The Mathematical Problem of the Price Index

Mathematical Problem of the

Price Index

BY
J. K. MONTGOMERY M.A., M.Sc.
Mamber of ike Ecomometric Socidy

CONTENTS

GRA․ Pans
I. The Conception of the Price Index of a Group of Commodities I
II. The Transformation of Measures of Change. 8
III. The Determination of the Formula for the Price Index 29
IV. The Price Indices of Separate Commodi- ties in the Group. 40
V. The Differential Method of Determining the Price Index 49
VI. Some Properties of the Price Index 56
VII. The Practical Application of the Formula for the Price Index 66

CHAPTER I

THE CONCEPTION OF THE PRICE INDEX OF A GROUP OF COMMODITIES

One of the reasons why there has been so much controversy on the subject of the price index of a group of commodities is that writers have never agreed on a definition. Certainly it is not easy to define the price index in a few words nor to form a precise conception of it.

The following statement of what the writer puts forward, without claiming any originality for it, as the most satisfactory conception of the price index can hardly be called a definition, as he proceeds by first expressing the conception in vague terms and afterwards trying to give a more precise meaning to those terms.

In accordance with the usual notation, let the prices of the commodities in the base year be $p_{0}{ }^{\prime}, p_{0}{ }^{\prime \prime}, p_{0}{ }^{\prime \prime \prime}$, etc., and the prices in the given year $p_{1}{ }^{\prime}, p_{2}{ }^{\prime \prime}, p_{1}{ }^{\prime \prime \prime}$, etc. Let the quantities of the commodities in the base year be $q_{0}{ }^{\prime}, q_{0}{ }^{\prime \prime}, q_{0}{ }^{\prime \prime \prime}$, etc., and the quantities in the given year $q_{1}{ }^{\prime}, q_{1}{ }^{\prime \prime}, q_{1}{ }^{\prime \prime \prime}$, etc.

Then the values of the commodities are $p_{0}{ }^{\prime} q_{0}{ }^{\prime}$, $p_{0}{ }^{\prime \prime} q_{0}{ }^{\prime \prime}, p_{0}{ }^{\prime \prime} q_{0}{ }^{\prime \prime \prime}$, etc., in the base year and $p_{1}{ }^{\prime} q_{1}{ }^{\prime}$, $p_{1}{ }^{\prime \prime} q_{1}{ }^{\prime \prime}, p_{1}{ }^{\prime \prime \prime} q_{1}{ }^{\prime \prime \prime}$, etc., in the given year.

The aggregate value of the commodities is $\Sigma p_{0} q_{0}$ in in the base year and $\Sigma p_{1} q_{2}$ in the given year.

B

Comparing the commodities in the given year with the commodities in the base year; we note that both prices and quantities have changed. The aggregate value has also changed, and the change in aggregate value is partly due to the changes in price and partly to the changes in quantity.

Here we are using vague phrases: "due to the changes in price" and "due to the changes in quantity." We shall hope to make clearer, presently, what we mean by these phrases.

Let us now suppose that, instead of varying with the commodity, the change of price had been uniform for all commodities in the group and that, in like manner, there had been a uniform change in the quantities. Let the proportionality factor for price be P_{01} and the proportionality factor for quantity Q_{01}.

Then, in this case (which we will call the hypothetical case, to distinguish it from the actual case), we have a group of commodities of which the prices in the base year are the same as in the actual case, but the prices in the given year are $P_{02} p_{0}^{\prime}, P_{01} p_{0}{ }^{\prime \prime}, P_{01} p_{0}{ }^{\prime \prime \prime}$, etc., while the quantities in the base year are the same as in the actual case, but the quantities in the given year are $Q_{01} q_{0}{ }^{\prime}, Q_{01} q_{0}{ }^{\prime \prime}, Q_{01} q_{0}{ }^{\prime \prime \prime}$, etc.
The aggregate value, in the hypothetical case, is $\Sigma p_{0} q_{0}$ in the base year and $\Sigma P_{01} p_{0} Q_{01} q_{0}$ or (since P_{01} and Q_{01} are the same for all the commodities) $P_{01} Q_{01} \Sigma p_{0} q_{0}$ in the given year.

So far, it will be observed, we may attach any values we like to P_{01} and Q_{01}.
Now, a fundamental conception of the price index and the quantity index is that, if they are applied as proportionality factors to the prices and quantities of
the commodities in the base year, the resulting aggregate value of the commodities is the same as the aggregate value in the given year in the actual case. In other words, if P_{01} and Q_{01} are the price index and the quantity index, they must fulfil the condition

$$
\Sigma P_{01} p_{0} Q_{01} q_{0}=\Sigma p_{1} q_{1}
$$

or, since P_{01} and Q_{01} are the same for all the commodities,

$$
P_{01} Q_{01}=\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}
$$

If it were not so, P_{01} and Q_{01} would have no relation to the prices and quantities in the given year, and could in no way serve to establish a comparison between the prices in the given year and the prices in the base year and between the quantities in the given year and the quantities in the base year.

Up to this point there is general agreement. It is usually admitted that the price index, P_{01}, and the quantity index, Q_{01}, must have the property indicated by the above equation.

But this does not carry us very far towards the determination of P_{01} and Q_{01}. Obviously there is an infinite series of pairs of values for P_{01} and Q_{01} which fulfil the condition. They take the forms $\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{a}$ and $\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{x-a}$.

Hence it is clear that P_{01} and Q_{01} must fulfil other conditions. The conception (the writer submits) must be extended by saying that the price index must correspond to the change in the aggregate value due to the changes in price and the quantity index must correspond

4 the mathematical problem of the price index to the change in the aggregate value due to the changes in quantity.

But here again we are using vague terms. What do we mean by "correspond to" and by "due to the changes in price"? And how is the change in aggregate value measured?

Let us answer the last question first.
The change in aggregate value may be measured in three ways:
(I) As the ratio of the aggregate value in the given year to the aggregate value in the base year, or $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}$;
(2) As the difference between the aggregate value in the given year and the aggregate value in the base year, or $\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0} ;$
(3) As the ratio of the difference between the aggregate value in the given year and the aggregate value in the base year to the aggregate value in the base year, or $\frac{\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0}}{\Sigma p_{0} q_{0}}$.

Reverting to the conception of P_{01} and Q_{01} as proportionality factors and recalling what we have called the hypothetical case, we may note that the change of aggregate value, in whichever way it may be measured, is the same in the hypothetical case as in the actual case, since
and

$$
\begin{aligned}
\Sigma p_{01} p_{0} Q_{01} q_{0} & =\Sigma p_{1} q_{1} \\
\Sigma p_{01} p_{0} Q_{01} q_{0}-\Sigma p_{0} q_{0} & =\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0} \\
\Sigma P_{01} p_{0} Q_{01} q_{0}-\Sigma p_{0} q_{0} & =\frac{\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0}}{\Sigma p_{0} q_{0} q_{0}} .
\end{aligned}
$$

The first measure of the change of aggregate value, $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}$, is a ratio. Let us suppose that it is transformed into the product of two ratios, one (which we will call R_{P}) representing the change in the aggregate value due to the changes in price, and the other (which we will call R_{e}) representing the change in the aggregate value due to the changes in quantity. We have still to explain what we mean by "due to the changes in price" and "due to the changes in quantity," but let us postpone the explanation for a moment.

In the hypothetical case, let us suppose that the change in aggregate value $\frac{\Sigma P_{01} p_{0} Q_{01} q_{0}}{\Sigma p_{0} q_{0}}$ (which is equal to $\left.\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)$ is transformed into the product of two ratios, one (which we will call $\left[R_{F}\right]$) representing the change in the aggregate value due to the changes in price and the other (which we will call $\left[R_{\mathrm{a}}\right]$) representing the change in the aggregate value due to the changes in quantity.

Then $\left[R_{P}\right]$ must be equal to R_{P} and $\left[R_{P}\right]$ must be equal to Re. This is what we mean when we say that " the price index must correspond to the change in the aggregate value due to the changes in price, and the quantity index must correspond to the change in the aggregate value due to the changes in quantity."

In the hypothetical case, it is obvious that $\left[R_{r}\right]$ is P_{01} and that $\left[R_{\mathrm{e}}\right]$ is Q_{01}. Hence, if we can determine R_{r} and R_{9} our problem is solved.

There must be a similar correspondence if we take the other measures of the change in the aggregate value. If the change in the aggregate value is $\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0}$, we may speak of it as the increase in the aggregate value and divide it into the sum of two values, one (which we will call V_{P}) being the increase in the aggregate value due to the changes in price, and the other (which we will call. V_{9}) being the increase in the aggregate value due to the changes in quantity.

In the hypothetical case the increase in the aggregate value is $\Sigma P_{01} p_{0} Q_{01} q_{0}-\Sigma p_{0} q_{0}$ (which is equal to $\left.\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0}\right)$. Let us divide it into two values, one (which we will call [V_{r}]) being the increase in the aggregate value due to the changes in price, and the other (which we will call [Ve]) being the increase in the aggregate value due to the changes in quantity.

Then $\left[V_{P}\right]$ must be equal to V_{P} and $\left[V_{e}\right]$ to V_{e}.
Again, if the change in the aggregate value is expressed by $\frac{\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0}}{\Sigma p_{0} q_{0}}$ (the proportional increase) we may divide it into the sum of two ratios, one (which we will call \dot{R}_{p}, to distinguish it from R_{P}) representing the proportional increase in the aggregate value due to the changes in price, and the other (which we will call $\dot{R}_{\mathbf{q}}$) representing the proportional increase in the aggregate value due to the changes in quantity.

In the hypothetical case, the proportional increase in the aggregate value is expressed by $\frac{\Sigma P_{01} p_{0} Q_{01} q_{0}-\Sigma p_{0} q_{0}}{\Sigma p_{0} q_{0}}$ (which is equal to $\frac{\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0}}{\Sigma p_{0} q_{0}}$), and we may divide it into the sum of two ratios, one (which we will call [$\left.\dot{R}_{P}\right]$) representing the proportional increase in the aggregate value due to the changes in price, and the other (which we will call $\left[\dot{R}_{e}\right]$) representing the pro-
portional increase in the aggregate value due to the changes in quantity.

Then $\left[\dot{R}_{P}\right]$ must be equal to \dot{R}_{P} and $\left[\dot{R}_{e}\right]$ to \dot{R}_{e}.
But obviously $\dot{R}_{P}=\frac{V_{P}}{\Sigma p_{0} q_{0}}, \quad \dot{R}_{e}=\frac{V_{e}}{\Sigma p_{0} q_{0}}, \quad\left[\dot{R}_{P}\right]=$ $\frac{\left[V_{f}\right]}{\Sigma p_{0} q_{0}}$ and $\left[\dot{R}_{e}\right]=\frac{\left[V_{0}\right]}{\Sigma p_{0} q_{0}}$.

Hence, if $\left[V_{P}\right]=V_{P}$ and $\left[V_{e}\right]=V_{e}$, we also have $\left[\dot{R}_{P}\right]=\dot{R}_{P}$ and $\left[\dot{R}_{e}\right]=\dot{R}_{a}$, so that the last two equations do not give us any new conditions for determining P_{01} and Q_{01}.

It should be noted that all the conditions above indicated must be fuifilled. We must have $\left[R_{P}\right]=R_{P}$, $\left[R_{\mathrm{Q}}\right]=R_{\mathrm{Q}}, \quad\left[V_{P}\right]=V_{P}, \quad\left[V_{\mathrm{Q}}\right]=V_{0}, \quad\left[\dot{R}_{\mathrm{P}}\right]=\dot{R}_{P} \quad$ and $\left[\dot{R}_{e}\right]=\dot{R}_{0}$. It is not that we arbitrarily choose one method of expressing the change in aggregate value. It must be indifferent which method we choose.

CHiAPTER II

THE TRANSFORMATION OF MEASURES OF CHANGE

We have now to make clear what we mean by " the change in the aggregate value due to the changes in price," and " the change in the aggregate value due to the changes in quantity." We shall obtain a clearer idea of this by studying the following series of propositions relating, not to prices, quantities and values, but to pure numbers.

$$
\text { I.-Let } A+a+b+c+\ldots=B R a R b R c \ldots
$$

where (speaking in vague terms) $R a$ corresponds to $a, R b$ to $b, R c$ to c, and so on. Let us further assume that A is positive and that, although any of the terms a, b, c, etc., may be negative, $A+a+b+c+\ldots$. is also positive.

Speaking more precisely, let $A+a+b+c+$. . . be equal to B multiplied by factors $R a, R b, R c$, etc., such that the operation of multiplying B by $R a$ (simultaneously with the other factors) contributes as much to the product $B R_{a} R_{b} R_{c}$. . . as the operation of adding a to A contributes to the $\operatorname{sum} A+a+b+c+\ldots$, and similarly for $R b, R c$, etc. (We need not say " adding a to A simultaneously with the other terms," for the effect of adding a is the same whether it is added with the other terms or is added separately.)

If $a=0, R a=1$, since adding 0 leaves the sum 8
the transformation of measures of change 9 unchanged and multiplying by I leaves the product unchanged. Hence, putting $a=0, b=0, c=0$, and so on, we have $A=B$.

Thus we must say :
Let $A+a+b+c+\ldots=A R a R b R_{c} . .$.
We must consider closely what we are doing when we endeavour to determine $R a, R b, R c$, etc. We know precisely what are the changes, measured as differences, produced by adding a, b, c, etc., to A; we want to know what are those changes measured as ratios.

If only a is added to A, there is no difficulty. We have
which gives

$$
\begin{aligned}
A+a & =A R a \\
R a & =\frac{A+a}{A}
\end{aligned}
$$

But if there are even two terms added, a and b, the problem becomes more complicated.

Let

$$
A+a+b=A R a R b
$$

Now suppose that $a+b$ is constant and equal to K, but that a and b vary.

If $a=0$, it is clear, as we have seen above, that $R a=I$. In this case, $b=K$ and $R b=\frac{A+K}{A}$.

Now let a increase gradually, and b decrease gradually, $a+b$ always remaining equal to K. Then, since the change produced by adding a gradually increases and the change produced by adding b gradually diminishes, R a must gradually increase and $R b$ must gradually diminish.

When $a=b$, adding b increases the sum by the same amount as adding a, and multiplying by $R b$ must, therefore, increase the product by the same amount as multiplying by $R a$. Hence $R_{a}=R_{b}=\left(\frac{A+K}{A}\right)^{\ddagger}$.

As a continues to increase and becomes larger than $b, R a$ becomes greater than $R b$. When a becomes equal to K and b becomes $0, R a=\frac{A+K}{A}$ and $R b=I$. If a still continues to increase b becomes negative. As the change produced in A by adding a negative quantity is to decrease it, R_{b} must now be less than r . As a continues to increase until it reaches $\infty, R a$ also reaches ∞, and $R b$ decreases until it becomes o. $R b$ does not become negative since, by hypothesis, $A+a+b$ is positive.

A special case, which does not occur when we suppose $a+b=K$, is when $a+b=0$, or $b=-a$. In this case, since the total change produced is nil, $R a R b=r$, or $R b=\frac{\mathrm{I}}{\mathrm{Ra}}$.
Similar reasoning may be applied to any number of terms and to cases where a, b, c, etc., vary independently and we obtain the following general properties, which apply not only to $R a$ and $R b$, but to any two of the factors $R a, R b, R c$, etc.
If $a=0, R a=1$; if $b=0, R b=1$, and so on. If $a \gtreqless b, R a \geqq R b$.
If $a=-b, R a=\frac{x}{R b}$.
Again, if we treat $a+b$ as a single term of the sum and let $R a+b$ be the factor corresponding to $a+b$, then $R a+b=R a R b$, since multiplying by $R a R b$ increases the product by the same amount as adding both a and b (that is, $a+b$) to the sum.
the transformation of measures of change il
If $b=a$, we have $R_{2 a}=\left(R_{a}\right)^{2}$, and this may be extended so that, where x is a positive integer, $R_{x s}=\left(R_{a}\right)^{x}$.

Again, from the fact that when $b=-a, R b=$ $\frac{I}{R_{a}}=\left(R_{a}\right)^{-1}$ we can deduce that $R_{-2 a}=\left(R_{a}\right)^{-2}$, and this can be extended, so that where x is a negative integer it is also true that $R_{x s}=\left(R_{a}\right)^{x}$.

Now let $a=x r, b=y r, c=z r$, and so on, where x, y, z, etc., are integers. This can always be done by making r small enough.

