MATHEMATICS

AND
STATISTICS

ECONOMISTS

Rave sec

FOR

by

Gerhard Tintner

Professor of Economics,
Mathematics, and Slatistics

IOWA sTATE COLIEGE

Smpatiod es
NEEAN BOOK STAMA
FOONA, A.
Zonstable and Company Ltd.
10 Orange sireet London

Tables 1 to 6 are from
Rinehart Mathematical Tables, Formulas, and Clroes, Enlarged Edition

EOX $\sqrt{1} 4$
 40355

To Léontine

PREFACE

The present book grew out of a definite need felt during many years -. eeaching at Iowa State College. There seems to be no text adapted to the Anerican student of economics (undergraduate or graduate) who has had n נ thorough training in college mathematics, but who is willing to acquire some r^{r} the mathematical equipment necessary nowadays, for a serious study -mics.
this book has been written in an attempt to meet such a specific need. t includes some applications of elementary mathematics to economics, as vell as topics in calculus, probability, and elementary statistics. The examples ae taken from economics. The student is not burdened by the necessity of f.miliarizing himself with mechanics and other branches of physics, which taditionally supply much of the illustrative materials in elementary calculus txts. It is felt that the economics student who wants to learn mathematics ad statistics has not the time to study those topics which are somewhat ronote from his field of interest.

This book is addressed specifically to the future econometrician-a sudent of economics who is willing to use the tools of mathematics and statitics in his economic investigations. Little mathematical preparation is rquired of the student. It is believed that some knowledge of algebra and elmentary trigonometry will be sufficient, although familiarity with elerentary economics is required. In this connection, two somewhat advanced broks on economic theory are recommended: Kenneth E. Boulding, Economic Analysis (New York: Harper \& Brothers, 1941) and George J. Stigler, The Theor of Price (New York: The Macmillan Company, 1946). The student will gain a greater insight into the theoretical economic problems used as ilustrations if he reads the relevant chapters of one or both texts. It is to be hoped that, after mastering this text, the student or reader will possess sufficent knowledge in mathematics and statistics to understand most of the a:ticles published in such journals as Econometrica, the Review of Economic Suudies, and the Journal of the American Statistical Association.

It is evident that a book which is planned, not for the future professional mathematician, but for the future econometrician, cannot be entirely rigorous isa the proofs of the mathematical theorems involved. Intuitive proofs and

more adequate proof is beyond the scope of the book and also beyond the powers of most readers or students. Rigorous treatment is already available in many books on advanced calculus, algebra, and statistics. Some of there books are indicated in the postscript.

Many empirical examples are included in the exercises of this book. They represent the efforts of econometricians to utilize statistical methods to obtan theoretically meaningful economic relationships. The statistical methods used by these econometricians are not always the most modern ones. In spite of this fact, it seemed worth while to include, as illustrations, some of the older results, found with the help of somewhat antiquated statistical me.ho' lt should be emphasized that the empirical relationships given in the exacu, are to be interpreted with some caution. They represent merely efforts io estimate some kind of average relationship between the variables indicatid. It is to be hoped that these examples, indicative of the great theoretical interest and practical potentialities of econometrics, will make the study of mathematics and statistics more interesting to the economist, and will inspire him to future studies in the field.

Some of the examples in the text require the use of mathematical tables The following set of tables can be recommended: H. D. Larsen, Rinehat Mathematical Tables, Formulas, and Curves, Enlarged Edition (New York Rinehart \& Company, Inc., 1953).

I should like to express my gratitude to a number of my colleagues a Iowa State College who have taken a kindly interest in this text and give me assistance in various ways. I am particularly obliged to Professor Edwan S. Allen (Department of Mathematics), Professor Dio L. Holl (Head, Deparment of Mathematics), Professor William G. Murray (Head, Department of Economics), and Professor E. R. Smith (Department of Mathematirs).I am also indebted to Professor C. V. Newsom for improvements in the man4script. I have to thank Mr. F. Jarred (Melbourne, Australia) for helping ne with the answers to the problems.

