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Principles of the Theory of Probability
Ernest Nagel

I. The Materials for the Study of Probability

1. Introduction

The daily affairs of men are carried on within a framework
of steady habits and confident beliefs, on the one hand, and of
unpredictable strokes of fortune and precarious judgments, on
the other. Our lives are not filled with constant surprises, and
not all our beliefs are betrayed by the course of events; never-
theless, when we examine the grounds even of our most con-
sidered actions and beliefs, we do not usually find conclusive
evidence for their correctness. We undertake commercial or sci-
entific projects, although we do not know whether illness or
death will prevent us from completing them; we plan tomor-
row’s holiday, although we are uncertain what weather tomor-
row will bring; we estimate our budget for next year, although
we are not sure whether the consequences of floods, droughts,
or wars will not seriously throw it out of balance. In spite of
such uncertainties, we manage to order our lives with some
measure of satisfaction; and we learn, though not always easily,
that, even when the grounds for our beliefs are not conclusive,
some beliefs can be better grounded than others. Our claims to
knowledge may not be established beyond every possibility of
error, but our general experience is warrant for the fact that
even inconclusive arguments may differ in their adequacy.

These observations are commonplaces. But they immediate-
ly lose their triviality if, by setting them in the context of a
penetrating comment of Charles Peirce, we extend them to the
procedures and conclusions of the various special sciences. The
American logician once remarked that in the exact sciences of
measurement, such as astronomy, no self-respecting scientist
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Principles of the Theory of Probability

will now state his conclusions without their coefficient of prob-
able error. He added that, if this practice is not followed in
other disciplines, it is because the probable errors in them are
too great to be calculated. The ability of a science to indicate
the probable errors of its measurements was thus taken by
Peirce as a sign of maturity and not of defect. By his remark
Peirce therefore wished to indicate that for the propositions
in the most developed empirical sciences, no less than for those
in the affairs of everyday life, no finality is obtainable, however
well they may be supported by the actual evidence at hand.
The temper of mind which is illustrated by such an appraisal
is itself the product of modern science and of 2 preoccupation
with its procedures. It is based on the conviction that the
methods of the natural sciences are the most reliable instru-
ments men have thus far devised for ascertaining matters of
fact, but that withal the conclusions reached by them are only
probable because they rest upon evidence which is formally in-
complete. The import of such an insistence upon the fallible
character of science can be best appreciated by contrasting it
with the classic conception of science, formulated in Greek an-
tiquity and, perpetuated in a powerful intellectual tradition.
This conception of scientific knowledge was modeled upon the
ideal of a completely demonstrative and absolutely indubitable
natural science, such as Euclidean geometry was believed to
be. It was assumed that the subject matter of genuine science
was a realm of precise, unalterable laws, and that scientific
knowledge, as distinct from belief, opinion, or mere experience,
was be be equated with demonstrated knowledge. For such
knowledge facts are not contingent, since they must be appre-
hended through their “reasons’ or ‘“‘causes,” and the proposi-
tions which express them must therefore be “necessary.” Fur-
thermore, it was maintained that the “basic propositions™ re-
quired as premisses for demonstrated knowledge could be
grasped by the intellect directly and infallibly and could be seen
to be true with even greater assurance than any of the conclu-
sions derived from them. The scientific enterprise was accord-
ingly construed as the progressive apprehension of an eternal

Vol.1,No. 8
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Introduction

order of necessary connections, so that complete certainty was
the earmark of genuine knowledge. The changing and the vari-
able could not be subject matter for science; they could at best
be the concern of belief and opinion. Variability in the materi-
als studied or in the outcome of measurements was taken to
indicate either the obdurateness of subject matter to rational
connections or the failure of thought to reach its proper objec-
tives. In a word, experience in the sense of observation and ex-
periment, since it could not yield necessary propositions, could
not be the ground for scientific knowledge. ' '
This ideal of science dominated the minds of the great pio-
neers of modern science and of many of their most illustrious
successors; and it is this conception which forms the tacit prem-
iss of many philosophic commentators upon modern science, -
such as Descartes, Locke, Leibniz, and Kant. It is scarcely
possible to exaggerate the significant role which this ideal has
played in intellectual history. In proclaiming the ideal of sci-
ence to be systematic knowledge, the rationalist tradition has
stimulated research and has led to the development of science
as something other than an indigestible miscellany of dubious
facts. On the other hand, the great services of classic rational-
ism cannot hide the fact that its theory of seli-evidence rests
upon an inadequate analysis of the methods of science, so that
it has frequently blocked the progress of inquiry and, though
pledged to the ideal of clarity, has not seldom successtully
courted obscurantism. Rationalism made complete certitude
the theoretical condition for genuine science, but its belief that
the latter was obtainable could be maintained only by neglect-
ing or misinterpreting the approximate and contingent char-
acter of statements dealing with matters of fact. The long his-
tory of science and philosophy is in large measure the history
of the progressive emancipation of men’s minds from the theory
of self-evident truths and from the postulate of complete cer-
tainty as the mark of scientific knowledge. Some of the major
turning-points in that history consist in radically diminishing
the class of statements certifiable simply by & rational insight
into their truth. And some of its most dramatic moments have

Vol.|,No. 6
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Principles of the Theory of Prébability

occurred when the approximate and incompletely grounded char-
acter of allegedly indubitable propositions was recognized.

The forthright admission of the probable or contingent char-
acter of even our most soundly based beliefs and the emphasis
upon the general reliability of the methods of scientific inquiry
rather than upon its conclusions are characteristic of contempo-
rary empiricism. For the traditional empiricism of Locke and
Mill, which in intent was a revolt against the exaggerated claims
of rationalism, accepted in all essentials the standards and pre-
conceptions of the views it nominally opposed. But that ad-
mission of the probable character of our beliefs is not the out-
come of a capricious decision: it is not a pronouncement made
for the sake of wilfully opposing a historically powerful tradi-
tion, nor is it a thesis advanced for the sake of a special set of
values and an ulterior conception of nature. That admission
and that emphasis have been wrung from students as a conse-
quence of their reflection upon the history of science and of a
painstaking examination of its methods. Contemporary empiri-
cists who maintain that our knowledge of matters of fact is
“probable” do not thereby maintain that such knowledge is
inferior to knowledge of some other kind obtainable by methods
different from those the natural sciences employ. On the con-
trary, they maintain that “probable knowledge” is the only
kind of knowledge we can find or exhibit, and that the methods
and techniques of the sciences are efficacious and dependable
precisely because they make available knowledge of that char-
acter,

2. Development and Applications of the Theory of Probability

Although the term ‘probable’ has been employed several times
in the preceding section, no precise sense has been attached to
it. It is one of the objects of this essay to assign a clear mean-
ing to sentences which contain the term and its derivatives;
but it must be admitted at the outset that an analysis of what
is meant by ‘probable,” which would meet the unanimous ap-
proval of competent students of the subject cannot be given
at the present stage of research. In the present and preceding

Vol. |, No. §
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Development and Applications of the Theory of Probability

sections the statement ‘Knowledge of matters of fact is prob-
able’ is to be understood in the rather loose sense that conclu-
sions of factual inquiry are not in prineiple incorrigible, because
the formal conditions for assuring the logical validity of those
conclusions are not completely realized, and because statements
having factual content are not logically necessary.

The doctrine that knowledge of matters of fact is only prob-
able is one of the central theses of contemporary analysis of
scientific method. The implementation of this doctrine with
modern logical and mathematical techniquesis relatively recent,
But even during the heyday of classic rationalism the status of
beliefs which fell short of its ideal of scientific knowledge was
frequently and vigorously discussed. Out of the permanent
needs which generated such discussions have grown the modern
calculi of probability and the diverse interpretations and appli-
cations which the term ‘probable’ has received. The possible
equivocality and unquestionable vagueness of the term are
therefore in part due to the history of empirical science. The brief
survey, to which we now turn, of some of the contexts in which
the term is and has been applied aims to achieve three things:
to emphasize the intimate connection between the development
of empirical science and the growing need for a theory of prob-
ability; to indicate the great range of applications of the term
‘probable’ and so to provide the materials for a discussion of
its meaning; and to serve as a convenient introduction to the
issues and techniques under contemporary discussion.

a) Aristotle’s logical writings formulate the rationalist ideal
of science, but his biological works exhibit less exacting stand-
ards of scientific adequacy. His evaluation of the then extant
theories of sexual reproduction is characteristically judicious;
evidence, some of it observational, is presented in opposition
to the Hippocratean doctrines and in support of his own views,
but there is not even a pretense that the question is settled be-
yond further debate. His examination of the facts of heredity
show him to be familiar with at least the crude elements of a
statistical explanation of the similarities and differences be-
tween ancestors and descendants. The mechanism which he

Vol.|,No. 6
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Principles of the Theory of Probability

suggested as an explanation for the observed facts was in essen-
tials that of a shuffling and recombination of characters, so that
only certain traits would normally recur. Even before Aristotle
the prineciple of natural selection was advanced by Empedocles,
though Aristotle had little use forit. No ancient mathematician
developed a technique for handling statistical aggregates, and
it is possible that the prevalent view of chance as an agent was
an insurmountable impediment to a consistent working-out of a
statistical view of nature which the theory of natural selection
suggests. Nevertheless, passages in Aristotle and in the writings
of the Tonians, Democritus, and Hippocrates which could be
cited indicate that such a view was not foreign to the ancient
mind.

b) Occasions for dealing with evidence which is not conclu-
sive, but which nevertheless carries some weight, presented
themselves in the legal and social transactions of both Athens
and Rome. For example, there was a rule in Athenian courts
excluding hearsay evidence, on the ground of the general un-
trustworthiness of reported statements as compared with the
evidence of eyewitnesses. The courts of Rome took pride in
deciding cases before them upon the basis of reason and the
evidence of fact rather than caprice, and complicated safeguards
were instituted to assure the adequacy of the evidence pre-
sented. Curious and distorted survivals of these appear in the
formalistic rules of evidence of the Middle Ages. For example,
two witnesses were required for a “full proof,” the testimony
of a single reliable witness counted .as “half-proof,” while a
doubtful witness counted for “less than half.” The object ap-
parently aimed at was to convert the process of rendering a deci-
sion into a calculation of the “resultant force” of the testimony
submitted. There was thus some basis in fact for Rabelais’ por-
trait of Judge Bridlegoose, who made his decisions which were
“correct” in the long run by throwing appropriately loaded dice.
Years after, Leibniz was again intrigued by the possibility of
a calculus of evidence, and the ideal of a quantitative science
of proof has frequently hovered before students of probability.
When the calculus of probability was finally developed, many

Yol.1,No. 6
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Development and Applications of the Theory of Probability

of its great masters, like Laplace, Poisson, and their followers,
attempted to turn it to such & use, though with singularly poor
SUCCesSs.

c¢) Although no individual knows the exact date of his death,
he can reasonably expect a definite span of life. His expecta-
tions are based on statistical regularities manifesting them-
selves in large groups of men. The use of such statistical uni-
formities for predicting individual behavior illustrates a com-
mon type of “uncertain inference,” which in recent times has
become an exacting and important discipline; and it was ex-
emplified in ancient practices as well. Various forms of com-
mercial insurance existed in Babylonia, Greece, and Rome, and
the Romans were no strangers to life insurance. Just how and
on the basis of what kind of statistical information the various
rates were estimated is now unknown, slthough it is fairly clear
that the estimates were not arbitrary. For example, the rates
on bottomry and marine insurance depended on the destination
of the vessel and the season during which it sailed; and, although
the careful gathering of vital statistics is & modern phenomenon,
a census of populations was frequently made in antiquity for
military and taxation purposes. While therefore the practice of
insurance was not placed upon a sound basis until the end of
the eighteenth century, it was built on a large body of factual
information; and, even though the beliefs which rested on this
information fell short of the classic ideal of science, they made
possible the planning and execution of important policies. -

During the Middle Ages the Italian cities saw the beginning
of commercial insurance as a profit-making enterprise; by 1700
the business of insurance was rapidly developing in western
Europe, with life insurance in regular demand a century later.
These enterprises required to be supported by adequate statis-
tical techniques, and in fairly rapid succession there appeared a
number of important statistical studies. For example, in 1662
John Graunt showed how to employ the register of deaths,
which began to be kept in London during the Black Death, to
make forecasts on population trends; during the same century
John De Witt, grand pensioner of Holland, and Halley, the Eng-
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lish astronomer, concerned themselves with annuity problems.
Halley laid the basis for a correct theory of the subject, and he
showed how to calculate from the mortality tables which he
constructed the value of an annuity on the life of a person of
given age. While scientific knowledge in accordance with the
rationalist ideal was not obtainable for these domains, probable
knowledge was, and it became the guide to life.

d) The entire subject of statistical inference now called for a
theoretical foundation. The need was supplied from an unex-
pected quarter—the theory of games of chance. Dice games
played with ankle bones were popular in antiquity, and the
ancients distinguished between the “likelihoods” of certain com-
binations of throws. They did not, however, develop any tech-
nique for assigning numerical measures to the different “degrees
of likelihood.” The quantitative study of games of chance be-
gins with the modern period and was cultivated by a brilliant
succession of mathematicians.

Solutions of special problems in the division of stakes and
the placing of wagers were first given by Cardan and Galileo
(sixteenth century); but the general attack on the theory which
was involved in their analyses began with Pascal and Fermat
(seventeenth century), who showed that all the special prob-
lems under consideration could be reduced to problems in the
mathematical theory of permutations and combinations. Upon
this basis a convenient calculus was developed, which was
subsequently applied to many different fields of inquiry. Huy-
gens, the Bernoullis, Montmort, De Moivre, and Bayes are the
most prominent figures in the early history of the subject. Their
work was systematized and completed in the great treatise of
Laplace (early nineteenth century), and the point of view from
which they conducted their anaifses remained until quite re-
cently the basis for the interpretation and extension of the
mathematical theory. The principle upon which Laplace as-
signed numerical values to probabilities was that of analyzing
the possible outcome of a situation into a set of alternatives
which could be judged as “equally possible.” Accordingly, al-
though we might be ignorant of which one of these alternatives

Vol.I,No.é
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would occur, a method was provided by the aid of which an
appropriate “degree of rational belief” could be assigned to
propositions about “chance events.” In brief, fortuitous events
which had heretofore been denied the status of genuine objects
of scientific knowledge could now be handled in an expert
manner with the help of probability theory. The intellectual
instrument was thus forged for developing what is now known
as the statistical view of nature, and for exhibiting important
continuities in techniques and methods in different scientific
disciplines.

¢) The theoretical foundations of the probability calculus as
formulated by Laplace still had their roots in traditional ra-
tionalism. On the one hand, probability judgments were under-
stood to betoken ignorance: Laplace maintained that all events
are regulated by “the great laws of nature” which a sufficiently
powerful intelligence could use to foretell the future in the most
minute way. On the other hand, judgments of equipossibility
were made to rest on a nonexperimental basis. A critique and
reformulation of these foundations were not to come for several
decades. Nevertheless, these rationalistic preconceptions were
conveniently overlooked in the application of probability the-
ory. One of the earliest and most successful of these applica-
tions was to the systematization of measurements and observa-
tions in the experimental sciences. Astronomy was the first to
employ the theory of probability for this purpose. Justly re-
garded for a long time as the most exact science of measure-
ment, it nevertheless was patent to everyone that the measure-
ments actually performed did not yield identical numerical val-
ues for what was presumably the same magnitude, however
carefully gross disturbing factors were eliminated. In conse-
quence, the measurable predictions calculated from astronomi-
cal theory were not in precise agreement with the numbers ob-
tained by direct measurement. Given the climate of opinion
within which astronomical theory was developed, it was con-
genial to interpret these fluctuations as deviations or “errors”
from the “true values” of magnitudes, and to attribute the
“inexactitude” of actual measurements to human failing.

Yol.1,Na. 6
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Nevertheless, there was a pressing need for techniques to esti-
mate the “true values” from the actual measurements and to
measure the degree to which the latter “approximate” to the
former.

This situation is not local to astronomy. As Boyle once ex-
plained, “You will meet with several observations and experi-
ments which, though communicated for true by candid authors
or undistrusted eyewitnesses, disappoint your expectations,
either not at all succeeding constantly or at least varying much
from what you expected.” Indeed, to test any theory, empiri-
cally specified initial conditions must be given, and the conse-
quences logically derived from them with the help of the theory
must be compared with the outcome of further observational
procedures. Thus, two series of actual measurements or obser-
vations must be instituted to test a theory; and, for both series,
we find that as a matter of fact there are groups of discordant
statements reporting the issue of our measurements. Whether
the theory is in accordance with the “facts” cannot therefore
be decided without some further hypothesis on the actual meas-
urements we make.