Then $A+a+b+c+\ldots=A R_{a} R R_{c} \ldots$

$$
=A R_{x r} R_{y r} R_{x y} \ldots .
$$

$$
=A\left(R_{r}\right)^{x}\left(R_{r}\right)^{y}\left(R_{r}\right)^{x} \ldots
$$

$$
=A\left(R_{r}\right)^{x+y+z+\cdots}
$$

Hence

$$
R_{r}=\left(\frac{A+a+b+c+\ldots}{A}\right)^{\frac{x}{x+y+z+\cdots}}
$$

But

$$
R_{a}=R_{x y}=\left(R_{r}\right)^{x}
$$

Therefore $R_{s}=\left(\frac{A+a+b+c+\ldots}{A}\right)^{\frac{x}{x+y+s+\cdots}}$

$$
=\left(\frac{A+a+b+c+\ldots}{A}\right)^{\frac{a}{a+b+c+\ldots}}
$$

Similarly $R_{b}=\left(\frac{A+a+b+c+\ldots}{A}\right)^{\frac{b}{a+b+c+\cdots}}$

$$
R_{c}=\left(\frac{A+a+b+c+\ldots}{A}\right)^{\frac{a+b+c+\cdots}{a}}
$$

and so on.
In the special case in which $A=I$ we have

$$
1+a+b+c+\ldots=R a R_{b} R_{c} \ldots
$$

I2 THE MATHEMATICAL PROBLEM OF THE PRICE' INDEX

$$
\begin{aligned}
& R_{a}=(1+a+b+c+\ldots)^{\frac{a}{a+b+c+\ldots}} \\
& R b=(1+a+b+c+\ldots)^{\frac{b}{a+b+c+\ldots}} \\
& R_{c}=(1+a+b+c+\ldots)^{\frac{c}{a+b+c+\ldots}}
\end{aligned}
$$

and so on.
It will be noted that we are not transforming $a+b+c+\ldots$ into the product of factors $R a, R b$, $R c$, etc., of which $R a$ corresponds to $a, R b$ to b, R_{c} to c, and so on, but $\mathrm{I}+a+b+c+\ldots$. It would seem that it is not possible to convert $a+b+c+\ldots$. into the product of such factors.
2.-In the equation

$$
A+a+b+c+\ldots=A R_{a} R b R_{c} \ldots
$$

let $A=a_{0}+b_{0}+c_{0}+\ldots, a=a_{1}-a_{0}, b=b_{1}-b_{0}$, $c=c_{1}-c_{0}$, and so on. We must further assume that $a_{0}+b_{0}+c_{0}+\ldots$ and $a_{1}+b_{1}+c_{1}+\ldots$ are both positive, though any of the terms $\left(a_{1}-a_{0}\right),\left(b_{1}-b_{0}\right)$, $\left(c_{1}-c_{0}\right)$, etc., may be negative.

Then we can say :

$$
\begin{array}{r}
\text { Let } \left.\begin{array}{r}
a_{0}+b_{0}+c_{0}+\ldots+\left(a_{1}-a_{0}\right)+\left(b_{1}-b_{0}\right) \\
\\
+\left(a_{1}+c_{0}\right)+\cdots
\end{array} \quad .+c_{0}+\ldots\right) R a_{2}-a_{0} R b_{1}-b_{0} R c_{1}-c_{0} \ldots
\end{array}
$$

In this case $R a_{1}-a_{0}$ is such that multiplying ($a_{0}+b_{0}+c_{0}+\ldots$.) by $R a_{1}-a_{0}$ (simultaneously with the other factors $R b_{1}-b_{0}, R c_{1}-c_{0}$, etc.) contributes as much to the product ($a_{0}+b_{0}+c_{0}+\ldots$) $R_{a_{1}-a_{0}} R b_{1}-b_{0} R_{a_{1}-c_{0}} \ldots$ (which is equal to $a_{1}+b_{1}+c_{1}+\ldots$) as changing a_{0} to a_{1} contributes to the sum $a_{1}+b_{1}+c_{1}+\ldots$. (or, in other words, adds to the sum $a_{0}+b_{0}+c_{0}+\ldots$),
the transformation of measures of change
and similarly for $R b_{1}-b_{0}, R c_{1}-c_{0}$, etc. Hence we may say that $R a_{2}-a_{0}$ represents the change (measured as a ratio) in $a_{0}+b_{0}+c_{0}+\ldots$ due to the change of a_{0} to a_{1}, $R b_{1}-b_{0}$ represents the change (measured as a ratio) due to the change of b_{0} to b_{1}, and so on.

On the analogy of the formula in section I, we have

$$
\begin{aligned}
R_{a_{1}-a_{0}} & =\binom{a_{0}+b_{0}+\ldots+\left(a_{1}-a_{0}\right)}{\frac{+\left(b_{1}-b_{0}\right)+\ldots .}{a_{0}+b_{0}+c_{0}+\ldots}}^{\frac{\left.a_{1}-a_{1}\right)+\left(b_{1}-b_{0}\right)+\ldots}{\left(a_{1}-a_{0}\right.}} \\
& =\left(\frac{a_{1}+b_{1}+c_{1}+\ldots .}{a_{0}+b_{0}+c_{0}+\ldots}\right)^{\left(a_{1}-a_{0}\right)+\left(b_{1}-b_{3}\right)+\left(c_{1}-c_{0}\right)+\ldots}
\end{aligned}
$$

and similarly for $R b_{1}-b_{0}, R c_{1}-c_{0}$, etc.
Hence we can transform the ratio $\frac{a_{1}+b_{1}+c_{1}+\ldots}{a_{0}+b_{0}+c_{0}+\ldots}$ into the product of factors corresponding to $a_{1}-a_{0}$, $b_{1}-b_{0}, c_{1}-c_{0}$, etc., that is corresponding to the changes from a_{0} to a_{1}, from b_{0} to b_{1}, from c_{0} to c_{1}, etc.
3.-If we say :

Let $A+\frac{a+b+c+\ldots}{B}=A R_{a} R_{b} R_{c} \ldots$
defining R_{a}, R_{b}, R_{c}, etc., in a similar manner to the way in which they are defined in section 1 , we find that

$$
R_{a}=\left(1+\frac{a+b+c+\ldots}{A B}\right)^{\frac{a}{a+b+c+\ldots}}
$$

By putting $A=1, B=a_{0}+b_{0}+c_{0}+\ldots, a=$ $a_{1}-a_{0}, b=b_{1}-b_{0}, c=c_{1}-c_{0}$, etc., we arrive at the same result as in section 2.

I4 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX
4.-If we say :

Let $A+a+b+c+\ldots=$

$$
B+R a+R b+R c+\ldots
$$

where $R a$ contributes as much to the sum $B+R a+R b+R_{c}+\ldots$. as a contributes to the $\operatorname{sum} A+a+b+c+\ldots$, and similarly for $R b$, $R c$, etc., then it is obvious that $B=A, R a=a, R b=b$, $R_{c}=c$, and so on, but if we shut our eyes to the obvious fact and calculate $R a, R b, R c$, etc., by similar methods we find that

$$
\begin{aligned}
& R_{a}=(a+b+c+\ldots) \frac{a}{a+b+c+\ldots}=a \\
& R_{b}=(a+b+c+\ldots) \frac{b}{a+b+c+\ldots}=b \\
& R_{c}=(a+b+c+\ldots) \frac{b}{a+b+c+\ldots}=c
\end{aligned}
$$

and so on. This serves as a check on the soundness of our method.

$$
\text { 5.-Let } A a b c_{c} . . .=B+R a+R b+R_{c}+\ldots
$$

where R_{a} corresponds to a, R_{b} to b, R_{c} to c, and so on.
Speaking more precisely, let $R a, R b, R c$, etc., be such that adding $R a$ to B contributes as much to the sum $B+R a+R b+R c+\ldots$ as multiplying A by a (simultaneously with the other factors) contributes to the product $A a b c$. . ., and similarly for $R b, R_{c}$, etc.

If $a=1, R_{a}=0$, since multiplying by 1 leaves the product unchanged and adding o leaves the sum unchanged. Hence, putting $a=1, b=1, c=1$, and so on, we have $A=B$.

Thus we must say :
Let $A a b c \ldots=A+R a+R b+R c+\ldots$.

Let us consider, in this case also, what we are doing when we endeavour to determine R_{a}, R_{b}, R_{c}, etc. We know what are the changes, measured as ratios, produced in A by multiplying it by a, b, c, etc. We wish to know what those changes are measured as differences.

If A is only multiplied by one factor, a, we have $A a=A+R a$, which gives $R a=A a-A$.

If, however, A is multiplied even by only two factors, a and b, the problem is already more complicated. We have $A a b=A+R a+R b$.

Let us suppose that $a b$ remains constant and equal to K but that a and b vary.

If $a=1, R a=0$, as we have seen above. In this case $b=K$ and $R b=A K-A$.

Now let a increase gradually and b gradually decrease. Then R_{a} gradually increases and R_{b} gradually decreases.

When $a=b, R a=R b$, since in this case multiplying by a increases the product by the same amount as multiplying by b and, therefore, adding $R a$ must increase the sum by the same amount as adding $R b$.

As a continues to increase and b to decrease, a becomes greater than b, and $R a$ becomes greater than $R b$. When a becomes equal to K and b to $\mathrm{I}, R_{a}=A K-A$ and $R b=0$. If a increases still further, so that b becomes less than x, the change produced in A by multiplying it by b is to reduce it and therefore R_{b} becomes negative. When a becomes ∞ and b becomes $0, R_{\mathrm{a}}=\infty$ and $R_{b}=-\infty$.

A case that does not occur when we suppose that $a b=$ K is the case in which $a b=\mathrm{I}$ or $b=\frac{\mathrm{I}}{\boldsymbol{a}}$. In this case,

I6 THE MATHEMATICAL PROBLEM OF TEE PRICE I the result of multiplying by $a b$ is to leave A unch s Hence the result of adding $R a$ and $R b$ must be to A unchanged. Thus $R a+R b=0$ or $R b=-1$

The same reasoning may be extended to factors and applied in cases in which a, b, c_{1} vary independently, and thus we obtain the foll general properties, which apply not only to Ra as but to any two of the terms $R a, R b, R_{c}$, etc.

If $a=\mathrm{r}, R a=0$; if $b=\mathrm{I}, R b=0$, and so on.
If $a \gtreqless b, R a \gtreqless R b$.
If $b=\frac{\mathrm{I}}{a}, R b=-R a$.
Again, if we treat $a b$ as a single factor and le be the term corresponding to $a b$, then $R a b=R a$ since multiplying by both a and b (that is, \mathbf{t} increases the product by the same amount as a both $R a$ and $R b$ (that is, $R a+R b$) to the sum.

From this it also results that $R_{a}=x R a$, wh is a positive integer, and from the property t] $b=a^{-1}, R b=-R a$ it can also be shown that j $x R a$, where x is a negative integer.

Now let $a=r^{x}, b=r^{y}, c=r^{r}$, and so on, ' x, y, z, etc., are integers. This can always be not absolutely, but to any desired degree of approxim provided a, b, c, etc., are positive, and in what fc we must suppose this to be the case.

For example, let $a=1 \cdot 36, b=84, c=15 \cdot 27$. We have :

$$
\begin{aligned}
\log r \cdot 36 & =\cdot 1335389 \\
\cdot \log \cdot 84 & =\overline{\mathrm{r}} \cdot 9242793=-\cdot 0757207 \\
\log 15 \cdot 27 & =\mathrm{r} \cdot 1838390
\end{aligned}
$$

$\mathrm{I} \cdot 36$ is approximately equal to $\left({ }^{1} 0^{\frac{1}{0^{\circ}}}\right)^{1335889}$
.84 is approximately equal to $\left(10^{\frac{1}{0^{\prime}}}\right)^{-757207}$
15.27 is approximately equal to $\left({ }^{1} 0^{\frac{1}{0_{1}}}\right)^{11838390}$

The larger the number of places of decimals to which the logarithms are calculated the closer the approximation becomes.
Hence, if a, b, c, etc., are positive, we may say let $a=r^{\prime \prime}, b=r^{y}, c=r^{\prime \prime}$, and so on, where x, y, z, etc., are integers.

Then $A a b c$. . . $=A r^{*} r^{8} r^{\prime}$

$$
\begin{aligned}
& =A+R_{r}+R_{r}+R_{r}+\ldots \\
& =A+x R_{r}+y R_{r}+z R_{r}+\ldots .
\end{aligned}
$$

where R_{r} is the term corresponding to the factor r.
Hence $A a b c$. . $-A=(x+y+z+\ldots) R_{r}$

$$
R_{r}=A(a b c \ldots-\mathrm{I}) \frac{\mathrm{I}}{x+y+z+\ldots}
$$

But $R_{a}=R_{r}=x R_{r}$
Therefore $R a=A(a b c \ldots-1) \frac{x}{x+y+z+\ldots}$
But $x: y: z \ldots=\log a: \log b: \log c \ldots$
since $\log a=x \log y, \log b=y \log r, \log c=z \log r$, and so on.
Therefore

$$
\begin{aligned}
R_{a} & =A(a b c \ldots-\mathrm{I}) \frac{\log a}{\log a+\log b+\log c+\ldots} \\
& =A(a b c \ldots-\mathrm{x}) \frac{\log a}{\log a b c \ldots}
\end{aligned}
$$

18 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX
Similarly

$$
\begin{aligned}
& R_{b}=A(a b c \ldots-\mathrm{I}) \frac{\log b}{\log a b c \ldots} \\
& R_{c}=A(a b c \ldots-\mathrm{I}) \frac{\log c}{\log a b c \ldots}
\end{aligned}
$$

and so on.
In the special case in which $A=1$, we have

$$
\begin{aligned}
a b c \ldots & =\mathrm{I}+R_{a}+R b+R_{c}+\ldots \\
R_{a} & =(a b c \ldots-\mathrm{I}) \frac{\log a}{\log a b c \ldots} \\
R_{b} & =(a b c \ldots-\mathrm{I}) \frac{\log b}{\log a b c \ldots} \\
R_{c} & =(a b c \ldots-\mathrm{I}) \frac{\log c}{\log a b c \ldots}
\end{aligned}
$$

and so on.
This only applies where a, b, c, etc., are all positive.
6.-In the equation

$$
A a b c \ldots=A+R a+R b+R_{c}+\ldots
$$

let $A=a_{0} b_{0} c_{0} \ldots, a=\frac{a_{1}}{a_{0}}, b=\frac{b_{1}}{b_{0}}, c=\frac{c_{1}}{c_{0}}$, and so on, where a_{0}, b_{0}, c_{0}, etc., and a_{1}, b_{1}, c_{1}, etc., are all positive. Then $\left(a_{0} b_{0} c_{0} \ldots\right) \frac{a_{1}}{a_{0}} \cdot \frac{b_{1}}{b_{0}} \cdot \frac{c_{1}}{c_{0}} \ldots$

$$
=a_{0} b_{0} c_{0} \ldots+R+R_{b_{0}}+R R_{b_{0}}^{b_{1}}+\underset{R_{0}}{c_{3}}+\ldots
$$

where $R a_{a_{0}}$ is such that adding $R{\underset{a}{c}}^{a_{6}}$ to $a_{0} b_{0} c_{0}$. . contributes as much to the sum $a_{0} b_{0} c_{0} \ldots+R_{a_{1}}+R_{b_{1}}^{b_{1}}+$ $R \frac{a_{1}}{a_{1}}+\ldots$ (which is equal to $a_{1} b_{2} c_{1} \ldots$) as multi-
plying $a_{0} b_{0} c_{0} \ldots$ by $\frac{a_{1}}{a_{0}}$ (simultaneously with the other factors $\frac{b_{1}}{b_{0}}, \frac{c_{1}}{c_{0}}$, etc.) contributes to the product $\left(a_{0} b_{0} c_{0} \ldots\right) \frac{a_{1}}{a_{0}} \cdot \frac{b_{1}}{b_{0}} \cdot \frac{c_{1}}{c_{0}} \ldots$ (which is also equal to $a_{1} b_{1} c_{1}$. . .) and similarly for $R \frac{b_{b_{1}}}{b_{i}} R \frac{c_{1}}{c_{1}}$, etc. Hence we may say that $R a_{a_{1}}$ represents the change (measured as a difference) in $a_{0} b_{0} c_{0}$. . . due to the change from a_{0} to a_{1}, that $R \frac{b_{1}}{b_{0}}$ represents the change (measured as a difference) in $a_{0} b_{0} c_{0}$. . . due to the change from b_{0} to b_{1}, and so on. We have

$$
\begin{gathered}
R a_{1}=\left(a_{1} b_{1} c_{1} \ldots-a_{0} b_{0} c_{0} \ldots\right) \frac{\log \frac{a_{1}}{a_{0}}}{\log \frac{a_{1} b_{1} c_{1} \ldots}{a_{0} b_{0} c_{0} \ldots}} \\
R b_{b_{0}}=\left(a_{1} b_{1} c_{1} \ldots-a_{0} b_{0} c_{0} \ldots\right) \frac{\log \frac{b_{1}}{b_{0}}}{\log \frac{a_{1} b_{1} c_{1} \ldots}{a_{0} b_{0} c_{0} \ldots}} \\
R_{a_{0}}=\left(a_{1} b_{1} c_{1} \ldots-a_{0} b_{0} c_{0} \ldots\right) \frac{\log \frac{c_{1}}{c_{0}}}{\log \frac{a_{1} b_{1} c_{1} \ldots}{a_{0} b_{0} c_{0} \cdots}}
\end{gathered}
$$

and so on.
Thus we can transform the difference $a_{1} b_{1} c_{1} \ldots-a_{0} b_{0} c_{0} \ldots$ which is the increase of $a_{0} b_{0} c_{0}$... due to the change of a_{0} to a_{1}, b_{0} to b_{1}, c_{0} to c_{1}, and so on, into the sum of a series of terms $R e_{1}, R b_{3}, R c_{4}$, etc., of which $R a_{a}$ represents the increase of $a_{0} b_{0} c_{0} \ldots$ due to the change of a_{0} to a_{1} (simultaneously with the change of b_{0} to b_{1}, c_{0} to c_{1}, and so on), $R \frac{b_{b}}{b_{0}}$ represents the increase of $a_{0} b_{0} c_{0} \ldots$ due to the change of b_{0} to b_{1} (simultaneously with the other changes), and so on.

