

GIPE-PUNE-010473

THE MATHEMATICAL PART OF ELEMENTARY STATISTICS

A Textbook for College Students

BT
BURTON HOWARD CAMP
PROFEGBOR OF MATHEMATICE WESLETAN UNIYERSITY

Gokhale Institute of Politics and Economics, Poona +

$$
\begin{gathered}
B 28 \\
G 1 \\
10473
\end{gathered}
$$

Copyriaht, 1931,

By Burton H. Cayp

No part of the material covered by this copyright may be reproduced in any form without written permission of the publisher.

344

PREFACE

This is an elementary textbook, dealing with the mathematical part of statistics. Statistical methods are used very generally by investigators in widely different fields, by economists, biologists, psychologists, physicists, and astronomers. The emphasis in one field is different from that in another, but there is a well-defined body of material, mathematical in nature, which is common to all. These mathematical rudiments are set forth in this text.

The course for which this book is intended will usually be offered to sophomores, and may, like the book, be divided into two parts, the first of which may be taken without the second. The book is, in fact, a reduction to printed form of two half-year lecture courses, which the author has been giving for the past ten years, and it has been quite the custom for certain students to take the first part only, substituting for the second part an applied course in economic or educational statistics. This arrangement has been advantageous to all the departments concerned. The mathematics has been taught in the department of mathematics, and the applications in the departments in which they belonged.

A brief course in analytic geometry is presupposed, but no calculus - although an occasional notation is introduced which is borrowed from calculus, such as the integral sign to indicate the area under a curve. Analytics is inherently necessary to the proper understanding of statistical methods, and it seems to the author better to suppose that it has been taught already by the use of one of the excellent texts in analytics than to attempt to teach it along with statistics.

Part I is distinctly easier than Part II, and it is intended
to provide a sufficient mathematical introduction to most of the applied courses. It will probably be found about as difficult as a semester course in analytics. Part II begins with the theory of probability. This subject involves intrinsically difficult notions, comparable in difficulty with those of the calculus. It must be presented because it lies at the basis of the theory of eampling. However, students who would be characteristically unable to think through for themselves problems in probability such as are given bere should not be encouraged to study the second part. It is not desirable to try to teach them sampling theory, for they would not really understand it, and it is better that they should not acquire a superficial facility in using the formulae. The subject of finite differences, briefly considered in the closing chapter, may be taught with Part 1 if desired, being logically detached from the rest of the theory. Part III comprises the more necessary statistical tables and a separate introduction, including a more complete discussion of the point binomial than might be desired in an elementary text. Many of the simplest problems in probability require for their solution the summation of a number of consecutive terms of a point binomial. There is no single short method of obtaining even a fair approximation to this sum which is available for all cases. One set of formulae works best in one case, another in another. In this introduction certain selected formulae are listed, with instructions as to when each is to be used. By the aid of the tables, the summation can be made quickly so as to obtain the required probability, correct to two or three places. Part III is also published separately. It is supposed throughout, but especially in the instructions as to the use of these tables, that a computing machine is at the disposal of the student; nevertheless most of the problems in this text can be handled satisfactorily with only a slide rule and a four-place table of logarithms.

In writing this text, the author has held in mind two principles. First, every idea pressented must be illustrated with a numerical example, and this must be followed by short "exercises," which can be done - at the board if desired without any mechanical aids, and in five or ten minutes each. These are artificial problems involving simple numbers, and have been invented solely for the purpose of teaching the methods. Longer numerical problems, having applications in various statistical fields, and problems in theory, are listed at the close of each chapter. The second principle is that tacit hypotheses underlying the various methods shall be exposed. This is the more necessary because in practice these hypotheses often fail to be realized, and it is important that, at the very outset of his training, the statistical worker should appreciate the tentative character of results in such cases. Moreover, it makes possible the maintenance of an attitude of rigorousness of treatment which is very desirable for the student's proper mathematical development.

Problem material and statistical data have been selected freely from several books and journals. The author's name is usually indicated where this has been done. I am deeply indebted to many of my students for their assistance in preparing the manuscript, particularly perhaps to H. G. Neebe, whose thorough work on the tables was very valuable to me, and to H. A. Lewis, who read with keenly critical mind the whole manuscript and made further special investigations at several points.