The study of this problem in- terms of the theory of prob-
ability constitutes what is known as the theory of errors. It
was begun in the eighteenth century by Boscovitch, Lambert,
Euler, and Thomas Simpson, and was continued by Daniel
Bernoulli, Legendre, Gauss, and Laplace. Gauss showed that
if we assume that the deviations from the “true magnitude”
are produced by a large number of hypothetical “elementary
errors”’ acting independently of one another, the form of the
law of distribution of the actual measurements can be deduced,
and an approximation to the “true value” can be calculated
from the data. The Gaussian “Law of Error” and the Method
of Least Squares for systematizing discordant observations have
played an important role in subsequent researches in the theory
of measurement and statistics. Recent critical work on the
foundations of probability shows that Gauss’s arguments for
the law rest on assumptions which cannot always be made
legitimately. In consequence, alternative laws for the distribu-

Vol.l,Ne. 6
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tion of errors have been proposed, notably by Poisson, Pearson,
Gram, and Charlier, each suitable for different circumstances.

f) The expanding national economies following the breakup
of the feudal system required the gathering of extensive factual
information in order to guide the formulation of financial, mili-
tary, and political policies. The earliest attempts to tie up the
mathematical theory of probability with the analysis of such
descriptive statistics were made by De Moivre, Nicholas and
Daniel Bernoulli, Euler, and D’Alembert. Under the influence
of the ideas of the French Encyclopedists, who sought a rational
basis for monetary undertakings, public-health administration,
judicial procedure, and even the conduct of elections, Condor-
cet tried to apply on a comprehensive scale the new mathe-
matical instrument of probability to all such matters. Like La-~
place and Poisson after him, he achieved only a modicum of
success. It was characteristic of this group of writers to mis-
understand and consequently to overrate the function of the
probability calculus; their procedure frequently seemed to rest
on the assumption, as one commentator remarked, that valu-
able results can be obtained from unreliable and insufficiently
analyzed data by employing a sufficient number of signs of
integration. However, it is to the great eredit of these men to
have insisted on the fusion of statistical methods with the theory
of probability. Interest in this fusion was further stimulated by
the Belgian astronomer Quetelet, who saw in the theory of prob-
ability the appropriate tool for developing a reliable social sci-
ence. Poisson had enunciated in a somewhat confused form a
“law” which he called “the law of great numbers”; according
to this law large aggregates of elements exhibit definite prop-
erties with a stable relative frequency, even though these prop-
erties occur quite fortuitously within the aggregates. Quetelet
popularized this idea in the context of the social disciplines. He
regarded the “average man,” as computed from the extensive
statistics he gathered, as the analogue in social matters of the
center of gravity in mechanics; and he saw in the statistical
regularities with which certain human actions occur the opera-
tion of comprehensive laws of social development, He thus

Yol.|, No. 6
1"



Principles of the Theory of Probability

found it easy to believe that determinate laws could be formu-
lated to connect the different social averages—determinate laws
modeled upon those recorded in Laplace’s Celestial Mechanics.
However, Quetelet was uncritical both in gathering his statisti-
cal material and in interpreting it; he was never really clear as
to the mesaning of statistical averages, and never appreciated
the limitations of the probability calculus. His influence, great
at first, rapidly waned, and for a time so did the interest in
applying theoretical statistics to the social sciences.

When interest in the subject was once more revived, it was
supported by research needs in biology, psychology, and the-
oretical physics. Statistical methods subsequently developed on
the basis of probability theory were then applied to matters
as remote and different as the calculation of the density of tele-
phone traffic and the maintenance of manufactured products at
a certain standard of quality. The determination of the char-
acter of an indefinitely large population on the basis of samples
drawn from it is a problem common to many disciplines and
many daily occupations. The elements of an adequate theory
of sampling within the framework of a theory of probability
were first laid down by Lexis, and further developed by Bortkie-
wicz, Tschuprow, Markoff, and others. They showed that the
sheer number of instances in a sample is no guaranty of its
representative character, criticized statistical practice which re-
lied upon the accumulation of unanalyzed numerical data, and
developed a technique for obtaining trustworthy statistical co-
efficients from data grouped carefully according to the variety,
homogeneity, and number of the instances. More recently, R.
A. Fisher and his school have approached the problem from a
different point of view, and, in addition to devising important
criteria for the adequacy of statistical coefficients, he has called
needed attention to the serious limitations of many of the
Laplacian formulas. Other distinet contributions to the theory
of sampling have been made by Fechner, Bruns, Galton, Thiele,
Pearson, and Neyman. In consequence of these researches, the
theory of errors, the theory of sampling, the:theory of curve-
fitting, now all fall within a comprehensive theory of probability.

Vol.l,No. §
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g) Although the importance of the main ideas of the mathe-
matical theory of probability for systematizing measurements
was quickly recognized in the sciences, the theory of probabil-
ity was for a long time usually regarded as simply ancillary to
the theoretical disciplines. Thus, it was commonly assumed in
physies that its laws are statable in “deterministic” form, such
that the positions and velocities of elementary particles at one
time are connected in precise ways with the positions and ve-
locities at any other time. It is today a commonplace, however,
that some of the most fruitful applications of the theory of
probability occur within the theoretical framework of various
sciences. The ancient idea that the apparently permanent ob-
jects around us as well as the regularities in their behavior could
be viewed es aggregate effects of a large number of hypothetical
elements undergoing random changes has frequently attracted
the creative minds in science. Thus, Kepler played with it to
explain the appearance of a new star in 1604; Boyle had a
corpuscular theory for the states of aggregation of bodies; Huy-
gens even formulated a corpuscular theory of gravitation; and
Daniel Bernoulli’s interpretation of Boyle’s law for gases in
terms of the kinetic theory of matter is well known.

Apperently, the first man to work out such theories with
sufficient quantitative detail to make possible an empirical eval-
uation of the magnitudes associated with the hypothetical ele-
ments was Joule. He computed the average velocities of hydro-
gen molecules on the basis of statistical considerations and
showed that, in order to produce the observed effects, the ve-
locities must lie in specified intervals. The statistical explana-
tion of thermal phenomena was carried to much greater lengths
by Maxwell: he showed that, if certain assumptions are made
concerning the probabilities with which the particles of a gas
acquired different positions and velocities, the familiar gas laws
could be deduced. But perhaps the greatest triumph of prob-
ability theory within the framework of nineteenth-century
physics was Boltzmann's interpretation of the irreversibility of
thermal processes; this he was able to do in terms of the most
probable distribution of the energies of the molecules of a gas.

Vol.|,No. 6
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In consequence, the second law of thermodynamics can be for-
mulated as a theorem in probability, and irreversible processes
turn out to be statistical phenomena.

Thermodynamics is not an isolated instance of the use of
statistical concepts within theoretical formulations. Even be-
fore Maxwell employed probability theory for the study of
gases, G. G. Stokes used it to analyze the effects of polarized
light coming from different sources as the average or most
probable effects. Again, statistical mechanics, which consist-
ently employs the theorems and the point of view of probability
theory, has been fruitfully applied in the study of the history
and distribution of the stars. And more recently the entire the-
ory of radiation has been developed to include systematically
within itself hitherto unrelated phenomena, on the basis of a
profound and radical application of the theory of probability.

But physics is not the only science with has profited from
using statistical concepts in its theories. Democritus tried to
explain the resemblances and dissimilarities between parents
and children in terms of a shuffling of the atoms coming from
the ancestors of a child; Aristotle employed related notions in
discussing similar problems. And ever since Darwin called at-
tention to the importance of the facts of variation for any ade-
quate biological theory, students of biology have been develop-
ing a statistical treatment of the subject. It is obviously essential
to distinguish between variations due to heredity and those due
to environment; this phase of the subject has been explored by
Pearson and his school with the help of the mathematical theory
of probability. But attempts such as those of Galton to formu-
late the laws of heredity in terms of average contributions from
the ancestors of a given set of progeny are now known to be un-
satisfactory; and Galton’s mistakes indicate some of the limita-
tions of statistical methods in general. The theoretical basis for
modern experimental genetics was supplied by Mendel. The
theory of the mechanism of heredity he proposed, which in-
volved the transmission, segregation, and combinations of unit
characters in various proportions, obviously lends itself to be
exploited in terms of the fundamental ideas of mathematical
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probability; with its help, the artificial selection of plants and
animals has been brought to a high stage of perfection. The
mathematical theory of natural selection for those groups in
which a Mendelian analysis can be made has been worked out
mainly by R. A. Fisher, J. B. S. Haldane, and S. Wright.

In general, therefore, the introduction of probability notions
into the theoretical structure of physics and biology has been
most fruitful. It has made possible the prediction of the rela-
tive frequency with which definite characters occur in groups of
individuals, even when it is not feasible to predict the occur-
rence of such characters for a given individual.

k) The developments which have thus far been surveyed
have gradually tended to undermine the authority of classic
rationalism in science. For, as points of view borrowed from the
theory of probability and statistics assume central roles, both
within. the theoretical framework of the sciences as well as in
the procedures of applying theories to matters of fact, it be-
comes progressively more difficult to assume that the principles
of a science are self-evident or necessary. This change in the
climate of opinion has been further supported by a general
logical criticism of the assumptions of the classic view which
began in antiquity. The Epicureans, as well as Skeptics like
Carneades, developed conceptions of the logic of inquiry which
made allowances for the formally incomplete character of the
evidence for empirical statements. In modern times it was
Hume’s discussion of causality which put the rationalist notion
of necessity on the defensive, and since then every variety of
empiricism has had its day in court.

Nevertheless, although the Humean analysis was a powerful
dissolvent of ancient preconceptions, it was not so powerful as
some of the internal technical developments within the special
sciences. A few of these have already been indicated. But per-
haps the most significant single technical achievement, from
the point of view of its general effect upon the philosophy of
science, has been the definitive refutation of the thesis that
Euclidean geometry is the apodeictic science of space. For the
discovery of the non-Euclidean geometries exhibited logically
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possible alternatives to conceptions previously regarded as in-
dubitable, while the recognition of a distinction between pure
and applied mathematics cut the ground from under the claims
of traditional rationalism. Whatever doubt still lingered as to
the possibility of alternative conceptions of “space” was finally
removed when the Newtonian physics and its Euclidean frame-
work for mechanics were displaced by relativity physics and
its framework of Riemannian geometry. And perhaps the final
coup de grice to the claim that physical principles are indubita-
ble and necessary was supplied when the familiar physics of
continuous action was found to be inadequate for vast ranges
of phenomena, and made way for the contemporary physics of
quanta.

There are thus both historical and analytic grounds for the
view central to empiricism that there is no a priori knowledge
of matters of fact, and there are similar grounds for the thesis
of contemporary empiricism that no amount of empirical evi-
dence can establish propositions about matters of fact beyond
every possibility of doubt or error. On the other hand, the
recognition of this state of affairs raises an important problem.
Although our beliefs cannot be established with absolute final-
ity, we do, as we must, differentiate between them on the ground
of the character of the evidence which supports them. We re-
gard it more probable that Napoleon was a historical character
than that he is a solar myth. We believe that the prognoses of
a modern physician are more reliable than those made a century
ago. A chemist accepts Lavoisier’s theory of combustion as
better founded than Stahl’s phlogiston theory, and a physicist
will urge that the quantum theory of radiation is today more
securely based than it was twenty years ago. There is clearly
an obvious need for canons to evaluate the evidence supporting
any proposition, and for the formulation of the principles we
employ in deciding that one statement is better grounded than
another. Judging by the success of past attempts to supply
them, it may be suspected that every proposed list of such
canons and formulations will be incomplete and will require
emendation with the progress of inquiry. The need, however,
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is a permanent one; and the attempts to satisfy it constitute
the broader setting and the larger theme in contemporary dis-
cussions of probability.

II. The Calculus of Probability and Its Interpretations

3. Preliminary Distinctions

The vast range of material which has just been outlined has
been traditionally regarded as constituting the subject matter
for a theory of probability. It has been frequently assumed that
a precise meaning can be found for the term ‘probable’ which is
common to its use in each of the contexts indicated. Upon this
point competent students are not in agreement. Without pre-
judging the issues involved, it is possible to distinguish between
two groups of statements in which the term ‘probable’ or its
derivatives oceur. The first group contains statements such as
the following:

“The probability that a man of thirty will survive his thirty-
first birthday is .955’; ‘The probability that a normal coin will
present a head after being fossed is 3°; “The probability that on
the basis of the evidence in 1988 the electronic charge ¢ has a
value in the interval (4.770 + .005) X 107!° electrostatic units
is .67"; ‘The probability that a molecule of hydrogen has a ve-
locity in the interval » — dv and » 4+ dv is p”; “The probability
of a 10° deflection of an a-ray passing through a film is ’; “The
intensity of a spectral line is determined by the probability of
the corresponding quantum transition’; and ‘A snowstorm in
New York during January is more probable than during No-
vember.’

The second group contains such statements as:

‘Relative to our present evidence the theory of light quanta
has a probability which is greater than its probability relalive
to the evidence available in 1920°; “The evidence makes it highly
improbable that Aristotle composed all the works attributed to
him’; “The theory of evolution has a higher probability on the
evidence than the theory of special creation’; ‘It is probable
that, had Cleopatra’s nose been a half-inch longer, the course
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of the Roman Empire would have been different’; and It is
not probable that Christ was a descendant of King David.’

Statements in the first group employ the term ‘probable’ in
a sense which, by practically unanimous consent, is subject to
the rules of the calculus of probability; indeed, the calculus has
been explicitly devised to handle such “probabilities.” State-
ments in the second group apparently employ the term to indi-
cate the “degree” of the adequacy of the evidence supporting
the proposition; students are not agreed whether the mathe-
matical calculus of probability is applicable to such “probabili-
ties.” In the present section we shall for the most part confine
ourselves to such statements which clearly fall into the first
set; the discussion of the second group of statements is reserved
for Section ITI. But nothing said in the present section will
exclude the possibility that both classes of statements, in spite
of apparent differences between them, are subject to the same
interpretation.

Even though we have restricted the scope of the present sec-
tion in the indicated way, it is still not possible to specify a
sense of ‘probable’ or even a formulation of the calculus of
probability, upon which reasonably complete agreement is ob-
tainable. There are, in fact, three major interpretations of the
term. According to the first, a degree of probability measures
our subjective expectation or strength of belief, and the calculus
of probability is a branch of combinatorial analysis; this is the
classical view of the subject, which was held by Laplace and is
still professed by many mathematicians. It is not always clear
whether by ‘expectation’ proponents of this view understand
actual expectations or reasonable expectations. According to the
second, probability is a unique logical relation between propo-
sitions, analogous to the relation of deducibility; its most promi-
nent contemporary supporter is the economist Keynes. Accord-
ing to the third, a degree of probability is the measure of the
relative frequency with which a property occurs in a specified
class of elements; this view already appears in Aristotle, was
proposed by Bolzano and Cournot during the Jast century and
further developed by Ellis, Venn, and Peirce, and was tinally
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made the basis for a subtle mathematical treatment of the sub-
ject by von Mises and other contemporary writers. We shall
begin with the exposition of the frequency interpretation of
probability and its ealculus; subsequently, the other two views
will be briefly considered, and it will be argued that the fre-
quency view is the one most suitable for the first of the fore-
going two classes of statements; in Section ITI we shall finally
examine some important methodological problems which cluster
around the frequency view.!

4. Fundamental Ideas of the Frequency Interpretation of Probability

The basic ideas of the frequency conception of probability
emerge upon an examination of such a statement as “The proba-
bility that a person of thirty residing in the United States sur-
vives his thirty-first birthday is .945.” The meaning of such 2
statement can be ascertained by examining how it is estab-
lished. That procedure, greatly simplified, is somewhat as fol-
lows. Suppose that during a period of years there is no migra-
tion to or from the United States, and that during these years
exact counts are made of its inhabitants who fall into definite
age groups. Thus, suppose that in 1900 there are 2,000,000 per-
sons who have just reached their thirtieth birthday, and that
exactly one year later there are 1,890,000 persons who have just
reached their thirty-first birthday; that is, of the thirty-year-
olds in 1900 a ratio of .9450 survive at least another year. We
imagine that similar figures are obtained for the four succeed-
ing years, and that the ratios of thirty-year-olds who survive
their thirty-first birthday are .9452, 9456, .9451, and .9454,
respectively. We notice that, although these ratios are not con-
stant, the differences do not appear until the fourth decimal is
reached. We may say, therefore, that during these five years
approximately 945 out of a thousand thirty-year-old residents
of the United States live for at least another year; and we may
make the further assumption that for an indefinite number of
Juture years the corresponding ratios of survivals remain in the
neighborhood of .945. Accordingly, the statement “The prob-
ability that a thirty-year-old resident of the United States sur-
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vives his thirty-first birthday is .945" means that in the long
run the relative frequency with which thirty-year-olds in the
United States survive for at least one year is approximately
945, '

The following points must be noted in this example. In the
first place, the probability statement supplies no information
about any individual resident of the United States; the informa-
tion is relevant to the individual Tom Brown only in so far
as he belongs to the class of thirty-vear-old residents. Second,
the statement supplies information about no property of this
class of residents other than the one explieitly specified, namely,
the property of surviving at least one year. Third, the state-
ment supplies a numerical value—the value of a relative fre-
quency. Fourth, the statement does not mean that in every
thousand thirty-vear-olds 945 will live for at least another year.
And, finally, this numerical value is intended to specify the rela-
tive frequency of survivals during an indefinite number of years,
or “in the long run,” and not only during the years for which an
actual count has been made; that is to say, the statement makes
a prognosis,

We now turn to the general definition of probability state-
ments. But at once difficulties arise. A proposed definition
must be precise and unambiguous and at the same time should
be modeled as closely as possible upon the procedures which
the foregoing example illustrates. On the other hand, those pro-
cedures have been described with the help of terms which are
not precise; in particular, the expressions ‘in the long run’ and
‘approximately’ are highly vague, and it is not easy to develop
a mathematical theory in terms of them. Accordingly, the defi-
nition to be proposed will replace these expressions by more
precise ones, which are appropriate for developing a caleulus
of probability. IHence, although the definition will be modeled
upon the illustration, it will employ precise mathematical con-
cepts to which there cannot easily be assigned a simple em-
pirical meaning. The methodological problems which are a con-
sequence of this procedure will have to be considered subse-
quently.
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Let R be a non-empty class of elements (i.e., it contains at
least one member), to be known as the reference class; for reasons
which will be soon apparent, the elements of R will be supposed
to be serially ordered. Let A be some property which the ele-
ments of R may exhibit. Suppose B contains n elements, and
let nu(4 and R) be the number of elements in £ which have
the property A. We may now define the expression ‘the rela-
tive frequency with which elements in R have the property A,
which we abbreviate into ‘fr,(4, R)’, as follows:

“fr.(A, R)’ is short for Eﬁ:_miﬂ _

It is evident that a relative frequency is a proper fraction. Sup-
pose now that the number of elements in R increases. In gen-
eral, the fraction fr,(4, R) will be different for different wval-
ues of n. It may happen, however, that these fractions will
crowd around some fixed number p, and will differ from it by
a small positive magnitude ¢ which diminishes as n increases:
in familiar language, fr.(4, R) will tend toward p in the long
run. The mathematically precise way of rendering this possi-
bility is to say that fr.(A4, R) approaches p as a limit with in-
creasing n; that is,
p=Nmg (4R,

What mathematicians understand by ‘limit’ is illustrated by the following.
Consider the infinite series of fractions }, %, §, 4, . . . . ; its limit is 1. Suppose
we have the infinite series of numbers x, 22, 23, . . .+ Zn, . . . . , where the
subscripts indicate the ordinal position of the numbers in the series. To say
that p is the limit of this series means that, however we may select a positive
number €, there is a number N such that for every n, if n > N, then the
absolute difference between x, and p (i.e., neglecting signs) is less than e.
The reason for requiring R to be serially ordered is now clear. If R contains
only a finite number of elements, fr.{A, R) is unaflected by the order in which
the elements are counted; but the Yimit of fra(4, R) when R is not finite
does depend on the order in which the elements of R (and therefore the
relative frequenecies) are arranged.