Problems marked by * contain important ideas and theorems whic will be required later. Problems and sections marked ** are somewhat mere difficult and may be omitted.

Sources of numerical examples

The numerical examples given in the text are taken from thr following publications:
Cobb, Charles W., and Paul H. Douglas, "A Theory of Production," American Economic Review, XVIII (Supplement) (1938), 139-156.
Davis, H. T., The Analysis of Economic Time Series, Cowles Commission fot Research in Economics, Mono. 6. Bloomington, Ind.: Principia Press, 1941.
——The Theory of Econometrics. Bloomington: Principia Press, 1941.

Dean, Joel, "Department Store Cost Functions," Studies, in Mathematical Economics and Econometrics; In Memory of Henry Schultz. Cuicago: University of Chicago Press, 1942, pp. 222-254.
—_, "The Relation of Cost to Output for a Leather Belt Sıop," Technical Paper 2. New York: National Bureau of Economic Reseach, 1941.
——, "Statistical Cost Functions of a Hosiery Mill," Stuies in Business Administration, XI, No. 4. Chicago: University of Chicag̀) Press, 1941.
Derksen, J. B. D., and A. Rombouts, "The Demand for Hicycles in the Netherlands," Econometrica, V (1937), 295-300.
Douglas, Paul H., The Theory of Wages. New York: The Marmillan Company, 1934.
———, and M. Bronfenbrenner, "Cross-Section Studies in the Cobb-- Douglas Function,' Journal of Political Economy, XLVII (1939), 761-785.
——, and Patricia Daly, "The Production Function for Canadian Manufactures," Journal of the American Statistical Association, XXXIX (1943), 178-186.
——, Patricia Daly, and Ernest Olson, "The Production Function for the United States, 1904," Journal of Political Economy, LI (1943), 61-65.
——, and Grace T. Gunn, "Further Measurement of Martinal Productivity," Quarterly Journal of Economics, LFV (1940), 399-428.
——, and Grace T. Gunn, "The Production Function American Miänfacturing for 1914.". Journal :" Ditical Economy, L (1942), 595602.
——, and Grace T. Gunn, "The Production Function for American Manufacturing in 1919," American Economic Review, XXXI (1941), 6780.
———, and Grace T. Gunn, "The Production Function for Australian Manufacturing," Quarterly Journal of Economics, LVI (1941), 108-129.
——_ and Marjorie H. Handsaker, "The Theory of Marginal Productivity Tested by Data for Manufacturing in Victoria," Quarterly Journal ; З~~nnomics, LII (1937), 1-36, 214-254.
hods of Measuring the Marginal Propensity to Con$\because \cdots \ldots \&$ of the American Statistical Association, XLII (1947), 105Аーム.
ـ_ontief, W., The Structure of the American Economy in 1919-1939; An Empirzal Application of Equilibrium Analysis, 2nd ed. Cambridge: Harvard University Press, 1941.
Tichols, W. H., Labor Productivity Functions in Meat Packing. Chicago: University of Chicago Press, 1948.
Nordin, J. A., "Note on a Light Plant's Cost Curve," Econometrica, XV (1947), 231 ff .

- bst, W. R., Jr., Butter and Oleomargarine; An Analysis of Competing Commodrties. (Studies in History, Economics and Public Law, No. 427.) New York: Columbia University Press 1037
x

Prefaic

Doos, C. F., ànd Victor von Szeiski, "Factors Governing Changes in Domestic Automobile Demand," in General Motors Corporation: The Dynamics of Automobile Demand. Detroit: 1939.
Samuelson, Paul A., "A Statistical Analysis of the Consumption Function," in A. H. Hansen, Fiscal Policy and the Business Cycle. New York: W. W. Norton \& Company, Inc., 1941, pp. 250-260.
Schultz, Henry, Statistical Laws of Demand and Supply with Special Applications to Sugar. Chicago: University of Chicago Press, 1928.
——, The Theory and Measurement of Demand. Chicago: University of Chicago Press, 1938.
Stone, Richird, "The Analysis of Market Demand," Journal of the Royal Statistical Society, CVIII (1945), 286-382.
———The Fole of Measurement in Economics. (The Newmarch Lectures, 19481949.) Cámbridge, England: Cambridge University Press, 1951.