It should be noted that in this case it is not necessary that a_{0}, b_{0}, c_{0}, etc., and a_{1}, b_{1}, c_{1}, etc., should be pure numbers, since the reasoning turns on the supposition that $\frac{a_{1}}{a_{0}}=r^{r}, \frac{b_{1}}{b_{0}}=r^{y}, \frac{c_{1}}{c_{0}}=r^{r}$, and so on, and $\frac{a_{1}}{a_{0}}, \frac{b_{1}}{b_{0}}, \frac{c_{1}}{c_{0}}$, etc., are ratios and therefore pure numbers. It is, of course, essential that a_{1} and a_{0} should be measured in the same unit, that b_{1} and b_{0} should be measured in the same unit, and so on, and that it should be possible to attach a meaning to $a_{1} b_{1} c_{2} \ldots$ and $a_{0} b_{0} c_{0} \ldots$

> 7.-If we say :
> Let $A a b c \ldots=B R_{a} R_{b} R_{c} \ldots$
where $R a$ is such that it contributes as much to the product $B R_{a} R_{b} R_{c}$. . . as a contributes to the product $A a b c$. . ., and similarly for $R b, R_{c}$, etc., then it is obvious that $B=A, R a=a, R b=b, R_{c}=c$, and so on. But if we shut our eyes to this and calculate $R a, R b, R c$, etc., by similar methods, we get the result :

$$
\begin{aligned}
& R a=(a b c \ldots)^{\frac{\log a}{\log a b c \ldots}}=e^{(\log a b c \ldots)^{\frac{\log a}{\log b b c} \ldots}}=e^{\log a}=a \\
& R_{b}=(a b c \ldots)^{\frac{\log b}{\log a b c \ldots}}=e^{(\log a c c \ldots) \frac{\log b}{\log a b c \ldots}}=e^{\log b}=b \\
& R c=(a b c \ldots)^{\frac{\log c}{\log a b c} \cdots}=e^{(\log a c c \cdots)^{\frac{\log o}{\log a b c} \ldots}}=e^{\log \epsilon}=c
\end{aligned}
$$

and so on. This is a further check on the soundness of our method.
8.-Applying the method to other functions, giving in each case the appropriate definitions of $R a, R b, R c$,

the transformation of measures of change

etc., and making the necessary limitations, we obtain the following results :-

If

$$
t^{a b c} \ldots=t R_{a} R b R_{c} \ldots
$$

$$
R a=\left(t^{a b c} \ldots-\mathrm{x}\right)^{\frac{\log a}{\log a b c} \ldots}
$$

If

If

$$
\begin{aligned}
t a b \cdots & =t+R_{a}+R b+R_{c}+\cdots \\
R_{a} & =(t a b \cdots-t) \frac{a}{a+b+c+\cdots}
\end{aligned}
$$

If $c_{1} b_{2} c_{1} \cdots=a_{0} b_{c_{0}} \cdots+R \underset{a_{0}}{a_{1}}+R b_{b_{1}}+R \underset{c_{0}}{c_{2}}+$.

$$
R \dot{a}_{a_{1}}^{a}=\left(b_{1} b_{1} c_{2} \cdots-i a_{0} b_{0} \cdots\right) \frac{\frac{a_{1}}{a_{0}}}{\frac{a_{1}}{a_{0}}+\frac{b_{1}}{b_{0}}+\frac{c_{1}}{c_{0}}+\ldots}
$$

If ${ }^{a}+b+c+\cdots=1+R_{a}+R_{b}+R_{c}+\ldots$

$$
R a=(b+b+c+\cdots-1) \frac{a}{a+b+c+\cdots}
$$

If $m_{1}+b_{1}+c_{1}+\cdots=b_{0}+a_{n}+c_{1}+\cdots+$

$$
R a_{1}-a_{0}+R b_{2}-b_{0}+R c_{c_{1}-c_{0}}+\ldots
$$

$R a_{1}-a_{0}=\left(b_{1}+b_{1}+a_{2}+\cdots-\right.$

$$
\left.t_{0}+b_{0}+c_{0}+\cdots\right) \frac{a_{1}-a_{0}}{\left(a_{1}-a_{0}\right)+\left(b_{1}-b_{0}\right)+\left(f_{1}-c_{0}\right)+\ldots}
$$

$$
\begin{aligned}
& t^{a_{1} b_{1} c_{2}} \cdots=t^{a_{b} b_{p_{1}}} \cdots R R_{a_{1}}^{a_{0}} R b_{b_{0}} R \underline{c}_{c_{2}}
\end{aligned}
$$

22 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX If $t^{a+b+c+\ldots=R a R b R c . . . ~}$

$$
R a=\left(t^{a}+b f c+\cdots\right)^{\frac{a}{a+b+c+\cdots}}=t
$$

as it obviously must be.

$$
\begin{aligned}
& \text { If } \log (\mathrm{x}+a+b+c+\ldots)=R a+R b+R_{c}+\ldots \\
& R a=\{\log (\mathrm{x}+a+b+c+\ldots)\} \frac{a}{a+b+c+\ldots}
\end{aligned}
$$

If $\log \left(a_{1}+b_{1}+c_{1}+\ldots\right)=$

$$
\log \left(a_{0}+b_{0}+c_{0}+\ldots\right)+R a_{1}-a_{0}+R b_{1}-b_{0}+R c_{1}-c_{0}+\ldots
$$

$$
R_{a_{1}-a_{0}}=\left\{\frac{\log \left(a_{1}+b_{1}+\ldots\right)}{\log \left(a_{0}+b_{0}+\ldots\right)}\right\}_{\frac{a_{1}-a_{0}}{\left(a_{1}-a_{0}\right)+\left(b_{1}-b_{0}\right)+\ldots}}
$$

If $\log A a b c \ldots=(\log A) R a R b R c \ldots$

$$
R a=\left(\frac{\log A a b c \ldots}{\log A}\right)^{\frac{\log g}{\log A c \ldots}}
$$

In this case if $A=\mathrm{I}, R_{a}, R_{b}, R_{c}$, etc., all become equal to infinity.

If $\log a_{1} b_{1} c_{1} \ldots=\left(\log a_{0} b_{0} c_{0} \ldots\right) R{ }_{a} R{ }_{a} b_{b_{1}} R \frac{c_{c_{1}}}{G_{0}} \ldots$

If $\quad \log a b c \ldots=R a+R b+R_{c}+\ldots$

$$
R a=(\log a b c \ldots) \frac{\log a}{\log a b c \ldots}=\log a
$$

as it obviously must be.
9.-We must now endeavour to apply the method to a more complex function.

In the equation

$$
A+a+b+c+\ldots=A R_{a} R b R c \ldots
$$

$\operatorname{let} A=a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime} \ldots+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots+\ldots$ let $a=$ $a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}^{\prime} \ldots-a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime} \ldots, \quad b=a_{1}{ }^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}{ }^{\prime \prime} \ldots-$ $a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime}$. . ., and so on. Let us further assume that all the numbers of the form $a_{0}, a_{1}, b_{0}, b_{1}, c_{0}, c_{1}$, etc., are positive.

Then $a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}{ }^{\prime} \ldots+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots+\ldots+$ $\left(a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}^{\prime}\right.$. . . $\left.-a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}{ }^{\prime}\right)+\left(a_{1}{ }^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}{ }^{\prime \prime}\right.$. . . $\left.a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots\right)+\ldots=\left(a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}{ }^{\prime} \ldots+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots+\right.$
 where $R\left(a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}^{\prime} \ldots-a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime} \ldots\right)$ is such that multiplying $\left(a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}{ }^{\prime}\right.$. . $\left.+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} . . .+. ..\right)$ by $R\left(a_{1}^{\prime} b_{1}^{\prime} c_{1}^{\prime} \ldots-a_{0}^{\prime} b_{0}^{\prime} c_{0}^{\prime} \ldots\right)$ simultaneously' with the other factors $R\left(a_{1}{ }^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}{ }^{\prime \prime} \ldots-a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots\right)$, etc., contributes as much to the product $\left(a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}{ }^{\prime} \ldots+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots+\right.$. . .) $R\left(a_{1}^{\prime} b_{1}^{\prime} c_{1}^{\prime} \ldots-a_{0}^{\prime} b_{0}^{\prime} c_{0}^{\prime} \ldots\right) R\left(a_{1}^{\prime \prime \prime} b_{1}{ }^{\prime \prime} c_{1}^{\prime \prime} \ldots-a_{0}{ }^{\prime \prime \prime} b_{0}^{\prime \prime \prime} c_{0}^{\prime \prime} \ldots\right)$. . . (which is equal to $a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}^{\prime} \cdot \ldots+a_{1}{ }^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}{ }^{\prime \prime} \ldots++$ \ldots) as adding ($a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}{ }^{\prime} \ldots-a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime} \ldots$) to $\left(a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}{ }^{\prime} \ldots+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots+\ldots\right.$) contributes to the sum $a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}{ }^{\prime} \ldots+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots+\ldots+$ $\left(a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}^{\prime} \ldots . . a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime} \ldots.\right)+\left(a_{1}^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}{ }^{\prime \prime} \ldots\right.$. . $\left.a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime}\right)+\ldots$ (which is also equal to $a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}{ }^{\prime} \ldots+$ $a_{1}{ }^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}{ }^{\prime \prime} \ldots+\ldots$) and similarly for the other factors.

Then $R\left(a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}^{\prime} \ldots, a_{i}{ }^{\prime} b_{0}^{\prime} c_{0}^{\prime} \ldots\right.$)

24 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX We may write this more simply

Now $a_{1}^{\prime} b_{1}^{\prime} c_{1}^{\prime} \ldots=\frac{a_{1}^{\prime}}{a_{0}^{\prime}} a_{0}^{\prime} \frac{b_{1}^{\prime}}{b_{0}^{\prime}} b_{0}^{\prime} \frac{c_{1}^{\prime}}{c_{0}^{\prime}} c_{0}^{\prime} \ldots$

$$
\begin{aligned}
& \text { and } a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime} \ldots+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots+\ldots+ \\
& \left(a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}^{\prime} \text {. . . }-a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime} \text {. . .) }+\left(a_{1}{ }^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}{ }^{\prime \prime} . . .\right.\right. \\
& -a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \text {. . .) }+\ldots . \\
& =a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}^{\prime} \ldots+a_{1}{ }^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}^{\prime \prime} \ldots+\ldots
\end{aligned}
$$

Let

$$
\begin{aligned}
& \frac{a_{1}^{\prime}}{a_{0}^{\prime}} a_{0}{ }^{\prime} \frac{b_{1}^{\prime}}{b_{0}^{\prime}} b_{0}{ }^{\prime} c_{1}^{\prime} c_{0}^{\prime} c_{0}^{\prime} \ldots+\frac{a_{1}^{\prime \prime}}{a_{0}^{\prime \prime}} a_{0}{ }^{\prime \prime} \frac{b_{1}^{\prime \prime}}{b_{0}^{\prime \prime}} b_{0}^{\prime \prime} \frac{c_{1}^{\prime \prime}}{c_{0}^{\prime \prime}} \ldots+\ldots \\
& =\left(a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}{ }^{\prime} \cdots+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime}\right.
\end{aligned}
$$

where multiplying ($a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime}$. . . $+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots+$ + . . .) by $\frac{R_{a_{j}^{\prime}}}{a_{j}^{\prime}}$ (simultaneously with the other factors) contributes as much to the product ($a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime}$. . . +
 (which is equal to $a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}{ }^{\prime} \ldots+a_{1}{ }^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}^{\prime \prime}{ }^{\prime \prime} \ldots+$...) as multiplying $a_{0}^{\prime} b_{0}^{\prime} c_{0}^{\prime} \ldots$ by $\frac{a_{1}^{\prime}}{a_{0}^{\prime}}$ (simultaneously with $\frac{b_{1}^{\prime}}{b_{0}^{\prime \prime}} \frac{c_{1}^{\prime}}{c_{0}^{\prime \prime}}$, etc., and at the same time that $a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}^{\prime \prime} \ldots$ is multiplied by $\frac{a_{1}^{\prime \prime}}{a_{0}^{\prime \prime \prime}} \frac{b_{1}^{\prime \prime}}{b_{0}^{\prime \prime}} \frac{c_{1}^{\prime \prime}}{c_{0}^{\prime \prime}}$, etc., and so on) contributes to the $\operatorname{sum} \frac{a_{1}^{\prime}}{a_{0}^{\prime}} a_{0}{ }^{\prime} \frac{b_{1}^{\prime}}{b_{0}^{\prime}} b_{0}^{\prime} \frac{c_{1}^{\prime}}{c_{0}^{\prime}} \ldots+$
$\frac{a_{1}^{\prime \prime}}{a_{0}^{\prime \prime}} a_{0}{ }^{\prime \prime} \frac{b_{1}^{\prime \prime}}{b_{0}^{\prime \prime}} b_{0}{ }^{\prime \prime} \frac{c_{1}^{\prime \prime}}{c_{0}^{\prime \prime}} c_{0}^{\prime \prime} \ldots+\ldots$ (which is also equal to $a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}{ }^{\prime} \ldots+a_{1}{ }^{\prime \prime} b_{1}{ }^{\prime \prime} c_{1}{ }^{\prime \prime} \ldots+\ldots$. . .), and similarly for the other factors.

Now, in the second case, multiplying $a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime}$. . . by $\frac{a_{1}^{\prime}}{a_{0}^{\prime}} \cdot \frac{b_{1}^{\prime}}{b_{0}^{\prime}} \cdot \frac{c_{1}^{\prime}}{c_{0}^{\prime}} \ldots$ produces precisely the same result as adding $\left(a_{1}{ }^{\prime} b_{1}{ }^{\prime} c_{1}^{\prime}\right.$. . . $-a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime}$. . .) to $a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime} \ldots+a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}^{\prime \prime} \ldots+\ldots$ in the first case.

Reasoning on the same lines as in sections I and 5 , it is clear that $R \frac{a_{a_{1}^{\prime}}^{\prime}}{a_{0}^{\prime}} \cdot \frac{b_{1_{1}^{\prime}}}{b_{0}^{\prime}}=R \frac{a_{1}^{\prime}}{a_{0}^{\prime}}, R \frac{b_{b_{0}^{\prime}}^{\prime}}{b_{0}^{\prime}}$, and that if $\frac{b_{1}^{\prime}}{b_{0}^{\prime}}=\frac{a_{1}^{\prime}}{a_{0}^{\prime \prime}}$ $R \frac{b_{1}^{\prime}}{b_{0}^{\prime}}=R_{\frac{a_{0}^{\prime}}{a_{0}^{\prime}}}$. Hence it can be shown that if x is a positive integer, $R\left(\frac{a_{0}^{\prime}}{a_{0}^{\prime \prime}}\right)^{\prime \prime}=\left(R \frac{a_{a^{\prime}}^{\prime}}{a_{0}}\right)^{\prime \prime}$. Again if $\frac{b_{1}^{\prime}}{b_{0}^{\prime}}=\frac{1}{\frac{a_{1}^{\prime \prime}}{a_{0}^{\prime}}} \frac{a_{1}^{\prime}}{a_{0}^{\prime}} \cdot \frac{b_{1}^{\prime}}{b_{0}^{\prime}}=1$
 this it can be shown that, if x is a negative integer, it is also true that $R\left(\frac{a_{i}^{\prime}}{a_{i}}\right)^{4}=\left(R \frac{a_{a_{i}^{\prime}}}{a_{0}^{\prime}}\right)^{2}$. (It must be noted that if $\frac{b_{2}{ }^{\prime \prime}}{b_{0}^{\prime \prime}}=\frac{a_{1}^{\prime}}{a_{0}{ }^{\prime}}, R R_{b_{0}^{\prime \prime}}{ }^{\prime \prime}$ is not equal to $\left.R \frac{a_{a_{3}^{\prime}}{ }^{\prime}}{a_{0}^{\prime \prime}}\right)$.

Now let $\frac{a_{1}^{\prime}}{a_{0}^{\prime}}=\left(r^{\prime}\right)^{\prime}, \frac{b_{1}^{\prime}}{b_{0}^{\prime}}=\left(r^{\prime}\right)^{y^{\prime}}, \frac{c_{1}^{\prime}}{c_{0}^{\prime}}=\left(r^{\prime}\right)^{\prime}$, and so on, where $x^{\prime}, y^{\prime}, z^{\prime}$, etc., are integers.

Then $\frac{R_{a_{i}^{\prime}}}{a_{0}^{\prime}}=\left(R_{r^{\prime}}\right)^{x}, R_{b_{b_{i}^{\prime}}^{\prime}}^{b_{0}^{\prime}}=\left(R_{r^{\prime}}\right)^{y^{\prime}}, R_{\frac{c_{i}^{\prime}}{c_{i}^{\prime}}}=\left(R_{r^{\prime}}\right)^{r}$, and so on.

