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PREFACE 
This is an eTementary textbook, dealing with the mathe

matical part of statistics. Statistical methods are used very 
generally by investigators in widely different fields, by econo
mists, biologists, psychologists, physicists, and astronomers. 
The emphll:sis in one .field is different from that in another, 
but there is a well-defined body of material, mathematical 
in nature, which is common to all. These mathematical 
rudiments are set forth in this text. 

The course for which this book is intended will usually be 
offered to sophomores, and may, like the book, be divided 
into two parts, the first of which may be taken without the 
second. The book is, in fact, a reduction to printed form of 
two half-year lecture courses, which the author has been 
giving for the past ten years, and it has been quite the custom 
for certain students to take the first part only, substituting 
for the second part an applied course in economic or educa
tional statistics. This arrangement has been advantageous 
to all the departments concerned. The mathematics has 
been taught in the department of mathematics, and the ap
plications in the departments in which they belonged. 

A brief course in analytic geometry is presupposed, but no 
calculus - although an occasional notation is introduced 
which is borrowed from calculus, such as the integral sign to 
indicate the area under a curve. Aoalytics is inherently 
necessary to the proper understanding of statistical methods, 
and it seems to the author better to suppose that it has been 
taught already by the use of one of the excellent texts in 
analytics than to attempt to teach it along with statistics. 

Part I is distinctly easier than Part II, and it is intended 
iii 



iv PREFACE 

to provide a sufficient mathematical introduction to most 01 
the applied courses. It will probably be lound about aa 
difficult as a semester course in analytics. Part II begins 
with the theory of probability. This subject involves in
trinsically difficult notions, comparable in difficulty with 
those of the calculus. It must be presented because it lies 
at the basis of the theory of sampling. However, students 
who would be characteristically unable to think through lor 
themselves problems in probability such as are given here 
should not be encouraged to study the second part. It is 
not desirable to try to teach them sampling theory, lor 
they would not really understand it, and it is better that 
they should not acquire a superficial lacility in using the 
formulae. The subject 01 finite dift'erencea, briefly con
sidered in the closing chapter, may be taught with Part I if 
desired, being logically detached lrom the rest 01 the theory. 
Part III comprises the more necessary statistical tables and 
a separate introduction, including a more complete discu&
sion of the point binomial than might be desired in an ele
mentary text. Many of the simplest problema in probability 
require for their solution the summation of a number 01 con
secutive terms of a point binomial There is no single short 
method of obtaining even a fair approximation to this sum 
which is available for all cases. One set ollormulae works 
best in one case, another in another. In this introduction 
certain selected formulae are listed, with instructions aa to 
when each is to be used. By the aid 01 the tables, the sum
mation can be made quickly so aa to obtain the required 
probability, correct to two or three places. Part III is also 
published separately. It is supposed throughout, but espe
cially in the instructions as to the use of these tables, that 
a computing machine is at the disposal of the student; 
nevertheless most of the problems in this text can be handled. 
satisfactorily with only a slide rule and a' four-place table 
of logarithms. 
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PREFACE 

In writing this text, the author has held in mind two prin
ciples. First, every idea presented must be illustrated with a 
numerical example, and this must be followed by short 
.. exerciscs," which can be done - at the board if desired -
without any mechanical aids, and in five or ten minutes each. 
These are artificial problems involving simple numbers, and 
have been invented solely for the purpose of teaching the 
methods. Longer numerical problems, having applications 
in various statistical fields, and problems in theory, are listed 
at the close of each chapter. The second principle is that 
tacit hypotheses underlying the various methods shaD be 
exposed. This is the more necessary because in practice 
these hypotheses often fail to be realized, and it is important 
that, at the very outset of his training, the statistical worker 
should appreciate the tentative character of results in such 
cases. Moreover, it makes possible the maintenance of an 
attitude of rigorousness-of treatment which is very desirable 
for the student's proper mathematical development. 

Problem material and statistical data have been selected 
freely from several books and journals. The author's name 
is usually indicatcd where this has been done. I am deeply 
indebted to many of my students for their assistance in 
preparing the manuscript, particularly perhaps to H. G. 
Neebe, whose thorough work on the tablcs was very valuable 
to me, and to H. A. Lewis, who read with keenly critical 
mind the whole manuscript and made further special investi
gations at several points. 

B.H.C. 
MIDDLETOWN, CoNNECMct1T. 

SuTEMBERo 1930. 
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PART I: THE MATHEMATICAL PART OF 
ELEMENTARY STATISTICS 



CHAPTER I 

GRAPHS AND NOTATION 

1. Function. The student is already familiar with certain 
functions and their graphs, although the name function may 
not have been applied to them. An ex-
ample is the function represented by the tL 
parabolio curve 

11 = 2 - 3x + Xl. 

In this example the expression 2 - 3x + Xl, 

or the single variable 11 which is equal to Z 

it, is said to be a. function of x. The curve is the graph of 
the function. As in analytics, the curve is also said to be the 
graph of the equation. Now, more generally, we shall say 
that any mathematical expression involving x is ~ "function 
of x." It need not be a. quadratio expression like the 
example just considered, or even algebraic. Such expressions 
as log x, tan x, V x - 2 are functions of x. 

Example 1. If 3 + 2x + xl is a certain function of x, what is 
the same function (a) of Ill? (b) of y? (c) of - 31 (d) of (x + I)? 

The answers are obtained by substituting for x the new variable 
or number suggested. They are: (a) 3 + 211l + 1Il2, (b) 3 + 2y + 'UI• 

(c) 3 - 6 + 9 = 6. (d) 3 + 2(x + 1) + (x + 1)2 = 6 + 4z + Xl. 

We shall also use the word function in a slightly more general 
sense: 1/ is a. function of x if the value of 1/ is dependent on 
the value of x in the sense that to every one of a given set 
of values of x there corresponds a. value of 1/, whether or not 
we can explicitly describe this correspondence by means of a 
familiar type of expression. Thus (see Example 2, p. 4) 

3 
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the yearly production of cigarettes in the United States is 
dependent on and is therefore a function of the year, whether 
or not we know of, or, in fact, whether or not there exists, 
an expression defining that functional relationship. 

2. Graphs. In general, the graphs of statistics are not 
essentially different from the graphs of analytics, but there 
are a few differences worth noting. 

(a) Broken lines are more commonly used to connect 
points that have been plotted, instead of curves. This is 
because often these plotted points are not obtained by sub
stitution in the equation of a curve, as in analytics, and are 
not thought of as special points of a curve.· Often the 
function being represented does not exist except at these 
occasional points, and the broken line is drawn merely to aid 
the eye in locating the points. 

Example 2. 
UNITED STATES. 

YEARLY PRODUCTION OF CIGARETTES IN THE 

(The World Almanac.) 

90 

100.6 

192.1 J<o 
YEAR BILLIONS 

1928 66.7 
1924 12.1 

100 

82.8 KClGARETTES I 

k;' I- I 
k(j 

1926 82.S 
1926 92.1 
1927 93.0 
1928 10G.6 

80 

10 

1928 1924 1926 1926 1927 1928 

Here the function is defined by the table, and, as stated above, does 
not exist except at the points designated. For example, the number 
of cigarettes produced in the year ending December 31, 1925, was 
82.3 billions, and the number produced in the year ending December 
31, 1926, was 92.1 billions. If we wish to inquire what was the 
number produced in the year ending June 30, 1926, we have to say 
that the required information is not contained in our table. This 
is a case in which the function is not defined at the point midway 
between 1925 and 1926. Of course we may estimate this number 
by simple interpolation in the table, or, what is the same thing, by 
reading the ordinate of the straight line of the graph at the point 
halfway between 1925 and 1926; and our estimate might be better 
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if we were to draw a smooth curve through all the points instead 
of a broken line; but such an estimate would have to be recog
nized as an approximation, not as an exact figure. Often in statis
tics we are not concerned with this sort of question, and, unless we 
are, the lines are drawn merely to help us to appreciate visually 
the relative positions of the points. 

(b) The distance from the diagram to the origin is often so 
great that the origin of a well-placed diagram would lie off 
the page. When this is the case, it is well to indicate the fact 
by a broken diagram as in the following example. 

Example 3. INDEX OF WHOLESALE PRICES FOR THE YEAR 

1925; 1913 => 100 (C. Snyder). 

160 161 161 158 156 161 160 160 160 168 168 156 

Jan. Feb. Mch. Apr. May Je. Jy. Aug. Sep. Oct. N.,.. Dee. 

165 

180 
"I.WHOLESALEPRICEsV" -"-- ./ 

.........., 
166 

160 

i--- -.../ 

ocr:r J I T I I TD 
~aD. Feb. lI.b. Apr. lIal' ~.. ~l'. AUII. Sop. Oc:t. N..... Dee. 

Frequently the lower portion of the figure is omitted, for the wavy 
base line of the upper portion is believed to be a sufficient warning 
to the reader. Without a warning the diagram may be misleading, 
although literally truthful. That is, one instinctively thinks of 
percentage or relative changes in looking at a diagram, and when 
the origin is off the page, these are apt to appear more pronounced 
than they really are. On the other hand, in Example 2 it is not 
necessary to break the diagram vertically so as to indicate that the 
origin of time is also off the page. The diagram is in no way mis
leading as it is, and the origin of time is quite arbitrary. It might 
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be taken at the end of the year 1923, just as in Example 3 it is 
taken at the beginning of the year 1925. 

(c) The unit of the horizontal scale is commonly different 
from the unit of the vertical scale. This is the case 1 both in 
Example 2 and in Example 3. 

(d) Two vertical scales may be used with the same hori
zontal scale. 

Example 4. UNITED STATES STEEL CORPORATION. GROSS AND 

NET EARNINGS. 

y""" 

1923 
1924 
1925 
1926 
1927 
1928 

Billions 
1.6 

1\ 

GrOBS Earnings, 
M illi.,.. 0/ Dollars 

1571 
1264 
1407 
1508 
1310 
1374 

. ,,/ \\ 

Aller Prqerf'ed 
Dividends, 

M ilIiona 0/ Dollar. 

83.3 
59.8 
65.4 
91.1 
62.1 
82.8 

Millions 
96 

1.4 
\~ [7-~ / 

1.5 85 

76 \\ 17 I~ '\ ./ I 

\~-----" 
1.8 66 

56 

1928 1924 1926 1926 1927 1928 

1 The student may wish to add that the thing measured by the 
vertical scale does not have a common measure with the thing measured 
by the horizontal scale; that in Example 2, for instance, cigarettes and 
years are incommensurable. This is true but not exactly the point. 
We can avoid his objection by saying that the number of years elapsed 
since 1922 is related to the number of billions of cigarettes produced. 
Now these two numbers are commensurable but in our figure they were 
measured off on scales of different lengths. 
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By placing the origin off the page and shifting the units, 
one may produc.e a very misleading diagram. This is shown 
by the following example. It would appear from the diagram 
that the wage rate did not increase as rapidly as the cost of 
living, but from the table it may be seen that in the interval 

1913-1920 the wage rate was multiplied by ~::~ = 2.80, and 

the cost of living by only 2.15. So the wage rate really in
creased more rapidly than the cost of living. 

Example 5. 

v ..... Cod o/Li"nll Ind" 

1913 100 
1914 104 
1916 114 
1918 166 
1920 215 

In this diagram, if the origin of Cost 

wages had been placed at the cost Li~n 
of living origin, and if the scale 22fltl 

of wages had been made propor-
tional to the cost of living scale, 200 

the picture would have been a 
true one. 18 0 

The differences just con- 16 0 

sidered between graphs in 

HourlliRaleo/Wll/lu 
Jar Mm, in Cmt. 

19.9 
18.6 
22.2 
33.3 
55.7 

Wag .. 
60 

/; 
j" 

60 

40 

II 

statistics and those which oc- U 
>7 I~ o -__ 
f 

20 

cur frequently in elementary COST 0 ING 

analytics must not be thought 120 

V 
10 

of as separating the one sub-
100 0 

ject from the other. Graphical 1918 191' 1916 1918 19Z0 

statistics is in itself a part of A Misleading Diagram 

analytic geometry, but the features just mentioned may not 
have been presented in a first ~ourse. However, it may be 
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desirable to use certain of these same methods in graphing 
very simple curves that do occur in elementary analytics. 
This is illustrated in Problems 2 and 3 at 'the close of this 
chapter. 

3. Sums. In elementary algebra, when we add together 
a set of letters, such as t1, ~" . " tn, we represent their sum 
in the form tl + ~ + . . . + tn. In more advanced mathe
matics, it is common to designate this sum in a more compact 
manner, making use of the Greek letter, capital sigma l;, 
thus: 

n 
l; t = tl + t2 + . . . + tn. 

1=1 
(1) 

The numbers represented by these letters need not be all 
different, but, if each of the numbers is repeated several 
times, it is customary to write the sum as follows. 

Suppose 
tl occurs II times, 
t2 occurs fa times, 

tn occurs! .. times 

(2) 

The sum of all these numbers, each counted as often as it 
occurs, is: 1 

n 

l;!if, = tI/1 + td2 + ... + tn!n. (3) 
'=1 . 

Usually, in cases of this sort, t. is a measurement .of some 
kind, and I. is called its "frequency." Then the set (2) is 
called a frequency distribution. The total frequency is com
monly designated by N,: 

n 
N = l;/i. (4) 

1=1 

1 Some authors use 2:t even in a case like this. It will not be our 
general practice, although we shall resort to it occasionally, when the 
f's are small and no ambiguity will be caused thereby. 
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Example 6. The length of a hall is measured fifty times by 
means of a small rule, with the following results: 

M_r ....... ' Frequency I, 
, V.eO / 

200.1 1 200.1 
200.2 1 200.2 
200.3 3 600.9 
200.4 12 2440.8 
200.5 14 2870.0 
200.6 18 3700.8 
200.7 0 0.0 
200.8 1 200.8 

Totals 50 10024.6 

N = 50, ~tj - 10024.6. 

We shall find later that the frequency of an observation is also 
called its "weight." The sum indicated in (3) is therefore com
monly called the "weighted sum." 

4. Mean Value. The weighted sum divided by the total 
weight, or total frequency, is the II mean value." This is also 
called the arithmetic mean, or, more briefly, the mean or 
average. There are also other kinds o~ means and averages 
with which it should not be confused. This mean value will 
be denoted by l, thus: 

-1 ~ 
t = N- .6J tt/i. 

i=l 

Example 7. The mean length of the hall in Example 6 is 
10024.6/50 = 200.492 feet, for from the last column in that ex
ample we have ~tf= 10024.6; and N.= ~f= 50. 

6. Variables and Constants. In analytics we have learned 
that any letter which may take on different values is a vari
able and ordinarily it has been denoted by x or y. Let us 
now note that in the expression, 
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.. 
2;t.=tl +···+t .. • =1 . , 

the subscript letter i is understood to vary from term to term, 
beginning with the value 1 and ending with the value n. It 
is therefore a variable. The letter t also varies, but its value 
depends on the value of i, thus: tl has one value, ~ another, 
etc. So t is also a variable, but of a different kind from i. 
We shall say that i is an independent variable and that t is a 
dependent variable; in fact, t is a function of i. There is 
nothing mandatory, however, about the use of the letter t 
for the dependent and of i for the independent variable. 
Their r6les might be interchanged, thus: 

It is mandatory only that there should be a clear indication 
as to which is which. This is the reason for writing the sub
scripts and the equations, i = 1 or t = 1, underneath the· 
symbol 2;. Here we find always the independent variable. 
It is because of possible confusion of this sort that the 
shorter notation 2;t is sometimes ambiguous. It may mean .. 
2; t. = tl +. . + tn, as above, or it might mean 

1=1 • 

n 

2;t=I+2+···+n. 
1=1 

Usually the context tells the reader clearly enough which 
is meant, but when it does not, the subscripts should be 
written. In the expression, . 

i: ct. == ctl + . . . + ct,., 
.=1 

the letter c is understood to have the same value in aUthe 
terms. It, is therefore called a constant. We may now state 
two simple theorems which will be used frequently. 
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Theorem I. A constant factor of the expression following 
the symbol 2: may be moved to the left of the symbol without 
affecting the value of the sum found, thus: 

2:ct, = c2:t,. 
Theorem II. If the expression following the symbol 2: is 

itself the BUm of two (or more) terms, each may be considered 
separately and the reBUUs added, thus: 

2:(t, + u,) = 2:t, + 2:u,. 
The proofs of these theorems become self-evident as soon as 
the expressions are written in their expanded forms. 

EXERCISES § 15 

1. Write in expandedl(Yf'm8: .. .. 
(a) ~ fa, (b) ~ xi/j, 

i-I i-I 

(d) l; tl .,1 .·0 . 

.. -1 
(c) ~ (li - 1)(Ui + 1), 

i-3 

2. Write in abbreviated 1(Yf'm8, using ~: 

(a) ~ + ~ + ... + .!!, 
11 I. I. 

(b) a - 'l)Jl + a - Ii)b+ ... + a - t,.)/ .. , 

(c) .!. [(II - (Nl + ... + (t,. - i) 2/.1 
N 
1 - -(d) N [ltl - tift + ... + It,. - tl/nJ. 

3. (a) Express as the difference of two sums the compressed 
sum which is the result of Exercise 2 (b), and then show 
that that result equals zero. 

R-l 
(b) Prove that ~ (Ii - Ii+!) = 11- In. 

i-I 

R II ? 
(C) Show that ~ t(t - 1)(t - 2)P' = 2: t(t - 1)(t - 2)p'. 

'aO .-3 • 
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4. Compute the numerical values of Exercises 2 (b), (e), and (d) 
in the special case of Example 6, p. 9. 

Ans., 0, .0151, .0946. 

5. A frequency distribution is denoted, as on p. 8, by means of 
the letters (t, f). Express in compressed form a descrip
tion of each of the following processes: 

(a) Each t is to be squared and multiplied by its own I, and 
then all the results are to be added together. 

(b) Each t is to be subtracted from the t following it, and 
then the numerical values of all these differences are to 
be added together. 

(e) The sum of the squares of the t's is to be divided by the 
square of the sum of the t's. 

6. Histograms. If we have a frequency distribution. in 
which the intervals t1 to tt, ta to ta, etc., are all equal, It com

mon method of graphing it 
is indicated here. This 
graph is a histogram of the 

18 
12 If 

distribution in Example 6. 
The rectangles all have 
bases of equal widths. Their 

t.-200.8 areas are equal (on a con-
veniently chosen scale) to 

the several frequencies. This is gx:aphically accomplished by 
making the altitudes proportional to these frequencies. If 
the bases are all of unit width, then the altitudes will also 
be equal to the frequencies. Another method of graphing a 
frequency distribution consists in plotting the points (t1, /1), 
(tt, fa), etc., as in analytics, and drawing a broken lin-e 
through them. 

The diagram which we have called a histogram recognizes 
the fact that usually the several measurements do not lie pre
cisely at the points indicated in the table, but are spread out 
over inte,ryals of which the several points are centers. These 
intervals are called class intervals. They are the bases of 
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the rectangles. Often a frequency table is presented so as to 
indicate these intervals. Thus, the table of Example 6 might 
have read as follows: 

I, in/ul / 

200.05 < t < 200.15 1 
200.15 < , < 200.25 1 
200.25 < t < 200.35 3 
200.35 < t < 200.45 12 
200.45 < t < 200.55 14 
200.55 < t < 200.65 18 
200.65 < t < 200.75 0 
200.75 < t < 200.85 1 

Total 50 

Since frequency tables are presented in several different ways 
some care must be used in finding the class intervals and their 
mid-points. Suppose our schedule of the values of t began 
200.05 -, 200.15 -, etc. This would mean the same as 
200.05::; t < 200.15, 200.15 ::; t < 200.25, etc., that is, the 
first end of each interval is included but not the last end. 
The reader would then naturally assume that the last point 
of the first interval was (to two-place accuracy) 200.14, so 
that the schedule for t might have been written: 200.05::; t 
::; 200.14, 200.15 ::; t ::; 200.24, etc. Then the mid-points 
would have been 200.095, 200.195, etc., instead of 200.10, 
200.20, etc., as above. But, in each of these cases, the length 
of the class interval would have been 10. The length of a 
class interval may always be found by finding the distance 
between its beginning point and the beginning point of the 
next interval. It is necessary to find the mid-points, because 
it is the t's of the mid-points that are used in computing 
the mean. I 
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Example 8. Find the mean wage from the following data: 
DATA COMPUTATION 

Clas. f MicU II , 
$4.50- 5.99 43 5.2.45 225.535 
6.00~ 7.49 99 6.745 667.755 
7.50-i 8.99 152 8.245 1253.240 
9.00~1O.49 178 9.745 1734.610 

10.50-'11.49 160 11.245 1799.200 
12.00-)3.49 41 12.745 522.545 
13.50-;14.99 25 14.245 356.125 
15.00-16.49 3 15.745 47.235 

S~s 701 6606.245 
1 i· 

N (Sums) 1 9.42 

-- 'l;ft 
t = N = $9.42. (Class interval = $1.50.) 

PROBLEMS CHAPTER I 

1. Make graphs of the following sets of data, being careful so 
to choose both the zero points and the scales that the material will 
be plainly spread out over the whole page, and yet so that all the 
material will be on the page. Label clearly and simply. 

(a) U.S. Steel Corporation. Number of millions of dollars. 

Yea. Net Balance GrOBI Income 

1920 176.7 755.5 
1921 92.7 986.7 
1922 101.5 1092.7 
1923 179.6 1571.4 
1924 153.1 1263.7 
1925 165.5 1406.5 
1926 199.1 1508.1 
1927 164.3 1310.4 
1928 193.3 1374.4 , , 
1929 258.7 1493.5 
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(b) National Bureau 0/ Economic Re8earch. Internal revenue 
reports. The number of thousands of income tax returns filed is 
represented by x, the number of millions of dollars of net income 
reported by 1/. 

Y ..... :II /I 

1916 437 6298 
1917 3472 13652 
1918 4425 15924 
1919 5332 19859 
1920 7259 23735 

1921 6662 19577 
1922 6787 21336 
1923 7698 24840 
1924 7370 25656 

(c) U. S. Cen8U8 Bureau. Mortality Statistics, 192~. Death 
rates per 100,000 population (based on civilian deaths in estimated 
civilian populations), 19HH923, for the United States, France, 
and Australia. 

Y ..... u.s. 'ronco AIUIral .... Year u.s. Fro_ AlUIralica 

---------------
1910 15.0 17.8 10.4 1917 14.3 20.2 9.7 
1911 14.2 19.6 10.7 1918 18.1 24.6 10.0 
1912 13.9 17.5 11.2 1919 12.9 19.3 12.7 
1913 14.1 17.7 10.7 1920 13.1 17.2 10.5 

·1914 13.6 20.7 10.5 1921 11.6 17.7 9.9 
1915 13.6 21.0 10.6 1922 11.8 17.5 9.2 
1916 14.0 19.8 11.0 1923 12.3 16.8 9.9 

2. Graph the following functions in the intervals indicated: 
(a) 2·, 5 ~ x ~ 10. (b) cotan x, 0° 6' ~:z; ~ 5° 0'. 

3. Graph the equation, ~ + f ... 1, making the unit of :z; half. 

as long as the unit of 1/. 
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4. A certain function of x is defined in Problem 2 (a). What is 
the same function of - x? of X2? of log 2? of 2z? 

5. Make histograms (see § 6) of the following: 
(a) Weights of college freshmen (Gavett). 

Mid-/, 
/ 

Mid-I 
/ 

Mid-I 
/ (pound.) (pound.) (pound.) 

------,. 

105 15 149 129 193 5 
116 43 160 82 204 3 
127 <- 138 171 35 215 1 
138 162 182 16 

Total 629 
-

(b) Heights of sons of tall fathers .(72.5 to 73.5 inches), Yule. 

Inch ... / Inch •• / Inch .. / 

66.5-67.5 4 71.5-72.5 11 76.5-77.5 6 
67.5-68.5 9 72.5-73.5 13 77.5-78.5 3 
68.5-69.5 9 73.5-74.5 13 78.5-79.5 1 
69.5-70.5 14 74.5-75.5 7 
70.5-71.5 20 75.5-76.5 4 Total 114 

(c) Deaths from tuberculosis by ages, U. S. Census Bureau, Mor
tality Statistics (1924). (Note: When, as here, the class intervals 
are not all equal, one must exercise some care to make sure that 

. nevertheless each rectangle is equal in area to the corresponding 
frequency. The data presented by the' Census Bureau have been 
altered slightly to make the problem. simpler. E.g., the Bureau!s 
final classification was 75 and over.) 

Ag. 0/ Dealh / Ag. 0/ Dealh / Ag. 0/ Dealh / 

Under 1 1450 15-19 6620 45-54 10542 
1- 4 2700 20-24 11121 55-64 7123 
5-9 1267 25-34 19507 65-74 4469 

10-14' • 1693 35-44 14703 75-84 1760 
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6. Find the mean age of death from tuberculosis by the use of 
the data in Problem 5 (e). Assume that the mid-points are: 0.5, 
2.5,7.0, etc. Ana., 35.52 years. 

7. (a) If f(x) ... 3--, what isf(- x)? 
(b) If I/>(x) - - 2x'3--, what is 1/>(- x)? 
(e) If F(x) - (Xl- 1) '3--, what is F(- x)? 
(d) If "'(x) - (- xl + 3x) ·3--, what is "'(- x)? 
(e) If g(x) - (x' - 6x2 + 3) f(x), what is g(- x)? 



CHAPTER II 

MOMENTS 

1. Moments about Any Given Origiri.. The frequency dis
tributions of statistics are not all alike. Some have a sym
metrical form, others are skewed one way or the other. The 
form of a distribution can be expressed pretty well by means 
of certain constants or parameters called moments, just as, 
in analytic geometry, the form of an ellipse is determined by 
means of the constants or parameters: a, the semi-major 
axis; and b, the semi-minor axis. Except in a certain special 
case (§ 3), it is customary to denote these moments by 
means of the Greek letter nu, P. The first moment is PI, 

the second P2, etc., and they are defined as follows: 
Relative to the t origin, in the t unit 01 measurement: 

1 .. 
VI ;::: -N ~ t,/l, 

1=1 
"1 .. 

Va = -N ~ ill" 
1=1 

1 .. 
Va = N ~ rili, 

1=1 

etc. 

Sometimes one also uses the "zeroth" moment, 
1 n 0. Vo = N~ t2!i. 

/ ~ i=1 

Since to =' 1, and since~1 = N, 

(1) 

Vo = 1. (2) 

The definition of the first moment is the same as that given 
for the mean value. Hence, 

. ~=l 00 
18 
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EXERCISES 11 

1. Find "0, "I, "I, and '" in the following cases: 
(a) (b) (e) 

• 1 • 1 • 1 • 1 I 1 I I, 
- - - - --- - -- --- - -

0 2 3 15 -2 1 1 10 0.5 6 3.5 30 
1 5 4 20 -1 5 2 5 1.5 12 4.5 10 
2 10 5 3 0 10 3 1 2.5 20 5.5 2 

Ana. for (a): "0 = 1, "I ... 3, "I'" 10.45, '" ... 39. 
2. (a) Write the expression for the rth moment. 
(b) Show that the even moments are always positive in value, 

but that the odd moments may be negative as well as positive. 
(e) Show that the odd moments are all zero if both the /'s and 

the t's are symmetrical with respect to the origin of t, as, e.g., 

H-II-=H-:i-I~bfH-I-H 
.. -

(d) Show that ~ (ti - 0/1 ... O. ,-1 
2. Short Methods of Computing lh. In certain cases the 

method of computing i used in Chapter I can be much 
simplified. To prove this we first develop an alternative 
formula for i. 

Let c and A be any constants (if c ~ 0), and make the fol
lowing substitutions in the formula for i = V1 given in (1): 

Then 

t - A . 
u = --, I.e., t = cu + A. 

c 

- 1 II 

t = N ~ (CUi + A)/ •. 
• -1 

By Theorems I and II of Chapter I, this equals 

(4) 

c II A II 

- ~ ua/i + - ~ Ii. (5) 
N i-1 V i-I 
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But the first of these terms is by definition c times the mean 
value of u, and the second is, by (2), simply A. So 

i = cD + A, where D = 1-l;u!. (6) 

This is the new formula sought. 
Case a (class intervals -equal). If the class intervals are all 

equal, let c equal the class interval, and choose A as one of 
the given values of mid-t, usually the one opposite the greatest 
frequency; and it will be found that formula (6) is much 
easierto use in computation than formula (1). By (4), A will 
become automatically the origin of u, for when t = A, u = O. 

Example 1. Find the mean value of t in Example 8 of Chapter I, 
page 14. 

M id-t in dollars 1 .. ul 

5.245 43 -3 -129 
6.745 99 -2 -198 
8.245 152 -1 -152 

A --+ 9.745 178 0 0 
11.245 160 1 160 
12.745 41 2 82 
14.245 25 3 75 
15.745 "3 4 12 

Sums 701 -150 

c = $1.50, A = 9.745, 
U = - 150/701 = - .214, 
[= cU + A = (1.50)(- .214) + 9.745, 
= - .321 + 9.745 = 9.424. 

Here A = 9.745, but it would have been about as simple to have 
chosen A as any other value of mid-t near to this one. It is only a 
matter of so choosing the ~rigin of u that on the whole the small 
values of u will be the multipliers of the larger values of J. Formula 
(6) was developed before the values of c and A were chosen, and 
therefore all choices will result in exactly the same final value of t. 
Not all choices are equally convenient, but all are equally valid. 
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EXERCISES § 2 a 

Find by the shortest method the mean values in the following 
cases: 

(a) Exercise 1 (a) of § 1. An8., 3. 
(b) Exercise 1 (e) of § 1. An8., 2.9. 
(e) Exercise 2 (e) of § 1. An8., O. 
(d) The first half of the data (t < 10.495) in Example 1. 

An8., 8.223. 
(e) The second half of the data in Example 1. Ana., 11.900. 

(I) t -12 -6 0 6 12 18 24 ----------------
I 18 27 99 127 154 82 19 

An8., 7.916. 

Case b (class intervals unequal). If the class intervals are 
of various lengths, we choose c = 1. Then by a proper choice 
of A the work can be simplified a little. The formula becomes 
i .. 'Ii + A, which says merely that the distance of the mean 
from the origin of t is equal to its distance from A plus the 
distance of A from the origin of t. This statement is obvious 
and the simplification is one that would naturally occur to 
the computer independently of the formula. 

Example 2. Find the weighted mean of the following micrometer 
measurements. We choose A .. 193, because this number makes 
the u's both small and easy to compute. In this case we do not 
choose A as the value of t, 194.171, opposite the greatest frequency, 
becauae, although this would make the u's smaller, it would make 
necessary more difficult subtractions in order to obtain them. 

, I 

194.032 11 
193.790 3 
194.151 6 
193.850 4 
194.221 5 
194.171 22 

Sums 51 

II 

1.032 
.790 

1.151 
.850 

1.221 
1.171 

'" 
11.352 
2.370 
6.906 
3.400 
6.105 

25.762 

55.895 

u = 55.895/51 
= 1.0959, 

;= u+A 
= 1.096+ 193.000 
= 194.096. 
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The method of Case a amounts to a shifting of the origin to 
A, and, in. addition, a change in the unit of measurement. 
(In Example 1, the unit of measurement of the t coordinate 
was one dollar, but the unit of measurement of the u coordi
nate was c dollars.) The method of Case b amounts to a 
shifting of the origin merely. 

Case c (groups of equal intervals). Where the class intervals 
are not all alike but are separable into groups in each of which 
they are alike, the method of Case b could be used, but it is 
better to use a modification of the method of Case a. For 
this we need a new theorem: 

Theorem. The general mean t of any frequency distribution 
can be found by separating the frequencies into groups, finding 
the weighted mean of each group, and then the weighted mean 
of these means. Briefly stated, the. mean of the means is the 
mean of the whole, thus: . 

(7) 

. 
where Tl is the mean and gl the total frequency of the first group, 
T2 is the mean and g2 the total frequency of the second group, 
etc. The number of groups ill m, and N is the total of all the 
frequencies. 

To prove this, it is only necessary to notice exactly what it 
says in terms of our previous notation. Let us consider first 
the case where there are only two such groups. Thedistri
bution will appear as indicated on the next page. 
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Here gl is the sum of the first a fre
quencies, and Tl is their mean: 

II 1 II 

gl = ~ Ii, Tl = - ~ t.1i- (8) 
i~1 gl i-I 

Similarly: 
lI+b 1 1I+b 

g. = ~ Ii, T. =- ~ tJi. (9) 
i-o+1 g2i-o+1 

By the formula for t: 
11+" 0 0+" 

Nt = ~ ti'i = ~ tdi + ~ tJ, 
i-I i=l i-o+l 

= T1Ul + T2g2, by (8) and (9). 
Hence: 

which is equation (7) in the special case where the number of 
groups is two. But this proof could be used quite as well 
for m groups as "for two. The only change would be an in
crease in the number of symbols needed. 

We will now exhibit the method in a special exiunple. The 
saving of labor is not very marked in this example, but some 
very practical cases arise (cf. Problem 2) in which the other 
methods of finding the mean are so cumbersome that they 
could hardly be used at all. Then this theorem becomes very 

. important. 
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Example 3. Find the mean age of death from diphtheria. (Mor
tality Tables, U. S. Census Bureau, 1924). 

Claa. I mitU 9 '1' g'1' 

Under 1 643 .5 643 .50 321.50 
1- 4 4378 2.5 4378 2.50 10945.00 
5-9 2407 7.0 

10-14 612 12.0 
3297 8.92 29409.24 15-19 180 17.0 

20-24 98 22.0 
25-34 161 29.5 
35-44 107 39.5 
45-54 67 49.5 

403 41.29 16639.87 55-64 48 59.5 
65-74 10 69.5 
75-84 10 79.5 

Sums 8721 N = 8721 57315.61 

In this example Ta = 8.92 and is the mean of the group for which 
7 ~ mid-t ~ 22; T, ':= 41.29 and is the mean of the group for 
which 29.5 ~ mid-t ~ 79.5. Formula (7) is'in detail: 

t = Tlgl + T2(J2 + Taga + T.g, 
N 

_ 321.50+ 10,945.00+ 29,409.24+ 16,639.87 
- 8721 

= 6.57 years. 
.. 

'EXERCISES § 2 b, c 

1. In the example above: (a) show that T, = 41.29; (b) find 
the mean age of death of children under 9.5; (c) find the mean age 
of death of persons older than 9.5. Ans., (b).3.7S7. 

2. From the results of Exercises (d) and (e) of § 2a obtain the 
mean value for Example 1. 

3. Find the means of the three groups, a, b, and c (on page 25), 
and thence obtain the mean of the whole. Ana., 35.592. 
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II b • 
I I I I I ! 

1 6 10 43 75 40 
2 11 15 92 100 30 
3 15 20 100 125 20 
4 17 25 120 150 4 
5 28 50 130 200 4 

3. Moments about the Mean. Before the definition of 
the moments given in § 1, the following words were inserted: 
"relative to the t origin and in the t unit of measurement." 
These words were necessary. If another origin or another 
unit had been chosen, the moments would have had other 
values. For purposes of computation it is seldom desirable 
to use the given (t) origin or unit. As with the mean, so with 
the higher moments, it is better to use the u origin and u unit. 
Relative to the u origin and the u unit (viz., the class interval), 
we have the following definitions: 

Jll = ~ 'Xu! = 1Z, 

1 
JlI = N 'Xu'!, (10) 

1 
Jla = N 'XUS!, etc. 

In the very special case w}lere the mean is chosen as the 
origin, the moments are denoted by the Greek letter mu, p.. 
When this letter is used, it is unnecessary to mention the 
origin chosen, because the mean is always understood, but 
it is still necessary to mention the unit. Thus, in the u unit, 

P-1, = ~ 'X(u - ii)! = 0, 

JI'2 = ~'X (u - ii)'!. (11) 

ILl = ~ 'X (u - ii)3J. etc. 
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4. Short Methods of Computing IL'S. We consider here 
only the case where the class intervals are all equal. The 
JI'S are easy to compute as written in (10). The p/s can be 
computed more readily if we. express them in terms of the 
;"s. This is done by expanding the expressions following 
the ~'s in (11), thus: 

jL2 = ~ ~u2f - ;. ~uuf + ~ ~wl 
1 2u u2 

= N ~u2f - N ~uf + N ~f by Theorem I, 

= Jl2 - 2J11U + JI~ by (10), 
= Jl2 - Jlf = V2 - it2, since U = Jll. (12) 

1L8 = 1 ~u3f - ; ~u2uf + ; ~uwf - ~ ~u3f ,-
= Jls - 3J1tU + 3J11W - u8 

= Va - 3V2U + 2il3
• (13) 

jLI. = JI, - 4J1su + 6J12W - 4J11U3 + u' 
= V, - 4vail + 6V2@ - 3u'. (14) 

As will be shown, these formulae enable us to compute rather 
easily J.l.2, J.l.s, and J.I.,:in the u unit. . 

! Example 4. Find the /-4'S (m the unit of u) of Example 1. 

DATA 
, 

COMPUTATION 

Mid-I I .. vI .. II "'1 "'I 

5.245 43 -3 - 129 387 - 1161 3483 
6.745 99 -2 - 198 396 - 792 1584 
8.245 152 -1 - 152 152 - 152 152 
9.745 178 0 0 0 0 0 

.11.245 160 1 160 160 160 160 
12.745 41 2 82 164 328 656 
14.245 25 3 75 225 675 2025 
15.745 3 4 12 48 192 768 

, Sums 701 -150 1532 - 750 8828 

~(sums) , 1 -.214 2.185 -1.070 12.593 
U. III lis II, . : 
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ul 
- .046, Ilt - 2.185 - .046 ... 2.139, 

ul - - .010, Il''''' - 1.070 - 3(2.185)(- .214) + 2(- .010) = .313, 
ii' - .002, Il .... 12.593 - 4(- 1.070)(- .214) + 6(2.185)(.046) 

- 3(.002) = 12.274. 

EXERCISES §" 

1. Find the Il'S, in the 'U unit, in the following cases: 

(a) I (b) I (e) , I 
---- ---- ----

0 1 0 1 3 1 
1 3 1 4 5 5 
2 3 2 6 7 10 
3 1 3 4 9 10 

4 1 11 5 
13 1 

Ana., (a) Ill"" .75, 
Ill'" 0, 
Ilt'" 1.31. 

Ana., (b) III = 1, 
Ill'" 0, 
Il'''' 2.5. 

Ana., (e) Ill'" 1.25, 
III = 0, 

2. Find Ill, Ill, in the 'U unit, in the following cases: 

(a) 

2 
3 
4 
5 

I 

1 
6 

12 
8 

(b) 

20 
30 
40 
50 
60 

I 

1 
8 

24 
32 
16 

Ana., (a) Ill'" I, Ana., (b) III = " 

Il. = 4.06. 

Ill'" - f. III = - /or. 

Moments in Various Units. If we wish the p.'s in some 
other unit, say the t unit, they may be found from the follow
ing relations: 

/lJ(t unit) = c!/lJ(u. unit) } 
p.. II = c!p.. II (15) 
p., II = ctp.. II 
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Here the u unit is c times the t unit. In Problem 5 at the end 
of this chapter the student is asked to prove the second and 
third of these relations. The proof of the first is as follows: 

1 -
Jl2(t unit) = N ~(t ,.... t)2j, 

for this would be the definition of 1J.2 in the t unit. If in this· 
we make the substitution of equation (4), we get: 

Jl2(t unit) = 1 ~(cu + A - cu - A)2J 

= ~ ~(u - U)2J = c2Jl2(u unit), by (11). 

5. Standard Deviation. The most important of the IJ.'S 
is Jl2. It is sometimes called the variance. More commonly, 
its square root is found and this is called the standard deviation, 
and is denoted by the small Greek letter sigma, 0': • 

0' = VJi2. (16) 

In stating the value of 0', of course its unit must be indicated. 
Quite commonly this is done by a subscript, thus: 

O'u =:' O'(u unit). 

It follows from (15) and (16) that 

O't = CO'". (17) 

Example 5. The standard deviation in Example 1 is, by Ex
ample 4: 

CT .. = '\1'2.139 = 1.463, CTI = 2.194 dollars. 

6. aSI a,. As in the preceding examples, it is commonly 
desirable to reduce .both the mean and the standard devi
ation (essentially the first and second moments) to the given 
or t unit. The third and fourth moments, however, are used 
almost exclusively in terms of the standard deviation as the 
unit.· When this is done, they are called aa and a,. By the 
relations of (15) we have, 
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as = !::fJ..::..:8(~u...:u=n=it~) ) 
O"~ 

fJ.,(u unit) a, = 
O"~ 

29 

(18) 

These may be thought of as expressed in a "natural unit," 
because, when they have been obtained, it turns out that it 
did not matter what the u unit was; that is: 

fJ.a fJ.4 
aa = O"a' a, = 0",' 

independently of the unit originally chosen for the fJ.'S and O"'s. 
To prove this, we need merely to note that, if we changed 
the unit in the first equation of (18) in both numerator and 
denominator, we should, by equations (15) and (17), multiply 
both by the cube of the same number; this would not affect 
the ratio. Similarly, in the second equation of (18), we should 
multiply both numerator and denominator by the fourth 
power of the same number, and this would not affect the 
ratio. 

Example 6. In Examples 1 and 4: aa = 3~~39 = .100, 

12.274 
a, = 4.575 = 2.683. 

7. Meaning of cr, aa, a,. In general, 0" is a measure of 
what is called "dispersion." It tells us over how great a 
range, "on the average," the data are spread out on either side 
of the mean. There are also other measures of dispersion 
which tell us the same thing, and, after we have studied them, 
we shall be able to make this general statement about 0" more 
precise. 

In a physical sense, however, we can make it precise now: 
0" is the physicist's "radius of gyration." If we regard a 
histogram as a piece cut out from a flat sheet of metal, and 
suppose it to be spinning about a vertical axis M which goes 
through its center of gravity (the abscissa of the center of 
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gravity is our mean value), its motion under any forces would 
not be disturbed if all the material were concentrated equally 
on two vertical lines, L, L', each at a distance q from the axis. 

Moreover, N IL2 = N q2 is the 
physicist's "moment of in
ertia" (about the gravity 
axis M). 

The quantity aa is a meas
ure of "skewness," and a. 
is a measure of "kurtosis." 
A distribution has "skew-I 

L 
I, 
L 

ness" if it bulges on one side 
more than on the other. It has "kurtosis" if the material 
is spread out 'on either side to a much greater distance than 
the extent of the standard deviation; it lacks kurtosis if the 
material is concentrated near the center. More precisely: 

aa 
Skewness = 2"' 

Yo • a4 - 3 
.n.UTtOSIS = -2-' 

Some authors use - aa/2 and some use I aal for skewness, and, 
in place of kurtosis, use the term excess for (a, - 3)/8. For 
a symmetrical distribution the skewness is obviously zero. 
It will be shown later that the kurtosis is zero for what is to 
be called a normal distribution. 

S. Application. The constants, q, aa, and a., are called 
parameters of the frequency distribution, and they indicate 
the shape of the curve that fits it. Although their chief value 
lies in their relation to the later theory, it is interesting to 
note some uses to which they may be put now. The table 
on page 31 shows the weights of schoolboys at various ages. 
The data are similar to some gathered at a school in England, 
but the figures have been altered in order to bring out more 
forcibly the significance of the parameters. Let us suppose, 



~ 11 
Wliqhl 

25-28 8 
28-31 16 
31-34 25 

34-37 26 
37-40 18 
40-43 8 

43-46 2 
46-49 1 
4H2 1 

52-55 
55-58 
58-61 

61-64 
64-67 
67-70 

Mean 34.6 
fT 4.7 

~/2 .24 
(txt - 3)/2 .25 

10 

60 

.0 

so 

MOMENTS 

WEIGHTS or ScHOOLBOYS 

(Kilograms) 

12 13 14 15 

2 
7 2 1 

16 7 1 

25 16 2 1 
26 25 7 1 
18 29 16 3 

8 19 25 7 
2 8 26 16 
1 2 18 25 

1 8 30 
1 2 20 

1 8 

37.3 40.5 46.3 51.4 
4.6 4.8 4.6 5.4 
.05 .15 .05 -.62 

-.05 .26 -.05 1.28 

I 

-I 

.. 

31 

16 17 18 

1 

2 1 
1 2 1 
2 1 1 

2 2 1 
7. 2 1 

16 7 3 

25 16 7 
20 25 16 
8 20 25 

1 8 30 
1 20 

8 

52.5 55.5 60.4 
5.6 5.6 5.4 

-.69 -.69 -.62 
1.22 1.22 1.28 

Age 

KURTOSIS 

SIlEWNESS 
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however, that this table diq represent material actually 
gathered at a school, or, better, that a much larger body of 
material of this sort had been gathered in it group of schools. 
Let us suppose further that a statistician is given these 
figures, and that he has no other information concerning the 
boys whose weights were found. What can he get out of the 
data? The simplest, and most important, and the .obvious 
thing to do first is to find the mean value of the weights for 
each age. These mean values are given on page 31 and plotted 
on the graph. To what uses may these means be put? Would 
it be proper, for example, for a physician, examining an Eng
lish schoolboy of fourteen and finding that he weighed only 
44 kilograms (97 pounds) instead of 46.3 kilograms (101.6 
pounds), to conclude that this boy was subnormal? The 
answer to this question depends partly on u. In the diagram 
a belt is drawn, about the mean line, of breadth 2u (measured 
parallel to the y-axis). It is noticeable that 44 kilograms at 
fourteen years is a point well within the belt. There is a 
considerable fluctuation in weight among boys of the same 
age, and it does not appear very unusual to have found a 
specimen as far from the average as this one was. Whether 
subnormal is a proper term to apply to such a case is of course 
a matter of definition of the term, and this would have to be 
agreed on. Perhaps the limits of no~ality should be the 
limits of this belt, perhaps of a belt twice as broad, but in any 
case they should depend on how wide the· belt is, and if it 
is narrower in some places than in others, the limits should 
be closer together in those places than in the others. It is 
not enough, then, in such a case to know merely the mean 
value. It is necessary to have also a measure of variability; 
u is such a measure. 

The next question we ask has to do with as and 0!4.. If 
the matter of variability is taken care of, may the physician 
then use.the data"freely? Usually he may, but not always, 
and not in this case. Let us make the more careful analysis, 
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finding the skewness and kurtosis. These also appear on the 
graph. Since they almost never exceed 2 numerically, there is 
no undue distortion in plotting them on a diagram 4 units 
high. From the graph it is quite obvious that the boys whose 
ages run from fifteen to eighteen constitute a different sort 
of group from that of the younger boys. The difference may be 
due to normal biological changes natural to the greater matu
rity, but one strongly suspects some other cause, such as a 
radically different environment, or the admixture of a different 
race. An investigation of the original material is therefore in
dicated, and without such an investigation it would not be 
proper to use this table as though the material were homo
geneous. The values of the skewness and kurtosis have 
shown that the shapes of the curves which would fit the 
frequency distributions of the later years are quite different 
from those which would fit the frequency distributions of 
the earlier years. If the material were homogeneous we 
should expect a varying mean, perhaps also a varying (/', but 
we should expect the general shapes of the curves to remain 
more nearly constant. Thus any considerable changes in 
aa and in a, point to hidden changes in the character of the 
data on which the whole investigation is based. 

PROBLEMS CHAPTER D 

1. Find by the shortest method the mean value in each case: 
(a) Problem 5 (a) of Chapter I, page 16. Ans., 142.25. 
(b) Problem 5 (b) of Chapter I, page 16. Ans.,72. 
(c) Problem 6 of Chapter I, page 17, using the theorem of § 2. 
(d) Bessel's observations on the diameter of one of Saturn's rings: 

Sectmda oJ Arc 39 + .179 .285 .294 .407 .410 .320 .377 .310 .127 .448 
- - - - - - - -

Weight 7 4 5 4 1 3 3 4 3 6 

Ans.,39.31. 

2. Find the mean income from the following data, using the the
orem of § 2. The material has been condensed from a report on sala-
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ries of families in the United States for the year 1918. Each of the 
groups given below was subdivided into many classes in the origi
nal report. Within each group the class intervals were equal, but 
manifestly the class interval for one group could not have been 
the same as for all the others. Thus, in the second group the class 
interval was $100, and in the seventh it was $500,000. 

Mean 0/ Numb""n 'Mean 0/ Numb""n M ... no/ Numb""n 
Group Group Group Group' Group Group 

-$75.5 182,000 20,660 87,000 486,100 1,119 
1,255 36,000,000 48,600 39,850 1,905,000 152 
6,450 1,137,400 160,000 6,180 

Total 37,453,701 

3. Find the mean, CT, aa, a4, for the data of Example 11, choosing 
A at another place instead of at $9.745, as in the text. 

4. Find the mean, CT, aa, a4, for each of the following cases, and 
express them relative to the given origin and given unit. 

(a) Problem 1 (a). (b) Problem 1 (b); am., 72, 2.81, .34,2.48., 
Ii. Prove: (a) the second, (b) the third, of the relations of (15). 
6. Give a definition of the moments in the t unit relative to tl as 

origin. 
'1. By making the substitution (4) in formula (1) for Jl2, show 

that Jl2(t) = c' Jl2(U) + 2Acii + A2. 

8. Find CT for the data of Problem red). Ans., .098. 
9. Derive a formula analogous to that of the theorem of § 2 

for second moments, viz.: NJla = gIJla(l) + ... + gmJl2(m), where Jl2 

is the second moment of the entire distribution about any given 
origin, Jl2(1) is the second moment of the first group about the same 
origin, etc., Jl2(") being the second moment of the mth group about 
the same origin; and where the g's are the frequencies of the several 
groups. 

1 Throughout this book, the word example is used to indicate an 
illustrative example embodied in the text; the word exercise to indio 
cate one of the short problems that are given at the close of various 
sections;~nd the word problem to indicate one of the relatively longer 
problems that occur at the close of the chapters. 
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10. Use the formula of Problem 9 to obtain tT in Problem 6 of 
Chapter I,page 17. 

11. Prove that I-li is less than or at most equal to Jl2, the same 
unit being used in both cases. Hence it follows that ~ ;::! V;-IJ 
and therefore that the standard deviation, defined as it is with 
reference to the mean, has a smaller value than it would have if 
defined with reference to any other point. 

12. Write the expression for JlI in (10) thus: 

JlI == it l:[(u - u) + UJ>J. 

Expand this expression, and obtain a formula somewhat analogous 
to (13) which will give the value of JlI in terms of ii and the I-I's. 
Check the result by eliminating JI, from the two simultaneous 
equations (12) and (13). 



CHAPTER III 

CUMULATIVE FREQUENCY 

1. Cumulative Frequency Tables.' A cumulative fre
quency table may be formed from an ordinary frequency 
table by successive additions of the several frequencies, thus: 
/1, /1 + /2, /1 + /2 + fa, etc., as illustrated. 

Example 1. Obtain a cumulative frequency table from the data 
of Example 8, Chapter I, page 14. 

CUMULATIVE TABLE 

DATA. COMPUTATION 

I Mid-I End'" Cum I Cum liN 

$4.495 0 .000 
/1= 43 $5.245 

5.995 43 =/1 .061 
b= 99 6.745 

7.495 142 =/1+/2 .203 
152 8:245 ~. 

8.995 294 = /1+b+/a .419 
178 9.745 

10.495 472 .673 
160 11.245 

11.995 632 .902 
41 12.745 

13.495 673 .960 
25 14.245 

14.995 698 .996 
3 15.745 

16.495 701 = N 1.000 

This is sometimes called a "less than" distribution, and this de
scription indicates the reasons for using the end-t's and for placing 

36 
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the cumulative J figures 011 the lines between the J figures. What 
is meant is that 43 individuals received less than $5.995, 142 less 
than 57.495, 294 less 
than $8.995, etc. One 
could begin adding at 
the bottom of the 
table, and, in a similar 
manner, construct a 
"more than" cumu
lative distribution. 
Sometimes the fs are 
given in the reverse 
order, the larger ones 
coming at the top. 
Then the cumulative 

471 

678 

6U 

J, as we have found _....,t.=-.i'::"'...1.........L_.L...-'-_.L...-L._'-_ 
it, would be a "more ... 91 1.991 U9I 8.99& 10.69111.996 18.49114.996 18.691 Mzla 

than" instead of a Cumulative Diagram 

"less than" distribution. The diagram is constructed by plotting 
the points (4.495, 0), (5.995, 43), etc., as in analytic geometry, and 
joining them with straight lines. Each of the ordinates is one of the 
cumulative frequencies, and the difference between any two suc
cessive ordinates is an ordinary frequency. The column "cum 
liN" gives the ratio of the cumulative frequency to the total fre
quency. This is not necessary but it is often instructive: thus, 
from it we can easily see that about 20 % of the wages are less 
than 57.495, and 90% are less than 511.995. Of course the graph 
of the cumulative liN diagram is exactly like that of the cumu1a
tive I diagram, with a proper adjustment of the scale used for the 
ordinates. The cumulative frequency table is of value in finding 
another type of average, of measure of dispersion, and of skewness. 

2. Cumulative Frequency Function. It is to be noticed 
that cumulative! (or cumulative! / N) is a function of t, but 
its values are known only at the "end-t" points indicated. 
In fact, it is defined only at these points. These are indicated 
by the dots in the figure. The dots have been joined by 
straight lines to aid the eye in locating them. If we want to 
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know what the value of cumulative f is at some intermediate 
point, say at t = 7, we have to admit that we have no sure 
means of obtaining it; it depends on how many of the in
dividual wages that lay in the interval $6 to $7.49 inclusive 
were less than $7. Perhaps all were. Perhaps none were. 
As a first approximation, however, we shall assume that the 
wages were evenly distributed throughout the interval. 
This was in fact the implicit assumption made when, in 
Chapter I, we represented the frequency over this interval 
by a rectangle. This same assumption would now require 
us to represent the cumulative frequency over this interval 
by a straight line, as we have. From now on, therefore, the 
straight lines in this diagram shall be thought of as more 
than a device to aid the eye in locating the points; they are 
to become a definition (arbitrary but fairly reasonable) of 
the function at the intermediate points. A slightly better 
definition might be constructed .had we drawn a smooth 
curve through the points instead of a broken line, but this 
would be a refinement which is usually not worth while 
making. We postpone it for the present. 

3. Median. Definition: The median is that va~ue of t for 
which cumulative f / N = f. It will be denoted in this text by 
M; the mean value being denoted by M. V., or t. It will 
sometimes happen that this value of t is given exactly in the 
table. It may be one of the end-t's. In that case the median 
is the value of t such that 50% of the data have smaller t's 
and 50% have larger t's. If there are an odd number of 
measurements, the median becomes approximatelyl the mid
dle measurement. In a company of soldiers lined up in order 
of height, the median height is approximately 1 the height 
of the middle soldier if the number is odd. If the number 
is even, there is no middle soldier. The median then be
comes approximatelyl the average height of the two middle 

1 The approximation is exact if, at least near the median point, the 
successive t'sdiffer by equal amounts. Where the total frequency ia. 



CUMULATIVE FREQUENCY 39 

soldiers.l To compute the median, we should compute the 
value of that abscissa in the cumulative / / N diagram which 
would correspond to an ordinate of length i, or, what is the 
same thing, compute the value of that abscissa in the cumula
tive / diagram which would correspond to an ordinate of 
N /2. Numerically, this is the same as interpolating in the 
end-t table to find the value of t which would correspond 
to cum / = N /2, thus: In our example, N /2 = 350.5, and 
we interpolate to find the t opposite cum/ = 350.5: 

End·' Cum I 

INTERPOLAT 'E-+ 
8.995 294 
M +-3 50.5 

10.495 472 

The result is M = 9.471. To aid the student who is not used 
to interpolating in tables where neither of the differences is 
unity, the following rule for interpolation is suggested: 

Partial difference in 1st column Partial difference in 2nd column 
Total difference in 1st column = Total difference in 2nd column • 

small, and the\pacings uneven, it is a little better to introduce a slight 
modification of our definition so that these approximations will be exact 
in every case. (See Chapter IV.) This modification, though slight, 
would be an undesirable complication in the present more general case. 

1 Authors differ as to what is the best definition of median. Some 
object to the one we have given because it sometimes introduces frac
tional "s that cannot exist in the data. For example, in Example 1 
(p. 36) the median is $9.471, and it is clear that no individual was 
paid this exact wage. Therefore, it is objected that it is a poor definition 
which compels us to call it the median wage. The natural answer to 
this objection is that it is as reasonable to call $9.471 the median wage 
as it is to call $9.424 the mean wage. However, all the various defini
tions yield substantially the same practical results, and the uses to 
which the median is actually put are not sufficiently exacting to make 
small differences worth quarreling over. The reason the above defini
tion is adopted in the present text is that it is simple to understand and 
to uge, and it makes the definition of the median a special case of 
the definition of a percentile, and the semi-interquartile range a special 
case of the median. 
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This simply states in usable form tQe assumption that the 
partial differences are proportional to the total differences. 
In the example above, this rule becomes: 

M - 8.995 350.5 - 294 
10.495 - 8.995 472 - 294 

Hence, M = 8.995 + 0.476 "" Q.471. 

4. Use of Median. There are at least three sorts of fre
quency distributions in which the meenan is preferable to 
the mean as an "average," or single p.umber by which the 
whole distribution may be describe4 j 

(a) When occasional and unexpected items near the end 
of a distribution would unduly affect the mean. Consider, 
for example, these two artificial distrn)l.~tions: 

(I) (II) 

I I I 
----

1 4 I 4 
2 10 2 10 
3 35 3 35 
4 10" 4 11 

10 1 10 0 
,----

N 60 N 60 

In (I) the mean is 2.983 and the median is 2.957. In (II) the 
mean is 2.883, but the median is 2.957, as in (I). The only 
difference between the two tables is that the item opposite 
t = 10 in (I) has been put opposite t = 4 in (II). Its position 
does not affect the median, provided only that its t coordinate 
exceeds the median in both cases, but its position does affect 
the mean considerably. Now if we are measuring distribu
tions of this sort, in which sporadic items like this occur, the 
median might often seem to be It fairer value to accept as 
the" average" than the mean. Examples constantly occur 
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in investigations in economic theory. The median index 
number is often chosen instead of the mean. A particular 
case which the student can understand without special knowl
edge of economics is a method sometimes used in estimating 
what is called seasonal fluctuation. The prices of many 
commodities fluctuate with the seasons as well as from year 
to year, and it is important to know what this average or 
normal fluctuation is, so that allowance can be made for it. 
The interest rates in Canadian banks are a well-recognized 
example. Because of the importance of the grain industry in 
Canada, larger borrowings are made at these banks at some 
seasons than at others, producing higher interest rates. Now 
one might think that a good way of finding out what the 
seasonal fluctuation of interest rates was, would be to average 
them over a period of say 25 years as follows: first, eliminate 
any long time trend, then get the average for the 25 Januarys, 
the average for the 25 Februarys, etc. This is in fact essen
tially 1 the way it is done, but one would do better to use the 
median for the average rather than the mean, because occa
sionally some widespread upheaval in finance, due to extrane
ous causes, might produce very high or very low interest 
rates, abnormal both as to amount and as to time of occur
rence. The mean would be considerably affected by such 
upheavals, but the median only slightly, if at all. 

(b) When the only data. obtainable are such that the ta.ble 
is left II open" at one or at both ends, as in Example 3 of 
Chapter II. The table is then a II less than" table at one end, 
or a. II more than" table at the other, or both. Here we some
times have the option of making assumptions with regard to 
the limits of the end intervals, as we did in that example, 
but we may avoid such assumptions by using the median 
instead of the mean. 

(c) When we -have what is called an "ordered" rather 

1 Actually it is the median of the "link relatives" (Chapter VII) which 
is used, instead of the median of the absolute values of interest rates. 
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than a /I measured" series of frequencies. This is often the 
case in psychological and educationaf studies, in measuring 
intelligence, for example. There is no foot rule by which one 
can actually measure that sort of thing, no psychic watt in 
terms of which one can compute mental power. About the 
best we can do is to place individuals in order. This may be 
done by means of scores made on tests, but the scores are not 
really the measured things they seem to be. If A, B, and C 
have scores 25, 50, and 75, respectively, we do not think 
therefore that B's intellectual power is two times and that 
C's intellectual power is three times as great as A's. We 
think that their mental abilities can be clearly differentiated' 
the one from the other and that they ought to be placed in 
that order. If, for example, A answered 25 questions cor
rectly, and B 50, and C 75, we do not know that the increase 
in mental ability needed in going from 25 to 50 was the same 
as the increase in going from 50 to 75. It is quite proper to 
conclude that 50 is the score of the middle individual (median) 
of the group, but it is not proper to say that the intelligence 
of B is midway (mean) between that of the other two. In 
cases of this sort, the median score has a meaning, but the 
mean score is partly an arbitrary number depending on the 
necessarily arbitrary nature of the tests and of the grading. 
The fractional part of the median score made by inter
polating between two actual scores does not, however, have 
any special significance. 

6. Percentiles. The 'first quartile, to be denoted by Ql, is 
defined as that value o! t for which cumulative"J IN = t. The 
second quartile Qa is that value o! t!or which cumulative! IN = 1-, 
and is the same as the median M. The third quartile Q3 is that 
value o! t for which cumulative!1 N = t. Similarly, for any 
percentile: the p percentile is that value a! t for which cumula
tive!1 N = p per cent. The 10, 20, 30, .. -. percentiles are 
called deciles, and are denoted by D1, D2, D3, etc. Per
c\!ntiles, like the median, are found by interpolation in the 
cumula.tive t.ables. 
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Example 2. Find QI,Qa, and DI in Example 1. 

43 

En/j .. , Cum/IN 

4.495 0 
5.995 .061 

D,- 7.495 .203 
Q,- 8.995 .419 

10.495 .673 
Q3--U.995 .902 

13.495 .960 
14.995 .996 
16.495 1.000 

D1 - 5.995 
1.5 

.10 - .061 D 6 41 
.... 203 - .061' 1 = • • 

Q,- 7.495 .25 - .203 Q 782 
1.5 = .419 - .203' I = . . 

Qa - 10.495 = .75 - .673 Q = 11 01 
1.5 .902 - .673' 3 •• 

In this example we have used the cumulative liN table, but in 
Example 1 we chose the cumulative I table. When a large number 
of percentiles is to be found, it is often more convenient to use the 
cumulative liN table. When a small number only is desired, it is 
always easier to use the cumulative I table, avoiding the necessity 
of forming the second one. Thus, the quartiles can be found very 
quickly by the use of cumulative I. E.g., suppose we want QI. 
Since N 14 ... 1751, we add the frequencies (form cumulative f) 
until we get the cumulations next below and next above 1751. 
Then we interpolate between these two. They are 142 and 294, 
and they lie opposite end-l ... 7.495 and 8.995, respectively. SO 

QI- 7.495 ... 175.25 - 142. Q 782 
1.5 294 - 142' I = • • 

EXERCISES § 6 

1. Find QI, Q2, Qa in each of the following sets: 

(a) I / (b) I / (e) I / 

1---- 1--- 1---

1 12 5 2 2 100 
3 28 4 6 4 350 
5 36 3 10 6 400 
7 16 2 7 8 200 

1 3 10 100 

Ans., (a) 2.787,4.333,5.611; (b) 3.667,2.900,2.072. 
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2. Find all the deciles in each of the preceding sets'. 
Ans., (c) 3.086, 3.743, 4.400, 5.050, etc. 

6. Semi-interquartile Range. The semi-interquartile 
range will be denoted by 8 and is defined by the formula 

s = I Qa - Qll. (1) 
2 

It is half the absolute distance between the first quartile and 
the third. It is also called, for a reason to be considered 
later, the probable deviation, or, more loosely, the probable 
error. It is a measure of dispersion like u, but in generai not 
equal tou. It is to be preferred to u as a measure of disper
sion in those cases (§ 4 a, b, c) where the median is to be pre
ferred to the mean as an average. The value of 8 depends on 
the unit used, and the unit should be mentioned when the 
value is given. 

Example 3. For Example 2, s = 11.01; 7.82 = 1.60 dollars. 

In Chapter II, Example 5, we saw that in this case q was equal to 
2.19 dollars. 

7. Quartile Coefficient of Skewness. In cases where the 
mean and standard deviation cannot be used, of course a 
similar difficulty appears with regard to the use of the mo
ment coefficient of skewness, viz., aa/2. The following defi
nition uses only percentiles: 

Skewness = (Qs - Q2) - (Q2 - Ql) = Q3 - 2Q2 + Q1.(2) 
s s 

According to this, the skewness will be positive if Qa - Q2 is 
greater than Q2 - Ql. This would generally mean that the 
material on the right of M would be spread out more than the 
material on the left. The unit in which this excess spread 
of material is measured is naturally 8, just as u was the unit! 
used in computing as. 

1 Some authors use 28 instead of 8. This cannot be called incorrect 
because the definition is arbitrary, but it is unfortunate to have two 
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Example 4. For Example 2, the quartile coefficient of skew

ness is 11.01- 2~~6~72) + 7.82 ... - 0.071. Previously we had found 

(Xa/2 - 0.051. The two coefficients often differ by as much as in 
this case. 

S. Mean Deviation.1 A third measure of dispersion is 
called the mean deviation. It is the mean of the numerical -
values of the differences between the several measurements 
and the mean value, and is therefore given by the formula: 

Mean deviation = ~ i~Jde. - ~, (3) 

if the t unit is used. If the class interval c is the unit, we 
would have: 

Mean deviation = ~l:flu - iii, (4) 

and, as with (1', the relation: 

Mean deviation (I unit) 
= c times mean deviation- (u unit). (5) 

Equation (5) is to be proved in Problem 7. Being based on 
numerical values of differences, rather than on their squares, 
the mean deviation is probably a more natural measure of 
dispersion than (1'. It is less common than (1' chiefly because 
it is not so easy to use in mathematical discussions. Also, it 
cannot be used in place of 8 because, wherever (1' should not 

different expressions for the same thing. The definition given here is 
the one given by Yule in his well-known text. 

1 Mean deviation from the mean is meant. There is also a mean 
deviation from any point I' defined by the equation: 

Mean deviation ... ~ ~JlI - t'l. 
The mean deviation from the mean is sometimes used by physicists and 
occasionally by statisticians. The mean deviation from the median is 
theoretically more attractive because of the following theorem: The 
mean deviation is a minimum when computed with reference to the 
median. This theorem requires a slight change in our definition of 
the median at points where interpolation is necessary. 
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be used, neither should this measure. It is possible to devise 
a slightly shorter method of computing the mean deviation 
than by the use of formula (4), but this will not be done here 
because the gain is not great and the measure is infrequently 
needed. 1 

Example 5. Find the mean deviation in Example 1. 

Mid-4 

5.245 
6.745 
8.245 
9.745 

11.245 
12.745 
14.245 
15.745 

Sums 

" I I .. -Vl 

-3 43 2.786 
-2 99 1.786 
-1 152 .786 

0 178 .214 
1 160 1.214 
2 41 2.214 
3 25 3.214 
4 3 4.214 

701 

- 214 d' u' 832.182 u= -. ; mean eVla on= ~ 

= 1.187 (1.£ unit) 
= 1.780 (t unit). 

II u -vi 

119.798 
176.814 
119.472 
38.092 

194.240 
90.774 
80.350 
12.642 

832.182 

EXERCISE. Find the mean deviation of each set in Exercise 1 of 
§ 5. Ans., (a) 1.579, (b) .852. 

9. Mode. A third type of average of considerable theo
retical importance is the mode. This is commonly defined 
as the value of that measurement which occurs most fre
quently. It is la mode, the fashion, or the typical one. This 
definition is not exact enough to lend itself to mathematical 
treatment. Sometimes there is no measurement which occurs 
more frequently than any other. The position of the mode 
as thus defined might be seriously affected by making the 

1 Of course, as in the formula for tr, a "grouping error" is in
volved, since all the data are not truly at the mid-points of the inter
vals. See Chapter IV. 
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grouping finer, and with a very fine grouping its position 
might have little practical meaning. Often we wish to dis
tinguish more than one mode in a distribution; this is ob
viously impossible if we are loyal to the definition given. 
Another possible definition is this: Form the histogram and 
fit it with a simple curve; the abscissa of any maximum 1 

point of this curve is a mode. This definition also has serious 
objections, the most obvious of which is that no two persons 
might agree on how the curve was to be drawn. It does, 
however, yield a simple and fairly satisfactory working rule 
for determining the position of the mode, when the distribu
tion is of a simple type. There is a curve, called Pearson's 
Type III curve, which fits distributions of this sort. Its 
equation is of the form 

y = ae-w (b + t)·, (6) 

where e = 2.718, nearly, and the other constants can be found 
if the first three moments of the distribution are given. 
Fortunately, in most cases it is not necessary to find these 
constants or to plot the curve, for it turns out that when this 
is done, the position of the mode can be found by the follow
ing formula: 1 

Mean minus mode o!. 
a = 2· (7) 

It will be recalled that Ola/2 was our moment definition of 
I.!kewness. We might also now say, therefore, that the skew
ness is the distance from the mode to the mean, in terms of (f 

as the unit of measurement. 
I A curve has a maximum at a point P if its ordinate is greater at P 

than at all other points in some interval surrounding P. 
I A more satisfactory formula can be given by the use of a more 

general curve and four moments. It is 
mean-mode a.(CX4 + 3) 

t1 2(5CX4 - 6al - 9)· 
Equation (7) can also be found by using a so-called "Charlier A" curve 
(see Part II). 
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Example 6. Find the mode in Example 8 of Chapter 1. 
Mean = 9.424 dollars, 9.424 - mode .100 

a = 2.190 u 2.190 = 2-
aa = 0.100. Mode = 9.31 dollars. 

PROBLEMS CHAPTER m 
1. Construct a cum fiN table and the corresponding diagram 

for each of the following cases: (a) Problem 5 (b) of Chapter I, 
page 16; (b) Problem 5 (c) of Chapter I, page 16. 

2. Find M, Ql, Q3, and 8 in Problems 1 (a) and 1 (b). 

3. Obtain the quartile coefficient of skewness in each of the 
following cases: 

(a) Problem 1 (a). 
(b) Manufacturing establishments in 1921, Statistical Abstract oj 

the U. S. Department of Commerce, 1929, page 786. 

Valu. 0/ Product Number 0' 
E.'abli.hm6'll1. 

Less than $5000 ............... 53999 
$5000 and less than $20,000 .... 71 075 
$20,000 and less than $100,000 .. 72251 
$100,000 and less than $1,000,000 4560s" 
$1,000,000 and over ............ 7333 

4. Obtain all the deciles in Example 1 of the text, page 36. 
5. A dean reports the following distribution of marks as given 

by all departments in a certain year. Find the quartiles. 

Grades 90-100 80-89 

I 
70-79 60-69 Below 60i 

Frequencie8 618 1728 2388 1085 377 I 
6. In the same report, the distributions in mathematics and in 

physics are presented. Co~pare Ql and Qa for these departments. 

Grades 90-100 80-89 70-79 60-69 Below 60 

M athematic8 60 101 164 103 32 

Physic8 26 46 43 19 4 
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'1. Prove equation (5'). 
8. The following problem illustrates a method of utilizing 

measures of dispersion which will be displayed more fully in Part 
II. Data from U. S. Cen8U8 Bureau, Mortality Statistics: Deaths 
by ages from tuberculosis and from cancer. 

TVB&RCUL0818 C ... "CER 

AOES 

Mal •• Femal •• Mal .. Fnnalu 

Under 5 2237 1913 180 165 
5-9 609 658 129 81 

HH4 650 1043 92 93 
15-19 2343 4277 147 122 
2~24 4559 6562 207 187 

25-34 9721 9786 796 1564 
35-44 8804 5899 2330 5238 
45-54 6854 3688 5787 9887 
55-64 4668 2455 10156 12009 
65-74 2671 1798 11124 11365 

75 and over 872 888 6349 7171 

Totals • 43988 ·38967 37297 47882 

(a) Compute the medians and show that for each of these dis
eases the median age of death is greater for males than for females; 
and that the difference is about twice as great in the case of tuber
culosis as in the case of c~ncer. 

(b) Whether this larger difference is really that much more 
significant depends on the dispersions. Compute the four semi
interquartile ranges, and then the average II for each disease. 
Then show that the ratio, difference between medians, divided 
by average II, is only about 1.7 as great in the case of tuberculosis 
as in the case of cancer. (Note. This is only an approximate 
answer to the question: Is the difference for tuberculosis the more 
significant? A thoroughly satisfactory answer cannot be given 
until after we have studied the theory of probability.) 

9. Find the modes in Problems 5 (a), (b), and (c) of Chapter I, 
page 16. 



CHAPTER IV 

GROUPING ERRORS. SMALL TOTAL FREQUENCmS 

1. Grouping Error. When a frequency distribution is 
divided into frequency groups, and within each group all the 
data are supposedly concentrated at the middle point of 
the interval, as has been our practice, an error is of course 
introduced, because in fact all the data are usually not truly 
at the middle point. This is called a grouping error. It 
affects all the constants we have been using to a greater or 
less degree. By the theorem of Chapter II, page 22, if the 
middle of the interval happened to be also the mean of the 
group - as would be the case if the material were spread out 
evenly over the interval-the value of the mean would not 
be affected; but the values of the second and higher moments 
would be affected even then. These errors could be mini
mized by making our grouping very fine, but this is often· 
undesirable and sometimes impossible. 

2. Sheppard's Corrections. N Large. If the total fre
quency N is large enough to permit of ten or twenty groups, 
the grouping errors in the moments can usually be reduced 
by the following formulae. ' These formulae may be applied 
only where the class interval is unity,.i.e., they are to be ap
plied to the moments in what we have called the u unit. 

Corrected 1L2 = uncorrected IL2 - n in the u unit, I 
Corrected 1L3 = uncorrected 1L3 in the u unit, (1) 
Corrected 1L4 = uncorrected 1L4 - 1- (uncorrected 1L2) + 

Th, in the u unit. 
(n = 0.083333, m = 0.029167.) 

Example 1. Find the corrected (f and /Io'S in the t unit in Example 
8, Chapter I, page 14 (c = 1.5). 

1 The proof is not appropriate to this text. These formulae are valid 
only Jor the simpler types of distributions. 

50 
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uu,,,l , un;' 

U_ected C",.,ected C",.,ected 

~I 2.139 2.056 
tI 1.434 • 2.15 
~. 12.274 11.234 56.87 

3. N Small. Moments. When the total frequency N is 
as small as 50, it is seldom possible to arrange the material in 
satisfactory equi-spaced groups. Then it is best to treat each 
item separately, even though there may be several cases 
where the values of the measurements are the same. We 
have to abandon certain of our short cuts in computing the 
moments, but if an adding machine is used with a table of 
squares and cubes, the labor is not great. 

Exampl$ 2. Find the mean, tI, era, and at, of the following 
grades obtained in an examination in statistics. The grades are 
given in the usual percentage system; N = 22. 

(flood. (I) I" ,. It 

57 3249 1852 X 1()1 1056 X lOt 
75 5625 4219 3164 
69 4761 3285 2267 
67 4489 3008 2015 
71 5041 3579 2541 
93 8649 8044 7481 
53 2809 1489 789 
59 3481 2054 1212 
76 5776 4390 3336 
41 1681 689 283 
98 9604 9412 9224 
62 3844 2383 1478 
74 5476 4052 2999 
50 2500 1250 625 
85 7225 6141 5220 
36 1296 467 168 
47 2209 1038 488 
47 2209 1038 488 
61 3721 2270 1385 
64 4096 2621 1678 
41 1681 689 283 
96 9216 8847 8493 

1422 98638 72817 X 1()1 56673 X lOt 
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Since in this case Ii = 1 for every value of i, 'l:.lt = 'l:.t, 'l:.ltl = 'l:.t2, etc. 

l = 1~;2 = 64.636, 

98638 
III = 22 = 4483.5, ·ILI = 305.7, rT = 17.49, 

II, = 7281;; 10
2 
= 3.3099 X 1()6, ILa = 1.699 X 1()3, as = .32, 

114 = 56672~ 1()6 = 2.576 X 107, IL4 = 2.100 X 1()6, at = 2.25. 

We might have shortened the labor in this example by using 40 
instead of 0 as the origin, but, with tables of squares and cubes 
available, this shifting of the origin ~ often not worth while. 

Example 3. Find the mean deviation in Example 2, and also 
the other constants asked for there, using I as the origin (an alter
native method) . 

1 ., =1-1 .,. zI zI 

36 - 28.64 820.25 - 23492 672810 
41 - 23.64 558.85 - 13211 312313 
41 - 23.64 558.85 - 13211 312313 
47 - 17.64 311.17 - 5489 96827 
47 - 17.64 311.17 - 5489 96827 

50 - 14.64 214.33 - 3138 45937 
53 - 11.64 135.49 - 1577 18357 
57 - 7.64 58.37 - 446 3407 
59 - 5.64 31.81 - 179 1012 
61 - 3.64 13.25 - 48 176 

62 - 2.64 6.97 - 18 49 
64 - .64 .41 0 0 
67 2.36 5.57 13 31 
69 4.36 19.01 83 361 
71 6.36 40.45 257 1636 

74 9.36 87.61 820 7676 
75 10.36 107.33 1112 11520 
76 11.36 129.05 1466 16654 
85 20.36 414.53 8440 171 835 
93 28.36 804.29 22810 646882 

96 31.36 983.45 30841 967174 
98 33.36 1112.89 37126 1238524 

Sums 2:1.,1 = 315.38 6725.10 36670 4622321 

if (Sums) 14.33 306 1667 210105 
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t - 64.64, found as before. 

1l1- 306, 

III - 1667, 
Il, - 210105. 
(1 - 17.49, 
al- .31, 

a, - 2.24, 
Mean deviation = 14.33. 

The formulae used are: 

l:x2 

III = N' 

l:x' 
Il,'" N' 

Mean devialicm = l::I. 

When N is small, one can often find the moments more easily 
by the method just used, in which the origin is placed at the mean. 
ThuB the moments about the mean are computed directly, without 
the intervention of the u's. When the mean deviation (from the mean) 
is also desired, this is clearly the best origin to choose. It is better 
in such cases to arrange the observations in the order of their t's, as 
shown in the table on page 52. 

EXERCISES §§ 1-3 

1. Apply Sheppard's corrections, and find the corrected constants 
in each case, giving the answers in t units. The constants are given 

. in u units, and the class interval c represents the ratio between the 
length of the 'U unit and the length of the t unit. 

(a) (b) (c) (d) 

P.I .... 5 (1= 2 (1 = 1.5 P.I = 4 

p. • .... 1 p.. == -1 a. = 0.5 p.a = -2 

p.a = .8 p.a= 40 cr. == 2 cr.= 3 

c= 4 c= 3 c=2 c:= 1 

Am., p.a ... 148.3 Am., cr. = 3.0005 

2. Find the mean and uncorrected (1, ai, and a, by the method 
of Example 2 in Problems (a), (b), (e), and (d) at the top of page 54. 
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Problem Values 0/1 AnB.a, 

(a) 1,2,3,4,5 1.41 

(b) 40, 35; 27, 52, 69, 25 

(c) - 6, - 2, - 2, 1, 3,0, 6, 6 3.90 

(d) 0, 1, 1, 1, 2, 2, 2, 3 .87 

3. Do Exercise 2 by the method of Example 3. Also find the 
mean deviations. Ans., M.D. = 1.2, 12.8, 3.25, .75. 

4. N Small. Percentiles. When N' is so small that a set 
of equal class intervals cannot be used without introducing 
serious error, our method of computing the median and other 
percentiles fails, because we have no end-t's to use.1 Our 
definitions still hold, however, provided we construct our 
cumulative f function by reference to the mid-t's instead of 
the end-t's. This might have been done - and is done by 
some authors - initially, but it takes a little longer, for it 
requires us to split each frequency into two halves, the first . 
half being a part of cumulative f up to the mid-point of the 
interval, and the second half a part of cumulative f up to the 
mid-point of the next intervaL The method when each 
f = 1 is illustrated in the next example.2 It is supposed that 
half of each individual is on one side of the mid-point, and 
half on the other. 

1 The difficulty of using the average of two consecutive mid-t's 
arbitrarily as end-t's is illustrated in Problem 4, page 57. 

I This example also illustrates the case where a few of the fs are 
more than 1; (j.g., when t =.41,! = 2. It might seem better in such 
cases to write: mid-t = 41, ! = 2, cum! = 2.0, instead of both cum! 
= 1.5 and cum J = 2.5 at t = 41 as on p. 55. So far as the numerical 
values of the percentiles are concerned it is immaterial which procedure 
is followed; the one actually used makes the formation of the cum ! 
table ~ghtly easier. 
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Example 4. Find the median, Ql and D2, using the data of 
Example 3. 