Szeliski, Vimor von, "Frequency Distribution of National Income," Report of the Meeting of the Econometric Society in Philadelphia, Econometrica, II (1934), 215 ff.
——, and L. J. Paradiso, "Demand for Shoes As Affected by Price Levels and National Income," Econometrica, IV (1936), 338-355.
Tintner, Gezhard, "An Application of the Variate Difference Method to Multiple Regression," Econometrica, XII (1944), 97-113.
——, Econometrics. New Yoik: John Wiley \approx Sorz, Inc., 155 .
———, "Multiple Regression for Systems of Equations," Econometrica, XIV (1946), 5-36.
-_, "A Note of the Derivation of Production Functions from Farm Records," Econometrica, XII (1944), 26-34.
——, "Some Applications of Multivariate Analysis to Economic Data," Journal of the American Statistical Association, XLI (1946), 472-500.
——, and O. H. Brownlee, "Production Functions Derived from Farm Records," Journal of Farm Economics, XXVI (1944), 566-571. x? Hoods
Whitmann, R. H., "The Statistical Law of Demand for a P-9i.j (1936), 13° As Illustrated by the Demand for Steel," Econometrith it (anmo , we we 152. rel
Wold, Herman, Demand Analysis; A Study in Econometrics. New York: Johrrn Wiley \& Sons, Inc., 1953.
Yntema, T. O., "United States Steel Corporation," TNEC Papers. New Yc. -: United States Steel Corporation, Vol, I, 1940.

tABLE OF CONTENTS

Preface
 Sources of Numerical Examples
 viii

 vii1. Functions and Graphs31. Functions 2. Rectangular Coordinates 3. Graphs of Equations
2. Linear Equations in One Unknown 11
3. Linear Equations 5. Graphs of Linear Functions 6. Linear Demand Functions 7. Linear Supply Functions 8. Market Equi- librium 9. Taxation
4. Systems of Linear Equations 28
5. Linear Eq́uations in More Than One Unknown 11. Market Equilibrium for Several Commodities 12. Imputation
6. Quadratic Equations in One Unknown 35
7. Quadratic Demand and Supply Curves
8. Logarithms 37
9. Pareto Distribution of Incomes 15. Demand Curves with Con- stant Elasticity
10. Progressions 44
11. The Arithmetic Progression 17. Sums of Arithmetic Progres- sions 18. Growth of Enterprise 19. Geometric Progression 20. Sums of Geometric Progressions 21. Population 22. Com- pound Interest

7. Deferminants

23. Determinants of the Second Order 24. Development of Deter-
minants by Minors 25. Solutions of Systems of Linear Equations in
Three Unknowns by Determinants
24. Linear Difference Equations with Constant Coefficients
25. First-Order Homogeneous Difference Equations
26. First
Order Nonhomogeneous Difference Equations

27. Functions, Limits, and Derivatives

28. Functions and Variables	29. Demand Functions and Total Rev-		
enue Functions	30. Total and Average Cost Functions	31. Dif-	
ference Quotients	32. Limits	33. Derivatives	34. Marginal
Cost	35. Marginal Revenue		

10. Rules of Differentiation
11. Derivative of a Power 37. Derivative of a Constant Times a
Function 38. Derivatives of Sums and Differences of Functions
12. Derivative of a Constant 40. Derivative of a Product 41. De-
rivative of a Quotient of Functions 42. Derivative of a Function of
a Function
13. Derivatives of Logarithmic and Exponential Functions
14. The Number e 44. Natural Logarithms 45. Derivative
of the Logarithmic Function 46. General Logarithmic Differentia-
tion 47. Derivative of the Exponential Function
15. Economic Applications of the Derivatives