Thus $R_{a_{i}} R R_{b_{i}}^{b_{i}} R R_{b_{i}^{\prime}}, \ldots=\left(R_{r^{\prime}}\right)^{x^{\prime}+y^{\prime}+z^{\prime}}+\ldots$

Therefore

$$
\begin{aligned}
& \left(R_{r^{\prime}}\right)^{x+y^{\prime}+x+\cdots}=\left(\frac{\sum a_{1} b_{1} c_{1} \ldots}{\sum a_{0} b_{0} c_{0} \ldots}\right)^{\frac{a_{1}^{\prime} b_{1}^{\prime} c_{1}^{\prime} \ldots-a_{0}^{\prime} b_{1}^{\prime} c_{0}^{\prime} \ldots}{\Sigma\left(a_{1} b_{2} \ldots \ldots-a_{0} b_{0} b_{0} \ldots j\right.}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But } \\
& R_{\frac{a_{i}^{\prime}}{a_{i}^{\prime}}}=\left(R_{r}\right)^{r}
\end{aligned}
$$

Hence $\frac{R a_{a^{\prime}}}{a_{i}}$

Similarly $R \frac{b_{p_{1}^{\prime}}}{b_{0}^{\prime}}$
and so on.
If we now say :
Let $\quad \Sigma \frac{a_{1}}{a_{0}} a_{0} \frac{b_{1}}{b_{0}} b_{0} \frac{c_{1}}{c_{0}} c_{0} \ldots$
where $R\left(\frac{a_{1}^{\prime}}{a_{1}^{\prime}} \frac{a_{1}^{\prime \prime}}{m_{n}^{\prime \prime},}, \frac{a_{1}^{\prime \prime \prime}}{a_{1}^{\prime \prime \prime}} \ldots\right)$ is such that multiplying $\Sigma a_{0} b_{0} c_{0} \ldots$ by $R\left(\frac{a_{1}^{\prime}}{a_{1}}, \frac{a_{1}^{\prime \prime}}{a_{0}^{\prime \prime}} \frac{a_{1}^{\prime \prime}}{a_{1}^{\prime \prime \prime}}, \ldots\right)$, simultaneously with the other factors, contributes as much to the product
 equal to $\Sigma a_{1} b_{1} c_{1}$. . .) as multiplying $a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}^{\prime}$. . . by
$\frac{a_{1}{ }^{\prime}}{a_{0}^{\prime \prime}} a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots$ by $\frac{a_{1}{ }^{\prime \prime}}{a_{0}^{\prime \prime \prime}} a_{0}{ }^{\prime \prime \prime} b_{0}{ }^{\prime \prime \prime} c_{0}{ }^{\prime \prime \prime} \ldots$ by $\frac{a_{1}{ }^{\prime \prime \prime}}{a_{0}^{\prime \prime \prime \prime}}$ and so on (at the same time that $a_{0}{ }^{\prime} b_{0}{ }^{\prime} c_{0}{ }^{\prime} \ldots$ is multiplied by $\frac{b_{1}^{\prime}}{b_{0}^{\prime \prime}} \frac{c_{2}^{\prime}}{c_{0}^{\prime \prime}}$ etc., $a_{0}{ }^{\prime \prime} b_{0}{ }^{\prime \prime} c_{0}{ }^{\prime \prime} \ldots$ is multiplied by $\frac{b_{1}{ }^{\prime \prime}}{b_{0}^{\prime \prime}} \frac{c_{1}^{\prime \prime}}{c_{0}^{\prime \prime \prime}}$, etc., and so on), and similarly for the other factors, then it is evident that

Hence

$$
\Sigma\left(a_{1} b_{1} c_{2} \ldots-a_{4} b_{0} c_{0} \ldots\right) \frac{\log \frac{a_{1}}{a_{0}}}{\log \frac{a_{1} b_{1} c_{1} \ldots}{a_{2} b_{1} f_{0} \cdots}}
$$

$$
R_{\left(\frac{a_{1}^{\prime}}{a_{0}}, \frac{a_{1}^{\prime \prime}}{a_{0}^{\prime \prime}}, \frac{g_{0}^{\prime \prime \prime}}{a_{0}^{\prime \prime \prime}}, \ldots\right)}=\left(\frac{\sum a_{1} b_{1} c_{1} \ldots}{\sum a_{0} b_{0} c_{0} \ldots .}\right)
$$

$$
\Rightarrow \quad \sum\left(a_{1} b_{1} c_{1} \ldots-a_{0} b_{8} c_{0} \cdots\right.
$$

Similarly

$$
\Sigma\left(m_{1} b_{1} c_{1} \ldots-a_{0} b_{0} c_{0} \ldots\right) \frac{\log \frac{b_{1}}{b_{0}}}{\log \frac{a_{1} b_{1} c_{2}, \ldots}{a_{0} b_{2} c_{0} \cdots \cdots}}
$$

and so on.
It will be seen that it is not necessary that the symbols of the form a_{0}, b_{0}, c_{0}, etc., and a_{1}, b_{1}, c_{1}, etc., should represent pure numbers. It is, however, essential that each pair of the form a_{0} and a_{3}, b_{0} and b_{1}, c_{0} and c_{1}, and so on, should be measured in the same unit, so that $\frac{a_{1}}{a_{0}}, \frac{b_{1}}{b_{0}}, \frac{c_{1}}{c_{0}}$, etc., are pure numbers. It is also essential that all products of the form $a_{0} b_{0} c_{0} \ldots$ or $a_{1} b_{1} c_{1}$. . . should represent the same thing and be measured in the same unit.

But $R\left(\frac{a_{2}^{\prime}}{a_{1}}, \frac{a_{n}^{\prime \prime}}{a_{0}^{\prime}}, \frac{a_{1}^{\prime \prime}}{a_{0}^{\prime \prime}} \ldots\right)$ is the change, measured as a ratio, of $\sum a_{0} b_{0} c_{0} \ldots$ due to the changes of a_{0}^{\prime} to a_{2}^{\prime},

28 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX of $a_{0}{ }^{\prime \prime}$ to $a_{1}{ }^{\prime \prime}$, of $a_{0}{ }^{\prime \prime \prime}$ to $a_{1}{ }^{\prime \prime \prime}$, and so on, and similarly for $R\left(\frac{b_{1}^{\prime}}{b_{0}^{\prime}}, \frac{b_{1}^{\prime \prime}}{b_{0}^{\prime \prime}}, \frac{b_{1}^{\prime \prime \prime}}{b_{0}^{\prime \prime \prime}}, \ldots\right)$, etc. Thus in transforming $\frac{\Sigma a_{1} b_{1} c_{1} \ldots}{\Sigma a_{0} b_{0} c_{0} \ldots}$ into the product of ratios $R\left(\frac{a_{3}^{\prime}}{a_{i}^{\prime}}, \frac{a_{2}^{\prime \prime},}{a_{1}^{\prime \prime}}, \frac{a_{1}^{\prime \prime \prime}}{a_{0}^{\prime \prime}} \ldots\right)$, $R\left(\frac{b_{1}^{\prime}}{b_{0}^{\prime}}, \frac{b_{1}^{\prime \prime}}{b_{0}^{\prime \prime}}, \frac{b_{1}^{\prime \prime \prime}}{b_{0}^{\prime \prime \prime}} \ldots\right)$, etc., we have solved a problem of which the problem of the price index and the quantity index is only a special case.

CHAPTER III

THE DETERMINATION OF THE FORMULA FOR THE PRICE INDEX

We are now in a position to determine the formula for P_{01} and Q_{01} in accordance with the conception. that we have put forward. Of course, if a different conception is adopted, the mathematical problem will be different.
I.-Taking the measure of the change of aggregate value as $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}$, we have said: Let us suppose that it is transformed into the product of two ratios, one (which we will call R_{P}) representing the change in the aggregate value due to the changes in price, and the other (which we will call R_{q}) representing the change in the aggregate value due to the changes in quantity.

In the light of the illustrations given, we may expand this by saying :

Let

$$
\Sigma \frac{p_{1}}{p_{0}} p_{0} q_{q_{0}}^{q_{1}} q_{0}=\left(\Sigma p_{0} q_{0}\right) R_{P} R_{e}
$$

where R_{p} and R_{e} are such that multiplying $\Sigma p_{0} q_{0}$ by R_{r} (simultaneously with R_{e}) contributes as much to the product $\left(\Sigma p_{0} q_{0}\right) R_{P} R_{9}$ (which is equal to $\Sigma p_{1} q_{1}$) as multiplying $p_{0}{ }^{\prime} q_{0}{ }^{\prime}$ by $\frac{p_{1}^{\prime}}{p_{0}}{ }^{\prime}, p_{0}{ }^{\prime \prime} q_{0}{ }^{\prime \prime}$ by $\frac{p_{1}{ }^{\prime \prime}}{p_{0}{ }^{\prime \prime}} p_{0}{ }^{\prime \prime \prime} q_{0}{ }^{\prime \prime \prime}$

30 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX by $\frac{\hat{p}_{1}^{\prime \prime \prime}}{p_{0}{ }^{\prime \prime \prime}}$, and so on (simultaneously with the multiplication of $p_{0}^{\prime} q_{0}^{\prime}$ by $\frac{q_{1}^{\prime}}{q_{0}}, p_{0}{ }^{\prime \prime} q_{0}^{\prime \prime}$ by $\frac{q_{1}{ }^{\prime \prime}}{q_{0}{ }^{\prime \prime \prime}, p_{0}{ }^{\prime \prime} q_{0}{ }^{\prime \prime \prime} \text { by } \frac{q_{1}{ }^{\prime \prime \prime}}{q_{0}{ }^{\prime \prime \prime}}, ~}$ and so on) contributes to the sum $\Sigma \frac{p_{1}}{p_{0}} p_{0} \frac{q_{1}}{q_{0}} q_{0}$ (which is also equal to $\Sigma p_{1} q_{1}$) and multiplying $\Sigma p_{0} q_{0}$ by R_{9} (simultaneously with R_{P}) contributes as much to the. product $\left(\Sigma p_{0} q_{0}\right) R_{P} R_{e}$ as multiplying $p_{0}^{\prime} q_{0}^{\prime}$ by $\frac{q_{i}^{\prime}}{q_{0}^{\prime \prime}}$, $p_{0}{ }^{\prime \prime} q_{0}{ }^{\prime \prime}$ by $\frac{q_{1}^{\prime \prime}}{q_{0}{ }^{\prime \prime \prime}} p_{0}{ }^{\prime \prime \prime} q_{0}{ }^{\prime \prime \prime}$ by $\frac{q_{1}^{\prime \prime \prime}}{q_{0}^{\prime \prime \prime}}$, and so on (simultaneously with the multiplication of $p_{0}^{\prime} q_{0}^{\prime}$ by $\frac{p_{1}^{\prime}}{p_{0}{ }^{\prime}} p_{0}{ }^{\prime \prime} q_{0}{ }^{\prime \prime}$ by $\frac{p_{1}^{\prime \prime}}{p_{0}{ }^{\prime \prime}}, p_{0}{ }^{\prime \prime \prime} q_{0}^{\prime \prime \prime}$ by $\frac{p_{1}^{\prime \prime \prime}}{\bar{p}_{0}^{\prime \prime \prime}}$, and so on) contributes to the $\operatorname{sum} \Sigma \frac{p_{1}}{p_{0}} p_{0} \frac{q_{1}}{q_{0}} q_{0}$

If now we say :
where $R p_{p_{1}^{\prime}}^{p_{0}^{\prime}}$ is such that multiplying $\Sigma p_{0} q_{0}$ by $R \frac{p_{p_{i}^{\prime}}^{\prime}}{p_{0}^{\prime}}$ (simultaneously with the other factors) contributes as much
 (which is equal to $\Sigma p_{1} q_{1}$) as multiplying p_{0}^{\prime} by $\frac{p_{1}^{\prime}}{p_{0}^{\prime}}$ (at the same time that $q_{0}{ }^{\prime}$ is multiplied by $\frac{q_{1}^{\prime}}{q_{0}{ }^{\prime}} p_{0}{ }^{\prime \prime}$. by $\frac{p_{1}^{\prime \prime}}{p_{0}{ }^{\prime \prime}}, q_{0}{ }^{\prime \prime}$ by $\frac{q_{1}^{\prime \prime}}{q_{0}^{\prime \prime}}$, and so on) contributes to the sum $\Sigma \frac{p_{1}}{p_{0}} p_{0} \frac{q_{1}}{q_{0}} q_{0}$ (which is also equal to $\Sigma p_{1} q_{1}$) and similarly for the other factors, then it is clear that
and

$$
\begin{aligned}
& R_{p_{0}} R_{p_{0}} p_{p_{1}{ }^{\prime \prime}}^{p_{0}} R p_{p_{1}{ }^{\prime \prime \prime}}^{p_{0}^{\prime \prime \prime}} \ldots=R_{p} \\
& R_{q_{0}^{\prime}} R_{q_{1}^{\prime \prime}} R_{q_{0}^{\prime}}^{\prime \prime} R_{q_{1}^{\prime \prime \prime}}^{q_{0}^{\prime \prime}} \ldots=R_{q}
\end{aligned}
$$

But the equation is of the form

Hence on the analogy of
we have

$$
R_{p_{p_{i}^{\prime}}^{\prime}}=\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\frac{\log \frac{p_{1} q_{1}}{p_{i} q_{i}}}{\Sigma\left(p_{1} q_{1}-p_{A_{0}}\right)}}
$$

and since
we obtain

Similarly

It is obvious that $R_{p}=P_{01}$ and $R_{0}=Q_{01}$, but we need not assume this.

In the hypothetical case:
Let

$$
\Sigma P_{01} p_{0} Q_{01} q_{0}=\left(\Sigma p_{0} q_{0}\right)\left[R_{r}\right]\left[R_{e}\right]
$$

where $\left[R_{r}\right]$ and $\left[R_{e}\right]$ are defined in an analogous way.

By substituting P_{01} for $\frac{p_{i}}{p_{0}}$ and Q_{01} for $\frac{q_{1}}{q_{0}}$ in the formula for R_{P}, we have

$$
\begin{aligned}
& =e^{\log \mathrm{Pa}} \\
& =P_{01}
\end{aligned}
$$

Similarly $\left[R_{\mathrm{e}}\right]=Q_{01}$.
As, in accordance with the conception $\left[R_{r}\right]=R_{r}$ and $\left[R_{\mathrm{e}}\right]=R_{\mathrm{e}}$, we have $P_{01}=R_{\mathrm{P}}$ and $Q_{01}=R_{\mathrm{e}}$,
hence
and
2.-If we now take the second measure of the change in the aggregate value, that is, $\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0}$, which we may speak of as the increase in aggregate value, we notice first that the increase due to the change of $p_{0}{ }^{\prime} q_{0}^{\prime}$ to $p_{1}{ }^{\prime} q_{1}^{\prime}$ is clearly $p_{1}{ }^{\prime} q_{1}^{\prime}-p_{0}{ }^{\prime} q_{0}^{\prime}$. Hence if we can transform $p_{1} q_{1}^{\prime}-p_{0}{ }^{\prime} q_{0}^{\prime}$ into the sum of two
values, of which one, $V \underset{p_{0}^{\prime}}{p_{0}^{\prime}}$, represents the increase of $p_{0}^{\prime} q_{0}^{\prime}$ due to multiplying $p_{0}^{\prime} q_{0}^{\prime}$ by $\frac{p_{1}^{\prime}}{p_{0}^{\prime}}$ (simultaneously with $\frac{q_{1}^{\prime}}{q_{0}^{\prime}}$) and the other, $V \frac{q_{\prime^{\prime}}^{\prime}}{q_{i}}$, represents the increase of $p_{0}^{\prime} q_{0}^{\prime}$ due to multiplying $p_{0}^{\prime} q_{0}^{\prime}$ by $\frac{q_{1}^{\prime}}{q_{0}^{\prime}}$ (simultaneously with $\left.\frac{p_{1}^{\prime}}{p_{0}}{ }^{\prime}\right)$, then $\Sigma V \bar{p}_{p_{1}}$ will represent the increase in $\Sigma p_{0} q_{0}$ due to the changes in price and $\Sigma V \frac{q_{1}}{q_{0}}$ will represent the increase in $\Sigma p_{0} q_{0}$ due to the changes in quantity.

Hence V_{P}, as we defined it on page 6, is equal to $\Sigma V_{p_{1}}$ and V_{Q} is equal to $\Sigma V Q_{Q_{0}}$.

We have
or

$$
\begin{aligned}
& p_{1}^{\prime} q_{1}^{\prime}-p_{0}^{\prime} q_{0}^{\prime}=V V_{p_{1}^{\prime}}^{p_{0}^{\prime}}+V V_{q_{1}^{\prime}}^{q_{i_{0}^{\prime}}} \\
& p_{1}^{\prime} q_{1}^{\prime}=p_{0}^{\prime} q_{0}^{\prime}+V V_{p_{1}^{\prime}}^{p_{0}^{\prime}}+V V_{\frac{q_{1}^{\prime}}{q_{0}^{\prime}}}
\end{aligned}
$$

This last equation is of the form

$$
a_{1} b_{1} c_{1} \ldots=a_{0} b_{0} c_{0} \ldots+R_{a_{1}}^{a_{0}}+R \frac{b_{1}}{b_{0}}+R \frac{R c_{1}}{c_{0}}+\ldots
$$

in which case we have found that

$$
R_{a_{1}}=\left(a_{1} b_{1} c_{1} \ldots-a_{0} b_{0} c_{0} \ldots\right) \frac{\log \frac{a_{1}}{a_{0}}}{\log \frac{a_{1} b_{1} c_{1} \ldots}{a_{0} b_{0} c_{0} \ldots}}
$$

Hence
and

$$
\begin{aligned}
& V_{\substack{p_{i}^{\prime} \\
p_{0}^{\prime}}}=\left(p_{1}^{\prime} q_{1}^{\prime}-p_{0}^{\prime} q_{0}{ }^{\prime}\right) \frac{\log \frac{p_{1}^{\prime}}{p_{0}^{\prime}}}{\log \frac{p_{1}^{\prime} q_{1}^{\prime}}{p_{0}^{\prime} q_{0}^{\prime}}} \\
& V_{i_{i}^{\prime}}^{\prime}=\left(p_{1}^{\prime} q_{1}^{\prime}-p_{0}{ }^{\prime} q_{0}^{\prime}\right) \frac{\log \frac{q_{1}^{\prime}}{q_{0}^{\prime}}}{\log \frac{p_{1}^{\prime} q_{1}^{\prime}}{p_{0}^{\prime} q_{0}^{\prime}}}
\end{aligned}
$$

34 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX We have therefore
and

$$
\begin{aligned}
& V_{\mathrm{F}}=\Sigma V \frac{p_{1}}{p_{4}}=\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}} \\
& V_{8}=\Sigma V \frac{q_{1}}{q_{0}}=\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{q_{1}}{q_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}
\end{aligned}
$$

Turning to the hypothetical case we may say :
Let $\quad P_{01} p_{0}^{\prime} Q_{01} q_{0}^{\prime}=p_{0}^{\prime} q_{0}^{\prime}+V \frac{p_{0, p}^{\prime} p_{0}^{\prime}}{p_{0}^{\prime}}+V \frac{Q_{00 q_{0}^{\prime}}^{q_{0}^{\prime}}}{}$
where $V \frac{p_{\text {op }} p_{i}}{p_{i}}$ and $V \frac{Q_{n q q_{0}^{\prime}}}{q_{i}^{i}}$ are defined in an analogous way.

