LABOR'TURNOVER IN INDUSTRY

THE MACMEXEAN COMPANY

TER MACMMLLAN CO. OF CANADA, LYM
7ckumf

LABOR TURNOVER IN ${ }^{\prime}$ INDUSTRY

A Statistical Analysis

BY
PAUL FREDERICK BRISSENDEN
assistant pronessor in columbia miversiry
AND
EMIL FRANKEL
Tomaerly spectal agent of the untisd states DEPARTMENT OF LABOR

3eto mark
THE MLACMILLAN COMPANY
7929
AII righes resprod

Coryeterit, 19as,
BY TEE MACMILLAN COMPANY
Set wo and elactrotyped. Published, October, 2qu:
 New Yoak

THE UNITED STATES BUREAU OF LABOR STATISTICS

51144

PREFACE

Tirs figures which constitute the basis for the statistical analysis presented in these pages were collected for the United States Bureau of Labor Statistics by the authors and other members of the Bureau's staff. A large part of the material thus collected already has been utilized in various articles published in the Bureau's Monthly Labor Review. The Bureau of Labor Statistics, however, is responsible neither for the opinions herein expressed by the authors nor for the statistical treatment its original figures have received at their hands.

The authors desire to express their appreciation of the help they have received from Dr. Royal Meeker, formerly Commissioner of Labor Statistics and now editor of the International Labour Review, and from Mr. Lucian W. Chaney, of the staff of the Bureau of Labor Statistics. Mr. Ethelbert Stewart, now Commissioner of Labor Statistics, was in general charge of the field work of the Bureau's investigation of labor turnover. Working with the authors under his direction were Messrs. Boris Emmet, William F. Kirk, and Irving Winslow. To them and to Mr. Stewart the authors are very much indebted and they wish to take this opportunity to express their appreciation. Although they are too numerous to mention by name, the authors desire to express their deep sense of obligation to the hundreds of employment managers, factory superintendents, and business executives who cheerfully put themselves to great inconvenience in order to furnish the necessary information. The authors earnestly hope that this analysis of the figures they so kindly furnished may be of use to some of them.

Ta the Academy of Political Science at Columbia Oniversity, the Ronald Press Company, and the University of Chicago Press, the authors desire to extend thanks for permission to reprint material originally published in the Political Sciencs Quarkerly, Administration, and the Jowrual of Palitical Economy.

CONTENTS

crapria pias
I. Introdoction 1-6

1. Nature and significance of labor mobility.
2. Scope and limitations of the basic data.
II. Defintion and Measurement of Laboz Mobiuty 7-28
3. The base in "turnover" computation.
(a) The pay roll as base.
(b) Average daily work force
(c) Labor hours.
4. Labor change rates.
5. The definition of terms.
(a) The variables.
(b) The base or standard of measurement.
6. The method of computation.
7. Relation between different methods of computation.
III. Personnel Policy and Labor Stability 29-33
IV. General Extent of Labor Mobiety 34-60
8. Labor mobility and industrial conditions.
9. Extent of mobility in the ro-year period ending Dec. 3x, 1979.
10. Probable amount of labor shifting in the United States.
11. Necessary and unnecessary labor changes.
12. Labor mobility in certain localities.
13. Labor mobility in different industry groups.
14. Relation between sire of establishment and labor mobility.
15. Axalysis of accessions.

V. Labor Morimity in Individual Plants and in Spechal
 Groups within the Wore Force
 $6 \mathrm{r}-77$

1. Labor mobility in individual establishments
2. Mobility of male and female employees.
3. Day and night force.
4. Stilled and unskilled employees.
5. Occupational incidence of habor mobility.

chartiz
 VI. Types of Separation and Causes of Turnover \quad 78-102

1. Types of separation.
2. Industry groups and type of separation.
3. Relation between skill and type of separation.
4. Type of separation and size of establishment.
5. Some causes for instability.

VII. Seasonal Influences on Labor Shifing . . . ro3-1i4

3. Seasonal fluctuations in individual establishments.
4. Seasonal changes in different occupations.
5. Normal seasonal changes in stability.

VIII. Length of Service as a Factor in Labor Mobility in5-141

1. Job tenure in different industry groups.
2. Comparative service stability of males and females.
3. Length of service of skilled and unskilled employees.
4. Length of service of casual laborers.
5. Length of service in different plant departments.
6. Average weekly service rates.
7. Length of service and type of separation.
IX. Stable and Unstable Euployees 142-153
8. "Active employees" with service records of less than one year (unstable employees) and over one year (stable employees).
9. Responsibility for labor mobility of the unstable employees,
10. The labor flux of unstable working forces in individual establishments.
11. Labor mobility of the unstable wort force compared with the total work force.

> X. Relative Responsibility ror Lnstability of Different Lengti of Service Groups . . . 154 -162

1. Analysis based on allocation of labor hours to length of service groups.
2. Frequency of job replacement in different length of service
groups.
XI. Employment Records 163-169
3. Labor mobility records.
4. Records of labor absentecism.

Appendix. Basic Tables 172-aII

INDEX OF TABLES

CHAPTER II. THE DEFINTTION AND MEASUREMENT OF LABOR MOBHITY
Table 2. Difference between pay-roll numbers and number of equivalent full-time workers IO
Table 2. Trend of labor flux, accession, classified separation, and replace- ment rates in a metal-products manufacturing plant (No, 42- 282) by months, from 1912 to 1919. (Charts A and E) . 16-17
TABL: 3. Labor mobility in an automobile manufacturing plant (No. 48- labor incresse and decrease rates for 1917 and 1919 25
Tabre 4. Comparison of three methods of measuring labor mobility 26
CEAPTER III. PERSONNEL POLICY AND LABOR STABMITY
Tabiz 5. Labbr fux rates in ro selected establishmenta, by years from rigr- 29, inclusive 32-33
Tasiz 6. Comparison of labor mobility in yo selected establishments with its mobility in all other establishments reporting for the years 1915-19, inclusive. - (Chart B) 30-33
CHAPTER IV. GENERAL EXTENT OF LABOR MOBILITY
Tabis 7. Labor mobility by years, moro-1g. (Chart C). 36
Table 8. Necessary and unneceasary lebor changes, by years, xgro-r9, inclusive -45
Tanir 9. Lebor mobility in specifed cities, 1915-14 and r917-18 47
Tably 1a. Labor mobility in specified industry groupa, $1915-14$ and rg17-18. (Chart D) -53
Tabis ir. Relation between sire of establishment and libhor stability, 2913- 14 and $1917-18$ 55
Tasix ia. Number of employees leaving service within 12 months of when they are hired, by industry groupe, year ending May 31, z918. 56
Tabiz 13. Number of employees hired by same establishment specified number of times 58
Tabus i4. Number of employees on pey roll of three establishments who had been hired specified number of times, classified scoarding to the length of time within which the hirings and rehirings took place, 1915 59
CHAPTER V. LABOR MOBILITY IN INDIVIDUAL PLANTS AND IN SPECIAL GROUPS WITHIN THE WORX FORCE
Tanne 1g. Number and per cent distribution of establishments having chessi- fied habor mobility rates, 19x 5-14 and $\mathbf{x y y} \mathbf{9} \mathbf{1 8}$ 6
Tasis 16. Labor mobility of 80 identical etablishments reporting in igry- 14 and rgif-l8
Table 17. Labor mobility by sex and industry groups, 1917-18 pact
Table 18. Labor mobility of day and night forces in a machine-tool manu-facturing establishment (No. 35-144), by years, 1916-1975
Tabke 19. Labor mobility of skilled and unskilled workers, 1913-15 and 1917-18 73
Table 20. Labor mobility in a car-building plant (Establishment No. Ioz) by occupations, for year ending May 31, 1918 76-71
CHAPTER VI. TYPES OF SEPARATION AND CAUSES OF TURNOVER
Table an. Type of separation (discharge, lay-off or voluntary quitting) of employees leaving, by years from 1910 to 1915 , inclusive, and for the 12 -month period ending May 31, igi8 $80-8 \mathrm{I}$
Table 22. Number of establishments in which classified proportions of the total separations are attributable, respectively, to discharge, lay-off, entry into military service and voluntary quitting, 1913-14 and 1917-18 85
Table 23. Type of separation (discharge, lay-off or voluntary quitting) of employees leaving, by industry groups, 1913-14 and 1917-18 $86-89$
Table 24. Comparison of separation rates of skilled and unskilled employees leaving voluntarily, discharged and laid off, 1913-15 91
Tabla 25. Relation between size of establishment and type of separation (discharge, lay-off, entry into military service and voluntary quitting), 1913-14 and 1917-18 92-93
Table 26. Reasons advanced for voluntary separation from service of 8140 employees and causes for discharge of x_{439} employees, in six metal-trades establishments 96
Table 27. Reasons advanced for voluntary separation from service of $\mathbf{1 3 , 6 6 4}$ employees and causes for discharge of 2849 employees, during 1917, in a mail-order house (Establishment No. 27-109) 99
Tabls 28. Number, per cent distribution and rate per full-year worker of employees hired and rehired and of those leaving for specified reasons. A department store (Establishment No. 271) 101
CHAPTER VII. SEASONAL INFLUENCES ON LABOR SHIFTING
Table 29. Labor flux rates by months from January, 1910, to December, 1919, inclusive. (Chart F) 104
Table 30. Labor fux rates of day and night forces of a machine-tool manu- facturing plant (Establishment No.35-144), by months, 1916-19 107
Table 3I. Labor flur rates for each month in selected occupations in a car- building plant (Establishment No. 102), for the year ending May 31, 1978 -109
Table 32. Monthly trend in labor mobility. (Chart G) III
Tabis 33. Extent of labor mobility in the four seasons of the year 113
CHAPTER VIII. LENGTH OF SERVICE AS A FACTOR IN LABOR MOBILITY
Table 34. Length of service distribution of "active employees" (i.e, those on pay roll at end of year) and of employees who left during the year ("separating employees"), 1913-14 and 1917 -18 117

INDEX OF TABLES

Table 35. Length of service distribution of "active employees" (i.e., those on pay roll at end of year) and of employees who left during the year ("separating employees"), by industry groups, z9r314 and 1917-18 (percentage distribution) $3 x 8-121$
Table 36. Length of service distribution of "active employees" (ie., those on pay roll at end of year) and of employees who left during the year ("separating employees"), classified according to sex, 2917-18. (Chart H)
Table 37. Length of service distribution of "active employees" (i.e, those on pay roll at end of year) classified according to sex, 1933-14 and 2917-18
Tabus 38. Length of service distribution of "active employees" (i.e, those
on pay roll at end of year) and of employees who left during the
year ("separating employes"), by gex and industry group,
1917-I8. (Percentage distribution)
Tabre 39. Length of service distribution of "active employees" (i.e., those on pay roll at end of year) and of employees who left during the year ("separating employees"), classified according to skill, 1913-15
TABLE 4a. Length of gervice records of 78 unskilled male laborers hired on
or since July x, soy8, but not on pay moll October, 1918, in a
printing and publishing concern. (Establighment No. I5I) 135-136
Tabus 4x. Length of service distribution of "active employees" (i.e., those on pay roll at end of year), and of employees who left during the year ("separating employees"), in a men's clothing manufacturing plant. (Establishment No. ro3), 19r7-18 . . .
Tabry 4a. Number, per cent distribution, and corrected separation rates of employees quiting, laid off, and discharged during one year . I40

CHAPTER DX. STABLE AND UNSTABLE EMPLOYEES

Table 43. Number and per cent distributions of "active employees" who bad served one year or less and over one year, respectively, in specified industry groups, 1917-18. (Chart I) .

Tancr 44 Comparison of labor mobility rates based on the total working
force with rates based on the unstable part of the working force
in specified industry groups, year ending May 31, 19×8
(Chart J)

Tanlas 45. Number of establishments having classified labor fux rates based
(x) on the whole working force, and (2) on the unstible part of
working force, year ending May 3I, 2918.
Tanis 46. Comparison of labor mobility rates besed on the total working force with rites besed on the unstable part of the morking force, classified according to the relative size of the unstable part of the working farce, 1917-18 157-153

CHAPTER X. RELATIVE RESPONSIBILITY FOR INSTABILITY OF DIFFERENT LENGTH OF SERVICE GROUPS

Tanle 47. Separation rates in specified length of service groupe. (Besed on allocation of the total habor hours among the different length of service groups), 1915-14 and 1917-18

Tanz 48. Separation rates in specified industry groupa, chasified according to length of service. (Based on aliocation of the total habor bours among the different length of service groups), 19:7-18 $156-157$
xiv INDEX OF TABLES AND CHARTS
TABLE 49. Separation rates in specified length of gervice groups of skilled and unskilled workers. (Based or allocation of the total labor hours among the different length of service groups), 1913-15 158
Table: 50. Relative frequency of job replacement in specified length of service groups, 1917-18 159
APPENDIX
Table A. Labor mobility in individual establishments and specified cities, 1913-14 and 1917-18 72-187
Table B. Type of separation (discharge, lay-off, entry into military service or quitting) in individual establishments and specifed cities, 1913-14 and 1917-18 190-203
Table C. Number and per cent of employees in the unstable part of the working force, number in continuous service over one year, and number of accessions and separations, in individual establish- ments and specified cities, 1917-18 204-207
Table D. Iabor mobility by months, from January, 19ra, to December, 1919, inclusive. (Chart F) 208-212
INDEX OF CHARTS
Crart A. Trend of labor change rates in a metal-products manufacturing plant (Establishment No. 42-182), 1912-19 (Table 2) 19
Cenart B. Comparison of the trend of labor mobility in 10 selected estab- lishments with the mobility in all other establishments report- ing, 1913-19, inclusive. (Table 6) 37
Cinart C. Labor mobility rates, by years, rgio-rg. (Table 7) 39
Chart D. Labor fur rates in specified industry groups, 1913-14 and r917- 18. (Table 10) 49
Cbart E. Trend of classified separation rates from January, 1912, to April, 1919; annual totals plotted by overlapping 12 -month periods (a metal-products manufacturing plant. Establishment No. 42-182). (Table a) 83
Craart F. Fluctuations in labor mobility by months, from January, 19ro, to December, 1919. (Table 29; Table D) IOS
Crart G. Monthly trend in labor mobility, identical months, rgro-19, combined. (Table 32) 112
Cenart F. Length of service distribution of "active employees" (i.e., those on pay roll at end of year) and of employeea who left during the year ("seperating employees"), classified according to ser, 1917-18. (Table 36) 125
Crant I. Per cent of "active employees" who had served one year or less, and over one year, respectively, in specified industry groups. (Table 43) 144
Charr J. Comparison of labor flux rates based on the total working force with rates based on the unstable part of the working force in specified industry groups, 1917-18. (Table 44) 148

LABOR TURNOVER IN INDUSTRY

LABOR TURNOVER IN INDUSTRY

CHAPTER I. Introduction

NATURE AND SIGNIFICANCE OF LABOR MOBLITY

Tre difficulty of maintaining a stable work force in industrial establishments has directed attention to the problem of labor instability, - a phenomenon observable in a particularly intensified form in times of prosperity, but found in only slightly less serious form even in periods of depression. Labor instability is regarded by all those who have given any serious consideration to the problem as one of the maladjustments of our industrial life, wasteful and destructive of the potential man-power of the nation and a serious obstacle to the complete utilization of the country's productive forces. In tackling this problem it should be recognized at the outset that within certain limits establishment labor mobility is a normal and necessary thing. A certain amount of shifting from shop to shop and city to city is quite normal and even desirable; part of this necessary movement of labor is an entirely natural ebb and flow resulting from the normal expansion and contraction of industrial activity. Interest in the question of labor mobility is centered, therefore, not only upon its general extent but more specifically upon whatever part of it may be considered abnormal and unnecessary. When it is considered from this standpoint it is essential to know (x) the nature and extent of labor instability, (a) the various factors which are likely to increase or diminish its volume, and (3) whether any employment methods have been or can be devised which will make it possible to reduce labor instability to such an extent that maximum production may be attained at minimum cost and to the mutual advantage of employer and employee.

In order to give really adequate consideration to the various problems involved in labor instability as it affects different industries in the United States, and more particularly to devise methods for its reduction, it will be necessary to have more detailed and extensive data than hitherto have been available. Fortunately, during the last decade a number of progressive firms have given rather close study to the whole problem of labor instability. These concerns have made extensive experiments in labor management with a view to stabilizing the work force and have achieved a measure of success. It is these firms, especially, that have accumulated records sufficiently extensive to show both the magnitude and the intricacies of the problem. These records, moreover, will permit of a test of the effectiveness of certain labor policies and methods of employment. It is upon data from such establishments that this study is very largely based.
Labor instability is generally the consequence of (I) seasonal, cyclical, and other fluctuations in industrial activity which result in varying amounts of employment available to the job seeker; (2) individual or collective dissatisfaction with the conditions of employment; and (3) the dissatisfaction of employers with the services of some employees. In its relation to employer and employee this problem of labor instability becomes a more or less personal one and presents itself essentially in two aspects, depending upon whether it is the employee or employer who is concerned. (I) To the individual workman job changing may mean either gain or loss. In prosperous times, when there are more numerous and attractive job opportunities, the change of jobs may represent an actual gain to the worker. Even if there is nothing gained, it could scarcely involve a loss, because in a rising labor market jobs are likely to be actually awaiting the separating employee, and even at the worst, the period of unemployment between jobs is likely to be relatively short. In periods of depression the establishment labor mobility problem is, for the individual employee, a problem of unemployment and irregular
employment, the employee becoming the unwilling sufferer from the instability and less commonly the willing cause of it. (2) The individual employer, however, is chiefly interested in the maintenance of a stable working force and regards excessively numerous terminations of employment and, especially, voluntary and more or less avoidable separations as a serious obstacle to efficient and continuous operation. He is also very much concerned with the enormous expense to which he is put because of the excessive labor replacement (or, to use a phrase which has gained currency in industrial circles, - the labor turnover) required for the maintenance of his normal work force.
In the following pages the problem of labor instability is considered primarily from the standpoint of the individual establishment. This is done, not because labor mobility from the individual workman's standpoint is less deserving of consideration, but solely because, as has been explained, the data necessary to the study of this subject were readily available only from the records of those establishments which have made serious attempts to cope with the problem of instability. Looked at from the standpoint of the individual employer it becomes a matter of the first importance to consider the question: How are we to know when an establishment's labor instability becomes ercessive? In other words, bow are we to know where to draw the line between abnormal and avoidable labor changes and those changes which are due to purely external causes inherent in the industrial situation, - causes over which the employer cannot exercise any effective control? Labor instability may be regarded as ercessive and as pointing to maladjustment or mismanagement when its volume is in any considerable excess over its volume in the more progressive concerns which have considerably reduced it, and more especially when its volume is in ercess of that common to its particular industry in the same locality at any given time. Conversely, those firms which have a considerably higher stability record than commonly prevails in the industry are generally those which have successfully worked out certain
definite labor and employment policies, as is indicated by figures presented in a later chapter.

As already intimated, a degree of instability which is common and perhaps quite normal and necessary for one industry would be excessive for another. However, if two establishments in the same locality, of about equal size, employing about the same type of worker and engaged in turning out the same product, differ widely in the extent of their labor instability during identical periods of time, this difference usually indicates that the concern whose labor turnover is normal or more nearly normal is either pursuing a more advanced labor policy or that labor conditions (wages, hours, living conditions, etc.) are better than at the other establishment, or even that the more unstable plant is less favorably situated in respect to both of these particulars. Excessive labor instability, in other words, is very likely to be the result of labor mismanagement, low wages, insanitary working conditions, inferior or inadequate housing and transportation facilities, etc., or, what amounts to the same thing, it is the result of the heavy loss of employees to competitors whose labor policies are more enlightened, who pay higher wages, and who provide more attractive working conditions. The frequency of the labor changes, then, is a valuable index to the extent of labor unrest in an industrial establishment and a valuable measure of the effectiveness of the establishment's labor and employment policy.

SCOPE AND IMITTATIONS OF THE BASIC DATA

The statistical matter presented in the following pages is based primarily upon information secured by the authors and other representatives of the United States Bureau of Labor Statistics in the course of two extensive field investigations of the subject. The first of these was a pre-war inquiry made in 1915 and 1916 and reporting in a general way the extent of the turnover during the five-year period 1910-1915, and in more detail for the years 1913 and 1914 both the extent of it and the efforts made to reduce it. The second was a war-time investigation made in 1918,
and resulting in an intensive report on the labor mobility situation for the year ending May 31, 1918. By the use of material secured by correspondence some of the data from these field investigations have been brought down to the end of 19x9. Returns from the two inquiries cover upwards of 260 establishments employing over 500,000 workers in seventeen of the most important industrial States. ${ }^{1}$

It is not claimed that the figures presented are necessarily and in all cases representative of American industry as a whole. It is realized that because of the relatively small number of establishments used in this study the various mobility rates shown must be regarded as being merely indicative of the general

[^0]turnover situation at any given time. But whatever may be the limitations of the figures for the measurement of the amount of labor mobility at any particular time, it is believed that they may be used with entire confidence in gauging the trend in mobility from season to season and from year to year.

CHAPTER II

Ter Derlititon and Measurement of Labor Mobility ${ }^{1}$

Any adequate comparison of establishment experience in dealing with labor instability as well as any clear presentation of the relative extent of that instability in different plants make a uniform use of terms and a uniform standard of measurement absolutely necessary. The complex problem of labor instability cannot adequately be discussed or clearly presented by use of a phrase of such necessarily narrow and specialized connotation as "labor turnover," which has, hitherto, been loosely used in reference to establishment labor instability generally. The use of the word "turnover" in any exact sense necessitates the assignment to that word of a precise and definite meaning. This has, so far, never been done. Indeed, the different ways in which the phrase "labor turnover" is interpreted and applied are distressingly numerous. The phrase should obviously be identified with whichever one of the current interpretations appears to have the greatest practical utility. On these grounds it would seem that the term "labor turnover" ought to be used in one sense, and one only, and that strictly in reference to the extent of shift and replacement necessary for the maintenance of the work force. This aspect of the matter is the one with which employers of labor are most intimately concerned. For use in reference to the larger aspect of the flow of labor into and out of industrial establishments, of which labor turnover or labor replacement is only one phase, a more inclusive term needs to be used. It seems that the phrase "labor mobility" best serves this more general purpose and it is accardingly so used in these

[^1]pages. This book is given the title "Labor Turnover" because it deals chiefly with the shifting and replacement involved in force maintainance, and because, on the whole, that expression seems less unsatisfactory than "labor replacement." ${ }^{1}$

ACCESSIONS, SEPARATIONS AND REPLACEMENTS

To make it easier to understand the method of measuring labor change in this study, it may be well to clear the ground by briefly referring to three aspects of labor mobility with which the phrase "labor turnover" has been hitherto closely identified. These are: (1) the number of employees hired (accessions), (2) the number leaving (separations), and (3) the number of replacements ${ }^{2}$ required to keep up the work force. The United States Bureau of Labor Statistics originally used the replacements as "turnover." Later on it identified separations with "turnover" and followed that method for a time. ${ }^{4}$ Among private organizations each of the three concepts has its advocates. It is evident that neither accessions, separations, nor replacements when used alone completely interprets the whole labor mobility situation, nor can they when used alone adequately take into account the constantly varying factors inherent in the industrial situation.

[^2]
the base in "turnover" computation

In regard to the base upon which the amount of labor instability is to be computed the situation also leaves much to be desired. The number-on-pay-roll basis which has been most commonly used is patently defective because of the varying numbers of "dead" employees included, that is, employees, absent at first, who eventually separate from service but who are likely to be carried on the pay roll for varying periods of time after they have ceased to be active employees. The Bureau of Labor Statistics, in its first investigation, took the average of the weekly, fortnightly, or monthly numbers on the pay roll as representing the standard working force. This is a padded "standard," as will soon be made evident. The Rochester Conference proposed that the average number actually working from day to day be considered the "standard" working force. This, it is believed, comes nearer to a genuine standard base than any other proposal theretofore advanced. The trouble with both these methods is that they are not standards at all in any proper sense of the word. They may, indeed, constitute a fairly accurate base for determining the rate of labor flow in any particular establishment, but they do not constitute a cormmon base for different establishments.

The Pay Roll as Base. - The statistical evidence available indicates quite conclusively that the average pay-roll number is an inflated and inconstant standard, and therefore a very inaccurate base for use in measuring labor mobility. Some appreciation of the amount of this inflation, due to dead and brokentime names on the pay roll, may be had from an examination of the records of a few establishments which kept their records in such a way that it was possible to compare the actual amount of employment as measured by the labor hours worked with the apparent amount of employment shown by pay-roll figures which latter figures, of course, show the aggregate number who had been in service for any length of time during the pay period.

In Table i there are shown for five establishments the number of equivalent full-time workers for a given period of time and the average number of employees on the pay roll for the same period.

TABLE 1
Difyerence between Pay-roll Nuxbers and Number of Equivalent Full-tine Workers

	Acgregatz Nombix of Ont-man Days Workad	Numere or FOLLTME Worgens	Averaci Nusbep or Employees on Pax Roll	Per Ceart Excess of Paymols Noibze over Equivating Nuncbue DF FOLLTME Wopzess
Copper mine ${ }^{\text {1 }}$	82,016	247	298	
Smelter ${ }^{1}$. ${ }^{\text {a }}$	130,467	391	506	39
Electro-zinc plant ${ }^{\text {P }}$	45,949	138	185	34
Machine Tool Mfg. ${ }^{\text {a }}$.		3,8554	4,046	5
Metal Products Mfg. ${ }^{\text {- }}$	1	1,047 ${ }^{4}$	2,15	10

Obviously, the margin of excess of the pay-roll number over the number of equivalent full-time workers indicates the extent to which the pay-roll records are "loaded" with names of employees who may have worked only a day or two of the pay period and who, therefore, do not represent employment - but merely a more or less padded pay roll. The use of the pay-roll number, even though it exaggerates the amount of employment (which is the true basis of computation), might still do fairly well as a base in computing mobility if only the margin of inflation were fairly uniform. Unfortunately it is not at all uniform. There are at once apparent wide variations between different plants, the least exaggeration of pay roll appearing in the machine tool manufacturing plant where the excess is only 5 per cent and the greatest in the electro-zinc plant where the excess is 34 per cent. The fluctuations in this margin of inflation are even wider between different pay-roll periods in the same establishments.

[^3]Thus, in the smelting plant shown in the above table the margin of pay-roll inflation ranges from 7 per cent in February to 52 per cent in Aprii. These figures indicate that the true active working complement is unquestionably considerably smaller than the apparent complement indicated on the face of the pay-roll records. This margin is due to the counting of the names of those employees who served only a part of the pay period but whose names, nevertheless, were not dropped from the pay roll until after the end of the pay period. It is obvious that the pay-roll figures must be discounted for this "broken-time" margin. The necessity for making such a discount of the pay-roll figures forces the conclusion that the true base in labor mobility rate calculation must be expressed in some standard unit, say, 3000 hours - time roughly equivalent to the time put in by one employee working one year.
Average Daily Work Force. - A base subsequently recommended and one which more clearly approaches a true standard is the average daily work force, based upon attendance records. But it was found that even the use of the average daily working force as $\%$ base was hardly adequate for comparative purposes because the widely varying length of the work-day in different establishments, industries, and cities makes such figures inadequate. The average daily attendance plan was proposed very largely because it approximates more closely the average number of full-year workers. Since the amount of "turnover" is measured by the ratio between the number of replacements made and the average number of workers who are continuously employed throughout the period, it is evident that the requisite standard is to be arrived at by somehow pruning down the pay-roll figures to the equivalent number of full-year workers, as defined above.

Labor Howrs. - It is suggested that this pruning can be done very effectively and in a way most conducive to standandization by using as an ultimate base the actual number of hours (or, failing a record of labor hours, the number of days) put in during the period considered.

Labor CHANGE RATES

Just as "turnover" is a misleading term for use in general reference to the phenomenon of labor instability, so the term "percentage" is equally confusing for use in measuring the extent of this phenomenon. We know exactly the extent of the replacement necessary to maintain the normal work force when we know, let us say, that replacements took place in any given concern at the rate of 2 for each full-year worker in the normal work force. In other words, the phrase "rate of replacement" accurately designates what "percentage of turnover" has been loosely used to express. ${ }^{1}$

Other items in the labor flow, and, indeed, its whole volume or flux, may be "rated" in a similar fashion. The rate at which employees leave may be called the separation rate, and the rate at which they are hired, the accession rate. Whichever of these two rates is the lower may, for all practical purposes, be used as the replacement rate. When the accession rate exceeds the separation rate, the difference between the two measures the labor increase rate. When the separation rate exceeds the accession rate, their difference measures the labor decrease rate. If the separation and accession rates are equal, either one may, of course, be used as the replacement rate and there is naturally neither increase or decrease, the concern in question being neither expanding nor curtailing operations. The rates of increase and decrease may be considered as marginal rates in relation to the replacement rates, the increase rate measuring the amount, if any, of inflow over and above replacement inflow and the decrease rate measuring the amount, if any, of outflow over and above the outflow which has to be (and sooner or later is) replaced. The

[^4]accession rate plus the separation rate gives the total rate of labor change - a single rate of labor flux on the basis of which the mobility of labor in one occupation, shop, industry, or locality may be compared with its mobility in any other occupation, shop, industry, or locality. These different types of labor mobility or labor change rates may be classified as follows:

1. Accession rate (or hiring rate)
2. Separation rate $\left\{\begin{array}{l}\text { quitting rate (leaving voluntarily) } \\ \text { discharge rate ("firing" rate) } \\ \text { lay-off rate }\end{array}\right.$
3. Replacement rate (separations minus excess of separations over accessions). This is the " turn-over" rate.
4. Labor increase rate (accession rate minus separation rate)
5. Labor decrease rate (separation rate minus accession rate),
C. Flux rate (accession rate plus separation rate) :

If there is no excess of separations over accessions, that is to say, if the separations exactly equal, or are exceeded by, the accessions, the number of separations, as it stands, represents the number of replacements. It is evident, then, that whichever number - accession or separation - is the smaller must represent the number of replacements. It should be very carefully observed, however, that serious error may result when the attempt is made in this fashion directly to deduce the number of replacements from the accession and separation figures when these figures represent the aggregate of several establishments or even, in some cases, of several groups (departmental, occupational, etc.) within a single establishment. Thus, for example, in Table 7 it is evident that the 86,179 separations which took place in the 16 plants in 1910, although, as compared with the 90,408 accessions, they would come much nearer to the number

[^5]of replacements, are in all probability considerably above it, since it is likely that in some of the 16 establishments the separations exceeded the accessions - in other words, contained nonreplacement changes. The only method of obtaining absolute accuracy in regard to replacements is to segregate in a separate column the replacement numbers (whichever is smaller, accessions or separations) for each labor group (whether occupation, department, sex, plant, or locality) for which figures are shown, add the replacement numbers for each group, and figure the replacement rate independently on the basis of the total thus obtained. It is evident, of course, that in such a case as that of Table 3, where the work force of a single plant is taken as a unit, the replacement rates may be directly deduced as indicated in the formula.

The marginal flow, mentioned above, made up of excess hirings or excess separations, as the case may be, is not without importance. It is not labor replacement, however. Its importance, so far as force maintenance is concerned, is quite secondary. As a contributing or causal factor in unemployment in general, it is of vital importance both to the employing firm and to the community. Consider, for the moment, not merely the labor replacement involved in the establishment's force maintenance, but its labor mobility situation as a whole. As already noted, this total stability situation is best represented by the sum of the accession and separation rates. This includes not only the accessions and separations which are replaced (and which form the basis of the replacement rate), but also any possible marginal flow (of excess recruits or "quitters"s) expressed in the form of labor increase or decrease rates, as the case may be. This total establishment flow, as already intimated, is perhaps the best single index to the general labor stability situation in any establishment and to its standing as compared with other establishments. This total flux figure is quite readily ascertainable and it can easily be computed.

[^6]From the standpoint of the employee, labor mobility means irregular employment and unemployment. In the present work we are not primarily concerned with unemployment as a community problem or as a personal employee problem; we are concerned with it simply as an establishment problem. The primary purpose of this analysis is to gauge the labor flow into and out of the factory, including that part of the labor flow which (necessarily or unnecessarily) is involved in the maintenance of the normal work force - the phase of labor mobility here referred to as "labor replacement," "or labor turnover." These terms express the employers' professional interest in unemployment as a phenomenon of the labor flow - into and out of his establishment. Quite naturally, he is more concerned about the number of men it is necessary to hire to keep the establishment going than he is about the number of days unemployed individuals may be out of work each year.

suggested ceanges in computation practice

It is here proposed to make certain definite changes in computation practice in regard to all the factors entering into the measurement of the labor flow:
r. As to the relatively more variable factor - the ebb and flow of industrial labor - it is suggested that it be measured by (a) making use of accessions as well as separations, (b) from the relation between these two more or less accurately gauging the replacements, and (c) adding accessions to separations, thus showing the labor flux.
2. As to the relatively constant factor, or base - the normal or standard working force - it is proposed to use, instead of the a verage number on the pay roll, the number of 3000 -hour (or 300 -ten-hour-day) workers to which the total hours (or days) put in during the period are calculated to be equivalent: This

[^7]TABLE 2
Trend of Labox Flux, Accession, Classified Separatyon, and Replacelent Rates in a Metai-products Manupacturing Piant (Establisengent No. 42-182), ${ }^{1}$ by Months, prom 1912 to 1919

Year Exdmp mits	AvzrageNumberor FuLL peas	Movino Annual Rates fer Foilmear Wokeice					
		LaibokFLUX(SEPARA-TPONSPLUS ACcESSIONB)	Tozal Accesstong ${ }^{1}$	Clanstitied Sexarations			
				Total ${ }^{\text {a }}$	$\begin{aligned} & \text { LEAF } \\ & \text { VoLUN. } \\ & \text { TARIYY } \end{aligned}$	$L_{\mathbf{O P D P}}$	$\int_{\text {CBAROM }}^{\text {Dig }}$
December 31, 1912.	1,088	4.10	2.20	1.90*	1.23	43	. 25
January 31, 1913	1,114	4.2 I	2.28	1.93*	7.28	. 40	. 26
February 28.	1,138	4.18	2.22	$1.97{ }^{*}$	1.31	4 4	. 25
March 30	1,158	4.05	2.14	1.97*	1.24	42	. 25
April 30.	1,174	3.96	2.08	1.88*	1.21	. 41	. 25
May 3 .	1,885	3.96	2.09	1.88*	1.2x	42	. 24
June 30.	1,214	3.98	2.18	1.80*	1.28	. 27	. 24
July 35.	1,241	4.03	2.05	${ }^{\mathbf{x}-97^{*}}$	1.29	-44	. 24
August 3 F	1,245	4.02	2.04	1.98 ${ }^{\text { }}$	1.27	. 46	. 24
September 30	x,248	3.98	2.02	1.96*	$x .26$	-46	. 24
October 37	1,258	4.03	2.04	x.99*	1.24	-49	. 26
November 30	1,264	3.91	1.96	1.95*	1.21	. 48	. 26
December 35	1,262	3.68	1.84*	1.87	1.14	. 47	. 25
January 31, 1914	1,259	3.51	1.73*	1.78	1.07	-47	. 24
February 28.	1,262	3.43	1.70*	${ }^{2} .73$	1.01	-47	. 24
March 30	1,267	3.38	1.71	1.67*	. 96	-47	. 24
April 30.	1,276	3.18	1.60	1.57*	. 86	. 49	. 22
May 31.	1,277	3.02	$\pm .53$	1.50*	. 75	. 53	. 22
June 30.	1,293	2.86	1.51	1.36*	. 64	- 50	22
July 3r.	1,299	2.96	1.49	I 4.48^{*}	. 61	. 64	. 21
August 31.	1,293	2.89	1.39**	$x .50$.51	.77	. 21
September 30	1,279	281	1.33***	1.49	.49	. 80	+20
October 3 z .	1,260	2.68	1.26**	1.43	. 46	.79	. 18
November 30	1,252	2.70	1.26**	1.44	. 45	.80	. 18
December 31	1,234	2.58	1.16*	1.42	. 44	.81	. 16
January 31, 1915	1,217	2.55	$1.17{ }^{*}$	2.39	42	.81	. 16
February 28.	x,197	2.50	$\underline{1.12 * * * * ~}$	2.38	-41	.88	.15
March 30	1,176	2.40	1.07**	1.33	39	.81	.12
April 30.	7,752	2.31	1.01*	1.30	. 39	. 79	. 12
May 31.	1,136	2.12	.87**	1.24	. 39	. 75	. 11
June 30.	1,088	1.93	. $68{ }^{*}$	$\underline{7} 24$. 36	. 79	09
July 31 -	1,053	1.70	.71************	.999	. 38	-53	.07
August 31	1,049	1.60	.73*********	.87	42	-38	. 07
September 30	1,050	1.63		.87	-44	. 36	. 07
October 3 L .	1,050	1.62 1.59	.76 $.73^{*}$.86	.46 .50	. 34	.07
November 30	1,047 $\mathbf{1 , 0 4 7}$	1.59 $\mathbf{1 . 9 1}$	$.73 *$ 1.00	.86 ${ }_{\text {. }}^{\text {a }}$. 50	. 32	.05

[^8]TABLE 2-Conlimued

Yent Eidid wite							
		Lamot		Classitid Separations			
			Accts grons	Total ${ }^{1}$	$\begin{aligned} & \text { Larry } \\ & \substack{\text { Vourns- } \\ \text { tarniy }} \end{aligned}$	Lam	$\begin{gathered} \text { Dis } \\ \text { Cankeip } \end{gathered}$
January 3r, zar 6	1,062	2.45	$\mathbf{x} .35$	1.14*	.76	. 32	. 07
February 29.	7,09x	2.93	1.60	I.32*	.92	. 31	. 09
March 30	1,111	3.36	1.78	1.58*	5.17	. 30	. 11
April 30.	1,128	3.97	2.08	1.89*	T. 49	.29	. 11
May 31.	1,152	4.64	2.43	2.21*	$\underline{5.80}$.29	. 12
June 30.	1,188	5.02	2.70	2.32*	2.00	. 88	.12
July 31.	1,925	5.22	2.75	2.47 ${ }^{\text {a }}$	2.17	.13	. 16
August 32	1,249	5.59	2.95	2.65*	2.35	12	. 18
September 30	5,28I	5.90	3.09	2.81*	2.59	. 70	. 19
October 3 II .	1,314	6.28	3.34	$2.97{ }^{+}$	2.67	. 10	. 20
November 30	$\pm, 355$	6.67	3.60	3.08*	2.77	. 09	. 21
December 31	4,392	6.63	3.45	3.18*	2.88	. 09	.2x
January 3x, 1987	1,406	6.40	3.25	3.15*	2.86	. 08	. 20
February 28.	1,413	6.33	3.20	$3.12{ }^{\text {+ }}$	2.85	. 08	. 20
March 30.	1,433	6.35	3.25	$3.15{ }^{*}$	2.83	. 07	. 20
April 30.	r,456	6.27	3.92	3.06*	2.79	. 07	. 20
May 3x , .	${ }^{1} 463$	6.21	3.15	3.06**********	2.78	.08	.20
June 30 , :	1,466	6.20	3.15	3.05*	2.79	. 06	. 20
July 3 Al .	$\underline{x}, 489$	6.47	3.36	3.71 ${ }^{\text {c }}$	2.90	. 03	. 19
August 3 S September ${ }^{\circ}$	x,515	6.78	3.55	3.23 *	3.02	. 03	. 18
September 30 Octaber 3 I	1,536	7.03	3.69	$3.35{ }^{+}$	3.13	. 03	. 19
October 3 I .	1,563	7.05	3.68	3.37*	3.14	. 04	.19
November 30	1,588	6.95	3.57	3.36*	3.13	. 04	. 30
December 31	x,606	6.85	3-49	3.33*	3.08	. 06	. 20
January 31, 1918	1,635	6.73	3.45	3.28*	3.02	. 06	. 20
February ${ }^{\text {a }}$.	1,634	6.64	3.36	$3.28 *$	3.08	. 06	. 18
March 30	2,637	6.57	3.30	3.27*	3.04	. 6	. 17
April ${ }^{\text {co. }}$	1,636	6.48	3.29	3.19*	\$.95	. 07	.17
May $3 x$.	1,652	6.23	3.13	3.10^{*}	8.87	. 07	1.17
June 30.	1,642	6.97	$3.08{ }^{\circ}$	3.05	2.83	. 07	. 16
July 31 -	1,645	6.04	5.09	3.95	2.73	. 06	. 16
August 3x ${ }^{\text {a }}$	1,65	5.76	8.90	2.86*	2.62	.07	.17
September 30	1,654	5.70	2.86	2.84*	2.60	. 07	. 17
October 3 S ,	1,642	6.08	$2.8 x^{*}$	3.28	2.65	46	. 17
November 30	1,591 1,560	6.4.2	3.08*	3.34	3.67	. 51	. 16
December 32	1.560	6.59	$3.26{ }^{*}$	333	3.67	-49	. 17
January 3T, 1919	12547	6.77	3.40	$3.3 y^{*}$	5.70	49	. 19
February 88 .	${ }_{1}^{1} \times 50$	6.75	3.34*	$3-48$	2.67	. 54	± 0
March 30.	${ }^{4}$, 514	6.55	3.4.5	3.34	2.56	. 56	. 2
April 30. .	1,475	6.39	3.01*	3.38	0.47	.67	45

number may be derived from the labor-time records or, failing such records, the daily attendance records or wages and salaryaccount records, as explained in another section of this chapter. This standard base will be called for convenience "the equivalent full-year worker" or, more briefly, "the full-year worker."
3. It is then proposed, in place of the rate of gross separation per 100 in attendance or the rate of gross accession per 100 on the pay roll (both so-called "turnover percentages"), to use as a double index of the shifting involved in labor maintenance and of the extent, as well, of labor increase and labor curtailment, the rates of accession and separation per equivalent full-year worker, and as an index to the general stability situation the total labor flux rate per full-year worker, the "full-year worker" being a standard unit, the number of which is obtained by dividing the total number of hours (or days) worked during the period considered by the 3000 hours (or 300 days) of a standard working year. The rate is arrived at by dividing the number of labor changes (of whatever kind) by the number of "full-year workers." As will be explained in another part of this chapter, not only these accession and separation rates, but the labor replacement, labor increase, labor decrease, and total labor flux rates each can be computed separately and their general trend and relations to each other readily charted in graphic form.

The whole significance of the use of replacements rather than gross separations as an index of labor flux, as well as the relation between the accession, separation, and replacement rates, is best brought out by the use of data showing the average number of employees and the number hired and leaving by months over a fairly long period. This will give some notion as to the trend of accessions, separations, and replacements. Such illustrative data are contained in Table 2.

The figures presented are from a metal products manufacturing establishment in the Middle West. They show for the twelve-

month periods indicated the rates of labor change (flux, accession, and classified separation) per full-year worker. They are, in other words, "smoothed" rates derived (by the method of moving averages) from the actual rates for each month, which latter in turn are computed by dividing the actual number of labor changes of each particular kind that occurred during each month (the variable) by the number of full-year workers ${ }^{2}$ employed during that month (the base). Thus, e.g., the figure 2.20 at the top of the accessions column is the accession rate for the twelve-month period ending December 31, 1912, and the figure 2.28 is the rate for the twelve-month period ending January 31, 19:3, etc. Replacement rates among total separations and accessions are indicated by asterisks.

The moving annual labor change rates given in Table 2 for the overlapping twelve-month periods are, with the exception of the classified separation rates, shown graphically in Chart A.?

The two curves marked " accessions" and "separations" tell the whole story. There are obviously two main movements. There was a distinct downward movement - a movement toward greater stability - during the greater part of the four-year period, 1912-1915. The following four years - the years of the World War - witnessed a movement, quite precipitate at first, toward greater mobility. The accession and separation rates follow a roughly parallel course during the seven-year period. The average number of employees underwent a slight. increase. The flux rate curve shows a form roughly corresponding, of course, to the trend of accessions and separations. It was 4.10 per full-year worker in 1912, 1.91 in 1915, and 6.39 in 1919. The replacement curve (marking the trend of the starred figures in Table 2) is shown on the chart by a line drawn parallel to a line

[^9]connecting the lower points in the lines showing accessions and separations. It is evident that at the beginning of the period accessions were in excess, so that separations measured replacements, whereas at the end of the period the reverse relation held true and accessions consequently measured replacements.
In 1912 employees in this particular factory were being replaced at the rate of 1.90 , in 1915 at the rate of 0.91 , and in 1919 at the rate of 3.01 per full-year worker. Either the replacement curve or the flux curve would seem to serve quite well as single indices of the labor stability situation. The labor flux rate was cut down 54 per cent during the period from January 1 , 1912, to December 31, 1915, but between the latter date and April 30, 1919, it underwent an increase of 235 per cent.

When the accessions are in excess of the separations, the factory is building up its force, and the extent to which they are in excess measures the amount of recruiting being done. When the separations, on the other hand, exceed the accessions, the factory must be cutting down its operations and reducing its force, and the margin by which the separations are in excess measures the amount of labor decrease. In the chart the dark shaded areas show the extent of labor increase and the light shaded areas the extent of labor decrease.

DEFINITION OE TERMS

The precise definitions of the different factors which have been discussed in the preceding pages may now be formulated and the method of computation described:

The Variables. - The whole phenomenon of the movement of labor into and out of industrial establishments is referred to here as "labor mobility."" Those hired are referred to as "accessions." Those leaving service, under whatever circumstances,

[^10]are referred to as "separations." Those of the accessions which are made to fill the vacancies made by separations are replacement accessions, or "replacements." Whichever one of the two items, accessions or separations, is the smaller may conveniently be taken as measuring the number of replacements. The total number of labor changes, that is to say, the sum of the accessions and separations, is the "labor flux." The amount by which the accessions in an expanding business are in excess of the separations is the amount of "labor increase." The amount by which the separations in a plant which is curtailing operations exceed the accessions is the amount of "labor decrease." Unless otherwise indicated in the context, the word "turnover," in this book, is used in reference to rate of replacement. ${ }^{1}$
The Base or Standard of Measurement. - As to the base or normal work force to which the number of labor changes, or the number of replacements, or accessions, etc., must be compared in order to show the frequency or rate of change, use is made of the aggregate number of hours actually worked by all employees for any period. This is a genuine standard base, inasmuch as it accurately represents the volume of employment, or the amount of industrial exposure. This base at once eliminates all inflation due to dead and broken-time names on the pay roll, thus putting establishments with varying amounts of employment on a par and making the strictest comparability possible.?

METHOD OF COMPUTATION

The exact method of measuring labor mobility used in this study is as follows: The general extent of labor mobility is statistically determined by comparing the total movement of
${ }^{1}$ The relations between accessions, separations, replacements, and flux may be seen from the tabular presentation of them all in Table 3. See above, p. 8, note 4.
${ }^{2}$ In the earlier studies of labor turnover made by the Bureau of Labor Statis. tics the average daily wort force was first used as a base but was later changed to the full-year of 3000 -hour worker. Finally, the Bureau decided to use the unit labor bour or some decimal multiple thereof. (ro Mo. Lab. Ret. 1344.)
labor in and out (accessions and separations) during any given period with the number of "fully-employed-worker" labor-time units of 3000 hours put in by the work force during that period. The number of labor changes, in other words, is compared with the number of full-year workers. This flux or total labor change rate is believed to constitute the best single index to the general stability situation in any plant or group of plants and in subdivisions within individual establishments. The flux rate is made up of the accession rate and the separation rate. The two latter rates should be shown separately in order to reveal the whole stability situation. The separation rate should be subdivided so as to show the relative responsibility for the labor outflow of discharges, lay-offs, and quits. The rate of replacement, which means the rate at which separating employees whose places must be filled are replaced by others, may be, for all practical purposes, defined as and identified with the rate of separation when that rate is lower than the accession rate and as the rate of accession when that rate is lower than the separation rate. ${ }^{1}$ When the accession rate exceeds the separation rate, the difference between the two measures the labor increase rate. When the separation rate exceeds the accession rate, their difference measures the labor decrease rate. If the separation and accession rates are equal, either one may, of course, be used as the replacement rate and there is naturally neither increase nor decrease, the concern in question being neither expanding nor contracting. The rates of increase and decrease may be considered as marginal rates in relation to the replacement rates, the increase rate measuring the amount, if any, of inflow over and above replacement inflow and the decrease rate measuring the amount, if any, of outflow over and above the outflow which has to be (and sconer or later is) replaced.