It is very convenient in developing the caleulus of probability
to ¢-fine ‘probability’ as ‘the limit of relative frequency.” If
we abbreviate statements of the form “The probability that an
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element has the property A if it is a member of R is p’ into
‘prob(4, R) = p,’ the definition takes the following form:

‘prob(4, R) = p’ is short for ‘p =nlin:°h.(A, Ry

‘prob(4, R) = p’ may be read conveniently as ‘the probability of 4 in
Risp’

Expressions like ‘prob(4, R)’ which describe numbers are called
numerical expressions and consist of the funcior ‘prob’ together
with its arguments; ‘nu(A4 and R)’ is also a numerical expres-
sion, and ‘nu’ another functor. The expression ‘prob(4, R)’ is
the fundamental numerical expression in the mathematical the-
ory of probability developed on a frequency basis; it describes
a real number, which may be irrational, in the interval 0 to 1
inclusive. Within the calculus of probability the statement “The
probability that a thirty-year-old resident of the United States
survives his thirty-first birthday is .945’ must now be taken as
equivalent to “The limit of the relative frequency with which
the property of surviving at least one year occurs in the ordered
class of thirty-year-old residents of the United States is .945.

It has already been pointed out that the foregoing definition of ‘probability’
has been proposed for the sake of its great convenience in calculations. It
employs the notions of infinite ordered classes and of limiting values of
relative frequencies in such classes. It is obvious, of course, that in empirical
procedures we are occupied with finite classes which may or may not be
ordered, and with relative frequencies rather than limits of relative frequen-
cies. Some writers (e.g., Copeland and Popper) have proposed to use as the
definition of ‘probability’ not ‘the limit of relative frequencies,’ but ‘the
condensation point of relative frequencies.’ p is said to be a condensation
point of the series #), Z1, Za, . . . . T, - - . . , if for every positive number ¢
and every N there is an 1 such that n > N and the absolute value of the differ-
ence between x, and p is Jess than ¢. Such a definition has the merit that a
proof can be given that there is-at least one condensation point for relative
frequencies in an infinite reference class, even though no limit exists; it suffers
from the disadvantage that according to it a property may have more than
one probability in & given class, so that the calculus of probability becomes
more complicated.?

It is essential to note the following points in connection with
probability statements interpreted in terms of relative fre-
quencies:
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a) No meaning can be attached to any expression which,
taken literally, assigns a probability to a single individual as
having & specified property. Statements of probability predi-
cate something of an individual (e.g., Tom Brown) only in so
far as he is an element in a specified reference class. Probability
statements which do not do so explicitly must be regarded as in-
complete if they are to be significant: they must be understood
as making an implicit specification of the reference class within
which the designated property occurs with a certain relative
frequency.

b) Every probability statement of the form thus far con-
sidered is a factual statement, into whose determination em-
pirical investigations of some sort must always enter. Probabili-
ty statements are on par with statements which specify the
density of a substance; they are not formulations of the degree
of our ignorance or uncertainty. To assert that the probability
of & normal coin presenting head after being tossed is 4, is to
ascribe a physical property to a coin which is manifested under
determinate conditions.

¢) Since probability statements require the specification of a
reference class with respect to which a given property has some
degree of probability, a given property can be associated with
different degrees of probability, according to the reference class
which is specified. The probability of surviving at least one
year may be .945 with respect to the reference class of thirty-
year-old residents of the United States; it may be .734 with re-
spect to the reference class of sixty-year-old men; and it may
be .845 with respect to the class of domesticated cats.

d) Since the explicit definition of probability statements is
in terms of relative frequencies, the direct evidence for them is
of a statistical nature. Thus, waiving difficulties to be men-
tioned, the direct evidence for the probability of a coin falling
head is obtained by counting the frequency with which it falls
head. However, probability statements do not always occur
singly and are often part of a more or less inclusive system of
statements or a theory. In such cases the estimation of the
numerical values of the probabilities and the subsequent testing
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of such values may be made on the basis of indirect evidence
- which in some cases may even be nonstatistical. This point
will receive further attention in Section ITI.

e) Since a probability has been defined as the limit of a rela-
tive frequency (or, even more loosely, as the relative frequency
in the long run), every probability statement is a hypothesis;
such a hypothesis cannot be completely confirmed or finally
verified by the (necessarily) finite amount of evidence actually
at hand at any given time. It is thus quite possible that the
numerical value estimated for a probability on given evidence
is not correct, so that revisions of the estimate may have to be
made repeatedly. It is partly for this reason that in the history
of the subject discussions of probability have run parallel with
discussions of the problem of induction. The situation with re-
spect to probability statements is indeed more serious than has
been just indicated. For not only cannot probability statements

'be completely confirmed; they cannot even be completely dis-
confirmed by any actual evidence. The issues involved will re-
ceive further attention below.

f) Finally, it is a mistake to suppose that the successful use
of probability statements depends in any way upon the issues
of what is popularly known as ‘“‘determinism.” Because cur-
rent microscopic physics employs theories involving in an essen-
tial way probability considerations, many thinkers, including
reputable scientists, have been persuaded into supposing that
the general breakdown of “mechanistic” explanations has been
demonstrated, that processes in nature are “noncausal,” and
that contemporary physics supplies evidence for the existence
of human “freedom” and for a “spiritualistic” world-view. Such
suppositions feed upon mistaken or misleading formulstions of
the actual issues in modern physics, a2s has been pointed out re-
peatedly, among others, by Venn, Peirce, Philipp Frank, and
Henry Margenau. It is perhaps sufficient to note that the use
of probability statements requires no commitment, even by im-
plication, to any wholesale “deterministic” or “‘indeterministic”
world-view; they can be used suecessfully in such contexts in
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which specified properties occur with stable relative frequencies
in specified classes of elements.

One of the main difficulties in most debates on causality is that the term is
not explained with sufficient precision to make discussion fruitful. (As a
matter of fact, specific contributions {o the sciences of nature rarely if ever
contain the term.) Without entering into detailed analyses of the issues some-
times raised, the following observations may help clarify some of them.

(1) Questions of causality can be significantly discussed only if they are
directed to the theories or formulations of a science and not to its subject
matter. No clear sense can be given to most pronouncements that the
world or any segment of it is a causal process. On the other hand, in
discussing the causal or noncausal character of a given theory, two factors
must be examined: the state (or system of properties) in terms of which the
physical system under discussion i3 described and the laws (or system of
equations) which connect the states at different times and places. The state
of a system is sometimes specified with the help of properties belonging to
what are taken as “individual elements,” sometimes with the help of the
properties of a field, and sometimes in statistical terms involving the proper-
ties of aggregates of individuals. The laws alse can differ markedly in
form: they may establish & unique correspondence between states at differ-
ent times or they may have the form of probability statements; they may be
explicit functions of the time variable or they may not, ete. No universally
accepted criterion has been formulated for judging whether a theory is
*“‘causal.” Classical mechanics is frequently considered as the example par
excellence of such a theory; the states comsidered by it are the positions
and momenta of material particles, and its laws are certain differential equa~
tions of the second order not containing the time variable explicitly. It is
often assumed that, in order to be a causal theory, the states employed by
the theory must be those of classical mechanics. In that case, however,
neither classical electromagmetics por modern quantum mechanics &re
causal theories, although the former is usually so regarded. In some cases,
on the other hand, the distinction between noncausal and causal theorjes is
made on the basis of whether the states are specified in statistical terms or
not, so that classical statistical mechanics and modern quantum mechanics
would both be classified as noncausal theories. The main point to be borne in
mind is that both factors, specification of state and form of law, are relevant to
the discussion. Even theories which employ statistically specified states have
been said to be causal because their laws establish a unique correspondence
between its states at different times—although with respect to certain proper-
ties of individuals in the system the theories have been classified as non-
causal, because the equations supply only probability statements concerning
the occurrence of properties of individuals.
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(ii) Because probability statements supply no information about any
individual member of the reference class, it has been imagined that a physi-
cal theory involving probability considerations precludes a “‘causal” explana-
tion of the phenomena under consideration. Now such a theory will usually
specify the state in statistical terms; and, as a consequence, the predictions of
the theory may have the form of probability statements concerning the
properties of individuals. In some cases, however, it is also possible to de-
seribe the situation in terms of nonstatistical states, so that Iaws of a “causal™
type may connect these new states. Whether it is possible or convenient to
do so is obviously a matter to be decided for each case by experiment and
scientific policy. It so happens that for the phenomena studied by classical
statistical mechanics it is possible to do this; and, as a consequence, the
“indeterminism™ of classical statistical mechanies has been usually regarded
as eliminable or inessential. Such an elimination is not possible for modern
quantum mechanics within the framework of its procedures, and marks
an important difference between classical and recent physics. In any case,
nothing more than & very technical scientific difference is involved; and at
least zome physicists are of the opinion that future research may remove this
difference. It should also be noted, moreover, that if the ¥-function in
modern quantum mechanics is taken to specify the state of the system, with-
out seeking to interpret this function statistically, quantum theory may slso
be regarded as a ““‘causal” theory, for its laws have the form of equations
usually regarded as of the causal type: they establish a unique correspond-
ence between states at different spatio-temporal regions.?

5. Fundamental Theorems in the Calculus of Probability

1. The function of the calculus.—It should now be clear that
probability statements cannot in general be certified on purely
formal grounds, so that pure mathematics and logic are not in
the position to assert probability statements of the form con-
sidered thus far. What then, it may be asked, are the function
and nature of the mathematical calculus of probability? To
readers of the preceding monographs in this Encyclopedia the
answer will be familiar. The calculus of probability has the
same general function as a demonstrative geometry or 2 demon-
strative arithmetic: given certain initial probabilities, the cal-
culus of probability makes it possible to calculate the probabili-
ties of certain properties which are related to the initial ones in
various ways. Thus, arithmetic cannot tell us how many people
live in either Chira or Japan; but, if the population of China
and the population of Japan are given, we can compute the
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combined population of these countries. The calculus of prob-
ability functions in the same way. It is important to recognize
that the propositions asserted in the caleulus are not factual
or empirical statements: they are all certifiable on formal
grounds alone, and are analytic of the definitions and rules ini-
tially laid down. The proposal to establish the theorems of the
calculus of probability by experimentation, which has some-
times been made, is as ill-considered as would be the proposal
to prove experimentally that 8% 4 4% = 5% The function of the
probability calculus, like that of other caleuli, is to make pos-
sible the iransformation of probability statements in order that
their theoretical content be made evident. The calculus thus
has an insirumental function in the context of empirical investi-
gations. It permits us to derive the relative frequencies with
which certain properties occur from initial probability state-
ments which do not explicitly mention those frequencies; in this
way the calculus makes possible a more adequate testing of the
probability statements which we entertain by making explicit
the predictions they involve.

The detailed discussion of the calculus of probability can be
undertaken only with the help of the technical apparatus of
mathematical analysis. Some familiarity with at least the ele-
mentary theorems of the calculus is, however, essential for a
just appraisal of its function and limitations. In the present
section we shall accordingly state a few standard theorems of
the calculus and, incidentally, obtain important material for
evaluating the claims of standpoints in the philosophy of sci-
ence which do not subscribe to an empirical outlook.

2. Elementary theorems of the calculus.—Suppose we wished
to obtain the probability that children of white parents are
both blue-eyed and blond. The reference class R consists of chil-
dren born to white parents; the problem requires for its answer
the (limit of the) relative frequency with which the properties
A (being blue-eyed) and B (being blond) jointly occur in R.
This number, prob(4 and B, E), could be estimated directly.
It may, however, be caleulaled from the following two numbers:
the probability of 4 in R; and the probability of B in the refer-
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ence class consisting of blue-eyed children of white parents;
i.e., from prob(4, R) and prob(B, A and R). The following the-
orem, known as the General Product Theorem, can be easily
demonstrated: The probability of A and B in R is equal to the
probability of 4 in R, multiplied by the probability of B in 4
and R. Using familiar mathematical symbolism this can be
stated as follows:

prob(4 and B, R) = prob{4, R) X prob(B, 4 and R) . (1.1)

We happen to know that the relative frequency of blond
hair in the class of blue-eyed children of white parents is not
equal to the relative frequency of blond hair among children
of white parents in general. In some cases, however, the prob-
ability of B in R does equal the probability of B in the narrower
reference class 4 and R. The properties 4 and B are then said
to be “independent” of each other with respect to E. In such
cases we obtain the Special Product Theorem:

prob(4 and B, R} = prob(4, R) X prob(B, R) . (1.2)

Theorem 1.1 may itself be generalized for the joint occurrence
of n properties 4,, 4;, . . . . 4..

Suppose now that we required the probability that children
of white parents are either blond or black-haired. The proper-
ties 4 (being blond) and B (being black-haired) cannot as a
matter of fact jointly occur in the class R; they are said to be
“exclusive” with respect to R. For such exclusive properties the
following Special Addition Theorem can be easily proved: The
probability of 4 or B in R is equal to the probability of A in B
plus the probability of B in R. Again employing mathematical
symbolism we obtain:

prob(4 or B, R) = prob(d, R) + prob(B, R) . (2.1)

Let us next obtain the probability that children of white
parents are either male or female. Properties such as male and
female are called “contradictory properties” in the class of
human births because they are both exclusive and exhaustive.
It is obvious that the probability of being male or female in
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the class of children of white parents must be equal to 1. In
particular, we can demonstrate the following theorem:

prob(4d ornot-4, R) =1, (2.2)
and with the help of theorem 2.1 we also obtain
prob(4, R) + prob(not-4, R) =1 . (2.3)

Thus if the probability of a male birth among humans is .51,
the probability of a female birth in that class must be .49.

Theorems 1.1 and 2.1 are fundamental in the elementary cal-
culus of probability. From them a large number of important
consequences can be derived by applying the ordinary rules of
logic and arithmetic. A few of them will be mentioned because
of their practical and methodological importance.

There is clearly no difference between the probability of
Aand Bin R and the probability of Band Ain R. Accord-
ingly,
prob(4 and B, R) = prob{4, R) X prob(B, A and R)

= prob(B, R) X prob(4, Band R) ,

from which we obtain the Division Theorem:

_ prob(B, R) X prob(4, B and R)
prob(B, 4 and R) = orob(d, R) » (8.1)

which can be given the following more convenient form:
prob(B, 4 and R) =
prob(B, R) X prob(4, B and R)

prob(B, R} X prob{4, B and R) + prob(not-B8, R)
X prob(4, not-B and R)

. (3.2)

Theorem 3.2 is one form of what is known as Bayes’s theorem.
A more general form is the following: Let By, B, . ... B, be.
a set of mutually exclusive and exhaustive properties with re-
spect to R, and let B; be any one of them. Then

prob(B;, 4 and R) =—Pr0(Ba R) X prob(4, B;and R)
S prob(B,, R) X prob(4, B;and B)

1
where, as usual, ‘Z’ is the sign of summation.

» (8.8
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. Bayes’s theorem and the consequences which have been
drawn from it have played important roles in discussions of
the foundations of probability, induction, and scientific method.
It is therefore important to illustrate how it may be employed,
especially since the limitations of its use have not always been
clearly understood or remembered. Let R be the very numerous
class of shots fired at a certain target; let A be the property of
a shot hitting the bull’s eye; and, finally; let B, be the property
of a shot that it is fired from Rifle 1, B; from Rifle 2, and B;
from Rifle 3. All the shots are supposed to be fired from these
rifles. The (limiting) relative frequency of shots from Rifle 1 is
£, from Rifle 2 is %, and from Rifle 8 is 4; furthermore, the prob-
ability that a shot fired from Rifle 1 hits the bull’s eye is 3,
while from Rifle 2 it is , and from Rifle 3 it is ;. What is
the probability that a shot which hits the bull’s eye is fired from
Rifie 27 The question asks for the value of prob(B;, 4 and R);
it is obtainable from theorem 8.3 if we remember than n = 8,
prob(By, R) = §, prob(By, R) = 3, prob(B, R) = #, prob(4,
B, and R) = }, prob(4, B; and R) = §, and prob(4, B, and
R) = }. A simple calculation shows that the required prob-
ability is §.

Bayes’s theorem is frequently referred to as a theorem in
“inverse probabilities,” and it has been traditionally regarded
as the instrument for discovering the probability of “causes”
or “hypotheses” from known “effects” or “consequences.” The
reason for this terminology is perhaps evident from the illustra-
tion: the probability which is sought is that of the “cause”
(namely, of a shot being fired from Rifle 2), on the assump-
tion that certain “effects” have set in (namely, of the shot
hitting the bull’s eye). But although Bayes’s theorem can be
demonstrated in the calculus of probability, it can be employed
to determine the probability of “‘causes” only if all the prob-
ability coefficients in the right-hand side of the formula are
given. Of special importance are the probabilities of the form
‘prob(B;, R)’ which are sometimes designated as the “ante-
cedent probabilities of the causes.” Now it has been often as-
sumed that, if we possess no information to the contrary, these
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antecedent probabilities are equal to one another. THs assump-
tion has been supported by what is known as the Principle of
Indifference. With the help of this principle it has been sup-
posed that probabilities could be determined a priori—that is,
without recourse to empirical, and more particularly to statisti-
cal, investigations. Consequently, this assumption proceeds
from a different conception of probability than the one de-
veloped in §4; and for a relative frequency conception of
probability the equating of probabilities to one another simply
on the ground that we know no reason why they should be un-
equal is & major error. Proceeding within this different concep-
tion of probability, Laplace deduced from Bayes’s theorem the
so-called Rule of Succession, which for a long time was accepted
by eminent thinkers as the basis for reliable scientific predic-
tions. According to this rule, if n events of a certain kind have
been observed in succession, then the probability of its recur-
rence is (n -+ 1)/(n + 2). Following Laplace, Quetelet declared
that, “after having seen the sea rise periodically ten successive
times at an interval of about twelve hours and a half, the proba-
bility that it will rise again for the eleventh time would be {}.”
But it also follows from the rule that, if the tide has not been ob-
served to rise at all, the probability of its rising is 4; and such a
consequence is a reductio ad absurdum of the rule and of its
premisses for any view of probability which defines it in terms
of relative frequencies.