Mid·, I 

36% 1 
41 1 
41 1 
47 1 
47 1 
50 1 
53 1 
57 1 
59 1 
61 1 
62 1 
64 1 
etc. 

Cum/lomid-l 

.5 
1.5 
2.5 
3.5 D 
4.5+- I 

5.5t-Q1 
6.5 
7.5 
8.5 
9.5 

10.5 M 
U.5+-

N= 22, 
N 4';= 5.5, 

.2N .. 4.4, 
N 
2'= 11, 

Ql"" 50%, 
D2 = 47%, 
M= 63%. 

Care must be taken not to confuse the percentages, in which the 
grades are (arbitrarily) given, with the percentiles. This difficulty 
is avoided if one thinks of the t's as being grades, not as percentages. 
As was indicated in earlier examples, it is not necessary to form the 
whole cumulative J table, only such part as is needed to obtain 
the percentiles desired. 

In the example above, more detail is given than is usually 
necessary. Suppose all one wanted was the median. This 
is the t oj the middle observation iJ N is odd; halJway between 
the t's oj the two middle observations iJ N is even. This state
ment follows directly from the given definition that the 
median point is that one at which the cumulation of the 
frequency is N 12, or cumulativeJ IN = i, for the cumulative 
function up to any mid-point is simply the sum of the whole 
number of observations up to that point, plus i. So, to ob
tain the median, one does not need to form the whole table 
of cumulative J. Similarly, to find the first quartile, Ql, it is 
only necessary to find that t at which the cumulation to that 
point is N 14, or where cumulative JI N = i. Here it is 
usually necessary to interpolate between two values of t, one 
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for which the cumulation is a little less than N /4, and one 
for which the cumulation is a little more than N /4. These 
two points between which the interpolation is to be made 
can be readily picked out, once the observations have been 
arranged in order, because they are close to the observations 
which are about one fourth of the way from the beginning 
to the end of the series. 

EXERCISES § 4 

1. Find the medians and first quartiles, computing only such 
portions of the cumulative f table as are necessary. 

(a) t = 1, 3, 5, 8, 10, 12. Ans., 6.5, 3. 
(b) t = 1, 3, 5, 8, 10, 12, ... (N = 10). Ans., 11, 5. 
(c) t = - 7, - 4, - 1, 0, 1, 2. Ans., - .5, - 4. 
(d) t = 5, 4, 3, - 3, - 6. Ans., 3, 4.25. 
(e) t = 47, 43, 43, 42, 42, 41, 41, 41, 40, .•. (N = 14). 

Ans., 41, 42. 
2. Compute the cumulative f tables in 1 (a), (c), (d), and find 

all the deciles. Ans., (a) Dl = 1.2,Da = 3.6, D7 == 9.4, D9 = 11.8. 
3. In each of the Exercises 1 (b) and 1 (e), reverse the series and 

obtain Qa, showing that the value is the same as Ql before. This 
property of reversibility is essential to a good definition of per
centiles. 

5. N Small. Mode. Unless N is so large that the data 
can be grouped, the mode has little meaning. For example, 
in the data just used, the percentage grades that occur most 
frequently are 41 and 47, but in no sense might it have been 
said that the typical, usual, or even fashionable grade was 
either 41 or 47. A modal grade might have been distinguished 
if the method of grouping had been coarser. Suppose grade 
A corresponded to percentages 90-100, B to 80-89, etc. The 
frequencies of these letters were: 

Chad./ABC 
J 2 1 4 

The moda. grade was D, 60-69. 



GROUPING ERRORS. SMALL TOTAL FREQUENCIES 57 

PROBLEMS CHAPTER IV 

1. From the results in Problem 4, Chapter II, page 34, find the 
corrected values of the constants in each case, and express them in 
the t units. 

2. On a certain examination in training in physics the following 
scores were made. Find: (a) the mean score; (b) (f in the same 
unit as the scores; (c) the skewness by the moment formula (Ana., 
.23); (d) the median score; (e) the skewness by the quartile for
mula (An,., .72); (f) that one of the following intervals which con
tained the modal score: 20-, 50-, 80-, 110-, 140-. The scores 
were 29, 36, 38, 41, 43, 48, 50, 51, 54, 54, 56, 60, 60, 63,65,69, 80, 
85,85, 87,90,99,101,111,112,114,121,122,124,149; N = 30. 

3. The number of million8 oj lon, oj unfilled urder8 of the Unite<l 
States Steel Corporation for ten years is given for each quarter 
year below. Compute the median and semi-interquartile range for 
each quarter. 

Yea, 1.1 Quarl ... '''4 Quarl ... SrtJ Quar'", 4'" Qua,.,.,. 

1920 9.89 10.98 10.37 8.15 
1921 6.28 5.12 4.56 4.27 
1922 4.49 5.64 6.69 6.75 
1923 7.40 6.39 5.03 4.44 
1924 4.78 3.26 3.47 4.82 

1925 4.86 3.71 3.72 5.03 
1926 4.38 3.48 3.59 3.96 
1927 3.55 3.05 3.15 3.97 
1928 4.34 3.64 3.70 3.98 
1929 4.41 4.26 3.90 4.42 

An8., 1st quarter, M = 4.635,8= .95. 

4. (Theory) Use the following five measurements, each occurring 
but once: t = 1,4, 7,8, 10. (a) Find M and p.. (b) Reverse the 
series and find p.: this should equal the p. found hefore. (c) Re
peat (a) and (b), using end-t points, as we did when N was large, 
instead of mid-t points, and assume that these end-t's are halfway 
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between the given t's. The effect of this method is to produce 8 

median which is not always the value of the middle observation .. 
(d) Repeat (c), choosing the end-t's in accordance with another 
hypothesis: insert zero frequencies so as to make a set of equal 
intervals and choose the end-t's at the ends of these intervals, thus: 

J 1 0 0 1 etc. 

t 1 2 3 4 " 
End-t 1.5 2.5 3.5 " 

The effect of this method is to make the value of P4lJ ambiguous. 
If it be defined as the smallest value of t for which cumulative 
liN = 40%. then P4lJ will be different from Poo when the order is 
reversed. Cumulative diagrams are helpful in (c) and (d). 



CHAPTER V 

THE NORMAL LAW 

1. Equation and Graph. When a frequency diagram is 
nearly symmetrical, it may commonly be fitted approxi
mately by a curve whose equation is 

1/ =0 ae-h''', (1) 

and this is called the unormallaw." 1 Here a and hi repre
sent positive numbers, and e is the base of the so-called 
Naperian system of logarithms and may be represented by 
the sum of the infinite series: 

1 1 1 1 
1 + 1+ 1.2 + 1.2.3 + 1.2.3.4 + .... (2) 

Approximately, e = 2.718, and log e = 0.4343. In Problem 
1, the student is asked to plot the normal curve when 
a = h = 1. Since the values assigned to a and h merely 
determine the scales of y and t, this picture will be similar 
to that obtained by choosing any other values of a 'and h. 

When a = _ ~, and h = _ ~, the function has certain sim-
v21r v2 

pIe properties, and it is customary to represent it by the 
Greek letter phi,· cf>. We shall also use z in this case in 
place of t, thus: 

(3) 

1 So called by K. Pearson and other English writers. It is frequently 
called the Gaussian Law, sometimes Laplacean. It may be attributed 
more justly to De Moivre than to either Gauss or Laplace. 

I Pearson uses I instead of til. 
59 
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The values of 4>(x) are tabulated in Table I (a). The graph 
is given in the accompanying figure, and may be quickly 
drawn by plotting a few well-chosen points from the table, 
such as the following: 

.4 

'" .p(,,) 

0 .3989 
0.5 .3521 
1.0 .2420 
1.5 . .1295 
2.0 .0540 
2.5 .0175 
3.0 .0004 

.8 ·2 ·1 

The Normal Curve 

Since the curve must be symmetrical with respect to the y
axis because x occurs only to an even power, it is unnecessary 
to tabulate negative values of x: 4>( - x) = 4>(x). (Cf. 
Problem 7 (a), Chapter I, page 17.) The curve extends 
over the whole interval, - co to + co, and might therefore 
seem unsuitable to the representation of finite frequency 
distributions. This is, however, only a very slight disad
vantage, for beyond x = 3 it rapidly flattens down extremely 
close to the x-axis. The combined area of the two "tails" 
beyond x = - 4 and x = + 4 is only 0.000,064, relative to 
the whole area under the curve, and the combined area be
yond x = - 5 and x = + 5 is only 0.000,000,78, relative to 
the whole. 

EXERCISES § 1 

1. Interpolate in Table I (a), using the auxiliary table of tenths 
of the mean tabular differences, so as to obtain': 

1/>(1.722), 1/>(1.728), 1/>(- 1.754), 1/>(- 1.797), 1/>(1.794). 
Ans., .0906, .0896, .0857, .0793, .0798. 
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2. Find z if 4>(z) has the following values: 
0.2180, 0.1600, 0.0318, 0.1720, 0.3943. 

Ans., :!: 1.099, :!: 1.352, :!: 2.249, :!: 1.297, :!: 0.153. 

3. Plot a cumulative 4> diagram from the table of 4>(x) given in 
11, joining the plotted points with a smooth curve ins~ead of with 
straight lines, as heretofore. It will be seen later that this is also 
a graph of Table I. The curve is called an ogive. 

2. Properties. The normal curve has many simple and 
interesting geometrical properties. We shall list some of 
them here, but shall not prove them all. To obtain the geo
metrical properties of most curves, the calculus is indispensa
ble, and so the demonstrations of many of these properties, 
though simple by the calculus, are beyond the scope of this 
book. In this list we shall mention the area .. under the 
curve" or .. of the curve," and the .. higher moments of the 
curve." The exact meaning of these expressions can be stated 
as follows. Form a histogram by plotting equi-spaced ordi
nates of the curve by the use of Table I (a). Let the interval 
between the ordinates be c (cf. Figure IV, p. 67). This may 
be done when c is large and also when c is small. Obviously, 
the smaller c, the more closely will the form of the histogram 
approximate that of the curve. So we define the area under 
the curve as the limit of the area of this histogram as c ap
proaches zero. In like manner the moments, mean deviation, 
etc., of the curve are defined as the limits of the corresponding 
constants of the histogram as c approaches zero. 

(a) The area under y in the units used in (1) is ~v1r' 
The area under cjI in the units used in (3) is 1. 

(b) The mean of y and of cjI is 0; also the median, mode, 
and skewness are zero. 

(e) For y, 1'1 = ~ so that G' = _1"", in the unit of t. 
2h2 hv2 

For cjI, in the unit of x, 1'1 = 1, G' = 1. Thus G' is the 
unit of x. 
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(d) The mean deviation = aV! = 0.794a, approximately, 

. in both cases. 

(e) The semi-interquartile range s = 0.6745a, approxi
mately, in both cases, and this equals 0.845 times the 
mean deviation, by (d). 

U) The abscissae of the points where the curve crosses 
its own tangent 1 are ± a, in both cases. 

·fT 0 fT 

FIGURE I FIGURE II 

(g) The relative distribution of area, in"both cases, is in
dicated approximately in Figure I, when a is chosen 
as the width of one interval i and in Figure II, when s 
is so chosen. 

1 
(h) By (c), h = a'\f2 i h has been called the "measure of 

precision" by physicists and astronomers. Obviously, 
the smaller the standard deviation, the greater is the 
measure of precision. 

3. Table I. We have seen that the area under q,(x) from 
- 00 to + 00 is unity. The partial area from - 00 to :c 

1 These are called points of inflection. Between these points the 
curve is convex, like the rounded top of a hill; beyond them it ill con
cave; like the sides of a bowl. 
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corresponds to what we have termed cumulative frequency. 
This is called by Pearson 1(1 + a) or (-1+ ;), and is tabu
lated in Table I. 
Pearson's a is the 
area from - z to z 
(see the diagram). 
In the calculus, a 
handy notation is 
introduced to in
dicate the area un
der a curve, and· 
we shall now make 
use of it. The area 
under t/J(z) from :::::::::::~-==E~:lZ~L __ '::::::::::::. 
z-a~z-bis 0 

called the "in- FiGURE III 

tegral oj t/J(z) Jrom a to b" and is denoted thus: 1 

ll>t/J(z)dx. 

So we may now write: 

a =.f. t/J(z)dx, 

i (1 + a) = raJ t/J(x)dx, 

and by (a) 1 = i: t/J(x)dx, and therefore.fa> t/J(x)dx = I. 

I The reason for inserting the "dz" will not be obvious, and it is 
sometimes carelessly omitted by students of the calculus. Although it 
has no significance for this course, we shall leave it in to avoid starting 
a bad habit. We are merely interested in a symbol to use for the 
words: "area of I/>(z) from G to b," and this could as well be given by 

J: I/> (z). We shall, however, omit both I/>(z) and dz and use simply the 

sign J.I> when this can be done without ambiguity. 
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Exampl~ 1. Find the following areas under cp(x) and use the 
integral notation: 

(a) Area from x = 0 to x = 1. 
(b) " " x = 1 to x = 2. 
(c) " " x = - 3 to x = - 2. 
(d) " " x= 4tox= "". 

Solution8: 

(a) By the table, the area from - "" to {is 0.8413, and the area 
from - "" to 0 is 0.5000. It is obvious from the figure (Figure I, 
set (J' = 1) that the difference is the area from 0 to 1, viz., 0.3413. 
In the integral notation, we would write: 

fl = fl _ 1° = 0.8413 - 0.5000 = 0.3413. Jo -co -CD 

(b) 1:4 = f2 - fl = 0.9772 - 0.8413 = 0.1359. 
1 -00-0;) 

(c) Since the curve is symmetrical, the area from - 3 to - 2 is 
the same as the area from 2 to 3. So 

f -a J:3 f3 f2 = = -= 0.99865 - 0.97720 = 0.02145. 
-3 ;!l -00 -ex) 

fa> f"" f4 . (d) J, = _"" - -a> = 1- 0.999968 = 0.000032. 

Example 2. Using Table I, prove (g), Figure I. Formula (1) 
gives the same curve as formula (3) except for scales. A change in 
the scale of x or of y or both will not alter the relative areas. There
fore, to establish Figure I for both cases, it is sufficient to establish 
it for one case only, and we choose formula (3). In this case (J' = 1, 
2d' = 2, and the total area equals 1. Thus the relative areas are 
given by Table I, as in Example 1: 

11 = 0.3413, that is about 34 %, 

12 = 0.1359, that is about 14 %. 



THE NORMAL LAW 65 

rao _ 1- r .. 1- 0.9772 .. 0.0228, that is about 2%. J;J J-ao 
The relit of the figure follows from symmetry. 
The student is asked to prove (g) for Figure II in Problem 7. 

EXERCISES § 2 

1. Find the portions of the area under ,p(z) indicated, and draw 
a figure in ea.ch ca.se. 

(a) J~: ,p(z)ih, 1.~' L:2

.a, i:.3 
(b) J2

.
3

, 
-2.3 

i~·3, 1:.3' 1
u 

-J.a 

I..aaa [..3as, [,.333, 
£33' (e) , 

-ao -ao -ao 

1,·32 (d) , 14.8i, 1-2
.
073 

-3.478 ' 1 - a for z = 2.078. 
3.42 4.32 

2. Find:l:, given the following partial areas: 

(a) i:,p(Z)ih == 0.9954, j;a> ... 0.0027, i: == 0.9954. 

(b) Iao -0.9999954, Lao == 0.0000002, i: = 0.4376. 

(e) a/2 - 0.2789, 1/2 + a/2 == 0.7843, 

Ana., 1 (a) .9893, .0107, .0107, .9893; 
(b) .9786, .4893, .4893, .9846; 

1 - a = 0.2788. 

(e) .9902, .9903, .9999926, .000 000 048; 
(d) .0003, .0000071, .0188, .0378. 

2 (a) 2.605, 2.780, 2.605; 
(b) 4.435, 5.070, .579; 
(e) .768, .787, 1.083. 

3. Proofs. Proof of (a). There is no difficulty about the area 
under ,p(z): by Table I, the half-area., 

fa> == 0.5000, 
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and, therefore, by symmetry, the total area is 1. To get the area 
under y, we have to investigate more closely the changes in the 
scales. The units used in (1) are the units of t and y, and the units 
used in (3) are the units of :I: and,p. Comparison of the equations 
(1) and (3) shows that t = :I:/hV2, and y = ,paV2-ff.. The interpre
tation of this is that in a given distance there are l/hV2 times as 
many t units as :I: units, aV2-ff times as manyy units as ,p units, 
and that in a given area there are (aV2-ff/hV2 = a...t;/h) times as 
many ty units as :I:,p units. But in the area .under the normal curve 
we have just proved that there is exactly one :I:,p unit; hence the 
number of ty units is a...t; /h. The proof of (b) is left for Prob
lem3. 

Proof of (c). The student is asked to derive the first part from 
the second part in Problem 6. Without the aid of the calculus, we 
can prove the second part only approximately. Let us form an 
approximate histogram, using the areas over the following intervals: 
(0, 1), (1, 1), (1, l), (I, 2), (2, t), (t, 3). The mid-points are to be 
denoted by :1:1, :1:2, Xa, :1:" :1:6, Xe. By symmetry we know also the 
corresponding areas at - :1:1, - :1:2, etc. So our table of frequencies 
to three decimal places and our computation would be as follows: . 

APPBOXI .... TELT NOBHAL FREQUENCY DISTRIBUTION 

Mid-poinlB 0' .. lu' 

-Xe -2.75 .005 -5 .125 
-X6 -2.25 .017 -4 .272 
-x, ,...1.75 .044 -3 .396 
-Xa :"':'1.25 .092 -2 .368 
-X2 - .75 .150 -1 .150 
-Xl - .25 .191 0 .000 

Xl .'25 .191 1 .191 
X2 .75 .150 2 .600 
Xa 1.25 .092 3 .828 
x, 1.75 .044 4 .704 
Xe 2.25 .017 5 .425 
Xe 2.75 .005 6 .180 

Totals .998 4.239 



THE NORMAL LAW 

!.Jul .. 4.239, N - !.J ... 0.998, 
JlI- 4.239/0.998 .. 4.247, 
11-." 4.247 - 0.25 - 3.997. 
Using Sheppard's corrections, 
O'~ .. 3.914, O'u - 1.956; 0' ... 0.978, 
since the class interval is 0.5. 

67 

Thus, this approximate histogram yields 0' .. 0.98 instead of 0' ... 1.0, 
which is the value for the exact curve . 

• ", ." •• "' •• "10 "'1 "'I 

FIGURlIl IV 

The student is asked to prove (d) and (e) in Problems 4 and 5. 
The proof of (J) requires the calculus. It may be noticed, however, 
that in Table I (a) the tabular differences increase untill: = 1, and 
then decrease. The slopes of the tangents at the several points are 
approximately proportional to these differences since the intervals 
for l: are all equal. Hence, as we go to the right from the origin, 
the slope of the tangent to the curve begins at zero and increases 
(in numerical value, being negative in sign) until we reach the 
point l:'" 1, and then decreases to zero again. Thus, up to the 
point l: - 1, the curve becomes steeper and steeper, and is concave 
downward, like the rounded top of a hill. At this point it begins 
to grow less and less steep and is concave upward, like the side of 
a bowl. It is helpful, in drawing free-hand graphs of the normal 
curve, to bear these facts in mind. 
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We can now state and prove approximately two properties of 
the normal curve in addition to those (a to h) given in § 2 .. 

(i) The mean value of that portion of the area under the 
curve which lies over the interval, a to CX), is equal to the 
ordinate at the first point a, divided by the area, i.e., 

cp(a) 
Mean (a. CX)) =1'" . 

cp(x)dx 
a 

To understand what is meant by this theorem, let us turn 
back to Figure III in § 3, and look at the unshaded partial 
area to the right of x. This partial area has, of course, a mean 
value. It could be found as accurately as desired by inscrib
ing within it a histogram with small class intervals and finding 
the mean value of the frequency distribution so represented. 
Our theorem says it may be found much more easily: let 

x = a, look up cfJ(a) in Table I (a) j 1'"' cfJ(x)dx in Table Ij 

and divide the first result by the second. This quotient is 
also the reciprocal of the quantity Ra, whose logarithm is 
given by Table VII, i.e., 1 - Ra = log mean (a, 00). Thus, 
by the use of Table VII and 'an ordinary table of lbgarithms, 
one can easily obtain this mean value .. 

U) The mean value of that portion of the area under the 
curve which lies over the interval, a to b. is found by sub
tracting the ordinate at b from the ordinate at a. and divid
ing the result by the area, thus: 

M '( b) _ cp(a) - cp(b) • 
ean a. - lb 

, a cp(x)dx 

Proof of (i) and (j). Since the value of cfJ at 00 is zero, it is 
obvious that (i) is merely a special case of (j) in which b is 00. 
So it is necessary to prove (j) only. Without the use of the 
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calculus 1 this cannot be done exactly. But, somewhat as 
in the proof of (c), we can for any desired special case prove 
the property approximately. Let us in fact use the same ap
proximately normal distribution as before, and let us choose 
a =- 1 and b = 3. We ought to obtain as the mean: 

4>(1)3 - 4>(3) = .2420 - .0044 = .2376 = 1.51. J: 4>(x)dx .99865 - .8413 .1573 

To verify this we have the following computation: 

Mid· .. I v /v 

1.25 .092 -1 -.092 
1.75 .044 0 .000 
2.25 .017 1 .017 
2.75 .005 2 .010 

Totals .158 -.065 

u = - .411, cU = -.21, 
if = 1.75 - .21 = 1.54. 

The agreement would have been better had shorter intervals 
been chosen (see Problem 19). 

EXERCISES § 3 

1. Using Tables I and I (a), find the means of the partial areas 
under I/>(x) indicated: 

(a) To the right of x = I, of x = 1.5, of x = 3, of x = - I, of 
x ... - 1.5. 

(b) To the left of x = - 2, of x = 0, of x = 2.5. 

Ans., (a) 1.525, 1.939, 3.259, .2877, .1388; (b) - 2.368, - .7978, 
- .01761. 

(c) Between x = 1 and x = 1.5, x = 1.5 and x = 3, x = 0 and 
x ... 2.5. 

I By the calculus it is easier to prove (i) first, and then obtain (}) by 
a repeated use of (i). 
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(d) Between x = - 1 and x = 0, x = 0 and x = - 1, x = - 2.5 
and x = - 3.5. 

Ans., (c) 1.224, 1.911, .7724; (d) - .4597. 
2. Do the first three parts of Exercise 1 (a) and the first two parts 

of 1 (b) by means of Table VII, obtaining thus a higher degree of 
accuracy in the extreme cases. , 

Ans., for x = 1, log R = 1.8167 = 9.8167 - 10, colog R = 0.1833, 
mean = 1.525; for x = 1.5, 3, etc., the means are 1.9385, 3.283, 
- 2.373, - .7978. 

4. Curve Fitting. It was stated on page 59 that the normal 
curve would fit approximately most of those frequency dis
tributions which are nearly symmetrical. 13ut of course the 
precise form of the curve fluctuates with the choice of the 
constants, as the student has seen in plotting equations (1) 
and (3). Moreover, by choosing different origins for t, the 
position of the curve can be shifted to the right or left. We 
still have, therefore, a certain problem in curve fitting to solve 
here, viz.: Given a frequency distribution in the usual t unit 
and with the t origin, what is the proper form in which one 
should write the equation of the normal curve in order that 
when plotted it may fit the histogram? In the first place we 
must now use t - 1 in place of t in equation (1), because in 
general the origin of t will not be the mean of the frequency 
distribution. Our equation (1) becomes 

y = ae-h'(I-il', (4) 

and we, have thus used one of the first principles of curve 
fitting: ' 

(i) The mean oj the theoretical curve should equal tke mean 
oj the Jrequency histogram. 

We shall now use two' more principles: 

<, 

(ii) The area oj the curve should equal the area oj the 
histogram. 

(iii) The standard deviation oj the curve should equal the 
standard deviation oj the histogram. 
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To satisfy (il1 and (iil1, let N be the area. and fT the (cor
rected) standard deviation of the histogram. 

By (a) and (ii), 
a 
r"vr'" N. 

1 -- = fT,. hv'2 
By (c) and (iil1, 

Solving these two equations for a and h, we obtain: 

1 N h ... --, a = --, 
fTv2, fTv'21i= 

so that equation (4) becomes 

N _(I-i)1 

11 =--=e 2a l 

fTv'21r 
(5) 

This is the required equation in the t unit and with the t 
origin. 

Example 3. Find and graph the equation of the nonna! curve 
which fits as nearly as possible the data of Example 8 of Chapter I, 
page 14. For this group of data we have found already the follow
ing constants: 

i ... $9.424, 

tT, == $2.151 (corrected), 

Nco 701. 

Hence, the equation is 
701 _ (I - 9.424)1 

11 ... II 2(2.161)1 • 

2.151v"211" 

To plot this, we set x ... ,- I and write the equation in the fonn 
tT 

(6) 

and obtain t/I(x) from Table I (a), as indicated on page 72. 
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I ., q,<.,) II lie 

5.245 -1.943 .0605 20 29 
6.745 -1.245 .1838 60 66 
8.245 - .548 .3433 112 101 
9.745 .149 .3946 129 119 

11.245 .847 .2787 91 107 
12.745 1.544 .1212 39 27 
14.245 2.241 .0324 11 17 
15.745 2.939 .0053 2 2 

t=9.424 0 .3989 130 

The histogram is also shown. The heights of the rectangles are in 
the column flc; c = 1.5. When both the curve and the histogram 

160 are to be drawn, it is better 

6.246 8.'146 8.246 8.14611.24612."4.614.20&6 16.745 

to plot the curve first so that 
it may be drawn smoothly 
through the points mdicated 
without the presence of -the 
rectangles to prejudice o.ne.
In plotting the curve, notice 
that for every point plotted 
there is. another point that 
also lies on the curve. This 
is symmetrical to the first 
with respect to the central 
ordinate. ' 

6. Graduation. Some-
times a normal curve fits a given distribution so well that 
)Ve feel that the deviations are accidental, due in part to 
grouping, in part to the fact that the actual data are only a 
sample of a larger group or "population" whose character
istics we are studying. We then feel that we would get a 
better picture of the total population studied if we used the 
smooth curve rather than the observed histogram. In such a 
case, . we need to determine what the several frequencies 
would have been had the distribution followed the curve 
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exactly. This determination is called "graduation by means 
of the normal curve." It is a process of smoothing out the 
data to fit the curve. We find the equation of the curve, (5) or 
(6), of § 4, and then from Table I find the areas over each of 
the several intervals. These intervals are located by means 
of their end points. 

Example 4. Graduate the material of Example 3 by means of 
the normal curve. This material is not very symmetrical, and, 
since the fit is not very good, we should not be truly justified in 
this instance in using a normal graduation. We use the data only 
for a numerical illustration. In a later chapter we shall see how to 
graduate these data more perfectly by means of another type of 
curve. 

Ob ..... "" M~ End-4 EM-a f-:r,~(z)dz TA_"...., TA."",lioal 
lIN , 

4.495 -2.291 .0110 
43 5.245 .0444 30.8 

5.995 -1.594 .0554 
99 6.745 .1295 90.8 

7.495 - .897 .1849 
152 8.245 .2362 165.6 

8.995 - .199 .4211 
178 9.745 .2697 189.1 

10.495 .498 .6908 
160 11.245 .1932 135.4 

11.995 1.195 .8840 
41 12.745 .0868 60.8 

13.495 1.893 .9708 
25 14.245 .0244 17.1 

14.995 2.500 .9952 
3 15.745 .0043 3.0 

16.495 3.287 .99949 

i -= $9.424, fT = $2.151, N = 701. 

The column labeled "theoretical fiN" is found by subtracting the 
successive numbers in the preceding column. It indicates the 
proportions to be expected in the several intervals on the hypothesis 
of a normal distribution. The numbers to be expected are given in 
the last column. 
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EXERCISES § 6 

(A cumulative review oj §§ 1-5) 

1. Use Tables I and I (a) to obtain: (a) q,(1.236), q,(0.231), 
q,(- 0.239), q,(- 3.107), Ana., .1858, .3884, .3877, .0032; (b):r; if 
q,(:r;) = 0.0170,0.3827, 0.0003, 0.2000, Ana., :1= 2.512, :1= .288, :1= 3.8, 

:1= 1.175; (c) t(1 + a) ~t :r; = 0.502, at :r; = 0.508, i:3

q,(:r;)d:r:, 

11.583 11.587 
-CD q,(:r;)d:r:, -CD q,(:r;)d:r:, Ans., .6922, .6943, .7200, .9433, .9437; 

(d) fl.587 q,(:r; )d:r:, (2.3 q,(x )d:r:, fCD q,(:r; )d:r:, l CD 
q,(:r; )d:r:, 

Jo J1.2 J1.2 -1.2 

1_1.2 12.3 1.782 

-2.0 q,(:r;)d:r:, _l.2q,(x)d:r:, _.782q,(X)d:r:, Ans., .4437, .1044, .1151, 

.8849, .0923, .8742, .5658; (e):r; if 1 ~ a = .5089, if i"CD q,(x)d:r: = 

0.8925, if [q,(x)d:r: = 0.3827, if i)(x)d:r: = 0.8420, if ["q,(x)d:r: . 

= 0.2428, if lCD q,(x)d:r: ='0.0032, if lCD q,(x)d:r: = 0.000,032: Ans., 

.022, 1.240, 1.189, 1.003, .309, 2.730, 4.00; (J) D7 'of q,(x), D2 of 
q,(x), median of last 25% of a !lorma! distribution, median of the 
second 25%, median x of each of the following intervals, (:r; = .27 
to :r; = .37), (:r; = 1.37 to :r; = 1.47), (x = - 2.1 to x = - 1.2), Ans., 
.524, - .84?, 1.150, - .31.9 •• 32, 1.418, - 1.502. 

2. The following distributions are nearly normal. In each case 
establish approximately:the properties of the normal curve given 
in § 2 (a), (d), omitting Sheppard's correction. 

I I An •• I I An •• 
-- ----

0 .125 N= 1 0 .0625 N=u= 1 
1 .375 ul=.87 1 .250 
2 .375 Meandev. 

.87 3 .125 u 
2 .375 Meandev. 

.75 3 .250 u 
4 .0625 
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3. (a) By the use of § 3 (i), W, compute the means of the 
following portions of the normal curve c/I(x}: portions over the 
x-intervals, (2, 3), (- 3, - 2), (i, i), (- i, i), (3, co). An,., 2.31, 

. - 2.31, 1.11, .356, 3.26. (b) Obtain approximate answers to (a), 
except in the last case, by the use of the data used in the proof of 
(e), page 66. AnB., 2.36, - 2.36, 1.13, .362. 

4. Graduate each of the following distributions by means of 
the normal curve. Also find the ordinates of the best-fitting 
normal CUEve. Plot the histogram and the curve: 

An •• An •• 

I I Th ... etical 
I " 

I I Theoretical 
I " --

0 1 .9 .8 0 10 10 9 
1 3 3.0 3.1 1 40 39 39 
2 3 3.0 3.1 2 60 61 64 
3 1 .9 .8 3 40 39 39 

4 10 10 9 

PROBLEMS CHAPTER V 

1. Plot equation (1) when a = h = 1, using a table of loga
rithms to obtain the values of y. 

2. On the same diagram with Problem 1, plot the curves: 

y = 1_ e-II / 2.,., 

uV211' 

(a) when (f = 1; (b) when (f = 2, using Table I (a) in each case 
(cr. equations (5) and (6». 

3. Prove (b) of § 2. 
4. Using the approximately normal distribution of § 3, prove 

(d) of § 2. 
6. Using the approximately normal distribution of § 3, prove 

(e) of § 2. 
6. Derive the first part of (e), § 2, from the second part. 
7. Prove (g), Figure II, of § 2 (p. 62). 
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8. Use Table I (a) and find the slope of the secant to the 
curve cp(x) which goes through the points where x = .99 and x = 1.01. 
Ans., - cp(l). 

9. From the approximately normal distribution in § 3, find 
the mean of that part of the area under the curve cp(x) which lies 
to the right of x = 3/2. The answer should be l/R~ of Table VII. 

10. Find the equation which best fits the following data (Gavett) 
and plot the curve and histogram: 

HEIGHTS OF FRESHMEN 

Inche. I Inche. I Inch •• I Inch •• I 

60.<Hi1.0 3 64.5--65.5 51 69.0-70.0 148 73.5--74.5 5 
61.5--62.5 8 66.<Hi7.0 115 70.5--71.5 64 75.0-76.0 3 
63.<Hi4.0 33 67.5--68.5 156 72.0-73.0 43 

Total 629 

11. Do the same for the data of Chapter I, Problem 5 (b). 

12. Graduate the data of Problem 10. 
13. Graduate the data below: 

SALARIES OF PROFESSORS IN PUBLICLY SUPPORTED INSTITUTIONS, 

;1919-1920 (Burgess) 
.. , 

Salary Numbar Sala'll Numbar 

$ 250- 750 2 $4250- 4750 127 
750-1250 4 4750- 5250 94 

1250-1750 50 5250- 5750 45 
1750-2250 '302 5750- 6250 10 
2250-2750 628 6250- 6750 1 
2750-3250 552 7750- 82501 1 
3250-3750 372 9750-102501 1 
3750-4250 271 

Total 2460 

14. Plot cumulative J for the normal law cp(x), using the data 
in § 1, and from this diagram find graphically the value of x cor· 

t Note the intervals carefully. Fill the gaps in the table with zero 
frequencies before finding the moments. 
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responding to the first 15%. Compare the result with that found 
by coming out of Table I at the point where 1(1 + a} = 0.1500. 

16. How far from the mean of a normal curve is the 7th decile? 
That is: find z if 1(1 + a} ... 0.7000. How far is the 1st decile? 
the 9th? 

16. (a) If I .. 9.053, and (fl ... 1.789 for a normal curve, what is 
the value of t corresponding to the 3rd decile? (b) What is 8? 

17. The standard deviation of a certain set of 100,000 high school 
grades was 11 %, and the mean grade was 78%. Assume the eli&
tribution to have been normal, and, being careful not to confuse 
percentage in the sense of grade with a percentage of frequency, 
answer the following questions: How many grades were (a) above 
90%? (b) above 100%? (c) What was the highest grade of the 
lowest 1000? (d) What was the semi-interquartile range? 
(e) Within what limits did the middle 90,000 lie? An8., 59.9 to 
96.1%. 

18. Answer all the questions of Problem 17 with reference to a 
set of 100,000 grades in which the median was 83% and Qa was 
90%. Also find (f. 

19. Repeat the special proof of W in § 3, choosing the intervals 
half as broad. (Do not divide the given frequencies by 2. Derive 
them anew from Table I.) 



CHAPTER VI 

APPLICATIONS 

1. Gunnery. We shall consider in this chapter certain 
standard uses of the normal law. One of the oldest and 
simplest of these is the application to artillery fire. Suppose 
shots are fired at a target which is in the same horizontal 
plane as the gun. Let the target be at the point T and the 
direction of fire as indicated in Figure I. Now, even if there 
is no real mistake on the part of the gunner, the shots will not 
all fall on T, but will be distributed about T at varying dis
tances. This is due to the chance combinations of a number 
of small errors that cannot be avoided. They are due to 
many causes, such as slightly imperfect adjustments by the 
gunner, imperfect knowledge of the direction and velocity of 
the wind, variations, !n the amount of powder used and in 
its temperature, variations in the form and the condition of 
the surface of the projectiles, and changes in the form of the 
gun itself due to continuous' firing. The theory of gunnery 
supposes that this dispersion of the shots about T obeys the 
normal law approximately. Consider first the dispersion in 
the direction of fire. This is called longitudinal dispersion. 
The distribution of shots in this direction is supposed to be 
given by a "ladder of dispersion" similar to Figure I. 

12% 1 1% 116% 126% (::;.116% 1 1% 12% 1 Dlrectionof'Fire 
T 

FIGURE I. Ladder of Dispersion 

The distance between the rungs is the semi-interquartile 
range, 8, which in gunnery is called the probable error of the 
gun in this direction and at the range in question. By 

78 
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reference to Figure II of § 2, Chapter V, page 62, it will be 
seen that this "ladder" is an approximate mapping of the 
normal law. The idea may be put picturesquely, though 
crudely, as follows: Suppose the shells as they fell had their 
velocities suddenly reduced so that, instead of being buried 
in the ground, they simply piled up on the surface. Viewing 
the pile of shells from one side, one would see a mound in the 
shape of a normal curve. Similarly, the distribution of the 
shots in "latitude': or "azimuth," that is, at right angles to 
the line of fire, is given by a similar ladder of dispersion, 
but in this case the distance between the rungs is the prob
able error of the gun in azimuth, and this is usually less 
than the probable error in the direction of fire. The com
bination of these two ladders gives a "rectangle of disper
sion" (Figure II). 

.50 .32 .14 .04 

1.75 1.12 .49 .14 

4.00 2.56 1.12 .32 

T 6.25 4.00 1.75 .50 Direction 

Totals: 12.50 8.00 3.50 
of Fire 

FIGURE II. Oue Quarter of the Rectangle of Dispersion -
beyond and to the left of T 

This indicates the percentages of hits expected within each 
small rectangle about T. Thus the mound of shells would 
appear in the shape of a. normal curve whether viewed from 
one side or from a. point in the line of fire, but the second 
curve would be narrower than the first. 

Example 1. The probable error of a gun in longitude is 20 yards. 
What proportion of the shots will fall (a) at least 40 yards short? 
(b) at least 10 yards short? (c) within 10 yards Oongitudinally) 
of the target? Let us think of a ladder of dispersion of the right 
size laid down on the ground with its center at the target. The 
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size of the ladder is governed by the fact that the distance between 
the rungs in yards must be equal to the probable error, 20. Thus 
we have Figure III. 

On the diagram, the shots that fall to the left of A fall at least 40 
yards short of T. The -total number is 9%, and so this is the 
answer to (a). Those that fall to the left of B'are at least 10 yards 
short. If we assume that 12.5% fall between Band T, we have as 
the proportion which fall to the left of B, 37.5%, the answer to (b). 
The student may object to this assumption, for by Table I he can 
find that the percentage of shots which fall between Band T is 
really 13.2% instead of 12.5%, but this is the assumption com
monly made in gunnery. Moreover, it is justifiable, because, 
although it is true that the dispersion 1 is normal to the degree of 
approximation indicated by our ladder of dispersion, it is not true 
that it would be normal if the division were much finer than that. 
Making a similar assumption now to find the answer to (e), we 
note that we require the proportion of shots between Band C. 
This is 25%. 

Example 2. The probable error of a gun is 50 yards in longitude 
and 10 yards in latitude. How.many shots out of 150 will be ex
pected to fall within a square fort 70 yards on each side? 

We think of a rectangle of dispersion placed over the fort in the 
manner indicated in the figure. (Only the central portion is 
actually drawn.) 

~ ~/'"/h I 10 ,d. 

'T 

1 At least for machine guns. Some authors do, iri fact, use a more 
finely divided table, but it is of doubtful advantage. 
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The percentage expected in the rectangle T A is 35/50 X 6.25. 
The percentage expected in the rectangle BA is 35/50 X 4.00. 
The percentage expected in the rectangle BC is 35/50 X 1.75. 
The percentage expected in the rectangle CD is 35/50 X .50 X i. 

The total percentage in the fort is four times the sum of these, and 
equals 4 X 35/50 X 12.25 .. 34.3. The number of shots out of 
150 which may be expected to fall within the fort is therefore 
.343 X 150 - 51.45. 

The determination of the probable error of a gun for a 
given setting is found by actually firing a number of shots 
on the proving ground. The mean distance of these shots 
from some arbitrary origin in the direction of fire is found, 
and then the mean deviation, and thence the probable error, 
by multiplying the mean deviation by.845 (Chap. V (e), page 
62). Then we find the mean distance to one side of the line 
to that origin, and in a similar maimer obtain the probable 
error in latitude. The point which is at both these mean 
distances is called the center of impact. In Examples 1 and 
2 it was supposed that the gun was so pointed that the 
center of impact was also the center of the target T. Of 
course, this might not be the case in practice. The problem 
of placing the center of impact on the target is evidently the 
major problem of ballistics, but it is not the one with which 
we are concerned here. Weare concerned here only with the 
theory of the dispersion about that point. From this theory, 
simple approximate rules are derivable which may be used by 
the officer who is to have charge of the gun. 

Example l 3. Find the probable error in longitude and latitude 
for a gun from the following six shots fired at a target (not the 
center of impact) at a range of 9000 meters. 

1 Taken rrom a War Department text on gunnery ror heavy artillery 
issued during the World War. The small number or observations would 
mean a poor determination or the probable error, but heavy guns wear 
out 80 quickly that it is not desirable to use up many firings on the prov
ing ground. 
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(1) 9275' meters, right 20 meters 
(2) 9410 " right 10 " 
(3) 9450 " left 5 " 
(4) 9370 " right 15 " 
(5) 9290 " left 10 " 
(6) 9360 " right 5 " 

By our usual methods, the mean of the numbers in the first column 
is 9359, the mean deviation is 51.16, and so the probable error in 
longitude is 43.23. Similarly, from the numbers in the second 
column, the mean is, right, 5.83, the mean deviation is 9.16, and 8 

in latitude is 7.74. Incidentally, we have found the center of 
impact to be located at a distance of 9359 meters from the gun, 
and 5.83 meters to the right. 

EXERCISES § 1 

1. Consider latitudinal dispersion only in the following prob
lems. Probable error is 8' meters.. How many shots out of 200 
would be eXpected to strike in the following places? 

(a) More than 24 meters to the right of the line of fire. Ans., 4. 
(b) More than 20 meters to the right. Ans., 11. 
(c) More than 15 meters to the left. Ans., 22. 
(d) Within 7 meters of this line. Ans., 871. 
(e) Between 10 and 20 meters to the left. Ans., 31. 
(f) Between 30 and 35 meters to the left. Ans., 1. 

2. Find the center of impact and the two probable errors from 
. the following observed shots: Right 3, over 12. Right 2, over 13. 
Right 1, short 10. Left 2, short 5. Ana., (1, 2.5), 1.27, 8.45, if 8 

is found from the mean deviation. 

2. Physical Observations. There are good reasons for be
lieving that, when many observations of the same quantity 
are made, their values are grouped about their mean value in 
an approximately normal fashion. This sort of observation 
is common in physics, engineering, and astronomy, and was 
illustrated in Example 6, Chapter I, page 9, where the length 
of a J!all was supposed measured 50 times. The errors con
sidered in § 1, under the head of gunnery, were also, strictly 
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speaking, of this type; but they were considered separately 
because the measurements there were less precise, and it is 
customary to use coarser approximations in dealing with 
them. The normal distribution of physical observations 
will generally occur, to a fair degree of approximation, but 
not unless all truly avoidable errors, called mistakes, and 
certain progressive errors due to progressive changes in the 
measuring machine have been eliminated. The little un
avoidable errors which remain are called accidental errors and 
are said to be due to chance. The statistical discussion of 
physical observations containing only accidental errors is 
commonly called the "theory of errors." All that we have 
learned about normal frequency distributions applies to this 
discussion. The language and current practice of the physi
cist are, however, in some respects slightly different from 
those of the statistician and require special explanations. 

As before, if t is one of N measurements, and 1 the mean, 
and (f the standard deviation of these measurements, the form 
of the distribution is approximately 

N _ (1_;)" 

y = _~e lIcJ1. 
CJ'v2v 

(1) 

The physicist calls (t - 1) the" deviation of a single observa
tion," and (f the "root mean square deviation." Moreover, 
he is careful not to confound the terms "deviation" and 
"error." By deviation, he means a difference from a mean 
value, and by error, he means a difference from a true value. 
So, if V stands for the true value, (t - V) is the "error of a 
single observation," while, since 1 stands for the mean value, 
(t - 1) is the "deviation of a single observation." The 
"root mean square error," to be designated by E, is defined 
with respect to V in a manner analogous to "the root mean 
square deviation," (f, with respect to 1, thus: 

E = /f(t -; V)I, as (f = /f(t; 1)1. (2) 



84 ELEMENTARY STATISTICS 

At first, this distinction between error and. deviation might 
seem futile, because in general we do not know what the true 
value V is, and how then can we know 8, t - V, and E, all of 
which depend on V? Nevertheless, it can be proved, if one 
be willing to grant certain reasonable l1ypotheses, that 

~/N' 
E = "N'="1 (1', 

and so the formula for E could have been written 

E = ~~f(t - 1)2. "_N - 1 

(3) 

(4) 

In this expression everything is known. Similarly, the prob
able deviation is .6745(1' as before (if the distribution is 
normal), and the probable error is defined as .6745E, and, 
therefore, in the usual language of the physicist: 

Probable error of a single observation 

(5) 

Since the physicist usually deals with ungrouped material, 
his observations being few io number, he commonly omits 
the J in all these formulae (see footnote, page 8). In the 
United States, the probable error is a more common measure 
of dispersion than the root mean square error E, and so 
formula (5) is the important one in practice. From the 
theoretical point of view, it is of course quite immaterial 
whether one uses the probable error .6745E or simply E as a 
measure of dispersion, provided the definition just given is 
strictly adhered to. If, however, one attempts to define 
probable error in a manner analogous to probable deviation, 
i.e., as a semi-interquartile range, then one must make use 
of the assumption that the distribution of errors is normal in 
order to know that this probable error will equal .6745E. 
Although, as with artillery fire, this is nearly the case under 
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certain ideal· conditions, it is an ideal which often fails of 
realization; and 80, to avoid confusion, it is better to stick to 
the quantity .6745E as the definition of probable error.1 

Example 4. Find the probable error of a single observation in 
Example 6, Chapter I. page 9. We have already found that 

1- 200.492, T.f(t - 1)1 == .7568, N = 50. 

So probable error == .6745 ~.7::8 == 0.0838. 

Probable Error oJ the Mean. By this time the reader may 
have associated the idea of probability in some way with the 
term probable error, but it is better that this should not be 
done until after the true relationship can be appreciated, and 
this will come only after a study of the chapter on Probability. 
Moreover, the term is not a well-chosen one, and the relation 
to probability is not very important. For example, the 
probable error is not, as is sometimes supposed, the most 
probable error. In normal distributions we have learned 
rather that it is a sort of average error, the semi-interquartile 
range, or the median of all the errors, if their signs are dis
regarded. It might better have been called, therefore, the 
median error, and the student should insist on thinking of it 
as a median or average, rather than as something connected 
with the theory of probability. This is essential if he is to un
derstand what is meant by the "probable error of the mean." 
More properly this should be called the median error of the 
mean, and it is in fact defined as the median of certain errors 

1 A few physicists do as we did with artillery fire. They define 
probable error with reference to a mean error, using the normal hy
pothesis. This gives 

~ fT.!lt - tl 
Probable etTor == .845 'J N(N _ 1)· 

This is easier to compute than (5), but it is not very commonly used, 
and it will not give the same values for the probable error as (5) excep~ 
when the hypothesis of normality is eatisfied. 
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now to be described. Suppose the group of 50 observations 
of the length of the hall made in Example 6 of Chapter I 
were to be repeated, say, 100 times. We should then have 
100 means, one for each group. They might not be all dif
ferent, but there would be 100 number;! in all. Each of these 
means would be in error, the error being the difference be
tween it and the true value. We would not know the values 
of these errors. (Some might in fact be zero.) Now the prob
able error of the mean is defined as the median of the absolute 
values of all these unknown errors. The formula for this 
probable error is as follows: 

Probable error of mean 1 

prob. error of single observation .6745 '1;/(t - 1)2 (6) 
v'N N(N - 1)· 

Example 5. Find the probable error of the mean in Example 4. 
Ans., 0.0838jv'50 = 0.0119. 

It is customary to write the mean value in a case like this as . 
follows: mean length equals 200.49 ='= .01. The double signs do 
not indicate the extreme range of error of the result; they indicate 
the interquartile range; for, as stated above, the probable error 
of the mean does not signify the extreme error to which the mean 
is liable, only the median me of all the errors to which it is liable; 
it is a sort of average error. On the average, then, we may expect 

1 This formula may well seem mysterious to the student; indeed, if 
he stops to consider the matter, he will be inclined to be very skeptical 
about it. How is it possible, given only one real set of fifty observations, 
to learn anything at all about the other ninety-nine sets which are not 
real? Unfortunately, this simple and important formula in the theory 
of errors cannot be proved, except to the advanced student, and because 
it cannot be proved, it is not possible to explain the exact conditions 
under which it is true. It is perhaps sufficient at this point to remark 
that it is only true if certain assumptions regarding the way errors 
most commonly occur are made. A more detailed discussion is given in 
Part II: See also Biometrika, vol. 2, pp. 273-275. 

The / is commonly omitted in this formula as well as in formulae (2), 
(4), and (5). 
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the mean of a group of observations like this one to be in error by 
as much as 0.01, numerically. How much in error the mean of this 
particular group is, we do not know. 

Deviation and Error. In this section we have been eli&
tinguishing between deviation and error. The effect on the 
formulae has been to replace N by N - 1 in (5) and (6). 
Of how much importance is this distinction? The proof of 
(5) was not given, for, like (6), it depends on the advanced 
theory of sampling. Had the proofs been given, it would have 
been observed that the validity of the formulae depends on 
the assumption that N is fairly large.1 But if N is fairly 
large, then the difference between Nand N - 1 is relatively 
small. It would seem, therefore, that the exact scientists 
were a bit meticulous at this point: if N is large, the eli&
tinction does not matter, and if N is small, the formulae 
are not valid. But, since these formulae, as they stand, are 
the Camiliar ones of almost all books on engineering, physics, 
astronomy, etc., we also shall use them when dealing with 
problems in these fields. Elsewhere, we shall disregard the 
distinction made here and shall use the words error and devi
ation interchangeably; and then formula (6) will be replaced 
by (6a): 

Probable deviation of the mean I = .6745 ff(t,; 1)2. (6a) 

EXERCISES § 2 

In each of the following sets of measurements find the standard 
deviation of a single observation, the probable error of a single 
observation, and the probable error of the mean. 

I A proof commonly given in standard texts on the theory of errors 
is not rigorous. It can be rigorously proved that the "mean" value of 
t' equals N/(N - 1) times the mean value of 0'1; but it is not true 
that the mean value of t' usually equals N/(N - 1) times the given 
value of ut, and it would be necessary to prove this in order to justify 
the formula above. One may not replace the mean value of 0'1 by the 
given value without risk of serious error unless N is large. 

I The I is commonly omitted. 
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1. 4, 3, 4, 6, 3. Ans., 1.095, .826; .37. 
. 2. 5 occurs 3 times, 4 occurs 2 times, 3 occurs 2 times, 2 occurs 
3 times. Ans., 1.2, .85, .27. 

3. 670.2, 671.2, 671.3, 671.0, 671.1, 671.1. Am., .36, .27, .11. 
4. 43' 21', 43' 18', 43' 17', 43' 12'. Ans., 3.2, 2.5, 1.3. 

3. Psychological Measurements. In psychology and in 
certain related fields one has to do with measurements of 
mental, moral, and emotional characters. Here, and oc
casionally elsewhere, the data consist very largely of what 
are called (page 41) ordered rather than measured series. 
The measurements which we seem to have of these characters 
are not like physical measurements. They do little more, 
sometimes nothing more, than arrange the individuals ex
amined in order: the boy who gets a score of 90 in honesty is 
not known to be as much more honest than the boy who gets 
80 as that boy is more honest than he who gets 70; the scores 
90, 85, and 70 would have meant as much. This fact has been 
noted before, and we were led to use the median and semi- . 
interquartile range in such cases rather than the mean and (T. 

We may now go much further than this, provided we are will
ing to make just one more assumption. We hesitate to make 
it, for the supporting argument is feeble, but it is necessary if 
further progress is to be made: The argument runs thus: 
We have certain "yardsticks" by means of which one can 
measure biological quantities like lengths and weights. By 
their use we learn that some of these quantities, especially 
lengths, are distributed approximately in accordance with 
the normal law. Now, if we only did have a yardstick by 
which we might measure psychic characters, would these 
measurements also obey the same law? We do not know, but 
by analogy we assume that they would.1 

1 Unfortunately, even the analogy is rather poor, for biological 
weights are not normally distributed. Would it not be just as reasonable 
to choose as our psychic measure something which would give distribu
tions analogous to weights as to lengths? However, the distribution of 
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To Normalize an Ordered Serie8. One can easily assign to 
the several groups of an ordered series their proper spacings 
so that the whole will fit a normal curve. This means, of 
course, that some groups will be squeezed into shorter inter
vals, others spread out over longer ones. This process is 
commonly called normalizing a series, and we shall obtain 
thus three different results, all of which are of value: (a) the 
relative positions of the end points of the several groups; 
(b) the relative positions of the median points of the several 
groups; and (e) the relative positions of the mean points of 
the several groups. We are now thinking of those cases 
where the total frequency is large enough to make several 
groupings feasible. The case where the total frequency is 
small will be taken up later. 

(a) The end points. We cannot obtain the absolute posi
tions of any of the points (a), (b), and (e), only the relative 
positions. These relative positions are given by the "devi-

ates" z = t - 1 in our previous notation. The method of 
(f 

obtaining them is really only a formulation of what has al
ready been suggested in certain problems of the last chapter. 
It is illustrated by the following example, in which fictitious 
data are used. The first two columns are supposed given. 
The last column is found by coming out of Table I at the 
places indicated by the values of cumulative J / N. These 
points mark the limits of the various groups in the figure. 

weights is not far from normal. There is another argument for the normal 
law, based on the distribution of measurements made in terms of least 
discoverable differences. cr. E. L. Thorndike, 'flul MeaaurernenI 0/1,... 
lellillll1lU, Appendix iii. 
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Ennttple 6. b'TELLlGEXCB IUnxGS OF 50 BoTS. 

...... 
I 

/ C-/ .. C-//YIEM~ , EM~ 

Qukk ............. 5 i.' 0 0 -CD 

ii 
In~t ......... 10 I 

5 .10 -1.282 

Xormal ........... 15 
Ii 
i' 

15 .30 -0.52-1 

Rather Dun ....... 15 i 30 .60 Q.253 

! 'l 
Dun .............. 

4S .90 l.2S2 r+l: , 
Total (.:\1 ........• 50 ' 50 I 1.00 I CD 

i, I 

I 

A XonnaliRd Distributioa. 

(b) 1M tRedia,. poiJlh. These are found in a similar 
manner, exc:t'pt that one finds the romub.tin frequencies to 
the medWl points instead of to the end points. These are 
determined by the rondition that, in each group, the ssme 
amount of frequency lies on one side of the medWl as on the 
other. 
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BlIli,.. I 
e ... ,,,, e ... 'IN Jledi4a ... Media.Poi,.,. 

Quick ............. & 2.& .05 -1.64& 
In~gent ......... 10 10.0 .20 -0.842 
Normal ............ 1& 22.& .45 -0.125 
Rather Dull ....... 1& 37.& .7& 0.674 
Dull .............. Ii 47.& .9& 1.645 

(c) To find tlls mean points. We may make use of the prop
erties (i) and V) stated in the last chapter. We use the end 
points already found. By (,), the mean of the last (duU) 
group will be 1 

</>(1.282) = 0.1753 ... 1.753. 
f'" </>(z)dz 0.10 

JU8I 
The denominator of the fraction may be found from Table I, 
but this is not necessary, for its value must be the relative 
frequency in the last interval, viz., 5/50 = 0.10. By W the 
mean of the next preceding (rather duU) group is 

</>(.253) - </>(1.282) = 0.2111 ... 07n4 

H 0.30' \/"t. 

Next consider the groups at the beginning, where the z's are 
negative. On account of the symmetry of the normal curve, 
we may first find the means as if the z's were positive and then 
change their signs from plus to minus. Thus, for the first 
(quick) group, 

</>(1.282) ... 1.753, 
-h 

and so the mean is - 1.753. Or, we may apply (J) rigorously, 
paying attention to the signs, thus: 

I The mean of t.hia group ia given more accurately by the use of Table 
VII, apeciallll when :r ia CI.t large CI.t S. By Table VII, log tlR. = 
- log R. - -logRuu - 0.24«. So by (i) the mean, l/R. = 1.755, 
or perhaps 1.756. 



92 ELEMENTARY STATISTICS 

tf>( - co) - tf>( - 1.282) = 0 - .1753 = _ 1753 
0.1 0.1 .. 

The middle (normal) group may cause trouble because Xl is 
negative (Xl = - 0.524) and X2 is positive (X2 = 0.253), but 
again we need only to apply our formula rigorously, paying 
attention to signs: 

M _ tf>( - 0.524) - tf>(0.253) 0.3477 - 0.3864 
ean - it =; 0.3 

= - 0.129. 

The entire work may be organized in a table thus: 

A Means 
Cum liN 

Raling I to End End s'. .p(:lJ) Difference. -A Poi"" in .p(:lJ) 
liN Column . 

0 -00 0 
Quick ........ 5 .1753 -1.753 

- .10 -1.282 .1753 
Intelligent .... 10 .1724 .,...0.862 

.30 -0.524 .3477 
Normal ...... 15 .0387 -0.129 

.60 0.253 .3864 
Rather Dull .. 15 -.2111 0.704 

.90 1.282 .1753 ------
DulL ........ 5 -.1753 1.753 

1.00 00 0 
Total ...... 50 

It is interesting to compare the means given here with the 
medians given under (b). 

EXERCISES § 3 

1. Normalize each series, p. 93, and find the x's of the end points. 
2. Normalize each series so as to find the x's of the median 

points. 
3. Normalize each series so as to find the x's of the mean 

points. 
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(0) (b) 

Da/4 A ..... .,. Da/4 An...,,,., 

Order I (1) (I) (S) Ord., I (1) (I) (S) 

--- ------ ~ - ------
A 3 -1.56 -1.9 -2.0 
B 15 

- .36 - .8 - .8 
C 25 1.08 .3 .3 
D 7 1.5 1.6 

D 2 -1.28 -1.6 -1.8 
C 7 - .6 - .6 
B 8 - .13 .4 

~l A 3 
1.04 

1.4 1.6 

(c) 

Dolo A ..... .,. 

Ord., I (I) (I) (S) 

--- ------
A 2 -2.05 

-2.3 -2.4 
B 40 - .8 - .8 
C 12 - .20 -.05 -.05 
D 10 .10 .2 .2 
E 36 .36 .9 1.0 

4. Transfer to Arbitrary Scales. After the points just 
considered under the headings (a), (b), and (c) have been 
determined, relative to the mean of the normal curve and in 
terms of the (I of this curve as unit, we may, if we wish, deter
mine them relative to any other origin and in terms of any 
other unit desired, by means of the relation, 

t - l . l x = --, '.e., t = (I,X + . cr, (I) 

Here, t is the coordinate in the new system of the point 
designated by x in the system just used, l is the new co
ordinate of the mean of the normal curve, and (I, the length 
in the new unit of the standard deviation. Equation (I) is 
valid only if t and x increase together, but if t increases when 
x increases, we should 1 replace (I) by equation (Ia), viz., 

1 But if we are willing to let (f become negative in the second case 
we may use (1) there also. 
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t- I . 
X = -. ~.e., t = - fTtX + i. (1a) 

- fTt 

The t system, and therefore the values of (J' and t in that sys
tem, are quite arbitrary. In grading intellectual achieve
ment, a traditional system is the percentage system, i.e., a 
set of scores running from 0 to 100, called percentages. As 
before remarked, it is important that the reader shall not con
fuse percentage in the sense of a grade with percentile. 

Example 7. Replace the ratings given initially in the preceding 
example by "percentage" grades so chosen that 90% shall sep
arate the Quick from the Intelligent, and 50% shall separate the 
Dull from the Rather Dull. 

First we must find q and i, and we have two equations or con
ditions with which we may do this. When x = - l.282, t = 90. 
Hence, using equation (la): 

(i) 90 = - u(- l.282) + i. 
When x = + l.282, t = 50 j hence, 

(ii) 50 = - u(l.282) + i. 
Solving these two e,quations (i) and (ii) simultaneously, we find u 

and i: u = + 15.6, t = 70. 

Therefore our general equation of transformation (la) becomes 
t = - f5.6x + 70, 

and this may be applied to any of the x points previously deter
mined. Thus we may now find that the other end points, median 
points, and mean points are as follows: 

End Poine. M roian Poinl. MeanPoinl. 

z 1.% z. 1.% z 1.% 

-Q) CD ..-"1;645 95.66 -1.753 97.35 
-1.282 90.0 -0.842 83.13' -0.862 83.45 
-0.524 78.2 -0.125 71.95 -0.129 72.01 

0.253 66.1 0.674 59.49 0.704 59.02 
1.282 50.0 1.645 44.34 1.753 42.65 
CD -Q) ... 
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or course, since the normal scale extends over an infinite range, 
it is not pOBBible to associate with it a proportional scale running froin 
0% to 100%. This scale also will run from - "'% to + "'%; but it 
is usually pOBBible to choose I and (f in such a fashion that all the 
individuals actually observed shall have grades between 0% and 
100%. In this example it is clear that we have chosen (f and 1 
subject to two quite arbitrary conditions (i) and (ii). This means 
that we have chosen (f and I arbitrarily. The reason for our choice 
might have been convenience merely, or custom. It may have 
been customary to think of those who had 90% or more as belong
ing to the best group, or the test may have been devised 80 that 
all the individuals of the best group would obtain these grades. 
The following example illustrates the case of another arbitrary 
choice. 

Example 8. Replace the median ratings of Example 6 by "per
centage" grades so chosen that the modal grade is 65% and the 
probable error is 10%. 

Since in the normal system the mean and mode are the same, 
the first condition is that 

(a) 1- 65. 
The second is that 

(b) .6745(f - 10; hence, (f = 14.85; and our equation of trans
formation is, by (la): 

t - - 14.85x + 65. 
This yields the following results for the median points: 

Modia"Poina 

• C,% 

-1.645 89.43 
-0.842 77.50 
-0.125 66.86 

0.674 54.99 
1.645 40.57 

6. The Case Where N is Small. This case may be handled 
by the same methods as those used for the case where N was 
large, and if the median points are to be found, it is necessary, 
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as on page 55, to suppose each isolated frequency to be divisi
ble into two halves, one half lying on one side of its median 
point and one half on the other. However, in this case it is 
possible to make out a simple table which will give the 
deviates immediately, and since the. means have a slight 
advantage over the medians, the table (Table VI) has been 
constructed so as to give the mean points rather than the 
median points. By hypothesis, now, the only part of the 
given data that will be used is the rank list. This may always 
be supposed given by the numbers 1, 2, 3, etc., whether the 
given scores are equi-spaced numbers or not. The only 
possible exception arises where among the given series there 
are ties; but we may treat ties initially exactly as if they did 
not occur. For example, if three individuals are tied for second 
place, assign them initially, in any order, the ranks 2, 3, and 
4, as if it were really possible to distinguish between them; 
but these ranks should be bracketed together so that we 
shall remember to give them special treatment later. Now 
for each ranK, R, Table VI gives the corresponding normal- . 
ized position, x, for all total frequencies N from 1 up to 50. 

An alternative explanation of precisely what is accom
plished by this table may be given as follows: Suppose N = 10; 
by means of the table the area under the normal curve is di
vided into 10 equal partial areas and the mean x of each part 
is indicated. This explanation tells us how to treat ties; 
for suppose the rankl;l 2, 3, and 4 are truly ties. Then we 
should like to lump together the partial areas corresponding 
to R = 2, 3, and 4, and find their general mean. Their gen
eral mean is the weighted mean of their several x's, but, since 
the several·frequencies are all equal, the weights are also 
equal, and so the weighted mean is also the simple mean of 
their several x's. Hence, opposite ranks 2, 3, and 4 we should 
now put an x equal to the mean of the three x's which are 
given by the table. This will not be quite the same (usually) 
as the x opposite 3. Hence, it would not have been quite so 
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well to have averaged 2, 3, and 4 to begin with. Mter the 
x's have been found, a shift may be made to an arbitrary scale 
if desired, just as in the case where N was large. 

Example 9. The following percentage grades were given in a 
test. Revise them so that the new percentage grades will be nor
mally distributed, and so that the highest quartile will be 70% 
and the lowest 30%. (The data are also in Example 3, page 52, 
except that the sixth number has been altered.) N = 22. 

0; .... '. % Ra .. kR ~R (Tabl. VI) N""I,% 

36 1 -2.102 - 12.3 
41 

~j 
_1""j_l353 + 10.0 41 -1.210 • 

47 -1.000 
47 -0.826 -0.834 + 25.3 
47 - .675 

53 7 - .538 34.0 
57 8 - .410 37.8 
59 9 - .289 4l.4 
61 10 - .172 44.9 

62 11 - .057 48.3 
64 12 + .057 51.7 
67 13 .172 55.1 
69 14 .289 58.6 
71 15 .410 62.2 

74 16 .538 65.9 
75 17 .675 70.0 
76 18 .826 74.5 
85 19 1.000 79.6 
93 20 1.210' 85.9 

96 21 l.497 94.4 
98 22 2.102 112.3 

The new t is found from the equation of transformation (1), 
which becomes . 

t = 29.65z + 50. 
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This s obtained easily from the given conditions, thus: Half the 
difference between the highest and lowest quartile S II = 20, and 

IT = .6;45 = 29.65. Half the sum of the quartiles S the median, 

which S the same as the mean in the normal curve; so I = 50. 

EXERCISES U H 

L Use the given answers to the exercises in the preceding set, 
and choose new' scores for the sets (a), (b), and (e) as follows: 

l
End point8: make median , = 100, II = 15. 
Median,: make mean , = 50, IT = 12. 

(a) Mean,: make mean point of D at ,= 20, mean point of 
BaU= 10. 

(b) A fromB. 

l
End point.: make median' = 100, make ,= IO divide 

Medi01l3: make median D = 100, mode of whole = 75. 
Means: make 1st decile = 90, Q. = 10. 

(e) All point8: make a percentage seale such that 98% of the 
entire group shall fall in the interval 2% to 98%, inclusive. AM., 
End points, 7.7,45.9,52.1,57.4; medians, 2.6, 33.5, 49.0, 54.1, 68.6; 
means, .5, 33.5, 49.0, 54.1, 70.6 •. 

2. F"md the mean % pOints in each ease: 

(a) Rank,: 1, 2 .. 3, 4, 5, 6. 
(b) Ranks: 1,2,3 and 4 tied, 5, 6. 
(e) Score,: 30, 35, 38, 41, 41, 41, 52, 76, 78, 78. AM. to (e), 

- 1.76, - 1.04, - .68, - .13, - .13, - .13, .39, .68, 1.4, 1.4. 

3. (a) Replace the scores in Exercise 2 (e) by a normal set such 
that 30 indicates the first individual and 78 the mean position of 
the last two. 

(b) Same as (a), but make the scores run in t4e opposite direction, 
30 indicating the last two, and 78 the first. 

4.. Use Table VI to solve EXercises 3 (a), (b) in the preceding 
set of exercises. 
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noBI.EJo(S ClUPTElt VI 

L At a eert&in range the probable error of a £IlD is 100 yards 
in longitude and 30 yards in latitude. Bo ... many shots on the 
average 1ri1llall: 

(0) 150 yards beyond 7'T (b) 75 yards shon 01 7'T (c) 100 yards 
to the right of 7'T (d) in a square ... hose sides are each 80 yards 
lrom T and are either parallel to or perpendicular to the line of fire! 

2. 1 " You are ordered to make breaches in 2 wire entanglements, 
the entanglements being 10 m. in depth and 50 11'1. apart, center to 
center, lying perpendicular to the direction of fire. You are using 
the 10" gun, with reduced charge, and the range to the wire is 
6000 11'1. The probable elTOl' at this range is 20 BI. 

0"(0) Sho ...... whether it will be more advantageous to keep 
the center of impact halfway between the entanglements or to 
adjust first on the center of one entanglement, and then on the 
center of the other. 

"(b) II 45 hits on each entanglement 1ri1l accomplish the desired 
destruction, ho ... many rounds will be required in each ease, i~~ 
adjusting on mid-point or on each entanglement!" . 

3. A £IlD was fired 10 times in a fixed position on the proving 
grounds and the shots were noted with reference to a fixed mark 
as indicated belo.... F'md the probable errors in longitude and in 
latitude. This gun is brought into action against a long rectangular 
network oflortifications (100 yards by 10 yuds) at the average 
range used on the proving grounds. Choose the most advantageous 
position lor the gun and find thus the maximum number of hits 
that C'OUld be expected out of enry 100 shots. 

OYer 150 yds.. Righ& 15 yds. 
.. 120" .. 10 .. 
.. 100 .. Lef& 20 .. 
.. 90" .. 10" 
.. 10" .. 5" 

oY't'I' 90 yds.. Lef\ 30 yds. 
.. 80" .. 15 .. 
.. 60 .. Righ\ 20 .. 

Short 20" .. 10 .. 
.. 10 .. .. 10" 

, A battleship is 10 times as long as it is wide. The probable 
error of a gun is S times as great in longitude as in latitude. The 

I TmlxKlk OD gunnery. t'. S. War Depart"..,." 1917. 
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probable error in latitude equals half the width of the battleship. 
Compare the number of hits on this ship when it lies in the direction 
of fire and when it lies broadside to it. (Use a rectangular form 
in place of the battleship.) 

5. Using the following set of micrometer· measurements, find: 
(a) the probable error of a single observation, 
(b) the probable deviation of a single observation, 
(c) the probable error of the mean, 
(d) the probable deviation of the mean. Ans., .0025. 

I 56.199, 56.182, 56.180, 56.178, 56.193. I 
6. The same for Problem 1 (d), Chapter II, page 34. (Cf. also 

Problem 8, Chapter II.) 

7. In What sense is it true that the average of 200 observatio"ns 
is 5 times as reliable a result as the average of 8? Would the relia
bility of an average of 1,000,000 observations be increased in the 
same fashion? Explain. 

8. Show that, in any set of measurements, normal or not, the 
mean deviation from the mean is less than or equal to the standard 
deviation. -

9. Replace (a) the end points, (b) the median points, (c) the 
mean points given in Example 6, § 3, by percentage grades on a 
normal scale so chosen that the median boy in the Quick group 
shall have 90%, and the median -boy in the Dull group 50%. 

10. Replace the scores given in Example 9, page 97, by per
centage grades on a normal scale so chosen that the limits shall be 
36% and 98%, as in the given data. 

11. (Thorndike) "Ou'the hypothesis that the distribution of 
darkness of eyes is normal . • • transmute into terms of units of 
amount (our x) the folloWing relative positions." 

Ugh! 
Bl ... Gray Dark Liglll 

Dark 
V8r!J Dark 

Ell' Color Dark BI ..... Grall Brown Brown 
Blul Brovm 

Blu. green Hazel Brown Black 
-------

Per Cents of 
Englishmen 2.9 29.3 30.2 12.3 11.0 10.8 3.6 



APPLICATIONS 

(a) That is: find the mean value of each group in (I units.' 
(b) Find also the median points. 
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12. If two groups are normally distributed, the standard devia
tions being the same, and if the mean of the first exceeds the mean 
of the second by 2(1, what per cent of the first group exceeds the 
smallest 90% of the second? (It will be helpful to draw the figures.) 

13. Answer the question in Problem 12 if the standard devia
tion of the first group is (I and of the second group (1/2. 

, In Thorndike'. book, Men141 and Social MetlIJ'UrementB, pp. 91-94, 
there is & short table which gives these results directly. In our notation 
this table is constructed thus: 

~ 0 1 2 
1001 
N 

1 

2 

.3 - lOOx = 182 

Thus, if cu;' -.02, and.fJ = .03, the ciunulation being to the first 

end point of the group in question, then the z of the mean of that 
group is -1.82, approximately. The Kelley-Wood Table is also specially 
constructed 80 as to be useful in problems of this sort. 



CHAPTER VII 

TIME SERIES: TREND AND RATIO CHARTS 

1. Time Series. Before progressing further with fre
quency distributions, it is desirable to develop certain ele
mentary notions of a different sort. What we are to do in this 
chapter is particularly important in the study of time series, 
andso,although the theory has other applications, we shall use 
the time series as the model. When a variable is tabulated as 
a function of the time, the set of values which results is called 
a time series. We have had already several illustrations of 
time series (~.g., Example 2, § 2, Chapter I, page 4). In 
this chapter we shall consider only those cases in which the 
function is single valued; that is, at any given time there is 
not more than one corresponding value of the function. 
Later we shall, by an easy transition, make the application 
to multiple-valued functions. The weight of a child is an 
example of a single-valued function of the time. Child 
weight is an example of a multiple-valued function of the 
time, being different for different children. Average child 
weight, however, would be a single-valued function. 

2. Moving Average. In studying a time series, one is 
often confused by its irregularity. One method of smoothing 
out such a series is by the use of the moving average. This is 
defined as the average'of a group of a fixed number of suc
cessive terms of the series. More precisely, let the table be 
(tl' YI), ••• , (tn, Yn), the t's denoting the times and the y's 
the corresponding values of the function. Let k be any 
positive integer (usually chosen between 3 and 20) less 
than n. Let 

- Y",l:,...+..:...--:-_+.;.....:;Y:..::" 
Yl= - k ' ih = Y2+ •• ~ + Yl<+l, etc. 

102 
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This group of ii's is called the moving average of the y's. 

Similarly, the moving average ofthe t's is 11 = tl + . k' + t., 

1... .. It + .. k + tHI, etc. Usually, the t's are equi-spaced. 

h f 7 tl + til 7 It + t.+1 . Ten,o course, '1 .. -2-' '2 = 2 ,etc. In graphing 

the moving average, each fi is regarded as the ordinate of a. 
point and the corresponding 1 as the abscissa. 

Example 1. Find the mo.ving average of the rate on 60-9O-day 
commercial paper in the years 1903 to 1922, taking k = 5. For 
convenience in writing let t = 0 at 1902. Then tl = 1, it = 2, etc. 

I 1/ rio r 

1902+ 1 
'.47 ) 2 4.20 

1.= 3 4.41 26.14 5.228=Yl 
1.= 4 5.69 25.02 5.004=Y. 
1 ... 5 6.37 24.80 4.960=Y. 

6 4.35 25.40 5.080 
7 3.98 23.74 4.748 
8 5.01 22.11 4.420 
9 4.03 23.33 4.666 

10 4.74 24.14 4.828 
11 4.57 22.58 4.516 
12 4.79 21.98 4.396 
13 3.45 21.98 4.396 
14 3.43 22.28 4.456 
15 4.74 22.91 4.582 
16 5.87 26.83 5.366 
17 5.42 29.93 5.986 
18 7.37 29.61 5.920 
19 6.53 
20 4.42 
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vr---~~~~~~~~~---' 
RATE ON COMMERCIAL PAPER 

6 

6 

8~,,=:-,,-~-:::::~~~:::--:=,.-..:::-::::-:;;-----::~o--~~ 
o 6 10 16 20 t 

(1902) (l9U) 

The third column contains the successive sums: 

Yl + Y2 + y3 + Y4 + Y5 = 5.47 + 4.20 + 4.41 + 5.69 + 6.37 = 26.14; 
Y2+ ••• + Ys = 4.20+ ..• + 4.35 = 25.02. 

The first two points are: tl = 1 t 5 = 3, til = 26514 = 5.228; 

d - 2 + 6 4 - 25.02 5 004 an t2=-'-2-= ,Y2=-5-=' . 

Note that the successive sums may be found easily with a comput
ing machine, e.g., to get 25.02 after ha.ving gotten 26.14, take out 
5.47 and put in 4.35. As a. check, compute the last sum inde
pendently also. 

3. Trend. The straight' line which best approximates the 
graph of a time series is called the trend line, or trend. If its 
equation is desired, it may be found either (a) graphically, or 
(b) numerically. . 

(a) Graphically. One simply draws the graph of the time 
series, then a straight line which seems to approximate it as 
closely as possible. The only problem is to find the equation 
of this straight line; and it is easily solved by the methods of 
analytics. Choose two points on the line, preferably far 
apart, and estimate their coordinates (t', y') and (t", y"). 
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The equation of the line through these two points is then, by 
analytics, 

Y - Y' ... Y· - Y'(t - t') to - t' . (1) 

The numerical work of sinv>lifying this equation is slightly 
lessened if the first point is chosen so that t' = O. 

Example 2. Find the trend line graphically in the following 
series: 

I II 

0 10 60'~~----*--

5 15 
10 20 
15 27 
20 28 
25 35 
30 41 
35 44 
40 50 

1& 

From the figure, (t' = 0, y' - 10.8) 1,_~;":""I--I-+-+-+ __ 

and (til - 40, y" - 49.4). I. 1101&101&101&60 

Hence, by (1) Y - 10.8 _ 49.4; 10.8 t .. 0.965t. 

So y ... 965t + 10.8 
is the required equation. 

This graphical method is open to the obvious objection 
that different workers will not agree on the position of the 
line, since it is a matter of visual judgment. The numerical 
method is almost as simple (in the usual case) and rather 
more satisfactory. 

(b) Numerically. We use what is called the principle of 
moments. Let the equation to be determined be in the form 

y = a + pt. (2) 
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It is required to find the numerical values of a and {j that 
will give the best-fitting line, but what is to be meant by 
"best fitting" requires explanation. Suppose for a moment 
that the equation of the desired line were known and graphed, 
as in the figure. Consider first the given point (t., Y.) of our 
table and also the corresponding point (t., y) of the line. By 
y here we mean the value obtained from the equation, fliz., 
y = a + {jt •• 

There are all together n given points, and their ordinates are 
Y., ••• , Y"i there will be also n corresponding values of 1/. 
The principle of moments says that we shall get a good fit if 
the zeroth moment about the origin of t of these n 1/;'s equals 
the zeroth moment of the n 1/'s, and if also the first moment 
of the 1/,'s (about the origin of t) equals the first moment of 
the "'s. These requirements yield two equations: 

(zeroth moments) ~"i = ~(a + (jt i ) } 

(first moments) ~tiYi = ~ti(a + (jti) (3) 

These equations can be solved for a and (j. In Problem 4 
the student is asked to show that the solution is 

~yiI.t" - ~tiI.ti!/I ) a= D 

P riI.tiY' - ~tiI.y, 
= D 

D = riI.t' - ~tl)1 

(4) 

Substituting these values of a and {j in (2), we get the re
quired numerical equation. 
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If the t's are equi-8paced, as they usually are, this work can 
be much simplified: Let c be the common distance between 
successive t's. (Frequently c = 1.) Shift the origin to the 
mean of the ,'s and change the unit of measurement to c. 
That is, make the following substitutions: . 

Let I = !It. = t, + '''. I n' 2 
(5) 

t - I t· - I Substitute x = --, x, = -'-. c c 

These substitutions could be made in (4) and the resulting a 
and fJ determined, b~t it is easier now to think of the equation 
of the line in a new form, 

Y = A + Bx. (6) 

and to find A and B anew, as we found a and fJ before: 

(zeroth moments) Iy, = IA + BIz, } 
(first moments) Iz,y, = AIz, + BIz' (7) 

Since by (5) IZi ... !(Iti - nl} = 0, and since ~A = nA, 
c 

equations (7) can be solved separately as they stand, and 

1", ~Xlll' 
A = n"Y" B = ~xt' (8) 

Substituting these values of A and B in (6), we have a 
numerical equation which can be plotted as easily as if the 
variable t and the constants a and fJ had been used. How
ever, if we really wish to find a and fJ we can do so, for the 
two equations, 

y = A + Bz, and y = a + fJt, 
will relate to the same function of t if, in the first, one puts 

, -1 
x'" -_. So 

c 

A + Be ~ 9 = a + fJt, identically, i.e., 
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Bt Bt 
A - C + C == a + (3t, so that 

Bl B 
a = A - -, p =-. 

c c (9) 

The origin and unit of t were, it will be remembered, quite 
arbitrary. The numerical work of finding A and B, indicated 
in (8), may be shortened a little more by using a relation 
which will be proved in the chapter on Finite Differences: 

~xf' = en - l)en)en + 1). 
12 (10) 

Its truth will be illustrated in the problems 1 which follow. 
In the simple case which occurs most commonly, then, (6), 
(8), and (10) are the important equations. This simple case, 
where the t's are equi-spaced, will be illustrated first: 

Example 3. Find the trend numerically for the data of Example 2. 
Here c = 5 and the mean t is 20, so that the x column is written 
down immediately, beginning with x = 0 opposite t = 20, and is 
exactly like the u column we had in finding moments in Chapter II. 