The different mobility or labor-change rates are given in these pages as rates per full-year (or 3000 -hour) worker. For illustration: The figures in Table 7 show that during the year ending

[^11]May 31, 1918, the sum total of accessions and separations for the 176 establishments reported was $1,244,640$. The number of labor hours worked in these plants during this period was 917,703,000. Consequently the
Flux rate (per full-year worker) is $\frac{1,244,640}{917,703,000} \times 3,000=4.80$
the Accesssion rate $\frac{631,173}{917,703,000} \times 3,000=2.07$
the Separation rate $\frac{613,467}{917,703,000} \times 3,000 \mathrm{~m} . \mathbf{a r}^{2}$
The rates for any departmental, occupational, or other subdivision of the work force can be figured in exactly the same way. Thus, for example, to get the accession rate divide the number hired for the particular department or occupation during the period covered by the number of labor hours worked in that department or occupation group during the period and multiply by 3000 . It at once will be evident that the same results can be obtained in more direct fashion by simply dividing the number of labor changes by the number of full-year workers.

The meaning of all of these different phases of labor mobility and their relation to each other are brought out in a somewhat clearer fashion in Table 3 (presented here merely to throw light on method and terminology), which shows for the years 1917 and rg18 the rate per full-year worker of flux, accession, separation, replacement, labor increase and decrease, in an automobile manufacturing plant.
It is evident from these figures that in 1917 to maintain a labor force of 35,401 workers, who put in 106,203,000 labor hours; there were 14,827 separations. Of these 6863 represented curtailment - labor decrease. They were either lay-offs, discharges or quits taken advantage of to reduce the force, and not replaced. To make good the remaining 7964 separations, 7964 new workers were hired. There were, then, in that year 22,791 labor changes involved in the maintenance and curtailment of a work force of $\mathbf{3 5 , 4 0 1}$ persons. In r918 the plant under-
went expansion, its labor increase rate being .o7 per full-year worker. There were 24,349 separations, all of which had to be replaced. In addition, plant extension required a labor increase of 2223 , making a total of 26,572 accessions. There were altogether in 1918 no less than $50,92 \mathrm{r}$ labor changes required to maintain and enlarge a work force of 31,9 II and to get $95,733,000$ hours of work done. In other words, in 1917 the accession rate was .23 and in 1918 it was .83 per full-year worker; the separation rate was .42 and. 76 in 1917 and 1918, respectively; the

TABLE 3

Labor Mobrity in an Automobile Manutacturing Plant (No. 48-194), Showing Flux, Accession, Sepabation, Replactiment, and Laboz Incrizase and Decrease Rates yoz 1917 and $1918{ }^{1}$

Yeat			Acctisstons H. Separa(FL6K)	Acciss Binks	$\frac{\text { Sepatan }}{\text { RIONS }}$	$\underset{\substack{\text { Rivincs: } \\ \text { mevis }}}{ }$	$\begin{aligned} & \text { Lanos } \\ & \text { Inter } \end{aligned}$	$\begin{aligned} & \mathrm{L}_{\text {niog }} \\ & \mathrm{D}_{2} \\ & \hline \text { crise } \end{aligned}$
	Nugam							
1917: 2918.	x,699 $1,340^{2}$	35.401 $3 \mathrm{x}, 9 \mathrm{II}$	$\begin{aligned} & 22,79 \mathrm{I} \\ & 50,92 \mathrm{I} \end{aligned}$	$\begin{array}{r} 7,964 \\ 26,572 \end{array}$	$\begin{aligned} & 14,827 \\ & 24,349 \end{aligned}$	$\begin{array}{r} 7,964 \\ 24,349 \end{array}$	2,223	6,863
	Rats phe Forchras (s000-Home) Woant							
1917 1988.	0.05 0.04	二	$\begin{aligned} & 0.64 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.83 \end{aligned}$	0.42 0.76	0.13 0.76	0.07	0.19

replacement rate . 23 and . 76 , and the flux rate .64 and I.60. In 1917 the establishment underwent curtailment at a rate of .19 (and in 1918 it underwent expansion at a rate of .07) per full-year worker. This means that when the accessions are in excess of the separations the factory is building up its force, and the extent to which they are in excess measures the amount of labor recruiting being done. When the separations, on the other hand, exceed the accessions, the factory evidently is cutting down its operations
${ }^{2}$ Then by permission from article on "Measurement of habor mobility," sis Jowr. Palith Ecmen. 444.

- Based on records for first six months onfy.
and reducing its force, and the margin by which the separations are in excess measures the amount of industrial demobilization going on in that factory.

RELATION BETWEEN DIFFERENT METEODS OR COMPUTATION

The relation between the two principal methods which have been used hitherto in labor turnover computation and the method followed in this book is shown in Table 4, in which the figures of methods II and III are derived from those of method I which are taken from Table 7. Separation rates in round numbers are given in parentheses:

TABLE 4
Comparason of Teree Metriods of Measuenng Labor Mobinity

A separation rate of 3.3 per 10,000 labor hours, as the Bureau of Labor Statistics now computes "turnover,", or a separation rate (called, Rochester fashion, "percentage of turnover") of 100 per hundred on the work force, as the Bureau formerly figured "turnover," are both equivalent to a separation rate
${ }^{1}$ That is, the rate per $x 00$ full-year workers (or employees on the pay roll).
-This is also the Bureau's official method of computing industrial socident frates. 10 Monthly Lobor Review, 128-219 (January, 1920).
per full-year worker of 1.00 as used in these pages. ${ }^{1}$ Conversely, a separation rate of 2.00 per full-year worker as used here is equivalent to a separation rate of 6.6 per 10,000 labor hours and to a "percentage of turnover" (Rochester formula) of 200. The flux rate on the new basis used here would be 2.00 , which is the same as a flux rate of 6.6 per ro,000 labor hours. Such a rate indicates that during the period under observation the sum total of the number hired and leaving is equal to twice the number of full-year workers employed. When the accession and separation rates in any establishment each stand at or close to 1.00 , thus giving a flux rate of 2.0 , the situation in that plant is one equivalent to a complete overturn of the work force. But this complete work-force turmover flux rate of 2.00 may actually represent three distinctly different industrial situations, the revelation of which is one of the useful functions of accession and separation rates: (I) accessions $\mathrm{r} . \infty 0$, separation r. .0 , a going concern which is neither expanding nor curtailing its operations; (2) accessions 1.50, separations .50, a concern which is undergoing more or less rapid extension of plant; and (3) accessions .50, separations 1.50, a concern which is curtailing activities. One or the other of these three different situations is involved in every rate of total labor change, whether it be in a very stable plant with a flux rate of $1 . \infty$ or a very unstable one with a flux rate of 4.00.

The fact should be emphasized that the primary object in gauging the extent of labor mobility is to ascertain the number of labor changes involved in the maintenance (and the necessary erpansion or reduction) of the labor force. The number of different individuals involved in these changes is of less importance here than the number of repeated transactions. The computation method here used indicates the number of changes which take place, but it obviously involves double counting and does not, therefore, furnish a true report of the number of different persons

[^12]involved in the labor shiftings. The accession rate reported for a single concern is sure to include some employees who have been hired more than once during the period covered by the figures. The same is true of the separation rate and the flux rate. The figures for a group of establishments may also contain the accessions of certain employees whose separations are included, as they should be, in the separation figures for the same group. It is important to observe that this double counting does not affect the accuracy of figures designed to show merely repeated transactions. Moreover, since the concerns here reporting are widely scattered geographically and well distributed as to industry, there would not be likely to be many employees shifting from job to job within the group of firms reported. That is to say, when a worker left one of these plants the chances would be heavily against his being taken on by one of the other firms in this small group. But if he is so taken on, he is rightly to be counted twice, since he has made two labor changes. ${ }^{1}$

[^13]
CHAPTER III

Personnel Policy and Labor Stability ${ }^{1}$

A very effective illustration of the practical usefulness of labor mobility figures is fumished in a comparison of the mobility experience of ten selected establishments with that of all other establishments reporting. The labor flux rates in each of the ten selected plants are shown for the period rgr3-r919 in Table 5. For convenience in making comparisons the corresponding flux rates for all establishments reporting are given in the last column.
A more complete exhibit of the two groups of concerns compared in Table 5 is given in Table 6, which places side by side for each year of the seven-year period the rates of accession, separation, and flux in (I) the ten selected establishments and (2) all establishments reporting. The labor flux rates of Table 6 are shown graphically in Chart B.

The ten concerns whose records are set forth in Tables 5 and 6 were chosen not only because they had definite labor policies and centralized employment machinery, but also on account of the fact that they had had considerable success in stabilizing their work forces and keeping their labor mobility rates down to relatively low levels. The figures demonstrate, so far as it is possible

[^14]to demonstrate such things in statistical terms, the definite effectiveness of liberal labor policies and more or less centralized systems of employment. The curves of Chart B show in striking fashion that the ten selected establishments have brought about a considerable reduction in the extent of their labor shift and have suffered a much slighter decrease in stability during the war period than did the general run of establishments. It appears from the figures of Table 6 that for the whole period, 1913-1919, the ro selected concerns had an average labor flux rate of 1.53 as compared with a rate of 2.25 for all other concerns. The selected plants reduced their flux rates from 3.27 in 1913 to 1.68 in 1919, but were forced up to 1.83 in r9r8, which was the highest point reached after ig13. Establishments generally began with a rate of 2.61 in 1913, were pushed in 1918 up to 4.08 (over twice the mobility experienced by the selected concerns), and finished in 1919 with a rate of 2.ro. This comparison of achievements, which covers a relatively long period, shows the vital importance from the standpoint of the industrial establishment of studying this subject of labor mobility, the necessity of examining the employment and personnel methods currently practiced by the more far-sighted employers, and the desirability of keeping systematic and continuous employment records in order to gauge the effect of labor policy upon labor stability. It demonstrates, as well, the urgent need for the more widespread adoption by employers generally of such labor and employment policies as will be most effective in eliminating from industrial life the evil and the waste of unnecessary hiring and firing.

Scientific employment, like high wages, in the long run is an economy. It is less expensive to keep trained, experienced men than it is to hire new and untrained ones. Policies of wholesale lay-off and indiscriminate discharge are very costly. In boom times or bad it pays to conserve human as well as material resources, to put just as much thought and technique into hiring and utilizing men as is given to the purchase and elaboration of raw materials.

PERSONNEL POLICY AND LABOR STABILITY

TABLE
Labor Flux Rates in Ten
By years, from 1913

$Y_{\text {Iap }}$	Fiox Rate priz Fuls-ybar Wopete ${ }^{2}$						
	$\begin{aligned} & \text { (ADSO- } \\ & \text { MOBHLO } \\ & \text { MARO- } \\ & \text { TACTOR- } \\ & \text { DNG) } \end{aligned}$		$\underset{\substack{35 \\ \text { MACEINR } \\ \text { TOOL } \\ \text { MANO- } \\ \text { TACTUE: } \\ \text { MNO }}}{ }$	$\begin{aligned} & \text { CVALVEs } \\ & \text { AND FIT } \\ & \text { TRNGS } \\ & \text { MANO- } \\ & \text { TACTUR- } \\ & \text { DNG) } \end{aligned}$	73 (CASE REGISTEE MANG- RACTUE- DNO)		14 $(30015$ Mant. nactueDOM)
1913.	8.40	2.63	2.97	1.08	2.40	1.32	. 66
1914.	1.05	1.17	1.74	-33	1.02	. 93	. 54
1915.	. 96	1.05	2.70	-54	. 90	1.53	.33
1916.	1.02	1.74	3.72	I.83	3.49	1.62	. 84
1917.	. 63	3.03	3.27	1.80	3.03	2.25	1.17
1918.	1.38	2.76	3.18	1.89	4.89	2.43	1.95
1919.	1.77	1.17	1.83	1.62	3.2 I	1.77	T.47

1 I.e., a zo00-hour worker.
TABLE
Comparison of Labor Mobitity in Ten Selfcied Establishments the Years 1913

Yexi	Tear Semectis Establusimants					
	Numbre Tablisi yTants	Forintear	$\begin{gathered} \text { Labog } \\ \text { HoURS } \\ \text { (ThoUanins) } \end{gathered}$	Labon Changes		
				Aocessuons	Separna THON:	Floz
1913.	10	43,515	130,545	69,902	71,390	141,292
1914.	10	32,758	98,274	10,952	14,824	25,776
1915.	10	45,197	135,591	21,273	10,223	31,496
$1916 .$.	10	56,508	169,524	44,477	23,882	68,359
1917 .	10	61,434	184,302	31,227	35,073	66,200
1918 . .	10	59,194	777.582	59,660	47,673	107,333
1919. . .	10	71,559	214,677	69,334	51,359	120,693
Whole period		370,165	1,110,495	306,725	254,424	561,149

RAEE FEPGEL

2913.	1.62	1.65	3.27
1914.	33	45	. 78
1915. . .	-48	. 24	.72
1916.	. 78	42	1.20
$1917 .$.	. 51	57	1.08
$1918 .$.	1.02	.8I	1.83
$1919 .$.	.96	72	2.68
Whole period	84	69	1.53

5
Seliected Establishiants
to 1919, inclusive

					Yeaz
$\begin{gathered} \substack{7 \\ \text { (DSPART- } \\ \text { NRANT } \\ \text { STOLI }} \end{gathered}$	$\begin{gathered} \text { ELivatco } \\ \text { RAILTAY) } \end{gathered}$		This Tangscablismenta Comanked	Afz EstasLusinganta RLronte yon Calefipas Yzara Spici\pm	
1. 29	. 75	.27	3.27	2.65	1913
. 90	. 90	. 12	. 78	1.77	1914
1.14	.18	. 06	.72	1.68	1915
1.65	45	45	1.20	3.21	1916
1.38	. 78	. 69	1.08	3.45	1977
1.26	1.23	1.71	1.83	4.08	1928
1.05	1.02	. 63	7.68	2.10	1919

6
with fts Mobilyty dn Aut Other Estabiushagnts Reporting for TO 1919, Inclustve

Ain Onim Eftunisinuens Rmpurins						Yen
	FOR-YBNWOATEN		Lavor Canmons			
			Acoussions	Smanariows	Fiox	
12)	355,034	1,067,808	475,844	463,798	935,572	1913
152	340,529	1,021,587	289,169	311,93I	601,100	1914
4π	113,857	341,570	г 00,938	89,511	190,449	1915
9	25,270	75,809	46,781	33,824	80,605	1916
18	32,019	96,057	56,224	54.393	110,517	1917
20	29,128	87,386	64,830	54.336	119,166	1918
10	14,598	43.778	15,9*5	14,866	30,791	1919
	915 N 329	2,733,989	1,045,612	7,032,589	4,068,500	Whole period

Year (sooonHous) Womerion

	1.3 .84 $+.86$ 1. 74 1.92 1.08 \qquad 1.14	$\begin{array}{r}1.39 \\ .93 \\ .78 \\ 1.35 \\ 1.71 \\ 1.86 \\ 1.08 \\ \hline 1.11\end{array}$	2.6 z 1.77 1.68 3.42 3.45 4.08 2.10 2.25	1953 1914 1915 1916 1917 1928 1919 Whole period

CHAPTER IV

General Extent or Labor Mobuity

Labor mobility, as already has been pointed out, varies with current industrial conditions, and changes in these conditions naturally influence the extent of the flow of labor into and out of our industrial plants. What effect these alternating periods of prosperity and depression have upon the extent of accessions and separations themselves, disregarding for the moment the particular kind of establishment or its location, may be briefly summarized somewhat as follows: In a rising labor market many new employment opportunities are created, which means that jobless workers get jobs and many employed workers leave their jobs and take employment elsewhere, ostensibly to better their industrial situation. Because of the urgency of the work it becomes necessary to replace quickly those employees who have left. The rapidity with which employees leave their jobs and the extent to which job changes take place will depend upon the extent to which industrial operations are enlarged and how favorable an employment situation is thus created. The more favorable the employment situation, the larger the number of accessions. These, of course, in addition to those hired from among the unemployed, are the cause of an increase in the number of separations from other plants, where, in turn, additional replacement accessions are required. Through the single fact that employees leave their jobs in rapid succession constantly increasing employment opportunities are created, thus increasing both accessions and separations. ${ }^{1}$
When there is extensive industrial activity and considerable

[^15]competition for labor, the process of selection in industrial establishments also considerably accelerates the frequency of labor shifting. It is obvious that when an establishment is rapidly increasing its work force in a tight labor market it cannot usually make a very careful examination of the fitness of a particular applicant for the job. During such times it is also possible that people are taken on who in normal times would not be hired at all. After these people actually begin to work in an establishment, however, a good many of them will be found to be unfit or undesirable and after a longer or shorter period of service are let go. This selective process is, of course, greatly intensified in times of unusual industrial activity, when there is a scarcity of labor. All this involves an increase in the number of both accessions and separations far above the ordinary number, which is already unnecessarily large.
In periods of industrial depression, when there are considerably fewer job opportunities relatively to the labor supply and the number of available job opportunities is diminishing, there will take place at first a considerable number of forced separations (lay-offs and discharges); there will be, moreover, fewer voluntary separations. There will be practically no occasion for accessions to build up force and much less need for accessions for replacement, inasmuch as most of the jobs abandoned are being at least temporarily discontinued. While under these circumstances the number of separations may at first be considerable, the whole number of separations over the entire period of depression and the sum total of labor changes during that period will on the whole be much less.

The enormous proportions that labor mobility may assume will be appreciated from an eramination of Table 7.1 In this

[^16]
TABLE 7

Labor Mobility, by Years, 1910-1919
[Replacement (or "turnover") numbers and rates are marked by asterisks (")]

Yeng	Nomber on Estarustincerts	Nucoes or Follyear Woxemes		Latoz Chanors		
				Accissions	Szpazations	Toral (fux)
	Number					
1910	16	85,263	255,789	90,408	86,179*	176,587
1915	24	109,653	328,959	94,029*	96,915	190,944
1912	54	188,363	565,089	210,085	182,287**	392,372
1913	113	399,449	1,198,347	541,746	535,118*	1,076,864
$1913-14^{2}$.	84	244,814	734,442	227,008*	243,707	470,715
2914.	162	373,287	1,119,861	300,121*	326,755	626,876
1915 .	51	159,054	477,162	122,217	99,734*	221,945
1916 .	20	94,803	284,409	131,300	101,102*	232,402
1917 .	27	58,052	174,156	79,287	74,917*	154,204
1917-18*.	176	305,901	917,703	631,173	613,467 ${ }^{\text { }}$	1,244,640
1918	29	56,412	169,233	97,918	84,999*	182,017
1919	19	42,632	127,896	38,751	36,100*	74,85
Total		2,117,682	6,353,046	2,564,037	2,481,280*	5,045,317
	Rate pre Futl-tear (3000-Hotr) Wonkin ${ }^{\text {a }}$					
1980 -				1.05	1.02*	2.07
1911 .				.86*	.88*	1.74
1912 . -				1.12	-96*	2.07
1913 . .				1.35	1.34*	2.69
1913-14*.				.93*	. 99	1.92
1914				.81*	. 88	1.69
1915 . .				. 78	. $63^{\text {* }}$	Y. 41
1916 . .				1.38	1.08*	2.46
1917 .				1.38	1.29*	2.67
1917-18 ${ }^{\text {a }}$.		-		2.07	2.05*	4.08
1918				1.74	1.50*	3.24
1919 .				.90	84 ${ }^{\text {+ }}$	1.74
Total .				1.20	x. $17{ }^{*}$	2.37

[^17]table the combined figures for the years igro to 1919 show that in the establishments reporting the accomplishment of 6,353,046,000 hours of work, which is labor time equivalent to that of $2,1 \times 7,682$ full-year (3000 -hour) workers, there were entailed $2,564,037$ accessions and 2,481,280 separations, or a total of $5,045,317$ labor changes. In other words, on the average, for each year of the decade 256,404 accessions, 248,128 separations, or a total of 504,532 labor changes were involved in the maintenance, and the necessary enlargement or curtailment, of a labor force of 211,768 workers. This means that the maintenance and necessary expansion or curtailment of the requisite work force involved labor changes considerably more than equivalent to a complete annual overturn of the work force. This is as if during one year all the employees had left their jobs and a complete new set of work people had taken their places. It appears then that each year on the average the number of persons who quit, were laid off, or discharged, as well as the number who had to be hired, was much larger than the total number of workers on the force at any one time.
The separation rate figures in Table 7 and almost invariably throughout the book are set in bold-face type. ${ }^{1}$ An examination. of these figures together with the accession and flux rates (bearing in mind the fact that a flux rate of 2.00 represents a complete overturn of the force) will show that in five of the ten calendar years represented the number of labor changes in the plants re-

[^18]porting has been more than equivalent to a complete overturn of the work force; that is, there were at least as many accessions and at least as many separations as there were workers on the force. Even in 19r5, the most stable year of the decade, there were $\mathbf{1 2 2 , 2 1 1}$ accessions and 99,734 separations entailed in the maintenance and enlargement of a work force of $159,054 \mathrm{em}-$ ployees. This is equivalent to a complete overturn of not less than 63 per cent of the work force during the year. In 1917-18, the most unstable of the periods shown, 631,173 accessions and 613,467 separations, or a total of $1,244,640$ labor changes were involved in the maintenance and enlargement of a work force of $305,90 \mathrm{r}$ workers. This is equivalent to more than two complete overturns of the work force during the year.

On the basis of the unit full-year (3000 -hour) worker the situation in the decade reported may be described as follows: Throughout the ten-year period, for every equivalent 3000 -hour worker in the aggregate work force, there were on the average more than two labor changes per year. In 1915, the period of least instability, there were about one and a half labor changes for each fullyear worker. In the war period 1917-18 there were more than four labor changes for each full-year worker in the aggregate work force. This is as if during these twelve months all the employees had left their jobs, an entirely new set had come in to fill their places, and afterwards all the employees in this second set had left their jobs and had in turn been fully replaced by a third set of workers.

There is also to be observed in Table 7 a very definite tendency of the mobility rates to vary with the prevailing industrial situation. This tendency is brought out in graphic form in Chart C, on which are plotted the mobility rates shown in Table 7. The influence of the prevailing business and industrial situation is indicated in the chart by the relatively bigh mobility rates for the years 1913 and 1917-18, years of great industrial activity, and by a recession in the rates in years in which the industrial situation has been less favorable.
Ceiait C. Laboz Mobllity Rates ey Xears, 1910-19

Enormous as is the extent of establishment labor instability indicated by these figures, it is fair to assume (and this assumption is supported by a good deal of fragmentary evidence) that the actual situation is even worse. It is especially probable that the labor mobility for the year rgr9 is actually higher than is indicated by the figures shown here, since the number of establishments upon which the rates are based is rather small and includes several establishments with unusually low labor mobility records. The (nearly) 500 establishments from which the Bureau of Labor Statistics secured labor mobility figures have necessarily been the concerns which had the figures to give, that is to say, concerns which had given rather more attention than most firms to their force-maintenance problems. The firms reporting are chiefly concerns which had more or less centralized employment systems and were relatively more successful in the maintenance of a stable work force. In such establishments the instability is not likely to be as serious as in the general run of American industrial concerns, which as a rule pay little or no attention to the flow of labor in and out and which give very little thought to its control.

The replacement or turnover numbers and rates in Table 7 are indicated by asterisks. This rate of replacement or turnover is, as has already been explained, the rate at which separating employees whose places must be filled are replaced by others. Thus in 1910 persons were being hired at a rate of 1.05 and employees were leaving at a rate of 1.02 per full-year worker. The aggregate standard work force was obviously undergoing expansion, and all separating employees were more or less promptly replaced. The separation rate, therefore, is to be taken as the replacement rate. In 1914 the situation was very different. Most industrial plants' were curtailing operations. The result was an accession rate of .81 and a separation rate of 88 . In these circumstances it is obvious that not all the separating employees were replaced even tardily - and that consequently the accession rate is to be taken as the replacement rate. In 1914, obviously, not all of.
the 326,755 separating employees contributed to the turnover as that word is here understood. There were only 300,121 persons hired during that year. This number therefore really measures the turnover, because this is the number of abandoned jobs in which there were replacements. The turnover rate, then, is the ratio between 300,121 and the 373,287 equivalent full-year workers who constituted the work force during the time within which those replacements were made. The excess of separations, amounting in 1914 to 26,634 , involves a phase of labor mobility not included in turnover. This excess shows the extent to which the normal work force was diminished during 1914 and, in relation to the number of full-year workers, as already explained, it is the labor decrease rate; the corresponding excess of accessions in such a year as 1918 is the labor increase rate. In years like igri and 1913 the rates of accession and separation are practically equal, and it would be a matter of indifference which figure were taken to measure replacements. Reference to the actual numbers in the upper part of the table, however, shows that in rgII the accessions were somewhat less numerous and therefore most nearly measured replacements, whereas in 1913, the separations were fewer and that in that year, therefore, they should be identified with replacements.

It is not believed that the replacement figure is likely to contain non-replacement items. The most important of such items which might be thought to lurk in the replacement figure are those cases of non-replacement brought about by a discontinuance of certain occupations, either because of the shutdown of that part of the plant which includes those occupations, or because of changes in the industrial arts. By definition the replacement rate excludes; all such cases, which by the very process of discounting gross; separations or accessions to get the replacement rate are automatically eliminated along with other unreplaced separations. This is believed to be true of either an expanding or a contracting business. The margin of error which may result from postponed replacements (in cases where new employees are needed but per-
haps not actually secured for a considerable period after the separation) is not believed to be wide enough seriously to vitiate this method. Moreover, this possible postponed-replacement error is almost always compensatory - replacements not actually made until the end of July for jobs which were abandoned early in June and which should have been accounted for then are, in the long run, balanced by similar delayed replacements carried over from May but actually accounted for in June.
In view of the fact that replacement rates correspond with accession rates when the accession rates are lower than the separation rates, and with separation rates when separation rates are lower than accession rates, it follows that the lowest points on Chart C must mark the rate and trend of labor replacement; that is to say, whichever line happens to be the lowest is the replacement line.

In general throughout the ten-year period the accessions and separations have naturally tended to balance each other pretty closely, although they show slight variations reflecting the changing industrial conditions from year to year. Over the whole decade it is to be noted that the accessions appreciably exceed the separations, indicating a net increase in the gainfully employed population and just about such a normal industrial expansion as would naturally be expected.

During the last few years speculation has been rife as to the probable aggregate number of labor changes over a given period in all the industrial establishments of the country. Interesting though the knowledge of these facts would be, and even if all establishments did keep labor mobility records, the task of gathering such figures would be such a stupendous one that it could scarcely be considered seriously. It is necessary, therefore, to resort to estimates based on a careful analysis of the available labor mobility figures. If, then, the 1919 mobility rates here reported are applied to the factory wage earners in the United

States in that year as shown by the United States Census of Manufactures for 1919, it would appear that the 9,096,372 wage earners on the pay rolls that year must have meant about 8,242,$\infty 0$ accessions and about $7,703,00$ separations, or a total of about $15,945,000$ job changes during that year.

NECESSARY AND UNNECESSARY IABOR CHANGES

Repeated attempts have been made in the last few years to get at the proportion of the turnover which may be considered to be avoidable. Such a separation of the necessary from the unnecessary replacement bas been undertaken on the very natural assumption that the maintenance of the working force requires the hiring of only a certain number of workmen to replace those employees who have left for unavoidable reasons (death, sickness, discharge for manifest unfitness, etc.) and that whatever number of persons is found to be required over and above this so-called irreducible minimum - which has been estimated by a number of students at about 25 per cent of the work force - must be the measure of unnecessary replacement. The limits of this study do not permit a full discussion of the question as to whether or not the data on labor mobility (which phenomenon, as is shown elsewhere, is subject to constant and sometimes extreme fluctuations) can be so simplified as to express in exact figures the proportion of necessary and unnecessary labor replacement. Actually to apply this method of appraising the responsibility in labor replacement to industrial establishments as they are, presupposes wholly static industrial concerns, with unvarying amounts of employment and with work forces composed of persons who are very slightly, if at all, influenced by outside industrial forces. To be sure, there will be found industrial concerns which can offer steady employment to a certain small number of persons. In such establishments any of these employees leaving voluntarily and for no valid reason may be definitely considered as factors in the unnecessary labor replacement. But it would be extremely difficult to say when and to what extent the great
mass of employees (who are at the mercy of labor market fluctuations) may be regarded as contributing to the necessary or unnecessary labor replacement.

Bearing these limitations in mind and assuming that the strictly necessary part of the replacement amounts to 25 per cent

TABLE
Nectessary and Unmbcessary
By years, from 1910 to

Yus	NORBER or FULiLikras:	Lation Chantoes Necessary $T 0$ TATE CaEE Of WORETOACE	
		SEPAEATIMO EMTLOYEES Who MUST明 RETHCtion	
1900	85,263	2x,316	21,316
1911	109,653	27,413	27,413
1912	188,363	47,001	47,09r
1913	399,449	99,862	99,862
1913-14	244,814	61,204	67,204
1914	373,287	93,322	93,322
1915 -	159,054	39,764	39,764
	94,803 58,052	23,701 14,513	23,701 $14,5 \times 3$
${ }_{1917} 18^{\circ}$. . . .	305,901	76,475	76,475
1918 - . . .	56,44I	14,103	14,103
1919	42,632	10,658	10,658

of the work force (an assumption whose confirmation requires much further investigation), the mobility figures of any firm or group of firms might be presented in such a way to show, separately, the necessary and unnecessary labor replacement. This has been done by applying this correction to the mobility figures shown in Table 7; the resulting figures are presented in Table 8. To show how the extent of the unnecessary labor changes are calculated the following example is cited: According to the fig-

[^19]ures of Table 7 , and assuming as necessary for force maintenance the replacement of 25 per cent of the work force, the maintenance of the aggregate work force of $305,90 \mathrm{I}$ employees reported in 1917-18 should have acquired only 76,475 replacements. In addition to these replacements there need to be

8
Laboz Canagers
2919, inclusive

Rexincs as\% of Fomes Now To Expampon or Commacrion		$\begin{aligned} & \text { Tocky ferour } \\ & \text { Lanemg: } \end{aligned}$	"Unimectssaky" Lamor Canasis		Yıan
			Numat	$\begin{aligned} & \text { Pze Cant } \\ & \text { or Total } \\ & \text { Acrual } \\ & \text { Cunass } \end{aligned}$	
4,289 (E)	46,86x	176,587	299,726	73	1910
2,886 (C)	57,714	x90,944	133,232	70	1985
27.798 (E)	121,980	392,372	270,399	69	1912
6,638 (E)	906,35a	1,076,864	870,512	8 8	1913
16,699 (C)	139,107	470,715	331,608	70	1913-14
26,634 (C)	213,278	626,876	413,598	66	3914
32,47\% (E)	102,005	301,945	Y19,940	54	1935
30,198 (E)	77,600	239,402	154,809	67	1916
4370 (E)	33,396	154,204	120,808	78	1917
17,706 (E)	170,656	1,244,640	1,073,984	86	1917-18
22,919 (E)	42, 295	182,917	141,792	78	1918
3,658 (E)	33,967	74,85x	50,884	68	1919

considered the persons required to take care of the expansion which the aggregate work force underwent during the period under consideration. The amount of this expansion is measured by the excess of accessions over separations, which is in this case 17,706. The total necessary changes were, there-

And taking for granted, of course, the necessity for whatever increase or decrease changes (accessions or separations, as the case may be) naturally resolt from the (more or less) permanent extension or curtailment of industrinil operations.

- Figures taken from Table $\%$.
- Arithmetic differenoe between socession and sepanation figures as shown in. Table x .
fore, 76,475 separations requiring replacement, 76,475 accessions for this replacement, and 17,706 labor-increase accessions, or a total of 170,656 necessary labor changes. Actually there were $\mathbf{1 , 2 4 4 , 6 4 0}$ labor changes. The difference is $1,073,984$, which is the number of "unnecessary" labor changes. Computing the rates corresponding to the figures just given, it appears that the accession rate of 2.07 would be reduced to .33 , the separation (here the replacement) rate of 2.01 to .24 , and the flux rate of 4.08 to .57 if only the strictly necessary labor changes were made.

If the same rate correction be applied to the mobility figures of the period 1913-14, which, unlike 1917-18, was a time of industrial depression, the rate reductions for the earlier period would be as follows: accession (here also the replacement) rate from .93 to .24 , separation rate from .99 to .30 , flux rate from 1.92 to .54. The figures given in Table 8 show, on the assumption that not more than 25 per cent of the normal work force ought to have been replaced during the year to maintain that force, that most of the job shifting is unnecessary shifting and that this unnecessary shifting is enormous whether the period be one of business expansion or business depression. The percentage of unnecessary labor changes ranges from 54 per cent to 86 per cent of the labor changes which have actually taken place. The proportion of unnecessary labor changes seems to be greatest in periods of marked industrial activity, and in general it seems to fluctuate markedly in response to changes in industrial conditions.

LABOR MOBILITY IN CERTANN LOCAIITIES

Attention should be directed to the fact that at identical periods of time there may be considerable variation in the extent of labor mobility in different localities. This will depend upon the extent of industrial activity, and the opportunity for employment for particular kinds of labor in the same locality. It depends, in other words, upon the number of plants in the same locality competing for the same class of labor. It is obvious that many workmen will be attracted to any locality which is known

TABLE 9
Labor Mobility in Specified Cities, 1913-14 and 19x7-18
(1913-14: 84 establishments; 1917-i8: 176 establishments)

Locanry		Number or FOLTMEAE Worcers	Total IABOR fours (EANDS)	Numbre or Laboz Cunnces		
				Accrssions	SEPARA-	Fiox
Boston Chicago Cincinnati Cleveland Detroit Milwaukee New York San Francisco Other cities . Total	1913-14					
	17	35,134	105,393	20,059	19,712	39,77x
	17	63,788	191,364	76,299	83,708	160,007
	3	1,756	5,268	2,174	2,00\%	4, 775
	5	4,496	13,488	3,837	3,855	7,692
	14	31,479	94,437	44,937	48,494	93,43I
	2	1,597	4,791	780	1,228	2,008
	9	35,684	107,052	22,659	22,964	45,623
	17	70,883	212,049	56,263	6x,745	118,008
	84	244,814	734,442	227,008	243,707	470,715
	1917-18					
Boston	-	一	-	-	-	-
Chicago .	28	1 10,388	331,143	182,931	177,210	360,141
Cincinnati	27	18,699	56,097	30,917	29,704	60,621
Cleveland	38	43.654	130,962	110,994	108,157	219,155
Detroit .	48	92,381	276,843	$2 \mathrm{Tr}, 988$	207, 128	419,056
Milwaukee	21	26,606	79,998	56,894	56,130	113,024
New York -	1	14,280	- $\mathbf{4 2}^{6} 60$	- 37.509	- 35,138	
San Francisco Other cities .	14	14,220	42,660	37,599	35,138	72,047
Total * .	176	305,90:	9x7,703	631,173	613,467	1,244,640
	Ratas pia Forlmear Womies					
	Acerssion	Straration	Furut	Accassran	Smaxatintion	FLut
	1015-14			2917-88		
Boston	57	57	1.14	-	-	-
Chicago.	1.20	5.32	2.52	5.65	1.62	3.27
Cincinnati	1.85	1.14	2.37	2.65	1.59	3.24
Cleveland	. 84	. 87	1.71	2.55	$2+49$	5.04
Detroit	$x-44$	3.5	2.97	3.31	2.25	4.56
Milwaukee	-48	78	5.26	2.15	2.10	4.23
New York San Francisco	. 63	. 64	1.97	$\underline{2.64}$	- 26	5.10
Other cities.	.78	. 87	1.65	2.4	2.46	-
Total	. 93	. 99	1.92	2.07	2.02	4.08

to offer good employment opportunities. Some of these workmen will, of course, prove to be neither stable nor desirable. The labor mobility in the principal cities in which investigations were made is shown in Table 9.

It is evident that Chicago and Detroit, in the 12 -month period 1913-14, although it was a period of industrial depression, had mobility rates considerably higher than the average. In the light of the mobility rates for different industries, shown in Table ro, it would seem that, in the case of Detroit, this must be due to the considerable representation of automobile establishments in the figures shown. This industry underwent a remarkable growth during that period and was, relatively, less affected by the industrial depression. In the case of Chicago, it is the figures of the slaughtering and meat-packing industry which boost the mobility rates. In the period of 1917I8 the outstanding facts are the high mobility rates shown for Cleveland, Detroit, and San Francisco. In these three cities the extent of war-manufacturing activities was unusually great and the competition for labor was very keen. In both Cleveland and Detroit the highest mobility was found in the purely industrial establishments which are typical of the two cities, namely, those chiefly engaged in the manufacture of metal products, machinery, automobiles and automobile parts. In San Francisco the unusual labor shifting was most largely due to the enormous war-time expansion of shipbuilding operations on the Pacific Coast and the appeal of the war wages offered to all comers in the shipyards, not only of San Francisco Bay but also of Portland, Tacoma, Seattle, and Los Angeles.

LABOR MOBLITY IN DEFFERENT INDOSTRY GROUPS

In Tables ro a and ro b the mobility figures for the two periods, 1913-14 and 1917-18, are classified by industry groups, and the same data are presented in graphic form in Chart D. ${ }^{1}$

[^20]Both the tabular and graphic arrays show the general increase of the mobility rates of the war years over those of the pre-war period and throw interesting side lights upon the influence of the

Chart D. Comparison of Labor fiox Rates in War and Pre-war Preiods (Unit: One labor change per full-year worker.)

war upon certain industries. Among the industry groups here represented those which were most immediately affected by the necessity for articles of war are: automobiles and parts, chemical
industries, leather and rubber goods, machinery manufacturing, miscellaneous metal products, and slaughtering and meat packing. All of these groups, with one exception, show a decided increase

TABLE
Labor Mobility in Specimid Indostry
[Replacement (or "turnover") numbers

Indoutry Group	NuMEER O Establish MENTS	Nomers of Full-year Wozkexs	Total. Labor Hoves (Thou8amDS)
Automobiles and parts ${ }^{\text {1913-14 }}$	15	32,380	97,140
Chemical industries and refineries	3	2,900	8,700
Clothing and textile mfg. .	6	24,842	74,526
Leather and rubber goods.	6	14,210	42,630
Machinery mfg. . .	16	36,890	110,670
Mercantile establishments .	5	16,543	49,629
Miscellaneous metal products mfg.	20	63,797	191,391
Printing and publishing . -	5	5,566	16,698
Public utilities: Gas and electricity mig.	1	650	1,950
Street railways.	3	15,540	46,620
Telephone service	2	21,801	65,403
Slaughtering and meat packing	2	9,695	29,085
Total	84	244,814	734,442
1917-18			
Automobiles and parts	30	96,856	290,568
Chemical industries and refineries	15	15,754	47,262
Clothing and textile mfg. .	8	10,794	32,382
Furniture and millwork .	3	2,300	6,900
Leather and rubber goods .	4	5,020	15,060
Machinery mfg. .	31	37,532	112,596
Mercantile establishments	7	24,124	72,372
Miscellaneous metal products mfg.	45	32,68\%	98,046
Printing and publishing \cdot -	5	1,940	5,820
Public utilities: Gas and electricity mfg.	10	18,908	56,724
Street railways .	4	9,928	29,784
Telephone service	10	21,338	64,014
Slaughtering and meat packing	4	28,725	86,175
Total	176	305,901	917,703

in the mobility rates of the war over those of the pre-war period. The rates of the slaughtering and meat-packing group show only a slight decrease. This is not surprising in view of the fact
that the mobility rate for this group in 19i3-I4 was already more than twice as great as the rate for all groups combined.
It might be of interest to recall here the unusual labor situation
$10 a$
Groups, 19:3-14 AND 1997-18
are marked by asterisks (")]

Nomerie or Lanoz Cannas			Industry Grotr
Accissmona	Sxprentions	Frow	
50,564*	52,172	102,736	Automobiles and parts
3,447	3,024*	6,477	Chemical industries and refineries
15.715°	56,492*	32,207 41,620	Clothing and textile mfg.
29,497 ${ }_{\text {29,4 }}$	19,123	41,6501	Machinery mfg.
x1,903.	10,964*	22,867	Mercantile establishments
52,313 ${ }^{\text {+ }}$	59,55I.	111,864,	Miscellaneous metal products mig.
$\begin{gathered} 3,88_{5} \\ 9 x^{*} \end{gathered}$	$\begin{gathered} 3,679^{*} \\ 200 \end{gathered}$	$\begin{array}{r} 7,530 \\ 293 \end{array}$	Printing and publishing Public utilities: Gas and electricity mfg.
4,094**	4,346	8,440	Street railmays
$8,465^{*}$ 24,609	10,786 ${ }_{\text {23, }}$	19,251 47,845	Slaughtering and meat packing
227,008*	243,707	470,7	Total
			1917-18
228,054	220,475********	443,429	Automobies and parts
46,880 3,687	$39,622^{*}$ $\mathbf{1 5 , 2 2 7}$	88,502	Chemical industries and refineries
5,727**	8,036	12,763	Furniture and millwors
12,190	19,393.	24,53	Leather and rubber goods
62,085	59, $7^{82^{*}}$	x21,867	Machinery mfg.
33,r65*	34,879.	68,044	Mercantile establishments
104,187.	99,006*	203,133	Miscellaneous metal products mfg.
	3,655 36,601	52,566	Printiong and publishing
8,062*	9,623	17,685	Street railways
19,740*	21,864	41,604	Telephone service
73,289	63,944*	136,533	Slaughtering and meat packing
631,173	613,467*	1,244,640	Total

created by the war period and the influence which it had upon labor mobility. War-time necessities forced far-reaching changes in the character of the product manufactured as well as in
the manufacturing processes. Plants producing war materials enormously expanded their operations. The Government itself was forced to expand its own industrial establishments to an unheard-of degree and entered into industrial fields which it had never been in before. The expansion due to war necessities required enormous numbers of work people and made necessary the very rapid training of relatively inexperienced persons who

TABLE
Labor Mobitity in Sprcitied Industry
[Replacement (or "tumover") rates

Industry Group	Ratr pax Fouryena Worara or		
	Accession	Strenentor	Flux
Automobiles and parts - ${ }^{\text {a }}$	1.56*	1.62	3.18
Chemical industries and refineries	${ }^{1.20}$	1.05*	2.25
Clothing and textile mfg. -	. $63{ }^{*}$. 66	1.29
Leather and rubber goods ${ }^{\text {a }}$. ${ }^{\text {a }}$:		1.35*	
Machinery mfg. .	.88*	8.08	2.94
Mercantile establishments	. 72	.66*	1. 38
Miscellaneous metal products mfg.	.81*	-93.	1.74
		. 66^{*}	1.35
Public utilities: Gas and electric mfg.	. $21{ }^{\text {\% }}$. 30	. 45
Street railmays ${ }^{\text {Telephone service }}$ -		. 2.48	. 54
Slaughtering and meat packing .	2.55	$2.40{ }^{*}$	4.95
Total	.93*	. 99	1.92

in many instances were found to be ill adapted to factory work. There was a withdrawal of a very large number of men for military purposes. This military mobilization affected especially those industries which employed males entirely or to a large extent. Women entered into industries in larger numbers and into some industries which had not hitherto employed women. The differentiation of industries into essential and non-essential classes and the promulgation of the "work or fight" order caused large numbers of men employed in non-essential industries to leave their employment and seek jobs in plants carrying on work
essential to the prosecution of the war. Under this ruling inexperienced people, overestimating their capabilities, tried to qualify for experienced men's places and accepted jobs which they soon found out they could not fill.

On account of the unusual industrial expansion during the war period the labor supply became very limited and resulted in keen competition among individual manufacturers. After a time the 106
Groups, 19r3-14 and 1917-18
are marked by asterisks (*)I
1917-18

			Imodsizy Gzour
Acceseras	Smaration	Fưx	
2.37	3.28*	4.59	Automobiles and parts
2.97	2.52*	5.49	Chemical industries and refineries
工.36*	I.47	2.67	Clothing and tertile mfg.
2.49*	3.06	5.55	Furniture and millwork
2.40^{*}	2.46	4.86	Leather and rubber goods
1.65	4.59*	3.24	Machinery mfg.
1.38*	1.44.	2.82	Mercantile establishments
3.18	3.03*	6.21	Miscellaneous metal products mfg.
1.77 ${ }^{+}$	1.89	3.66	Printing and publishing
r.38 ${ }^{\text {c }}$	7.41	0.79	Public utilities: Gas and electric mfg.
.81*	.96	1.77	Street railways
.93*	1.03	1.95	Telephone service
2.55	2.19*	4.74	Slaughtering and meat packing
1.07	2.01*	4.08	Total

competition for labor became so sharp that labor recruiting methods developed which were characterized as being "destructive." The unusual industrial situation created a peculiar war psychology, causing a good deal of restlessness among work people generally. The individual workman, becoming aware of the growing scarcity of labor and of the keen competition for his labor, was naturally quick to take advantage of the favorable employment situation by constantly seeking jobs which would pay more or in which the general conditions of employment were more to his liking.

In respect to the labor situation during the war, the employment manager of a machine-tool manufacturing establishment reports that "Probably the chief cause of labor turnover at this time, particularly among machine tool industries, is the fact that a man tries to go where he can get the highest pay, coupled with the fact that manufacturers are bidding against each other for labor." And he adds that "the second and perhaps equally important cause of turnover in the machine tool trade is the fact that very recently a very large number of men have been forced either by the 'Work or Fight' law or by the necessity of earning larger money to leave the non-mechanical occupations and seek work in machine shops." These men, he says further, " are wholly unfamiliar with our work, have never been accustomed to grease, dirt, and noise, and very naturally find the work somewhat unpleasant. It is quite natural for them to think that the one shop they go to first is probably worse than any other, and if slightly encouraged in this opinion by a smooth-tongued employment man of another shop, they are likely to jump from one place to another, hoping that they will find less grease and dirt."

relation between size or establishment and labor mobiLITY

To undertake to show some definite relationship between the size of the establishment and labor mobility, detailed figures regarding the labor changes were so arranged as to show the mobility rates of establishments with less than a thousand employees, of those having one thousand and under five thousand, and of those with five thousand employees and more. They are shown in Table in. ${ }^{1}$
These figures in the main indicate a downward trend in mobility rates as the size of the establishment increases. It has not been possible to ascertain the exact reason for the relatively lower rates in the larger establishments, though it is conceivable

[^21]that among the factors influencing the stability were the possibility of the larger establishments offering steadier work, relatively higher earnings, and better employment conditions generally. Lower rates might also indicate the efficiency of the

TABLE 11
Relation betwien Size of Establismaent and Labor Stabiuty, 1913-14 AND 1917-18

			TOTAL Lamoz Hours (TEOUanNDS)	Numbe of Labor Cramozs		
				Aceses	$\begin{aligned} & \text { Sypa- } \\ & \text { Eamoons } \end{aligned}$	FuTx
Under 1,000 1,000 and under 5,000 5,000 and over Total	2003-14					
	35	20,257	60,771	30,517	28,275	58,792
	36	95,690	387,070	82,611	87,562	170, 173
	13	128,867	386,601	113,880	127,870	241,750
	84	244,814	734,442	227,008	243,707	470,715
	19x7-48					
Under $\mathbf{I}, 000$ 1,000 and under 5,000 5,000 and over	109	51,832	155,496	137,147	132,142	269,289
	54	154,019	342,057	249,362	240,095	489,457
	${ }_{3}$	140,050	420,150	244,664	241,230	485,894
Total . . .	176	305,901	917,703	631,173	613,467	1,244,640
	Rate ma Fuxrmian Woncm					
	Acess now	Serpok-	Flus	$\begin{aligned} & \text { Accoss } \\ & \hline \text { crow } \end{aligned}$	$\begin{aligned} & \text { Sipasa- } \\ & \text { nomis } \end{aligned}$	Furix
	5015-24			1917-18		
Under 1,000 2,000 and under 5,000 5,000 and over	1.50	1.48	5.98	2.64	2.55	5.19
	. 87	490	1.77	2.19	2.10	4.99
	. 87	. 99	8.86	1.74	5.75	3.45
Total 93	. 99	1.92	2.07	2.02	- 4.08

employment department and the influence of service and welfare activities, which are generally carried on more extensively by the larger establishments.