Then [V_{r}], as we defined it on page 6 , is equal to $\Sigma V \frac{P_{0,0} p_{0}}{p_{0}}$ and $\left[V_{0}\right]$ is equal to $\Sigma V \frac{Q_{\text {a }} p_{0}}{p_{0}}$

Substituting P_{01} for $\frac{p_{1}^{\prime}}{p_{0}^{\prime}}$ and Q_{01} for $\frac{q_{1}^{\prime}}{q_{0}^{\prime}}$ in the formulx for $V \frac{\hat{q}_{i}^{\prime}}{p_{0}^{\prime}}$ and $V \frac{q^{\prime}}{q_{0}^{\prime}}$ we have

$$
\begin{aligned}
& V \frac{P_{00} p_{0}^{\prime}}{p_{0}^{\prime}}=\left(P_{01} p_{0}^{\prime} Q_{01} q_{0}^{\prime}-p_{0}^{\prime} q_{0}^{\prime}\right) \frac{\log P_{01}}{\log P_{01} Q_{01}} \\
& V \frac{Q_{00} q_{0}^{\prime}}{q_{0}^{\prime}}=\left(P_{01} p_{0}^{\prime} Q_{01} q_{0}^{\prime}-p_{0}^{\prime} q_{0}^{\prime}\right) \frac{\log Q_{01}}{\log P_{01} Q_{01}}
\end{aligned}
$$

These give

$$
\begin{aligned}
{\left[V_{2}\right]=\Sigma V \frac{P_{01} p_{1}}{p_{0}} } & =\Sigma\left(P_{01} p_{0} Q_{01} q_{0}-p_{0} q_{0}\right) \frac{\log P_{01}}{\log P_{01} Q_{01}} \\
& =\Sigma\left(p_{1} q_{2}-p_{0} q_{0}\right) \frac{\log P_{01}}{\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}}
\end{aligned}
$$

and

$$
\left[V_{0}\right]=\Sigma V \frac{P_{0,6}}{q_{0}}=\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log Q_{01}}{\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}}
$$

But, in accordance with the conception, $\left[V_{r}\right]=V_{r}$ and $\left[V_{e}\right]=V_{e}$.

$$
\begin{aligned}
& \text { Hence } \\
& \Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log p_{01}}{\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}}=\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}} \\
& \quad \Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}
\end{aligned}
$$

which gives

$$
P_{01}=\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\Sigma\left(p_{1} q_{1}-p_{0} 01\right) \frac{\log \frac{p_{p_{1}}}{\rho_{0}}}{\log \frac{p_{1} q_{1}}{p_{g_{2}}}}}
$$

Similarly

These are the same formulx that we obtained by taking $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}$ as the measure of the change in aggregate value.
3.-Still taking the change in aggregate value as expressed by $\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0}$, we can obtain the same result without introducing the hypothetical case.

Let $\quad \Sigma p_{0} q_{0}+\Sigma V V_{\substack{p_{2} \\ p_{0}}}+\Sigma V \underset{q_{2}}{q_{2}}=\left(\Sigma p_{0} q_{0}\right) R$ R $R e$
where R_{P} and R_{e} are such that multiplying $\Sigma p_{0} q_{0}$ by R_{p} (simultaneously with R_{e}) contributes as much to the product $\left(\Sigma p_{0} q_{0}\right) R_{P} R_{Q}$ (which is equal to $\left.\Sigma p_{1} q_{1}\right)$ as adding $\Sigma V \bar{p}_{p_{0}}$ to $\Sigma p_{0} q_{0}$ contributes to the sum $\Sigma p_{0} q_{0}+\Sigma V \frac{p_{1}}{p_{0}}+$ $\Sigma V \frac{q_{1}}{q_{0}}$ (which is also equal to $\Sigma p_{1} q_{1}$), and similarly for R_{e}. Then it is evident that $R_{p}=P_{01}$ and $R_{e}=Q_{01}$, since $\Sigma V V_{p_{0}}^{p_{0}}$ represents the change (measured as an increase) in the aggregate value due to the changes in price and $\Sigma V \frac{q_{1}}{q_{0}}$ represents the change (measured as an increase) in the aggregate value due to the changes in quantity.

But the equation

$$
\Sigma p_{0} q_{0}+\Sigma V \frac{p_{1}}{\phi_{0}}+\Sigma V \frac{q_{q_{1}}}{q_{0}}=\left(\Sigma p_{0} q_{0}\right) R_{P} R_{e}
$$

is analogous to the equation

$$
A+a+b+c+\ldots=A R_{a} R_{b} R_{c} \ldots
$$

In this case

$$
R a=\left(\frac{A+a+b+c+\ldots}{A}\right)^{\frac{a}{a+b+c+\cdots}}
$$

Hence by analogy

$$
\begin{aligned}
& =\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\Sigma\left(p_{1} f_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{2}}{p_{0} f_{0}}}}
\end{aligned}
$$

Hence

$$
P_{01}=\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\Sigma\left(p_{1} q_{1}-p_{01}\right) \frac{\log \frac{g_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{q_{0}}}}}
$$

$$
\Sigma\left(p_{1} q_{2}-p_{A f}\right) \frac{\log \frac{q_{1}}{\rho_{6}}}{\log \frac{p_{1} q_{1}}{p_{n}}}
$$

Similarly $Q_{01}=\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\overline{\Sigma\left(\phi_{1} q_{2}-p_{0} q_{2}\right)}}$
4.-We have already seen (page 7) that the third measure of the change in aggregate value, $\frac{\Sigma p_{1} q_{1}-\Sigma p_{0} q_{0}}{\Sigma p_{0} q_{0}}$, does not give us any further conditions for determining P_{01} and Q_{01}. But by three different methods we have arrived at the result that
and

$$
Q_{01}=\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\Sigma\left(p_{1} s_{2}-p_{01}\right) \frac{\log \frac{g_{1}}{q_{1}}}{\log \frac{p_{q_{2}}}{p_{1} q_{0}}}}
$$

5.-In the case that $\frac{p_{1}}{p_{0}}=\frac{I}{\frac{q_{1}}{q_{0}}},\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}$ takes the form $\frac{0}{0}$, but it does not become indeterminate.
$\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\dot{\log } \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}=\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \left(1+\frac{p_{1} q_{1}-p_{0} q_{0}}{p_{0} q_{0}}\right)}$

38 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX
But when $\frac{p_{1} q_{1}-\bar{p}_{0} q_{0}}{p_{0} q_{0}}$ is infinitesimal

$$
\log \left(1+\frac{p_{1} q_{1}-p_{0} q_{0}}{p_{0} q_{0}}\right)=\frac{p_{1} q_{1}-p_{0} q_{0}}{p_{0} q_{0}}
$$

Hence when

$$
\frac{p_{1}}{p_{0}}=\frac{x}{q_{1}}
$$

$$
\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}=p_{0} q_{0} \log \frac{p_{1}}{p_{0}}
$$

It must be noted that in this case we must use logarithms to the base e.

Again if $\Sigma p_{1} q_{1}=\Sigma p_{0} q_{0}, \log p_{01}$ takes the form $\frac{0}{0}$, but it is not indeterminate.

$$
\begin{aligned}
& \Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}} \\
& \Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \\
& \Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}} \\
& \Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)
\end{aligned}
$$

Hence when $\frac{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}{\Sigma p_{0} q_{0}}$ is infinitesimal

$$
\log p_{01}=\frac{\Sigma\left(p_{1} q_{1}-p_{0} q_{0} \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}\right.}{\Sigma p_{0} q_{0}}
$$

In the case in which, for all commodities, $\frac{p_{1}}{p_{0}}=\frac{1}{q_{1}}$

$$
\log _{6} P_{01}=\frac{\Sigma p_{0} q_{0} \log _{e}^{\prime} \frac{p_{1}}{p_{0}}}{\Sigma p_{0} q_{0}}
$$

6.-We must emphasize that our formulx have been arrived at on the basis of the conception that we have outlined at the beginning of these notes. If a different conception is adopted, the mathematical problem is different and the resulting formula will be different.
Assuming, however, that our conception is admitted, we may venture, in the light of the foregoing discussion of the problem, to give the following definition of the price index and the quantity index as here conceived :-

The price index is the change, measured as a ratio, in the aggregate value produced by the changes in price (when occurring simultaneously with the changes in quantity), and the quantity index is the change, measured as a ratio, in the aggregate value produced by the changes in quantity (when occurring simultaneously with the changes in price).

This definition is perfectly consistent with the conception put forward and avoids the notion of proportionality factors and the introduction of the hypothetical case, but it is hardly intelligible without the explanations and illustrations we have given.

CHAPTER IV

THE PRICE INDICES OF SEPARATE COMMODITIES IN THE GROUP.
r.-We have not only determined the formula for the general price index of a group of commodities, but incidentally we have determined the formula for the price index of each separate commodity in the group, when treated as part of the group and not considered independently. The factors $R_{\substack{p_{p} \\ p_{0}}} R_{\substack{p_{0}{ }^{\prime} \\ p_{0}}} R_{p_{p_{0}}^{\prime \prime \prime}}$, etc., as defined on page 30 , represent, in fact, the change, measured as a ratio, in the aggregate value produced by the changes in price of the separate commodities (when occurring simultaneously with the changes in price of the other commodities and the changes in quantity of all the commodities).

These factors, $R_{\substack{p_{i}^{\prime} \\ p_{c}}} R_{\substack{p_{p}^{\prime \prime} \\ p_{0}^{\prime}}} R_{\substack{p_{1}^{\prime \prime \prime} \\ p_{0}^{\prime \prime}}}$, etc., are, then, the price indices of the separate commodities, when regarded as part of the group. They must be carefully distinguished from the price relatives, $\frac{p_{1}^{\prime}}{p_{0}^{\prime \prime}} \frac{p_{1}{ }^{\prime \prime}}{p_{0}^{\prime \prime \prime}} \frac{p_{1}{ }^{\prime \prime \prime}}{p_{0}^{\prime \prime \prime}}$ etc., of the commodities when considered separately and apart from the group.

But we have:
and similarly for ${\underset{p}{p_{0}^{\prime \prime}}}^{p_{0}^{\prime \prime}} R_{p_{p_{0}}, \ldots}$, etc.

THE PRICE INDICES OF SEPARATE COMMODITIES 4I
If, then, we call the price index of any commodity in the group $P_{p_{p_{1}}}$ (instead of $R \frac{p_{p_{1}}}{p_{0}}$) we have

$$
P_{p_{n}}=\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\frac{\left.\dot{p} q_{1}-p_{1}-p_{0} q_{0}\right)}{\frac{\log \frac{p_{1}}{p_{4}}}{\log \left(p_{1} q_{1}\right.} \frac{p_{1} q_{1}-p_{p_{2}}}{p_{9}}}}
$$

and $P_{p_{n}} P_{p_{n}}{ }^{\prime} P_{p_{n} " \prime} \ldots=P_{01}$.
The indices of separate commodities may be of considerable practical value as furnishing a measure of the change in aggregate value due to the change in price of each commodity of the group. Where, for example, there is a general rise in prices, it is of interest to inquire which commodities have contributed most to the rise. The price indices of the separate commodities will give precise indications of this, and will enable the commodities to be arranged in order according to the extent to which their rise in price has contributed to the increase in aggregate value.
2.-Price indices can also be calculated for subgroups of commodities, treated, of course, as forming part of the whole group. These must not be confused with the price indices of the sub-groups when taken separately.
Let the prices of a sub-group of commodities be $p_{m_{0}}$, $p_{m_{2}}{ }^{\prime \prime}, p_{m_{2}}{ }^{\prime \prime}$, etc., in the base year and $p_{m_{2}}, p_{m_{2}}{ }^{\prime \prime}, p_{m_{2}}{ }^{\prime \prime \prime}$, etc., in the given year, and the corresponding quantities be $q_{m_{2}}{ }^{\prime}, q_{m_{2}}{ }^{\prime \prime}, q_{m_{0}{ }^{\prime \prime}}$, etc., in the base year and $q_{m_{1}}{ }^{\prime}, q_{m_{2}}{ }^{\prime \prime}$, $q_{m_{2}}{ }^{\prime \prime \prime}$, etc., in the given year. Then if $P_{p_{m_{m}}}$ is the price index of any commodity in the sub-group and $P_{r x_{n}}$ is the price index of the sub-group treated as part of the whole group

42 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX

$$
\begin{aligned}
& \boldsymbol{P}_{P X_{01}}=\boldsymbol{P}_{\boldsymbol{P}_{m_{n}}} \boldsymbol{P}_{\boldsymbol{P}_{m_{n}}} \boldsymbol{P}_{\boldsymbol{p}_{m_{n_{1}} \prime \prime}} \ldots
\end{aligned}
$$

On the other hand, if $P M_{01}$ is the price index of the sub-group independently of the rest of the whole group

$$
\begin{aligned}
& \dot{P} M_{01}=\left(\frac{\Sigma p_{m_{1}} q_{m_{1}}}{\Sigma p_{m_{0}} q_{m_{0}}}\right)^{\Sigma\left(p_{m_{1}} \rho_{m_{2}}-p_{\text {mod }} p_{m_{0}}\right)}
\end{aligned}
$$

It may also at times be useful to calculate $P M_{01}$, but care must be taken to distinguish it from $P_{r y} \boldsymbol{y}_{\mathrm{ar}}$.
3.-In the same way as we have determined a price index for each commodity separately, we can also determine a quantity index. This we may call $Q_{q u}$, and we have
and

$$
\begin{aligned}
& Q_{q_{n}} Q_{q_{n}} Q_{q_{n}}{ }^{\prime \prime} \ldots=Q_{01} .
\end{aligned}
$$

But there is also a value index for each commodity, that is, the increase, measured as a ratio, in the aggre-
gate value due to the change in value (or to the change in price and to the change in quantity jointly) of each commodity. If we call this $V v_{v_{n}}$ we have
and

$$
\begin{aligned}
& V_{v_{a}}=p_{p_{\alpha}} Q_{q_{2}}=\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\frac{p_{2} q_{1}-p_{0 q_{0}}}{\Sigma\left(p_{g_{2}}-p_{0} f_{0}\right)}} \\
& V_{v_{a_{1}}} V_{v_{a^{\prime \prime}}} V_{v_{a_{2} \prime \prime}} \ldots=\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}
\end{aligned}
$$

We need not speak of a general value index, as this would be merely $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}$.

We can thus present a complete picture of the changes in aggregate value produced by the changes in price and the changes in quantity by giving for each commodity the following indices :

$$
\begin{aligned}
& Q q_{m_{1}}=\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\frac{\left(p_{1} q_{1}-p_{0} 0_{0}\right)}{\frac{\log \frac{q_{1}}{q_{0}}}{\log \left(p_{1} q_{1}-p_{0} q_{0} q_{1} p_{0}\right.}}} \\
& V_{b_{1}}=\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\frac{p_{1} q_{1}-p_{01}}{\Sigma\left(p_{1} f_{1}-p_{0}\right.}}
\end{aligned}
$$

as well as the general price index, P_{01}, and the general quantity index, \boldsymbol{Q}_{01}.
4.-If we wish to express the increase in aggregate value due to the change in the price of a single commodity as a percentage of the increase in aggregate

44 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX value due to all the changes in price, we can convert the product $P_{p_{a_{1}}} P_{p_{n}{ }^{\prime \prime}} P_{p_{n^{\prime}}} \ldots$ (which is equal to P_{01}) into a sum of terms.

Let $P_{p_{a^{\prime}}} P_{p_{a_{n}}} \sim P_{p_{m^{\prime \prime}}} \ldots=I+R_{p_{a^{\prime}}}+$

$$
R_{P p_{a^{\prime \prime}}}+R_{P p_{a 1}^{\prime \prime \prime}}+\ldots
$$

Then $R_{r p n^{\prime}}$

$$
\begin{aligned}
& =\left(P_{p_{n^{\prime}}} P_{p_{n_{n}}} P_{p_{n_{n} \prime \prime}} \ldots-1\right) \frac{\log P_{p_{0^{\prime}}^{\prime}}}{\log P_{p_{n_{n}}} P_{p_{n}} P_{p_{n_{n}^{\prime \prime \prime}}} \cdots} \\
& =\left(P_{01}-1\right) \frac{\log P_{p_{n}^{\prime}}}{\log P_{01}}
\end{aligned}
$$

$$
\frac{R_{P p_{n^{\prime}}}}{P_{01}-\mathrm{I}}=\frac{\log P_{p_{n^{\prime}}}}{\log P_{01}}
$$

Hence the increase in the aggregate value due to the increase in the price of a single commodity, expressed as a percentage of the increase in aggregate value due to all the changes in price, is $\frac{100 \log P_{p_{m}}}{\log P_{01}}$.

Again, if we wish to express the increase in the aggregate value due to the change in the price of a single commodity as a percentage of the total increase in the aggregate value we can convert $P_{p_{a}} P_{p_{m}}{ }^{\prime \prime} P_{p_{m} " \prime} .$. $Q q_{n^{\prime}} Q_{q_{n}}{ }^{\prime} Q_{q_{\mathrm{n}}{ }^{\prime \prime}} \ldots$ (which is equal to $P_{01} Q_{01}$) into a sum of terms.

This gives

$$
\frac{\dot{R}_{r p_{a^{\prime}}}}{P_{01} Q_{01}-I}=\frac{\log P_{p_{n^{\prime}}}}{\log P_{01} Q_{01}}
$$

$$
\begin{aligned}
& =\mathbf{I}+\dot{R}_{r p_{n^{\prime}}}+\dot{R}_{r p_{a^{\prime \prime}}}+\dot{R}_{r p_{n}{ }^{m}}+\ldots+ \\
& \dot{R}_{0 g_{a^{\prime}}}+\dot{R}_{\mathrm{Qq} \mathrm{q}^{\prime \prime}}+\dot{R}_{0 g_{a^{\prime \prime}}}+\ldots
\end{aligned}
$$

THE PRICE INDICES OF SEPARATE COMMODITIES 45
Hence the increase in the aggregate value due to the increase in the price of a single commodity expressed as a percentage of the total increase in aggregate value is $\frac{100 \log P_{p_{01}}}{\log P_{01} Q_{01}}$.