B. H. C.

CONTENTS AND FORMULAE

page
Preface iii
PART I
CHAPTER I-GRAPHS AND NOTATION
section

1. Function 3
2. Graphs 4
3. Sums 8
4. Mean Value 9
$l=\frac{1}{N} \Sigma t f$.
5. Variables and Constants 9

$$
\Sigma c t_{i}=c \Sigma t_{i}, \Sigma\left(l_{i}+u_{i}\right)=\Sigma t_{i}+\Sigma u_{i}
$$

6. Histograms 12
CHAPTER II - MOMENTS
7. Moments about Any Origin 18

$$
\nu_{r}=\frac{1}{N} \Sigma t f, \text { in the } t \text { unit. }
$$

2. Short Methods of Computing $\nu_{1}=\boldsymbol{I}$ 19

$$
\begin{aligned}
& I=c \bar{u}+A, \bar{u}=\frac{1}{N} \Sigma u f . \\
& I=\frac{T_{1} g_{1}+\cdots+T_{m} g_{m} .}{N}
\end{aligned}
$$

3. Moments about the Mean 25

$$
\begin{gathered}
\mu_{r}=\frac{1}{N} \Sigma(u-\bar{u}) f_{,} \text {in the } u \text { unit. } \\
\text { vil }
\end{gathered}
$$

section page
4. Short Methods of Computing μ 's 26
In the u unit,

$$
\begin{aligned}
\mu_{2} & =\nu_{2}-\bar{u}^{2}, \\
\mu_{3} & =\nu_{3}-3 \nu_{2} \bar{u}+2 \bar{u}^{3}, \\
\mu_{4} & =\nu_{4}-4 \nu_{3} \bar{u}+6 \nu_{2} \bar{u}^{2}-3 \bar{u}^{4} . \\
\mu_{r}(t \text { unit }) & =c^{\mu} \mu_{r}(u \text { unit }), \text { if } u \text { unit }=c \text { times } t \text { unit. }
\end{aligned}
$$

5. Standard Deviation 28

$$
\sigma=\sqrt{\mu_{2}}
$$

6. $\alpha_{3}=\frac{\mu_{8}}{\sigma^{3}}, \alpha_{4}=\frac{\mu_{4}}{\sigma^{4}}$ 28
7. Meaning of $\sigma, \alpha_{3}, \alpha_{4}$ 29
Skewness $=\frac{\alpha_{3}}{2}$, Kurtosis $=\frac{\alpha_{4}-\dot{3}}{2}$.
8. Application 30
CHAPTER III - CUMULATIVE FREQUENCY
9. Cumulative Frequency Tables 36
10. Cumulative Frequency Function 37
11. Median 38
12. Use of Median 40
13. Percentiles 42
14. Semi-interquartile Range 44

$$
s=\frac{\left|Q_{3}-Q_{1}\right|}{2} .
$$

7. Quartile Coefficient of Skewness44

$$
\frac{Q_{3}-2 Q_{2}+Q_{1}}{s}
$$

8. Mean Deviation 45

$$
\frac{1}{N} \Sigma f|t-\bar{t}|=c \cdot \frac{1}{N} \Sigma f|u-\bar{u}|
$$

if u unit $=c$ times t unit.

CONTENTS AND FORMULAE

 ixsection PAGE9. Mode46
$\frac{M e a n-M o d e}{\sigma}=\frac{\alpha_{3}}{2}$.
CHAPTER IV - GROUPING ERRORS.
SMALL TOTAL FREQUENCIES

1. Grouping Error 50
2. Sheppard's Corrections (N Large) 50
In the u unit, corrected $\mu_{2}=$ uncorrected $\mu_{2}-\frac{1}{1}$, cor- rected $\mu_{4}=$ uncorrected $\mu_{4}-\frac{1}{2}$ (uncorrected μ_{2}) $+\frac{\pi}{2 \pi} \pi$; $\frac{1}{12}=0.083333$, $\frac{7}{350}=0.029167$.
3. Moments (N Small) 51
4. Percentiles (N Small) 54
5. Mode (N Small) 56
CHAPTER V - THE NORMAL LAW
6. Equation and Graph 59

$$
\begin{aligned}
& y=a e^{-h^{2} t}, \phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \\
& e=2.718, \log e=0.4343
\end{aligned}
$$