It should also be observed that in the larger establishments there must be many inter-departmental changes which are not
included in the figures presented here. This is one reason why the flux rate is lower in the large concerns. Obviously the number of such interior labor changes is smaller, both absolutely and relatively, in the small than in the large establishments. The small single-department concern must recruit virtually all its new labor from outside accessions. The inter-departmental labor shift is in some cases quite as much a sign of labor instability as if the shift were from one employing firm to another employing firm.
In connection with the subject of the general extent of labor mobility, brief reference should be made to some particular

TABLE 12
Number of Employers Leaving Service within 12 Montes of when they were Hred, by Industry Groups, Year Ending May 31, $1918{ }^{1}$

Industry Grous	Numare or Estabzisimants	Presons Hirid During Year		
		Total Number	Lept within y Year	
			Noucrer	Pex Cent oz Total
Automobiles and parts, mfg. Chemical industries and refineries Clothing and textile manufacturing	5	12,659	8,230	65
	3	10,743	8,230	77
	3	6,771	4,799	71
Furniture and millwork Machinery manufacturing	1	3,410	2,68z	79
	13	20,881	14,121	68
Mercantile establishments (wholesale and retail)	3	1,93I	1,306	68
Miscellaneous metal products manufacturing	13	15,803	13,053	83
Printing and publishing Public utilities:	2	749	518	69
Gas and electricity . . .	$\underline{1}$	1,585	721	
Street railways	$\underline{1}$	3,058	1,150	38
Telephone service	8	15,616	9,949	64
Total	53	93,206	64,758	69

phases of the mobility situation having to do with the accession of employees. One of these is the relation of the newly hirel employee to labor mobility. How many employees hired within
${ }^{1}$ Reprinted from 35 Palit. Sai. Quar. 594.
any particular twelve-month period are still to be found in the firm's employ at the end of that period? An answer to this question is given by the figures presented in Table 12, which shows by industry groups the proportion of the year's recruits who left before they had served a year.

This table furnished a striking illustration of the short periods for which jobs have been held by the newly hired employees during the war period and the rapidity with which they vacate them. Of the 93,206 persons hired during the year ending May 2x, 1918 , 64,758 , or 69 per cent, left before they had served one year. The most stable recruits were those hired by the street railways, only 38 per cent of whom left before serving one year. The most unstable recruits were those hired by miscellaneous metal products manufacturing establishments, 83 per cent of whom left before they had served one year. Two other phases of the accession situation which must be touched upon are the proportion of rehirings among the total accessions, and the relation between the number of applicants and the number of available jobs, on the one hand, and to the number actually hired on the other hand. The number of accessions shown heretofore does not indicate the number of different individuals hired, since the accessions represent the total number of accessions in a given period and include original hirings as well as subsequent rehirings. Figures on the extent of rehirings were obtained by examination of the service records of employees on the pay rolls of six establishments at the end of 1915. They are shown in Table 13 .
These figures show that the hiring of 44,166 individuals involved $6 \mathrm{r}, 225$ hirings and rehirings (repeated transactions), with a resultant increase in the number of accession transactions by nearly 40 per cent. Of the 44,166 individual employes taken on, more than 76 per cent had been hired once only, 15 per cent had been hired twice, over 5 per cent had been hired three times, more than 2 per cent four times, and about one and one-half per cent had been hired and rehired more than five times. Among the employees under observation here the highest
number of hirings and rehirings was eleven, involving, however, only two employees out of more than forty-four thousand.

TABLE 13
Number of Employers Hired by Sane Establishuent Spectried Number or Thres ${ }^{1}$
(1915. Six establishments reporting)

The figures shown in Table 14 are the result of a special study of the correlation between length of time and the extent of hiring and rehiring. They demonstrate that, as the period within which employees had been hired specified number of times increases, there is a corresponding increase of the number of rehirings, but that when the maximum period of this continuous service within which employees had been hired specified number of times extends beyond the ro-year mark there is a noticeable and decided drop in the extent of rehiring.
The figures concerning the number of applicants for jobs are based upon the records of eight establishments which kept ac-
${ }^{2}$ Figures obtained by examination of the service reconds of the 44,166 employees, on the pay rolls of the six establishments at the end of rars.
© Less thap or per cent.
count of the number of applicants for a longer or shorter period between 1912 and IgIg and indicate that with an aggregate number of workers amounting to $\mathbf{1 2 2 , 9 7 3}$ there were $1,041,475$ applicants, of which number 245,509 , or 14 per cent, were actually

TABLE 14
Number of Employzes on Pay Roll or Tarez Establishments Who Had

 1915
(3 establishments reporting)

Nmans	Numin of Employean Wro Ead Bam Hmed									
Occonarion	Trics	${ }^{3}$	Tnin	Tun	$\frac{6}{106 a}$	Tnies	$\frac{8}{\operatorname{Tnc}}$	Thies	Tho	$\mathrm{Tzu}^{\text {II }}$
I. .	527	33	3							
1	55 x	123	31	3						
3.	456	164	71	17	4					
4.	325	57	53	34	9	2				
5.	208	130	45	39	6	5	\pm			
6 .	157	109	48	28	15	\pm	1	I		
7	94	75	42	50	8	5		0		
8.	58	31	22	14	\%	3	I			
9 .	58	57	35	30	8	5	I	1	I	I
ro.	46	32	25	10	4	6	5			
15.	19	19	5	x	2	2				
19.	13	7	d							
13.	5	5	\underline{x}	I				1		Σ
14.	50	4	3	\pm						
15.	3	4	1	*						
Over 15	10	5	\cdots	7						

hired. This means, in other words, that for each person hired for a job there were more than seven persons applying for that job.

The employment manager of a machinery manufacturing establishment reports that in order to obtain 500 employees, during the year ending May 31, 1918, it was necessary to hire at least 1500, only a third of whom showed up ready to go to work on

I Based on individual service reconds of the r3.ast employes on the pay rolls of the three eatablishments at the end of 5935 .
the appointed day. He remarks that the "others apparently were floaters, who drifted from one shop to another and accepted jobs only from the highest bidders. Often when we thought that we had hired a sufficient number of men, we would find the next. day that only one or two out of eight or ten showed up to go to work."

CHAPTER V

Labor Mobictiy in Individual Plants and in Separate Groups withen the Work Force

Is the figures which have been shown heretofore labor instability was traced largely to seasonal, cyclical, and other fluctuations in industrial activity. It must be pointed out, however, that the extent of labor mobility at any given time is quite different in different industrial establishments, and in different occupations and other groups within those establishments - and this somewhat irrespective of locality and general industrial conditions. Of these many factors which might influence the extent of mobility in individual establishments a few of the more important ones, in so far as they can readily be determined and classified, may briefly be set down here: (r) The particular character of the industry; whether it can offer relatively steady work or whether it is subject to highly seasonal variations in employment. (2) Character of the labor force - that is, the extent to which an establishment employs males and females, unskilled, semi-skilled, or skilled workers; or whether the working force consists largely of clerical employees or of persons engaged in non-mechanical occupations. (3) The general conditions of employment: wages, hours of work, etc.: the particular nature of the work; that is, whether or not it is generally disagreeable and involves exposure to dampness, noxious odors, great heat, dust, etc. (4) The effectiveness of all efforts of the management to overcome purely industrial influences and the more personal desires of individual workmen to change jobs. The influence upon individual establishments and upon special groups within the work force of the various factors enumerated here will be discussed and illustrated in the pages immediately following.

LABOR MOBILITY IN INDIVDDUAL ESTABLISHMENTS

The mobility rates which have been shown up to this point are group rates in which are merged the individual plant figures of a large number of establishments. They do not indicate the extent of existing variations in the mobility figures of the different establishments making up the group. The forces and conditions determining the extent to which labor changes take place in individual establishments are extremely varied and numerous, as was pointed out above, and they operate differently upon different establishments. Only very exhaustive inquiries could reveal which of many factors involved is particularly responsible for the special virulence or mildness, as the case may be, of instability in particular establishments. The rates in Table 15 register the net general effect which all the factors of influence have had on labor instability in the industrial establishments studied.

In the period 1913^{-14} the establishment mobility rates are bunched in the lower groups; in the period 1917-18 the rates are less concentrated but more evenly distributed, having quite a large representation even in the high rate groups. Thus the flux rate of x .92 for the 84 establishments covered in $1913-14$ is distributed among 32 per cent of the establishments having a flux rate of 1.20 and under, 26 per cent having a rate of x .20 to 2.4 o , 23 per cent a rate of over 2.40 to 3.60 , and 19 per cent of the establishments having a flux rate of over 3.60. In the period 1917-18 the flux rate of 176 establishments was 4.08 and there was a corresponding moving up of the establishments into the higher flux rate groups. In that period there were only 3 per cent of the establishments having a flux rate of 1.20 and under, while 16 per cent had a rate of over 1.20 to $2.40,20$ per cent a rate of over 2.40 to 3.60 , and 6 r per cent a rate of over 3.60. A corresponding movement upward is observable in both the accession and separation rates.
How the sum total of these factors affects the labor instability of the same establishments at different periods and under differ-

TABLE 15

Number and Per Cent Distribution of Estabitsminents Having Classtried Labor Moblity Ratis. (igi3-14 and 1917-18)
(Unit: One establishment)

Chasstrio Rate	3913-1924		2917-1988		Chasstrise Rati	FLux	
	Acces 870:	$\begin{aligned} & \text { Siph- } \\ & \text { RAITN } \end{aligned}$	$\begin{aligned} & \text { Acocse } \\ & \text { nion } \end{aligned}$	$\begin{aligned} & \text { Scpan } \\ & \text { BAHOMI } \end{aligned}$		$\begin{gathered} \text { rexrs- } \\ 1924 \end{gathered}$	$\begin{aligned} & \text { 1917- } \\ & \text { xple } \end{aligned}$
. 60 and under . Over . 60 to 5.20 Over 1.20 to r .80 Over $x .80$ to 2.40 Over 2.40 to 3.00 Over 3.00 to 3.60 Over 3.60 to 4.20 Over 4.20 to 4.80 Over 4.80 Total	Nomam						
	34	96	6	7		28	5
	17	26	27	26	Over 1.20 to 9.40	22	28
	14	18	37	34	Over 2.40 to 3.60	19	35
	12	7	26	30	Over 3.60 to 4.80	8	25
	3	4	25	29	Over 4.80 to 6.00	4	31
	$\underline{1}$		22	21	Over 6.00 to 7.20	-	20
	-	-	11	12	Over 7.20 to 8.40	-	14
	-	I	10	7	Over 8.40 to 9.60	-	6
	3	1	12	ro	Over 9.60	3	12
	84	84	176	276		84	176
Mobility rates: 84 Establishments	. 93	.99	2.07	2.01		1.93	4.08
	Pra Cow Dinminutas						
. 60 and under	40	31	3	4	1.ro and under	33	
Over 60 to 1.30	40	3 I	15	15	Over 1.20 to 2.40	26	16
Over 1.20 to 1.80	17	8	21	19	Over 2.40 to 3.60	23	20
Over 1.80 to 2.40	14	8	15	17	Over 3.60 to 4.80	10	14
Over 2.40 to 3.00	4	5	14	16	Over 4.80 to 6.00	5	18
Over 3.00 to 3.60	1	-	13	12	Over 6.00 to 7.20	-	15
Over 3.60 to 4.20	-	-	6	7	Over 7.20 to 8.40	二	8
Over 4.20 to 4.80	-	r	6	4	Over 8.40 to 9.60	-	3
Over 4.80 .	4	\cdots	7	6	Over 9.60 .	4	7
Total	100	100	100	100		100	100

ent labor conditions may be seen by comparison of the mobility figures of 20 identical establishments for the two periods $1913-14$ and r9r7-18. It may be seen from the figures in Table 16 that with the exception of 3 establishments (Nos. 34,48 , and 56) all show a decided increase in the mobility rates over the pre-war period, the rates in one case (Establishment No. 37) being over four times as great in the war as in the pre-war period. For

TABLE
Labor Mobility of Establisments

all of the twenty identical establishments taken together, there appears to have taken place nearly a two-fold increase in the flux rate; in 1913-14 it was 2.56 , and in 1917-18 it was 4.44, per fullyear worker.
It is to be noted, in the figures of Table 16, that in the earlier period the separation rate exceeded the accession rate. Most of these concerns, as was quite generally the case with American industrial establishments at that time, were more or less extensively reducing the number of their employees. In 1917-18, according to these figures, the rate of accession was appreciably

[^22]16
Reported Both in $1913-14$ And 1917-18

Ratr of Labor Cameot prat Funhyrar Worckr						Indisizy on Naturi or Busimsa
Accresion		Stapanimos		Frux		
2913-54	1917-18	1973-14	2917-18	19x3-54	2917-18	
.33	1.77	42	$\underline{1.74}$	-75	3.51	Engineering specialties mfg.
. 30	. 96	. 63	. 81	. 93	1.77	Agricultural implements mfg.
.36	. 69	. 63	. 69	. 99	1.38	Agricultural implements mfg.
.48	. 48	. 60	. 45	1.08	. 93	Motor car mfg.
. 69	r.IT	. 87	. 93	r.56	2.04	Structural steel fabricating
. 57	2.58	1.05	2.49	1.69	5.07	Electrical appliances mfg.
. 96	2.76	. 69	2.73	1.65	5.49	Metal wire, etc. mfg.
2.02	3-51	.72	3.06	1.74	6.57	Motor car mfg.
. 93	. 93	. 90	1.08	$\underline{4.83}$	2.01	Mail order house
1.29	2.79	. 81	2.01	2.10	4.80	Machine tools mfg.
7.26	2.88	1.29	2.67	2.55	5.55	Electrical supplies mfg.
1.47	3-09	1.47	2.19	2.94	5.28	Iron wheels and castings mfg.
1.45	1.80	R.56	$\underline{2.65}$	2.97	3.45	Machine tools mig.
$\pm .53$	3.06	2.56	2.73	3.09	5.79	Motor car mfg.
1.44	3.09	1.65	3.09	3.09	6.18	Machine tools mfg.
1.41	2.58	2.13	2.82	3.54	5.40	Car works
2.04	5.53	L.56	1.32	3.60	2.85	Machine tools mfg.
1.83	4.53	1.92	4.47	3.75	9.00	Automobile parts mfg.
2.79	3.69	2.76	4.15	5.55	7.80	Motor car mfg.
3.00	2.19	2.73	1.83	5.73	4.02	Slaughtering and meat pack'g
1.26	2.30	1.30	2.14	2.56	4.44	20 identical firms ${ }^{1}$

higher than the rate of separation. This reflects, in turn, the industrial activity of the war period. This shift, in a four-year interval, from a contracting, demobilizing industrial machine to an expanding one, is further revealed in the two columns headed "number of full-year workers." The aggregate working personnel of these twenty concerns increased in number from 61,818 in 1913-54 to 109,798 in 1917-18. The figures for the individual establishments show that only four of the twenty firms failed to share in this expansion. Of the four establishments which suffered a decline only one experienced a shrinkage of any considerable proportions.
${ }^{1}$ The rates for the 20 identical firms combined are unweighted arithmetic averages of the respective individual plant rates.
table
Labor Mobinty by Sex and

Industrx Grous	Nonger or Estasmbincents	Nomere or Fulhyeaz Workres	Tomar Lasor Hovis
Males			
Automobiles and parts	2	2,872	8,616
Chemical industries and refineries	3	2,192.	6,576
Clothing and textile mig.	3	453	1,359
Furniture and millwork	2	1,851	5,553
Leather and rubber goods . -	1	1,173	3,519
Machinery mfg.	6	12,903	38,706
Mercantile establishments * *	2	817	2,451
Miscellaneous metal products mfg.	11	5,736	17,208
Printing and publishing . . -	3	577	1,73I
Public utilities: Gas and electricity mfg.	2	2,35I	7,053
Street railways - .	2	6,881	20,643
Telephone service	7	7,355	22,065
Slaughtering and meat packing	1	4,353	13,059
Total	45	49,513	148,539
Females			
Automobiles and parts \cdot -	2	210	630
Chemical industries and refineries	3	256	768
Clothing and textile mfg. . .	3	825	2,475
Furniture and millwork . . .	2	174	522
Leather and rubber goods . . .	I	102	1,306
Machinery mfg.	6	431	1,293
Mercantile establishments - .	2	310	930
Miscellaneous metal products mig.	II	1,051	3,153
Printing and publishing . ${ }^{\text {a }}$	3	583	1,749
Public utilities: Gas and electricity mfg.	2	303	909
Street railways	2	671	2,or3
Telephone service	7	11,054	33,162
Slaughtering and meat packing	I	866	2,598
Total $]$	45	16,836	50,508

labor mobility of male and female emplovees

The results of a special study of the relative labor mobility among males and females are given in Tables $17 a$ and $17 b$, which show the labor change numbers and rates for each sex and industry group for the 45 firms reporting the necessary data for 19r7-18. In the period covered by the table, female workers made up about one-fourth of the aggregate working personnel of

17 a

Indostry Group, 19:7-18

Nomern on hamos Cramoza			Indusiry Ga0tr
Acemstrons	Stpanationit	Fioz	
			Automobiles Males
	\% 6,42r 6,346 934	10,129	
$6,569$		12,915	Automobiles and parts Chemical industries and refineries
928		1,862	Clothing and textile mfg.
4,319	5,639	9,958	Furniture and millwork
4,483	$\begin{array}{r} 4,449 \\ 12,818 \end{array}$	8,932	Leather and rubber goods
13,256		26,074	Machinery mfg.
1,180	x,198	2,380	Mercantile establishments
18,403	19,019633	37,422	Miscellaneous metal products mifg. Printing and publishing
556		1,189	
1,135	1,194	2,329	Pablic utilities: Gas and electricity mig-
5.772	7,222	12,994	Street railways Telephone service
5,263	8,229$\mathbf{1 5 , 3 4 0}$	$\begin{aligned} & \mathbf{3 3 , 4 9 2} \\ & 32,660 \end{aligned}$	
17,320			Slaughtering and meat packing
83,894	88,442	172,336	Total
			A Females
370	250	620	Automobiles and parts
300	229	529	Chemical industries and reineries
2,062	1,272	2,334	Clothing and tertile mrg.
733 376	692 $\times 40$	2,435 516	Leather and rubber goods
859	720	x,579	Machinery mfg.
314	255	569	Mercantile establishments
2,792	2,285	5,073	Miscellaneous metal products mfg.
440	529	. 969	Printing and publishing
812	298 315	1,039 802	Public utilities: Gas and electricity mfg. Street railways -
487 9,069	315 9,477	802 19,446	Telephone service
2,694	2,078	4,772	Slaughtering and meat packing
21,207	18,466	39,673	Total

the forty-five establishments. However, in two of the thirteen industry groups - clothing and textile manufacturing and telephone service - the women far outnumbered the men. It is also to be noted that, in several cases, the number of women workers reported is so small that it is scarcely prudent to attempt generalization. This is especially true where data are shown for only one or two establishments, as, for example, in the case of leather and rubber goods, furniture and millwork and automobiles and parts.

TABLE
Labor Mobimty by Sex

Indusiry Grous	Both		
	Nunter Of EstasLusioctivs	Numbre of Fundrear Wokzers	Toral Labor Hougs (Thousands)
Automobiles and parts	2	3,082	9,246
Chemical industries and refineries	3	2,448	7,344
Clothing and textile mfg. . -	3	1,278	3,834
Furniture and millwork . .	2	2,025	6,075
Leather and rubber goods . .	1	1,275	3,825
Machinery mfg.	6	13,333	39,999
Mercantile establishments . .	a	1,127	3,381
Miscellaneous metal products mfg.	II	6,787	20,361
Printing and publishing	3	1,160	3,480
Public utilities: Gas and electricity mfg.	2	2,654	7,962
Street railways. .	2	7,552	22,656
Telephone service	7	18,409	55,227
Slaughtering and meat packing	1	5,219	15,657
Total	45	66,349	199,047

Rati peifolu						
	Malus			Fenuest		
	Acces EHOM	$\begin{aligned} & \text { Separan- } \\ & \text { mont } \end{aligned}$	Fiox	Acces. sion	SepazaT10:	Furx
Automobiles and parts	1.65	1.89	3.54	1.77	1.20	2.97
Chem. industries and refineries	3.00	2.88	5.88	4.17	. 90	2.07
Clothing and textile mfg.	2.04	2.07	4.11	1.29	1.53	2.82
Furniture and millwork.	2.34	3.06	5.40	4.20	3.99	8.19
Leather and rubber goods	3.81	3-78	7.59	3.69	1.38	5.07
Machinery mig. . .	1.02	-99	2.01	1.98	1.68	3.66
Mercantile establishments	1.44	1.47	2.91	1.02	.81	1.83
Miscel. metal products mfg.	3.21	3.33	6.54	2.67	2.16	4.83
Printing and publishing -	. 96	$\underline{1.11}$	2.97	. 75	. 90	1.65
Public utilities:						
Gas and electricity mig.	.48	. 51	. 99	2.68	75	3-43
Street railways.	. 84	1.05	1.89	.72	48	1.30
Telephone service . .	. 72	I.II	1.83	. 90	. 87	1.77
Slaughtering and meat packing	3.99	3.51	7.50	3.12	2.40	5.52
Total	1.68	1.80	3.48	1.26	1.11	2.37

LABOR MOBILITY IN INDIVIDUAL PLANTS 69

178
and Indoustry Group, 1917-18

Sexer			Indosmial Groto
Numbr of Labor Cramors			
Accissiona	Serabattons	Frux	
5.078	5,671	10,749	Automobiles and parts
6,869	6,575	13,444	Chemical industries and refineries
1,990	2,206	4,296	Clothing and textile mfg.
5,052	6,331	11,383	Furniture and millworl
4,859	4,589	9,448	Leather and rubber goods
14,115	13,538	27,653	Machinery mfg.
1,496	1,453	2,949	Mercantile establishments Miscellaneous metal products mfg.
21,195 996	21,300 1,162	42,495 2,158	Miscellaneous metal products mfig. Printing and publishing
1 $\mathrm{r}, 946$	1,162	2,158	Public utilities: Gas and electricity mfg.
6,259	7,537	13,796	Street railways
15,232	17,706	32,938	Telephone service
20,014	17,418	37,432	Slaughtering and meat packing
105,102	106,908	212,009	Total

ynis Woater

Botr Sucis			
Accesctak	$\begin{gathered} \text { Sgratan- } \\ \text { Hon } \end{gathered}$	Flum	
5.65	1.83	3.48	Automobiles and perts
4.82	2.70	5.53	Chemical industries and refineries
1.56	1.74	3.50	Clothing and textile mfg.
3.49	3.12	5.61	Furniture and millwort
3.81	3.60	7.42	Leather and rubber goods
1.05	1.09	8.07	Machinery mfg.
1.38	1.29	2.61	Mercantile establishments
3.75	3.15	6.37	Miscellaneous metal products mig.
. 87	.99	1.86	Printing and publishing Public utilities:
.79	54	$\underline{4.16}$	Gas and electricity mfg.
. 84	. 99	8.83	Street railways.
84	. 96	1.80	Telephone service
3.84	333	7.17	Slaughtering and meat packing
8.59	1.69	3.21	Total

The figures indicate that the mobility rates for females are on the whole considerably lower than for males. It is a rather significant fact that whenever the mobility rates of the males are high the mobility rates of the females are also high. The combined rates of the 45 establishments here studied show the separation rate of the males to be slightly higher than the accession rate, while the accession rate of the females is greater than the separation rate. This is, of course, due to the influx of women into industries during that period. In general, the rates shown here reveal primarily the effect of war-time changes in industry and cannot be said to offer conclusive evidence that shifting is generally less among women. These figures must be used with certain reservations, since the comparison of the mobility between males and females is not made invariably between employees in the same occupation and doing similar work. This is especially noticeable in industry groups in which the female labor force constitutes only a small fraction of the total working force and is composed almost entirely of clerical employees.

DAY AND NIGHT PORCE

On the basis of figures secured from a machine tool manufacturing plant the relative responsibility fairly to be assessed against the day and night forces, respectively, for the turnover, can be fairly closely ascertained. In Table 18 the number of labor changes in this establishment and the corresponding rates are given for each year from 1916 to 1919, inclusive.

From these figures it may be seen that, over the 4 -year period, 1916-19, the flux rate per full-year worker for the day force was 2.25, that of the night force 6.27, and that of the day and night forces combined 3.06. The mobility of the night force is nearly three times as great as that of the day force and the former is, therefore, responsible for an extent of mobility entirely out of proportion to its strength in the organization. Over the 4 -year period the night force constituted about 20 per cent of the total working force, but is chargeable with nearly 45 per cent of the
total labor changes. The greater shifting among the night workers thus causes the flux rate for the establishment as a whole to be 35 per cent higher than it would be if the changes in the night force were in equal proportion with those of the day force.

TABLE 18
Labor Mobmity of Day and Niget Forcrs of a Machinz-tool Manupacturing Establishment (No. 35-144), by Years, 1916-19

Yink	Nureme of FULEMEAR Woriselas		Totar Labol hotres(Thotinnds)	. Noxcher or laboz Crangors							
			Accesston	Skparation		Five					
	Day Forcz										
1926	$\begin{aligned} & 806 \\ & 892 \\ & 950 \\ & 780 \end{aligned}$			2,418	$\begin{array}{r} \mathbf{x}, 251 \\ 1,124 \\ x, 087 \\ 547 \end{array}$		$\begin{array}{r} 955 \\ 956 \\ \times, 283 \\ 494 \end{array}$		$\begin{aligned} & 2,206 \\ & 2,080 \\ & 2,370 \\ & 1,041 \end{aligned}$		
1917 .			2,676								
1918			2,850								
1919			2,340								
Total	3,428		10,284	4,009		3,688		7,697			
	Nrast Fonct										
$\begin{array}{r} 1916 \\ 1917 \\ 1918 \\ 1919 \\ \text { Total } \end{array}$	225		675	838		764		x,602			
			660	856		749803		1,565			
	257		772		662			1.46			
	14		429	415		344		659			
	84		2,535		3,731		,560	5,29			
	Total Wormmo fones										
$\begin{aligned} & 1916 \\ & 1917 \\ & 1918 \\ & 1919 \end{aligned}:$	$\begin{array}{r} x, 03 x \\ x, 18 a \\ x_{1} 207 \\ \mathbf{9 2 3} \end{array}$		3,093 3×330 3,692 3,769	2,089		1,719		3,808			
			x,940	1,705		3,645					
			1,749$\mathbf{9 6 a}$			3,086	3.8				
			738	1,700							
	4,273				22,819	6,740		6,248		22,988	
	Rate per fun-rmar Woarsm										
	Day Frace			Nucmer Foacs			Tomal Woayma Fomer				
	Accask	Sixa Rattone	Fues ${ }^{\text {a }}$	$\begin{aligned} & \text { Acocrs } \\ & \text { srow } \end{aligned}$	Sapan hation	Fugx	$\begin{gathered} \text { Aecess } \\ \text { grow } \end{gathered}$	$\begin{aligned} & \text { SIPA- } \\ & \text { RITI } \end{aligned}$	Flux		
1916	1.56	1.17	3.73	3.72	3.39	7.15	8.04	5. 68	3.79		
1917	2. 26	1.08	2.34	3.72	3.39	7.15	1.74	1.53	3.97		
1928	2. 14	135	2.49	2.58	3.12	5.70	1.44	1.74	3.18		
1919	. 69	. 63	1.33	2.91	1.71	4.63	1.05	81	1.86		
Total	1.17	5.08	2.25	3.24	3.03	6.37	1. 59	1-47	3-06		

LABOR MOBLITY OF SKILLED AND UNSKLLED EMPLOYEES

Of some interest in the study of turnover is a consideration of the relative instability of the skilled and unskilled. It is generally known that common or unskilled labor is less stable than skilled labor, but extensive figures are not available to show just how much less stable it is. On the basis of figures furnished by a number of industrial plants it is possible to compare skilled and unskilled employees both for the war period and the period immediately preceding the war. The figures are presented in Table 19.
The labor mobility rates for the two classes of labor show that in both periods unskilled labor was much more unstable than skilled labor. Moreover, this excess of instability on the part of the unskilled was much greater in the war than in the pre-war period. In the latter period the mobility rates of the unskilled were more than double the rates for the skilled. In 1917 the mobility rates of the unskilled were three times as great as those of the skilled. In the earlier period there was, among the skilled, slightly more than one labor change for each skilled member of the working force of the twenty-two plants and nearly three changes in unskilled jobs for each unskilled worker. In 1917-18 there were nearly three skilled-labor changes for each skilled worker and about nine unskilled-labor changes for each unskilled worker. ${ }^{1}$
In answer to a question addressed to a large number of establishments regarding the occupation or department in which the labor changes were greatest or least during the war period and the reason why, the almost unanimous opinion expressed was that the greatest shifting was taking place in departments in which the bulk of the employees were classified as common labor. The least shifting was reported to be taking place mainly "among the highly skilled employees who were earning big money and

[^23]had long records of continuous service." The extremely large number of labor changes among the unskilled workers was due, it was repeatedly stated. to the fact that during the war period

TABLE 19

[ro establishments reporting for 1913, 5 for 1914, and 7 for 1915; 10 establishments reporting for year ending May 3x, 1918]
Source: Report on "Mobility of Labor in American Industry," ro Mo. Labor Reo., 2352. Rates shifted to full-year worker basis

Cuns or Wourme		TOTAE Lanor Hours	Laboz Cimmass		
			Accrsston	Strazation	Ftux
			Nowask		
	$\begin{array}{r} -24,733 \\ \times 5,660 \end{array}$	$\begin{array}{r} 74,199,000 \\ 46,980,000 \\ \hline \end{array}$	$\begin{aligned} & x 4,848 \\ & 90,042 \end{aligned}$	$\begin{aligned} & 16,484 \\ & 22,25 I \end{aligned}$	$\begin{array}{r} 31,332 \\ 42,293 \end{array}$
	40,393	121,179,000	34,890	38,735	73,625
	$\begin{array}{r} 16,160 \\ 4,408 \\ \hline \end{array}$	$\begin{array}{r} 48,507,000 \\ 13,224,000 \end{array}$	$\begin{aligned} & 21,919 \\ & 19,66 x \end{aligned}$	$\begin{aligned} & 24,830 \\ & \times 9,203 \end{aligned}$	$\begin{aligned} & 46,749 \\ & 38,864 \end{aligned}$
	20,577	61,731,000	41,580	44,033	85,613
			Rati prin Fou-ymal Wourse		
$\begin{aligned} & \text { 1913-15 } \\ & \text { Sluilled }^{\text {Unskilled }} \text { : } \end{aligned}$			$\begin{array}{r} .60 \\ 1.29 \end{array}$	$\begin{array}{r} .66 \\ \times, 4 \times \end{array}$	$\begin{array}{r} 1.26 \\ 2.70 \end{array}$
Total			. 87	. 96	1. 83
			$\begin{aligned} & 1.35 \\ & 4.47 \end{aligned}$	$\begin{array}{r} 1.53 \\ 4.35 \end{array}$	$\begin{aligned} & 9.88 \\ & 8.82 \end{aligned}$
Total .			2.08	2.13	4.14

the demand for common labor was so great that at frequent intervals actual shortages of this kind of help were felt. The ensuing shortages resulted in a sharp competition for common
labor; employers outbid each other in order to obtain it, and the workers, taking advantage of the situation, shifted from plant to plant and city to city in enormous numbers. The competition for help was carried on mainly by means of extensive newspaper advertising. The advertisements were so alluring that, as one large employer put it, "day workers were looking for new positions during the evening and night workers during the day."

occupational inctoence of labor mobility

It is apparent that the mobility rates as shown for an establishment as a whole do not quite accurately reflect the conditions within the establishment, for the reason that the shifting may be largely confined to a single occupation or a group of occupations. To bring out the real significance of the mobility situation, therefore, further classification is necessary. Probably the most significant classification of mobility in individual establishments and one which best brings out the exact responsibility for the labor changes in the working force is that based upon occupations or jobs, or a classification in which the mobility figures are at least kept in relation to certain groups within the working force doing somewhat identical work and having similar working conditions. The advantage of such a classification lies in the fact that it makes it possible to particularize the analysis of existing conditions in the plant and trace the influence upon stability of the nature of the work and the general conditions of employment of each occupation or group of occupations. Table 20 shows the occupational responsibility for labor instability in one of the largest car-building establishments in the United States. ${ }^{1}$

This table shows how greatly the mobility rates of the different occupational groups vary from the rates as a whole. For exam-

[^24]ple, the flux rate of the total working force of this establishment is 5.40 while at the same time the rate for one occupation, pattern makers, is 1.05 and for another, riveters, is 11.76 . The figures of this establishment also show that, although for the establishment as is whole there has been an excess of separations over accessions, this applies only to some of the occupational groups, while others show the number of accessions to be greater than the number of separations, resulting in corresponding changes in the mobility rates. It is stated by the company that the influence of uncertainty in obtaining materials and certain demoralizing labor conditions are reflected in the high mobility rates of shearsmen, punch-press and power-press operators, bolt makers, and car-body builders. The high shifting frequency of car truck builders and car steam fitters is due to seasonal fluctuations. Assemblers, filers and welders, molders, woodmachine operators and upholsterers show high mobility rates because of the reduction in their number. The highest rates of labor change are found among the riveters and laborers. Both these groups of workers are regarded by the management as being of the floater type, which is a type very difficult to manage. The marked instability of workers in certain occupations in this establishment may be explained by the fact that, during the period for which figures are shown, shipbuilding on the Great Lakes received a great impetus and the type of worker employed in car building could readily be absorbed in shipbuilding plants. The relatively bigher wages paid in the shipbuilding industry no doubt attracted many employees from this and other establishments. ${ }^{1}$

[^25]TABLE
Labor Mobisty in a Car-humding
By Occupations, for Year

Occupatrons	Numate of Follygas Woxrees		Lasor	
				Nomas
			Accisstions	Separations
Air-brake construction men	8	24	13	31
Assemblers, filers and welders	197	597	175	447
Bevelers, glaziers and silverers	23	69	35	44
Blacksmiths . -	117	351	135	156
Bolt makers - . . .	40	120	133	119
Bookkeepers, clerks, etc. .	229	687	257	259
Cabinet makers.	$\underline{167}$	501	157	242
Car body builders	871	2,613	3×394	3,383
Car bottom builders	103	309	94	134
Car electricians	186	558	395	494
Car inspectors	25	75	11	8
Carpenters . . . -	72	216	120	108
Car platform builders . -	3 r	93	42	56
Car steam fitters.	118	354	376	384
Car truck builders	155	465	356	379
Die and tool makers .	158	474	228	230
Draftsmen	88	264	38	88
Engineers and firemen . .	59	177	160	146
Hammersmiths .	115	330	137	164
Inside car finishers . .	261	783	190	328
Inside car trimmers . . .	217	633	157	210
Laborers - . . .	1,140	3,420	6,166	6,186
Machinists, bench machinists, etc.	466	1,398	622	803
Mechanical engineers . . .	26	78	23	25
Millwrights	146	438	433	401
Molders	49	$\begin{array}{r}147 \\ \hline 55\end{array}$	142	173
Painters Pakers - . -	517 18	1,551	890	1,076 14
Pattern makers - . -	18	54	5	14
Printers . . .	9	27	16	15
Riveters	139	417	763	877
Rolling mill helpers - . . .	90	370	55	63
Roof fitters . - . . .	179	537	271	363
Shearsmen, punch-press op't's, etc.	446	1,338	7,395	1,576
Shop electricians . - .	57	177	143	133
Shop stearn and water fitters	47	141	88	77
Superintend's, gen'l foremen, etc.	71	213	76	98
Template makers	37	111	40	59
Tinners - . . -	152	456	199	214
Upholsterers . . . -	223	669	297	463
Watchmen : - *	89	267	240	243
Wood machine operators . .	153	459	390	389
Total	7,287	21,861	18,837	20,642

20

Plant (Establisiment No. roz)
Ending May 3r, rgr8

Canma				Occopationa
	Ratt, pre FULEYEAR WOATER			
Tomat	Acciession	$\begin{gathered} \text { SEPARA- } \\ \text { nON } \end{gathered}$	Flux	
34	1.62	2.64	4.36	Air-brake construction men
686	. 87	2.25	3.29	Assemblers, filers and welders
79	5. 53	1.97	3.45	Bevelers, glaziers and silverers
291	1.16	1.33	2.49	Blacksmiths
252	3.33	2.97	6.30	Bolt makers
516	$\mathbf{5 . 5 1}$	$\underline{5.14}$	2.25	Bookkeepers, clerks, etc.
399	. 94	I-45	2.39	Cabinet makers
6,777	-3.90	3.87	7.77	Car body builders
228	.97	1.30	2.31	Car bottom builders
889	2.13	2.64	4.77	Car electricians
19	4.4	32	.76	Car inspectors
228	8.67	I-50	3.17	Carpenters
98	1.36	1.80	3.16	Car platform builders
760	3.19	3.25	6.44	Car steam fitters
735	2.29	$2 \cdot 45$	4.74	Car truck builders
458	1.44	I.46	2.90	Die and tool makers
126	42	. 99	1.45	Draftsmen
306	2.71	2.48	5.19	Engineers and firemen
297	1.14	550	9.64	Hammersmiths
518	-73	1.26	2.98	Inside car finishers
367	. 75	-99	1.74	Inside car trimmers
223sa	540	540	10.80	Laborers
1,425	1.32	2.72	3.03	Machinists, bench machinists, etc.
48 824	. 87	. 96	$\underline{2.83}$	Mechanical exgineers
824 315	9.88	2.73	5.6r	Millwrights
315 1,966	2.88	3.54	6.42	Molders
1,966	1.75	2.07	3.78	Painters
19	. 27	78	1.05	Pattern makers
31	8.77	1.65	5.48	Printers
1,640 188	5.46	6.30	[1.76	Riveters
118 634	. 60	.69	1.19	Rolling mill helpers
6, 634	1.50	2.01	3.57	Roof fitters
2.971 876	3.15	3.54	6.66	
376 165	$\$.49$	2.34	4.83	Shop electricians
165 174	1. 86	5. 63	3.48	Shop steam and water fitters
174 99	1.08	1.38	4.46	Superintendents, generil foremen, etc.
99	1.08	5.59	2.67	Template makers
413 760	1.59	142	2.70	Tinners
760	132	2.07	339	Upholsterers
485	2.70	2.73	5.45	Watchmen
779	2.55	2.55	5.10	Wood machine operstors
39.479	2.58	2.82	5.40	Total

CHAPTER VI

Types of Separation and Causes of Turnover ${ }^{1}$

The reasons for employees leaving the service of an industrial establishment may be traced back either to purely voluntary action on their part, generally caused by dissatisfaction with the prevailing conditions of employment, or to action initiated by the employer and due either to curtailment of industrial activities or to dissatisfaction with the services of certain of his employees. Separations occurring on the employee's own initiative are referred to in these pages as voluntary separations or quits; and those resulting from the affirmative action of the employer are referred to as lay-offs or discharges, as the circumstances indicate. In attempting to get some conception of the relative responsibility of the various influences bearing upon the mobility of labor it is highly important to give some special consideration to each of these three types of separations. In the figures presented here on the nature of separations, "quits" are taken to include all voluntary separations, including withdrawals due to death, marriage, etc.

Discharges nearly always mean dismissal "for cause," which presupposes some form of incapacity for the work or at least what is believed to be some defect in the character of the employee. Under lay-offs are grouped those who are "let out" either temporarily or permanently whether because of the completion of the job or because of shortage of the particular work at which the laid-off employee was engaged. Lay-offs are not voluntary separations and have nothing to do with the character of the employee. Lay-offs, moreover, seldom are made for a

[^26]definite length of time, and a large proportion of laid-off employees, as a matter of fact, never return to the same establishment from which they were laid off.

In Table 21 are given the number, rate per full-year worker; and the percentage distribution of all separations, of employees discharged, laid off, and leaving voluntarily. Figures are shown for each year from 1910 to 1915 inclusive and for the 12 -month period ending May 31, 1918.

The arresting fact shown in the following rate and percentage distribution figures is that the great bulk of all separations to-day, as in $\mathbf{x} 10$, is due to voluntary leaving. It also appears from these figures that periods of industrial prosperity are reflected in relatively low, and periods of depression in relatively high, proportions of lay-offs to total separations, and that the lay-off rate is the most sensitive of the three separation rates to changing industrial conditions. Thus, in 1914, when the ratio of quits to total separations was lower than at any other time during the period covered by the figures, the proportion of lay-offs was higher than at any other time, constituting nearly one third (31 per cent) of all separations, while in the immediately preceding year 1913 lay-offs made up only 7 per cent of all separations. The rate figures indicate that it is not alone the proportion but also the actual rate of lay-off which is thus affected by business activity and depression, the lay-off rate for 1913 being . 10 , a. relatively low figure, and for 1914: 25, per full-year worker, which is an exceedingly high rate for lay-ofis.

The discharge rate is evidently subject to less extreme fluctuations than the lay-off rate, and it makes up from year to year a more constant proportion of the total separations. There appears, moreover, to be a rather definite relation between the accession and discharge rates, due, possibly, to the process of selection which goes on when new workers are taken on in large numbers. The consequence of the stimulating effect of business prosperity in boosting the voluntary leaving rates may be seen in the high rates of total separation, in spite of the fact that the
lay-off rates are relatively low. In periods of depression both the rates and the proportions of lay-off and discharge are higher than in periods of prosperity. This is due to the fact that when

TABLE
Type of Separation (Dischazge, Lay-opf of Voluntary Quitinng) and for tae 12-Monti Pertod
(Source: Report on "Mobility of Labor in American Industry."

depression sets in there are unusually large numbers laid off and employees are discharged more freely than would be the case when labor is urgently needed.
The influence of the prevailing industrial conditions not only upon the separation rate as a whole but more specifically upon the three types of separation - quitting, lay-off, and discharge,
which make up this rate - is shown in Table 2, on page 16, which gives the trend, from 1912 to 1919, of accession (hiring) and classified separation rates in a middle western metal products

21

or Employers Leaving, by Years from 1910 10 1915, Inclusive, Endino May 31, 1918
ro Mo. Labor Ret., 1354. Rates shifted to full-year worker basis)

Accrsanom	Stepanations				
	Disciarose	Lay-ars	Volontary STPARATONE	Totar	
15.936	2,608	514	14,230	17,352	7910
53.506	9,837	5,082	35,716	50,635	I9II
78,843	13,628	4,057	49,806	67,491	1912
182,276	32,094	13,334	I4r,035	186,463	1913
82,585	19,565	29,737	46,660	95,962	1914
50,4ar	6,946	8,536	26,862	42,344	1915
393, 564	5x,400	29,833	299,157	380,390	2917-18
856,732	136,078	91,093	613,466	840,637	Total
Accesminer	Sspamation				
	Dixcminat	Lat-oys	Vozmetary Smparation	Torat	
. 68	.II	. 03	.6r	74	1910
. 95	.17	. 09	. 63	. 89	1915
1.09	.19	. 06	. 69	. 94	1912
1.35	.24	. 10	$\underline{5.05}$	$\pm .39$	1913
.70	. 17	. 25	. 40	82	1914
. 64	. 09	. 51	34	. 54	1915
x.90	.25	. 14	1.44	$\underline{5.83}$	1917-18
1.24	. 10	13	. 89	1.33	Total

manufacturing plant. This trend, in so far as the separation rates are concerned, is shown graphically in Chart E, on page 83.2

Perhaps the most striking fact brought out by this chart is the very close way in which the quitting rate parallels the total
${ }^{1}$ Chart reprinted by permission from the authors' articie on "Causes of Labor Turnover, ${ }^{\text {" }}$ Administration, November, rgan.
separation rate, the margin being relatively wide in periods of depression and relatively narrow in periods of great industrial activity. At the points where the separation rate generally declines, the lay-off rate shows, at first, a decided upward trend, but the discharge rate declines even more rapidly than the separation rate as a whole. In the period of increasing industrial activity, especially during the war period, the discharge rate runs along at about the same relatively low level, while the lay-off rate steadily declines, reaching its lowest point at a period which marks the peak of activity in this plant.

The form of the lay-off rate curve in the early part of the seven-year period shows that it was the great increase in the number laid off in the latter part of 1914 that raised the separation rate during that time so considerably above the accession rate. This shows how inaccurate the separation curve would be if taken to measure "turnover" - unless that term is to be used in reference to something entirely different from the amount of change involved in maintenance, that is to say - replacement. Almost the whole margin, in this part of the period, between the separation and accession rates is due to increased lay-offs, i.e., to a (more or less) permanent decrease in the size of the standard working force. ${ }^{1}$ Remarkable reductions took place during the first three and a half years, in both the quitting and discharge rates. When the war began in Europe this establishment had, apparently, gone a long way toward the elimination of discharges as a factor in turnover. In the three years from 1912 to 1915 , it reduced its rate of discharge from .25 to .05 per full-year worker, or 80 per cent. But during the war period from December 31 , 1915, to April 30, 1919, the discharge rate increased 400 per cent. The most important pre-war reduction is, of course, in the quitting rate, because the quitters are responsible for the bulk of the turnover. This company's quitting rate went down from 1.23 in January, 1912 , to 36 in June, 1915 , - a decline of 71 pericent. But the quitting rate increased 271 per cent between the year

[^27]
ended December 31, 1915 , and the year ended April 30, 1919. It is quite evident, as has been pointed out, that it is the quitting rate which primarily determines the total separation rate.