But

and $\quad \frac{\log P_{p_{0^{\prime}}}}{\log P_{01} Q_{01}}=\frac{\log P p_{0_{0}}}{\log \frac{\Sigma p_{1} q_{2}}{\Sigma p_{0} q_{0}}}$

$$
\begin{aligned}
& =\frac{\left(p_{1}{ }^{\prime} q_{1}{ }^{\prime}-p_{0}{ }^{\prime} q_{0}{ }^{\prime}\right) \frac{\log \frac{p_{1}{ }^{\prime}}{p_{0}{ }^{\prime}}}{\log \frac{p_{1} q_{1}^{\prime}}{p_{0}{ }^{\prime} q_{0}}}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)} \\
& =\frac{V_{\hat{q}_{j}^{\prime}}}{\hat{p}_{0_{i}^{\prime}}}
\end{aligned}
$$

Hence the increase in aggregate value due to the change in the price of a single commodity expressed as a percentage of the increase in aggregate value due

percentage of the total increase in aggregate value is $\frac{100 V \phi_{p_{0}}}{\bar{\Sigma}\left(p_{1} q_{1}-p_{0} q_{0}\right)}$.
But these results could have been obtained directly. We have determined them indirectly in order to give a further demonstration of the soundness and flexibility of our method of transforming measures of change.
5.-In like manner we can express the increase in the aggregate value due to the change in quantity of any one commodity as a percentage either of the increase in aggregate value due to all the changes in quantity, or as a percentage of the total increase in aggregate value.

We can further express the change in aggregate value due to the change in the value of any one commodity (that is, to the change in price and in quantity jointly) as a percentage of the total change in aggregate value. This is obviously $\frac{100\left(p_{1} q_{1}-p_{0} q_{0}\right)}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}$.

We can present another complete picture of the changes in the aggregate value due to the changes in price, in quantity and in value, in the form of percentages of the total increase in the aggregate value. To do so we must give for each commodity :

The increase in the aggregate value due to the increase in price of the commodity expressed as a percentage of the total increase in the aggregate value. The formula for this is

$$
\frac{\operatorname{100}\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}
$$

The increase in the aggregate value due to the increase in quantity of the commodity expressed as a percentage of the total increase in aggregate value :

$$
\frac{100\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{q_{1}}{q_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}
$$

The increase in the value of the commodity expressed as a percentage of the total increase in aggregate value :

$$
\frac{100\left(p_{1} q_{1}-p_{0} q_{0}\right)}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}
$$

To these must be added :
The increase in aggregate value due to the changes in price in all the commodities, expressed as a percentage of the total increase in aggregate value :

$$
\frac{\operatorname{100\Sigma (p_{1}q_{1}-p_{0}q_{0})\frac {\operatorname {log}\frac {p_{1}}{p_{0}}}{\operatorname {log}\frac {p_{1}q_{2}}{p_{0}q_{0}}}} \underset{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}{ } \text {. }}{\text { and }}
$$

The increase in aggregate value due to the changes in quantity in all the commodities, expressed as a percentage of the total increase in aggregate value :

48 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX

$$
\frac{\operatorname{100\Sigma (p_{1}q_{1}-p_{0}q_{0})\frac {\operatorname {log}\frac {q_{1}}{q_{0}}}{\operatorname {log}\frac {p_{1}q_{1}}{p_{0}q_{0}}}} \underset{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}{ }}{\text { and }}
$$

By substituting $\Sigma p_{0} q_{0}$ for $\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)$ in the denominator of the foregoing formule we can express the increases in aggregate value due to the changes in price, quantity and value of the separate commodities as percentages of the aggregate value in the base year, and these are possibly even more useful figures.

CHAPTER V

the differential method of determining the PRICE INDEX

The writer first obtained his formule for P_{01} and Q_{01} by applying differential methods, ${ }^{1}$ and though the reasoning is not entirely convincing in itself, the fact that it results in precisely the same formule as the methods set out in the preceding chapters may serve as a confirmation of the soundness of those methods.
In applying differential methods we suppose that the changes in price from $p_{0}{ }^{\prime}$ to $p_{0}{ }^{\prime \prime}$, from $p_{0}{ }^{\prime \prime}$ to $p_{1}{ }^{\prime \prime}$, from $p_{0}{ }^{\prime \prime \prime}$ to $p_{1}{ }^{\prime \prime \prime}$, and so on, and the changes in quantity from $q_{0}{ }^{\prime}$ to $q_{1}{ }^{\prime}$, from $q_{0}{ }^{\prime \prime}$, to $q_{1}{ }^{\prime \prime}$, from $q_{0}{ }^{\prime \prime \prime}$ to $q_{1}{ }^{\prime \prime \prime}$, and so on, take place by infinitesimal increments. This is the weak point in the method, as it obviously does not correspond to reality. However, there is nothing to prevent us from making the assumption and analysing the changes on the basis of that supposition.

Taking the equation

$$
p_{1} q_{1}=p_{0} q_{0}+V_{p_{0}}^{p_{0}}+V_{q_{1}}
$$

where $V_{\substack{p_{0} \\ p_{0}}}$ and $V_{f_{0}}$ are defined as on page 33, we may write it in the form
${ }^{1}$ The first to apply differential methods to the price index was Professor F. DivisiA. See: "Economique rationelle," Paris, 1928, Chapter XIV.

$$
V \frac{p_{p_{1}}}{p_{0}}+V \frac{q_{1}}{q_{0}}=p_{1} q_{1}-p_{0} q_{0}
$$

Treating p_{0} and q_{0} as constant, and making the equation general for any value of p_{1} and q_{1}, we have

$$
V_{\frac{p}{p_{0}}}+V_{\frac{q}{p_{0}}}=p q-p_{0} q_{0}
$$

Differentiating, we have

$$
\delta V_{\frac{p}{p_{0}}}+\delta V \frac{q}{q_{0}}=q \delta p+p \delta q
$$

But $q \delta p$ is clearly the infinitesimal increment of value due to the increment of price δp, and $p \delta q$ is the increment of value due to the increment of quantity δq.

Hence
and

$$
\begin{aligned}
& \delta V \frac{p}{p_{p}}=q \delta p \\
& \delta V \underline{q}_{q_{0}}=p \delta q
\end{aligned}
$$

These equations cannot be integrated to determine $V_{p_{1}}$ and $V_{q_{1}}$ unless we assume a relation between p and q, because the differential forms are such that the integral depends on the path. What assumption are we justified in making? Is there any assumption that we are compelled by the conditions of the problem to make?

Here we fall back on the principle of symmetry; $\Sigma p_{1} q_{\mathrm{x}}$ and $\Sigma p_{0} q_{0}$ are symmetrical in relation to p and q. At every stage in the determination of P_{01} and Q_{01} there must be symmetry as between p and q; they must, in fact, be interchangeable without altering the equations obtained at any point. Hence the assumption we make must be symmetrical. If we assume that $\frac{q}{q_{0}}=f\left(\frac{p}{p_{0}}, \frac{p_{1}}{p_{0}}, \frac{q_{1}}{q_{0}}\right)$, then the function must be such
that the same equation can be written $\frac{p}{p_{0}}=f\left(\frac{q}{q_{0}}, \frac{q_{1}}{q_{0}}, \frac{p_{1}}{p_{0}}\right)$. Moreover, the symmetry must be continued along the path in either direction beyond the tract that lies between the points (p_{0}, q_{0}) and (p_{1}, q_{1}). We must imagine p and q increasing from o to ∞ or decreasing from ∞ to o with symmetry at every point. Hence the path must pass through the points (0,0) and (∞, ∞) or through the points $(\infty, 0)$ and $(0, \infty)$.

An assumption that fulfils these conditions is

$$
\frac{q}{q_{0}}=\left(\frac{p}{p_{0}}\right)^{c}
$$

a being determined by the fact that the path passes through (p_{0}, q_{0}) and (p_{1}, q_{1}), and it does not appear that any other assumption fulfils them.

This assumption gives the relation

$$
\frac{q}{q_{0}}=\left(\frac{p}{p_{0}}\right)^{\frac{\log \frac{q_{1}}{q_{0}}}{\log \frac{p_{1}}{p_{0}}}}
$$

which may also be written

$$
\frac{p}{p_{0}}=\left(\frac{q}{q_{0}}\right)^{\frac{\log \frac{\theta_{0}}{p_{0}}}{\log \frac{q_{1}}{q_{0}}}}
$$

Continuing, for the sake of simplicity, to write a for $\frac{\log \frac{q_{1}}{q_{0}}}{\log \frac{p_{1}}{p_{0}}}$, we have

$$
\begin{aligned}
\delta V \frac{p}{p_{0}} & =q \delta p \\
& =\frac{q_{0}}{p_{0}{ }^{a}} p^{a} \delta p
\end{aligned}
$$

52 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX

$$
\begin{aligned}
& \int_{0}^{V} \frac{p_{1}}{p_{0}} d V \frac{p}{p_{0}}=\frac{q_{0}}{p_{0}{ }^{a}} \int_{p_{1}}^{p_{1}} p^{a} d p \\
& V{ }_{p_{0}}=\frac{q_{0}}{p_{0}{ }^{a}} \cdot \frac{\mathrm{I}}{a+\mathrm{I}}\left(p_{1}{ }^{a+x}-p_{0}{ }^{a+1}\right) \\
& =\frac{1}{a+I}\left(p_{1} \frac{p_{1}^{a}}{p_{0}{ }^{a} q_{0}^{\prime}}-p_{0} q_{0}\right) \\
& =\frac{I}{a+\mathrm{I}}\left(p_{1} q_{1}-p_{0} q_{0}\right)
\end{aligned}
$$

But

$$
\frac{I}{a+x}=\frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}
$$

Hence

$$
V \frac{p_{1}}{p_{0}}=\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}
$$

Similarly, $V \frac{q_{1}}{q_{0}}=\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{q_{1}}{q_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}$
In the hypothetical case :
and

$$
\begin{aligned}
& V \frac{P_{00} P_{0}}{P_{0}}=\left(P_{01} p_{0} Q_{01} q_{0}-p_{0} q_{0}\right) \frac{\log P_{01}}{\log P_{01} Q_{01}} \\
& V \frac{Q_{019}}{q_{0}}=\left(P_{01} p_{0} Q_{01} q_{0}-p_{0} q_{0}\right) \frac{\log Q_{01}}{\log P_{01} Q_{01}}
\end{aligned}
$$

Equating $\Sigma V \frac{p_{9}}{p_{0}}$ with $\Sigma V \frac{p_{0,} p_{0}}{p_{4}}$ and $\Sigma V \frac{q_{4}}{q_{8}}$ with $\Sigma V \frac{q_{01} q_{0}}{p_{0}}$ we obtain the same formulæ for P_{01} and Q_{01} as we obtained in Chapter III.

The formula for P_{01} and Q_{01} have been arrived at by differential methods, but without directly obtaining
differential equations for P and Q. These may, however, be obtained.

By the conception of the price index, the increase in aggregate value due to the increases in price when the prices are increased from p_{0} to p and the quantities from q_{0} to q is equal to the increase in aggregate value due to the increases in price when the prices are increased from p_{0} to $P p_{0}$ and the quantities from Q_{0} to $Q q_{0}$.

Similarly, the increase in the aggregate value due to the increases in price when the prices increase from p_{0} to $p+\delta p$ and the quantities increase from q_{0} to $q+\delta q$ is equal to the increase in the aggregate value when the prices increase from p_{0} to $(P+\delta P) p_{0}$ and the quantities from q_{0} to $(Q+\delta Q) q_{0}$.

By subtraction, we get that the increase in aggregate value due to the increases in price when the prices increase from p to $p+\delta p$ and the quantities from q to $q+\delta q$ is equal to the increase in aggregate value when the prices increase from $P p_{0}$ to $(P+\delta P) p_{0}$ and the quantities from $Q q_{0}$ to $(Q+\delta Q) q_{0}$.
Hence

$$
\begin{aligned}
\Sigma Q q_{0} \delta P p_{0} & =\Sigma q \delta \phi \\
Q \delta P \cdot \Sigma p_{0} q_{0} & =\Sigma q \delta p \\
\frac{\delta P}{P} & =\frac{\Sigma q \delta p}{P Q \Sigma p_{0} q_{0}} \\
& =\frac{\Sigma q \delta p}{\Sigma p q}
\end{aligned}
$$

Similarly,

$$
\frac{\delta Q}{Q}=\frac{\Sigma p \delta q}{\Sigma p q}
$$

The differential equation

$$
\frac{\delta P}{P}=\frac{\Sigma q \delta p}{\Sigma p q}
$$

54 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX is analogous to the differential equation for the monetary index worked out by Professor Divisia ${ }^{1}$:

$$
\frac{\delta I}{I}=\frac{\Sigma q \delta p}{\Sigma p q}
$$

and could have been arrived at by precisely the same reasoning as that used by Professor Divisia.

In the form

$$
\frac{\delta P}{P}=\frac{\Sigma q \delta p}{\Sigma p q}
$$

the differential equation for \boldsymbol{P} cannot be integrated even by making the assumption

$$
\frac{q}{q_{0}}=\left(\frac{p}{p_{0}}\right)^{a}
$$

But in the form

$$
Q \delta P \Sigma p_{0} q_{0}=\Sigma \Sigma \delta \phi
$$

it can be integrated by making this assumption and the further assumption that, by analogy, $Q=P^{4}$. This assumption is justified, as we must assume that whatever path is followed by the point (p, q), an analogous path must, in the hypothetical case, be followed by the point ($P p_{0}, Q q_{0}$).

In fact, it will be observed that, in the calculations by which we arrived at the formulæ for P_{01} and Q_{01}, if, instead of deducing $V \frac{P_{0,} p_{0}}{p_{0}}$ from $V \frac{p_{p_{1}}}{p_{0}}$ we had calculated it by integration, we should have had to make the assumption

$$
Q=P^{\frac{\log Q_{a t}}{\log _{0} P_{a t}}}
$$

${ }^{1}$ F. Divisin, op. cit., page 969 .

THE DIFFERENTIAL METHOD
 55

analogous to the assumption

$$
\frac{q}{q_{0}}=\left(\frac{p}{p_{0}}\right)^{\frac{\log \frac{q_{1}}{q_{1}}}{\log \frac{p_{1}}{p_{0}}}}
$$

The result of integrating the differential equations with the aid of the two assumptions is to give precisely the same formulæ as we have obtained by other methods.

CHAPTER VI

SOME PROPERTIES OF THE PRICE INDEX

Without actually determining the formula for P_{01} and Q_{01}, some properties of the price index and of the quantity index may be deduced from the conception here adopted.
I.-It is possible, for example, to determine the limits between which P_{01} and Q_{01} must lie.

We have

$$
\begin{aligned}
V_{p_{0}}+V_{q_{1}} & =p_{1} q_{1}-p_{0} q_{0} \\
& =\left(p_{1}-p_{0}\right) q_{0}+\left(q_{1}-q_{0}\right) p_{0}+\left(p_{1}-p_{0}\right)\left(q_{1}-q_{0}\right)
\end{aligned}
$$

Now $\left(p_{1}-p_{0}\right) q_{0}$ is clearly part of the increase in value due to the increase of price, while ($q_{1}-q_{0}$) p_{0} is part of the increase in value due to the increase of quantity.

Hence $V p_{1}$ lies between $\left(p_{1}-p_{0}\right) q_{0}$ and $\left(p_{1}-p_{0}\right) q_{0}+$ $\left(p_{1}-p_{0}\right)\left(q_{1}-q_{0}\right)$, that is, between $\left(p_{1}-p_{0}\right) q_{0}$ and $\left(p_{1}-p_{0}\right) q_{1}$.

Similarly $V q_{q_{0}}$ lies between $\left(q_{1}-q_{0}\right) p_{0}$ and $\left(q_{1}-q_{0}\right) p_{1}$.
Note that, since

$$
V_{p_{1}}^{p_{1}}+V_{i_{1}}^{q_{1}}=p_{1} q_{1}-p_{0} q_{0}
$$

if $V_{p_{p}}^{p_{2}}$ were at the limit $\left(p_{1}-p_{0}\right) q_{0}$, then V_{4} would be 56
$\left(q_{1}-q_{0}\right) p_{1}$, and if $V_{p_{0}}$ were at the limit $\left(p_{1}-p_{0}\right) q_{1}$, then $V_{\mathrm{g}_{0}}$ would be $\left(q_{1}-q_{0}\right) p_{0}$.
Hence it is more correct to say :
$V \phi_{p_{0}}$ lies between $\left(p_{1}-p_{0}\right) q_{0}$ and $\left(p_{1}-p_{0}\right) q_{1}$, and V_{4} lies between $\left(q_{1}-q_{0}\right) p_{1}$ and $\left(q_{1}-q_{0}\right) p_{0}$.
${ }_{\text {and }}^{q_{1}}$ Taking the whole group of commodities, $\Sigma V_{p_{1}}^{p_{p_{1}}}$, lies between $\Sigma\left(p_{1}-p_{0}\right) q_{0}$ and $\Sigma\left(p_{1}-p_{0}\right) q_{1}$, and $\Sigma V_{g_{1}}$ lies between $\Sigma\left(q_{1}-q_{0}\right) p_{1}$ and $\Sigma\left(q_{1}-q_{0}\right) p_{0}$.