In most problems it is not practically or theoretically possible
to assign values to the antecedent probabilities in Bayes’s theo-
rem which could have any empirical significance. For this rea-
son Bayes’s theorem has only a limited use, and few writers
today take it seriously as a means for determining the probabili-
ty of a given hypothesis on the basis of given evidence.

8. Theorems depending on irregularity in the reference class.—
The theorems which have been mentioned thus far can be dem-
onstrated on the sole assumption that the relative frequency of
a property in its reference class has a limit. But many theorems
in the calculus which are of greatest importance in practice re-
quire that other conditions are satisfied ad well.
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Suppose that in the class R (e.g., tosses with a coin, where the
tosses may be imagined as temporally ordered) the property
H (head falling uppermost) occurs as follows, where T (tail
falling uppermost) and H are exclusive and exhaustive prop-
erties with respect to R:

HTHTHTHTHTHT.... (1)

That is to say, we suppose that every other toss yields a head,
so that the probability of a coin falling head is 4. Here the
property H occurs with an obvious regularity; and, if such were
indeed the case for actual throws with a coin, we would very
likely not employ probability considerations with respect to it.
In fact, however, in actual cases heads and tails occur in no
such regular order, but with an irregularity somewhat as fol-
lows:

HHTTTHHTHTTHHTTHHHHTHTHHTIT.... (ii)

In this finite segment of a hypothetically infinite series the rela-
tive frequency of H is .51; but we may imagine that the limiting
value of this ratio is also 3. The second series is like the first
in having § as the limit for the relative frequency of H; it is
unlike the first in that H occurs in it irregularly or at random.
Various theorems in the calculus of probability depend upon
the assumption that the reference classes involved possess such
a random character.

It is, however, not easy to give a precise sense to what we mean by ‘at
random,’ and an extensive technical literature now exists which deals with
the problems of defining ‘irregularity’ in & manner suitable for mathematical
purposes. The first one to have called attention to the importance of condi-
tions of irregularity and to have worked out-systematically a mathematical
theory of probability with them in mind is von Mises. His procedure takes
its point of departure from the following observation: If in the first of the
foregoing series we select the (nonfinite) subseries R’ by including in it only
the odd terms of R, the probability of H in R’ is no longer } but is 1. On the
other hand, if we select the subseries R’ from a random series R (such as the
second series above is supposed to be) in the same way as before, the probabil-
ity of H in R’ is still 4; that is, prob(H, R) = prob(H, R'). Now let § be
any nonfinite subseries of R, subject to the sole condition that the elements of 8
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are not selected on the basis of their possessing or not possessing H, If for
every sclection of such a subseries S from R, prob{H, R) = prob(H, §), the
reference class R is said by von Mises to be irregular. He believes that this
definition makes precise our intuitive notion of irregularity and that it formu-
lates the conditions found in games of chance and other fortuitous events,
Moreover, he maintains that in order to demonstrate many of the standard
theorems it the calculus of probability his condition for irregularity must be
assumed. (It is well to bear in mind, however, that considerations such as
these which involve infinite classes or classes having certain types of order are
pertinent primarily to the calculus of probability. They are introduced for the
sake of constructing a consistent and powerful instrument of symbolic trans-
formations.)

However, many students have found von Mises’ definition unsatisfactory.
It can be shown that, if a reference class satisfies von Mises’ condition of
irregularity, the order in which the specified property occurs i it cannot be
formulated by any mathematical function; and doubts have therefore been
raised as to the logical possibility of a reference class which is to satisfy so
stringent a condition of irregularity. Indeed, if the phrase ‘every selection
of such a subseries S’ in the definition is taken seriously, a contradiction can
be exhibited in the notion of an irregular reference class. Various attempts
Leve accordingly been made by a number of writers to overcome such diffi-
culties (e.g., by Doerge, Kamke, Tornier, Reichenbach, Popper, Copeland)
by distinguishing between different types of irregularity and by proposing
conditions of irregularity whose consisteney can be established. None of these
substitutes, however, is sufficiently strong logically for demonstrating the
standard theorems in question ir their full generality. But more recently it
has been shown by A. Wald that by suitably relativizing the selection of sub-
series in von Mises' definition to certain very general classes of selections, the
logical difficulties can be obviated, while at the same time the consequent
restrictions upon those theorems do not seriously impair their general va-
lidity.4

We shall assume that a mathematically satisfactory defini-
tion of irregularity can be given, and proceed to mention a few
important theorems which may be demonstrated for reference
classes satisfying it. Let R be such a reference class (e.g., throws
with a coin) in which the property H (head uppermost) has
the probability p while the property T (tail uppermost) has the
probability 1 — . We now suppose the elements of R to be
grouped into sets of n successive elements each, and ask for
the probability that exactly r elements in a set(where r < n)
have the property H while the remaining n — r elements have
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T. The numerical value of this probability can be shown to be
equal to

n!
=71 P —p) (4.1)
wherer! =1 X 2X3X....X (r—1) X r, with 0! = 1.

It is of some importance to understand clearly what this
number signifies. Suppose that H and T occur in R as in series
(i) on page 32 above, and suppose that R is broken up into
sets of four successive elements each. The following sequence
of sets then results:

(HHTT) (HTTT) (TTTH) (TTHH) (THHT)
(HHTH) (HTHT) (THTT).... (i)

Some of these sets, such as the first and second, are overlapping,
in the sense that they contain common terms from R, others,
such as the first and fifth, are nonoverlapping. If welet »r = 1,
the number given by theorem 4.1 is the limit of the relative
frequency with which these sets contain one H and three Ts;
that is, 4p(1 — p)2.

Suppose now that p = }. The probability that in sets of four
successive elements from R there is just one element with the
property H and three with T, is then }. But the probability
that in such sets there are just two heads and two tails (here
r = 2) is §. Hence, when n and p are fixed, the number de-
termined by theorem 4.1 will vary with r. What value of r
will yield & maximum value for this number? It can be shown
that » must satisfy the condition

mtpz2rzm+tp—1. (4.2)

When # is very large, the value for which r yields a maximum
may be taken to be pn. This means that the probability of sets
with n successive elements containing just r elements with the
property H is a marimum, when r is approximately equal to
pn; that is to say, the most probable value occurs for the case
when the relative frequency of H in a set of n elements is ap-
proximately equal to the limit of the relative frequency of H
in R.
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A very important consequence, known as Bernoulli’s theo-
rem, can now be derived, which plays a central role in the prac-
tical use of the probability caleulus. It can be stated as follows:

Let R be a reference class which is irregular with respect to a
property H, and let prob(H, R) = p. Let R be broken up into
sets of n successive elements each, and let ¢ be any positive
number no matter how small. The probability that H will cccur
in these sets with frequencies lying in the interval pn + en
(or with relative frequencies lying in the interval p + €) ap-
proaches 1 as a limit as » increases (4.3).

The following will illustrate the theorem: R is the irregular
class of throws with a coin, and the probability of getting a head
is taken to be 3. We ask for the probability that in sets of n
successive throws each, the frequency of heads will differ from
n/2 by not more than n/10 (or that the relative frequency of
heads will differ from 4 by not more than 3;). According to
Bernoulli’s theorem, this probability tends to 1 as the value
of n is increased. Thus, the probability that in ten successive
throws there will be anywhere from four to six heads (i.e., that
the relative frequency of heads will lie in the interval § +
or % to %) is .47; the probability that in thirty successive
throws there will be anywhere from twelve to eighteen heads
is .73; the probability that in fifty throws there will be any-
where from twenty to thirty heads is .84; the probability that
in one hundred successive throws there will be anywhere from
forty to sixty heads is .95; the probability that in five hundred
throws there will be anywhere from two hundred to three hun-
dred heads is .99, etc.

These numerical values are calculated with the help of mathematieal
techniques explained in treatises on probability. Of particular importance in
the application of the probability calculus is the analytic formula

[] (]
() = v fr*’d:.

which is obtained from thorem 4.1 by a series of approximations. ¢(t) is the
probability that in sets of n successive elements of R which is irregular with
respect to H, H occurs with a frequency lying in the interval
Pt tVep(l—pin,
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where prob(H, R) = p; and tables of values of ‘¢p(2)’ for different values of
‘" have been constructed. In many problems the elements of R are assumed
to take on any one of an infinite set of properties. Thus, in measuring the
length of objects we may suppose that the measurements are carried out with
great precision, and we may accordingly find it convenient to assume that
the possible values of the length are real numbers (in the strict mathematical
sense). The problems arising in such cases lead to the theory of continuous
or geometrical probability.

The theorem of Bernoulli has been generalized by Poisson, and more re-
cently Cantelli and Polya have given an important extension for it. A more
general theorem than that of Bernoulli has been established by Tchebycheff,
which was further elaborated by Markoff.

There is also an inverse of Bernoulli’s theorem, which is sometimes referred
to as Beyes’s theorem and is obtained with the help of theorem 8.8; it has
played an important part in the theory of statistics.” But this theorem
in inverse probability, with whose help the probability of a statistical hy-
pothesis is to be established on the basis of the samples that have been drawn,
suffers from the serious limitations and difficulties already pointed out in
connection with theorem 8.8. Critical statisticians no longer make use of it.
Statisticians have now developed more suitable procedures for handling the
sort of problems Bayes’s theorem was intended to solve; the method of
maximum likelihood, recently proposed by R. A. Fisher, iz a valuable and
interesting contribution to this phase of theoretical statistics.

As already indicated, many theorems of the probability calculus are
demonstrable only on the assumption that the reference classes are irregular—
or in easily understood intuitive terms, that there is a general independence
between the occurrence of a property on one occasion and its occurrence on
another. However, in many fields of research (e.g., the behavior of gases)
such independence cannot, on physical grounds, be assumed to exist. None-
theless, it has been shown that the calculus of probability may be applied
even to such domains with consistency and success.®

It is worth while mentioning a seemingly fatal criticism of the definition
of ‘probability’ as ‘the limit of relative frequencies.’ Let R be irregular with
respect to H, and let i, fs, . . . . fa, . . . ., be the series of relative frequencies
of H in R after the first, second, nth terms. (Thus, in the series [ii] of p. 32,
the relative frequencies are: +, £, §, 2,3, %, . . . . .) Suppose that p is the limit
of these frequencies. Then, once a number ¢ has been selected, there must
be an N such that for every n greater than N the difference between fy and 2
is less than ¢; and this means that after the Nth term in R, the relative fre-
quency of H in R will have to remain close to p. But according to theorem 4.1
there is a probability, which though small is not zero, that a very long run of
successive H’s will occur; and, according to the criticism being considered,
there is this probability that even after the Nth term in R such a long run of
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H's will set in. However, the criticism continues, a sufficiently long run of
s will make some of the f.’s (with n>N) differ from p by more than €. A
contradiction is thus alleged in the calculus of probability developed on a limit
basis. (Thus, suppose p = .50, € = .01, and that N is taken to be 100; and
suppose that beginning with the one hundred and first throw a run of two
bundred heads sets in. If 2 is the number of heads which have appeared in
the first one hundred throws, fue = (x + 200)/300 which differs from .50 by
more than .01.)

However, the allegation of contradiction itself rests on a blunder and pro-
ceeds from a conception of probability according to which it is significant to
ascribe a probability to a single occurrence. The probability specified by
theorem 4.1 does not permit us to infer a long run of H’s starting with an
assigned term in R, for example, with the N + 1th. That probability has
for its reference class R*, the class having as tfs elements sefs of n successive
elements from R; while p has R for its reference class. (It is possible and
significant to ask for the probability that a definite run of H's begins at some
assigned term; but the answer to it is not given by theorem 4.1. Such a ques-
tion involves the consideration of a serier of reference classes such as K. An
examination of this more complicated problem shows that the objection being
considered confuses convergence in R with uniform consergence in a series of
R’s.) There is thus no incompatibility between the statement that there is a
nonvanishing probability of H occurring with a relative frequency different
from p, in sets of n elements each (here the reference class is B*); and the
statement that the probability of H oceurring in R is equal to p. It is true,
of course, that in assigning & certain value to N we may be committing an
error, because for a time the relative frequencies of H may diverge from p.
But this does not establish a eontradiction in the limit definition of proba-
bility; it simply testifies to the difficulty in fixing & value for N. That defi-
nition does not supply us with an effective method for obtaining a value
for N either by calculation or in some other way: it merely asserts the exist-
ence of such & number N. For this reason it has been subjected to various
criticisms by finitists, some of which will be considered below.*

4. Formalization of the calculus of probability—Two points
should be noted in the foregoing presentation of theorems in the
calculus. In the first place, the theorems were formulated and
explained in terms of an explicit definition of ‘probability’ as
‘the limit of relative frequencies.” And, second, no primitive
propositions were specified from which the theorems of the cal-
culus may be derived with the help of the rules of logic. From
the standpoint of & formal mathematical discussion, as well as
from the point of view of modern methodology, these are de-
fects, and they require a brief discussion.
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If the functor ‘prob’ is introduced as the defined equivalent
of ‘the limit of relative frequencies,” every proposition of the
calculus is simply a transcription of a theorem in the theory
of limits; and every proposition is an analytic statement which
can be certified on formal grounds alone. When the calculus is
developed in this way, there is no need to supply a special set
of primitive sentences: the primitive sentences sufficient for
the theory of real numbers are also sufficient to establish every
theorem in the calculus.

However, while it may be an advantage to have every theo-
rem of the calculus an analytic sentence of arithmetic, the fre-
quency interpretation of the functor ‘prob’ is not the only one
that is possible. The state of affairs here is strictly analogous
to what obtains in geometry. As geometry is employed in phy-
sics, the terms ‘point,’ ‘line,” “plane,’ ete., which oceur in Euclid,
designate certain physical configurations; consequently, the
propositions of geometry (such as that the angle-sum of a tri-
angle equals two right angles) formulate measurable relations
between physical configurations in exactly the same way as do
the propositions of mechanies. But the derivation of geometric
theorems from the primitive propositions of Euclid does not
depend upon the correlations which happen to be established
between terms like ‘point’ and ‘line’ and determinate physical
configurations. Indeed, formal or demonstrative geometry is
not a branch of physics: its theorems cannot be significantly
characterized as empirically true or false, because the nonlogical
terms in them (e.g., ‘point’) are uninterpreted. Only after se-
mantical rules have been introduced (sometimes also called co-
ordinating definitions), which correlate such uninterpreted terms
with terms employed to designate empirical subject matter, is
a formal geometry transformed into a part of natural science.
By distinguishing between pure and physical geometry, not only
do we avoid confusing questions of formal validity with ques-
tions of empirica] fact but we also increase the applicability of
pure geometry. Alternative co-ordinating definitions may be
introduced, so that qualitatively different subject matters may
be explored in terms of the same formal system. On the other
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hand, we may also find that, of the many distinct pure geome-
tries which are logically possible, one system is a more effective
means than another for organizing the materials of an empirical
subject matter.

Similarly, it is not necessary to interpret ‘probability’ in
terms of frequencies in order to develop a formal calculus of
probability. The formalization of the probability calculus is of
special importance because of the conflicting interpretations
which have been given to the term ‘probable,’ as well as because
of the wide range of opinion concerning the conditions under
which probability statements are to be regarded as significant.
As in the case of geometry, the probability calculus can be
formalized in different ways, depending on what terms are se-
lected as primitive, on the mathematical apparatus which is
to be employed in developing it, and also upon the use to which
it is to be put subsequently. Omnly one condition is usually ob-
served in formalizing the calculus of probability: it is required
that theorems which have been traditionally regarded as stand-
ard ones in the subject (such as the addition theorem or Ber-
noulli’s theorem) be derivable from the primitives of the system.

Only & brief mention is here possible of some of the points
of view from which the calculus may be formalized. To under-
stand some of them, the distinctions (made in Vol. I, No. 3)
will have to be recalled between the language of a science
itself, the syntax language whose object-language is the lan-
guage of science, and the semantic language of the language of
science. Statements in the first language refer to what is com-
monly called the subject matter of the science, statements in
the second refer to the order and possible arrangements of the
expressions in the object-language, while statements in the third
refer to the relations between an expression in the object-lan-~
guage and its subject matter. One difference between probabil-
ity calculi arises from the fact that probability statements have
been formulated in each of these three languages; another dif-
ference is due to the fact that some probability statements are
metricized while others are not; and a third difference is due
to several attempts to incorporate the probability calculus into
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a general logic which would include both necessary and prob-
able inference.

Two broad classes of calculi of probability may be distin-
guished: those which provide a metric for the fundamental
functor ‘prob’ and those which do not. Nonmetrical probabil-
ity caleuli may be further distinguished according as they intro-
duce a definite serial order for probabilities or not. The motiva-
tion for the construction of nonmetrical calculi has usually been
the desire to interpret probability statements in a nonfrequency
sense. Such interpretations are often used by writers who have
their eyes on the problems of induction and the estimation of
evidence in history and legal procedures. A nonmetrical calcu-
lus has been developed by Keynes, but the subject is still in a
very unsatisfactory and primitive state.