, 
1/ .. ZI/ 

0 10 -4 - 40 
5 15 -3 - 45 

10 20 -2 - 40 
15 27 -1 - 27 
20 28 0 0 
25 35 1 35 
30 41 2 82 
35 44 3 132 
40 50 4 200 

Sums 270 +297 

1 Cf. Problem 15 at the close of the chapter. 
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S· b' () -, 8·9·10 S mce n - 9, y equation 10, 2:~ = 12 = 60. 0, by (8), 

A - 2~0 .. 30, B _ 2:~ .. 4.95; and, by (6), 11 = 30 + 4.95z is 

our required equation. If we want it in terms of t: by (9), 

a _ 30 - (4.95)(20) "" 10.2, 
5 

fJ - 4.95 _ 0.99, 
5 

so that 11 - 10.2 + .99t. 
From this last equation we can observe the discrepancy between 
this numerical solution and the graphical one of Example 2. 

Example 4. Same as Example 3, omiUing the laBt observation. 
This example is introduced because, when n is even, the values of z 
are different from what they are when n is odd, but again a rigid 
application of the formulae brings a correct result. 

I 

0 
5 

10 
15 
20 
25 
30 
35 

Sums 

1/ III 

10 -7/2 
15 -5/2 
20 -3/2 
27 -1/2 
28 1/2 
35 3/2 
41 5/2 
44 7/2 

220 

1= 17.5, 
220 

A ... T= 27.5, 

207 
B = 42 = 4.929; 

11 = 27.5 + 4.929x. 

2"" 

- 70 
...:. 75. 
-60 
- 27 

28 
105 
205 
308 

414 

11 = 27.5 + 4.929(' - ;7.5) 

... 27.5 + .98& - 17.25; 

11" 10.25 + .986t. 
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Note that it is convenient to use 2xy rather than xy in the last 
column of this table. 

Example 5. Same as Example 3, omitting the second observation. 
This example illustrates the case where the t's are not equi-spaced. 
We have to use formula (4) and the work is much longer. Since 
the unit and origin of t are quite arbitrary, we could, if we chose, 
shorten the numerical work a little by taking the origin near the 
middle and the unit equal to 5 of the given units, but this is hardly 
worth while in a short set of data, and in some applications it is 
not feasible. 

I 1/ II/ t2 
------

0 10 0 0 
10 20 200 100 
15 27 405 225 
20 28 560 400 
25 35 875 625 
30 41 1230 900 
35 44 1540 1225 
40 50 2000 1600 

. 175 255 6810 5075 

Hence, 
D = (8)(5075) - (175)2 = 9975, 

a = (255)(5075) ;; .(175)(6810) = 10.26, 

fJ = (8)(6810) ~ (175)(255) = 0.988, 

and the equation desired is 

y =10.26 + 0.988t. 

'EXERCISES § 3 

1. Plot Example 3 and the moving average for k = 3. 
2. Same as Example 3, omitting the first observation. 
3. Same as Example 3, omitting the first two observations. 
4. Same as Example 3, omitting the observations at t = 5, t = 15, 

t = 25, and t = 35. 
o. Same as Example 3, omitting the observations at t = 5 and 

t = 10. 
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4. Least Squares. The student may have been inclined 
to doubt whether the principle of moments which we used 
above really would give the best fitting straight line, even 
though admitting that it might give a line which would fit 
pretty well. Strictly speaking, there is no such thing as a 
best fit (except in very special cases). However, the principle 
of moments does, in this case, produce the same line as would 
be produced by the so-called principle of least squares. This 
principle says that the line is so ch'osen that the sum of the 
squares of the distances between the line and the given 
points (measured parallel to the y-axis) is a minimum. In 
our notation, then, ~(a: + {jt, _ y,)2 

is So minimum if a: and {j are chosen in accordance with our 
formula.1 The distances, a: + {jt, - y" are commonly called 
residuals. They are the differences between the values of y 
given initially and those obtained by the formula. 

Example 6. Compute ~(a + (Jt, - y,)' in Examples 2 and 3, 
and show that it is less in Example 3 than in Example 2. The two 

EltAMPLB II EltAMPLB 3 

I 
a + /II (a +/11 a +/1. "(a +8. 

/I a +/1. -II -II)' II a +/1. -II -II)' 

---------- --------
0 10 10.800 .800 .6400 10 10.20 .20 .0400 
5 15 15.625 .625 .3906 15 15.15 .15 .0225 

10 20 20.450 .450 .2025 20 20.10 .10 .0100 
15 27 25.275 -1.725 2.9756 27 25.05 -1.95 3.8025 
20 28 30.100 2.100 4.4100 28 30.00 2.00 4.0000 

25 35 34.925 .075 .0056 35 34.95 - .05 .0025 
30 41 39.750 1.250 1.5625 41 39.90 -1.10 1.2100 
35 44 44.575 .575 .3306 44 44.85 .85 .7225 
40 50 44.400 .600 .3600 50 44.80 .20 .0400 ---------- --------

Sums 10.8774 9.8500 

1 The proof will be given in Chapter IX, where the more general 
C8.'!e of multiple-valued functions will be investigated. 
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sums desired are to.SO! and 9.ssoo. and. as ~~ted. the ~ 
is lEs; than UK- firl;.t. 

&.. Exponential Trends. If, in.-,-tt'sd 0( lying approxi
tnstt'ly on a ~trs.ight lint', the points 0( our disgnun lie ap
proximstt'ly on an t':qJODt'ntisl run-t', .-e s.v th:lt lire bs~ an 
expODt'nti'\l tl'E'oo, and tht'n it is desir..\ble to find th(' ~ustion 
0( the best fitting t':qJODt'ntisl run-t'. An exponentisl fune
tion, gener:illy ~pE'Sking, is one in .. bi~h z, or in Ill<ft compli
Clted ~~ a polynomisl in z, appears as an exponent 0( a 
find numbt'r. The IlOl1lW ~ alrt'sdy ronsidered, 

1 _~ ,=--:=. i, 
v;b-

is an enm.ple in .. bidl the fixed numbt'r is~. In this ~tion 
we are to be ~ intt'rested in thooe ~~ .. bel'(' only 
the first pollrer 0( z is u.."'E'd. Also, instt'Sd or z we sbsll use , 
as the independent nNble. .\pin, our fixed numbt'r 1rill 
be ~, so th:lt our tl'E'nd ~ustion 1rill be in the form. 

, = kcr-', (11) 

1rht're 1 and .. , like a and {J in the &n.ight-line tl'E'nd, are 
ronst.mts .. hooe numeriCll nlues .-e .. ish to dett'nnlne. 

It will not be diffirult to do thi..,;:, but let us first p:\U.~ and 
see .. by e:xpollentisl ~ rsther thsn rome other t~ 
are ronsidered import.mt. In ~tstb-ties or ~rtsin bioWgiCll 
and eronom.ie pht"nomellS. e:xpollentw tl'E'nds are to be ('x
~ted. If a linng ~n dindes into hro ~ll.,;:, and if t'S(h 0( 

t.ha1e rubdindes into two, and :so on, the numbt'r 0( ~lls at 
any tim(' is gi\"t'n e:n~tly by an exponentisl ~ustion like U 1). 
n mon('y is put at intt'rest, and tht'n the interest is al...--o put 
at intt'rest, and so on, the amount of money aMlIllul:lted at 
any time is gi\"t'n e:n~tly by the ~ rort or ~ustioD. It is 
not nt.'«'b.~ thst. as 1rith the ~ll.,;:, t'Sdl dull:v sbsll prOOu(e 
hro more. It rosy be th:lt es~h tnnty 1rill prOOu(e ~ more. 
Thougb the rste of growth be ~nr, it rosy De\"t'rtheless be 
ju..~ as truly t'xpODt'ntW. It is only ~ th:lt the condi-
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tions of growth that obtain in the first instance shall remain 
equally potent in the multiplied instances. If an industry 
can use accretions to its capital as productively as it can use 
its initial capital, its earnings will increase exponentially. 
Suppose a farmer had ten acres of land, and that from the 
first year's produce he could save enough to buy one acre 
more, and that this process could continue. Each year he 
would add 10c;o to what he had and his total holdings would 
grow at an exponential rate, exactly as if he had invested his 
money at compound interest, the rate being 10% per year. 
Indeed, it does often happen in practice that the trend of 
earnings in the more prosperous industries is exponential for 
a time. The same is true of trend of mortality from serious 
epidt'mics, in support of the theory that, in the early stages 
of an epidemic, each person who catches the disease infects a 
group of others, each person thus infected infects another 
group, and 80 on until a large portion of the community has 
been exposed. When the exponential character of these 
phenomena CC8S('S, it is 80metimes said that a saturation 
point has been reached. The letter m in our equation (11) of 
the exponential function may stand for a negative number, 
and then our cunoe will descend as ,increases.. If the value 
of a piece of property is depreciating, losing say 10% the 
first year, and again 10c;o of the depreciated value the second 
year, and 80 on, its value at any time is given by this sort of 
formula. Also the tail end of a frequency distribution is very 
apt to be described well by a decreasing exponential. We 
saw in Chapter III that often tables of frequency distribu
tions were left open at one end. If in such a case it becomes 
necessary to distribute the last group given in a table over a 
set of measured intervals, a pretty good method is to assume 
that the distribution there is exponential. 

6. The Constants k and m. To determine the constants 
we first take the logarithms of both sides of equation (11): 

log y - log k + mllog e. (12) 
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Now, let Y = log y, a = log k, ~ = m log e. (13) 
Then equation (12) becomes 

Y =a + ~t, (12a) 

which is just like equation (2) of § 3, page 105. Therefore our 
problem of fitting (12) to the given (t, y) points is the same 1 

as the problem of fitting (12a) to the corresponding (t, Y) 
points, and this is only the problem of the straight-lllle trend 
treated before. It may be solved either (a) graphically or 
(b) numerically. 

(a) Graphically. Ratio paper. We have to plot the given 
(t, y) points, that is, the given t, and the logarithm of the 
given y" for each i. Then we are to draw by eye the best 
fitting straight line that we can. There is no difficulty about 
doing this, as before, except the slight one that we are re
quired to look up the logarithms. It is a little better, there
fore, to use paper so ruled that when one attempts to plot an 
ordinate y on it, one will really get an ordinate whose gee
metrical length is log y. Such paper is commonly called ratio. 
paper, or "arith log" paper, or "semi-logarithmic" paper, 
" semi" because there is no change in the abscissae, only in 
the ordinates. The rulings are spaced like those on a slide 
rule; in fact, a slide rule may well be used as a measuring 
stick in place of the specially ruled paper; and conversely 
two strips of the paper may be used as a slide rule. 

Example 7. Find graphically the exponential trend of the electric 
output of the Montreal Light and Power Co. (t = number of years 
after 1900, y = millions otkilowatt-hours.) 

2 5 10 15 20 21 22 23 24 25 

Y 43 93 176 350 909 907 945 1089 1200 1176 

1 Very nearly the same. The critical reader will realize that a least 
square solution of (12a) wiiI not yield quite the same values for k and m 
as a least square solution of (11) would. The discrepancy can be 
practically eliminated by a proper choice of a system of weights to be 
applied to (12a). 
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In the figure'there are three sets of logarithmic rulings. These are 
to be numbered like .those on a slide rule. If we decide that the 
lowest line reads 1, then the line at the bottom of the next set 
should read 10, and the next 100, and so on. Or we may begin 
with 10 and go to 100, then to 1000, etc. This last was the under
standing necessary in plotting the points in this example; oth~r
wise they would have run off the page either at the bottom or at 
the top. Next we choose our (t', y') and (t", y") points: (a) and 
(b) near the ends of our line. They are actually 'read as (0, 37) 
and (27, 2020). So far we have paid no attention to the fact that 
our distances really mean logarithms. We used the numbers at 
the left of the page exactly as if the lines were equi-spaced. But 
now to get (12a)'we must get Y' from y' and Y" from y",that is, 
Y' = log y' = 1.5682, and Y" = log y" = 3.3054. Then we must 
substitute in the ordinary two-point form of the equation of a line: 

We obtain 

or 

Y" - Y' 
Y.:.. Y' = t" _ t' (t - tI). 

Y = 1.5682 + 3.3054 ;71.5682 t, 

'Y = 1.5682 + .06434t, 

(14) 

as the equation of the straight line pictured. Thus a = 1.5682, 
{J = .06434, and then by (13) we can get also k and m: 

k = 10g-la = 37, m = l~ e = '~4~:: =:= 0.1481. 

So our exponential trend has the equation 

y = 37eo.14811. 

This is the equation of the curve which on ordinary' paper would 
take the place of the straight line on the ratio paper. The student 
must not confuse y and Y. Let him remember that the numbers at 
the side of the page are the ordinary numbers y, and that the 
geometrical distances that separate the lines on which these numbers 
are placed are logarithms. In plotting our points we need only to 
consider the ordinary numbers, but in order to match them to a 
straight line we have to consider the geometrical positions involved, 
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(or it is actually the geometrical distances that determine whether 
we have ,8 straight line or a curve. It will be helpful to repeat the 
work of this example, using ordinary paper and looking up the 
logarithms, as suggested at the beginning of the section. 

~) Numerically. We look up the value of Y in a table of 
logarithms. Then the t and Y play the same part here as the 
t and y played in the problem of the trend line. 

Example 8. Find the exponential trend for Example 7 numeri
cally. 

I " 
.. IY P 

2 43 1.6335 3.2670 4 
5 93 1.9685 9.8425 25 

10 176 2.2455 22.4550 100 
15 350 2.5441 38.1615 225 
20 909 2.9586 59.1720 400 

21 907 2.9576 62.1096 441 
22 945 2.9754 65.4588 484 
23 1089 3.0370 69.8510 529 
24 1200 3.0792 73.9008 576 
25 1176 3.0704 76.7600 625 

167 6888 26.4698 480.9782 3409 

D ... (10)(3409) - 27889 ... 6201. 

a - (26.4698)(3409) D (167)(480.9782) ... 1.5985. 

{J ... (10)(480.9782) ;; (167)(26.4698) = 0.0628. 

k ... 10g-1 1.5985 ... 39.67. 

{J .0628 
m .. log e .... 4343 ... 0.1446. 

Therefore the equation is: 
y = 39.67eO·l~. 

Gokbale Institute -of Politic. 
and EconOmics, Poona 4 
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EXERCISES § 6 

1. Same as Example 7, but use only the points at t = 5, 10, IS, 
20. 

2. Find graphically and numerically the exponential trends for 
each of the following cases: 

(a) 1-;-1 0 2 4 1 A ..... ~ 1.78.-. 
2 10 100 

-;-/ 1 2 3 3.5 
(b) Ana., y = l.0geO.9671• 

3 7 20 33 

(,) 1-;-1 0 1 2 4 

1 .4 .1 .02 

'1. Properties of Ratio Charts. The usefulness of ratio 
paper and of the charts made on them does not depend pri
marilyon the slight advantage noticed in § 6. Rather do that 
advantage and all other advantages depend on the following 
fundamental property. 

(a) If two numbers, y and. y', are plotted as ordinates on 
ratio paper, these two ordinates having lengths in ordinary 
units equal to Y and Y', then the ratio y' /y will appear 
graphicaUy as the difference Y' - 'yo 

Example 9. Suppose y = 2 and y' = 3. The actual length of 
the ordinate Y will be (in centimeters) 0.3010 and the actual length 
of Y' will be (in centimeters) p.4771; and the actual length in 
centimeters of the ordinate corresponding to the point 3/2 will be 
- 0.3010 + 0.4771 = 0.1761. 

This example makes the proof of (a) obvious, viz., Y = 
log y, Y' = log y'j therefore Y' - Y = log y' /y. Since on 
a ra.tio chart the number y' /y will a.ppear graphically as its 
logarithm, this equation shows that it will appear also as the 
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difference, Y' - Y. An important corollary of this property 
is that: iJ two time 8erie8 appear a8 parallel ' curve8 on ratio 
paper, alwaY8 keeping the 8ame di8tance apart (thi8 di8tance 
being measured perpendicular to the time axi8), then the ratio 
oJ the one Junction to the other i8 con8tant. It is very helpful 
in forecasting economic phenomena when one can discover 
that two functions customarily bear a fixed ratio the one to 
the other. Since these functions usually are subject to oscilla.
tory fluctuations it is not always easy to discover an innate 
proportionality of this sort, even when it exists, but a ratio 
plotting may make it immediately apparent. Another 
corollary is that: iJ the curve8 are separating, the ratio oJ the 
greater Junction to the leBB iB increasing, and if they are ap
proaching each other, this ratio i8 decreasing. It is easier to 
discover and to depict changes of this sort on ratio charts than 
on ordinary charts. . 

Ezample 10. MONOGAMY AND TBIl MOTOR CAR. (Erskine, 
Nqrth American Review, August, 1929.) Mr. Erskine says: "There 
was a greater proportion of married women in 1920 than in 1910 
from women of every age • • • and the increase was most marked 
for the women of younger years." Then he presents the following 
data: 

W_". P., c. MarrMd 
AI/' 

1910 1920 

18 17.0 19.2 
20 36.2 38,4 
22 50.7 52.9 
24 62.0 64.2 
25 65.7' 67.8 

The ratio chart (Figure 1, page 120) does show clearly that the 
relative increase was most marked for the women of younger years, 

1 The two curves will coincide if one is shifted vertieaIIy the app~ 
priate distance. They are not parallel in the sense that two eoncentrio 
circles are parallel. 
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for the two curves are wider apart at that end. The ordinary chart 
(Figure 2) shows merely that the numerical increase was almost 
uniform throughout. 

0 Per cent Married ~ 
0 

I ~ 0 L 1920 V' 
0 ~:u-
o /; 

~ 
20 

18 20 22 Ie 26 

All" 

FiGURE 1 

80 r--,r----y-~---, 

~ CO 1-----j1#-'=f=!......J...---l 

~ 

d: 

18 20 22 Ie 26 

All" 

FIGURE 2 

A second property of ratio charts has to do with "link 
relatives" : 

(b) In an equi-spaced time series, (tl' YI), ••• , (tn, Yn), the 
ratio 01 any ordinate to the preceding ordinate is called a link 

Th lat · Yz Ya y". ratio or link relative. ese re wes are -, -, .•• , -. 
YI Yz Yn-l 

II the graph 01 BUch a series on ratio paper is a straight line, then 
the link relatives are all equal. Conversely, il the link relatives 
are equal, the graph is a straight line. 

o Prool: 

Since ~ =.~ = ... = Y", 
YI Yz Y,,-l 

I Yz . I Y3 I y" og-= og- =. = og-, 

and, therefore, 
Yl· Yz Y,,-l 

Y. - Y1 = Y. - y. = ••. = Y" - Y fi-l. 

That is, the differences in the geometrical lengths of succes
sive ordinates are all equal. This is a property of the 
straight line only. Since the steps are reversible, the con
verse is also true. 

A corollary of this property is that: il the link relatives 
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alwaY8 increa8e, the ratio graph i8 a curve which i8 concave up. 
Also, if the link relative8 alwaY8 decrease, the ratio graph i8 
concave down. Let us prove the first part of this corollary. 

Since ?t! < '!f!, Y. - Y I < Y. - Y •. 
Y1 YI 

But ~ =: /:1 is the slope of the line from the first point to 

'the second. Also, since t. - ta = fa - tl , ~ =: t2 is the 

slope of the line from the second point to the third. It fol
lows, then, that the first slope is less than the second. Like
wise the second will be less than the third, and so on. The 
curve is such, therefore, that its slope is always increasing. 
It is therefore concave up, like the inside of a bowl. 

EXERCISES § 7 

1. Use ratio paper, and plot the ordinates y = I, 2, 3, 4, 5, and 
7/- 2, 4, 6, 8, 10; each group with the abscissae t = 1, 2, 3, 4, 5. 

(a) What property of ratio charts is illustrated by the relation 
between the broken lines whose ordinates are y and y'? 

(b) Fonn the link relatives of y'. What property is illustrated? 
(c) If y' is the gross business and' is the time, is the business 

increasing or decreasing? Is the per cent change from year to 
year increasing, or not? 

(d) If y is the net business, is the ratio between net and gross 
increasing, or not? 

(e) Plot also the ordinates y" = Ull by adding ordinates graph
ically, i.e., without computing y", except at the first point. 

(J) What sort of graph would y' have on ordinary paper? Is the 
absolute change in the gross business from year to year increasing, 
or not? 

2. Given any set of numbers, like (t, y) in Exercise I, whose 
graphs lie on a straight line on an ordinary chart, will they always 
lie on a curve which is concave down on a ratio chart? If so, will 
it always be trUe that when y changes by equal absolute amounts, 
the per cent y will change by diminishing amounts? If not, what 
other possibilities are there? 
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3. (a) Plot the numbers on ratio paper, 

~Il, :' 3, 4, 5 , 
y' 1, 10 

inserting graphically the points not given, so as to make them all 
lie on a straight line. 

(b) Answer the questions in Exercise 1 (b), (c), (e), and (f), 
using these values of y'. 

4. By taking the logarithms of both. sides of the equations, tell 
what sorts of curves on ratio paper will result from a graphing of 
the following: 

(a) Y = /j-I'. 

(b) y = eO+bHcl'. 

(c) y2 = ell. 
(d) Y = 2t. 
(e) y = 2 + t. 
8. .Parabolic Trend. When a time series cannot be ap

proximated either by a straight line or by an exponential 
curve, it occasionally pays to try other types of curves. Of 
these we shall consider but one, the parabolic. The equation 
is of the form 

y = a + pt + ~fl, (15) 

and the letters a, p, 'Y represent constants whose numerical 
values are to be found. We shall consider here only the 
simplest case, viz., when the t's are equi-spaced. Then, as 
\\j.th the straight line ,(equation 5), it is better to make t~ 
substitution: ' 

t-l 'h - t1+t" 't x = -c-... w ere t = -2-' c = "2 - h (16) 

and to write the equation in the new form, 

y'=A+Bx+CX2, (17) 

where A, B, C are constants whose numerical values are to· 
be found. We shall use the principle of moments again and 
in this case 1 also it is equivalent to the principle of least 

1 But the two principles are not equivalent for most types of curves. 
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squares. Instead of equatin~ the zeroth and first moments, 
merely, we now equate the second moments also: 

(Oth moments) 'l:,y ... 'l:,A + B'l:,x + C'l:,xl 
) 

(lst moments) 'l:,xy = A'l:,x+ B'l:,xl + C'l:,zZ 
(2nd moments) 'l:,xi! ... A'l:,:z;Z + B'l:,zZ + C'l:,:z;4 

(18) 

These equations will simplify. Because of the choice of origin 
in (16), 'l:,x ... 0 and also 1 'l:,zZ = O. For compactness write 
S. - 'l:,x2, S, = 'l:,:z;4. In equation (10), page 108, we have 
already learned that 

S ... en - 1)(n)(n + 1) = n(nl - 1) 
• 12 12 ' 

(19) 

and it will be shown, in the chapter on Finite Differences,' 
that (3nl - 7)S. 

S, =. 20' (20). 

Our equations (18) become: 

'l:,y = An + CSt ) 
'l:,xy = BS. 
'l:,xi! = AS. + CS, 

and the solution is immediate: 

(21) 

A - S~y - S.'l:,xiJ B - ! '" C _ n2:,xiJ - Sz'l:,y (22) 
- D ' - S.~xy, - D ' 

nSz(nl - 4) 
~here D = nS, - Sal = 15 . By the use of (19~ 

and (20) the equations (22) can be written in the Iilightly 
more convenient forms: I 

15 (:.nl - 7 ) 
A = n(n2 _ 4) 20 'l:,y - 'l:,xty 

12 
B = n(nZ _ 1) 'l:,xy (22a) 

C = n(':~ 4) (na 1~ 1 'l:,x!y - 'l:,y) 

1 See Problem 15. I Part II, Chapter VII, Exercise 10. page 366-
I See Problem 15. 
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The substitutions of these values for A, B, and C in equation 
(17) will give us the result BOUght. UsualIy we do not need 
also the equation relative to the arbitrary (I) origin and unit, 
but if we do we can now get it: I 

a=A-JJ+~ c ~ 

1 i 
fJ = c(B - 2cC) (23) 

C 
'Y=Ci 

Ezample 11. The following data give the approximate mean 
vital capacity of males at various ages (Biometrika, vol. 16, p. 141). 
F'md the equation of parabolic trend. 

D£T4 COMP1T1'.&TlO. 

A". Vil..lC~ lI-fJ-i)/e 2q b'Ir , 1/. 

19.5 2Z1 -¥ - 3859 65603 
22.5 230 -y -WiO 51750 
25.5 230 -y - 2990 38870 
28.5 237 -¥ -2607 28677 
31.5 2Z1 -I - 2043 18387 

34.5 229 -I -1603 11221 
37.5 222 -I - 1110 5550 
40.5 218 -I - tiM 1062 
43.5 216 -I - 216 216 
46.5 210 1 210 210 • 

49.5 205 00 1 615 1845 
52.5 193 t 965 4825 
55.5 201 1 1407 9849 
58.5 185 t 1665 14985 
61.5 200 ¥ 2200 24200 

64.5 169 Y 2197 28561 
67.5 160 Y 2-100 36000 
70.5 163 ¥ 2771 47107 

Sums 37'n I I - 4102 389818 

I See Problem 15(11). 
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Obviously,l- '5.0. Since c - 3, z - ,- ;5.0. The z's proceed by 

unit. differences, 80 that. only one need be computed. Instead of 
writing the denominat.or of z each time, it. is better t.o comput.e the 
columns, 2.rrI, t.rtv, not. Z1J and r1/. lIence, 

~ . 4102 fV\~1 ~... 389.818 97'·' 5' .. zy - - T - - "'\hI,' .. Z. - -4- - , .. ..ra., 

,,- 18, n' - 1 - 323, nl - " - 320. 

By (220) then, 
A _ ~ (965.3722 - 97454.3) - 21389 

18·320 20 . , 

12 
B - 18.323(- 2(51) - - '.23, 

C _ (~ 12·97.454.3 - 3722) - - "6-1' 
18·3:..lO 323 - , 

80 that equation (17) is: 

11 - 213.89 - '.23z - .264z1. 

By (23), ex - 217.M, fl- 6.51, ., - - .0293; 

80 that equation (15) is: 

11- 217.M + 6.5U - .0293l'. 

Tho work could ha,.., been simplified a little if we had used, in 
place of 11, the difference (, - 160) throughouL If N is odd, 
instead of even, as here, the z's will be integers, as in Example 3, 
pogo 108. Then, of course, in the next. two columns we shall have 
ZfI and r1/, instead of 2zy and 4.r11/. 

EXERCISES 18 

1. Fit. a parabola t.o the points of Example 2, considering only 
the points at. , - 20, 25, 30, 35. 

2. Same as Exercise I, but. add the point a\' - 40. 
3. Fit a parabola t.o each set and plot the data and the cun..,. 

(.) 1-;-1 o 1 2 3 I A ..... - '.56+ 7.9'''+ I.' .... 
- 3 0 10 20 . z - ,- 1.5. 
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(b) _t _1-2 
-1 0 1 21 Ans., y = 1.91 + lAOt _ 4.86t2• 

y -20 -52 -1 -15 

PROBLEMS CHAPTER vn 
1. Compute and exhibit graphically the moving average of 

unfilled orders of the United States Steel Corporation for the years 
1919-1922, taking k = 4. 

MiUioM 01 TOM 

1919 1920 1921 1922 

January .... 6.68 9.29 7.57 4.24 
February ... 6.01 9.50 6.93 4.14 
March ...... 5.43 9.89 6.28 4.49 

April ...... 4.80 10.36 5.85 5.10 
May ...... 4.28 10.94 5.48 5.25 
June ...... 4.89 10.98 5.12 5.64 

July ....... 5.58 11.12 4.83 5.78 
August .... 6.11 10.81 4.53 5.95 
September .. 6.28 10.37 4.56 6.69 

October ..... 6.47 9.84 4.29 6.90 
November .. 7.13 9.02 4.25 6.84 
December .. 8.27 8.15 4.27 6.75 

2. Do the same for Brokers' Loans for 1928-1929, taking k = 3. 

Month J. F. M. A, M. J. J. A. S. O. N. D. 
--

1928 3.81 3.82 3.70 3.98 4.28 4.56 4.31 4.26 4.29 4.57 4.97 5.18 } BlUloDS 
1929 5.33 5.67 5.65 5.66 5.53 5.28 5.77 6.02 6.35 6.80 4.88 3.45 of 

Dollars 

3. Do the same for The Annalist's index of the prices of 50 
rail and industrial stocks, taking k = 6. 

Month J. F. M. A. M. J. J. A. S. O. N. D. 

1928 180 177 192 195 196 189 190 203 205 209 228 231 
1929 • 248 248 243 249 235 265 282 303 290 230 201 206 . 
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4.. Prove equatiolll! (4). 
6. (a) Find numerically the straight-line trend in Example 11. 

(b) Show that the Bum of the squares of the residuals is smaller 
with the parabolic trend (Example 11) than with the straight-line 
trend. 

6. Find (a) graphically and (b) numerically the straight-line 
trend of the death rate from cancer in the United States for the 
years 1900-1924. 

Year 1900 

1 

1910 1920 1924 

Rats 9.4 12.1 14. 14.9 

7. Find graphically the equation of the trend line of Brokers' 
Loans, using the data of Problem 2. 

8. Do Problem 7 numerically. 
9. Find graphically the exponential trend from the data: 

--'II-----~--2-.~--7-.:-ll~~ I ':.1 I 
10. Do Problem 9 numerically. 
11. Find graphically the exponential trend of gross earnings of 

all Bell telephone companies in the United States and estimate the 
earnings for 1930, on the hypothesis (usually very uncertain) that 
the apparent law of growth will not change. 

- Year 1921 1922 1923 1924 1925 1926 1927 1928 --------------
Earnings 

521 564 623 678 761 845 917 1003 (Millioos oJ Dollar,) 

12. Find analytically the exponential trend of net earnings of 
the General Electric Company and estimate the earnings for 1929. 
Use the same hypothesis as in Problem 11. 

Year 1924 1925119261192711928 
Millioos oJ Dollars 45 43 49.6 51.5 57.3 
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13. United States Steel Corporation. Plot on the same ratio 
chart (a), (b), and (c), where (a) is the amount of unfilled orders 1 

on June 30 of each year, (b) equals the gross earnings reported at 
the end of each year, and c = a/b. Draw a smooth curve through 
the points of (c) and project it into 1929. Hence estimate (b) for 
1929 (cf. Chapter I, Problem 1 (a». What does the lack of paral
lelism of curves (a) and (b) indicate? 

Year 1921 1922 1923 1924 1925 1926 1927 1928 1929 ----------------
MiUiom of Tom (a) 29.92 21.09 25.58 15.96 17.11 16.48 13.71 15.10 16.35 

M ,U,om of DoUBr. (b) 986.75 1092.7 1571.4 1263.7 1406.5 1508.1 1310.4 1374.4 

14. The figures for 1920 in Example 10 are such that their 
logarithms lie nearly on a parabola. Using only the first four, 
equi-spaced, numbers, :(ind the equation of this parabola. Now 
what is the equation of the exponential curve which nearly fits the 
given numbers? 

15. (a) In Example 11, show by actual computation that 

8 1 = n(n~; 1), 84 = (3n
2

;0 7)82 • .(19) and (20) . 

(b) Prove the statement of (16) that 1:x3 = O. (c) Derive (22a) 
from (19), (20), and (22). (d) Derive (23), noting the proof of (9). 
(e) Same as (a), using Example 2. 

16. Fit a parabolic curve to 'the figures for the net sales of the 
General Motors Company: 

Year 

1

1924 1925 1926 1927 1928 1929 

MiUiom 0/ Dollars 568 735 1058 1270 1460 1504 

17. Same as Problem 16, oInitting the year 1924. 

1 More precisely, (a) is the sum of the four quarterly reports of unfilled 
orders up to June 30 of each year, and is therefore proportional to the 
average of these reports. 



CHAPTER VIII 

CORRELATION, THE SURFACE AND THE COEFFICIENT 

1. The Frequency Surface. We now return to the subject 
of frequency distributions already begun in Chapters I-VI. 
We are about to consider the interrelation of three variables, 
X, Y, and Z, instead of two as heretofore. Usually we have 
chosen t and y as the two variables, but we might have used 
instead X and Y. We said that y was a function of t, if for 
every value of t (of a given set) there was a corresponding 
value of Yi Y was then a function of a single variable t, and 
could be graphed as a curve. We now say that Z is a function 
of two variables, X and Y, if to every pair of values of X and 
Y (in a given set) there is a corresponding value of Zi this 
function may be graphed as a surface z 
in three-dimensional space. An example 5:: 
of a function of one variable was 

Y = A + Bt. 
This was graphically a straight line. An x 
example of a function of two variables is y 

Z = A + BX + CY (Figure 1). FiGURE 1 

This is graphically a plane. Another example is 

Z = VCI- XI- YI (Figure 2). ~z 
This is half of a spherical surface: In gen-
eral, any algebraic or other mathematical 
expression involving X and Y is an ex- x 
ample of a function of X and Y, and may 
be graphed as a surface. FIGURE 2 

Example 1. We may, of course, have frequency functions of two 
variables. A good example is the rectangle of dispersion which we 

129 



130 ELEMENTARY STATISTI~ 

saw was u....oo in gunnery. A rectangle was supposed drawn over 
the field where the shots were to fall. Within each little cell of this 
rectangle was a number. This told us the number of shots to be 
expected in that cell. Now the position of the cell was located by 
two variables, X, the longitudinal distance from the center of im
pact, and Y, the latitudinal distance. The relati,'e frequency was 
the number in the cell, and was the third variable Z. The value of 
Z differed for different cells, its value depending on the position of 
the cell, that is, upon the values assigned to X and Y. Z was then 
a frequency function of these two variables. We might now think 
of solid rectangular columns (parallelepipeds) erected on these 
celL'J as bases, so that the volume of each would be proportional to 
the frequency in the cell. Since the cells all had equal areas, these 

FIGURB 3 

volumes would in tum be propor
tional to the altitudes, and so the 
altitudes of these columns would also 
represent the frequencies. Such a 
figure is a solid histogram. A smooth 
surface drawn through the tops of 
the columns would be an example 
of a frequency aur/ace; in this case 
also a normal surface. This was pic
tured crudely in our earlier discussion 
as the surface of a mound of shells 
such as would result if the various 
shells piled up as they fell (Figure 3). 
The rectangle of dispersion is, then, 

an example of what we shall call a two-dimensional frequency tt.Wle. 
Any frequency table of two (or more) dimensions is also commonly 
called a correlation table; another name for a frequency surface is a 
correlation surface. 

The rectangle of dispersion was a symmetrical table in 
certain respects, but usually correlation tables are not sym
metrical. Consider now another example (Example 2), ob
servations on the lengths and breadths, in centimeters, of 
900 books chosen in a nearly random fashion from a large 
library, 
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000 Bool[s 

I~ r X 12 16 20 24 28 32 I(y) 

B,,,dlll 

----------
10 5 61 24 90 

--------
14 21 368 202 591 

--------
18 8 1M 15 187 --------
22 1 21 7 29 --------
26 1 2 3 

----r= ----
f(X) 5 82 400 367 37 9 000 

(N) 

The correlation table proper lies within the double lines. Here 
are placed the various frequencies with which the several observa
tions indicated in the top and left-hand margins occurred. Thus, 
5 books' were found for which the length was about 12 and the 
breadth about 10 centimeters, 61 for which the length was 16 and 
the breadth 10. The frequency may be denoted by Z, or, more 
commonly, by I(X, Y). If we add the frequencies in the several 
vertical columns of this table, we obtain the numbers in the margin 
at the bottom. These are called marginal totals, and are repre
sented by I(x). The letter I does not stand for "function," but 
for "frequency"; I(X, Y) is the frequency in the cell at (X, Y); 
I(X) is th.e frequency in the column whose coOrdinate is X. Sim
ilarly,/(y) is the frequency I in the horizontal row whose coordinate 
is the given Y. One could therefore write the equations: 

J(X) = 'l:/(X, Y); J(Y) = 'l:/(X, Y). (1) 
r z 

I It is always true in our notation that I, though it stands for fre
quency, is actually G function of the variable or variables in the paren
thesis following it; but we cannot agree that I eba1l a1so stand for ths 
I function, because it would then be necessary that the I function of X 
should be the ssme expression in X as the I function of Y is in Y, and 
this is not usually true in a corre1ation table. 
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The first of these equations says: consider any cell (X, Y) and its 
frequency I(X, Y); now, holding X fast, add all such frequencies 
for all possible values of Y. This means that we add a column of 
frequencies. The second equation says that we must hold Y fast 
and add the frequencies for all possible values of X; that is, we 
add along a row. 

Example 3. If, in Example 2, X = 20,/(x) = 'l;/(20, Y) = 1(20, 
y 

10) + 1(20, 14) + 1(20, 18) = 24 + 368 + 8 =: 400. 

2. The Mean. We shall now show, as in the case of one
dimensional frequency distributions, how to find certain im
portant numbers which together describe the character of the 
two-dimensional distribution. Among the most elementary 
ofthese'are N, the total frequency, and eX, Y), the position 
of the mean point. 

We get N by adding together all the frequencies of the table, 
in any order. We may denote such a summation thus: 

2; f(X, y) = N. 
X,Y 

(2) 

The notation 2; means that we are to find the sum of all ex-
X,Y 

pressions of the sort that follow 2; for all values of X and Y, 
irrespective of the order. If we had desired to add the fre
quencies, first in the X direction and then in the Y direction, 
we should have written . 

2;2;f(X, Y) = N, (3) 
YX 

obtaining, of course, the same result. Since in equation (1) 
we saw that fCY) = 2;f(X, Y), 

x 
equation (3) could have been written: 

2;f( Y) = N. 
Y 

(4) 

It therefore says that the sum of the totals glven in the 
right-hand margin is N. Similarly, for the totals at the 

bottom: 2;f(X) = N. (4a) 
x 
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It should be noticed now that each of these sets of marginal 
totals, f(X) and J(Y), is an ordinary one-way frequency dis
tribution, whose total is N. Let X denote the mean of J(X) , 
and Y the mean of J( Y). The point (X, Y) shall then be 
called the general mean point of the table. By Chapter I, 

- 1 - 1 
X = N rX!(X), Y = N~Y!(Y)' (5) 

If we had wished, each of the equations (5) might have been 
written as a double sumj for, insert into them the values of 
leX) and J( Y) given by (1), then, 

- 1 
X ... N1:.1:.X!(X, y), 

XY 
- 1 Y = N1:.1:.YJ(X, Y)j 

YX 
(6) 

or, again, since the order of summation is immaterial. 

- 1 - 1 
X = N 1:. XJ(X, y), Y = N 1:. Y!(X, y). (7) 

X,Y X,Y 

What (7) says in words is this: Multiply each of the tabulated 
frequencies by its own X, add the products for the whole 
table and divide by Nj the result is X. Multiply each fre
quency by its own Y, add over the whole table and divide 
by Nj the result is Y. 

A physical model of a correlation table may be pictured 
thus. Think of a thin Bat piece of metal marked off into small 
rectangular cells, and suppose the density to vary from cell 
to cell. The amount of metal in any given cell corresponds 
with the frequency in a cell of a correlation table. The center 
of gravity of the whole is the general mean point. Physically, 
the center of gravity of a Bat piece of metal is the place where 
a vertical pivot should be placed in order that the metal 
should balance on it, the plane of the metal being horizontal. 
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The diagram below summarizes the notation of this section. 

~ --
-
cell 

-
y 

y ..... 
-
--

Marginal 
Totals 

X 
~ 

X 

/ (X,Y) 

• (X, Y) 

f(X}= 
2':f(X, Y) 
y 

Marginal 
T.tolo 

f(Y) = 

N 

2':f(X, Y) 
x 

Notice that when we sum in the X direction we have as a. 
result a. function of Y only, and that when we sum in the Y 
direction we have left a. function of X only. Any row or 
column of a. correlation table is also called an array. The 
rectangles containing the frequencies we have called cells. 
Some authors use this word for the rectangles containing the 
marginal totals. 

Example 4. Find X and Y for Example 3. The method was 
explained in Chapter II. A suitable form for the computation is 

1"-.., a -I -1 0 1 2 I f(v) 

• ~ -fl~ 
vf(v) 

12 16 10 Z4 , 21 82 

-2 10 90 -180 

-I 16 D AT A C F 691 .ji91 

0 18 187 0 
EXAM L" ., 

1 Z2 29 29 

1 16 • 6 

f(u)-f(S) & 82 600 167 17 9 @ ~ 
uf(u) -10 -8! 0 167 7f 1ft ® 

given above. N = 900, 2':uf(v) = - 736, 2':uf(u) = 376. These 
numbers are enclosed in circles. The origin of 11 and the origin of 
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II are chosen arbitrarily, but preferably near the center of the table. 
The unit of u is h ... 4cm., and the unit of II is k = 4cm. in this 
example; they are not always the same; both are class intervals. 

1 376 -_ 
11 - N ~uJ(u) - 900 - 0.4178. Hence, X ... 20 + hu = 21.67. 

1 -736 -" - N ~vJ(v) - 900 - - 0.8178. Hence, Y ... 18 + kii ... 14.73. 

EXERCISES § 2 

1. From the following data make a "scatter diagram"; i.e., 
plot each of the points, using as coordinates: (length, breadth). 

30 BooXll (CENTIMETERS) 

I 13.1 28.8 H.I 24.1 2U 23.1 24.2 H.2 24.1 H.O 2U 23.3 23.7 H.I H.O 
-----r--------~--
• 1U 18.2 17.8 17.8 17.1 11.1 17.2 17.0 II.t 10.3 17.1 11.1 17.2 17.5 17.1 

'I 24.1 13.0 H.O 24.1 24.1 22.1 13.' 23.1 22.6 23.7 23.7 22.0 22.1 23.' 23.0 
------r---~-----.-
• 17.1 11.2 11.8 11.2 11.0 II.t 11.5 11.1 16.0 17.8 14.9 15.2 14.9 15.1 15.2 

2. Form a correlation table, using Exercise 1, made up of 3 X 4 
cells as follows: 

X Oength): (22 -), (23 -), (24.0 - 24.9); 
Y (breadth): (14 -), (15 -), (16 - )(17.0 - 17.9). 

3. In Exercise 2, compute each of the following sums, taking 
u - 0 at X .. 23.45, and II - 0 at y ... 15.45: 

(a) 1(11.), I(v), ~/(v), ~/(u) =- 30. 
• • 

(b) ~uf(u), ~11(v), ~u!/(u) = 17, ~U(u)]' ... 354. 
II ." " 

(c) ~/(u, v) when II ... 0, ~J(O, II), ~J(u, 1) ... 14, ~ul(u, 1) = 3. 
• ." II 

(d) ~~uf(u, II), ~v~uf(u, v), ~~11(u, v) = 20 . 
• u • " II • 

3. Moments. As with frequency distributions of one 
variable, the important constants which describe the char
acter of the distribution are moments. But there are rather 
more than twice as many moments to be considered now as in 
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the simpler case, for there are moments in the X direction, 
moments in the Y direction, and also composite moments, 
obtained by using both directions. 

DEFINITIONS. Moments about an arbitrary or given origin. 

(a) The rth moment in the X direction about the origin of X 

is ~ }; X'J(X. Y). 
X,Y 

(b) The rth moment in the Y direction about the. origin of Y 

is ~ }; y"f(X, Y). 
X,Y 

The first of these definitions may be put into words thus: 
Multiply each oj the tabulated Jrequencies by the rth power oj its 
own X, sum over the whole table, and divide by N; the result 
is the rth moment in the X direction. 

COROLLARIES: 

(a) The rth moment in the X direction is the same as the 
rth moment oj the marginal totals JeX). 

(b) The rth moment in the Y direction is the same as the rth 
moment oj the marginal totals J( Y). 

The proof of these corollaries is immediate if one under
stands the notation as explained in the preceding sections. 
Thus, since the order of summing is immaterial, 

N
! }; xj(X, Y) = N!};};XrJ(X, Y) = -Nt };Xr};J(X, Y)1 
~Y XY X Y 

= ~~Xj(X), 
which is the definition (Chapter II) of the rth moment ofJ(X). 

Example 5. The zeroth moment in the X direction is 1, the first 
moment is X, and the second moment is the same as VI of 
f(X). 

1 By Theorem I of Chapter I, for X is constant while the summation 
is made with respect to Y. 
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DEFINITION (C). The fir8t product moment about the com
mon origin oj X and Y i8 

1 N ~ XYJ(X, Y). 
X,Y 

Other product moments are used in the more advanced 
theory, but are not needed in this course. 

Moment8 about the Mean Point. Let x = X - X, 11 = 
Y - Y. That is, let x and 11 be the coordinates of any point 
referred to the center of gravity or general mean point as 
origin. The moments about (X, Y) are defined and denoted 
as follows: 

(a) The rth moment in the % direction is N1 ~ %"J (%, y) = p.,. 
-.'11 

(tJ) The rth moment in the y direction is N
1 ~ 1/'J(%, y) = p.y.. 

-,y 

('Y) The first product moment I'S -N1 ~ %yJ(%, y) = p"". 
-,y 

Example 6. ~zfJ - 1,· P1I' .. 1. ~ .... O. ~II ... 0, p..,o ... 0':. 1l1/' .. 0':. 
where O'~ and 0'11 refer toJ(x) andJ(y) respectively. 

Coefficient oj Correlation. DEFINITION (d). The coefficient 
oj correlation is denoted by T, and is defined as the first product 
moment about the generaZ mean point in terms oj the u's as 
units: 

(~) r = Psy. 
cr"CTy 

4. Computation of Moments (N Large). In this section 
we shall continue to suppose that N is large enough to allow 
the material to be grouped into equal cells. The case where 
N is too small for this will be discussed presently. 

The simple (one-way) moments, p.~ and p."., being merely 
ordinary moments of the one-way frequency distributions, 
J(x) andJ(y), can be computed by the methods of Chapter II. 
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Let us recapitulate these methods for the first and second 
moments, using the new notations. 

For /(X).l Let u be the arbitrary coordinate referred to an 
arbitrary origin, X = A; and let the unit of u equal the 
class interval h of X. Then, 

X - A 1-
u = ~ X = hu + A, ii = N ~u/(u), X = hu + A, (1) 

as already illustrated in § 2. 

er~ = ",u' = !~u2f(u) - ii2, er. = herg • (2) 

For /(y). Let fI refer to the origin Y = B, and have as 
unit the class interval k of Y. Then, 

Y-B _ 1· -
v = ~ Y = kv + B, v = N ~vf(v), Y = kv + B, (3) 

asin§2 . 

. er~ = ...... = ~ ~v2f(v) - ir, ery = ker". (4) 

To compute p~. The computation of the product moment 
is new. We make the same substitutions as in (1) and (3), 
inserting them in the expression for p"" which might have 
been written: 

1 -'-p"" = N ~ (X - X)( Y - Y)/(X, Y). (5) 
X,Y 

By (1) and (2), 
X - X = h(u - u), Y - Y = k(fI - v), so tbat 

p"" = hN
k ~ (u - U)(fI - v)/(u, fI) = Nhk [~ uv/ 

u,. u.tJ] 
_ u~ fI/ - v~ u/+ uiJ~/ 

u.. "'. u,. 

= ~ [:. uv/ - NiW], by (1) and (3). (6) 

1 The frequency I(z) has the same value as I(x) i for, by definition, 
(z) is the frequency in the column at z, and I(x) is the frequency in the 
column at X, and z and X are different designations for the same 
column. Also,/(u) = I(x). 
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Some authors stop here, performing the computation by 
means of (6). To do this they place in each cell, in small 
figures, the value of uv, and then add over the whole table 
the quantities uvf. It is a little better (except in special cases 
to be consider~d later) to proceed as below: 1 

Substitute U = ~uf(u, v), V = ~vf(u, v). (7) 
u " 

Then (6) may be written in either the form (6a) or (6b): 

p~ ... hk (1 ~v~uf(u, v) - Uii) = hk (1 ~vU - Uii), (6a) 

p~ = hk (~~~vJ(u, v) - Uii) = hk (~~uv - iiii). (6b) 

We may compute equally well either (6a) or (6b). Actually 
in practice we do compute the greater part of both, for we 
have then a check on the most difficult part of the computa
tion. Because of the equivalence of (6a) and (6b) our check 
equation reads as follows: 

~vU = ~uV. (8) 
" u 

To compute r, we now merely substitute the value of p~ 
just found in the definition of r: 

1 ~ U --
-~v - uv ) 

r=k=N". (9 
a.IT, aua" . 

Since the expression hk cancels out of (9), it is not necessary I 
to multiply out the product indicated in (6a) or in (6b). All 
we need, therefore, in order to get T is the following list of 
numbers:' '/I, V, au, a. by (1), (2), (3), and (4), ~v U by the 

• use of (7) and (8), then r by (9). This procedure is illustrated 
in Example 7. 

1 Handbook 01 Mathematical Statistics, Chapter VIII. 
I Except in rare instances when p •• is needed for some other purpose 

than to enable one to obtain r. 
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CoROLLARY 1. By equation (9), r is a characteristic of the 
frequency distr£bution which is £ndependent of the choice of 
orig£n and of the unm of measurement. 

COROLLARY 2. The sign of r depend8 on the direct£ons of the 
axes which are chosen as the positive direct£ons. 

Proof. The sign of r is the same as the sigD of p,.", by (~). 
By ('Y) the sign of p,." is the same as the sign of'l:.xyf. Now, 
let us suppose that, for a certain choice of directions, this 
quantity is positive, and then suppose that we reverse the 
direction of the x-axis. The effect is to change the sign of 
every xy product which follows the summation symbol, and 
therefore to change the sign of the sum. 

Example 7. Find T for the data of Example 2. 

""-a -II ·1 0 1 I I f(w) wf(w) .,Ith u .u 

" ~ U 16 20 2f 16 12 

·2 10 5 6l 2f 90 -110 160 -71 142 

-1 14 21 368 lIlOI! 691 -691 591 181 -181 

0 18 8 164 15 181 • 0 omit • 
1 2Z 1 21 f 29 29 29 64 Ie 

I 16 1 I • • U 8 II 

flu) Ii 81 400 1&'1 If , @ @ S @ 
uf(u) -10 -81 0 1&'1 f4 If ~ 

/ u"f(u 20 81 • 1&'1 148 n S 
V -10 -141 omit -201 21 11 

uV 20 141 0 -201 46 II @ 

u = : = .4178, ii = -9'[;,6 = - .8178; u: = : - "I 
= .6010, u. = .775; u! = : - iP = .4335, u. = 0.658. 
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The figures in the U column are found thus: 

::tif(u, v) - U; 10 (- 2)(5) + (- 1)(61) + (0)(24) - - 71; (- 1)(21) 
• + (0)(368) + (1)( 202) - 181, etc. Similarly, for the V row, 
::vJ(u, p) - V; (- 2)(5) - - 10, (- 2)(61) + (- 1)(21) - - 143, etc • 
• 

41 000 - (.4178)(- .8178) 

, - (.775)(.658) - 0.581. 

Grouping Errora. Whcn the matcrial is groupcd in a table 
containing less than 10 X 10 cclls, grouping errors are intro
duced which ought to be corrccted. In gcncral, the smallcr 
the number of cclls the larger the grouping errors. Thcse 
will be discusscd further in Part II. They can be corrected 
in part by the use of Sheppard's corrcctions applicd to 
(J. and (J.. In this text these corrections will not be applicd 
except whcn spccifically indicatcd. In Example 7, the value 
of r if obtained from correctcd O"s would have been 0.696. 

COROLLARY 3. II, in general, z increasea as 71 increases, , 
is positive; if z decreases as 71 increases, r is negative. 

The proof is similar to that of Corollary 2. Examples 
of cases where r is negative will occur in the problems at the 
close of the chapter. Nl'gative correlation is sometimes called 
"inverse" correlation. It will be shown later that, in all cases, 
- 1 ::ii r::ii 1. 

ExJ:RCJSlll § 4. Compute a, fI, cr., cr., , for the data of Exercise 3, 
§ 2. Ana., r - .559. 

6. Computation of Moments (N Small). In Chapter IV, 
§ 3, we considcred the case of simple moments when N was 
small. It is not necessary to repeat the discussion for I¥ 
and I¥, both of which are simple moments, although the 
procedure in these cases will be illustrated on page 143. A 
little further consideration of the product moment is, however, 
desirable. When N is so small that the data cannot be sepa-
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rated into cells without introducing too large a grouping error, 
it is necessary to abandon the short method of computation 
just used, but fortunately, since there are not many items in 
this case, the formula can nevertheless be computed outright 
without great labor. Each item is now to be treated sepa
rately, whether two are alike or not. It is therefore better not 
to write the/(u, v) now, an,d to understand by the expression, 
~uv, the sum of all pairs, uv, that occUr. They do not need 
to be unequal pairs, as they were before. Moreover, since h 
and k might be any desired numbers in our formulae, we shall 
now choose them both to be unity, instead of class intervals, 
as before. Then formula (6) becomes 

p"" = ~ (~uv - Nuv), (10) 

and, again, 
where, now, 

/1~ = NI ~U2 - it2, /12 = 1.. ~v2 - VI U - 1.. ~u ii = N1.. ~v .. 
- Y N ' -N ' 

(11) 

These equations are-frequently written in the combined form: 