The disturbing effect of war conditions is very evident. Both accession and separation rates had risen in 1918 to points far above the high points of the 1912-1915 period. An examination of the accession rate and the different separation rates (shown in Table 2) indicates that the war pushed all rates except the lay-off rate well above the remarkably low points reached in 1915 . Worse yet, the charts show that it pushed all except the lay-off and discharge rates up to a point even higher than the maximum rates of 1912, so that total separation and accession rates and the replacement rate, ${ }^{1}$ which in this case is identical with the separation rate, rose to points never before reached within the period covered by the figures reported. It is interesting to note the effect of the war on the lay-off rate. During the period 1912-1915 it was reduced 28 per cent. War conditions apparently greatly accelerated this reduction and showed a lay-off rate of .08 per full-year worker for the year ended May 31, 1918, as compared with . 31 for the year 1915, 一 a reduction of 77 per cent. But in the latter part of 1918, the lay-off rate began to rise and the rate for the year ending April 30, 1919, stood at .67, the highest it had been since 1915. Despite the increased war demand for labor, the discharge rate increased from . 05 in 1915 to .17 in 1918, - an increase of 240 per cent. It has continued to rise, and stood at .25 for the year ended April 30, 1919.
The proportions of the total separations in industrial establishments due to discharge, lay-off, and (voluntary) quitting in the period 1913-14, and to discharge, lay-off, entry into military service, and quitting in 1917-18, are shown in Table 22.
It is evident that the war period brought about a considerable decrease in the proportion of discharges and in the number of establishments having a heavy proportion of separations due to discharges. The war period had the same effect upon lay-offs,

[^28]but, on the contrary, it brought about a great increase in the number of establishments having a heavy proportion of separations due to voluntary leaving. The figures of Table 22 for sixty-six establishments reporting in 1913-14 and one hundred

TABLE 22

Nomprr of Establismants in whice Classifad Proporitons of the Total
Separations Are Attributable, Respectively, to Disciarge, Lay-oft, Entry into Mintary Service, and Volontary Quititige, $1913-14$ and 7917-18

Prematainat or TOTAL SEPAEATIONA	Nompin of Estabishmurars Having Chassinde Pricentages of fies Total Sepreationt Due to Enploydes Having -			Pincential os Total Siphinatons	Nundirs or EsTABLLKHitints Havmo Cuessivite Per CRNTAGES OF the Total SEPAEATIONS DUE TO ExPLovers Havmeg Qutr
	HERN Dis- chargem	(Bntime Mritany Smyice		
5 or less ${ }^{2913-74}$	6	8	-	40 or less Over 40 to 50 Over 50 to 60 Over 60 to 70 Over 70 to 80 Over 80 to 90 Over 90 to 100 Total	13
Over 5 to ro	7	10	-		15
Over ro to 15	13	6	-		12
Over 15 to 20	6	4	-		7
Over 20 to 95	6	2	-		11
Over 25 to 30	9	8	-		9
Over 30.	19	18	-		3
Total	66	48	-		66
1917-18					
5 or less .	24	34	43	40 or less Over 40 to 50 Over so to 60 Over 60 to 70 Over 70 to 80 Over 80 to 90 Over 90 to 100 Total .	3
Over 5 to 10	39	15	49		4
Over 10 to 15	22	6	5		6
Over 15 to to	13	1	7		18
Over 20 to 25	5	\pm	I		31
Over 25 to 30	3	5	-		37
Over 30 , .	1	5	-		9
Total	107	68	105		108

and seven reporting in 1917-18 indicate that discharges in 1918 made up over 30 per cent of all separations in less than 1 per cent of the establishments reporting, whereas in 1913-14 they bulked that large in nearly one-third of the establishments reporting.

TABLE
Numbrr and Rate per Fuldxear Woxyer of Euployers Discbarged,
by Industry Grouts,

Indusiry Grour	Nungis or Folyziak Worimbs	Total Laboz Hovgs (THOUSANOS)
1913-14 Automobiles and parts		
Chemical industries and refinerie	2,900	8,700
Clothing and textile mfg.	2,588	7,764
Furniture and millwork		
Leather and rubber goods	9,018	27,054
Machinery mfg. . . .	23,039	69,117
Mercantile establishments .	7,113	21,339
Miscellaneous metal products m	46,495	139.485
Printing and publishing . *	5.566	16,698
Public utilities:		
Gas and electricity mfg.	650	1,950
Street railways. .	15,540	46,620
Telephone service - ${ }^{\text {a }}$	21,801	65,403
Slaughtering and meat packing . . . - -		
Total	166,130	498,390
1917-18		
Chemical industries and refinerie	7,549	226,647
Clothing and textile mfg. .	2,098	6,294
Furniture and millwork . .	275	825
Leather and rubber goods . -	4,443	13.329
Machinery mfg. . . .	29,185	87,555
Mercantile establishments .	7,362	22,086
Miscellaneous metal products mf	15.453	46,359
Printing and publishing -	1,628	4,884
Public utilities:		
Gas and electricity mig.	12,566	34,698
Street railways . . .	8,882	26,646
Telephone service . .	21,338	64,014
Slaughtering and meat packing	28,725	86,175
Total	207,303	621,909

As to the lay-offs, the same figures demonstrate that in 1917-18 they constituted over 30 per cent of all separations in less than 8 per cent of the concerns reporting, but in 1913-14 they made up over 30 per cent of all separations in 37 per cent of the establish-

23 a
Lad Oft, Enternng Mintary Serytce, and Leavag Voluntardy, 1913-14 AND 1917-18

Noncaiz of Employtes Leaviso Whoo-					Hodozizy Geowr
$\begin{gathered} \text { Wine } \\ \text { Drs } \\ \text { cincion } \end{gathered}$	$\underset{\mathrm{Lam}}{\mathrm{Wran}}$			Totas	
13,835 515 447	$\begin{array}{r} 7,366 \\ 362 \\ \quad 58 \\ \hline \end{array}$	\cdots	$\begin{array}{r}12,580 \\ 2,147 \\ \mathbf{3 , 4 3 4} \\ \hline\end{array}$	50,785 3,094 1,939	1913-14 Automobiles and parts Chem. industries and refin's Clothing and textile mfg. Furniture and millwork
2,066	922		9,117	12,105	Leather and rubber foods
9,664	5,106	,	8,169	15,939	Machinery mfg.
243	772		1,323	2,337	Mercantile establishments
7.979	5,368		37,422,	50,769	Miscel. metal products mfg.
857	515		2,307.	3,679	Printing and publishing Public utilities:
42	87		133	208	Gas and electricity mfg.
2,549	-		1,797	4.346	Street railways
$\pm .715$	3,924		5,149	10,786	Telephone service Slaughter'g and meat pack'g
30,910	34,420		90,577	155,907	Total
14,623	20,429	10,599	93,001	128,643	1917-18 Autamobiles and parts
2,40	756	2,175	20,848	25,209	Chem, industries and refin's
264	at	61	2,633	2,980	Clothing and textile mfg.
46		30	649	705	Fumiture and millwork
902	55	440	9,813	15,207	Leather and rubber grods
3,786	1,658	2,959	33,638	42,037	Machinery mfg.
837	3,972	531	10.432	45,763	Mercantile establishments
3,931	896	2,027	32,609	39,555	Miscel. metal products mfg.
90	1	158	2,909	3,158	Printing and publishing Public utilities:
1,165	5,624	1,680	9,221	17,687	Gas and electricity mfg.
x,697	55	951	5,68I	8,384	Street nilways.
3.354	2,362	I, ${ }^{5} 5$	14,795	91,864	Telephone service
18,300	4,015	1,645	39,478	63,244	Shughtering and m't peck'ts
51,400	19.833	*3,600	275.557	839,390	Total

ments. Voluntary quits in 1918 made up over 80 per cent of all separations in nearly half of the establishments reporting, while in 1913-14 they constituted this large a proportion in less than one-fifth of the concerns reporting.

TABLE
Nomber and Rate per Full-year Worker of Euployees Discharced, by Industry Groups,

Indosiry Group	Rate, pex Full				
	$\begin{gathered} \text { Drs } \\ \text { Czarox } \end{gathered}$	$\begin{gathered} \text { LAY- } \\ \text { ORI } \end{gathered}$	EmTEY MNTO MHITAEY Senvice	Leavino Voluntariey	TOTAL STPA- EATIOA
	1913-44				
Automobiles and parts . .	.38	- 55	\square	. 69	1.63
Chemical industries and refineries	. 18	. 12		. 74	1.04
Clothing and textile mfg. . .	. 17	. 02		. 56	. 75
Furniture and millwork - - - - - -					
Leather and rubber goods 23	. 10		1.01	1.34
Machinery mfg. 12	. 22		. 35	. 69
Mercantile establishments 03	. 11		.19	. 33
Miscellaneous metal products mfg. .	.17	. 11		. 80	1.08
Printing and publishing ; ${ }^{\text {a }}$,	.15	. 09		. 41	. 65
Public utilities: Gas and e'ctric'y mfg.	. 07	. 04		. 20	.31
. Street railways.	.17	-		12	. 29
Telephone service	. 08	. 18		. 24	.50
Slaughtering and meat packing . .					
Average	. 19	. 21	-	.55	. 95

How the relative proportions of discharges and voluntary separations have changed during the last few years may be seen from the figures for a large machine tool manufacturing establishment. The percentage of employees leaving voluntarily, as against the total number of separations, for each of the three years ended June $30,1916,1917$, and 1918, and for the three-months period, July to September, 1918, inclusive, for the day force, were $80,8 \mathrm{r}, 86$, and 92 , respectively. The percentages of voluntary separations for the night force, for the same periods, were 77, 82, 91, and 96 per cent, respectively. The ratios of discharged employees for the day force for the years ending June 30,1916 , 1917, and 1918, and the three-months period, July to September, 1918, inclusive, were $20,19,14$, and 8 per cent, respectively. During the same periods the night force showed the following percentages of discharges: 23, 18, 9, and 5 re-

Lad Ory, Enternng Mintiary Service, and Leaving Voluntapity, 1913-14 AND 1917-18

yraz Workra, 0 \%					Indutiny Grour
$\begin{aligned} & \text { Dna- } \\ & \text { canamos } \end{aligned}$	Lay-		Lmannce Yoltw- 	$\left\|\begin{array}{c} \text { TOTAL } \\ \text { SIPRA } \\ \text { RATIOM } \end{array}\right\|$	
2934-18					
. 21	15	.15	1.35	1.86	Automobiles and parts
32	10	. 16	2.76	3.34	Chemical industries and refineries
.13	. 01	. 03	7.25	1.42	Clothing and textile mfg.
. 10	-	. 71	2.36	2.57	Fumiture and millwork
.20	. 01	. 10	2.21	2.52	Leather and rubber goods
.13	. 06	. 10	1.15	$x .44$	Machinery mfg.
.18	.54	. 07	5.42	2.14	Mercantile establishments
.26	. 06	.13	2.12	2.57	Miscellaneous metal products mfg.
.95	${ }^{6}$. 10	1.79	1.94	Printing and publishing Public utilities: Gas and el'ctric'y mfg
. 16	17	. 06	. 69	1.02	Public utilities: Gas and elctric'y mig.
.10	-49	.14	. 80	r. 53	Street railways
. 19	. 81	. 15	.64 1.37	2.95	Slaughtering and meat packing
. 25	1.14	. 11	1.33	1.83	Average

spectively. Quitting became more frequent; firing much less frequent.

In Tables $23 a$ and $23 b$, the subdivided separation rates are classified according to the various industry groups covered in the two investigations.

These figures bring out some rather important and significant facts with regard to various industries. It is evident, for example, that mercantile establishments had the minimum discharge rate in 1914 and printing and publishing plants in 1918; the minimum lay-off rate in 1914 was in clothing and tertiles and in 1918 in printing and publishing; and the minimum quiting rate in 1914 was in the street railway industry and in 1918 in the telephone service. The maximuma discharge rate was in the automobile industry in 1914 and in the slaughtering and meat-packing
industry in 1918. The maximum lay-off rate in 1914 was in the automobile industry and in 1918 in mercantile establishments, and the maximum quitting rate was in leather and rubber goods in 1914 and in chemical industries in 1918. The figures show, furthermore, that in 1914 in the automobile group discharges and lay-offs made up over half of all separations, but that by 1918 they had been reduced to less than one-fourth of all separations. In the miscellaneous metal products industries, discharges and lay-offs constituted in 1914 nearly one-third of all separations, but by 1918 they had been cut down to about one-eighth of the total separations. In mercantile establishments, on the other hand, discharges and lay-offs bulk about as heavily among the separations in the earlier as in the later period, making up nearly half of all separations both then and now.

An attempt to establish some relation between the particular type of separation and the relative skill of the separating employee is made in Table 24, in which are classified the returns from 22 establishments which reported mobility figures for skilled and unskilled employees separately. ${ }^{1}$

The degree of occupational training and skill possessed by the employees appears to make little or no difference in the proportion of quits, discharges, and lay-offs in the total number of separations. The percentage distribution figures show that ${ }_{76}$ per cent of the skilled employees and 72 per cent of the unskilled employees who left, did so voluntarily; 15 per cent of the skilled and ig per cent of the unskilled were discharged, and to per cent of the skilled and 9 per cent of the unskilled employees leaving were laid off. The situation is quite different, however, with regard to the actual rate of separation, the figures indicating conclusively that the lay-off, discharge, and quitting rates, and, of course, the total separation rate, are each much higher for unskilled than for skilled workers, the total separation rate being

[^29].66 for skilled and r.4r for unskilled workers. The subdivided separation rates show about the same relation between skilled and unskilled, so that it would appear that skilled workers are about twice as stable as semiskilled and unskilled ones.

TABLE 24
Comparison or Sxparation Rates of Sxuled and Unskitied Euployees Leaving Volontanliy, Discrarged, and Lato Ofy dubing One Year
(1953 , 1994, and $2915 ; 22$ establishments reporting)

	Supalations mummo Year.					
	Nomana				Perecintages Destimumos	
	Scrum	Unsimatid	5	Unsichim	Scux.m	Unsximes
All Separations:	16,484	22,251	. 66	1.47	100	100
Quits .	12,451	16,093	. 51	1.03	76	72
Discharges	2,432	4,172	. 09	. 27	15	19
Ley-offs.	1,60:	1,987	. 06	.12	10	9

In Table 25 the relation between type of separation and size of establishment is shown on the basis of the mobility figures of the sixty-six establishments reporting in 19r3-14 and one hundred and eight establishments reporting in 1917-18.

In the period 1913-14 there is observable quite a marked decrease in the discharge and lay-off rates as the size of the establishment increases. The explanation for this may be sought in the fact that the large-size establishments were less seriously affected by the industrial depression which made itself felt during the latter part of that period. The situation is reversed, however, in the period 1917-18, the discharge and lay-off rates being slightly higher in the larger establishments. In both periods the separation rates as a whole show a slight decrease as the size of the establishment increases.

[^30]TABLE
Relation betwern Slze of Establishment and Type or Separation Voluntary Quitting),

CAUSES OF SEPARATION

The need for definite and detailed information on the causes of labor instability is obvious. In order to devise methods of stabilizing the work force and eliminating unnecessary labor changes, it is quite necessary to know the factors responsible for

25
(Discenrge, Lay-ony, Entry into Minttary Service, and 1913-14 AND 1917-18

Nombia or Euployexe Wro-					Nomarer of Euploymes
$\begin{gathered} \text { Weze } \\ \text { Diectariox } \end{gathered}$	$\underset{\text { Lald }}{\text { Wheng }}$	Empand Mrifiny Siguvice	Vonvartazkiy	Totas	
$\begin{array}{r} 5,929 \\ \times 5,335 \\ 9,646 \end{array}$	$\begin{array}{r} 5,512 \\ \mathbf{3 8} 880 \\ 30,028 \end{array}$		12,014 31,698 46,865	$\begin{aligned} & 23,455 \\ & 65,913 \\ & 66,539 \end{aligned}$	2913-14 Under 1000 roce and under 5000 5000 and over
30,950	34,420	-	90,577	155,907	Total
7,107	3,868	4,110	56,414	71,499	1917-18 Under 1000
12,952	10,201	8,125	97,097	128,375	1000 and under \$000
35,341	15,764	11,365	123,046	180,516	5000 and over
51,400	29,833	13,600	275,557	380,390	Total
Discanagas	Lat-ars	Entrit mito Mintany Sinvice	Leavina Vakmenainy	Totas Separa-工ा0:	
37	. 34	-	. 75	I. 46	1973-14 Under 1000
. 21	. 26		. 44	. 81	1000 and under 5000
13	.13		. 68	. 87	5000 and over
.19	. 21	\square	. 55	. 95	Total
. 23	. 12	. 13	1.74	2.21	Under ${ }_{\text {1917-7800 }}$
.89	. 35	. 12	Y.40	1.86	1000 and under 5000
30	. 15	. 12	2.16	1.72	5000 and over
. 35	. 14	. 12	1.33	1.83	Total

the labor shiftings. It is hardly necessary to call attention in this place to the fact that the causes of labor instability present a very vast and complex problem. It is obvious that a determination of these causes, because of their complex nature and the large number of factors to be considered, would necessitate an
inquiry of a magnitude quite beyond the scope of the present inquiry. In discussing the underlying reasons for separations we are disregarding here the separations from service due to purely industrial conditions and fluctuations in production, that is to say, forced separations, or lay-offs, the occurrence of which depends upon whether or not a particular job has been finished or whether or not industrial depression has set in. No attempt is made here to discuss that part of the labor shifting which is due to maladjustment of labor supply and demand caused by an unorganized labor market, by a defective system of labor distribution, or by maladjustment in the matter of wage levels for similar work in different localities, etc.
In view, therefore, of the complexity of the problem and the lack of information on the subject, it is proposed to discuss here, not the causes of mobility that are primarily inherent in the industrial community situation, but the more personal causes of labor shifting as those causes find expression in the separating employee and as they have been classified by individual employers. It is recognized, of course, that the non-industrial and personal causes are inextricably interwoven with the conditions created by the prevailing industrial situation.

In their efforts to stabilize the labor force a number of firms have made attempts to discover the causes of instability and more particularly to find out the immediate, or precipitating, causes for separations from service. They have done this on the assumption that if it were feasible to ascertain the fundamental reasons why men leave their employ, it would be possible, through the tabulation and analysis of those reasons, to show the real causes of instability. It was felt, moreover, that if it were practicable to ascertain the real reasons for employees leaving, it might be then relatively easy to develop a record which would be of considerable value in the solution of the employment problem in the individual establishments concerned, and so point the way toward greater stability.
Even in this individual method of ascertaining the causes for
labor instability there are serious difficulties to be overcome. Employment managers and others in charge of the work force essay to interview an employee who is about to leave of his own accord. This interview is held, of course, before the employee actually severs his connection with the firm. At the interview the employer or his agent tries to secure a frank and truthful statement from the employee regarding the actual reasons which are impelling him to leave. Employers point out, however, the difficulties involved in interviewing prospective quitters. They say that it is difficult to do this, even in normal times, and that it was especially difficult during the war period because of the more independent attitude assumed by the workers. It is generally found that men leaving service do not like to be questioned too closely regarding their reasons for leaving, and often plainly resent such inquiries. It is claimed that in many cases they give some fictitious excuse rather than a substantial reason, and when pressed advance the most plausible reason they can get away with.

From the standpoint of the worker it is perhaps not difficult to understand his reluctance to give full information regarding his reasons for leaving. Such knowledge in the possession of the employer might be disadvantageous to the employee in his search for a new job, and it might in other ways have the effect of restricting his freedom of movement. The employee will have observed that nearly all employment departments keep careful records of employees' past records and that employers generally keep each other informed about the movements of former employees.

To the difficulties of learning from employees the reasons for leaving, there must be added the difficulty of analyzing and classifying the results obtained. It has been the experience of men interviewing prospective quitters that even where the reason for quitting has been obtained, it has not always been easy to reduce to a single classifiable category the manifold motives which may have animated the individual in his desire to change
jobs. Many employment managers believe that only in the case of discharges can the causes of separation really definitely be known. This is obviously because action in the case of discharge proceeds from the management and the employee has nothing to say about it.

For the reasons given in the preceding paragraph, the figures on causes for quitting which are presented below cannot be regarded as more than an indication of existing conditions, although employers who have kept such figures have expressed the opinion that in most cases they point definitely toward certain existing maladjustments and to particular causes that need to be attacked. In Table 26 are given the classified assigned reasons for the voluntary separation and the causes for the discharge of nearly 10,000 employees in six metal trades establishments.

TABLE 26
Reasons Advanced for Voluntary Separation proi Services on 8ito Enployezs and Causes poz Discharge of 1439 Employres, n Stx Metal Trades Establishments

Rensong yog VolumineySyparntion	Casss		Cavsi or Discharoz	Casm	
	$\mathrm{NBKR}_{\mathrm{Bza}}$	$\begin{gathered} \text { Pze } \\ \text { CENTr } \end{gathered}$		$\begin{gathered} \text { Nun- } \\ \text { Brize } \end{gathered}$	${ }_{\text {Prame }}^{\text {Prem }}$
Wages - Dissatisfied with wage rate, etc.	2,001	24.6	Incompetent Unreliable	478 422	33.2 29.3
Obtained better job or re-	2,001		Lazy. .	148	29.3 10.3
turned to former job	984	12.1	Careless	66	4.6
Nature of work-too			Insubordination	93	6.5
hard, heavy, wet, dusty,			Misconduct .	54	3.7
dirty	410	5.0	Trouble breeder	105	7.3
Discatisfied . -	674	8.3	Liquor	73	5.1
Monotony ${ }^{\text {Prasical }}$	218	2.7			
Physical inability - sickness, injuries, etc.	461	5.7			
Leaving town ${ }^{\text {L }}$.	453	5.6			
Return to school - ${ }_{\text {all }}$	$\begin{array}{r}131 \\ 58 \\ \hline 8\end{array}$	1.6 .7			
All other known reasons .	58	$\cdot 7$			
Military service ${ }^{\text {a }}$ - ${ }^{\text {a }}$	737	9.0			
Unknown-failed to re- port	2,013	24.7			
Total	8,140	100.0	Total	1,439	100.

The classification of causes presented in this table is anything but satisfactory. A more detailed and scientific arrangement was impossible, however, because of the necessity for making a combination of the records of the several establishments, each of which put a somewhat different interpretation upon their recorded reasons for leaving or causes for discharge. Nevertheless, some of the reasons listed can be somewhat more fully explained. Dissatisfaction with wages is evidently the largest single reason for voluntary separation, and no doubt it is safe to assume that the wage motive in one form or another enters into most of the specified reasons for leaving. For those classified under "better jobs" the question of wages is not supposed to have been the prime motive in making the change, but the governing causes for leaving were said to have been more desirable work, the location of the plant, etc. Under "nature of work" are classed a considerable number of quitters who under the stimulus of higher wages or the "work-or-fight" order entered mechanical occupations, but not being accustomed to the grease, dirt, noise, etc., inherent in the nature of the work, constantly have shifted in the hope of finding more pleasant work. It has been stated that the relative ease with which a job could be secured during the war period made workers more ready to throw up jobs which seemed undesirable to them, but which in normal times they would be reluctant to leave.

For those classified under "dissatisfied" no one specific reason seems to have been applicable. Employment managers believe that the question of wages or work is seldom a factor with this type of labor, but that its desire to shift is due largely to an inherent instability and that persons of this type are unable to assign any specific or logical reason for their desire to change. Employment managers believe these considerations to be equally true of a large number of those who failed to report before leaving. It is said that the number of employees leaving in this manner during the war period was greater than at any previous time. This is explained by the fact that the shortage of help necessi-
tated the employment of the so-called "floater," a type of workman which in normal times would not be employed at all by these concerns. It has been found to be characteristic of employees of this sort that they never stay on a job for more than a brief period, soon dropping out, without giving notice, to accept work elsewhere.

Under "incompetent," employment managers have classified certain workers who after a trial have been found to be unfit or unsuited for the work for which they were hired. It was pointed out that although these persons were willing to work they were found to be incapable of learning the work and were responsible for a great deal of spoiled work. This group also included workers who misrepresented their occupational skill when taken on, as, for example, by using certain acquired phrases that would indicate familiarity with the kind of work required of them. The number discharged for incompetency, it is asserted, increased during the war period because the urgent need of men made careful selection less possible. The management has classified those as "unreliable" whose attendance record was bad, who were habitually late in the morning, or who were prone to lay off too frequently and for trivial reasons. A good many of those discharged for being unreliable are suspected by employment managers of having looked for jobs, and possibly of having tried out jobs, in other plants, while absent.
Employment managers have classified as "trouble breeders" those who have attempted to create dissatisfaction among their fellow workers by urging or intimidating them to concerted action of some sort, as, for instance, the unionizing of the shop or the presentation of demands for wage increases, revision of piece or premium rates, etc. The relatively large number discharged for being "trouble breeders" may, perhaps, be explained by the fact that it is the policy of the establishments from which the figures of the above table have been secured to deal with their industrial workers only as individuals.
A somewhat detailed record of the number of people who left
the employ of a large mail order house during 1917 has been compiled and is presented in Table 27.

TABLE 27
Reasons Advancrd for Voluntary Separation frou Service of 13,664 Enployexs and Causes yoz Discinzor or 2849 Employers, dumeg 1917, if a Mali, Onder Hodse. (Estabisisintant No. 27-109)

Reasoma yon Volmataiy	Casas		Cavis ron Dipcianaz	Cass	
	Nun-	$\mathrm{P}_{\max }$		Now-	
Other positions:			Unsatisfactory:		
More promising position	2,080	15.2	Too slow . .	776	37.2
Better alary.	1,109	8.1	Indifference	352	12.4
Former position and return to trade	268	2.0	Carelessness Irregular attend-	255	9.0
Going into business*.	44	3	ance .	309	10.8
To learn trade. -	48	4	References	56	2.0
Position nearer home	63	. 5	Dishonesty (sus-		
Lesting city . .	2,047	15.0	pected of pilfer-		
To marry ${ }^{\text {a }}$	229	1.7	ing, etc.) .	473	16.6
On eccount of health	823	6.0	Insubordination	327	12.5
Dissetisfied:			Drinking	79	2.8
With working conditions	755	5.5	Fighting.	44	1.5
With salary. . . .	221	5.6	Financial difficalties	13	. 5
Work too hand .	273	2.0	Enemy aliens	8	3
Resented criticism ,	134	1.0	Other causes	257	5.5
Refused to be transferred	107	. 8			
Refused temporary work	93	7			
Did not like supervision	67	. 5			
Distance too great . .	98	7			
To go to school . .	565	4.2			
To stay at home . . .	810	5.9			
No reason: Worked less than two meeks; failed to report Worked more than two weeks; failed to repart	3,537 4,310	18.5 0.6			
Total .	13,604	r0a.0	Total	. 88.849	5000

During the year 1917 there occurred in this establishment 32,700 separations. Of this number 5204, or 22.9 per cent, were due to reduction of force and 983 , or 4.3 per cent, to entrance into military service. Of the remaining separations, with the causes
of which we are here specifically concerned, 13,664 , or 60.2 per cent of all, were voluntary, and 2849 , or 12.6 per cent of all, were due to discharge.
It will be seen from the figures of Table 27 that of the total number of voluntary : eparations, about 25 per cent resulted from employees either having obtained more promising positions or positions which offered higher wages. The number "leaving city" seems to represent a considerable proportion of the total number leaving. It is very doubtful, however, whether this number really left the city; it is quite likely that in the majority of the cases it was only a proffered excuse. Those who were dissatisfied for various reasons number 12.8 per cent of the total. A significant commentary on the whole stability situation in this establishment is implicit in the rather large number of persons who simply dropped out of service without giving any notice of leaving, either in advance or subsequently - nearly 30 per cent of the total number leaving voluntarily left without giving notice.
Among the establishments whose labor turnover experience was examined in some detail by the Bureau of Labor Statistics was one of the largest department stores on the Pacific coast. This store went to no little trouble to ascertain the reasons for employees quitting and to tabulate not only the number quitting for various assigned reasons but also the number discharged for specified cause, assigned, naturally, by the company. This concern also kept account of the proportion of those rehired to new accessions. A full analysis of these records is given in a special report ' published by the Bureau of Labor Statistics on the turnover experience of this department store. The tabular summary which appears in that report is herewith reproduced, with some modification, in Table 28.
The only classification of the accessions is into "hired new" and "rehired." During the nine months for which data were

[^31]TABLE 28
Number, Pre Cent Distrmution, and Annual Ratt per Fuil-year Woreer . of Employees Fitred and Rebtred and of Those Leaving for Spectied Riasons in Year Ending Octobzr 3i, 1 gys.
(Department Store. Establishment No. 216)

	- Numam.	$\underset{\text { Distrabumb }}{\text { Pramen }}$	Ratz prez FULI-YEAD Womex
Accessions: ${ }^{2}$ Hired new Rehired Total accessiona	908 223	80 20	$\begin{array}{r} 1.01 \\ .25 \end{array}$
	2,131	100	1.26
Separations: Discharged - Incompetent Miscanduct Careless. Unreliable Trouble breeder Dishonest Lazy. Insubordinate Total discharged	21 13 8 8 5 4 4 1	34 21 13 13 8 6 3	.02 .01 .01 .01 .01 (3) (3) (3)
	62	100	. 07
Laid off	432		48
Left voluntarily: Wages Family moving Other position School Ill health Needed at hame Dissatisfied Vacationj needed rest : War . Marriage (women) Work too hesvy or disagreesble All other reasons	128 154 135 127 117 75 48 45 39 24 78 61	21 14 13 12 12 7 4 4 4 1 8 6	.25 .17 .15 .14 .13 .08 .05 .05 .04 .05 .08 .07
Total left voluntarily . . Total Separations	1,075	100	1.18
	1,36S		1.73

[^32]available, it appears that 20 per cent of all of those hired had been in the company's service at some previous time. Among the reasons assigned for discharge the most frequent seem to have been incompetency, "misconduct," carelessness, and unreliability. Among those leaving voluntarily the most prevalent reasons given are dissatisfaction with wages, desire to take another position (which in some cases is desired because of the higher wage offered), family moving out of town, going to school, and ill health. Using the last column as a basis, it is evident that during the year reported, for each 100 full-time workers employed there were ror entering the store as new employees, and, in addition, 25 former employees rehired. Turning to the separations, which are our primary concern here, it appears that, for every hundred full-year workers employed, there were 173 separations; 7 of these were discharges, 48 were lay-offs (on account of lack of work), and 118 were quits. Scrutinizing the latter more closely, we find that 25 , for every hundred employed, quit on account of unsatisfactory wages, 17 quit because the family was moving, 15 on account of another job, 14 to enter school, 13 because of ill health, 8 because needed at home, 5 because "dissatisfied," the same number for a vacation (without pay) or a needed rest, and 4 for war work.

CHAPTER VII

Seasonal Influence on Labor Mobility

In the figures shown in the preceding chapters fluctuations in mobility rates from year to year with changing industrial conditions have been repeatedly observed. While the figures showing the mobility for the year as a whole reflect the sum total of the labor changes that have taken place during the year, they do not indicate the marked fluctuations in mobility at relatively short periods within the year, - fluctuations traceable to the successive vicissitudes of the industrial situation. For example, labor changes may occur with great intensity over a very short period in the year, while over the remainder of the year the changes may be very insignificant. Without showing their seasonal variations, this might make the figures for the years as a whole appear quite low, while actually at the same periods the labor change rates may have been far above the one shown for the year, and at other periods the rates may be considerably lower than the rate shown for the year as a whole.

GEASONAL AND CYCLICAL FLUCTUATIONS, I9IO-19

The figures of Table 29 which show the monthly trend in flux rates from January, 1910, to December, 1919, inclusive, bring out in greater detail the existing variations in the mobility rates and the extent to which mobility figures immediately reflect the industrial conditions prevailing at the time. ${ }^{\text {a }}$ The flux rate
${ }^{1}$ The figures of Table 29 are besed upon following numbers of establishments
reporting monthly figures:

figures of Table 29 and, in addition, the corresponding accession and separation rates are shown in Chart F. ${ }^{4}$ Since replacement rates, as explained above, correspond with accession rates when the accession rates are lower than the separation rates and with separation rates when separation rates are lower than accession

TABLE 29
Labor Flux Rates, by Months, frou January, igio, to Decembri, 1919, Inclusive:

Montr	Total Laboz Ceange (Flux) Raxe rep Foin-time Woaker ma										
	1910	1918	1972	1983	2914	1915	2956	1917	1918	1919	Weote Perion 1910° 19
January	2.49	1.32	1.32	3.24	1.29	1.14	3.51	2.85	3.51	2.83	2.55
February	2.55	1.47	1.44	2.88	1.26	1.35	3.57	2.37	3.42	1.92	2.40
March	3.75	1.77	1.71	3.39	1. 53	1.65	3.00	2.37	4.20	1.89	2.70
April	4.20	1.83	2.10	3.93	1.44	1.83	3.27	2.82	4.92	1.83	3.03
May	4.05	2.13	2.25	3.75	1.95	1.59	3-24	4.02	4.71	1.83	3.06
June	3.87	2.25	2.31	3.12	2.19	$\underline{4} 47$	3.30	3.81	4-08	1.80	2.76
July	3.57	1.98	2.49	2.94	1.50	1.53	2.10	3.48	4.26	1.77	2.49
August	4.08	2.13	2.70	2.31	1.83	1.53	2.79	4.11	4.14	2.40	2.43
September	2.79	1.41	2.46	2.37	1.83	2.37	2.31	3.93	3.15	2.46	2.46
October	2.22	1.38	2.55	1.89	1.44	2.19	2.04	3.69	3.06	2.61	2.16
November	1.92	1.29	2.07	I. 53	1.11	3.15	1.47	$3 \cdot 36$	2.64	2.83	1.98
December	1.11	1.14	1.89	1.26	1.23	2.31	1.74	3.54	2.40	1.20	1.80
Year	3.05	1.67	2.15	2.72	1.55	$x .84$	2.70	3.36	3.71	2.03	2.48

rates, it follows that the lowest points on the chart mark the rate and trend of labor replacement. That is to say, whichever line happens to be the lowest marks replacement.

The monthly flux rate figures in the table show how wide a seasonal range of mobility is covered in each yearly rate. The flux rate was relatively high in 1910, a year of business expansion, but dropped during the depression period of igir, falling in

[^33]

December to the low flux (i.e. high stability) rate of 1.14, a degree of stability not again reached until the fall of r914, in November of which year of business depression it fell to 1.11 . The flux rate rose generally in 1912 and x913, but dropped toward the end of 1913 and remained low during 1914 and until the fall of 1915, when it rose slightly, followed by a further rise and continued high mobility levels during the winter and spring of 1916. The summer and fall of 1916 and the winter of 1917 were periods of greater stability. In the late spring of 1917, after our entry into the war, the labor flux rate jumped to higher points than it had touched since the spring of 1913. There was - and this is an unusual circumstance-only a very slight increase in mobility during the following summer, fall, and winter. With the spring of 1918 the rate climbed again, and this time to high points not reached at any other time before or since, during the decade covered by the figures. The rate fell considerably during the summer and fall of 1918, and, despite the almost invariable tendency to rise in the spring, it continued low during the winter of 1919 and gradually fell during the spring, rising somewhat in the fall, but dropping sharply in November and December.
An examination of the chart will show that the very unusual decrease in mobility in the spring of 1919 was largely due to the fact that in addition to a marked decrease in the separation rate (unusual at this time of year) there was an even more pronounced drop in the accession rate. It is evident, also, that in the fall of 1919 the accession rate rose rapidly until October, and then dropped rapidly, while the separation rate continued to drop through the summer and fall.

SEASONAL FLUCTUATIONS IN INDIVDUAL ESTABLISHMENTS

The seasonal fluctuations in labor mobility as they octur in a machine tool manufacturing plant are shown in Table 30, on page 107. The figures show for the four-year period 1916-19 not only the monthly trend in the flux, for the work force as a whole, but also the monthly trend for the same period for the day and
night forces separately. Attention has been called above, in the discussion of Table 18, to the fact that the night force in this establishment is nearly three times as mobile as the day force. Table 30 naturally shows up the same difference in

TABLE 30
Ratz of Total Laboz Cenange (Laboz Flux Rate) of Day and Nigit Forces or a Machine Tool Manuracturino Establismient (No. 35-144), 19161989

Manre												
	Day Fonce				Nreart Forme				Total Wormmo Fonce			
	2016	1017	2018	sp10	1936	2917	1018	1919	1976	1917	zpr8	1pxo
January	2.28	2.41	1.92	2.25	7.68	3.18	7.98	4.05	3.33	1.7x	3.27	2.43
February	2.70	1.86	1.80	. 69	5.97	5.46	4.89	. 87	2.40	2.55	2.52	. 73
March	2.64	1.77	2.49	. 69	8.04	7.35	4.41	. 39	3.90	2.79	2.94	. 66
April	3.78	1.98	3.75	. 75	5.22	7.29	5.25	1.77	4.15	2.97	4.88	. 84
May	4.83	1.98	2.58	. 66	10.59	8.34	4.86	1.23	6.09	3.15	3.06	. 72
June	3.94	8.46	2.58	1.32	9.60	8.76	6.42	2.37	4.56	3.75	3.39	1.41
Fuly	3.77	2.82	2.64	1.74	7.77	9.66	6.30	7.35	4.29	4.23	3.42	2.43
August	2.82	3.09	3.8I	1.80	7.89	6.00	8.55	9.00	3.96	4.26	4.77	3.00
September	2.70	3.2 I	3.06	1.35	6.42	5.82	5.01	6.09	3.48	3.72	3.51	2.26
October	2.25	2.55	1.65	1.89	8.82	6.72	3.78	5.85	3.11	3.39	2.13	2.78
November	2.83	2.40	2.67	1.47	6.00	8.52	7.68	5.13	2.70	3.54	3.66	,
December	4. 26	2.37	. 72	1,26	2.76	5.40	1.77	3.33	1.53	3.03	. 87	1.77
Total	73	2.34	2.49	2.35	7.11	7.15	5.70	4.59	3.72	3.27	3.18	1.83

stability and demonstrates, furthermore, that, except in March, 1919, there was no month during the whole four-year period that did not show greater stability for the day force.

SEASONAL CBANGES AMONG DIFFERENT OCCUPATIONS

The figures given in the last two tables refer to the monthly trend in the mobility rates of the general body of employees without reference to seasonal fluctuations of given occupations within the work force. In one of the large car-building plants (Establishment No, 103) employment records were kept in such form that the monthly labor flux rates of some of the more

TABLE
Labor Fldx Rates for Each Monti in Selected Occupations in a Car-

Occopatron	Rate 07 TOTAL Labor Cbange (Flox Rate) Pex Full-tine Workez for riez Yead	Rate of Total Lamos Cbanoz Tfue				
		Jone	Jox	Avo.	Sterer.	Ocr.
Assemblers, filers, and welders .	3.12	2.04	1.65	6.03	4.68	1.92
Blacksmiths .	2.49	1.02	2.25	7.15	5.40	1.50
Bookkeepers, clerks, etc.	2.25	3.54	2.67	2.04	1.95	2.13
Cabinet makers.	2.39	2.28	2.52	1.23	2.19	2.34
Car body builders . . .	7.77	10.17	10.14	8.91	8.19	5.67
Car bottom builders . -	2.21	3.60	4.62	3.69	1.35	2.07
Car electricians.	4.77	5.43	5.49	4.83	4.47	3.33
Car steam fitters	6.44	6.09	5.31	8.55	5.88	4.29
Car truck builders	4.74	5.52	4.95	12.21	8.13	2.67
Die and tool makers	2.90	2.07	2.31	4.50	3.90	3.09
Hammersmiths . -	2.64	3.09	1.98	6.00	3.25	2.25
Inside car finishers .	1.98	3.24	2.37	2.67	2.67	1.08
Inside car trimmers	1.74	2.25	1.71	2.13	. 87	. 57
Laborers ${ }^{\text {a }}$, ${ }^{\text {a }}$,	10.80	7.47	7.35	9.90	8.01	10.71
Machinists, bench machinists,	3.03	2.37	2.43	4.56	3.51	2.34
Millwrights	5.6 T	2.91	4.47	8.94	7.47	5.34
Painters .	3.78	4.92	4.38	5.91	2.46	3.75
Riveters .	11.76	18.96	14.40	14.22	12.15	12.42
Roof fitters .	3.51	2.55	3.06	3.27	5.25	4.26
Shearsmen, punch-press opera- tors, etc.	6.66	5.16	8.07	11.3I	8.43	7.18
Tinners	2.70	3.33	3.33	3.78	3.18	4.35
Upholsterers .	3.39	5-16	2.49	5.13	2.58	2.70
Wood machine operators	5.10	5-16	2.76	5.31	3.09	6.54

important occupations within the plant could be computed. The rates are shown in Table 31 above.
The flux rates given here not only show very wide differences between the different occupations, but reveal even more marked fluctuations from month to month in each occupation. The highest flux rates and at the same time the widest range of rates during the year ending May 31, 1918, were for riveters, whose rates ranged from 18.96 in June down to 5.85 in December, with a flux rate for the year of 11.76 , which means nearly 12 labor changes for every riveter in the standard work force of riveters - changes equivalent to six complete overturns of the riveting

31
buidong Plant (Establishment No. hoz) for Year Ended May 3I, 1928

							Oecopatimar
Nov.	Dre	JMar.	Fre.	Manci	APEIL	May	
1.53	$x .77$	2.74	4.23	6.39	4.17	5.34	Assemblers, filers, and welders
. 96	8.71	2.40	. 96	1.75	1.65	3.33	Blacksmiths
1.38	$\underline{8.44}$	1.35	1.02	1.95	3.48	4.15	Bookkeepers, clerks, etc.
2.50	$\underline{1.02}$. 75	2.95	5.25	4.7x	2.70	Cabinet makers
5.69	5.23	6.75	5.07	$\underline{4.68}$	5.97	10.68	Car body builders
. 93	1.26	1.69	. 96	2.19	. 90	2.55	Car bottom builders
5.62	4.83	5.28	3.48	4.32	7.26	6.85	Car electricians
7.68	6.00	6.20	4.14	7.47	7.14	8.32	Car steam fitters
2.22	1.95	4.20	3.84	2.94	1.62	3.57	Car truck builders
2.83	8.19	1.71	2.85	2.40	3.03	3.66	Die and tool makers
1.71	2.64	1.56	75	2.25	2.83	3.66	Hammersmiths
$\pm .38$. 96	. 84	3.36	5.62	1.83	1.05	Inside car finishers
2.22	5.50	1.20	3.33	1.71	1.65	2.25	Inside car trimmers
18.07 3.91	22.2I 3.03	12.06 2.49	9.18 2.37	13.83 3.57	14.40 3.00	14.28 4.02	Laborers Machinists, bench machinists, etc.
5.61	6.09	3.72	5.07	5.58	6.21	6.12	Millwrights
3.81	2.93	3.13	4.57	3.85	8.30	4.56	Painters
7.56	5.85	6.24	8.94	13.93	8.01	13.71	Riveters
3.00	1.68	2.85	4.68	5.16	2.61	4.38	Roof fitters
6.42	$4 \cdot 38$	3.72	4-32	7.29	5.31	9.48	Shearsmen, punch-press operators, etc.
3.78	3.09	. 96	1.23	2.13	1.50	1.47	Tinners
2.61	1.98	1.32	3.99	4.20	2.88	6.60	Upholsterers
4.56	1.95	2.01	5.10	7.95	9.75	6.45	Wood machine operators

personnel. The next highest flur level and the next widest range from month to month occurred among common laborers, whose flux rate ranged from 14.40 in April down to 7.35 in July, with a flux rate for the year of 10.80 , - this being equivalent to $51 / 2$ complete overturns of the common labor section of the work force. The lowest occupational flux rate in the plant was for inside car trimmers, in whose case the flux rate ranged from .57 in October to 3.33 in February, with a rate of $\mathbf{x . 7 4}$ for the year, a rate equivalent to less than one complete overturn of the inside cartrimming section of the work force. In most of the occupations shown the mobility rates are generally low during the winter
months as compared with the rates for the year. In these monthly figures of the mobility of occupations one may see how the various factors of influence previously mentioned are immediately reflected in the mobility figures from month to month. ${ }^{1}$

NORMAI SEASONAL CHANGES IN STABILITY

A composite picture of the seasonal fluctuations in labor mobility over an extended period of time can be constructed from the monthly mobility rates for the period 1910-1919. Such a picture will naturally iron out the irregularities due to bpisiness fluctuations from year to year and show what may be called the normal seasonal trend in labor mobility. The figures are presented in Tables 32 and 33 where the monthly figures (shown in Table D in the Appendix) for each month of each year of the decade covered are brought together in such a way as to combine the figures for identical months (Table 32) and for the four seasons of the year (Table 33). The rate figures of Table 32 are presented graphically in Chart G, on page 112 .

It is believed, as already suggested, that such a combination of the figures as is shown in these two tables effectively neutralizes most of those factors in mobility which are of a purely industrial character and that, as a result, the influence of the different seasons is more accurately reflected. The figures indicate a uniform tendency to maximum labor mobility in the spring, a gradual lessening of mobility during the summer and early fall, which is the period of minimum mobility, and finally an increase during the late fall and winter, culminating again in the maximum mobility period of the following spring. These conclusions are confirmed by the curves of Chart G. The high mobility rates in the spring months indicate that the shiftings are indeed much more numerous at that season of the year. The number of

[^34]accessions and separations in the months of March, April, and May are not only greatest in relation to the number of workers employed, but in themselves are greater in this three-month period than in any other period shown. Here, doubtless, may be seen the psychological effect which spring appears to have

TABLE 32
Monthly Trend fn Labor Mobility
(Based on monthly data for all years from 19 rong combined)

	Nonbit ar Foultant Womictis	Total Lamon Houss(Thousands)	Laror Cahmons		
			Accmssrons	SLParations\|	Toxax (Fumx)
			Nucame		
January .	465,554	116,388	53,992	44,363	98,355
February	465,568	116,391	49,790	43,955	93,045
March .	473,943	118,485	53,523	53,209	106,732
April .	467,072	116,767	65,025	53,363	118,388
May .	474,200	118,551	61,934	58,873	120,807
June.	468,126	117,032	54,039	53,259	107,298
July	463,484	115,870	48,297	47,482	95,779
August	462,126	115,530	47,889	46,087	93,976
September	469,83I	117,458	51,127	44,97I	96,098
October .	485.420	121,356	47,966	38,800	86,776
November	481,858	120,464	43,793	35,474	79,267
December	479,106	119.777	38,241	33,163	71,404
Year	4\%1,357	1,414,069	615,686	552,299	1,167,915
			Ratim	3 Futhma	Woxrse
January			1.39	1.14	2.53
February			1.28	1.12	2.40
March .			1.36	1.35	9.75
April . -			1.67	1.37	3.04
May - -			1.57	Y-49	3.06
June . -			1.39	137	2.76
July : -			1.25	1.23	2.48
August ${ }^{\text {Sep }}$			1.25	1.30	3.45
September			Y 31	1.15	2.46
October ${ }^{\text {Novembex }}$			1.19	. 06	2.15
November			1.09	88	x-97
December			. 96	83	x.79
Year			1.35	1.17	4.48

[^35]Cenrt G. Monthly Trend in Labor Mobility: Identical Montes, igio-i9
(Unit: One labor change per full-time worker: Logarithmic scale of ordinates.)

LABOR TURNOVER IN INDUSTRY
upon the workman, that is, a certain restlessness and desire for change - in jobs, places of abode, etc., - made easier because of the opening up of industrial outdoor work and greater activity in agriculture, lumbering, etc. At this period, too, the condi-

TABLE 33
Exient of Laboz Mobitity in ter Four Seasons of the Yeaz 1 (Based on the monthly data of the four seasons for all years from $\mathbf{1 g r o - 1 9 ,}$ combined)

Mosres		Torns Labog Houns (sanms)	Lamor Crinngis		
			Accishians	Sippat- zione	$\begin{aligned} & \text { ToTAL } \\ & \text { (FLOXI } \end{aligned}$
			Nutazer		
March, April, May	471,738	353,803	180,482	165,445	345,927
June, July, August	464,579	348,433	150,225	546,828	297,053
Sept., Oct, Nov. .	479,036	359,278	142,886	119,245	262,131
Dec., Jan.2 Feb.	470,076	352,556	142,023	120,781	262,804
Total .	47x,357	1,414,069	615,616	552,299	1,167,915
			Rute pre Fow-min Wourte		
March, April, May June, July, August Sept, Oct, Nov. . Dec, Jon., Feb.			1.53	I.40	2.93
			1.29	I. 26	2.55
			1.19	1.00	2.19
			1.81	$\underline{4.03}$	2.21
Total			1.31	1.17	2.48

tions of living are more easily met. The relatively high mobility rates still prevailing during the summer months no doubt indicate the influence of the hot weather upon the industrial stability of the employee. In the fall of the year when colder weather sets in and living conditions are harder to meet, there is a noticeable drop in the labor change rate as a whole. It is especially interest-

I Reprinted, fiter shifting rates to full-year-worter buse, from report on hbor urchility, ro Me. Laber Res. 1356 (June, 1920).