It is possible to formulate a frequency theory of probability
both in the object-language and in the semantic language of a
science, the choice between these alternatives being largely a
matter of convenience. The probability statements of physics
occur in its object-language, and most writers who approach
the problems of probability from the natural sciences prefer
an object-language formulation. Calculi in the object-language
usually associate 2 number p with a probability, such that
0 < p £ 1. Some writers restrict the values of ‘p’ to rational
numbers; others permit it to vary in the field of real numbers.
A formalized calculus may be developed by taking ‘prob(4, R)’
as an uninterpreted two-place numerical expression; the logical
properties of the expression are then determined by a set of
postulates from which, with the help of the usual rules of logic,
the standard theorems may be derived. These postulates are
abstract in the semse that no restrictions are imposed on the
possible interpretations of the functor other than the trivial
one that every such interpretation satisfy these postulates. Ab-
stract sets of postulates for probability have been given by
Bore), Cantelli, Kolmogoroff, Popper, Reichenbach, and several
other writers. (It is also possible to formalize the calculus by
taking a one-place numerical functor as primitive, and subse-
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quently defining a two-place functor in its terms; and there are
other possibilities as well.) From an abstract mathematical
point of view, the probability calculus is a chapter in the gen-
eral theory of measurable functions, so that the mathematical
theory of probability is intimately allied with abstract point-
set theory. This aspect of the subject is under active investiga-
tion and has been especially cultivated by Borel, Fréchet, and
a large number of French, Italian, Polish, and Russian mathe-
maticians. In object-language calculi, the arguments ‘4’ and
‘R’ to the numerical expression ‘prob{4, R)’ are usually predi-
cates or predicate variables; in semantic and syntactical calculi
the arguments are usually names of sentences or variable desig-
nations of sentences. Postulates for metricized semantic calculi
are similar to metricized object-language calculi except for the
difference in the kind of arguments the functors take. Such
semantic postulates have been given by Mazurkiewicz, Popper,
and others.’

The possibility of interpreting a formal calculus of probability
in different ways can be illustrated by the following list: (i)
The functor ‘prob’ may be interpreted as the limit of relative
frequencies in an infinite reference class; the postulates are then
transformed into analytic propositions in the theory of real
numbers. (ii) The functor may be defined as a relative fre-
quency in a finite reference class; some of the postulates then
become analytic propositions in the elementary arithmetic of
rational numbers, while others must be suppressed. (iii) The
functor may be interpreted, as in the classical Laplacian formu-
lation, as the ratio of the cardinality of two sets of alternatives;
the postulates are again converted into analytic propositions in
elementary arithmetic. (iv) The functor may be interpreted, as
by F. P. Ramsey, as a measure of “partial beliefs,” where a
degree of probability is a measure of the extent to which a man
is prepared to act on a belief. (v) The functor may be inter-
preted as the ratio of two areas; the postulates become state-
ments in some system of geometry. (vi) A proposal has been
made by C. G. Hempel to introduce co-ordinating definitions
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for the functor in such a way that, while it will refer to relative
frequencies in a class, the postulates are converted into syn-
thetic statements of physics. (vii) A semantical interpretation
has been. give to the functor (Reichenbach), according to which
it designates the truth-frequency of sentences in certain ordered
classes of sentences. (viii) According to another interpretation,
which also appears to be semantical, the functor denotes the
“degree of falsifiability’’ of a theory (K. Popper). (ix) The func-
tor has been interpreted as referring to the degree of a unique
relation between a “proposition” and a set of premisses. (It 1s
not clear, however, how this view is to be understood. The
language in which it is proposed sometimes suggests that the
relation is a syntactical one holding between sentences, some-
times that it holds between the “possible facts” which the sen-
tences designate, and sometimes that it is a semantical relation.)
Some writers who take this interpretation do not regard the
functor as a numerical one (Keynes), while others explicitly do
so (H. Jeffreys).®

There is another standpoint from which the formalization of
the calculus has been undertaken. Leibniz was one of the ear-
liest writers to broach the possibility of a general formal logic
in which the calculus of probability would occupy a central
place. According to such a project, the standard relations of
deducibility between propositions are to be regarded as limit-
ing cases of a more inclusive relation of “probability implica-
tion.” Many writers after Leibniz, including Boole and Peirce,
kept the 'ideal of such a general logic a live one; and Clerk-
Maxwell went to the extent of declaring that “the true logic
for this world is the caleulus of probability.” However, little
was done to actualize this possibility until the very recent de-
velopment of polyvalent logical caleuli. The fusion of familiar
formal logic and the calculus of probability into one compendent
formal system is now actively investigated. But, although much
important work has been already done, there is at present still
no satisfactory system of such a general logic.

The ealeuli of n-valued logics of sentences {with » » finite integer) wete
first developed by J. Lukasiewics and E. Post. These calculi reduce to the
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standard sentential calculus (e.g., of Principia mathematica) when n = 2;
thet is, when & sentence is permitted to take just two “truth-values,” namely,
truth and falsity. There are certain partial analogies between the theorems
of polyvelent logies and theorems of the probability caleulus when the latter
is suitably formulated; and a number of writers, including Mazurkiewicz,
Reichenbach, and Zawirski, have been exploiting these anelogies, with the
intent of formalizing the caleulus of probability as a polyvalent sentential
calculua, Reichenbach’s method, stated in outline, consists in interpreting an
infinite-valued sentential celculus (with values lying in the interval ¢ to 1 in-
clusive) so that each truth-value is the limit of the relative frequency with
which the members of definite sequences of propositions are true. He has
urged, moreover, that such an infinite-valued “probability logic” is the one
most appropriate for science—on the ground that no empirical statement can
be completely verified and can therefore be associated with a “truth-value®
which in general is different from 0 (falsity) and 1 (truth). Reichenbach’s
proposal is not free from technical difficulties, and most students are not con-
vinced that he has achieved a fusion of the probability calculus and a genersl
logic of propositions. For example, Reichenbach’s polyvalent “probability
logic™ contains expressions which apparently are subject to the rules of the
ordinary two-valued logic; and it therefore seems that his probability logic is
constructed upon a basic two-valued schems. Again, his probability logie is
nonextensional, in the strict sense of this term in standard use, while the
general system of logic commonly employed in mathematics and physics is
extensional; it is therefore not easy to see how the latter can be a specialization
of the former.?

Interest in the fusion of formal logic and the caleulus of probability into one
comprehensive system has also been exhibited by physicists impressed by the
part which probability statements play in modern quantum theory. In
that theory certain noncommutative operators occur, as a consequence of
some of the fundamental physical assumptions of the theory; and it is pos-
sible to regard such operators as a species of logical multiplication upon propo-
sitions dealing with subatomic phenomena. However, instead of superimpos-
ing such noncommutative multiplications vpon the general framework of a
logic of propositions in which multiplication (i.e., and-connection) is commau-
tative, proposals have been made to revise the general logic of propositions.
According to some of these proposals, a multiplication which is noncommu-
tative will be governed by the formal rules of the logic of propositions and
will not be introduced simply as & consequence of a special physical theory.
Attempts to re-write quantum mechanics upon the basis of an altered sen-
tential calculus have been made by J. von Neumann, G. Birkhoff, M. Strauss,
ond others. But researches in this field have not yet gone far enough to permit
A judgment on the feasibility and convenience of the proposed emendations,
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6. Nonfrequency Interpretations of Probability Statements

‘We must now briefly consider other interpretations of prob-
ability statements than the frequency view proposed earlier in
the present section.

1. The classic conception of probability.—As already noted, the
mathematical theory of probability was first developed in con-
nection with games of chance, and the point of view from which
it was cultivated received its classic formulation in the treatise
of Laplace. According to the Laplacian view, all our knowledge
has a probable character, simply because we lack the requisite
skill and information to forecast the future and know the past
accurately. A degree of probability is therefore a measure of
the amount of certainty associated with a belief: “T consider
the word probability,” De Morgan explained, “as meaning the
state of the mind with respect to an assertion, a coming event,
or any other matter on which absolute knowledge does not
exist.” What is required for a mathematical treatment of prob-
ability, however, is an exact statement of how this measure is
defined; and the classical account is as follows.

Judgments of probability are a functiion of our partial ig-
norance and our partial knowledge. We may know that in a
given situation the process studied will have an issue which
will exhibit one out of & definite number of alternative proper-
ties; thus, in tossing a die any one of the six faces may turn up.
(These alternative properties have been called the “possible
events.”) On the other hand, we may have no reason to sup-
pose that one of these events will be realized rather than an-
other, so that, as Laplace remarked, “in this state of indecision
it is impossible for us to announce their occurrence with cer-
tainty.” But a measure of the appropriate degree of belief in
a specific outcome of the process can be obtained. We need
simply analyze the possible outcome into a set of “‘equipossible
alternatives,” and then count the number of alternatives which
are favorable to the event whose probability is sought. This
measure, the probability of the event, is a fraction whose num-
erator is the number of favorable alternatives, and whose de-
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nominator is the total number of possible alternatives, provided
that all the alternatives in question are equipossible. Thus, the
probability of obtaining six points with a pair of dice is %,
because the dice can fall in any one of thirty-six equally possible
ways, five of which are favorable to the occurrence of six points
in all. On the basis of this definition, the probability calculus
was developed as an application of the theory of permutations
and combinations.

Almost all writers on probability in the nineteenth century
(e.g., Poisson, Quetelet, De Morgan, Boole, Stumpf), and many
contemporary mathematicians (e.g., Borel, De Finetti, Cantelli,
Castelnuovo), follow Laplace with only relatively minor varia-
tions. Because. of its historical role, as well as because of its
contemporary influence, we shall briefly examine this view.!!

a) According to the Laplacian definition, a probability state-
ment can be made only in such cases as are analyzable into a
set of equipossible alternatives. But, while in some cases. it
seems possible to do this, in most cases where probability state-
ments are made this is not possible. Thus suppose that a biased
coin is assigned the probability of .63 that it presents a head
when tossed; there is no clear way in which this number can
be interpreted as the ratio of equipossible alternatives. This is
perhaps even more evident for statements like “The probability
that a thirty-year-old man will live at least another year is
945 It is absurd to interpret such a statement as meaning
that there are a thousand possible eventuations to a man’s ca-
reer, 945 of which are favorable to his surviving at least another
year. Moreover, the Laplacian definition requires a probability
coefficient to be a rational number. But irrational numbers fre-
quently occur as values for such coefficients, and there is no
way of interpreting them as ratios of a number of alternatives.
Thus, on the basis of certain assumptions, it can be calculated
that the probability that two integers picked at random are
relatively prime is 6/x%. This number cannot be made to mean
that there are =* equally possible ways in which pairs of integers
can be picked, six of which are favorable to getting relative
primes. ~
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}) Writers on the subject have not always been clear as to
whether they regarded a probability as the measure of a (psy-
chological) belief, or whether they regarded it as a measure of
the degree of belief one ought to entertain as reasonable. If a
probability coefficient is the measure of a degree of actual cer-
tainty or the strength of a belief, the addition and multiplication
of probabilities require that we determine procedures for com-
bining certainties or beliefs in some corresponding manner.
There are, however, no known methods for adding beliefs to
one another, and indeed it is difficult to know what could be
meant by saying that beliefs are additive. The proposals of
Ramsey and De Finetti, to measure strength of beliefs by the
relative size of the bets a man is willing to place, are based on a
dubious psychological theory; and at least Ramsey’s proposal
leads directly to a definition of probability in terms of relative
frequencies of actions. On the other hand, if probability is a
measure of the amount of confidence one ought to have in a
given situation, the Laplacian view offers no explanation of the
source of the imperative. It is possible, finally, that a prob-
ability coefficient is simply a conventional measure of a de-
gree of belief; in that case, however, probability statements
turn out to be bare tautologies.

¢) According to the Laplacian definition,. the alternatives
counted must be equally possible. But if ‘equipossible’ is syn-
onymous with ‘equiprobable,” the definition is circular, unless
‘equiprobable’ can be defined independently of ‘probable.” To
meet this difficulty, a rule known as the Principle of Indiffer-
ence (also as the Principle of Insufficient Reason and as the
Principle of the Equal Distribution of Ignorance) has been in-
voked for deciding when alternatives are to be regarded as equi-
probable. According to one standard formulation of the rule,
two events are equiprobable if there is no known reason for
supposing that one of them will occur rather than the other.

It can be shown, however, that, when this form of the rule is
applied, incompatible numerical values can be strictly deduced
for the probability of an event. An emended form of the rule
has been therefore proposed, according to which our relevant
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evidence must be symmetrical with respect to the alternatives,
which must not, moreover, be divisible into further alternatives
on the given evidence. This formulation seriously restricts the
application of the Principle of Indifference. Apart from this,
however, two points should be noted: A coin which is known
to be symmetrically constructed (so that according to the prin-
ciple its two faces are to be judged as equiprobable) may never-
theless present the head more frequently than the tail on being
tossed; for the relative frequency of heads is a function not
only of the physical construction of the coin, but also of the
conditions under which it is tossed. Second, no evidence is per-
fectly symmetrical with respect to a set of alternatives. Thus,
the two faces of a coin are differently marked, they do not lie
symmetrically with respect to the earth’s center at the instant
before the coin rises into the air, etc. The emended rule there-
fore provides that it is only the relevant evidence which is to
be considered. But if ‘relevance’ is defined in terms of ‘prob-
able,’ the circle in the Laplacian definition is once more patent;
while, if judgments of relevance are based on definite empirical
knowledge, the ground is cut from under the basic assumption
of the Laplacian point of view.

d) It is usually assumed that the ratio of the number of
favorable alternatives to the number of possible ones (all being
equipossible) is also a clue to the relative frequency with which
an event occurs. There is, however, no obvious connection be-
tween the ‘probability of obtaining a head on tossing a coin’
as defined on the classical view, and ‘the relative frequency with
which heads turn up.’ For there is in fact no logical relstion
between the number of allernative ways in which a coin can fall
and the frequency with which these alternatives in fact occur.
It has, however, often been supposed that Bernoulli’s theorem
demonstrates such a connection. For as already explained, ac-
cording to that theorem if the probability of head is 4, then the
probability approaches 1 that in n tosses there are approxi-
mately n/2 heads as n increases. But the supposition that Ber-
noulli’s theorem establishes a relation between a priori (i.e., de~
termined in accordance with the classical definition) and a
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posteriori probabilities (i.e., determined on the basis of rela-
tive frequencies of occurrence) is a serious error. It commits
those who make it to a form of a priori rationalism. For within
the framework of the classical interpretation of the calculus,
Bernoulli’s theorem simply specifies the relative number of cer-
tain types of equiprobable alternatives, each consisting of n
tosses; it is no more than a theorem in arithmetic and does
not permit us to conclude that these alternatives will occur
equally often. That is to say, only if the expression “The prob-
ability of heads is 3’ designates a relative frequency of occur-
rence, can the phrase ‘The probability approaches 1’ be legiti-
mately interpreted as designating relative frequencies of occur-
rences. ’

2. Probability as a unigque logical relation.—A number of mod-
ern writers, conscious of the difficulties in the classical view of
probability as a measure of strength of belief, have advanced
the view that probability is an objective logical relation between
propositions analogous to the relation of deducibility or entail-
ment. According to this version, a degree of probability meas-
ures what is often called “the logical distance” between a con-
clusion and its premisses. The evaluation of a degree of prob-
ability therefore depends upon recognizing the inclusion, ex-
clusion, or overlapping of logical ranges of possible facts.
Though varying considerably among themselves, something
like this view (which has had its forerunners in Leibniz and
Bolzano) is central to von Kries, Keynes, J. Nicod, F. Wais-
mann, and several other writers. Only the standpoint of Keynes
will be examined here.22

For Keynes, probability is a unique, unanalyzable relation
between two propositions. No proposition as such is probable;
it has a degree of probability only with respect to specified
evidence. This relation of probability is not a degree of sub-
jective expectation; on the contrary, it is only when we have
perceived this relation between evidence and conclusion that
we can attach some degree of “rational belief” to the latter.
(As already noted, Keynes’s formulation of his view is not un-
ambiguous. His occasional language to the contrary notwith-
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standing, it does not seem likely that he regards his probability
relation as a syntactical one. The present writer is inclined to
the opinion that it is a semantical relation.) It is characteristic
of Keynes’s standpoint that the secondary proposition, which
asserts that a proposition p has the probability relation of
degree a to the proposition 2, can and must be known to be
true “with the highest degree of rational certainty.” Such a
highest degree of rational certainty is obtainable, according to
Keynes, when we see that the conclusion of a syllogism follows
from its premisses, as well as when we see that a conclusion
“nearly follows™ from its premisses with degree a of probability.
However, degrees of probability are not quantitative and are
not in general capable of measurement; indeed, according to
Keynes, probabilities cannot in general be even ordered serially,
although in some cases they are comparable. The comparison
of probabilities, whenever this is possible, is effected with the
belp of the modified Principle of Indifference mentioned above;
and the judgments of relevance which the principle presupposes
are themselves direct judgments of degrees of probability. In
terms of such an apparatus of concepts, Keynes develops a
caleulus which formulates the relations between comparable
probabilities, and finally explains how and under what limited
circumstances numerical values may be assigned to degrees of
probability.

Although Keynes avoids some of the difficulties of the classi-
cal view of probability, his general standpoint has difficulties
of its own. Omitting all discussion of the technical difficulties
in his calculus, we shall confine ourselves to a brief mention of
three central issues.

a) On Keynes's view we must have a “logical intuition” of
the probable relations between. propesitions. However, few if
any students can be found who claim for themselves such an
intuitive power; and no way has been proposed to check and
control the alleged deliverances of such direct perceptions in
cases where students claim it. Moreover, the possession or lack
of this power is wholly irrelevant in the actual estimation of
probabilities by the various sciences. No physicist will seriously
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propose to decide whether two quantum transitions are equi-
probable by appealing to a direct perception of probability re-
lations; and, as N. R. Campbell remarked, “anyone who pro-
posed to attribute to the chances of a given deflection of an
a-ray in passing through a given film any sense other than that
determined by frequency could convince us of nothing but his
ignorance of physics.”

b) Since on Keynes’s view numerical probabilities can be in-
troduced only when equiprobable alternatives are present, he
cannot account for the use of numerical probabilities when such
an analysis is not possible. Moreover, like the classic interpre-
tation, Keynes cannot establish any connection between nu-
merical probabilities and relative frequencies of occurrences.
His theory, when strictly interpreted, is incapable of applica-
tion to the problems discussed in physics and statistics, and at
least from this point of view remains a vestal virgin.