r = 1 - (~~uv - iiii). (lOa) 

~~~U2 _ ii2 ~~~v2 - ii2 

It should be remembered that (A, B), the origin of the (u, v) 
system, was arbitrary. Quite commonly, in the case where N 
is small, this is taken as the given origin. Then u = X, 
v = Y, u = X, ii = Y, and (lOa) may be written: 

T = 1 _1"1 _ (!~XY-XY). (lOb) 
"N~X2-X2 N~Y2-Y2 . 

Since we knew before that r was independent both of origin 
and of units, it was really obvious that the form (lOa) could 
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have been written in the form (lOb). The arrangement of 
the computation 1 imitates that in Chapter IV, § 3. 

Example 8. Find the correlation between X and Y. X is an 
index number (1. Fi8her) of wholesale prices in the United States, 
Ya corresponding index (Crump) for England. The period extends 
over three and one-half years. 

x y .. • .. ' .. ... 
150· 157 10 17 100 289 170 
144 152 4 12 16 144 48 
158 167 18 27 324 729 486 
160 152 20 12 400 144 240 
159 148 19 8 361 64 152 
151 142 11 2 121 4 22 
147 140 7 0 49 0 0 

N-7 89 78 1371 1374 1118 

Here we took A .. 140, B = 140, and used formula (lOa): 
_ 89 78 1371 _ 
u - "1 - 12.71, iJ""1 = 11.14, IT~ = -7- - ul = 34.21, 

1374 1118 
IT: .. -7- - iJ2 - 72.12, p ... .. -7- - (12.71)(11.14) = 18.04, 

r _ 18.04 .. 0.36. 
V(34.21)(72.12) 

EXERCISES § 6 

Find r in the following cases: 

1·1+1 4 3 7 6 9 

30 20 60 50 100 

~I A 

I 
9 8 6 5 3 

B 1 3 5 7 9 

15 
Ans., r = .90. 

100 

2 

11 

I Formula (lOb) can be computed with very great speed on certain 
types of multiplying machines; all the following quantities being given 
118 the result of a single set of operations: 

~X, ~Y, ~X', ~Y', ~XY. 
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'·1 
A 1 2 3 4 5 6 

Ans., , = .98. 
X 1 4 9 16 25 36 

:l: - 3 -2 -1 0 1 .2 3 
Ans., , = .93. LI :l:' - 27 -S -1 0 1 S 27 

6. Death rates in Connecticut and Massachusetts, per 100,000 
population. 

Year 1924 1923 1922 1921 1920 1919 1915 
------------

Connecticut 11.3 12.0 12.0 11.4 13.6 13.3 20.4 
M a8saChusetts 12.0 13.0 12.S 12.2 13.S 13.6 20.9 

6. Would r have been changed if each of the Y's in Exercise 1 
had been divided by 1O? Why? 

PROBLEMS CHAPTER vm 
1. As in Example 3, write out in full the expressions for: 

(a) f(X) when X = 32, (b) f(Y) when Y = 22. (p. 132). 

2. Repr~ent in the form of a correlation table the data of 
Problem 3, Chapter 6, page 99 ... Let the longitudinal cUstance from 
the mark be X, and the latitudinal distance be Y, in each case. 
What are X, Y, f(X = 100), ~f(90, y), ~f(X, 10)? 

y x 

3. Find, in the following table. (The data are fictitious and 
N is really too small to permit of the grouping indicated. Small 
numbers are chosen in order to produce a simple problem.) 

~ 6 9 13 17 
Pound •• 

1 1 2 1 Ans., , == 0.597. 

S 7 2 

15 2 1 
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,. Find the correlation between the length and breadth of a 
book, as derived from a group of 900 chosen nearly at random 
from a large library. The unit is one centimeter. Am., r =0 0.875. 

~ 12- U- 16- 18- 20- 22- 2'- 28- 28- 30- 32-

-- ----------------
8- 3 Ii 6 -- -------------- -

10 - 2 13 37 24 -- ---- - ------ - -- -
12 - 1 18 186 67 9 1 

r- - ------------------

~ 
2 21 94 171 21 

f-
16 - 3 4 59 77 4 

18 - 1 4 24 7 4 
I-

20 - 4 6 1 

22 - 1 Ii 6 5 1 
'---------------- --

24 - 1 1 1 

IS. Find the correlation between the length and thickness of the 
books of Problem 4. 

~ 12- U- 16- 18- 20- 22- 2'- 26- 28- 30- 32-

0- 1 5 2 5 6 -- ----------------------
I- 1 7 15 41 17 22 5 2 -- ----f-----------------
2- 3 5 33 109 57 43 10 2 2 1 -- -- -- --------
3- 2 7 69 70 77 31 9 5 3 -- ---------------- - ----
4- 2 9 14 55 35 5 6 1 -- --------------------i-
S- 1 5 28 24 2 3 1 -- ------------------ - --
6- 1 2 5 10 1 1 ------ -- --
7- 2 1 2 5 1 ---- -- -
8- 4 3 1 ------:-------- --- --- --
9- 1 1 1 

To/ala I ----=. -- ------== Ii 19 63 1234 166 243 124 20 17 6 3 
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6. Make a coarser grouping of the data of Problem 4 as indi
cated below, and find T. Because of the large grouping errors in
troduced, the (uncorrected) result here will be very different from 
that in Problem 4. 

~ 10 - 18 - 20- '1'''''''. 
--- ------

8-

14-

20-
----

Tola!& 900 

T. Select 100 books at random from a h"brary, form a table 
similar to the one in Problem 6, and find T. A random selection 
(by the use of Tippett'a numbers) from the table of Problem 6~: 

8. Find the correlation between the height of "mid-parent" 
and the height of adult child. 

INCHES 

~ I 
M lIS 86 f>1 68 69 70 71 72 73 ToW. 

--- - - - - - - - - - - ---
'12 1 2 2 2 1 

--- - - - - - - - - - I-- ---
71 2 4 5 5 4 3 1 

--- - .-I- - - 1- - f- - f-- ---
70 1 2 3 5 8 9 9 8 5 3 --- - - - - - - - - - I-- ---
69 2 3 6 10 12 12 12 10 6 3 

--- - - I-- - - I-- - I- - - ---
68 3 7 11 13 14 13 10 7 3 1 

--- - - - l-I-- - - - I-- - ---
67 3 6 8 11 11 8 6 3 1 

--- - I- - - l- I-- - I- -
66 2 3 4 6 4 3 2 
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8. Find the correlation between the ages of husband and wife. 
nata in Example I, Chapter X, 11 (p. 166). 

10. Find the correlation between the statures of fathers and 
mothers. Biometrika, ,'01. 2, p. 408, slightly altered to avoid frac
tions. N - 1079. The data (F, 1\1) are on page US. 

1L Find the correlation betll"een brokers' loans and stock prices 
by months for the years Ilr..8and 1929. nata in Chapter VII, Prob
lema 2 and 3 (p. 126). 

12. Find the correlation between weighl and stature. Bio
mdrika, "ol20 A, p. 306. 733 boya in AmeriCAn private schooIs. 
ages 4-20. Ani., r - .931. The data (Kilo., Cm.) are on page US. 

REVIEW EXERCISES CHAPTERS I-VID 

L Fwd, in the , system, the mean, mode, ", a" and a. for 
(0), (b), (c), (d), and (t); 

00 00 00 00 00 
, I , I -- - -
o 1 
1 6 
2 12 
3 8 

0 
I 
2 
3 
4 

AII$U"(T' 

Mean 

Mode 

" 
~ 

a. 

1 
8 

24 
32 
16 

(0) 

2 

21 

vi 
-vi 

21 

I 

I~IU 7 
127-IM 138 

etc. 906 
977 
161 

3 

(b) I (e) 

21 118.27 

21 

I V2 5.93 

-vi .OS-I ---

, I , I 
- - - -
30 5 4 I 
40 If 6 5 
50 28 8 2S 
60 37 10 20 
70 22 12 19 
80 24 If 10 
90 6 

(4) (0) 

61.25 100res 

61.H 

11.8 2.38 

.0206 
---

2.31 
I 



~ 69- 60- 61- 62- 68- 64- 6&. 66- 67- 68- 69- 70- 71- 72- 78- 74- 76. I~ ~ .At ~ ~ .q ~ ,J, ,J, ~ ~ ,J, ,J, ~. ~ ~ ~ ~ ~ ~ ~. ~ 
... ... 

~ ! § ~ 8 18 ... ~ Kilo. ~ ~ ::!: :: .... .... !; 

62- 1 96- I 

68- 1 91-

u- 87-

6t1- 1 1 1 
88- 1 1 

79- I 8 I 
66- 1 1 1 2 2 76- 1 4 1 
67- 1 1 2 1 • 8 2 8 1 71- 1 4 2 

68- 1 1 1 2 • 7 6 , , 2 2 67- 4 9 6 

69- 1 1 1 • 6 7 10 16 17 9 6 8 1 1 68- I 20 10 6 1 ... 
~ 

60- 1 1 2 , & 18 16 26 1& 28 18 7 Jl • 1 

61- 8 8 16 17 26 21 24 16 14 10 , 1 

69- 1 1 4 11 20 12 6 1 

66- 1 8 16 12 6 

61- Z 6 12 19 14 4 
62- 1 2 , 9 10 26 22 28 28 28 14 11 4 8 1 47- 1 1 9 14 17 14 4 I 
68- 2 8 , 9 21 16 20 19 ZI 22 11 & 2 2 1 4S· 1 6 14 80 16 4 
6,- 1 2 6 6 10 16 19 24 17 14 7 6 2 1 89- 1 I 21 24 18 4 

66- 1 1 2 8 6 9 7 16 18 10 6 6 2 86- 7 12 ZI 21 2 2 

66- 1 1 8 6 8 7 8 7 8 8 1 1 81- 1 14 22 22 18 4 2 

67- 1 8 1 8 8 8 2 1 1 
27- 1 1 18 18 20 6 

68- 1 2 2 1 1 
28- 2 20 20 11 2 

19- 6 6 11 6 1 
69- I 2 16- 1 , & J 
70- 1 

• 

11- 1 J 
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2. (a) Find the median and the quartiles in Exercise 1 (c). 
Ana., 118.13, 122.94, 113.64. (b) Find the median and P. in 
Exercise 1 (d). Ana., 60.675, 47.93. (c) Find Ql. Q., Q. for the table: 
t - - 10, - 8, - 7.5, - 6, - 6, - 4, 0, 0, 2, 3.5, 6, 8, 8. Ana., 
- 6.375,0,4.125. (d) Find Dz, D7, D. in Exercise 1 (e). Ana., 7.80, 
11H,12;'. 

3. Graduate by the normal curve the data: 

t 10 8 6 4 2 

1 3 4 6 " 2 

Ana. 1.8 4.8 6.4 4." 1.6 

,. The probable errors of a high angle gun are 40 yards in 
longitude and 5 yards in latitude. The center of impact is at the 
center of the farther side of a square fort, and this side is perpen
dicular to the line of fire and is 30 yards long. What per cent of 
hits are expected within the fort? Ana., 18. 

Ii. From the following measurements of the radius of a cylinder 
show that the mean radius is 3.013 :I:: .0025. 

3.00, 3.00, 3.00, 3.01, 3.01, 3.01, 3.02, 3.02, 3.03, 3.03. 
8. The probable error of a gun in longitude is 50 meters and in 

latitude 10 meters. How many shots are expected on a rectangle 
260 meters long (in the direction of fire) and 40 meters wide? 
An8.,M. 

T. Derive graphically A and B of the trend equation, y .. 
A + Bt, taking t - 0 at 1900: 

Dal.e 1900 1901 1902 
19031/1905 ~ 

71 7 6 4.5 4.2 2 1.5 

The numerical solution is: y = 6.82 - .92t. 

8. Find numerically the trend of the average age of American 
Rhodes scholars (Burgess), taking t = 0 at 1900. Ana., 'Y = 21.56 
+ .0267'. 

Dal.e 01 M al.riculalion 1904 1907 1910 1913 1916 ---------
Average Age oJ Scholar. 21.7 21.7 21.9 21.8 22.05 
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9. Find the correlation between year and age. Year is the 
year of matriculation, and age is the age at matriculation of Amer
ican Rhodes scholars (Burgess). Ans., .0030S. 

~ 
.,..1 0 1 

1~20 21-22 23-24 Total. 
Year 

-1 1904--7 14 51 34 99 

0 1908-11 25 45 39 109 

1 1912-16 15 46 35 96 

Totals 54 142 108 304 

10. In Exercise 9, what are the following sums: I.f(l, v), I.f(u, 1), 
• u 

I.I.uf(u, v), I.v'u+ lI.f(u,v),I. ~2f(u, V)'f(l) I.f(u, v) if u = O. 
1JU 11 v 'U,v u+ tf v 

Write in I. form the totals 109 and 142. 
Ans., lOS, 96, 54, 142 + IOSV2, - 1.17, 1, etc. 

11. Find graphically the equation of the best-fitting exponential 
curve for the following data: 

t / 0 /1 
.5 .7 /1.2 1.5 

------
Y 2 .10 .45 .25 .05 .02 

Ans., y = 2e-31 (approximately). 
12. Find r: 

~ 27 29 31 I(y) 

--------- ---
62 2 3 6 11 Ana., .216. --- --------- ---
65 1 10 12 23 

--- --------- ---
68 1 5 6 
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13. Using your tables, construct a "ladder of dispersion," put
ting in twice as many rungs as ordinarily used; i.e., the difference 
between two consecutive rungs is to equal half the probable error. 

14. (a) In a normal distribution in which mean t = 0 and 
tT, - 5, what proportion of the data will lie where t> IS? AnB., 
.00135. (b) If 100 of the data lie between t - - 7 and t =- - 9, 
how many data are there in the whole distribution? AnB., 2227. 

15. Find the correlation between II and t: 

1/ 12~5 ~112.0 20.0 135.0 , 2 2.5 3 3.5 
AnB., .93. 



CHAPTER IX 

REGRESSION, INTERPRETATION OF r 

1. Regression Lines. Consider the general case of correIa
tion, where N is large, and the data might be represented by 
dots spread over the paper. Suppose we wish to draw and to 
finel the equation of that straight line which, on the whole, 
will come nearest to all these~dots. We shall suppose the 
best-fitting line is that one which fits best in the sense of 
least squares, but even with this understanding there are at 
least three different possible points of view. Let a be the 
distance between a dot and the line. We wish to make ~at a 
minimum. The three cases that arise depend on whether: 

• 

Case (a) a is measured parallel to the y-axis, 
Case (b) a is measured parallel to the x-axis, or 
Case (e) a is measured perpendicular to the line . 

(al (b) (e) 

In Case (a), the line is called the "regression of Yon X"; 
in Case (b) it is called the "regression of X on Y"; in Case (e) 
it has no generally accepted name. We shall call it the 
"geometrically best-fitting line," because in geometry we 
usually prefer to think of the distance between a point and 
a line as measured perpendicular to the line. 

152 
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COM (a). If our material it grouped and at the twDe time 
the picture or the dots it kept in mind, one mWlt think or the 
dots lying many deep at the central points or our cells. The 
number or dots in a cell whose coOrdinates are (X, y) it, or 
coune, I( X, Y), and the number or dots in a vertical column 
whose coOrdinate is X it I(X). If we had only one point in 
each column, our problem would be simply to draw the trend 
line to the several points or our table, aa in Chapter VII. 
Now, although instead or one point in a column we have/( X) 
such points, we shall nevertheless proceed in a manner anal~ 
goua to that used ror the trend. We shall use the method or 
momenta. It will turn out that the result would not have 
been different had we first replaced each eet or f(X) points 
with one point at their mean position, and round the trend line 
to the points, one in each column, thUl located, except that 
in doing 80 it would have been necessary to have weighted 
these several mean points proportion.a1ly to their I( X)' •. 

First, let % - X - X, " - y - P, aa in Chapter VIII. 
To find A and B such that the line 

,,-A+B% (1) 

will best fit the data, equate the zeroth and the first moments 
in the % direction: 

(Oda moments) ~ % W(z, ,) - ~ %(A + Bz)J(z, ,) I 
(hI moments) J. ~(Z,,,) _ NI ;:(A + Bz)f(z, ,) • (2) 

iY .. , .. , 

Simplifying these, 0 - A + 0 } (3) 
1' .. - 0 + Br. ' 

ror 

N
I 

l: W(z,1/) - -N
I 

%,,%1(%,1/) - -N
I 

l:wVi) - mean or IVi) • .. , , . , 
relative to its mean aa origin. Tbia is zero. Similarly, 

N
I 

%%Brf(z,,,) - ~ ';'rl(z) - B· 0 - o . . , ..... 
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From (3) we obtain 
A - 0 B - pztI _ TU.!T1I o _ U II 
-, - u~ - u~ - T u,,: 

Hence, the equation (1) is: 

y = 7 UII X, or 
U" 

y X 
- ='7--
Uy U" 

(4) 

(5) 

This is the equation of the regression of Y on X in the (x, y) 
coordinate system. We may now transfer back to the (X, Y) 
system, and get 

y-y x-x 
--=r---· 

Uy U" 
(5a) 

Here UII = U Y' U., = U x' because the units of x and yare the 
same as the Units of X and Y. For the purpose of plotting 
the regression line, it is more convenient to use the (u, v) 
system. The equation in tPis system will, of course, turn out 
to be of the same form as (5a), because in (5a) both the origin 
and Units were arbitrary. It is 

v-v u-u --=7---
U., U u 

(5b) 

Case (b). An exactly analogous discussion yields the 
analogous equations for the rep-ession of X on Y: 

.!-. = r lL. 
u" Uy 

(6) 

X-X Y-Y" --=r--. 
u" U y 

(6a) 

u-ii v-v 
'--=r--' 

"Uu u., 
(6b) 

It should be noticed immediately that, unless r = ± 1, 
(5) is not the same line as (6). If it were, then when (6) is 
solved for y we should obtain the same function of x as in (5), 
but (6) yields 
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which is not the same as 

unless r .. 1fT, i.e., unless r = ::I:: 1. The relation between 
(5) and (6) will be exhibited more fully after a consideration of 
Case (c). But first we pause to illustrate the results already 
obtained, and to prove the statement made earlier that the 
equation of regression, y on x, might have been found by first 
replacing our given table by a new one, formed from the 
first by replacing all the data in each column by the same 
number of data clustered at the mean of that column. In 
that case the ordinate of this mean point would have been 

Ya = f(~) ~Yf(x, y), (7) 

and the frequency at that point would have been f(x). 
Instead of finding, as in (2), the moments of the ordinates y 
of all the points of the table, we should use merely the mo
ments of the Ya's. We should have: 

(Oth moments) ~ ~ y,.f(x) = ~ ~(A + Bx)f(x) 1 
(1st moments) ~ ~xY.f(x) = ~ ~x(A + Bx)f(x) 

. (8) 

But, by (7), 

N
ll;y"J(x) = -Nl l;l;yf(x, y) = 0, •• s., 

as at the beginning of (2). Also, in an analogous manner, 
1 
N ~(A + Bx)f(x) = A + OJ 

N
l 

l;xyJ(x) = Nl l;l;xyf(x, y) = P"II' 
• • II 

and 

and, finally, the last expression in (8), 

1 
N :x(A + Bx)f(x) = 0 + Bu1. 
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So equations (8) become: 

O=A+O } 
PZII = 0 + Bu! 

which are the same as (3), page 153, and they yield the same 
values for A and B. 

Of course, a similar statement holds for the regression of 
Xon Y. 

Example 1. Find the regression lines in Example 7, page 140, 
of the preceding chapter, and plot .them across the table. 

By (5b) v+ .82 = (.58)(U-- .42). 
.66 .78 

This line goes through (.42, -- .82) and has a slope of 

(.58)(.66) 0.49 . 
. 78 

By (6b) u-- .42= (.58) (V + .82). 
.78 .66 

This goes through the same point and makes with the lI-axiS an 
angle whose tangent is 0.69. We must remember here that the 
positive end of the v-axis is downwards. 
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EXERCISES § 1 

1. Plot across the table of Example 1 the following lines: 

(a) 

(b) 

(e) 

(d) 

II; 1_ .2(U~ 2), 
IIi 2 _ .8(U~ 2), 

u - .3 _ .4(11 + .2), 
.2 .2 

u+ 1_ .5(11+ 1). 
.5 .4 

2. Find both regression lines in the following cases, using the 
(x, y) coOrdinates: 

(a) lIu - 1, 11. - 1.5, h - 4, k .. 5, T = .2; 
(b) 11. - 1, 11 • .. 1, k"" 1.5, T" .5; 
(e) IIX - 2, lIy ... 3, T - 0.3. 

An8., (a) y .. • 375x, x .... 107y; (b) 4y ... 3x, 3x ... y; (e) 2071 ... 9x, 
5x- y. 

2. Least Squares.1 It was stated that in each of the three 
cases the quantity ~~2/ was a minimum. Let us prove this 
statement for the two cases already discussed, beginning 
with 

Case (a). Here ~ = y - (A + Bx), and therefore 

..!. ~ ~2/ ... ..!. ~ (yl + A I + BIXI - 2Ay - 2Bxy 
Nc,,, N •. " 

+ 2ABx)/(x, y) 

= O'~ + AI + B20'~ - 2BrO',p.. (9) 

In order to choose A and B so as to make this essentially 
positive expression a minimum, it is obvious that first we 
should take A = O. Then the expression may be written 

0" + 0'2(BI - 2Br 0',"\. •• 0':) (10) 

1 This section is not needed later and may be omitted if desired. 
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To make this a minimum, it is merely a question of choosing 
B so that the quantity in parenthesis 

B2 _ 2Br fT" 
fT", 

shall be a minimum. Students of the calculus will readily 
see that for this purpose it is necessary to make B = rfT ,,/fT ",. 
For others, it is sufficient to prove the following simple 
theorem in analytics: 

Theorem. The minimum value of the function, 

x2 + ax, 

occurs at the point where x = - a/2. 
Proof. The graph of the equation y = x2 + ax is a parab

ola which is concave up, and whose vertex is at the point 
(xo = - a/2, yo = - a2/4); for, by adding a2/4 to both 
sides of the equation, one may write it in the form: 

1/ 

or 
y - Yo = (x - XO)2. 

Of course the function has its 
minimum at this vertex, and 
here 

a 
Xo = -:f 

Using this theorem, we ~ote that in the expression 

w" - 2BrfT", 
fT", 

B plays the role of x, and - 2r fT" the role of a. Hence the 
fT", 

• fT fT 
role of - a/2 is played by r ---'!, and so, when B = r ---'!, 

fT '" fT '" 
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this function of 8 is a minimum. We have thus been led 

to choose A - 0, and 8 - r tI. in the eqUAtion 1/ - A + 8r, 
tI. 

and the result is 

as befort', eqUAtion (5). 

tI 
1/-r 2 r, 

tI. 

The actual value of ~ !.&'J in this case is also of interest, 

for it is obviously a measure of the closcness with which the 
dots cluster about the line of regression. By (9) and (10), 

Since the left-hand side of (11) is by nature positive (or zero), 
80 is the right-hand side. Therefore 

1 - ,.. i= 0, and - 1 ::it r ::it I, 

a fact we had statro to be true befort', but had not proved. 
For Case (b), a - z - (A + 8y). In Problem 3 the 

student is asked to show that here ~!. tJ1(r,1/) will be a 
. ,. 

minimum if A - 0, and 8 - r tI., and that in this case 
tI. 

1 !'&1 - tI!(1 - rt). (12) 

Case (c). This case can be treated easily by least squares, 
but not by moments. This is why it has been postponed till 
now. Again, let us suppose the eqUAtion of the line to be in 
the form, 1/ - A + 8z. The distance tJ from this line to a 
point (z', y') oft the line is, byanalytics, 

~ 7/' - A - 8z' 
u - , ...r1J2 + 1 

(13) 

and we may drop the primes, if, inst~ad of calling the point 
(z', 1/'), we call it (r, 1/), but we must be careful not to confuse 
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it with a point (x,.Y) on the line itself. Our problem is now so 
to choose A and B that 

1 (Y - A - BX)! N:" VB2 + 1 I(x, y) (14) 

shall be a minimum. This function may be written (cf. 
equation (9»: 

1 . 
B2 + 1 (0': + A2 + B!6'! - 2BrO'II0'''). (15) 

To make this a minimum, we first put A 2 = o. Then the 
function is 

0': + B20'! - 2BrQ" 0'. 
B2 + 1 

(16) 

The value of B necessary to minimize this is not a simple 
expression, except in an important special case, viz., when 
0'. = 0'" = 1. Let us continue the discussion with this 
special case only in mind. The function (16) becomes 

2Br 
1 - 1 + B2' (17) 

and the student of the calculus again has an easy task to 
show that this is a minimum when B = ± 1. Such students 
are asked to prove this in Problem 4, and others are led, in 
Problem 5, to an approximate proof in a numerical case. 
The plus sign for B is to be used when r > 0, the minus 
sign when r < o. If r = 0, there is no minimum value, all 
lines (for which A 2 =.0) fitting equally well. So finally our 
equation becomes 

Case (c): 
y = X ifT > 0 and 6'11 = 0'., = 1 1 
y = - x if T < 0 and CTII = 0'", = 1 J (18) 

It is now interesting to write also the regression lines for the 
case where 0'. = 0'11 = 1. They are: 

Case (a): y = TX } (19) 
Case (b): x = ry 
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COROLLARY 1. The values 01 ~ T.o21 in the three cases are: 

(a) 1 - r', (b) 1 - ,-I, (c) 1 - Irl. 
Proolol (c). By (15), when (1'. = (I'll = 1, and A = 0 and 

B ... ::I: 1, 

~ T.o2/::o 1 + ~ - 2r = 1 - r if r > 0, 

1+1+2r 1+ if <0 ... 2 ... r r . 

COROLLARY 2. By Corollary 1, Irl measures the closeness 
with which the dots cluster about the geometrically best-jilting line; 
,-I the closeness with which they cluster about the regression lines 
(distances in the last case being measured parallel to the y- and 
z-axes, respecti"ely). 

COROLLARY 3. 11 (1'. = (I'll = 1, line (c) bisects the angle 
between lines (a) and (b) 

Prool (when r > 0). By (18) 
and (19) all these lines go through 
the origin. Now, by (19), for the 
line (a), y/z ... r. So r ... tan 8, 
in the figure. For the line (b), 
z/y = r. So also r ... tan 4>, in the 
figure. Therefore 4> ... 8. The an-
gle between line (a) and line (c) is 
(450 

- 8), and the angle between 
lines (b) and (c) is (450 

- 4». 
Since 450 

- 8 = 450 
- 4>, the corollary is established. 

• 

Because tan 4> = tan 8 = r, it follows that, as r increases 
from 0 to 1, lines (a) and (b) start from coincidence with the 
z- and y-axes, respectively, and rotate with equal angular 
velocities in the direction of (c). When they reach (c), the 
three lines coincide, and r = 1. 

When r is negative, similar remarks hold for the quadrant 
zoy' .. In the figure, we have supposed y positive when drawn 
downwards. 
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COROLLARY 4. Let the standard deviations be chosen as units. 
Then the coeificient of correlation measures the degree to which 
it is true that a change in one variable determines an equal 
change in the other. 

This is probably the best simple description of the character 
of the coefficient of correlation which can be given in words, 
without the aid of mathematical symbols.1 Before we can 
prove it, we must state it in more precise language: The 
larger Irl is, the more closely do the dots lie to the line (c); 
and for points on (c) it is exactly true that a change iIi one 
variable determines an equal change in the other. 

Proof. The first part of this statement is contained in 
Corollary 2. To prove the second part, let (X', yl) and 
(X", Y") be any two points on (c). Then the slope of the line 
joining them is unity, and so 

Y" - Y' 
Xu _ X' = 1. 

Hence, X" - X' = Y" - yl, which is the same as saying 
that the change in X in going from one point to the other 
equals the change in Y. 

COROLLARY 5. The coefficient of correlation measures the 
degree to which it is true that -a relative change in one variable 
determines an equal relative change in the other. By a relative 
change is meant the ratio of the absolute change to the standard 
deviation. 

This of course is a restatement of Corollary 4. 

PROBLEMS CHAPTER IX 

1. Find the regression-lines in the following cases, and plot 
them across the tables (pp. 144-147): 

In Chapter VIII: (a) Problem 3, (b) Problem 4, (c) Problem 5, 
(d) Problem 6, (e) Problem 8, (J) Problem 9, (g) Problem 10. 

I It does not, as sometimes thought, presuppose that the distribution 
is "normal," or that the "regression is linear." 
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2. Actually compute ~ };~2J for the regreBl!ion of y on z in the 

following cases, and show that it equals 0':(1 - ,2), as stated in 
equation (11): 

In Chapter VIII: (a) Problem 3, (b) Problem 4. 
3. Prove equation (12). 
4. (For calculus students.) Prove that (17) has a minimum 

when BI = 1. 

6. (For students who do not use the calculus.) Actually com
pute the function (17) for various values of B near to I, taking 
, .. 0.3, and show from the graph that (17) apparently has a min
imum when B-1. 

6. Show that, in the (u., II) system, the line of geometric best fit 
has the equation 

II-V u-ii --=±-_. 
0'. 0',. 

7. Plot the line of Problem 6, as well as the two regression lines 
in the following problems of Chapter VIII: 5,8,9. 

8. State and prove Corollary 3 for the case where, < O. Is it 
true when r - 01 

9. (a) Show that the maximum value possible for ~'l:~J is unity 

in all three cases, (a), (b), (c), treated on page 161. 

(b) Adopting, therefore, (1 -1r~J) as a measure of goodness 

of fit of the line to the points, show that it equals r2 in Cases (a) and 
(b), and ITI in Case (c). 

(c) For Case (c) show that when, .... 5 the fit is twice as good as 
when,- .25. 



CHAPTER X 

NORMAL SURFACE. CORRELATION OF NON
MEASURABLE CHARACTERS 

L The Normal Surface. Just as there is a normal curve 
which is useful as an approximation to the forms of many 
frequency distributions when one independent variable only 
is involved, so, when we have two independent variables, 
there is a normal surface-I Its equation is, 

N - _1_ (.!!_1rQ +~) (1) z = _ ~ e 1(1-,0) .: .... .;, 
2rv 1 - r!(1'zfT. 

where, as before, x = X - X, 1/ = Y - Y. H also 
(1' a = (1'. = I, this equation becomes 

z = N e- l(l~r') (&1- ..... +",. (2) 
2~ 

H, in (2), we let x represent a constant x = ZiI, we are con
fining our attention to a section of this surface which lies in a 
plane parallel to the 1/% plane and at a distance .:r. from the 
origin. This section is a curve whose equation has the 
form: 

a = N • - 2(1~r<) (z:-~+ .. ). 
2rv'T=fi 

Complete the square in the parenthesis: 

N 1" + "+ " a = • - 2(1-r") Ir'a. - ~ ." -..... a.) 
2rv'T=fi 

= N • - 2(I~rI) Crse-.>" X 
2rv'T=fi 

1 ~ 
• - 2(1 - r<) ez: - .... :) = C • - 2(1 - r<). (3) 

I See Figure 3, § I, Chapter \111 •. The student who has not. studied 
aolid analytic geometry may omit. the remainder of this section. 

1M 
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1\·here C is a constant. and ,l - no - 1/. This is the equation 
of a normal curve. Similarly. a section parallel to the zz 
plane is a normal curve. 

Now it often happens that a correlation table is such that 
it represenla a two-way frequency distribution which can be 
approximately described by a properly chosen normal surface. 
In such a east'. the letters which we have ealled tI. and tI, 
should be chosen equal to the standard deviations of the 
table. r should be placed equal to the coefficient of correla
tion of the table. the origin should be placed at its mean. 
and N should be chosen equal to the total frequency. These 
are the reasons why these letters were employed in equation 
(1). but any other constants would have given us a normal 
surface. In such a table each array is normal. This fact is 
proved for the columns by equation (3). Also. each marginal 
total is normal. This could be easily established from (1) or 
(2) by the use of the integral calculus. If we fix our attention 
on those cells of the table in which the frequency has a fixed 
value. it will be found that they all lie on an ellipse. This can 
be proved from (2) by letting a equal a constant. Then it 
follows that 

xl - 2rru + yI - k. (4) 

where k stands for some constant. This is the equation of an 
ellipse. It pays to study its form a little. Some of its prop
crties are: 

(a) Th. cenler is at the on·gin. 
(b) lis a.res make angles 0/450 with the z- and y-a.ru. 
(c) lis semi-axes a and b are 

a - ~ k • b _ ~ k • ifr s= O. 
l-r l+r 

(d) IIefll.'l if r is porni, .... r - 1 - ~. and the nearer 
~ + 1 
bI 

b is to a th, nearer also r is to o. lrhen r - 0, the ellipse is Q 
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circle; that is, all sections of the surface perpendicular to the 
z-axis are circles. We have then a surface of revolution. 

The proofs of these properties are not difficult for one who 
has studied the equation of the ellipse containing the xy term, 
for (4) is such an equation. The property (d) may be used 
as a means of estimating r in a table, provided the scales are 
so chosen: that the geometrical lengths' of u., and of u 1/ are 
nearly equal. This is illustrated in the, diagram of Exam
ple 1. First we pick a frequency that occurs often. The fre
quency chosen in this diagram was 10. Then we estimate the 
approximate position of this frequency (10) on those arrays 
where it does not actually occur. Mark all these estimated 
and actual positions of this frequency by dots, and draw, 
free-hand, an ellipse which will, as nearly as possible, go 
through these points and at the same time have axes making, 
45° with the x- and y-axes. Measure the ratio alb for this' 
ellipse and substitute in (d). Our actual estimate in this case 
was alb = 34.5/8.5 j hence r = 0.885. The true value of r 
is 0.91. 

Example 1. Find r approximately by the use of (d). Data from 
Yule's text. 

Age of Wife 

21-2-: 
. 

14 173 46N. 1 

4 185 402 84)0. 2 1 

1 14\ 65411 84 12 2 1 

9 69251 369 80 12 2 1 

3 17 71 219809 66 12 2 1 

1 6 12~ 66 178252 59 10 2 1 

2 8 19 57 146 195 44 io, 2 

1 3 8 18 46 110 141 35 6 1 

1 8 8 16 39 81 101 23 4 1 

1 1 8 6'-11 26 58 58 iii. 2 1 

1 1 2 5 8 18 81 81 6 1 

1 1 2 8 ~6." 10 14 12 2 

1 1 1 2 1-4- 6 8 1 

1 1 1 1 
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EXERCISES § 1 

1. Construct a numerical table which is nearly normal by find
ing the ordinates for various values of z and 'Y of equation (2), for 
N - 100. This will correspond to Table lea) for the one-dimensional 
case, except that we are now taking N =- 100 instead of 1. Take 
r - 0.8. The approximate table is given below. The computation 
should yield one place more of accuracy if one computes (2) by 
the use of four-place logarithm tables. 

~ -2 -1 0 1 2 

-2 2.9 2.2 0.1 

-1 2.2 15.2 6.6 0.2 

0 0.1 6.6 26.5 6.6 0.1 

1 0.2 6.6 15.2 2.2 

2 0.1 2.2 2.9 

(a) Show that f(x) and fey) are nearly normal, by reference to 
Table lea), and that, for each, rJ =- 1. 

(b) Why are these marginal totals not more nearly normal than 
they are? 

(c) By reference again to Table lea), show that the distribution 
f(O, y) is nearly normal, and that its standard deviation is about 
"1- rI. (This would be true of all the arrays in a complete 
table.) 

(d) Compute r directly from the table. 
(e) Draw the ellipse which goes through the frequencies equal 

to 2.2. 
(f) Will the lines 'Y ... ::I:: z be lines of symmetry in all cases, no 

matter what the value of r? 
2. Show from the equations that, when r = 0, the normal surface 

is such that all the columns are alike and all the rows are alike. 
3. Show that, when, = I, the surface is a normal curve in a 
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plane parallel to the z-axis. (Use equation (2), turning the axes 
through an angle of 45°.) 

4. Find approximately, as in Example 1, the value of r in 
Problem 8 of Chapter VIII (p. 146). 

2. Non-Measurable Characters. There are several possi
ble methods of proceeding when we wish to find the correlation 
between two series which are ordered but not measured. Of 
course it is necessary to make some assumptions, and, what
ever as~umptions we may make, they will involve, explicitly 
or implicitly, a definition of what is to be understood by 
correlation in such a case. Certainly the old product moment 
definition is not immediately available, because by the defini
tions of moments we must 1?-ave measurements to d~al with. 
Of the various methods that have been suggested we shall 
mention only two in this chapter, reserving further discussion 
of the subject for Part II, Chapter V. 

Method I. (Median point method.) Normalize the fre
quency distributions given by the marginal totals, as in 
Chapter VI, § 3, so as to find the median points of each class 
interval. Call these points x/u"" Y/u lI, since, automatically, 
now the means are the origins and the standard deviations 
are the units j and then proceed as with measured series.1 The 
formula is 1 i 

r = -N~ - JL f(x, y), (5) 
",I/u"u// 

and this is to be computed' outright, as it stands. 
Method II. (Mean point method.) Proceed as by Method 

I, except that the mean P9ints of the intervals, instead of the 
median points, are to be found. This method is more com
monly used than the other one, and in this text it will be con
venient to use it exclusively. when N is small (less than 51), 
because in that case Table VI enables one to write down im
mediately the values of x/u", and y/ulI.When N is large 

1 It should be noticed that the x of our tables has the unit CT and is 
therefore the same as the ~, or lL, in the notation of this chapter. 

u. tT. 
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and the number of cell divisions is also large, the author 
prefers Method I, because in that case it is the simpler 
method, and the theoretical disadvantage is at most slight. 
But if the material is grouped into a small number of cells, 
the grouping errors will be 80 large that neither method is 
trustworthy. This is often the case in practice, and the 
reader is advised to study at least the di.scussion in Part II, 
Chapter V, before applying the theory extensively. Each 
method will now be illustrated. 

EZ4mpla 2. Correlate ability in the two studies, given the fol
lowing groupings (Method I). The small numbers in circles are 

the products (~ . 1!.). These are to be multiplied by the respective 
. fT. fT, 

frequencies and added over the whole table. 

~ CD. JIlt) ~ :IIDcl b, A B C D E JIlt' N a. 
SIDell' • te-

I I I 
A S e e 10 .CI& -Lilli 

• i • I I 
11 8 8 8 8 8 20 .20 -.It 

• I. 10 
C 8 G e so .G -.13 

I U II • 
D e 8 e 8 10 .'IS +.18 

e a 8 • 
JI: 8 B 10 .!Ii + Lilli 

.1(6) JI zo 15 IS • 100 
:II: :II: 

CDml!!! 
~ --/(z,y) 

.01 .D. ... .'1'95 .9& 
.. ,fT.fT, 

N .. _- = + 36.86, 

• r = 0.37 • 
-aa rUi -.'IT -.011 +JIU +L'IS 
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Example 3.' Find, as well as possible, the correlation between 
achievement in the first half of this course and in the second half 
from the rank lists of twelve students. Fractions indicate ties. 

Sludenl A B C D E F G H I J K L 
---------------------------
hi Half 1.5 1.5 3 4 5 6.5 6.5 8 9 10 11 12 

2nd Hal! 2 3 1 7 5 9.5 8 5 9.5 11.5 5 11.5 

In obtaining the x's from Table VI we do not actually use frac
tional ranks (cf. Chapter VI, § 3); they are inserted here because 
they afford a handy means of indicating which scores were ties. 

Sludenl A B C D E F G H I J K L 
------------- - - -- - - -- -

.,./al -1.50 -1.50 - .82 -.55 -.32 0 0 .32 .55 .82 1.16 1.84 

.,./fTO -1.16 - .82 -1.84 .11 -.32 .68 .32 -.32 .68 1.50 -.32 1.50 ------------- - - -- - - -- -
:&lZt./tTlfTl 1.74 1.23 1.51 '-.06 .10 0 0 -.10 .37 1.23 -.37 2.76 

Each J = 1. 'So our formula is: 
1 XI X, 1 

r = N~Ut u; = 12 (+ 8.41) = 0.70. 

These methods assume that good scales by which the attri
butes in question might have been measured would effect nor
mal distributions in the marginal totals. They do not assume 
that the correlation surfaces would be normal, for there 
exist correlation surfaces which are not normal, for which 
nevertheless the marginal totals are normal. We saw when 
dealing with ordered series that the foregoing assumption 
about the scales was a common and a reasonable one, but again 
it is evident that it can only be assumed to be approximately 
true. In drawing conclusions from the r as thus computed, 
one must remember that it is not a precise measure. 

3. Partly Measured Characters. If one of two series is 
measurable and the other is not, we may make a combination 
of one of the methods of this chapter with the method of 
Chapter VIII. Suppose the X series is ordered, merely, and 
the Y series measured. First, normalize the X series so as 
to find either the median (Method I) or the mean (Method 
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II) points of the class intervals. Call these x/(T. as before. 
For the Y series choose an arbitrary origin and unit, as in 
Chapter VIII, and denote the mid-points of the intervals by v. 
Then our formula for T is 

, = -N1 2; !... JL I(x, Y) = N! 2;.!. v - ii I(x, v). (6) 
It,ll (Tit (Til It,ll (Tit (Tp 

The last expression is to be computed outright, as illustrated 
in the examples. 

Example 4. Using Method I, find the correlation between the 
number of divorces granted (per 1000 population) and the laxity 

~ ~="-;; v 01- A B C D E F /(,,) IIt'lll) vtl 
or .. fT., fT" 

-8 0.0- is 8 -9 27 -1.819 

8 A 7 

8 
a 6 

-2 0.&- I~ 8 8 8, aa -66 132 -1.137 

8 8 9 4 a 
-1 LO- lA (.;) G 8 8 32 -32 32 - .456 

~ 
a e 8 6 

0 u- 8 G G 81 0 0 .zn ... 
a 6 

1(0 
4 

1 2.0- A Ie 10;) 18 18 18 .909 

2 7 8 
a 2,5- A 18 19 12 14 48 1.592 

1 1 
8 8.0- A 0v 2 8 18 2.27, 

2 , 8.&- 8 I 8 S2 2.968 

/(",) e 18 21 86 sa 14 ISS -46 812 
tN. 

Cum/(",) 
8 16 84.6 63..0 9'1.6 126 to Mediana -46 1 

cu~/("') .02lI .109 .260 .466 .706 .914 
ii = 138 = -3' 

N • 312 ii' ., 
-2.014 -1.181 -.67' -.110 .642 1.$6 

tI. = 138-
11. = 2.150, tI. = 1.466. 



172 ELEMENTARY STATISTICS 

of the divorce laws. The data are taken from the World Almanac 
of 1927, and relate to all the states in the United States, except 
Nevada and South Carolina (and District of Columbia), in which 
the laws are quite exceptional. The laws were strictest in group 
A, most lenient in group F. Obviously, one could not measure 
the strictness of these laws precisely. At most, one could make a 
number of classifications as stated. Therefore this, the X series, 
is ordered merely. Obviously, also, the number of divorces granted 
is a precise number and affords the basis for, a completely measured 
series Y. 

~ ~ II - jj f = 52.25, 
... tr:s (1' •• 

r = 52.25 = 0.38. 
N 

Had Method II been employed, the result would have been 
r= 0.40. 

Example 5. Find the correlation between weight and health for 
the following (fictitious) data. Health was graded as A, B, C, or 
D, i.e., good, fair, poor, sick. Weight is in pounds. N = 16. 

81udenC A B C D E F G H I 1 K L M N 0 P 
- - - - - - - 1- - 1-- - - - r-

Beall" A B D A B B A C B A C B A A C B 
Weiqhl 127 156 120 145 131 142 144 205 136 142 142 130 117 145 137 UO 

The six A's in health are ties, and by Table VI their mean XB is 

- 1(1.968 + 1.326 + 1.013 + .778 + .580 + .403) = - 1.011. 

For the B's XB = + .164 = ~. for the C's, + 1.039; for D, + 1.97. , U.' 

SO far we have obtained the second row of the table on page 173. 
Let II = weight - 100 to get the third row. 

4. Correlation between Ranks. Suppose a small group N 
of individuals are assigned the numbers 1 to N in two different 
ways. The correlation I>etween the two sets of numbers or 



BIuMnI A B C D E ., 0 H I I II: L .. N 0 P s,,_ 
•• -1.01 .11 1.t7 -1.01 .111 .11 -1.01 1M .11 -1.01 UN U -1.01 -1.01 I.IM .11 .. '-'0 

• ff 61 20 " iii u .. lot II a a ao 17 " .7 '" U. 
'" 728 1136 ~ 2021 --;Gil 17M IlI3I 11021 1296 

fl~ 
18. 1024 1101 UIOO .121. 

I I • -i 

-"'''1'''' 
-21.1' UI -10.1. .II 2.11 63.11 -1.1' 

~ 
UI -u. -1.1t -

!!..::.!l -.7. .71 -1.11 .20 -M M .16 1M -.ff M MI -.It -I.ff .10 -.12 -.oe 
fl. 

-I-
•• -i .7a .12 -2.11 -.20 -.011 .01 -.12 ... 7 -.06 -M .IMI -.01 1.18 -.20 -.28 -.01 U7 i;,'-';-

- 659 4119 • 32983 2.47 
II - 16 - . , tit - 16 - ". - 365.0, tI. - 19.1; , - 16 - + 0.15. 
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ranks thus obtained can be found by the usual product 
moment formula, __ 

r = 1. 2": (X - ~(Y - D 
Nx,Y u., -; IT,,-j' 

but in this case Pearson has shown t that it can be put into a 
simpler form: 

_ 6};(-l' - Y)2 
r - 1 - N(N2 _ 1) • 

Example 6. Five judges, T, U, B, L, H, ranked according to 
merit the same twelve answers to a given problem, with these 
results (Kelley): 

Answer. T U . B L H 

A 5 7 10 2 5 
B 6 4 6 3 9 
C 3 1 4 1 2 
D 2 2 11 8 3 

E 12 3 1 4 10 
F 1 8 2 5 1 
G 11 10 8 12 4 
H 9 5 7 6 11 

I 4 9 12 7 6· 
J 7 11 5 9 8 
K 10 12 9 10 12 
L 8 6 3 11 7 

Find the correlation between the ranks of T and the ranks of U. 

T 5 6 3' 2 12 1 11 9 4 7 10 8 
U 7 4 1 2 3 8 10 9 9 11 12 6 

T- U -2 2 2 0 9 -7 1 4 -5 -4 -22 
(T - U)2 4 4 4 0 81 49 1 16 25 16 44 

, 6·208 
~(T - U)2 = 208, T = 1- 12.143 = 0.2727. 

1 See Problem 5. 
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The student should note carefully the distinction between 
the procedures in Example 5 and Example 6, and the reasons 
therefor. In this last example we treat the ranks as if they 
were measurements. We are not interested in the achieve
ments of the students who gave the answers; we are con
cerned only with the degree of uniformity with which the 
two judges assessed their achievements. That is, we really 
want here a coefficient which will express the degree of uni
formity in the two sets of scores. In Example 5, we were 
trying to do something more difficult. We were thinking of 
the students' real success, and supposed that it was distrib
uted normally, and that th!l rank numbers gave only their 
relative order. We were not satisfied then with a coefficient 
which would measure the degree of uniformity between the 
rank numbers. We wanted one which would measure the 
degree of uniformity between the hypothetically normally 
distributed numbers which were supposed to measure more 
closely the actual achievements. We should not use the 
method of Example 6 in Example 5, and it would be equally 
incorrect to use the method of Example 5 in Example 6. 

PROBLEMS CHAPTER X 

1. Use the second method of § 2 to find the correlations indi-
cated (Lovitt and Holtzclaw). 

(a) Intelligence and ability in mathematics. 
(b) Intelligence and ability in English. 
(e) Ability in mathematics and ability in English. 
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I M Ii: I M Ii: 

--.----- ----,= 
63 85 75 49 65 78 
45 72 75 75 82 72 
59 85 85 59 40 75 
68 82 90 80 61 78 

·49 40 76 46 85 78 

52 85 82 49 40 40 
70 80 86 79 85 76 
59 83 81 55 40 40 
53 40 75 66 75 85 
48 55 75 68 95 91 

66 77 87 65 83 77 
79 93 87 53 73 72 
71 76 63 51 35 35 
69 75 95 70 88 85 
45 65 70 69 75 80 

I = Thorndike Intelligence Score 
M = Score in Freshman Mathematics 
E = Score in Freshman English 

2. Use the first method of § 2 to find the correlations 
below.1 

(a) Chapter VIII, Problem 3, supposing the categories were 
ordered merely, instead of measured in feet and pounds. 

(b) Chapter VIII, Problem 6, to be treated like Problem 3 
in (a). 

(c) Chapter VIII. Problem 7, to be treated in the same way. 
(d) Hair color and eye color of British schoolboys. (Biometrika, 

vol. 3, p. 460.) 

lOne should note carefully what was said just before Example 2 
relative to the untrustworthiness of these methods when the grouping 
errors may be large. Problems of this sort are inserted here as numerical 
exercises merely. Several of them will be solved later by more advanced 
methods. 
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~ 1'.wI B ..... D~ 
gil' 

LIon 210 107 47 

MIIJIIVII 117 158 113 

D~ 23 63 125· 

(e) Health oj two brother, (N - 1918). (Biometrika, vol. 3, p.166.) 

~ V •• T NOIUULLT RA ..... 
8noKa V •• T 

SnoKG' UULTIlT D.LlCA ... D.Llc .... 
2""B .... 

V.aT 2-1 31 11.5 4 8 ...... K. 

STaOKa 31 342 163.75 65.75 3 

NO .... LLT 11.5 163.75 588.5 137.25 6 UULTIlT 

RA ..... 4 65.75 137.25 95 11 D .... c .... 

V.aT 3 6 11 2 D .... CAT. 

(The fractional frequencies occur because there were, in the original 
data, border-line eases.) 

(f) Curlinea, oj hair oj two ruter, (N - 1908). (Biometrik4, 
vol. 3, p. 169.) 

~ 8Jt00ftl W.n CvJu.y 

2""S"-

8Jt00ftl 937.5 190.5 98 

W.n 190.5 213.5 52 

CvIlLT 98 52 76 
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(g) Handwriting and draWing, SWiss pupils (N = 1405). (Bio
metrika, vol. 7, p. 225.) 

~ FORT MOYEN FAIBLB 

D. 

FORT 82 182 30 

MOYEN 180 556 209 

FAIBLBI 25 76 65 

3. Use the method of § 3 in the following cases. (Biometrika, 
vol. 3.) 

(a) Age and hair color. Males, Lower Elsass (N = 1912). 

~ BLOND BRAUN SCHWARZ 
Age 

0-15 384 74 

15-30 122 204 15 

30-45 119 261 44 

45-60 120 292 75 

60-75 58 105 39 

(b) Age and hair color, British schoolgirls (N = 1305). 

~ RED FAIR 'BROWN DABIt JET BLAex 
Aue 

4-7 2 16 6 3 

7-10 ,10 86 79 20 

10-13 16 165 160.5 73.5 4 

13-16 19 136.5 189.5 91 3 

16-19 6.5 71.5 90.5 55 1.5 
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,. Find the following rank correlations, using the data of 
Example 6: 

TTB' TTL' TTH' TBU' TBL, TBH, TLH• 

Ii. Prove the formula of § 4, making use of certain formulae 
which will be proved in Part II: 

'T-N X _ N(N + 1), 'T-NXI ... N(N + 1)(2N + 1). 
1 2 1 6 

HINT: Let t - X - Y, and express the usual formula, Chapter 
VIII (10 b), in terms of t and N. 

6. Find the correlation between cancer mortality (relative to 
general mortality) and age. M urtality Stati8tics, U. S. Cen8'U8 
Bureau. 

Itelative Mortality 
" .032 _I .083 

.136 .153 .1291 .074 

Age 29.5 39.5 49.5 59.5 69.5 79.5 

Cancer is known to be an old-age disease. Why is the correlation 
so small? 

T. From equation (1) show that all the columns of a normal 
frequency distribution have the same standard deviation, and 
that it equals O'v"'l - r2. Cf. also Exercise 1 c, § 1. 



PART II: THE llATHEllATICAL PART 
OF ELElIE..'\'"TARY STATISTICS 



CHAPTER I 

PROBABILITY 

1. Preliminary Definition. Some notion of what is meant 
by probability may be obtained from a rather common defini
tion: If an event can happen in m ways and either happen or 

fail in (m + n) ways, its probability is (m ~ n) . 

Thus, if we inquire what the probability is that a cubical 
die will fall so that a given face (say the ace) is uppen:nost, 
we think of one "way" in which this can happen, and of six 
ways in which it can either happen or fail; hence, the prob
ability is i. But this definition is not accurate as it stands, 
for if the die were not perfectly cubical and homogeneous it 
is clear that the true probability would not be i, although 
by this definition it would seem to be. This definition is 
also vague. The reader might inquire what the probability 
is that he will die within the year. Just what is he to under
stand to be meant by the number of "ways" in which he 
may die, or the number of "ways" in which he may either 
die or live? To obviate these and other objections it is de
sirable to phrase a better definition of probability, and for 
that purpose some preliminary definitions of other terms are 
necessary. 

2. Events. DEFINITION 1. THE TRIAL AND THE EVENT. 

When we speak of probability we shall always have two sets 
of circumstances or conditions in mind. One of these sets 
comprises the conditions which are supposed to have occurred 
by the hypothesis of the problem. For short, this set is to be 
called the" trial." The other set mayor may not occur when 

183 
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the trial does. The probability that it will occur is the thing 
that interests us. This set will be called the .. event." 

Examples. What is the probability of obtaining exactly one head 
(the event) in one toss of a coin (the trial)? What is the probability 
of obtaining exactly one head (the same event) in one toss of two coins 
(a different trial)? What is the probability that a man aged thirty 
will die within a year' In this last case. the trial is usually thought 
of as a random choice of one man from a large grouP. all aged thirty. 
The event is then the choice of one of those members of that group 
who will actually die within the year. 

DEFINITION 2. MUTUALLY ExCLUSIVE. Twoormoreevents 
areomuluaUy exclusive. with respect to a given trial, if tmly one 
can occur i/ the trial occurs but once. 

Examples. If the trial is the toss of a coin. and two events are 
the results. head and tail. these two events cannot both occur as 
the result of one toss. and therefore are mutually exclusive. If the 
trial is a single toss of two coins. these same 1 two events may both 
occur as the result of one toss, and are not mutually exclusive. 

DEFINITION 3. EQUI-PROBABLE EVENTS. Two events are 
equi-probable with respect to a given trial i/ they satisfy the 
following conditions. In N trials 8'Uppose the first event has 
happened z times, and the second y times. Then, a8 N becomes 
infinite, the ratio z/y shall approach unity a8 a limit. 

Example. If the trial is the toss of a single coin. the events. 
head and tail. are equi-probable. provided in the long run they will 
happen equally often. or. more precisely. provided the limit of the 
ratio. number of heads to number of tails. is one. Of course. no 
one really knows in the case of any special coin whether or not 
these conditions are truly satisfied. but if. for practical purposes. 
we are willing to assume that they are satisfied. then we may now 
say, more briefly. that we are willing to assume that these events are 
equi-probable. The theory that we shall build upon this hypothesis 

1 To make tJie events clearly identical in the two cases they should be 
described both times as exactly one head and exactly one tail. 
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will give in practice good or bad results, depending on whether or 
not this assumption is a valid one.1 

EXERCISES 11 
1. Are E and E' mutually exclusive events in the following cases? 
(a) E: to throw an ace with 1 die; E': to throw a deuce. 
(b) E: to draw a black ball from a bag containing 3 black and 

2 white balls; E': to draw a white ball. 
(e) E: to throw 2 aces at 1 throw of 2 dice; E': to throw an ace 

and a deuce. 
(d) E: to throw at least 1 ace on 1 throw of 2 dice; E': to throw 

at least 1 deuce. 
(e) E: to draw at most 1 black ball on drawing 2 balls from a 

bag containing 3 black balls and 1 white ball; E': to draw at most 
1 white ball. 

2. Are E and E' in Exercise 1 equally likely? 

DEFINITION 4. PROBABILITY. With respect to a given trial 
let there be (m + n) equi-probable and mutually exclusive event8. 
The probability that one oj the m event8 will happen a8 the resuU 

oj thi8 trial i8 p ... (m ~ n) • 

Example. There are six equi-probable and mutually exclusive 
events which may happen as a result of a single toss of a cubical 
die: m + n ... 6. One of these events is that the ace will be 
uppermost. So the probability of an ace is 1. Two of these events 
are: the ace uppermost and the deuce upperm,ost. So the pro!:?a
bility of either an ace or a deuce is I. 

I There is always a discrepancy of this Bort between theory and 
practice. The propositions of Euclidean geometry can be applied to 
nature only as approximationll because there are no exactly straight 
lines in nature. The propositions of mechanics regarding the behavior 
of rigid bodies are only approximately true of physical bodies because 
such bodiell are only approximately rigid. By varioUII teats we can dis
cover, again approximately, how nearly rigid any given body is, and 
also, by varioUII tests, we can discover what the ratio xly for two given 
events seems to be approaching as a limit. . 
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COROLLARY. If the trial is repeated N times, and u is the 
number of times one of the m events occurs, and v is the number 
of times one oj the other n events occurs, then 

lim u m. lim u . -+ = -+ ; t.e., N = p. 
N=<D U v m n N=<D 

Proof· Let el be the number of times in N trials that 
the first event happens; let fit be the number of times in N 
trials that the second event happens, etc.; similarly, let e .. 
be the number of times in N trials that the mth event hap
pens; and finally let en+'" be the number of times in N trials 
that the (n + m)th event happens. 

By Definition 3 

lim~=lim~= = lim e". = ... = lim en+m = 1 
el el' el el 

and therefore 

+ e", = m lim el + ... + en+m 
, . = n+m. 

el 
But 

el + ... + e", = u, el + ... + e .. +", = U + v, 
and so 

u 

lim~= lim_u_ =~. 
u+v u+v n+m 

el 

This corollary is the so-called limit definition of probability. 
It shows that we have really used this definition, although 
we have seemed to use limits only in defining equi-probable 
events. Elsewhere we have used instead the language of 

proportion:l ( m ) is the proportion of favorable events in 
m+n 

1 We shall not make use, in this text, of so-called continuous proba
bility. Where continuous functions are to be used as probability 
functions, they will be thought of merely as convenient approximations 
to the discrete probabilities for which they are substituted. 
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the total group of (m + n) events. But this group of events 
cannot be any group; it must be a group of equi-probable 
and mutually exclusive events, and when this is said, the 
limit idea is introduced. 

Example 1. Ten balls, 3 red, 5 white, and 2 blue, are in a boL 
The proportion of reds is three-tenths. The probability of getting 
a red is also three-tenths, provided we carefully define our condi
tions. We must state the nature of the trial, that one ball only is 
to be drawn, and we must posit that all balls are equally likely to 
be drawn. If we do not thus define our conditions, the probability 
of a red may not be three-tenths. If, e.g., the trial were 80 ar
ranged that a red ball could not be obtained, the probability would 
be zero. 

Example I 2. If a single toss of three coins is made, it is fairly 
obvious that all of the following events: head - head - head, head 
- head - tail, etc., are equi-probable and mutually exclusive. For 
convenience, the several events are arranged on a diagram like two 
family trees. Each line of descent is an event, the first being HHH. 

HI IT HI IT 
H--~----T Hr---~--T Hr-~----T H----L---r 

lienee, the probability of 3 heads is I, of exactly 2 heads I, of ex
actly 1 head I, and of no heads I. 

EXERCISES 12 
1. In Example 2 find the probability of (0) at least 2 heads; 

(b) at least 1 head; (t) at least 1 tail; (d) at most 2 heads; (e) 8a 
many heads as tails. 

2. A single toss of 2 dice is made. Count up as in Example 2 the 
various equi-probable events, and find the probability of (0) ex-

I It is easy for a class of 20 to verify this. Each student should 
make 4 throWll with 3 coins. The total number (SO) of throws, when 
tabulated, will usually give results dose to the theoretical values: 
10,30,30,10. This eort of demonstration is convincing to those students 
who feel that all theBe probabilities are equal· 
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actly 2 aces; (b) exactly 1 ace; (c) no aces; (d) exactly 1 ace and 
1 deuce. 

3. Elementary Theorems. DEFINITION 5. INDEPENDENT 

EVENTS. Events are mutually independent with respect to 
a given trial (1) if all of them can occUr when the trial does, 
and (2) if the occurrence of anyone cannot affect the proba
bility of the occurrence of the others. 

Example. If the trial is a single throw of a coin with each of 
omi's hands, and if the events are, to obtain a head with the right 
hand, and to obtain a head with the left hand, these events are 
independent. 

ExERCISE. Are mutually exclusive events independent? 

Theorem I. (The Product Theorem.) If, with respect to a 
given trial, two or more events are mutually independent, the 
probability that all of them will happen, as the resuU of a single 
trial, is the product of their several probabilities. 

Theorem II. (The Addition Theorem.) If, with respect 
to a given trial, two or more events are mutually exclusive, 
the_probability that exactly one of them will happen, as the 
resuU of a given trial, is the sum of their separate probabilities. 

Proofs. These two theorems will be proved in the special 
case where the conditions may be accurately described by 
drawing balls from boxes. This is not always the situation, 
although it will be difficult for the student 1 to imagine it td 
pe otherwise. Another way of describing this case is to say 
that we are supposing that the various given probabilities 
are rational fractions: 

(Theorem I.) Let there be two boxes of balls. The first 

shall contain N balls, of which n are white. Let p = ;. 

The second shall contain N' balls, of which n' are white. Let 

1 It would be necessary for him to know something of continuous 
probabilities - not defined in this text. 
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p' ... Z,· A pair of balls is drawn, one from each box. The 

total number of different possible pairs is NN', of which nn' 
are pairs or which both balls are white. If all balls are equally 
likely, p is the probability that a 
ball chosen from the first box is 
white, p' the probability that a 
ball chosen from the second box 

is white, and ;~, is the probabil- n n 
ity that a pair is all white. These ~ [:;:J .. .. ' 
statements follow immediately N N ' N N

' 
from the definition of probability.. nn' 
Theorem I now follows from the fact that pp' = N N" 

(Theorem II.) Let a box contain N balls, of which n are 
red, n' are white, and n" blue. Of course n + n' + n" = N. 

n n' n" 
Let p = N' p' = N' pIt .. N' If all balls are equi-prob-

able, these p's are the probabilities that, if one ball be drawn, 
it will be red, white, and blue, respectively. Likewise, from 
the definition of probability, the probability of obtaining 

either a red or a white is (n t n'), for this is equal to 

number of favorable events 
total number of events 

(n + n') 
Therefore, since p + p' = N ' we have shown that the 

probability of either a red or a white is the sum of the 
separate probabilities of red and white. The drawing of a 
red ball and the drawing of a white ball, if one ball only is 
drawn, are mutually exclusive events, and so the theorem 
is verified. 

COROLLARY. The probability that an event wiU either hap
pen or fail on a given trial is unity. We give the name certainty 
to a probability which equals 1. 
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Proof. By the definition of probability, the event in ques
tion is one of a group of exactly m equi-probable, mutually 
exclusive events, and there are (m + n) such events which 
may happen as a result of the trial. The probability of suc-

cess is (m ~ n)' and the probability offailure is (m ~ n)' and 

these two events are mutually exclusive; so the sum of their 
probabilities is the. probability of either success or failure, 
and this sum is 1. 

Example 3. In Example 2 find the probabilities of the follow
ing results: 

(a) At least 2 heads. Ans., 1 + i = t, for the events, exactly 
2 heads, and 3 heads, are mutually exclusive, and it is required to 
find the probability that either the one or the other Will occur. 

(b) At most 2 heads. Ans., i + i + 1 = i, for it is required to 
find the probability that one of the following events Will occur: ex
actly 2 heads, exactly 1 head, or no heads. 

(c) Three heads. Ans., 1. Let us show that this answer would 
also be obtained if one threw the coins one at a time. The proba
bility that the first would be a head is t, that the second would be a 
head is t, and likewise t is the probability that the third would be 
a head. These three events are independent, and by Theorem I 
the probability that all will happen is the product t . t . t = 1. 

Example 4. In two throws of three coins each, find the probabili-
ties of the following results: 

(a) 6 heads; 
(b) 3 heads on the first throw, and exactly 2 on the second; 
(c) exactly 2 heads on the first throw, and 3 on the second; 
(d) exactly 2 heads on one of the throws, and 3 on the other. 

Ans., (a)}o; (b) 1· i = 6
3
.; (c) i·1 = 6

3
.; (d) it + Ii; = -/0. 

EXERCISES § 3 

1. Axe E and E' dependent in the following cases? 
(a) E: to throw 3 heads with 1 coin; E': then to throw 1 tail. 
(b) E: to throw an ace with 1 die; E': to throw an ace with 

another. 
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(e) E: to draw a white ball from a bag containing 10 white and 
9 red balls; E': to draw a white ball from those that remain after 
the first draw. 

(d) E as in (e); E': to draw a white ball after the first ball drawn 
has been replaced. 

(e) E: A, now age 25,lives to age 60; E': B, now age 20, lives to 
age 60. 

(J) E: A, now age 25, dies at 60; E': B, now age 20, lives 5 
years after A's death. 

2. Find the several probabilities that both E and E' will happen 
in Exercise 1 a, b, d. An,., T\, n, Ufo 

3. Find the probability that both E and E' will happen in 
Exercise 1 e. (Hint: Restate this probl«:m so as to use only inde
pendent events.) An,., .263. 

'- In tossing,. coin three times, what is the probability: 
(a) of 2 heads and then 1 tail? 
(b) of 1 head and then 2 tails? 
(e) of 1 head, 1 tail, and then 1 head? 
(d) of exactly 2 heads and 1 tail (in any order)? 

6. Show that the answers to Exercise 4 are the same if 3 coins 
are thrown simultaneously, the coins having been marked I, 2, 3. 

4. Permutations and Combinations. If, in the last exam
ple, we had tried to find the probability of getting exactly 
5 heads, we should have been obliged to consider, not only 
the two methods of obtaining 5 heads indicated in (b) and 
(c), but also all the other possible methods. Counting up 
the various possibilities in a problem is frequently a com
plicated matter, but there are some general theorems and 
formulae which are often helpful. We first distinguish be
tween two different kinds of things to be counted. The 
first is called a permutation. A permutation is an order, or 
arrangement. An illustration is the problem of finding the 
number of permutations in which 6 volumes may be ar
ranged on a shelf. The second is called a combination. This 
is simply a group, in which the order is immaterial. I might 
select from the 6 volumes groups of 5 each. There would be 
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6 such groups or combinations, for an easy way to select t' 
5 is simply to eliminate one and take the rest, and there II 

6 books which can be eliminated in turn, leaving 6 differe 
groups of 5 each. Note that these groups are not tota: 
different, the one from the other. Some of the books tl: 
appear in one group will also appear in the other, but th 
are different in part. No two are exactly alike. The syml 
for the number of combinations of n things taken r at a til 
is nC T' We have just seen theh that 

6C5 = 6. 

After selecting each of these 6 groups of 5 books each, 
might wish to arrange them on a shelf in every possible or 
or permutation, and to count up the total number of th 
permutations for all 6 groups. This would' be called 
number of permutations of 6 things chosen 5 at a time, l 

would be denoted by 6P5, nP r being the synibol for the III 
ber of permutations of n things taken r at a time. WeI 
prove certain theorems. 

Theorem III; nPr = nCr' rPr• 

PT{)of. This follows immediately from the definitions; 
it is obvious that one way of obtaining the total numbE 
permutations (nP T ) is, first, to select all possible groups ( 
and then to arrange each group in all possible orders (r 

Theorem IV.. nPr = n(n - l)(n - 2) ... (n -.r + : 
COROLLARY 1. rPr'= r(r - l)(r - 2) ... 2 . 1. 

. n(n - l)(n - 2) ... en - r + 
COROLLARY 2. nCr = (1) ( 2) 1 rr- r- ... 

Proof of the Theorem. Suppose the objects are n Ie 
-~ and that any permutation of letters is a word. The pro 

is to find out how many words of r letters each can be I 

from these n letters. No letter is to be used twice il 
, J 1. - ----~ ... \... ................ .f n.no_1At.t.llor worrl~ 
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can be made is n. To find the number of two-letter words, 
we may take each of these one-letter words and adjoin to 
it anyone of the given letters, except that one which we 
have already used, for the same letter must not be repeated 
in the same word. With each of the one-letter words we can 
therefore form (n - 1) two-letter words. That means 
n(n - 1) two-letter words in all. To find the number of 
three-letter words, we may now take each of these two-letter 
words and adjoin any letter except one of those two already 
used; that is, we may adjoin anyone of (n - 2) letters, thus 
making n(n - 1) (n - 2) three-letter words. This process 
can evidently be extended to r-Ietter words, and we shall 
obtain for the number of such words: n(n - 1) "', to r 
factors, proving the tk'eorem. 

Corollary 1 is obtained by 'putting n = r in the theorem. 
Corollary 2 is obtained by solving Theorem III for nCr thus: 

C nPr 
n r = rPr' 

and then substituting the formulae of the theorem and of 
Corollary 1. , 

DEFINITION. FACTORIALS. If n is a positive integer, the 
product of the n factors, n(n - l)(n - 2) ... (I), is called 
factorial n and is written, ~, or n! This definition does not 
apply to the case where n = 0, and so we may define O! in 
any way that suits our convenience. It is convenient to 
let 01 = 1. 

COROLLARY 1 3. 
n! nPr n! 

rPr = r!; nPr = (n _ f)!; nCr = Tf = r!(n _ r)! 

COROLLARY 4. nCr = nCn- r• 

This follows immediately from the last equation of Corol
lary 3. 

1 To be proved in Problem 4. 
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COROLLARY 5. The binomial theorem may be written: 

(a + b)" = a" + "C1a,,-lb + "C2a,,-2lr + + "C,an-obr 

or, since 1 = "Co, 
+ ... +b", 

" (a + b)" = ~ "Cra-b·. 
r=O 

Example. Six. books are on a shelf. (a) Find the number of 
different ways in which groups of 4 may be selected. 

J>4 6·5·4·3 
Ans., eC. = 4f = 1.2.3.4 = 15. 

(b) In how many different ways may 4 books be taken from the 
6 and arranged on another shelf? Ans., J> 4 = 360. 

(e) Show that the number of ways in which groups of 4 of these 
books may be selected equals the number of ways in which groups 
of 2 may be select~d. This follows from the fact that whenever a 
group of 4 is taken, a group of 2 is left. It follows also from Corol
lary 4: eC. = GCI • 

(d) Answer the question in (b) if Volume 1 must always be taken 
and placed in the first position on the other shelf. Like many 
questions, this cannot be answered simply by applying a formula; 
but, if Volume 1 and the first place are always together, we may as 
well say that we have only 5 other books to choose from and 
only 3 other places to put them in, and so the answer is given by 
,.pI = 5·4·3 = 60. 

Example 5. How many committees of 5 Republicans and 
3 Democrats can be formed from a senate of 63 Republicans and 
23 Democrats? 

Select the Republican members first: there will be GlC, = 7,028,847 
possible different groups. Then choose the Democratic members: 
there are ".C. = 1771 possible different groups. Now put these 
Republicans and Democrats together in as many ways as possible 
and count up the total number of composite groups. With each 
one of the 7,028,847 groups of Republicans, each one of the 1771 
groups of Democrats may be combined, and so the total number of 
composite groups or committees is the product of these two numbers: 

03C6 • zaC.= 12,448,088,037. 
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Example 6. Find the number of combinations of 1000 things 
taken 998 at a time. 

An,., 9~~~0~1' but this is difficult to compute outright. 

However, by Corollary 4, we know that JrmC .. = .ootCz, and this is 

100r' :99 = 499,500. 

The last two examples suggest the desirability of finding a. 
shorter method of computing high factorials than by mul
tiplying together all the factors. If n ~ 500, log n! is given 
in Table V .. If n > 500, a. very nearly correct value may be 
obtained from Stirling's formula: 

Approximately, nl = e-"n"V21Tnj (1) 

and so, approximately, . ;,f:' 

loglont - - n(0.43429 44819) + (n + !)loglon 
+ 0.399090. (la) 

The proof of this formula is beyond the scope of this book, 
but we shall see it verified in particular cases. The reason 
the value of logloe is given to so many places of decimals is 
that it is multiplied by nand n may be a. large number, and 
a smaller number of places might have resulted in an in
accurate product. Suppose we had written 0.4342945 and 
that n = 10,000; then, apparently, n log e = 4342.945, 
which, if 4-place logarithms are to be used, would have to 
be interpreted as 4342.9450, but the true value is 4342.9448. 
Similarly, in the second term, (n + l)log n, of formula (Ia), 
if n is very large, log n should be found to a large number of 
decimal places. 

Example 7. Compute approximately .ooJ'lJIID. 
By (la), log 10001 = - 434.2945 + (1000.5)(3) + 0.3991 

= 2567.6046. 
By Table V, log 2001 = 386.4343. So log .ooJ'.,. = 2181.1703, 

and looJ'lOO ... 1.480 X 10Zl8l• 
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Example 8. Thirteen cards a.." drawn from a pack of playing 
cards. What is the probability that exactly 7 hearts are included? 
To get the number of favorable cases, we first select 7 hearts. The 

-number of ways in which this can be done is uC7• Then we select 
flom the remaining 39 cards a group of 6. This may be done in 
39G...e w~y~. , The total number of favorable' cases is then uC7 • I.C,. 
Th~ t()t~ numberQL possible cases is 12CU and so the probability 
is . 

~ ~ ~ m! ~(13)2 (~)t 
P = II ~ ~ ~ ~ = (~)2II ~ ~. 

By the tables: 2 log ~ = 19.5886 

2 log ~ = 92.6192 

- 210g~ = - 5.7146 

- log lI.. = - 3.7024 

- log ~ = - 36.9387 

- log ~ = - 67.90tl6 

logp = 

p = 
• 7.9455 - 10 

0.00882. 

It is better, when using a machine which subtracts easily, to BUb

tract the logarithms of the numbers in the denominator, rather 
than to add their cologarithms, in finding log p. 

EXERCISES § 4 

1. Three balls are selected from a bag containing 5 black and 3 
white balls. In how many ways may 3 black balls be chosen? 

2. Four balls are selected ,from the same bag. In how many 
ways may 2 black balls and'2 white balls be chosen? 

3. Given 5 different colored flags to choose from, how many 
different signals can be made with 5 different colored flags in line? 
with 4? with 3? with any number under 6? Am., 120, 120, 60, 325. 

4. How many straight lines are determined by 10 points, no 3 
of which are in the same straight line? Am., 45. 

5. How many planes are determined by 10 points, no 4 of 
which are in the same plane? Ans., 120. 
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6. How many handshakes could be exchanged among 7 persons, 

each greeting the other once? AnB., 21. 

7. How many groups of 13 cards can be selected from a pack of 1 

52? 
8. How many committees of 5 Republicans and 3 Democrats' 

can be formed from a Senate of 23 Republicans and 63 Demhcrats? 
-', .. 

5. The Point Binomial. Theorem V. Let p be the prob
ability 01 an event e in one trial, q the probability ollailv.re. 
The BucceBsive termB 01 the binomial expansion, .. 
(p + q)n = pn + nCIPII-lq + ... + nC,pn-'q' + ... + qn, (2) 

give the respective probabilities that, in n trials, this event will 
occur exactly n, n - 1, "', n - t, "', 0 timeB. 

The expansion (2) is called the point binomial. It was 
studied by J. Bernoulli, l and is often referred to as the series 
of Bernoulli. 

Prool. Let us put 8 = n - t so that the general term is . 
RC, p·q'. 

The problem is, essentially, to prove that the value of this 
term is the probability that, in n trials, the event e will 
happen exactly 8 times; ansi therefore fail to happen exactly 
t times. Consider the following sequences (E) of events 
which can happen as a result of n trials, and notice that 
these sequences are themselves events which are mutually 
exclusive with respect to any given set of n trials: 

EI is the event: e happens on each of the first 8 trials and 
fails on the other t; . 

E, is the event: e happens on each of another group of 8 

trials, and fails on the other I; 
E. is the event: e happens on each of a third group of 8 

trials, and fails on the other t; etc. 

1 His research was written in Latin and was published in 1713, after 
his death, under the title Ara Conjec/andi. 
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How many E events of this sort can there be? Obviously 
as many as there are different groups of s trials to be used. 
This number is "C, = ftC,. Let PI denote the probability 
of E l , PI the probability of EI , etc. By Theorem I, 

PI = p'q'. Also PI = PI == P" etc. (3) 

Now what we are seeking ultimately is the probability that 
in a set of n trials one of the mutually exclusive events E I, 
E!, etc., will occur. By Theorem II, this is given by the 
sum of their several probabilities, PI + PI + .... By (3) 
these several probabilities are all equal and their number 
has been found to be "C,. Therefore 

PI + PI + ... = "C,p·q'. 

COROLLARY. (a) The probability that e wiU happen at least 
r times in n trials is the sum of aU those terms of the series in 
which the exponent of p, s ~ r. 

(b) The probability that e wiU happen at most r times is the 
sum of aU those terms in which the exponent of p, s ~ r. 

(c) The probability that e wiU happen at least once is! - q". 
For by (a) it is the sum of all those terms of the series 

except the last, q". But the sum of all the terms of this 
series must be 1 because it equals (p + q)", and p + q = 1. 
So 1 - q" does represent the sum of all the terms of the 
series except the last. 

Example 9. If a coin is tossed 3 times, what are the probabilities 
of exactly (a) 3 heads, (b) 2 heads, (c) 1 head, (d) no heads? The 
results must tum out the same as in Example 2 (page 187), for it 
does not make any difference whether one coin is tossed thrice or 
three coins tossed once; we shall now arrive at those results by way 
of a series of Bernoulli. For this ease the series is: 

(1 + 1)1 = 0)1 + 30)2(1) + 30)(1)1 + 0)' 
= 1 + i + i + 1: 

These four fractions are the answers to (a), (b), (c), and (d), respec
tively. 
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6.1 The Finite Hypergeometric Series. Theorem VI. 1J 
there are m balls in a bag of which pm are white and qm are 
black, and if 11. :it 1llo are drawn, without replacements, then the 
successive terms of the series, 

ir["",C" I"'CO + "",Cn-l IfIIC, + ... + " ... C_, ,,,,C, + ... 
til .. • + I"'C,,], 

give the respective probabilities that there will be, in the samples 
drawn, exactly n, n - 1, ... , n - t, ... , 0 white balls. 

Proof. As before, set n - t = s, and we need to show 

merely that "",C'e"'C, is the probability of exactly s white .. " 
balls. The reasoning is exactly like that of Example 5. The 
number of possible different groups of s balls that can be ob· 
tained from the pm white balls is "",C •. The number of groups 
of t black balls that can be obtained from qm blacks is ,,,,C,. 
The number of composite groups is the product of these two 
numbers, and this is the numerator of our fraction. The 
denominator is the total number of groups of n things that 
can be obtained. 

COROLLARY. The sum, 

1 " -C ~ " ... C. I"'C, = 1. 
'" ",·0 

EXERCISES §§ 6-6 

1. A coin is tossed 6 times. Find the probability of at least 2 
heads, of at most 2 heads, of exactly 4 heads, of either 4 heads or 
4 tails, of at least 4 heads or 4 tails. Ans., H, ft, It, U, U. 

2. A bag contains 6 black balls and 4 white balls. After each 
drawing, the ball drawn is replaced. Find the probability of get
ting in 7 drawings exactly 4 black and 3 white balls; of 6 black 
balls and 1 white ball. Ans., .29, .13. 

I This section is of considerable interest and very important in 
certain applications, but it is less important than Ii 1-5 and may be 
omitted if desired. 
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3. In Exercises 1 and 2, what are the most likely results! 
Ans., 3 heads and 3 tails; 4 black and 3 white. 

4. Three balls are drawn, all at once, fl'Qm a bag containing 
4 black and 4 white balls. What is the probability that all are 
black? What is the probability that all are of one color! 

5. In Exercise 4, what is the probability that: (a) at least 1 
is black? (b) 2 are black and 1 is white! (c) at least 2 are of one 
color? (d) at most 2 are of one color? 

6. A coin is tossed 6 times. If it comes down heads at least 3 
times, the player is to receive S10. What is the value of his expec
tation? (If one is to receive a certain sum of money in case a cer
tain event takes place, the value of his expectation is defined as 
the product of that sum times the probability of the event.) 

AM., S6.56. 
'1. A coin is tossed 6 times. If the player is to receive S10 for 

every succes90n of 3 heads or 3 tails, what is the value of his ex
pectation? (A succes90n of 4 heads is to be interpreted as two 
succes90ns of 3 heads, etc.) Ans., S10. 

8. What is the probability of exactly 4 aces in 5 throws with 
1 die? AM., .00322. 

9. What is the probability of exactly 4 aces in 5 throws with 
2 dice? Ans., .054. 

10. What is the probability that the balls will be alternately of 
different colors in Exercise 2? Ans., .0138. • 

lL Thirteen cards are drawn from a pack of 52. What is the 
probability of exactly 2 aces! Ans., .2135. 

12. In Exercise 11, what is the probability of at least 2 aces! 

PROBLE¥S CHAPTER I 

L How many semaphore signals can be made with 2 similar 
flags, if each may be used in anyone of 8 positions, and the use of 
2 flags in the same position does not count as a signal? AM., 28. 

2. Prove that .C. + .Cr-l = "IC" lliustrate. 
3. Four constitute a quorum of an executive board of 25 of a 

certain chamber of commerce, provided the president and secre-
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tary are 2 of the 4. How many different quorums of 4 can be 
formed? Ana., 253. 

4. Prove Theorem IV, Corollary 3. 
6. Use Corollary 5 of Theorem IV to show that the total 

number of different combinations of n things, taken any number 
at a time, from 1 to n inclusive, is 2" - 1. 

6. How many automobile registration numbers may be made 
by the use of any 5 of the 10 digits, if repetitions are not allowed? 

Ana., 27,216. 
7. How many may be made with any number of digits less 

than 6, if repetitions are not allowed? Ans., 32,490. 

8. How many, in the preceding problem, if repetitions are 
allowed? 

9. There are 50 possible questions which may be asked in a 
certain subject, of which a student knows the answers to exactly 
30. A two-hour examination involves 10 questions. In how many 