2, 3. Properties 61
(a) Area under $y=\frac{a}{h} \sqrt{\pi}$, area under $\phi=1$.
(b) Mean and odd moments are zero.
(c) $\sigma_{t}=\frac{1}{h \sqrt{2}}, \sigma_{x}=1$.
(d) Mean deviation $=\sigma \sqrt{\frac{2}{\pi}}=0.794 \sigma$.
(e) $s=0.6745 \sigma=0.845$ times the mean deviation.
(f) Points of inflection are at $\pm \sigma$.
(g) Percentages of area over the intervals $(0, \sigma),(\sigma, 2 \sigma)$, and $(2 \sigma, 3 \sigma)$ are 34,14 , and 2 . The percentages over $(0, s),(s, 2 s),(2 s, 3 s),(3 s, 4 s)$ are $25,16,7$, and 2.
section
page
(h) $h=\frac{1}{\sigma \sqrt{2}}$.
(i) Mean value of the area of $\phi(x)$ over (a, ∞) is

$$
\frac{\phi(a)}{\int_{a}^{\infty} \phi(x) d x}
$$

(j) Mean value of the area of $\phi(x)$ over (a, b) is

$$
\frac{\phi(a)-\phi(b)}{\int_{a}^{b} \phi(x) d x}
$$

4. Curve Fitting : . 70
5. Graduation 72

CHAPTER VI - APPLICATIONS

1. Gunnery . 78
2. Physical Observations 82

$$
\epsilon=\sqrt{\frac{\Sigma f(t-V)^{2}}{N}}=\sqrt{\frac{N}{N-1}} \sigma=\sqrt{\frac{\Sigma f(t-\bar{t})^{2}}{N-1}} .
$$

Probable error of a single observation $=0.6745 \epsilon$.
Probable error of the mean $=0.6745 \sqrt{\frac{\Sigma f(t-\bar{t})^{2}}{N(N-1)}}$.
3. Psychological Measurements 88
4. Transfer to Arbitrary Scales 93

$$
t=\sigma_{t} x+\bar{t}, t=-\sigma_{t} x+\bar{t}
$$

5. The Case where N is Small 95

Use of Table VI.

CHAPTER' VII - TIME | SERIES: TREND AND RATIO |
| :--- |
| CHARTS |

1. Time Series . 102
2. Moving Average 102

section
3. Trend Line 104

$$
\begin{aligned}
& y=\alpha+\beta t, \alpha=\frac{\Sigma y \Sigma t^{2}-\Sigma I \Sigma l y}{D} \\
& \beta=\frac{n \Sigma t y-\Sigma t \Sigma y}{D}, D=n \Sigma t^{2}-(\Sigma t)^{2} \\
& y=A+B x, A=\frac{1}{n} \Sigma y, B=\frac{\Sigma x y}{\Sigma x^{2}}, \Sigma x^{2}=\frac{n\left(n^{2}-1\right)}{12}
\end{aligned}
$$

4. Least Squares 111
5. Exponential Trend 112
$y=k e^{m!}$.
6. The Constants k and m
$Y=\alpha+\beta l$, whese $Y=\log y$, $\alpha=\log k, \beta=m \log e$.
7. Properties of Ratio Charts 118
8. Parabolic Trend 122

$$
\begin{aligned}
y & =A+B x+C x^{2}, A=\frac{15}{n\left(n^{2}-4\right)}\left(\frac{3 n^{2}-7}{20} \Sigma y-\Sigma x^{2} y\right) \\
B & =\frac{12}{n\left(n^{2}-1\right)} \Sigma x y, C=\frac{15}{n\left(n^{2}-4\right)}\left(\frac{12}{n^{2}-1} \Sigma x^{2} y-\Sigma y\right) .
\end{aligned}
$$

CHAPTER VIII CORRELATION, THE SURFACE AND THE COEFFICIENT

1. The Frequency Surface 129

$$
f(X)=\underset{Y}{\Sigma} f(X, Y), f(Y)=\underset{X}{\Sigma} f(X, Y)
$$

2. The Mean

$$
\underset{X, Y}{\Sigma} f(X, Y)=N, \bar{X}=\frac{1}{N} \Sigma_{X} X f(X), \bar{Y}=\frac{1}{N} \Sigma_{Y} Y f(Y) .
$$

3. Moments

$$
\mu_{x^{r}}=\frac{1}{N} \sum_{x, y} x^{r} f(x, y)=\frac{1}{N} \Sigma_{x} x^{\prime} f(x),
$$

$$
\begin{aligned}
& \mu_{y^{r}}=\frac{1}{N} \Sigma_{x, y} y^{r} f\left(x_{2} y\right)=\frac{1}{N} \Sigma_{y} y^{r} f(y) \\
& p_{x y}=\frac{1}{N} \sum_{x, y} x y f(x, y), r=\frac{p_{x y}}{\sigma_{x} \sigma_{y}}
\end{aligned}
$$