¢} On Keynes’s view it is significant to assign a probability,
with respect to given evidence, to a proposition dealing with a
single occasion. For example, it is permissible to declare that
on given evidence the probability of a given coin falling head
uppermost on the next toss is 3. However, the coin, after it is
thrown and comes to rest, will show a head or it will show a
tail; and no matter what the issue of the given throw is, the
probability of obtaining a head on the initial evidence is and
remains 4. No empirical evidence is therefore relevant either
for the confirmation or for the disconfirmation of that prob-
ability judgment, unless we invoke indirectly a relative fre-
quency in & group of statements—which would be contrary to
Keynes’s intent. But this is to fly in the face of every rule of
sound scientific procedure. A conception of probability accord-
ing to which we cannot in principle control by experiment and
observation the probability statements we make is not a con-
ception which recommends itself as germane to scientific in-
quiry.

Except for matters to be discussed in Section III, the diffi-
culties which have been pointed out for the classical and the
logical interpretations of probability do not embarrass the fre-
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quency view. For this negative reason, but especially because
it is in accord with scientific practice, the frequency interpreta-
tion of probability is the one most suitable for the first class of
statements which was specified at the beginning of this section.

lIl. Unsettled Problems of General Methodology

7. Logical Problems of the Frequency Interpretation
of the Probability Calculus

It was shown in Section II that the definition of ‘probability’
as ‘the limit of relative frequency’ is suggested by common prac-
tice in assigning probability coefficients. It has been argued
that a probability of 3 for head turning up when a coin is tossed
means, roughly, that in half the cases of flipping a coin the head
is presented. However, such a statement does not mean that
in every two tosses a head turns up just once, for in that case
it would be absurd to apply it to an odd number of throws; and
we would not regard the statement as erroneous if, after getting
a tail, we did not get a head on the next succeeding throw,
Accordingly, a less misleading explanation of what a probability
of § signifies is that in a long run of throws the relative frequency
of heads is approximately 4. But it has also been pointed out
that a definition of ‘probability’ as ‘the approximate ratio of
frequencies in the long run’ is not precise and is not suitable for
mathematical purposes. A definition in terms of limits, on the
other hand, bas the requisite precision, and a logically consistent
calculus can be developed on such & basis. The convenience
and fruitfulness of such a definition for the purposes of a calculus
of probability are indeed beyond question.

However, from the point of view of the application of the
calculus to empirical matters, it would be of little profit to have
a precise mathematical definition of ‘probability’ if as a con-
sequence every probability statement would acquire a theoreti-
cal content which cannot be controlled by acknowledged em-
pirical methods. But an examination of the form of probability
statements, when these are interpreted in terms of limits of
relative frequencies, seems to indicate that such is indeed the
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case. This may be seen concretely in the following way. Sup-
pose we test the hypothesis that the probability of heads is }
by flipping the coin a thousand times, and suppose we get a
run of a thousand heads. We might be inclined to conclude
that the hypothesis has been definitely proved erroneocus. How-
ever, on that very hypothesis such a run of heads is not ex-
cluded, since that hypothesis asserts something about the limit-
ing ratio of heads in an infinife class and not in a finife one. In
general, that hypothesis is compatible with any results obtained
in any finite number of throws; and, conversely, a given result
within a finite class of throws is compatible with any hypothesis
about the numericzal values of the probability. In short, it seems
that no direct statistical evidence obtainable from actual trials
(which must obviously be finite in number) can establish or
refute a probability statement.

(It should be observed, moreover, that this dificulty is not
obviated, as some writers have thought, by employing a less
precise definition for ‘probability.” For example, if we define
it in terms of approximate ratios in long runs, a finite number of
observations on the direct evidence for a probability statement
will still not suffice to establish or refute it completely and un-
ambiguously.)

The formal argument is as follows. If fi, fo, . . . . fu, . . . ., is the series of
relative frequencies of heads and ¢ a positive number, to say that the proba-
bility of getting a head is 4 is to say that # is the limit of these ratios. And
this means that for every e there is an N, such that for every n, if n > N,
then the absolute difference of f» and } is less than ¢, Or, in the notation of
modern logic,

@ @N) (n) [(n>N) D(fn~ } <.

This statement contains three quantifiers, the two universal quantifiers “for
every € and ‘for every n,’ and the existential quantifier “there is an N.' Be-
cause of the presence of the universal quantifiers, this statement cannot be
established by examining a finite number of €'s and n’s; or, in the language
proposed by Carnap, the statement is not completely confirmable.

This situation is familiar throughout science. For example, the statement
‘All bodies attract each other inversely as the square of their mutual distances
is not completely confirmable either. But, according to strict logic and text-
book scientific method, this latter statement is capable of complete disproof
by one negative instance; and it is usually said, therefore, that, although we
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can never be in the position to assert the truth of universal statements, we
may be in the position to assert their falsity.

However, probability statements do not fall under this dictura. For, in order
to completely disprove such a statement, its formal contradictory would
have to be completely confirmed. But the formal contradictory of the speci-
men probability statement is: There is an ¢, such that for every N, there is an
n, such that n > N, and the difference between f, and % is not less than e,
In symbolic notation

@AM AN >N - (Ifa=~3l29l.

However, this statement also contains & universal quantifier, namely, “for
every N,’ so that it cannot be completely confirmed.

In sum, therefore, a probability statement can be neither completely con-
firmed nor completely disconfirmed.

Many writers have therefore concluded that probability
statements interpreted in terms of relative frequencies are de-
void of empirical meaning because what they assert cannot be
controlled by determinate empirical procedures. Such a con-
clusion, if it were warranted by the facts, would be fatal to a
frequency interpretation of probability. For it is a cardinal re-
quirement of modern science that its statements be subject to
the criticism of empirical findings. This simply means that not
every state of affairs can be confirmatory evidence for a given
statement and that observable states of affairs must be speci-
fiable which would be acknowledged as incompatible with its
truth. On the other hand, such a conclusion is paradoxical be-
cause in actual practice probability statements interpreted in
terms of frequencies are accepted or rejected on the basis of
empirical evidence; and no one seriously doubts that we order
affairs of everyday living, of industry, and of science with their
help.

What is required, therefore, is a specification of the semanti-
cal and pragmatic rules in accordance with which probability
statements are accepted and rejected on the basis of empirical
findings. Although a complete set of rules cannot be given at
present, so that the problem is in & very unsettled condition,
it is believed that the following observations will be found rele-
vant to the issue raised.
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a) An objection often made to the limit definition of prob-
ability is that limits, in the strict sense of the term, do not exist
for empirically determined relative frequencies and that in ac-
tual statistical material the ratios of frequencies fluctuate more
or less widely. Such an objection, however, should in all con-
sistency be made also to the use of general mathematical analy-
sis in the natural sciences. For the limit conecept is employed
not only in probability but elsewheré also. For example, the
masses or centers of gravity of bodies are irequently calculated
with the help of the integral caleulus, and the integrations are
performed on the assumption that the mathematical functions
which specify the density of the bodies are continuous; the cal-
culation' of these quantities thus involves limits at several
places. Moreover, the assumption of a continuous density dis-
tribution is not warranted by our present theories of matter
as discontinuous. We do not, however, reject the powerful tools
of analysis for these reasons. An even simpler illustration of
the use of limits occurs in measurement, against which no one
seems to raise difficulties of the sort indicated. Every actual
measurement, for example, of the length of the diagonal of a
square, yields a rafional number; nonetheless, in theoretical
work we frequently employ irrational numbers, such as V%,
for specifying lengths; and irrational numbers involve limit
notions. The reason for employing terms involving limits in
probability theory, as elsewhere, is the same: we thereby ob-
tain powerful and economical methods in making mathematical
transformations. And the reason why the use of such “calculus
terms” and the procedures requiring them is countenanced in
the natural sciences (even when direct empirical evidence and
theoretical considerations indicate that the conditions for their
use are not fully satisfied} is that we know how to correlate
with them groups of directly measured magnitudes lying in cer-
tain intervals.

b) Itisindeed a naive conception of scientific method aceord-
ing to which the statements of science (whether singular or gen-
eral) are to be rejected on the ground of a single negative in-
stance. It was pointed out in Section I that, even in the exact
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sciences of measurement, the numerical values of magnitudes
as predicted by a theory are not in precise agreement with the
numerical values obtained by actual measurement and observa-
tion; the theory of errors had its genesis in the study of just
such situations. A theory is not in general dismissed as false
or worthless because the confirmation of its predictions by ob-
servation is only approximate—even though formally every de-
viation from a predicted value of a magnitude is a negative
instance for a theory. The amount of allowable deviation be-
tween predicted and observed values is not specified by the
theory itself, and even a “large” deviation may not be decisive
against the theory. The reasons for this are twofold: An em-
pirically testable consequence of a theory does not follow from
the theory alone, but from it conjoined with statements report-
ing matters of observation and possibly other theories. Conse-
quently, an apparent negative instance for a theory may be
argued to be incompatible not with #¢ but only with some of the
other premisses of the argument; and by a suitable alteration in
the assumptions from which the testable consequences are
drawn, the theory itself may be retained as in accordance with
the “facts.” Second, the amount of allowable deviation between
predicted and observed values of a magnitude may be a func-
tion of a number of variable factors, such as the number of ob-
servations made, the purposes for which the inquiry is con-
ducted, the kind of activity which the theory is intended to co-
ordinate and foretell, .or the character of the instruments by
means of which the testing is carried on. These factors cannot
in general be completely enumerated or specified in detail, al-
though those who conduct researches have been trained to make
allowance for them in the concrete cases before them.

A crude illustration of this second point, for the case when
direct statistical evidence for a probability statement is evalu-
ated, can be constructed as follows. Suppose the hypothesis
that % is the probability of obtaining a head with & coin is to
be tested, by tossing it one hundred times. According to the
hypothesis, we may expect approximately fifty heads. I heads
turned up forty-nine times, we would regard this as confirming
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the hypothesis; if heads turned up forty-five times, this may
still be regarded as confirmatory; but if heads turned up only
twenty times, we might suspect that the coin is loaded and
doubtless propose a different value for the probability of get-
ting a head. That is to say, somewhere between getting twenty
and getting fifty heads in one hundred throws, we might fix
a value such that a frequency less than it is to be taken as dis-
confirming the hypothesis of 3. In other words, the actual hy-
pothesis which would be tested under these circumstances is
that the relative frequency of heads lies in an énferval } + 3,
where the positive number & is not fixed once for all but varies
with circumstances. Now the probability of obtaining devia-
tions of specified magnitudes from % (on the assumption that
sets of such trials are repeated indefinitely) can be calculated
with the help of Bernoulli’s theorem; and this probability de-
pends upon the initial hypothesis that p is the probability of
getting a head as well as upon the number »n of throws which
are made. Hence é will often be a function of p and n. But it
may be a function of other factors as well: e.g., of our knowl-
edge of the physical construction of the coin and of the cir-
cumstances under which it is thrown, of the size of our fortune
if we are gambling, etc. The definition of ‘probability’ in terms
of ‘limit’ is therefore important for the purpose of constructing
a consistent and powerful caleulus. The calculus itself is instru-
mental in effecting transitions from one set of empirically con-
trollable statements to other such sets. Provided that appro-
priate semantical and pragmatic rules are instituted for apply-
ing the calculus, it is not a serious objection to it that some of
its terms cannot be taken as descriptive of the subject matter
of science.

In modern theoretical statistics various methods have been devised for
evaluating the goodness of an estimate of parameters, such as p, which char-
acterize a hypothetical infinite population. According to the clder methods
of Lexis, the aggregate sample on the basis of which the estimate is made
requires to be analyzed into sets of elements which are similar in certain rele-
vant respects; the stability or fluctuation of the estimate in these various
groups is then studied. In the more recent methods of R. A. Fisher, J. Ney-
man, and others, “measures of credibility” are introduced, some of which are
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carefully distinguished from probabilities. According to these methods, the
values assigned to the hypothetical probabilities must meet explicitly stipu-
lated conditions of stability under repeated samplings, and must also make
these measures of eredibility a maximum. It is not possible at this place to
enter into this subject in greater detail.

In many cases, no determinate numerical value can be as-
signed to a probability, not because & frequency interpretation
of probability statements is not relevant but because relevant
statistical information is lacking. For example, the proposition
is often asserted that when the barometer falls it is highly prob-
able that it will rain, although no numerical value is usually
specified for this “high probability.” Such a statement clearly
means that the relative frequency of rain within a few hours,
in the class of cases where the barometer falls, is greater than
4 and possibly close to 1. But lacking precise statistical in-
formation, the high probability is assigned and confirmed on
the basis of general impressions as to the bebavior of the
weather. In still other cases, such as that involved in estimat-
ing the probability of a witness speaking the truth, the statisti-
cal data may be even more meager, and the general impressions
upon which we base our estimates may be highly unreliable
and even worthless.

We have no final assurance that a hypothesis as to the nu-
merical value of a probability is a correct one. However, the
method of inquiry we employ is a self-corrective one, and in
general we place greater reliance upon our rules of procedure
and their net results than upon particular conclusions obtained.
We are not in a position to assert with finality that the em-
pirical frequencies we obtain do converge to a limiting value,
But as Peirce and more recently Reichenbach have pointed out,
if these ratios do tend to remain within certain narrow intervals,
we can discover what those intervals are by a repeated and
systematic correction of the estimates which are suggested by
the samples we continue to draw.

¢) Thus far, only the direct statistical evidence for a prob-
ability statement has been considered. But it was explained in
Section II that, whenever such a statement is part of an in-
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clusive system of statements, the evidence may be indirect and
even of a nonstatistical character. There are, indeed, the follow-
ing possibilities: Let S be a probability statement of the form
“prob{4, R) = p’; and let Z be a class of statements which in
general will contain singular statements reporting matters of
observation (e.g., statements which ascribe a property to a
definite space-time region), as well as general or theoretical
statements some of which may have the form of probability
statements.

(i) The value of p in § may be estimated directly from
statistical evidence concerning the frequency of A4 in R; this
case has already been considered.

(ii) From S and Z another probability statement S; may be
derived which may be tested by direct statistical evidence for
Sy, Thus, if S ascribes the probability of 4 to a coin falling
head uppermost, 8; may ascribe the probability of 1 to the
coin falling heads up twice in succession.

(iii) From S and Z a statement S; may be derived which is
nonstatistical. Thus, let S ascribe the probability of } to an
atom in a state with a magnetic moment of one suffering a transi-
tion into a state with & magnetic moment of two when a de-
flecting field is introduced; then S; may assert that the intensity
of the ionic current across the path of the molecular beam is of
a specified magnitude. In this case, no problems arise in con-
nection with the empirical control of probability statements
which do not arise in connection with other statements of sci-
ence.

(iv) The value of p in S may be deduced from Z. Thus, if
Z contains the Schrédinger equation together with a number of
boundary conditions, we can calculate the numerical value of
the probability that an atom in a given space-time region will
be a in a specified state.’

Although some of the formal logical problems in connection
with cases (iii) and (iv) have not been thoroughly worked out,
such cases do occur. And it is evident from them that the cor-
rectness of a given hypothesis as to the numerical value of a
probability may be ;controlled in much the same way as the
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more familiar nonstatistical hypotheses of science are con-
trolled. .

In recent years, following a suggestion of Poincaré, what is
sometimes known as “a causal theory of probability”’ has been
developed by G. D. Birkhoff, E. Hopf, and others. The main
idea of these researches is the deduction of a probability value
(e.g., the probability of the ball in roulette coming to rest in a
red sector) from underlying dynamical assumptions governing
the average values of certain quantities with increase of time.
It is incorrect to maintain, as some have done, that a prob-
ability value can be deduced from a dynamical theory which
contains no material assumptions about the distribution of fre-
quencies or average values. Nevertheless, these researches,
apart from their technical interest, emphasize one very im-
portant point: An estimate of a probability which is made
simply on the basis of unanalyzed samples or trials is not likely
to be a safe basis for prediction. If nothing is known concerning
the mechanism of a situation under investigation, the relative
frequencies obtained from samples may be poor guides to the
character of the indefinitely large population from which they
are drawn. Thus, because we know very little about the mecha-
nism of historical changes in human societies, it would be un-
safe to use the life-probabilities computed in the first quarter
of the present century as 2 basis for conducting e life insurance
business in America two centuries hence. On the other hand,
because we know something about the mechanism of biological
heredity, a relatively few observations on the number and types
of descendants of a plant may suffice to confirm hypotheses
about the probability of certain types recurring. Again, we as-
sign & value to the probability of getting heads on a freshly
minted coin with great assurance, even before making any ac-
tual trials with it, because the homogeneity of the products of
national mints, as well as of the conditions under which the
coin would be thrown, are fairly well established. In general,
therefore, the amount and kind of evidence required for prob-
ability statements depend on their interconnections with the
body of our knowledge and theories at a given time.?
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(v) Some writers, notably Reichenbach, have maintained
that, while probability statements are incapable of complete
confirmation or disconfirmation, nevertheless a degree of prob-
ability (in the frequency sense) can be attached to them. Such
a proposal, it turns out, involves a hierarchy of probabilities,
in which every probability statement on one level is subject
matter for probability statements on a higher level; it is a con-
ception which has stimulated the development of a “probability
logic” referred to in Section II. If such a proposal could be
implemented with an unambiguous and convenient method for
assigning probabilities to probability statements, it would go a
long way to solving definitively the logical problem to which
the present section has been devoted. Reichenbach’s writings
make important contributions toward formulating such a meth-
od. However, a probability statement is a general statement, as
was explained on page 52; and we reserve the discussion of
the probability of general statements, hypotheses, or theories
for § 8.

8. Probability and Degree of Confirmation or Weight of Evidence

At the outset of Section IT two classes of statements contain-
ing the term ‘probable’ were distinguished. The members of the
first class have now been shown to require a frequency inter-
pretation, and the statements in it are subject to the rules of
the calculus of probability. We shall now inquire whether the
second class is similar to the first in these respects.