118
48. Elasticity 49. Elasticity of Demand 50. Marginal Revenue and Elasticity of Demand
13. Additional Applications of Derivatives 123
51. Further Geometric Significance of the First Derivative
14. Higher Derivatives 126
52. Higher Derivatives 53. Geometric Interpretation of the

Second Derivative 54. Increasing and Decreasing Marginal Cost
15. Maxima and Minima in One Variable. Inflection Points 133
55. Maxima and Minima in One Variable 56. Monoply 57. Av- erage and Marginal Cost 58. Points of Inflection
16. Derivatives of Functions of Several Variables 145
59. Functions of Several Independent Variables 60. Partial De- rivatives 61. Marginal Productivity 62. Partial Elasticities of Demand 63. Differentiation of Implicit Functions
17. Homogeneity 159
64. Homogeneous Functions 65. Euler Theorem
18. Higher Partial Derivatives and Applications 164
66. Higher Partial Derivatives 67. Maxima and Minima in Several Variables 68. Joint Production 69. Constrained Maxima and Minima 70. Utility Theory 71. Production under Free Com- petition
19. Elements of Infegration 178
72. Indefinite Integrals 73. Marginal Cost, Total Cost, Average Cost 74. Definite Integrals 75. Consumers' Surplus
III PROBABILITY AND STATISTICS
20. Probability 193
76. Definition of Probability 77. Laws of Probability 78. Prob- ability Distributions
21. Random Variables 208
79. Mathematical Expectation 80. Computations with Mathe-matical Expectations
22. Moments 217
81. Moments about the Origin 82. Moments about the Mathe-matical Expectation
xiv Contents
23. Binomial and Normal Distributions 223
83. Repeated Trials and Binomial Distribution 84. The Normal Distribution
24. Elements of Sampling 235
85. Estimation 86. Frequency Distributions 87. Sample Mean and Variance 88. Sheppards' Correction 89. Confidence Limits
25. Tests of Hypotheses 255
90. Tests of Statistical Hypotheses (Large Samples) 91. Tests of Statistical Hypotheses (Small Samples) 92. Tests of Significance for Two Samples
26. Fitting of Distributions 265
93. Fitting of the Normal Distribution 94. Tests of Goodness of Fit95. Contingency Tables
27. Regression and Correlation 273
96. Method of Least Squares 97. Curve Fitting 98. Regression
99. Simple Correlation 100. Fitting of Demand and Supply Curves
28. Index Numbers 303
101. Elements of Index Numbers
Postscript: Suggestions for Further Reading 307
Answers to Odd-numbered Problems 311
Tables 341

1. Four-Place Common Logarithms of Numbers. 2. Natural Trig-onometric Functions for Decimal Fractions of a Degree. 3. Four-Place Natural Logarithms. 4. Areas of the Normal ProbabilityCurve. 5. Student's t-Distribution. 6. χ^{2} Probability Scale.
Indexes 353Index of Names. Index of Mathematical and Statistical Terms.Index of Economic Terms.

INDEX OF NAMES

Allen, R. G. D., 308
Anderson, R. L., 308
Bancroft, T. A., 308
Baumol, W. J., 308
Burkhoff, G., 308
Boulding, K. E., vii
Bronfenbrenner, M., ix
Brownlee, O., ix, 151
Cobb, C. W., viii
Collar, A. R., 308
Daly, P., ix, 151
Davis, H. T., viii, 40, 308
Dean, J., viii, ix, 76, 100
Derken, J. B. D., ix, 153
Dorfman, R., 308
Douglas, P. H., vii, ix, 150, 151
Duncan, W. J., 308
Euler, L., 161
Evans, G. C., 308
Ezekiel, M., 309
Fisher, I., 304
Frazer, R. A., 308
Gauss, K. F., 226
Gunn, G. T., ix, 150
Haavelmo, T., ix, 32, 64, 85
Handsaker, M. H., ix
Kendall, M. G., 309
Laspeyre, E., 304
Leontief, W., ix, 34, 60
MacLane, S.; 308
Malthus, T. R, 51