4. Computation of Moments (N Large) 137
$u=\frac{X-A}{h}, \bar{u}=\frac{1}{N} \Sigma u f(u), \sigma_{u}^{2}=\frac{1}{N} \Sigma u^{2} f(u)-\bar{u}^{2}$,
$U=\sum_{u} u f(u, v), V=\sum_{v} v f(u, v), \sum_{v} v U=\sum_{u} u V, \quad \sigma_{x}=h \sigma_{u}$.
$r=\frac{\frac{1}{N} \Sigma_{v} U-\bar{u} \bar{v}}{\sigma_{u} \sigma_{v}}$.
5. Computation of Moments (N Small) 141

$$
r=\frac{1}{\sqrt{\frac{1}{N} \Sigma u^{2}-\bar{u}^{2}} \sqrt{\frac{1}{N} \Sigma v^{2}-\bar{v}^{2}}}\left(\frac{1}{N} \Sigma u v-\bar{u} \bar{v}\right)
$$

CHAPTER IX - REGRESSION, INTERPRETATION OF r

1. Regression Lines 152

$$
\begin{gathered}
\frac{y}{\sigma_{y}}=r \frac{x}{\sigma_{x}}, \quad \frac{x}{\sigma_{x}}=r \frac{y}{\sigma_{y}} \\
\frac{Y-\bar{Y}}{\sigma_{v}}=r \frac{X-\bar{X}}{\sigma_{x}}, \quad \frac{X-\bar{X}}{\sigma_{x}}=r \frac{Y-\bar{Y}}{\sigma_{y}}
\end{gathered}
$$

2. Least Squares

$$
\begin{aligned}
& \text { For } y=r x, \quad \frac{1}{N} \Sigma \delta^{2} f=1-r^{2} \\
& \text { for } x=r y, \quad \frac{1}{N} \Sigma \delta^{2} f=1-r^{2} \\
& \text { for } y= \pm x, \frac{1}{N} \Sigma \delta^{2} f=1-|r|
\end{aligned}
$$

CHAPTER X - NORMAL SURFACE. CORRELATION OF NON-MEASURABLE CHARACTERS

section

1. The Normal Surface 164

$$
\begin{aligned}
& 2=\frac{N}{2 \pi \sqrt{1-r^{2}} \sigma_{x} \sigma_{y}} e^{-\frac{1}{2\left(1-r^{2}\right)}\left(\frac{x^{2}}{\sigma_{z}^{2}}-\frac{2 r x y}{\sigma_{x} \sigma_{y}}+\frac{z^{a}}{\sigma_{y}^{2}}\right)}, \\
& x^{2}-2 r x y+y^{2}=k, a=\sqrt{\frac{k}{1-r}}, b=\sqrt{\frac{k}{1+r}} \\
& r=1-\frac{2}{1+\frac{a^{2}}{b^{2}}}
\end{aligned}
$$

2. Non-Measurable Characters

$$
r=\frac{1}{N} \sum_{x, y} \frac{x}{\sigma_{z}} \frac{y}{\sigma_{y}} f(x, y)
$$

3. Partly Measured Characters 170

$$
r=\frac{1}{N} \sum_{x, v} \frac{x}{\sigma_{z}} \frac{v-\bar{v}}{\sigma_{v}} f(x, v) .
$$

4. Correlation between Ranks
 172

$$
r=1-\frac{6 \Sigma(X-Y)^{2}}{N\left(N^{2}-1\right)}
$$

PART II

CHAPTER I - PROBABIIITY

1. Preliminary Definition 183
2. Events183
3. Elementary Theorems 188
4. Permutations and Combinations 191

$$
\begin{aligned}
& { }_{n} P_{r}={ }_{n} C_{r} \cdot{ }_{r} P_{r},{ }_{n} P_{r}=n(n-1) \cdots(n-r+1), \\
& { }_{r} P_{r}=r l,{ }_{n} P_{r}=\frac{n!}{(n-r)!}
\end{aligned}
$$

$$
\begin{aligned}
{ }_{n} C_{r} & =\frac{n!}{r!(n-r)!^{n}}{ }_{n} C_{r}={ }_{n} C_{n-r}, \\
(a+b)^{n} & =\sum_{r=0}^{n}{ }_{n} C_{r} a^{n-} b^{r} . \\
n! & \cong e^{-n n^{n}} \sqrt{2 \pi n} .
\end{aligned}
$$

5. The Point Binomial

$$
(p+q)^{n}=p^{n}+\cdots+{ }_{n} C p^{2} q^{t}+\cdots+q^{n}, s=n-t .
$$

6. The Finite Hypergeometric 'Series

$$
\frac{1}{{ }_{m} C_{n}}\left[{ }_{m} C_{n}{ }_{q m} C_{0}+\cdots+{ }_{p m} C_{n-t}{ }_{q m} C_{t}+\cdots+{ }_{q m} C_{n}\right]
$$