ways maya paper be made out which will give this student a 
grade of 100%? of 90%? of 60%7 of 10%7 (Each answer is to be 
regarded as either wholly correct or wholly incorrect.) 

10. Show that the number of distinguishable orders in which 
7 keys can be arranged on a ring is 61. 

11. Find the greatest value of r such that n - r + 1 ~ r, n 
being fixed. Why is this the value of r that makes .C. a maximum? 

12. How many dominoes in a set: (a) from double 0 to double 
67 (b) from double 0 to double 97 (e) from double 0 to double 127 

Ana., 28, 55, 91. 
13. (a) A coin has been tossed twice with the result, 2 heads. 

Are heads and tails equally likely on the next throw7 (b) If heads 
have come up 1000 times in succession, are heads and tails equally 
likely on the next throw7 

14. Are E and E' equally likely if 2 dice are thrown, where E 
is the event, the sum of the numbers shown is 2; and E' is the 
event, the sum is 37 

16. If there are 99,999 registration numbers, what is the chance 
of meeting a car on which the same digit occurs more than once? 

Ans., 0.675. 
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16. In Problem 9 what is the probability of exactly 6O%? What 
is the probability of either 50%, 60%, or 70%? 

1'1. A, B, C, and D, in the order named, throw a die. The one 
who gets an ace first gets $1. Find the value of the expectation of 
e~ch, assuming the game to continue indefinitely. (Cf. Exercise 6, 
§~ . 

18. If the probability of hitting a target is t, find the probability 
of no hits in 3 shots; of at least 1 hit in 3 shots. 

19. If the probability of 2 successive shots both being hits is 
.9, what is the probability of a hit in 1 shot? 

20. If an event has a probability as great as .99, artillerymen 
say that it is "morally certain." In Problem 18, how many shots 
are necessary to make at least one hit morally certain? 

21. To choose partners for a game of tennis, four racquets are 
thrown, the two smooths and the two roughs to indicate partners. 
What is the probability of a choice on the first throw? on one of 
the first two throws? 

22. If one player says he will "go with the odd," and only the 
racquets of the other three players are thrown, what are the cor
responding probabilities? 

23. If one player says he will go with the odd on the second 
throw in case there should be D,O choice on the first throw, what 
is the probability of a choice on one of the first two throws? 

24. If the probability that A will solve a problem is t and the 
probability that B will solve it is t, what is the probability that it 
will be solved if both try it? 

25. A and B play a game with a die. If it comes up ace the 
first time, A gives B S1. If it comes up 2 the second time, A gives 
B $2, etc., the amount increasing by $1 each time. The gl!JIle is 
to stop whenever the die does not come up favorably to B, or in 
any event after 6 throws. What is the value of B's expectation? 
(Cf. Exercise 6, § 6.) 

26. A and B toss a die at most 6 times. If it comes up 1 the 
first time, A gives B $1, and the game ends. If it comes up 2 the 
second time, B gives A $2. and the game ends, etc., the amount 
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increasing by II each time. Find the values of the expectations 
of each. 

27. In one throw with a pair of dice what sum is most likely? 
What are the odds against it? 

28. If the probability of hitting a target is i, find the probability 
of at least 10 hits in 13 shots. 

29. If 20 hits are expected out of every 300 shots, find the 
probability of exactly 5 hits in 10 shots. 

30. In Problem 29, how many shots are necessary to make it 
morally certain that the target will be hit at least twice? 

31. Alter Problem 17 so that 2 dice are thrown, and the player 
who first throws as much as 10 on a single throw gets SlO, and then 
the game is over. What is the value of the expectation of each? 

32. How many.drawings with replacements from a bag con
taining 20 black and 5 white balls are necessary to make: (a) the 
probability of getting at least 1 black .99? (b) the probability of 
getting at least 2 blacks .99? 

33. Ir the probability of each justice on the supreme bench 
rendering a correct decision is .9, and there are 9 justices, all of 
whom must vote, what is the probability of getting a correct 
decision by at least a majority vote? 

34. (a) Draw a graph illustrating the various probabilities of 
all possible results when a coin is tossed 9 times. 

(b) Plot on the same diagram the curve: 

11 - ~ (x). z - , - J. , - number of tails. 

35. (Fry) "The letters of the word tailor are written on cards. 
The cards having been thoroughly shuffled, four are drawn in 
order (without replacements). What is the probability that the 
result is oral' Ana., "11'" 

36. (Fry) Same for the words pepper and peep. Ans., n. 
37. (Fry) "A batch of 1000 (electric) lamps is five per cent 

bad. If five are tested, what is the chance that no defectives will 
appear? Wbat is the chance that the test batch will be (at least) 
forty per cent defective?" 
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38. From an urn containing 8 white and 6 black balls, 7 are 
drawn and placed in a second urn. From the second um 4 are 
drawn. What is the probability that 2 are white and 2 are black? 

39. (Bertrand's "Box Paradox.") Three boxes have in them 2 
coins each. In one box both coins are gold, in one both are silver, 
in the other they are mixed. Out&de, the boxes are of identical 
appearance. A man chooses a box and takes out a coin which 
proves to be gold. What is the chance that the other coin in his 
box is also gold? Ans., 1. 



CHAPTER II 

APPROXIMATIONS TO THE POINT BINOMIAL 

1. Properties. Before considering the main problem of 
this chapter it will be advantageous to note some of the 
properties of the point binomial. We shall give below its 
mean and some of its higher moments. By the moments of 
a point binomial we mean the uncorrected moments of the 
histogram which represents it. In this case we want the 
uncorrected moments, for these are found on the assumption 
that the entire frequency or probability represented graph
ically by each rectangle is concentrated at the middle of the 
rectangle, and this is the actual fact in the point binomial. 
The general term of the point binomial represents the relative 
frequency or probability of exactly s successes, not the rela
tive frequency of a multitude of numbers varying from 
s - 1 to 1+ 1, as was the case with ordinary frequency dis
tributions. Sometimes authors use the term "loaded ordi
nates" to apply to frequency rectangles when, as here, the 
entire frequencies are supposed loaded on the ordinates at 
the mid-points. 

Theorem I. Let the unit 0/ measurement be the .ame aa the 
unit 0/ t. 

(a) The mean 0/ (p + q)" is, relative to the origin 0/ t, 
i = nq. Relative to the origin 0/ I, the mean is i = np. 
More briefly, the mean number o//ailures is nq, and the mean 
number o/auccesses is np, in a point binomial distribution. 

(b) The standard deviation is a = '" pqn. 
(c) a, = p - q, the positive direction being the direction 0/ 

a 
. . t 3 1 6 IncrelUlng . IV. = + - __ . , ~ al n 

205 
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(d) The mode, i.e., the greatest term, is within an intervai 
extending to a distance of 1 on either side of the mean, i.e., 

Imean -model;;;; 1. 

Proof of (a). Relative to the origin of t, 
n n C 

t = ~ t . nC,P'q' = nq ~ t~ p'q'-l 
1=0 1=1 n 

= nq £ (~ . n(n - 1) .•• (n -t + 1»)p'ql-l 
1=1 n t(t - 1) ... (1) 

" = nq ~ n_1C'_lP'q'-1 
1=1 

= nq(p + q),,-l = nq. 

Proof of (b). Relative to the origin of t, the second moment, 

" " P2 = ~ t2 .. C,p'q' = ~ [t(t - 1) + tJ"C,p'ql 
1=0 1=0 

" " = ~ t(t - 1) nCtP'q' + ~ t .. C,p'q' 
1=2 1=0 

_ n(n _ l)q2 £ [t(t - I} n(n - 1) (n - 2) ... (n - t + 1)] 
- 1=2 n(n - 1) t(t - 1)(t - 2) ••. (1) 

[p'qI-2] + t, by (a), 

" = n(n - l)q2 ~ ,,-2 C'-2 p'q'-2 + nq 
1=2 

= n(n - l)q2(p + q)n-2 + nq = n(n - 1)q2 + nq 
= n2q2 - nq2 + nq. 

Since q2 = /L2 = PI - t2, we now have 

q2 = n 2q2 - nq2 + nq - n2q2 = nq(1 - q) = nqp. 

Proof of (c). (See Problem 21.) It is first necessary to 
obtain P3, }J.3, and }J.4. These quantities will be found to have 
the following values: 

Pa = nq(n2q2 - 3nq2 + 2q2 + 3nq - 3q + I),} 
}J.3 = npq(p - q), (1) 
}J.4 = npq[1 + 3(n - 2)pqJ. 
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Proof of (d). (Method of Laplace.) We wish to find the 
greatest term, or the two greatest terms, in the expansion of 
(p + q)a. Let T be one of them. . 

Write T - .C,p'q'. Now our problem is to find the re-

quired value of I. The term preceding Tis T ~ n _ : + I' 

and the term succeeding T is T ~ : .; :' as will be immedi-

ately obvious if the coefficients of these terms, such as aC" 
be written out in full. By the hypothesis that T is one of 

the greatest terms, P I I 
T!: T q n _ I + I' 
Ti:T!ln-t. 

p t + 1 

(2) 

Now solve each of these inequalities for t. Reducing the 
first, we have 

q(n - , + 1) ~ pt, q(n + 1) ~ (p + q)l, 

and so qn + q ~ t. (3) 

From the second of the inequalities of (2) it follows that 

p(1 + 1) ~ q(n - I), (p + q)' ~ qn - p, 
t ~ qn - p. (4) 

Putting (3) and (4) together, we learn that 

qn - p ~ , ~ qn + q, (5) 

that is, that, differs from qn by at most p or q, whichever is 
greater. But both p and q are less than one, save in the 
trivial case when p or q = 1; and therefore, in every case, 
, differs from qn by at most 1. 

The case where there are two equal terms, both greater 
than any other, occurs when q(n + 1) is an integer. For 
then the next lower integer is qn + q - 1 = qn - p. In 
this case there are two values of , which satisfy (5). One 
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is qn - p and the other is qn + q. A simple special case 
occurs when q = t and n is odd; e.g., 

(t + W = HI + 3 + 3 + 1). 
Another simple case occurs when q = t and n + 1 = 3: 

(1 + 1)2 = * + * + i. 
COROLLARY. The mode lies within an interval only halJ as 

long as that indicated by the outside limits given in (d). It 
extends to a distance.p on one side oj the mean and to a distance 
q on the other side, and the total length is p + q = 1. 

This follows immediately from (5). 

Example 1. Find the mean, mode, aa, and a4 of the point 
binomial (i + I)' by means of the formulae. Verify the formulae 
by computing the moments outright. 

Here p = i, q = 1, n = 7, and, by the formulae of (a), (b), (c), (d). 

- 3· 7 ,,----;;-----;; 
t = ~ = 5.25; U= vi . i . 7 = 1.1456; 

-1 2 
aa = 2U = - .436; a4 = 3 - 21 = 2.905. 

3·8 There are two greatest terms, at t = -4- = 6 and at t = 5. 

Verification.1 (i + I)' = it (1 + 21 + 189 + 945 + 2835 
+ 5103 + 5103 + 2187). 

To find the moments it is as well to omit the coefficient, it. 
, I u t I u 

------ ------
0 1 -5 4 2835 -1 
1 21 -4 5 5103 0 
2 189 -3 6 5103 1 
3 945 -2 7 2187 2 

'I-f = 16384, . 'I-fu = 4096, 'I-fu2 = 22 528, 
'I-fu' = + 5632, 'I-fu4 = 79360. 

1 An easy method of constructing drill problems in finding moments 
is to choose as frequencies the successive terms of a point binomial. 
The correct answers are given by (a), (b), and (c). 
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Hence, 
a ... 1, #-12 ... H, #-I. = - H, #-I' = 5.0039; and 1 = 5.25, 

(f,. = 1.1456 = (f" a • ... - .436, a. = 2.905. 

EXERCISES § 1 

1. Repeat Example 1 for the following point binomials: 

(a) (i t i)'; (b) (l + J)'; (c) (1 + .)'; (d) (I + i)'j 
(e) (t.r + n)'· 

2. If T is as in the proof of (d), express as a multiple of T: 
(a) the second term preceding Tj 
(b) the second term following T; 
(c) the sum of the five terms nearest T, including T itself. 

2. N onnal Curve. In many of our problems in proba
bility it was found necessary to add together the values of a 
set of consecutive terms of a point binomial. When the 
number of terms is large, this entails so much labor that a 
simple approximation to this sum is very desirable. The 
simplest of these is afforded by the normal curve, and in 
certain types of cases to be described it is sufficiently ac
curate. 

We already know that, if i is the mean, the equation of 
the normal curve may be written: 

N (I-i)' 
Y = --=-e-2a" 

V27rtT 
(6) 

Now let us try, by choosing i and tT properly, to make this 
normal curve fit the histogram of the point binomial (see 
figure fQr Example 2). Then, since Table I gives the area 
under any portion of this curve, it will also give the area 
of the corresponding portion of the histogram, i.e., the sum 
of the corresponding number of terms of the point binomial. 

Using the method of curve fitting outlined in Chapter V, 
Part I, we shall set N = I, i = nq, tT2 = npq, and then we 
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shall expect that y will give approximately the point bino
mial for the various values of t. Before making use of this 
relation let us test it by a numerical example. and, in order 
that we may make use of Table 1(4), let us substitute in (6) 

t - l x=--· rr 
Then 

1 -~ ~(x) y = --6 1=_"'_. 
rr'V'21r rr (6a) 

Example 2. Compute (6a) in the case of the point binomial 
(t + ~)'. We first note that the true value of the terms is: 
to (64 + 576 + 2160 + 4320 + 4860 + 2916 + 729) 

= .0041 + .0369 + .138 + .277 + .311 + .186 + .M7, 
also that l = nq = 3.6, and t1 = v';ipq = 1.2. 

CoMPUTATION or (Sa) 

f"obI./(o) 1'_"'" (60) 

• .-1 .. 
II-~ Trw II 

"'(s) 

" 
0 - 3.6 - 3.00 .0044 .OM .OM 
1 - 2.6 - 2.17 .0379 .033 .037 
2 - 1.6 - 1.33 .IM7 .138 .138 

3 - 0.6 - 0.50 .3521 .293 .277 
4 0.4 0.33 .3778 .315 .311 
5 1.4 1.67 .2012 .168 .186 
6 2.4 2.00 .0540 .().l5 .M7 

1 = 3.6 0.0 0.00 .3989 .331 

To help in plotting the graphsJ the value of y is also com
puted at t = t. The comparison between the approximate 
and true values, as indicated in the last two columns and 
also in the figure. shows how good the fit is. Whether it is 
good enough or not depends on when and how this approx
imation is to be used. In general, the fit is good for point 
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binomials in which n is large and p is nearly equal to q, and 
the fit is better near the middle than near the en.ds of a 
distribution. In making graphs of this sort, the curve should 

• = 0 

I 
I 

t-1 
I 
I 
I 
I 
I 

T , 
8.' i 1 · 

/I /I+i-

Point Binomial and Normal Curve 

be plotted and drawn before the histogram. Otherwise, it is 
hard to avoid drawing the curve so that it will fit the histo
gram as well as possible, rather than allowing it to pass as 
smoothly as possible through its own plotted points. The 
curve should be drawn so as to be symmetrical with respect 
to the ordinate at the mean, and should cross its tangent 
at a distance from the mean equal to (T. Except when 1 is 
exactly one of the t's, every point of the curve found by the 
computation furnishes two points for the diagram, one on one 
side of the mean ordinate and the other in the symmetrical 
position on the other side. Both points should be marked be
fore the curve is drawn, but only the computed point should 
be left permanently marked on the diagram. These sug
gestions were made also in Chapter V of Part I. 

3. First Approximation. We are now ready to express in 
a theorem the application to probability. 
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Theorem 1 II. The sum of those terms of the point binomial 
(p + q)~ in which t ranges from a to b, inclusive (a;:iii t;:iii b), 
is approximately: 

where 

f'" 4> (x)dx, Jill 
a-t-qn b+t-qn 

Xl = , X2 = . 
CT CT 

This approximation is good' if a lie~ on one side of the 
mean and b on the other, at approximately equal distances. 
When these distances are exactly, or very nearly, equal, 
qn - a = b - qn, and therefore Xl = - X2, and then the 
fonnulacan be written in a more convenient fonn, and the 
theorem can be expressed in language more easily applicable 
to problems, thus: 

COROLLARY 1. The sum of those terms in which t differs 
from qn (or what is the same thing, s differs from pn) by k or 
less is: 

where 

2 foil 4> (x)dx, 

k+t x=--' 
CT 

COROLLARY 2. The sum of those terms in which t differs 
from qn (or s from pn) by k or more is: 

2,£aJ4>(X)dX = 2(1 - [}(X)dX), 

where k-t x=--, 
CT 

In both these corollaries, as indicated above, qn - a 
= b - qn = k,and so k and qn must be such that qn - k 
is an actually occurring exponent a, and that qn + k is an 
actually occurring exponent b j or at least this must be very 
nearly true. In practical cases it is usually very nearly true, 
but almost never exactly true. 

1 Sometimes incorrectly attributed to Bernoulli. 
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Proof. If we admit that the curve fits the histogram, the 
proof is graphically obvious, for the sum of the terms in 
which t ranges from a to b is the same as the lium of the 
areas of the corresponding rectangles, and to find this it is 
sufficient to obtain the area under that part of the curve 
which these rectangles occupy. But we must be careful to 
include whole rectangles, not half rectangles merely, at the 
ends. Referring to the figure on page 211, one will note 
that t ... a is the coordinate of the middle of the first rec
tangle of the four which are nearest the mean point, and 80 

t .. a - i is the coordinate of the left end. Likewise, b is 
the coordinate of the middle of the last of these rectangles, 
and b + i is the coordinate of its right end. In this case, 
then, the area of the middle four rectangles is approximately 
the area under the curve from a - i to b + t, and this is 
in general the area required; that is, the area under y from 
tl ... a - ito ta == b + i, in the I-unit: 

J:' cf>(x) t - qn 
"ydt, y "" 7' x = -u-' (7) 

This is the same as finding the area under cf>(x) from 
a-i-nq b+i-nq Xl == to XI = , in the x-unit: u u 

j~"'cf>(x)dx. (8) 

For the area from tl to 'a under y in the I-unit is the same as 

the area from Xl to XI under cf>(x) in the t-unit, since Xl, xa refer· 
u 

to the same points as 11 and ta and since y = cf>~). But any 

area under cf>(x) in the t-unit is the same as the corresponding 
u 

area under cf>(x) in the x.,unit, since the unit of X is u times 

the unit of t. That is, in going from cf>;;) to cf>(x) we multiply 
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each ordinate by u, but if in doing this we also multiply our 
horizontal unit by u we have left the area unchanged. l 

COROLLARY 3. Whenever a and b lie on opposite sides of 
the mean, it is rrwre convenient to write the formula of the 
theorem thus: 

l~',p(X)dx = I~"',p(X)dX + I": ,p(x)dx - 1, 

when making use of Table I. 

Proof· 

By the symmetry of the curve, 

1"" f-"" =1- , 
-co -CD 

(9) 

(10) 

as may be seen immediately if the letters are placed on the 
graph. Now substitute (10) in (9) and get the result desired. 

Example 3. Find the sum of those terms in which t = 2, 3, 4, or 5 
in (I + "i)'. This is the sum of the four middle rectangles in the 
graph of Example 2. By the formula. of Corollary 3: . 

a = 2, b = 5, t ..; 3.6 = qn, t1" = 1.2, 
= 2 - .5 - 3.6 = _ 1 75 = 5 + .5 - 3.6 = 1 58 

Xl 1.2 . • x. 1.2 . • 

11.75 11.ss 
By Table I, _00 + _00 - 1 = .9599 + .9429 - 1 = 0.9028. 

The true value, found by adding the terms, is 0.9125. A closer 
approximation was not to be expected in this case, for, although 
Xl = - X2, approxinIately, n is quite small. 

Example 4. Use Corollary 1 in Example 3. The question might 
have been put: find the sum of those terms in which t differs from 

1 The student of the calculus will observe that (8) is obtainable by 
direct substitution in (7). The question of units is cared for. in the 
relation, dt = t1" d:t:. 
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qn by (k = 1.5) or less, since 3.6 - 2 = 1.6 and 5 - 3.6 = 1.4. 
By Corollary 1, then, we have 

15+ 5 fl.667 
3: = . 1.2' = 1.667, 2 Jo q,(x)ch = 2(.4522) = 0.9044. 

The result happens to be a little closer to the true value than the 
answer to Example 3, but this must be regarded as an accident. 
In general, neither result can be relied on to more than two places. 
Usually the method of Example 3 will prove the better. 

Example 5. The philosopher ButTon one day threw a coin 4040 
times and noted 2048 heads. Should he have been surprised, either 
(a) that he came so close to the ideal number 2020, or (b) that he did 
not come closer to it? 

The question (a) may be put thus: What is the probability that, 
in 4040 throws with a perfect coin, one would obtain a number of 
heads that would differ from 2020 by 28 or less? The answer is 
given by Corollary 1: k = 28, nq = np = 2020, t1 = v'1010 = 31.78, 

28.50 
x - 31.78 "" 0.898. 

21fIC q,(x)ch = 0.631. 

He should not have been surprised at the closeness of the result, 
for, if his experiment were to be repeated indefinitely, this closeness 
would be expected in 63% of the trials. 

The question (b) may be put thus: What is the probability 
that one would obtain a number which would differ from 2020 by 
28 or more? The answer is given by Corollary 2: k = 28, t1 = 31.78, 

27.50 
3: = 31.78 = 0.865. 

21"" q,(x)d.i: = 0.387. 

He should not have been much surprised at this because a deviation 
as great as he obtained would be expected 39% of the time. 

EXERCISES § 3 

Use the normal curve in finding approximations to the following 
sums. The answers are given to four decimal places in order that 
the student may check his work; but, in general. they represent 
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the true values of the sums desired only to about two significant 
figures. 

1. The terms of (I + !)f50in which 131 ~,~ 179. Ana.,.9728. 
2. The terms of (1 + 1)90 in which 50 ~ , ~ 70. Ans,. .9812. 
3. The terms of (l + WO in which 5 ~ t ~ 13. Ans., .9343. 

4. The terms of (I + 1)450 in which the exponent of 1 is greater 
than 140 and less than 155. Ans., .5025. 

6. The terms of (l + WO in which the exponent of 1 is greater 
than 45 and less than 75. 

6. The terms of (1 + 1)47 in which t differs from 231 by less than 
7.5. Ans., .9588. 

7. The terms of (1 + 1)400 in which t differs from 200 by more 
than 25. 

8. The terms of (I + Woo in which t differs from 200 by at least 
25. Ans., .0142. 

9. The probability that in throwing 500 coins one will obtain at 
least 260 heads. Ans., .1982. 

10. That the number of heads will differ from 250 by less than 20. 

4. Closer Approximations. There are various methods 
of obtaining closer approximations to the sum of a number 
of consecutive terms of a point binomial. A closer approxi
mation is really needed when p and q are quite different, 
and when the terms are not arranged symmetrically with 
respect to the mean. Next in point of simplicity to the 
normal curve is a curve which is expressible in a series of 
terms which involve the "polynomials of Hermite." These 
are designated by the letters H(x) and defined in part as fol
lows: Ho(x) = I, H1(x) = - x, H.(x) = Xl - '1, Ha = - xl 
+ 3x, H. = x· - 6xl + 3, .... There are an infinite num
ber of them. If each is multiplied by cf>(x), new functions 
are obtained like the following: 

cf>(O)(x) = Hocf> = cf>(x). 
cf><U(x) = HIt/> = - xt/>(x). 
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QC1'(X) _ 1119 - (x' - l)¢(x). 
QCl'(X) - 11;> - (- z' + 3.r)Q(x). 
QU'(x) - 11;> - (zi - 6z1 + 3;¢(x). 

~ funrtions are very useful U.-e multiply eWl by a 
conrta.nt and aJJ thml, .-e &!WI get another ~. functioo 
F(x): 

F(.) = c,t., + c.+cu + c~ + •.•• (11) 

~ series is eometimes a.IJ,ed a G~r series in 
hooor el two aathrnuticUns .00 hue 1II'"OIbd with iL' 
Bya proper choice el roo...cunts, c.. Clo ete., this 8eries CUl be 
nude to fit very closdy almost any ordi.Iury freq-.1eDCY 
Nrn', prorioW aD infinite number el tertns is used. U only 
~ 01' four terms are U!Ied, it is elten a very £OOd approxi
nution to a freqUt'ncy distribution. 14t~r oa .-e &!WI see 
how to ck~rmine the c'. in order to m.Ue it fit nrious 
h.i.st~ iDdudi.ng the point bCoccn;\J, but .-e postpone 
for the present this thecft~ cliscussioo and use only the 
resUL (t yielJs the following theomn. which is &n.\logou.s 
to Theorem II. 

Theorem IlL TU nlJII of t..w. Inwu ~/ tM poi'" t.iMBli4l 
(p + q)- ill wAUl, rG1I{1t-fTMlt • ,., 6, irad~ (II ~ , ~ 6), 
is cpprorilft4h/, (if II is fairly larrt): 

.r:+(.~dz + [f;' '.e(.) + 2~ (! - !)+W(.) r, 
trAln,4U ill ~ 1. 

·-I-fI'I &+I-fI'I 
%\ = '%1 = ; • • 

• raz- _ ~tWlY th. __ .me. aDd ~ d a .mr. ~ 
~ I~ T1:.e Ita&mt ~ the alnWs CUl e&a1y abow 

~ ~ 
~ .(jJ~) - -, .Cl~) _ -" eu. n.e dtbit ..... ~ th. IT_ an u JZI 

~ fftllD t.hme derintift&. 
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and, as in Corollary. 3, we may write, i! we choose, 

1'''', 1-'"' 1"" = .+ - 1; 
zt -(X) -0) 

and where the sqUare bracket has the same meaning as in the 
calculus, thus: 

[lex) J: means f(x2) - !(Xl). 

The functions cf>(2)(X) and cf>(31(X) are given in Tables II 
and III. Let us note that, by their definitions, 

cf>(2) ( - x) = cf>(2)(X), but that cf>(3)( - x) = - cf>(3)(X). 

COROLLARY. It is often sufficient to use but two terms of the 
formula: 

When but one term is used, we have Theorem II. We have 
called this a first approximation. When two terms are used, 
we shall call it a second approximation, and, when three 
terms are used, a third approximation. Some authors com
pute more terms of the series (11) and obtain higher approxi
mations, but this is of doubtful value unless a large number 
of terms is employed, and then more labor is encountered 
and more tables necessary. I. There is no simple formula 
which will give a sufficiently good approximation in all cases, 
and therefore the general problem of finding such approxima
tions is rather complicated. It is discussed more fully in 
Part III, but we may say here that it is usually safe to use 
Theorem III if Xl and X2 are not very far from the mean and 
if p is not very different from q. To be more specific, we may 
use Theorem III if . 

R > 0.5, x < 5, n > 25, (12) 
(a - l)p 

where R is the smaller of the quantities (n _ a + 2)q' 

1 If more terms are used, it is desirable to add them in groups, rather 
than singly. (Cf. Fry, page 255.) Cf. also Appendix, § 3. 
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(n - b - l)q d . th I f th t't' {b + 2)p , an % 1S e arger 0 e quan lies %" %2. 

These conditions are sufficient rather than necessary, and 
we may in fact use Theorem III when one of them is not 
quite satisfied, if the others are easily satisfied. When n is 
as small as 25, it is rather better to compute enough terms 
outright. This is not very difficult if a machine is used and 
the work is well planned. However, we may use the formulae 
for even smaller values of n in the more symmetrical cases. 

Example 6. For the point binomial (J + i)UO, find the sum 
of those terms in which the exponent t of i lies in the interval 
131 ;:; t ~ 179. 

The author has computed the true value in this case. It is 
0.9735. We shall now approximate it by the use of Theorem III. 
Incidentally we shall find how good the approximation would have 
been had we used two terms or one term instead of three terms of 
our series: 

1 150 10 131 - .5 - ISO 
... , (f = ,X, = 10 = -1.95, 

179 +.5 - 150 295 
XI == 10 =., 

q - p 1 1 ( 1 6) - 1 
'""6'a = - 180' 24 iii - n = 7200' 

ht approximation: L~ q,(x)d;c = 0.9728. (a) 

end approximation: .9728 - Th[t/>W(X2) - q,W(x,)] = 0.9735. (b) 

3rdapproximation: .9735 - ~[t/>(a)(X2) - q,W(x,)] = 0.9735. (e) 

In the inequalities of (12), R is the smaller of the quantities 
130·2 270·1 both f hi h ~1.. __ 0 
321-1 = .81, 181.2 = .75, 0 w c are greater IdllW .5. 

ExERCISE § 4. Repeat the methods of Example 6 in the following 
cases: § 3, Exercises 2, 3, 4, 5. 

6.1 Theorem IV. The mean oj the hypergeometric series oj 
§ 6, Chapter 1, page 199, is, relative to the origin oj t, l = nq. 

I This section, like § 6 of Chapter I, may be omitted if desired. 
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The proof is very similar to the proof of Theorem I(a): 
_ 1 n ~~.. ~ 
t = -C l; tpmC,qmC, =. I.... l; tpmC'~lt 

m ,,'=0 ~ '=1 qm - _ 

nqm~~n Iqm-l 
= - I 1 ,l; pmC· I" .... _ # 1# - 11 m ~ 1-1 ~~ 

( 
1 1-1=n-1 ) 

= nq --C- l; pmC. qm-1C'-1 . 
m-l n-l 1-1=0 

Now, by Theorem VI, § 6, Chapter I, the part in paren
theses is the hypergeometric series corresponding to a 
sample of (n - 1) balls drawn from a bag containing (m - 1) 
balls of which pm are white and (qm - 1) are black. (Note 
that pm + qm - 1 = m - 1,8 + t - 1 = n - 1.) Hence, 
by the corollary to Theorem VI, this part is 1. So"l = nq. 

PROBLEMS CHAPTER U 

1. Prove Theorem I (c). 

Find the sums of the terms of the point binomials as indicated 
below. In each case the true values are given, and in the first case 
the answers which the student should obtain by the use of the ap
proximate formulae are also given. A good idea of the accuracy of 
these formulae is afforded by ~hese examples. 

2. (J + 1)25. Cf. p. 375. 

, True 8'+1 Approzimali ... 

4 .04620 .0480 
6 .22215 .2224 
8 .53758 .5374 

10 1 - .17799 1 - .1794 
12 1 - .04151 1 - .0428 
14 1 - .00560 1 - .00591 
16 1 - .000415 1 - .000452 

7 ~ t ~ 15 .77620 .7758 
6 ~ t ~ 16 .8881 .8860 
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3. (f + l)t6o. 
, T .... 8 ... 

75 1.4342 X lO-u 

115 .000214 
125 .0066 
135 .0726 
145 .3282 
165 1- .0614 
175 1- .00582 
185 1- .000237 
195 1 - 4.1 X 10-' 

126:ii , :ii 165 .9321 
136 :ii , :ii 175 .9216 

, T,.." 8 ... 

1 .2141 
2 .4632 
3 1- .2999 
5 1- .05202 
7 1- .00440 
9 1 - 1.94 X 10-' 

1 :ii , :ii 8 .94639 
2 :ii , :a 10 .7859 

Ii. (.99 + .01)100. 
, Tnoo 8 ... 

3 .2635 
4 .4395 
5 1- .3841 
6 1- .2372 
7 1- .1324 
8 1- .06724 

12 1- .001902 
15 1 - 6.143 X 10-' 

3:ii , :a 8 .8095 
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6. At age 65 the probability of death in one year is about .04, 
and so the cost of insuring a man of that age for one year would be 
$40 per $1000, if loading and interest is neglected. If a company is 
carrying 500 cases of this sort and charges $42, what is the proba
bility that. the premiums collected will be insufficient to pay the 
death claims? 

7. At one time it was supposed that male and female children 
were equally likely. Out of 10,000 births it was found that 5098 
were male children (Laplace). Was there either a surprisingly large 
or a surprisingly small deviation from the expected number? 

8. Answer the questions of Problem 7 accepting a theory of sex 
determination which would make the proportion of male to female 
children 36 to 34. 

9. (a) A coin is tossed 81 times. What is the probability that 
the number of heads will differ from 40.5 by 5.5 or less? (b) Answer 
(a) after rephrasing the question by multiplying each of those 
numbers by 100. 

10. A census report showed that in general 59.58% of New York 
City children went to school, but that only 56.8% of the negro 
children went to school. The number of negro children was 20,000. 
Was the difference due to chance? 

11. In a certain university the proportion of freshmen failing in 
mathematics was 10%. (a) Twenty-five per cent failed in a section 
of 16. How abnormal was the-discrepancy? (b) Same as (a) for a 
section of 160. 

12. In general about 21.6% of men alive at age 25 are dead before 
they reach 50. If it were found that, of 890 athletes living at age 
25, 205 were dead before reaching 50, would one be justified in con
cluding that 'there is a really different mortality rate applicable to 
athletes? . 

13. If a baseball player has a batting average of 22%, what is 
the probability of at leas~ 22 hits out of 100 times at bat? 

14. A speculator can guess correctly the daily changes in the 
stock market 55% of the time, and he wagers $1000 every day for 
300 days. (a) What is the probability that he will clear at least 
$50,000? (b) What is the probability that he will lose $10,000 or 
more in the first 100 days? 
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15. (Fry) "There is a case on record where a die was thrown 
315,672 times with the result that either 5 or 6 appeared 106,602 
times." Is it reasonable to suppose that the die was a true one? 

16. (Coolidge) "In 1850 the Swiss astronomer Wolff threw two 
dice 100,000 times. The two showed the same face 16,647 times." 
Comment on this result. 

17. Two dice are thrown 500 times. What is the standard 
deviation of the probability distribution for the number of times 
the sum 7 will appear? 

18. In general, 10% of persons afflicted with a certain disease die. 
Of a number of persons thus afflicted and subjected to various 
methods of treatment the following data were gathered. Do any of 
these methods appear worth further study? That is, in each case 
find the probability that a percentage as different from 10 as that 
observed would occur by chance. 

T'IGI .... '" A B C D B 

------------
Deaths ................. 35 15 7 3 900 ------------
Number Diseased ....... 400 200 100 50 10,000 

------------
Per Cent Deaths ........ 8.75 7.5 7.0 6.0 9.0 

19. The probable error of a gun battery is 40 yards in longitude. 
One hundred shots are fired at an enemy position which is 80 yards 
deep and extends indefinitely to the right and left of the line of fire. 
What is the probability that more than 60% of the shots are hits? 

20. A dean's report showed the following figures: 

. H tmtn' Orad .. Faill"'" 
Subj"" N"mIHJr 

Num'- % N"mIHJr % Em ... ,""" 

German ........... 187 36 33 6.3 521 

Mathematics ...... 162 35 38 8.2 466 

Music ............ n 50 0 0 22 

All Subjects ...•... 38 5.4 
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Find the probability: (a) that, in selecting 521 students at 
random (from a supposedly infinite number), one would obtain as 
few honor grades as were obtained in German, (b) as many failures; 
(c) that, in selecting 466 at random, one would obtain as few honor 
grades as were obtained in mathematics, (d) as many failures; 
(e) that, in selecting 22, one would obtain no failures, (J) eleven o~ 
more honor grades. 

21. Prove (c) of Theorem I, § I. 



CHAPTER III 

FREQUENCY CURVES 

1. The Gram-Charlier Series. It was stated in Chapter 
II that the series 

could be made to fit almost any ordinary frequency dis
tribution if the c's were chosen properly. The formulae 
which determine the proper choice of these c's are commonly 
given in the more advanced books. We shall be content 
here to discuss the simple and most useful case where there 
are but five terms, 

F(z) - co+\I)) + Cl+(I) + Cs+(2) + c.+/J) + c.+,.,. (la) 

Let us thcn think of F(z) as represcntable by a curve made 
by adding togethcr the five curves indicated by the five 
terms on the right of this equation. Let us suppose we have 
a given frequency distribution, I(t), and that we wish to 
choose Cit, Cl, c" C" Ct 80 that this curve will fit the distribution 
as well as possible. The method of fitting will be the method 
of momenta used often before. That is, we shall have five 
equations which will determine the five constanta. The first 
equation will say that the Oth moment of 1 is equal to the 
Oth moment of F; the second that the first moment of 1 
is equal to the first moment of F; etc. 

It will simpliCy matters a little if we suppose that the total 
given frequcncy is 1 instead of N, if we take as our horizontal 
unit the given standard deviation fT" and if we use the given 
mean as our origin. To accomplish this, we let!Ct) designate 

22S 
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as before the frequency in the interval whose mid-point is a 
given coordinate t, or feu) t~e frequency in the interval whose 

t - 1 mid-point is an arbitrary coordinate u, and put x = --
0", 

= U - U j then f(x) will designate the frequency in the inter-
0" .. 

val whose mid-point is x. MOI:eover, the origin and mean of 
x will be zero, and its unit will be the given standard devia
tion. The equations to determine the c's will now become: 

Area of F(x) "i 1, i.e., L:F(X)dX = 1, 

Mean of F(x) = 0, i.e., i:XF(X)dX = 0, 

p.z oiF(x) = 1, i.e., i:X!F(X)dX ! 1, 

!L3 of F(x) = given aa, i.eo; J~:rF(X)dX = aa, 

IL4 of F(x) = given ~, i.e., i!F(X)dX = ~. 

(2) 

From these equations the following values of the c's may be 
determined: 1 

aa a4-3 
Co = 1, Cl = 0, Ct = 0, Cs = - 6' C4 = ----U-' (3) 

so that our curve (Ia) may be written in the form: 

F(x) = cjl(x) _ as cjl(a'(x) + ~-3 cjl(4'(X), (Ib) 
6 24 

u-U where, as stated, x = --, and 0",., as, and a4 apply to the 
0",. 

given distribution. 
This expression for F(x) may be expected to yield a curve 

which will fit the given histogram in the following sense: 
The area of the curve over any given interval will equal 
approximately the area of that part of the histoln"am 

ISee§2. 
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whose base is that interval, provided the total area or fre
quency happens to be 1. If it is N, instead of 1, then F(x) 
yields in each case the relative frequency. To get the ab
solute frequency we must multiply this by N. That is, if 
the interval goes from z - a to z == b: 

Frequency o~er .(a, b) = N lbF(X)dX. (4) 

If in addition we require y the ordinate of the graduating 
curve, we must transfer back to the given (t) unit. Analo
gous to equation (6) of Part I, Chapter V, page 71, we 
have then 

y = ~ F(x). (5) IT, 
" 2. Properties of the ,'so By (lb) 

lb F(x)dx = lb ,(x)d~ -. ':; f.b ,(3) (x)dx + a~~31b,C')(X)dX' 
(4a) 

but so far we have found no means of computing the last 
two of these integrals. It turns out that the cp's have certain 
simple properties which make this computation easy. The 
first property is: 

(a) 1 lb,(3)(x)dX = ,(2)(%)]:, lb,(4)(X)dX = ,(3)(X)]:, 

and similar relations hold for all the cp's. 
Proof. This cannot be completely proved without the 

calculus, but it is very easy to see that it is at least approx
imately true in special cases. 

L·55 
Example 1. Find, from Table IV, I/>(4)(x)dx, approximately . 

. 05 

By Table IV the histogram is given by the following data: 

I To students of the calculus: this property is a result of the fact 
that the ~'i are successive derivatives of .po. 
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'" 
.1 
.2 
.3 
.4 
.5 

';(·)(z) 

1.1671 
1.0799 
0.9413 
0.7607 
0.5501 

The area is the class interval times 
2: 41(4) (X), viz., (.1)(4.4991) = 0.44991. 

Let us now notice that this result is approximately equal to 

[ q,3(X) J50 = 41(3)(.55) - 41(3)(.05) = .5088 - .0597 = 0.4491, 
.05 

by Table III. 

L1•575 
Example 2. Find, from Table JII, q,(3)(x), approximately, 

.975 

taking the class interval equal to 0.05. 

'" 
1.00 
1.05 
1.10 
1.15 
1.20 

1.25 
1.30 
1.35 
1.40 

·1.45 

1.50 
1.55 

Total 

';(1)(.,) 

.4839 

.4580 

.4290 . 
• 3973 
.3635 

.3282 

.2918 

.2550 

.2180 

.1815 

.1457 

.1111 

3.6630 

Area = (.05)(3.6630) = 0.18315 • 
The formula gives 
41(2)(1.575) - 41(2)(0.975) 

= .1709 - (- .0122) = 0.183.1. 
The agreement is better than in Example 
1, as was to have been expected, because 
of the smaller class interval. 

From (a) and (4a) we derive: 

LbF(X)dX= lbcf>(X)dX- ~[cf>(2)(b) - cf>(2)(a)] 

+ a4
; 3[ cf>(3I(b) _ cf>(a)(a)]. • (4b) 
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This enables us in any given case to write down immediately 
from the tablcs the value of the partial area of F(z). (Cf. 
Example 3.) The cp's have other properties also that are 
valuable, (b) and (c): 

(b) -: -CD -CD 

1 
f "" 4'(x)dx = 1, J"" x"4'(x)dx = 1,j''''' z44'(x)dx = 3; 

L"" %"4'(x)d% = 0, if n is odd. 

~hese were noted in Part I. They say in words that the 
area and the second moment of cp are both unity, the 4th 
moment is 3, and the odd moments all vanish. 

Proof of (3). These sets of properties enable us to derive 
the first two equations of (3) from the first two equations of 
(2) j for, writing out in full the first equation of (2), we have 

1 - i:F(x)dz ... eoL: cp(x)dz + clf': cpUl(x)dz 

+ CtL: cpC2I(X)dx + c.i: cp!al(x)dz + c'i: cp(41(X)dz. 

Insert the property (a) and this becomes, since at :I:: co all 
the cp's vanish, 

1 - Co + O. 
Now write the second equation of (2) in full: 

0 ... L: xF(x)dx = eoi:xCP(x)dz + clL:xcpUl(x)dz 

+ CtL: Xcp(21(X)dz + cai:xcp<II(X)dz + c.L: Xcp<4I(X)dx. 

Use (a) again and also the definitions of the cp's in § 4, 
Chapter II: 

o .. eo • 0 + cli: - x!cp(x)dz + cli: (x' - x)cp(x)dz 

+ cai: ( - x' + 3X2)cp(x)dz + c'L: (x' - 6xa + 3x)cp(x)dz. 

Finally, use property (b): 

o = - Cl + 0 + Ca( - 3 + 3) + OJ so Cl = O. 
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This is the second of equations (3). To obtain the rest of 
(3) we shall need: 

(c) i: :I!'cp(x)dx = 3 . 5, .r: zScp(x)dx = 3 . 5 . 7, ete. 

We cannot prove (c) without the calculus. The application 
to equation (3) is one of the problems (9) given at the close 
of this chapter. 

3. Graduation. 

Example 3. Find and plot the F curve 1 which best fits the follow
ing distribution. Also graduate the distribution by means of this 
curve. 

CoRNSTALKS 

H.;ghl. ft. I A~ 

'" /1? Iv' Iv' .. 
3-4 3 -4 -12 48 -192 768 
4-5 7 -3 - 21 63 -189 567 
5--6 22 -2 -44 88 -176 352 
6-7 60 -1 -60 60 -60 60 
7-8 85 0 0 0 0 0 
8-9 32 1 32 32 32 32 
9-10 8 2 16 32 64 128 

Sums 217=N -' 89 323 - 521 1907 

.!..l; 
N 

-.410 1.488 - 2.401 8.788 

Hence, u = - .410; corrected u. = 1.113, aa = - .4643, a, = 3.706. 
Therefore, Ca = 0.0774, c, = 0.0294, and the equation of the F 
curve is 

F(x) = tf>(x) + .0774 tf>(II(x) + .0294 tf>(4)(x), by (lb). 

Hence, by (5), § I, and since N/u = 194.97, we have as our ordinate 
11 at any point x, 

11 = 194.97 tf>(x) + 15.09 tf>0l(x) + 5.73 tf>(4)(x). 

I We shaIl reserve the letter F to designate the curve (la), just 88 the 
letter tf> has been reserved for the normal curve. This use of F is peculiar 
to this text; the use of tf> for the normal curve is very common. 
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For the purpose of plotting the curve any desired values of z 
may be chosen. It is 
convenient to take them 
&8 they are taken here, 
at equal intervals of 
i each from - 3 to 3. 
Table IV will be found 
convenient and adequate 
for this purpose. The 
values of cpW(z) are not 
given except at the in
frequent points of this 
table because in this text L.....:::; .. ~---..I~-.+1--r-4--r.J.,---r-IL..,I,.......:;;t-,.-. 
they are not needed at 
other points.1 Cornstalks and F Curve 

Tum ORDINATES, y 

• 194.07.(z) 15.09 .(') (z) 5.73.(') (,z) 1/ 

- 3.0 .858 1.204 .762 2.824 
- 2.5 3.412 2.149 .458 6.019 
- 2.0 10.528 1.630 - 1.547 10.611 
-1.5 25.249 - 2.199 - 4.035 19.015 

- 1.0 47.183 - 7.302 - 2.773 37.108 
- .5 68.649 - 7.305 3.152 64.496 

0 77.774 0 6.858 84.632 
.5 68.649 7.305 3.152 79.106 

1.0 47.183 7.302 - 2.773 51.712 

1.5 25.249 2.199 - 4.035 23.413 
2.0 10.528 - 1.630 - 1.547 7.351 
2.5 3.412 - 2.149 .458 1.721 
3.0 .858 - 1.204 .762 0.416 

We graduate the distribution by the use of (4b), placing a 
and b in that formula equal to the coordinates of the end 
points of our successive interVals. N = 217. 

1 However, they could be found approximately from Table m at 
intermewate points by the use of the following formula: 

cp(&)(z) - l00[cp(I)(z + .01) - cp(I)(Z)Jj 

•. g.. cp(&)(2.60) - 100 (- .1317 + .1328) = 0.11. 



GRADUATION 

(1) (2) (3) (1)+(2)+(3) 
TSllo-OSBIlBVIID END EN6 ---

4>(')(Z) 4>(')(Z) I u Z f;;; i.~"'" 
.,[4>(I)(b) •• [4>(') (b) I BETICAL . 

_4>(1) (a)] -4>(')(a)] Iii I 
------------

- 4.5 - 3.67 .0001 .0059 .0182 
3 .0026 .0039 .0027 .0092 2.00 

- 3.5 - 2.78 .0027 .0563 .1100 
7 .0274 .0090 - .0012 .0352 7.64 

- 2.5 - 1.88 .0301 .1727 .0685 
22 .• 1334 - .0141 - .0l65 .1028 22.31 

..;. 1.5 - 0.98 .1635 - .0098 - .4933 
60 .3042 - .0298 .0117 .2861 62.08 

- 0.5 - .081 .4677 - .3950 - .0964 
85 .3262 .0233 .0188 .3683 79.92 

0.5 0.82 .7939 - .0934 .5440 
32 .1634 .0210 - .0158 .1686 36.59 

1.5 1.72 .9573 .1780 .0065 
8 .0382 - .0078 - .0041 .0263 5.71 

2.5 2.61 .9955 .0769 - .1317 
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I h u - 11 th - 4.5 + .410 
n eac case, x ... U;;-' us: Xl = 1.113 

- 3.67. The rectangles of the graph are drawn by the use 
of the x's in column 3 of this computation. 

EXERCISES §§ 1-3 

1. Plot the equation (lb) in the special case: a, = 0.6, a. = 4.2, 
taking z - 0, ::!:: 1, ::!:: 2, ::!:: 3. 

2. Plot the histogram of which the central ordinates are in
dicated by the points of Exercise 1. For the frequency distribution 
thus represented, find the area, (I, ai, and a.. By (2), a. should be 
equal to 0.6, approximately, and a. to 4.2. The area should equal 
1 if the unit is (I, otherwise the area should equal (I. 

S. Display the effect of the skewness factor by placing on 

the same diagram: (a) I/>(z), (b) I/>(z) _l/I/><II(Z), and (e) I/>(z) 

+ l/ 1/><II(z), taking a, as in Exercise 1. 

" Display the effect of the kurtosis factor by placing on the 

same diagram: (a) I/>(x), and (b) I/>(x) + a'2~ 3 1[><'I(x), taking a. 

as in Exercise 1. 
15. Using the corrected values of the moments of the distribution 

of wages in Example 1, Chapter IV, Part I, page 50: (a) compute 
the ordinates of the F curve which fits it and plot as in Example 3; 
(b) graduate the distribution. 

S. Do the same for the data of Example 2, Chapter IV, Part II, 
page 250. 

4. Other Frequency Curves and Their Uses. The Gram
Charlier series may be thought of as ,; system of frequency 
curves, infinite in number, of which the F curve is a particu
lar case. Karl Pearson's system of curves is another infinite 
group, and here again there are one or two particular curves 
that are of special interest. Both these systems have as a 
very particular case the normal curve. Probably the two 
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most important of Pearson's more general curves are his 
so-called Type I curve and Type III. 

Type I: y = atb(c - t)lI, where 0 ;;S t ;;S c,O < a, b, c, d. 
This function occurs frequently in higher mathematics. Its 
partial area from 0 to any fixed point t is called the incom
plete Beta function: 

Type I is a limited curve in the sense that y actually reaches 
the value zero at the end points, t = 0 and t = c. It rises 

to a maximum at the intermediate point t = (b ~ d)· There-

fore it appears to be well suited to represent a uni-modal 
frequency distribution. 

Type III: y = ae-bl(b + t)", where - b;;S t, 0 < a, b, c. 
This is limited on one side only. The value of y is exactly 
zero at the end point t = - b, and approaches zero as a 
limit as t becomes infinite. It rises to a maximum at the 

intermediate point, t = - b + ~. This function also occurs 

frequently in higher mathem~tics, and its partial area from 
- b to any fixed point t is called the incomplete Gamma 
function: 

ib ae-"'(b + t)"dt. 

Except when special tables are available, the process of 
graduating a distribution by means of these curves is rather 
more tedious than the process of graduating by the F curve, 
and as graduation is not very important in elementary 
statistics, we shall not explain how it is carried out for 
Pearson's types. 

6. Uses of Frequency Curves. The reader may well 
inquire: What is the use of a frequency curve? Why try 
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to find a mathematical expression which will approximate 
the given frequencies of an observed distribution? The 
answers may be grouped under three heads: 

(a) Smoothing. Instead of making use of the observed 
frequencies, which often contain irregularities, it is sometimes 
better to use the theoretical frequencies obtained by gradua
tion. In other words, if we desire to smooth out the irregu
larities of our data by a mathematical process, we may resort 
to graduation by means of one of these curves. Many in
stances of the desirability of smoothing may be found in 
actuarial data. Consider the mortality table itself. This 
tells us the number of persons in a given group who will 
be alive at each age from one year up. The original data 
from which such a table is constructed are obtainable from 
the census reports. But, as they stand initially, these re
ports are not wholly reliable, for they contain too many 
irregularities. 1 If one should construct a mortality table 
from these reports without smoothing them out, it would be 
unreliable. Naturally the actuary prefers in this case the 
theoretical numbers to the observed numbers. The curve 
used to graduate the mortality table is not one of the fre
quency curves recently discussed, for the curve required is a 
continuously descending one, instead of being high in the 
middle and low at both ends, but this is not an important 
distinction, because it depends on an artificial choice of what 
is recorded. For example, tables of the reported deaths at· 
each age exhibit the same sort of irregularity at the five-

lOne particularly interesting irregularity is that, according to these 
reports, there are more persona alive at age 30 than at age 29, more at 
age 35 than at age 34, more at age 40 than at 39, and 80 on up to 85 or 
80. At every age which is a multiple of 5 the curve, which in general 
is a smoothly descending curve, baa a bump in it. This is doubtless due 
to the fact that people do not tell the truth about their own ages or, 
more especially, about the ages of members of their hOU8eholds. .. How 
old is 80 and soT" says the cen8U8 taker, and 80 and 110, being really 31 
or 32, and known to be 30 or 80, is said to be 30. 
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year intervals, and such tables are frequency distributions of 
the type we have studied. ' 

(b) Classification. If all the frequency distributions with 
which the statistician has to deal could be separated into 
general classes, so that one could say with some assUrance 
that this distribution would be an F curve, that a Pearson 
Type I curve, etc., it would be very helpful in theoretical 
investigations. Indeed, most of the sampling theory which 
will be explained in the next chapter can be proved to be 
valid only if certain of the distributions involved are of 
comparatively simple types; in many instances it is necessary 
to assume that they are actually normal. So it is obviously 
necessary that the practical investigator should examine a 
wide variety of samples and find out what types may reason
ably be assumed in a theoretical investigation. This seems 
to the author the most important of the several possible 
objectives of curve fitting, and it is quite fundamental to 
mathematical progress in statistics. 

(c) Testing A Priori 7'hRmie8. Suppose one has a theory 
as to the origin of a certain group of data, and that by means 
of this theory one could predict the type of frequency curve 
which the data should fit. The fit turns out to be very good. 
Therefore the theory is, to that extent, substantiated. This 
sort of argument is a bit perilous, for, it will be remembered, 
.it is not considered good logic to derive the hypothesis from 
the conclusion, simply because it does yield the conclusion. 
However, the reasoning is valid, provided we are careful to 
regard our theories not as statements of the causes of phe
nomena but merely as terse summaries of the known facts. 
Theory and observation do not need to be thought of as the 
hypothesis and conclusion of a syllogism. We may think 
of theory merely as a formula which describes the observa
tions. 

I For numeroU8 examples, see Elderton, Frt!IfIIDI£Y CU1'f1e3 and Cor
relalion.. 



FREQUENCY CURVES 237 

Example 4. The Law 01 Error. It has long been known that it is 
possible to derive the normal law as the curve of the distribution 
which errors in a set of physical observations should follow, pro
vided one makes certain assumptions about what are called ele
mentary errors. The idea can be illustrated rather well when applied 
to the firing of a gun. Suppose there are a certain fixed number of 
errors that may be made when the gun is fired. For simplicity, 
suppose each is either plus or minus. If it is plus, the shot will go 
too far by a certain amount. Let plus and minus errors be equally 
likely. From these assumptions it follows that the chance combina
tions of plus and minus errors will produce, at the target, a dis
persion of normal type. Moreover, one would get the same curve 
if these elementary errors were not all equal in effect. Similarly, if 
one performs a physical experiment such as measuring the length 
of a steel rod, or timing the passage of a star behind a micrometer 
wire, or striking at a golf ball, it is supposed that there are in one's 
physical, mental, and moral make-up certain little impulses, ~me 
of which work one way and some the other. The final act depends 
on the chance combination of these impulses. No one can predict 
any single act, but the total effect of a million acts will be the 
"normal law of error." This is the a priori theory. The question 
as to whether it is justified by the facts is obviously a problem in 
curve fitting, in this case normal curve fitting.l 

PROBLEMS CHAPTER m 
1. From Table IV obtain the approximate value of 

11.25 
~(4)(x)ch, 

.65 

and compare the result with the true value as given by 12 (a). 

12.66 
2. Do the same for ~("(x)ch. 

2.04 

1 One can push this theory further. Suppose that, as one measures, 
the "true" value changes, due to progressive changes in the instru
ments, perhaps, in the case of the steel rod; due to increasing fatigue or 
loas of morale in the case of the golf ball. Then the resulting distribu
tilm will not be normal, but may depart from it widely. It will usually 
be uni-modal, but may be saddle-shaped. 
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3. Fit an F curve to the distribution of freshman weights of 
Part I, Chapter II, Problem 1a. (Mean weight = 142.25Ibs. For 
a unit of 11 lbs., corrected J.I2 = 2.56, ~ = 2.42, Pt = 2-1.10.) 
(a) Find and plot the ordinates, F, on the same diagram as the histo
gram. (b) Graduate this distribution (p. 33), 

4. Do the same for the following distribution of school grades 
(FishwiUI). 

Gratk I Gro.u I 

50 1 000 80 13000 
55 1 000 85 13000 
60 2000 90 25000 
65 2000 95 23000 
70 5000 100 9000 
75 6000 Total 100 000 

Mean grade = 86.35, corrected u. = 2.077, unit of u = 5 grades, 
aa = - 1.16, at = 4.19. 

Ii. Do the same for the ages of women at marriage (Burgess). 

Age I Age I . 
13-17 99 38-42 U 
18-22 732 43-47 7 
23-27 461 48--52 1 
2lh'J2 120 53-57 0 
33-37 37 5lHi2 1 

Mean age = 22.78, corrected u = 4.69 years, (fa = 1.814, 
at = 9.22. 

6. Show that the first of the relations (c), § 2, is approximately 
true by computing the ordinates of the curve, y = r4>(z), at in
tervals of 0.5 from:z = 0 to:z = 4, and then finding the area of the 
histogram. Plot. 

'1. Do the same for the second of these relations. 
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8. (For students who use the calculus.) Find the mode of F(x) 
when a. = 3, and 80 prove approximately the rule for finding the 
mode given in Part I, Chapter 3, § 9. 

9. Using the relations (c), § 2, where necessary, derive the last 
three equations of (3), § 1. 



CHAPl'ER IV 

SAMPLING 

1. Nature of the Problem. The question to be investi
gated in this chapter is: How good is a sample? More 
precisely: How well does a sample selected from a given 
larger group, to be called the "universe" or "population," 
describe that larger group? More precisely still: How 
nearly does the mean of the sample agree with the mean 
of the universe? How well do the standard deviation and 
the higher moments of the sample agree with the standard 
deviation and higher moments of the universe? How near 
is the frequency curve, taken as a whole, of the sample to 
the frequency curve of the universe? Usually it is necessary 
to make assumptions with regard to the nature and con
stants of the universe in order to answer these questions. 
Often indeed it is necessary to require that the universe be 
normal. Also, it is always. necessary to lay down a very 
important restriction with regard to the sample, and that 
is that the sample must be a truly random one, chosen from 
the universe in exactly as random a manner as in theory 
one chooses random cards from a pack. Since in practice 
this is a condition which is seldom satisfied, the application 
of the theory of sampling is manifestly limited. What is 
really obtained, then, is not an estimate of the error of one's 
sample but an estimate of what the error would be if the 
sampling were random. This ideal error must be thought of 
as smaller than the true error. In a practical case, we know 
that the error is not less than the one indicated by this 
theory; we do not know more than this; but to know this 
much is often of real value. I see before me, on shelf num-

240 
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ber 3, a group of 20 Dlllthematical textbooks. Suppose I am 
interested in their a\"erage sile. A14 rt'gards size, they are 
not truly a random sample from the college library, because, 
being textbooks, certain book sizes are practically prohib
ited, and others are specWly handy and thert'fore specWly 
common. So, if I get the a\-erage size from this group,l shall 
not expect it to be as near the ayeraie size of all the library 
books as I should were the books chosen in a truly random 
fashion. ~lort'O\"er, a sample which is nearly random with 
It'spect to one character Dllly be not at all random with 
It'spect to another. If I am interested, not in the sizes of 
books, but in the number of times the letter z occurs in 
books, it would manifestly be a very biased answer I should 
get if I averaged the number of z's in the mathematical 
texts on this shelf. 

We now consider a few elementary theorems of sampling 
theory. Our \iew will be limited to the sort of random 
samples that msy be obtAined by drawings U"ilJa rtplaument&. 
This means that, if for exsmple a sample of 5 cards is drawn 
from a pack of 52, each card is drawn indhidually, its char
acter noted, and then it is It'plsced in the pack before the 
next is drawn. Another way of stating this condition is to 
say that the pack contains an infinit, number of cards and 
that the 5 cards are drawn all at once. 

2. Mean of a Sample. Theorem I. IJ a sampk oJ M N 
w drawn Jro,n an infinite unit-erse, and if 1 w 1M mtGn oJ 1M 
sample, then the mtGn oJ aU pouibu 8ucA mtGM ~ 1M 
mean i I oJ IMuni~. 

The proof depends first of all on a clear understanding of 
what the thcorem means. We hs\"e in mind something like 
a correlation table, except that it is infinitely extended in 
one direction. Across the top we place the probability (rela
ti\"e frequency) distribution of the universe: pea) ••• pet) 
••• pCb). Then each succeeding horizontal row represents 

I The symbol' is to be read: 'curL 



242 ELEMENTARY STATISTICS 

the relative frequency distribution of a sample of size N, 
drawn from this universe. As there are an infinite number 
of such samples that may be drawn, conceivably, we must 
think of an infinite number of such horizontal rows. This 
table is indicated below. A numerical illustration, in which 
the number of horizontal rows is fifty, is given in Example 1. 
Frequent reference to this numerical illustration, and espe
cially to the figure accompanying it, will help the student 
to follow this demonstration. 

TuB UNIVElI8" AND ITS SAMPL118 

(Relati •• !r.qunu;71 di.tribulio ... j Mm.urs 

I Q t b 
1-

Universe pea) pet) pCb) 1 
-- I-

I" 
J(a, 1) f(t, 1) f(b, 1) 

i1 
N N N 

-- --
2nd J(a, 2) J(t, 2) J(b,2) 

is S N N N 
-- --

A etc. 

M 

p 
-- --

L ,"" J(a, i) J(t, i) J(b, i) 
i, 

N .N N 
-- --

E 

S 

In this table we are supposing that t ranges from a to b. 
The notation f(t, 'L} means, as in a correlation table, the 
frequency at the point whose abscissa is t and whose ordinate 
is i. Also the marginal totals, p(a), "', p(t), "', p(b), 
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although placed at the top to indicate the-'~verse'/r'J)~ 
which the successive samples beneath are drawn,~reilly ,l>~Y' 
the same r6le as the marginal totals, called J(x), plac~d' at 
the bottom of a correlation table; pea) is not, however, the 
actual sum of the infinite number of relative frequencies in 
the first column, being a relative and not a total frequency, 
but it is proportional to this sum; more precisely, as we shall 
now prove, it is the limit of the mean of 3 of these frequencies: 

pea) = lim! ±J(a, i), (1) 
'-00 8ia1 N 

and, in general, 

(2) 

Note that in this expression, t remains fixed; we stay in one 
column. The result follows immediately from the limit defi
nition of probability, for: 

1 • 8Ni~/(t, '} 

is the relative frequency with which t has occurred in drawing 
8N individuals from the universe: 

-.!.. ±J(t i) = total number of t's drawn . 
8N i-I' total number of individuals drawn 

Hence, its limit is pet), the relative frequency with which t 
occurs in the universe. 

This established, we can s,oon see the truth of the theorem 
itself. Let us now look at the last column of our diagram. 
This is a succession of t's, tl , it, ' .. , tt, ... , an infinite num
ber (not all different) of means of a corresponding, infinite 
number of samples; some of these fs are greater than the 
mean r of the universe, some less (cf. Example 1). Of course, 
any finite number of them could be arranged in a frequency 
distribution, or in a relative frequency or probability dis
tribution, and we can even think of the probability distribu
tion of the total infinite number if we imagine a limiting 
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distribution which will be appro."ched as one includes a 
luger and I~r number of ssmplcs. This limiting proba
bility distribution of the i's we shall c."ll the .. cun-e- of mt'SDS" 
and shsll designllte it by g(l). (ct. figure with Enrople 1.) 
Now our theorem says that this cun-e of mt'SDS has itself a 
mesn value which is f, the mean of the unil"t'l'Se. We must 
think therefore of this infinite S('t of fs as clustt'ring about 
the ,-slue 1 in the sense thst 

lim!±r. = f. ._CD .s ,.1 (3) 

This is what it remains to prove~ We get it from (2), thus: 

Since 1 = ~fp(I), (-l) 
• 

and fi = ~~tf(t, i), .... 
I· 1 ~ l lim 1 ~ 1 ~tJ··,,) ~'lim 1 ~ J' i) 1 UD-,.. ,= - ... ,,.- l,' =-' - ... (I,'"i"' 
.-CD a i-I __ CD a ,-1.1. I • .... 8 i-I .. . 

... ~lp(1) .... 1. 
• 

NoIaUQR. In the proof of Theorem I, we have ddined g(l), 
the probability distribution of the cun-e of mesns, and we 
hve actulllly found that its ruesn wss f. It has aL~, of course, 
a stsndsrd de,iation snd other moments, which we shall 
study. We shall U:>""e the following notation for the se,-e-rn.l 
moments: 

t'_a- c.n..,JI_ ~ .... 
S-,.14 

Probability Di..-tributioo •.. p(t) ,\i) II', .) . .v 
Meul •••••••..••.•.•.•. I 1 Z. 
StandaN nt>Yiatioo ••••.• i I ii • 
a·s .................... "a. I ~a. Qa, CIt 
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Th 1 II - I 1 -. - 1 - - 3 17.- 3 eorem • u = 'N u-, a, = VNaa,a. - =-r' 
A rigorous proof of this theorem requires the development 

of several other theorems in sampling by methods similar 
to those used in Theorem I, and this will not be attempted 
here. Instead, we shall use a numerical illustration to help 
us to appreciate further its meaning, and then proceed with 
the applications. 

Ezample 1. Suppose the probability distribution of the universe 
to be of a very simple type: 

,. 0 I 2 3 

p(l) h b if Ir 

i.e. .0370 .2222 .4444 .2963 

Let us draw from it samples numbering 27 each. This can be 
understood easily if one thinks of the universe initially as composed 
of an infinity of data distributed in the proportions indicated. An 
actual sampling I of this universe gave the 50 samples on page 246. 

I The last two equations of this theorem indicate that the curve of 
means, g(t), is more nearly normal than the universe. This is the fact, 
for similar relations can be proved for all the higher momenta. As N 
becomes infinite, g approaches the normal curve as a limit. 

We have already made use of the first of these equations in the theory 
of errors, Part I, Chapter V, page 86, where we stated that the probable 
error of the mean was I/vN times the probable error of the given group 
of observations. 

I By the use of Tippett's Random Sampling Number •• This is an 
excellent source from which actually random samples from any desired 
universe may be obtained. 
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50 SAMPLES 

I Uni.e"e ana It. 
Samples (Relati.e· 

Frequencie.) Mean. 
" 

I 0 1 2 3 
-- - - - - --

Un;-
1 6 12 8 i = 2 

"erae· 
-- - - - - --

I 4 11 11 2.185 
0 5 14 8 2.111 
1 4 11 11 2.185 
1 4 11 11 2.185 
1 4 15 1 2.031 
0 9 12 6 1.889 
1 6 16 4 1.852 
0 4 14 9 2.185 
2 6 14 5 1.815 

., 2 ...!!!... 10 5 1.661 
1'1 0 1 -9- il 2.148 
..:l 2 5 10 10 2.037 '" ~ 1 4 12 10 2.148 

00 1 4 14 8 2.014 
l/) 0 11 1 9 1.926 
C'I 2 -5- 13 1 1.926 

2 7 10 8 1.889 
1 5 16 5 1.926 
0 1 10 10 2.111 
2 6 11 8 1.926 

-3- - - - --
6 10 8 1.852 

3 4 15 5 1.815 
0 8 10 9 2.037 
2 10 10 5 1.661 
1 9 10 1 1.852 

• For convenience in printing, the 
common d.nominator (27) of the r.l .... 
tive frequenciee is omitted throughout. 

I 
--

Un'-
verBe· 

--

'" -1'1 
..:l 

~ 
00 
l/) 
C'I 

--
Totals 

Univerae and 1t8 
Samples (R.lati •• • 

Frequencies) 

0 1 2 3 
- - - -

1 6 12 8 

- - - -
I 4 15 1 
0 8 1 12 
2 6 12 1 
1 6 14 6 
1 5 13 8 

0 -4 17 6 
0 2 16 9 
2 7 9 9 
2 4 14 7 
1 6 16 4 
1 5 Is -3 
0 6 11 10 
1 1 13 6 
0 4 12 11 
1 6 12 8 - 15 -7 1 4 
0 7 13 7 
0 4 15 8 
0 6 14 7 
2 7 8 10 - - - -
I 3 10 13 
0 7 11 9 
1 9 13 4 
0 9 9 9 
0 7 10 10 

- - - -
47 297 612 394 

Means 

--
l=2 

--
2.037 
2.148 
1.889 
1.926 
2.031 
2.074 
2.259 
1.926 
1.963 
1.852 
1.852 
2.148 
1.889 
2.259 
2.000 
2.037 
2.000 
2.148 
2.037 
1.963 --
2.296 
2.014 
1.741 
2.000 
2.111 

--

It is to be noticed first that the proportions in the totals of 
the several columns are near to the proportions in the universe. 
This was expected. In fact, this set of totals may be looked 
upon as a single sample containing 50 X 27 = 1350individuals. 

PROPORTIONS 

I 0 1 2 3 

Universe .....• .037 .222 .444 .296 

Totals ........ .035 .220 .453 .292 



SAMPLING 247 

Next we look at the column of means (l's) at the extreme 
right of the two tables on page 246. This is the frequency 
distribution whose form approximates the "curve of means." 
It becomes the curve of means if an infinite number of samples 
is taken and their relative distribution depicted. The approx
imation may be summarized as follows: 

It has the following constants: 
mean = 2.00222, standard deviation 
= .1466, aa = - .1768, a, = 2.5584. 

Since the corresponding constants 
for the universe are: 

r = 2.00, a3 = - 04081, 
U ... 817, £X4 = 2.5051, 

we know from the theorem that the 
constants for the true curve of means 
to which the distribution of rs. was 
an approximation are: r = 2.00, 
(; = .157, aa = - .0785, a4 =2.9817. 
In the figure we have graphs of this 
universe p(t) and of the true curve of 
means g(t). See also 1 Problem 5. 

o 

ouaVE 
of 

MEANS. 

• ,1) 

UN) EasE. p(tJ 

F Curves Approximating 1'(/) and g(i) 

DISTRIBUT-ON OP i'8 

1 I 

1.667 2 
1.741 1 
1.815 2 
1.852 5 
1.889 4 

1.926 6 
1.963 2 
2.000 3 
2.037 7 
2.074 3 

2.111 3 
2.148 5 
2.185 4 
2.259 2 
2.296 1 

I The student may 
feel that the approxi
mations to l, ii, and a. 
are satisfactory but that 
this is not true of a.. It 
will be found later that 
all four of these approx
imations are as close as 
could be expected. 
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EXERCISES § 2 

1. Ten freshmen are chosen at random from the group in 
Problem 5a, Part I, Chapter I, page 16. Can one tell in advance 
what the mean weight of these ten men will be? What is its most 
likely value? 

2. Refer to the data of Problem 5c, Part I, Chapter I. In a 
certain district 100 persons died of tuberculosis in a certain year. 
Could one discover from the ages of these 100 what is the average 
age of death from tuberculosis in the general population? If not, 
could one discover anything about the general population? If one 
knew the average age of death in the general population, could one 
make any prediction with regard to this sample? 

3. Consider the following frequency distribution: 

Mid-t 5 10 15 

f 200 500 300 

Sample III II fli.I 

Select from it a nearly 1 random sample of 10 individuals by 
means of the following device. Look at the first 10 numbers of any 
column of a tabulated function, e.g., the first column of Table IV. 
Whenever the last digit is 0 or 1, place a mark in the cell for 
which t = 5; when it is 2, 3, 4, 5, or 6, place a mark in the cell 
for which t = 10; and when it is 7,8, or 9, place a mark in the 

> cell for which t = 15. (The marks actually recorded for the sam
ple above were obtained from the first column of the tabulated 
function 4>(4) in Table IV.) 

Find land 1. Repeat the process until you have 15 samples. 
Show by a diagram how your 15 t's cluster about l. What is their 
mean? 

4. For Exercise 1, how closely would the means cluster about 
the general mean of the large group? 

5. Answer the same question relative to Exercise 2, assuming that 
t1 for the 100 is approximately equal to t1 for the general population. 

6. For Exercise 3, compute your Ii. What is its theoretical value? 

1 To obtain a truly random sample use Tippett's numbers instead. 
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3. Applications. Weare now ready to apply some of this 
theory, and for this purpose we use Theorem III, which is 
really a corollary of Theorem II. 

Theorem III. The probability that a random sample Jr&m 
an infinite universe will have a mean, 1, which will be within 
any chosen amount a oj the mean 1 oj the universe is 

P. = 21" +dx + ~ 3 
+(1)(6). 

approximately, where a is expressed in the ii unit. 
The approximation is usually very close. Very commonly 

the second term is negligible. If the probability function 
for the universe is an F curve, the equation is true exactly, 
not merely approximately. 

ProoJ. The probability in question is by definition the 
area, 

••• 
J l-l 

P. - g(i)dl, % = ----,r' .. -. (5) 

Now p(t), if an F curve, can be expressed as (page 226, Ib) 

a. a - 3 F(z) - 4>(z) - "6 4>(3)(z) + T 4>(4)(z), 

where % .. (t :- l). By Theorem II, the corresponding Gram
(f 

Charlier series for f/ (1) is 

cia «) a.-3 
4>(z) - 6vN 4> I) z + 24N 4>(4)(z) + "', (6) 

where % .. (1:- l). Moreover, the terms not printed in (6) 
(f 

are all zero because die higher c's of gel) vanish I if the higher 
c's of pCt) do. If pCt) is not an F curve, the terms involving 
the higher c's of the Gram-Charlier series for pet) should be 
considered, but usually they are small and the corresponding 

I Thia waa Dot proved but it WB8 implied in the preceding footnote. 
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terms in (6) become much smaller, so that in almost all 
cases (6) is, as it stands, at least a very good approximation. 
Insert (6) in (5) and we have 

1& a· 
Pa = -a cjJ(x)dx - 6.J-n [cjJ (2J (15) - cjJ(2J( - t5)J 

+ a~4~ 3 [cjJ(3J(t5) - cjJ(3J( - t5)J, 

by (a): page 227. Since, by the definition ofthe cjJ's, cjJ(2J( -·15) 
= cjJ(2J(t5), and cjJ(3)( - 15) = - cjJ(3J(t5), the second term on 
the right of the above equation vanishes, and the last term 
can be compressed, so that Pa is as stated in the theorem. 

Example 2. The following series of deaths of a certain group of 
women is taken from Elderton's Frequency Curves and Currelation: 

Age. 

30-34 
35--39 
40-44 
45--49 
50-54 

55-59 
60-64 
65--69 
70-74 
75-79 

80-84 
I 

85-89 
90-94 
95-99 

100-104 

Total 

Death. 

1 
5 
8 

12 
28 

82 
128 
253 
342 
525 

438 
265 
53 
18 
4 

2162 

Here, r:: 75.98 years, 

corrected iTl = 1.89 X 5 = 9045, 
corrected aa = 0.704, 
corrected (a4 - 3) = 0.996. 

Suppose that, from an infinite group similar to this one, an insurance 
company had a random 100 persons among its policy holders. What 
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is the likelihood that the mean age of death in the group of 100 
would differ from i by as much as 1 year? 

Here a is 1 year, but it must be expressed in the u unit, i.e., 

a .. ~. By Theorem II, g = _~.45. So a = 1.058. 
iT v 100 

(1.058 996 
Pa - 2 Jo 4>(x)dz + (12)(100) 4>(3)(1.058) = 0.710. 

This is the probability that the difference would be as little as 1 year. 
The probability that it would be as much as 1 year is 1 - .710 
... 0.290. 

Example 3. The mean age of death of men who are alive at age 
20 is, in the United States, 59.13,' For the city of Chicago it is 
58.98, and in 1910 the male population of age 20 was 24,000. Can 
the difference between the United States and Chicago be explained 
on the hypothesis of chance? Assume v = 10 years, and that the 
distribution of the universe is near enough to normal to permit the 
omission of the second term in Theorem V. 

H ~ 59.13 - 58.98 _ .15 - _ 10 - 0645 ~ - 232 ereu= _ --;-'iT-----. u-., 
11 iT v24000 ' 

Pa ... 0.98. Therefore there are only 2 chances in 100 that a devia
tion as great as this would be obtained in selecting 24,000 young 
men at random from the whole of the United States. The difference 
could possibly be explained on the hypothesis of chance, but not 
without difficulty. 

Example 4. A fraternal organization wishes to be very sure that 
the average age of death in its group of men now aged 20 will not 
differ from the expected 59.13 years by more than 1 year. By 
"very sure" it means that p" must equal .999 or more. -How large 
should the group be? 

. _ 10 1 v1{ 
Assummg as before that a = 10; iT = v1{' a = i = 10' 

.999 = 2 !oS4>(X)dz; .4995 = !OS 4> (x )dz. Coming out of the tables 

v1{ 
at .9995, we find a = 3.29 = 10' So N = 1082. 
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In all the examples just considered, the constants of the 
universe have been given. When we do not know the con
stants of the universe, except in so far as they are indicated 
approximately by the constants of the sample, our results 
are less certain. This is a situation which in practice is 
very common, and is illustrated in Example 5. 

Example 5. How surely is the mean height of cornstalks, as given 
by the sample of Example 3, § I, Chapter III, page 230, within .1 ft. 
of the mean height of the whole field? 

We have N = 217, 1 = 7.090 ft., tT = 1.113, a, = 3.71. If we 
assume that 0- = 1.113, and that ii, = 3.71, we can complete our 
problem as in Example 1. But what more right have we to assume 
that Q- = tT, and that a, = a, than that I = i, which is the very point 
at issue? A satisfactory answer to this question could be given only 
after an investigation 1 of the fluctuations of tT and of a" from 
sample to sample, similar to the investigation we have just made 
of the fluctuations of the mean from sample to sample; but we 
can give a partial answer now. Even if ii, differs from a, con
siderably, the coefficient (a, - 3)/12N will not differ much from 
(a, - 3)/I2N, and so the effect of this error on p& will be slight. 
Also, if 0- differs considerably from tT, the expression for u, namely, 

o-rlN, will not differ much from tT/VN, providedNisfairlylarge, 
and the effect therefore on 8 and hence on p& will be small. It is 
important, though, that N be large in order that this be true. Also, 
the larger N is, the more nearly may we expect tT to equal u, and a. 
to equal a,. On both accounts, therefore, one should not make the 
assumption of this example in cases where N is small.- We now 
have: 

(i = ~ = .0756,8 = ~ = 1.323, (~)~1~) = .00027, p& = 0.814. 

1 And not perfectly even then, for it would be found that the fluctua
tion of these constants depended again on the values of u, Cit, and other 
constants of the universe which could only be estimated from the 
sample. 

- The case where N is small has been considered by a number of 
authors. See especially Fisher, R. A., SIati8lical Methoda lor Re8tJa1'cA 
Worklll's. 
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Making allowance for errors due to our assumptions, we can hardly 
be confident of more than the first figure in the result. So finally 
p, - 0.8. 

It will have been observed in these examples that, as 
predicted, the second term of the formula has played a very 
unimportant rl>le, also that the size of 8 is all important 
in the determination of P,. Statisticians often say that a 
deviation 8 is significant if it is 80 large that p, = .999 or 
more. They mean that, if a result has been obtained which 
differs from the expected result by 80 much that only once 
in 1000 times would it have happened by chance, then this 
result is strikingly different: some special cause should be 
looked for. The following theorem shows that this will al
most always be the case if 8 is as large as 31. Therefore it 
is commonly said that 8 ... 31 or more indicates a "signifi
cant" difference. 

Theorem IV. p, Jor 1 i, almost alway, .999 or more, iJ 8 
i, 3.5 or more, and N ~ 25. 

ProoJ. It will very seldom happen that I&. - 31 ~ 4. 
So let us assume lei. - 31 < 4. Then 

. f' 4>(3)(8) 
p, ... 2Jo cIxh ± 75' 

If 8 ~ 3.5,4>(3)(8) is negative and increases from - .00038 to 
zero 8S 8 increases. Also 

2 fo'cIxh ~ 0.99953. 

Hence, at the least, 
P, = .99953 - .00038 = 0.99915. 

EXERCISES 13 
1. In Example 2 suppose the sample group contained 25 persons. 

(0) What would have been the answer? (b) What would have been 
the likelihood that the mean age of death in the group of 25 would 
have differed from l by as much as 2 years? (c) What would have 
been the probability (approximately) that it would have exceeded 77 
years? Ani., .595, .289, .295. 
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2. Answer the question of Example 3 for New York City, in which 
the mean age was 58.68, and the male' population at age 20 num
i;ered 49,000. Ans., No. 

3. Answer the question of Example 4 when a deviation of 2 years 
is allowed and a Pa of .995. Ans., 198. 

4. Fill in the blanks: (a) Pa for l is almost always .995 or more 
if a is or more. (b) Pa for l is almost always .99 or'more if a 
is or more. (c) Pa for l is almost always or more if a is 4 or 
more. 

4. Moments of !l Sample. In § 2 we answered as well 
as we could the first of the specific questions proposed at the 
outset of this chapter: How nearly does the mean of the sample 
agree with the mean of the universe? We found the curve 
which would tell us how the mean fluctuated, and for this 
curve we found the standard deviation, etc. If now we 
try to ask the analogous question about the other mo
ments, we should, for each of these, find the curve which 
would describe its fluctuations, and for this curve we should 
find the standard deviation, etc. These problems have been' 
partly worked out, but they are much more complicated than 
the first one, although results that are approximately true 