The figures are obtained in this way: $35,803,000$
ing to note that the proportion of accessions as compared with the proportion of separations is relatively greater during the months of September, October, and November, indicating a tendency for workers to flock back to steadier employment after a period of restlessness and moving about. There is also noticeable a very slight increase in the mobility rates of the winter months over the fall period, which is perhaps indicative, on the one hand, of a more intensive application of the country's productive forces, and on the other, of changes which are often made by individuals at the end of the old and the beginning of the new year.

CHAPTER VIII

Lengti of Service as a Factor in Labor Mobility

In the preceding discussion of labor mobility one very important factor, that of length of service, has been only briefly touched upon in connection with an analysis of accessions. ${ }^{1}$ Monthly and yearly figures expressed in the form of accession, separation, and flux rates are valuable for the purpose of showing the general extent of mobility in the labor force as a whole and its trend during any given period of time. Such figures, however, do not throw much light on the degree of stability within the working force, in so far as it relates to the length of service of the active as well as the separated employees, without which no correct idea can be formed of the relative extent of labor mobility. It is evident that in the working force as a whole, or in its sex, occupation, or other subdivisions, the turnover is not equally distributed, because of the varying frequency with which the jobs in each such group may be abandoned by the job holders. It is obvious that the length of time for which jobs are held by individual employees who leave those jobs, is a highly important factor in determining the incidence of labor mobility within the establishment work force. This for the reason that the shorter the service of separated employees, the more frequent the job replacements which they occasion, and the higher the resulting establishment labor mobility figures.

Moreover, from the standpoint of an individual establishment eager to maintain an esprit de corps in the plant, and for that reason bent upon minimizing its labor changes, the length of service of its employees becomes an all-important factor. In

[^36]order to guarantee that team-work which is essential in modern factory production, and which is the result of long association of the same groups of workmen, effort must be made to prevent employees of long standing from leaving the employ of the concern. The retention in service of long-service employees is especially important from the standpoint of the cost of replacement, as it is generally agreed that as the length of service of the employee increases, his value to the organization is also enhanced. If, however, the severance of connection of an employee becomes unavoidable, it is of importance to retain-assuming that he proves to be desirable - the newly hired employee who is taken on to replace the one who has left. This is also true of those employees hired to enlarge the working force. It is quite obvious that there must be a heavy expense attached to the constant breaking in of new employees. This expense is enormous, even without considering the cost of spoiled work, decreased production, and industrial accidents which inevitably follow as a result of this everlasting shifting.

The experience of 34 establishments in 1913-14 and 53 in r917-18 which furnished comprehensive figures on the length of service of their active employees as well as of those who left their employ, is summarized in Table 34, on page 117.
If we consider those employees having to their credit not more than one year of service as short-service employees, it will be noticed in this table that the proportion of such employees in the active work force is rather extensive. On the other hand, considerable proportions among the active employees are found to have long-service records. This proportion of long-service employees in industrial establishments was considerably reduced during the war period, slightly over 71 per cent of those on the pay roll in 1913-14 having had over one year's continuous service, while in 1917-18 the proportion was only 60 per cent. There are, of course, wide variations in the extent to which individual establishments have short- and long-service employees in the active working force. Space limitations, however, make

TABLE 34
Lengti-or-Sirvicr Distribution of "Active Employers" (Those on Pay Roll at End of Year) and of Ekployees Who Lert durino the Year ("Sepabating Employers")s
[Number of establishments reporting, 1913-14, 34; 1917-18, 53]

it impossible to present length of service data by individual establishments.

As might be expected, the length-of-service figures of the separated employees present a striking contrast to those shown

1 Reprinted from repart on labor mobility, ro.Mo. Laber Res. 1357 . (Unee, 1990).
for the active working forces. This undoubtedly reflects the influence of unusual industrial activity in both of the periods studied, but more especially the effect of war-time conditions upon labor mobility. It is apparent from the figures of Table 34

TABLE
Length of Service of Emplovers on Pay Rold at End of Year ("Active of War and Pre-War Periods, [1913-14: 34 establishments;

Indosiry Grout	Number of EstablisgMcrams	$\begin{gathered} \text { Nencier } \\ \text { or } \\ \text { Workens } 1 \end{gathered}$	Percratage Disfreption inHad Woncm		
			3 Montrs	$\left\lvert\,\right.$	
1913-14 Automobiles and parts mfg.	4	5,838	26	10	5.8
Chem, indust's and refineries	1	1,234	6	13	45
Clothing and textile mfg.	3	6,052	8	4	3
Furniture and millwork	3	6,05	-	4	$\underline{-}$
Leather and rubber goods.	2	4,093	15	9	15
Machinery mig.	5	10,407	19	8	10
Mercantile establishments .	2	3,353	25	8	9
Miscellaneous metal products	9	17,966	18	9	6
Printing and publishing	4	4,380	13	5	4
Public utilities:					
Gas and electricity	-	-	-	-	-
Street railways. .	2	7,613	7	6	5
Telephone service	2	25,514	6	6	.
Total	34	86,450	13	8	8
1917-18					
Automobiles and parts mfg.	5	8,515	24	13	15
Chem. indust's and refineries	3	3,848	36	13	16
Clothing and textile mig.	3	6,371	12	10	9
Furniture and millwork	$\underline{1}$	1,693	22	6	16
Leather and rubber goods	-	-	-	-	-
Machinery mfg. . - .	13	18,264	20	6	11
Mercantile establishments .	3	1,451	22	6	15
Miscellaneous metal products	13	6,160	24	8	12
Printing and publishing	2	940	12	6	6
Public utilities:					
Gas and electricity	1	1,841	18	13	15
Street railways.	1	4,208	22	13	11
Telephone service	8	18,478	17	6	13
Total . . -	53	71,769	19	8	13

- Theme figures repreverat the aggregete number of employees oo pmy tolls at and of year.
that, in the period r917-18, out of a total of 93,092 separated employees, over 41 per cent had, on severing their connections, served periods of one month or less, 33 per cent had worked from one to six months, about ir per cent from six months to one year,

35 e
Eutpoyers") Who Had Served Spectifit Premods or Tine. Comparison my Industay Grouts
19:7-18: 53 establishments]

Enci Inoustry Gaoup os Active Bandoyes Who 					Inpusity Gavor
$\begin{aligned} & \text { Ovis } \\ & \text { y Yina } \\ & \text { a Yinem } \end{aligned}$		Ovin 5 Yeais		Total	
$\begin{array}{r} 14 \\ 15 \\ 9 \end{array}$	$\begin{array}{r}9 \\ 5 \\ \mathbf{y I} \\ \hline\end{array}$	$\begin{array}{r} 14 \\ 8 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 21 \\ & 10 \\ & 51 \\ & \hline \end{aligned}$	100 100 100	1913-74 Automobiles and parts mfg. Chem. industries and refineries Clothing and textile mfg. Furniture and millwort
80	14 8	10	17	100 100	Leather and rubber goods Machinery mig.
14	46	8	10	100	Mercantile establishments
8	12	15	32	100	Miscellaneous metal products
14	14	18	32	100	Printing and publishing Public utilities:
-	-	-	-	-	Gas and electricity
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	45	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	Street reilways Telephone service
52	IX	15	33	100	Total
14	9		12		Automobiles and paxts mis.
14	5	6	32	100	Chem. industries and refinerims
15	13	13	9	100	Clothing and tertile mfg.
12	5	5	35	100	Furniture and millwark
-	-	-		-	Leather and rubber goods
45	11	5	3*	100	Machinery mig.
10	5	7	35	100	Mercantile establishments
15	10	7	24	100	Miscelbaneous metal products
4	7	7	49	100	Printing and publishing Public utilities:
87	18	7	19	100	Gas and electricity
18	6	5	32	100 100	Street railways Telephone serviot
14	9	9	88	100	Total

and a total of 84 per cent had to their credit continuous service records of one year or less. Although in both periods there had also been a considerable exodus of long-service employees 18.8 per cent of all separating employees in 1913-14 and 16 per
table
Lengti of Service of Empioyees (Szparating Employezs) Who Lett or War and Pae-War Peprods,
[1913-14: 34 establishments;

Indostry Gzour	Nugber of Establishe Howns	Total Nowbery or Szparatpro EvPWyEEs	Praciantace Ditiributron meacinKnd Workm		
			$\left\|\begin{array}{c} 3 \text { MOMTH8 } \\ \text { OR LESE } \end{array}\right\|$		$\begin{gathered} \text { OVEI } \\ 6 \text { Montas } \\ \text { TO YINE } \end{gathered}$
1913-14					
Automobiles and parts mfg.	4	8,354	73	9	9
Chem. indust's and refineries	1	1,395	73	16	5
Clothing and textile mfg.	3	3,097	48	12	9
Furniture and millwork	-	-	-	-	
Leather and rubber goods	2	3,975	47	19	19
Machinery mfg. . .	5	6,075	55	14	12
Mercantile establishments.	2	1,778	55	12	12
Miscel. metal products mfg.	9	12,384	5 5	16	14
Printing and publishing .	4	2,760	51	16	15
Public utilities:					
Gas and electricity	-	-	$\bar{\square}$	-	-
Street railways.	2	3,603	38	25	18
Telephone service	2	11,197	41	18	18
Total .	34	54,688	52	16	14
1917-18 Automobiles and parts mfg.	5	13,282	49	17	16
Chem. indust's and refineries	3	8,980	80	9	6
Clothing and textile mfg.	3	8,587	58	II	11
Furniture and millwork	1	4.030	70	12	8
Leather and rubber goods	-	-		-	-
Machinery mfg. . .	13	18,197	59	13	17
Mercantile establishments	3	1,862	63	12	10
Miscel. metal products mfg.	13	15,226	77	9	6
Printing and publishing	2	930	48	10	10
Public utilities:					
Gas and electricity	1	1,040	44	15	14
Street railways .	1	3,728	53	17	13
Telephone service	8	17,230	50	14	12
Total .	53	93,092	61	13	10

cent in 1917-18 being employees with service records of over one year - a census of the active employees taken at the end of the period shows, nevertheless, large proportions' of employees of long tenure; figures for 1913-14 show 38.2 per cent with con-

356

Durng Year Who Had Skived Specifisd Pemiods or Thes. Comparison by Industry Groups
1917-18: 53 establishments]

Indubtey Groti on Sepalation Employita Who Conrinvordix:-					Inpustila Grow
				Toral	
$\begin{aligned} & 5 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & 7 \\ & 7 \end{aligned}$	$\begin{array}{r}1 \\ 1 \\ 10 \\ \hline\end{array}$	100 100 100 100	2983-14 ; Automohiles and parts mfg. Chem. industries and refineries Clothing and textile mfg. Furniture and millwork
7	3	3	3	100	Leather and rubber goods
6	5	4	4	100	Machinery mfg.
13	4	9	3	100	Mercantile establishments
9	4	4	\%	100	Miscellaneous metal products mfg.
9	4	4	1	100	Printing and publishing Public utilities:
-	-	-	\square	-	Gas and electricity
$\begin{aligned} & 10 \\ & 10 \end{aligned}$	3 5	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	4	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	Street railways Telephone service
8	4	3	3	100	Total
					1917-28
2	1	1	\%	100	Chem. industries and refineries
9	3	5	3	800	Clothing and tertile mfg.
4	1	I	4	100	Furniture and millwort
-	-	-	-	-	Leather and rubber goods
19	\%	2	3	100	Machinery mig.
5	\%	3	5	100	Mercantile establishments
4	5	\%	*	100	Miscel. metal products mfg-
10	6	6	II	100	Printing and publishing Public utilities:
x	\$	5	5	100	Gas and electricity
8	3	3	5	100	Street railways Telephone service
7	3	3	3	100	Total

tinuous service records from one to five years, and 32.9 per cent with service records of over five years, and figures for 1917-18 show 32.9 per cert of all active employees with service records of over one to five years and 27.8 per cent with continuous service records of over five years.
A count of the actual length of service of 439 separated employees in two establishments in the one-week-or-less group showed the number of employees having had specified days of service to be as follows: Less than one day of service, 21 employees; one day, 94 employees; 2 days, 57 employees; 6 days, 111 employees. This shows that over 25 per cent worked one day or less, about 80 per cent worked from two to five days, and only a little over 25 per cent worked a full week.

The results of a separate study of the relative proportions of active and separated employees who had served specified periods of time are shown by industry groups in Tables $35 a$ and $35 b$.
In both periods rather marked variations may be observed in the relative proportions, in the different industry groups, of those in service at the end of the year and those separated during the year. The extent to which any industry group has long-service employees in the active work force will depend, of course, on the seasonal character of the industry, whether the work force has recently been extended, whether the plant has reduced its force by lay-off of those most recently hired, or on all of these factors combined. In the first two cases there will very probably be found a relatively smaller proportion of long-service employees, while in the last case the number of employees of long tenure will be relatively larger. In the case of the active employees, the influx of new workers during the war period due to enlarged industrial activities may be seen in the proportion of those having short-service records in 1917-18 as compared with 1913-14. In both periods employees of long tenure are found to a greater or less extent in all industry groups shown, the proportion of employees with over 5 years' service being in some cases almost one-half the total active working force. However, the
enormous shifting of workers which took place during the war period, especially in war industries, is strikingly illustrated by the figures for separated employees. It wilf be observed that some industry groups show as high a proportion as 80 per cent of all the separated employees to have worked three months or less. The proportion of separated employees who had served one week or less appears to have been in some industry groups as high as from 60 to 80 per cent. A considerable number of longservice employees were lost to the different establishments during the war period, as may be seen from the rather large proportions of long-time employees who left the service in some industry groups.

COMPARATIVE SERVICE STABILITY OF MALES AND FEMALES

The figures shown in Tables 36, 37 and 38 are the result of a special study of the relative importance of the length of service as a factor in labor mobility in industrial establishments as between males and females. Table 36 summarizes for the war period the experience of 28 establishments in that regard. The figures of this table are presented graphically in Chart H on page 125 . Table 36 shows the proportions of the males and females in the working force to be about equally divided in the lower length of service groups, the females having higher proportions in the service groups between six months and five years, but showing a much greater proportion of males in the over-fiveyears group. A comparison of the length of service of the separated male and female employees shows that larger proportions of separating male employees than females are bunched in the short-service periods. Thus, 63 per cent of the total number of separating males as against 50 per cent of the females had served less than three months. In the groups over-six-months-to-a-year the proportions are about equally divided. In the long-time-service groups of separated employees the figures for males show that they are less prone to sever connections with an establishment after having worked in it a consider-
able period of time. Of all the separating females whose service records were reported, 18.7 per cent had served over one to five years, whereas only in. 3 per cent of all the separating males

TABLE 36
Lengtr-or-Servicy Distribution ox "Active Ekployers" (r.e., Those on Pax Roll at End of Year) and of Euployezs Who Lett During tire Year ("Separating Employees"), Classified According to Sex, 1917-18.

	Emplotees on Pay Roti at End of Year (Active EnPLOYEES) Who HAD Woreed Spectize Preion		SEpalated Eifloyezs Weo Hap Woxicio Sprciprid Pracod	
	Maxe	Frane	Max:	Ftouaz
	Numara			
$\underline{\mathrm{I}}$ week or less .	78 r	328	7,654	2,180
Over 1 week to 2 weeks	886	370	4,236	1,077
Over 2 weeks to 1 month	1,446	541	5,508	1,174
Over 1 month to 3 months	3,247	1,633	8,839	2,686
Over 3 months to 6 months	2,506	1,386	5,225	1,884
Over 6 months to 1 year	3,554	2,508	4,042	1,824
Over 1 year to 2 years	4.415	2,831	2,991	1,313
Over 2 years to 3 years	2,654	x,583	755	544
Over 3 years to 5 years	2,037	1,969	963	832
Over 5 years	11,853	3,654	1,473	857
Total .	33,375	16,803	41,686	14,371
	Prat Corr			
1 wreek or less .	2.3	2.0	18.4	15.2
Over 1 wrek to 2 weeks.	2.7	2.2	10.2	7.5
Over a weeks to 1 month	4.3	3.8	13.2	8.8
Over 1 month to 3 months	9.7	9.7	21.2	18.7
Over 3 months to 6 months	7.5	8.2	12.5	13.1
Over 6 months to I year	10.6	15.0	9.7	12.7
Over 1 year to 2 years	13.2	16.8	7.2	9.1
Over 2 years to 3 years.	8.0	9.4	1.8	3.8
Over 3 years to 5 years	6.1	12.7	2.3	5.8
Over 5 years .	35.5	21.7	3.6	6.0
Total . .	100.0	100.0	100.0	100.0

had served over one to five years. Finally, of the employees leaving after having served continuously more than five years 3.6 per cent were males and 6.0 per cent were females.
 Classitive by SEx, 1917-18

GDIAZGS HO HIDNGT

TABEE 37

 19:7708 8
(Nucuber of establishoments reporting, $\left.x 9 x 3^{-14,30 ;} 1917-38,28\right)$

Leworz-ox-Smarae Pruad	 Spycinus Pexsoos or Tume -			
	Mays		Freatas	
	20:3-24	19077-18	2013-24	5017-18
	Nunctar			
2 week or less * *	-	787	-	328
Over I week to 1 weeks		886	-	376
Over a weeks to 7 month	-	7,446	-	547
Over x month to 3 months	-	3,247	\sim	1,633
Three months or less.	8.994	6,300	2,865	28.85
Ovet 3 months to 6 months	6,738	2,506	1,867	1388
Over 6 months to I year	6,636	3.554	3,635	2,508
Over 1 yees to 2 years	10,245	4,4 17	4,724	2,831
Over a years to 3 years	8,990	2,654	3.64 x	1,583
Ower 3 years to 5 years	12,584,	2,037	4,094	$\underline{1} 006$
Over 5 years	27,316 ${ }^{1}$	11,853	6,454 ${ }^{3}$	3,654
Tot	85,509	33, 375	76,878	16,803
	Pum Cuse ar bich grove			
x wreet or less . .	-	2.3	\cdots	2.0
Over 1 wreck ta 2 weeks.	-	2.7	-	2.2
Over 2 weeks to 1 month	-	4.3	-	3.2
Over x month to 3 months	\cdots	9.7	-	9.7
Three months or less.	12.0	x. 0	xa. 1	17. 8
Over 3 montiss to 6 months	8.3	7.5	0.9	8.1
Over 6 months to 2 year	8.2	± 0.6	9.8	15.0
Over x year to 3 years.	$\mathbf{4 2 . 6}$	33.2	27.6	$\times 6.8$
Over 3 years to 3 year	38.6	8.0	23.5	9.4
Over 3 years to 5 years.	15.4	6.5	27.5	12.7
Over 5 years . . .	$33.5{ }^{4}$	35.5	\$4.0 ${ }^{1}$	21.7
Total. .	100.0	1000	1800.0	10000

1 Distributed as tallown:

Levorra-ow-\$mavice Pxurcy	Maxim		Fruate	
Oover 5 \% 1 y years.	6.885	5.4.	1,043	+. ${ }^{\text {\% }}$
	${ }_{6}^{8,7674}$	30.8 8.6	\%.013\%	3.6
Over 85 to 25 yens		8		S. ${ }^{\text {S }}$
Oyer moy yenss.		4	649	-4
Total .	**, 3 +6	38.5	6,454	4

[^37]The influence of the war period upon the length of service of males and females is brought out in Table 37. The figures are based upon the identical length of service distribution of the males and females in the active working foroes of 30 establishments in 1914, and 28 establishments in 1918. It is evident that the proportion of short-service employees, both for males and females, is considerably greater in the war than in the pre-war period. In 1913-14 it appears that 27.5 per cent of the males and 27.4 per cent of the females of the active work force had service records of one year or less; the corresponding figures for the war period are 37.2 and 40.4 per cent, for males and females, respectively. The proportion of long-service employees in the active working force - and this applies to both males and females - decreased during the war period, as may be seen from the records of the number who had over one year's continuous service. In 1913-14 the figures show that 72.5 per cent of the males and 72.6 per cent of the females were in service for over one year. In 1917-18 the proportion of the males who served more than one year decreased to 62.8 per cent and the corresponding proportion of the females to 59.6 per cent.

The summarized figures of the length-of-service distribution of 28 establishments in 1917-18 classified by sex as shown in Table 36 are given in greater detail in Tables 38 a and $38 b$ which show, by industry groups, the length of service of active and separated male and female employees.

The figures presented in these tables show pronounced variations in the different industry groups in the proportion of male and female employees who had served given periods of time. This irregularity is apparent among both active and separating employees. It will be noted, however, that, in many cases, there are, within the same industry group, only slight differences in the proportionsof malesand females havingidentical length of service Yet in certain service groups there are evident rather wide differences. Such discrepancies are noticeable in the over-five-years group, where male worters appear in much the larger proportions.

TABLE
Lengit-or-Service Distribution or Employefs on tae Pay Roll
[9917-18: 28

Indusizy Girotip			Pre Cant Distriution on			
			Wizer			
Males						
Automobiles and parts mig. -	I	r,68r	2	4	9	17
Chem. indust's and refineries	2	2,995	6	4	8	17
Clothing and textile mfg.	2	34 I	2	4	6	4
Furniture and millwork.	1	1,607	3	3	6	9
Machinery mfg. . . .	5	1,451	2	3	4	9
Mercantile establishments	4	13,100	3	5	4	9
Miscel. metal products mfg.	3	1,150	3	3	4	10
Printing and publishing .	2	436	3	2	4	7
Public utilities:						
Street railways	$\underline{1}$	1,557 3,718	2	2	3	$\begin{array}{r} 8 \\ \mathbf{I I} \end{array}$
Telephone service	6	5,339	1	1	2	5
Total	28	33,375	2	3	4	¢0
Females						
Automobiles and parts mfg. -	1	212	-	7	14	21
Chem. indust's and refineries	2	445	4	5	9	20
Clothing and textile mig.	2	48 I	5	7	7	10
Furniture and millwork.	1	86	14	8	19	23
Machinery mig. . . .	5	311	-	9	12	23
Mercantile establishments	4	313	1	2	4	20
Miscel. metal products mfg.	3	1,278	8	10	15	11
Printing and publishing .	2	504	2	I	,	5
Public utilities:						
Gas and electricity	I	284		4	5	17
Street railways ${ }^{\text {a }}$	1	490	3	6	10	19
Telephone service	6	12,399	2	1	2	8
Total	28	16,803	2	2	3	10

${ }^{2}$ The figutes in this columar reler to the

38 a
at tere End on Year ("Active" Euployers), by Sex and Industry Gzoups establishments]

"Active" Euploynas Weo Ead Sasym Continuoushy:							Indutizy Gepors
	6 Montin 2 Y̌an $_{10}^{20}$		$\left\lvert\, \begin{aligned} & \text { Oves } \\ & \text { O Yikes } \\ & 3 \text { Yyans } \\ & \text { TO } \end{aligned}\right.$		${ }_{5}^{\text {Ovises }}$	Tetaz	
							Males
14	9	75	6	14	II	100	Automobiles and parts, mfg.
13	16	12	5	6	12	100	Chem. indus's and refin'r's
4	5	9	6	8	52	100	Clothing and textile mfg.
5	15	12	5	5	37	100	Furniture and millwork
5	9	15	II	4	39	100	Machinery mfg.
7	12	10	4	7	37	100	Mercantile establishments
7	15	15	9	8	25	100	Miscel. metal products mig.
5	7	9	4	4	56	100	Printing and publishing Public utilities:
14	15	17	11	7	20	100	Gas and electricity
12	21	12	6	5	35	100	Street railways
4	8	10	7	xo	53	100	Telephone service

Total

Females

		21			-)es
80	16	12	5	5	4	100	Chem. indust's
7	8	9	10	12	25	100	Clothing and textile mfg.
10	15	5	3	I	1	100	Furniture and millwork
12	10	13	9	5	9	-	Machinery mfg.
It	19	13	6	9	14	100	Mercantile establishments
5	${ }_{6}^{17}$	9	8	5	8	100	Miscel. metal products mfg.
7	6	15	ro	9	43	100	Printing and publishing Public utilities:
17	18	17		6	10	100	Gas and electricity
15	2	18	5	4	14	roo	Street rnilmaya
7	15	18	10	13	24	100	Telephone service
8	15	${ }^{27}$	9	12	29	100	Total

table
Lengti-or-Srrvice Distribution of Employers Who Lept duting
[r917-18:

Indusity Gromp		Toras Numare "SEPANATED ${ }^{3}$ EMthymes'	Per Cenc Dimitaotion oy			
						$\begin{aligned} & \text { Ovies } \\ & \text { Moninis } \\ & \text { To } \\ & 3 \text { Morinis } \end{aligned}$
Males						
Automobiles and parts, mfg. .	1	2,383	23	II	14	22
Chem. indust's and refineries	2	7,253	30	13	16	32
Clothing and textile mfg. .	2	444	11	9	17	17
Furniture and millwork . .	1	3,763	23	10	4	23
Machinery mfg. . .	5	3,472	15	9	10	19
Mercantile establishments	4	10,755	19	9	42	22
Miscel. metal products mfg. .	3	1,886	22	18	14	19
Printing and publishing . .	2	459	20	5	13	13
Public utilities: Gas and electricity Street railways Telephone service	1 6	$\begin{array}{r} 834 \\ 3,430 \\ 7,007 \end{array}$	5 7 13	3 7 8	14 13 14	23 25 23
Total	28	41,686	18	TO	13	21
Temales				*		
Automobiles and parts, mfg.	1	151	30	7	13	23
Chem. indust's and refineries	2	747	22	I7	10	25
Clothing and textile mig. -	2	903	16	13	13	19
Furniture and millwork . -	1	267	23	8	18	27
Machinery mag. ** *	5	370	31	10	10	16
Mercantile establishments -	4	334	10	10	19	26
Miscel. metal products mfg. .	3	I,544	22	10	10	29
Printing and publishing . *	2	471	16	4	10	15
Public utilities: Gas and electricity	I	206	6	3	9	21
Street railways . -	$\underline{1}$	298	14	9	13	21
Telephone service . .	6	9,080	14	6	5	16
Total .	28	14.371	15	7	8	19

1 The figures in this columan refer to the eqregate mumber in each

386
tite Year ("Separating Euployers") by Sex and Industry Group 28 establishments]

							Imousier Guate
$\begin{aligned} & \text { Oves } \\ & 3 \text { Mownes } \\ & 60 \\ & 6 \text { Mon } \end{aligned}$	OVN: 1 Y゙ $_{10}$	Ovas 1 Yeas pis - Y\%		$\left\{\left.\begin{array}{l} \text { Ove } \\ \text { Y Pans } \\ 5 \text { Yo } \end{array} \right\rvert\,\right. \text {, }$	OYy	Tomar	
							Males
12	9	4	2	4	-	100	Automobiles and parts, mfg.
9	6	2	(c)	1	1	100	Chem. indust's and refiner's
14	8	6	6	3	9	100	Clothing and textile mfg.
12	8	4	1	I	4	100	Furniture and millwork .
13	12	13	2	\%	5	100	Machinery mfg.
12	10	6	2	3	4	100	Mercantile establishments
13	8	4	1	$\underline{1}$	1	100	Miscel. metal products mfg.
10	10	6	5	7	12	100	Printing and publishing Public utilities:
13	5	18	5	5	5	100	Gas and electricity
17	13	8	2	3	5	100	Street railways
15	10	7	2	4	4	100	Telephone service
13	10	7	2	2	4	100	Total
					-		Females Automobiles and parts, mfg.
17	8	3	1	2	I	100	Chem. indust's and refiner's
10	14	5	4	3	2	100	Clothing and tertile mig-
16	7	1	-	-	-	100	Furniture and millwork
9	7	14	1	\pm	-	100	Machinery mfg.
13	15	5	2	3	3	100	Mercantile establishments
14	5	6	2	$\underline{5}$	1	100	Miscel. metal products mfg.
ro	r0	12	7	5	It	100	Printing and publishing Public utilities:
39	18	12	4	6	5	roc	Gas and electricity
16	15	4	\pm	3	6	100	Street railmays.
13	14	12	4	8	8	100	Telephone service
13	13	9	4	6	6	100	Total

LENGTH OF SERVICE OF SKILLED AND UNSKILLED

The relation between the degree of skill and the length of service of both active and separated employees was made the subject of a special inquiry reporting the experience of $\mathbf{1 7}$ establishments covering the years 1913, 1914 and 1915. The results are shown in Table 39.

TABLE 39
Lengit-or-Service Distribution of "Active Employzes" (he., Thosz on Pay Roll at End of Year) and of Employens Who Left during the Year ("Separatid Employees"), Classufied According to Semin, 1913-1915

Lengere-or-Sizvice Group	Evployess on Pay Rolliat End of Yene (Active En rowtes) Who HAs Woared Continvodsly Spzeciniz Pritade		Separatte Emplotita Who Had Sexve Continuousty prion Spacinio Pehiode	
	Sclurbi	Ussictum	Scrume	Unacrile
	Numir			
3 months or less	2,169	4,442	7,072	11,145
Over 3 to 6 months	1,449	2,102	2,218	2,875
Over 6 months to 1 year	1,523	1,518	1,869	2,065
Over 1 to 2 years. . . .	2,921	2,265	932	1,218
Over 2 to 3 years.	2,286	2,297	640	545
Over 3 to 5 years.	3,011	2,560	412	400
Over 5 years	6,675	3,015	536	308
Total	20,034	18,199	13,679	18,549
	Pre Cort Distrabomom			
3 months or less	10.8	24.4	51.7	60.1
Over 3 to 6 months . . .	7.2	11.6	16.3	25.5
Over 6 months to I year .	7.6	8.3	13.7	11.1
Over 1 to 2 years	14.6	12.4	6.8	6.5
Over 2 to 3 years	II.4	12.6	4.7	2.9
Over 3 to 5 years . .	15.0	14.1	3.0	3.2
Over 5 years	33.3	16.6	3.9	1.7
Total	100.0	100.0	100.0	100.0

The figures indicate that only about one-tenth of the skilled employees on the pay roll, but nearly one-fourth of the unskilled,
had served as short a time as three months or less. The proportions of the skilled and unskilled active employees who had served from one to five years are about the same; in the over-five-years service group of active employees there is a considerable difference, however, the proportion of skilled in that group being 33.3 per cent, whereas the proportion of unskilled is only 16.6 per cent. Among the separated employees it is only in the long service groups that there is any decided difference in the relative proportions of skilled and unskilled employees, the unskilled separating employees showing a slightly higher percentage in the length-of-service groups of one year or less, the figures being 8 I .7 per cent for skilled and 86.7 per cent for unskilled. In the over-one-to-five-year groups the proportion of separated skilled employees is 14.5 per cent, and that of the unskilled in. 6 per cent; in the over-five-years group the skilled represented 3.9 per cent and the unskilled $r .7$ per cent of the total separations. ${ }^{1}$

In the discussion of the relative mobility of the skilled and unskilled workers, attention has been directed to the fact that there was more frequent shifting among the unskilled workers generally, as compared with the skilled, and that this shifting of the unskilled has taken on enormous proportions during later years. ${ }^{2}$ The mobility records of individual workmen are of no little interest in this connection. In 1914, Mr. P. A. Speek, an investigator for the Commission on Industrial Relations, made a very thorough and painstaking first-hand study of the unskilled migratory worker. In his report to the Commission, Mr. Speek includes as an appendix the "copies of record cards of 7 typical Hoating laborers applying at the State Free Employment Office, Milwauke, Wisconsin (in the period igri-rgi3), showing the number and nature of jobs during certain periods of time." These records show in chronological order the nature of the various jobs held, with the dates on which the laborers were sent to those jobs. A summary of the records follows:

[^38]1. Patrick J. Flynn, 87 jobs during 23 months and 6 days, or one job in every 8 days.
2. Jos. Stein, 7 jobs during 5 months and 4 days, or one job in every 22 days.
3. Frank O'Neill, 16 jobs during 7 months and no days, or one job in every 14 days.
4. Matt Brewer, 20 jobs during 10 months and 19 days, or one job in every 16 days.
5. Chas. Sommer, 72 jobs during 10 months and 19 days, or one job in every $4 \frac{1}{1}$ days.
6. Fred Miller, 59 jobs during 6 months and 8 days, or one job in every $3 t$ days.
7. William Thompson, 34 jobs during 12 months and 14 days, or one job in every 11 days. ${ }^{1}$

A very interesting side-light upon the shifting of common laborers during the war period and the duration of their employment on different jobs is furnished by the record of one of the large printing establishments in the Middle West shown in Table 40, on page 135.

For a period of three months this firm kept a record of the length of service of unskilled male laborers who left their employ. Besides recording the length of time jobs have been held, the age, wage rate received, and finally, the reason for leaving of each individual worker, are also given. The period under consideration marks one of enormous expansion in industrial activity, and the competition for labor, especially for common labor, was exceedingly keen during the period under observation. The influence of these factors upon the situation is very clearly reflected in the data shown in this table. Of the 78 individual laborers listed 37 worked less than a week, 11 worked a full week, ro worked between ro days and 3 weeks, and only 20 worked more than a month before they quit. It does not appear that either the age or wage rate influenced stability to any appreciable extent one way or another. Men of all age groups and of both

[^39]TABLE 40
Lengti-or-Semvice Records of 78 Unsichusp Mals Laboreps Hired on or sinces July i, 1918, but not on Pay Roxl October, ryx8, in a Printing Concern. (Estabitsimient No. ISi.)

Empromas Nmase	Aas	Rate mes Hove	How Lown Empioyad	Reason tom Lavingo
1	23	-30	Two Hours	Failed to report.
1	20	.25	Half a Day	No reason.
3	51	. 30	One Day	No reason.
4	19	. 30	One Day	Work too hot.
5	2 T	30	One Day	Too hard.
6	19	30	One Day	Work too hard.
7	17	3.30	One Day	Failed to report.
8	18	. 27	One Day	Cannot stand the heat.
9	18	. 24	One Day	Another position.
10	18	.25	One Day	No reasom.
It	69	. 29	One Day	Wort too heevy.
ra	19 -	. 25	One Day	No reason.
13	19	.27	One Day	Cannot stand the heat
14	19	30	One Day	No reason.
15	49	30	One Day	Too hard.
± 6	18	. 25	One Day	No reason.
17	18	. 27	One Day	Another position.
18	18	30	One Day	No reason.
19	17	. 18	One Day	Failed to report.
20	18	30	One Day	Cannot stand heat.
21	19	$3{ }^{\circ}$	One Day	Too hot.
39	50	. 27	One Day	Failed to report.
23	18	.27	One Day	Cannot stand the heat.
24	89	36	One Day	No reason.
35	18	30	One Day	No. good.
27	18	. 27	Iwo Days	No reason.
28	16	. 16	Two Days	No reason.
99	18	30	Two Days	Failed to report
50	17	30	Two Days	Back to the country.
3 S	17	. 27	Three Days	Work too hot.
32	28	. 35	Three Days	No reason.
33	18	30	Four Days	Too lagy.
34	48	. 27	Four Days	Failed to report
35	3^{88}	50	Four Days	Too hard.
36	18	.25	Five Days	No reasor.
37	18	. 25	Five Days	No reasan.
38	18	. 25	One Week	No reason.
39	96	50	One Week	Work too hard.
40	31	- 50	One Week	Did not want to work. No good.
42	17	50	One Week	No zood.
43	16	. 36	One Week	Discharged.
4	35	30	One Week	No reasom.
45	18	.27	One Week	No reason.

136	LABOR TURNOVER IN INDUSTRY			
TABLE 40-Continued				
Lengti-of-Service Records of 78 Unskilled Male Laborers Hired on of since Joly i, 1918, but not on Pay Roll October, 1gi8, in a Penting Concern. (Establishment No. 151.)				
Enfiover Numaid	Acs	$\begin{array}{\|c} \text { Rati priz } \\ \text { HoUt } \end{array}$	How Lone Employzid	Rrasom yor Leaydo
$46^{\text {c }}$	36	30	One Week	Ordered to look for essential work.
47	16	.23	One Week	No reason.
48	20	. 24	One Week	No reason.
49	35	. 30	Ten Days	Too hard.
50	16	. 88	Two Weeks	Failed to report.
51	18	. 25	Two Weeks	No good.
52	16	. 16	Two Weeks	No reason.
53	18	. 27	Two Weeks	Better paying job.
54	51	. 32	Two Weeks	Another position.
55	${ }^{21}$.27	Two Weeks	No reason.
56	56	. 30	Three Weeks	No reason.
57 58	16	. 22	Three Weeks	No reason.
58 59	23 17	. 27	Three Weeks	Another position.
60	21	. 27	One Month	No reason.
61	29	. 27	One Month	Another job.
62	51	. 30	One Month	No reason.
63	18	. 30	One Month	Better job.
64	38	. 32	One Month	Drunk.
65	43	. 29	One Month	Another job.
66	17	. 27	One Month	Work too hot for him.
67	33	. 29	One Month	Discharged.
68	18	. 30	One Month	Better job.
69	40	.33	One Month	No reason.
70	16	. 18	Six Weeks	No reason.
71	48	. 30	Six Weeks	No reason.
72	22	.29	Sir Weeks	Left city.
73	49	-27	Two Months	Has better paying job.
74	16	. 18	Two Months	Better job.
75	18 43	. 26	Two Months	No reason.
76	43 33	.30	Two Months Three Months	Wanted more money. No reason.
78	33 47	. 29	Three Months	No reason.

higher and lower hourly wage rates are found among those employees who served only a few days as well as among those who had served longer periods. Half of the workers listed left without giving any reason or giving any notice of their intention to leave. A large proportion left because they found the work either too hot or too hard; only a few of those who quit indicated that they had other jobs in view.

LENGTI OF SERVICE IN DIFFERENT PLANT DEPARTMENTS

Just as the labor instability is not distributed in equal degree among the diferent sections of the work force, so the length of service of the active employees as well as the employees leaving differs widely in different sections of the work force. This is well illustrated in Table 41.

TABLE 41
 Pay Roll at End of Year), and of Employzes Who Left durng the Yeat ("Separatid Employkes"), in a Men's Clothing-Manutacturne Plant (Establishutent No. 103), r9r7-x8

$\frac{1}{\text { Gnow }}$	Elaphonges on Pay Rolil at Eno of Yeht (ACTVEI) in -			Eancoyes: Skparatio Deninto time Yinil Im -		
			Cuitive Thnomana Dipant Mint			
	Noman					
1 week or less	5	4	8	144	855	106
Over I week to 2 wreks	11	34	7	106	475	114
Over 2 weels to 1 month	63	115	5	150	521	365
Over 1 month to 3 months	108	205	12	327	993	212
Over monthas to 6 months	64	472	40	247	43^{8}	125
Over 6 months to I year	136	376	13	207	408	127
Over 1 yoar to a years	144	698	55	143	512	48
Over 1 years to 3 years.	92	596	24	43	154	24
Over 3 years to 5 years.	84	610	36	52	323	27
Over 5 years. .	208	1,029	295	45	150	6
Total . . .	915	4,139	495	1,464	4,822	954
	Pran Corr					
\% week or leess ${ }^{\text {a }}$,	.5	- 8	1.6	9.8	17.7	
Over 1 Week to \% Weeks	7.2	.8	1.4	7.2	9.6	11.9
Over a weeks to i month	6.9	2.8	1.0	20.2	10.8	17.3
Over x month to 3 months .	12.8	5.0	24	13.3	20.6	22.2
Over $\$$ montha to 6 months.	7.0	51.4	8.5	16.9	9.1	13.1
Over 6 months to 1 year	14.9	9.1	3.6	14.7	83	13.3
Over y yoar to a years	15.7	16.9	27.18	9.8	126	. 50
Over a years to 3 years	Iax	144	4.8	2.9	3.2	2.5
Over 3 years to 5 years	9.2	14.7	7.3	3.6	6.7	8.8
Over 5 years.	81.7	24.9	59.6	3.4	3.1	6
Total	100.0	r0a0	10000	1000	1009	1000

The proportion of short-service employees in the active working force is greatest in the "general" department - where 20.4 per cent of those in service at that time had served 3 months or less. In the tailoring department the corresponding length-of-service group has 9 per cent, and in the cutting and trimming departments 6 per cent, of the employees on the pay roll. This irm, known for its liberality in dealing with labor, is able to show a proportion of long-service groups well above that of the ordinary run of establishments. The proportion of employees with service records of over one year is 57.7 per cent, 70.9 per cent and 82.8 per cent, respectively, in the three departments named. Tuming to the separating employees, it is evident that the cutting and trimming department lost fewer of its old-time employees than the other two groups, although a good deal of shifting also took place in these latter departments, as is indicated by the large proportion of employees who left employment after short periods of service.

AVERAGE WEEKIY SERVICE RATES

It is a matter of course that as the period of service increases the number of employees who have served such period decreases - and decreases usually at a progressively increasing rate. This naturally holds true for both active and separating groups of employees. The length-of-service figures presented in the preceding pages do not reveal this tendency, for the reason that the length-of-service records were not tabulated on a seale made up of equal intervals of time. In Table 34, for example, it appears that nearly as many separated employees had service records falling within a range of from one to seven days as had service records of from one to three months - in which group the range is about nine times as great. This statement of the situation is tuee, but misleading. The really significant difference is that between the number of quitters who had worked one week or less and the average weekly number of quitters into which the total number who had worked from one to three
months is distributed. The comparison should be between weekly averages of active and separated employees in the different tenure groups. In other words, the important thing to know is not so much the number leaving who had one to three months' service records as the number of quitters assignable on the average to each of the nine weeks of the one to three months' period - what may for the sake of brevity be called the average weekly number leaving (or working on the active force) in each classified service period.

LENGTH OF SERVICE AND TYPE OF SEPARATION ${ }^{1}$

This "weekly average" is made the basis of Table 42 which shows the number, per cent distribution, and corrected (i.e., weekly average) separation service rates per full-year worker, of employees quitting voluntarily, laid off, and discharged from 30 establishments reporting for the pre-war period. ${ }^{2}$

In this table the declining scales of corrected rates indicate much more accurately than do the unsubdivided figures the relative importance of long and short time employees as factors in the turnover situation. Relatively high average weekly (i.e., corrected) separation rates, particularly in the shorter time periods, indicate relatively low stability - that is to say, high turnover. Thus it is evident from the corrected separation rates of Table 42 that in every service period the frequency of quitting voluntarily is from 3 to 7 times as rapid as the frequency of lay-off separation and from 2 to 5 times as rapid as the frequency of discharge. For all three types of separation by far the heaviest responsibility falls on the under-3-months group in which employes leave, whatever the circumstances of their separation, 4 and 5 times as rapidly as they do in the 3 -to- 6 -months group. In the latter group, in turn, they leave almost twice as rapidly as in the 6-to-9-months group; taking the extreme ends of

[^40]
TABLE 42

(30 establishments, 1913, 1914, or 1915)

Serre of									
	$\underset{\substack{\text { MoNTws } \\ \text { OEss }}}{\mathbf{L}}$	$\begin{gathered} \text { Ovzes } \\ 3 \text { To } \\ \text { MoNTHS } \end{gathered}$	$\begin{aligned} & \text { OVER } \\ & 6709 \\ & \text { MONTHS } \end{aligned}$	Overe 0 то x Year	$\begin{aligned} & \text { OVER } \\ & \text { YTOR } \\ & \text { YRARB } \end{aligned}$			$\begin{aligned} & \text { OVEX } \\ & \text { ysies } \end{aligned}$	Total
	Nutaer								
Quit	17,809	4,069	2,224	1,391	2,54I	1,270	1,038	1,045	31,387
Lay off.	4,176	1,112	780	344	551	258	156	154	7,530
Discharge	7,606	1,474	830	515	899	378	312	261	12,372
Total	29,591	6,654	3,834	2,246	3,991	1,906	1,506	1,460	51,188
Quit	60	61	58	62	64	67	69	72	61
Lay off .	14	17	20	15	14	14	10	11	15
Discharge	26	22	22	23	23	20	21	18	24
Total	100	100	100	100	100	100	100	100	100
Quit Lay off. Discharge	. 295	. 067	. 037	. 023	. 017	. 006	. 002	-	. 519
	. 069	. 018	. 013	. 006	. 002	.001	${ }^{(2)}$	-	. 125
	. 126	. 024	. 014	. 008	. 004	. 002	. 001	-	. 203
Total	. 490	. 109	. 064	. 037	. 017	. 009	. 003	-	847

1 Based on the 18t, 489,000 tabor hours put in during one yeut by employece of go entabliphments and corrected for inequality of time perlods by dividing the crude rates in eech group by the number ell quartetiy period is in, as follows:

12 nes than eoos.

Over 1 to fyears . . . 4
Onerato s reen . . . 4
Over 3 to 5 years . . .4
the service scale it appears that employees leave voluntarily and are laid off or discharged at least one hundred times as rapidly from the under-3-months as they are from the 3 -to- 5 -years group. The percentage distribution figures indicate that in each service group, quits, lay-offs, and discharges make up roughly the same proportion of the total separations assignable to each service group, quits ranging from 58 to 72 per cent, lay-offs from 10 to 20 per cent, and discharges from 18 to 26 per cent.

CHAPTER IX

Stable and Unstable Employees

In the discussion of the figures on the length of service of the active working force attention has been called to the fact that in each establishment at a given time there will, of course, be found a certain proportion of long-service employees. No matter what divisions of the working force may be considered - shifts, departments, the skilled and unskilled, distinct occupations, etc. and whatever the prevailing factors may be that influence the rate of labor mobility of these groups - they all will be found to contain elements of stability. Inordinate shifting of labor is characteristic only of certain parts of the working force. This of course, does not mean that senior employees do not sooner or later also change their employment and that they are not to be reckoned at all as a factor in labor mobility. But in each establishment at a given time will be found a nucleus of workers who have become a part of the permanent working force, who have grown up in the establishment, as it were, and who are for various reasons less desirous of change. The fact that it is only a portion of the working force which becomes a factor in the labor mobility over a given period shows that there is more or less concentration in the mobility of the plant force, and for that reason the rates of mobility as applied to the working force as a whole do not correctly assign the direct responsibility for the labor flux. It is evident that the rates of mobility would be the same if the whole working force changes completely once in the course of a year, or, if one-half of the work force changes two times, or, one-fourth of the work force changes four times, in the course of a year, and so on. In the presentation of the figures that follow an attempt is made to establish a more simple and direct connection between length of service and labor mobility.

The detailed period-of-service figures of active employees in the industry groups shown in Table 35 in seven length-ofservice divisions, have been condensed in Table 43 into just two divisions; those who have served continuously for periods up to one year and those who have continuous service records of over one year. The same figures are shown graphically in Chart I.