Marshall, A., 22
May, K. O., 308
Mises, R. von, 308
Mood, A.' M, 308
Morgenstern, O., 308
Neumann, J. von, 308
Nichols, W. H., ix, 10
Nordin, J. A., ix, 90, 174
Olson, E., ix
Paasche, H., 30̈4
Pabst, W. R., ix, 154
Paradiso, L. J., 153
Pareto, V., 37
Rambouts, A , ix, 153
Roos, C. F., ix, 153
Samuelson, P. A., x, 64, 85, 308
Sauerbeck, A., 303
Schultz, H., x, 19, 21, 24, 31, 43, 65, 73.
$74,98,99,107,108,139,152,153$
Sheppard, W. F., 250
Stigler, G. J., vii
Stone, R., x, 149
Student, 258
Szeliski, V. von, ix, x, 40, 153
Tinbergen, J., 308
Uspensky, J. V., 308
Walras, L., 31
Whitmann, R. H., x, 139
Widder, D. V., 308
Wilks, S. S., 308
Wold, H., x, 74
Yntema, T. O., x, 76, 100, 139

INDEX OF MATHEMATICAL AND STATISTICAL TERMS

Abscissa, 5

Addition theorem, 199
Area, 182
Arithmetic progression, 44
sum, 46
Bias, 236
Binomial distribution, 223
mean, 227
standard deviation of, 228
variance of, 228
Central limit theorem, 229
Chance variable, 202
Chi square distribution, 268, 351 (Table 6)
Class limits, 243
Class mean, 245
Coefficient of correlation, 287
Coefficient of determination, 289
Coefficient regression, 291
Common difference, 44
Common ratio, 48
Concavity, 128
Conditional probability, 200
Confidence limits, 251
Consistency, 241
Consistent estimate, 241
Constant, derivative of, 99
times a function, derivative of, 95
Constrained maximum, 171
Constrained minimum, 171
Contingency table, 270
Coordinates, rectangular, 5

Correlation, 273
coefficient, 287 lag, 297
sample, 287
test of significance, 287
lag, 295
simple, 287
zero, 289
Critical point, 135
Critical value, 135
Cumulative probability, 203
Curve, area, 182
Curve fitting, 275
Definite integral, 182
Degrees of freedom, 241
Density, probability, 204
Dependent variable, 3,69
Derivative, 85
of a constant, 99
times a function, 95
of differences of functions, 97
of exponential function, 115
first, geometric significance of, 123
of a function of a function, 105
higher, 126
of an implicit function, 154
logarithmic, 114
of a logarithmic function, 112
negative power, 107
partial, 146
higher, 164
of a power, 94

Derivative (cont'd)
of a product, 100
of a quotient, 102
rules for obtaining, 94
second, 128
of a sum of functions, 97
Determinant, expansion, 56
minors, 56
of the second order, 54
solution of systems of equations, 54
third-order, 56
Determination, coefficient, 289
Difference, common, 44
equation, homogeneous first-order, 61
linear, with constant coefficients, 61
nonhomogeneous, 63
first, 61
of functions, derivative, 97
quotient, 76
Dispersion, 219
Distribution, binomial, 223
chi square, 268, 351 (Table 6)
fitting, 265
frequency, 243
normal, 226, 349 (Table 4)
probability, 202
Student's, 287, 350 (Table 5)
$t, 287,350$ (Table 5)
C, 109-110
Efficiency, 241
Efficient estimate, 241
Equation, defined, 11
graph, 6
linear, in one unknown, 11
systems, 28
normal, 275, 279, 282
quadratic, 35
Error curve, normal, 226
first kind, 256
second kind, 256
Estimate, 236
consistent, 241
efficient, 241
sufficient, 242
unbiased, 236
Euler theorem, 161
Even function, 71
Expectation, mathematical, 80, 208
Exponential function, derivative, 115
trend, 279
Extrapolation, 276
Fiducial limits, 251
First derivatıve, geometric significance, 123
First difference, 61
First-order difference equation, homogeneous, 61
nonhomogeneous, 63