A common objection to the frequency theory of probability
is that, although probability statements concerning single oc-
casions or single propositions are often asserted and debated,
it is meaningless to assert such statements in terms of the fre-
quency theory. For example, writers like Keynes have urged
that such statements as It is probable on the evidence that
Caesar visited Britain’ and “The evidence makes it improbable
that all crows are black’ cannot be analyzed in terms of relative
frequencies; and they have concluded that a conception of prob-
ability is involved in them which is different from, and “wider”
than, the frequency view. Frequentists have retorted, quite
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rightly, that such statements are without meaning, if they lit-
erally attribute a probability in the frequency sense to & single
proposition; but frequentists have also urged that such state-
ments do have significance if they are understood as elliptic
formulations.

There is little doubt that many probability statements which
are apparently about single propositions are incomplete formu-
Iations and that, when they are suitably expanded, they con-
form to the conditions required by the frequency theory. On
the question, however, whether all probability statements about
single propositions are to be analyzed in this way there is con-
siderable difference of opinion. This disagreement not only di-
vides frequentists from nonfrequentists like Keynes but it also
represents a division among those who subscribe to a frequency
interpretation for the first class of statements previously men-
tioned.

This difference of opinion concerning the range of applica-
bility of the calculus of probability has a long history. Earlier
writers on the subject believed that the calculus was the long-
sought-for instrument for solving all problems connected with
estimating the adequacy of evidence. In particular, it was main-
tained that the problems associated with establishing general
laws on the basis of examined instances and with obtaining some
measure for the reliability of predictions (the traditional prob-
Jems of induction) were part of the subject matter of the mathe-
matical theory of probability. Bayes’s theorem and the Rule of
Succession were commonly employed for these purposes, and
Jevons explicitly regarded induction as a problem in inverse
probabilities. On the other hand, writers like Cournot and
Venn, two of the earliest writers to propose a frequency inter-
pretation of the probability calculus, were equally convinced,
though for different reasons, that the calculus was not relevant
to the problems of induction. More recently, Keynes and Reich-
enbach, arguing from diametrically opposite standpoints, agree
on the point that the term ‘probable’ can be given a consistently
univocal meaning; and Reichenbach has given the most com-
plete account at present available of how to extend the fre-
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quency view to the consideration of the probability of scienti-
fic theories. But other contemporary frequentists, such as Car-
nap, von Mises, Neurath, and Popper, though supporting the
frequency interpretation for a very large class of probability
statements, do not believe such an interpretation is appropriate
for every statement which contains the word ‘probable.’ This
latter group of writers rejects the notion of a “logical probabil-
ity” as developed by Keynes and others; but it distinguishes
between ‘probable’ employed in the sense of ‘relative frequency’
and ‘probable’ employed in the sense of ‘degree of confirmation’
or ‘weight of evidence.’

It is possible, therefore, to distinguish writers on probability
according to the following schema: (1) Writers who interpret
‘probable’ in a univocal sense; such writers differ among them-
selves according as they accept the classical view, the view of
probability as a unique logical relation, or the frequency view.
(2) Writers who do not believe that the term ‘probable’ can
be interpreted in precisely the same manner in every one of the
contexts in which it occurs.

The present state of research, therefore, leaves the issue un-’
settled as to the scope of the frequency theory of probability.
‘We shall examine the points at issue, but our conclusion will of
necessity have to be highly tentative. We shall concern our-
selves explicitly with statements ascribing a probability to a
theory, because of lack of space; but the discussion will apply
without essential qualifications to probability statements about
singular statements like ‘Caesar visited Britain,” whenever such
probability statements are not analyzable as elliptic formula-
tions involving relative frequencies. By ‘theory” will be under-
stood any statement of whatever degree of complexity which
contains one or more universal quantifiers, or a set of such
statements. ‘

1. The probability of theories.—We begin with examining the
proposal to interpret probability statements about theories in
terms of relative frequencies; and, since Reichenbach has ex-
pounded this proposal more fully than anyone else, we shall
examine his views., Reichenbach has given two distinct but
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allied methods for defining “the probability of a theory.” The
first of these methods has received an improved formulation by
C. G. Hempel, which avoids serious difficulties present in Reich-
enbach’s own version. It should be noted that the definitions
given by both methods are semantic ones.

a) Let T be some theory, for example, the Newtonian theory
of gravitation. Let C, be a class of n singular statements, each
of which specifies an initial state of a system. (For from T
alone, without the specification of initial conditions, no em-
pirically controllable consequences can be obtained; thus, the
mass, initial position, and velocity of a planet must be assigned
before a future state of the planet can be predicted.) From
every such statement with the help of T, other statements may
be derived, some of which are empirically controllable by an ap-
propriate observation. Therefore, let E, be the class of n such
singular statements derived from C, with the help of 7. We
suppose that a one-to-one correspondence is established between
the elements of C, and E,; and without loss of generality we
shall suppose that every statement in C, is true. (From a single
statement in € an indefinite number of statements belonging
to E may be derived; but we can simply repeat a statement in
C for every one of the distinct consequences drawn from it.)
Let nu(E,) be the number of statements in E, which are true.
The relative frequency with which a statement in E, is true
when its corresponding statement in C, is true is given by
nu(E,)/n. Suppose now that n increases indefinitely, so that
C. will include all possible true initial conditions for T, while
E, will include all the possible predictions which'are made from
them with the help of 7. The numerical expression

prob(E, C) = lim nu(E,)
n

will then be the probability that the consequences, obtained

with the help of T from appropriate initial conditions, are true.

This, in essence, is Reichenbach’s first method of assigning a
probability to a theory T.

Although the foregoing exposition requires supplementation

Vol.|,No. &

63



Principles of the Theory of Probability

in several ways, there seems to be little question that a precise
definition for ‘the probability of a theory’ can be given on a
relative frequency basis. It is, however, by no means evident
that such a definition formulates the concept people seem to
be employing when they discuss the probability of theories.

(i) On the foregoing definition the probability of a theory is
the limiting value of relative frequencies in an infinite ordered
class E. This value is therefore independent of the absolute
number of true instances in E, and is also independent of the
absolute or relative number of instances in E which we know to
be true at a giver time. However, we often do say that on the
basis of definite evidence a theory has some “degree of probabil-
ity.” Thus, a familiar use of this phrase permits us to say that,
because of the accumulated evidence obtained since 1900, the
quantum theory of energy is more probable today than it
was thirty years ago. The foregoing definition is not suitable
for this use of the phrase.

(ii) Because the probability of a theory is defined as the imit
of relative frequencies, the probability of a theory may be 1,
although the class E of its empirically confirmable consequences
contains an infinite number of statements which are in fact
false. This conclusion could follow even if some of these excep-
tions to the theory are ruled out as not being genuine negative
instances (see the discussion of this point in §7). But, ac-
cording to the familiar usage of ‘probability of a theory’ al-
ready referred to, if a theory did have an infinite number of
exceptions, not only would not a “high degree of probability™
be assigned to'it: it would be simply rejected.

(iii) It is difficult to know how even the approximate value
of the probability of a theory, in Reichenbach’s first sense, is
to be determined. The situation here is not quite the same as
for the probability statements which occur within a natural
science and which have been already discussed in §7. In the pres-
ent case it does not seem possible to obtain other than direct
statistical evidence for an assigned numerical value; for it is
not apparent how a statement about the probability of theories
can be part of an inclusive system, so that the statement might
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possibly be confirmed indirectly, perhaps even by nonstatistical
evidence. Reichenbach’s proposal of a hierarchy of probabili-
ties, according to which the probability of a probability state-
ment may be estimated, postpones this problem by referring it
to a higher level of probabilities; but postponing a problem does
not solve it.

b) The second method proposed by Reichenbach for assign-
ing a probability to a theory in a frequency sense depends upon
the first method. The theory T under consideration will now
be regarded as an element in an infinite class K of theories.
These theories are supposed to be alike in some respects and
unlike in others; and the theory T will share with a number of
others in K a certain definite property P. (The following crude
illustration may help fix our ideas: Suppose T is the Newtonian
theory, and K the class of possible theories dealing with the
physical behavior of macroscopic bodies. P may then be the
property that the force functions in the theory are functions of
the coordinates alone.) The probability of the theory T is then
defined as the limit of the relative frequency with which theories
in K, possessing the property P, have a probability in Reichen-
bach’s first sense which is not less than a specified number g¢.

We can comment only briefly on this proposal.

(i) Although it is easy to introduce the reference class K and
the property P in the formal definition, in practice it is by no
means easy to specify them. The class K must not be selected
too widely or arbitrarily, but no way is known for unambigu-
ously grouping together a set of allegedly *relevant” theories.
The difficulty is even greater in specifying the property P for
a concrete case. We might wish to say, for example, that the
theory of relativity is more probable than the Newtonian the-
ory. But just what is the property P in this case on the basis
of which they are to be distinguished?

(ii) We do not at present possess a sufficiently extensive col-
lection of theories, so that appropriate statistical inquiries can-
rot be made with respect to them'in accordance with this pro-
posal. This proposal therefore completely lacks practical rele-
vance, Indeed, there is some ground for suspicion that the pro-
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posal would be feasible only if, as Peirce suggested, “universes
were as plentiful as blackberries”; only in such a case could we
determine the relative frequency with which these different uni-
verses exhibit the traits formulated by a theory under consider-
ation.

(iii) If we could assign a probability value to a theory accord-
ing to the first of Reichenbach’s two proposals, there would be
little need for estimating its probability by the second method.
It is consistent with these proposals that a theory which has a
probability of 1 on the first method, has the probability of only
0 on the second method. But since we are, by hypothesis, in-
terested in that one theory, of what particular significance is it
to know that theories of such a type have almost all their in-
stances in conformity with the facts with only a vanishingly
small relative frequency? This second proposal, like the first,
does not therefore formulate the sense of those statements which
assign a “degree of probability” to a theory on the basis of
given finite evidence. For this second proposal does not permit
us to talk literally about the degree of probability which one
definite theory has on the evidence at hand; and it is just this
which is intended when the evidence for a theory at one time
is compared with the evidence at another time.

2. Degree of confirmation or weighi of evidence.—These diffi-
culties with the two proposals for assigning a probability to
a theory, in the relative frequency sense of the term, are serious
enough to have led competent students to seek a different inter-
pretation for such statements. Guided by the actual procedure
of the sciences, a long line of writers have urged that a different
concept is involved in such statements from the one specified
by the frequency theory of probability. This concept has been
designated as *“degree of confirmation” or “weight of evidence,”
in order to distinguish it from the various interpretations given
to the term ‘probable.’ We shall briefly explain what is meant
by ‘degree of confirmation’ and discuss some of the problems
which center around its use. *

The initial task which must be performed before a satisfactory
account of ‘degree of confirmation’ can be given is a careful
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analysis of the logical structure of a theory in order to meake
precise the conditions under which a theory may be confirmed
by suitable experiments. This has been partially done by Car-
nap with considerable detail and refinement. We shall, how-
ever, not reproduce the resulits of his analyses, and shall employ
distinctions inexactly formulated but which are familiar in the
literature of scientific method. In particular, we shall take for
granted the following, of which use has already been made:
No theory (or for that matter no singular statement) can be es-
tablished completely and finally by any finite class of observa-
tions. But a theory can be tested by examining its instances,
that is, the singular sentences E derived with the help of the
theory from the sentences C stating the initial conditions for the
application of the theory. Both C and E may increase in num-
ber; but, while theoretically there are an infinite number of in-
stances of a theory, no more than a finite number will have
been tested at any given time. Indeed, a theory is said to be
capable of being confirmed or verified only incompletely, just
because no more than a finite number of its instances can be
actually tested. The instances may be confirmed by observa-
tion, in which case they are called the positive tnstances for the
theory; or they may be in disaccord with the outcome of ob-
servations, in which case they are called the negative instances.

We shall assume for the sake of simplicity that there are no
negative instances for a given theory T. Then as we continue
the process of testing T, the number of positive instances will
usually increase. Now it is generally admitted that, by in-
creasing the positive instances, the theory becomes more se-
curely established. What is known as ‘the weight of evidence’
for the theory is thus taken to be a function of the number of
positive instances. And we may accordingly state as a prelimi-
nary explanation of what is meant by ‘the degree of confirma-
tion’ for a theory that the degree of confirmation increases with
the number of the positive instances for 7.4

This explanation is, of course, far from precise; but at present
no precise definition for the term is available. As matters stand,
the term is used in & more or less intuitive fashion in the actual
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procedures of testing theories. It would obviously be highly
desirable to have carefully formulated semantical rules for em-
ploying the term; but there is no early prospect that the rules
for weighing the evidence for a theory will be reduced to a
formal schema. The following observations, however, indicate
some of the conditions under which the weighing of evidence is
carried on, and will contribute something to making more pre-
cise the meaning of ‘degree of confirmation.’

a) It does not seem possible to assign a quantitative value
to the degree of confirmation of a theory. Thus, at one stage
of investigation a theory T may have twenty positive instances
in its favor, while at a later stage it may have forty such in-
stances. While the degree of confirmation of T at the second
stage would in general be acknowledged as greater than at the
first stage, it is nevertheless not appropriate to say one degree
of confirmation is twice the other. The reason for this inappro-
priateness is that, if degrees of confirmation could be quantized,
all degrees of confirmation would be comparable and be capable
therefore of a linear ordering. That this does not seem to be
the case is suggested by the following hypothetical situation.

Suppose that the positive insténce_s for T can be analyzed into
two nonoverlapping classes K; and Kj, such that the instances
in K, come from one field of inquiry and those in K, from an-
other field. For example, if T is the Newtonian theory, K; may
be the confirmatory instances for it from the study of planetary
motions, while K; may be those coming from the study of capil-
larity phenomena; each set of instances is in an obvious sense
qualitatively dissimilar from the other. Now imagine the fol-
lowing possibilities as to the number of instances in K, and K;:

Py Py P | P Py Py Py P Py
Ei..... &0 50 100 101 299 100 200 100 198
Hy...... 0 50 0 49 62 20 0 100 2
E...... 50 100 100 150 151 180 200 200 200

The last row of figures gives the total number of positive in-
stances for T. These nine possibilities are arranged in order of
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mcreasing number of positive instances. Would we say, how-
ever, that this order also represents the order of increasing de-
grees of confirmation?

It would generally be granted that for both P, and P, the
degree of confirmation is greater than for P,, simply because
of the total number of positive instances. On the other hand,
many scientists would be inclined to assign a greater degree of
confirmation to P; than to P,, even though the total number of
positive instances is the same in these cases. And the reason
they would give is that in P, there are different kinds of in-
stances, while in P, there is only one kind. For this reason
also P, would be assigned a higher degree of confirmation than
Py, even though the total number of positive instances in the
former case is less than in the latter case. Again, P, and P;
would often be assigned the same degree of confirmation, even
though the total number of instances is different in these cases,
because the relative number of instances of each kind is approx-
imately the same. Finally, P; and P, would often be regarded
as tncomparable with respect to their degrees of confirmation,
because of the disparity in the relative number of different
kinds of instances.

Variety in the kinds of positive instances for a theory is a
generally acknowledged factor in estimating the weight of the
evidence. The reason for this is that experiments which are
conducted in qualitatively different domains make it easier to
control features of the theory whose relevance in any of the do-
mains may be in question. Hence, by increasing the possibility
of eliminating what may be simply accidental successes of a
theory under special or unanalyzed circumstances, the possi-
bility of finding negative instances for the theory is increased.
In this way of conducting experiments, the theory is subjected
to a more searching examination than if all the positive in-
stances were drawn from just one domain. A large increase in
the number of positive instances of one kind may therefore
count for less, in the judgment of skilled experimenters, than
a small increase in the number of positive instances of another
kind. It follows, however, that the degree of confirmation for
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a theory seems to be a function not only of the absolute number
of positive instances but also of the kinds of instances and of
the relative number in each kind. It is not in general possible,
therefore, to order degrees of confirmation in a linear order,
because the evidence for theories may not be comparable in
accordance with a simple linear schema; and a fortiori degrees
of confirmation cannot, in general, be quantized.

Indeed, the foregoing hypothetical situation is only a highly
simplified outline of the considerations which are usually taken
to be relevant in estimating the weight of the evidence for a
theory. Among other factors usually considered is the preci-
sion with which the confirmable consequences of a theory are
in agreement with experimental findings. Although, as has been
repeatedly explained, a theory is not rejected simply because
perfect agreement between predicted and experimentally de-
termined magnitudes does not occur, the more closely the ob-
served values center around the theoretically expected magni-
tudes, the greater weight is usually attacked to the supporting
observations for a theory. Furthermore, evidence for a theory
often consists not only of its own positive instances but also
of the positive instances for another theory, related to the first
within a more inclusive theoretical system. The number of di-
rect positive instances may in such cases be regarded as of
small importance, in comparison with the fact that support is
given to the theory by the accumulated positive instances for
the inclusive system.

b) How large must the number and kinds of positive instances
be in order that a theory can be taken as adequately estab-
lished? No general answer can be given to such a question,
since the answer involves practical decisions on the part of
those who conduct a scientific inquiry. There is an ineradicable
conventional element among the factors which lead to the ac-
ceptance of a theory on the basis of actual evidence at hand. It
is always theoretically possible to demand further evidence be-
fore agreement is reached that a theory has been sufficiently
well tested. However, the practical decision is in part a func-
tion of the contemporary scientific situation. The estimation
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of the evidence for one theory is usually conducted in terms of
the bearing of that evidence upon alternative theories for the
same subject matter. When there are several competing the-
ories, a decision between them may be postponed indefinitely,
if the evidence supports them all with approximately the same
precision. Furthermore, the general line of research pursued at
a given time may also determine how the decision for a theory
will turn out. For example, at a time when a conception of dis-
continuous matter is the common background for physical re-
search, a theory for a special domain of research formulated in
accordance with the dominant leading idea may require Lttle
direct evidence for it; on the other hand, a theory based on a
continuous notion of matter for that domain may receive little
consideration even if direct empirical evidence supports it as
well as, or even better than, it does the alternative theory.