Substituting $P_{01} p_{0}$ for p_{1} and $Q_{01} q_{0}$ for q_{1} in these statements, we have that, in the hypothetical case, $\Sigma V \frac{P_{p_{n} p_{0}}}{p_{0}}$ lies between $\Sigma\left(P_{01}-I\right) p_{0} q_{0}$ and $\Sigma\left(P_{01}-I\right) P_{0} Q_{01} q_{0}$ and $\Sigma V_{\frac{Q_{010}}{80}}$ lies between $\Sigma\left(Q_{01}-I\right) q_{0} P_{01} p_{0}$ and $\Sigma\left(Q_{0 \Sigma}-I\right) p_{0} q_{0}$.

Equating the limits of $\Sigma V{ }_{\substack{p_{1} \\ p_{0}}}$ and $\Sigma V \frac{p_{p} p_{0}}{p_{0}}$ and those of

and

$$
\begin{aligned}
\left(P_{01}-I\right) \Sigma p_{0} q_{0} & =\Sigma\left(p_{1}-p_{0}\right) q_{0} \\
P_{01}\left(Q_{01}-I\right) \Sigma p_{0} q_{0} & =\Sigma\left(q_{1}-q_{0}\right) p_{1}
\end{aligned}
$$

and at the other limit
and

$$
Q_{01}\left(P_{01}-I\right) \sum p_{0} q_{0}=\Sigma\left(p_{1}-p_{0}\right) q_{1}
$$

These equations give at the one limit

$$
P_{01}=\frac{\Sigma p_{1} q_{0}}{\Sigma p_{0} q_{0}} \text { and } Q_{01}=\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}
$$

and at the other limit

$$
P_{01}=\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}} \text { and } Q_{01}=\frac{\Sigma p_{0} q_{1}}{\Sigma p_{0} q_{0}}
$$

Hence P_{01} lies between $\frac{\Sigma p_{1} q_{0}}{\Sigma p_{0} q_{0}}$ and $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}}$ and Q_{01} lies between $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{1} q_{0}}$ and $\frac{\Sigma p_{0} q_{1}}{\Sigma p_{0} q_{0}}$.

This explains why Professor Irving Fisher's "ideal" formula ${ }^{1}$
and

$$
\begin{aligned}
& P_{01}=\sqrt{\frac{\Sigma p_{1} q_{0}}{\Sigma p_{0} q_{0}} \cdot \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}}} \\
& Q_{01}=\sqrt{\frac{\Sigma p_{0} q_{1}}{\Sigma p_{0} q_{0}} \cdot \frac{\Sigma p_{1} q_{1}}{\Sigma p_{1} q_{0}}}
\end{aligned}
$$

give a very good approximation for the price index and the quantity index, since they are the geometrical means of the limits between which P_{01} and Q_{01} must lie.
2.-In the special case in which $q_{1}=q_{0}$, that is, in which the quantities remain unchanged; the limits coincide, so that $P_{01}=\frac{\Sigma p_{1} q_{0}}{\Sigma p_{0} q_{0}}$ and $Q_{01}=1$. Similarly, if the prices remain unchanged, $P_{01}=1$ and $Q_{01}=$ $\frac{\Sigma p_{0} q_{3}}{\Sigma p_{0} q_{0}}$.
3.-We are now in a position to prove that, if the conception of the price index here put forward is adopted, the price index cannot have the property

$$
P_{02}=P_{01} P_{12}
$$

one case of which would be that, if the base were changed, the price index in the given year relative to the new base would be equal to the price index in
${ }^{1}$ Irving Fisher, "The Making of Index Numbers," Boston and New York, 1922.
the given year relative to the old base, multiplied by the price index in the old base year relative to the new base.
If the equation $P_{02}=P_{01} P_{12}$ were generally true, it would be true whatever were the prices and quantities in the year indicated by the figure r . Let us suppose that the prices in that year were the same as in the year o, but that the quantities were the same as in the year 2. In other words, for each commodity, let $p_{1}=p_{0}$ and $q_{1}=q_{2}$. In this case $P_{01}=I$ and $P_{12}=$ $\frac{\Sigma p_{2} q_{3}}{\Sigma p_{0} q_{2}}$, so that

$$
P_{01} P_{12}=\frac{\Sigma p_{2} q_{2}}{\Sigma p_{0} q_{2}}
$$

Now let us make the supposition that in the year I the prices were the same as in the year 2, but the quantities were the same as in the year 0 . In other words, for each commodity, let $p_{1}=p_{2}$ and $q_{1}=q_{0}$. In this case $P_{01}=\frac{\Sigma p_{2} q_{0}}{\Sigma p_{0} q_{0}}$ and $P_{12}=\mathrm{r}$, so that

$$
P_{01} P_{18}=\frac{\Sigma p_{2} q_{0}}{\Sigma p_{0} q_{0}} .
$$

But P_{08} cannot be equal both to $\frac{\Sigma p_{2} q_{2}}{\Sigma p_{0} q_{2}}$ and to $\frac{\Sigma p_{2} q_{0}}{\Sigma p_{0} q_{0}}$, so that it cannot be generally true that $P_{08}=P_{01} P_{18}$.

Professor Fisher recognised that the formula for the price index ought not to have this property, and that his so-called " circular test" is not strictly applicable. ${ }^{1}$ The foregoing is a formal proof that, if the price index be as we here conceive it, P_{08} cannot generally be equal to $P_{01} P_{12}$.

[^0]60 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX
4.-Another special case in which the price index can be calculated without determining the general formulæ for P_{01} and Q_{01} is the case in which the increases in price and quantity are all infinitesimal.

In the formula representing the limits between which P_{01} must lie, substitute p_{t} for $p_{0}, p_{t}+\delta p_{t}$ for p_{1}, q_{t} for $q_{0}, q_{t}+\delta q t$ for q_{1}.

Then $P_{t . t+\delta t}$ lies between $\frac{\Sigma\left(p_{t}+\delta p_{t}\right) q_{t}}{\Sigma p t q t}$ and $\frac{\Sigma(p t+\delta p t)(q t+\delta q t)}{\Sigma p_{t}(q t+\delta q t)}$.

But

$$
\frac{\Sigma(p t+\delta p t) q t}{\Sigma p b q t}=\mathrm{I}+\frac{\Sigma q \delta \rho t}{\Sigma p t q t}
$$

and

$$
\begin{aligned}
& \frac{\Sigma\left(p t+\delta p_{t}\right)(q t+\delta q t)}{\Sigma p_{t}(q t+\delta q t)}=\mathrm{I}+\frac{\Sigma q t \delta p t}{\Sigma p t q t\left(\mathrm{I}+\frac{\Sigma p t \delta q t}{\Sigma p t q t}\right)} \\
& =\mathrm{I}+\frac{\Sigma q \downarrow \delta p t}{\Sigma p t q_{t}}\left(\mathrm{I}-\frac{\Sigma p t \delta q^{t}}{\Sigma p t q t}\right) \\
& =\mathrm{x}+\frac{\Sigma q^{2} \delta p_{t}}{\Sigma p_{t}}
\end{aligned}
$$

Hence the limits coincide and

$$
P_{t . t+\delta t}=\mathrm{I}+\frac{\Sigma q \dot{\delta} \delta p t}{\Sigma p p+q_{t}}
$$

Similarly $Q_{t . t}+\delta t=1+\frac{\Sigma p t \delta q_{t}}{\Sigma p t q_{t}}$.
These equations also give
and

$$
\log P_{t . t+z t}=\frac{\Sigma q t \delta p t}{\Sigma p q q t}
$$

$$
\log Q_{t . t+\delta t}=\frac{\Sigma p t \delta q t}{\Sigma p t q_{t}}
$$

This property can be used to supply an additional test of the correctness of any formula that may be
proposed for the price index and the quantity index.
5.-From the differential equation

$$
\delta \log P=\frac{\Sigma q \delta p}{\Sigma p q}
$$

and the above formula for $\log P_{\ell . t}+8 t$ another property of the price index can be deduced.

$$
\text { Since } \begin{aligned}
\log P_{t . t+8 t} & =\frac{\Sigma q \downarrow \delta p_{t}}{\Sigma p t q t} \\
\log P_{t . t+8 t} & =\delta \log P_{0 t} \\
& =\log P_{0 . t+\delta t}-\log P_{0 t} . \\
\text { Therefore } P_{0 . t+\delta t} & =P_{0 t} . P_{t . t+\delta t}
\end{aligned}
$$

Hence if the differences between p_{2} and p_{1} and between q_{g} and q_{1} are infinitesimal $P_{02}=P_{01} P_{12}$.

- ${ }_{6}$.-We turn now to properties of P_{01} and Q_{01} as we have determined them.

The writer's formulæ comply with Professor Fisher's " time reversal test," ${ }^{2}$ though that test was not used in determining them. We have

$$
\begin{aligned}
& =\left(\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right) \frac{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)} \\
& =\left(\log \frac{\Sigma p_{0} q_{0}}{\Sigma p_{1} q_{1}}\right) \frac{\Sigma\left(p_{0} q_{0}-p_{1} q_{1}\right) \frac{\log \frac{p_{0}}{p_{1}}}{\log \frac{p_{0} q_{0}}{p_{1} q_{1}}}}{\Sigma\left(p_{0} q_{0}-p_{1} q_{1}\right)} \\
& \text { 2 rrving FisHEx, op. cit., page 64. }
\end{aligned}
$$

62 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX and it is easy to see that
whence

$$
\begin{aligned}
\log P_{10} & =-\log P_{01} \\
P_{10} & =\frac{I}{P_{01}}
\end{aligned}
$$

Similarly

$$
Q_{10}=\frac{I}{Q_{01}}
$$

7.-The formulæ determined are such that they can readily be extended to other factors, if such factors exist. This results from the manner in which they were calculated, as the general propositions on which they are based are applicable to any number of factors. But we may prove this property in another way.
Let us suppose that, besides price and quantity, there is a third factor, represented by r. Treating $q r$ as a single factor we have :

$$
\begin{array}{r}
\log P_{01}=\left(\log \frac{\Sigma p_{1} q_{2} r_{1}}{\Sigma p_{0} q_{0} r_{0}}\right) \frac{\Sigma\left(p_{1} q_{1} r_{1}-p_{0} q_{0} r_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1} r_{1}}{p_{0} q_{1} r_{0}}}}{\Sigma\left(p_{1} q_{1} r_{1}-p_{0} q_{0} \gamma_{0}\right)} \\
\log (Q R)_{01}=\left(\log \frac{\Sigma p_{1} q_{1} r_{1}}{\Sigma p_{0} q_{0} r_{0}}\right) \frac{\Sigma\left(p_{1} q_{1} r_{1}-p_{0} q_{0} r_{0}\right) \frac{\log \frac{q_{1} r_{1}}{q_{0} r_{0}}}{\log \frac{p_{1} q_{1} r_{1}}{p_{0} q_{1} r_{0}}}}{\Sigma\left(p_{1} q_{1} r_{1}-p_{0} q_{0} \gamma_{0}\right)}
\end{array}
$$

Analogous formulx can be obtained for $\log Q_{01}$, $\log (P R)_{01}, \log R_{01}$ and $\log (P Q)_{01}$ and ịt will readily be seen that

$$
P_{01} Q_{01} R_{01}=\frac{\Sigma p_{1} q_{1} r_{1}}{\Sigma p_{0} q_{0} r_{0}}
$$

and that $Q_{01} R_{01}=(Q R)_{01}, \quad P_{01} R_{01}=(P R)_{01}$ and $P_{01} Q_{01}=(P Q)_{01}$.
Treating the "ideal" formulæ in the same way we get

$$
P_{01}=\sqrt{\frac{\sum p_{1} q_{0} \gamma_{0}}{\Sigma p_{0} q_{0} \gamma_{0}} \cdot \frac{\Sigma p_{1} q_{1} q_{1}}{\sum p_{0} q_{1} r_{1}}}
$$

and

$$
(Q R)_{01}=\sqrt{\frac{\sum p_{0} q_{1} \gamma_{1}}{\Sigma p_{0} q_{0} \gamma_{0}} \cdot \frac{\sum p_{1} q_{1} \gamma_{1}}{\sum p_{1} q_{0} \gamma_{0}}}
$$

with analogous formulæ for $Q_{01},(P R)_{01}, R_{01}$ and $(P Q)_{01}$.
These formulx fail to comply with the conditions
and

$$
\begin{aligned}
P_{01} Q_{01} R_{01} & =\frac{\Sigma p_{1} q_{1} r_{1}}{\Sigma p_{0} q_{0} \gamma_{0}} \\
Q_{01} R_{01} & =(Q R)_{01}, \text { etc. }
\end{aligned}
$$

8.-It is only a special case of the same property that the formulæ are applicable to theoretical cases in which there is a different fundamental relation between P_{01} and Q_{01}. Let us suppose, for example, that

$$
P_{02}^{2} Q_{01}=\frac{\Sigma p_{1}^{2} q_{1}}{\Sigma p_{0}^{2} q_{0}}
$$

However the calculation may be made, the writer's formula gives

$$
\frac{\Sigma\left(p_{1}^{2} q_{1}-p_{0}^{2} q_{0}\right) \frac{\log \frac{p_{1}}{\bar{p}_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{1}}}}{\Sigma\left(p_{1}{ }^{2} q_{1}-p_{0}{ }^{2} q_{0}\right)}
$$

The " ideal " formula, on the other hand, gives

$$
\left(P_{01}\right)^{2}=\sqrt{\frac{\Sigma p_{2}^{2} q_{1}}{\Sigma p_{0}^{2} q_{0}} \cdot \frac{\Sigma p_{1}^{2} q_{1}}{\Sigma p_{0}^{2} q_{1}}}
$$

or

$$
P_{01}=\sqrt{\frac{\Sigma p_{1} p_{0} q_{0}}{\Sigma p_{0} q_{0} q_{0}} \cdot \frac{\Sigma p_{1}{ }^{2} q_{1}}{\Sigma p_{0} p_{1} q_{1}}}
$$

according as we treat p^{2} as one factor and q as the other, or p as one factor and $p q$ as the other.
9.-The formulx possess another property which it is not easy to express simply. Let us suppose that our group of commodities is divided into sub-groups. Let the prices in the first sub-group be $p_{m_{0}}{ }^{\prime}, p_{m_{0}}{ }^{\prime \prime}, p_{m_{0}}{ }^{\prime \prime}$, etc., in the base year and $p_{m_{1}}{ }^{\prime}, p_{m_{2}}{ }^{\prime \prime}, p_{m_{2}}{ }^{\prime \prime \prime}$, etc., in the given year. Let the prices in the second subgroup be $p_{n_{0}}{ }^{\prime}, p_{n_{0}}{ }^{\prime \prime}, p_{n_{2}}{ }^{\prime \prime \prime}$, etc., in the base year and $p_{n_{1}}{ }^{\prime}, p_{n_{2}}{ }^{\prime \prime}, p_{n_{2}}{ }^{\prime \prime}$, etc., in the given year. Let the quantities be similarly indicated, substituting q for p. Let $P M_{01}$ and $Q M_{01}$ be the price index and quantity index of the first sub-group, considered separately, and $P N_{01}$, and $Q N_{01}$ the price index and quantity index of the second sub-group, considered separately, while P_{01} and Q_{01} are the price index and quantity index of the whole group. Suppose that, in a hypothetical year, the prices in the first sub-group become $P M_{01} p_{m_{0}}{ }^{\prime} P M_{01} p_{m_{0}}{ }^{\prime \prime}, P M_{01} p_{m_{0}}{ }^{\prime \prime}$, etc., and the quantities $Q M_{01} q_{m_{2}}{ }^{\prime}, Q M_{01} q_{m_{2}}{ }^{\prime \prime}, Q M_{01} q_{m_{2}}{ }^{\prime \prime}$, etc., while the prices in the second sub-group become $P N_{01} p_{n_{0}}$, $P N_{01} p_{n_{0}}{ }^{\prime \prime}, P N_{01} p_{n_{0}}{ }^{\prime \prime}$, etc., and the quantities $Q N_{01} q_{n}{ }^{\prime}$, $Q N_{01} q m_{n}^{\prime \prime}, Q N_{01} q m_{c}{ }^{\prime \prime}$, etc. Combine the two sub-groups in the hypothetical year- and let $P M N_{01}$ and $Q M N_{01}$ be the price index and the quantity index of the combined group in the hypothetical year in relation to the whole group of commodities in the base year. Then, if the formule are correct, we should have $P M N_{01}=P_{01}$ and $Q M N_{01}=Q_{01}$.

The writer's formulæ comply with this condition. Noting that the formula for P_{01} may be written
we have

$$
\left(\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}} \frac{\Sigma v_{n}}{\Sigma\left(p_{1} q_{1}-p p_{0}\right)}\right.
$$

But

$$
\Sigma V_{\frac{P M_{00} p_{0}}{p_{t}}}=\Sigma V_{p_{p m a}}^{p_{p}}
$$

and

$$
\Sigma V_{\frac{p_{n} N_{0} p_{0}}{p_{0}}} \Sigma V_{\substack{p_{p_{1}}}}
$$

Hence

Similarly $Q M N_{01}=Q_{01}$.
The same property holds good into however many sub-groups the group of commodities may be divided, and, using the writer's formula, the price index may be calculated in a series of stages without affecting the ultimate result.
The "ideal" formula break down under this test also.

$$
\begin{aligned}
& =\left(\frac{\sum p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right)^{\frac{\Sigma v_{1}}{\Sigma\left(x_{1}-p_{1}\right.} p_{p_{1}}} \\
& =P_{01}
\end{aligned}
$$

CHAPTER VII

THE PRACTICAL APPLICATION OF THE FORMULA FOR THE PRICE INDEX

While the formula for the price index, as determined in the preceding chapters, is more correct than any of the formulæ in use, the calculations involved are so laborious that its use can be recommended only when close accuracy is required or when it is desired to give a complete picture, either in the form of indices or in that of percentages, of the changes in aggregate value due to the changes in price and in quantity of each of the separate commodities. Where fluctuations are not wide the results obtained by using Professor Fisher's "ideal" formulx and by using the writer's formula differ very slightly. But neither the "ideal" formulx nor any other formula at present in use will enable the complete picture to be given.