Fitting, curve, 275
Fitting distribution, 265
normal, 265
Freedom, degrees of, 241
Frequency, relative, 194
Frequency definition of probability, 194
Frequency distribution, 243
Function; 3, 69
even, 71
of a function, derivative, 105
homogeneous, 159
linear, 162
implicit, 69-70 derivative, 154
inverse, 69
linear, graph, 13
odd, 71
of one variable, maximum, 133
minimum, 133
of several variables, 145
maximum, 166
minimum, 166
Gaussian distribution, 226
Geometric mean, 274
Geometric progression, 48
lumit, 84
sum, 50
limit, 84
Goodness of fit, 267
Graph, 5, 6
of linear function, 13-16
Higher derivative, 126
Higher partial derivative, 164
Homogeneous function, 159
Euler theorem, 161
linear, 162
Hyperbola, rectangular, 42
Hypotheses, test, 255
Implicit function, 69
derivative, 154
Indefinite integral, 181
Independence, 201
Independent variable, 3, 69
Inflection point, 142
Integral, definite, 182
indefinite, 181
Intercept, 16
Interpolation, 275
Inverse function, 69
Kurtosis, 220
Lag correlation, 295
cocfficient, 297
Lag regression, 297, 300
Large numbers, law of, 210

Law of large numbers, 210
Least squares, 273
Level of significance, 255
Likelihood, maximum, 243, 280
Limıt, 80
confidence, 251
fiducial, 251
Linear difference equation with constant coefficients, 61
Linear equation, in one unknown, 11 systems, 28
Linear function, graph, 13
Linear homogeneous function, 162
Linear trend, 275
Location, probability distribution, 208
Logarithm, 37, 341-342 (Table 1) natural, 110, 347-348 (Table 3)
Logarithmic differentiation, 112, 114
Mathematical expectation, 80, 208
moments about, 219
Maximum, 133
constrained, 171
with side conditions, 171
Maximum function of several variables, 166
Maximum likelihood, 243, 280
Mean, arithmetic, 208
binomial distribution, 227
class, 245
geometric, 274, 303
population, 208
sample, 237, 245
Median, 250
Minimum, 133
constrained, 171
function of several variables, 166
side conditions, 171
Minor, 56
Mode, 234
Moment, 217
about the mathematical expectation, 219
about the origin, 217
Multiple regression, 292
Multiplication theorem, probability, 200
Natural logarithm, 110, 347-348 (Table 3)
Negative power, derivative, 107
Normal distribution, 207, 226, 349 (Table 4)
fitting, 265
Normal equations, 275, 279, 282
Normal error curve, 207, 226
Normal integral, 229
Odd function, 71
Ordinate, 5
Parabola, curve fitting, 278
trend, 278

Partial derivative, 146
higher, 164
Permissible value, 3, 4
Point of inflection, 142
Population, 208
mean, 208
standard deviation, 220
variance, 219
Power, derivative, 94
Probability, 193
addition theorem, 199
classical definition of, 193
conditional, 200
cumulative, 203
density, 204
distrıbutıon, 202
binomial, 223
mean, 227
standard deviation, 228
variance, 228
dispersion, 219
kurtosis, 220
location, 208
moments, 217
normal, 207, 226
integral, 229
rectangular, 205
skewness, 220
frequency definition, 194
multiplication theorem, 200
Product of functions, derivative, 100
Progression, arithmetic, 44
sum, 46
geometric, 48
limit, 84
sum, 50
sum, 44
Quadratic equation, 35
Quotient of functions, derivative, 102
Random sample, 235
Random sequence, 194
Random variable, 202
Range, 245
Ratio, common, 48
Rectangular coordinates, 5
Rectangular hyperbola, 42
Rectangular probability distribution, 205
Regression, 273, 281
coefficient, 291
test, 291
lag, 297, 300
multiple, 292
Relative frequency, 194
Repeated trials, 223
Rules of differentiation, 94
Sample, correlation coefficient, 287