TABLE 43
Numbige and Pars Cent Distribution of "Active Employeses" Who Had Served One Yraz or Less and Ovisp One Yeaz, Resticitivaty, in Spectitio

Lndustay Groups, 1917-18. (53 Establishients)

Indumat Gagu	Numar		Pam Cors	
		Onm		
Automobiles and parts manufacturing	4429	4,086	52.0	4.0
Chemical industries and refineries	1,513	1,335	65.0	35-0
Clothing and textile manufacturing	1,972	4×399	31.0	69.0
Furniture and millwort.	8729	964	43.0	57.0
Machinery manufacturing -	6,760	11,504	37.0	63.0
Mercantila estahlishments . -	625	826	43.0	570
Miscelinneous metal products mfig-	2,750	3.410	45.0	55.0
Printing end publishing ${ }^{*}$ - ${ }^{\text {a }}$	335	709	25.0	75.0
Public utitios: Ges and electricity	864	977	47.0	53.0
Street nilway ${ }^{\text {Telephone }}$ -	1,908	2,300 12.85	45.0	55.0
Telephone service	5,667	12,811	35.0	69.0
Total . . .	28,448	43,327	400	600

It is at once evident that of $\mathbf{7 1 , 7 6 9}$ persons on the pay rolls of the 53 establishments on Jume $x, 1918,43,321$ or 60 per cent had been in continuous service over one year. These long-service employees were in no way responsible for the labor mobility of these establishments for the 12 -month period ending with that date. The proportion of employees who were free from responsibility for the labor shifting depends upon the proportion of longservice employees in the working force, which, as may be seen, varies considerably between the industry groups shown, the higheis "percentage of employees having service records of over

one year being in printing and publishing. Generally, the proportion of over-one-year active-service employees is greater than the proportion of active employees who have worked less than one year. There are two exceptions among the industry groups: automobiles and parts manufacturing and chemical industries and refineries. In these two groups the proportion of active employees with service periods of less than one year is greater than those with over one year's service.

Knowing the number of employees with service records at least as long or longer than the period for which the labor mobility is reported, the responsibility of that part of the working force which has actually occasioned the labor instability can be definitely established, and in Table 44 the base upon which the rate of mobility is measured is that part of the work force which directly contributed to it. The rate figures given in the table are plotted on Chart J on page 148. The table and graph show the responsibility for labor mobility of the stable and unstable employees, respectively. ${ }^{1}$

It will be observed that'in these 53 establishments with a working force of 69,553 there were at the end of the year 43,321 employees, representing 62 per cent of those on the pay roll, with a service record of over one year. These employees were not responsible for any of the labor changes that took place during the year. The labor mobility is thus concentrated on 26,232 workers or 38 per cent of the total work force. This relatively small part of the work force was responsible for the labor changes which took place during the year, involving 93,206 accessions and 96,207 separations, a labor fiux of $\mathbf{1 8 9 , 4 1 3}$ persons. This means that for every worker on the unstable work force more than 3 persons were hired and nearly 4 persons left employment, involving altogether more than 7 labor changes for each worker. A comparison of the labor mobility of the stable and unstable working force shows the labor mobility rates based

[^41]TABLE
Comparison on Labor Moblimy Rates Based on the Total. Worgme Fomcx Industry Groups, Yrar

Rebussuy Guous	Number or 络 	Toxks Woreman Forcze	Unstabue Pagt of Warknac Fount	Pat Cow Unatablat Fate ay Wormana 5s of Total Workina Fonces
Automobiles and parts	5	8,773	4,687	53
Chemical industries and refuneries	3	3,290	1,955	59
Clothing and textile mig. .	3	6,837	2,438	36
Furniture and millwork . .	I	1,514	550	36
Machinery mig.	13	17,047	5,543	33
Mercantile establishments .	3	1,374	545	40
Miscellaneous metal products mig.	3	6,73*	3,332	49
Printing and publishing . *	2	xyoxt	303	30
Public utilities: Gas and electricity	\pm	x,933	956	49
Street tailmays.	1	3,643	1,343	37
Telephone service	8	17,403	4,5\%:	36
Total	53	69,553	26,232	38
	on Torns Worithe Foncel:			
	Accessaiom	Stravatmot		Hans
Automobiles and pasts Chemical industries and refineries	1-44	$\pm .53$		2.97
	$3-27$		3.87	6.24
Clothing and textile mafg. . .	. 99		1.76	3.15
Furniture and millworls. .			3.03	5.28
Machinery mig. . . .	1.23		8.EX	3.34
Mercantile establishments	1.45		1,35	2.76
Miscellaneous metal products	2.34		2.23	4.62
Printing and publishiag ***	.75		.93	1.68
Public utilities: Gas and electricity	. 84		. 54 1 2.35	
Street railpays	. 84		r .02 t .05	$\begin{aligned} & 1.86 \\ & 1.95 \end{aligned}$
Telephont service	. 90		1.05	
Average	\$.35		1.38	2.75

 mervice protas been redoced to equivalemf full year, of yaoc bour, monkerm

 pert of the workine ferre.
witi Rates Baskd on ther Unitable Part or the Wonenvg Force in Specintad Endino May 31, 1918

Lasor Houns Wance By:-		Lamon Cramgis			Indusiry Grows
Totare Wonenve FORES (Taymi)	Unataine Patr or Wonicnio Foncer (Amba)	Aocts570:4	$\begin{aligned} & \text { Siphen- } \\ & \text { Hovis } \end{aligned}$	$\begin{aligned} & \text { Torat } \\ & \text { (FLoz) } \end{aligned}$	
26,319	24,06x	12,659	13,490	26,549	Automobiles and parts
9,870	5,865	ro,743	9,780	30,523	Chem. industries and refineries
20,571	7,314	6,771	8,587	25,358	Clothing and textile mfg.
4,542	7,650	3,410	4,566	7,976	Fumiture and millwort
52,142	16,629	20,881	18,686	39,567	Machinery mfg.
4,113	1,635	1,931	1,862	3,793	Mercantile establishments
20,196	9,966	15,803	[5,403	31,206	Miscellaneous metal products mfg.
3,033	906	749	$93{ }^{\circ}$	1,679	Printing and publishing
5,799	4,868	x,585	1,040	2,625	Public utilities: Gas and electricity
10,939	4,089	3,058	3,728	6,786	Street railways.
52,206	13.775	15,616	18,135	33,75x	Telephone service
208,659	78,696	93,206	96,307	289,413	Total
Acemamar		Smanam		Fux	
9.70		2.88		5.58	Automobiles and parts
5.49		5.01		10.50	Chemical industries and refineries
8.79		8.58		6.30	Clothing and terrile mfg.
6.81		8.31		14.52	Furniture and millwark
3.78		$3 \cdot 36$		7.14	Machinery mfg.
3.54		$3 \cdot 4$		6.96	Mercantile establishments
4.77		4.65			Miscelleneous metal products
2.49		3.09		5.58	Printing and publishing
2.65		1.08		8.73	Public utilities: Gas and electricity
2.28		3.79		5.07	Street railmays.
\$.39		3.96		735	Telephone service
3.54		3.66		7.30	Averge

[^42]on the labor hours of the unstable part of the work force to be nearly three times as great as the labor-change rates based on

Chart J. Compabison of Labor Fiox Rates based on the Total Wori Force with Rates Based on the Unstable Part or the Work Force, by Indostry Groups
(Unit: One labor change per full-year worker.)

the labor hours of the whole working force. The extent of the direct responsibility for the labor changes within the work force varies considerably among the different industry groups shown, such responsibility being dependent, of course, upon the
proportion of long-service employees in the different establishments.

The importance of employees of long tenure as a factor in labor stability and their influence upon labor mobility rates is well illustrated by the mobility figures for the telephone service group. At the termination of the mobility census it appeared that 74 per cent of the employees had been in service more than a year, thus concentrating the labor mobility upon 26 per cent of the total work force. The labor change rates in the telephone service as applied to the total working force are $.90,1.05$ and 1.95 for accession, separation, and flux, respectively, but the number of labor shiftings when applied to that part of the working force to which the turnover is actually attributable show corresponding rates of $3.39,3.96$ and 7.35 . This clearly indicates relatively low labor mobility for the working force as a whole in the telephone service, reveals a concentration of whatever labor mobility there has been upon a comparatively small portion of the plant forces and shows very frequent changes within the personnel of the unstable labor group.

In general, it may be observed that in those industry groups which have a comparatively low percentage of unstable employees and also a relatively low mobility rate as based upon the total working force, the difference between the mobility rate based on the total working force and the rate based on the unstable working force is also considerably greater than in industry groups in which a larger proportion of the working force is responsible for the mobility. The explanation for this is that in those industry groups which show a low percentage of unstable employees only a comparatively small part of the work force is responsiblefor the labor changes, and the labor forces of these industry groups contain a large number of senior employees who are not at all responsible for the flur. These establishments for that reason are able to show a comparatively low mobility rate when based on the entire working force. In establishments showing a higher percentage of unstable employees the responsibility for
the labor shifting is more evenly distributed in the working force, and differences in the mobility rates between the stable and unstable working force are, therefore, correspondingly lower. For example, the unstable working force in the telephone service group is relatively small - 26 per cent; the difference in the flux rates between the stable and unstable working force is 5.40. In the automobiles-and-parts group the unstable working force is comparatively large - 53 per cent - and the difference in the flux rate of the two divisions of the work force is only $\mathbf{2 . 6 1}$.
Because of the great variations in the mobility rates of the individual establishments constituting any particular industrial group, some summary figures classifying the labor flux rates of the stable and unstable working force of the 53 individual establishments covered in the preceding table are given below.

TABLE 45
Nttrerp of Establishients Havinc Classpied Labor Fxux Rates Based (i) on the Whole Workno Force and (a) on the Unstable Part op Woring Force, Year Ending May 31, $1918 . \quad$ (53 Establishernts)

The great range of variation in the flux rates of the unstable working forces of the 53 individual establishments (the combined rate for which is 7.2) may be gauged from the fact that the unstable-work-force flux rate in two establishments falls so low as to come within the flux-rate group of over 2.4 to 3.6 (about two changes for each worker in the unstable work force), while there are two concerns the flux rate of which is classified in the flux-rate group of over 14.4 to 15.6 (about 15 labor changes for every employee in the unstable work force). An even more striking presentation of the comparative instability of stable and unstable employees is made in Table 46. In it the data relating to the labor mobility of the individual establishments are grouped according to the relative proportions of their unstable employees to the total working force.
These figures bring out in a very graphic manner the fact to which reference has been made above; namely, that as the proportion of the unstable working force increases, thus showing the responsibility for the labor changes to be more largely distributed. among the whole working force, the labor mobility rates also show a decided tendency to increase. The margin, however, between the labor change rates of the whole work force and those of the unstable working force is decidedly less as the proportion of the unstable portion of the working force to the total working forces increases. A comparison of the flux rates of the two divisions of the working force shows this margin to be as follows: when the proportion of unstable working force to total working force is 20 per cent or less, the flux rate margin is 6.6_{3}; when it is over 20 to 40 per cent, the margin is 4.26 ; when it is over 40 to 60 per cent, the margin is 3.96 ; and when it is over 60 per cent, the margin is I .92 .

TABLE

Comparison of Labor Mobilty Rates Based on the Total Working Force, Classifted accordng to the Relative Size of

Establishicants in Weice Paoporthons of Unstaple Woricho force to Tothl Woring force Wexis -	Nunger or Establisn: nenis	$\begin{aligned} & \text { TOTAL } \\ & \text { WOMERE } \\ & \text { Force } \end{aligned}$	$\begin{aligned} & \text { Uwsiable: } \\ & \text { PAkT OP } \\ & \text { Wonkne } \\ & \text { Fonce: } \end{aligned}$	Laboz Hovis
				Total Wonkimo Fober (Trounamos)
20 per cent or less Over 20 to 40 per cent Over 40 to 60 per cent Over 60 per cent Total	4 17 22 10	18,389 $\mathbf{2 9 , 2 8 1}$ 14,624 7,253	3,407 10,181 7,406 5,238	$\begin{aligned} & 55,167 \\ & 87,843 \\ & 43,872 \\ & 21,777 \end{aligned}$
	53	69,553	26,232	208,659
	Rati	Fotr-yt Total Wo	$\begin{aligned} & \text { Vogres, BAs } \\ & \text { NG Fomas } \end{aligned}$	
	Accesstion	Stral		Flox
20 per cent or less Over 20 to 40 per cent Over 40 to 60 per cent Over 60 per cent	. 69	.81		1.50
	1.08	1.14		2.22
	2.10	1.95		4.05
	2.43	2.61		5.04
Total . .	1.35	1.		2.73

Force witis Rates Basid on tas Unstable Part of the Woriting the Ungtablix Part of tere Worcma Force, 191y-d8

CHAPTER X

Relative Responsibility of Different Service Groups for Labor Mobility

Trie length-of-service figures given in Chapter VIII, although useful for some purposes, fail to report the true situation as to the proportion of the whole amount of shifting for which each different length-of-service group of separating employees must be held responsible. The principal difficulty with such a length-of-service classification as that shown in Table 34 is that the service periods in the scale are of unequal length and the numbers of those leaving during those unequal periods are, therefore, not strictly comparable. It is true that a revision was made in the last table presented in the chapter on length of service, ${ }^{1}$ in which table the unequal time periods are equated by dividing the figures of each group by the number of weeks in the span of service time. This method, however, is not quite adequate, and in Table 47 the same set of length-of-service figures is so presented as to make in another and more accurate way the necessary correction for this disparity in length between the different service periods.'
The first column of the table is identical, except for decimals, with the corresponding figures for the active employees in Table 34. In column 2 the total number of labor hours worked by the employees of the fifty-three concerns in 1913-14 and the corresponding number worked by the employees of the thirty-four concerns in 1917-18, respectively, are distributed (for each of the two periods) in the same percentage proportions that hold for the employees who were on the pay roll at the end of the year.

[^43]TABLE 47
Straramon Rates in Spbcinteo Lengith-or-Sxrvice Groups
(Based on allocation of the total labor hoors among the different length-of-service groups)
[Number of etablishments reporting: 1919-14, 34; 19x7-18, 53]

			Smpantsome	
	2915-14			
Three months or leas . Over 3 months to 6 months Over 6 months to 1 yeer. Over a your to 2 yeurs Over 3 years to 3 years Over 3 years to 5 years Over 5 years	13.15	29,35	28,407	2.90
	740	16,517	$8,5 \times 6$	155
	8.32	18,570	7,497	1.51
	28.08	26,963	4×45	49
	12.14	24,865	2,169	36
	15.01	33,503	1,845	.17
	32.90	73,437	1,776	07
Total	100.00	2*3,206*	54,618	. 74
	mary-2t			
One week or less Over 1 wreek to a meelas Over a weeks to 1 manth . Over I mouth to 3 months Three months or leas. Over 3 months to 6 month Over 6 months to I year Over 1 year to 2 years Over a years to 3 years Over 3 years to 5 yeara Over 5 years	2.35	- 4,695	16,476	10.53
	2.50	5,216	9864	5.56
	411	8,576	IE_{154}	404
	0.83	20,511	18,912	2.76
	18.69	38,998	56,593	435
	8.39	17.506	21,770	2.00
	12.56	\%6,208	9,813	5.13
	2457	30,409	6,645	66
	$2-3$	19,359	2,476	39
	88.8	18,383 57,903	2,780 3,015	4
	27.75	57,903	3.015	16
Total	100.00	$208,659{ }^{2}$	93,093	1.34

Colonlated diter then forkion:

This reveals the number of full-year workers assignable to the various length of service groups. Column 3 is identical with the separation figures in Table 34. In column 4 are given the rates of separation per 3000 labor hours worked by each length of service group. These figures are obtained by dividing the number of separating employees who have served each specified time period by the number of labor hours worked by that group and multiplying the quotient by 3000 . The resulting scale of separation rates gives a very good idea of the relative responsibility of the different service groups for excessive labor mobility and shows that the great bulk of it is caused by the short-time employee, very little of it, indeed, being due to the separation from service of employees who had served more than one year.

The separation rates for each of the different industry groups, presented in Table 48, are derived in exactly the same way as are the rates in the last column of Table 47.

TABLE
Separation Rates ns Spectited Industry Groups, Cxassipied According to amone the Difyzrent Lengti-op-Servicz

Indubint Glous						
	One Were or Lise				3 Mover 6 Mos.	Oyas 6 Mod I Yiat
Automobiles and parts	5.04	3.24	3.75	2.46	2.07	2.65
Chem. industr's and refineries	13.80	8.16	5.64	3.36	1.95	. 99
Clothing and textile mfg.	34.00	8.19	4.88	4.32	1.44	1.44
Furniture and millwork	16.92	8.83	5.98	6.72	5.97	1-41
Machinery mfg. . ${ }^{\text {ma }}$	7.38	4-20	3.00	2.13	2.13	1.05
Mercantile establishments	7.47	2.64	4.14	3.15	2.73	87
Miscel. metal products mfg. .	19.92	9.93	5.07	3.42	2.67	1.02
Printing and publishing - .	6.75	3-24	3.93	2.12	1.53	8.47
Public utilities: ${ }_{\text {Gas and electricity }}$						
Gas and electricity .	1.23	. 69	1.95	1.23	. 60	48
Street railways	4.80	2.55	2.64	2.07	1.38	4.23
Tel, service	9.39	5.49	4.83	2.64	2.19	. 93
All industries.	10.53	5.56	4.04	2.76	2.02	1.12

Again, in Table 48, the rapidly declining separation rate figures along the length-of-service scale show how relatively little the long-service employees have to do with the labor shift. Some significant differences between the industry groups may be pointed out: In street railways and telephone service, two similar groups whose total separation rates are about equal, there is, nevertheless, a wide difference between the corresponding rates in the shortest service group. This would seem to indicate, as has been suggested in another chapter, that the telephone service industry is obliged to make much more frequent replacements of employees who have served less than a week than is the case with street railways. A similar disproportionately high separation rate among those who have worked less than a week is observable in the clothing and textile manufacturing group, which has for this minimum service period the highest rate of all the groups shown, and this despite the fact that the total separation rate for this industry group is slightly below the average.

Lingti or Servici, (Basza on Allocation of tere Total Laboz Rours Grours). r917-x8 (53 establishments)

					Lemosrix Guour
$\begin{aligned} & \text { Ovan } \\ & \text { I Yra } \\ & \text { Yo Yunas } \end{aligned}$				Ganam	
. 78	. 9	39	24	153	Antomobiles and parts
57	39	36	48	x.9	Chem. industries and refineries
.75	31	. 58	. 78	1.26 3.03	Clothing and tertile mfg.
. 63	56	54	30	3.03	Farmiture and millwark
.78	51	. 63	. 18	${ }_{8} \times 13$	Mercentio establishments
.63	50	36	. 18	2.28	Misoel, metal products mif.
. 66	. 72	. 78	2 I	93	Printing and publishing Public utilities:
36	24	4	45	54	Ges and electricity
. 68	48	. 60	. 15	3.03 1.05	Street railwas
. 66	39	45	. 6	$\times 34$	All industries

This same analysis of the length of service data is followed in Table 49, which makes a comparison between skilled workers and semi-skilled or unskilled workers. The figures again exhibit a difference in stability in favor of skilled workers. ${ }^{1}$

TABLE 49
Separation Rates in Spectited Lengti-or-Service Groups of Semied and Unsithled Worcyes
(Based on allocation of the total labor hours among the length-of-service groups.)
(1913-1915. 17 establishments reporting)

Lumotic or Savici Geour	Punt Cant Dismibution or Employtes on Pat RoLE ${ }^{A T}$ End ${ }^{2}$ YEAE (Active Eminorms)		Strazatrovis	
			$\begin{aligned} & \text { Nogrbex } \\ & \text { Dr EAcT: } \\ & \text { Geove } \end{aligned}$	Rate fis Fullyen Wonize ${ }^{n 4}$ Excm Gmove:
	Sxame			
Three months or less	10.827	7,194	7,072	2.99
Over 3 months to 6 months	7.333	4,746	2,218	1.40
Over 6 months to I year	7.602	4,988	1,869	1.12
Over 1 to 2 years	14.580	9.567	932	. 29
Over 2 to 3 years . .	II-411	7,488	640	. 26
Over 3 to 5 years	15.029	9,861	412	.13
Over 5 years.	33-318	21,863	536	. 08
Total	100.000	65,616	13,679	. 63
Three months or less	24.408	9,622	11,145	$3-46$
Over 3 months to 6 months	11.550	4,553	2,875	1.89
Over 6 months to 1 year	8.341	3,288	2,065	1.88
Over 1 to 2 years	22.446	4,906	1,212	. 74
Over 3 to 3 years.	12.633	4,976	545	-33
Over 3 to 5 years.	14.067	5,545	400	. 32
Over 5 years. . .	16.565	6,530	308	. 14
Total	100.000	39,420	18,549	1.41

[^44]
FREQUENCY OF JOB REPLACEMENT IN DTFFERENT LENGTH-OFSERVICE GROUPS

It has already been pointed out that, as is quite obvious, there is enormous variation in the turnover distribution in relation directly to length of service, that the jobs held by the newly hired employees - whether they are skilled mechanics' jobs or unskilled laborers' jobs - are responsible for a preponderating share of the separations. For some jobs there is evidently a very

TABLE 50
 Grours. 1917-89x8
(53 establishments reporting)

	Sxparatio En ployme Weo Smene Contirto ouni Eacs Clananmp Premo				Equyarent Fuks yehe Positiona nt RAch Ghoup		
	Nome				Numas		
(3)	(a)	(3)	(${ }^{\text {a }}$	(s)	(6)	(${ }^{\text {d }}$	
xprt							
One week or less	16,476	ax. 2	4	65,904	180.56	5.	92.3
Over I to a week	9,664	12.4	11	106,304	298.24	1.8	33.2
Over 2 whas to Im mo .	11,54	74.8	29	253,902	695.62	4.4	16.6
Over 1 to 3 months	18,919	44.2	60	$\mathrm{x}, \mathrm{z} 34,770$	3,108.82	19.4	6.1
Over s to 6 months	11,770	15.0	135	1,588,950	4,353.29	27.2	9.7
Over 6 mo. to I.yr.	9,813	12.5	275	2,088,762	7,366.47	46.1	1.3
Total	78,176	100.0		5,838,542	15,996.01	100.0	

high "rotation in office"; for others the frequency of shift is much lower. It is very important to know what proportion of the jobs in a plant is subject to high, and what proportion to low, rotation frequencies. An attempt to indicate this is made in Table 50 above, which presents a further analysis of the service distribution of 78,176 persons who, before they had
served more than a year, left the service of the 53 establishments reporting the necessary data in $1918 .{ }^{1}$

The principal object of this table is to show (i) in what length-of-service sections of the working force the labor shift and replacement is most frequent and how frequent it is in those sections, and (2) how many full-time jobs are directly affected by these respective intensities of mobility in the different parts of the working force. To throw light on these two points it is first of all necessary to hit upon an average length of service for each of the original service groups. For this average the arithmetic mean has been taken - the mean length of time between the minimum and maximum time in each group. The assumption here-and upon this assumption the whole of the following analysis rests - is that the sum of the individual service deviations (plus or minus) from the mean is zero or very close to zero.? It would seem probable from what slight information is available that considerably more individual service records fall below the mean time than above it - that is to say, so many "floaters" work only a day or two that the time average for the first group

[^45]| Lomotiou-Sxavice Pramp | SEpalatico Englotizes Weo Servid Contrinousily Encri Cussis 7170 | $\begin{gathered} \text { Torat Days } \\ \text { Woacrio } \end{gathered}$ | Avences Dave or Smince |
| :---: | :---: | :---: | :---: |
| One week or less | 439 | 1,56x | 3.56 |
| Over 1 week to 2 weeks ${ }^{\text {a }}$ | 275 | 2,934 | 10.67 |
| Over 2 weeks to I month . . . | 348 | 7,495 | 21.54 |
| Over x manth to 3 months . - | 527 | 29,184 | 55.38 |
| Over 3 months to 6 months . . | 244 | 31,488 | 129.05 |
| Over 6 months to 1 year | 157 | 39,663 | 252.63 |
| Total | 1,990 | 112,325 | |

is possibly two days rather than four. This probable lag of the true average of individual cases behind the mean length of service which has been used is undoubtedly greatest in the one-week-andunder group and certainly cannot be of any serious consequence in the longer groups. In any case the effect of this probable lag or negative deviation is to produce a somewhat lower turnover figure. Thus, if two days be taken as the basic average for the first group, there would appear in this rapidly changing part of the working force a group of 90 jobs, in each of which there were 90 replacements during one year, whereas, on the four days' basis it is a group of 180 jobs, each having 90 replacements annually. In short, the mean length of service is, especially for the very short periods, more nearly an outside figure for, rather than an average of, the individual cases.
It should be noted also that the calculation is based upon the calendar year of 365 days and not upon the number of days worked by a "fully employed person," which latter basis is used in other parts of this book in computing the number of full-time jobs or standard working force.

This method of working out the results in Table go may be illustrated by the figures for the first group. On the basis of the assumption explained above, each of 16,476 persons worked an average of 4 days. Assuming that all jobs were continuously occupied, it follows that the number of successive incumbents of each job subject to this maximum frequency of "rotation in office" must have been 365 divided by 4 , or 9 I .3 . Similarly there must have been 33.2 persons in successive occupancy of each of the jobs held by the one-to-two-weeks group, and so on. This constitutes a series of constants, supplementing the mean-length-of-service canstants in column 4 and indicating the average number of men required during the year to hold down each job in each of the specified time groups. The next step is to ascertain the number of jobs, each of which is successively occupied by 91 employees, 33 employees, etc., during the year. This is done by dividing the number of man-days worked in each group
(the product of the mean length of service by the number of employees in the group) by 365 . This indicates that in the one-week-and-under group there are $\mathbf{1 8 1}$ jobs, to each of which an average job replacement frequency rate of 9 I incumbents per year applies. Similarly in the over-one-to-two-weeks group there are 29 r jobs (2 per cent of all the full-time jobs) in which there are 32 replacements a year; and at the other end of the scale, in the 6 -months-to-one-year group, 7366 , or 46 per cent of all full-time jobs, in which there are $\mathrm{I}^{\frac{1}{3}}$ replacements a year. The figures indicate, in other words, the numbers of full-time jobs in which there were the classified numbers of incumbents per year. They mean, e.g., that on the average each of the 181 full-time jobs in the first and shortest group had 9 I incumbents during the year.

At the relatively stable end of the length-of-service scale it appears that the six-months-to-one-year group, numbering 9813 , who had occupied 7366 , or 46 per cent, of the full-time jobs, contributed 13 per cent of the separations and suffered one replacement a year. At the unstable end of the scale it is evident that the under-one-week group, numbering $36,47^{6}$ employees, who had occupied 18 x , or 1 per cent of the full-time jobs, contributed 21 per cent of the separations and suffered 90 replacements a year. In this most unstable group, where the jobs naturally suffer the highest replacement frequency, it would appear that in each of 18 r full-time jobs there were, on the average, 90 new men hired, and this little group of jobs was occupied at one time or another during the year by 16,476 persons, who made up 21 per cent of the separations and, consequently, were responsible for that proportion of the turnover. It is realized that these conclusions are based upon the estimated figures for the mean length of service in each time period. This makes it impossible in every case to check the derived figures of Table 50 with the direct figures reported from the establishments, but does not appear to invalidate the general conclusion.

CEAPTER XI

Employment Records

Tae establishment employment records primarily needed for the development of useful statistics of labor mobility on the lines indicated in the body of this book are:
(1) Number of labor hours worked,
a. In the shape of clock records or other records of labor, time, or
b. To be derived from daily attendance records, or
c. From amounts paid out in wages at various rates,
d. From pay-roll records by some method of discounting gross pay roll for both absentee-time and frac-tional-pay-period time.
(2) Number of accessions.
(3) Number of separations,
a. Number leaving voluntarily,
b. Number laid off,
c. Number discharged.

For the convenient recording of the above items some such record-form as the one on pages $164-165$ is suggested.

The information called for in Form x should be recorded daily. The daily record can, of course, be kept on the same form, if the column at the right be left blank for insertion of the time unit desired. The figures should, if possible, be shown separately by plant occupations or operating departments. The daily records for any division, or for the plant as a whole, can, at the end of the month, be totaled and entered on the monthly record shown here. This monthly record, in turn, can be totaled and entered, at the end of the year on a corresponding form showing the annual mobility record for each department.

FORM 4: LABOR
Occupation or

$\begin{aligned} & \text { Monry } \\ & \text { (or DAY, WEEI } \\ & \text { on Yzal) } \end{aligned}$	Sixs or Worit Porce						
	(Base for computation: The 3 methods to be used in order of preference, method x being preferred)			Numism			
	Method 3	Method 2	Method I	Fired (Acces	Leaving Employ		
	Average number of employeen on pay roll	Average daily number actually at wort	Total number of labor hours put in by all employees duning year		Dbcharged	$\begin{gathered} \text { Laid } \\ \text { off } \end{gathered}$	
Year							

The figures for "size of work force" are of prime importance, but, except for ordinary pay-roll data, they are kept by very few employers - and even when such figures are kept they are not usually put in the same record with data on number of employees entering and leaving, with the result that it is very difficult to get all factors upon a common footing for purposes of computation. Method (1) is believed to be the best of the three. The first alternative to this actual number of labor hours is the average daily number actually at work. These attendance figures may be converted to labor hours by first multiplying by the number of days worked and then by the number of hours in the regular work-day and, finally, subtracting, from the resulting gross number of labor hours a number of hours considered to be equivalent to the time lost through the absenteeism of active

MOBLITY

Departiment:

employees and the time not worked by employees who failed to work the full pay period. The second alternative to actual labor hours is the average number of employees on the pay roll. These figures may be converted to labor hours by multiplying them by the number of days worked during the month, and that product in turn by the prevailing number of hours worked per day during the month or other period considered.

Length-of-service figures are very important, especially in reference to the employees who leave. For each separating employee a record should be kept of the time of his continuous service and entered monthly, or as often as considered desirable, on some such form as the one shown on pages 166-167.

The scale of time periods shown above is that used in the more recent of the two labor mobility investigations made by the

FORM 2:
Monte (or

Bureau of Labor Statistics. Somewhat different classifications may be found more useful for some concerns, but, whatever scale is used, it should be split up into very short time periods for the first weeks and months of service time. The number serving less than one week should by all means be shown in the records, for the great bulk of the labor shift will fall in these very short periods.
The foregoing items represent the most important data necessary for keeping a constant check on the extent of labor mobility and the progress being made in different departments toward controlling it. Whatever forms are used should be so flexible that they can be adapted to specialized treatment of a problem and be made to serve for any desired period. It is recommended that the following records should certainly be kept:
A daily record of men hired and transferred, giving name, number, department, job, and rate of pay. A record of all men

LENGTH-OF-SERVICE
Yeaz, Etc.)

leaving, giving the date hired and date leaving, type of separation; length of service, either the actual time in years, months, or days, or giving it in defnite classified periods. Such a record has the advantage that it is possible to combine the figures for any department for any job or for any desired period.

ABSENTEE RECORDS

Some record should be kept of absentes. This is especially important for establishments where it is found to be necessary to compute the mobility rates on the basis of pay-roll figures which will need to be discounted for the amount of absenteeism. The form on pages $168-169$ is suggested for absentee records.

Absentee records will fall under two major divisions: daily and monthly. Each of these must contain both quantitative and qualitative information. The quantitative data show, not only the number of employees absent, but also the number of hours
lost. Thus an employee absent forty days with a broken leg should count as one case, but in his record there should also be shown the equivalent labor hours involved in forty days' absence.
The qualitative data analyze causes of absenteeism. The

> FORM 3:

Occupation or

Monre	Stur of Wome forcs		
	(Base for computation: The 3 methods to be used in order of preference, method I being prelerred)		
	Method 3	Method ${ }^{\text {a }}$	Method x
	Average number of employees on pay roll	Average daily number actus et work	Total number of that hours put in during year
January			
February			
March			
May ${ }_{\text {May }}$: : : : :			
June : : : : :			
July • - • • • -			
August . -			
September			
December			
Year			

main items will be "laid off," "reported off" (absences reported in advance), "vacations," "occupational injury," "sickness," "sickness in home," "death in home," "grievance," "unknown." These may be classified into unavoidable and avoidable absence, and the latter as to whether it is excusable or inexcusable.

ABSENTEEESM
Defartigent:

APPENDIX

BASIC TABLES

TABLE
Labor Mobrlity in Individual

Ladusizy on Nature or Busniass	$\begin{gathered} \text { Esfabliss- } \\ \text { NuNGIER } \\ \text { NuTBER } \end{gathered}$	$\begin{gathered} \text { Ntingre } \\ \text { or } \\ \text { Furivas } \\ \text { Workese } \end{gathered}$	Laboe Houns (Tyou-	$\begin{aligned} & \text { hacers- } \\ & \text { ELDOMI } \end{aligned}$
	Bostow			
Auto accessories, mfg. .	I	960	2,880	2,460
Railroad shops	2	2,001	6,003	545
Rubber wearing apparei, mfg. ${ }^{1}$.	3	1,367	4,101	2,737
Rubber footwear and auto tires . .	4	2,856	8,568	3,284
Shoes, mifg.	5	3,825	11,475	4,749
Shoe machinery, mfg. -	6	2,549	7,047	648
Department Store ${ }^{2}$.	7	1,839	5,517	824
Steam gauges and valves, mfg. ${ }^{1}$.	8	167	501	109
Plumbing tools, mfg. ${ }^{2}$.	9	212	636	490
Brass valves and fittings, mfg. ${ }^{1}$. .	10	899	2,697	880
Paper prod's and roofing material, mfg.	11	864	2,592	477
Paper boxes and shipping tags, etc. ${ }^{1}$.	12	1,749	5,247	1,285
Color printing, etc. - .	13	726	2,178	370
Book mfg. .*	14	449	1,347	99
Public utilities: Street railways	15		9,180	354
Elevated railways	16	8,858	26,574	1,145
Telephone service*	17	2,750	8,250	603
Tot	[7 7]	35,13 1	105,393	20,059
	Crucaco			
Chewring gum, mfg.	18	273	819	341
Shoe bottoms, mig.	19	277	835	148
Agricultural implements, mfg. . .	20 (r05)	4,377	13,135	1,546
Agricultural implements, mifg. . .	2 x (106)	6,592	19,776	1,946
Agricultural implements, mfg. . .	22	1,904	5,712	289
Agricultural implements, mfg. . .	23	761	2,283	397
Elevating machinery, mfg. ${ }^{\text {a }}$. . .	24	503	1,509	562
	25 (102)	9,66r	28,983	13,513
Structural steel fabricating . . .	26 (113)	343	${ }^{729}$	168
Mail order house		9,430	28,290	8,834
Electrical supplies, mfg.	28 (117)	544	1,632	686
Valves and fittings, mfg.	29 (115)	4,306	12,918	517
Iron wheels and castings, mig. ${ }^{6}$. .	30 (115)	415	1,245	616
Steel products, mfg. -i ${ }^{\text {c }}$. .	31	3,758	11,274	2,038
Telephone apparatus, mfg. ${ }^{1}$. ${ }^{\text {a }}$	32	11,049	33,147	20,095
Slaughtering and meat packing ${ }^{*}$.	33	12,519	37,557	8,117
Slaughtering and meat packing ${ }^{1}$.	34 (126)	5,522	16,566	16,486
Total	[17]	72,134	216,402	76,299

Establishicents, 1913-14 AND 1917-x8
14°

Lamom canvois					Indosmy or Nature or Businiss
Nomin		Rate per fulinear Woimir			
Stpaza-	Totis	Access.		Flux	
Boston					Auto accessories, mfg. Railroad shops Rubber wearing apparel, mfg. Rubber footwear and auta tires Shoes, mig. Shoe machinery, mfg. Department Store ${ }^{2}$ Steam gauges and valves, mfg. ${ }^{1}$ Plumbing tools, mifg. ${ }^{1}$ Brass valves \& fittings, mig. ${ }^{1}$ Pap'r prod. \& roof'g mat., mig. Pap'r box's \& ship'g tags, etc. ${ }^{1}$ Color printing, etc. Book mfg. Public utilities: Street railw's Elev. railw's Tel. servict ${ }^{2}$
	3,851$\mathbf{1}, 193$	2.55	$x .44$	3.09	
		.27 .26	1.44	. 60	
1,972 2,801		1.26		2.70	
5,046	0,795	1.23.24	- 5		
1,425					
842	1,666339	. 45	.45	. 90	
130				1.38	
437	917	2.31.99	2.01	4.32	
951			2.05	2.041.15	
505		. 54	. 57		
1,009	$\begin{array}{r} 9,82 \\ \mathbf{2}, 294 \end{array}$. 51	-57	1.29	
373	743			3.02	
150	7249	. 215	. 33	. 54	
419 .164				. 24	
1,164 466	$\begin{aligned} & 2,309 \\ & x, 069 \end{aligned}$		$.12$	$\begin{aligned} & .24 \\ & .39 \end{aligned}$	
19,789	39,771	. 57	57	1.14	Total
Cancaso					
329	670	1.26	1.30	2.46	Chewing gum, mfg- Shoe bottoms, mfg. Agricultural implements, mfg. Agricultural implements, mig. Arricultural implements, mfg. Agricultural implements, mig. Elevating machinery, mig. ${ }^{2}$
206	354	. 54	.75.63	1.29.99	
2,808	4,354	3630			
4,115			. 63	. 0.63	
${ }^{992}$	x,28I	. 55	$\begin{array}{r}51 \\ \hline 1.02 \\ \hline\end{array}$		
${ }^{778}$	1,275	. 51		$\underline{5} 53$	
483	1,045	x.14	. 96	2.07	
30.504	34,017380	1.41 .69	2.83.87	3.548.56	
8,627		.93.18			Structural steel fabricating
700	17,468 3,386		-	2.55	Electrical supplies, mfg. Valves and fittings, mfg. Iron wheels and castings, mfg: Steel products, mifg- Telephone apparatus, mifg. ${ }^{1}$ Slaughtering and meat pack'g' ${ }^{\text {a }}$ Shughtering and meat pack'g'
888	1,405	.12.147	21	-33	
606	1,941		1.47	2.94	
	5,003	1.541.85	${ }_{8}^{.81}$	8.35	
16,163			${ }^{\times} \cdot 7$		
8,096 $\mathbf{2 5 1 , 4 6}$	36, 213$31,63^{3}$	$\begin{array}{r} .65 \\ 3.00 \end{array}$	$. .65$		
25,146					
25,708	160,007	1.06	1.56	2.98	Total

TABLE
Lamor Mominty in Individual
19x3-

A - Continued					
Establismantis, 1913-14 And 1917-18 $14{ }^{*}$					
Lamoz Cranges					Incutiry den Natuaz or Bumasas
Numan					
Siparar stont	Totil	$\begin{aligned} & \text { Accis- } \\ & \text { groon } \end{aligned}$	Siphrat-	Fluz	
Corchanati					Machine tools, mifg. ${ }^{1}$ Machine tools, mfg. ${ }^{\text {a }}$ Engineering specialties, mfg. Total
748	1,419	1.41	1.56	2.97	
970	2,252	2.04	1.56	3.60	
283	504	34	43	. 77	
2,001	4,175	$x .33$	1.14	2.37	
cificaios					Clothing mfg. Clothing, men's, mfg. Machine tools, mfg. Metal wire, etc., mfg " Machine tools, mfg.
454	774	30	45	.75	
430	726	39	54	. 93	
970	701	8.29	81	2.50	
876	4,057	. 96	.69	2.65	
x,835	3,434	1.44	7. 65	3.09	
38855	7,692	. 84	87	5.71	Total
Damorit					
4,345	4,534	6.03	$5 \cdot 40$	21.43	Aluminum and brass foundry
5,255	9,979	2.19	2.46	4.65	Motar car, mifg ${ }^{2}$
1,709	4,154	3.36	2.40	5-76	Motor cera gesoline, mfg.
${ }_{8} 533$	1,094	8.34	3.28	4.56	Transmissions and gears, mfg-
8,629	17,324	3.79	3.86	5.55	Motor car, mfg.
6,508	7x/579	. 48	. 60	1.88	Motor car, mfg.
$\mathrm{x}_{\text {r }}$ rat	2,107	1.38	Y 50	3.88	Motar car, mfg.
1,41I	3.776	1.53	1.56	3.09	Motar car, mfg.
2,895	7.015	1.08	172	4.74	Motor cer, mfg.
${ }^{1} \times 350$	3.087	6.06	4.71	10.77	Motor car, mig.
13,256	23,289	3.85	2.97	5.22	Motor car. mifg.
1,918	3,745	1.83	7.09	3.75	Antomobile parts, mifs.
2,585 300	1.495 993	48 .15	84 30	1.32 45	Adding machine mfs. Public utilitiea: Ges mfg.
48.494	93.431	1.44	1.53	3.97	Total

TABLE
Labor Mobinty ns

A - Continued Individual Establishments 14°					
Lamos Canmozs					Indusigy on Natury on Bubiness
Nonreir		Rate per Follyyar Worker			
Stranationa	Tocas	$\begin{gathered} \text { Acerss } \\ \text { trows } \end{gathered}$	$\begin{aligned} & \text { Sgrala- } \\ & \text { moid } \end{aligned}$	Fiox	
Mawautix					Excavating machinery, mfg. Electrical appliances, mfg. Total
$\begin{aligned} & 563 \\ & 665 \end{aligned}$	$\begin{array}{r} 982 \\ \mathbf{x}, \mathbf{0 2 6} \end{array}$	$.45$	$\begin{array}{r} .60 \\ \times .05 \end{array}$	$\begin{aligned} & 1.05 \\ & 1.62 \end{aligned}$	
1,228	2,008	48	78	1.26	
Naw Yais					Crackers and biscuits, baking Cotton specialties, mig. Printing presses, mig. Mail order house Life insurance ${ }^{6}$ Locks and hardware, mfg. ${ }^{2}$ Paper products, mfg. Public utilities: Street railw's Tel. service
1,395	3,427	8.83	1.26	3.09	
x,055	2,332	$\underline{7.62}$	1.35	2.97	
1,217	2,696	1.08	. 84	1.86	
936	3,007	2.78	1.50	3.21	
${ }^{266}$	1,046	. 215	. 06	.27	
3,363	7,306	7.15	. 93	2.04	
$\begin{aligned} & \text { x,642 } \\ & 3,770^{2} \end{aligned}$	3,262 3,365	.90 .72	.93	1.83 $\times 14$	
10,320	18,182	42	54	. 96	
22,964	45,633	. 63	.63	I. 26	Total
Oxam Cries					
8,070	19,746	2.22	1.53	3.75	Rubber goods, mig; (Ohio)
8,028	1,031	1.42	1.62	3.03	Rubber tires, mfg, (Ohio)
1,072	2,221	2.04	1.89	3.93	Sheet-metal ware, mfg. (N. Y ,
919	2,887	. 60	57	1.17	Elevating mach., mfg. (Ohio)
1,063	2,183	$\underline{5.02}$	-99	2.01	Lighting appar, mfg. (Ohio)
3.451	5.200	36	.69	1.05	Cash registers, mfg- (Ohio)
1,158	8.412	33	30	. 63	Silk, mfg. (Conn.)
293	687	42	30	-72	Insurance (Conn.)
948	2,833	30	33	. 63	Typewriters, mig (Cona.)
12,300	34,051	84	. 90	3.74	Cotton a morsted, mig. (N. H
3.484	7,049 8,906	7.59	7.20 	14.79 3.60	Automobile mifg.
8,3017	1,906 $\mathbf{1 , 9 1 2}$	2.04 .58	1.65	3.69 4.	Agricul. impl. mige Hat mfg. (Pa.)
26,748	29, 177	1.17	156	2.73	Elec. apparatus, mfg. ${ }^{2}$ (Pa.$)$
7,300	-1,374	. 72	. 87	1.59	Bleaching and dyeing (R. I.)
3,275	7,N62 6,078	. 96	75 .36	1.71	Machine tool mfg. : (R.I.)
4.754	6,077	.09	36	45	Elec. apparatus, mifg. (N.Y)
62,745	148,008	.78	87	2.65	Total

TABLE
Labor Mobinty in
1917-

Indosier on Nature or Bubiness	$\begin{aligned} & \text { Establisi- } \\ & \text { Nucgite } \end{aligned}$		$\begin{aligned} & \text { Lariog } \\ & \text { Houss } \\ & \text { (Thov- } \\ & \text { SNNDS) } \end{aligned}$	
				Accesstows
Motors and railway supplies, mig.*	Cricacon			
		1,954	5,862	4,460
Car works	102 (25)	7,287	21,861	$18,837$
Clothing, men's, mfg. -	103	6,027	18,081	5,731
Printing presses, mfg. .	104	764	2,293	510
Agricultural implements, mfg.	105 (20)	4,217	12,633	2,865
Agricultural implements, mfg. .	106 (21)	5,759	17,277	5,486
Machinery (coal mining), mifg.	107	611	1,833	783
Machinery (specialties), mfg.	108	335	1,005	880
Mail order house . .	109	14,731	44,193	13,792
Mail order house .	110	1,042	3,126	1,358
Mail order house	111	2,031	6,093	3,485
Mail order house *. -	112	5,092	15,276	12,283
Structural steel fabricating ${ }^{10}$. ${ }^{\text {P }}$	113 (26)	402	1,206	446
Brass and metal specialties, mig.	114 (30)	283	849	590
Iron wheels and castings, mfg. ${ }^{10}$	115 (30)	390	1,170	1,208
Office appliances, mfg.	116	667	2,001	1,879
Electrical supplies, mig.	117 (28)	733	2,199	2,105
Iron castings, mfg. . . ${ }^{\text {a }}$	118	950	2,850	2,867
Screw machine products, mfg. ${ }^{11}$	119	520	1,560	1,703
Steel forgings ${ }^{8}$ \% ${ }^{\text {a }}$,	120	1,099	3,297	4,837
Electrical supplies, mfg. .	121	258	774	944
Public utilities: Electricity	12	4,728	14,184	5,193
Gas mfg. .	123	4,725	14,175	6,527
Telephone service	124	13,604	40,812	9,524
Street railways ${ }^{13}$		3,909	11,727 26,100	3,201 10,050
Slaughtering and meat packing	126 (34)	8,730	26,100	19,050
Slaughtering and meat packing Slaughtering and meat packing 0°		14,320	$42,960$	32,374 30,014
Slaughtering and meat packing ${ }^{10}$	128	5,219	$15,657$	20,014
Total	[28]	110,381	331,143	182,931
Soap, glycerine, etc.	Cincmimati*			
	129	1,953	5,859	4,046
Ink mfg.	130	708	2,124	2,062
Soap, glycerine, etc.	131	400	1,200	1,924
Clothing, women's, mig. . . .	132	234	702	187
Textiles (cotton), mfg. .	133	330	990 825	354
Mill work (building material)	133 135	375 467	1,401	675 728
Rubber goods, mfg. .	136	110	330	304

A - Conbinued

Indindoul. Establishrents
$18{ }^{\circ}$

Lamol Cramas					Intustey on Natueis or Bubiess
Nomare		Rate fer Punkmar womim			
Strata HION	Totas	Acerss Bron	Stpara- 	Fiox	
Crimacos					Motors and ry. supplies, mfg." Car works
3,996	8,456	2.28	2.04	432	
20,642	39,479	2.58	2.82	5-40	
7,240	12,971	. 96	1.20	2.16	Clothing, men's, mfg.
47x	981	. 66	. 63	1. 29	Printing presses, mifg.
2,062	5,827	. 69	. 69	2.38	Agricultural implements, mfg.
4,729	T0,215	. 96	.81	1.77	Agricultural implements, mfg.
764	5,546	1.29	1.26	3.55.	Machinery (coal mining), mifg.
967	1,847	2.64	2.88	5.53	Machinery (specialties), mfg.
>5,784	29,576	. 93	1.08	2.01	Mail order house
$\mathrm{I}_{3} 3^{2}$	2,690	$\underline{5.29}$	$\underline{1.39}$	2.58	Mail order house
3.332	6,817	1.71	1.65	3.36	Mail order house
[7 , 333	24,676	2.40	2.43	4.83	Mail order house
370	8 8 6	1.15	. 93	2.04	Structural steel fabricating ${ }^{10}$
536 858	1, $\mathbf{2} 26$	2.10	1.89	3.99	Brass and metal spec'l's, mfg.
$\begin{array}{r}858 \\ \hline\end{array}$	2,066	3.09	2.19	5.28	Iron wheels and castings, mfgr
I,712 $\mathrm{x}, 065$	3,591	2.82 .88	2.58 3.67	5-40	Office applisnces, mfg.
2,965 $\mathbf{2 , 7 6 7}$	4,070	2.88 3.03	3.67 2.98	5.55	Electrical supplies, mig. Inon castings, mfg.
2,767 $\mathbf{2}, 681$	5,634 3,384	3.03 3.87	2.97 3.24	5.94	Inon castings, mfo ${ }^{\text {Screw machine products, mig. }}$,
\$,734	7,571	4.41	3.49	6.90	Steel forgings ${ }^{\text {a }}$,
868	1,812	3.66	3.36	7.02	Electrical supplies, mfg.
6,234	11,427	1.15	133	3.43	Public utilities: Electricity
6,300	12,827	1.38	1.37	2.70	Cas mig.
51,454	20,978	. 69	8	1.53	Tel. service
3,809	7,010	.85	. 86	1.77	Siaughering - . Street rys, ${ }^{18}$
16,069	35,112	2.19	1.83	4.02	Slaughtering 8 meat pack'g.
27,890 37,418	60,264	8.25	1.95	4.20	Slaughtering a meat pact'g.
17,418	37,431	3.84	333	7.17	Slaughtering \& meat pack'g.
177,210	360,14x	1.65	1.62	3.27	Total
Comanamat					
3,370	7,316	2.07	2.68	3.75	Soap, glycerine, etc.
1,658	3,780	8.91	2.34	5.35	Ink mig.
1,834	3,758	4.80	4.59	9.39	Soap, glycerine, etc.
180	367	.87	.78	1.59	Clothing, women's, mfg
369	733	1.08	I.II	2.19	Tertiles (cotton), mig.
705	I2880	8.46	255	5.01	Mill wort (building material)
856	1,6x4	1.56	$\underline{4.89}$	$3-45$	Rubber goods, mfg.
300	604	2.76	2.73	$5-49$	Leather goods, mig.