CHAPTER II-APPROXIMATIONS TO THE POINT BINOMIAL

1. Properties

$$
\begin{array}{r}
\bar{i}=n q, \sigma=\sqrt{p q n}, \alpha_{3}=\frac{p-q}{\sigma}, \alpha_{4}=3+\frac{1}{\sigma^{2}}-\frac{6}{n}, \tag{205}\\
\mid \text { mean }- \text { mode } \mid \leqq 1 .
\end{array}
$$

2. Normal Curve

$$
y=\frac{\phi(x)}{\sigma}, x=\frac{t-\bar{t}}{\sigma}
$$

3. First Approximation

The sum of terms in which $a \leqq t \leqq b$ is

$$
\int_{x_{1}}^{x_{1}} \phi(x) d x, x_{1}=\frac{a-\frac{1}{2}-q n}{\sigma}, x_{2}=\frac{b+\frac{1}{2}-q n}{\sigma} ;
$$

the sum of those terms in which t differs from $q n$ by k or less is

$$
2 \int_{0}^{x} \phi(x) d x, x=\frac{k+\frac{1}{2}}{\sigma} .
$$

4. Closer Approximations

The sum of those terms in which $a \leqq t \leqq b$ is

$$
\int_{x_{1}}^{x_{2}} \phi(x) d x+\left[\frac{q-p}{6 \sigma} \phi^{(2)}(x)+\frac{1}{24}\left(\frac{1}{\sigma^{2}}-\frac{6}{n}\right) \phi^{(x)}(x)\right]_{x_{1}}^{x_{1}}, x_{1}, x_{2}
$$

as in § 3 .
section
5. Theorem IV

The mean of the finite hypergeometric series is $\bar{l}=n q$.

CHAPTER III-FREQUENCY CURVES

1. The Gram-Charlier Series

$$
\begin{gathered}
F(x)=\phi(x)-\frac{\alpha_{8}}{6} \phi^{(2)}(x)+\frac{\alpha_{4}-3}{24} \phi^{(1)}(x), x=\frac{u-\bar{u}}{\sigma_{u}} . \\
\text { Frequency over }(a, b)=N \int_{a}^{b} F(x) d x ; y=\frac{N}{\sigma_{t}} F(x) .
\end{gathered}
$$

2. Properties of the ϕ 's

$$
\begin{aligned}
& \left.\left.\int_{a}^{b} \phi^{(2)}(x) d x=\phi^{(2)}(x)\right]_{a}^{b}, \int_{a}^{b} \phi^{(1)}(x) d x=\phi^{(2)}(x)\right]_{a}^{b} ; \\
& \int_{-\infty}^{\infty} \phi(x) d x=1, \int_{-\infty}^{\infty} x^{2} \phi(x) d x=1, \int_{-\infty}^{\infty} x^{6} \phi(x) d x=1 \cdot 3 \\
& \int_{-\infty}^{\infty} x^{6} \phi(x) d x=1 \cdot 3 \cdot 5, \text { etc. }
\end{aligned}
$$

$$
\int_{a}^{b} F(x) d x=\int_{a}^{b} \phi(x) d x-\frac{\alpha_{3}}{6}\left[\phi^{(2)}(b)-\phi^{(2)}(a)\right]+\frac{\alpha_{4}-3}{6}
$$

$$
\left[\phi^{(2)}(b)-\phi^{(3)}(a)\right]
$$

3. Graduation 230
4. Other Frequency Curves and Their Uses 233
5. Uses of Frequency Curves 234
CHAPTER IV - SAMPLING
6. Nature of the Problem 240
7. Mean of a Sample 241

Mean of l 's $=t$.

$$
\bar{\sigma}^{2}=\frac{1}{N} \tilde{\sigma}^{2}, \bar{\alpha}_{3}=\frac{1}{\sqrt{N}} \tilde{\alpha}_{3}, \bar{\alpha}_{4}-3=\frac{\tilde{\alpha}_{4}-3}{N}
$$

section
3. Applications

The probability that \bar{t} will lie within δ of \tilde{t} is

$$
P_{\delta}=2 \int_{0}^{\delta} \phi d x+\frac{\tilde{\alpha}_{4}-3}{12 N} \phi^{(3)}(\delta), \delta \text { in } \bar{\sigma} \text { unit. }
$$