Sample (cont'd)
mean, 237, 245
standard error, 239
random, 235
variance, 239
Sampling, random, 235
stratified, 236
Scatter diagram, 282
Second derivative, 128
Second-order determinant, 54
Selection, 194
Sequence, random, 194
Sheppard's correction, 250
Significance level, 255
Simple correlation, 287
Skewness, 220
Slope, 14, 77
tangent, 123
Standard deviation, 220
binomial distribution, 228
population, 220
Standard error, sample mean, 239
Statistic, 236
Stochastic variable, 202
Stratified sampling, 236
Student's distribution, 258, 287, 350 (Table 5)
Sufficiency, 242
Sufficient estimate, 242
Sum, of arithmetic progressions, 46 of functions, derivative, 97
of geometric progressions, 50
limit, 84
of progressions, 44
Systems of linear equations, 28
colution by determinants, 54
t-distribution, 258, 287, 350 (Table 5)
Tangent, slope, 123
Test, goodness of fit, 267
hypotheses, 255
large samples, 255
small samples, 257
of significance, correlation coefficient, 287
regression coefficient, 291
two samples, 259
Third-order determinant, 56
Trend, exponential, 279
linear, 275
parabolic, 278
Trials, repeated, 223
Trigonometry, 77, 343-346 (Table 2)
Two samples, test of significance, 259
Unbiased estimate, 236
Values, permissible, 3,4
Variable, 69
chance, 202
dependent, 3, 69
independent, 3, 69
random, 202
stochastic, 202
Variance, 219
binomial distribution, 228
population, 219
sample, 239
Sheppard's correction, 250
Zero correlation, 289

INDEX OF ECONOMIC TERMS

Agricultural products, demand, 24 supply, 24
Australia, production function, 150
Automobiles, demand, 153
Average cost, 74
and marginal cost, 140
Average revenue, 72
Barley, demand, 19, 31, 73, 99, 152
Beef, demand, 31, 152
Beer, demand, 153
Bicycles, demand, 153
Buckwheat, demand, 24, 99
Budget equation, 173
Butter, demand, 74, 154
Canada, production function, 150
Cobweb theorem, 65, 295
Collective demand, 18
Collective supply, 19
Competition, 22, 32, 175
Compound interest, 52,62
Constant elasticity, demand, 41
Constant marginal cost, 130
Constant product curve, 177
Consumers' surplus, 188
Corn, demand, 31, 43, 108, 153
Cost, average, 74, 181
in department store, 100
of hosiery, 76, 90,100
of leather belts, $76,90,100$
in light plant, 90
of living, 303
marginal, 88, 181

- constant, 130

Cost, marginal (cont'd)
decreasing, 130
increasing, 130
of steel, 76, 100
total, 74, 181
Cotton, demand, 19, 43, 73, 98, 108
Decreasing marginal cost, 130
Demand, agricultural products, 24
automobiles, 153
barley, 19, 31, 73, 99, 152
beef, 31, 152
beer, 153
bicycles, 153
buckwheat, 24, 99
butter, 74, 154
corn, 31, 43, 108, 153
cotton, 19, 43, 73, 98, 108
curves with constant elasticity, 41
fitting, 292
quadratic, 35
elasticity, 119, 174
partial, 151
function of, 72
individual, 17
linear, 17
market, 17
hay, 31, 74, 99, 153
mutton, 31, 152
oats, 31, 153
oleomargerine, 154
partial clasticity, 151
pork, 31, 152
potatoen, 43, 73, 108
rye, 19, 99