may be expressed in simple form. We summarize a few of 
them. 

Theorem V. If the universe is nearly normal and N is large: 

(a) The mean of the curve of u's is (j and its standard devia-
•• (J' 

twn tS u" = "I!2N' 

(b) The mean of the curve of ai s is a3 and its standard 

d 
... ./S 

ematwn tS Ua• = '1'1l 

(c) The mean of the curve of als is &, and its standard 

de 'at" ./24 m wn tS Ua• = '1 N' 
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(d) The mean 01 the curve 01 medians is M and its standard 

deviation is (1M = ~ 2~ it. 
In place of the standard deviations of these curves, some 

authors prefer to use the product of the standard deviations 
and 0.6745. These products are then defined as the probable 
errors. In this connection the use of a probable error thus 
defined would seem to be without value, and ought to be 
abandoned, but in deference to current usage we state the 
most important of these probable errors in a corollary. 

COROLLARY. For a sample 01 size N: 

Probable error 01 the mean it 
=.6745 v'1i' 

iT 
Probable error 01 the standard deviation = .6745 v'2N' 

Probable error 01 the median = .6745~ 2'";y iT. 

Now consider first the curve of (I'S, whose mean and (I 

are given in (a). From this we can compute what we have 
called a in a problem like the following: 

Example 6. In Example 2, what would be the probability that 
the rr of the sample of 100 would be within 3 years of the iT of the 
universe? 

The difference between the rr of the sample and the it of the 
universe is supposedly 3 years. This is 8 when expressed in rr" as the 
unit. By Theorem V (a): 

rr" = 9.45 = .668, and so 8 = ~ = 4.49. 
V200 .668 

Wfr now require Pa but we cannot find it without knowing the 
equation of the curve of rr's, and we do not yet know this equation. 
Nor are we willing to assume that this curve, like the curve of means, 
will be nearly normal. The same sort of difficulty arises, in a more 
acute form, in the cases of the higher moment coefficients, and, as 
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we shall see later, in the case of the coefficient of correlation. There
fore we insert here, parenthetic!Llly, some theorems which give ap
proximate values for Pa even when the precise form of the curve is 
unknown. 

Theorem VIo (Tchebychefl.) For any probability di&
tn"bulion f(t) whatever, 1 - P/i ~ 1/~1 where, as before, Pa 

l a..-
= I=-/i..- f(t)dt, and for convenience the origin is chosen at 

the mean. 

Proof. Since i: f(t)dt = 1, 

l -1i..- roo 
1 - Pa = -00 f(t)dt + J a..- f(t)dt 

l -a..- t2 '£'00 t' 
~ ~2 2 f(t)dt + ~2 , f(t)dt, -oouu a..-uu 

t" ~.~ fit) 

t-asia 

(7) 

(8) 

because ~!:I ~ 1 in the intervals over which the integrals 

are extended, and f(t) is essentially positive. But (8) is less 

than 
]

000 t' 
-00 ~2ut f(t)dt, (9) 

since, by examining the limits, it appears that a larger interval 
is involved in (9) than the two intervals of (8) taken to
gether. But (9) equals 

1 JOO ul 1 
~2U2 _.,.t2f(t)dt = ~2UI = (fi' 

Example 6a. So, in Example 6, one would know, no matter what 
the curve of u's was, that 

1 - Pa ~ .0496, and that P/i?; 0.95. 
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Theorem VI is a very interesting one because it is true of all 
types of distributions. One simply cannot set down a set 
of positive numbers for which it is not true. (It is interesting 
to try to do this.) But the theorem has also the faults that 
go with its virtues. Because it says something which is 
true of every distribution, it docs not give us adequate in
formation about the particular distribution we have before 
us. Suppose it should happen that our particular distribu
tion were normal. From the tables we should learn that 
1 - p, - 0.000,0072. We do not think it is really normal, 
but we do think it lies somewhere between a normal dis
tribution and the most peculiar types to which Tchebycheff's 
theorem would apply. There is a great difference between 
the values, .05 and .000,0072; hence the need of an inter
mediate theorem which will make some assumptions with 
regard to our distribution and yet not require it to be a 
normal one. This is the role of the following theorem and 
corollary. 

Theorem VII. If a distribution is uni-modaZ and if the 
mock is within (f of its mean (Iskewnessl ;::iii 1): 1 -P, < (' ~:;6r' plus a small amount,· 

where r is any positive integer. 
1 

COROLLARY 1. If r = 1,1 - p, < 2.2502 • 

Example 6b. So in Example 6, one would now conclude that 
1 - P < 0.022. This is an improvement, but still differs so much 
from .000,0072 that it seems almost certain that it would be better 
to increase our assumption still further than to put up with a . 
number as large as 0.022. This is done in the following corollary. 

I This amount is negligible and will be omitted in the applications 
given here. A formula and table for it were given by the author in 
the paper in which he announced this theorem, Bulletin Americon 
MalAematical Socidy, vol. 28, pp. 427-432. See also Biotneb-ika, vol. 15, 
p. 253, for a correction and further tables. 
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COROLLARY 2. If the distribution is either an F curve, or one 
of Pearson's fundamental types, with customary values of 
a3, ~ (la31 < vT.5, 2 ~ ~ ~ 4), then 1 - Pa is less than the 
maximum values given in the table below: 

8 I.S 2.0 2.S 3.0 3.S 4.0 4.S S.O 
-- ----------------
Max. 

.20 .11 .OS .02 .01 .00S· .002 .001 (I-Pa) 

Example 6c. So in Example 6, we may now say that 1 - Pa 
< 0.002. This is still much larger than the normal value but small 
enough to use in drawing practical conclusions. Moreover, even if 
we did know that a distribution was very nearly normal, we would 
not dare conclude that 1 - Pa was as small as .000,0072 when 
8 = 4.5, for even a slight deviation from normality might affect 
this result very severely. We must not talk about these exceedingly 
small probabilities unless we are sure we have the conditions which 
lead to them exactly fulfilled. . 

Proof of Corollary 2. The proof for the case of Pearson's 
curves depends on a relation between their high and low 
moments. We have referred to these curves but have not 
discussed them. Therefore the proof will be given only for 
the F curve. 

For the F curve the c's of higher index than 4 vanish. Had 
the higher ones been written, it would have been seen that 

a6 - 15a. + 30 as - 28a& + 210a. - 315 
C6 = [Q 'Cs = ~ 

By hypothesis, 
2 ~ a. ~ 4, and Ce = Cs = o. 

Therefore, 
ae + 30 = 15a. < 60; as < 30. 

Also, as + 210a. = 28a6 + 315 < 840 + 315 = 1155; 
aa < 1155 - 2(210) = 735. 
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Consider now the case where 8 = 4. By the theorem, 

1 - Pa < (2;~ l)art and in this we"are free to choose r as 
42r --2r 

any positive integer. We shall choose that integer, by trial, 
which will yield the smallest number on the right of this in-

" 4 
equality. Let us first try r = 2. We get 1 - Pa < (4.)(2.44) 

- 0.064. Try r = 3. 1 - Pa < (46)~~.52) = 0.0029. This is 

smaller than the number in the table, and therefore that 
inequality is proved. A still smaller value would be obtained 
in this instance by using r = 4, but it is not necessary, since 
in our table we are not differentiating between the values 
obtainable for F curves and those obtainable for Pearson's 
curves. 

The values at the other places in the table are provable 
by the same method. Just as in the case of the normal curve, 
we are supposing in this proof that the given curve is exactly 
an F curve or exactly a Pearson curve. If it deviates a little, 
we cannot be sure that this corollary will apply, and one 
might prefer to fall back on Corollary 1, or even on Tche
bycheff's theorem. Our risk is not great, however, so long as 
we do not extend the table so as to obtain very small prob
abilities. This is one reason why we have not separated the 
two cases, the Pearson curves and the F curves, and obtained 
much smaller quantities in the latter case. For this sort of 
thing the forms of the tails of a curve are very important. 
Now, some of Pearson's curves are limited. They do not 
extend indefinitely to the right or left as do the normal and 
the F curves. Therefore for this purpose they are to be the 
more relied on as approximations to the distributions we 
shall have in practice. 
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Example 7 The following 100 data were actually drawn at 
random 1 from a universe in which the distribution of frequency was 
described by the successive terms of the point binomial <t + 1)' 
of Example 1, Chapter II, page 208. For each of the quantities, 
mean, median, u, (Xa, (X" of this sample, find 8 and the corresponding 
probability 1 - Pa. 

I 0 1 2 . 3 " 6 6 7 ------ ------21s7 PropOf'tiona in UnifJerBt 1 21 189 945 2835 5103 6103 
47 -47" 41 V 4T 4T 4T 4T -------------

Sample Frequencies 0 0 0 " 19 35 26 16 

For the sample: t = 5.31, U = 1.074, (XI = - .059, (x. = 2.30. 
For the universe: 1 = 5.25, U = 1.146, Cia = - .436, _ a, = 2.90. 

F t- 1.146 1146 d • .31 - .25 054 ur: CTi = v'1OO = . ,an so u = .1146 = . . 
By Theorem III, 1 - Pa = 0.41. 

F~ -.' = 1.146 = 0810 d • = 1.146 - 1.074 = 089 
OJ< u Urr 'V200 . ,an so u .0810 . • 

By Theorem VII, Corollary 1, 1 - Pa < 0.56. 

Fur (Xa: Ua. = .245, and so 8 = .436.2~5·059 = 1.5. 

By Theorem VII, Corollary 2, 1 - Pa < 0.2. 

F 490 d • 2.90 - 2.30 1 22 ur (X,: Ua. =. ,an so u => .490 =.. 

By Theorem VII, Corollary 1, 1 - Pa < 0.30. 
Fur M: The median of the universe is t = 5.32, and the median of 

the sample is t = 5.27. Since UN = ~ 2~ (1.146) = .1436, 

• 5.32 - 5.27 35 d his' II h Th u = 1.436 ,=. ,an t IS so sma t at eorem 

VII is not applicable and not needed. 

In no one of these cases is 8 large enough to cause surprise; i.e., in 
no case is 1 - Pa so small that a 8 as large as the one found would 
appear quite unlikely. The largest values of 8 occur in the cases of 

1 Obtained by using Tippett's numbers. 
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a. and a,. but they must be regarded as inaccurate; for in these 
cases the values of the standard deviations as given by Theorem V 
are not close except when N is larger and the universe more nearly 
normal than in the present case. 

EXERCISES I' 

1. Plot the figures in the table of Corollary 2. and estimate the 
value of max (1 - Pa) at a = 2.7. (It is better to use ratio paper.) 

Ana .•• 034. 
2. (a) Using this graph. find max (I-Pa) for the point binomial 

(1 + 1)' when a ... 1l. 21. and 4. (b) What are the true values of 
(1 - Pa) in these cases? (c) What are the values given by the 
normal law? . Ana. when a = 21; .036, .0039, .0076. 

3. Compute (1 - Pa) exactly for a rectangular distribution 
(J - constant from :z; = - a to :z; = a), given that ut = al /3. 
Take a .. 1.5, 2, and 3. Compare your results with those given by 
the table. 

" Do the same for the distribution of cornstalks (Example 5). 
Ana. when a ... 2: .067, .11. 

6. Coefficient of Correlation. So far we have thought of 
our sample as taken from & one-way frequency distribution, 
but this was not necessary; Our universe may be a fre
quency distribution of any number of dimensions. In par
ticular, it may be a two-way distribution representable by a 
correlation table. An important question to be answered 
when one has a sample from a two-way table is: How reli
able is the observed coefficient of correlation? That is, how 
close may it be expected to be to the coefficient pertaining 
to the universe? We treat this problem like those in § 3; we 
need to find the curve of r's, its meim and standard devi
ation. The partial results are as follows: 

Theorem VIII. IJ T applies to the universe and r to the 
sample, the mean oj the curve oj r's is T, its standard deviation 

is (I, = (1:;;/>, and thereJore its so-called probable error i8 
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.6745(1 - 1'2) . 
• 67450"r = VN ,approxunalely. The approxima-

tion 1 is good only if the universe is nearly normal and N is large. 
Rather thorough investigations have been made of the 

form of the curve of r's, but we shall not attempt to reproduce 
them here; instead we shall solve our probability problems 
by means of Corollary 2 of Theorem VII, assuming merely 
that we are dealing either with an F curve or with one of 
Pearson's fundamental types. 

Example 8. A truly random sample of 400 was drawn from a 
universe (Gavett) in which the length and breadth of leaves were 
displayed, the unit being a millimeter and , being 0.61. Compute 
a and 1 - p& for the coefficient of correlation. 

400 LEAVES. A RANDOM SAMPLE 

~ 16 - 19 - 22 - 25 - 28 - 31 - 34 -

--------------- ---1= 
22 - 6 7 6 ----
27 - 5 19 28 8 ------ -
32 - 7 21 36 24 19 

37 - 7 33 24 ~ ---- I-
42 - 7 21 32 12 ---------------
47 - 11 18 9 8 ---
52 - 9 2 

1 The closer approximation. 

_ 1 - Tt _ 1r--_----,Tt=---:(.at---3-:+-.a.--~3) 
fTr - V/i"'J 1 I-Tt 4 • 

clearly fails in such a case as the following: .a. = .a. = 4. ,. > f. for it 
becomes imaginary. It is a common error to rely on the formula of 
Theorem VIII in cases where this usually closer approximation fails. 
In a large portion of practical cases the formula is quite unreliable, 
and can hardly be thought of as giving us more than a general idea of 
the order of site of fTr; and it is then both misleading and a waste of 
time to compute it to any high degree of refinement. Two decimal 
places are usually enough. 
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For the universe: , == .61, and so IT. = 0.0314. 
For this sample: r'" .565, 

and so 

& ... • -g:1
5
4 ... 1.433, 1 - p, < (2.25)(11.433)2 = 0.145. 

263 

Example 9. A sample is drawn (rom a normal universe and r is 
observed to be 0.5. May we be reasonably sure that, is truly greater 
than .4 if our sample numbers 100? if it numbers 9OO? Let us 
agree that a probability o( .99 represents "reasonable" sureness. 

The question has been put in a customary (orm, but strictly 
speaking it has no meaning in that (orm. That is, we should not 
ask, What is the probability that the universe is thus and so? 
since we do not have, theoretically, one sample and a number o( 
universes, but instead one universe and a number of samples.1 So 
we shall rephrase the question: If' ~ .4, is the probability as 
small as .01 that one would obtain a sample for which r would 
differ from' by as much as .5 does? If so, then we shall say we are 
reasonably sure that we were sampling in a universe I in which' was 
greater than 0.4. 

So, let, .... 4 and N = 100 and compute 1 - Pa: IT. = .84/10 
.... 084, & ... 1/.084 ... 1.19. By Corollary 1 of page 257, 1 - P, 
< 0.32. Evidently N is not large enough. We wanted 1 - Pa to 
be less than 0.01. 

So, again let , = .4 and N = 900 and compute 1 - Pa : IT • 

.. • 028, & .... 1/.028 = 3.57. By the table of Corollary 2, 1 - Pa 
< .01, and so this value o( N is satisfactory. 

Exercise § 6: (a) Repeat the whole of Example 9, supposing r 
is observed to be .45 and N = 1200. (b) How great must N be in 
this case to make 1 - Pa < .0051 

I This brings up the question of inverse probability which is too 
difficult to discuss here. A meaning might be attached to the given 
question if one were willing to make certain assumptions. 

I In this instance, as in like cases before. we are e9!entially assuming 
that what was a priori very unlikely did not actually happen. All sta
tistical influence - which includes most of our knowledge - is based 
on this same assumption. 
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6. Chi 'Test. The student may well ask at this point: 
How about the first question of this chapter? How reliable 
is a sample? We have had theorems bearing on the questions, 
how reliable is the mean, how reliable is the standard devia
tion, and how reliable are certain other characteristics of a 
sample; but is there no way of estimating how reliable the 
sample is as a whole? This question was studied by K. Pear
son in 1900 and the result was the now well-known chi test. 
The problem is not a very important one except in advanced 
statistics, and so we shall not give here a complete exposition 
of it. But, though not very important for us, it is interesting 
and the essential result can: be stated quite simply. The 
question to be answered in the simplest case may be put thus: 

Suppose a frequency table describing a universe (supposedly 
infinite) be divided into m cells. (We may have in mind 
here a tabulated frequency curve, or a tabulated correlation 
surface, or even a multiple correlation solid. 1) Suppose a 
random sample be drawn from the universe. What is the 
probability, P, that, on the whole, the deviations between 
the expected frequencies and those observed will be as great 
as a given amount to be called I Xl? The answer is given 
by a formula whose approximate values have been tabu
lated.1 The quantity X2 i~ found as follows: Let Pi be the 
relative frequency that appears in the ith cell in the universe, 
N the size of the sample, I, the absolute frequency that 
appears in the ith cell of the sample: 

Xl = ~ (/' - Np,) 
2 

• (lO) 
;=1 Np, 

1 To be explained in a later chapter. 
S The Greek letter chi is· written x. Its square is used merely be

cause, as we shall see, the quantity for which X' is to stand is essentially 
positive. 

8 Tables Jar StatiBticia'118 and Biometricia'118 by K. Pearson. The 
conditions under which Pearson IIhowed that his values were correct 
cannot be given in detail here (see a discussion by the author in Tra1lll
acti01l8 oj 1M American Mathematical Society, vol. 31 (1929); pp. 133-
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Pearson's tables are too extensive to be repeated here, but 
a general idea. of them may be obtained from the following 
short summary. 

X TEST. V.&LUES 01' P 

~ S 4 5 6 7 8 9 10 11. 12 13 14 

I .87 .57 .7' .85 .92 .96 .981 .991 .998 .998 .999 .9998 , .14 .28 .• 1 .&5 .68 .78 .86 .911 .947 .970 .988 .991 
I .0&0 .11 .20 .81 .42 .14 .6& .740 .81& .873 .916 .946 
8 .018 .048 .09 .18 .24 .88 •• 8 .&84 .629 .718 .78& .84' 

10 .007 .019 .04 .08 .12 .19 .27 .8&0 .«0 .&30 .616 .694 

15 .0008 .0018 .0047 .0104 .0208 .0360 .0&91 .0909 .1321 .182& .241' .307' 
20 .0000 .0002 .000& .0018 .0029 .00&8 .0108 .0179 .0298 .04&8 .0671 .09&2 

2& .0000 .0000 .0001 .0001 .0008 .0008 .0016 .0030 .00&8 .0091 .0148 .0281 
80 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004 .0009 .0016 .0028 .0047 
.0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 

Example 10. How improbable, taken 88 a whole, is the sample in 
Example7? 

Ezp • .,ed/. 
ObHnodl INp -1/ 

(Np -/)1 
Np ~ 

.006 0 0 0 

.128 0 .1 .08 
1.154 0 1.2 1.25 
5.77 4 1.8 .56 

17.3 19 1.7 .17 
31.1 35 3.9 .49 
31.1 26 5.1 .83 
13.4 16 2.6 .50 

Totals 100 = N 3.88 = Xl 

144), but in general it may be said that his tables cannot be guaranteed 
for cases where there exist ceIIs such that (J - Np)I/Np is larger than 6, 
or where I < 3, or m > 20. In general, too, the very smaII values of the 
probabilities given in certain parts of his tables are unreliable. Usually, 
if we lump together small frequencies near the limits of a distribution, 
the required conditions will be aatisfied, at least well enough to permit 
of an approximate solution. 
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Since m, the number of intervals or cells, is 8, we learn from the 
table 1 that P is about 0.8. Tflus one would expect to get a sample 
which would be as far from perfect as this one 80% of the time, and 
so there is certainly no reason for suspecting that it was not a truly 
random sample, as it was claimed to be. 

As another illustration we choose a famous dice problem. 
Example 11. (Weldon's Dice.) Twelve dice were thrown 26,306 

times, and those which fell so that either 5 or 6 points were upper
most were counted. The number of throws in which no such dice 
appeared wasfo = 185; the number of throws in which one appeared 
wasil = 1149, etc., as indicated in the table below. The number of 
times either 10, 11, or 12 such dice appeared was 18. These last 
three cases are lumped together, because, as stated in a preceding 
footnote, the method is not good when some of the frequencies are 
small. 

Dics I Np I-Np 

0 185 203 - 18 
1 1149 1217 - 68 
2 3265 3345 - 80 
3 5475 5576 - 101 
4 6114 6273 - 159 

5 5194 5~18 176 
6 3067 2927 • 140 
7 1331 1254 77 
8 403 392 11 
9 105 87 18 

10,11,12 18 14 4 

X2 = l: (f ~:p2) = 35.94; m = 11. By our table, P < 0.0009. 

By Pearson's Tables, P = 0.0001. 

1 In a preceding footnote it was stated that we should not apply 
the table to cases where I < 3. Hence, it would have been better here 
to have supposed the problem so stated that the first four intervals were 
lumped in one, with a total Np = 7.06 and 1= 4. This would have 
given the results: Xl = 3.35, m = 5, P = 0.5. The effect of this 
procedure is to substitute a new·problem with a more reliable answer 
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This X test has been illustrated only in the simplest case: 
where the universe is known (or assumed) in advance. It 
should not be applied, without some modification, to cases 
where the universe is partly inferred from the sample.1 

7. Significance of a Difference. Sampling theory may 
be used to provide an answer to a common question with 
regard to the differences between two samples. Two sampies 
may differ, of course, in many ways, but we shall consider 
two ways onl" and the first is the case in which the means 
are different. The specific question to be studied here is 
this: Two samples are drawn at random from a given infinite 
universe, and the means are found to differ by a certain 
amount. What is the probability that a difference as great 
as that observed would happen by chance? 

Before we can answer this question we must put and answer 
a more elementary one: Two individuals are selected, t' and til, 
from infinite universes whose probability distributions are 
respectively J'(t) andJ"(t). What is the probability that the 
numerical value of the difference It' - t"l will be as large as 
some previously prescribed amount? For this we may use 

Theorem IX. If J' and J" have the same mean, the prob
ability distribution, F, of the differences (t' - ttl) is a sym
metrical one. Its mean is zero and its even moments are related 
to the moments of J' and f" thu8, 

~(F) = !La(f') + ~(f"). 
jL4(F) = 114(1') + 6~(f')1J-J(!") + 1L4(!"), etc.I 

for the one given, not to procure a better answer to the given problem. 
I shall not again insist on doing this in this text; and it is much less 
necessary to do 80 if one is seeking a value of P correct to only one 
place, as above. 

1 For a consideration of this case, compare R. A. Fisher, Statiatical 
Methoda Jor Research Workers: Irwin, Journal oj the Royal Statiatical 
Society, vol. 92 (1929), p. 264; Fry, Probability and 1111. Engineering 
Uses, Chap. 9. 

I For the general formula see the author's paper in Journal oj Ameri
con Statiatical Aaaociation, vol. 18, p. 976. 



The proof of this theorem 1riIl not be giTeD.. It proceeds 
in much the same 1Ir3y as does the proof of l"boorem U. 

COROlLARY}. (0) IJlMhn"uti~~arridnalU:ol,a..(F)-3 
= !Ca..(J) - 3J; (b) if not, laa<F) - 3: is lL# lAma 1M lorga 
oj lAe tlCO quantiti~.a ;a..(J) - 3;, la..(/") - 3:. 

The student is a.sl:ed to pron this rorolluy (Problem 30). 
The nert theoll'lD. with its rorolluy 1riIl now proride a !Olu
tion of our more fundsmental probkm. 

Theorem X. La g(1) ~ G probability dUtnl)1diOrt dncnl
ing an infill.le 1I11J~ JroM II"IIu-l 111"0 ra.ndC)M ItlJflpl~.a c>f 
diffn-rnl $Qri8 an 10 ~ drarrn, lAe Jnl 10 be c>f Ii:. S' and 
lAe $«'Dnd (>J $'~ S". III f/f'IIt'I'Ol, tJanw is G diffat7tLC bdllWJl 
tA4r Intoll rolu~3 oj llCO $1IC'lltlJf1pl~.a.. nc probobl141y distrWu
him, F, oj IA~~ diffn-r1lC'a 1Ia.a tA4r Jul1mrill9 clwuoct~#ia: 
JIton F = 0; F 1$ $JJffInILfrUolll"lll ruptd 10 ill ordill4tc 41 0; 

IT, = ~ ;" + ~~,,; a..(F) - 3 i.a ...,.,olJ, ~bg.Ue.. 
ProoJ. We msy 1L.<:e the following notation: 

A little 1'l'1ledion 1riIl show thst g'(i) and g"(i) are prob&bility 
distributions which msy pby the same role as do r and r 
in TIlrol'l'm IX. and wbt>n tbt>y do, r is a single indiridusl 
mwn from g'tO, 'f' a single indiridWll dr.l1rD from g"(i). 
There two "t'1ln"E'S of mf'SnS," as tbt>y 1n."Ie oIIro in § ~ 
are not alike, if S' ¢. S", but they do h,sn the same 
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mean, since, by Theorem I, the mean of each is l. So, by 
Theorem IX, 

Jlt - ~ + jJ.';, Jl4 == ~ + 6iiJ.ji.'; + ji.':. 
~ IN', p.'; = ~/N". Hence, 

. _~ 1 1 
•. e., tT = a N' + N'" 

Also, by Theorem II, 

- , 3 1 (- 3) -II 3· 1 (- 3) a. - - N' at - , a. - = N" at - . 

These quantities were usually negligibly small in numerical 
value. Therefore at - 3, which, by the corollary to The
orem IX, is smaller numerically than the larger of these, 
must also be negligible. 

COROLLARY.' The proba1n1ity thal the difference between the 
two mea7UI wiU exceed, numerically, an ob8erved number a times 
a i. 1 - p" where, approximately, 

P, ... 2.J: 4> (z)d:e. 

When 1 - P, is quite small (8 large), the observed dif
ference is commonly said to be significant. That is, it means 
something: it probably did not happen by chance. The 
idea is illustrated in the following example. 

Ezample 12. The average grades of two college fraternities, 
numbering 60 and 40 men respectively, were found to be 79.98% 
and 74.20%. Is the difference significant? 

What we would like to know here is whether a difference as large 
as that observed, 79.98 - 74.20 = 5.78, might ha,"e happened had 
the dean chosen 60 men by lot from the college body I to make up 
the first fraternity, and then 40 to make up the second. The mean 

I Cf. Problem 31. 
lOr, better, from aD infinite group reeembling these two fraternities. 
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of the universe here is not given and not needed. The standard 
deviation, u, is needed. Let us suppose it given as 10%. We use 
the theorem to get u and the corollary to get 1 - Pa: 

~ 1 1 5.78 
u = 10 60 + 40 = 2.04, 8 = 2.04 = 2.83, 

1 - Pa = .0047; a rather significant difference, therefore. 
Note: When, as usually happens,;; is not given, we shall assume 

that 
NUZ = N'ps' + N"Pa" (p. 34, 'Problem 9). 

This is the same as taking for a- the u of the combination of the two 
given samples. 

8. Difference between Proportions. The final question 
to be answered in this chapter is in some respects the most 
elementary, but it could not have been answered until after 
most of the preceding theory had been presented. We begin 
with a numerical example. 

Example 13. (Taken from the United State8 Cen8U8 Report Jor 
1910, for white persons at age x = 20 in the registration states.) 

d_ 1_ .. Total •• I_ 

Males .............. 1093 223635 224728 

Females ............ 1029 243877 244906 

Totals ........... 2122 467512 I 469634 

From this it follows that the proportion of males who died between 
1093 . 

ages 20 and 21 was 224 728 = 0.00486, and that the proportion of , 
females was 2:~,~~6 = 0.00420. Does this indicate a real difference 

in vitality in favor of the young woman or might such a difference 
have occurred by chance? We shall derive a formula by which this 
question may be answered, but let us first replace our numerical 
table by one using letters only. 
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~ i,'ic a Nola Total. 

Bam"l. 

A p'N' g'N' N' 

B p"N" g"N" N" 

Totals pN gN N 

Here p'N' is the number of individuals in the sample A who possess 
the characteristic a, q' N' the number· who do not, N' the total 
number; so that p' = p'N'/N' is the proportion who possess the 
characteristic and t/ is the proportion who do not. It was not 
necessary, either in the numerical example or in this diagram, to 
have given all three columns; from any two the third could have 
been obtained. All that is required is the set of numbers: p', pIt, 
N', N". We use this notation in the following theorem. 

Theorem XI. If two random samples of sizes N' and N" 
are drawn from an infinite universe in which the proportion 
which has the character a i8 p, the probability that the difference 
in the proportion8 obtained will be as great numerically as the 
observed difference, p' - p", is 1 - Pa, where, very nearly, 

Pa = 2la~(X)dX. S = 11" ~ 1'''1, (f = ~pq(;, + ;,,)-

Proof. Let us first consider the distribution obtained if 
one draws samples of size N' from the universe. The dis
tribution of a's is what we called earlier the distribution of 
"successes," and the form is that of a point binomial: 

(p + q)N' = pH' + ... + N,C.p·qN'-B + ... + qN'. (11) 

The general term of (11) gives the probability that in the 
sample there will be exactly s successes. Another way of 
stating this is to say that it gives the probability that the 
proportion of successes will be s/ N'. Let z = s / N'. Then 
we may say that the general term of 

(12) 
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represents the probability thAt the proportion of successes 
will be x. Another way of expressing this is to say thAt if 
the histogram of (11) be constructed with the class internl 
1/ N' instead of I, and the ordinates be made co~pondingly 
higher, so as to preserve the areas unchanged, \Ire shall have 
a representation of the distribution of proportions x in 
samples of size N'. Let us call this distribution I(x). Its 
mean is at z = p, and its standard deviation is 

tT = -{j. 
Likewise, if g(x) represents the distribution of samples of 
size Nil, its mean is also p and its standard deviation is 

tT' = ~. Our theorem now requires us to draw a single 

individual from I and a single individual from 9 and to find 
out whether the difference between them is significant. 
Clearly, I here plays the role of r in Theorem L~, and 9 the 
role of r. Let F again denote the cun-e Of differences and 
tT, a. its constants. We haYe, then, tTl = tTl + tT'l ... 

w(~, + .r-!''); Ia. - 31 is less than the greater of the two 

quantities Itr. - 31 and Ia': - 31, where these apply to I 
and 9 respeetiwly. But I and 9 are point binomials in which 
the degrees N', Nil are usually large. Therefore both these 
quantities are usually very small, as \Ire have seen (Chapter II, 
Theorem I (c), when n is large), and they may be omitted. 
Theorem XI now follows from Theorem IX. 

We may now finish Example 13: 

2122 _ /...1 1 1) 
P = 46963-1 =·OOl53,fJ =.995!7, tT= ~ 1"1\224728 + 2U906 

= .0001965, a 1'~:!;19~201 = 3.36,1 - P, = 0.0009S. 

It is therefore almost impossible thAt such a difference should 
have been due to chance. 
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EXERCISES 18 
Repeat the example 01 this aection with reference to each of the 

lollowin~ Beta of data: 

1. Men between the ages 20 and 25, New York and Chicago 
(1910). 

II. 'l'oIGU 

Chicago ....... 720 126972 . 
N.y.C ........ 1405 253249 

2. Same, Boston and Philadelphia. An •. , .0023. 

II. 'l'oI4l. 

Boston ........ 154 32763 

Philadelphia ... 474 760Z1 

3. Males and females between the ages 45 and 50, Philadelphia 
(1910). 

II. 'l'olGh 

Males ......... 8!0 443M 

Females ....... 575 440« 

9. Application to Physical Observations. In Theorem II 
we saw that -, 

cT' -~, 
N 

(13) 

where iT referred to an infinite universe of observations (z), 
and iT to the mean (i) of N observations chosen at random 
from it. This equation is a special case of a more general 
formula in which it is supposed that each observation 
(ZI, Z" ••• , ZN) is obtained from a different universe with 
individual standard deviations (CT1, CT., ••• , CTN), and in 
which f is not the simple mean but a weighted mean or any 
linear combination of the Z'8: 

i = "1%1 + "J,X, + ... + "N%N-
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(14) 

Exercise. Show that (13) is a special case of (14) for a properly 
chosen set of c's. 

If desired, one may multiply equation (14) through by (.6745)1 
and obtain 

$2 = ci~ + ... + C],sk, (14a) 

where s stands for probable error. These formulae help us to solve 
problems like the following one. 

Example 14. Four sides of a field are measured with probable 
errors as indicated by the double signs: 80 ± .01 feet, 160 ± .015, 
150 ± .015, 300 ± .02. Find the probable error of the perimeter. 

The perimeter is 

x = 80 + 160 + 150 + 300 = 690 feet, 

and its probable error is 8: 

82 = (.01)2 + (.015)2 + (.015)2 + (.02)2; ii = 0.0308. 

To obtain further applications we shall now incorporate our 
formulae in a theorem which has an even broader scope. 

Theorem XII. IJ Xl, X2, ••• , XN are mutually independent 
observations, and iJ i is such a Junction oj them that when the 
definite errors, ~h ~2' ••• , ~N, are made in the x's the effect on 
i will be an error 5 which is a.linear combination oJ the ~'8, i.e., 

g = C1SI + ... + CNSN; 

then the u oj i is related to the u's oj the x's as Jollows: 

0'2 = c~u~ t ... + ckUk. 
Also the probable errors are similarly related: 

$I = cisi + ... + cksk. 
The student of the calculus has easy methods of finding 

a close approximation to the expression for the definite error 
8 if he is given the functional relationship that exists between 
i and the several x's. For example, it is easy for him to show 
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that if, as on page 273, i = CIXI + ... + CNXN, then a = Cla l 

+ ... + cN8N, so that (14) is a special case of this theorem. 
There are two other cases of prime importance for which we 
give the results: Let c and N be any constants. 

1/:i = exN, then, approximately, 

!=~ x % 

1/ f = eXI . X3 ••• XN, then, approximately, 

g 51 5N -==-+ ... +_. 
x Xl XN 

It will be obvious that both these formulae yield special 
cases of the theorem if they be multiplied through by i. In 
the second case the constant quantities x/x" ... , X/XN take 
the places of Cl, ••• , CN. Hence, we have the following 
corollary. 

COROLLARY. (a) 1/ i is e times a power 0/ %, 

!= INI~' f % 

(b) 1/1 is c times the product 0/ several different x's, 

(~r = (:01 

+ ... + (::Y; 
and the same is true ill is obtained partly by multiplying 
the x's together, and partly by dividing by them, thus: 

if - XI (iT)1 (U01 (U~I X= -, .,.. = - + - . x. x x x 

We may prove this last equation if we first consider the case 
where i = l/x. This is obtained from (a) by setting c = 1, 
N = - 1, and accordingly 

(15) 
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Now, going back to the ease to be proved, we may write 

(1_, (it). (fT!,. (fT!,. 
z = (zJ rJ' f = zJ + zJ' 

as desired. 
Note that (a) is not a special ease of (b). This is because 

in (a) the N x's are not indE.'pendent, but are all alike instead. 
The diflE.'rence is illustrated in Example 15. Note also that 
by these formulae one can obtain the relative prE.'cision of z 
if one knows merely the relative prE.'cisions of the individual 
x's. This is illustrated in Example 17. 

EZaJllple 15. (a) A ~tAngle is supposed to be squ~ and its 
area is found by repeated measurements of one side (z,), with the 
following mrult, 100 ± .01 feeL Find the probable error of the area. 

By Corollary (a): 

i 2 (.01) ~ 2 
10000 = 100"=' 

(b) Find the probable error of the same area if the rectangle is 
not supposed to be sq~ and measurements are made on the 
adjoining side with the same mrult, 100 ± .01 feeL 

By Corollary (b): 

(l.:mr = u:~r + u:~r, i = v'2 feeL 

The reason why i should be smaller in this ease than in (a) is that 
here a posithoe error in measuring z, may be compensated for by 
a negative error in measuring Zit but in (a) a positive error in 
measuring z, is always propagated into the area. 

Ezample 16. Find the precision with which the volume of a 
circular cone ~ be obtained from the following measurements of 
the radius of its base and its altitude: 

r = 10, fT. = .1, A = 10, fT, = 0.05. 

Since V = ~ ~A, we may first let z, play the role of ,.. and Z1 the 

role of A in Corollary (b), and we get 
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To obtain " .. /,., we now employ Corollary (a), letting z play the rl>le 
of r, and we have, for N - 2, 

Hence, 

~ - 2!!· ,.. r 

(Vr - 4(~r + (Xr - 4(i~r + ("~gr - 0.000425. 

Now V- 1047.2. So"y - 21.59. 

Ezampl. 17. With what relative I precision ("./z) should the 
height and diameter of a circular cone be measured in order to insure 
a relative precision of 1/1000 in the volume? It is to be assumed 
that the height and diameter are to be measured with the same 
relative precisions. 

V - il (2r)'h, (try)' - 4(~;)' + (iAr - 5(~·r, 

1~ - V5(~), X - ~. 
EXERCISES 18 

Nole: In Exercise 1 assume that p and 1/ are to be measured with 
the same relative precisions; and make similar assumptions in all 
similar cases. Interpret the word precision as referring to standard 
deviation, and the double sign :c as referring to probable error. 

1. The "gas constant" is R - pv/T, where T is the absolute 
temperature. If T - 323, how precisely must p and II be measured 
to make the relative standard deviation of R less than 1%? 

Ani., .cXJ7. 
2. How precisely must p, II, and T be measured to insure the same 

result? 

I If inlltead of "Iz one usell the wordll relative precision in the sense of 
maximum poIIIIible error in z divided by z, the problem does not involve 
the theory of probability at all, only the definite erron a. In this sense 
this IIOrt of problem ill common in current texts in calculUL One would 
have: 
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3. The indicated horse power of an engine is given by the ex
pression, PLAN /33000. How precisely should these four quantities 
be measured in order that the result may be reliable to 1 %? 

Ans., .005. 
4. With what relative precision would it be necessary to measure 

the length and diameter of a right cylindrical column, which is 
approximately 12 inches long and 6 inches in diameter, in order to 
determine the volume to .1O%? With what standard deviation in 
cubic inches would this correspond? Ans." .00045, .339. 

5. If it is desired to compute the area of a circle, approximately 
10 sq. cm. in area, to 5 parts in 1000, what standard deviation is 
permissible in the measurement of the diameter? Ans., .0089. 

6. If the volume of a sphere is computed from a measurement of 
its diameter, how precisely should the latter be measured in order 
that the former may be reliable to .1 %? Ans., .00033. 

7. To secure the same precision (as in Exercise 6) in the volume 
of a rectangular parallelepiped, how precisely should the three 
dimensions be measured? If the approximate lengths are 6, 5, 
and 2, to what standard deviation of the last dimension would this 
precision correspond? Ans., .00058, .0012. 

8. A freely falling body passes through the distance 11, = gt2/2 
feet in t seconds. It is desired to find 11" given g = 32.2:1:: .1, 
t = 10 :I:: 0.5. What is the probable error of 11,1 Ans., 161 feet. 

9. In Exercise 8, to determine g from measurements of 11, and t, 
how precisely should 11, and t be measured, if the desired precision 
in g is .1%? Ans., .00045. 

10. In the figure of Exercise 7, suppose that the probable errors 
to which the dimensions are liable are, in the order indicated, 
.002, .001, and .0005 inch, respectively. Find the percentage 
probable error in the volume. Ans., .046. 

11. In order to obtain the lateral area of a right circular cone, 
the diameter of the base is measured and found to be 43.05:1:: 
.11 cm., and the slant height measures 25.27:1:: .19 cm. Find the 
area and its probable error. 

12. The following measurements of the altitude of a hemi
spherical hill are used to determine its weight: 1121, 1123, 1123, 
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1122, 1120, 1122, 1123, 1125, 1122, 1123 feet. Supposing the 
weight is estimated at 100 % 20 pounds per cubic foot, find the 
probable error (a) of the computed volume, (b) of the computed 
weight. 

13. It is desired to measure the mass of the moon 80 that its 
relative probable error shall be less than .001 by the use of the 
formula 

Mm 
I=K-,s' 

where I is the acceleration, K is a constant whose probable error is 
negligible, M is the mass of the earth, m the mass of the moon, and 
r the distance between the two. What relative probable error is 
allowable in measuring the three quantities I, M, and r1 

Ana., .00041. 
14. A student's grade in mathematics depends on three factors: 

(a) the average of 36 daily assignments marked on a percentage 
Bcale by an assistant whose probable error, in marking each paper, 
is 15%; (b) the average of four formal tests marked by an instructor 
whose probable error is 10%; and (c) a final examination graded 
by a group of instructors; the probable error of the grade on ex
amination is 5%. Find the probable error of the student's final 
grade if the weights given to a, b, and c are as 3, 4, and 5, and the 
averages are 80%, 70%, and 60%. By how much would this 
probable error have been reduced had the daily assignments been 
graded by the instructor? Ana., 2.74, .04. 

PROBLEMS CHAPTER IV 

1. Repeat the whole of Example 1, page 245, using as the universe 

p~1) \_.;.,_0- --j-f_-I--/or_2-

made by combining the first two categories of that universe, and 
using as samples those given samples, except that in each case the 
first two categories are to be combined, so that the first sample 
becomes 5, 11, 11. 
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2. Returning to Example I, § 2, what is the probability that, in 
selecting a sample of 27 X 50 individuals from such a universe, the 
mean of the sample would differ from 1 = 2 by as much as .00222? 
This was the observed difference. Is there reason to suppose, there
fore, that the given 50 samples were not drawn, as stated, in a 
r.mdom fashion from the given universe? 

3. In Example I, again, what is the probability that the mean 
of a sample of 270 would differ from 2 by as much as that observed 
in the total of the first ten given samples? 

4. In each of the following cases find the probability that the 
mean (I) is in error by as much as 1% of itself. That is, assume 
an infinite universe having the parameters of the given sample and 
find the probability that the mean of a sample drawn from such a 
universe would differ from the mean (l) of the universe by as much 
as 6 = l/I00. In each case omit the term in a,. 

(a) Part I, Chapter IV, Example I, page 50; (b) same, 
Example 2, page 51; 

(c) Part I, Chapter II, Problem 4 (a), page 34; (d) same, 
Problem 4 (b), page 34; 

(e) Part I, Chapter VIII, Example 2, J(x), page 130; (J) same, 
feY). 

Ii. Fit an F curve to the distributions (a), (b), (c), obtainable 
from Example I, page 245, as indicated below, and display the reI .. 
tions between them by graphs as follows: 

Figure 1: (a) the universe; (b) the totals of the samples; (c) the 
given approximation to the curve of means. 

Figure 2: (a) same as (c) of Figure (1); (b) the true curve of 
means. 

6. For a group of college freshmen (GaveU) the mean height was 
68.183 inches and (1' = 2.51, a, = 3.16. What is the probability 
that, in a sample of 25, the mean height will be between 67.183 and 
69.1831 

'1. The dean of a large college was recently quoted as saying 
that the sons of graduates would be favored for admission because 
it had been found that on the average their grades were .2% higher 
than the general mean. Assume if = 12%, and that the dean had 
used a sample of "sons" as large as 1000. How significant a 
difference was the .2%1 
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8. A student selected what he claimed was a random sample 
of 100 boob from the 900 of Problem 4, Chapter VIII, Part I, with 
the results ehown in the table below. Judging by his average 
alone, do you believe the sample was truly a random oneT 

9. Compute (I for each of the first 20 samples of Example 1, 
page 245, thus finding a first approximation to the "curve of (I's." 
Compute its mean and its standard deviation and compare them 
with their theoretical values, i and (I". 

10. Repeat Example 7, page 260, for each of the following cases 
(data of Example 1, page 245): (a) the first sample; (b) the second 
sample; (c) the sum of the first five samples; (d) the sum of all the 
samples. 

lL (a) For the year 1910, was the mean age of death of male 
infants in New Jersey significanUy different from that of white male 
infants in the country as a whole? (It is sufficient here to regard 
the data for the whole country as the universe.) Data from the 
United Stale. LiJe Table., Department oj Commerce. (b) Same for 
New York State. 

IlIu," MonAun 
M ........ 

V.8.A. N.J. N.Y. 

()"'1 14819 1618 5 liM 
1-2 3945 458 1535 
2-3 3237 375 1301 
3-4 2777 367 1035 
H 2460 327 980 
5-6 2160 260 847 

6-7 20M 284 850 
7-8 1791 252 713 
8-9 1M2 218 675 
9-10 1505 187 MO 

1()"'11 1217 140 510 
11-12 1291 165 544 
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12. (a) Compare (f of the sample and (f of the universe. On the 
basis of this comparison is it very unlikely that the sample (N = 40) 
was a truly random one from this universe? (b) Make a similar 
study for c¥a and for C¥4; and (c) for the sample as a whole (§ 6). 

I 0 1 2 3 4 ------------
Proportions in Universe .. -h 1 i 1 -h -------- --
Proportions in Sample ... .2 .2 .2 .2 .2 

13. Use Part I, Chapter VI, § 2. What" is the formula for the 
probable error of the probable error? Find the probable error of 
the answer to Example 14, § 9 (pp. 82, 274). 

14. Refer to Part I, Chapter VIII, Problems 6 and 7, page 146. 
A truly random sample was supposedly drawn from a universe in 
which the proportions were as in Problem 6, to obtain Problem 7. 
Compute a and 1 - Pa for the coefficient of correlation. Comment 
on the value of 1 - Pa. 

15. Refer to Part I, Chapter VIII, Problem 4, page 145. (a) Re
quire a probability as great as .995 for security and find out how 
closely we know the value of rLB for the whole library if the data. 
here given constitute a random sample. Suppose in the whole 
library r = 0.8. Would it have been almost impossible to have 
chosen a random sample of 900 books for which r E; .8751 (b) Answer 
the same question, omitting the word "random." 

16. A correlation coefficient is sometimes said to be " significant" 
if it differs significantly from zero. Let us interpret this as implying 
a a so great that Pa ;;;; .99, and so, by the table on page 258, that 
a E; 3.5. Now how large must r be to be significant 

(a) if n = 100? (b) if n = 1000? (c) if n = 10,000? 

17. A recent book on statistics gave as the correlation between 
honesty and judgment, as measured by certain methods in 136 
children, r = - .2064. (a) What was the probability that, in 
sampling from a universe in which the correlation was zero, a 
correlation as far from zero as - .2064 might have been obtained? 
(b) Requiring P E; .999 for secul'ity, and using the table Ion page 258, 

1 A more satisfactory answer could be obtained by more advanced 
methods. 
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are we sure that - .2064 could not have been obtained from a 
universe in which r was +.20641 

18. (Illustrating the necessity of having a truly random sample 
if one is to apply sampling theory.) The student should fill the 
blanks below. Given a universe like that of Problem 15, one selects 
579 books in order to obtain the mean breadth for the universe, but 
instead of obtaining a truly random sample one actually selects 
those books of that table for which the lengths were 20 cm. or 
greater. The mean of these 579 is , instead of the true breadth 
14.714 desired. If the true mean breadth were as small as 14.714, 
the chance of obtaining a random sample in which the mean would 
be as great as that just observed would be less than . Therefore, 
if one applied sampling theory to this case, one would be very 
certain that the true mean breadth was not as small as 14.714, and 
this conclusion would be false. 

19. In each of the following cases find the probability that r is 
in error by as much as 1 % of itself (in the sense of Problem 4): 
(a) Part I, Chapter VIII, Problem 3, page 144; (b) same, Prob
lem 4; (c) same, Problem 12, page 147. 

20. Use the x-test to discover whether the following samples 
were likely ones from their respective universes: 

(a) The first sample of Example 1. 
(b) The sum of the fifty samples in Example 1. 
(c) The distribution of lengths in Problem 14. 
(d) The distribution of lengths in Problem 8. 
(e) The correlation table of Problem 14. 
(J) The following 1000 shots actually fired 1 at a target. The 

universe is a normal ladder of dispersion with 7 rungs, as indicated: 

B.U I I BoU I I 
Oboerwd Ezp«1«l OboerNd Ezp«led 

A 5 7 D 397 397 
B 99 94 E 95 96 
C 402 404 F 2 2 

21. In Example 1, what was the likelihood of obtaining two 
samples of 27 each, such that their means would differ by as much as 

1 Merriman. 
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(a) the means of the first two? (b) the means of the last two? (c) the 
mean of the first and the mean of the fifth? (d) the two means in 
which the observed difference was greatest? 

22. The average grades of two college fraternities numbering 
60 and 35 men, respectively, were 79.98 and 78.22. Was the 
difference significant? Use if = 10. 

23. Data from the United States Life Tables, mortality of native 
white male children by months. Did the children who died in 1910 
die at a mean age significantly different from those who died in 
1909? For iT use the (f of the data for 1909 and 1910 added together. 

Mont'" 1909 1910 Mon"" 1909 1910 

0--1 14199 14808 6-7 1780 2034 
1-2 3642 3937 7-8 1591 1767 
2-3 2880 3229 8-9 1590 1616 
3-4 2639 2764 9-10 1425 1487 
4-5 2247 2445 10--11 1269 1198 
5-6 1985 2144 11-12 1206 1271 

Totals: 1909, 36,453; 1910, 38,700. 

24. Is there a significant difference in the mean age during the 
adolescent period? (Mortality by years of age.) 

Yeo" 1909 1910 Y ..... 1909 1910 

5-6 1020 1016 11-12 456 478 
6-7. 782 860 12-13 424 418 
7-8 632 732 13-14 439 476 
8-9 553 603 14-15 444 479 
9-10 459 534 15-16 476 495 

100U 477 437 

Totals: 1909, 6162; 1910, 6528. 

25. Data of Problem 11. Is the mean age of death for infants 
significantly different in New York and New Jersey? 

26. In the following data, Biometrika, vol. 2, p. 444, is there 
evidence that younger brothers are on the average of different 
stature from elder brothers? For if compare Problem 23. 
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FUQt:ZNCY T AllLII 

~ gz,u, F .... ,... IIIaI.H n./., F_ 

60-61 0 .5 7(}-71 41.5 47.5 
61~2 0 1.5 71-72 30 23 
62--Q 2.5 3.5 72-73 14.5 15 
63-M 8 5.5 73-74 13.5 10.5 
~ 13.5 14.5 74-75 5 4.5 

~ 24 12.5 75-76 1 3 
~7 31.5 38.5 76-77 .5 2.5 
67-M 50.5 «.5 77-78 .5 .5 
6fHI9 55 62.5 7S-79 .5 .5 
69-70 38 36.5 79-80 0 1 

21. The problem of Example 13 for age SO, given the data: 

W,;,. Poptlbliota 4. ,-
Malee .....•... 1932 12302 
Female. ....... 2221 15433 

28. Is the female death rate for negroes at age 60 significantly 
different from the female death rate for whites! 

,-- 4. ' ... 
Negro ......... 101 2110 
White ......... 2597 97959 

29. (FUAtr, R. A.) <Almment on the significance of the follow
ing results of inoculation for typhoid: Number inoculated, 6815, 
of whom 56 were attacked; not inoculated, 11,668, of whom 272 
were attacked. 

30. Prove <AlrolIa.ry 1 of Theorem IX. 
!L Prove the <Alrollary of Theorem X. 



CHAFI'ER V 

CORRELATION - FURTHER TOPICS 

1. Regression Curve. In Part I, Chapter IX, regression 
lines were discussed. The regression line y on x was defined 
as that line which was the best fit to the data in the sense that 

1 
N I.~2f(x, y) (1) 

was a minimum, where ~ was the distance, measured parallel 
to the y-axis, from the line to the point (x, y) of the table, 
~ = y - (A + Bx). Also we found, equation (11), § 2, that 

!I.5!f(X. y) = uj( 1- r'), (2) 

a formula which we shaIl use again presently. We learned 
too that we could have arrived at the same result had we 
chosen, before computing the regression line, to replace all 
the points that lay in each column by a single point at the 
mean of that column, but, in so doing, it had to be remem
bered iliat this single point' was to have a weight equal to 
the total frequency of the column. The mean of the column 
at x was written: 

y(x) == f(~) ~yf(x, y). (3) 

Let us now consider the totality of these mean points, 
(x, y(x». They may be connected by a broken line or by a 
curve. Any such curve, which connects all the mean points, 
is called a regression curve-more specifically, the tn.re re
gression or the regression. Of course, strictly speaking, there 
are an infinity of such curves, but when we think of such a 
curve as the regression we are thinking, not of the given 

286 
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correlation table in which the cells have widths h, but of an 
ideal table in which there are an infinity of cells of width O. 
Or we may put it this way: 
we are thinking, not of the 
solid histogram bounded by a 
broken surface, but of some 

. solid which approximates this 
histogram and is bounded by 
a smooth surface. In this 
case there is but one such 
curve. It is the locus of the 
mean points (x, g(x». What 

The True Regression and the 
Regression Line 

we proved in Chapter IX of Part I shows that the regression 
line is a good linear approximation to this true regression 
curve. Now, instead of approximating the true regression by 
a straight line, we might approximate it by a parabola, or by 
an exponential, or by some other type of curve. We should 
then speak of the parabolic, exponential, or some other kind 
of regression. This curve which may be chosen to approxi
mate the true regression must not be confounded with the 
true regression. Both are regression curves but one is an ap
proximation to, ~d the other is the true regression curve. 
Occasionally, of course, in ideal cases, the true regression 
curve is exactly an exponential, or a parabola, or even a 
straight line. Then we say that the regression is exponential, 
or parabolic, or linear, as the case may be. A similar set of 
statements may be made for the regression of x on y, so that, 
in summary, we may say: 

(a) The true regression oj y on X is the locus oj the mean 
points oj the columns. 

(b) The true regression oj x on y is the locus of the mean 
points oj the rows. 

EXERCISES § 1 

1. Glance at the data of Problem 12, Chapter VIII, of Part 
I. Does the true regression of y on z appear to be linear, or 
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perhaps parabolic, or exponential? What about the regression of 
z on y (p. 147)7 

2. Same for Problem 4 of the same set. 

2. Errors of Estimate. The square root of the expression 
in (1), 

rT y VI"'=""?, (2a) 

is called the standard error 0/ estimate, and sometimes, analo
gously, .6745 rT~~ is called the probable error 0/ eBti-

. mate. We learned in Part I that these quantities measure 
the closeness with which the dots cluster about the regression 
line. We shall now seek a similar measure with respect to 
the true regression curve. Again we need to evaluate the 
expression (1), but now 6 shall stand for the distance, 
measured parallel to the y-axis from the true regression curve 
to the point (x, y), 

6 - y - fi(x). 

But, with this understanding, (1) is precisely the seeond 
moment, about the mean, of the column at x. This we shall 
designate by 

(4) 

since it is the second moment in the y direction of the column 
at x. Similarly, we should write for the second moment of a 
row at y 

p. .... ~ - O':.~. 
We have, therefore, 

(4a) 

1 0': .• ... /(x) ~/(x, y)[y - fi(X)]2. (5) 

Now, by Part I, Chapter II, § 3, the second moment about 
the mean point equals the second moment about any given 
origin minus the square of the distance between the two; 
so (5) may as well be written thus: 

. 1 
0': .• - /(x) ~y2/(X, y) - t?(x). (6) 
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What we need to obtain aa a measure of error is the (weighted) 
average value of CT: •• for all the %'1 of the table, and aa a 
unit we sbould prefer to cboose the CT. of the whole table. 
This average value is usually designated by 1 - '1: and '1 
is called the correlaLion ro1io. 

1 
DEnNJTION8. 1 - '1: - N ,I/(Z)CT,.. (7) CT •• 

Similarly, 
1 

1 - 'I! - N ' I/(y)CT! •• CT •• 
(7a) 

The square root tr. ~ will be a measure of error of 
estimate corresponding to the Iltandard error of estimate (20). 
This may be called the correlation ratio error of estimate, and 
10, in 1l\lJDJIlAfY, we may write: 

,'andard error = tr,Vi"'="'ji, } (8) 
correlation ratio error = tr, v' 1 - ,.;, 

and each equals ~ 1I~'J(z, r), . (Sa) 

but in the finst cue ~ is meaaured from the regression line, 
and in the IlCcond case ~ is measured from the true regression 
curve. This relationship showl why the notation 1 - '1', 
instead of '1', waa chosen to denote the average value in (7). 
It waa desired to have a letter '1 which for this case would 
correspond to r in the earlier case. IC 'I' is nearly I, '1 is 
nearly = I, and the error or dispersion about the true re
gression isllIIlall, just aa, when r is nearly = I, the dispersion 
about the regression line is IlIDAll. There are, however, two 
71'S, corresponding to the two regression curves. There is in 
this case no Ilingle number available for both curves. The 
reason for using '1' instead of '1 waa again because of the 
expected analogy with r', but nevertheless we ought not to 
have done it unless our definition was to be such that'l' 
would be always a positive number. Theorem I show8 that 
this is the case. 
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Theorem I. "1J = N~~'fy2(X)f(X). 
Prool. By (7) and (5) 

7J~ =. 1 - _1 ~ ~ lex, y)[y - Y(X)J2 
Nu~ '" 71 

= 1 - ~ ~ ~ lex, y)[y2 - 2yfj(x) + fi2(x)J 
NU 71 '" 71 

= 1 - :~[ u~ - ~ ~ y(x)~ yl(x, y) 

+ ~~/(x)fi2(x)] 
The second term in the square brackets is minus twice the 
third term, so that the entire expression simplifies to 

71: = 1 - 1 + N~~ ~ y2(x)/(x), 

as desired. 

COROLLARY. (a) 7J~ = N~~ ~ x2(y)/(y), 

(b) 0 ~ 7J~ ~ 1, 

(c) 0 ~ 1J~~ 1. 

To prove (b), we note first that by the theorem 712 ~ 0, 
being equal to an essentially positive (or zero) expression. 
But, similarly, by (7), 1 - 71 2 ~ 0, i.e., 71 2 ~ 1. 

It would appear from (8a) that, if the regression line and 
the true regression curve are identical, that is, if the true 
regression is linear, then 712 equals r2, because then the ~'s 
are the same in the two cases. Hence the expression, 

(9) 

is a measure of linearity of regression. 1 Since there are two 
71's there are two such measures. It may happen that one 
regression is linear and the other is not. 

1 Note the criticism in Problem 3. 
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3. Computation of 11. Only the case where N is large 
will be given special attention, for it is only when N is large 
that it is important to know the value of 11. The computa.
tion can best be performed by the use of formulae similar to 
those used in Part I for computing T. As there, let 

U = 'l;uf(u, II), V = 'l;1I/(U, II), (10) 
to • 

where, as before, U and V are in class interval units hand k, 
and are referred to arbitrary origins, and, as in Part I, 

and 
x = h(u - a), y = k(1I - v). 

Substituting in (3), 

y(x) = /tu);k(1J - v)/(u, II) = /~~ - kv. 

Therefore, by Tneorem I, 

'1~ - N!:U:~[/~) - vT/(u) = N1u~[~/~; - 2ii~V 

Now, since 

+ Niil]. 
. 1 

v = N-'l;'l;IJ/(u, II), 'l;V = 'l;'l;IJ/{u, II) = vN, 
.. • II ... 

(11) 

(12) 

(13) 

and so, inserting this in the second term in the last square 
brackets of (13), we have 

11J = !. [! 'l;..!: - ji2l, I u: N "f(u) J 
and, similarly, 

I 1 [1" lJ2 -2] 11.1 = O'~ No.: f(v) - u • 

(14) 

Example 1. Find '111 for the data of Example 7, Part I, Chapter 
VIII, page 140. 
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.. -2 -1 0 1 2 3 Sum. 
--- ------------------ ---

!(u) 5 82 400 367 37 9 900 
--- --------------- ---

V -10 -143 -416 -201 23 11 
--- ------------------ ---

V' 100 20449 173056 40401 529 121 
--- ------------------ ---
V'/!(u) 20 249.38 432.64 110.08 14.30 13.44 839.84 

Down to the double lines the material is copied from Example 7. 
From that example we know also that ii = - .8178, u~ = 0.4335. 
Hence, 

1'/~ = .4~35 [9~O (839.84) - .6688] = .6145; 1'/11 = 0.784. 

EXERCISES § 3 

1. For the data of the preceding example find 1'/". Note the 
value of 11'/' - T' I in each case. 

2. Find 1'/11 and ~" for the data of Problem S, Part I, Chapter 
VIII (p. 144). 

4. Common. Elements. We shall 1 now find the values 
of the correlation coefficient in certain chance distributions. 
The first problem of this nature leads one to an interpretation 
of correlation which may be. expressed, at first not very pre
cisely, as follows: The coefficient of correlation between two 
characters is equal to the relative number of elements they 
have in common. To illustrate, suppose we imagine that two 
characters, say general intelligence and ability in mathe
matics, were exclusively inherited traits. Suppose further that 
the process of inheriting were as if the child were given a cer
tain number, say 50, of character elements chosen at random 
from a large assortment in which the proportion of elements 
producing intelligence to those not producing intelligence was 
some fixed number, and suppose the amount of intelligence 
to appear in the child depended on how large a proportion of 

1 Sections 4 and 5 have no bearing on what follows and may be 
omitted if desired. 
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the favorable elements he got. Suppose a similar thing with 
regard to ability in mathematics, using the same fixed ratio 
as before, but suppose also that the number of additional 
elements drawn here were only 30 because it is to be assumed 
further that 20 of the first type are also of the second type. 
Thus the child is tQ have finally 30 exclusively intelligence 
determinants, 30 exclusively mathematical determinants, and 
20 of the combined type. If all this rather fanciful program 
were carried out, then it would happen that when children 
of a fixed parentage were examined the correlation between 
general intelligence and ability in mathematics would be 
20/50: r = 2/5, the proportion of elements these two charac
ters have in common. Conversely, if the observed correlation 
is 2/5, then the situation is" as if" some such theory as that 
suggested were the dominating cause. In our demonstration, 
we shall use the simpler simile of colored balls drawn at 
random from an urn. 1 The simplicity of the result is striking 
and is helpful in aiding one to form a conception of the mean
ing of correlation, although the student should understand 
that the illustration is introduced merely for its value as a 
picture, not as biology. 

Theorem II. Given an infinite set of balls in the ratio, p 
white to q black (p + q = 1); make a pair of drawings from 
this set as follows: In each drawing there shall be n balls, but 
before the second drawing is made, select at random m balls 
from the first group and count them also in the second group, 
so that for the second group there shall be only (n - m) balls 
still to be drawn from the universe. Then the correlation be
tween the numbers of white balls in the two groups is min. 

COROLLARy.1 Suppose n coins are thrown twice, but suppose 
that before the second throw m coins from the first throw are 

1 The theorem and various generalizations of it were given by H. L. 
Rietz, Annals 01 Mathematics, series 2, vol. 21, pp. 306-332. The proof 
given here differs somewhat from that of Rietz. 

I This is illustrated very fully by Gavett. 
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left as they fell, leaving only (n - m) to be thrown again. 
The correlation between the numbers of heads on the two counts 
is min. 

The corollary is no different from the theorem, except that 
in the corollary p = q = !, but it is perhaps a little easier 
to hold in mind. We shall therefore giv..e the details of proof 
in this special case only, leaving the theorem proper to be 
considered in a problem. It will be- found that r is inde
pendent of the value of p, and in fact the value of p plays 
no essential role in the 'proof. Consider first what would 
happen if none of the m marked coins were counted after 
the first throw. The correlation table giving the probability 
of X heads on the first throw and Y on the second would be 
such that the f(X) marginal totals would be given by the 
.terms of 

_ and the f(Y) totals by the terms of 

and f(X, Y) would equal.f(X) . j(Y), and r would be O. 
Such a table is given below for n = 5, m = 3, n - m = 2. 

~ 0 1 2 3 , /; I(y) 

--------------
0 1 5 10 10 5 1 32 

-- ------------ --
I 2 10 20 20 10 2 64 
~- --------------

2 1 5 10 10 5 1 32 
-- ---- --------

I(X) 4 20 40 40 20 4 128 

(The frequencies printed are 128 times the respective probabilities.) 

(l + W = *(1 + 5 + 10 + 10 + 5 + 1), 
(! + !)2 = HI + 2 + 1). 
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Now consider the effect on the means of the successive 
columns in this table when the m marked coins are counted. 
On the first column there will be no effect at all, for by the 
hypothesis that X = 0, none of the coins, in particular, 
therefore, none of the marked coins, were heads; and so on 
the second count there are now no marked heads to be added 
in. So the mean of the column at X = 0 is as initially 

- n-m Y(O) = --. 
2 

If X ... 1, one head was in the first group. There are now 
two cases: 

Case a: When this head wa"s unmarked. Then there is no 
effect on the count of the second group, for again there are 
no additional heads to be counted. 

Case b: When this head was marked. Then the effect is 
to add one to each count of the second group. In our ex
ample above, the probability of Y = 0 at X = 1 is no longer 
5/128. It is now 0, for we know there is at least 1 head in 
the second group. But since the probability of no heads 
was 5/128 before, this is now the probability of 1 head. That 
is, it is the probability of no additional heads besides the one 
left down after the first throw. Similarly, 10/128 is the proba
bility, not of 1, but of 2, heads, etc. Let it be clearly under
stood that the effect of the presence of the marked coin is 
merely on the number to be counted in the second group, 
not at all on the number of heads obtained from the two free 
coins which are thrown the second time. This number is 
independent of the marked coins, but whenever it is 0, 
the number of heads to be counted is 1, this 0 plus the 
head on the marked coin. When it is 1, the number of 
heads to be counted is 2, etc. The general effect, then, is 
to move the entire distribution in this column downwards 
by 1 unit. 

The relative frequency with which Case b happens is the 
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relative frequency with which the solitary head will be a 
marked one. This is 

so 

Y(l) = 1 . ~ + n - m. 
n 2 

Now consider the column at any value of X. The mean 
will be increased by 1 when exactly 1 of the X heads is 
marked; by 2 when exactly 2 of these heads are marked; 
etc. These relative frequencies are, respectively, 

mC2 ,,-mCX-2 t 
C 

,e c., 
n X 

-and so 
Y(X) = ~ i mC, n-mCx-. + n - m . 

• =1 .. CX 2 

The value of ~ in this expression is given by Theorem IV 
of Chapter II, and is mXj n, for it is the mean of the hypergeo.:. 
metric obtained by drawing a set of m balls from a set of X 
in which the proportion of marked balls is q = min. (In that 
theorem set m = n, n = X, t = i, p = 1 - q, q = min.) 
Hence, 

Y(X) = mX + n - m. 
n 2 

This, therefore, is the equation of the regression line Y on X 
in 'our resultant table. The slope of the regression line is 
min, and we know from the standard equation of a regression 
line that the slope is ru Ii U If:, so that we have finally 

mu., 
r=--' 

nUll 
(15) 

We now wish to find u., and U ll, and for this purpose let us 
examine f(X) and fey) of the resultant table. Evidently 
f(X) of the resultant table is the same as f(X) of the initial 
table, and is given by the terms of (! + !)". The fey) of 
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the resultant table will not be the same as the initial/(y) 
but, like I(X), it will also be given by the successive terms 
of (1 + I)". This is because our resultant correlation table 
would not have been different had we asserted that first of 
all the m marked coins were to be separated out and that 
then the two throws were to be made in the reverse order. 
The rl>les of the two throws could have been interchanged, 
and if we had interchanged them, we would have begun with 
I(Y) as we did begin before with I(X). Ineach case, there
fore, U ... Vn/2, and so U. = U '" and then by (15), r = min. 

The resultant correlation table in the numerical case out
lined on page 294 is as follows: 

~ 0 1 2 3 • II I(y) 

-- --------------
0 1 2 1 4 

-- --------------
I 2 7 8 3 20 

-- --------------
2 1 8 16 12 3 40 

-- ------ --------
3 3 12 16 8 1 40 

-- ---- ----------
4 3 8 7 2 20 ----------------
Ii 1 2 1 4 

-- --------------
1(:&) 4 20 40 40 20 4 128 

EXERCISES §' 

1. Prove by numerical computation from the correlation table 
above that: (0) the regression Yon X is as stated, (b) the correla
tion r = min. 

2. Throw 5 coins twice as indicated in the corollary just proved, 
leaving 3 marked coins from the first throw. Repeat this until 
you have a table in which N = 128. Compare with the theoretical 
table. 

6. Other Probability Distributions. There are many other inter
esting types of probability distributions for which one can compute 
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the correlations. The only other one we shall consider is also well 
described by a pseudo-biological illustration. First, for simplicity, 
suppose one has to do with non-sexual reproduction. There is a 
single grandparent, who produces a number of parents, each of 
whom produces, independently, a number of children. We want to 
find the theoretical correlation between the statures of parent and 
child on the following hypothesis. The initial generating cell from 
which the adult organism is produced contains n determinants. 
Some may be call~ "growth" and others" neutral" determinants. 
The stature of the adult is determined by the proportion of growth 
determinants in the cell. Moreover, the adult organism will pro
duce determinants in the same ratio as they were inherited by it. 
Let the proportion of growth determinants produced by the grand
parent be p. The parent selects from this supposedly very large 
universe of determinants a single cell containing n of them chosen at 
random. Let the number of growth determinants in that cell be 
p'n. Accordingly, the stature, X, of the parent is proportional to 
p'n and may as well be taken equal to p'n. X = p'n. The child 
now in tum selects a cell containing n determinants chosen at 
random from a universe in which the proportion of growth deter
minants is p'. Let the number of its growth determinants be p"n. 
The stature, Y, of the child is then Y = p"n. 

To find 'xy, we have the usual table: 

~ x 

Y I(X, y) I(y) 

I(x) N=l 

Thlt marginal totals f<x) are given by the point binomial (p + q) 

f<x) = .Cxrrr-x, (I6) 

because this is the probability that the parent will obtain exactly X 
growth determinants. Likewise, confining the attention to a single 
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column at X (fixed), the numbers !(X, Y) are proportional to the 
terms of the point binomial (pi + q')"; 

!(X, y) "" !(X)'nCypIYq'n-V, (17) 

where pi _ X/n, q' = 1 _ p', 

for the probability!(X, Y) of the child obtaining Y growth determi
nants from a parent of stature X is the product of the probabilities, 
first of obtaining such a parent, and secondly of then obtaining Y 
growth determinants. So 

(18) 

By (16) 
Jt == pn, CT} - pqn, 

by Chapter II. Theorem I (b). By (18) 

r - ~Y!(y) = ~f(X):!:Y "Cyp'Yq'n-F 
Y X Y 

== ¥(X)p'n == iX/(X) == X = pn. 

Also. using again Chapter II, Theorem I (b). in the places indicated: 

CT'y == ~r-f(y) - p ... ~f(X):!:'f1nCy p'Vq'n-Y - f'J 
Y x Y 

== :!:f(X)(p'q'n + p'In' ) - pint 
x 

== :!:f(X)(p'n)(q' + p'n) - pint 

"" :!:f(X)(X)(1 - ! + X) - pint 
n 

== ~Xf(x) + ~X1f(x)( 1 - ~) - pin 

= pn + (pqn + p1n2) ( 1 - ~) - pint 

by (b) 

by (b) 

= pn + pqn - pq - pin = pn(1 - p) + pq(n - 1) 
= pq(2n - 1) 

Thus far we have obtained X. Y, CTx. CTy. We shall now show that 
the regression is linear. and then. as in the proof of the preceding 
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theorem, we shall be able to find r from the slope of the regression 
line. Fix the attention on a particular column. The mean of the 
column at X is, relative to the origin of Y, by (17), 

Y(X) = p'n = X. 

This is the equation of the true regression, which is therefore a line 
of slope 1. So 

1 = r Uy = r - /pq(2n - 1), 

Ux " pqn 

and r = ~2n ~ l' (19) 

COROLLARY. (a) The average 8tature of the children equals the 
average 8tature of the parents and thi8 also equals the stature of the 
grandparent (X = Y = pn). 

(b) The average 8tature of the children of a single parent equals the 
8tature of this parent (Y(X) = X). 

(c) If n = 1, r = 1; if n = 2, r = VI = .82; if n = CD, 
r = VI = .71; 80 in non-8exual reproduction 1 we should expect to 
find a correlation between 0.7 and 0.8. The correlation is also inde
pendent of p. 

6. Grouping Error in Correlation. In Part I, the reader 
was warned that there was a large grouping error involved 
when the number of cells of a correlation table was small. 
In Chapter VIII, Problem 4, the correlation in a 9 X 11 
table was found to be .875; but earlier, in Example 7, the 
same data were grouped into a 5 X 6 table, and the observed 
correlation was then found to be only 0.581. The error is 

1 In I:ea1ity, r would be somewhat less than this because stature is 
not wholly dependent on heredity. 

The generalization to the case of sexual reproduction is not presented 
here, but it is of some interest to know that it may be worked out in 
a closely similar fashion, and that on the basis of certain reasonable 
assumptions the correlation comes out between 0.67 and 0.70. This 
presupposes a fixed grandparentage. If, as in the observable cases, 
the grandparentage is a mixed population, the effect would be to reduce 
the correlation still further. 
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caused by decreasing the number of cells, and is a grouping 
error like that discussed in Part I, Chapter IV, for one-way 
frequency distributions, and it is due to the fact that in our 
computation we assume tacitly that all the material of a 
cell is concentrated at its central point. A part of this error 
can be eliminated if we use Sheppard's corrections for fT .. and 
fTv, and it would have been a little better to have done this 
in our earlier work. Also, there are other corrections 1 which 
may be made instead of these. We shall not consider them 
here, however, except to remark that they show, first, that 
the grouping error introduced in reducing a table from one 
having an infinity of cells to a 10 X 10 table is usually not 
important, amounting to about 4%, and, secondly, that when 
the number of cells is further reduced the error does become 
increasingly important and commonly amounts to as much 
as indicated in our illustration. It follows from these con
siderations that it is better, when feasible, to use the un
grouped material and the longer method of computing r 
which was indicated for the case when N was small, unless 
N is really so large that at least a 10 X 10 grouping is 
proper. Also, when a 10 X 10 grouping is proper it is a 
little better to use Sheppard's corrections for the standard 
deviations. 

But there are cases where these suggestions cannot be 
carried out, and they occur frequently when we are dealing 
with unmeasured material. Our method of computing the 
correlation for such material involved a normalizing of the 
marginal totals. This process eliminated the grouping error 
in the same degree as Sheppard's corrections would eliminate 
it for measured material, but when the number of cells is 
quite small that amount of correction is far from sufficient. 
Moreover, for a 2 X 2 grouping, our method becomes of no 
value, since it gives the same value for r as would be found 
if one chose arbitrary numbers as the mid-points of the class 

I Pearson, K., Biometrika, vol. 9, pp. 116 el aeq. 
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intervals. I This happens because the expression for r is 
independent both of the origin and of the sizes of the class 
intervals (h and k). Fortunately, however, an excellent 
method of finding r -for a 2 X 2 table has been devised by 
K. Pearson, and this will be considered shortly. It is so good 
that it can even be employed to advantage when the number 
of cells is greater than 4. That is, if one had a 3 X 3 table, 
one would usually get a value of r closer to the true value by 
making a coarser, 2 X 2, grouping and employing Pearson's 
method than by using any of the methods that we have so 
far described.2 In general, however, when the number of 
cells is greater than 2 X 2, it is preferable to use the method 
to be described in the next section. 

7. Polychoric Correlation. The word polychoric, as ap
plied to a correlation table, means that the table contains 
several cells, more than four but not enough to warrant the 
use of the methods of Part I. We shall consider in this 
connection - although this is not strictly necessary - only 
qualitative measures, and so in the following illustration 
(Table I) the symbols Xl and Yl denote order merely. The 
problem is to find the true correlation between the characters 
X and Y. The theory underlying its solution supposes that 
we are able to construct a normal surface which when cut up 
into this number of cells (5 X 6 in our illustration) will con
tain in the several cells precisely the relative frequencies 

1 The value of r found in this manner can always be computed from 
the simple formula, 

a.b. - aob. 
r = , 

"II (a, + b.)(ao + b.) (a. + ao)(~ + b.) 

in the notation of § 8. 
I Certain more effective methods of handling problems like this are 

available, but they are complicated. Some authors have proposed 
defining other coefficients of interrelationship than the coefficient of 
correlation in C8.!Ie8 like this, in order to avoid these difficult computa.
tions, but their proposals introduce another difficulty, namely, that of 
interpreting these other coefficients. 
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given: 'N, 'N, etc. The, that pertains to such a surface is to 

be the coefficient of correlation sought. In the ideal case 