$P_{\delta} \geqq 0.999$ almost always if $\delta \geqq 3.5$, and $N \geqq 25$.
4. Moments of a Sample

$$
\begin{align*}
& \sigma_{\sigma}=\frac{\tilde{\sigma}}{\sqrt{2 N}}, \sigma_{\alpha_{3}}=\sqrt{\frac{6}{N}}, \sigma_{\alpha_{4}}=\sqrt{\frac{24}{N}}, \sigma_{M}=\sqrt{\frac{\pi}{2 N}} \tilde{\sigma} . \tag{254}\\
& 1-P_{\delta} \leqq \frac{1}{\delta^{2}}, \quad 1-P_{\delta}<\frac{\alpha_{22}}{\left(\frac{\delta+2 r \delta}{2 r}\right)^{2 r}}, \quad 1-P_{\delta}<\frac{1}{2.25 \delta^{2}} .
\end{align*}
$$

5. Coefficient of Correlation

$$
\sigma_{r}=\frac{\left(1-\tilde{r}^{2}\right)}{\sqrt{N}} .
$$

6. Chi Test264

$$
x^{2}=\sum_{i=1}^{m} \frac{\left(f_{1}-N p_{i}\right)^{2}}{N p_{i}} .
$$

7. Significance of a Difference.

$$
\begin{aligned}
\mu_{2}(F) & =\mu_{2}\left(f^{\prime}\right)+\mu_{2}\left(f^{\prime}\right), \\
\mu_{4}\left(F^{\prime}\right) & =\mu_{2}\left(f^{\prime}\right)+6 \mu_{2}\left(f^{\prime}\right) \mu_{2}\left(f^{\prime \prime}\right)+\mu_{4}\left(f^{\prime \prime}\right), \text { etc. } \\
\sigma_{F} & =\tilde{\sigma} \sqrt{\frac{1}{N^{\prime}}+\frac{1}{N^{\prime \prime}}}
\end{aligned}
$$

The probability that the difference between two means will exceed δ_{σ}, numerically, is $1-P_{\delta}$; where

$$
P_{\delta}=2 \int_{0}^{\delta} \phi d x .
$$

8. Difference between Proportions

The probability that the difference will exceed $p^{\prime}-p^{\prime \prime}$, numerically, is $1-P_{\delta}$ where

$$
P_{\delta}=\dot{2} \int_{0}^{\delta} \phi d x, \delta=\frac{\left|p^{\prime}-p^{\prime \prime}\right|}{\sigma}, \sigma=\sqrt{p q\left(\frac{1}{N^{\prime}}+\frac{1}{N^{\prime \prime}}\right)} .
$$

section
9. Application to Physical Observations 273

If $\bar{x}=c_{1} x_{1}+\cdots+c_{N} x_{N}$, or if $\bar{\delta}=c_{1} \delta_{1}+\cdots+c_{N} \delta_{N}$,
then $\bar{\sigma}^{2}=c_{1}^{2} \sigma_{1}^{2}+\cdots+c_{N}^{2} \sigma_{N}^{2}$, and $\bar{s}^{2}=c_{1}^{2} s_{1}^{2}+\cdots+c_{N}^{2} s_{N}^{2}$.
If $\bar{x}=c x^{N}$, then $\quad \frac{\bar{\delta}}{\bar{x}}=N \frac{\delta}{\bar{x}}, \quad$ and $\quad \frac{\bar{\sigma}}{\bar{x}}=|N| \frac{\sigma}{x}$.
If $\bar{x}=c x_{1} \cdots x_{N}, \quad$ then $\frac{\bar{\delta}}{\bar{x}}=\frac{\delta_{1}}{x_{1}}+\cdots+\frac{\delta_{N}}{x_{N}}$,
and

$$
\begin{gathered}
\left(\frac{\bar{\sigma}}{\bar{x}}\right)^{2}=\left(\frac{\sigma_{1}}{x_{1}}\right)^{2}+\cdots+\left(\frac{\sigma_{N}}{x_{N}}\right)^{2} \\
\text { If } \quad \bar{x}=\frac{x_{1}}{x_{1}}\left(\frac{\bar{\sigma}}{\bar{x}}\right)^{2}=\left(\frac{\sigma_{1}}{x_{1}}\right)^{2}+\left(\frac{\sigma_{2}}{x_{2}}\right)^{2} .
\end{gathered}
$$

CHAPTER V — CORRELATION, FURTHER TOPICS

1. Regression Curve

$$
\begin{aligned}
\frac{1}{N} \Sigma \delta^{2} f(x, y) & =\sigma_{y}^{2}\left(1-r^{2}\right), \\
\bar{y}(x) & =\frac{1}{f(x)} \sum_{y} y f(x, y) .
\end{aligned}
$$