In particular, the acceptance of definite numerical values for
probabilities also involves practical decision, for which no gen-
eral rules can be given. As already explained, such numerical
values are often computed on the basis of more or less compre-
hensive theoretical systems, and the confidence which we have
in the correctness of those values depends on the confidence we
have in those systems. It may happen that we can determine
the value of a probability with only small accuracy by a theory
which has a relatively high degree of confirmation, while a dif-
ferent value may be computed with great precision by an al-
ternative theory with an inferior degree of confirmation. The
supposition that in such a case the dilemma can be resolved by
a clear-cut method neglects the human and accidental factors
which determine the history of science. Certainly no mathe-
matical or logical formula can be given which would mechani-~
cally supply a coefficient of weight for the correctness of the
decisions which are made in many analogous cases.

¢) Assuming that these desultory observations are based on
the study of actual scientific procedure, it may be asked why it
is that we seem to feel that theories with a greater degree of
confirmation deserve our confidence on logical grounds more
than those with less—whenever such comparisons can be made.
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Why, in other words, should a theory be regarded as “better
established” if we increase the number and kinds of its posi-
tive instances?

Perhaps a simple example will help suggest an answer. Sup-
pose a cargo of coffee is to be examined for the quality of the
beans. We cannot practically examine every coffee bean, and
so we obtain some sample beans. We do not, however, sample
the cargo by taking a very large number of beans from just
one part of the hold; we take many relatively small samples
from very many different parts of the ship. Why do we proceed
in this way? The answer seems to be that our general experi-
ence is such that, when we conduct our samplings in this man-
ner, we approximate to the distribution of qualities in the entire
hold; and, in general, the larger our individual samples and the
more diversified our choice of the parts of the ship from which
they are taken, the more reliable (as judged by subsequent ex-
perience) are the estimates we form. It is at least a plausible
view that In testing a theory we are making a series of samplings
from the class of its possible instances. A theory is “better es-
tablished” when we increase the number and kinds of its posi-
tive instances, because the method we thereby employ is one
which our general experience confirms as leading to conclusions
which are stable or which provide satisfactory solutions to the
specific problems of inquiry. At any rate, this was the answer
which Charles Peirce proposed to the so-called “problem of in-
duction,” and which has been independently advanced in vari-
ous forms by many contemporary students of scientific method
(e.g., M. R. Cohen, J. Dewey, H. Feigl, O. Neurath, and many
others). As Peirce suceinctly put the matter, “Synthetic infer-
ences are founded upon the classification of facts, not accord-
ing to their characters, but according to the manner of obtaining
them. Its rule is that a number of facts obtained in a given way
will in general more or less resemble other facts obtained in the
same way; or, experiences whose condilions are the same will
have the same general characters.” A degree of confirmation is
thus a rough indication of the extent to which our general
method of procedure has been put into operation. While no prob-
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ability in a frequency sense can be significantly assigned to any
formulation of our method (because it is that very method
which is involved in estimating and testing such probabilities),
scientific inquiry is based upon the assumption, which is sup-
ported by our general experience, that the method of science
leads to a proportionately greater number of successful termi-
nations of inquiry than any alternative method yet proposed.t®

Attempts to find a systematic answer to “the problem of induction™ within
the framework of a theory of probability, though often made, have not in
general been regarded as successful. The process of induction has been usually
conceived as the search for more or less stable and pervasive relations between
properties of objects; and the problem of induction has been taken to be the
discovery of a principle (the principle of induction) which would “justify” the
various conclusions of that process. Stated in this way, it is rather difficult
to know just how the “problem" is to be conceived in empirical terms. On the
face of it, the “problem” seems to involve a futile infinite regress; and indeed
the Achilles heel of attempted solutions of it has usually been the status of the
proposed prineiple of induction: how is the principle itself to be *“‘justified”?
The number of different types of answers which have been given to this last
question is relatively small; amopg them are the following: the inductive prin-
ciple is a synthetic a priori proposition concerning the nature of things in gen-
eral, it is an a priori proposition concerning the fundamental constitution of the
human mind, it is a generalization from experience, and it is & ““presupposition”
or “postulate” of scientific procedure. It would take too long to examine these
answers in detail. It is perhaps sufficient to note that the first two involve
positions incompatible with the conclusions of modern logical research; that
the third commits a petitio principii; and that the fourth, assuming it to have a
clear meaning, cannot make of the proposed inductive principle a *‘justifica-
cation” of the procedure of science or of its conclusions, since according to
this answer the principle is simply an snsirument of scientific procedure. The
position taken in the present monograph is that no antecedent principle is
required to justify the procedure of science, that the sole justification of that
procedure lies in the apecific solutions it offers to the problems which set it
into motion, and that & general problem of induction in its usual formulation
does not exist. Since the notion of the probability of theories (in the specific
senses discussed above) has been found to involve serious difficulties, and since
the degree of confirmation for a theory has been argued to indicate the extent
to which the theory has been tested by the procedure of science, the problem
of induction which the present writer recognizes as genuine is the formulation
of the general features of scientific method—of the method which, in short,
leads to a proportionately greater number of successful termmations of in-
quiry than the number which other methods may have to their eredit,
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One brief final remark: It has been customary in the tradi-
tional discussions of scientific theories to seek grounds for our
knowledge of their frutk or at least of their probability (in some
one of the many senses previously discussed). Omitting more
than mention of those students (e.g., Wittgenstein and Schlick)
who have dismissed such discussions as meaningless because,
according to them, theories are mot “genuine” propositions
since they are not completely verifiable, reference must be made
to another group of writers. According to this group, the tradi-
tional discussions have not fruitfully illuminated the character
of scientific inquiry because those who take part in them neglect
the function which theories have in inquiry. When this func-
tion is examined, it has been urged, it turns out that questions
of the {ruth of theories (in the sense in which theories of truth
bhave been traditionally discussed) are of little concern to those
who actually use theories. Reflective inquiry is instituted for
the sake of settling a specific problem, whether it be practical
or theoretical, and inquiry terminates when a resolution of the
problem is obtained. The various procedures distinguishable in
inquiry {such as observation, operation upon subject matter
including the manipulation of instruments, symbolic representa-
tion of properties of subject matter, symbolic transformation
and calculation, etc.) are to be viewed as instrumental to its
end product. The use of theories is one patent factor in reflec-
tive inquiry. They function primarily as means for effecting
transitions from one set of statements to other sets, with the
intent of controlling natural changes and of supplying predic-
tions capable of being checked through manipulating directly
experienceable subject matter. Accordingly, in their actual use
in science, theories serve as tnstruments in specific contexts, and
in this capacity are to be characterized as good or bad, effective
or ineffective, rather than as true or false or probable. Those
who stress the instrumental function of theories are not neces-
sarily committed to identifying truth with effectiveness and
falsity with uselessness. Their major insight does not consist
in denying the meaningfulness of certain types of inquiries into
the truth of theories but in calling attention to the way theories
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function and to the safeguards and conditions of their effective-
ness. A theory is confirmed to the degree that it performs its
specific instrumental function. From this point of view, which
has been developed with much detail by Dewey, the degree of

_confirmation for & theory may be interpreted as & mark of its
proved effectiveness as an intellectual tool for the purposes for
which it has been instituted.

9. Concluding Remarks

In consonance with the discussion and terminology of the
theory of signs in Volume I, Number 2, it is convenient to clas-
sify the problems connected with probability into three distinct
though connected groups. Syniactical problems: these are con-
cerned primarily with perfecting the calculus of probability,
making more precise its assumptions, simplifying its procedure,
establishing its consistency, developing alternative formal tech-
niques, and indicating its relation to other branches of formal
mathematics. Some of these matters were considered in Section
II. Semantical problems: these are concerned with establishing
and formulating appropriate rules for applying the calculus to
various existential affairs, by indicating under what conditions
certain complexes of signs in the calculus are to be co-ordinated
with experimentally controllable situations. Pragmatic prob-
lems: these are concerned with formulating the procedures and
conditions involved in the acceptance of probability statements,
and with evaluating the efficacy of the calculus in solving the
problems set for it in scientific inquiry. Semantical and prag-
matic problems were outlined in the present seetion.

In recent years & growing number of mathematicians and
logicians have devoted themselves to the solution of the syn-
tactical problems of probability. Although there are still a
number of outstanding difficulties, these are being attacked
with the most subtle instruments of modern mathematics. In
any case, the calculus has been refined and generalized to an
extent undreamed of a century ago. The discussion of the se-
mantical problems of probability is perhaps still in its infancy,
though important spade work has already been done. The very
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recognition of the existence of such problems bodes well for the
future, since the classical discussions of probability have been
shown to be inadequate largely because semantical problems
were not clearly distinguished from syntactical ones. The dis-
cussion of pragmatic problems has been carried on in the United
States for many years. The most obvious fruits of this activity
are the number of substantial contributions to an objective psy-
chology dealing with scientific inquiry. And the present co-
operative attack upon this group of problems by biologically
oriented thinkers and those trained in the mathematical sciences
gives a bright promise that, perhaps for the first time in the
modern period, an adequate account of human behavior in the
context of getting knowledge will soon be available.

The present section has stressed problems associated with
the discussion of probability which are still largely unsettled.
An unsettled situation in an intellectual discipline has often
been seized upon by those hostile to free inquiry as an oppor-
tunity to cry out the “bankruptey of science,” to charge it
with “confusion,” to preach a wholesale skepticism with respect
to its findings, and to invoke dogmatically “perennial truths”
in the interest of private and institutionalized vested interests.
However, unsettled situations in science usuelly mark impor-
tant departures from traditional modes of analysis and are con-
comitants of active research; and the present state of prob-
ability discussions is typical of such situations. Disagreement
among competent students certainly indicates that the last word
upon the topic under discussion has not been said; but it may
also indicate that a community of workers is co-operatively en-
gaged in contributing to the solution of complicated issues.
Such in fact is patently the case in current discussions of prob-
ability. Even where sharp disagreements occur, those engaged
in the discussion have been drawing upon one another’s in-
sights, have been influencing one another to state their pro-
posed solutions with greater precision, have been led to recog-
nize alternative possibilities in solutions, and have consequently
guarded themselves against a premature commitment to theses
which may block the course of further inquiry. What is essen-
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tia] for the future development of probability considerations,
as for the development of science in general, is that trained
minds play upon its problems freely and that those engaged in
discussing them illustrate in their own procedure the character-
istic temper of scientific inquiry—to claim no infallibility and
to exempt no proposed solution of a problem from intense criti-
cism. Such a policy has borne precious fruit in the past, and it
is reasonable to expect that it will continue to do so. In the
history of the study of probability it has brought into exist-
ence a perfected calculus of probability; it has led to an ex-
tension of its range of application to many diverse domains;
and it has contributed to showing that the various sciences,
however distinct their specific subject matters may be, employ
a common logic and common procedures, are faced with com-
mon logical problems, and are mutually indebted to one an-
other for indispensable tools of inquiry.

NOTES

These very limited bibliographical notes aim to do no more than suggest further
reading on some of the topics mentioned in the text.

1. For the classical view of probability consult Laplace, Essatl phtlosophique sur les
probabilitds (Paris, 1814); A. De Morgan, An Essay on Probability (London, 1838). For
the logical view see J. M. Keynes, Treatise on Probabilily {London, 1921); J. von Kries,
Dis Principion der Wahracheinlichkeitsrechnung (Tibingen, 1886); F. Waismann, “Ana-
lyse des Wahrscheinlichkeitshegriffs,” Erkenntnis, Vol. I. For the frequency view see
J.Venn, Logic of Chance (London, 1886); Charles S. Peirce, Collected Papers, Vol. 11
(Cambridge, Mass., 1932); R. von Mises, Wahrscheinlichkeit, Statisiik, und Walrheit
(Vienna, 1936) and Wahrascheinlichheilsrechnung (Leipzig, 1031); H. Reichenbach, Wahr-
scheinlichkeitslehre (Leiden, 1935).

2. For these alternative definitions consult K. Popper, Logtk der Forschung (Vienna,
1935), and A. H. Copeland, “Admissible Numbers in the Theory of Probability,”
American Journal of Mathematics, Vol. L, as well as his “*Predictions and Probabilities,"
Erkenninis, Vol. VI,

8. Peirce’s cormments on these matters are scattered throughout his writings, espe-
cially in Vols. IT and VI of his Collected Papers, Philipp Frank has written many
monographs on this subject, but the fullest account will be found in Des Kausalgassis und
teins Grenzen (Vienna, 1032). Henry Margenau develops his point of view in several
articles in Philosophy of Seience and in R. B, Lindsay and H, Margenau, Foundations of
Physics (New York, 1938). Seealso E. Cassirer, Determinismus und Indeterminismus in
der moderne Physik (Gdteborg, 1837).

4. Reichenbach’s book cited in n. 1 contains fairly full veferences to these discussions.
A. Wald's paper, “Die Wiederspruchsfreiheit des Kollektivhegriffes der Wahrschein-
lichkeitsrechnung,” appeared in K. Menger's Ergebnisse einss mathematischem Kol-
loguiums, Heft 8.
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&. The technical details referred to will be found in any book on the mathematical
theory of probability; for example, the books of von Mises cited in n. 1. Fisher's
writings are scattered in many periodicals but are summarized in his Statistical Methods
for Reseurch Workers (Edinburgh and London, 1825), which also contains & list of his
papers, and also in his The Design of Experiments (Edinburgh and London, 1935).

6, This eriticism has heen made by & number of writers, e.g., F. Cantefli, “Con-
sidération sur la convergence dans le caleul des probabilities,” Annales de IInstitut
Henri Poincaré, Vol. V; T. C. Fry, Probability and Iis Engincering Uses (New York,
1928); and R. B. Lindsay and H. Margenau in their Foundations of Physics.

7. Consult A. Kolmogoroff, “Grundbegriffie der Wahrscheinlichkeitsrechnung,”
Ergebnisse der Mathematik, Vol. II, and the important series of works edited by E.
Borel entitled T'raité du calewl des probabilités et de ses applications.

8. These interpretations will be found in F. P. Ramsey, Foundations of Mathematics
{London and New York, 1931); C. G. Hempe), “Uber den Gehalt von Wahrscheinlich-
keitsaussagen,” Erkenninis, Vol. V; H. Jeffreys, Scientific Inference (Cambridge, 1931);
S. Mazurkiewicz, “Uber die Grundlagen der Wahracheinlichkeitsrechnung,” Monat-
shefle fiir Mathem. w. Physik, Vol. XLI; and other works by authors already cited in
previous notes.

9. Reichenbach’s views have been stated by him in their most complete form in the
work cited in n. 1 and in his Ezperience and Prediction (Chicago, 1938).

10. Consult G. Birkhoff and J. von Neumann, “The Logic of Quantum Mechanics,"
Annals of Mathematics, Vol. XXX VII; M. Strauss, “Zur Begruendung der statistischen
Transformationstheorie der Quantenmechianik,” Sitaungsber. der preuss. Akad. d.
Wiss. (1936); Paulette Février, “Les Relations d’incertitude de Heisenberg et la
logique,” Comptes rendus des sciences, Vol. CCIV.

11, For a recent exposition of the subjective view consult B, De Finetti, “La Pre-
vision: ses lois logiques, ses sources subjectives,” in Annales de I'Institut Henrs Poin-
caré, Vol. VIL. Criticisms of the classic view will be found in the writings of Peirce,
Venn, von Kries, and Keynes already referred to.

12. In addition to the works cited in n. 1, consult J. Nicod, Le Probleme logigue de
Pinduction (Paris, 1928). )

18. Poincaré’s method is explained in his Caleul des probabilités (Paris, 1896) and
also by Reichenbach in his Wahrscheinlichkeitslehre. For the work of E. Hopf see “On
Causality, Statistics and Probability,” Journal of Mathematics and Physics, Vol. X1IJ;
see also G. D. Birkhoff and D. C. Lewis, “Stability in Causal Systems,” Philosophy of
Sctencs, Vol. I1.

14. Carnap's discussion is contained in his “Testability and Meaning,” Philosophy of
Setence, Vols. 111 and IV.

15. For further discussion of these matters consult M. R. Cohen, Reason and Nature
(New York, 1831); John Dewey, Essays in Experimental Logic (Chicago, 1916), Quest
Jor Certainly (New York, 1920), and Logio: The Theory of Inquiry (New York, 1988);
H. Feigl, “The Logical Character of the Principle of Induction,” Philosophy of Science,
Vol. I; Otto Neurath, “Pseudorationalismus der Falsifikation,” Erkenntnis, Vol. V.
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Foundationa of the Unity of Science, though a self-contained work, serves as the
first two introductory volumes of the proposed International Encyclopedm of U mﬁed
Science. It is concerned with the scientific enterprise as a whole.

;' Thewish toinsure impartiality hasled to.a selection of collaborators with somewhat
different points of view, but who agree in considering the unity of science as the ideal.
_aim of their efforts, in eliminating any form of speculation other than that recognized

- in science, in stressing the importance of logical analysis in various fields, and in tak~

- ing into account the historical development of scientific concepts and regulative
principles. Such collaborators include, for instance, persons stemming from the:
- Vienna Circle, from the Berlin group of scientific philosophers, from the Polish
school of logicians, from the group centering around Scientia and the Centre de
synthése, as well as representatives of American pragmatism, the English analytical
school, French conventionalism, various groups of scientific philosophers in Bel-
gium, Holland Switzerland, Scandinavia, and other countries, and a large number of
scientists from the various speelal branches of science. :

For these and other reasons there will be a certain divergence of opinion mthm the

wider set of agreements which give unity to the work; tendencies which are often
called scientific empiricism and logical empiricism will find a place by the side of

other tendencies which prefer to be called scientific or e
laborators of various nationglities have been invited;

erimental rationalism, Col-
their personal competence

has been considered or the benefits to be obtained from a variety of cultural view-
points—their political views or the political ideologies of the countries they come
from have not entered into consideration, since the Encyclopedia is a scientific and
not a political enterprise.. Each collaborator wx}l of course, be respons:ble only for

the ideas which he himself expresses.
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