TABLE
Labor Mobility in
1917-

Industry or Natule oy Business			$\begin{aligned} & \text { Laboz } \\ & \text { Hoveg } \\ & \text { (TYou- } \\ & \text { BANDS) } \end{aligned}$	
				${ }_{\substack{\text { Accrss } \\ \text { Biows }}}$
Machine tools, mfg. Machine tools, mfg. Machinery (specialties), mfg. Machinery mfg. Machine tools, mfg. Machine tools, mfg. Electrical machinery, mfg. Machine tools, mfg. Machine tools, mfg. Engineering specialties, mfg. Office appliances Foundry (stoves and furnaces), mig. Tin can mfg. Printing and publishing (books) Printing and publishing (misc.) Printing and publishing (etc.) Public utilities: Gas and electric Telephone service Total	Comemmatit-			
	137	127	38r	103
	138	602	1,806	622
	139	669	2,007	847
	140	407	1,221	502
	14x (36)	883	2,649	x,363
	142	602	1,806	1,020
	143	1,443	4,329	2,444
	144 (35)	1,194	3,582	2,146
		310	930	786
	146 (37)	1,150	3,450	2,030
	147	418	1,254	1,05\%
	148	440	1,320	1,138
	149	529 344	1,587	1,889
	150	244	732	82
	151	767	2,301	667
	153	617	${ }^{1,851}$	2,372
	153	731	2,163	361
	${ }^{154}$	1,769	5,307	777 636
		1,330	3,990	636
	[27]	18,699	56,097	30,917
	Cuvilan'			
Automobile and motor truck mfg. ${ }^{35}$	156 ${ }^{\text {d }}$	4,456	13,368	3,552
Automobile and motor truck mfg.	157	1,417	4,251	2,643
Automobile and motor truck mfg.	158	2,173	6,519	5,179
Street railway cars, mig. .	159 150	344 384 384	1,032	1,016
	160 161	384 518	1,152 $\mathbf{x}, 554$	1,746 $\mathbf{2 , 2 8 0}$
Auto. frames, steel stampings, mig. ${ }^{\text {it }}$	162	770		4,484
Paint and varnish mfg.	163	267	801	568
Storage batteries, mfg.	164	1,987	5,961	6,075
	165	105	315	324
Storage batteries, carbon products, ${ }^{\text {, }}$	${ }^{166}{ }^{16}$		4,830 4,293	6,036
Bags (paper and cloth), mfg.	168	1,004	3,012	3,378
Woodw't, sewing machine cabinets ${ }^{19}$	169	1,514	4,542	3,410
Automatic screw machinery, mfg.	170	2,430	7,290	3.510
Machinery (heavy), mfg.	175	984	2,952	1,575
Machine tools, mifg.	172 (40)	1,263	3,789 3,820	3,520
Machinery (heavy), mfg. ${ }^{\circ}$	173	940	2,820	2,691
Molding machinery, mfg. ${ }^{\text {a }}$	174 175	98 870	294 2,610	280 3,548

A-Conlinued
Indindoal. Estabisshinents
18 !

Lamon Cranozs					Indusier on Naturi ou Rusitiss
Nonam		Rave yme Pukhtan Wonme			
$\begin{aligned} & \text { SZPARA- } \\ & \text { HONB } \end{aligned}$	Totic	$\begin{gathered} \text { ACerse } \\ \text { BIOM } \end{gathered}$	$\underset{\substack{\text { SEPRRAM } \\ \text { mond }}}{ }$	Fiux	
Combisud					Machine tools, mfg. Machine tools, mfg. Machinery (specialties), mfg- Machinery mfg.
73	276	.8x	. 57	x. 38	
592	1,214	1.02	. 99	2.01	
860	1,707	1. 26	$\underline{129}$	2.55	
567	1,069	2.23	1.38	2.65	
2,166	2,529	1.53	Y 32	2.85	Machine tools, mig.
980	2,000	1.68	8.62	3.30	Machine tools, mfg
2,396	4,840	1.68	2.65	3.33	Electrical machinery, mfg.
1,983	4,128	1.80	2.65	3.45	Machine tools, mfg.
8 rs	1,60:	2.55	2.64	5.19	Machine tools, mfg.
1,989	4,019	1.77	8.74	3.51	Engineering specialties, mfg.
903	1,954	2.52	2.16	4.68	Office appliances
1,109	2,247	2.58	2.52	5.10	F'dry (stoves and furn's), mifg.
1,969	3,819	3.51	3-73	6.23	Tin can mifg.
119	201	33	48	. 8 r	Printing and publishing(books)
81.	1,478	87	2.05	1.92	Printing and publishing (misc.)
*,228	4.440	3.60	3.60	7.20	Printing sad publishing (etc.)
387	743	. 51	. 54	$\underline{1.05}$	Public utilities: Gas and elec.
714 847	1,491 $\mathrm{x}, 483$	-45	.39 .63	.84	Tel. service
29,704	60,621	2.65	1.59	3.24	Total
Cuminame					
2,878	6,430	.87	. 63	5.44	Auta and motor truck mig. ${ }^{\text {P }}$
8,923	5,566	7.86	2.07	3.93	Auto. and motor truck mig.
6,989	11,468	5.37	3.88	5.25	Auto. and motor truck mig.
2,048 1,540	2,054	2.94	3.08	5.97 8.98	Street neilway cars, mfg. Tractors, mfg ${ }^{\text {bi }}$
1,540	3,286	4.56	4.03	8.58 8.08	Tractors, mfg . ${ }^{\text {a }}$
2,332	4,671	4.42	450	8.95	Auto. parts, mfg. ${ }^{17}$
4,152	8,636	5.82	$5 \cdot 40$	12.22	Auto. frames, steel stampingss ${ }^{10}$
548 5,589	1,116	2.13	2.04	4.17	Paint and varnish mig.
5,589 576	11,664	3.06	2.82	5.88	Starage batteries, mfg.
376	700	3.09	3.57	6.66	Paint and varnish mig.
5,789	11,825	3.75	3.60	735	Storage batteries, carbon 11
1,129	2,740	1.14	78	1.98	Clothing, vamen's, mfg.
3.608	7,076	3.56	3.69	7.05	Bags (paper and cloth), mfg-
4,566	7.976	2.25	3.03	5.28	Woodw't, sewing cabinets is
3,937	6,547	1.4	$\pm .36$	8.70	Automatic screw-mach'rymigo
1,338	2,913	1.59	$\underline{3}$	\$.94	Machinery (heavy), mig.
2,556	6,076	2.79	2.01	4.80	Machine tools, mfg.
2, 398	5.084	2.85 .85	2.55	5.40	Machinery (heevy), mig.
178 3.234	$\mathbf{5 5 8}$ 6,781	2.85 4.08	2.85 3.72	5.70 780	Molding machinery, mige Motors, mig. ${ }^{\text {M }}$

TABLE
Labor Mobmity in
1917-

A - Conlinued
Individual, Establismarnts
$\mathbf{1 8}^{\circ}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Lamoz Crinosa} \& \multirow{3}{*}{Indusizy or Natuar or Buspmas} \\
\hline \multicolumn{2}{|l|}{Nowrar} \& \multicolumn{3}{|l|}{Rate pre fullmend Womise} \& \\
\hline Stranta-
tionit \& Toxnt \& \& \& Flux \& \\
\hline \multicolumn{5}{|l|}{Combinuad} \& \multirow[b]{6}{*}{Metal wire, etc., mfg: Steel works \({ }^{2}\) Metal wire, etc., mfg. Sewing machines, mfg. Electrical appliances, mfg. Steel works} \\
\hline \multirow[t]{2}{*}{} \& 2,673 \& 8.45 \& 1.50 \& 2.98 \& \\
\hline \& 9,960 \& 1.59 \& 1.59 \& 3.18 \& \\
\hline 1,520 \& 3,030 \& 2.16 \& 2.16 \& 4.32 \& \\
\hline 1,990 \& 2,57x
\(\mathbf{1 , 7 1 7}\) \& 2.16
2.40 \& 2.19
1.98 \& 4.35
4.38 \& \\
\hline ,776
2,845 \& 5.728 \& 2.79 \& 2.76 \& 5.55 \& \\
\hline 5,08I \& 10,199 \& 3.09 \& 3.09 \& 6.18 \& Oil stoves, mfg. \\
\hline 3,091 \& 6,168 \& 3.27 \& 3.30 \& 6.57 \& Malleable iron castings \\
\hline \multirow[t]{2}{*}{2,334
9,630} \& 4,726 \& 3.36 \& 3.30 \& 6.66 \& Metal wire, etc., mig. \\
\hline \& 88,943 \& 3.48 \& 3.54 \& 6.96 \& Forgings \\
\hline 13,050 \& 27,784 \& 6.63 \& 5.88 \& 23.51 \& \\
\hline 265 \& 490 \& 1.38
5
5 \& 1.62
1.56 \& 3.00 \& Prin'g \& pub'sh'g (book \& job) \\
\hline 232 \& 479
377 \& 1.65
.72 \& 1.56
.58 \& 3.21
7.23 \& Printing and publishing (ob)
Pub. utilities: Gas (cler. force) \\
\hline \& 8,247 \& . 90 \& . 75 \& 1.65 \& Gas mfg. \\
\hline 573
140 \& 278 \& 1. 29 \& 2.38 \& 2.67 \& Tel.serv. (cl.f'rc) \\
\hline \[
\begin{aligned}
\& 2,262 \\
\& 2,889
\end{aligned}
\] \& 4,590 \& 1.78
x. 74 \& 1.65
2.28 \& 3.36
4.02 \& \begin{tabular}{l}
Tel.serv. (op.f'e) \\
Tel.serv.(p'td't
\end{tabular} \\
\hline 208,157 \& 299,155 \& 2.55 \& 2.49 \& 5.04 \& Total \\
\hline \multicolumn{5}{|c|}{Drinarr} \& \\
\hline \multirow[t]{2}{*}{14,631
1,123} \& 29,555 \& . 48 \& 45. \& . 93 \& Autamobile mfg. \\
\hline \& 3.752 \& 2.07 \& \(2.70^{\circ}\) \& 4.77 \& \\
\hline \multirow[t]{2}{*}{17,048
2,267} \& 33,744 \& 3.64 \& 2.70 \& 5.34 \& Automobile mfg. \\
\hline \& 4,694 \& 2.85 \& 2.67 \& 5.52 \& Autamobile parts, mig. \({ }^{\text {m }}\) \\
\hline \multirow[t]{2}{*}{6,867} \& 14,544 \& 3.06 \& 2.73 \& 5.79 \& Autamobile mig. \\
\hline \& 1,470 \& 3.57 \& 3.00 \& 6.57 \& Automobile parts, mfg. \\
\hline \multirow[t]{2}{*}{50,101} \& 64,970 \& 3.54 \& 3.06 \& 6.57 \& Automobile mfg. \\
\hline \& 599 \& 3.58 \& 3.48 \& 6.96 \& Automobile parts, mig. \\
\hline 6,787 \& 14,119 \& 3.78 \& 3,48 \& 7.96 \& Autamobile mfg. \\
\hline \& 856
1,014 \& 3.81
3.54 \& 3.72
3.99 \& 7.53
7.53 \& Automobile parts, mfg. \\
\hline 45,808 \& 86,989 \& 3.64
3.68 \& 4.15 \& 7.80 \& Autamabile mig.w \\
\hline 9,120 \& 00,608 \& 4.50 \& 354 \& 8.94 \& Automobile parts, mfg.* \\
\hline \multirow[t]{2}{*}{\(\begin{array}{r}\text { T5,130 } \\ 1,744 \\ \hline\end{array}\)} \& 39,476 \& 4.53 \& 447 \& 8.00. \& Automobile parts, mfg. \\
\hline \& 3.1588 \& \({ }^{3} 8.8\) \& 4.30 \& 8.07 . \& Autamobile mfg. \\
\hline 1,17
\(\times 1650\) \& 1,219
3,254

3, \& 5.08

5.01 \& $$
\begin{aligned}
& 5.07 \\
& 534
\end{aligned}
$$ \& \[

10.08

\] \& | Automobile mfg. |
| :--- |
| Automobile parts, mfg. ${ }^{3}$ |

\hline
\end{tabular}

TABLE
Labor Mobinty in
1917-

Industigy or Natury or Bugingas	Establise- MUENT Nulber		Laboz (TBoussande)	Accer sink
				Deteotr
Automobile parts, mig.	211	1,103	3,309	6,044
Coke and chemicals, mfg.	212 213	814	2,442 8,775	6,798 $\mathbf{2 , 3 3 2}$
Chemicals and drugs, mfg.	214	668	2,004	1,037
Paints, mfg. ${ }^{\text {a }}$. . .	215	434	1,302	821
Clothing and overalls, mfg.	216	480	1,440	686
Furniture mig. .	217	511	1,533	1,642
Machine tools, mfg.	218	630	1,890	1,773
Machine tools, mfg. ${ }^{\text {a7 }}$.	219	585	1,755	2,472
Steam engine, etc., mifg. -	220	726	2,178	3,591
Iron and steel (small parts), mfg.	221	218	654	392
Heating devices, mfg. .	222	497	1,491	834
Iron and steel castings, mfg.	223	675	2,025	1,437
Electrical appliances, mifg.	224	159	477	377
Steel forgings . .	225	316	948	910
Heating devices, mfg.*	226	637	1,911	1,781
Steel castings .	227	390	1,170	1,296
Structural steel, mfg. .	228	169	483	543
Electrical appliances, mfg.	229	213	639	744
Steel forging . . .	230	241	723	968
Screw-machine products, mfg.	231	187	561	821
Screw-machine products, mfg.	232	438	1,314	1,967
Machine appurt nances, mfg ${ }^{28}$	233	540	1,630	2,832
Machine appurtenances, mig. ${ }^{18}$	334	391	1,173	2,292
Public utilities:				
Gas mfg.	235	1,933	5,799	1,585
Telephone service (Comm. dept).	336	161	483	104
Telephone service (Clerical force)	237	138	414	167
Telephone service (Installation) .	238	431	1,293	533
Telephone service (Traffic dept.)	239	2,167	6,501	3,347
Telephone service (Construction)	240	331	993	628 .851
Slaughtering and meat packing .	241	456	1,368	1,851
Total . .	[48]	92,281	276,843	211,938

A-Continued
Individual Establishients 85^{*}

Lamor Chanors					
Nownt.		Raxt per Futi-vear Worcta			
	Totas	Accre[50:	$\begin{aligned} & \text { SEPARA- } \\ & \text { mont } \end{aligned}$	Floz	
Cominumal					
5,795	11,839	5.49	5.25	10.74	Automobile parts, mfg.
6,534	13,332	8.34	8.04	16.38.	Automobile parts, mfg. ${ }^{14}$
2,527	4,859	.85	. 87	1.68	Coke and chemicals, mfg.'
1,131	2,168	1.56	1.68	3.24	Chemicals and drugs, mig."
757	1,578	1.89	1.74	3.63	Paints, mfg.* ${ }^{\text {m }}$
978	1,664	I. 44	3.04	3.48	Clothing and overalls, mfg-
1,765	3,407	3.21	3.48	6.66	Furniture mfg.
1,433	3,806	8.82	2.28	5.10	Machine tools, mfg.
2,418	4,890	4.23	4.14	8.37	Machine tools, mig. ${ }^{37}$
3,584	7,175	4.95	4.95	9.90	Steam engine, etc., mfg.
384	776	1.80	5.77	3.57	Iron and steel (small p^{\prime} 'ts), mfg.
1,167	2,001	1.68	2.34	4.02	Heating devices, mfg.
1,642	3,079	9.13	2.43	4.56	Iron and steel castings, mig.
391	768	0.37	2.46	4.83	Electrical appliances, mig.
695	1,605	8.88	2.19	5.07	Steel forgings
1,714	3,495	2.79	2.70	5.49	Heating devices, mfg. ${ }^{\text {P }}$
2,066	a, SO_{6}	3.33	2.73	6.06	Steel castings
567	1, 110	3.36	3.51	6.87	Structural steel, mfg.
744	1,488	3.48	3.48	6.96	Electrical appliances, mfg.
899	x,867	4.02	3.72	7.74	Steel forging
710	\% 538	4.38	3.85	8.19	Screw-machine products, mfg.
2,057	4,094	4.50	4-72	9.9I	Screw-machine products, mfg.
2,712	5,544	5.25	5.01	20.26	Machine appurtenances, mfg ${ }^{\text {a }}$
2,208	4,500	5.85	5.64	1149	Machine appurtenances, mfg. ${ }^{10}$ Public utilities:
r,040	2,625	. 8 x	54	1.35	Gas mig.
106	810	. 66	. 66	1.52	Tel. serv. (Comm. dept.)
145	308	5.20	1.08	2.82	Tel. serv. (Clerical force)
510	5,043	3.83	3.57	3.40	Tel. serv. (Lnstallation)
3,015	6,362	2.56	1.36	2.94	Tel. serv. (Traffic dept.)
633	3,065	8.89	1.92	3.81	Tel. serv. (Construction)
2,874	3785	4.05	4.12	8.16	Slaughtering and meat packing
207,288	429,056	*-3I	2.35	4.56	Total

TABLE
Labor Mobinty in
1917-

APPENDIX
A-Conlinued
Individual Estarlusharents
18°

Leabor Cinatos					Indusimy on Naturi of Eptiniss
Nomber		Rate par fonlymar Worich			
StraraTHONE	Total	$\begin{aligned} & \text { Acces- } \\ & \text { croor } \end{aligned}$	$\underset{\substack{\text { Suphef. } \\ \text { HON }}}{ }$	Fioz	
Mumatisf ${ }^{\text {a }}$					
2,748	5,783	1.47	7.65	3.12	Motor vehicles and parts, mfg.
3,677	7,834	3.33	2.94	6.27	Automobile parts, mfg.
610	1,080	1.35	1.77	3.12	Chemicals, mfg. ${ }^{10}$
3.742	9,402	6.45	4.26	10.71	Chernicals, mig. ${ }^{10}$
774	1,564	. 96	. 93	1.89	Textiles, mfg. ${ }^{10}$
859	1,809	2.04	1.83	3.87	Textiles, mfg ${ }^{\text {P }}$
6,618	12,846	1.98	2.10	4.08	Leather, mfg.
4.589	9,448	3.85	3.60	741	Rubber goods, mfg.
803	1,734	1.47	8.26	2.73	Machinery (heavy), mig.
6,699	13,073	1.35.	1.49	2.76	Machinery (heavy) mfg.
780	1,484	$\underline{7.35}$	2.50	2.85	Machinery (heavy, mfg.
2,100	4,193	2.10	3.10	4.20	Machinery (heavy), mfg.
3,083	- 5,717	2.04	2.37	4.48	Machinery (heavy), mfg.
219	384	. 69	. 93	1.62	Heating devices, mfg.
450	1,024	1.23	. 96	2.19	Electrical appliances, mfg.
2,932	5,982	2.58	2.49	5.07	Electrical appliances, mfg. ${ }^{\text {an }}$
1,470	2,966	2.76	2.70	5.46	Castings, mfg ${ }^{2 *}$
r,66a	3, 270	2.97	3.06	6.03	Household metal ware, mfg. ${ }^{10}$
7,026	13,975	5.97	6.03	12.00	Household metal ware, mfg. ${ }^{\text {a }}$
$\begin{aligned} & \mathbf{x}, 56 \mathbf{t} \\ & 3,728 \end{aligned}$	3,174 6,786 18	$\begin{array}{r}2.04 \\ \hline 84\end{array}$	1.86 1.08	$\begin{array}{r} 3.90 \\ +.86 \end{array}$	Public utilities: Ges mfg. Str't rys, etc. ${ }^{20}$.
56,230	113,024	2.13	2.10	4.33	Total
Bay Reareass.					
980	1,191	8.70	2.34	5.04	Oil refinery
3,0xI	6,577	3.82	2.40	5.21	Sugar refinery ${ }^{\text {a }}$
7,800	18,618	6.93	435	10.38	Explosives, mfg
362	623	1.50	3.10	3.60	Machinery, mfg. ${ }^{11}$
5×338	10,950	4.22	3.40	4.62	Agricul. implements, mfg ${ }^{10}$
x,0sa	1,882	1.71	2.04	3.75	Structural iron and steel, mfg ${ }^{\text {a }}$
135	859	1.61	1.45	3.03	Mercantile, establishment ${ }^{4}$
409 $\times 68$	844	1.77 .86	$\underline{8.68}$	3.45	Mercantile, establishment ${ }^{\text {* }}$ Mercentile satablighment :
1,568 $\mathbf{2}, 875$	$3,24 \%$ 5,779	1.86	2.74 4.29	3.60	Mercantile, establishment
2,875	5.779	4.55	4.29	8.64	Structural iran and steel, mf
201	375	57	. 66	1.23	Ges and electricity (Main ofc.)
7,656	2,910	1.08	5.48	2.49	Ges and dec. (Metr. Dis.) ${ }^{2}$
8.556	16,761	2.40	2.49	489	Ges ad. (Coun'y Dists.) ${ }^{\text {m }}$
1,239	2,406	2.15	1.20	2.31	Street rilways, etc.
35,138	72,647	2.64	3.46	5.10	Total

NOTES TO TABLE A

"Unless it is otherwise specified, the figures for ngr3-14 refer to the year eaded Jund 30 , 1014, and the figures for $1917-18$ refer to the year onded May $3 \mathrm{~F}, 1918$.

- Figures in parentheses are the $\mathbf{x 9 1 7 - 1 8}$ numbers of asch concerns as were reported in 1917-18 as weil as rors-14
t Each of the two mills which constitute this establishment was reported as asparnte concern is 2917-28.
a. This group of plants reported in a special articie, "Labor Turnover in Chicago," o Mowhly Labor Review, 652-667 (September, 1910).
b. This group of plants reported in a apecial article, "Labor Turnover in Cincinnati," 8 Monally Labor Revitre, 651-668 (March, rgig).
c. This group of plants, together with those in Detroft, reported in a special article, "Labor Turrover in Cleveland and Detrole," 8 LConhly Labor Reviow, 18-30 (January, 1919).
d. This concern reported in detail in a special article, "Labor Turnover and Employment Policies of a Large Motor Vehicle Manufacturing Ratablishment," 7 Monhly Labop Rewon, 837 -855 (October, 1918).
e. The figures showa here are based upon the records of five individual extablishments. They were secured in connection with snother investigation carried on aimeltaneously in the clonk and ruit industry of Cleveland. The results of this investigation were published in the Mouthly Lshor Revier for August, 19 r .
f. This group of plants reported in a special article, "Labor Tumover in Minwalkee" 8 Monthly Labor Reniom, 999-1016 (April, 1919).

8. This groap of planta reported in a special article, ${ }^{4}$ Lahbor Tumover in the Saer Francisco Bay Region," 8 Monthly Labor Reviev, 30:-38o (Fehruary, 1919).
h. This concerm reported, with another oll refinery, in detail in a apecial article, "Labor Policies and Laber Turnover in the Californig. Oil Refining Industry," Mambly Labs Rovis, gop-908 (April, 1919).
9. This concern reponted in detail in a special atticle," Employment Policies and Labor Mobility in a Californit Sugar Refinery," 9 Mondty Labey Rowion, 180a-1824 (December, 1919).

${ }^{2}$ Calendar year sozs.

${ }^{1}$ Not including apecial employees averaging 58 x during the year.

- Including etudent operatons.
${ }^{4}$ For nine monthr' period ended September 30, 1914.
- Calendar year 10r5.
- Year cniled November 30, 1914.

TYear ended Octobar 3x, ngzs.

- Calendar year 1018.
- Year ended June jo, yors.
${ }^{10}$ Six months' period ended June 30, 5958.
u Year ended April so, 1088.
${ }^{4}$ 'Ten manths' period onded June 30, mpr8.
${ }^{1} 1$ Eight montha' period ended June 30, spr8.
u Figures covar conductors and motormen only.
u Year anded March 3n, 3928.
"Ten montha" period ended May sz, 1 gis.
${ }^{17}$ Eight months' penod ended May 31, 1928 .
${ }^{12}$ Slix moaths' period ended July $5 x, 1918$.
as Pariod from August a0, x917, to July 7, ng18, incluaive.
m Six monthy' period ended May sx, igis.
meven months' period endod May 3x, ypI8.
* Nine monthe' period ended Mey 3I, zort.
- Year anded July 3r, $\mathbf{3 g r 8}$.
* Your ended Janung si, yots.
m For oK manths anded August 13, ygr8.
m For 8Y/ monthe ended August I5, x918.
${ }^{3}$ Eight months' period ended August si, ig7B.

${ }^{-1}$ Six montha period ended Augun 3 3 , xpre.
- Year ended August si, 2pra.
an Not inchuding employeas hired in one departronat, which had about sas-employees.
- Sis montha' period ended June a6, igra.
- Yoar ended Man xs, roxa:
m Your eoded May 2 , rors.
- Xear ended October 3L, roth

				TABLE
Type of Separation (Discharge, Lay-Ozf, Enizy nnto Mintary Service, or 1913-14 AND				
				1913-
Indutiry or Natury or Business	$\begin{aligned} & \text { Establisg- } \\ & \text { NORNTIEP } \end{aligned}$	$\begin{aligned} & \text { Nousery } \\ & \text { Ooxcriss } \end{aligned}$		Nunbize
			Employetes Liayigo	
				What
Railroad shops : Rubber footwear and auto tires Shoe machinery, mfg. Department store Steam gauges and valves, mfg. Plumbing tools, mfg. Brass valves and fittings, mfg. Paper products and roofing material Paper boxes and shipping tags, etc.	Bostow			
	2	2,001	73	39
	4	2,856	975	
	6	2,549	694	-
	7	1,839	114	307
	8	167	33	25
	9	212	147	
	10	899	353	40
	11	864	95	252
	12	1,749		-
Color printing, etc.Book mfg.PublicutitiesStret	13	726	82	29
	14	449	23	80
Public utilities: Street railways . Elevated railways Telephone service	15	3,060	171	
	16	8,858	582	
	17	2,750	131	14
Total	[14$]$	28,979	3,575	786
	Cracnoo			
Chewing gum, mfg. Shoe bottoms, mfg. Agricultural implements, mfg. Agricultural implements, mfgAgricultural implements, mfg. Agricultural implements, mfg. Structural steel. Electrical supplies, mifg. Valves and fittings, mfg. Iron wheels and castings, mfg. Steel products, mig. Telephone apparatus, mfg. Total Engineering specialties, mfg.	18	273	12	82
	19	277	9	21
	20	4,377	248	7,362
	21	6,592	261	2,265
	22	1,904	29	654
	23	761	45	\bigcirc
	26	343	${ }^{58}$	69
	28	544	136	249
	29	4,306	280	27
	30	415	64	42
	31	3,758	87	
	32	11,049	619	2,090
	[12]	34,499	1,848	6,861
	Conciniatit			
	37	656	119	\cdots

B
Volontary Quitinge) if Individuat Establisminais and Sprecifed Cities, 1957-18
14

-			\% Cax		
Dunde zeis Yian wiso		Phatomisis Leavano Dunmo HiF Yine Wio			
Lure Volum- 	Toras		Wris	$\begin{aligned} & \text { Lerr } \\ & \text { Vokun- } \\ & \text { TAlliz } \end{aligned}$	
Hostom					Railroad shops Rubber footwear and auto tires Shoe mechinery mfg
536	648	11	6	83	
8,826	9,801	35	-	65	
731	1,425	49	-	51	
42 L	812	14	37	50	Shoe machinery, mfg. Department store
72	130	35	19	55	Steam gauges and valves, mfg. Plumbing tools, mfg.
310	427	37	-	73	
558	951	37	4	59	Brass valves and fittings, mig. Paper products and roofing
${ }^{158}$	505	19	50	31	
877	1,009	13	\bigcirc	87	Paper boxes and shipping tags
863	373	32	8	70	Color printing, etc. Book mifg.
47	150	15	53	3 I	
241	4 T 9	42	-	59	Public utilities: Street railw's Elev. railw's Teleph. Ecrv.
583	x, 364	50	-	50	
321	466	28	3	69	
6,942	11,303	32	7	63	Total
Crucioo					
335	329 306	4	35	88	Chewring gum, mfg.
r 1808	[306	4	48	86	Shoe bottoms, migg.
12589	4,115	6		39	Agricultural implem's, mig.
309	995	3	66	31	Agricultural implem's, mfg.
73,	778	6	-	94	Agricultural implem's, mfg.
85	113	27	33	40	Structural steel
355	700	19	36	45	Flectrical supplies, mfg.
583	888	32	3	65	Valves and fittings, mig.
500	606	12	7	83	Iron wheels and castings, mfg.
2,968	3,055	3	-	97	Steel products, mig.
13,454	16,163	4	13	83	Telephone apparatus, mfg.
25,143	30,852	6	8	72	Total
Cmenomis					Engineering specialties, mfg.
184	283	43	-	58	

TABLE

Type or Separation (Discrarge, Lay-Off, Entry inzo Mmitary Service, or 1913-14 AND

Indusiry or Nature or Bubderss		$\begin{aligned} & \text { Nunger } \\ & \text { or } \\ & \text { Worsexs } \end{aligned}$		Noxamer
			Euploymes Leavise	
Clothing, mfg. Clothing, men's, mfg. Machine tools, mfg. Metal wire, etc., mfg. Machine tools, mfg. Total	Cleveraso			
	38	1,020	189	-
	39	783	100	
	40	335	90	-
	41	1,247	70	88
	42	1,115	216	990
	[5]	4,496	665	1,078
	Deriont			
Aluminum and brass foundry Motor car, mfg. Motor car, gasoline, mfg. Transmissions and gears, mfg. Motor car, mig. Motor car, mig. Automobile parts, mfg. Adding machines, mfg. Public utilities: gas mfg. Total	43	397	621	1,191
	44	2,146	1,317	668
	45	715	829	550
	46	239	209	89
	47	3,110	1,460	3.883
	48	10,904	926	383
	49	731	364	126
	50	897	551	435
	51	4,028	740	-
	52	287	409	398
	53	4,484	2,279	9,325
	54	1,004 $\mathbf{1 , 8 8 7}$	1,051 729	- 14
	56	1,887 650	729 42	27
	[4]	31,479	11,527	16,969
	New Yoar			
Crackers and biscuits, baking Cotton specialties, mfg. Printing presses, mfg. Mail order house Life insurance Paper products, migg. Public utilities: Street railways Telephone service	59	1,III	206	60
	60	785	158	58
	61	1,438	356	195
	62	624	73	465
	63	3,679	33	-
	65	1,778	525	154
	66	3,632	1,796	5
	67	19,05:	1,581	3,910
Total . . .	[8]	32,088	4.729	4,842

B-Condinued
Voluntary Quitinno) in Individoal Establisingants and Spectied Crites, 2917-18

14

O\%			Pre Cowr		
Dunano tia Yuax Who		Exprovang Lravigo Duento			
Volithe samex	Toral		$\begin{aligned} & \text { Wman } \\ & \substack{\text { Lame } \\ \text { Ome }} \end{aligned}$	$\begin{aligned} & \text { Ligt } \\ & \text { Votivn- } \\ & \text { TARIIT } \end{aligned}$	
Сагvzum					Clothing, mfg. Clothing, men's, mig. Machine tools, mfg. Metal wire, etc., mfg. Machine tools, mfg.
265	454	42	-	58	
330	430	23	二	77	
180 78	${ }_{876}^{270}$,	33	10	67 88 8	
718 689	8,87 8,		$\begin{aligned} & 10 \\ & 54 \end{aligned}$	$\begin{aligned} & 82 \\ & 34 \end{aligned}$	
2,112	3,855	17	28	55	
Demar					
333	2,145	29	56	16	Aluminum and brass foundry Motor car, mfg. Motor car gasoline, mfg.
3,270	5,255	25	13	62	
330	1,709	49	${ }^{32}$	19	Motor car, gasoline, mfg.
$\begin{array}{r}254 \\ .385 \\ \hline 285\end{array}$	532 8,629	39	13	48	Transmissions and gears, mifg.
3,286 5,109	8,629 6,508	17	45	38 80	Motor car, mfg.
5,199	6,508	14	6	80	Motor car, mfg.
615	2,101	33	IT	55	Motor car, mig.
425	1,417	39	${ }^{31}$	$3{ }^{3}$	Motor car, mfg.
2,155 643	2,895 1,350	26	${ }^{22}$	74 48	Motor car, mig.
5,652	1,895 $\times 3,565$	17	70	12	Motor car, mfg.
867.	1,918	55	-	45	Automobile parts, mfg.
840	1,583	46	\pm	53	Adding macchines, mfg.
133	108	21	13	66	Public utilities: gas mfg.
19,998	48,494	24	35	41	Total
Nuw Yoris					
189	1,395	15		81	Crackers and biscuits, baking
839	1,055	15	5	80	Cotton specialties, mig.
606	1,217	99	${ }_{8}^{8}$	55	Printing presses, mig.
398	236 866	12	8	43 88	Mife insurance
963	1,642	32 65	9	59	Paper prodicts, mfg.
$\begin{array}{r}974 \\ 4.888 \\ \hline\end{array}$	1,780 $\times 0,330$	65	78	35	Public utilities: Street riilw's
4,828	20,330	15	38	47	Tel service
ra,930	19,60r	44	5	51	Total

TABLE
 1913-54 AND

1973-

		Nmaske or Woxiciss		Nuncrem
			Exgroymes Leavino	
				Werst $\substack{\text { Lama } \\ \text { Ory }}$
Rubber goods, mig. Rubber tires, mfg. Sheet metal ware, mfg. Lighting apparatus, mig. Cash registers, mig. Insurance Typewriters, mfg. Automobile, mfig. Agricuitural implements, mig. Electrical apparatus, mfg. Bleaching and dyeing . Machine tool, mig. Total	Orave			
	68	5,346	907	806
	69	639	18t	95
	70	564	94	453
	73	3,087	177	765
	73	5,034	27%	574
	75	${ }^{971}$	33	\cdots
	76	2,894	170	12
	78	477	1,006	399
	79	517	33	45^{8}
	$8 \mathrm{8z}$	10,605	$4.504{ }^{3}$	-
	83	2,516	397	170
	83	4×33	850	103
	[12$]$	33,933	8,447	3,884

4 Foclader mumber

B-Conlinued
Volontary Quitinne) my Inidvidual Estabinsanents and Sprcifled Cities, x917-88

14

0		Pres Corr			Droustix oz Nature or Busarie
Dundo max Yuen Who					
	Toras			$\begin{gathered} \text { Lerr } \\ \substack{\text { Younx } \\ \text { wixix }} \end{gathered}$	
Crum					
6,363	8,070	11	ro	79	Rubber goods, mfg.
752	1,088	18	9	73	Rubber tires, mfg.
526	1,072	9	49	49	Sheet metal ware, mig.
122	1,063	17	73	${ }^{15}$	Lighting apparatus, mfg.
2,006	3,451	8	$\underline{\square}$	76	Cash registers, mifg.
870 826	293 948	8 8 8	-	92 87	Insurance Typewriters, mig.
2,019	3,424	29	ra	59	Automobile, mig.
356	847	4	54	42	Agricul. implements, mfg.
[2,244	16,748	${ }^{27}$	-	73	Electrical apparatus, sufg.
783 2,392	1,300 3,275	33 26	17 3	${ }_{7}^{60}$	Bleaching and dyeing Mechine tool, mifs.
99,188	41,549	20	9	70	Total

lald on.

TABLE
Type of Separamon (Discraide, Lay-Oft, Entry myto Mhittary Skryce, or 1983-34 AND

1917-

	$\begin{aligned} & \text { Estas } \\ & \text { Yras } \\ & \text { Nignt } \end{aligned}$		Nomaza		
			Emptoryes Leavino Duxamo		
				$\begin{aligned} & \text { Wraz } \\ & \text { Lixp } \\ & \text { Opy } \end{aligned}$	
	Cancuso				
Printing presses, mig.	104	764	12	60	45
Agricultural implem'ts, mig.	105	4,317	211	226	224
Agricaltural implem'ts, mfg.	206	5,759	48r	596	387
Machinery (coal mining), mig.	207	685	13	199	61
Mail order house . . .	110	1,042	154	-	162
Mail order houss .	151	5,092	558	3,441	332
Structural steel, mig. ${ }^{\text {a }}$. ${ }^{\text {a }}$	\pm	402	42	-	12
Brass and metal specialties, mfg.	714	283	12	8	34
Tron wheels and castings, mfg.	115	390	48	8	44
Office appliances, mig. .	116	667	431	-	84
Electrical supplies, mig. .	157	733	329	117	186
Tron castings, mig. . .	158	950	353	-	108
Screw machine products, mig.	1×9	520	83	-	94
Steel forgings, mig. - .	120	x,099	340	48	250
Electrical supplies, mfg. .	x2x	258	172	35	60
Public utilities: Electricity	12	4,728	500	35^{8}	7,004
Telephone serv	124	13,604	7,192	${ }^{2} 788$	903
Struet railways .	225	3,909	7,109	-	524
Slaughtering sad meat packing.	126	8,730	7.025	659	484
Slaughtering and meat packing,	227	14,320	7,372	2,064	612
Slaughtering and meat packing	128	5,219	2,644	5,292	504
Total	[31]	73,291	24,976	10,816	6,094

B-Continued
Voluntary Quitimo in Indridoal Establisiments and Splactmos Citirs, 1987-18
18

pr TRI XKA Wio		Pex Cour				2mbustry bug Naroux or
	Total		$\begin{aligned} & \text { Wrxz } \\ & W_{\text {Livit }} \end{aligned}$			
Cancaso						
354	475	2	13	xo		Printing presses, mfg.
2,302	2,962	7	7	8	${ }^{8} 8$	Agricui. implem'es, mifg.
3,265	4.729	0	73	8	69	Agricul. implem'ts, mfg.
49 x	764	2	${ }^{26}$	8	64	Mach'ry (coal min'g), mig.
¢,019	1,332	${ }^{4}$		12	77	Mail arder house
8,018	12,333	4	29	3		Mail order house
316 490	370 536 58	2	-	5.	85 92	Structural steel, migg, Brass and metal spec's, mig.
${ }_{758}^{490}$	536 888 88	2	2	5	98	Brass and metal spec's, mig. Iron wheels as cast'gs, mifg.
x, 197	1,712	25	6	5	70	Office appliances, mfg.
x,408	1,065	17	6	6	78	Eiectrical supplies, mig.
2,306	8,767	${ }^{3}$	-	1	8	Inon castings, mig.
x,504	1,681	5	-	6	89	Screwm mach, products, mig.
*,006	P,734	4	3	9	77	Steel forgiags, nafg.
4, 6 (192		8	4	7	69 69	Eirctrical supplies, mifg,
6,642	13,454	9	15	8	39	Fubic andies Tel. serv.
2,776	$3,8,80$	89		14	57	Street rys.
6,994	10,062 87800	49	4			Slaugh'g and meat packing
17,842	17,890	27	7	2	64	Slaugb'g and meat pecking
13,978	17,488	35	7	1.	75.	Slaugh'g and mest pecking
77,063	218,949	3	9	5.	65	Total

TABLE
Type of Separation (Discrarge, Lay-Off, Entry anto Miltary Service, or 1913-14 AND

1917

Lmoustex or Nature or Busingss		$\begin{gathered} \text { Nurgir } \\ \text { or } \\ \text { Wozkins } \end{gathered}$			Numbet
			Euproyezs Liavisc Dundo		
			$\begin{gathered} \text { Werge } \\ \text { Dig- } \\ \text { CHarome } \end{gathered}$	Werg	$\begin{aligned} & \text { Enterird } \\ & \text { Mulikary } \\ & \text { SuRvice } \end{aligned}$
Textile (cotton) mfg. . Millwork (building material) Machine tools, mfg. Machine tools, mfg. Machinery specialties, mfg. Machinery ing. Machine touls, mig. Machine tools, mfg. Machine tools, mfg. Office appliances, mfg. Foundry (stoves and furnaces) Printing and publishing (books) Printing and publishing (misc.) Printing and publishing Telephone service Trainmen, street railways Total	Cuncmanats				
	133				
	134	275	15 26	-	30
	137	127	17	-	7
	138	6×2	76	-	110
	139	669	107	-	80
	140	407	85	-	21
	141	883	216	10	110
	142	602	193	-	64
	144	1,194	261	-	130
	147	478	228	11	76
	148	440	98	18	33
	150	244	,	I	18
	151	767	24		35
	152	617	64	-	105
	154	1,769	74	40	64
	155	1,330	128		77
	[16]	10,674	1,514	80	970
	Crivicland				
Automobile and motor truck mfg.	156	4,456	156	22	529
Automobile and motor truck mfg.	157	1,417	188	6	66
Automobile and motor truck mfg.	158	2,173	1,095	470	274
Tractor mfg. : .	160	384	200	664	158
Paint and varnish mig. -	163	267	50	-	20
Storage batteries, mfg. .	164	1,987	429	406	315
Storage batteries, carbon prod.	166	1,610	763		57
Machinery (heavy) mifg.	173	940	58	15	166
Motors, mig. - .	175	870	573	288	123
Metal wire, etc, mfg.	176	917	11	26	42
Metal wire, etc., mfg.	178	699	96	18	79
Sewing machines, mfg.	179	590	84	-	45
Oil stoves, mfg. .	182	1,649	275	118	700
Metal wire, etc., mig. -	184	709	206	45	156
Telephone service (Clerical)	191	102	23	.	9
Telephone service (Operation)	192	1,368	353	1	2
Telephone service (Plant)	193	1,267	20	513	147
Total	[17]	21,405	4,580	2,593	2,388

B - Continued
Voluntary Quttine) in Individoat Establighimens and Specifibd Cities, 2947-58

18

or		Pma Czart			
mixis Yus		Enproyags Leavino Dobino tiat			
$\begin{aligned} & \text { Lxyt } \\ & \text { Volus- } \\ & \text { Targinx } \end{aligned}$	TOTAL	$\left\|\begin{array}{c} \text { WESI } \\ \text { CIFRGOED } \end{array}\right\|$	$\begin{gathered} \text { Wers } \\ \text { Lato } \\ \text { OTz } \end{gathered}$	EnTHERD Minitary Sesevic	$\begin{aligned} & \text { Levt } \\ & \text { Voton- } \\ & \text { zelly } \end{aligned}$

Imposizy or Natugi or Butiness

Textile (cotton) mfg. Milwork (building mat'l) Machine tools, mfg. Machine tools, mfg. Machinery specialties, mfg. Machinery mifg. Machine tools, mig. Machine tools, mfg. Machine tools, mfg. Office appliances, mig. Foundry (stoves and furn's)
Prin'g and pub'g (books) Prin'g and publish'g (misc.)
Printing and publishing Telephone service Trainmen, street railw's

Total
Chystand

3,175	2,878	5	1	18	75	Auto. \& motor truck mfg.
3,663	2,923	6	1	2	9 O	Auto. \% motor truck mfg.
4,450	6,289	17	7	4	71	Auto. \& motor truck mig.
518	1,540	13	43	10	34	Tractor mfg.
478	548	9		4	87	Paint and varnish mig.
4,439	5,589	8	7	6	79	Storage batteries, mfg.
4,969	5,789	13	-	1	86	Storage batteries, etc.
2,154	2.393	2	1	7	90	Machinery (heavy) mig.
2,250	3,234	58	9	4	70	Motors, mfg.
2,307	1,386	$\underline{5}$	${ }^{2}$	3	94	Metal wire, etc, mfg.
10327	1,520	6	1	5	87	Metal wire, etc, mfg.
4,162	1,290	7	-	5	90	Sewing machines, mig
43488	5,081	5	2	4	88	Oil stoves, mig.
1,937	9,334	9	.	7	83	Metal wire, etc, maig.
108	1.40	16	\cdots	6	77	Tel. service (Clerical)
1,906	2,268	36	1	1	84	Tel. serv. (Operation)
*,209	2,889	1	18	5	76	Tel. s sv, (Plant)
38.525	48,085	10	5	5	80	Total

of a por centh

TABLE
Type of Separation (Discharge, Lay-Oty, Entry into Murtary Service, or 1913-14 AND

1917-

Industay or Nature or Busingss	$\begin{gathered} \text { EsTAB- } \\ \text { LIINH: } \\ \text { NUNGER } \end{gathered}$	$\begin{gathered} \text { Nungers } \\ \text { or } \\ \text { Woraess } \end{gathered}$			Nucisk
			Exployizs Leavas Dutumo		
			$\begin{gathered} \text { WERE } \\ \text { DDGE } \\ \text { CBARCDD } \end{gathered}$	Wraz Lad Onf	Enter to Mifictary Senvice
Automobile mfg.	Detroir				
	194	31,950	169	110	3,12263
Automobile parts, mfg. . . .	195	783	116	306	
	200	9,869	4,886	2,085	2,304
Automobile parts, mfg.	202	1,944	965	1,879	362
Automobile parts, mfg. .	203	114	120	-	30
Automobile mfg.	204	135	52	260	42
Automobile mfg.	205	12,125	5,115	3,799	2,727
Automobile mfg.	209	121	148	32	64
Automobile parts, mfg. . .	220	314	88	52	28
Automobile parts, mig. . . .	211	1,103	747	242	317
Chemicals and drug mifg. . .	214	668	112	2	95
	216	480	55	-	25
Machine tools, mfg. . .	218	638	113	-	130
Iron and steel (small parts), mfg.	221	218	18	-	22
Steel forgings, mfg.	225	316	109	250	53
Steel castings, mfg.	227	390	63	34	67
Structural steel mig.	228	161	43	27	15
Steel forgings, mfg. . .	230	241	137	-	68
Screw machine products, mfg. .	232	438	168	-	84
Public utilities:					
Gas mfg. . .	235	1,933	94	-	137
Telephone serv. (Comm. dept.)	236	161	15	3	20
Telephone service (Clerical) .	237	138	13	20	13
Telephone service (Installation)	238	431	66	37	89
Telephone service (Traffic)	239	2,167	548	4	-
Telephone serv. (Construction)	240	33 x	51	26	106
Slaughtering and meat packing -	34 T	456	365		45
Total	[26]	66,617	14,369	9,156	10,028

[^46]
B - Corrinsued

Voldntary Qutitinc) in Indifidual Estabinsbonents and Specifisd Cities, 1917-18

18

or		Pax Cuny				
niz Yeat Who		Yank Who				
LxyT Voluntakill	Total	$\begin{array}{\|c\|} \text { Wrax } \\ \text { Dras } \\ \text { cangex } \end{array}$	$\begin{aligned} & \text { Wrizz } \\ & \text { Law } \\ & \text { Owiz } \end{aligned}$	Evirexp Minitary Senvict	Lert VoudsHargix	
Demar						
11,230	14,631	1	x	21	77	Automobile mfg.
1,368	2,123	5	14	8	77	Automobile parts, mig
20,916	30,191	16	7	8	69	Autonnobile mfg.
3,58x	6,787	14	18	5	53	Automobile parts, mig.
273	423	28	-	7	65	Automobile parts, mfg.
183	537	10	48	8	34	Automobile mig.
34,167	45,808	12	8	6	75	Automobile mfg.
369	613	24	5	ro	60	Automobile mfg.
1,512	x,680	5	3	1	90	Automobile parts, mig.
4,489	5,795	13	4	5	77	Automobile perts, mfg.
4824	1,135	ro	-	8	82	Chemicals and drug mfg.
888	978	8	-	3	92	Clothing \& overalls, mfg.
2,190	2,433	8	-	9	83	Machine tools, mfg.
344	384	5	-	6	90	Iron \& st'l($\mathrm{sm}^{31} \mathrm{p}$ 'ts.), mfg.
290	695	85	36	8	42	Steel forgings, mfg.
918	x,066	6	3	6	86	Steel castings, mfg.
482	567	8	5	3	85	Structural steel mfg.
694	899	15	-	8	77	Steel forgings, mfg.
2,805	2,057	8		4	88	Screw mach. products, mig. Public utilities:
809	1,040	9	-	13	78	Gas mfg.
68	106	14	3	19	64	Tel. serv. (Comm. dept.)
95	145	9	14	9	67	Tel. serv. (Clerical)
318	510	13		17	62	Tel. serv. (Installation)
2,463	3,015	88	(i)	1	82	Tel. serv. (Traffic)
453	633	8	4	17	7 7	Tel. serv. (Constraction)
1,464	1,874	19	-	2	78	Slaugh'gand m't pack ng
91.564	125,117	14	7	8	73	Total

of y per cant.