there is exactly one such surface. In the practical case there 

TABLJ: I 

~ Xa x. x. X. X. X. 

-----------------
Ya ," '" etc. 

L Y. I ~ - ,-Y. --- -,-Y. ---
Y. _I---- ----------'·-1-"-, TOTAL'! 'a ,. ,. ,. 

is usually no such surface, and then we are required to find 
the, of the surface which satisfies these conditions as nearly 
as possible. 

Method. 1 Let AR be anyone of the horizontal divisions 
of the table which cuts t all the frequency columns. In the 
first column let al denote the total frequency above AR, bl 

the total below; in the second column use similarly at and 
bt, etc., as indicated in Table II. Now normalize the totals 
/I, It, etc., so as to obtain the mean points fl' ft, etc., by the 

I The problem is a difficult one and its proper solution belongs to a 
more advanced text. (Cf. especially K. and E. S. Pearson, Biometrika, 
vol. 14, p.127.) The simple method presented here is designed to give the 
student some insight into the nature of the problem and to place in his 
hands a tool which will yield fairly good results in the less extreme cases. 

• That is, in no column of the table may the total frequency above 
or below this line be aero. If this condition cannot be satisfied, then 
the line is to be taken 80 that it will be satisfied as nearly as possible, 
and those columns for which it is not true are to be left out of the 
reckoning; but it would be possible to include them by modifying the 
method suitably. 
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method used in Part I. These means will, of course, be re
ferred to the mean abscissa of the whole table as origin, and 
the unit of measurement will be (f'". Now let us consider 

TABLE II 

~ i. f. i, f, f. 

---------------

A 
FREQUENCIES ABOVE AB al a. a, a. a. 

--------------- B 
FREQUENCIES BELOW A.B bl b. b. b. b. 

II I I. 
---------

TOTALS fa " I. 

each of these columns individually. Let (f'1, (f'2, etc., be the 
standard deviations of the columns. By Problem 7, Chap
ter X, Part I, these standard deviations are all equal 1 to 
(f'1/-vr=T'2, a fortunate circumstance which is essential to 
the success of this method. Let 1it, 1h, etc., be the distances 
of the means of the several columns below the line AB in 
terms of (f'1, (f'2, etc., as units: If the columns are normal 
distributions, these distances can be found from the equa-

tions: fY' b r· b 
J -CD ~(x)dx = i, J -CD ~(x)dx = ~, etc. (20) 

One may thus obtain, relative to a horizontal axis AB and 
a vertical axis through the general mean point of the whole 
table, the following coordinates of the mean points of the 
several columns in (f'" and (f'1/ units: 

(Xl, 1it-vr=T'2), (X2, Y2~)' etc. 
Now if there is a normal surface satisfying the conditions 
laid down at the outset, its regression line Y on X passes 
through these mean points; its slope is r in the (f'. and (f'1I 

units and V r in the (f',. and (f'1 units. If these mean 
1 - r2 

1 Exactly equal if the columns are of zero width, otherwise only 
approximately equal. For very broad columns this approximation is 
poor and the results are correspondingly affected (cf. § 8). 
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points do not lie exactly on a line, there is no such surface, 
and we have to resort to an approximation. I Least squares 
might be used, but, with due allowance for inaccuracies 
introduced by our other approximations, it is sufficient to 
use the graphical method, although in drawing our graph 
it is desirable to accord greater weights to points representa
tive of greater column frequencies. Also, columns in which 
either a or b is very small should be given very little weight. 
We may therefore proceed thus: Plot the points (Xl, fit); 
(X2, Y2), etc., found from (20), and draw by eye an approximate 
trend line. Let (x' J y'), (x", y") be any two conveniently 
chosen points (preferably far apart) on this line. Then 

y" - y' 
m =" I' r = mv'f"=Ti, (21) x - x 

and hence I r = v m = sin tan- l m. 
1 + m2 

(22) 

Example 2. Find polychoric T for the following data. The table 
pertains to a. distribution in which the true correlation is 0.518. 
It was divided in this peculiar manner by Pearson to illustrate 
certain difficulties introduced by the use of other measures of inter
relation than T. (Statures of father and son with "eye color group
ings." Biometrika, vol. 9, p. 220.). 

203 117 9 6 --------
A 125 214 36 46 ------------ B 

18 53 11 23 
--

12 60 13 54 

358 I 444 69 129 

1 If the points do not lie approximately on a line, there is no normal 
surface which approximately fits the data and 80 the method cannot 
be used. 

I The relation m/Vl + ml = sin tan-I m is not needed but it is 
convenient. This part of the computation can be performed with a 
slide rule in a single position. 
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This table corresponds to Table I of the text: /1 = 358, /1 = 444, 
N = 1000, etc. Taking AB as indicated, we next compute 
Table II: 

A 
328 331 45 52 -------- B 
30 113 24 77 

--
358 444 69 129 

al = 328; bl = 30; etc. 

COMPUTATION OJ' ilo Zt, etc. 

liN .358 .444 T .069 .129 

Cum liN ~', .8'02 .8
1
71 10 End Poi,.,. .3,58 

.+9 1.1~1 s. End Poin" -.364 

4> (,.) .37134 .2782 .2105 

DiI!tft'tmAl .. -.3734 
.Il952 ~ .2105 

~ -1.043 .2144 .9812 1.6318 

i:q,(X)dz = .358; so XI = - .364. 

q,( - .364) = .3734. 

- - .3734 1 043 
XI = --:ass- = -. • 

COMPUTATION OJ' iii, ji., etc. 

_bl._'1 .11 .0838 1 .2545 I .3478 I' 
ii _ -1.380 _ -.660 _ -.391 

f it = .0838; so iii = - 1.380. 
-CI) 

.5969 

.245 

We now plot the points (- 1.043, - 1.380), (.2144, - .660), etc., 
and then draw the be:st-fitting line by eye. On this line we choose 
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two points, and estimate the values of their coOrdinates (z', r') and 
(z", V"). , 

By (21) and (22), 

m - ~O ~:~ - .575; r - sin tan-I (.575) ,. sin 29.9" .. 0.50. 

EXERCISES I' 
L Find polychoric r for the table in Problem 4, Chapter VIll, 

rart I. page 145. taking AB between B == 12 - and B = 14 -. 
2. Find polychoric r for the following tables taken from the 

problems of Chapter X. Part I: U; 2e (PearlOft'. answer is .52); 
2J (Pearaon'. answer is .52); 2g. 

8. Tetrachoric Correlation (I, I < 0.8). The term tetra
choric refers to a 2 X 2 fold classification. Let the absolute 
frequencies be denoted as in Table III and the ratios indicated 
below as in Table IV. 

TABLE III TABLE IV 

01 Al Aa ------
b. bt BI ~ ----

Fa 'a 1 J.I!.II~ 
f, + ... A a.. B 6,.... ft.._ t=:a. ut. t=", t=" ... t=Ji{.e .... 

The problem here is a special case of that of the preceding 
section: to find a normal surface which when divided into 
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four cells will present in these cells exactly the relative 
frequencies observed. This case usually admits of an exact 
solution. The T that pertains to this surface is to be called 
tetrachoric T. 

K. Pearson has given a method of evaluating tetraclioric T 

which is perfect, except that often the burden of computation 
involved is so great that practical investigators are loath to 
use it. He and Alice Lee have published some tables which 
lift this burden when I T I ~ 0.8. The~e will be explained in 
the next section; in such cases his method should always be 
used in preference to the one about to be presented. Like
wise, when I r I ::ii .2,1 or when a high degree of accuracy is 
required, his method is better; but otherwise, and certainly 
in preliminary studies, the rapid, approximate method about 
to be described will be preferred. It cannot be guaranteed to 
give r accurately to more than one or two places, but it is 
better to have a very short method which will do this than 
rely wholly on a very accurate 2 method which often becomes 
so tedious that most investigators will resort to some other 
coefficient rather than use it. For in theory tetrachoric T 

is simple and has a clean-cut meaning: it is the coefficient 
of correlation of that normal surface which exactly fits the 
data. 

Applying, now the method of § 7 to Table IV we may 
develop (cf. Problem 6) the following rules of procedure. 
Find x, Yl, Y2 from the relations: 

. 
1 When I r I is small, the practical problem is not, usually, to find the 

value of r, but to find out whether or not there exists a significant re
lation between the two variables. This is better solved by the method 
of Chapter IV, § 8. , 

I Since the hypothesis, that the data belong to a truly normal dis
tribution, is seldom satisfied, Pearson's high degree of accuracy is 
usually spurious. 
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Then 
m = F F.YI + Y, r = m = sin tan-1 m (24) 

I • 4' (x)' v1 + m2 • 

and, as indicated, r has the same sign as m. This formula 
rests on three assumptions: first, that for such a division of 
a normal surface the mean of each column would 1ie on 
the regrcssion line j second, that its standard deviation would 
equal O'u'\l"f"=T2j and third, that, considered as a one-way 
distribution in the y direction, it would be normal. The 
first of these assumptions is true exactly, the other two 
approximately only. One could partially compensate for the 
error due to'the second by the use of a more complex formula. 

r = FIF, [Ya- fl _ rZ cp(x) (CP(x) - x) 
cp(x) ~ Fa Fa 

+ Yl ~'-1 ---r-2 cp-;-~;-: )'(7""7CP F'(:') -+-x') J. (25) 

but it is not simply solvable for r. In the special case where 
F = .5, however, it simplifies to 

T = ~ m ,and ~ = 0.6366. 
2m' 11' 1+-

11' 

Investigation of other special cases leads to the somewhat 
more general approximation: 

m 
r = V1 + 8m2' (26) 

where m is as in (24) and 8 is related to Fl thus: 

This is the formula we shall use, always orienting the table 
initially so that Fl ~ 0.5. The conditions under which it 
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has been derived are such that it should not be employed in 
certain extreme cases: when one of the given frequencies 
is less than one per cent of N, when F1 > 0.9, and as stated 
above when I r I i1; 0.8. It should work best when F1 is 
about one-half, and Y1 and Y2 are nearly equal. 

Example 3. Find tetrachoric r for the material of Example 2 
divided as follows: 

659 97 

143 101 

802 198 1000 

The table of ratios becomes: 

.822 
---

.510 

.802 .198 1 

Thence x = .849, ,p(x) = .2782, Y1 = .923, Ys = .025, m = .541, 
Fl = .802, B = .60, and r = .50, the true value being 0.518. 

9. Tetrachoric Tables (I r I > 0.8). To handle this case at 
all satisfactorily the tables 1 of K. Pearson and Lee must be 
consulted. We proceed merely to show how these tables 
are to be used. They are reproduced in very condensed 
form on page 311, but though this is sufficient to permit 
the student to experiment with the method, it will not per
mit him to obtain results of value. The method is very 
simple. From Table III (on page 307) construct Table 
V by dividing each of the entries in Table III by N: 
a1 = a1/N, {J1 = b1/N, etc. Also, write 

G1 = a1 ; as, G2 = b1 ; b2. 

Further, the initial table should have been so arranged that 
both F1 and G1 would be as large as 0.5. 

I K. Pearson, Tables, XXX. Alice Lee, Biometrika, vol. 11, p. 284. 
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TABLB V 

a, a. Ga 

{31 {3. G. 

F, F. 1 

Let X and x' be determined from the equations, 

L ... tJ> (x) dx = F I , L: tJ>(x)dx = (hi (27) 

x is as before. (In the notation of Pearson and Lee h = x, 
k ... x', dIN ... (JI.) Then r can be estimated by interpolation 
from such tables as the following, in which {JI is tabulated 
for various values of x, x', and r. 

V ALt1ES or {31 = ~ 
,. .80 .90 .96 

lX 0 .1 1.0 U 2.0 2.6 0 .6 1.0 1.6 2.0 2.6 0 .6 LO 1.6 z.o 2.6 

0 .40 .28 .16 .07 .02 .01 .48 .80 .18 .07 .02 .01 .46 .81 .18 .07 .02 .01 
.1 .28 .22 .14 .08 .02 .01 .so .26 .16 .07 .02 .01 .81 .26 .18 .07 .02 .01 

1.0 .16 .14 .10 .06 .02 .01 .18 .16 .1lI .08 .01 .01 .18 .18 .IS .07 .02 .01 
U .07 .08 .06 .os .01 .01 .07 .07 .08 .04 .01 .01 .07 .07 .07 .06 .01 .01 
z.o .08 .01 .01 .02 .01 .00 .01 .02 .01 .02 .01 .01 .02 .02 .02 .02 .02 .01 
2.1 .01 .01 .01 .01 .00 .00 .01 .01 .01 .01 .01 .00 .01 .01 .01 .01 .01 .00 

,. .. 80 .. 90 .. 96 

X 0 •• •• •• .8 0 .8 •• •• 0 .2 • • .6 

0 .10 • 07 .04 .01 .01 .07 .04 .01 .01 .06 .02 .01 .00 

•• .07 .04 .01 .01 .01 .0 • • 02 .01 .00 .02 .01 .00 .00 

•• .04 .01 .01 .01 .00 .02 .01 .00 .00 .01 .00 .00 .00 

.6 .02 .01 .01 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00 

.8 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

Example 4. Find the correlation between the ages of husband 
and wife from Table I. page 312. It is condensed from the material 
of Example 1, Chapter X, Part I. in which, = 0.91. 
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TABLE V (COMPUTED) 

451 2429 2880 .5417 
--- ---

2324 113 2437 .0213 .4583 

2775 2542 5317 .5219 .4781 1 

Thence x = .055, x' = .105, {J. = 0.0213. The tables indicate that 
r is between...,. .97 and - .95. In order to make both FI and G1 

as large as .5, it was necessary to arrange the material initially 80 

that the ages of wives decreased to the right instead of increasing 
as in the earlier example. So a negative correlation now implies a 
positive correlation then. 

EXERCISES §§ 8-9 

Find tetrachoric r in the following cases: 

1. The following division of the material of Example 4: 

-~ 60-89 15-59 

15-59 222 4631 

6O--s9 406 58 
. 

--2; -Oullness and developmental defects in children (K. Pearson, 
Tables, p. 11). Pearsoo's am., .652. 

W,THOUT W,TH 
TOTALS 

DBFBCTB DZJ'BC'1'8 

NOT :bULL 22,793 1,420 24,213 

nu'u. 1,186 888 2,074 

TOTALs 23,979 2,308 26,287 

L _-3. _ Mothers' and fathers' habits, Bradford parents (K. Pearson, 
Tables, p. Iii). _ Pearsoo's am., -.081. (Data on page 313.) 
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I GOOD B .... TM&UI 

GOOD 994 67 1061 

BAD 159 476 635 

TM"~ 1153 543 1696 

'" Strength to resist smallpox when incurred and degree of effec
tive vaccination (W. P. Elderton, p. 164). Elderton', 0711., .7692. 

ClC&TlUI: RJIOOl'aBl&8 O ... TB. TM&UI 

Pun,.,. 3951 200 4151 

A ••• ,.,. 218 214 552 

TM&UI 4229 474 4703 

Ii. Thyroid anomalies and cancer (Stocks, Biometrika, vol. 16, 
p. 385). Stocka', an,., .4587. 

TIITBO'D TIITBO'D TM&UI AJIOILUA)'" No ....... 

CANCU PIIII8.,.,. 93 407 500 

CANC •• A ... ,.,. 177 4470 4647 
TM&UI 270 4877 5147 

6. Same as Exercise 5 for males only. StocU', an,.,.4905. 

TnBO'D+ TnBO'D- TM&UI 

C"NCU + 22 143 165 

C"NCU - 33 1613 1646 

TM&UI 55 1756 1811 
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PROBLEMS CHAPTER V 

1. Compute 7]1/ and 7]", and I 7]2 - r2 I in both cases for the data 
of Problem 4, Chapter VIII, Part I, page 145. 

2. Are the 7]'S, like r, independent of the choice of origin and 
units? Why? 

3; (a) Show from equation (8a) of § 2 that 7] = r for every 2 X 2 
fold table. (b) Prove this also by the use 9J Theorem I. (c) Il
lustrate by a numerical example of your own choosing. (d) Does 
this indicate that the measure of linearity of regression has the fault 
that it depends partly on the number of cells used? 

4. (a) Do the remarks on the cause of grouping errors at the 
beginning of § 6 apply to 7] as well as to r? (b) Why would it be 
undesirable to try to obtain a "tetrachoric 7]" by a method similar 
to that used for tetrachoric r? 

5. Derive both parts of (22) from (21). 
6. Derive (23) and (24). 
7. Derive the equation following (25). 
S. Show that it is always possible to arrange Table V, § 9, 80 

that both Fl and G1 are as large as 0.5. 
9. Experiment with the data of Example 7, Chapter VIII, 

Part I, page 140, as follows: (a) Find polychoric r. (b) Divide into 
a tetrachoric table in three different ways and find tetrachoric r in 
each. (c) Compare your answers. with the corrected value of r 
obtained in that example (.696). 

10. Experiment in a similar manner with the data of Example 1, 
Chapter X, Part I, page 166. . 

11. Use (7a) , (8), and (8a) to prove that 0'".,. = 0'1/ v'I""=Ti 
if 0'11"" is constant and if the regression yon z is linear. (Cf. also 
Problem 7, Chapter X, Part I.) 



CHAPTER VI 

MULTIPLE CORRELATION 

1. Notation. We have been studying simple or bivariate 
correlation. The frequency J(X, Y) has been a function of 
two variables, X and Y. We now study multiple correlation, 
in which the frequency, J(X, Y, Z, ... ), is a function of 
three or more variables, X, Y, Z, .... For the most part, 
we shall confine ourselves to the three-variable case only. 
The case of more than three variables is not difficult, once 
the three-variable case is understood, but the three-variable 
case permits of a somewhat simpler notation. We formed a 
physical picture of a bivariate, or, as we shall say, a two-way 
distribution, by means of a thin sheet of metal of variable 
density. We marked it off into rectangular cells. Then 
we had an analogue of the correlation table. The amount 
of matter in one of these cells corresponded to the frequency 
in a cell of the table. Instead of a thin sheet we could have 
thought of a slab of unit thickness if we had preferred to. 
Now let us think of a solid plece of metal of more than unit 
thickness and suppose its density to vary from point to 
ppint. Mark it off into box cells, small rectangular parallel
epipeds. The amount of material in one of these cells cor
responds to the frequency in the three-way correlation table 
we are about to describe. Honey in the hon'eycomb is a 
perfect illustration, the number of drops in each cell being 
the frequency. Another picture is a modem office building. 
The cells are the offices, situated on various floors, and in 
various positions on these floors. The number of individuals 
in a given office corresponds to the frequency in the cell. 
In this picture, all the offices on any given floor constitute a 

315 
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two-way table. In the honeycomb, the corresponding two
way table would be indicated by a plane slab of unit thickness 
cut from the solid. One of our earlier examples of two-way 
correlation tables was obtained from the measurements of 
the lengths and breadths of books. If we had taken account 
of their thickness also, we should have had to use a three-way 
table. The idea of multiple correlation is very important 
in practical work because usually the quantities we try to 
measure are dependent on more than one variable. The 
stature of a child is dependent not only on the stature of the 
father but, also on the stature of the mother and also to a 
less degree on the statures of the grandparents. 

The framework of our three-way table is a rectangular 
parallelepiped divided into cells by slicing planes. Our 
given coordinates are denoted by X, Y, Zi our arbitrary 
coordinates, of which the given coordinates are a special case, 
are u, v, Wi and x, y, z are the coordinates relative to the 
general mean of the table. The frequency in the cell at 
(x, y, z) isJ(x, y, z). 
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Marginal totals are of two kinds, and to avoid ambiguity we 
shall not use the term at all. If we add all the frequencies in 
any column parallel to OZ, keeping (x, y) fixed, we get the 
II column total": 

1(x, y) = 'l'-1(x, y, z) • .. (1) 



MULTIPLE CORRELATION 317 

z 

y 
FIGURE 2 

All these column totals f(x, y) constitute a two-way set of 
frequencies whose numerical values may be written if de
sired on the rectangles of the X Y plane. 

FIGURE 2(a) 

They constitute a two-way correlation table. Now if we add 
all those columns which have the same x, we shall get the 
total frequency in a slab whose thickness is the same as that 
of one cell. This slab total is called .. 

f(x) = I-f(x, 1/). (2) 

z 

y 
FIGURE 3 
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Finally, if we add all the slab totals we get the total frequency 
in the whole table, 

N = 'Z/(x). (3) 
" 

This notation is quite consistent with that used earlier: I 
signifies "the total frequency at" the place or places indi
cated by the letter following it. It is always a function or 
those letters, but not" the I" function in the sense that 
J(x) would be the same function of z as ICy) is of ,1. Also, 
whenever we sum in a given direction, say %, the result is a 
function which is independent of z and 80 that letter drops 
out. Thus, in equation (1),/(x,1I, %) is the total frequency at 
the point, more precisely in the cell at the point, (x, 11, %). 
We sum with respect to z and get/(x, 11), the total frequency 
at the line, more precisely in the column at the line, (r, 11). 
In equation (2) we sum again, now with respect to 11, and 
this letter drops out, leaving I(x), the total slab' frequency 
at x. The notation is su.mmarized in Figure 4, which is a 

Flomu: • 

composite picture of Figures I, 2, and 3. or course we might 
write (2) as a double sum and (3) as a triple sum: 

. I(x) = 'Z'ZJ(x, y, z), N ... 'l;'Z'ZJ(x, 11, z). •• • •• 
No~, further, ins~ad of beginning with a column parallel 

to OZ, we might have begun with one parallel to OX or to OY. 
Another name for a column, running either vertically 01 
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horizontally, is array. We may think of these other possibil
ities geometrically, as pictured for the first case, or, more 
easily if the notation has been understood, we may write 
down the equations without thinking of the geometry. Re
peating (1), (2), (3), and writing down two more analogous 
sets, we have: 

I(x, y) - '%/(x, y, z), I(x) - '%/(x, y), N = '%/(x), ) . ~ . 
ley, z) - '%/(y, z, x), I(y) - '%I(Y, z), N = '%I(Y), . . ~ 

I(z, z) - '%I(z, z, y), I(z) =- '%I(z, z), N = '%/(z). 
~ . . 

(4) 

The relations among these three sets may also be described 
thus: In going from the first to the second, we make what is 
called a cyclical permutation of the letters z, y, Z; that is, 
z becomes- 'V, y becomes z, and z becomes x, as if one were 
going around a circle as in the figure. Do the same in going 
from the second set to the third, and again the o. 
same in going from the third back to the first. • 
This has been done consistently even to the Jf 
point of writing ley, z, x) in the second set ~ 
instead of the usual I(x, y, z). Inasmuch as • 
these-two expressions mean the same, it is really immaterial 
which way they are written. Hereafter, we shall follow the 
usual practice and write them always in the order (x, y, z). 
In all the formulae of this section we might have used 
(X, Y, Z) or (u, v, to) coordinates if desired. 

2. Moments. In the (u, v, to) system we would have the 
following definitions of the mean u, mean v, and mean to: 

MEANS: 

II • .. II • II (5) 
ii = Nt '% ~ ~ ul(u, 11, 10) = Nt ~ ~ u/(u,l1) = Nt ~ U/(U)'] 

ii = ~~VI(V), iii= ~:WI(W). 
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That is" analogous to the two-way case, the general mean 
point (center of gravity) of the correlation solid is given by 
(u, ii, iii), and each of these letters represents the mean of a 
one-way frequency distribution, which consists of all the slab 
totals in a given direction. Taking this point as the origin 
of the (x, y, z) system, we have the moments about the general 
mean defined also in a manner analogous to the two-way 
case: 

MOMENTS: 

•• '." " (6) 
p,,,,' = -N1 ~ x'f(x, y, z) = -N1 ~x'f(x), I 

1 1 
..... = N~Y'f(Y), p,.. = N~z'f(z). 

The (a, b, e) product moment is 

Ixaybr.c = -N1 ~ xaybzcf(x,y,z). (7) 
II.)'". 

There are three important special cases of this: 
Let a = 1, b = 1, e = 0. 

1 1 I"" = N- ~ xy/(x, y, z) = N ~xyf(x, y) = r .. ,cr..a,; (7a) 
2:.11.. :1:," 

where rIO" is the correlation between x and y. The last equa
tion follows from the definition of r"l1 in Part I, Chapter VIII, 
page 137. 

Let a = 0, b = 1, c = 1; then 

I,,, = ,r,,,rr,cr,,. (7b) 

Let a = 1, b = O,e = 1; then 
(7e) 

Note that equations (7b) and (7e) may be obtained from (7a) 
by cyclically permuting the letters. 

Example 1. As a first example we take an artificial one contain
ing only 12 cells and having a total frequency of only 100. These 
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numbers are much too small to yield practical results of value, but 
they are preferable to large ones for an illustration of method. In 
Figure 5 we have an office building of four floorsj Z = 0,1,2,3. 
The partitions have been removed, 
leaving only their traces on the floors. 
The number of individuals in each 
office is the number marked on the 
floor. This is actually the way we 
have to write out a solid correlation 
table, except that usually we do not 
take the trouble to make a solid 
picture, using instead four plane two
way pictures and indicating the level 
(Z) of each just as an architect would 
use four plans. We will now compute 

Y 
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/ > # 
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FIGURE 5 

some of the totals and moments. Let the X and Y units be equal to 
the widths of the cells. Beginning with the column where X = Y =0, 
and adding upwards, we have 

J(X, y) = 1 + 3 + 2 + 1 = 7, at X = 0, Y = OJ 

J(X, Y) == 1 + 2 + 1 + 0 = 4, at X = 1, Y = OJ 

J(X, 11 = 0 + 1 + 1 + 0 = 2, at X = 2, Y = OJ 

etc.j producing finally the set of column totalsJ(X, Y) in Table 1, 
and thence by addition the two slab totalsJ(x},J(y}. 

TABLE 1 

Col ..... " Tolol •• f(Z. y) SIal> T.,.". 

~ 0 1 2 I(y) 

0 7 4 2 13 

1 10 26 ,IS 51 

2 1 16 19 36 

Slab T.,.". 18 46 36 100 f(Z) 
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In constructing f(X, 11 we added upwards. U' us DOW begin by 
adding to the righ' instead, in arrays parallel to OX: 

CMN_" C. __ 

Itr.Z) 
r 6 

0 0 1+1+0-2 
1 0 2+6+3-11 
2 0 0+3+4-7 

0 1 3+2+1-& 
1 1 3+ 8+4 -IS 
2 1 1 + 4 + 5 - 10 

0 2 2+1+1-4 
1 2 3 + 7+5 -15 
2 2 0+5+6-11 

0 3 1+0+0 .. 1 
1 3 2+ 5 + 3 - 10 
2 3 0+4+4 .. 8 

. 
We thus obtain the array totalsf(Y, Z) of Table 2. Then we sum 
f(Y, Z) firs' in the Y and then in the Z direction to ~'f(Z) and 
J(Y) slab totals: 

TABL& 2 

r A-. .,. ..... It r. Z) I ~.,. .... .\ 

~:i 0 1 2 II /(Z) 

0 
'. 

2 7 

'j 
11 20 

1 ! 6 15 10 31 
{ 

2 I 4 IS 11 I 30 

3 I 1 10 8 II 19 

f(n Ii 13 51 36 II 100 
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EXERctSE. Write out the details involved in obtaining the table 
containing the I(Z, X) totals of Table 3: 

TABLII 3 

........ ,.....,., J<Z. Xl 8loI> ,..,.". 

~ 0 1 2 3 I(X) 

0 3 7 5 3 18 

1 10 14 13 9 46 

2 7 10 12 7 36 

I(Z) 20 31 30 19 100 

In the example just used, we have arrived at three tables 
of array totals from which, by the methods of Part I, also 
recapitulated in formulae (5) - (7c), page 319, we may ob
tain the two-way correlations r •• , r .. , r... These are called 
total correlations, to distinguish them from the partial cor
relations to be described later. Notice that the J(X, y) 
table and r •• are exactly what they would be if initially we 
had paid no attention to what floor the offices were on, but 
had treated them all the same, irrespective of the floors. 
Suppose now one had a three-way table showing the relative 
length, brea<lth, and thickness of books. The total correla
tion between length and breadth in such a table would be 
precisely the correlation we obtained in Part I between length 
and breadth, no account having been taken there of thickness. 
Similarly, the total correlation between length and thickness 
would be what one would obtain if he did not measure or con
sider the breadth, and the total correlation between thickness 
and breadth would be obtained by omitting consideration of 
the length. 

The student will have recognized by now that multiple 
correlation tables of the sort we need to have in order to get 
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valuable practical results, containing say 10 X 10 X 10 celIs, 
present an enormous amount of detail, which at first sight 
is confusing. It is the purpose of the mathematical analysis 
to substitute for this mass of detail a certain few important 
numbers which will give a simple and effective description 
of its major characteristics; and we have already seen what 
most of these numbers are, viz., X, P, Z; fT." fT w, fT,; and the 
total correlations. 

Example 2. For Example I, find the general'mean, the IT'S, and 
the total correlations. These are obtained from Tables I, 2, and 
3 after the manner of Part I, and the results are: 

X = 1.18, Y = 1.23, Z = 1.48; IT" = .71, ITw = .66, IT, = 1.015; 
r"'l1 = .40, rw, = .074, r ... = 0.033. 

EXERCISES § 2 

1. Obtain the results of Example 2. 
2. (a) For the following multiple correlation table obtain the 

three tables of array totals and their corresponding slab totals. 
(b) Obtain the general mean, the IT'S, and the total correlations. 

(Z = 1) (Z = 2) (Z '" 3) 

X 4 5 6 ~ 4 5 6 X 4 5 6 

5 1 1 5 1 5 1 
- - - - - - - - - - - -

7 1 2 1 7 1 2 .7 2 1 
- - - - - - - - - - - -

9 4 1 9 1 3 2 9 2 4 4 
- - - - - - - - - - - -
11 1 11 2 1 11 3 4 
- - - - - - - - - - - -
13 ~3 1 13 2 2 

3. Regression. The true regression Burface, z on xy, is 
the locus 1 of the mean points of all the columns parallel to 

1 Strictly, this is not a continuous surface, but a set of isolated 
points through which, of course, many different continuous surfaces 
might be P8.BBed. 
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OZ. Using a notation analogous to that of Chapter V, § 1, 
we may write the mean of the column at (x, y), parallel to OZ, 

z(x, y) == I( 1 ) 'Xzl(x, y, z); (8) x, y • 
and, similarly, the means of the columns parallel to OX and 
OY, 1 

x(y, z) == 1-( ) 'Xxl(x, y, z); (9) y, z ,. 
1 

y(z, x) == 1-( ) 'Xyl(x, y, z). (10) z, x 1/ 

So the equations of the three 
regression surfaces, z on xy, Z 

on yz, and y on %x, are, referred 
to axes through (X, P, Z): 

Y BEGRESSIONSURFACB ZODXY 

z ... z(x, y), z", x(y, z), y = y(z, x) (11) 

In the figure the continuous vertical lines represent colum
nar distributions of frequency. 

Example 3. Plot the regression II on ry in Example 1. To do this, 
we must find the mean of each of the columns, i.e., obtain ;(x, y) 
for each pair of values of (x, 1/). The totals of the several columns 
have, of course, already been computed and are in Table 1, Ex
ample 1. Using the larger letters as coordinates instead of the small 
ones of (8), the mean of the column at (X = 0, Y = 0), whose 
total is 7, is HO·1 + 1·3 + 2·2 + 3·1) = If, and the others are as 
indicated: 

MEANS 01' COLUMNS AT (X, Y) 

~ 0 1 2 

0 ¥=1.43 t=1.00 1=1.50 

1 1.50 1.42 1.53 

2 1.00 1.62 1.53 

These numbers are Z coordinates, and the points should be graphed 
as in the figure. 



EXERCISES I S 

L Obtain results similar to those of Example 3 Cor: (0) the 
regression z on ys, (b) the regression y on u. 

2. Obtain results similar to those of Example 3 and Exercise 1 
Cor the multiple table of Exerci..qe 2 of § 2. 

L Regression Plane. The regression plane II on ry is 
tht plane which best fits the true regression surface. Some
times there is a plane which contains all the mean points of 
the columns. Then we say the n-gression is lint'ar, but w~n 
this is not the esse, and of course it seldom is exactly, we 
can still find the plane which most neMly contains them 
all. As in the two-way case, we use the method of moments 
to determine the equation of this plane. 

Let the desin>d equation be 

II = A + Bz + Cy. (12) 
Equate the Otll and lsi moments of the functions on the 

two sides of this equation, in the z din>ction, also in the y 
din>ction: 
(M moment, z or 11 din>ction) 

N
I ~ ;:fer, 11, z) = ~T ~ (A + Bz + Cy)f(r, 11, II), ..... .l'" ..... 
(lsi moment, z din>ction) 

N
I ~ rzf(r, ,1, z) = NI ~ z(A + Bz + Cy)J(r, 11, z), ..... .. ... (13) 

(lsi moment, 11 din>ction) 

N
I ~ yif(z, ,1, z) = NI ~ yeA + Bz + Cy)f(r, 11, z). ...... .. ... 

These equations simplify because of the n-htions: 

1 ~r, 11, z) = I, .;.~ ~f(z, 11, z) = 0, 

! 'I.yf(z, 11, z) = 0, ! ~zf(r, 11, z) = 0, 

! 'I.z!j'(z, y, z) = a:' ~~ '!'..ryf(z, 11, z) - p ... etc. 
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0== A, } 
p .. - BtT! + Cp"", 
PlIO - Bp"" + CtT:. 

But p." - '."tT.tT", etc., and therefore 

whence 
{

, •• tT • ... BtT. + C,,,,,tT,,, 
'".tT. = BT."tT. + CtT", 

327 

(14) 

B .... 'n - ' .• T" • • tT., C = 'II' - '.11' .. . tT., (15) 
1 - '1. tT. 1 - r!" tT II 

and equation (12) becomes the Regression Plane, I 

.!.(1 _ rt.,) = .!. (r., - r.,r,.) + lL(rp - r.,rn). (16) tT, tT, tT, 

It is pleasant to notice that this important equation in
volves only such quantities as can be found from the three 
two-way tables of column totals indicated in Example 1, 
and that all the necessary computations were considered in 
Part I. This result illustrates well the remark made earlier 
about the objective of the mathematical analysis, for we 
have here an effective summary of the manner in which, on 
the average, changes in z and 11 atl'ect z, without the use 
of anything more complicated than two-way correlations. 
There are two analogous equations for the regression of z 

I Remember this formula thus: 

) + .!.(c-
tI. 

), 

where G is the correlation between the two independent variables, not ,; 
b is the correlation between a and the same letter :r: as appears on the 
other side of its parenthesis; c is the eorrelation between I and the same 
letter 11 as appears on the other side of its parenthesis. After each 
minus sign we now put the product of the other two correlationa: 
after lb - ) we put ac; after (c - ) we put abo It is useful in 
numerical applicationa to remember the equation in this form, not 
thinking of the precise letters :r:, 11, and .. 
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on yz and y on zx, which can be obtained easily from (16) 
by cyclically permuting the letters. In the X, Y, Z letters, 
(16) would have been: 

Z - i X -'X y- Y 
-- (1 - 12.y) = -- (1 •• - 1.y1y.) + --

U. U" Uy 

(1y• - 1.,1 •• ). (I6a) 

EXERCISE 14 

Using the results of the preceding examples and exercises, write 
the equation of each regression plane for: (a) the data of Example 3; 
(b) the data of Exercise 2, § 3. 

Am., (a): Z = .0058X + .11Y + 1.34, 
X = .43Y + .0025Z + .65, 
Y = .040Z + .37X + .73. 

6.1 Extension· to m Dimensions. Equation (16) can be 
written in a very simple form by the use of determinants. 
Let the variables be Xl, X2, and Xa, and suppose (always) 
that Xl is the dependent variable (corresponding to z of § 4). 
Then the regression plane Xl on X2Xa is given by the equation 

where 

Xl X2 R Xa R - Rn + - 12 + - Ia = 0, 
UI U2 Ua 

Tn T12 T13 

R = Tn T22 T2a, 
T31 T32 Taa 

(I6b) 

and R"" is the cofactor of T"", i.e., the minor of T"", including 
the sign which should be prefixed to it when the determinant 
is expanded. Thus, . ~ \ 

RI2 = _I Tn T2al, RIa = I Tn T22I· 
T31 Taa T31 Taa 

Of course, Tn = T22 = Ta3 = 1, and TI2 = Tu, etc., so that for 

1 This section should be omitted by those students who have not 
studied determinants. 
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this three-dimensional case the determinant might have been 
written 

1 rll r11 

R = rll 1 r2l. 

ria r21 1 

Now it happens that the equation for m dimensions is 
exactly analogous to (16b): The regression "plane" Xl on 
XIXa ••• X ... is given by 

Xl R XI Xm 
- 11 + -RIS + ... + -Rim = 0, 
0'1 O'a O'm 

(17) 

where r11 rim 

R ... , and RAll is the cofactor of rAll. 

rm1 

Again it is to be noticed that all the computations may be 
performed by the use of two-way tables only. 

6. Applications. We now illustrate the uses to which the 
regression plane is commonly put, and, in a later section 
(§ 8), we shall consider some precautions that should be 
taken in making these applications. Here let us assume that 
the regression is nearly linear, so that the true regression 
surface is not far from the regression plane, and that each 
column is nearly a symmetrical distribution, so that the 
most likely value (mode) of a column is close to its mean 
value. Then, if we know X and Y, the equation of the re
gression plane (16a) determines, apPlqiimately, the most 
likely value o( Z. 

Example 4. For a set of 665 books like those considered earlier, 
the following correlations, means, and O"s have been computed: 

'LB = .86, '£'1' = .35, 'B'I' = .41; 1. = 20.76, B = 14.72, 
T = 3.42; 0'£ = 3.35, O'B = 2.54, 0''1' = 1.50; in centimeters. 
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(a) Find the equation which gives approximately the most likely 
values of the length, when the breadth and thickness are known. 

(b) Similarly, find the breadth, given the length and thickness. 
In (a) we let L, B, T play the r6les of Z, Y, X of equation (16a): 

So 
L - 20.76 T - 3.42 

3.35 (1 - TIBT) = 1.50 (TLT - rBTTLB) 

B - 14.72 + 2.54 (TLB - rBtrLT), 

whence 
L = 4.06 + 1.14 B - .007 T, in centimeters. 

In (b) we let B play the r6le of Z. So, UBing (16a) again: 

B ~.!!.72 (1 _ .1225) = L ~.;~.76 (.86 _ .143) 

T - 3.42 + 1.50 (.41 - .301), 

whence 
B = 1.15 + .619 L + .210 T, in centimeters. 

Example 5. My forearm measures 18i inches in length; my wife's 
is 16}. (a) What is the most probable length of our son's forearm? 
From Biometrika, vol. 2, pp. 376ft, we obtain the following auxiliary 
data. Let F refer to the forearm of the father, M of the mother, and 
S of the son. One inch is the unit. 

TFM = .198, 
TFS = .421, 

TMS = .406, 

F = 18.3, 
M '= 16.5, 

S = 18.5, 

By (16a) the regression equation is 

"1' = .96, 

"M= .86, 
"8 = .9S. 

S ~9!S.5 (1 _ .039) = F ~9~8.3 (.421 - .OS05) 

+ M -:-si6.5 (.406 - .0835). 

S = 5.56 + .362 F + .383 M. 

Putting F = 18.25 and M = 16.75, this gives IS.58 for S. 
(b) What would be the most probable length of my son's forearm 

if I did not know the length of my wife's? This is an inexact state
ment of the question at issue, for the most probable length of my 



MULTIPLE CORRELATION 331 

IOn'. foreann is not truly affected by my knowledge of my wife's. 
The exact question at issue is: What is the mean length of forearms 
of IOns of all those fathers whose own forearms measure 181 inches? 
This is given, approximately, by the regression (in the two-way 
table of column totals) of S on F: 

and 10 S - 18.49. 

S - ~ =18:.,::.2;,;:.5_-...,;1';..., --'""'8'
"8 '" 

It may be asked, why have both these answers, (a) and (b), to 
Bubstantially the same question? In practice we do not use both. 
If one wished to find the value of S, one would use (a) in preference 
to (b) if one had the data, because, &8 we shall prove anaIyticaIly 
later, (a) is more likely to be correct. In the column at (F, M) the 
dispersion about the mean value of S is less than it is in the slab at 
F. This fact to be established later may be appreciated now by 
the use of a geometrical diagram. 
Consider an ideal case, where all the 
points of the solid, three-way table lie 
exactly in one regression plane AB. If 
we know that F ... JI, M := Z, we can 

s 

B' ___ ~~B 

find that S "". exactly, &8 pictured: A~rA~--I-+~~1I 
we come up from the point (z, JI) to a 
Bingle point P in the regression plane. F 

Let AB' be the projection of AB on 
the plane FS. This is a representation of the two-way correla
tion table of the totals of the columns which are parallel to OM. 
If, now, we knew only that F = JI, we would only know that the 
value of S is such that the corresponding point in AB' is somewhere in 
the line segment P'P". So, in this case, by using the solid figure 
we can find the height of P exactly, but if we only use the plane 
figure, FS, its height is quite uncertain. The total dispersion is zero 
in the column at (F, M); it equals P'P" in the slab at F. In less 
ideal cases the difference is not 80 marked, but it is real and may 
be interpreted geometrically in the same manner. 

The discussion just given indicates that, did we know also other 
pertinent conditions, such &8 the lengths of the forearms of the 
grandparents, or of the brothers or sisters, and the intercorrelations, 
our answer could be even more exact. This is true, and this is why 
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it was desirable to extend, in § 5, the formula for regression in three
way space to m-way space. 

EXERCISES § 6 

1. (a) Using the data of Example 4, find the equation which gives 
the thickness if the length and breadth are known. (b) Which is 
the more important factor? 

2. (a) Using the data of Example 5, find the most probable length 
of my forearm if my son's measures 18.58 inches and my wife's 
16.75 inches. (b) Explain the meaning of 'the result. Why may it 
differ from 18.25 inches? (c) Similarly, find the length of my fore
arm if it be known merely that my son's measures 18.58 inches. 
Why does the answer differ but slightly from that of (a)? 

3. A student's grades are: mathematics, 80%; history, 60%. 
What is his probable grade in chemistry if, in the percentage unit, 

in = 68, 0'. = 10, T. = .3, 
h = 72, 0'" = 8, T_ = .4, 
C = 75, 0'. = 7, T,.. = .3? AM., 75.8. 

4. What would be the results in Exercise 3 if 
(a) his grades in mathematics were unknown? AM., 71.8. 
(b) his grades in history were unknown? AM., 78.4. 

7. Multiple Correlation Coefficient. In Chapter IX of 
Part I, § 2, we learned that 

N
I ~ lJ2f(x, y) = 0':(1 - r 2

), (18) 
,.,11 

where lJ was the distance, measured parallel to the y-axis, 
from the point (x, y) to the regression line y on x. This was 

~
( ..... ) obviously a measure of the closeness with 

6 which the data clustered about this line, 
:x: and its square root was for this reason 

called a standard error of estimate. Also, 
it was evident from equation (18) that the greater rt, the 
smaller was this standard error of estimate. In a similar 
way, we may now form the analogous expression, 

. I 

N 
~ lJ2f(x, y, z), (19) 

StV,-
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where 8 is the distance, measured parallel to the Z-axis, 
between the regression plane and (x, y, z) i and the square 
root of this expression will be called a standard error of 
estimate. Furthermore, we shall prove that this expression 
is such that, if we so define P. that (19) may be set equal to 

uHl - pD, (20) 

then 0 ;:; p2 ;:; 1. The quantity p, thus defined, is called 
the multiple coefficient o! correlation o! Z on xy, and it has 
other properties analogous to those of r in the two-way case. 
Unlike r in the two-way case, it must be accompanied by its 
subscript, for the multiple coefficient of correlation of z on xy 
is not usually the same as that of x on yz or of y on zx. If, 
in (19), 8 were the distance between (x, y, z) and the true 
regression surface, the expression could be put equal to 

u~(1 - 'In, (21) 

where 'I. is the multiple correlation ratio o! Z on xy and is 
analogous to '1111 in the two-way case. In particular, the 
smallness of 

(22) 

is again a. measure of lineariiy of regression. 
In order to prove these statements, we proceed in a. manner 

quite analogous to that of Chapter V. First we prove 

Theorem I. '11~ = N
1 

a l: Z2(X, y)!(x, y). u. ~.JI 

Proo!. By (19) and (21), 

1 
'11~ = 1 - N a l: !(x, y, z)[z - z(x, y)]2 u. ~~. . 

1 
= 1 - - l: !(x, 'V, Z)[ZI - 2zz(x OJ) + Z2(X fI)] 

N(1~ a.II., , II , II 

1 [ 2 _ = 1 - 2 u~ - N ~ z(x, y)l:z!(x, 'V, z) a. a.1I • 

+ N
1 l: Z2(X, y)!(x, y)] . 

... 11 
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The second term in the square brackets is minus twice the 
third term, so that the entire expression simplifies to 

1 
7J~ = 1 - 1 + N 2 l: Z2(X, y)f(x, y), 

a. :C," 
as desired. 

COROLLARY. 0 ~ 7J~ ~ 1. The proof is exactly analogous 
to that of Corollary (b) to Theorem I of Chapter V. 

1 
Theorem n. p! = N 2 l: (Bx + Cy)2f (x, y). 

u. s," 

Proof. By (19) and (20), 
1 

p= = 1 - N 2 l: f(x, y, z)[z - (Bx + Cy)JI 
Ua .z.tI,. 

1 
= 1 - -2 l: f(x, y, Z)(Z2 + B 2x' + CIy' - 2Bxz Na. Z,II,.1 

- 2Cyz + 2BCxy) 
1 

= 1 - O'~ (O'~ + B20'~ + C20'~ - 2Bp". - 2Cpw. 

+ 2BCp".). (23) 
We may simplify the expression in parentheses by the BUb

stitution of the values of p". and Pw. given in (14). Then 
(23) becomes 

1 
p~ = 1 - 1 + "2 (B20'~ + C20'~ + 2BCp"w)' (24) 

0', 

But this is exactly what we get if we expand 

N
1 

2 l: (Bx + Cy)2f(x, y). (25) 
fT. s,,, 

Hence (25) also equals p~ and the theorem is proved. 
COROLLARY 1. 0 ~ p~ ~ 1. By the theorem p1 ~ 0, being 

equal to an essentially positive quantity. By definition (20) 
= (19), and therefore 

1 - pl ~ 0, • 
since this also equals an essentially positive quar.tity. So 

~~1. 
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CoROLLARY 2. If the regression is linear, 

Yo = '1:. 

335 

This follows at once from a comparison of Theorems I and 
II. When the regression is linear, 

z(x, 1/) == Bx + C1/. 
All the statements made above about p. and '1. have now 

been proved. Of course, similar definitions and statements 
apply to p., '1., and to P., '1 •. 

Theorem m. P: = " ... + "i -,;''''''YS' •• - ., 
Proof. Add equations (23) and (24) and simplify: 

u!p! =0 Bp .. + CP •• ... Br .. u.u. + Cr • .u.u .. 
Insert the values of B and C given in (15): 

t (r •• - r • .r •• )r .. + (r .. - r."r •• )r .. 
P. ... 1 - r~. 1 - rJw 

r!. + r :.- 2r •• r • .r .. - . 1 - r:. 
COROLLARY. (a) If r., ... 1, the standard error of esti

mate for z on %11 is the same as it would be if the simple 
correlation z on x or z on 1/ were used. 

(b) If r., = 0, the standard error of estimate is found 
from the relation 

p~ ... r:' + r: .. 
Proofs. Consider first the limiting case, when r., = 1. 

Apparently, by Theorem III, then p~ is infinite because the 
denominator is zero, but this cannot be the case because by 
definition p: ;:ii 1. ""ben r., = 1, it will also happen that 
r •• - r ••• and So the formula of Theorem III really becomes 
0/0. a meaningless expression. We can see what is really 
taking place as ~. approaches 1 by letting r •• = r., first. 
Then Theorem III becomes 

Yo ... 211.(1 - r •• )... 2r:', 
• 1 -- rJ, 1 + r., 
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and now if we let rill approach 1 we see that p: becomes 
equal to r!s. So in this case 

p~ = r~. = r~ •. 
Therefore, as stated in (a), the standard error of estimate, 
O'.Vl - p~, is exactly what it would be if we had used the 
correlation between x and z or y and z only, without adding 

the third variable. This would be a case, 

__ 

then, when no advantage would be gained 
by using multiple correlation instead of 

o '" simple correlation. Geometrically (see 
figure), all the data lie in a plane perpen
dicular to xoy. 

Now consider the other limiting case, when r"" = o. The 
formula of Theorem III becomes 

p~ = r~. + r~ •. 
Hence, in this case, we shall get a much closer fit by using 
multiple regression than if we employ either of the simple 
regressions, z on x, or z on Yi very much closer if also r". 
and r", are nearly equal in value (see also Problem 6). 

Example 6 (Data of Problem 5). One could determine the eye 
color of a son from the eye colors of his two parents more accurately 
than one could determine the' eye color of a father from the eye 
colors of his two sons. For, in the first instance the intercorre
lation of the independent variables (father-mother) is nearly zero 
(.10), while in the second this intercorrelation (brother-brother) is 
considerable (.517). The actual values of p in the two cases tum 
out to be .667 and .567, respectively. The first case approximates 
the ideal, which would have given p = "'(.4947)2 + (.4947)2 
= 0.700. 

The formula of Corollary (b) shows that in the ideal case, 
when the xy correlation is zero, correlations are combined 
like forces in mechariics. It may be extended to m-way 
space: 

p~ = r~ + rfa+ ... + rL... 
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In this connection, Pearson makes the interesting remark 
that this means that grandparental correlation could not be 
more than 1. He assumes that the intercorrelation among 
one's four grandparents is about zero, and that all four are 
equally potent in determining the character of the grandson. 
Then this equation becomes, for m = 4, 

P~ = 4~, 
where T12 is the correlation with any chosen grandparent. 
Since pl :s 1, T12 :s Vi = 1. Similarly, of course, parental cor
relation could not be greater than Vi = .707 (cf. Chapter V, 
§ 5, Corollary c, and footnote). 

EXERCISES § 7 

1. Compute each of the three multiple correlation coefficients for 
the data of Example 2, page 324. 

2. Same for the data of Example 4. 
3. Same for the data of Example 5. Ans., PI' = .422, PM = .407, 

Ps - .534. 
" Using part of the results of Exercise 3, answer the question 

raised in the discussion of Example 5 (b). 

6. Compare the accuracy expected in finding (by linear regres
sion methods) the length of a book, knowing both its breadth and 
thickness, and that obtainable when the thickness only is known. 

6. Similarly, compare the accuracy of the prediction of the grade 
in chemistry from a knowledge of grades in both history and mathe
matics with that obtainable from a knowledge of one only. (Data 
of Exercise 3, § 6.) 

8. Size of N. It is important to know how large a sample 
we should have in order to use the method of multiple cor
relation with some confidence. For this purpose one should 
properly consider the probable errors of the parameters of 
multiple correlation, but this will not be done here. We 
shall, however, mention some general considerations which 
apply to the three-way case. The number of data required 
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will depend, of course, on just what we want to find out from 
the data. 

(a) Complete Information. First suppose we wish com
plete information about our distribution; that is, as nearly 
complete information as we sometimes desired with one-way 
frequency distributions. To solve the one-way case we 
needed, say, about 10 cells and at least an average of 10 data 
in each cell. We were hardly satisfied with less than 100 
data. To solve with similar completeness the two-way case 
we should need 102 cells and a total of 101 data. For the 
three-way case we should need 101 cells and 10' data. This 
is a good many more than we are likely to have, and so we 
can seldom obtain complete information about the multiple 
solid. 

(b) The True Regressions. Suppose next we desire to es
tablish the true regressions of z on xy. We need these to 
get '7's. Let us begin with the two-way case, z on x. To 
establish the form of a regression curve, we can hardly get 
along with less than fi ve well-spaced points of that curve. 
Each is the mean point of a set of data. To find the mean of 
a set of data, we are not usually content with less than 10 
data. This implies the need of 50 data to establish a re
gression curve, but they must be properly spaced. It will 
not do to choose 50 data at random, for they will most 
probably be bunched in such a way as to allow one to de
termine very well the points at the center of our curve, but 
not so well those at the ends. To allow for this tendency in 
random data, let us double the number and say that at 
least 100 random data are required to establish, even very 
approximately, a true regression curve. Now, if we are to 
establish a true regression surface, we should have at least 
five properly spaced curves, that is, apparently 500 data. 
But again, with random data, even though a certain five 
curves may thus be well determined, they will not usually 
be properly spaced unless we allow for bunching toward the 
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center in the 71 direction as well as in the z direction. To 
allow for this, we may perhaps again double the number of 
data. Finally, then, to establish a true regression surface 
using random data, and making no a priori assumptions as 
to the fonn or even as to the smoothness of that surface, we 
need something like 1000 data, at least. 

If we needed one true regression surface only, say z on ry, 
and could control the (z, 7/) spacing of the data, we could 
manage with a smaller number, perhaps 5 X 10 X 5 = 250, 
but it should be noticed that if this were done we would not 
then be in a position to determine also the other regressions, 
for the special spacing of our data for the z on ry case is a 
particularly bad spacing for the other cases. This can be seen 
from a consideration of the two-way cases and the diagram. 

The data tend to be grouped 
within a belt about the true regres
sion curve. This means that in the 
horiaontal rows at Z "" 1 and Z = 5 
there are not enough data to de
termine well the means of these 
rows. This difficulty is greater if the 
regression curve is more nearly par
allel to the X-axis. 

z 

I 

• 

• • • I ]I: 

(c) The Regression Planes. Suppose now that the regres
sion planes only are required. For this we need the means, 
standard deviations, and two-way correlations. Fewer 
data are required for the means than for the standard devia
tions, and, since also fewer are required for the standard 
deviations than for the correlations, it is only necessary to 
consider how many are needed for the correlations. We 
know appro:rimately the standard deviation of a coefficient 

of correlation, (1:-;'), and this will always be less than .05 

if N> 400. We may, therefore, accept this number as a 
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proximate figure for this case, but we must be particularly 
on our guard agamst using correlations obtained by coarse 
groupings, for then the grouping error may be so large as to 
give an entirely erroneous value to r, independently of the 
fluctuations of random sampling. Finally, if one knows that 
the regressions are exactly, or very closely, linear, and one 
requires their equations, he can obtain them with even 
fewer data. Especially, if one wants only one regression 
plane and can control the spacings, a very small number of 
data will suffice, for, to determine this plane, it is only 
necessary to establish well three widely spaced points which 
lie on it. But one seldom does know this, and it is a common 
error to assume that it is true in cases where there are not 
enough data to prove it. A perfunctory computation of 71. 
may agree closely enough with the computed p., but if the 
number of data is so small that not even the true regression 
surface (case b) can be established, let alone 71., which meas
ures the average fluctuation about that surface, such an 
agreement is not a valid argument to establish linearity of 
regression. 

9. Partial Correlation. Let us look back at Figure 3, § 1. 
Here we have a picture ot one slab of our solid, having the 
thickness of one-cell only. It is a two-way correlation table 
involving the relations between z and y which hold for a 
particular value of x. The correlation between z and y 
found from this table is called the partial correlation between 
z and y for the given x and is denoted by 

r." . ." or by r. lI(x). 

When there are only three variables, as here, we may without 
ambiguity write it more simply rex), the correlation at x, 
analogous to lex), the frequency at x. Like lex), rex) is a 
function of x but not "the r function" of x. The true re
gression curves and the regression lines found from this table 
are called also the partial true regre8sions and the partial 
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regression lines. Since the partial regression curve at z of 
z on 11 is the locus of the means of those columns parallel 
to OZ which lie in the slab at z, it must be a section of the 
true regression surface z on xy. But in general the partial 
regression line z on y is not a section of the regression plane 
z on xi;. Indeed, if for all x's all the partial regression lines z 
on xy were drawn, these lines would not in general all lie 
in a plane, but would together constitute the elements of 
a "ruled" curved surface. Likewise, in general, r.w(x) can
not be found in a simple fashion from the total correlations. 
In a certain special case about to be considered this is true, 
but it would be a serious error to assume that it is true in 
general. 

Theorem IV. Let the true regression, z on xy, and the 
total regression, z on z, be linear, and let the standard deviations 
o! all the columns parallel to OZ be the same. 1 Let also cr.(z) 
be constant in the two-way table o! totals !(z, z). Then (a) 
the partial regression line, z on 11 at x, is a section o! the re
gression plane, and (b) the partial correlation is 

TYB - T".T""I 

Proo!. Part (a) is immediately obvious geometrically, for 
in this case both the partial regression line and the regression 
plane contain the mean points of all the z columns in the 
slab at z. To prove part (b), let cr.(x, 1/) be the constant 
standard deviation of the column at (x, 1/). By definition, 
if 8 goes to the regression plane, 

cr!(x, 1/) = -!( 1 
) l;82f(x, 1/, z), 

X,1/ • 
(26) 

1 The distribution is then said to be homoscedastic (equally scattered) 
in the , direction. The conditions of this theorem are satisfied when the 
distribution is "normal," as defined by Pearson. 
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and so, using also (19) and (20), 

(1 - pnO'~ = ~ ~ 02J(X, y, z) = ~ ~ 0': (x, y)J(X, y) 
N",.II.. N",.II 

= O'Hx, y), (27) 

since O'Hx, y) is constant by hypothesis. Similarly, in the 
two-way table at x, we have 

1 
(1 - ~11''')O'~(x) = J(x) f~02J(X, y, z) 

1 
= J(x) fO'~(x, y)J(x, y) = O'~(x, y). (28) 

Furthermore, in the two-way table of totals J(x, z) of those 
columns which are parallel to 0 Y: 

(1- r~)O'~ = O'~(x), (29) 

by Problem 11 of Chapter V. Now putting together (27), 
(28), and (29), we have 

(30) 

Insert in this the value of P: given in Theorem III and we 
have 

~ = r~. - 2r"l/rl/.r." + r~'~II. 
01/'" (1 - r~l/) (1 - r~.) 

Take the square root of both sides, and obtain the result 
desired. 

COROLLARY. When. the conditions oj the theorem are satis
fied, the partial correlation between y and z Jor one value oj z 
is the same as Jor any other value oj z. 

This is obvious from the formula, which does not involve 
the value of x. It means that, not only is the distribution 
homoscedastic in the z direction, but also the correlations 
within all slabs perpendicular to the z-axis are equal. One's 
intuition rebels at accepting this in practical cases. One 
would be unwilling to grant, for example, that the correla
tion between mother and son would be truly independent of 
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the father. So, in practical cases, one must accept the 
theorem as pertaining to an idealized condition which may 
approximate but does not exactly represent the true state 
of affairs. 

Example 7. Use the formula of Theorem IV to find the corre
lation between forearm lengths of mother and son for those cases 
where the father's forearm measures 18.25 inches. 

Let X = 18.25, x = 18.25 - F = - .06, y = M - ii, III = S - s: 

(_ 06) - rSM - rFS rFM - 0 363 
rSM • - _I -. • 

v (1 - r',M)(l - r2
FS) 

As stated in the corollary, the result does not make use of the value 
of x. 

10. Application. The expression derived in § 9 for the 
partial correlation coefficient may be used to eliminate the 
effect of one of the variables. Suppose, as before, that x, y, 
and III are the three variables, relative to the general mean as 
origin, and that we would like to know what the correlation 
between III and y would be if it were not for the presence of x. 
It is not always true that this problem has a solution, but 
when it does have one we might try to find it somewhat as 
follows: First subtract from the III of each point that part of III 
which is indicated as due to the influence of x by the equation 
of the regression line, III on x. Then subtract from the y of 
each point that part of y which is indicated as due to x by 
the regression line, y on x. Finally, find the ordinary cor
relation between what is left of III and what is left of y. The 
result, we shall prove, is precisely the r(x) of § 9. When 
interpreted in this manner, r(x) is sometimes called the "net 
correlation" between III and y. 

Proof. Let Ill' be what is left of Ill, and y' what is left of Yi 
i.e., let 

, U., U" 
III = III - rn-x, Y = Y - r",.-x. u. U a 
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U.U. ( ) = -- r," - r,,,r.,,,. 
U.'Ur/ 

(31) 

Now, computing 

U? = N
I ('];Z21 - 2r.,. u, '];zxl + r.. u; '];xt.r) 

Us Us 

and 
= u~(1 - ro",), 

! 
U,,' = uHI - r~), 

and inserting them in (31), we have 

as desired. 

r •• - rurll, r.,1' = J 

VI - ro.VI - r.. 
Example 8. In Example 7 we may now say that .363 is the net 

correlation between the lengths of mother's and son's forearms, 
after elimination in the aforeSaid manner of the effect of the 
father. 

The insertion of the words in the afuresaid manner in this ex
ample was needed in order to insure that too much would not be 
read into the result. We know from § 9 that, if the distribution 
satisfies certain special conditions, then the true partial correlation 
is constant, and is therefore independent of the father, and in that 
case the formula in question does truly eliminate the effect of the 
father. But otherwise it may well happen that the true partial 
correlation for one father is quite different from what it is for 
another, and in that case we do not know what the mother-son 
correlation with the effect of the father eliminated would be. What 
we have actually found is the net amount of correlation left over 
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after lIubtracting the average effect 1 of the father on the mother 
and also his average effect on the son. This method of elimination 
is not ideal, and we must regard our process as affording an ap
proximate rather than a clean-cut and final solution of the problem. 

The further study of partial correlation is omitted because 
it can be treated much more easily by the use of determinants. 

PROBLEMS CHAPTER VI 

1. The following data, in addition to some previously used, are 
taken from a paper by Pearson and Lee, in Biometrika, vol. 2, 
pp. 357-462. The measurements are in inches. 

SU'I'l1R. s ... '" CORRICLATlON' 

MIG" 11' Mia" 
s.. .. 'I'l1 ...... s ... '" 

11' 

F .. n .. -' 67.68 2.70 68.67 3.14 .783 
MOTBI:B-M 62.48 2.39 6l.8O 2.81 .756 

So",-8 68.65 2.71 69.94 3.11 .802 
D .. oOBTu-D 63.87 2.61 63.40 2.94 .828 

FAMILY CORRELATIONS 

'-M '-8 '-D M-B M-D 8-D 

SUTOR. .280~ .514 .510 .494 .507 .553 
£I ... ", .1989 .454 .454 .457 .452 .525 

STATURE-SPAN CORRELATIONS 

1'-8 '-D M-8 M-D 8-8 D-D 8-D 
------------

SUTOR .... S ... '" .418 .423 .424 .431 .444 .471 .478 
S",,,,,SUTORR .399 .407 .390 .385 .444 .471 .456 

In all these cases the correlation solids may be assumed approxi
mately normal. Find the following regression equations (Pearson 
and Lee), and the corresponding multiple correlation coefficients: 

1 Throughout the section we are using the word" effect" in the sense 
of relationship as indicated by the data. not in the sense of a causal 
relationship. 
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Stature, 
S = 14.08 + .409 F + .430 M, D = 10.82 + .386 F + .431 M; 

Span, 
S = 18.04 + .375F + .423M, D = 14.70 + .355F + .395M. 

2. Use the data of Problem 1. (a) How accurately can the 
stature of a man (father) be derived from his span? from his span 
and the span of his daughter also? (b) Which is better to know 
if one wishes to predict the stature of a daughter, the statures of 
her brother and father, or the spans of her mother and father? 
That is, compare the coefficients in the two cases. 

3. Use the data of Problem 1. (a) Find the correlation in stature 
between sons and daughters of those mothers who are 5 feet tall; 
who are 51 feet tall. Why are the two answers related 88 they 
appear to be? (b) Find the correlation between stature and span 
for sons of fathers of given stature. How is this related to the 
correlation given in the table? 

4. Prove the corollary to Theorem I. 

5. (Data from Biometrika, vol. 2, pp. 221, 390, 482.) Correla
tions of eye color in man: son-parent = .4947, son-grandparent 
= .3166, son-great-grandparent = .1879, brother-brother = .517, 
father-mother = .10 (Galton's family records). 

(a) Find the multiple correlation, son on parent and grand
parent. Assume that the correlation between son and parent is 
the same as that between fathe, and grandparent. 

(b) Find the multiple correlation, son on four grandparents, 
supposing the intercorrelations among the grandparents to be 
zero. 

(c) Find the multiple correlation, grandparent on parent and 
son. 

(d) Supposing the intercorrelations within one generation to be 
zero, how well could one estimate one's own eye color from a 
knowledge of the eye colors of eight great-grandparents? of four 
grandparents? of two parents? of one parent? 

(e) Draw a curve through the points indicated by the correlations 
given at the outset, 7S.p, 7S.0, 7S.0-0, and estimate 7S.0-0-0. 

Use ratio paper because Galton and Pearson believed the law to be 
exponential. 
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en From the result of (e) compute the accuracy with which one 
could derive one's eye color by the use of sixteen great.-great.
grandparents. Does this also indicate the accuracy with which one 
might estimate the eye color of one's great.-great,..grandparent by 
the use of sixteen of his descendants in his own generation? 

6. Prove that I p.1 ii:; 1'.1. 



CHAPTER VII 

FINITE DIFFERENCES 

1. Notation. In this chapter we shall consider certain 
elementary parts of the calculus of finite differences. This 
subject is closely allied to the calculus of infinitesimal dif
ferences, the ordinary "calculus" that is more commonly 
studied; and some of the interrelations will be mentioned in 
footnotes. Already we have had occasion to use some of 
the results and a part of the notation of the calculus of finite 
differences. It is a subject which deserves, and commonly 
has, much more space than we can give it in this one chapter, 
but we can give here the parts which the student will most 
often find it convenient to use. 

Our notation will be explained by the use of an example. 

Example 1. Let 'U be the following function of x: u(x) = zI 
+ 3.1;2 + 10, and suppose it tabulated for x = 0, 1, ... , as in
dicated in the first two columns. In the third column, headed .:1, 
we have the "first differences" of u: 4 = 14 - 10,16 = 30 - 14, 

.etc. In the second column, headed tJ.2, we have the "second 
differences" of 'U, which are defined as the first differences of tJ.: 
12 = 16 - 4, 18 = 34 - 16, etc. In the third column, headed 
tJ.s, we have the "third differences" of u, which are defined as the 
first differences of tJ.2: 6 = 18 - 12, 6 = 24 - 18, etc. Strictly, 

" v A A' A' At 

0 10 4, 12 6 0 
1 14 16 18 6 0 
2 30 34 24 6 
3 64 58 30 
4 122 88 
5 210 

348 
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the <11'. are to be thought of as lying on the horizontal lines between 
the .uccessive u's, the <I1"s on the lines between the <I1's, etc. 

In our theoretical work we shall be thinking either of Table A 
or of Table B: in the first the difference, h, between the successive 
%'S, is· always unity; in the second it is always the 8IUIle, but not 
nece88ariIy unity. 

TABLZ A (A - 1) 

• u 4 4' 

0 Uo A. 1 '" <11. ~~ 
2 VI ~I 

<11. I 

3 110 
<I1a 

~: 
4 110 

TABLZ B • 
• .. 4 4-

• z u(z) 
<I1u(z) 

% + A. u(z + II) <I1u(z + II) 
~Iu(z) 

%+ 2A u(z + 2A) <I1u(z + 2A) <I1lulz + II) 
%+3A v(z + 3A) <I1u(z + 3A) <I11u(z + 2A) 
z+4h u(z + 411) 

DEFINITIONS: <I1u(z) ... u(z + 11) - u(z) 
<I1'u(z) = Mu(z) 

4-

~: 
<11: 

4-

~Iu(%) 

..11u(z + II) 

<I1'u(z) .. ~u(z) = M'u(z) = <I1'<I1u(z), etc. 

The "principal" differences are: ~,~,~, etc. 
Ezample 2. We shall prove later that all the <I1"s of Example 1 

are zero. Assuming this to be true now, find u(6) by the process of 
addition only. Add one more 0 to the <11. column. This zero must 
be added to the third 6 in <111 to get the next number in ~I, which is 
also 6. This 6 must be added to 30 to get the fifth number in <111, 36. 
Then 36 + 88 = 124, and finally 124 + 210 = 334 = u(6). 

2. Errors. For most functions, the fourth differences are 
not all zero, nor is there any value of m such that all the 
~"'s are zero, but for most functions the differences do 
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become small ultimately. In making tables of functions, 
one very common method of checking the numerical work 
is by inspection of the differences. 

Example 3. There is an error in one of the following logarithms. 
Locate it by inspection of the third differences. 

II) log II) A AI fl.' 

5.00 .698 9700 
8677 

5.01 .699 8377 -17 
8660 0 

5.02 .700 7037 - 17 
8643 -1 

5.03 .701 5680 -18 
8625 5 

5.04 -.702 4305 -13 
8612 -11 

5.05 .703 2917 - 24 
8588 11 

5.06 .704 1505 -13 
8575 -5 

5.07 .705 0080 -18 
8557 2 

5.08 .705 8637 -16 
8541 -1 

5.09 .706 7178 -17 
8524 0 

5.10 .707 5702 -17 
8507 1 

5.11 .708 4209 -16 
8491 

5.12 .709 2700 

When the table of differences is written in this way, A's on the 
lines between the u's, etc., a single error will manifest itself by pro
ducing unusually large differences on the same horizontal line with 
the error. This will be proved later in a problem. The two l1's in 
the column AI indicate that the error lies on the line between them, 
and it does, for log 5.05 = .7032914 instead of .7032917. It is 
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almost always true that, when the differences are about equal 
numerically, but fluctuating in sign, they are as small as they can 
be made; it is useless to compute higher differences. If it were not 
for this error, the third differences would have been 0, - 1,2, - 2, 
2, - 2, 2, - 1,0, 1. 

EXERCISES § 2 

1. Find the fourth differences of the table of u a 3.1;. - 20, 
using the values at z = 0, 1,2,3,4,5. Ans., 72. 

2. Find the error in the following table by using differences: 
1065, 1079, 1094, 1109, 1120, 1139, 1154, 1170, 1185, 1201, 1217. 

3. Show that 
.:llu(z + A) == u(z + 3A) - 2u(z + 2A) + u(z + A). 

4. By use of Exercise 3 show that 
.:lau(z + A) == u(z + 4A) - 3u(z + 3h) + 3u(z + 2h) - u(z + A). 

5. Difference four times the values of q,IV given in the first column 
of Table IV. 

3. Difference Formulae. The following theorems show 
us the relation between certain functions of x and their 
differences. 

Theorem I. 111(x) and g(x) are two lunctions 01 x, the 
nth difference 01 their sum equals the sum 01 their nth differences: 

An(! + g) = An! + Ang, n = 1, 2, •••• 
Prool· 

A(f + g) = [J(x + h) + g(x + h)J - [I(x) + g(x)J 
= [J(x + h) -/(x)J + [g(x + h) - g(x)J 
= Af+ Ag. 

Repeating the process, 
AA(f + g) = A(AI + Ag) = AIJ + A2gj etc. 

Theorem II. 11 c is a constant, and I is a function 01 x, 
Aft(cf) = c Aft!, n = 1,2, •••• 

Prool. 

Acf = c/(x + h) - c/(x) = c[J(x + h) -/(x)] = cAf. 
The process may be repeated. 
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Theorem m. ~"(aoX") = a.,h"n!, where ao is any c0n

stant, and h = !lX. 
Proof. ~(aGX") = alex + h)" - X"] = aonxlO-lh plus terms 

of lower degree than (n - I). Differencing a second time, 
~2(aGX") = aon(n - l)xlO-2hl plus terms of lower degree than 
(n - 2). Each repetition of the process lowers the degree 
by unity and increases the exponent of h by unity and adds 
one factor to the succession, n(n - I)(n - 2) .•.• So, 
after the process has been used n times, ~"(aGX") = aoh"n!, as 
desired. 

COROLLARY 1. The nth difference of x" is factorial nh". 
COROLLARY 2. The (n + I)th difference of x" is zero. 
COROLLARY 3. The nth difference of a polynomial of the nth 

degree in x is the same as the nth difference of the term in x": 

~"(aoX" + a1x,,-1 + ... + a,,) = a.,h"n!. 

For ~ .. (alxlO-1 + ... + a .. ) = 0, by Corollary 2. 
DEFINITION. The product x(x - h)(x - 2h) ••• (x - mh 

+ h) is caUed "factorial x to m factors" and is written x(·'. 
In the particular case where x is an integer and h = I, this is 
obviously the same as .,P.; and if in addition m = x, it be
comes x!. 

Theorem 1 IV. ~(m' = mx(m-l) h. 
The proof is left for Exercise 4. 
Theorem! V. (Newton's formula.) Iff(x} is a poly

nomial of the nth degree in x, it may be written in theform of a 
series of factorials: 

x(2) x(3I x(1l) 
f(x) = I(O} + x(J)~ + ~ ~~ + ~ ~~ + ... + ~~!~), 

i/~ = 1. 

I This is analogous to the calculus formula ~ = m.:z:--I. In general, 

x(·) plays in the calculus of finite differences a rOle similar to that of 
x- in the calculus of infinitesimal differences. The first is simpler to 
deal with by finite differences, the second by infinitesimal difference3. 

I This is analOgous to Maclaurin' 8 series in the differential calculll& 
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The proof of the theorem that we shall give depends on an 
assumption which can be justified, but we shall not give the 
reasons for it here. We shall assume that/(z) may be written 
as a series of factorials: 

I(z) B ao + alzUl + lJtZ!2l + ... + a..z(·), where m ~ n, (I) 

but that, initially, we do not know what the a's are. We shall 
now determine what values the a's must have in order that 
this may be true. Difference (1) m times: 

~I Ell al + 2lJtZ + 3aaZ(2) + ... + ma..z'-u, 
~'f a 2· I tIt + 3·2aaZ + ... 

+ m(m - l)a..z(-21, 
~81 EI 3·2·1al + ... + m(m - l)(m - 2)a..z(-a), (2) 

lma •. . 
Since these identities are all true for all values of z, they 
must hold when in particular z ... O. Put z ... 0 in (I) and 
(2); it follows that 

1(0) ~o ~I ~~ 0 if ao - , al .. IT' tIt .. l.2' .•• , a.. = In; a. = m > n. 

These are the values desired. 
COROLLARY. 11 & pO! I, let II = z/&. Then I(z) = U(II), 

and U(8) ill a polynomial 01 the nth degree in II and ~,I = I, 
80 that 

SIn) 
u(s) = u(O) + s(tI~o + •.. + -~. 

l!! 
This is a very important formula. 

EXERCISES IS 
L Find &-. 
2. Find lJ.(Jg) •. Ana., g(z + h)lJ.J + J(z)lJ.g. 

3. Find lJ.(!). 
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4. Prove Theorem IV. 
5. The symbol xc-m> is used to denote the "inverse factorial": 

1 
x(x + h)(x + 2h)·· '(x + mh - h) 

Show that Axc-m) = (- m)hxC-m-l). 

6. Write in the form of Newton's series the following poly
nomials: 

(a) x2 + 2. Ans., 2 + x + x(x - 1). 
(b) 3x3 + 4x2 - 1. 

Ans., - 1 + 7x + 13x(x - 1) + 3x(x - l)(x - 2). 
(c) 4x' - 5z3 + x. 

Ans., 13x(x - 1) + 19x(x - 1) (x - 2) + 4x(x - 1)(x - 2)(x - 3). 

4. Interpolation. Consider the following geometrical prob
lem: Given the ordinates, uo, Ul, Ut, •• " U,,' of (n + 1) 
points of a curve, to pass a parabolic curve of the nth degree 
through all these points, and to find its ordinate at a point 
whose abscissa is s (0 < s < 1). Bya parabolic curve of the 
ntli degree is meant a curve having the equation 

y = ao + alS + CZ2s2 + ... + a"s". 

Newton's formula furnishes us with an immediate solution 
of this problem, provided the given ordinates are equi
spaced, for it tells us how to find the a's in terms of the 
differences. An example will make the method clear. 

Example 4.. Find the ordinate at s = .2, given the points in
dicated in the first two columns of the table at the top of page 355. 
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• .. (.) A AI A' 

0 .30 .18 - .06 .04 
1 .48 .12 -.02 
2 .60 .10 
3 .70 

By Theorem V, for 8 = .2, 

u(s) .... 30 + n8
)(.2) - {'~)(.2}(-.8} + ('~)(.2)(-.8)(-1.8) 

= .30 + .036 + .0048 + .00192 = 0.3427. 
The graph is the one on page 354. We should now notice 

the relation of this geometrical problem to the one of inter
polation in a. table. Heretofore, if we wished to interpolate 
in the U(8) table opposite 8 = .2, we should have used the 
principle of proportional parts, and found that 

u(s) - .30 = (.18)(.2), u(s) = .30 + .036 = 0.336. 
This is equivalent to using the first two terms of our longer 
equation, and this in tum is the same as finding the ordinate 
of the straight line which would pass through the points 
A and B of our given curve. This is also called interpolation 
by means of first differences. Now it is geometrically evident 
that it would be better usually to use a. smooth curve going 
through several of the points rather than a. line through two 
of them, and this is what we have done in Example 4. 

Example 5. Find e!.f&41 from the following table, using third 
differences. 

I 0' A AI AI 

1.7 5.474 .576 .060 .007 
1.8 6.050 .636 .067 .007 
1.9 6.686 .703 .074 .008 
2.0 7.389 .777 .082 .008 
2.1 8.166 .859 .090 
2.2 9.025 .949 
2.3 9.974 
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In this case we have to make use of the corollary to Theorem V. 
Take a new variable, say 8, with origin at t = 1.7, and let 8 = 1 
at t = 1.8, so that when t = 1.7 + .0543, 8 = .0543/.1 .... 543, 
1.1(8 = 0) = 5.474, ~o == .576, ~ = .060, t.: = .007. So our for
mula gives us 

1.1(.543) = 5.474 + .5;6 (.543) + '°;°(.543)(_ .457) 

+ .0~7 (.543)(- .457)(- 1.457) = 5.7797. 

The true value is 5.7794. 

5. Backward Interpolation. The successful use of New
ton's formula depends in part on the table actually being 
given for points beyond 8 = 1. When we get to the end of 
a table and wish to interpolate, of course there are no such 
points given. But, since a table does not need to run down 
the page instead of up it, we may in such a case simply 
reverse the table so that the end becomes the beginning and 
proceed as before. If we have already computed the dif
ferences for the table as given initially, we do not need to 
compute them over again, for a little reflection will assure 
us that the new d, d a, d 5, etc., will be the same as before 
except that their signs will be reversed, and that the new 
d 2, d 4, etc., will be exactly the same as before. 

Example 6. Find the ordinate at 8 = 2.3ftn Example 4. 

Old • New • ,,(.) NtfID 4 N .... 4· N .... 4· 

3 0 .70 - .10 - .02 - .04 
2 1 .60 - .12 - .06 
1 2 ,48 - .18 
0 3 .30 

We interpolate at new 8 = .7: 

1.1(.7) = .70 + 1(- .10) + (.7)(; .3)(_ .02) 

+ (.7)(- .3)(-1.3)(_ .04) = 0.6303. 
6 
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EXERCISES § 6 

1. Find eJ.i6 from the table in Example 5, § 4. AnI., 6.3600. 
2. Find 4>(.31) from Table I(a), using only the values given in 

the first column. AnI., .3802. 
3. Similarly, find 4>(1.732). AnI., .0890. 
4. Similarly, find from the first column of Table II: 4>(2)(.73), 

also 4>(2)(2.175). 
6. From Table IV find 4>(4)(.42), 4>(4)(3.335). 

AnI., .7206, .09198. 
6. The amounts which $1000 will be worth after 11 years if put 

at compound interest at varying rates are: 

Per Cent 5 6 7 8 

Valu8 11710.34 $1898.30 $2104.85 12331.64 

Find the amount after 11 years at 5.2%. AnI., 51746.52. 
7.' Use Newton's formula to find the equation of the parabola 

w~ich will go through the points (0,2), (2,5), (4,6), and check your 
result. 

8. A parabola goes through tIre points (10, 2), (13, 5), (16, 4). 