The following method is suggested for calculating the general price index and the general quantity index, but practice would no doubt enable simplifications to be made.

Arrange the names of the different commodities and the figures relating to them in columns, as follows:-

Col. 1 : Numbers of the commodities.
Col. 2: Names of the commodities and units' of measure.
Col. 3: p_{1}

THE PRACTICAL APPLICATION OF THE FORMULA 67°
Col. 4 : p_{0}
Col. 5: q_{1}
Col. 6: q_{0}
Col. $7: p_{1} q_{1}$
Col. $8: p_{0} q_{0}$
Col. $9: p_{2} q_{1}-p_{0} q_{0}$
Col. Io : $\log p_{1}$,
Col. II : $\log p_{0}$
Col. 12: $\log q_{1}$
Col: $13: \log q_{0}$
Col. 14: $\log \frac{p_{1}}{p_{0}}$
Col. $15: \log \frac{q_{1}}{q_{0}}$
Col. $16: \log \frac{p_{1} q_{1}}{p_{0} q_{0}}$
Col. I7 : $\frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}$
Col. 18: $\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}$
In columns 14 to 16 , as the items enter into operations of multiplication and division, the logarithms, when negative, should be expressed as completely negative numbers and not in the usual way, in which the mantissa is positive and the characteristic is negative.

$$
\text { Dividing } \Sigma\left(p_{2} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}} \text {, the total of column }
$$

68 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX I8, by $\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)$, the total of column 9 , and multiplying by $\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}$, calculated from the totals of columns 7 and 8 , we obtain

$$
\left(\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right) \frac{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{1} q_{0}}}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}
$$

This is equal to $\log P_{01}$, whence P_{01} can be obtained.
Again, $\log Q_{01}=\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}-\log P_{01}$, so that Q_{01} can be easily calculated.

If we desire to obtain the price indices, quantity indices and value indices of the separate commodities, additional columns are necessary.

$$
\text { Col. 19: } \frac{p_{1} q_{1}-p_{0} q_{0}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}
$$

$$
\text { Col. } 20: \frac{\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}}{\Sigma\left(p_{1} q_{2}-p_{0} q_{0}\right)}
$$

$$
\text { Col. 2x: } \frac{\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{q_{1}}{q_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}
$$

$$
\text { Col. } 22:\left(\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right) \frac{p_{1} q_{1}-p_{0} q_{0}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}
$$

$$
\begin{aligned}
& \text { Col. 23: }\left(\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right) \frac{\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)} \\
& \text { Col. } 24:\left(\log \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}}\right) \frac{\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{q_{1}}{q_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}}{\Sigma\left(p_{1} q_{1}-p_{0} q_{0}\right)}
\end{aligned}
$$

Column 2I may be calculated by subtracting from each item of column 19 the corresponding item of column 20, and column 24 may be calculated by subtracting from each item of column 22 the corresponding item of column 23.

Column 22 gives us, for each commodity, $\log V_{v_{a}}$, whence $V_{v_{n}}$, the value index, can be obtained.

Similarly $P_{p_{4}}$, the price index, can be obtained, for each commodity, from column 23, and $Q_{q_{m}}$, the quantity index, from column 24.

With one additional column we shall be in a position to give the increase in value due to the increase in the price and in the quantity of each commodity, both in absolute figures and as a percentage of the aggregate increase in value.

The column required is :

$$
\text { Col. 25: }\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{q_{1}}{q_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}
$$

This may be calculated by subtracting from each item of column 9 the corresponding item of column 18.

70 THE MATHEMATICAL PROBLEM OF THE PRICE INDEX
Column 9 gives us the increase in the value of each commodity due to the change both in price and in quantity and the total is the increase in aggregate value.

Column 18 gives us the increase in the value of each commodity due to the change in price and the total is the increase in aggregate value due to all the changes in price.

Column 25 gives us the increase in the value of each commodity due to the change in quantity and the total is the increase in aggregate value due to all the changes in quantity.

Columns 19, 20 and 21 (each item being multiplied by 100) give us the same increases in value expressed as percentages of the aggregate increase in value.

To express the same increases of value as percentages of the aggregate value in the base year we need three more columns.

$$
\text { Col. } 26: \frac{p_{1} q_{1}-p_{0} q_{0}}{\Sigma p_{0} q_{0}}
$$

Col. $27: \frac{\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{p_{1}}{p_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}}{\Sigma p_{0} q_{0}}$

Col. 28 :

$$
\frac{\left(p_{1} q_{1}-p_{0} q_{0}\right) \frac{\log \frac{q_{1}}{q_{0}}}{\log \frac{p_{1} q_{1}}{p_{0} q_{0}}}}{\Sigma p_{0} q_{0}}
$$

The percentages are obtained by multiplying each item of columns 26,27 and 28 by 100 .
the practical application of the formula 7 I
An illustration of the use of the writer's formula is given in the following tables, in which they are applied to the group of commodities taken by Professor Fisher himself as the basis of his calculations in "The Making of Index Numbers." The group contains 36 commodities, with prices and quantities for six successive years, I913 to 1918, and our example relates to the prices and quantities in 1913 and 1917. ${ }^{1}$ The difference between the price index as calculated by the "ideal" formula and the price index as calculated by the writer's formula is trifling; the " ideal" formula gives $16 \mathrm{r} \cdot 56$, while the writer's formula gives $16 \mathrm{r} \cdot 74$.
${ }^{1}$ For the full list of prices and quantities seo pages 489 and 490 of "The Making of Index Numbers." Our p_{1} and q_{2} correspond to p_{4} and q_{4} in the full list.

Table I.

Prices and Quantities ${ }^{1}$ in the Given Year and in the Base Year in the Example Chosen.

No. of commodity	Commodity and unit of measure.	p_{1}	p_{0}	9	96
1	Bacon, lb.	0.2382	0.1236	1187.00	1077.00
2	Barley, bu.	1.3232	0.6263	209.00	178.20
3	Beef, lb.	-17672	0.1295	8417.0	6589.00
4	Butter, lb.	0.4034	0.2969	1842 \%	$1757^{\circ} 00$
5	Cattle, cwt.	15.6354	12.0396	103.50	69.80
6	Cement, bbl.	2.0942	1.5800	88.10	85.80
7	Coal, anth., ton	5.6218	$5 \cdot 0636$	7.83	6.90
8	Coal, bit., ton	3.5800	1.2700	552.00	477\%
9	Coffee, lb. .	0.0929	$0 \cdot 1113$	$1320 \cdot 00$	863.00
10	Coke, short ton	10.6600	3.0300	56.70	46.30
11	Copper, lb. .	0.2764	$\bigcirc \cdot 1533$	1316.50	812.30
12	Cotton, 1b.	0.2350	$0 \cdot 1279$	3423.00	2785.00
13	Eggs, doz.	0.4015	0.2468	1882.00	1722.00
14	Hay, ton	17.6042	112500	94*90	79:20
15	Hides, lb.	0.2828	$0 \cdot 1727$	1113.00	672.00
16	Hogs, cwt.	15:70.47	$8 \cdot 3654$	67.80	$68 \cdot 40$
17	Iron, bar, cwt.	4.0600	1.5100	133.00	79:20
18	Iron, pig, ton	$38 \cdot 8082$	14:9025	$38 \cdot 70$	31.00
19	Lead (white), lb.	$0 \cdot 1121$	$0 \cdot 0676$	$230 \cdot 0$	286.00
20	Lead, lb. .	$0 \cdot 0879$	0.0437	1099 80	823.70
21	Lumber, M. bd. ft.	105.0400	$90 \cdot 3974$	21.20	21.80
22	Mutton, lb. .	-1664	$0 \cdot 1025$	474.00	732.00
23	Petroleum, gal.	$0 \cdot 1242$	$0 \cdot 1233$	$14880 \cdot 0$	$10400 \cdot 0$
24	Pork, lb.	0.2435	$0 \cdot 1486$	8427.00	$9211{ }^{\circ} 0$
25	Rubber, lb.	$0 \cdot 6477$	0.8071	375.90	115.80
26	Silk, lb.	$5 \cdot 9957$	3.9083	29.40	19.10
27	Silver, oz.	0.8142	0.5980	133.60	$146 \cdot 10$
28	Skins, skin .	5.5208 38.0000	2.5833 28.0000	2.70 2.94	$6 \cdot 70$
29	Steel rails, ton Tin, pig cwt.	$38 \cdot 0000$ 61.6500	$28 \cdot 0000$	2.94 1.56	3.50
30	Tin, pig, cwt.	$61 \cdot 6500$	443200	1.56	1.04
31	Tin, plate, cwt.	9.1250	3.5583	29.50	1530
32	Wheat, bu.	2.3215	0.9131	605.00	555.00
33	Wool, lb.	r'284	0.5883	707.00	448.00
34	Lime, bbl., 300 lb.	$1 \cdot 7604$	$1 \cdot 2500$	$24^{\circ} 00$	23.30
35	Lard, lb. .	0.2170	O'IIOI	927.00	$1100 \cdot 0$
36	Oats, bu.	0.6372	$0 \cdot 3758$	1587.00	1122.00

${ }^{2}$ The prices are expressed in dollars per unit and the quantities in millions of units.

Table II.

Price Indices, Quantity Indices and Value Indices of Separate Commodities.

No. of commodity	Commodity.	Price indices of separate commodities.	Quantity indices of separate commodities.	Value indices of separate commodities.
		100 P p_{n}	100 Q991	$100 \mathrm{~V}_{01}$
1	Bacon	100.71	$100 \cdot 10$	100\%73
2	Barley	100.74	$100 \cdot 26$	100'90
3	Beef	101'54	101.48	103.04
4	Butter	10r.05	100'16	101:20
5	Cattle	101.69	$102 \cdot 56$	10430
6	Cement	$100 \cdot 24$	$100 \% 2$	$100 \cdot 36$
7	Coal, anth.	$100 \cdot 02$	$100 \% 4$	10005
8	Coal, bit. .	106.71	100.92	$107 \cdot 69$
9	Coffee	99.89	100'25	100.14
10	Coke	102'19	$100 \cdot 35$	102.54
11	Copper	10071	$100 \cdot 58$	10130
12	Cotton	101.83	$100 \cdot 28$	102.45
13	Eggs	10152	$100 \cdot 38$	10180
14	Hay	103.05	101.22	10430
15	Hides	$100 \cdot 53$	100.54	10108
16	Hogs .	ro2'74	99'96	102.70
17	Iron, bar	1015 50	100'78	102.30
18	Iron, pig	104.66	ror'06	105178
19	Lead (white)	$100 \cdot 06$	99.97	10003
20	Lead .	$100 \cdot 23$	100'ro	100.33
21	Lumber .	10172	99.68	101'39
22	Mutton .	$100 \cdot 20$	99.82	100.02
23	Fetroleum	$100 \cdot 06$	103.04	103'11
24	Pork	104.61	9919	10375
25	Rubber	99.81	10100	$100 \cdot 81$
26	Silk	$100 \cdot 27$	$100 \cdot 38$	$100 \cdot 55$
27	Silver	$100 \cdot 16$.	99.95	10017
28	Skins ${ }^{\text {Steel }}$	99.93	100.08	10001
29	Steel rails	100'17	99\%90	$100 \% 7$
30	Tin, pig .	$100 \cdot 12$	10015	$100 \cdot 27$
31	Tin, plate	$100 \cdot 45$	$100 \cdot 48$	101'17
32	Wheat -	10454	$100 \cdot 42$	10497
33	Wool	102.89	100.63	$103 \cdot 55$
34	Lime	100'07	10001	100.07
35	Lard	$100 \cdot 58$	99.92	10277
36	Oats	101'94	101-27	103.24
	General Indices	161.74	118.80	192.23
		$100 P_{01}$	100Q 01	$100 \frac{\sum p_{1} q_{1}}{\sum p_{0} q_{0}}$

Table III.

Changes in Aggregate Value due to the Changes in Pricí Quantity and Value of Separate Commodities, in Absolut Figures and as Percentages of the Aggregate Value in the Base Year.

No. of com-modfty.	$\begin{aligned} & \text { Commod- } \\ & \text { ity. } \end{aligned}$	Increases in value due to increases in price of separate commodities.	Increases in value due to increases in quantity of sopasate commodities.	Increases in value of separate commoditfes.	Increases in value due to increases in price expressed as percentages of the aggregate value in the base year.	Increases in value due to increases in quantity expressed as percentages of the aggregate value in the base year.	Increases in Falue of separate commoditie: expressed as percentages of the agegregate value in the base year.
		V29	Ves	$\underset{p_{1} q_{1}}{\substack{ \\p_{0}}}$	$100 \mathrm{~V} \underline{\underline{n}}$ $\frac{\mu_{0}}{\sum p_{0}}$	$\frac{100 \mathrm{Vn}}{2 p 080}$	$\frac{100\left(p_{1} q_{1}-p_{0} q_{0}\right)}{2 p_{1} f_{0}}$
I	Bacon	130.3099	19.3163	149.6262	$0 \cdot 994$	0.148	1.142
2	Barley	13519624	28.9797	164.942 L	1.037	$0 \cdot 221$	1/259
3	Beef	282.9241	271-1228	554.0469	2.159	2.069	4228
4	Butter	192-8420	29.5675	221.4095	1.464	0.226	1.690
5	Cattle	310.2420	$467 \cdot 657^{8}$	777.8998	$2 \cdot 367$	3.569	5936
6	Cement	44.734^{8}	4.2002	48.9350	$0 \cdot 34 \mathrm{x}$	0.033	0.374
7	Coal, anth.	4'1702	$4 \cdot 9697$	9.0799	$0 \cdot 038$	$0 \cdot 038$	0.069
8	Coal, bit.	1201-1197	169.2503	1370.3700	9.155	1292	10.457
9	Coffee	- 19.6607	26.5761	679154	-0.150	0.353	0.203
10	Coke	399.7415	$64 \cdot 3915$	464.1330	3.050	0491	3.542
2I	Copper	131.5737	107.7813	239.3550	1.004	0.822	1.826
12	Cotton	334.722	213.4914	$448 \cdot 2035$	2.554	0.866	3.420
13	Eggs	279-5866	$51 \cdot 0468$	330.6334	$2 \cdot 233$	$0 \cdot 390$	2.525
14	Hay	555.3436	224.2950	779.6386	4-238	x.712	5949
85	Hides	98.2186	100.4834	198.7020	0.749	0.767	1.516
16	Hogs	499.588	-6.9885	$492 \cdot 5953$	3.812	-0.053	3.759
17	Iron, bar.	$275 \cdot 827 \mathrm{I}$	144'5609	$420 \cdot 3880$	$2 \cdot 105$	1.103	\$208
18	Iron, pig	844.2146	195.6832	1039.8998	6.442	1.493	7×935
89	Lead	$13 \cdot 3315$	-4.8827	6.4494	0.086	-0.037	0.049
20	Lead -	42.9222	17.7545 -38.5008	60.6767 256.88	0.327	0.136 -0.446	0.463 1.955
21	Lumber -	314.6855 37.2780	-58.5008	$\begin{array}{r}256 \cdot 1847 \\ \\ \hline .8436\end{array}$	2.402 0.284	-0.446 -0.255	1.935 0.029
22	Mutton ${ }^{\text {Petrolewa }}$	$37 \cdot 2780$ $1 \mathrm{H} \cdot 258$	-33.4344 $\mathbf{3 5 4 . 5 1 7 6}$	$5 \cdot 8436$ 565.7760	0.284 0.086	-0.255	10029 4.317
24	Pork	833.3447	-150.1048	683.2199	6.359	-1.845	$5 \cdot 214$
25	Rubber	-34.4719	184.4801	150.0082	-0.263	1.408	1.145
26	Silk	50.6135	51.0186	101.6251	$0 \cdot 386$	$0 \cdot 389$	$0 \cdot 775$
27	Silver	30.1464	-8.7377	$2 \mathrm{x} \cdot 4093$	0.230	-0.067	$0 \cdot 163$
28	Skins ${ }^{\text {c }}$	12-2097	-14.6116	-2.4019	0.093	-0.102	-0.018
29	Steol rails	31.9766	- 18.2566	13.7200	0.244	-0.139	0.103
30	Tin, pig .	$22 \cdot 4726$	27.6086	500812	0.172	$0 \cdot 211$	0.382
31	Tin, plate	826.5326	88.2129	214.7455	0.966	0.673	1.639 6.849
32	Wheat	$82 x \cdot 5364$	75.9586	8974950	6.269	$0-580$	6.849
33	Wool	406.6373	237.6530	6443003	\$103	12613	4916 0.100
34	Lime	12.0803	$2 \cdot 0443$	13.1246	0.002	-0.008	0.100
35	Lard	$\begin{aligned} & 107.0443 \\ & 355.8905 \end{aligned}$	-26.9933 233.6983	$\begin{array}{r} 80.0490 \\ 589.5888 \end{array}$	0.817 2.716	$\left\lvert\, \begin{array}{r} -0 \cdot 206 \\ 1-783 \end{array}\right.$	0.681 4.499
	Totals	8892.8543	4193.4723	12086.3265	67-857	24.36x	98.228
		272	$\begin{aligned} \Sigma V 0_{0}^{2} \\ \hline \end{aligned}$	$\underset{\left.p_{0}\right)^{2}}{\Sigma\left(p_{1} q_{3}-\right.}$	$\frac{1002 V / 2}{2 y_{0}}$		$\frac{100 \Sigma\left(p_{1} p_{1}-p p_{1}\right)}{\sum p_{0} f_{0}}$

[^0]: ${ }^{1}$ Irving Fisher, op. cil., page 270.