Demand (cont'd)
shift, 158
shoes, 153
soap, 153
spirits, 153
sugar, $19,24,43,65,73,98,107$
tobacco, 153
wheat, 43, 108
Department store, cost, 100
Distribution of income, 37
Elasticity, 41, 118, 298, 299
constant, 41
of demand, 119, 174
and marginal revenue, 121
partial, 151
income, 174
Enterprise, growth, 47
Equation, budget, 173
Equilibrium, general, 32
market, 22
several commodities, 30
partial, 22
Farms, production function, 151
Fitting demand functions, 292
Fitting Pareto distribution, 280
Fitting supply functions, 292
Food, utality function, 174
Free competition, 22, 32, 175
Free good, 18
Function, production, 175
transformation, 177
General equilibrium, 32
Geometric mean, index number, 303
Good, free, 18
Growth of enterprise, 47
Hay, demand, 31, 74, 99, 153
Hogs, production function, 151
Hosiery, cost, 76, 90, 100
Ideal index number, 304
Identification, 293, 302
Imputation, 32
Income, distribution, 37 elasticity, 174
Increasing marginal cost, 130
Index number, geometric mean, 303
ideal, 304
Laspeyre's, 304
Paasche, 304
Sauerbeck, 303
Indifference curve, 174, 175
Individual demand function, 17
Individual supply function, 19
Input-output analysis, 60
Interest, compound, 52, 62

Joint production, 169
Laspeyre's index number, 304
Leather belts, cost, 76, 90, 100
Light plant, cost, 90
Linear demand function, 17
Linear programming, 12, 30
Linear supply function, 19
Living, cost of, 303
Marginal cost, 88, 181
and average cost, 140
constant, 130
decreasing, 130
increasing, 130
Marginal productivity, 149, 177
Marginal rate of substitution, 174
Marginal revenue, 90
and elasticity of demand, 121
Marginal utulity, 174
Market, demand function, 17
equilibrium, 22
of several commodities, 30
supply function, 19
Meat packing, production function, 10
Monopoly, 136
steel, 139
sugar, 139
tax, 157
Multiplier, 64, 85
Mutton, demand, 31, 152
Oats, demand, 31, 153
Oleomargerine, demand, 154
Paasche index number, 304
Pareto curve, 37
fitting, 280
Partial elasticity of demand, 151
Partial equilibrium, 22
Population growth, 51
Pork, demand, 31, 152
Potatoes, demand, 43, 73, 108
Product, constant, 177
Production, under free competition, 175
function, 175
Australia, 150
Canada, 150
farms, 151
hogs, 151
meat packing, 10
United States, 150
joint, 169
Productivity, marginal, 149, 177
Profits, 32, 136
Programming, linear, 12, 30
Quadratic demand function, 35

Ratio, sex, 198
Revenue, average, 72
marginal, 90
total, 72
Rye, demand, 19, 99
Sauerbeck index number, 304
Sex ratio, 198
Shift in demand, 158
Shoes, demand, 153
Soap, demand, 153
Specific tax, 24
Spirits, demand, 153
Steel, cost, 76, 100 moncpoly, 139
Subsidy, 24
Substitution, marginal rate of, 174
Sugar, demand, 19, 24, 43, 65, 73, 98, 107 monopoly, 139 supply, 21, 24, 65
Supply, agricultural products, 24 curve, fitting, 292
function, collective, 19

Supply, function, (cont'd) individual, 19
hnear, 19
market, 19
mugar, 21, 24
Surplus, consumers', 188
Tax, 24
specific, 24
monopoly, 157
Theorem, cobweb, 295
Tobacco, demand, 153
Total cost, 74, 181
Total revenue, 72
Transformation function, 177
United States, production function, 150
Utility, 173
function for food, 174
marginal, 174
measurable, 174
Wheat, demand, 43, 108