TABLE
Type of Separatyon (Discharge, Lat-Off, Entiy dito Mititary Servicy, or 1913-14 AND

1917-

Indugiry or Naturi or Busparss		$\begin{gathered} \text { Nucbirg } \\ \text { Worcress } \end{gathered}$			NuTbis
			Euployites Leavda Duetra		
			Wrre DIS- CfArgid	Waxe Late Orz	
Motor vehicles and parts, mfg. Automobile parts, mfg. Chemicals, mfg. Chemicals, mfg. Textiles, mfg. Textiles, mfg. Leather mfg. Rubber goods, mifg. Machinery (heavy) mfg. Machinery (heavy) mfg. Machinery (heavy) mfg. . Machinery (heavy) mfg. Machinery (heavy) mfg. Heating devices Electrical appliances, mfg. Electrical appliances, mfg. Castings, mfg. Household metal ware mfg. Public utilities: Street railw's, etc. Total	Mriwautie				
	242	1,665	216	170	280
	343	1,246	362	323	233
	244	346	14	-	52
	245	876	250	350	318
	246	820	60	22	-
	247	468	-134		26
	248	3,168	604	30	224
	249	1,275	298	22	216
	250	638	123	8	63
	251	4,732	431	-	453
	252	524	62	-	56
	253	998	202		140
	254	1,300	116	6	146
	255	238	11	-	22
	256	464	105	8	13
	257	1,181	270	48	180
	258	542	120	48	10
	259	540	90	80	60
	262	3,643	460	55	350
	[19]	24,664	3,917	1,142	2,842
	Sam Francesco				
Explosives, mfg. Agricultural implements, mig. Structural iron and steel, mfg. Mercantile establishment Mercantile establishment Mercantile establishment Public utilities: Gas and elec. (Main office) Gas and elec. (Metro. district) Gas and elec. (Country dist.) .	265	1,795	812	-	338
	267	2,224	436	-	372
	268	500	100	250	71
	269	85	24	14	20
	270	244	42	86	18
	271	899	62	431	
	273	308	28	52	27
	274	1,173	26	1,350	128
	275	3.424	514	3,864	324
Total	[9]	10,65 ${ }^{\text {a }}$	2,044	6,047	1,278

B-Concluded
Voluntary Qutitino) in Individoal Estabinshicents and Sprcified Cities; 1917-28

18

0		Prin Comy				
ciri Yane Wmo						Impury or Nasuris of
LTIT VoLthe 	Tothe	$\begin{array}{\|c\|} \hline \text { Wrex } \\ \text { Drga } \\ \text { cinalion } \end{array}$	$\begin{aligned} & \text { Wraz } \\ & \substack{\text { Lamp } \\ \text { Orn }} \end{aligned}$		$\begin{aligned} & \text { L.syr } \\ & \text { Vonvir } \\ & \text { canay } \end{aligned}$	
Mrwabien						
2,083	2,746	8	6	10	76	Motor vehic's \& p 'ts, mfg: Automabile parta, mip
2,759	3,677	10	9	6	$\begin{aligned} & 75 \\ & 80 \end{aligned}$	Automobile parts, mfg. Chemicals, mfg.
544 2,824	670	3	9	8	89	Chemicals, mig. Chemicals, mfg.
2,624 692	3,784	8	3		89	Textiles, mfg.
699	859	16	3	3	8 F	Tertiles, mig.
5,760	6,618	9	ic)	3	87	Leather mfg.
4,053	4,589	6	(3)	5	88	Leather goods, mfg.
609	803	15	$\underline{1}$	8	76	Machinery (heavy mig.
5.825	6,699	6	-	7	87	Machinery (heavy mif.
669	780	8	-	7	85	Machinery (heavy) mig.
x,758	2,100	10	(1)	7	85	Machinery (heavy) mig.
+,855	3,083	4	(${ }^{\text {a }}$	5	91	Machinery (heavy) mig.
197	929	-	-	10	90	Heating devices
338	450	23	-	3	74	Electrical appliances, mig-
4,434	9,932	9	*	6	83	Electrical appliances, mifg.
2,319	1,470	8	2	2	80	Castings, mig. Household metal weremfg
2,433 2,863	$\mathbf{x}, 662$ $\mathbf{3}, 728$	${ }^{5}$	5	4	86	Household metal waremfg. Pub. utilities: Str't rys., etc.
2,863	3,728	12	1	9	77	Pub. utilities: Strirys., etc. Total
39,649	47,543	8	1	6	83	Total
Baz Rearour						
6,670	7,800	10	-	4	86	Explosives, mfg.
4,530	5,338	8	\cdots	7	85	Agricul. implements, mig.
601	1,039	10	3	7	59	Struc. iron and steel, mfg.
63	131	10	12	16	52	Mercantile establishment
865	409	10	8	4	64	Mercantile establishment
1,075	1,508	4	87	-	69	Mercantile establishment Public utilitiea:
94	801	14	26		47	Gas zelec. (Main off.)
158	1,056	3	8.	8	9	Gest elec (Metr, dis)
3, 854	8,556	6	45	4	45	Gas os elec. ($\mathrm{C}^{\prime} n^{\prime} \mathrm{y}$ dis.)
27,302	*6,672	8	3	5	65	Total

[^47]
TABLE

Numpeq and Per Cent of Elmpoyers in the Unstable Part of the Woukng Accessions, Serarations, and Flid, in Individual

Inpugizy oz Natuer or Buminess		Total Wonexing Fozes	Numaziz ns Cons tinuons Sizvice Over Onte Yeaz	$\frac{\text { Ungtasir }}{\text { Nombis }}$
	Crienco			
Clothing, men's, mig.	103	6,027	3,871	2,156
Printing presses, mfg. .	104	764	594	170
Agricultural implements, mfg.	105	4,21I	3,596	615
Agricultural implements, mfg.	106	5.759	3,890	1,869
Machinery (coal mining), mig.	107	6 II	356	255
Mail order house .	110	1,042	665	367
Brass and metal specialties, mfg.	114	283	108	175
Office appliances, mfg. . . .	116	667	239	428
Public utilities: Telephnne service	124	13,604	10,905	2,699
Total	[9]	32,968	24,224	8,744
	Mcimauxie			
Motor vehicles and parts, mfg. Machinery (heavy) mfg. Public utilities: Street railways, etc.	242	x,665	819	846
	250	638	392	346
	262	3,643	2,300	1,343
Total .	[3]	5,946	3,511	2,435
	Cuerrlard			
Automobile and motor truck mfg.		4,456	2,795	1,661
Automobile and motor truck mfg. .	458	2,173	298	1,875
Street railway cars, mfg. - ${ }^{\text {a }}$,	159	344	123	221
Storage batt's and carbon prod's mfg.	166	1,610	757	853
Woodwork, sewing mach. cabinets, etc.	169	1,514	964	550
Machine tools, mfg.	172	r, 263	592	671
Machinery (heavy) mig. : . . .	173 176	940	448	492
Metal wire, etc., mig. -	176 179	917 590	605	312
Electrical appliances, mfg.	180	393	$\underline{3} 9$	109
Malleable iron castings, mig. . ${ }^{\text {a }}$	183	937	401	536
Telephone service (Clerical force)	19x	102	44	58
Telephone service (Oper. force)	192	1,368	914	454
Telephone service (Plant dept.)	193	1,267	372	895
Total	[14]	17,874	8,883	8,99x

C
Force, Ntiritr in Continuous Servicr Over One Year and Nunaer of Establishicents and Spectirid Cities, 19r7-18

Foacs	Labor Cannoms			Industiy or Naturi or Bugmess
Pria Cumr	Accicer nion	Sxpala, tion	Total (FLUX)	
Cricano				Clothing, men's, mig. Printing presses, mfg. Agricultural implements, mfg. Agricultural implements, mfg. Machinery (coal mining), mfg. Mail order house Brass and metal specialties, mfg. Office appliances, mfg. Public utilities: Telephone service
36	5,731	7,240	12,97x	
22	510	475	98 F	
15	2,865	2,963	5,827	
32	5.486	4,729	10,215	
42	782 +388	$\begin{array}{r}764 \\ \\ \hline\end{array}$	1,546	
36 62	2,358 590	1,332 $\mathbf{5 3 6}$	2,690 $\mathbf{1 , 1 2 6}$	
64	1,879	1,712	1,126 $\mathbf{3 , 5 9 1}$	
20	9.524	11,454	20,978	
37	28,725	31,200	59,925	Total
Miwaurise				Motor vehicles and parts, mig. Machinery (heavy) mfg. Public utilities: Street railways, etc. Total
50	2,435	2,748	5,183	
39	981	803	1,734	
37	3,058	3,728	6,786	
41	6,494	7,279	13,703	
Criverum				
	3.552	2,878	6,430	Automobile and motor truck mfg.
86	5,179	6,289	21,468	Automobile and motor truck mfg.
64	1,016	2,038	2,054	Street railway cars, mifg.
5	6,036	5,789	[1,825	Storage batt's and carbon prod's mig.
36	3,410	4.566	7,976	Woodw k, sewing mach. cabinets, etc.
53 52	3,520	1,556	6,076	Machine tools, mfg.
34	2,286	1,386	3,67a	Metal wire, etc., mfg.
56	$\mathbf{x}, \mathbf{8 8}$	x,290	2,571	Sewing machines, mfg.
51	947	776	1,717	Electrical appliances, mig.
57	3,077	3.091	6,168	Malleable iron castings, mig.
57	132	140	372	Telephone service (Clerical force)
35	2,328	2,*69	4.590	Telephone service (Oper. force)
72	2,400	3,889	5,089	Telephone service (Plant dept.)
50	56,649	37,443	13,992	Total

TABLE
Number and Per Cent of Employees in the Unstable Part of tee Workng Accessions, Separations, and Flitx, in Indivdual

Industry on Nature or Bubingss				$\underbrace{\text { Nubix }}_{\text {Nustable }}$
	Detroit			
Automobile mfg.	204	135	51	84
Clothing and overalls, mfg. . .	216	480	248	232
Iron and steel (small parts), mfg.	221	218	163	55
Heating devices, mfg.	222	497	179	318
Steel forgings, mfg.	225	316	164	152
Steel castings, mfg.	227	390	156	234
Structura steel, mfg.	228	I6I	82	79
Electrical appliances, mfg. . .	229	213	73	140
Public utilities: Gas mfg. . . ${ }^{\text {a }}$	235	1,933	977	956
- Tel. serv. (Com. dept.)	236	16 r	98	63
Tel. serv. (Cler. force)	237	138	76	62
Tel. serv. (Installat'n)	238	43 F	253	178
Tel. serv. (Construc'n)	240	331	149	182
Total	[13]	5,404	2,669	2,735
	Conctinati			
Textiles (cotton), mfg.	133	330	280	50
Machine tools, mfg. -	137	127	85	42
Machine tools, mfg.	138	602	272	330
Machinery (specialties), mfg.	139	669	328	341
Machinery mfg. . . .	140	407	274	133
Machine tools, mfg.	141	883	606	277
Engineering specialties, mfg.	146	1,150	670	480
Printing and publishing (books) .	150	244	201	43
Printing and publishing (miscel.)	151	767	508	259
Tota	[9]	5,179	3,224	1,955
	San Francisco			
Oil refinery .	263	421	158	263
Sugar refinery	264	1,259	420	839
Machinery mfg. .	266	173	71	102
Mercantile establishment	269	85	42	43
Mercantile establishment	270	244	119	125
Total	[5]	2,182	810	r,372

C-Concluded
Force, Number in Continuous Service Over One Year, and Nupber of Establishments and Specified Cities, 1917-18

Force	Labor Cranges			Industry or Nature of Bubmiss
Per Cent	$\begin{gathered} \text { Aocess- } \\ \text { SIONs } \end{gathered}$	SkparaTIONS	$\begin{aligned} & \text { Torat } \\ & \text { FIUXX) } \end{aligned}$	
Detrotr				Automobile mfg. Clothing and overalls, mfg. Iron and steel (small parts), mfg. Heating devices, mfg. Steel forgings, mfg. Steel castings, mfg.
62	477	537	1,014	
48	686	978	I,664	
25	392	384	776 2,005	
64 48	834	1,167	2,001	
60	$\begin{array}{r}\text { 1, } 210 \\ \hline 196\end{array}$	1,056	1,605 2,362	
49	543	567	1,110	Structural steel, mfg Electrical appliances, mfg.
66	744	744	I,488	
49	1,585	1,040	2,625	Public utilities: Gas mfg.
39	104	106	210	- Tel. serv. (Com. dept)
45	167	141	308	Tel. serv. (Cler. force)
4 I	533	510	1,043	
55	628	633	1,261	Tel. serv. (Cons'n)
51	8,899	8,568	${ }^{17,467}$	Total
Cincinematr				
15	354	369	723	Textiles (cotton), mfg. Machine tools, mfg. Machine tools, mfg. Machinery (specialties), mfg. Machinery mfg. Machine tools, mfg. Engineering specialties, mfg. Printing and publishing (books) Printing and publishing (miscel.)
33	103	73	176	
55	1,020	980	2,000	
51	847	860	1,707	
33	502	567	r,069	
31	1,363	1,166	2,529	
42 18	2;030 88 8	1,989 119	4,019	
34	667	8 KI	1,478	
38	6,968	6,934	13,902	Total
San Francisco				Oil refinery Sugar refinery Machinery mfg. Mercantile establishment Mercantile establishment
62	1,141	980	2,121	
67	3,566	3,015	6,577	
59	26 I	362	623	
51	138	121	259	
51	435	409	844	
63	5,541	4,883	10,424	Total

TABLE D
Labor Mobility by Months, from January, igio, to December, igig, Inclusive

Year and MONTH	$\begin{gathered} \text { NumbRr } \\ \text { OF } \\ \text { FULL- } \\ \text { YEAR } \\ \text { WORKERS } \end{gathered}$	Totat Labor Hours (Thou- SANDS)	Labor Cenanges					
			Number			Rate pez Foll-tice Worker		
			AccesSIONS	SeparaTIONS	Total	AccesSION	SeparaTION	Totaz (FiUk)
1910								
January	9,684	2,421	1,025	1,004	2,029	1.26	1.23	2.49
February	8,754	2,189	835	1,024	1,859	1.14	1.41	2.55
March .	9,630	2,407	1,573	I,445	3,018	1.95	1.80	3.75
April	8,832	2,208	1,558	1,518	3,076	2.13	2.07	4.20
May	8,585	2,146	1,552	1,346	2,898	2.16	1.89	4.05
June	9,006	2,252	1,634	1,271	2,905	2.19	1.68	3.87
July	10,353	2,588	1,530	I,555	3,085	1.77	1.80	3.57
August	6,937	1,734	1,I4	1,218	2,359	1.98	2.10	4.08
September	10,24	2,560	I,I24	1,261	2,385	1.32	I. 47	2.79
October	9,042	2,26I	850	870	1,680	1.08	I. 54	2.22
November	9,717	2,429	705	844	1,549	. 87	2.05	1.92
December	8,334	2,084	344	411	755	. 51	. 60	I. II
19 II								
January	13,727	3,432	699	839	1,538	. 60	.72	1.32
February	14,806	3,701	954	840	1,794	. 78	. 69	1.47
March	13,770	3,442	1,136	888	2,024	. 99	.8	1.77
April	13,836	3,459	1,090	992	2,082	. 96	. 87	1.83
May	15,150	3,788	1,429	1,259	2,688	1.14	. 99	2.13
June	13,923	3,481	1,313	1,286	2,599	1.14	$\underline{1.17}$	2.25
July •	I4,OI3	3,503	1,070	1,222	2,292	. 93	1,05	1,98
August .	12,786	3,196	1,190	1,081	2,271	1.11	1.02	2.13
September	14,015	3,504	709	932	1,641	. 60	.81	1.41
October	13,840	3,460	652	942	1,594	.57	.81	I. 3^{8}
November	14,651	3,663	556	1,026	1,582	. 45	. 84	1.29
December	13,049	3,262	344	878	I,222	.33	.8I	I.I4
1912								
January	14,624	3,656	736	884	1,620	. 60	. 72	I.32
February	13,432	3,358	751	874	1,625	. 66	.78	1.44
March	I3,346	3,337	993	887	r,880	. 90	.85	1.75
April	13,538	3,384	r,319	1,043	2,362	1.17	. 93	2.10
May	15,065	3,766	1,385	1,435	2,820	I. 11	1. 14	2.25
June	I3,778.	3,444	1,611	\%,049	2,660	1.45	. 90	2.31
July	- 15,127	3,78	-1756	1,400	3,156	1.38	1.11	2.49
August -	14,077	3,519	1,801	1,363	3,164	1.53	1.17	2.70
September	15,832	3,958	1,886	1,362	3,248	1. 44	1.02	2.46
October	16,307	4,077	-2,059	1,395.	3,454	1.53	1.02	2.55
November*.	r9,6r3	. 4,903	i,996	1,368	3,364	1.23	.84	2.87
December	17.435	4,359	1,585	1,172	2,757	1.08	.85	1.89

1 Seee footnote on page 215,

TABLE D-Comtimued

Labor Mobitity by Montis, from Jantary, rgit, 10 Decribert, 19ig, Incuusive

Yens andMonit		TOTALThaborROURS(Thot-SANDS)	Lamor Ceanges					
			Nunbre			Rate par Fun-tocy Wonger		
			Accest sKONB	$\begin{aligned} & \text { SEpaind- } \\ & \text { TIONs } \end{aligned}$	Totar	$\begin{gathered} \text { Adcise- } \\ \operatorname{SION} \end{gathered}$	$\begin{gathered} \text { SEpara- } \\ \text { tion } \end{gathered}$	Tomar (Fldx)
1913 Tanuary			24,185	18,365	42,550	1.83	1.4x	3.24
February	156,126	39,032	19,737	17,558	37,295	1.53	1. 35	2.88
March	168,238	42,059	23,267	24,219	47,486	1.65	1.74	3.39
April	161,965	40,491	28,203	24,731	52,934	2.10	1. 83	3.93
May	166,511	41,628	25,10I	25,948	52,049	1.89	1.86	3.75
June	158,475	39,619	20,443	20,483	40,926	1.56	1.56	3.12
July	159,221	39,805	18,451	20,853	39,304	I. 38	I. 56	2.94
August	167,001	41,750	14,847	17,203	32,050	$\underline{1.08}$	1.23	2.31
September	152,311	38,078	13.453	16,650	30,103	I. 05	1.32	2.37
October	157,428	39,357	11,607	13,233	24,840	. 87	1.02	1.89
November	156,452	39,113	9,456	10,45	19,907	.72	.81	1.53
December	153,208	38,302	7,061	9,048	[6,109	. 54	.72	1.26
$\begin{array}{r} 1914 \\ \text { January } \end{array}$	43,125	10,781	2,513	2,126	4,639	. 69	. 60	X. 29
February	43,342	10,835	2,716	1,886	4,602	. 75	51	1.26
March	42,771	10,693	2,994	2,460	5,454	. 84	. 69	1.53
April	45,0¢4	II, 253	2,552	2,358	5,405	. 69	$\cdot 75$	I. 44
May	39,793	9,948	2,423	4,108	6,53I	. 72	1.23	1.95
June	40,867	10,217	3,239	4,168	7,407	. 96	1.23	2.19
July	39,487	9,872	2,93i	1,975	4,906	. 90	. 60	1.50
August	42,512	10,628	3,37I	3,097	6,468	. 96	87	1.83
September	44,116	11,029	4,364	2,323	6,687	1.20	. 63	1.83
October	56,668	14,167	3,565	3,279	6,844	. 75	. 60	1.44
November	58,192	14,548	3,001	2,269	5,270	.63	. 48	1.15
December	57,636	14,409	3,189	2,759	5,948	. 66	. 57	1.23
$\begin{array}{r} \text { rgrs } \\ \text { January } \end{array}$	87,031	21,758	4,349	3,957	8,306	. 60	. 54	$\underline{5.74}$
February	86,061	21,515	5,199	4,620	9,819	. 72	. 63	0.35
March	91,589	22,897	6,400	6,096	12,496	. 84	.8r	1.65
April	86,224	21,556	8,107	4,868	12,975	1.14	. 69	1.83
May	89,519	22,380	6,767	5,227	11,994	. 90	. 69	1.59
June	96,801	24,200	7,08I	4,867	11,948	.87	. 60	1.47
July	93,716	23,429	6,058	5,879	11,937	. 78	75	1.53
August.	94,034	23,508	6,597	5,419	12,016	. 84	. 69	1.53
September	107,960	26,990	13,184	8,213	21,397	1,47	. 90	2.37
October	99,74I	24,935	12,06x	6,256	18,317	1. 44	-75	2.59
November	67,672	16,918	11,558	6,268	17,826	2.04	1.15	3.15
December	92,223	23,056	11,796	6,077	17,873	1. 53	.78	2.31

TABLE D-Continuct
 Inclusive

$\begin{aligned} & \text { Yene and } \\ & \text { Moman } \end{aligned}$		Totar Labis Houns (гAkPDS)	Lansoz Canmota					
			Number					
			Acests. STON	SeparlaHome	Tothi	Accession	SEbrazamox	Torst (Fivax)
29r6								
January	46,885	11,729	8,649	4,994	13,643	2.23	1.29	3.51
February	53.54 x	13.385	10,35 ${ }^{\text {1 }}$	5,637	15,983	2.32	8.36	3.57
March	56,410	14,102	7.348	6,706	14,054	1.56.	1.44	3.00
Aprit	59,237	14,809	10,321	5,737	16,058	2.10	1.17	3.97
May	58,143	34,536	8,518	7,091	15,609	2.77	1.47	3.24
June	58,153	14,538	6,730	9,280	16,010	1.38	$x .97$	3.30
July	57,505	14,376	5,346	4,678	10,024	1.15	. 99	2.10
August.	57,866	14,466	7.727	5.733	13.460	1.59	1.20	2.79
September	60,549	15,137	6,455	5,087	11.542	1.29	2.02	2.37
Octoher	62,492	15,633	6,336	4,205	10,541	1.23	8 st	2.04
November	63,408	15,853	3,975	3,811	7,742	.75	78	5. 47
December	64,424	16,106	5,499	38884	9,383	1.02	$7{ }^{2}$	1.74
$\begin{array}{r} 1097 \\ \text { January } \end{array}$					8,007	1.26	$\underline{1} 59$	7.85
February	32,260	8,065	2,948	3,368	6,316	1.15	2.26	3.37
Manch .	21,217	5,303	2,057	2,099	4,156	1.57	$\underline{1,20}$	2.37
April	21,667	5,417	2,416	3,652	5,068	t.35	1.47	2.82
May	28,487	7,122	4,871	4,700	9,575	2.04	1.08	400
June	32,572	8, 1443	5,449	4,921	10,370	2.01	$\underline{1.80}$	3.81
Judy	35,637	8,909	5,265	5.074	10,339	1.77	2.71	3.48
August.	37,308	9,350	6,661	6,137	12,798	2.13	1.98	4.15
September	37.723	9,431	6,288	6,022	12,310	2.08	1.92	3.93
October	38,583	9.646	6,746	5,127	11,873	2.10	5.59	3-69
November	47,401	x 5,850	7,209	6,076	13,285	1.83	1.53	3-36
December	39,994	9,998	5,307	6,488	14,795	1.59	1.95	3-54
19×8 January	37,973	9,493	5,860	5,238	31,098	1.86	8.65	3.5x
February	37,008	9,252	4,953	5,563	$10,5{ }^{1} 5$	1.62	2.80	3.42
March	37.387	9,347	6,636	6,447	13,083	2.13	2.07	4.20
April	37,924	9,48土	8.332	7, 2288	15,550	2.64	2.28	4.92
May	35,819	8,955	7.793	6,356	14,948	2.68	2.10	4.71
June	$30,3 x 9$	7,5\%0	5.537	4,789	10,326	2.19	8.89	4.08 4.76
July	24,446 23,877	6,177 5,969	4,652 3.953	4,024 4,320	8,676 8,273	2.88 1.88	2.4 .98 2.15	4.26 4.24
August.	23,877 21,299	5,969 5,315	3,953 2,954	4,320	8,273 5,597	1.08 1.65	2.56 $\mathbf{1 . 5 0}$	4.24 3.15
October	21,89 21,817	5,454	2,702	${ }_{3,850}$	5.5592	1.50	1.56	3.06
November	28.352	7,088	3,878	7,350	6,318	1.65	+69	2.64 7.40
December	23,476	6,619	2,496	3,043	4,538	1.32	2.08	3.40

Soep fooknote at page arz.

TABLE D - Condiuded
Laboz Mobinty ey Months, flon Jandarx, 19io, 70 Decrimer, 1919, Inclusive

INDEX

Absenteeism, records, 167-169.
Accessions, 8, 56-60; length of service and, 56.
Annual data, 36.
Attendance, es a basia of computation, 11, 18.
Automobile industry, turnover in, 25, 49, 50-53, 1x8-xar.
Average weekly service rates, 139-140.
Base, in turnover computation, 9-Ir.
Boston, turnover in, 47, 579-173, 190298.

Broken time, effect of, on computation, 9-15.
Business cycles, labor mobility and, 34-35, 38.

Car building industry, labor mobility in, 76-77, 108-109.
Casual haborers, length of service of, 135-136.
Causer of separation, 99-108; ambiguity of data, 96-97; difficulty of ascertaining, $95-96$; in mercantile establishments, 99-ros; in metal trades, 06.

Causes of turnover, 78-10s.
Chemical industries and refineries, length of service in, x18-121; tumover, 50-53.
Chicego, statistica of labror mobility in, 47, 174-173, 178-179, 190-192, 196197, 204-805.
Cincionali, turnover in, 47, 174- 275 , 178-18t, 190-191, 198-199, 206-407.
Cities, turnover in different, 47, 17\%189.

Cleveland, turnover in, 47, 174-175, 180-183, 192-193, 198-199, 204-205. Clothing industry, length of service in, 118-1ax, 137; turnover, 49, 50-53.
Common labor, mobility of, 72-74-
Computation, 22-26; changes suggested, 15; relation between different methods, 26; Rochester method, 9, 12.
Cyclical fluctuations, 34-35, 38, 105105.

Daily attendance, as base in computa- . tion, $11,18$.
Definition of terms, 8, 21.
Detroit, turnover in, 47, 174-175, 182185, 19:-193, 200-901, 506-20\%.
Discharge rates, effect of business conditions on, 34-35; effect of war canditions on, 84-85.

Employers, in relation to labor stability, 3 .
Employment policics, 29-33.
Employment recards, 165-169; need of, 30.

Equivalent full-time worker. San "Fullyear warker."
"Floaters," $60,135-136$.
Fhur, meaning and use of term, 13, 15 . Fiux rates, for whole and for unstable parts of wort force, 148-150.
Force maintenance. See "Rephace: ment."
Formula for computation, 14
"Full-year worker," meaning of term, 15, 18; relation to paytroll figures, 9-12.

Gas and electricity manufacturing, turnover in, 49, 50-53, 118-121.

Identical establishments, changes in turnover in, between war and pre-war periods, 64-65. .
Industrial conditions, effect on turn-

- over, 34-35; 38, ros-106; effect on proportions of separations of different types, 80-87.
Industrial Relations Association of America, 8.
Industry groups, turnover in different, 49, 50-53, 118-121; type of separation and, 86-89.
Instability, causes of, 78-IO2; difficulty of ascertaining causes, $93-96$.

Job replacement, frequency of, 159-162.
Labor change, meaning of term, 12-13; rates, 13 .
Labor changes, estimated number, 4243; necessary and unnecessary, 43-46.
Labor flux. See "Flux."
Labor hours, use of, in computation, II, 15, 18, 22-24.
Labor mobility, an establishment problem, 3 ; general extent, $34-60$; in individual establishments, $6 \mathrm{r}-77$; meaning of term, 7 .
Labor policy, turnover and, 29-33.
Lay-of rate, effect of business conditions on, 34-35; effect of war conditions on, 84-90.
Leather and rubber goods, turnover in, 49, 50-53, 118-r21.
Length of service, statistics of, by industries, $118-121$; in war and pre-war periods, 1x7; of casual laborers, 135136; of male and female employees, 123-131; of skilled and unskilled, 132, 135-136, 158; in men's clothing industry, 137; record form for, 166 167; statistics of, 115-142.

Machinery manufacturing; turnover in, 49, 50-53, 118-121,
Measurement of turpover, 7-28; standard of, 9-11, 21-22.
Men's clothing industry, length of service in, 137 .
Mercantile establishments, causes of separations from, 99-ro2; turnover in, 49, 50-53.
Metal trades, causes of separations, 96 ; turnover in, 49, 50-53, 118-121.
Methods of computation, 7-28.
Milwaukee, turnover in, 47, 176-177, 186-187, 202-203, 204-205.
Mobility rates, establishments classified according to, 63 .
Monthly data, 104-105, 107, 108-109, 1II, 208-2II.

National Association of Employment Managers, 8.
National Personnel Association, 8.
Necessary turnover, extent of, 43-46. .
New York City, turnover in, 47, 176177, 192-193.
Night shift, turnover on, compared with day shift, 71, 107.
Normal work force. See "Standard work force."

Occupations, turnover in different, 7677, 108-109.

Padded pay rolls, effect on computation, 9-1r.
Pay-roll data, use of, in turnover computation, 9-10.
"Percentage of turnover," 12.
Personnel policy, and labor stability, 29-33.
Plant curtailment, 21, 23.
Printing industry, turnover of laborers in, 135-136.
Printing and publishing, turnover statistics, 49, 50-53, x18-121.

Prosperity and depression, turnover in, - 34-35, 38, 105-106.

Public utilities, turnover in, 49, 50-53, 118-125.

Quitting rate, close correspondence of, with total separation rate, $8 \mathrm{r}-83$.

Rates, use of, in reporting turnover, 1213, 22, 33-24, 36-27.
Reasons for leaving, 92-102; in metal trades, 96 ; in mercantile establishments, 99-102.
Records, of absentees, $168-169$; of length of service, 166-167; of turnover, 164-165.
Reduction of turnover, 29-33.
Rehiriags, 58-59, tor.
Replecements, importance of, $7-8, \mathbf{I 3}_{1}$ 14, $15,18$.
Responsibility for turnover, of different employee groups, 5 54-16a.
Rochester Conference, 8, 9.
Rochester formula, $8,26$.
Rubber goods manufacturing, turnover in, 49, 50-53, 118-12x.

San Francisco Bay region, turnover in, 186-187, 208-203, 206-107.
Seasonal Auctuations, roj-1r4.
Separation, types of, 78 -92; proportion of different types, by industries; 86 89 ; rate of, in relation to skill, 91.
Separation rate, inadequacy of, 8 .
Ser, turnover dath classified acconding to, 66-69, $244,236,288-13 \mathrm{x}$.
Sire of establishment, turnover and, 55,
Skill, and stability, 73, 91, 132, 135-136, 158.

Slaughtering and mont packing, turr over in, 49, 50-53, 118-12k.
Stabitity of labor. See "Mobility."
Stabilization of wort force, recond of ten selected firms, $99-33$.
Stable and unstable employees, $\mathbf{1 4}-153$,

Standard of measurement, 9-11, ax-22. Standard work force, 15,18 .
Street railways, turnover on, 49, 50-53, 118-195.

Telephone service, statistics of turnover in, 50-53, 718-122.
Tertile manufacturing, clothing and, 50-53, 118-121.
Transportation. See "Street railways."
Turnover, causes of, 92-r02; meaning of, 7-8, 12-15; among skilled and unskilled workers, 73, 9x, 132, 135 136,158 ; of males and females, $66-69$, 124, 126, 128-131; by cities, 47, 172207; by industries, 49, 50-53, 118x2x; in mercantile establishments, 50-53, 99-10a; seasomal influences on, 103-114; the business cycle and, $34-$ $35,38,105-106$; in identical plants, $64-65$; necessary and unnecessary, 45-45; in different occupations, 76 77, ro8-109; in war and pre-war periods, 47, 5x-53; labor policy and, 29-33; percentage, 12; records, $163-$ 169; gize of plant, 55; responsibility for, 154-163.
Types of separation, 7^{8-92}.
Unemployment, turnover and, 2,3 .
United States Bureau of Labor Statistics, $4-5,8,9,13,22,26-27$.
United States Commission on Industrial Relations, 133.
Unnecessary turnover, amount of, 4445.

Unskilled workers, turnover among, 73. 91, 132, 135-136, 158.

Volume of turnover, 34-6a.
Voluntary quitting, importance of, 79 .

Wisconsin Free Employment Ofice, 133 .
World War, habor mobility and, 84-90.

[^0]: ${ }^{1}$ The following special articles, dealing with the labor turnover situation in different cities and in particular plants and industry groups as revealed in these investigations, have been published by the Burean of Labor Statistics in the Moutliy Labor Rovica:
 Brissenden, P. F. "Labor turnover in the San Francisco Bay region" (February, 1919).

 Kivh, Fintian F. "Labor turnover in Milwauke" (Apri, 1919).

[^1]: ${ }^{2}$ Parts of this chapter originally appeared in somewhat different form in an article on "The Mensurement of Labor Mobility," 88 Jowns. Poili. Eame 44476 (June, 1920).

[^2]: ${ }^{1}$ Other expressions roughly synonymous with "labor mobility" are "labor change" and "labor shifting." (See p. 12.)
 ${ }^{2}$ That is to say, the number of separating employees who have to be (and actually are) replaced.
 -Streatraitway employnent in the United States, Bureau of Labor Statistics Bulletin 204, pp. 193-203.

 - See articles on labor turnover in the Monthly Labor Review for October, 1918, and January, February, and March, 19rg. The separations method is the one which has been used most commonly. It has been authoritatively erpressed in the formula adopted by the National Association of Employment Managers, which later changed its name to the Industrial Relations Association of America, and which has nów become the National Personnel Association. (Standard defnition of labor turnover and method of computing percentage "labor turnover" formulated by a special committee at the Rochester Conference of Employment Managers, Rochester, N. Y., May, 1918. This "standard definition" is given in full in the Monthly Labor Reriew of the U. S. Bureau of Labor Statistics for June, 1918, pp. 172-173.)

[^3]: ${ }^{1}$ Year ending May 35, 1918.
 ${ }^{2}$ Year ending June 30, 1915 .
 ${ }^{2}$ No report

 - Average daily work force.
 - Calendar year 1915.

[^4]: ${ }^{1}$ The phrase "percentage of turnover" has also been used to express "the ratio of the total number of separations . . . to the average number of employees on the force report." - Standard definition of labor turnoner and metkod of compuling the percentage of habor turnover, National Conference of Employment Managers, Rochester, New York, May 9 to 11, 1918, 6 Monthly Labor Revicw, 1534-1535 (June, 1918).

[^5]: The use of the expressions "labor flux," "labor increase," and "labor decrease ${ }^{2}$ has been suggested to the writers by Lacian W. Chaney, of the United States Bureau of Labor Statistics. Mr. Chaney has also suggested the terme "industrial rates" for use in general reference to labor mobility rates, wocident rates, etc. The authors wish to take this opportunity to express their indebtedness to Mr. Chaney in the whole subject-matter of this chapter.

[^6]: ${ }^{2}$ The word "quitters" is used in these pages in the sense of "terminating" and refers to all employees leaving service, for whatever reason.

[^7]: *The soco-hour basic year is a more or less arbitrary standand amount of employment, taken as being roughly equivalent to the amount of hubor time normally put in by the average fully employed industrial employee. It is not meant to discount the very real advantages of the cight-hour day.

[^8]: 1 Establishmenta pumbered below noo are those reported in tive pre-was foquiry; those numbered above 100 were covered in the later inveatigation. Concerns carrying a double pumber, thentore, appeared in both investigations.
 ${ }^{2}$ The replacement rates are marked with an asterish.

[^9]: ${ }^{1}$ That is to say, 3000 -hour workers, as explained above.

 - The chart was drawn by Mr. Leon Kirsch, formerly of the United States Bureau of Labor Statistics. Both the chart and Table 2 are reprinted by permission, from an article on "The Measurement of Labor Mobility," by P. F. Brissenden, 28 Journal of Political Ecomamy, 454-455, 457 (June, 2920). The classified separation rates are plotted on Chart E on page 83.

[^10]: ${ }^{1}$ The term "labor mobility" primarily connotes movement. From the enployer's standpoint, bowever, it will sometimes be convenient to refer to it as instability, or even to use the word "stability" - where that word seems to be appropriate.

[^11]: ${ }^{1}$ See nhove, p. 13.

[^12]: ${ }^{2}$ The Bureau's rates (as published, esg, in the Montly Laber Revicu for Jone, r9xa, pp. sfesf) may, therefore, be put upon a comparable footing with those given in this book by multiplying them by s.

[^13]: ${ }^{1}$ For more detailed treatment of this widely discussed problem of the measurement of labor turnover see: "Computing Labor Turnover: a Questionnaire," 56 Industrial Management, 239-246 (September, 1918); Doten, Carroll W., "Computing Labor Turnover," 56 Industrial Management, 339 (October, 1918); Emmet, Boris, "The Nature and Computation of Labor Turnover," 27 Jowrnal of Political Economy, ro5-ri6 (February, 1919); Crum, F. S., "How to Figure Labor Turnover," 16 Quarterly Publications of the American Statistical Associalion, 361-373 (June, 1919); Douglas, Paul H., "Note on Methods of Computing Labor Turnover," 9 American Economic Review, 402-405 (June, 1919); Slichter, S. H., "The Scope and Nature of the Labor Turnover Problem," 34 Quarterly Journal of Economics, 329-345 (February, 1920); and Brissenden, P. F., "The Measurement of Labor Mobility," 28 Journal of Political Economy, 441-476 (June, 1920).

[^14]: ${ }^{2}$ For a valuable discussion of different employment methods and their effect upon labor stability, see Sumner H. Slichter, The Twornover of Fectory Laber (New York, 1919). See also Kelly, R. W., Biring the Worher (New Yort, 1918) and Colvin, F. H., Laber Twrnover, Loyally and Owijut (New York, 1919). The following articles describe in detail the methods used in certain establishments which have successfully applied modern employment practices: "Labor Tumover and Employment Policies of a Large Motorvehicle Manufacturing Establishmeat," by Baris Emmet, Monelhy Labor Reviow, October, 19r8; "Employment Policy and Labor Stability in a Pacific Const Department Store" and "Employment Policies and Labor Mobility in a Califarnin Sugar Refinery," by P. F. Brissenden, Mowlliy Labor Revim, November and Docember, 1919.

[^15]: ${ }^{1}$ The fact that labor turnover is heaviest in periods of pmsperity partially explains the existence in such periods of the so-called "irreducible minimum of unemployment."

[^16]: 1 Taken, after shifting the retes to the full-year-morker besis, from the writers" report on "The Mobility of Labor in American Industry," 10 Mo. Lebor Res. 1347 (Juna 1920).

[^17]: The figuren in colums headed "Number of full-year worken" in this and lollowing tsblea in thia book are obtained by dividing the total labor bours by 3000 . These figures are given simply to indicate the approximate sire of the work force to make it pousible directly to compare the absolute number of libbor changee with the number of employees in the wort force.

 The figures given for 1913-14 and 1917-18 are from entablishments reporting to great detail during the two field investigations of this subject mande by the Burean of Labor Statintion in tots and 1018. The time covered by the statistical data from these establishments is a 12 -month period ending usualty about the middle of 1914 and 1918 , reapectively. This applien to the material ahown lot there dites throughout this book.

 - Computied, as aiready explained, by dividing number of labor changes by the total pumber of hbos hoors and multiplying by soon. The mene reaulta, of courre, will be obtained by dividing the labor-change numben by the corretpanding numbers of full-year worten.

[^18]: 'This is dona, not so much because of any special importance attaching to separations as compered with accessions or flux; but in recognition of the wide prevalence of the conception of separations as turnover and the common habit among employers and employment managers of speaking of the "percentage of turnover ${ }^{\text {h }}$ as signifying the number of separations per hundred employees. Since the rates per full-year worker, as computed in these pages, are so figured ss to show two decimals, it at once will be evident that the separation rates may be read directly as "percentages of turnover" by the simple expedient of omitting the decimal point. Thus, in Table $\%$, separation rate of 1.02 in rgro is the same as a turnover percentage of roa. The same method of translation is just as feay ible for these who, when they say "percentage of turnover;" meen the number of replacements per hundred employees.

[^19]: ${ }^{1}$ Reprinted from the writers' article on "Mobility of Industrial Labor," 35 Polii. Sci. Quar. 584 (Dec. 1920).

[^20]: ${ }^{1}$ Tables and chart reprinted, after recalculation of rates, from "Mobility of labor in American industry," io Mo. Labor Rev., 1349-1351.

[^21]: ${ }^{2}$ See also Table 25, in which quitting, lay-off and discharge rates are shown for different sizes of plant.

[^22]: 1 Different mills of this establishment were reported separately in 1917-18, but are here combined for purposes of comparison with $1913-14$
 : See note 1. p. 65.

[^23]: ${ }^{1}$ See also Tables 24 and 39, where additional figurea are given on turnover mong skilled and unskilled workers.

[^24]: 1 It was obviously impracticable to classify the labor changes by distinct operations - of which there were over 700 in this establishment - but the predominant and numerically most important in each department were carefully chosen and are here designated as principal occupations.

[^25]: See also Table 3x, below, where are shown monthly flux rates for the same plant, over the same re-month period, and for some of the same occupations represented in Trable sa.

[^26]: ${ }^{1}$ This chapter reproduced by permission, and with some modification, from the authors' article on "The Causes of Labor Turnover," 2 Admimistration, $649-667$ (November, 2921).

[^27]: ${ }^{1}$ Compare Chart A above, p. $\mathbf{1 g}$.

[^28]: 1 Shown on Chart A, page 19.

[^29]: ${ }^{1}$ Compare also Tables 19 and 39.

[^30]: ${ }^{1}$ Rased an 74,199,000 stilled-liabor hours and 46,980,000 unstilled-tabor hours put in during year in the ss establishments,

[^31]: 1 "Employment Policy and Labor Stability in a Pacific Coast Department Store," by P. F. Brissenden, 9 Monthly Labor Review 1399 (November, 1919).

[^32]: - Bunged ca tendard woiline fowt of sop full-geat martera.
 - Fer nive montis endios Oet. 35, 2008.

 LImethan doos.

[^33]: ${ }^{1}$ Figures for flux curve in Table 29; fgures for other curves in Appendix, Table D. The chart has been reproduced, with some modification, from report on labor mobility, io Mo. Labor Rev. 1358.
 ${ }^{2}$ Reprinted after shifting of rates to full-year worker base, from report on "Mobility of Labor in American Industry," 10 Mo. Labor Rea. 135^{6} (June, 1q20).

[^34]: ${ }^{1}$ See also Table 20 above, where mobility rates for some of the same occupetion groups given in Table 31 are shown for this same establishment for the year as a whole.

[^35]: 276, 88,000

 - The frave are obleined to this was:

 $$
 \frac{5000}{21}
 $$

[^36]: 1Set Table 12. Further applivations of the length of service deta are made in Chapters DX and \mathbf{X}

[^37]:

[^38]: : See aloo Trubles 19, 24, and 49

 - See Trable 19

[^39]: ${ }^{1}$ P. A. Speck, "Report on Floating Laborers" (Typewritten manuscript report to the Commission). Appendix ii, pp. 84-9r.

[^40]: I See Chapter VI for discussion of type of separation without reference to length of service.

 - See footnote I to Table 4\% page una

[^41]: - For detailed figures regarding stable and unstable employes in individual er tablisbments see Table C in the Appendix.

[^42]:

[^43]: ${ }^{1}$ Table 42, p. 140.
 ${ }^{3}$ The method used in Table 47 was suggested to the writers by Mr. Lucian W, Chaney, of the U. S. Bureau of Labor Statistics.

[^44]: : See, for other statistical data on skilled and unskilled workers, Tables 19, 24, and 39 -

 Obtained by dividing the number of separations in each gro:p by corresponding number of hbor hours and multiplying by 3000

[^45]: ${ }^{2}$ This method was applied originally in an analysis of labor turnover data from the San Francisco Bay region. 8 Mo. Labor Rev. 363-380. (February, 1919.)
 *This assumption is confirmed by the following:
 In two Cincinnati shops the length-of-service distribution of 1990 employees (in all occupations) leaving in r9r8, the aggregate number of days worked by them, and the average length of service in each group are as follows:

[^46]: 1 Lew thas 3

[^47]: of x por cent.