Find the ordinate of that point whose abscissa is 10.5. Ana., 21. 

9. Find e2.'ll from the table in Example 5, § 4. Ana., 9.679. 
10. Find -the ordinate of the point (a) at z = 13.3 in Exercise 8, 

(b) at z = 3.8 in Exercise 7. 
11. Find the value of $1000 after 11 years at compound interest 

at 71% from the table in Exercise 6. Ani., 52215.61. 

6. Inverse Interpolation. In" coming out" of an ordi
nary table, in which the argument changes by equal in
crements but the function changes by unequal increments, 
we usually have to interpolate. In doing so we interchange 
the roles of the argument and function, so that our new 
argument does not change by equal increments although 
the ne~ function does. This is called inverse interpolation. 
We cannot use our previous methods (except linear inter-
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polation), and the problem is often a difficult one. Let us 
indicate its nature by the use of a numerical example. 

Example 7. Find the value of x for which u = 20 in Example 1. 

II: 

0 
1 

2 
3 

.. 
10 
14 

+-20 
30 
64 

Linear interpolation 
gives x = 11, but this 
is not close to the cor
rect value, for u(II) 
= (Ii)8 + 3(11)2 + 10 
= 18.271 ~ 20. 

Of the many methods that have been devised to solve this 
problem, we shall describe here only one. It can be used quickly 
and wi1I give a much better result than can be obtained by linear 
interpolation.1 It consists in dividing the interval, over which in
terpolation must be made, into four equal parts and then using linear 
interpolation. 

COROLLARY TO THEOREM V. II the argument and JUM
tion are displayed as indicated below,lormulae lor interpola,. 
tion at the points x = Ii, x = Ii, x = It are: 

(a) at x = Ii, u = Th [ .. 7uo + 105ul + 35Ut - 5ua]i 
(b) at x = Ii, u = -h [- Uo + 9Ul + 9Ut - Ua]i 
(c) at x = ll, u = Th [ - 5uo + 35ul + I05Ut -. 7u.]. 

ARGUMENT "AND FUNCTION 

II: .. a a' a' 

0 Uo 
Ul-Uo 

1 UI !It-2Ul+Uo 
!It-UI u.-3u.+3uI-UO 

2 !It Ua-2U.+UI 
Ua-Ua 

3 Ua 

1 But too much must not be expected of it. Longer but more accu
rate methods are given in Trac/s/qr Computers, No.2, K. Pearson. The 
present method was suggested by this tract, but is not included in it. 
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These results Collow immediately Crom the theorem by sub
stitution of the proper values. We prove in detail (a) only: 

.J~) _ v, + ~ (III - 110) + ~ . ! . ..! (~ - 2111 + v.) "\4 .. .. .. l2 
5 1 - 3 1 + 4 . 4 . T . @ (v. - 3~ + 3111 - va) 

1 
- 128 ( - 7u. +.IOSul + 35~ - 5u.). 

With the aid oC a machine, these Cormulae can be evaluated 
rapidly, and it is a little better to write Th = 0.0078125, 
-h - 0.0625. The student should prepare a small card as 
indicated in the figures. This should be placed alongside the 
table in which the interpolation is being made. 

FRoNT or C.um 

SZl8LOO' -7 

1.-
<1>_105 

35 

~1_{l) -5 

g- .0078125 

-1 m __ 
9 
9 

-1 

.0625 

Continuing Example 7, now, we first find the value of '" 
that would come opposite z = 11. Place the front 'of the 
card alongside the v's, multiply and add and then multiply 
the sum by .0078125, as indicated. Of course, all the work is 

FRo!l." or C.um 

-7 
<1>_105 

35 
-s 

.0078125 

• 
10 
14 
30 
M 

(2130)(.0078l25) = 16.M06. 

,.,.".. 

- 10 
+ 1170 
+1050 
-320 

lsum=2130 
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done on the machine, nothing appearing on the paper except 
the final answer. Now if our answer were gr~ater than 20 
we should not need to obtain also the value of u correspond
ing to x = It. As it is less than 20 we must do so, using 
the back of the card. This value is 20.1250. We now have 
the following table in which we use linear interpolation to 
find the x required: 

., u 

1.25 16.6406 
4- -20.0000 

1.50 20.1250 

x = 1.4910. As a check, we may interpolate directly in the 
original table opposite this value of x, or in this case sub
stitute the value of x in the formula from which the table 
was made. We find that u = 19.98. Thus our required 
value of x is now known to be a little greater than the one 
we have found. By successive trials .we may obtain it to 
as great accuracy as desired. To six decimal places it is 
1.492033. 

Example 8. Find x if log x = .715000 from the following six
place table. 

'" 'tog", 10fI"'- .698 

5.0 .698 970 970 
5.1 .707 570 9570 
5.2 .716 003 18003 
5.3 .724 276 26276 

This differs from the previous example in that the x's as given do not 
exactly fit the formulae, but all that was really necessary was that 
they should be equi-spaced, and they are equi-spaced. It is simpler 
to use the numbers (log x - .698) and to omit the decimal points. 
In the third column, then, we are required to interpolate to find the 
position of 17,000. This is so close to 18,003 that we try first the 
point at 5.175. Byformula (c) it is 15,910. We have then the table: 
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5.175 .15,910 
..... -17,000. 

5.200 18,003 

Interpolating linearly in this we find x == 5.18802, and the true 
value to six figures is 5.18800. Linear interpolation if used initially 
would have given 5.18811. 

Example 9. Solve the equation z' + 3:&2 + 10 = 0, so as to find 
all the real roots. 

Let!(x) EO z' + 3:&1 + 10. We are required to find those values 
of x for which !(x) is zero. First we make a table (A) of !(x). 

TABLE A 

,. J(z) 

-5 - 40 
-4 - 6 
-3 10 
- 2' 14 
-1 12 

0 10 
1 14 
2 30 

From this table we find that!(x) = 0 probably for some value of 
x between - 4 and - 3, and we are required to interpolate so as to 
find that x. We now confine our attention to the first four rows of 
the table and proceed as ~efore, obtaining Table B. 

TABLE B 

,. J(z) 

-4 -6 
- 3.75 - 0.54687 

f-

- 3.50 3.87500 

Interpolating so as to make !(x) = 0, we find x = - 3.719. The 
true value to four figures is - 3.7219. This indicates an error of 
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about 3 in the fourth figure. Better accuracy may now be ob
tained by substituting the value found in the equation and other 
values near it, so as to form a new table in the closer vicinity of the 
root. However, this is not recommended, because, if a high degree 
of accuracy is required, there are other methods which should be 
used instead. The root found above is the only real root this 
equation has. 

EXERCISES' § 8 

L In Example 7, find x if u = 29. Am., 1.954. 

2. In Example 8, find x if log x = 0.710,000. Ana., 5.1286. 
3. In Example 9, find x if fez) = 40. An •. , 2.360. . 

4. In Table IV, find the smallest value of x for which ~(·)(z) 
= 0.8000. AnB., .3797. 

5. In Table IV, find x if ~(·)(x) = - 0.7000. An •. , 1.213. 
6. In Table IV, find the smallest value of x for which ~(6)(z) 

= 0.1000. 

'1. Find the median in the frequency table of Example 1, Part I, 
Chapter III, page 36, using a more refined method than simple 
interpolation. 

8. In Exercise 6 of § 5, find the rate of interest for which the 
value of SI will be S2 after 11 years. 

'1. Summation of Series. The problem of this section is 
one of finding a compact formula which will express the sum 

,. u • 4 .. 4 .. 

0 U, u, ..1, ..1! 
1 U, u, ..1, ..1: 
2 U. Us ..1a ~ . . · · . . · . · 

· . · 
" U. u. ..1. ..1: 

, The answers given are not necessarily the true values. They are 
the values that should be found by the methods to be used. The true 
value of z in Exercise 1 is about 1.958. 
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of the first n tenns of a given series. We had to use such a for
mula in l~llrt I, Chapter VII, § 3, for the sum I' + 2' + ... 

(
n - I)' n(n + 1)(n - 1) + -2- ,and we asserted that it was 2-1 . 

In the general case, we will insert in our difference table (page 
362) a column of V's of which the u's are the first differ
ences, and we have the following theorem: 1 

Theorem VI. The Bum 01 the first n termB 01 the u BeneS is 
V. - Vo; in BlImbols: 

II-I ]" ~ u= U •. 
• -0 0 

The proof is very simple .. Since Uo - U 1 - U 0, etc., 

Uo + Ul + ... + U_a - (Va - Ua) + (VI - Va) + '" 
+ (V. - V_a), 

and in this latter sum all the tenns cancel in pairs except 
- Vo and U •. 

Application. To apply this theorem as it stands, it is 
necessary to know what V. is,' and unfortunately we have 
at our disposal but a few simple cases in which we do know 
U •. These are indicated by difference fonnulae similar to 
those of § 3. The most important of these is (Theorem IV) 
~x(·) - mx(-Ilh. lIenee, if u. - x(-Il, 

x<") 
U. - mh' 

We may apply this to an example like the following. 

Example 10. Find the sum of 20 terms of the series, 

20·19·18 + 21·20·19 + ... + 39·38·37. 

I It is analogous to the ramiliar relation between the definite and the 
indefinite integral in calculus. U. plays the part or the indefinite 
intl'gral. In ract, U.:r. may be called the definite Bum and U. the in
definite Bum. 

• Just aa in intl'gration, it is necessary to know the indefinite integral. 
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This series is of the form 20("'-') + 2H"'-') + .,. + 39("-'), 11. being 
1 and m - 1 being 3; and if the origin be taken so that Uo ... 20("'-'), 
the sum of the first (n = 20) terms is Uso - Uo• Since 

20('" 40("') 
Uo = --, and U20 = --, m m 

the desired sum is 
1[40(4) - 20(4)] = 519,270. 

Whenever the u function is a polynomial in x, the sum can be 
found by a neat application of Newton's formula. The idea I is: 
Express the polynomial in a series of factorials and then, by the 
method of the theorem, sum each individual term. 

COROLLARY. If u(x) is a polyno.mial of the kth degree in x, 

n(l) n(2). 

Uo + Ul + •.. + Un-l = Uo If + ~0""lf + ••• 
n(i+ll 

+ ~tltir 
Proof. By Newton's formula, 

x(l) X(2) 

u", = Uo + ~o l! + ~~ If + 

and so, by the theorem, 
71-1 ~ .. -I ~t .. -I ~ ... -I 
~ U'" = nuo + ~ ~ x(1) + ~ ~ x (2) + •.. + 1",0 ~o XU.). 
o I! 0 ~ 0 e 

But each individual sum on "the right is of the form 

and so 

,,-I XCrH)J" nCrH) 
~ X Cr) =-- =--, ° r+lo r+l 

.. -I ~o ~2 
~ U'" = uon + ""[n(2

) + @On(3
) + 

the form desired. 

Example 11. Find the sum of I' + 2' + .,. + nt. To apply 
the corollary we notice that the general term is of the form x', a 

1 This is analogous to the following method of integrating: Expand 
the integrand in a power series, and integrate each term separately. 



FINITE DIFFERENCES 365 

tllrnple polynomial in Z; but the sum does not begin with 0'. We 
might prefix a 01 term, but in that case we should have (n + I), 
not n terms. Rather than make the necessary substitutions it is a 
little simpler, both in this case and in most cases, to think of the 
difference table, and to use the principal differences, omitting the Z 

altogether: 

tAo - l' Ao - 3 A! = 2 A: ... 0 
V1 - 2' A1 - 5 A: ... 2 
v. - 3' As -7 

1ta-I - n' 

Then, 

Vo + 1.£1 + ... + u..-I ... n.1 + 3 n(n - I) + 2 n(n - l)(n - 2) 
2 6 

n(n + 1)(2n + I) 
= 6 • 

Ezample 12. Find the sum of the first n termS of the series of 
Example 1. 

There we had 1.£0 = 10, Ao = 4, A: = 12, Ai = 6, 
and so 

Vo + 1.£1 + ... + "-I = IOn + ~ n(2) + ~ n(3) + E net) 

= n[IO + 2(n - I) + 2(n - 1)(n - 2) J 
+ l(n - I)(n - 2)(n - 3)]. 

E.g., if n = 100, the sum is easily found to be 25,488,550. 

An incidental value of Theorem VI is that it affords a 
numerical check on the work of differencing. The sum of a 
set of consecutive differences of the (k + l)th order should 
equal the difference between the first and the last differences 
of the kth order. . 
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EXERCISES § 7 

1. Find the sum, 1 + 2 + 3 + ... + n. 

2. Find the sum, P + 23 + ... + n3. An8., n
2
(n: 1)1. 

3. Find the sum, 12 + 32 + 52 + ... + (2n - 1)1. 

An8., i(4n' - 1). 

4. Find the sum, 22 + 42 + 62 + ... + (2n)2. 
2n 

Ana., a(1 + n)(1 + 2n). 

Ii. Use Theorem VI to prove that 

a(3) + (a + 1)(3) + ... + (a + n _ 1)(31 = (a + n)(4) - a(4). 
4 

6. Find the sum of 100 terms of the sequences: 
(a) - 2, - 1, 2, 7, 14, ...• Ana., 328,150. 
(b) 11, 30, 67, 128, 219, ...• Ana., 26,533,100. 

7. Check the answers to Exercises 3 and 4 by adding them to
gether and comparing with Example 11. 

8. Prove formula (10) of Chapter VII, Part I, page 108, both 
for the case whe;e n is odd and where n is even. 

9. (a) Find the sum, 14 + 24 + ... + n4. 

An8., n(n + 1)(2n + iJ(3n
2 + 3n - 1) = 1(12 + 22 + ... + n2) 

(3n2 + 3n - 1). 
(b) Find the sum, 14 + 34 + ... (2n - 1)4. 

An8., 1[12 + 32 + ... + (2n - 1)2](12n2 - 7). 

10. Prove formula (20) of Chapter VII, Part I, page 123. 
11. Use the method of Example 12 to check the values of the 

differences you found for Table IV in Exercise 5 of § 2. 

PROBLEMS CHAPTER VU 

1. Show that the table of binomial coefficients may be looked 
upon as a table of successive differences. Express the essential fact 
here as 8 special case of Theorem IV. 
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TABLE 01' BINOMIAL COEFI'lCIENTS 

n .C. • C, .C • .C, .C, 

0 1 
1 1 1 
2 1 2 1 
3 1 3 3 1 
4 1 4 6 4 1 · · . . · . · 

2. (a) Show that, if u(x) is any polynomial of the second degree, 
and if, opposite Borne particular value x' of x, an error is introduced 
so that u(x') is written u(x') + E, then AI will be 0 except for a set 
of numbers, E, - 3E, 3e, - E, symmetrically situated with respect 
to the line x = x'. . 

(b) Prove the corresponding theorem for a polynomial of the nth 
degree. 

3. Find A( .. P,,) with respect to x. An,., ..P.(n - x-I). 

4. Find A( .. Cz ) with respect to x. Ana., .. Cs(n ~ ~ ~ 1). 

5. Find A(.P.) with respect to n. An,., X..P_I. 
6. Find A( .. C.) with respect to n. An,., .. C_l • 

7. Find A( .. C,p"-'q') with respect to t. 
An ... , .. C,flr,(n - t . j _ 1). 

t+ 1 P 

8. Show that Au(x)v(x) = u(x)Av(x) + v(x + I)Au(x), if Ax -1. 

9. Show that A sin (x - i)a = 2 sin ; cos xa, if Ax = 1. 

10. Hence, prove that 2! + ~ cos xa = sin (n + i)a . 
.. -1 2 . a 

SIn 2 
This is a useful formula in the theory of trigonometrical series. 
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11. From (8) show that, 
n-l n-l 
l: u(x).:1v(x) = u(x)v(x)]: - l: v(x + 1).:1u(x). 

s-=O .-0 

Elevation Range in Yards Time in Seconda 

30° 32935 40.06 
35° 34226 45.02 
40° 34843 49.69 
45° 34764 54.07 
50° 33963 58.12 

(a) Find the range and time of flight for an elevation of 32°. 
(b) Find the elevation and range when the time of flight is 50.00 

seconds. 
(c) Find the ranges for a table constructed from the (ollowing 

elevations: 37.50°,38.75°,40.00°,41.25°,42.50°,43.75°. 
(d) Estimate graphically the maximum range for this gun, using 

the results of (c). 

14. Tables of the moon's positions (declinations) (or March 25 
are given as follows: 

Hour 

o 
1 
2 
3 
4 

Declination (South) 

10° 07' 07;9" 
9 58 56.4 
9 50 41.8 
9 42 24.3 
9 34 03.7 

An astronomer observes the declination to be go 55' 0". What time 
is it? 
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15. Solve approximately the equation, z sin z = I, by tabulating 
the function at the points z = 1.0, 1.1, 1.2, 1.3 radians, and in
terpQlating. 

16. A portion of Pearson's x-teat table for P is (to four placeR): 

X" .' -I 

1 .9626 
2 .8491 
3 .7000 
4 .5494 
5 .4159 

Find P if n' ... 6 and Xl == 2.42. 

17. From the table in Problem 16, find Xl such that P = 0.8. 
18. Find the Bum to n terms of the aeries: 

11 + 41 + 71 + 1()1 + .... 
.. -1 

19. Use Problem 3 to find ~ ..P.(n - z - 1) • 
• -0 

20. (a) Show that 

.C, - .CI-I + .CI-I - .CI-I + ... == .Co = _IC, 
by Buccessive use of the relation that 

.C. = .. IC. + .. ICr-I. 
(b) What is the value of 

.C. + .C_I + .,. + .Co? 
(ef. page 201.) 

(e) What is the value of .C. - .C_I + ... == .CoT 



PART III: FOUR-PLACE TABLES 
OF PROBABILITY FUNCTIONS 



FOUR-PLACE TABLES OF PROBABILITY 
FUNCTIONS 

1. Preface. The purpose of these tables is to enable the stu
dent, or the practicing statistician, to obtain quickly approximate 
answers to certain simple problems in the theory of probability. 
They have been compiled, partly by compressing certain longer 
tables, partly by independent computation. The method of tabula
tion follows that of Huntington's Four-Place Tabla oj LogariJ.hnuJ 
and Trigonometrie FunclioM. Interpolation in such tables is ex
tremelyeasy. Thus, instead of using both Table I and Table II of 
Pearson's Tablu Jur Stati81iciaM in order to find the partial area of 
a normal curve when the abscissa is given, and also the abscissa 
when the partial area is given, it is here necessary to use but one 
table; for interpolation is just as easy if one is coming out of these 
tables as it is if one is entering them. In the introductory material 
preceding the tables, the exact formulae to be tabulated are given, 
and also, in each instance, an illustration of the use to which the 
table may be put. In particular, it is shown (p. 377) that the tables 
are sufficient for the approximate solution of the very important 
problem of the skew point binomial. 

2. Explanation of the Tables. Table L This is a tabulation 
of the area, fa 

1(1 + a) = J--~(z)dz, (1) 

where ~(z) is the normal function, 
1~ 

~(z) = --e a, 
V2r 

(2) 

in such units that the standard deviation and the total area under 
the curve are both unity. Here, in the notation used by Sheppard 
and Pearson, a stands for the area, 

a = J:. ~(z)dz. (3) 

For the explanation of the column headed lie," see page 378. 
373 
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Application. The point binomial (p + g)" may be written in the 
form: 

(p + g)" = p" + ... + .. C.P"g' + ... + q" 
= u(o) + ... + u(t) + ... + u(n). 

(4) 

Its mean t, mean 8, and standard deviation are: 

i = ng, i = np, 11 = Vfiijq. (5) 

If p is not very far from !, and if n is large, the sum of those terms 
in which 8 differs from 8 (or, what is the same thing,' differs from l) 
by k or less is, approximately, 

21" Ib(x)dx, where x = (k + 1)/11. (6) 
o , 

Also, the sum of those terms in which 8 differs from i by k or more is, 
approximately, 

2'£"" Ib(x)dx, where x = (k - 1)/11. (6a) 

In both (6) and (6a), k must be the differences between i and two 
actually occurring exponents 8. These exponents are integers, but 
usually i and k are not integers.1 For numerical illustrations see 
pages 214-216. 

Table I(a). This is a tabulation of the function called Ib(x) in 
equation (2). 

Application. If p = g, the term u{t) of the point binomial (4) is 

1£1 1 u{t) = _._. 
B!tl 2" 

(7) 

This may be computed outright by the use of Table V, but, if n is 
fairly large, a close approximation is: 

1 _ r- (t-n/2( 
u(t) = - Ib{x), where 11 = Iv n, and x = --_. 

11 11 
(8) 

Tables II, m, and IV. These are tabulations of the second 
and third derivatives of Ib{x), 1b(21{x) = (Xl - l)lb(x), 1b<2l(x) = 
(3x - r)lb(x), and IbW(x) = (z4 - 6x2 + 3)Ib(x). 

1 In practice the condition is seldom exactly satisfied, but often 
sufficiently nearly satisfied to permit the formula to be a good approxi· 
mation .. 
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Application. Let the sum of the first (t + 1) terms of the point 
binomial (4) be indicated by 

Approximately, 
8'+1 = u(O) + ... + U(I). (4a) 

8,+1 = L<»q,(x)dx + q ~ P q,(2) (x) - 2~ (;2 - ~) q,1al(x), 

where x = B-1 - np, B = n - t. (9) 
11 

Also, the sum of the last (. + 1) terms is approximately equal to 

(<» q,(x)dx - q - P q,<21(x) - 1. (~ - !!) q,1al(x) J", 611 24 112 n ' 

where x=t-I-nq. (9a) 
11 

The sum of those terms in which t lies in the interval a ~ t ~ b, 
a and b being integers, is approximately equal to 

LS,q,(x)dx + [q ~ P q,<21(x) + 2~ (~ - ~) q,<al(x) J: (9b) 

where the bracket has the same meaning as in the calculus, thus, 

[lex) J: = !(X2) - !(XI), 

and 
a-I-nq b+l-nq 

XI = , XI = . 
11 11 

Equations (9), (9a), and (9b) may all be used to solve any problem 
for which anyone of them may be used, but sometimes one form is 
more convenient than the others. For numerical illustrations see 
pages 219-221. 

Table IV is used in § 3, Chapter III, Part II, of the text for the 
purpose of plotting a Gram-Charlier curve. 

Table V. This is a tabulation of the logarithm of factorial n, 
from n = 0 to n = 509. If n > 509, one may use the approximate 

formula, log nl = (n + l)log n - n log e + log '\12;, (10) 

where log e = 0.43429 4482, and log '\12; = 0.39909. This formula 
yields also the following approximation to the logarithm of a bi
nomial coefficient: 

log .. ep = (n + 1) log n - (n - r + I) log (n - r) - (r + 1) log r 
- log '\12;. (11) 
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Application. If t is considerably less than nq in the point binomial 
formula (4a), the following is often a close approximation: 

8'+1 = u(t)/(1 - Q), where Q = tpl(, + I)q. (12) 

Also, it is known that the value of 8'+1 found by this formula is 
never less than the true value. The computation of u(t) requires 
the use of Table V, or else of formula (11). If the sum of the laat r 
terms of the binomial is desired, it is best to restate the problem, 
interchanging the values of p and q, so that it reads: Find the sum 
of the first r terms of the point binomial, (new p + new q)-. Then 
a new t is obtained from the relation that r = new t + I, and a neID 
Q from the relation, 

Q = new t . new P, 
new.+1 newq 

and, finally, u(t) is to be computed from the new values of " t, p, 
and q. 

Table VI. If the area under the normal curve I/>(z) be divided 
into N equal portions by means of N - 1 vertical lines, the mean 
z of each portion is given by Table VI. This table is therefore 
useful in giving the normalized position of each number in an 
ordered series. 

Table Vll. R,. is defined as the ratio, area under the normal 
curve I/>(z) from z to infinity, divided by the ordinate at z: 

I COO 
R,. = l/>(z).J,. I/>(z)dz. (13) 

Application 1. The mean value of the area under the normal 
curve from z to infinity equals I/R,.. This is the quantity called 
zlq in the Kelley-Wood table.1 \ 

I For most of the purposes for which the Kelley-Wood table is used, 
sufficient accuracy will be obtained by the use of Tables 1 and I(/J) of 
this set and a slide rule. Kelley's argument p is our (1 + a)/2 of 
Table I. His alternative arguments" and 1, are, respectively" ... 1 - P 
and 1 = p - O.S. His x is our x, and his • is our 1/>. So, given his 
argument p, come out of Table I to obtain x. Then enter Table I (/J) to 

. get his z. Then obtain the ratios, z/p and ./" by a slide rule. On the 
other hand, neither his tabulation of z/, nor Sheppard's tabulation of 
• and , is sufficient for the purpose of Application 2 of Table VII. But 
see also footnote, page 101. 
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Applicatiun 2. If t < nq, in the notation for the point binomial 
used in (4) and (4a), 

S 711 R. I , • t I '+1= (8 _ 1)1 tl d • po- q, approXlUla e y, (14) 

where, in the order suited to computation, a = (8 - l)/p, b = t/q, 
c =- a - b, d2 = alp + b/q, :e = c/d. It is important that the 
value obtained for :e be accurate to the third place of decimals. 
To obtain the sum of the last r terms by this formula, it is best to 
restate the problem, as in the Application of Table V, interchang
ing the values of p and q. In the new problem, one will be required 
to find the first r terms of the new point binomial, (new p + new q)", 
and t + 1 will be equal to r. If 71 > 509, the formula (10) for com
puting the factorials yields us, instead of (14), 

log S'+1 = (71 + 1) log 71 - (8 - 1) log a - t log b - 1 log (8 - 1) 
- 1 log t - log d + log Rz - 0.83338. (14a) 

For numerical illustrations see Biometrika, vol. 16, pages 169, 170. 
3. Rules for the Skew BinomiaL Sometimes one of the for

mulae given in § 2 for the sum of a number of consecutive terms of 
a point binomial gives the best result, sometimes another. Practice 
indicates that the following is a good rule: 

RULE: Case I (t ~ ng, bounding ordinate to the left oj mean). 
(a) Use (12) when Q ~ 1/10, or when :e 5i: 8, where :e 

= (ng - 1)/(1. 
(b) Use (14) or (14a) when 1/10 < Q ~ I, or when 5 ~ :e < 8. 
(c) Use (9), or (9a), or (9b) elsewhere. 
(d) If 71 < 20, enough terms may be computed outright without 

excessive labor, provided the work is properly organized and a 
computing machine is available. 

Case II (t > ng). In this case the problem may be restated, with 
interchanged values of p and q. Then the new , will be found to be 
less than the new ng. A new Q is then obtained, and a new:e. For 
these new quantities the rules of Case I hold. 

Summary. In general, therefore, if the bounding ordinate of the 
tail area to be found is far from the mean, use (12); if at a moderate 
distance, use (14) or (14a); if near the mean, use (9), or (9a), or 
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(9b). The last type of formula may be used over a greater range on 
fairly symmetrical functions than on very skew ones.' 

4. Accuracy of the Tables. In these tables there is a possible 
error of about .55 in the last place kept. This is a departure from 
the best practice, in which the error allowed in the last place kept 
is 0.50. The reasons for this slight departure are that these tables 
are essentially abbreviated forms of longer tables which would be 
available usually if really needed, and that the extra accuracy 
cannot be maintained uniformly in a table without long computa
tions at occasional points. In addition to this small error, there is 
a larger possible error which the user can make when he interpolates 
by means of the tenths of the tabular difference given at the right 
of his line. These are the tenths of the average tabular difference 
on that line, not necessarily of the actual tabular difference which 
he should use. The maximum total error that can result from a 
combination of both these causes has been computed and is given 
in the column headed "e." U one is not satisfied with the accuracy 
thus obtainable, he always has the option of interpolating in the 
usual way by finding his own tabular difference. Further, if he 

1 The author has devised these rules and chosen these tables IlII the 
most feasible and generally applicable method of obtaining a good 
approximation quickly to the sum of a group of terms of the skew point 
binomial, after much experimenting with various formulae and methods. 
Certain other formulae have not been chosen becaUlle their ranges of 
applicability were not sufficiently great, or becaUlle their UIIe would re
quire the tabulation of special functions which would not be 80 Ulleful 
in an elementary course. 

The most obvious choice of such special functions would be the 
partiaI area under Peareon'8Type III curve, for this curve Willi originally 
devised to fit the point binomial. This function has been tabulated in 
part by Peareon (Tablea 0/ the Incompleie Gamma Function), and, in a 
form better suited to this UIIe, by SalvOBa (The Annala 0/ Malhem4lical 
Slalislics, vol. 1 (1930), p. 191). The accuracy and speed of SalvOBa', 
table is comparable with the UIIe of formula (9); 80metimes one method 
is a little better, 80metimes the other. For the types of cases to which 
it is suggested that it be applied, formula (14) is clearly superior in 
accuracy to either, although the computation is quite a little longer. 
The tables of the incomplete Gamma function are particularly Ulleful 
when p or q is very smalI and " is very large. 
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is to be sure of keeping within the limit of error indicated by t, 
he must not interpolate over a range greater than fiv&-tenths of 
the difference between two consecutive tabular values. Thus, in 
enterinr; Table I, instead of going. to the right and adding a. cor
rection for seven-tenths of the tabular difference, one should go to 
the left and subtract the correction for thre&-tenths. 

The values given in the tables have been checked by differencing, 
and in other ways. 

THREE-PLACE LOGARITHMS 
Ii. Table vm. This is a thre&-place table of common logarithms, 

to be used where slide rule accuracy is sufficient. No interpolation 
is required or desirable. Both in entering and in leaving the tabltl 
of logarithms, one chooses the nearest number obtainable without 
crossing a horuontal line. In simple computations it is often 
better, as with the slide rule, to omit characteristics altogether and 
to find the position of the decimal point in the answer by some 
other method. In extracting roots, however, it is of course '.ery 
necessary to write the characteristic. This table may be used to 
find square roots so very readily that it seemed unnecessary to add 
a table ofsquare roots. E.g., by this table v'OOA-9.51 without 
interpolation. A table of square roots which would give this with
out interpolation would involve the tabulation of the roots of 9040 
numbers. 



TABLE I 

f'" t/>(",)fk - ArlO "nd .. t/>(",) Irom - CD 10 "'. Tenlh, 01 M ..... Tabular 
-CD 

Diffar.,."o 

% 0 1 2 3 4 6 6 7 8 9 1 2 3 4 6 et 
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 4 8 12 16 20 0.6 
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 4 8 11 15 19 1.1 
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 4 8 11 15 19 0.9 
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 4 8 11 15 19 0.7 
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 . 6879 4 7 11 15 18 0.6 ... 
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 3 7 10 14 17 0.9 
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 3 6 10 13 °16 1.1 
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 3 6 9 12 15 0.9 
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 3 6 8 11 14 1.0 
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 oi365 .8389 3 5 8 10 13 1.2 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 2 5 7 9 12 1.3 
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 2 4 6 8 10 1.1 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 2 4 5 7 9 1.1 
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 2 3 5 6 8 0.9 
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 1 3 4 5 7 0.8 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 1 2 4 5 6 0.7 
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 1 2 3 4 5 0.6 
1.7 .9554 .95M .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 1 2 3 3 4 1.0 
1.8 .9641 .9649 .9656 .96M .9671 .9678 .9686 .9693 .9699 .9706 1 1 2 3 -4 0.5 
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 1 1 2 l! 3 0.7 



1C 0 

2.0 .9772 
2.1 .9821 
U .9861 
2.3 .9893 
2.& .9918 

11.1 .9938 
2.& .9953 
I.T .9965 
1.8 .9974 
2.9 .9981 

3.0 -9865 
3.1 9903 
U 9931 
a.3 9952 
3.& 9966 

j"'t/>(z)ch 
-CD 

JC 

f"'t/>(z)ch 
-CD 

f'" t/>(",)u - Ar ... u""'" t/>(",) Jr- -CD 10 ... TmtM 01 M .... TGbuIar 

-CD 
Differmt:e 

1 2 3 & 15 & 7 8 , 1 2 3 

.9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 1 1 2 

.9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 0 1 1 

.9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 0 1 1 

.9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 0 1 1 

.9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 0 0 1 

.9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 0 0 0 

.9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 0 0 0 

.9966 .9967 .9968 .9969 .9970 .9971 .9972 .91)73 .9974 0 0 0 

.9975 .9976 .9977 .9977 .9978 .9979 .9979 .1980 .9981 0 0 0 

.9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 0 0 0 

9869 9874 9878 9882 9886 9889 9893 9897 9900 0 1 1 
9906 9910 9913 9916 9918 9921 9924 9926 9929 0 1 1 
9934 9936 9938 9940 9942 9944 9946 9948 9950 0 0 1 
9953 9955 9957 9958 9960 9961 9962 9964 9965 0 0 0 
9968 9969 9970 9971 9972 9973 9974 9975 9976 0 0 0 

Sperial Val ..... Deeile. and Quartil .. 

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50 

------------ --------------
'1'1.6449 '1'1.2816 '1'1.0364 '1'.8416 '1'.6745 '1'.6244 'I'.S853 '1'.2533 '1'.1257 .00(;0 
------------ --- --- -----------

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 

t For explanation or the Iymbol e lee Introduction to theBe tables. page 378 • 
• For explanation or the 8ymbol • see page 383. 

& 

2 
2 
1 
1 
1 

1 
0 
0 
0 
0 

2 
1 
1 
1 
0 

-
15 et 
3 1.1 
2 0.5 
2 0.7 
1 0.8 
1 0.1 --
1 0.7 
1 0.8 
1 1.0 
1 1.0 
0 0.3 
--

2 0.6 
2 1.1 
1 0.6 
1 0.6 
1 0.8 

z is negative 

z ia positive 

... 



TABLE I (Continued) 

f'" q,("')"'" = Area under q,(z) /rom -00 '" "'. Tenlh. 01 Mean Tabular 

-00 
DiJlermc. 

JC 0 1 2 3 4 Ii 6 7 8 9 1 2 3 4 15 e --
3.Ii ·*9767 9776 9784 9792 9800 1 2 2 3 4 0.6 

9800 9807 9815 9822 9828 9835 1 1 2 3 4 1.2 
3.6 9841 9847 9853 9858 9864 9869 9874 9879 9883 9888 1 1 2 2 3 1.0 
3.7 9892 9896 9900 9904 9908 9912 9915 9918 9922 9925 0 1 1 1 2 1.3 
3.8 9928 9931 9933 9936 "9939 9941 9943 9946 9948 9950 0 0 1 1 1 0.9 
3.9 9952 9954 9956 9958 9959 9961 9963 9964 9966 9967 0 0 0 1 1 0.6 --
4.0 9968 9970 9971 9972 9973 9974 9976 9977 9978 9978 0 0 0 0 1 0.8 
U 9979 9980 9981 9982 9983 9983 9984 9985 9985 9986 0 0 0 0 1 0.7 
U 9987 9987 9988 9988 9989 9989 9990 9990 9991 9991 0 0 0 0 0 0.4 ... 
U 9915 9918 9922 9925 9929 9932 9935 9938 9941 9943 0 1 1 1 2 0.5 
'.4 9946 9948 9951 9953 9955 9957 9959 9961 9963 9964 0 0 1 1 1 0.0 

--
U 9966 9968 9969 9971 9972 9973 9974 9976 9977 9978 0 0 0 1 1 0.7 
U 9979 99~0 9981 9982 9983 9983 9984 9985 9986 9986 0 0 0 0 1 0.6 
U 9987 9988 9988 9989 9989 9990 9990 9991 9991 9992 0 0 0 0 0 0.4 _. 
U 9921 9925 9928 9932 9935 9938 9941 9944 9947 9950 0 1 1 1 2 1.2 
U 9952 9954 9957 9959 9961 9963 9965 9967 9968 9970 0 0 1 1 1 0.5 



" 0 1 

11.0 9971 9973 
Ii.1 9983 9984 -11.2 9900 9906 

11.3 9942 9945 
11.4 9967 9969 --
Ii.Ii 9981 9982 
11.6 9989 9990 -II.T 9940 9944 
11.8 9967 9969 
11.9 9982 9983 

f'" t/>(z)th - Ar ... v,.,u,- t/>(z) from - CD It> s. 

-CD 

2 3 

9974 9975 
9985 9986 

9911 9915 

9948 9951 
9970 9972 

9983 9984 
9991 9991 

9947 9950 
9971 9972 
9984 9985 

4 

9977 
9986 

9920 

9954 
9973 

9985 
9992 

9953 
9974 
9986 

Not. 

& 6 

9978 9979 
9987 9988 

9924 
9924 9928 
9956 9958 
9975 9976 

9986 9987 
9992 9992 

9955 9958 
9975 9977 
9987 9987 

• Prefix .9 
.... " .99 

- .999 
- .9999 

- .99999 

T 

9980 
9988 

9932 
9961 
9978 

9987 
9993 

9960 
9978 
9988 

- .999999"" 

TmlAa 0/ M ..... T4bular 
Differena 

8 9 1 2 3 4 & II 

9981 9982 0 0 0 0 1 0.5 
9989 9989 0 0 0 0 0 0.4 

1 1 2 2 3 l.2 
9935 9939 0 1 1 2 2 0.6 

... 
9963 9965 0 0 1 1 1 0.6 
9979 9980 0 0 0 1 1 0.6 

9988 9989 0 0 0 0 1 1.1 
9993 9994 0 0 0 0 0 0.4 

9963 9965 0 1 1 1 2 1.0 
9979 9981 0 0 0 1 1 1.0 
9989 9990 0 0 0 0 1 1.0 



TABLE l(a) 

1 -~ TmtA. 01 M ..... Tabular ~(%) - v'2r. 2 
I>iJlwmu 

" 0 1 I 3 , Ii 6 1 8 9 1 I 3 , Ii et --
0.0 .3989 .3989 .3989 .3988 .3986 .3984 0 0 0 0 1 1.3 
0.0 .3984 .3982 .3980 .3977 .3973 0 1 1 1 2 1.3 
0.1 .3970 .3965 .3961 .3956 .3951 .3945 1 1 2 2 3 1.6 
0.1 .3945 .3939 .3932 .3925 .3918 1 1 2 3 3 0.7 
0.1 .3910 .3902 .3894 .3885 .3876 .3867 .3857 .3847 .3836 .3825 1 2 3 4 5 1.4 
0.3 .3814 .3802 .3790 .3778 .3765 .3752 .3739 .3725 .3712 .3697 1 3 4 5 7 1.4 
0.& .3683 .3668 .3653 .3637 .3621 .3605 .3589 .3572 .3555 .3538 2 3 5 7 8 0.8 --
D •• .3521 .3503 .3485 .3467 .3448 .3429 .3410 .3391 .3372 .3352 2 4 6 8 9 1.1 
D •• .3332 .3312 .3292 .3271 .3251 .3230 .3209 .3187 .3166 .3144 2 4 6 8 10 1.6 
0.1 .3123 .3101 .3079 .3056 .3034 .3011 .2989 .2966 .2943 .2920 2 4 7 9 11 0.6 
0.8 .2897 .2874 .2850 .2827 .2803 .2780 .2756 .2732 .2709 .2685 2 5 7 9 12 0.7 0.. .2661 .2637 .2613 .2589 .2565 .2541 .2516 .2492 .2468 .2444 2 5 7 10 12 0.2 --
1.0 .2420 .2396 .2371 .2347 .2323 .2299 .2275 .2251 .2227 .2203 2 5 7 10 12 0.5 
L1 .2179 .2155 .2131 .2107 .2083 .2059 .2036 .2012 .1989 .1965 2 5 7 9 12 0.5 
1.1 .1942 .1919 .1895 .1872 .1849 .1826 .1804 .1781 .1758 .1736 2 5 7 9 11 0.8 
1.1 .1714 .1691 .1669 .1647 .1626 .1604 .1582 .1561 .1539 .1518 2 , 6 9 11 0.8 
La .1497 .1476 .1456 .1435 .1415 .1394 .1374 .1354 .1334 .1315 2 , 6 8 10 0.8 

1.1 .1295 .1276 .1257 .1238 .1219 .1200 .1182 .1163 .1145 .1127 2 4 Ii 7 9 0.5 
LI .1109 .1092 .10n .1057 .1040 .1023 .1006 .0989 .0973 .0957 2 3 5 7 8 1.3 
U .0940 .0925 .0909 .0893 .0878 .0863 .084S .0833 .0818 .0804 2 3 5 6 8 0.6 
La .0790 .0775 .0761 .0748 .0734 .0721 .0707 .0694 .0681 .0669 1 3 , Ii 7 0.6 
1.1 .0656 .0644 .0632 .0620 .ooos .0596 .0584 .os73 .0562 .0551 1 2 3 5 6 0.7 



t\c.) -~. -~. 2''''''' ., JI_ 2'''''''' 
v2f1 

a 
1>11-

It 0 1 I I , • • 7 • • 1 I I , • -t -- --
1.0 .0540 .0529 .0519 .0508 .0498 .04!!8 .0478 .Oi68 .0459 .0449 1 2 3 , 5 0.6 
1.1 .0440 .0431 .0422 .0413 .0404 .0395 .0387 .0379 .0371 .• 0363 1 2 3 3 , 0.8 
U .0355 .0347 .0339 .0332 .0325 .0317 .0310 .0303 .0297 '.0290 1 1 2 3 , 0.5 
U .0283 .0277 .0270 .0264 .0258 .0252 .0246 .0241 .0235 .0229 1 1 2 2 3 0.6 
U .0224 .0219 .0213 .0:!O8 .0203 .0198 .0194 .0189 .0184 .0180 0 1 1 2 2 0.8 -- --
U .0175 .0171 .0167 .0163 .0158 .0154 .0151 .0147 .0143 .0139 0 1 1 2 2 0.4 
I.' .0136 .0132 .0129 .0126 .0122 .0119 .0116 .0113 .0110 .0107 0 1 1 1 2 0.6 
1.7 .0104 .0101 .00II9 .00116 .00II3 .00II1 .0088 .00!;6 .001>4 .0081 0 0 1 1 1 0.8 
1.1 .0079 .0077 .0075 .0073 .0071 .0069 .0067 .0065 .0063 .0061 0 0 1 1 1 0.6 ... .0000 .0058 .0056 .0055 .0053 .0051 .0050 .0048 .0047 .0046 0 0 0 1 1 0.6 -- --
1.0 .0044 .0043 .0042 .0040 .0039 .0038 .0037 .0036 .0035 .0034 0 0 0 0 1 0.8 
1.1 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 .0025 .0025 0 0 0 0 0 0.5 
U .0024 .0023 .0022 .0022 .0021 .0020 .0020 .0019 .0018 .0018 0 0 0 0 0 0.5 

I 

! 
1.1 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014 .0013 .0013 0 0 0 0 0 0.5 
U .0012 .0012 .0012 .0011 .0011 .0010 .0010 .0010 .0009 .0009 0 0 0 0 0 0.5 -- --
1.1 .0009 .0008 .0008 .0008 .0008 .0007 .0007 .0007 .0007 .0006 0 0 0 0 0 0.5 
1.1 .0006 .0006 .0006 .0005 .0005 .0005 .0005 .0005 .0005 .0004 0 0 0 0 0 0.5 
I.T .0004 .0004 .0004 .0004 .0004 .0004 .0003 .0003 .0003 .0003 0 0 0 0 0 0.5 
I.' .0003 .0003 .0003 .0003 .0003 .0002 .0002 .0002 .0002 .0002 0 0 0 0 0 0.5 I 
I.' .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001 0 0 0 0 0 0.5 --
&.0 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 0 0 0 0 0 0.5 
&.l .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 0 0 0 0 0 0.5 
U .0001 .0001 • 0001 .0001 . .0000 .0000 .0000 .0000 .0000 .0000 0 0 0 0 0 0.5 

t For 6IIplanation of the I)'Jllbol • _ Introduction to th ... tabl .. , pale 378. 



TABLE II 

4>~) - _1_. -f ("" - 1) = ("" - 1)4>("') Tenlh .. , Mea" Tabu-
V21r IarDijJer.""" 

" 0 1 2 3 4 6 6 7 8 9 1 2 3 4 6 e 

0.0 -.3989 -.3989 -.3987 -.3984 -.3980 -.3975 0 1 1 1 2 2.1 
0.0 -.3975 -.3968 -.3960 -.3951 -.3941 1 2 3 4 4 1.6 
0.1 -.3930 -.3917 -.3904 -.3889 -.3873 -.3856 -.3838 -.3819 -.3798 -.3777 2 3 5 7 8 3.3 
0.2 -.3754 -.3130 -.3706 -.3680 -.3653 -.3625 -.3596 -.3566 -.3535 -.3504 3 6 8 11 14 2.0 
0.3 -.3471 -.3437 -.3402 -.3367 -.3330 -.3293 -.3255 -.3216 -.3176 -.3135 4 7 11 15 19 2.3 
0.4 -.3094 -.3051 -.3008 -.2965 -.2920 -.2875 -.2830 -.2783 -.2736 -.2689 4 9 13 17 21 3.5 --
0.1i -.2641 -.2592 -.2543 -.2493 -.2443 -.2392 -.2341 -.2289 -.2238 -.2185 5 10 15 20 25 3.1 
0.6 -.2133 -.2080 -.2027 -.1973 -.1919 -.1865 -.1811 -.1757 -.1702 -.1647 5 11 16 22 27 0.9 
0.7 -.1593 -.1538 -.1483 -.1428 -.1373 -.1318 -.1262 -.1207 -.1153 -.1098 5 11 16 22 27 0.8 
0.8 -.1043 -.0988 -.0934 -.0880 -.0825 -.0771 -.0718 -.0664 -.0611 -.0558 5 11 16 22 27 1.1 
0.9 -.0506 -.0453 -.0401 -.0350· -.0299 -.0248 -.0197 -.0147 -.0098 -.0049 5 10 15 20 25 1.6 

1.0 +.0000 +.0048 +.0096 +.0143 +.0190 +.0236 +.0281 +.0326 +.0371 +.0414 5 9 14 18 23 1.6 
1.1 +.0458 +.0500 +.0542 +.0583 +.0624 +.0664 +.0704 +.0742 +.0780 +.0818 4 8 12 16 20 2.0 
1.2 +.0854 +.0890 +.0926 +.0960 +.0994 +.1027 +.1060 +.1092 +.1123 +.1153 3 7 10 13 17 2.5 
1.S +.1182 +.1211 +.1239 +.1267 +.1293 +.1319 +.1344 +.1369 +.1392 +.1415 3 5 8 10 13 2.3 
U +.1437 +.1459 +.1480 +.1500 +.1519 +.1537 +.1555 +.1572 +.1588 +.1604 2 4 6 7 9 2.1 --
1.11 +.1619 +.1633 +.1647 +.1660 +.1672 +.1683 +.16~4 +.1704 +.1714 +.1722 1 2 3 5 6 2.3 
1.6 +.1730 +.1738 +.1745 +.1751 +.1757 +.1762 +.1766 +.1770 +.1.773 +.1776 1 1 2 2 3 2.5 
1.7 +.1778 +.1779 +.1780 +.1780 +.1780 +.1780 +.1778 +.1777 +.1774 +.1772 0 0 1 1 1 0.9 
1.8 +.1769 +.1765 +.1761 +.1756 +.1751 +.1746 +.1740 +.1734 +.1727 +.1720 1 1 2 2 3 1.4 
1.9 +.1713 +.1705 +.1697 +.1688 +.1679 +.1670 +.1661 +.1651 +.1641 +.1630 1 2 3 " 5 1.3 --
1.0 +.1620 +.1609 +.1598 +.1586 +.1575 +.1563 +.1550 +.1538 +.1526 +.1513 1 2 " 5 6 0.7 
1.1 +.1500 +.1487 +.1474 +.1460 +.1446 +.1433 +.1419 +.1405 +.1391 +.1377 1 3 " 5 7 0.8 
1.1 +.1362 +.1348 +.1333 +.1319 +.1304 +.1289 +.1275 +.1260 +.1245 +.1230 1 3 4 6 7 0.6 
I.S +.1215 +.1200 +.1185 +.1170 +.1155 +.1141 +.1126 +.1111 +.1096 +.1081 1 3 4 6 7 0.7 
1.4 +.1066 +.1051 +.1036 +.1022 +.1007 +.0992 +.0978 +.0963 +.0949 +.0935 1 3 4 6 7 0.7 



4>00 = -L. -~ (':' - 1) = ~ - 1)4>(,:) TmUu 0/ M ..... 1'''''''-
v'2r larDiff..--

Z 0 1 2 3 6 Ii 6 ., 8 9 1 I S 6 Ii II 

--
2.11 +.092() +.0906 +.0892 +.0878 +.08M +.0850 +.0836 +.0823 +.0809 +.0796 1 3 6 6 7 oj 
2.6 +.0782 +.0769 +.0756 +.0743 +.0730 +.0717 +.0705 +.0692 +.0680 +.066S 1 3 4 5 6 0.8 
2.7 +.0656 +.0644 +.0632 +.0620 +.0608 +.0597 +.0585 +.0574 +.0563 +.0552 1 2 3 5 6 0.8 
2.8 +.0541 +.0531 +.0520 +.0510 +.0500 +.0490 +.0480 +.0470 +.()460 +.0451 1 2 3 4 5 0.7 
2.9 +.0441 +.0432 +.0423 +.0414 +.0405 +.0396 +.03S8 +.0379 +.0371 +.0363 1 2 3 " 4 0.6 

1-
3.0 +.0355 +.0347 +.0339 +.0331 +.0324 +.0316 +.0309 +.0302 +.0295 +.0288 1 1 2 3 " 0.6 
3.1 +.0281 +.0275 +.0268 +.0262 +.0256 +.0249 +.0243 +.0237 +.0232 +.0226 1 1 2 2 3 0.1 
3.2 +.0220 +.0215 +.0210 +.0204 +.0199 +.0194 +.0189 +.0l84 +.0180 +.0l75 1 1 2 2 3 0.6 
3.3 +.0170 +.0166 +.0162 +.0157 +.0153 +.0149 +.0145 +.0141 +.0138 +.0134 0 1 1 2 2 0.7 
3.' +.0130 +.0127 +.0123 +.0120 +.0116 +.0113 +.0110 +.0107 +.0104 +.0101 0 1 1 1 2 1.0 
--
3.1i +.0098 +.0095 +.0093 +.0090 +.0087 +.0085 +.0082 +.0080 +.0078 +.0075 0 1 1 1 1 0.8 
3.6 +.0073 +.0071 +.0069 +.0067 +.0065 +.0063 +.0061 +.0059 +.0057 +.0056 0 0 1 1 1 0.3 
3.7 +.0054 +.0052 +.0051 +.0049 +.0048 +.0046 +.0045 +.0043 +.0042 +.0041 0 0 0 1 1 0.2 
3.8 +.0039 +.0038 +.0037 +.0036 +.0034 +.0033 +.0032 +.0031 +.0030 +.0029 0 0 0 0 1 0.7 
3.9 +.0028 +.0027 +.0026 +.0026 +.0025 +.0024 +.0023 +.0022 +.0022 +.0021 0 0 0 0 0 0.7 
- -
'.0 +.0020 +.0019' +.0019 +.0018 +.0018 +.0017 +.0016 +.0016 +.0015 +.0015 0 0 0 0 0 0.0 
'.1 +.0014 +.0014 +.0013 +.0013 +.0012 +.0012 +.0011 +.0011 +.0011 +.0010 0 0 0 0 0 0.0 
U +.0010 +.0009 +.0009 +.0009 +.0009 +.0008 +.0008 +.0008 +.0007 +.0007 0 0 0 0 0 0.0 
'.3 +.0007 +.0007 +.0006 +.0006 +.0006 +.0006 +.0005 +.0005 +.0005 +.0005 0 0 0 0 0 0.0 ,., +.0005 +.0004 +.0004 +.00()4 +.0004 +.0004 +.00()4 +.0004 +.0003 +.0003 0 0 0 0 0 0.0 --
'-Ii +.0003 +.0003 +.0003 +.0003 +.0003 +.0003 +.0002 +.0002 +.0002 +.0002 0 0 0 0 0 0.0 
'.6 +.0002 +.0002 +.0002 +.0002 +.0002 +.0002 +.0002 +.0002 +.0002 +.0001 0 0 0 0 0 0.0 
U +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 0 0 0 0 0 0.0 
'.8 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001 0 0 0 0 0 0·0 
'.9 +.0001 +.0001 +.0001 +.0001 +.0001 +.0000 +.0000 +.0000 +.0000 +.0000 0 0 0 0 0 0.0 



" 
0.0 
0.1 
0.2 
0.3 

0.4 

0.11 

0.6 

0.7 
0.8 

0.9 

1.0 
1.1 
1 .• 
1.3 
1.4 

1.1 
1.6 
1.7 
1.8 
1.9 

o 
.0000 
.1187 
.2315 
.3330 

.4184 

.4841 

.5278 

• 5486 
.5469 

.5245 

.4839 

.4290 

.3635 

.2918 

.2180 

.1457 

.0781 

.0176 
-.0341 
-.0761 

1 

.0120 

.1303 

.2422 

.3423 

.4259 

.4895 

.5309 

.5495 

.5456 

.5212 

.4790 

.4228 

.3566 

.2845 

.2107 

.1387 

.0717 

.0120 
-.0388 
-.0797 

.2· 

:0239 
.1419 
.2529 
.3515 

.4332 

.4947 

.5338 

.5501 

.5440 

.5177 

.4740 

.4166 

.3496 

.2771 

.2033 

.1317 

.0654 

.0065 
-.0433 
-.0832 

3 

.0359 

.1534 

.2634 

.3605 

.4403 

.4996 

.5365 

.5504 

.5423 

.5140 

.4688 

.4102 

.3425 

.2697 

.1960 

.1248 

.0591 

.0011 
-.0477 
-.0867 

4 

.0478 

.1648 

.2737 

.3693 

.4472 

.5043 

.5389 

.5506 

.5403 

.5102 

.4635 

.4038 

.3354 

.2624 

.1887 

.1180 

.0529 
-.0042 
-.0521 
-.0900 

TABLE III 

6 

.0597 

.1762 

.2840 

.3779 

.3779 

.4539 

.4539 

.5088 

.5088 

.5411 

.5411 

.5505 

.5381 

.5381 

.5062 

.5062 

.4580 

.3973 

.3282 

.2550 

.1815 

.1111 

.0468 
-.0094 
-.0563 
-.0933 

6 

.0716 

.1874 

.2941 

.3864 

.4603 

.5131 

.5431 

.5502 

.5358 

.5021 

.4524 

.3907 

.3210 

.2476 

.1742 

.1044 

.0408 
-.0146 
-.0605 
-.0964 

7 8 

.0834 .0952 

.1986 .2097 

.3040 .• 3138 

.3947 .4028 

.4666 .4727 

.5171 .5209 

.5448 .5463 

.5497 .5490 

.5332 .5305 

.4978 .4933 

.4467 

.3840 

.3138 

.2402 

.1670 

.0977 

.0349 
-.0196 
-.0645 
-.0994 

.4409 
.3772 
.3065 
.2328 
.1599 

.0911 

.0290 
-.0245 
-.0685 
-.1024 

Tenlh •• / M""n Tabu
larDilf ... _ 

9123411. 

.1070 12 24 36 47 59 1.2 

.2206 11 23 34 45 57 2.3 

.3235 10 21 31 41 5f 4.0 
9 18 27 36 45 2.4 

.4107 8 16 24 32 40 2.6 
7 14 21 28 35 3.0 

.4785 6 12 18 24 30 2.2 

5 10 15 20 25 2.5 
.5245 4 8 11 15 19 2.7 

3 5 8 11 13 2.9 
.5476 2 3 5 6 8 3.0 
.5481 Bee footnote • 

2 4 5 7 9 2.6 
.5276 3 5 8 11 14 2.6 

4 7 11 15 18 2.3 
.4887 4 9 13 18 22 2.2 

.4350 

.3704 

.2992 

.2254 

.1528 

.0846 

.0233 
-.0294 
-.0723 
-.1052 

5 11 16 22 27 3.3 
6 '13 19 26 32 2.6 

.7 14 21 29 36 1.6 
7 15 22 29 37 0.6 
7 14 22 29 36 0.8 

7 14 20 27 34 1.8 
6 12 18 24 30 2.2 
5 11 16 22 27 3.6 
4 9 13 17 21 2.7 
3 6 10 13 16 2.3 



I q,<II. -~. -j! (-:01+3.:) • (-z'+3.:)tI>(z) 1' .... 01 M .... TGhoo-
';2..- 1arD\ff-

! 
0 1 2 3 4 • & 7 8 9 1 2 3 4 • % • --

2.0 -.1080 -.1106 -.1132 -.1157 -.1180 -.1203 -.1225 -.1245 -.1265 -.1284 2 5 7 9 11 2.3 
2.1 -.1302 -.1320 -.1336 -.1351 -.1366 -.13i!O -.1393 -.1405 -.1416 -.1426 1 3 4 6 7 2.1 
2.2 -.1436 -.1445 -.1453 -.1460 -.1467 -.1473 -.1478 -.1483 -.1486 -.1490 1 1 2 2 3 2.3 
2.3 -.1492 -.1494 -.1495 -.1496 -.1496 -.1495 -.1494 -.1492 -.1490 -.14!!7 see footnote • 
2.4 -.1483 -.14i!O -.1475 -.1470 -.1465 -.1459 -.1453 -.1446 -.1439 -.1432 1 1 2 2 3 1.1 .- . --
2.' -.1424 -.1416 -.1408 -.1399 -.1389 '-.1380 -.1370 -.1360 -.1350 -.1339 1 2 3 4 5 1.3 
2.6 -.1328 -.1317 -.1305 -.1294 -.1282 -.1270 -.1258 -.1245 ..... 1233 -.1220 1 2 4 5 6 0.7 
2.7 -.1207 -.1194 -.11!!1 -.1168 -.11M -.1141 -.1127 -.1114 -.1100 -.1087 1 3 4 5 7 0.6 
2.8 -.1073 -.1059 -.1045 -.1031 -.1017 -.1003 -.0990 -.0976 -.0962 -.0948 1 3 4 6 7 0.2 
2.1 -.0934 -.0920 -.0906 -.0!!93 -.0879 -.0865 -.0852 -.0838 -.0825 -.0811 1 3 4 5 7 0.6 -- --
3.0 -.0798 -.0785 -.0771 -.0758 -.0745 -.0732 -.0720 -.0707 -.0694 -.0682 1 3 4 5 6 0.9 
3.1 -.0669 -.0657 -.0645 -.0633 -.0621 -.0609 -.0598 -.0586 -.0575 -.0564 1 2 4 5 .6 0.2 
3.2 -.0552 -.0541 -.0531 -.0520 -.0509 -.0499 -.0488 -.0478 -.0468 -.0458 1 2 3 4 5 O.S 
3.3 -.OU9 -.0439 -.0429 -.0420 -.0411 -.0402 -.0393 -.0384 -.0376 -.0367 1 2 3 4 5 1.2 
3.4 -.0359 -.0350 -.0342 -.0334 -.0327 -.0319 -.0311 -.0304 -.0297 -.0290 1 2 2 3 4 1.0 - --
3.11 -.0283 -.0276 -.0269 -.0262 -.0256 -.0249 -.0243 -.0237 -.0231 -.0225 1 1 2 3 3 0.9 
3.6 -.0219 -.0214 -.0208 -.0203 -.0198 -.0192 -.0187 -.0182 -.0177 -.0173 1 1 2 2 3 0.7 
8.7 -.0168 -.0164 -.0159 -.0155 -.0150 -.0146 -.0142 -.0138 -.0134 -.0131 0 1 1 2 2 0.3 
3.8 -.0127 -.0123 -.0120 -.0116 -.0113 -.0110 -.0107 -.0104 -.0100 -.0098 0 1 1 1 2 1.0 
3.1 -.0095 -.0092 -.0089 -.00!!6 -.0084 -.0081 -.0079 -.0076 -.0074 -.0072 0 1 1 1 1 0.8 -- --
4.0 -.0070 -.0067 -.0065 -.0063 -.0061 -.0059 -.0058 -.0056 -.0054 -.0052 0 0 1 1 1 0.7 
4.1 -.0051 -.0049 -.0047 -.0046 -.0044 -.0043 -.0042 -.0040 -.0039 -.0038 0 0 0 1 1 0.8 
U -.0036 -.0035 -.0034 -.0033 -.0032 -.0031 -.0030 -.0029 -.0028 -.0027 0 0 0 0 1 0.9 
4.1 -.0026 -.0025 -.0024 -.0023 -.0022 -.0022 -.0021 -.0020 -.0019 -.0019 0 0 0 0 0 0.0 
'-4 -.()jHS -.0017 -.0017 -.0016 -.0016 -.0015 -.0014 -.0014 -.0013 -.0013 0 0 0 0 0 0.0 --
4.1 -.0012 -.0012 -.0012 -.0011 -.0011 -.0010 -.0010 -.0010 -.0009 -.0009 0 0 0 O· 0 0.0 
4.1 -.0009 -.0008 -.0008 -.0008 -.0007 -.0007 -.0007 -.0006 -.0006 -.0006 0 0 0 0 0 0.0 
4.7 -.0006 -.0006 -.0005 "-.0005 -.0005 -.0005 -.0005 -.0004 -.0004 -.0004 0 0 0 0 0 0.0 
4.8 -.0004 -.0004 -.0004 -.0003 -.0003 -.0003 -.0003 -.0003 -.0003 -.0003 0 0 0 0 0 O.G 
'-I -.0003 '-.0002 -.0002 -.0002 -.0002 -.0002 -.0002 -.0002 -.0002 -.0002 0 0 0 0 0 0.0 

• The ditJerenC8. chanlle lip at a point of thia line. The uaual method of interpolation Ihould not be ueed. 



TABLE IV - 4>(6) 

.'t)~) _ '-" -1bI+3) .~) • 

• .W • .p'" 
I • .W • .W 

0.0 1.1968 1.0 -0.4839 2.0 -0.2700 3.0 0.1330 
.1 1.1671 .1 - .6091 .1 - .1765 .1 .1231 
.2 1.0799 .2 - .6925 .2 - .0927 .2 .1107 
.3 0.9413 .3 - .7341 .3 - .0214 .3 .0969 
.4 0.7607 .4 - .7364 .4 + .0362 .4 .0829 

.5 0.5501 .5 - .7042 .5 .0800 .5 .0694 

.6 0.3231 .6 - .6440 .6 .11OS .6 .OS70 
7 0.0937 .7 - .5632 .7 .1293 .7 .0460 
.8 -0.1247 .8 - .4692 .8 .1379 .8 .0365 
.9 -0.3203 .9 - .3693 .9 .1385 .9 .0284 

(In this table there is • possible error of .()(XX) 55) 

(391) 



n 0 1 

0 0.0000 0.0000 
1 6.5598 7.6012 
S 18.3861 19.7083 
8 32.4237 33.9150 , 47.9116 49.5244 
6 64.4831 66.1906 

8 81.9202 83.7055 
7 100.0784 101.9297 
8 118.8547 120.7632 
9 138.1719 140.1310 

10 157.9700 159.9743 

11 178.2009 180.2462 
12 198.8254 200.9082 
13 219.8107 221.9280 
l' 241.1291 243.2783 
16 262.7569 264.9359 

18 284.6735 286.8803 
17 306.8608 309.0938 
18 329.3030 331.5607 
19 351.9859 354.2669 
20 374.8969 377.2001 
21 398.0246 400.3489 
22 421.3587 423.7031 
23 444.8898 447.2534 
U 468.6094 470.9914 
26 492.5000 494.9093 

TABLE V 

1JOg nl 

S 

0.3010 
8.6803 

21.0508 
35.4202 
51.1477 
67.9066 

85.4979 
103.7870 
122.6770 
142.0948 
161.9829 

182.2955 
202.9945 
224.0485 
245.4306 
267.1177 

289.0898 
311.3293 
333.8207 
356.5502 
379.5054 
402.6752 
426.0494 
449.6189 
473.3752 
497.3107 

S 

0.7782 
9.7943 

22.4125 
36.9387 
52.7811 
69.6309 

87.2972 
105.6503 
124.5961 
144.0632 
163.9958 

184.3485 
205.0844 
226.1724 
247.5860 
269.3024 

291.3020 
313.5674 
336.0832 
358.8358 
381.8129 

405.0036 
428.3977 
451.9862 
475.7608 
499.7138 

, 
1.3802 

10.9404 
23.7927 
38.4702 
54.4246 
71.3633 

89.1034 
107.5196 
126.5204 ~ 
146.0364 
166.0128 

< 
I 

186.4054 
207.1779 
228.2995 

S 
Cj) 

249.7443 
271.4899 

!. 

293.5168 
315.8079 
338.3480 
361.1236 
384.1226 

407.3340 
430.7480 
454.3555 
478.1482 
502.1186 



n Ii 6 

0 2.0792 2.8573 
1 12.1165 13.3206 
2 25.1906 26.6056 
3 40.0142 41.5705 
4 56.0778 57.7406 
Ii 73.1037 74.8519 

6 90.9163 92.7359 
7 109.3946 111.2754 
8 128.4498 130.3843 
9 148.0141 149.9964 

10 168.0340 170.0593 

11 188.4661 190.5306 
12 209.2748 211.3751 
13 230.4298 232.5634 
14 251.9057 254.0700 
Iii 273.6803 275.8734 

16 295.7343 297.9544 
17 318.0509 320.2965 
18 340.6152 342.8847 
19 363.4136 365.7059 
20 386.4343 388.7482 

21 409.6664 412.0009 
22 433.1002 435.4543 
23 456.7265 459.0994 
24 480.5374 482.9283 
26 504.5252 506.9334 

7 8 

3.7024 4.6055 
14.5511 15.8063 
28.0370 29.4841 
43.1387 44.7185 
59.4127 61.0939 
76.6077 78.3712 

94.5619 96.3945 
113.1619 115.0540 
132.3238 134.2683 
151.9831 153.9744 
172.0887 174.1221 

192.5988 194.6707 
213.4790 215.5862 
234.7001 236.8400 
256.2374 258.4076 
278.0693 280.2679 

300.1771 302.4024 
322.5444 324.7948 
345.1565 347.4307 
368.0003 370.2970 
391.0642 393.3822 

414.3373 416.6758 
437.8103 440.1682 
461.4742 463.8508 
485.3210 487.7154 
509.3433 511.7549 

9 

5.5598 
17.0851 
30.9465 
46.3096 
62.7841 
80.1420 

98.2333 
116.9516 
136.2177 
155.9700 
176.1595 

196.7462 
217.6967 
238.9830 
260.5808 
282.4693 

304.6303 
327.0477 
349.7071 
372.5959 
395.7024· 

419.0162 
442.5281 
466.2292 
490.1116 
514.1682 

i 
< 
I 

t"" o 
Q 



n 0 

26 516.5832 
27 540.8236 
28 565.2246 
29 589.7804 
30 614.4858 

31 639.3357 
32 664.3255 
33 689.4509 
U 714.7076 
36 740.0920 

36 765.6002 
37 791.2290 
38 816.9749 
39 842.8351 
60 868.8OQ4, 

U 894.8862 
U 921.0718 
U 947.3607 

" 973.7505 
66 1000.2389 

&8 1026.8237 

" 1053.5028 
68 10"").2742 

" 1107.1360 
60 113U)8tH 

TABLE V (Continued) 

Logn! 

1 2 

518.9999 521.4182 
543.2566 545.6912 
567.6733 570.1235 
592.2443 594.7097 
616.964-1 619.44-1-1 

641.8285 64-1.3226 
666.83:.10 669.3399 
691.9707 694.4918 
717.2404 719.774-1 
742.6373 745.1838 

768.1577 770.7164 
793.7983 796.36R9 
819.5559 822.1379 
845.4272 848.0205 
871.4096 874.0138 

897.5001 900.1150 
923.6001 926.32U 
949.9952 952.6307 
976.3949 979.040-& 

1002.8931 1005.6482 

1029.4874 1032.1520 
1056.1758 IOSS.84\l8 
1082.9564 1085.6394 
1109.8271 1112.5191 
1136.7862 1139.4870' 

3 

523.8381 
548.1273 
572.5753 
597.1766 
621.9258 

646.8182 
671.8491 
697.0143 
722.3097 
747.7316 

773.2764 
798.9406 
82-1.7211 
850.6149 
876.6191 

002.7309 
928.9478 
955.2672 
981.6S6"~ 

1008.2043 

1034.8176 
1061.5246 
1088.323-& 
1115.2119 
1142.1885 

6 

526.2597 
550.5651 
575.0287 
599.6449 
624.4087 

649.3151 
674.3596 
699.5380 
724.8463 
750.2806 

775.8375 
801.5135 
827.3055 
853.2104 
879.2255 

005.3479 
931.5751 
957.9047 
984.3342 

1010.86lt 

1037.4841 
1004.2004 
109l.()O82 
1117.0057 
11 ..... 8909 

~ 
< 
I 
t'" o 
COl 



n & 6 

26 528.6830 531.1079 
21 553.0044 555.4453 
28 577.4835 579.9399 
21 602.1147 604.5800 
30 626.8930 629.3787 

31 651.8134 654.3131 
32 676.8715 679.3847 
33 702.06:n 70-1.589-1 
34 727.3841 729.9232 
36 752.8308 755.3823 

36 778.3997 7SO.9632 
31 804.0875 806.6627 
38 829.8909 832.4775 
39 855.8070 858.4047 
to 881.8329 884.4415 

41 007.9660 910.5850 
42 934.2035 936.8329 
43 960.5431 963.1826 

" 986.9825 989.6318 
4& 1013.5194 1016.1783 

46 1040.1516 10-12.8200 
41 1066.8771 1069.5547 
48 1093.6940 1096.3806 
49 1120.6003 1123.2958 
60 1147.59-&2 1150.2984 

7 8 

533.5344 535.9625 
557.8878 560.3318 
582.3977 58-l.8571 
007.0588 609.5330 
631.8659 63t.354-l 

656.8142 659.3166 
681.8993 68U152 
707.1170 709.MOO 
732.4635 735.0051 
757.9349 760.4888 

783.5279 786.0937 
809.2390 811.8165 
835.0652 837.6540 
861.0035 863.603-1 
887.0510 889.6617 

913.2052 915.82M 
939.4633 942.09-18 
965.8231 968.46-16 
992.2822 99-1.9334 

1018.8383 1021.4991 

10-15.4893 10-18.1595 
1072.2332 1074.9127 
1099.0681 1101.1565 
1125.9921 1128.6893 
1153.0034 1155.7093 

I 

538.3922 
562.7774 
587 .31 SO 
612.0087 
636.8-H4 

661.8201 
686.932-1 
712.1762 
737.5479 
763.0-139 

788.6608 
814.3952 
8-10.2-1-10 
866.201-1 
892.273-1 

918.4486 
944.7272 
971.1071 
997.5857 

1024.1609 

1050.8307 
1077.5930 
1104.4458 
1131.3874 
1158.4160 

~ 
< 
I 

t"" o 
o 



TABLE VI 

Table of ZIt = Deviate of Rank R 
(Note: R is the rank in an ordered series in which N is the total number of individuals; ZIt is the abscissa of the 

normal curve </>(z) pertaining to the mean position of R. There is a possible error of 1 in the last place.)· 

~ 1 2 3 4 Ii 6 7 8 9 10 
--

I .000 -.798 -1.091 -1.271 -1.400 -1.499 -1.579 -1.647 -1.704 -1.755 
2 .798 .000 - .325 - .532 - .683 - .800 - .895 - .976 -1.045 
3 1.091 .325 .000 - .211 - .368 - .491 - .592 - .677 , 1.271 .532 .211 .000 - .158 - .283 - .386 
Ii 1.400 .683 .368 .158 .000 - .126 

6 1.499 .800 .491 .283 .126 
7 1.579 .895 .592 .386 
8 1.647 .976 .677 
9 1.704 1.045 

10 1.755 



X 11 12 13 14 16 16 17 18 19 20 

1 -1.800 -1.840 -1.876 -1.909 -1.940 -1.968 -1.994 -2.018 -2.041 -2.063 
2 -1.105 -1.158 -1.206 -1.250 -1.289 -1.326 -1.360 -1.391 -1.420 -1.447 
3 - .751 - .815 - .872 - .924 - .970 -1.013 -1.052 -1.088 -1.122 -1.153 
4 - .474 - .550 - .616 - .676 - .729 - .778 - .822 - .863 - .901 - .936 
6 - .230 - .319 - .396 - .464 - .525 - .580 - .630 - .675 - .717 - .756 

8 .000 - .105 - .194 - .272 - .341 - .403 - .458 - .509 - .556 - .598 
7 .230 .105 .000 - .090 - .168 - .237 - .300 - .356 - .407 - .454 
8 .474 .319 .194 .090 .000 - .078 - .148 - .211 - .267 - .319 
9 .751 .550 .396 .272 .168 .078 .000 - .070 .- .132 - .189 

10 1.105 .815 .616 .464 .341 .237 .148 .070 .000 - .063 

11 1.800 1.158 .872 .676 .525 .403 .300 .211 .132 .063 
12 1.840 1.206 .924 .729 .580 .458 .356 .267 .189 
13 1.876 1.250 .970 .778 .630 .509 .407 .319 
14 1.909 1.289 1.013 .822 .675 .556 .454 
16 1.940 1.326 1.052 .863 .717 .598 -
16 1.968 1.360 1.088 .901 .756 
17 1.994 1.391 1.122 .936 
18 2.018 1.420 1.153 
19 2.041 1.447 
20 2.063 

• The use of this table is illustrated in the text, pages 97 and 170. 



TABLE VI (Continued) 

Table of ZR ... Deviate of Rank R 
(Note: R is the rank in an ordered series in which N is the total number of individuals; ZR is the abscissa of 

the normal curve </>(x) pertaining to the mean position of R. There is a possible error of 1 in the last place.) 

~ 21 22 23 24 211 26 27 28 29 30 

1 -2.083 -2.102 -2120 -2.138 -2.154 -2.170 -2.186 -2.199 -2.213 -2.227 
2 -1.473 -1.497 -1.1520 -1.541 -1.562 -1.582 -1.600 -1.619 -1.636 -1.653 
8 -1.183 -1.210 -1.236 -1.261 -1.284 -1.306 -1.328 -1.348 -1.367 -1.386 , - .969 -1.000 -1.029 -1.056 -1.082 -1.106 -1.130 -1.152 -1.173 -1.193 
II - .792 - .826 - .858 - .888 - .916 - .943 - .968 - .992 -1.015 -1.037 - -- -- -~ ~~- --- -- --- ---
8 - .638 - .675 - .710 - .742 - .773 - .802 - .829 - .855 - .880 - .903 
7 - .498 - .538 - .575 - .611 - .644 - .675 - .704 - .732 - .759 - .784 
8 - .366 - 0410 - .451 - .489 - .525 - .558 - .590 - .619 - .648 - .675 
9 - .241 - .289 - .333 - .374 - .413 - .449 - .485 - .514 - .545 - .573 

10 - .120 - .172 - .220 - .264 - .306 - .344 - .378 - .414 - .447 - .477 
---- ---- ------ ----

11 .000 - .057 - .109 - .157 - .202 - .243 - .282 - .319 - .353 - .385 
12 .120 .057 .000 - .052 - .100 - .145 - .187 - .226 - .262 - .297 
13 .241 .172 .109 .052 .000 - .048 - .093 - .135 - .174 - .210 
14 .366 .2S9 .220 .157 .100 .048 .000 - .045 - .086 - .126 
111 .41l8 .410 .333 .264 .202 .145 .093 .045 .000 - .012 



~ 21 22 U 2& 211 28 27 28 29 80 

18 .638 .1S38 .41S1 .37-& .306 .243 .187 .1311 .01\6 .042 
17 .792 .671S .1S71S .489 .413 .344 .282 .226 .IH .126 
18 .069 .826 .710 .611 .1S211 .449 .378 .319 .262 .210 
19 1.183 1.000 .81\8 .742 .644 .1S1\8 .48.5 .4H .3113 .297 
20 1.473 1.210 1.029 .888 .773 .6711 .ISOO .ISH .447 .3811 

- . _- --. -----_. ---- ---... --... -_ .. - .. -_ .. 
21 2.083 1.497 1.236 1.01SO .916 .802 .704 .619 .1S45 .477 
22 2.102 1.1S20 1.261 1.082 .943 .829 .732 .648 .1S73 
U 2.120 1.1541 1.284 1.100 .068 .8111S .71S9 .6711 
J& 2.138 1.1S62 1.300 1.130 .992 .81lO .78-1 
211 2.11S4 1.1S82 1.328 1.11S2 1.0111 .003 - --- -- --- - ---.-- ----- --- ---._- --- -- - .. 

28 2.170 1.600 1.348 1.173 1.037 
27 2.186 1.619 1.367 1.193 
28 2.199 1.636 1.386 
29 2.213 1.61\3 
80 2.227 



TABLE VI (Continued) 

Table of ZIl - Deviate of Rank R 

(Note: R i. the rank in an ordered Ie riel in which Nil the total number of individuals; Zn is the absci88a of 
the normal eurve I/>(z) pertaining to the mean position of R. There is a possible error of 1 in the last place.) 

RV 81 82 83 U· 85 88 37 88 39 40 

1 -2.240 -2.2152 -2.264 -2.275 -2.287 -2.298 -2.308 -2.319 -2.328 -2.338 
2 -1.668 -1.683 -1.698 -1.712 -1.726 -1.739 -1.751 -1.764 -1.776 -1.788 
8 -1.403 -1.420 -1.437 -1.4153 -1.468 -1.482 -1.497 -Ul1 -1.152-& -1.1537 , -1.213 -1.231 -1.249 -1.266 -1.283 -1.299 -1.314 -1.329 -1.344 -1.358 
5 -1.0158 -1.078 -1.098 -1.116 -1.134 -1.1151 -1.167 -1.184 -1.199 -1.214 

---------- ------- ------ .--- .. _- ------ ----
8 - .026 - .947 - .068 ,- .088 -1.007 -1.025 -1.043 -1.060 -1.077 -1.092 ., - .808 - .831 - .8153 - .874 - .894 - .914 - .932 - .950 - .968 - .985 
8 - .700 - .7215 - .748 - .771 - .792 - .812 - .832 - .8151 - .870 - .887 
9 - .600 - .626 - .6151 - .675 - .697 - .719 - .740 - .760 - .779 - .798 

10 - .1506 - .1534 - .560 - .585 - .609 - .632 - .6154 - .675 - .695 - .715 - ----- - - -------------
11 - .416 - .445 - .473 - .499 - .524 - .549 - .572 - .594 - .615 - .636 
12 - .329 - .360 - .300 - .417 - .444 - .469 - .493 - .517 - .539 - .561 
13 - .245 - .278 - .301l - .338 - .306 - .393 - .418 - .443 - .466 - .489 
14 - .162 - .197 - .230 - .261 - .291 - .319 - .346 - .371 - .300 - .419 
15 - .mll - .118 - .152 - .185 - .216 - .246 - .274 - .301 - .327 - .352 - -- ---~ 
18 .000 - .039 - .076 - .111 - .14-& - .175 - .205 - .233 - .200 - .2H6 
1'f .081 .039 .000 - .037 - .072 - .1015 - .136 - .166 - .194 - .221 
18 .162 .118 .076 .037 .000 - .035 - .068 - .099 - .129 - .157 
19 .245 .107 .152 .111 .072 .035 .000 - .033 - .064 - .004 
20 .329 .278 .230 .1815 .14-1 .1015 .01lS .033 .000 - .031 



~ -..... 

~ 
21 
H 
33 
24 
25 
-
26 
27 
28 
29 
30 -
31 
33 
33 
34 
35 

38 
37 
88 
39 
40 

31 33 

.416 .360 

.506 .445 

.600 .53! 

.700 .626 

.808 .725 

.926 .831 
1.058 .947 
1.213 1.078 
1.403 1.231 
1.668 1.420 

2.240 1.683 
2.252 

33 34 35 

.309 .261 .216 

.390 .338 .291 

.473 .417 .366 

.560 .499 .ill 

.651 .585 .52! 

.748 .675 .609 

.853 .771 .697 

.968 .874 .792 
1.098 .988 .894 
1.249 1.116 1.007 

1.437 1.266 1.13! 
1.698 1.453 1.283 
2.264 1.712 1.468 

2.275 1.726 
2.287 

36 37 38 39 4O 

.175 .136 .099 .oo! .031 

.246 .205 .166 .129 .094 

.319 .2H .233 .19-1 .157 

.393 .346 .301 .260 .22l 

.469 .418 .371 .327 .286 

.549 .493 .443 .396 .352 

.632 .572 .517 .466 .419 

.719 .654 .59! .539 .489 

.812 .7-10 .675 .615 .561 

.914 .832 .760 .695 .636 

1.025 .932 .851 .7i9 .715 
1.151 1.043 .950 .870 .798 
1.299 1.167 1.060 .968 .887 
1.482 1.314 US! 1.077 .985 
1.739 1.497 1.329 1.199 1.092 

2.298 1.751 1.511 1.3H 1.214 
2.308 1.764 1.524 1.358 

2.319 1.776 1.537 
2.328 1.788 

2.338 



TABLE VI (Continued) 

Table of Za - Deviate of Rank R 
(Nols: R is the rank in an ordered series in which N is the total number of individuals; ZR is the abscissa of 

the normal curve I/>(z) pertaining to the mean position of R. There is a possible error of 1 in the last place.) 

I~ 41 42 43 44 4G 48 47 48 49 GO 

1 -2.347 -2.356 -2.365 -2.374 -2.382 -2.390 -2.398 -2.405 -2.413 -2.421 
2 -1.799 -1.810 -1.820 -1.830 -1.841 -1.851 -1.860 -1.870 -1.879 -1.888 
3 -1.549 -1.561 -1.573 -1.585 -1.596 -1.607 -1.617 -1.627 -1.637 -1.647 
4 -1.371 -1.384 -1.397 -1.410 -1.421 -1.433 -1.445 -1.455 -1.467 -1.477 
G -1.229 -1.242 -1.257 -1.269 -1.282 -1.294 -1.307 -1.319 -1.330 -1.342 

-
8 -1.108 -1.122 -1.137 -1.151 -1.164 -1.178 -1.191 -1.203 -1.215 -1.227 
'I -1.001 -1.017 -1.032 -1.047 -1.061 -1.075 -1.089 -1.101 -1.114 -1.127 
8 - .905 - .921 - .937 - .953 - .968 - .982 - .996 -1.011 -1.023 -1.037 
9 - .816 - .833 - .850 - .866 - .882 - .898 - .912 - .927 - .941 - .954 

10 - .733 - .752 - .769 - .786 - .803 - .819 - .834 - .849 - .864 - .878 

11 - .656 - .675 - .693 - .711 - .728 - .745 - .761 - .777 - .792 - .807 
12 - .581 - .601 - .620 - .639 - .657 - .675 - .691 - .708 - .724 - .739 
13 - .510 - .531 - .552 - .571 - .590 - .608 - .625 - .642 - .658 - .675 
14, - .442 - .464 - .485 - .505 - .524 - .543 - .562 - .579 - .596 - .613 
1G - .375 - .398 - .420 - .441 - .461 - .481 - .500 - .518 - .536 - .553 

18 - .311 - .334 - .357 - .379 - .400 - .421 - .440 - .459 - .478 - .496 
17 - .247 - .272 - .296 - .319 - .341 - .362 - .383 - .402 - .421 - .440 
18 - .184 - .210 - .235 - .259 - .282 - .304 - .326 - .346 - .366 - .385 
19 - .123 - .150 - .176 - .201 - .225 - .248 - .270 - .291 - .312 - .332 
20 - .061 - .090 - .117 - .143 - .168 - .192 - .215 - .237 - .259 - .279 



~ U 42 43 " U 48 41 48 U 60 

21 .000 - .030 - .058 - .086 - .112 - .137 - .161 - .184 - .206 - .228 
22 .061 .030 .000 - .028 - .056 - .082 - .107 - .131 - .154 - .176 
23 .123 .090 .058 .028 .000 - .027 - .053 - .078 - .102 - .126 
24 .184 .150 .117 .086 .056 .027 .000 - .026 - .051 - .075 
211 .247 .210 .176 .143 .112 .082 .053 .026 .000 - .025 

28 .311 .272 .235 .201 .168 .137 .107 .078 .051 .025 
21 .375 .334 .296 .259 .225 .192 .161 .131 .102 .075 
28 .442 .398 .357 .319 .282 .248 .215 .184 .154 .126 
29 .510 .464 .420 .379 .341 .304 .270 .237 .206 .176 
30 .581 .531 .485 .441 .400 .362 .326 .291 .259 .228 

-
31 .656 .601 .552 .505 .461 .421 .383 .346 .312 .279 
32 .733 .675 .620 .571 .524 .481 .440 .402 .366 .332 
33 .816 .752 .693 .639 .590 .543 .500 .459 .421 .385 
34 .005 .833 .769 .711 .657 .608 .562 .518 .478 .440 
311 1.001 .921 .850 .786 .728 .675 .625 .579 .536 .496 -
38 1.108 1.017 .937 .866 .803 .745 .691 .642 .596 .553 
37 1.229 1.122 1.032 .953 .882 .819 .761 .708 .658 .613 
38 1.371 1.242 1.137 1.047 .968 .898 .834 .777 .7U .675 
89 1.549 1.384 1.257 1.151 1.061 .982 .912 .849 .792 •. 739 
40 1.799 1.561 1.397 1.269 1.164 1.075 .996 .927 .864 .807 -
U 2.347 1.810 1.573 1.410 1.282 1.178 1.089 1.011 .941 .878 
42 2.356 1.820 1.585 1.421 1.294 1.191 1.101 1.023 .954 
43 2.365 1.830 1.596 1.433 1.307 1.203 1.114 1.037 

" 2.374 1.841 1.607 1.445 1.319 1.215 1.127 
U 2.382 1.851 1.617 1.455 1.330 1.227 -48 2.390 1.860 1.627 1.467 1.342 
47 2.398 1.870 1.637 1.477 
48 2.405 1.879 1.647 
49 2.413 1.888 
60 2.421 



TABLE VII 

LOfI* Hz Ten/hi 01 M eo" Tallula. , Differ_. 

It 0 1 I 3 4 II 6 7 8 9 1 I 1I 4 '11 • 
0.0 0.0981 0946 0912 0877 0843 0809 0775 0742 0708 0675 3 7 10 13 17. 
0.1 0.0642 0609 0576 0543 0511 0478 0446 0414 0382 0350 3 6 10 13 16 
0.1 0.0318 0286 0255 0224 0192 0161 0130 0100 0069 0038 3 6 9 12 15 
0.3 !l.0008 1.9978 9948 9918 9888 9858 9828 9799 9770 9740 3 6 9 12 15 
0.4 1.9711 9682 9653 9625 9596 9568 9539 9511 9483 9455 3 6 9 11 14 
0.11 i.9427 9399 9371 9344 9316 9289 9262 9235 9208 9181 3 5 8 11 14 
0.6 1·9154 9127 9101 9074 9048 9022 8996 8970 8944 8918 3 5 8 10 13 
0.7 um 8867 8841 8816 8791 8765 8740 8715 8690 8666 3 5 8 10. 13 
0.8 8616 8592 8568 8543 8519 8495 8471 8447 8423 2 5 7 10 12 ~ 
0.9 1.8399 8376 8352 8329 8305 821;2 8259 8236 8213 8190 2 5 7 9 12 ~ -- -i.8167 7 9 1.0 8144 8121 8099 8076 8054 8032 8009 7987 7965 2 .. 11 .. 
1;1 1-7943 7921 7899 7878 7856 71;34 7813 7791 7770 7749 2 .. 6 9 11 .. 
U 1-7727 7706 7685 7664 7643 7623 7602 7581 7560 7540 2 .. 6 8 10 

f 1.3 p5l9 7499 7479 7458 7438 7418 7398 7378 7358 7339 2 .. 6 8 10 
1.6 .7319 7299 7279 7260 7240 7221 7202 7182 7163 7144 2 .. 6 8 10 -- -1.7125 7 9 

;. 
1.11 7106 7087 7068 7049 7031 7012 6993 6975 6956 2 .. 6 .. 
1.6 1.6938 6919 6901 61"S3 6864 6846 6828 6810 6792 6774 2 .. 5 7 9 CO 

1.7 .6756 6739 6721 6703 6686 6668 6651 6633 6616 6598 2 3 5 7 9 -
1.8 l6581 6564 6547 6530 6512 6495 6479 6162 6445 6428 2 3 5 7 8 
1.9 .6411 6395 6378 6361 6345 6328 6312 6296 6279 6263 2 3 5 7 8 -- -1.6247 6134' 1.0 6230 6214 619S 6182 6166 6150 6119 6103 2 3 5 6 8 
1.1 1.6087 607l B056 6040 6025 BOO9 59\13 5978 5963 5947 2 3 5 6 8 
1.1 1·59:!2 5917 5!102 51"86 5871 5856 5~1 5826 5811 5796 2 3 5 6 8 
1.3 1·5782 5767 5752 5737 5723 5708 569:! 5679 5664 5650 1 3 .. 6 7 
1.4 1.5635 5621 5607 6592 5578 5564 5556 5536 5521 5507 1 3 .. 5 7 



TABLE VII (Continued) 

lAgR. TenIAo 0/ M ..... I'abular 
~.,.-

IC 0 1 2 3 • Ii 6 7 8 9 1 I 3 • Ii • 
2.11 i.5493 5479 5465 5451 5438 5424 5410 5396 5382 5369 1 3 4 6 7 
2.6 i.5355 5341 5328 5314 5301 5287 5274 5260.5247 5234 1 3 4 5 7 
2.7 i.5220 5207 5194 5181 5168 5154 5141 5128 5115 5102 1 3 4 5 7 
2.8 i.5089 5076 5064 5051 5038 5025 5012 5000 4987 4974 1 3 4 5 6 

== 2.9 1.4962 4949 4937 4924 4912 4899 4887 4874 4862 4849 1 2 4 5 6 to 

3.0 1.4837 4825 4813 4800 4788 4776 4764 4752 4740 4728 1 2 4 5 6 <I 
" 3.1 1·4716 4704 4692 4680 4668 4656 4644 4633 4621 4609 1 2 4 5 6 ;. 

3.2 1.4597 4585 4574 4562 4551 4539 4528 4516 4504 4493 1 2 3 5 6 ;-
3.3 1.4481 4470 4459 4447 4436 4425 4413 4402 4391 4380 1 2 3 5 6 Ii 
3.' 1.4368 4357 4346 4335 4324 4313 4302 4291 4280 4269 1 2 3 4 5 

G-
3.11 1.4258 4247 4236 4225 4215 4204 4193 4182 4172 4161 1 2 3 4 5 'ID 

3.6 1.4150 4140 4129 4118 4108 4097 4086 4076 4065 4055 1 2 3 4 5 ..:> 

3.7 1·4045 4034 4024 4013 4003 3993 3982 3972 3962 3952 1 2 3 4 5 -
3.8 1.3941 3931 3921 3911 3901 3890 3880 3870 3860 3850 1 2 3 4 5 
3.9 1.3840 3830 3820 3810 3800 3790 3781 3770 3761 3751 1 2 3 4 5 

IC 00 10 20 SO '0 60 60 70 80 90 1 I 3 • II • .. 1.3741 3644 3549 3456 3365 3275 9 18 28 37 46 2.0 

•• 3275 3187 3101 3016 2933 8 17 25 34 42 2.0 
6. 1.2851 2772 2692 2615 2538 2463 8 15 23 31 38 3.0 
6. 2463 2389 2316 2245 2175 7 15 22 29 37. 2.1 
6. 1.2105 2037 1970 1903 1838 1774 7 13 20 26 .33 2.0 
6. 1774 1710 1647 1586 1525 6 12 19 25 31 1.3 
7. 1.1464 1405 1347 1289 1232 1175 6 12 17 23 29 0.7 
7. 1175 1120 1065 1010 0957 5 11 16 2'J 27 0.9 
8. 1.0904 0851 0799 0748 0698 0648 5 10 15 20' 25 1.5 
8. 0648 0598 0549 0501 0453 5 10 15 19 24 1.1 

•• 1.0406 0359 0312 0266 0221 0176 5 9 14 18 23 0.9 

•• I 0176 0131 0087 0044 0000 4 9 13 18 22 0.5 



3-PLACE LOGARImMS 

TABLE VIII 
m (!o~!~ :::~!eo1r~al point m plac .. to the rigbt (or left) in N ia equivalent to addi.,. 

Do not interpolate in thi. Tahle. Chooae the neareot number obtainable withou& 
croaaing a horizontal line. (See aleo page 379.) 

N LoaN N LoaN N LogN N LoaN N LogN N LogN 

1.00 .000 .06B .1OS .161 .198 .1411 
.001 1.13 .06S 1.27 .104 1.42 .16' 1.68 .199 1.78 .'48 
.00' .064 .106 .16S .ZOO .#,1 
.OOS .On6 .108 .154 1.69 .#01 1.77 .148 

1.01 .004 .068 1.211 • 107 1.43 .166 .BO • .'49 
.006 1.14 .067 .108 .168 1.78 .150 .008 .068 .80S 

.109 .161 
1.60 .804 .B61 

.007 .069 .806 

.008 .060 • 110 1.44 .168 .#6 • 
1.02 .009 1.15 .061 1.29 .111 .169 .- 1.79 •• 611 

.010 .08' .11' 1.61 .BM .164 
.160 .B08 1.80 .IM .011 .0811 .11S US .161 .#68 .011 1.16 .064 1.80 .114 .18' .BOO 

1.03 ·.OIS .086 .116 1.62 .110 .#fi7 
.014 .088 .18S .111 

1.81 .#68 
.016 .067 

.116 1.46 .164 1.63 .#11 .169 
.016 1.17 .068 

1.31 .117 .166 
.#IS 1.82 .160 

1.04 .017 .089 
.118 .161 

.018 .166 .#14 

.019 
.070 .IUI 1.47 .187 1.64 .B16 1.83 .18. 
.071 .120 .168 .B18 .16S 

.020 1.18 .07B 1.32 .1fl 
.f64 1.05 .011 .07S .1.11 .169 1.66 •• 17 

.Ollt! 1.48 .170 .• 18 U14 .166 

.OBS .074 .1fS .171 .l81l 
.076 1.33 .1'4 •• 19 

1.8& .f61 .0114 1.19 .071l .1f6 .17' 1.66 .120 
.168 1.06 .OB6 .071 1.49 .171J .Btl 

.016 .116 .174 .180 

.0eT .078 1.34 .1117 .ft' 1.86 .l70 
1.20 .079 .118 .176 1.67 .#'S 

.0'8 .080 1.10 .176 .ft4 .ITI 
1.07 .019 .1f9 .177 1.87 .#7. 

.OJO .081 1.35 .lJO 1.66 .#.6 .ITS 

.0SI .08' .ISI .178 .116 
1.21 .08S .ISI 

1.61 .179 
.IIT 1.88 .IT4 

.OSI .084 .180 .176 
1.08 .O.'S .ISS 1.69 .#18 

.OS4 .086 1.36 .U4 .181 •• 119 1.89 nil 

.086 1.22 .086 .IS6 1.62 .18' 1.70 .1JO n1 
.087 .18S 

.0.'6 .088 .IS6 .#111 n8 
1.09 .OS1 1.37 .IS7 .184 1.10 n9 

.0.'8 .089 .1118 1.53 .186 .I." 

.089 1.23 .090 .186 1.71 .#IIS .180 
.091 .U9 n4 1.91 .#81 

.040 1.38 .140 .187 .#8. 
1.10 .041 .09' .141 I.M .188 n6 

.041 1.24 .09S 1.72 .#88 1.92 .#n 

.048 .094 ./4' .189 
.#S1 ..tS4 

.096 1.39 .1+' 1.65 .190 
.044 .144 .191 1.73 .#S8 .186 

1.11 .046 .096 .#.'9 1.93 .Ball 
.046 1.25 .097 .146 .19' 

.140 
.047 .098 UO ./46 1.66 .191l .#81 

.141 .194 1.74 .#'1 1.04 .Ba8 
11408 1199 

.#41 .IS9 1.12 .049 1.26 JOO .1408 .196 
.050 .101 1.41 .149 1.57 .196 1.75 .#48 1.95 .l9O 
.061 .10' J50 .197 .#"" .191 

(406) 



3-PLACE LOGARlmMS 

N LogN N LogN N LogN N LogN N LotIN N LotIN 

l.96 .'fI. 2.18 .S38 2.44 .S87 .+'4 3.06 .488 .641 
.69S .IJSI) .S88 2.72 .+'6 3.07 .487 3.48 .6~ 

2.45 2.73 .438 
3.49 .6+' 

1.97 .194 2.19 .140 .IJR9 .4811 1.1i0 .6" .6116 .1J41 .190 
.+'7 3.08 .489 3.61 .646 ---- 3.09 ..490 

.198 1.10 .IJ~ 2.46 .lJal 2.n .+'8 1.10 .491 .648 
1.98 .• 97 .S+' 

.S9' 
2.75 .+~9 

.49' 3.52 .647 
2.21 .IJ" 2.47 .S91J 

.446 3.63 .648 .6f11l 
.846 2.78 .'" 3.11 .491J 3.M .649 

1.09 .• 99 2048 .lJa4 2.77 .W 3.12 .494 3.55 .S5(J 
.100 

2.22 .S4(J .S96 .443 3.58 .661 
.S47 .496 A6, 1.00 .SOI 2.49 .S98 2.78 .'" 3.13 ..f9IJ 

.:JO, 2.23 .:J48 .897 3.14 .497 3.57 A61J 
.S49 

1.10 .S98 .446 3.15 .498 3.58 .664 2.01 .SOIJ 2.79 .+48 3.59 .666 
.S04 2.24 .ISO 

.1J99 1.10 .,,7 .+99 1.&0 A66 .S61 
2.111 .400 3.18 .600 

2.02 .806 2.25 .Sst 2.112 .401 .+48 3.17 AOI A67 .:JOB .S6S .40' 
2.81 .449 3.18 .601 3.61 .668 

2.03 .S07 AOIJ 3.62 .669 
2.28 .lJs4 2.63 .408 2.82 ..45(J 3.63' .660 .:JOB .S66 .461 3.19 .60' 3.640 MI 

.S09 .40' 2.83 .46' 
1.10 .6OS 3.65 .66' 2.27 .S66 2.M .406 3.68 .661f 2.04 .110 2.640 .46S .6OfI M4 .S67 .406 .46' 3.21 .607 

.SII 2.28 .SS8 2.55 .407 3.22 .61)8 3.87 .666 2.05 .SII 2.58 .408 2.85 .465 3.23 .609 .1J69 2.86 .468 3.68 .6IJIJ 
2.29 .160 .409 

.467 .510 3.69 .681 .IfIS 
1.70 Mil 2.06 .S14 .1f61 2.57 .410 

2.87 .468 3.24 .611 3.71 .669 
1.10 .S6' .,,, 2.88 .469 3.25 All 

.:J16 2.58 .'" .460 3.28 AIIJ .570 2.07 .SlIl .S6S 3.72 A71 .S17 2.31 .s64 2.69 .-"If 2.89 .461 .614 3.73 A7. .," 1.90 .46' 3.27 .616 3.74 A71f 2.08 .SIB 2.32 .866 
.46S 3.28 .616 3.75 A7, .:J19 .- 1.10 ·416 3.29 .617 3.78 A76 

2.33 .1J117 .416 
2.91 .464 3.77 A76 

2.09 .Jlf) .[168 2.92 .466 ~/8 
3.78 A71 

.SII 2.81 .417 .466 I.SO .619 
.678 2.34 .[169 2.82 .4IB 

3.31 .Slf) 
1.10 .SII .J70 2.93 .467 3.3a .611 3.79 A79 

.1l1S .419 2.94 .,68 3.33 .611 1.10 .580 2.35 .1J71 
2.63 .410 

.469 .61S 3.81 .681 
lI.11 .S'4 .:J7. 2.95 . no 3.34 .614 3.Ma .68 • 

.SI6 2.38 .S71l .461 2.98 .,71 3.35 .6.6 3.83 .68S 
2.640 .~. .,7' 3.38 AIIl 3.84 .6S, 

2.12 .1l16 .874 3.S.~ .685 
.817 2.37 .1J7'; 2.85 .~S 2.97 .,71J An .686 

.~' 2.98 .,7, 
3.37 AIS 2.13 .S18 .876 3.86 .DB7 2.38 .877 .416 3.38 At9 

.1l19 2.88 .416 
2.09 .,76 3.39 .5JfJ 3.87 .68S 

2.39 .878 I.to ASI 3.88 .689 
2.14 .1.10 .879 

.418 1.00 .471 .681 3.89 .590 
.lJlJ1 2.67 .~7 1.90 Aln 

I.to • .180 2.68 .418 .,111 3.41 ASS 3.91 .69. 
:US .IJIJI .S81 3.01 .,79 3.42 A~' 3.lI"l .D9IJ 

.IJIJIJ 
2.41 .Mll .~9 3.02 .4B0 3.43 .636 3.98 A9, 

2.69 .4.10 3.03 .481 3.94 .696 
2.18 .IJIJ, .1l81J -lB' .6S6 .Jj9IJ 

.SM 2.42 .IlS, 1.70 .4SI 3.44 .6.~ 

.4U 3.04 .481J 3.45 .6.~ 3.95 .Jj97 
3.OS -lB4 3.46 JS.19 3.98 A98 2.17 .1JIJ6 .MlS 

.1JIJ1 2.43 .Ml6 2.71 .4IJIJ .486 3.47 .54/J 3.97 .699 

(407) 



I-PLACE LOGARITHMS 

TABLE VIII (ContinUed) 
Moving the decimal point ... pIacee to the rigM (or Ielt) in N ;. ~uivalent to addi .. 

WI (or -m) tq log N. 
Do not interpolate in this Table. Cboooe the n88rest number obtainable without 

croeaing a hori.ontaJ line. (See aloo page 379.) . 

N LogN N LogN N LOgN N LogN N LogN N LogN 

3.98 .600 4.56 ·.669. 11.10 6.63 6.14 .788 '.10 
3.99 .601 4.57 .660 U1 .108 6.H .761 6.15 .789 6.(11 .A1O 
'.00 .601 4.58 .661 6.12 .709 6.65 .7st 6.6J .8'1 
4.01 .60S 4.59 .661 6.13 .710 6.66 .76S 11.16 

6.63 4.02 .604 4.60 .86S 6.14 .711 6.17 .7f)(J 
4.03 .606 4.61 .664 6.111. .711 6.67 6.18 .791 6.H .8" 
4.04 .606 4.62 .666 6.16 ,71S 6.68 .764 6.111 .79' 6.6.'\ .JJ&! 
4.05 .607 4.63 .666 6.17 6.611 .766 • .s0 6.66 

.608 
11.70 .766 

6.67 .8'4 4.H 6.18 .714 5.71 .76' 6.21 .79S 4.06 .609 4.65 .667 6.111 .716 6.72 6.22 .794 
6.611 .816 

4.07 .610 4.66 .668 11.10 .716 6.23 
11.69 

4.08 .611 4.67 .669 6.21 .717 6.73 .768 
'.TI .8/11J 4.011 .611 6.74 .769 

'.10 .6/IJ 4.68 .670 6.22 .718 
6.711 .760 6.24 .796 6.71 .lin 

4.11 .614 4.611 .1i71 6.23 6.76 6.211 .798 6.72 
4.70 .671 .71d 4.12 .616 4.71 .67S 6.24 

6.77 .761 6.26 11.73 .8M 
4.13 .616 6.25 .710 
4.14 .617 4.72 .674 5.26 .7" 6.78 .76' 6.27 .791 6.74 
4.15 .618 4.73 .676 5.27 .711 5.79 .76S 11.28 .798 11.75 .lIt9 4.74 .676 11.60 4.16 .619 4.75 .671 5.28 .7&! 6.29 11.76 .AJO 
4.17 .610 4.76 .618 5.211 5.81 .764 '.10 .799 11.77 4.18 .611 5.82 .766 6.31 '.800 11.78 .8SI U9 .611 4.77 11.30 .714 5.83 .766 11.32 .801 6.79 .83' '.10 .61S 4.78 .679 5.31 .716 5.84 6.33 4.21 .614 4.79 .680 5.32 .716 '.60 
4.22 .616 4.60 .681 5.33 .711 5.86 .767 11.34 .80 • 6.81 .8.," 
4.23 . 616 4.81 .68' ----- 5.86 .768 6.35 .801J 6.82 .834 
4.24 .611 4.82 .68S 6.34 5.87 .769 11.36 6.83 
4.25 .618 4.83 .684 5.35 .7'8 5.86 
4.26 .619 4.84 .686 5.36 .U9 6.37 .804 11.84 .8-'6 
4.27 .610 4.86 .686 5.37 .7JO 5.89 .770 0.38 .806 0.86 .8.'6 
4.28 .6S1 4.86 .687 5.38 .781 11.90 .771 6.66 . 
4.29 .68' 5.39 5.91 8.39 0.87 .8.'1 UO .6SS 4.87 1i.40 .7S' 5.92 .71' '.10 .806 
4.31 .6S4 4.88 .688 5.41 .7SS 6.93 .71S 6.41 .801 0.88 
4.32 .6S6 4.89 .689 5.42 .784 5.114 .714 6.811 .838 
4.33 .6S6 '.90 .6f)(J 5.43 .7S6 6.42 ' .• 0 .8S9 
4.34 .6S7 4.91 .691 5.96 6.43 .808 0.91 
4.35 .6S8 4.92 .69' 5.« 6.96 .71/1 6.« .809 
4.36 .6S9 4.93 .69S 0.45 .756 0.91 .776 0.92 .840 
4.37 .640 4.114 .694 0.46 .7S7 6.98 .717 8.45 6.93 .841 
4.38 .641 4.95 .696 0.47 .7S8 5.99 6.46 .AIO 6.114 
4.39 . • 641 4.96 5.48 .7S9 

.718 6.47 .811 0.95 .841 '.&0 .645 '.00 
4.41 .644 4.117 .696 5.49 6.01 .779 0.48 11.96 '.60 .740 4.42 .846 4.98 .691 0.51 .741 6.02 6.49 .AU 8.117 .8U 
4.43 .646 4.99 .698 5.52 .741 6.03 .780 '.60 .8/IJ 6.98 .844 
4.« .647 '.00 .699 6.04 .781 0.99 
4.45 .648 5.01 .100 5.53 .7U 6.61 
4.46 .649 5.02 .701 5.54 

6.05 .7BI 6.52 .814 7.00 .8,j1j 6.06 
4.47 .650 6.65 .744 6.53 .816 7~ .8-48 
4.46 .661 6.03 5.56 .746 6.07 .78S 7. 
<1.49 .66' 5.04 .7011 6.57 .7-48 8.08 .784 6.54 
'.60 .66S 6.58 .747 0.65 .811l 7.03 .847 
4.51 .664 6.05 .70S 5.69 6.011 6.56 .811 
4.52 .666 6.06 .704 &.10 .786 7.04 
4.53 .666 6.07 .706 '.60 .748 6.11 .786 6.57 7.05 .848 
4.54 .667 6.08 .106 5.61 .749 6.12 .787 6.58 .818 7.06 .849 
4.65 .668 6.011 .707 5.62 .750 6.13 6.69 .8111 7.07 
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3-PLACE LOGARITHMS' 

N LogN N LOfIN N LO{JN N LO{JN N IAqN N LO{JN 

7.011 .. SO 7.68 8.07 .907 8.53 .lMl 9.01 '.10 ---'- 7.69 .B80 8.08 8.114 9.02 .955 9.61 .978 
7.09 7.60 .11111 
7.10 .1151 7.61 8.09 .D08 8.65 .931 9.03 9.52 
7.11 .116' 8.10 8.66 9.04 .968 9.53 .tn9 
7.1~ 7.62 .88' 9.114 8.11 .909 8.57 .933 9.05 
7.13 .853 7.63 8.68 9.06 .J167 9.65 .980 
7.14 .864 7.114 .883 8.12 9.66 
7.1& 8.13 .1110 8.59 .934 9.07 9.57 ./J81 7.6.~ '.60 9.08 .96B 
7.16 .866 7.66 .884 8.14 9.58 

7.67 .886 8.15 .911 8.61 .9S6 9.09 9.59 .IJ8. 
7.17 7.68 '.10 ./J69 
7.18 .858 8.16 8.62 '.10 
7.10 .867 7.69 .B88 8.17 .911 8.63 .938 9.11 9.61 
7.10 7.70 , 

8.114 9.12 .960 9.62 .983 
7.71 .B87 

8.18 .913 8.65 .937 0.13 
7.21 .8U 8.19 9.63 ., 7.72 8.66 9." .lJ81 9.114 ./JB4 
7.22 7.73 .8118 • .10 .914 8.67 .9SB 11.15 
7.23 .869 821 9.65 
7.24 .. 60 

7.74 .889 8.68 9.16 .IJ6. 9.66 .lJ86 
7.25 

7.711 8.22 ./J16 8.69 .9S9 9.17 9.67 
7.76 .B9O 8.23 9.18 .lJ8S 0.68 .lJ88 

7.26 .861 7.77 '.70 9.19 0.69 8.24 ./J18 8.71 .1140 
7.27 7.78 .891 8.25 '.10 .lJ84 '.70 
7.28 .8R' 8.72 9.21 9.71 .981 
7.29 .8611 7.79 8.26 .917 8.73 .941 
7.ao 7.80 .89' 8.27 8.74 9.22 9.72 

9.23 .966 9.73 .lJ88 
7.31 .864 7.81 8.28 .91B 8.75 .941 

7.82 .89S 9.24 9.74 
7.32 7.83 .//94 8.29 8.76 9.25 .968 -0.75 .lJ89 
7.33 .866 7.84 •• 80 .919 8.77 .948 0.70 

8.78 9.26 -----
7.34 7.85 .896 8.31 9.27 .IJ61 9.,1 .990 
7.35 .8M 7.86 8.32 • .910 8.79 .944 9.78 

•. 80 9.28 7.36 ./167 8.33 9.29 .lJ88 9.79 .lJ91 
7.37 7.87 .896 

8.34 .911 8.81 .946 • .10 '.80 
7.38 .868 7.88 8.82 

8.36 9.31 .lJ89 9.81 
7.311 

7.89 .897 
8.36 .911 8.83 ./J46 9.32 11.82 .IJ9. 

7.40 .8119 7.90 8.84 
11.83 8.37 9.33 .970 7.41 .B71) 7.91 .B98 8.85 ./J47 9.84 .lJ9S 

7.42 8.38 .9IS 9.34 
8.86 11.85. 

7.43 .B71 7.92 8.39 .914 9.35 .971 
7.93 ./199 8.87 .948 11.36 9.86 .lJ94 

7.44 7.94 .900 '.10 8.88 9.87 
7.45 .B7' T.95 8.41 .916 9.37 9.88 
7.46 .87S 8.42 8.89 .949 9.38 ./J71 9.89 ./J96 
7.47 7.96 .DOl •• 90 

7.97 8.43 ./J16 9.39 '.M 8.91 .950 '.40 .971J 7.48 .874 8.44 9.91 .996 
7.49 7.98 .901 8.92 

8.45 ./J17 
9.41 11.02 

'UO .876 7.99 8.46 
8.93 .J161 11.42 .974 9.93 .997 

'.00 .kIIJ 8.94 9.94 7.51 • 8.47 .9.B 
9.43 

7.112 .B78 8.01 8.95 .96' 9.44 .tn6 9.95 .lJ98 
7.53 .8n 8.48 8.96 9.45 11.96 
7.114 8.O'J .904 

8.49 .919 8.97 .lJ61J 9.46 .tnB 9.97 
7.65 .81/1 8.03 '.10 8.98 9.47 11.98 ./J99 11.04 .906 
7.68 8.05 .IJ(I6 8.51 JlJI) 899 .lJ64 11.48 JJn 9.99 
7.117 .879 8.06 8.52 '.00 9.49 10.00 1.000 
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