix, "Livestock not on farms."

* Numbera of hoga multizlied by 10.7 , the eatimated consumption per head. The figure 19.7 tit derived by dividing 40 parceant of United Statea average corn prodution 1012 -1821 by the averace number of hoge for the kame period.
The liveatock figures rom 1800 to 1898 anow a marked downward movement followed by a jomp from 1809 to 1900 , the centran gear. Ong-tenth of this $1809-1900$ difference in these data in the last column has therefore been added cumulatively to the 1890 - 1899 figures.

[^0]: ' A is the numbers not on farms; B is the numbers on farms. The figures in this column mow the percentage that A is of B .

 Sources of data for livestoek on farms:
 1020 Cenbus Report
 Swine table 60, prige 508
 Cattile, table 37, page 57t
 Horses and mulet, cable 21 and 22 , pares 547-348
 Sources of data for livestock not on farma for 1900:
 1910 Census Report
 Swine, table 69, page 447
 Cattle, table 65, page 430
 Horses and Mules, tahle 67. pare 437
 Sources of data for liveatock not on farms, 1910-1920:
 1920 Cedrua Repart
 Swine: for years 1910 and 1990, table 76, page 017
 Cattle; for years 1910 and 1920, table 75, page 615
 Formee and Mules: 1910 whd 1020, table 34 , page 615

[^1]: It sould at the mont tave acoumted for only 1.5 pereent of the total production of oovn. ance thin is Ril that wamexported on the averaye juxt before the prap. Yet it musi be remeruberen that actunlly the reduction in the export detnand muat have
 aftar the wer would have rekulted in greatly imeroased exports, instead of the tiluht decrent that meturily oecuried; for fig. 14 in Appendix Y phows that the export domand for corn im elentie, enjecinily in the lower pari of the eurve. See also the discustion in Appendix V.