2. Errors of Estimate

$$
\begin{array}{r}
\text { Standard error }=\sigma_{y} \sqrt{1-r^{2}} \\
\text { Correlation ratio error }=\sigma_{y} \sqrt{1-\eta_{y}^{2}} \\
\eta_{y}^{2}=\frac{1}{N \sigma_{y}^{2}} \Sigma_{x}^{2} \bar{y}^{2}(x) f(x), 0 \leqq \eta_{y}^{2} \leqq 1 .
\end{array}
$$

3. Computation of η

$$
\begin{aligned}
U & =\sum_{v} u f(u, v), V=\sum_{v} v f(u, v), \\
\eta_{y}^{2} & =\frac{1}{\sigma_{v}^{2}}\left[\frac{1}{N} \sum_{u} \frac{V^{2}}{f(u)}-\bar{v}^{2}\right], \eta_{x}^{2}=\frac{1}{\sigma_{u}^{2}}\left[\frac{1}{N} \sum_{v} \frac{U^{2}}{f(v)}-\bar{u}^{2}\right] .
\end{aligned}
$$

4. Common Elements

$$
r=\frac{m}{n}
$$

section

5. Other Probability Distributions 297

$$
r=\sqrt{\frac{n}{2 n-1}}
$$

6. Grouping Error in Correlation 300
7. Polychoric Correlation. 302

$$
\begin{gathered}
\int_{-\infty}^{\bar{y}_{i}} \phi d x=\frac{b_{i}, i=1,2, \cdots ; m=\frac{y^{\prime \prime}-y^{\prime}}{f_{i}^{\prime}},}{x^{\prime \prime}-x^{\prime}} \\
r=\frac{m}{\sqrt{1+m^{2}}}=\sin \tan n^{-1} m
\end{gathered}
$$

8. Tetrachoric Correlation ($|r|<0.8$)

$$
\begin{aligned}
\int_{-\infty}^{x} \phi d x & =F_{1}, \int_{-\infty}^{y_{1}} \phi d x=A_{1}, \int_{-\infty}^{y_{2}} \phi d x=B_{2} \\
m & =F_{1} F_{2} \frac{y_{1}+y_{2}}{\phi(x)}, r=\frac{m}{\sqrt{1+m^{2}}}=\sin \tan ^{-1} m ; \\
r & =\frac{m}{\sqrt{1+\theta m^{2}}}, \theta \cong 0.6
\end{aligned}
$$

9. Tetrachoric Tables ($|r| \geqq 0.8$)

CHAPTER VI - MULTIPLE CORRELATION

1. Notation

$$
f(x, y)=\sum_{z} f(x, y, z), f(x)=\sum_{y} f(x, y), N=\sum_{x} f(x)
$$

2. Moments . 319

$$
\begin{aligned}
& \bar{u}=\frac{1}{N} \sum_{u \nabla v} \sum_{v} u f(u, v, w)=\frac{1}{N} \sum_{u v} \sum_{v} \dot{f}(\dot{v}, v)=\frac{1}{N} \sum_{u} u f(u) . \\
& \mu_{x^{r}}=\frac{1}{N_{i}, y_{1}, x_{1}} \sum_{x f(x, y, z)=\frac{1}{N} \sum_{x} x^{r f}(x) . ~ . ~ . ~ . ~}^{n} \\
& p_{z^{a} y^{b} x_{0}}=\frac{1}{N} \sum_{x, y, 1} x^{a} y^{b} z^{c} f(x, y, z) . \\
& p_{x y}=\frac{1}{N} \sum_{x, y, z} x y f(x, y, z)=\frac{1}{N} \sum_{x, y} x y f(x, y)=r_{x y} \sigma_{x} \sigma_{y} .
\end{aligned}
$$

AECTION Page
3. Regression 324

$$
\bar{z}(x, y)=\frac{1}{f(x, y)} \sum_{i} \alpha f(x, y, z), z=\bar{z}(x, y)
$$

4. Regression Plane

326$$
\begin{aligned}
\frac{z}{\sigma_{s}}\left(1-r^{2} s_{y}\right) & =\frac{x}{\sigma_{z}}\left(r_{x s}-r_{x y} r_{y s}\right)+\frac{y}{\sigma_{y}}\left(r_{y y}-r_{x y} r_{x y}\right) ; \\
& =Z-\bar{Z}, x=X-\bar{X}, y=Y-\bar{Y}
\end{aligned}
$$

5. Extension to m Dimensions 328

$$
\begin{array}{r}
\quad \frac{x_{1}}{\sigma_{1}} R_{11}+\frac{x_{2}}{\sigma_{2}} R_{12}+\cdots+\frac{x_{m}}{\sigma_{m}} R_{1 m}=0 ; \\
R=\left(r_{11} r_{21} \cdots r_{m m}\right), R_{\mu m}=\text { cofactor of } r_{n k}
\end{array}
$$

6. Applications 329
7. Multiple Correlation Coefficient 332

$$
\begin{aligned}
& \eta_{\Delta}^{2}=\frac{1}{N \sigma_{s}^{2}} \underset{x, y}{\underset{z}{z^{2}}(x, y) f(x, y) .} \\
& \rho_{z}^{2}=\frac{r_{z i}^{2}+r_{y s}^{2}-2 r_{x y} r_{y} r_{z y}}{1-r_{x y}^{2}} . \\
& 0 \leqq \eta^{2}, \rho_{2}^{2} \leqq 1 .
\end{aligned}
$$

8. Size of N 337
9. Partial Correlation 340

$$
r_{x y \cdot s}=\frac{r_{y n}-r_{s t} r_{x y}}{\sqrt{\left(1-r_{3 y}^{2}\right)\left(1-r_{s=}^{2}\right)}} .
$$

10. Application 343
CHAPTER VII - FINITE DIFFERENCES
11. Notation 348

$$
\Delta u(x)=u(x+h)-u(x), \Delta^{2} u(x)=\Delta \Delta u(x)
$$

2. Errors 349
3. Interpolation 354
4. Backward Interpolation 356
5. Inverse Interpolation 357

$$
\text { At } x=1.25, u=(.0078125)\left(-7 u_{0}+105 u_{1}+35 u_{2}\right.
$$

$$
\left.-5 u_{3}\right) ;
$$

$$
\text { At } x=1.75, u=(.0078125)\left(-5 u_{0}+35 u_{1}+105 u_{2}\right.
$$

$$
\left.-7 u_{3}\right) ;
$$

$$
\text { At } x=1.50, u=(.0625)\left(-u_{0}+9 u_{1}+9 u_{2}-u_{3}\right)
$$

7. Summation of Series 362

$$
\left.\sum_{x=0}^{n-1} u_{x}=U_{x}\right]_{0}^{n}
$$

$$
u_{0}+u_{1}+\ldots+u_{n-1}=u_{0} \frac{n^{(1)}}{\lfloor 1}+\Delta_{0} \frac{n^{(2)}}{\underline{2}}+\cdots
$$

$$
+\Delta_{0}^{k} \frac{n^{(k+1)}}{\underline{k+1}}
$$

PART III

FOUR-PLACE TABLES OF PROBABILITY FUNCTIONS

1. Preface . 373
2. Explanation of the Tables 373
3. Rules for the Skew Binomial 377

$$
\begin{aligned}
& \text { section } \\
& \Delta^{n}(f+g)=\Delta^{n} f+\Delta^{n} g ; \Delta^{n}(c f)=c \Delta^{n} f ; \\
& \Delta^{n}\left(a_{0} x^{n}\right)=a_{0} h^{n} n!; \Delta^{n}\left(a_{0} x^{n}+\cdots+a_{n}\right)=a_{0} h^{n} n!; \\
& x^{(m)}=x(x-h) \cdots(x-m h+h) ; \Delta x^{(m)} \\
& =m x^{(m-1)} h ; \\
& f(x)=f(0)+x^{(1)} \Delta_{0}+\frac{x^{(2)}}{\underline{2}} \Delta_{0}^{2}+\cdots+\frac{x^{(n)}}{\underline{\mid n}} \Delta_{0,}^{n}, \\
& \text { if } \Delta x=1 \text {; } \\
& u(s)=u(0)+s^{(\omega} \Delta_{0}+\cdots+\frac{s^{(n)}}{\underline{n}} \Delta_{0}^{n} .
\end{aligned}
$$

CONTENTS AND FORMULAE

 xxsection PAGE
4. Accuracy of the Tables 378
5. Table VIII 379Table I: Area under $\phi(x)$ from $-\infty$ to x.Table I $(a): \phi(x)$.Table II: $\phi^{(2)}(x)=\left(x^{2}-1\right) \phi(x)$.

Table III: $\phi^{(x)}(x)=\left(-x^{3}+3 x\right) \phi(x)$. Table IV: $\phi^{(1)}(x)=\left(x^{4}-6 x^{2}+3\right) \phi(x)$. Table V: $\log n$ I Table VI: $x_{R}=$ deviate of rank R.
Table VII: $\log R_{x}, R_{x}=\frac{1}{\phi(x)} \int_{x}^{\infty} \phi(x) d x$.
Table VIII: Three-Place Logarithms.

